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Research for efficient horticulture. 

In horticulture compactness is a quality trait for ornamental plants. Compactness can 

be obtained by using chemical inhibitors of production (endogenous biosynthesis) of the 

phytohormone gibberellin (GA), which promotes plant elongation responses. However, the 

use of such chemicals in greenhouses is environmentally unfriendly and is being phased out. 

Therefore, alternative, more sustainable treatments are needed to keep plants compact. One 

option is the use of alternative light/temperature regimes. While the normal day regime in 

greenhouses is called +DIF (warm day, cold night), an alternative –DIF regime consists of an 

inversion of day and night temperature: the temperature during the day is kept cool, while 

the night temperature is kept high. Such –DIF treatment for many plant species results in a 

more compact stature, as –DIF inhibits elongation responses in plants (Patil and Moe, 2009; 

Bours et al., 2015). The research described here is part of the STW project ‘compact plants’. 

The aim of the ‘compact plant’ project is to get a fundamental understanding of the molecular 

mechanisms that underly the elongation inhibition under –DIF and regulation of plant growth 

in general. The ultimate aim of the ‘compact plant’ STW project is to find suitable new 

protocols for horticulture to enhance the effect of –DIF or to find alternatives to –DIF 

treatment for the growth control of plants in greenhouses. The –DIF treatment can only be 

applied during a certain period of the year (cooling during the day is too expensive in summer). 

Therefore, enhancing the effectiveness of –DIF may also result in a longer period of the year 

during which –DIF can be applied.  

Insight into molecular control of plant elongation under–DIF at the start of this project. 

Previous research by Bours (Bours, 2014) has shown that different light/temperature 

combinations affect the overall capacity of a signal transduction pathway towards elongation. 

This signal transduction pathway is activated by perception of the key transcription factors 

Phytochrome Interacting Factor 4 (PIF4) and PIF5 (Wang et al., 2017). As the name suggests, 

these transcription factors interact with phytochromes (PHYs), of which the interaction with 

PHYB has been best described. When light activates PHYB the active Pfr form of PHYB is 

translocated to the nucleus where it binds to PIF4, leading to phosphorylation of PIF4 and 

eventually to targeting this protein for degradation (Bauer et al., 2004; Khanna et al., 2004; 

Park et al., 2004; Al-Sady et al., 2006; Oh et al., 2006; Shen et al., 2007; Shen et al., 2008). PIF4 
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and PIF5 are central transcription factors for plant elongation responses, their activity is 

limited in the light through destabilisation by the interaction with activated PHYB, resulting in 

limited growth in the light. The transcription factors PIF4/5 target genes for auxin biosynthesis 

like YUCCA8, resulting in increased auxin levels (Bours et al., 2015). Auxin signaling 

subsequently activates genes for ACC synthases, leading to increased ethylene production and 

increased ethylene signalling. The ethylene signalling through EIN3 subsequently activates 

PIF3, which targets genes directly involved in cell wall loosening and cell expansion (Bours et 

al., 2015). The PIF3 protein stability is not only decreased through the interaction with PHYB 

but also through the interaction with light activated PHYA (Park et al., 2004; Ni et al., 2013). 

Thus, for elongation responses, PIFs are important and both PHYB and PHYA are of relevance. 

The research of Bours (Bours, 2014)showed that PIF4/5 act upstream in this signal 

transduction pathway because the elongation defect in mutants lacking PIF4 and PIF5 can be 

complemented by auxin or by ethylene. In contrast, elongation effects in mutants lacking PIF3 

are not complemented by auxin or ethylene(Bours et al., 2015). The model of the interactions 

involved in elongation responses as known at the end of the project of Bours (Bours, 2014) 

and at on-set of this project is presented in Figure 1.  

 

Figure 1. Signal transduction pathway towards elongation as elucidated at the start of this project 

(Bours et al., 2015). Red arrows: negative interaction; Green arrows: positive interaction; Grey arrows: 

different signal transduction pathways. 
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The circadian clock is affected by –DIF. 

The signal transduction pathway towards elongation responses in plants as shown in 

Figure 1 is not static. Multiple components of the signal transduction pathway shown in Figure 

1 are under control of the circadian clock (PIF4/5, YUCCA8, PHYB, PHYA). Moreover, the 

research of Bours (Bours, 2014) has shown that the –DIF treatment is also affecting the 

functioning of the clock itself. Initially, this was determined by measuring clock controlled leaf 

movement. However, the activity of clock genes was also monitored directly, using reporter 

plants expressing different firefly luciferase clock reporters (ffLUC reporters). The 

measurements on clock regulated leaf movement and on clock genes themselves showed that 

the different DIF conditions have a direct effect on phase and amplitude of clock genes and 

clock controlled processes. The phase shift for the different clock genes under -DIF is not the 

same: some clock genes show an earlier phase, while other clock genes show a later phase 

under –DIF (Bours et al., 2015). This means that the coordination of the different clock 

controlled processes will also not be the same under –DIF. Since all of the components in the 

signal transduction pathway in Figure 1 show some form of regulation by the circadian clock, 

the altered phases for each of the components will lead to some mismatches in peak activities 

over time, resulting in a bottleneck in the signal transduction chain. Thus –DIF alters the 

overall signalling capacity at different times of the day. This is most prominent for auxin and 

ethylene signalling under -DIF. Indeed, the inhibitory effect on plant elongation of –DIF can be 

complemented by adding either auxin or ethylene (Bours et al., 2015). The auxin signalling is 

especially limited during the day, suggested a lower than normal input by PIF4/5 in this signal 

transduction cascade during the day. The lower activity of PIF4/5 during the day under –DIF 

could be due to the interaction with light activated PHYB during the day. This was confirmed 

by Bours by demonstrating that a phyB mutant showed a reduced sensitivity to the 

suppression of elongation under –DIF (Bours et al., 2013).  

Interactions between Phytochromes: from cotton to Arabidopsis. 

Because of the strong and direct effect of light activated phytochromes on PIFs I was 

interested to determine whether transcriptional input of PHY gene expression can be a 

limiting factor for the activity of PIFs. The interest in studying the interactions between 

different phytochromes comes from my background in Uzbekistan where cotton is a major 



11 

 

crop. In 2014, Abdurakhmonov et al had shown that inhibition of the cotton PHYA gene by an 

RNAi construct resulted in several improvements of the cotton plant (Abdurakhmonov et al., 

2014). The cotton plants in which PHYA expression was decreased through post transcriptional 

gene silencing showed more vigorous root- and vegetative-growth, exhibited early-flowering 

and a significantly improved length of the cotton fiber (Abdurakhmonov et al., 2014). Analysis 

of these cotton plants with silenced PHYA indicated that the silencing of the cotton PHYA gene 

resulted in overexpression of the endogenous cotton PHYB gene, suggesting that the cotton 

PHYA normally suppresses the activity of the cotton PHYB gene. Indeed, similar improvements 

in cotton had been obtained before by overexpression of the Arabidopsis PHYB gene in cotton 

(Rao et al., 2011). It was not investigated whether the overexpression of the Arabidopsis PHYB 

in cotton resulted in suppression of cotton PHYA expression. Overall, this raises the question 

what is causal for the cotton improvement: down-regulation of cotton PHYA or up-regulation 

of the cotton PHYB? These experiments also reveal that there can be substantial interaction 

between different phytochromes and raises the question whether the decreased sensitivity 

of Arabidopsis phyB mutants is actually coming from increased expression of other PHY genes. 

Based on the observations in cotton we wondered how PHYs interact in Arabidopsis and how 

this contributes to the control of plant growth responses as function of light and temperature. 

While some interactions between phytochromes have been studied in Arabidopsis at the 

genetic level, for instance, by scoring hypocotyl elongation under Red (R) or Far Red (FR) light 

in single and double phytochrome mutants, these genetic interactions have not been directly 

linked to changes in the transcriptional regulation of the different PHY genes.  

Phytochrome signaling capacity a function of other PHYs? 

Phytochromes are photoreceptors that have important role in elongation responses. 

In Arabidopsis phytochromes are encoded by five genes (PHYA-PHYE) (Lin, 2002). All 

phytochrome proteins assemble into active photoreceptors by addition of a chromophore. 

The fully functional phytochrome proteins are activated by R light and inactivated by FR light. 

Among the members of the PHY gene family, PHYA and PHYB have the most prominent 

function. PHYA is abundant in seeds and dark-grown seedlings and plays a crucial role during 

first light responses. Moreover, PHYA is the only phytochrome that also responds to FR light 

(Tepperman et al., 2006). In contrast to the other (stable) phytochrome proteins, activated 

PHYA is rapidly degraded in light. PHYB is the dominant phytochrome for regulating growth 
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responses in continuous light-grown plants (Reed et al., 1998). PhyC, D and E have multiple 

functions throughout plant development and act redundant with PHYB responses (Aukerman 

et al., 1997; Franklin et al., 2003; Monte et al., 2003). Although the interaction between 

phytochromes has been studied at the genetic level, it is not known how individual PHYs affect 

the expression of other PHY genes.  

Previous studies demonstrated that the length of seedling hypocotyl or the length of 

leaf petiole and leaf movement are significantly altered under –DIF condition compared to 

+DIF (Bours et al., 2015). In this elongation cascade Phytochrome B regulates both upstream 

(PIF4/5) and downstream (PIF3) the stability of PIF protein, while PHYA may also regulate PIF3 

protein levels (Fig.1). Under –DIF auxin becomes limiting for elongation (Bours et al., 2015), 

suggesting that PIF4/5 activity is limiting under -DIF. This limited PIF4/5 activity may either be 

caused by lower expression of PIF4/5 genes under –DIF or by higher activity of PHYB targeting 

PIF4/5 protein for destruction. In this research we therefore aimed at an inventory of the PHY 

expression profiles and PIF expression profiles under different light/temperature conditions 

to determine whether the coincidence in PHY and PIF gene activity contributes to overall PIF 

activity for elongation. This research makes use of firefly luciferase (LUC) reporter plants 

expressing pPHY:LUC or pPIF:LUC expression constructs. For each of the phytochrome genes 

a PHY:LUC reporter was made and transformed to Arabidopsis WT (Col-0). Selected 

homozygous lines where then crossed into the different phytochrome single mutants, 

resulting in a set of 30 reporter plants with which we have analysed the expression or and 

interaction between the different PHY genes. Analysis of these reporter plants was done using 

LUMINATOR, a sensitive camera system to image LUC activity in plants, with LED light and 

temperature control.  

New components for the growth model: MED25 and BZR1. 

This research addresses the control of plant growth with a focus of the role of 

phytochromes. However, also other mutants that show altered phytochrome signaling and 

elongation are of potential interest, as they help to understand all the steps involved in 

elongation responses. During this research two factors were added to the conceptual model: 

BZR1 and MED25. BZR1 is a transcription factor that is activated upon brassinosteroid (BR) 

signaling and is required for the elongation response mediated by the action of PIFs (Ibañez 
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et al., 2018; Martínez et al., 2018). Full knock-out mutants of BZR1 are embryo lethal, but in 

research a gain-of-function mutant bzr1-1D has been used. The gain of function mutation in 

bzr1-1D leads to a constitutive activation and stabilization of the BZR1 protein and can 

therefore be considered as a BZR1 overexpression line, in which BZR1 activity is not dependent 

on activation by endogenous BR signaling (Wang et al., 2002). An interesting feature of the 

bzr1-1D mutant is that it hardly has a hypocotyl growth phenotype when plants are grown at 

normal temperature (22ᵒC), but bzr1-1D does have an exaggerated hypocotyl elongation 

response at higher (27ᵒC) temperature (Ibañez et al., 2018). The floral organs of bzr1-1D are 

enlarged compared to WT Arabidopsis plant flowers.  

Another mutant identified from literature is the pft1-2 mutant. PFT1 encodes a nuclear 

protein that acts in the PHYB signaling pathway. Mutations in PFT1 alter flowering responses 

under suboptimal light conditions. For instance, mutants in PFT1 show reduced responses to 

far red (FR) light. However, PFT1 action is pleotropic as it integrates environmental factors 

such as light quality (Klose et al., 2012), JA dependent defenses (Kidd et al., 2009; Zhu et al., 

2014) and auxin signaling (Raya-Gonzalez et al., 2014; Ito et al., 2016). PFT1 encodes subunit 

25 of the conserved Mediator protein complex and is therefore also called MED25. The 

mediator complex consists of up to 30 proteins, and this complex of proteins functions as 

adaptor between a specific sub-set of transcription factors and the general transcription 

machinery containing the RNA polymerase II (Elfving et al., 2011; Kazan, 2017). In our research 

we found that MED25 is involved in the transcriptional activity of PIF4 and BZR1. 

Transcript and miRNA profiling under –DIF. 

 The research on genes functioning in the elongation responses of Arabidopsis using 

selected LUC-reporter plants was complemented by a broader profiling of transcripts to study 

the more general effect of –DIF treatment. Profiling was done at two key time points during 

plant growth: at the end of night and at the end of day, both for plants grown under +DIF and 

under –DIF. In order to study the role of PHYB in the differential gene expression under +DIF/-

DIF, the same expression profiling was also done at the same time points for the phyB-9 

mutant. In addition to mRNA profiling we also included profiling of miRNAs at these two key 

time points to determine whether some of the responses under –DIF can be attributed to 

altered miRNA activity. MicroRNAs are short 21-24 nucleotide length of non-coding small 
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RNAs that function in RNA silencing, either by destabilization of target mRNA or by blocking 

target mRNA translation. It had already been established that miRNAs play a central role in 

the interaction between phytohormones in plants (Curaba et al., 2014). The reason to 

investigate whether there is a role for miRNAs in the response to –DIF is that auxin is a key 

factor in –DIF responses. The auxin responses are mediated by Auxin Response Factor (ARF) 

transcription factors and for multiple ARFs it has been shown that they are regulated at the 

post transcriptional level by miRNAs. For instance, ARF16 and ARF17 are targeted by 

miRNA160 and ARF6, ARF8 as well ARF19 are targeted by miRNA167 (Mallory et al., 2005). In 

addition, PHYB has been implemented in the control of miRNA biosynthesis (Sun et al., 2015; 

Sun et al., 2018). Because PHYB plays a prominent role in the –DIF response the question was 

whether part of the –DIF responses is by miRNAs affecting auxin signaling in plants. While the 

miRNA sequencing results are not presented in this thesis, as they need further bio-

informatics analysis to be finalized, some intriguing preliminary observations from this 

research are presented and discussed in the final discussion chapter 6.  

Engineering for potential applications in plants. 

The insights into the molecular control of growth in plants has its application in new 

protocols for greenhouses to keep plants compact. However, the same insights may also be 

applied in cases where it may be desirable to obtain larger plants or larger flowers. For 

instance, the mutant bzr1-1D and pft1-2 both have enlarged flowers and during this research 

we found that the bzr1-1D/pft1-2 double mutant has even larger flowers. This may have 

potential applications in ornamentals or crops for which the flower is harvested. For instance, 

if the same effect can be obtained in cotton by introducing a bzr1-1D overexpression construct 

and a RNAi construct targeting the MED25 of cotton, this could potentially result in bigger 

cotton flowers. Cotton produces fibers that grow in the protective case (boll) around the seeds 

of the cotton plants. The question is whether larger cotton flowers can host more cotton seeds 

that produce the cotton fibers or will allow for more space for the cotton fibers to grow. 

However, cotton is not an easy plant to transform and introduction of two different construct 

would require quit some effort. In general, many plant manipulations may benefit from 

overexpression of one gene, while at the same time silencing another gene. For instance, in 

metabolic engineering a specific terpene synthase may be used for overexpression (Wang et 
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al., 2016) while an RNAi construct may target a side branch in the terpene biosynthesis 

pathway to direct all synthesis to the desired product. We therefore developed a novel 

strategy to obtain such dual manipulations in a single gene construct. The concept of this novel 

strategy comes from the observation that some natural miRNAs are located in the intron of a 

host gene in plants. Arabidopsis has 37 intron-derived miRNAs and rice has 181 intron-derived 

miRNAs (Yang et al., 2012). Although in plants it had not been established that the production 

of such intron-derived miRNAs is without interference of the host gene expression we used 

this concept from nature to design an artificial transgene for overexpression with an intron 

containing a miRNA sequence targeting another gene of interest. Using a LUC reporter this 

concept was proven to function in plants (Chapter 5).  

 

Outline of this thesis. 

In chapter 2, We researched the question how phytochrome genes affect each other 

at the transcriptional level. This was studied using a set of PHY-LUC reporter plants for each 

of the five phytochrome genes of Arabidopsis. The PHY-LUC reporter activity was studied in 

WT plants and in the five single PHY KO-mutants. Results showed that in seedlings 

phytochrome genes do affect each other at the transcript level, but in more mature stages of 

development (e.g. rosette plants) not many of these interactions remain. These studies also 

resulted in several novel discoveries. For instance, (1) we found that PHYD is a constitutive 

repressor of PHYA gene activity, (2) we found that PHYB and PHYA are upregulated under FR 

light, but in a different way, (3) we found that the upregulation of PHYB under FR is dependent 

on PHYB, PHYE and PIF4 (4) we found that the upregulation of PHYA under FR is dependent 

on PHYE. 

In chapter 3 We studied part of the complex feedback regulation at the PIF4 locus. 

During this research period it had become known that BRR1 is a key regulator of PIF4 

expression, especially under higher temperature. Moreover, activation of PIF4 by BZR1 results 

in an indirect feedback loop through BR synthesis, BR signaling and further activation of BZR1. 

It was thought that this positive feedback regulation of PIF4 is kept under control by factors 

acting at the post-transcriptional level on the PIF4 protein. However, we demonstrate in 
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chapter 3 that PIF4 is a negative regulator of its own expression and acts dominant over the 

positive action of BZR1 on PIF4 expression. In addition, we show that PIF4 regulates PHYB 

expression, adding another negative feedback loop to the control of PIF4 activity.  

In chapter 4, We studied the effect of MED25 on the activity of BZR1 and PIF4. Using a 

split luciferase assay we show that MED25 can bind to the PIF4 and BZR1 protein in planta. 

Moreover, we also show that MED25 can interact with the histone modifying deacetylase 

enzyme HDA9. Mapping of the MED25 interacting domain shows that both PIF4 and HDA9 

bind to the poly-Q domain of MED25. Recently a role of HDA9 in warmth induced elongation 

responses was investigated by Martijn van Zanten at Utrecht University (manuscript 

submitted). Although the effect of HDA9 was clearly demonstrated, it was not clear how HDA9 

is recruited to promoters with bound BZR1 or PIF4. The dual binding capacity of MED25, 

interacting both with the transcription factors bound to promoter sites and the interacting 

with HDA9, may explain how HDA9 is recruited to promoters. We demonstrate that MED25 

affects the transcriptional activity of PIF4, but that PIF4 expression in the MED25 mutant pft1-

2 is uncoupled from target gene expression and elongation responses.  

In chapter 5, We describe how multiple manipulations of growth of plants may be 

reached in principle through a single expression construct. By placing a miRNA sequence 

(named artificial intron miRNA: aimiR) into the intron of a luciferase genomic gene (gLUC) I 

could test whether this results in simultaneous host transgene (LUC) expression and miRNA 

production. After adjusting the insertion cloning strategy, the ffgLUCaimiR-319a gene showed 

dual functionality with correct splicing of ffgLUC and efficient silencing of TEOSINTE 

BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 transcription factor genes targeted 

in-trans by aimiR-319a. The same principle was also demonstrated with an aimiR-LUC which 

targets the transgene ffLUC in-cis. Silencing of endogenous target genes by aimiRNA or 

amiRNA is efficient both in transient assays and stable transformants. This concept therefore 

adds new options to engineering of plant traits that require multiple gene manipulations.  

In the last chapter (chapter 6) I discuss some of the difficulties we encountered and 

many questions that remain after the different discoveries that were made during this 

research. I discuss experiments that are needed to answer some of the remaining questions. 

I discuss the seeming discrepancies between our own experimental results with PIF4 
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overexpression and those found in literature. In this chapter I also speculate on the role of 

MED25 in the action of BZR1 and PIF4 and I present an update of Figure 1 in a new extended 

conceptual model of the signal transduction towards elongation. During this research we also 

discussed that PIF4 proteins with a tag do not behave the same as endogenous PIF4 without 

tag, which explained discrepancies between our results and literature.  

 

  



18 

 

REFERENCE 

 
Abdurakhmonov IY, Buriev ZT, Saha S, Jenkins JN, Abdukarimov A, Pepper AE (2014) 

Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton 
Gossypium hirsutum L. Nat Commun 5: 3062 

Al-Sady B, Ni W, Kircher S, Schafer E, Quail PH (2006) Photoactivated phytochrome induces 
rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol Cell 23: 
439-446 

Aukerman MJ, Hirschfeld M, Wester L, Weaver M, Clack T, Amasino RM, Sharrock RA (1997) 
A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role 
for phytochrome D in red/far-red light sensing. Plant Cell 9: 1317-1326 

Bauer D, Viczian A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KC, Adam E, Fejes E, 
Schafer E, Nagy F (2004) Constitutive photomorphogenesis 1 and multiple 
photoreceptors control degradation of phytochrome interacting factor 3, a 
transcription factor required for light signaling in Arabidopsis. Plant Cell 16: 1433-1445 

Bours R (2014) Antiphase light and temperature cycles disrupt rhythmic plant growth : the 
Arabidopsis jetlag. Proefschrift Wageningen University ter verkrijging van de graad van 
doctor in het jaar 2014 

Met literatuuropgave. - Met samenvatting in het Engels en Nederlands. Wageningen 
University, Wageningen 

Bours R, Kohlen W, Bouwmeester HJ, van der Krol A (2015) Thermoperiodic control of 
hypocotyl elongation depends on auxin-induced ethylene signaling that controls 
downstream PHYTOCHROME INTERACTING FACTOR3 activity. Plant Physiol 167: 517-
530 

Bours R, van Zanten M, Pierik R, Bouwmeester H, van der Krol A (2013) Antiphase light and 
temperature cycles affect PHYTOCHROME B-controlled ethylene sensitivity and 
biosynthesis, limiting leaf movement and growth of Arabidopsis. Plant Physiol 163: 
882-895 

Curaba J, Singh MB, Bhalla PL (2014) miRNAs in the crosstalk between phytohormone 
signalling pathways. J Exp Bot 65: 1425-1438 

Elfving N, Davoine C, Benlloch R, Blomberg J, Brannstrom K, Muller D, Nilsson A, Ulfstedt M, 
Ronne H, Wingsle G, Nilsson O, Bjorklund S (2011) The Arabidopsis thaliana Med25 
mediator subunit integrates environmental cues to control plant development. Proc 
Natl Acad Sci U S A 108: 8245-8250 

Franklin KA, Praekelt U, Stoddart WM, Billingham OE, Halliday KJ, Whitelam GC (2003) 
Phytochromes B, D, and E act redundantly to control multiple physiological responses 
in Arabidopsis. Plant Physiol 131: 1340-1346 

Ibañez C, Delker C, Martinez C, Bürstenbinder K, Janitza P, Lippmann R, Ludwig W, Sun H, 
James GV, Klecker M, Grossjohann A, Schneeberger K, Prat S, Quint M (2018) 
Brassinosteroids Dominate Hormonal Regulation of Plant Thermomorphogenesis via 
BZR1. Current Biology 28: 303-310.e303 

Ito J, Fukaki H, Onoda M, Li L, Li C, Tasaka M, Furutani M (2016) Auxin-dependent 
compositional change in Mediator in ARF7- and ARF19-mediated transcription. Proc 
Natl Acad Sci U S A 113: 6562-6567 

Kazan K (2017) The Multitalented MEDIATOR25. Front Plant Sci 8: 999 



19 

 

Khanna R, Huq E, Kikis EA, Al-Sady B, Lanzatella C, Quail PH (2004) A novel molecular 
recognition motif necessary for targeting photoactivated phytochrome signaling to 
specific basic helix-loop-helix transcription factors. Plant Cell 16: 3033-3044 

Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, Kazan K (2009) The 
mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in 
Arabidopsis. Plant Cell 21: 2237-2252 

Klose C, Buche C, Fernandez AP, Schafer E, Zwick E, Kretsch T (2012) The mediator complex 
subunit PFT1 interferes with COP1 and HY5 in the regulation of Arabidopsis light 
signaling. Plant Physiol 160: 289-307 

Lin C (2002) Blue light receptors and signal transduction. Plant Cell 14 Suppl: S207-225 
Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN 

RESPONSE FACTOR17 is essential for proper development and modulates expression 
of early auxin response genes. Plant Cell 17: 1360-1375 

Martínez C, Espinosa‐Ruíz A, de Lucas M, Bernardo‐García S, Franco‐Zorrilla JM, Prat S (2018) 
PIF4‐induced BR synthesis is critical to diurnal and thermomorphogenic growth. The 
EMBO Journal  

Monte E, Alonso JM, Ecker JR, Zhang Y, Li X, Young J, Austin-Phillips S, Quail PH (2003) 
Isolation and characterization of phyC mutants in Arabidopsis reveals complex 
crosstalk between phytochrome signaling pathways. Plant Cell 15: 1962-1980 

Ni W, Xu SL, Chalkley RJ, Pham TN, Guan S, Maltby DA, Burlingame AL, Wang ZY, Quail PH 
(2013) Multisite light-induced phosphorylation of the transcription factor PIF3 is 
necessary for both its rapid degradation and concomitant negative feedback 
modulation of photoreceptor phyB levels in Arabidopsis. Plant Cell 25: 2679-2698 

Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung WI, Choi G (2006) Light activates the degradation 
of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant 
J 47: 124-139 

Park E, Kim J, Lee Y, Shin J, Oh E, Chung WI, Liu JR, Choi G (2004) Degradation of phytochrome 
interacting factor 3 in phytochrome-mediated light signaling. Plant Cell Physiol 45: 968-
975 

Patil GG, Moe R (2009) Involvement of phytochrome B in DIF mediated growth in cucumber. 
Scientia Horticulturae 122: 164-170 

Rao AQ, Irfan M, Saleem Z, Nasir IA, Riazuddin S, Husnain T (2011) Overexpression of the 
phytochrome B gene from Arabidopsis thaliana increases plant growth and yield of 
cotton (Gossypium hirsutum). J Zhejiang Univ Sci B 12: 326-334 

Raya-Gonzalez J, Ortiz-Castro R, Ruiz-Herrera LF, Kazan K, Lopez-Bucio J (2014) 
PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 Regulates Lateral Root 
Formation via Auxin Signaling in Arabidopsis. Plant Physiol 165: 880-894 

Reed JW, Elumalai RP, Chory J (1998) Suppressors of an Arabidopsis thaliana phyB mutation 
identify genes that control light signaling and hypocotyl elongation. Genetics 148: 
1295-1310 

Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E (2008) Light-induced phosphorylation 
and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 
from Arabidopsis depend upon its direct physical interactions with photoactivated 
phytochromes. Plant Cell 20: 1586-1602 



20 

 

Shen Y, Khanna R, Carle CM, Quail PH (2007) Phytochrome induces rapid PIF5 
phosphorylation and degradation in response to red-light activation. Plant Physiol 145: 
1043-1051 

Sun W, Xu XH, Wu X, Wang Y, Lu X, Sun H, Xie X (2015) Genome-wide identification of 
microRNAs and their targets in wild type and phyB mutant provides a key link between 
microRNAs and the phyB-mediated light signaling pathway in rice. Front Plant Sci 6: 
372 

Sun Z, Li M, Zhou Y, Guo T, Liu Y, Zhang H, Fang Y (2018) Coordinated regulation of Arabidopsis 
microRNA biogenesis and red light signaling through Dicer-like 1 and phytochrome-
interacting factor 4. PLOS Genetics 14: e1007247 

Tepperman JM, Hwang YS, Quail PH (2006) phyA dominates in transduction of red-light 
signals to rapidly responding genes at the initiation of Arabidopsis seedling de-
etiolation. Plant J 48: 728-742 

Wang B, Kashkooli AB, Sallets A, Ting H-M, de Ruijter NCA, Olofsson L, Brodelius P, Pottier 
M, Boutry M, Bouwmeester H, van der Krol AR (2016) Transient production of 
artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein 
from A. annua. Metabolic Engineering 38: 159-169 

Wang L, Wu LM, Greaves IK, Zhu A, Dennis ES, Peacock WJ (2017) PIF4-controlled auxin 
pathway contributes to hybrid vigor in &lt;em&gt;Arabidopsis thaliana&lt;/em&gt. 
Proceedings of the National Academy of Sciences 114: E3555 

Wang Z-Y, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, 
Asami T, Chory J (2002) Nuclear-Localized BZR1 Mediates Brassinosteroid-Induced 
Growth and Feedback Suppression of Brassinosteroid Biosynthesis. Developmental 
Cell 2: 505-513 

Yang GD, Yan K, Wu BJ, Wang YH, Gao YX, Zheng CC (2012) Genomewide analysis of intronic 
microRNAs in rice and Arabidopsis. J Genet 91: 313-324 

Zhu Y, Schluttenhoffer CM, Wang P, Fu F, Thimmapuram J, Zhu JK, Lee SY, Yun DJ, Mengiste 
T (2014) CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal 
pathogens through kinase-dependent and -independent functions in Arabidopsis. 
Plant Cell 26: 4149-4170 

 

 



21 

 

CHAPTER-2  

 

Novel interactions under Red, Far-Red, and Blue light by Phytochrome 

Luciferase reporters 

 

 

 

Umidjon Shapulatov 

Mark van Hoogdalem 

Mara Meisenburg 

Alexander van der Hall 

Wim van Ieperen 

Xiu-Ping Gao 

Maarten van Wassenaar 

Christa Testerink  

Alexander van der Krol 

 

 

 

 

 

 

 In preparation for publication 



22 

 

Abstract 

For Red (R) and Far Red (FR) light perception, Arabidopsis has five phytochrome (PHY) genes, 

of which only PHYA has an established role in responses to FR. Here we investigated the 

transcriptional activity of the five pPHY:LUC reporters as function of development, as function 

of individual single phytochrome mutations and as function of R, FR or Blue light conditions. 

These studies reveal that PHYD is a constitutive repressor of PHYA-reporter activity and that 

PHYB and PHYA reporter activity is strongly up-regulated under FR, while this response to FR 

is not affected by the classical FR sensor PHYA but by PHYB and PHYE. Moreover, we show 

that the Phytochrome Interacting Factor PIF4 is in part responsible for the regulation of the 

PHYB reporter under FR but not for the expression of PHYD reporter. The responses of the 

endogenous PHYA and PHYB genes and suppression of PHYA by PHYD under FR were smaller 

as observed for the LUC reporters. These studies reveal novel interactions between 

phytochromes and reveal novel sensors for FR responses in plants. Such insights may provide 

a new fundamental basis for manipulating plant growth using LED lights in indoor farming.  

 

Key words: PHYTOCHROME, LED, Luciferase reporter plants, transcription 
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Introduction 

Currently, about 80 % of the total global arable land area is designated to soil-based 

farming. However, more intense farming efforts are needed, especially in urban areas, to meet 

the growing global food demand in the near future. One way in which farming may be 

intensified in an urban setting is through the use of indoor (vertical) farming, using LED lights 

for plant growth. However, LED lights are different from sunlight in their spectral properties, 

and some of our fundamental insights into photobiology of plants may need revisiting for 

artificial LED-light conditions in order to make optimal use of LED lights in agriculture.  

Plant growth and development in the dark (skotomorphogenesis) is fundamentally 

different from growth and development in the light (photomorphogenesis). The most 

important photoreceptors that control plant growth as function of the Red (R) and Far-Red 

(FR) light spectrum are a family of phytochrome (PHY) genes, which in Arabidopsis consist of 

PHYA-PHYE (Bae and Choi, 2008). Phytochromes are produced in the inactive red (R) light 

absorbing Pr form and upon perception of red light, the inactive far red (FR) light absorbing Pr 

form changes to the active Pfr state to trigger both responses in the cytosol (Paik et al., 2012) 

and in the nucleus (Nagy and Schafer, 2002; Nagatani, 2004; Kevei et al., 2007; Van Buskirk et 

al., 2012; Klose et al., 2015). In the nucleus phytochrome protein interacts with multiple 

Phytochrome Interacting Factors (PIFs) to mediate light transcriptional responses (Huq et al., 

2004; Castillon et al., 2007; Leivar and Quail, 2011). While phytochromes are activators, PIFs 

are considered repressors of photomorphogenesis, because phytochrome Pfr promotes the 

turnover of PIF proteins (Park et al., 2012; Xu et al., 2015). The interactions between 

phytochromes and PIFs do not only result in degradation of the PIFs, but also in co-degradation 

of the phytochrome protein (Monte et al., 2004; Khanna et al., 2007; Al-Sady et al., 2008; 

Leivar et al., 2008; Leivar and Quail, 2011; Ni et al., 2013). The function of Pfr in the nucleus is 

controlled by multiple nuclear factors that are involved in nuclear Pfr stability. It has been 

shown that PIFs regulate phyB-E protein stability through COP1/DET/FUS (Jang et al., 2010). 

In addition, PIFs and PHYs interact with a CUL3-based E3 ubiquitin ligases complex containing 

the Bric-a-Brac/Tramtrack/Broad Complex (BTB)-domain containing substrate adaptor Light-

Response (LRB). Presumably PIFs and PHY are co-degraded by interaction between a CUL3-

LRB-PIF complex and a CUL3-LRB-PHY complex, through dimerization of the LRBs (Christians 
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et al., 2012). In addition, nuclear Pfr shows a slow reversion to Pr in the dark and this dark-

reversion is accelerated under higher temperature. Thus, phytochrome Pfr levels in the 

nucleus function as temperature sensor (Jung et al., 2016; Legris et al., 2016). Translocation 

of PHY proteins into nucleus is required for the nuclear signaling and the translocation of PHYA 

Pfr protein into the nucleus is controlled by the FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) 

AND FHY1-LIKE (FHL) (Genoud et al., 2008). PHYs also have a function in the cytosol where 

they control translation of specific mRNAs (Paik et al., 2012). The stability of the pool of 

cytosolic Pfr is regulated by cytosolic factors, explaining why the dynamics of nuclear PIF 

protein turnover and total PHY protein turnover may not be the same.  

Our understanding of phytochrome action can not only come from studying 

downstream signaling of PHYs, but should also include an understanding of the transcriptional 

regulation of phytochrome gene themselves, as this ultimately determines the PHY protein 

input into the signaling cascades. Regulation of phytochrome gene transcription has not been 

studied extensively. It is known the phytochrome gene transcription is regulated by the 

circadian clock (Toth et al., 2001), while the clock is entrained through phytochrome signaling 

(Somers et al., 1998) . This already implies a complex feedback regulation between 

phytochrome gene activity and the clock. Moreover, in seedlings, phytochromes influence 

each other’s function (Sanchez-Lamas et al., 2016), indicating that PHY gene transcription is 

also function of R:FR light quality. For PHYA this light quality dependence of transcription was 

recently explained by the fact that PIF4 and PIF5 proteins target the PHYA promoter (Seaton 

et al., 2018), while PIFs stability is determined by light activated phytochrome Pfr (Lorrain et 

al., 2008; Foreman et al., 2011). 

Activity of phytochromes is mostly studied at the protein level, through activation of 

Pf to Pfr as function of R:FR light conditions. Usually it is assumed that no dramatic effects 

occur at the level of PHY gene transcription by a given light treatment. However, the artificial 

spectral composition of LED lights may need verification of this assumption if we want to fully 

understand plant growth responses under LED lights. Indeed, there is no comprehensive and 

systematic analysis of PHY gene transcription as function of (LED) light quality. Therefore, we 

investigated PHY gene transcription as function of (LED) light quality, but also as function of 

development and as function of phytochrome signaling. Dynamic transcriptional responses in 
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planta can be conveniently monitored using firefly luciferase reporter (Millar et al., 1992). In 

order to monitor phytochrome gene transcriptional activity we therefore developed a full set 

of five pPHY:LUC Arabidopsis Col-0 reporter lines (pPHYA:LUC, pPHYB:LUC, pPHYC:LUC, 

pPHYD:LUC and pPHYE:LUC). Each of the five pPHY:LUC reporter plants was crossed into each 

of the single phytochrome mutant backgrounds, resulting in a total of 30 reporter lines. 

Analysis of the LUC activity in these lines shows that in seedlings there are numerous 

interactions between phytochromes at the transcription level that change from seedling to 

mature rosette stage. The diurnal pPHY:LUC activity was monitored under a photoperiod of R, 

FR or B LED light. These measurements gave the unexpected result of strong upregulation of 

PHYB and PHYA gene activity during the pure FR photoperiod. Moreover, this induction by FR 

was not dependent on the classical FR light sensor PHYA. These studies also reveal PHYD as a 

constitutive suppressor of PHYA gene activity. Finally, pPHY:LUC activity was measured in 

blocks of three hours under different ratio of R:FR, mimicking different levels of shade. 

Expression analysis of the pPHY:LUC reporters in the different phytochrome mutant 

backgrounds revealed that the strong upregulation of PHYA under FR is a function of PHYE. 

These studies show an unexpected complex regulation of PHY reporter expression, uncovering 

a strong constitutive interaction between PHYA and PHYD under all light conditions, a 

conditional strong interaction between PHYA and PHYE under FR light and a strong and direct 

induction of PHYB reporter expression under FR, which is in part dependent on PHYB and 

PHYE. The validation of endogenous PHYA and PHYB expression under FR light shows 

qualitatively the same response but is qualitatively much reduced compared to the response 

of the PHYA and PHYB LUC reporters, raising the question which additional layer of 

endogenous PHYA and PHYB expression is not captured by the pPHY:LUC reporters.  
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RESULTS 

Construction of thirty pPHY:LUC reporter lines  

In order to study the expression of the different phytochrome genes (PHYs) in WT and 

phytochrome mutant backgrounds, the upstream 2-2.5 kb promoter of each of the five 

Arabidopsis PHY genes was fused to the firefly luciferase (LUC) coding sequence in binary 

expression vectors (Toth et al., 2001). After transformation of the expression constructs to 

agrobacterium the different pPHY:LUC reporter constructs were introduced into Arabidopsis 

WT (Col-0) by agrobacterium mediated floral dip transformation (Zhang et al., 2006). For each 

of the pPHY:LUC reporters a minimum of ten primary transformants were screened for 

pPHY:LUC activity and one representative transformed plant was selected and developed into 

a homozygous reporter line expressing either pPHYA:LUC, pPHYB:LUC, pPHYC:LUC, 

pPHYD:LUC or pPHYE:LUC. Subsequently, each of the five homozygous pPHY:LUC reporter 

plants was crossed to each of five phy-mutant plants. For these crossings we used Salk T-DNA 

insertion lines for PHYA, C, D, E and a point mutation line for PHYB gene (phyB-9) (Fig.S1). 

From the T3 generation that was derived from these crosses the plants homozygous for the 

pPHY:LUC reporter and homozygous for the phytochrome mutation were selected. 

Phytochrome mutant backgrounds were selected based on seedling growth characteristics 

under specific light conditions and mutant background was confirmed by PCR analysis of 

genomic DNA using specific primers (Table S2) (Nagatani et al., 1993; Hennig et al., 1999; 

Balasubramanian et al., 2006; Chen et al., 2013). By crossing the pPHY:LUC reporter into the 

different phy-mutant backgrounds, the expression between WT and mutant lines with the 

same reporter can be compared directly as for both the WT and the phy mutant the pPHY:LUC 

reporter is inserted at the same chromosomal location. In this way a ‘position effect’ from 

independent transformation events is prevented. All pPHY:LUC reporter lines and constructs 

are listed in Table S1. Figure-1 shows representative images of the luciferase activity in all WT 

reporter lines for rosette plants at three weeks after germination. The image shows that the 

absolute level of pPHY:LUC expression is not the same for the different PHY promoters. At the 

rosette stage the PHYA and PHYC promoters show the strongest transcriptional activity, while 

the transcription from the PHYE promoter very weak.  
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Figure-1. pPHY:LUC reporter plants. Relative luciferase activity was captured in 25-day old rosette plants 

sprayed with 1 mM luciferin-D. LUC activity image capturing was by seven minutes exposure time. pPHYC:LUC 

shows the highest activity, while pPHYE:LUC is a little above background. 

PHYs interactions at transcription level in seedlings mostly absent in rosette plants  

The pPHY:LUC reporter plants were used to monitor pPHY:LUC activity at different stages of 

plant development, from 7 and 14 day old seedlings to 25-day old plants. For this plants grown 

in growth cabinets under a 12L/12D diurnal light regime using fluorescent white lights (WL). 

At each of the three developmental stages, plants were pre-sprayed with the substrate 

luciferin one day in advance of the LUC activity imaging in order to deplete activity from 

previously accumulated luciferase protein. For all three developmental stages the LUC activity 

imaging was performed at 11 am, directly after transfer from the growth cabinet to 

LUMINATOR. This time point is at or close to the phase of all pPHY:LUC reporters as 

determined in seedlings (Toth et al., 2001). The average relative LUC activity was quantified 

for each of the reporter lines (Figure 2). The results indicate that in 7-day-old seedlings there 

is extensive interaction between the different PHYs, as indicated by altered pPHY:LUC 

expression in WT and phy mutant background. However, the genetic interactions between 

phytochromes at the transcription level is diminished in 14 day old seedlings (Figure 2). Most 

remarkable is the consistent elevated level of PHYA expression in the phyD mutant 

background, indicating that PHYD is a constitutive suppressor of PHYA gene transcription.  



28 

 

 

Figure-2. pPHY:LUC activity at ZT=3hr in plants grown under different developmental stages. Plants 

were grown in growth cabinets under fluorescent WL and sprayed with substrate luciferin (1 mM) one day and 

one hour before imaging at 11 am (ZT=3hr). Plants were imaged at 7 or 14 days after germination from White 

light (WL). Plants were pre-grown for 25 days in growth cabinets under fluorescent WL and sprayed with 

substrate luciferin (1 mM) one day before placing in LUMINATOR regime. The light intensity during 2 hour 

ramping at start-day and end-day is 33 µmole m-2 s-1 and during the remaining hours of the photoperiod 90 µmole 

m-2 s-1. After adaptation for one day in LUMINATOR, LUC activity images were obtained every half hour (7 min. 

exposure) for a full diurnal cycle under mixed LED light (Figure S2). A: pPHYA:LUC in WT and five phytochrome 

mutants; B: pPHYB:LUC in WT and five phytochrome mutants; C: pPHYC:LUC in WT and five phytochrome 

mutants; D: pPHYD:LUC in WT and five phytochrome mutants; E: pPHYE:LUC in WT and five phytochrome 

mutants (not detectable at 7 days). The relative LUC activity was quantified in ImageJ. Number of replicate plants 

for each reporter line: N=9 for 7 DAG, N=9 for 14 DAG and N=6 for rosette plants. Error bars represent mean ±SE. 

Error Bars with symbols (*; **; ***) indicate a significance to compare WT respective to p-value <0.05; <0.01; 

<0.001. 

To determine the diurnal pattern in pPHY:LUC activity in WT and phytochrome mutants, the 

plants were grown in under mixed LED light (R+FR+B) in a custom built cabinet for LUC activity 

imaging named LUMINATOR. In LUMINATOR LED lights are used instead of fluorescent lights, 

because fluorescent lights have a strong after-glow in the dark, which interferes with LUC 

activity measurements. Intensities of R, FR and B LED light in LUMINATOR are adjusted for the 

closest match to a full natural WL spectrum. Light conditions during the 12 hour photoperiod 

include a two hour ramping with half-light intensity and decreased R:FR (R:FR=0,2 instead of 

R:FR=0.8) at start and end of each 12 hour photoperiod. This block ramping light regime 

crudely mimics the changing light conditions in morning and evening in a natural environment. 
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The pPHY:LUC activity images were obtained every 30 minutes during a full diurnal light cycle 

12L/12D for 25 day old rosette plants. The average relative LUC activity in each of the reporter 

lines was quantified (Figure S2). Similar as for plants grown under fluorescent WL (Figure 2), 

the pPHY:LUC activity at ZT=3hr in WT plants and phytochrome mutants grown under mixed 

LED is compared (Figure 2). Results show that for 25-day old plants, grown under mixed LED 

light, the interactions between the different PHY genes is again different from that in seedlings 

(compare interactions at 7,14 and 25 days, Figure 2), indicating that extend of genetic 

interaction between phytochrome genes transcription may depend on development and/or 

light condition. For instance, for pPHYA:LUC activity under WL in rosette plants there was little 

effect of the other phytochrome genes (except for PHYD), while under mixed LED lights 

pPHYA:LUC activity is affected by multiple PHY genes. The PHY genes are not only light 

regulated but also regulated by the circadian clock (Toth et al., 2001). The interactions at the 

transcription level of phytochrome gene activity in seedlings as observed in the different 

phytochrome mutants may therefore be explained in two ways: either individual 

phytochromes affect the amplitude of oscillations in other PHY gene transcription, or 

individual phytochrome mutations cause a shift in the phase of PHY gene expression relative 

to that in WT plants. However, we note that the diurnal oscillating activity of the pPHY:LUC 

reporters is not very strong in 25 day old plants (Figure S2). 

 

Strong induction of PHYB and PHYA by FR Light 

Experimental conditions for seedling growth analysis often include growth conditions using 

pure R, FR or B LED lights. We therefore next determined the expression profile of the 

pPHY:LUC genes for one day under these artificial diurnal light conditions. For this, seedlings 

were pre-grown for 7 days under 12WL/12D in growth cabinets, pre-sprayed with luciferin 

and transferred to LUMINATOR for adaptation under mixed LED lights for one day and night. 

Subsequently, pPHY:LUC activity was measured in WT reporter plants under 12R/12D, 

12FR/12D and 12B/12D diurnal LED light regimes. These experiments were repeated when 

plants were 14-days old and when plants were 25-day old plants. Qualitatively the responses 

of the different pPHY:LUC reporters were the same at these three stages of development. 

Results of expression profiles for 14 day old plants are shown in Figure 3. Here we only discuss 
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the strong effects on pPHY:LUC activity. Most pPHY:LUC reporters did not show strong 

response to the R photoperiod, except for pPHYC:LUC which is induced under R. Most 

remarkable is the strong and immediate upregulation of pPHYB:LUC under FR light, reaching 

a peak expression almost 10-fold higher then under R light. Expression of pPHYA:LUC is also 

upregulated by FR light but in a more gradual way, reaching a 6-fold higher expression at the 

end of the FR photoperiod compared to under R. Other phytochrome promoters were not 

induced by FR or showed a decline of expression under FR. During the night following FR, 

expression of PHYB and PHYA show an initial rapid decline. The pPHYC:LUC shows a transient 

increase in activity at the day-night transition following all photoperiods. Finally, under B 

pPHYC:LUC and pPHYB:LUC show a transient induction of activity. We note that leaf 

hyponastic movement under the given light condition causes some of the fine structure in the 

LUC activity profiles.  
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Figure-3. A diurnal expression profile of the pPHY:LUC reporters under diurnal 12R/12D, 12FR/12D 

and 12B/12D. Seeds were stratified and germinated in growth cabinets under diurnal fluorescent WL 

(12L/12D). At 14 days after germination seedlings were sprayed with substrate luciferin (1 mM) and one day later 

placed in LUMINATOR for adjustment under diurnal R+B+FR for one day. Subsequently plants were exposed to 

light regimes 12R/12D, followed by 12FR/D and finally 12B/12D. Luciferin (1 mM) solution was sprayed once per 

day. LUC activity images were obtained every half hour (7 min. exposure) for each full diurnal cycle. The relative 

LUC activity was quantified in ImageJ and corrected for background signal. Number of replicate seedlings for each 

reporter line: N=6. Error bars represent mean ±SE. 

 

Transcription of PHYB under FR is not affected by PHYA but by PHYB and PHYE: PHYB and 

PHYE novel sensors of FR  

The strong induction of pPHYB:LUC and pPHYA:LUC activity in WT plants by FR light suggests 

a transcriptional regulation by phytochrome signaling. In classical photobiology the PHYA is 
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linked to FR light responses (Whitelam et al., 1993; Yanovsky et al., 1997; Fankhauser, 2001). 

To determine whether PHYA is responsible for the upregulation of PHYB gene activity under 

FR or whether any other phytochrome is involved in this strong induction, the pPHYB:LUC 

reporter activity was monitored in the different phytochrome mutant backgrounds in 14-day 

old seedlings grown under mixed light, R FR or Blue light (Figures S3). Figure 4 shows part of 

the results in which PHYB gene expression is significantly affected by other phytochromes. The 

expression of pPHYB:LUC is 

strongly decreased under FR in 

the phyB mutant and slightly 

decreased in the phyE mutant 

background (Figure 4). This 

indicates that in the context of 

transcriptional regulation of 

PHYB gene expression PHYB 

and PHYE act as a FR sensor, 

while the classical FR sensor 

PHYA has little effect on PHYB 

gene activity under FR.  

Figure-4. pPHYB:LUC activity in 

WT and phytochrome mutants 

in 14 day old seedlings under FR 

or B. Seeds of the pPHYB:LUC 

reporter lines were stratified and 

germinated in growth cabinets 

under diurnal fluorescent WL 

(12L/12D). At 14 days after 

germination seedlings were sprayed 

with substrate luciferin (1 mM) and 

one day later placed in LUMINATOR 

for adjustment under diurnal 

R+B+FR for one day. Then plants 

were exposed to light regimes of 12mixed/12D, 12R/12D, 12FR/D and finally 12B/12D. Luciferin (1 mM) solution 

was sprayed once per day. LUC activity images were obtained every half hour (7 min. exposure) for each full 

diurnal cycle. The relative LUC activity is quantified in ImageJ and adjusted for background signal. Number of 

replicate seedlings for each reporter line: N=16. Error bars represent mean ±SE. All results are shown in Figure 

S3. Here only results for pPHYB-LUC in WT and phy-mutants under FR and B are shown.  
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Feedback interaction of phytochromes on PHYB gene expression is function of light quality 

Expression of PHYB in the phyB mutant background under mixed or R light is increased, but 

decreased under FR and B LED light (Figure S3). This shows that the effect of PHYB on its own 

expression is dependent on the light conditions and may switch from a repressor interaction 

(under mixed and R light) to activator interaction (under FR and B) (Figure S3 and Figure 4). 

Similar results were obtained for 7-day and 14-day old seedlings (not shown). The diurnal 

pattern of PHYB promoter activity under the different light regimes indicate that the phase of 

pPHYB:LUC activity is dependent on the light conditions (phase of pPHYB:LUC in WT under 

mixed ZT=3 hr, under R ZT=4 hr, under FR ZT= 6 hr; Figure S3). In addition, the phase is 

dependent on the phytochrome mutant background (phase of pPHYB:LUC under B in WT ZT=3 

hr, in phyb mutant ZT=7 hr, in phyC mutant ZT= 2 hr; Figure 4). 

 

pPHY:LUC expression as function of different artificial “shade” conditions in rosette plants 

(R>R+FR and R+FR>R) 

To investigate the phytochrome gene expression as function of different shade light 

conditions during the day, we measured the different pPHY:LUC reporter activities in WT 

rosette plants under varying R:FR light conditions. For this reporter plants were grown for 25 

days in growth cabinets under 12WL/12D. Subsequently, the five WT pPHY:LUC reporter 

plants were placed in LUMINATOR to adapt for two days to diurnal mixed LED light (R,B,FR). 

After the night of the second day, the photoperiod was started using R light with low level of 

FR (R:FR=8). Subsequently, every 3 hours the R level remained the same, but dosage of FR was 

increased going from R:FR=8 to R:FR=1, to R:FR=0.5 and finally ending the day with 3 hours of 

R:FR=0.2, which mimics deep shade conditions. After the night following these 4 blocks of 

increasing shade light conditions, the next day, the same blocks of R+FR LED light were given 

in reverse order, starting the day with R:FR=0.2 and ending the day with R:FR=8. Under these 

conditions the different pPHY:LUC reporters show different responses (Figure 5). First of all, a 

strong transcriptional response to 3 hr R:FR=8 is absent for PHYA and PHYB. In the subsequent 

3 hours, when FR levels are further increased to R:FR= 1, pPHYB:LUC shows an direct 

transcriptional response, while for PHYA and PHYC a transcriptional response starts near the 
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end of this three hour light treatment (Figure 5). In contrast PHYD expression is down 

regulated near the end of this light treatment. This is consistent with our discovery that PHYD 

is a suppressor of PHYA and suggests that the upregulation of PHYA during the rest of the day 

is caused by the downregulation of PHYD during the rest of the day. However, the following 

day when light treatments are given in reverse order, pPHYD:LUC activity shows an increase 

at the end of the first R:FR=0.2 light treatment, which is not mirrored by a decline in 

pPHYA:LUC activity. During the night, expression of PHYA, PHYB and PHYC decline with 

different initial rates, but expression at the end of the night remains well above that seen 

under mixed, R or B LED light. The decline at night after R+FR is different from the decline in 

PHY gene expression after pure FR, during which expression rapidly declines to “normal” levels 

as seen under WL, mixed LED or B (Figure 3). The following day light treatment start with 3 

hours of deep shade conditions (R:FR=0.2), similar to the last 3 hours of the previous day. For 

PHYA, PHYC and PHYD this results only in a small transient transcriptional upregulation of 

expression. However, for PHYB there is an immediate and continuous upregulation of gene 

transcription. During the following three phases of the light treatment, when the FR 

component is step wise reduced, PHYA shows a small increase in expression, reaching a 

plateau during the last two light treatments. For PHYB the expression reaches a plateau during 

R:FR=0.5, after which expression declines under R:FR=1 and R:FR=treatment. PHYC and PHYD 

expression decreases when R:FR increases. Overall, the results suggest again a strong 

response of PHYB and PHYA gene expression to FR light conditions, but the order in which 

R:FR light treatments are given influences the response. Subsequently it was tested what the 

role of individual phytochromes is in the response of the pPHY:LUC reporters to different 

ratio’s of R:FR.  
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Figure-5. pPHY:LUC activity in WT rosette plants in response to changing R:FR ratios. pPHY:LUC in WT 

plants were grown in growth cabinets under diurnal fluorescent WL (12L/12D) for 25 days. Reporter plants were 

sprayed with substrate luciferin (1 mM) and one day later placed in LUMINATOR for adjustment under diurnal 

mixed R+B+FR for one day. Subsequently rosette plants were exposed to R light with increasing levels of FR (in 

blocks of 3 hours), resulting in R:FR ratio’s of 8, 1, 0.5 and 0.2. After the following night plants were exposed to 

the reverse light regime. Luciferin (1 mM) solution was sprayed once per day. LUC activity images were obtained 

every half hour (7 min. exposure) for each full diurnal cycle. The relative LUC activity was quantified in Image J 

and corrected for background signal. At least 7 replicate rosette plants were used for each reporter line. Error 

bars represent mean ±SE. The vertical line indicates the day to night transition.  
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PHYE is required for PHYA response under R/FR 

To determine if any of the five phytochromes is specifically involved in the strong response to 

different R:FR ratios we measured the pPHY:LUC reporter activities in all different 

phytochrome mutant backgrounds. The same light regimes as used in the experiment shown 

in Figure 5 were used: 3 hours R:FR= 8, 3 hours R:FR=1, 3 hours R:FR=0.5 and ending with 3 

hours of R:FR=0.2 and reverse order of these light regimes the following day. An overview of 

all the results is given in Figure S4A-E. Here only the big effects on PHYA and PHYB expression 

are presented (Figure 6A-B). The expression profile of pPHYA:LUC most deviating from that in 

WT is the expression in the phyD mutant background. Going from R:FR=8 to R:FR=0.2 the 

expression of PHYA in phyD mutant shows a similar profile as in WT, but at much higher level. 

However, when going from R:FR=0.2 to R:FR=8 the PHYA expression in WT shows an increase 

in activity, while in the phyD mutant a response is lacking (Figure 6A). Moreover, the 

upregulation of PHYA under increasing levels of FR is absent in the phyE mutant background 

(Figure 6B), suggesting that PHYE is a strong sensor of FR light in the regulation of PHYA gene 

expression. In contrast, the phyA mutation had only a weak effect on FR-induction of 

pPHYA:LUC (Figure S4). For PHYB the activity is most affected by PHYB itself, as PHYB is 

required for full expression level of pPHYB:LUC under increasing FR light conditions (Figure 

S4). The effect of PHYC, PHYD and PHYE on PHYB expression is conditional: they have little 

effect on pPHYB:LUC activity under the light regime going from high R:FR to low R:FR, but 

these phytochromes act as suppressor of PHYB expression when light changes from low R:FR 

to high R:FR (Figure S4).  
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Figure-6. pPHYA:LUC activity in WT and phyD and phyE mutant in response to changing R:FR ratios. 

pPHYA:LUC in WT, phyD and phyE plants were grown in growth cabinets under diurnal fluorescent WL (12L/12D) 

for 25 days one day later placed in LUMINATOR for adjustment under diurnal mixed R+B+FR for one day. 

Subsequently rosette plants were exposed to R light with increasing levels of FR (in blocks of 3 hours), resulting 

in R:FR ratio’s of 8, 1, 0.5 and 0.2. After the following night plants were exposed to the reverse light regime. Every 

day once at 11AM plants were sprayed with substrate luciferin (1 mM) solution. LUC activity images were 

obtained every half hour (7 min. exposure) for each full diurnal cycle. The relative LUC activity was quantified in 

Image J and corrected for background signal. Number of replicate seedlings for each reporter line: N=7. Error 

bars represent mean ±SE. A: pPHYA:LUC activity in WT, phyD. B: pPHYA:LUC activity in WT and phyE. Note that 

for activity in phyD mutant the scale of relative LUC activity was adjusted. Black: pPHYA:LUC in WT, grey: 

pPHYA:LUC in phy mutant. (Expression of all pPHY:LUC reporter lines in WT and phy-mutants under changing 

R:FR is given in Figure S4). 

 

Validation of the pPHY:LUC reporter results by selected qPCR 

The output of the LUC reporter system is not only a function of the promoter driving LUC 

transcription, but also a function of luciferin substrate availability and the physiology of the 

cell, which may affect required oxygen and ATP levels (Marques and Esteves da Silva, 2009). 
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The full dynamic analysis of PHY gene activity under many different conditions would need 

validation by qPCR of too numerous time and development samples. Therefore we 

concentrated on those conditions and developmental stages that show the most novel PHY 

interactions as revealed by the pPHY:LUC reporters, for validation of endogenous PHY mRNA 

levels by qPCR. The qPCR analysis confirm the upregulation of PHYA under FR as shown by 

pPHYA:LUC activity. However, quantitatively the induction of the PHYA-LUC reporter is much 

stronger than as observed for the endogenous PHYA gene (Figure 7A). Expression of the 

endogenous PHYA gene is not significantly higher in phyD compared to WT for seedlings grown 

under R light (Figure 7A), while the pPHYA:LUC reporter is twice as active in the phyD mutant 

at this stage (Figure 1). However, expression of the endogenous PHYA gene under FR is 

significantly higher in the phyD mutant (Figure 7A), indicating that PHYD is involved in the 

suppression of PHYA transcription. The qPCR analysis also confirms that the upregulation of 

PHYA expression under FR is reduced in the phyE mutant background, confirming that PHYE is 

required for the FR response of PHYA 

transcription (Figure 7A). The 

induction of PHYB transcription under 

FR is also confirmed by qPCR, but like 

for the PHYA gene, quantitatively the 

induction of the pPHYB:LUC reporter is 

much stronger than the transcriptional 

induction of the endogenous PHYB 

gene (Figure 4 and Figure 7B). 

Figure 7. qPCR analysis of PHYA and PHYB 

gene expression. (A) Relative expression of 

PHYA in wt, phyD and phyE mutant under R 

ZT=3hr and FR ZT=3hr. and (B) relative 

expression of PHYB in wt and phyA mutant 

under R ZT=3hr and FR ZT=3hr. qPCR data is 

based on three biological replicates from RNA 

isolated from 14 day old seedlings. Significant 

differences are indicated by *** (p-

value<0.05). 
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PIF4 is involved in the induction of PHYB expression under FR 

To determine which transcription factors may be involved in the FR-induction of the PHYB and 

PHYA genes, the promoters of all five PHY genes were analysed for putative transcription 

factor binding sites using PLAZA 3.0 Dicots (Proost et al., 2015). This analysis shows that no 

specific binding sites are present in the promoters of PHYA and PHYB that may link to the 

induction under FR (Table S3). Multiple G-box binding sites are presented in the PHYB 

promoter and a single G-box is present in the PHYD promoter (Table S3). G-box is not present 

in the promoter the other PHY genes. The brassinosteroid activated transcription factors 

BZR1/BES1 can bind to the G-box motif and BZR1 is a known suppressor of PHYB expression 

(Sun et al., 2010). PIF4 is another transcription factor known to bind to G-box and the 

combined action of BZR1 and PIF4 are known to regulate transcription of genes containing a 

G-box like YUCCA8 (Sun et al., 2012). Since both the PHYB and PHYD promoter contain G-box, 

the activity of the pPHYB:LUC and pPHYD:LUC reporter was tested in a pif4-2 mutant 

background to determine if PIF4 is involved in expression of these genes. For this the 

pPHYB:LUC and pPHYD:LUC reporter plants were crossed to pif4-2 and from F2 progeny the 

plants homozygous for the pif4-2 mutation and homozygous for the pPHYB:LUC or pPHYD:LUC 

reporter gene were selected to further investigation. Expression of pPHYB:LUC or pPHYD:LUC 

in WT and pif4-2 was measured in two week old seedlings under mixed, R, FR, B and R/FR ratio 

light conditions. Results shows that pPHYB:LUC is not changed in pif4-2 under mixed light, R 

or B, while pPHYB:LUC is significantly lower in pif4-2 compared to WT under pure FR (Figure 

8A-D). The strongest effect of PIF4 on the pPHYB:LUC activity is observed at different R/FR 

condition (Figure 8E-F), indicating that under these conditions PIF4 is responsible for about 

half of the PHYB gene activity. Combined, these results indicate a role for PIF4 in expression 

of PHYB that is FR light dependent. In contrast, pPHYD:LUC activity was not affected in the 

pif4-2 mutant background under any of the light conditions tested, indicating that the G-box 

in the PHYD promoter is not a target of PIF4 (Figure S5).  
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Figure 8. pPHYB:LUC expression under FR depends partly on PIF4. pPHYB:LUC reporter in WT and pif4-2 

mutant backgrounds were stratified and germinated in growth cabinets under diurnal fluorescent WL (12L/12D). 

At 7 days after germination plants were sprayed with substrate luciferin (1 mM) and one day later placed in 

LUMINATOR for adjustment under diurnal mixed R+B+FR for one day. Next three days, the light changed to pure 

R, FR and B light respectively (A-D). For E and F figures, seedlings were exposed to R light with increasing levels 

of FR (in blocks of 3 hours), resulting in R:FR ratio’s of 8, 1, 0.5 and 0.2. After the following night plants were 

exposed to the reverse light regime. LUC activity images were obtained every half hour (7 min. exposure) for 

each full diurnal cycle. The relative LUC activity was quantified in ImageJ. Background value subtracted from 

average of observed value (O-B). Number of replicate seedlings for each reporter line: N=11. Error bars represent 

mean ±SE. 

 

Discussion 

Complex transcriptional regulation of PHY genes  

The sessile nature of plants requires sophisticated adaptation mechanisms to fluctuating 

environmental light conditions. For this plants have evolved several photoreceptors of which 

the phytochromes consist of the largest gene family. In Arabidopsis phytochrome signalling 

has been extensively investigated (Franklin and Quail, 2010). Phytochrome holoproteins are 

synthesised in their inactive phyPr form, are activated by R light to phyPfr, and can be 

inactivated again by FR light to phyPr. Phytochrome activity under different light conditions 

has mainly been studied for signalling downstream of phyPfr, while the input of phytochrome 

protein level is usually not considered. However, the level of active phytochrome is both a 

function of the total phytochrome protein pool and the equilibrium between the pool of active 

phyPfr and inactive phyPr, which is determined by R:FR ratio. For the total phytochrome 

signalling potential the transcription of the phytochrome genes is therefore an important 

input factor. Here we have used pPHY:LUC reporter plants to study the PHY gene 

transcriptional activity at different stages of development and under different light conditions. 
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These studies have shown that under artificial fluorescent WL light conditions (the closest to 

natural light used in this study) multiple genetic interactions between the PHY promoter 

activities are observed at the seedling stage which change over the course of development 

(Figure 2). Moreover, regulation of phytochrome promoter activity is also a function of light 

quality (Figure 3 and 5). This flexibility seems to be related to the changing way in which 

phytochromes affect each other’s promoter activity as function of development and as 

function of light quality.  

 

Quantitative differences between PHYA and PHYB reporters and endogenous PHYA and 

PHYB expression under FR 

Validation of the PHY-LUYC reporter results shows that for the FR induction of pPHYA:LUC and 

pPHYB::LUC, the results for the endogenous PHYA and PHYB gene are quantitative similar 

(Figure 7), but qualitatively the induction under FR is much lower for the endogenous PHYA 

and PHYB genes. This may be explained in different ways. For the qPCR analysis the mRNA is 

isolated from whole seedling (cotyledons plus hypocotyl), while for the LUC reporter seedlings 

mostly activity in the cotyledons is measured. Alternatively, the response of pPHYA:LUC and 

pPHYB:LUC in the selected reporter lines may not be representative for the PHYA and PHYB 

expression under FR. All PHY:LUC reporter lines have been selected as being representative 

for activity displayed under WL conditions. It may be necessary to re-screen independent 

PHYA:LUC and PHYB:LUC reporter transformants for the response to FR to determine if the 

strong response to FR is unique of the chosen PHYA:LUC and PHYB:LUC reporter lines, or a 

shared feature of all independent transformants expressing PHYA:LUC or PHYB:LUC. When the 

strong induction by FR is displayed in all independent PHYA:LUC and PHYB:LUC reporters, 

while induction of the endogenous gene is much more reduced, this could be indicative of 

additional regulatory elements in the introns of PHYA and PHYB. The qualitative differences in 

results may also be explained if the PHYA and PHYB mRNA have lower intrinsic stability under 

FR compared to the LUC mRNA under FR. 
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PHYD is a constitutive suppressor of pPHYA:LUC, but conditional suppressor of endogenous 

PHYA  

One of the strongest and consistent interactions these studies with the PHYA:LUC reporter 

have uncovered is the suppression of PHYA:LUC transcription by PHYD and suppression of 

PHYD by PHYA (Figures 2). However, for the endogenous PHYA gene the suppressive 

interaction with PHYD is only observed under FR light (Figure 7A). We note that reciprocal 

repression of PHYA and PHYD is consistent with the complementary expression profiles of 

PHYA and PHYD in developing and dry seeds (low PHYA, high PHYD), and imbibed seeds (high 

PHYA and low PHYD) (Toufighi et al., 2005). The function of PHYD in developing seeds thus 

may be to limit PHYA expression. A higher expression level of PHYA in the phyD mutant 

background under conditions with increased FR may also relate to some of the phenotypes 

that have been described for the Arabidopsis phyD mutant (Christians et al., 2012; Sanchez-

Lamas et al., 2016). PHYD can form a homodimer and heterodimers with PHYB, PHYC and 

PHYE. None of the mutants phyB, phyC or phyE show a strong effect on pPHYA:LUC expression 

(Figure 2), suggesting that it may be the combined loss of PHYD homodimers and 

heterodimers that are responsible for the strong upregulation of PHYA expression in the phyD 

mutant. Future analysis will have to show how PHYA expression is affected in double and triple 

mutants of PHYB,C and E.  

 

FR induction of PHYA and PHYB reporter expression is a novel FR-HIR response 

The classical high irradiance response (HIR) of Arabidopis is characterized by the suppression 

of hypocotyl elongation. Both PhyA and PhyB are involved in this HIR response (Quail et al., 

1995), but phyB is mostly responsible for HIR under continuous Red (cR) light (R-HIR) (Nagatani 

et al., 1991; Reed et al., 1993) and phyA predominantly for the HIR responses under cFR light 

FR-HIR (Hartmann, 1967; Nagatani et al., 1993; Parks and Quail, 1993; Whitelam et al., 1993; 

Casal et al., 2014; Possart et al., 2014). One of the most remarkable results of these studies is 

the strong induction of PHYA promoter activity under FR light, which may be considered as a 

novel FR-HIR response. However, not PHYA but PHYE is involved in the FR-HIR induction of 

PHYA gene activity (Figure 6, Figure 7). Phytochromes are synthesized in the inactive Pr form, 



43 

 

which absorbs maximally in red light. When Pr absorbs R light it changes into the active Pfr 

form, which has its maximum absorbance in FR. Absorption of FR by Pfr back-converts the 

molecule into Pr. However, due to the partial overlap between Pr and Pfr absorption spectra, 

far-red light is able to transform a small proportion of the Pr molecules into Pfr. Therefore, at 

very high PHY expression levels, there could still be an effective PHY signaling under FR due to 

the large phy protein pool. However, this does account for the specific action of PHYE under 

FR light, as PHYE expression is extremely low compared to any of the other PHY genes. 

Phytochromes are classified as either Type I, which are activated by far-red light, or Type II 

that are activated by red light (Li et al., 2011), although phytochrome Type I and Type II may 

also be defined by the phytochrome protein stability in light. For Arabidopsis only PHYA has 

been classified as a Type I phytochrome as it is responsible for many FR light induced 

responses and is instable in the light. Contrary to the five PHY genes in Arabidopsis, rice has 

only a PHYA, PHYB, and PHYC. Presumably, the PHYA, PHYB and PHYC were already formed 

before the formation of gymnosperms, as both monocotyledons and dicotyledons contain 

representatives of PHYA, PHYB, and PHYC. In dicotyledonous plants, duplications of the PHYB 

progenitors resulted in the PHYE subfamily and, specifically in Arabidopsis, another 

duplication event of PHYB resulted in PHYD (Clack et al., 1994). In contrast, grasses lack the 

PHYD and PHYE members of the PHYB subfamily. While the PHYC in Arabidopsis is a type II 

phytochrome, in rice, phyC mediates FR-HIR de-etiolation and therefore could be considered 

a Type I phytochrome (Takano et al., 2005). With the extension of FR-HIR responses beyond 

seedling de-etiolation to PHY gene expression under FR, the classification of Arabidopsis PHYE 

as type II phytochrome may need reconsideration.  

Also the PHYB reporter activity is strongly induced under FR. The FR-HIR for PHYB 

expression under FR is reduced 40% in the phyE mutant, but about 70% reduced in the phyB 

mutant (Figure 4). This identifies PHYE and PHYB as factors in the FR-HIR induced PHYB 

expression under FR. We note that the activity of PHYB on its own expression reverses 

depending on the light conditions: under mixed light and R LED PHYB suppresses its own 

expression, while under FR PHYB is required for the full induction response (Figure 5). This 

light dependent activity is also visible in the experiment with different R:FR light treatments, 

which shows that PHYB strongly suppresses its own gene expression under mixed LED light, 

but is required for the response to R plus added FR light (Figure S4).  
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Different relative expression levels of PHY genes in rosette plants have consequences for 

dimer formation? 

The analysis of pPHYC:LUC activity shows that PHYC is the most active phytochrome 

concerning the level at which it is expressed. At the seedling stages the PHYC expression is 

affected by PHYA, PHYB, PHYD and PHYE, but in mature rosette plants only PHYE has a 

significant effect on PHYC expression for plants grown under fluorescent WL (Figure 2). 

However, for rosette plants, grown under mixed LED, the PHYC expression is not much 

affected by PHYE. In contrast, for plants under mixed LED the expression of the PHYC reporter 

is strongly induced by PHYB. At present we assume that the genetic interactions in PHY 

reporter expression occur by co-expression of these PHY genes in the same cell and may 

therefore relate to the different phytochrome heterodimers that may be formed. 

Phytochrome protein binding studies have revealed that PHYC may form heterodimer with 

PHYB and PHYD and PHYC may not exist as homodimer (Clack et al., 2009) . The relative high 

expression of PHYC compared to that of PHYB, PHYD and especially PHYE (which is expressed 

at very low levels), suggest that PHYB and PHYD may preferentially exist as heterodimer with 

PHYC and that PHYB/D and that PHYB/E heterodimers are only formed as minor components. 

Removal of PHYC from this pool of interacting phytochromes could therefore result in a 

substantial increase in the pool of PHYB/D and PHYB/E heterodimers. In this context it is 

remarkable that the strong induction of PHYB reporter activity under FR is strongly affected 

by PHYB but not PHYC or PHYD. This suggests that the induction of PHYB expression under FR 

is not mediated by PHYB/C or PHYB/D heterodimers, but mostly through other PHYB 

containing dimers (Hofmann, 2009).  

 

FR induced transcriptional regulation by PIFs requires light grown seedlings? 

The FR induced expression of PHY genes was demonstrated in seedlings that were pre-grown 

under white light and full grown plants. However, a FR transcriptional response of PHY genes 

is not observed for 3-day old dark grown seedlings (AtGenexpress light series). This indicates 

that the competence to respond to FR light is absent in dark grown seedlings. We speculate 
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that the competence of light-grown seedlings to respond to FR may require fully developed 

plastids, which needs to be investigated in the future. Recently, it was shown that PHYA 

expression is a function of PIF (phytochrome-interacting factor) activity, specifically under 

short day conditions (Seaton et al., 2018). PIFs are members of the bHLH transcription factor 

family that connect light activated phytochrome Pfr to gene activation during germination, 

seedling de-etiolation, R and FR light responses and shade responses (Castillon et al., 2007). It 

has been shown that at the protein level PIF1, PIF3–5 and PIF7 interact with PHYB Pfr through 

an APB (active phytochrome B) domain, and that PIF1 and PIF3 can also interact with PHYA 

through an APA (active phytochrome A) domain (Khanna et al., 2004; Leivar et al., 2008; Shen 

et al., 2008). Analysis of the PHY promoter sequences shows that all PHY promoters have 

binding sites for circadian clock components (LHY, CCA1) (Table 2). In addition, all PHY 

promoters contain PIF1/PIF3 TF binding sites, while the promoters of PHYA, PHYB and PHYD 

also have PIF4/PIF5 binding sites (Oh et al., 2012; Sun et al., 2013) (Table 2)  

The role of PIF proteins in PHYA transcription during short days raises the question 

whether these PIF proteins are also involved in the FR induction of PHYA transcription (Seaton 

et al., 2018). We note that during seedling establishment the PHYA protein levels are 

apparently not affected in the absence of PIF4 and PIF5 (Lorrain et al., 2009). Moreover, a four 

hour FR treatment of seeds germinated in the dark at four days after germination does not 

induce a transcriptional response for PHYA or PHYB 

(https://www.arabidopsis.org/portals/expression/microarray/ATGenExpress.jsp), even 

though PHYA and PHYB are expressed at this stage. However, this may be explained by no or 

low expression of PIF4 at this early stage of seed germination (vd Woude et al 2018 submitted) 

and other (not FR-responsive) factors than PIF4/5 acting in PHYA and PHYB promoter during 

early seedling establishment. The strong induction of PHY gene transcription under FR in our 

experiments may be related to the fact that (in contrast to PIF1 and PIF3) PIF4 and PIF5 

proteins are not degraded in response to FR (Lorrain et al., 2009). However, the strong 

transcriptional response under FR is not simply explained through PIF stability, as the 

transcription of PHYA and PHYB rapidly drops in the dark, while supposedly PIF proteins are 

more stable and active in the dark.  

In conclusion, we have established that FR induces both PHYA and PHYB and that this 

induction of PHYA is in part dependent on PHYE, while for PHYB the induction is dependent 

https://www.arabidopsis.org/portals/expression/microarray/ATGenExpress.jsp
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on PHYB and PHYE and on PIF4. It needs further investigation how a FR signal is translated into 

a higher transcription factor activity and how PHYE and PHYB can play a role under FR light 

conditions.  

 

Materials and Methods 

Plant materials and growth conditions. 

Seeds of Arabidopsis thaliana T-DNA insertional mutant lines were obtained from 

the Nottingham Arabidopsis Stock Centre (NASC, University of Nottingham, UK). The following 

lines were used in our work: WT (Col-0), phyA-T(NASC: N661576), phyB-9 (Reed et al., 1993), 

phyC-2 (N66036), phyD (N676270), phyE-T (N671700), pif4-2 (SAIL_1288_E07). All 

phytochrome mutants are in Col-0 background. The phy T-DNA insertion mutants were 

validated as homozygous insertion mutant by PCR of genomic DNA using Salk T-DNA and gene 

specific primers (Table S2). In addition, specific light conditions were used to select 

homozygous mutant background in F2 after crossing with the different pPHY:LUC reporter 

lines in WT background. Screening of phy mutants in phenotype, the phyA plants 

complemented a reducing of germination in FR light, phyB and phyC mutants measured the 

hypocotyls length in R light, and long days (LD) light were used for phyD and phyE mutants 

were measured leaf length with comparison WT. 

For Luminator experiments, seeds were sawn on MS-0.8% agar plates (Murashige-Skoog 

medium 0.22g/L, 8g/L plant agar Duchefa), stratified in the dark for three days at 5°C, after 

which they were sown on 4x4x4cm rockwool blocks (Grodan, Roermond, The Netherlands) 

soaked in Hyponex nutrient solution (Unifarm, Wageningen, The Netherlands). Plants were 

pre-grown in a climate chamber (12hL/12hD; 22°C; relative humidity (RH) at 65%). Directly 

before transfer to LUMINATOR, reporter plants were watered by soaking the rockwool blocks 

in Hyponex solution, which allows for growth for up to 6 days without additional watering. 

Growth conditions in LUMINATOR cabinet are described below. 

Plasmid Constructs. Construction of the pPHY:LUC reporter genes using ~2kb upstream 

promoter fragments of either PHYA, B, C, D or PHYE is described in (Toth et al., 2001). Binairy 
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vectors containing these reporter genes were kindly donated by the group of Prof. Nagy. For 

construction of the PIF4 reporter constructs the 2487 bp intergenic region upstream of the 

PIF4 (At2g43010) start codon was amplified by PCR (primers listed in Table S2) using Q5® High-

Fidelity DNA polymerase (New England Biolabs, Ipswich, MA, USA) and cloned by TOPO® 

Cloning reaction (Invitrogen, Carlsbad, CA, USA) into the pENTRTM TOPO® entry vector. To 

generate pPIF4::LUC expression constructs the entry vectors containing the PIF4 promoter 

sequences were recombined into the pGREEN-GW-Luc68 destination vector by LR 

recombination using Gateway® LR Clonase® II enzyme mix (Invitrogen, Carlsbad, CA, USA). The 

pPHY:LUC and pPIF4:LUC expression constructs were transformed to Agrobacterium 

tumefaciens (AGL0). 

Plant transformations and selection homozygous reporter plants 

Arabidopsis Col-0 plants were transformed by floral dip transformation (Zhang et al., 2006) 

and positive transformants were selected based on Luc activity. The seeds from self-pollinated 

individual T1 plants were harvested and sown on MS/Agar plate to determine the ratio of Luc 

activity in the T2 generation. Lines were selected with 3:1 ratio of LUC activity, indicative of 

single insertion site. From these lines at least three reporter lines were selected which are 

homozygous for the pPHY:LUC reporter construct. For each of these homozygous pPHY:LUC 

reporter lines the LUC activity was determined at different stages of development and a 

representative reporter line for plants expressing either pPHYA:LUC, pPHYB:LUC, pPHYC:LUC, 

pPHYD:LUC or pPHYE:LUC was selected for further experiments. 

Subsequently, the ultimately selected pPHY:LUC reporter line was crossed to the different 

phytochrome mutant plants and from the T3 progeny of this cross the plants homozygous for 

the pPHY:LUC reporter and homozygous for the phytochrome mutation were selected using 

LUC measurements for analysis of segregating LUC activity and different light (FR, R, LD) 

conditions to detect the phytochrome mutant phenotype. For instance, for screening for a 

homozygous phyA mutant background seeds were germinated under continuous Far-Red 

treatment as described by Chen et al (Chen et al., 2013). Under this condition, approximately 

25% seeds do not germinate within 3 days, indicative of a phyA mutant background. None 

geminated seeds were subsequently transferred to white light. Eventually, for all progeny 

homozygous for the pPHY:LUC reporter, the homozygous phy-mutant genotype was 
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confirmed by PCR. For measurements T4 plant homozygous for both the phytochrome 

mutation and the respective pPHY:LUC reporter were used. 

In planta LUC reporter activity measurements in LUMINATOR 

LUC activity in the different pPHY:LUC reporter plants was measured in a custom built 

LUMINATOR cabinet. The LUMINATOR contains a high performance PIXIS: 1024 CCD camera 

(Princeton Instruments, Roper technologies, Sarasote, FL, USA) fitted with a 35mm f/1.4 

Nikkor SLR lens (Nikon, Shinjuku, Tokyo, Japan) for imaging of bioluminescence in reporter 

plants. Reporter plants were pre-sprayed with the substrate 1mM D-luciferin (Promega, 

Fitchburg, WI, USA) one day before imaging to inactivate accumulated luciferase and make 

LUC activity dependent on ongoing promoter activity. For imaging plants are placed in 

LUMINATOR and for multiple day measurements sprayed daily with 1 mM D-luciferin 

(Promega, Fitchburg, WI, USA) at 10 am. Plants were allowed to acclimate to conditions in 

LUMINATOR for remainder of the day and night. LUC activity images are taken every 30 

minutes with an exposure time of 7 minutes. LED illumination during the photoperiod is 

switched off 30 seconds prior to imaging to allow for chlorophyll fluorescence decay. In 

addition, light from chlorophyll fluorescence of plants is blocked by using a ZBPB074 Bandpass 

Filter (Asahi Spectra, Sumida, Tokyo, Japan). 

Light conditions during diurnal LUC activity measurements 

To mimic white light (WL) in LUMINATOR we used mixed LEDs emitting R (590-660nm), B (420-

500nm) and FR 680-760) light. Moreover, for typical imaging of ff-LUC activity in plants under 

diurnal “WL” light regime we used a step gradient (ramping) in light intensity and quality to 

mimic altered light intensity and quality in morning and evening under natural light conditions. 

The light intensity during 2 hour ramping at start-day and end-day is 33 µmole m-2 s-1 and 

during the remaining hours of the photoperiod 90 µmole m-2 s-1. Photosynthetically active 

radiation (PAR) intensity was 25 and 80 µmole m-2 s-1 respectively.  

The ratio B:R:FR light during ramping is 1:2:1 and during the remaining hours of the 

photoperiod 3:6:1.  
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The Red light treatments were at 80 µmole m-2 s-1 of pure Red light, the FR light treatment 

was at 430 µmole m-2 s-1 of FR LED light and the Blue light treatment was at 30 µmole m-2 s-1 

of blue light. The R>FR step gradient light treatment consists of 3 hours R:FR=8, 3 hours R:FR=1 

(mild shade), 3 hours R:FR=0.5(shade) and 3 hours R:FR=0.2 (deep shade). PAR intensity was 

80-85 µmole m-2 s-1 during all shade conditions. Light quality/intensity was measured the using 

Flame-T spectroradiometer (Ocean Optics, Duiven, The Netherlands). 

Quantifying relative LUC activity in plants  

Luminescence was analysed using Image J software (imagej.nih.gov/ij). Images are imported 

as stack into Image J, equal square areas covering each individual plant are defined in the ROI 

manager of Image J and mean grey value is measured for each plant throughout the image 

stack. Background values were subtracted from the mean grey values to obtain luminescence. 

Background values were determined by measuring mean grey values of Col-0 WT plants grown 

under the same experimental conditions as the reporter plants. The data from first day of each 

experiment was not counted due to acclimation of plant to Luminator cabinet. Relative 

luminescence (ZT0(day1)=1) was calculated for each individual plant to deal with differences 

in general luminescence level between individual reporter plants from the same line caused 

by lens properties, reporter activity and/or differences in shape of individual plants (e.g. 

petiole length and leaf width). 

Quantitative RT-PCR. Relative gene expression of selected gene were quantified by qRT-PCR 

method. For that WT (Col-0), five phy mutans, and pif4-2 mutant plants were grown for two 

weeks in White Light and transferred either Red, Far-Red or Blue light treatment. Total RNA 

was extracted from after treatment and non-treatment sample leaves using InviTrap Spin 

Plant RNA mini Kit (Berlin, Germany), following manufacturer’s instructions. Purified total 

RNAs were subjected to TURBO DNA-free™ DNase (Thermo Fisher Scientific Inc., Waltham, 

Massachusetts) treatment to avoid with contaminated genomic DNA. For reverse 

transcription the iScrip II mix reagent was used that included 10 mM oligo (dT) primer 

according to the manufacturer’s instruction (Bio-Rad, CA,USA). The primers listed in Table S2 

were used for the real time qPCR. As a reference gene we have used AT2G39960 gene (Yang 

et al., 2018). Reaction were carried out with total RNA isolated from pooled samples from 
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three individual plants, with triple biological replicates using SYBR Green PCR Master Mix (Bio-

Rad, CA,USA) on the CFX Connect Real Time System machine (Bio-Rad, CA, USA). The Ct 

method (2-ΔΔCt) was used to analysis the differences in mRNA values (http://www.bio-

rad.com/).  

Statistical analyses. All data were subjected to one-way analysis of variance (ANOVA). 

Comparison of means was analysed for statistical significance with a 2-sample t-test (P <0.05 

or <0.01). 

http://www.bio-rad.com/
http://www.bio-rad.com/
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Supplements. 

 

Figure S-1. Genotyping of WT and phy mutants by Alternative PCR and Different light responses. a) 

Structure of Salk T-DNA insertion for PHY genes. b) Genotyping by gene specific PCR primers (Table S2) in 1% 

agarose gel. 
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Figure S2. A diurnal pPHY:LUC activity in WT and phy mutant plants under mixed R+B+FR light. Plants 

were pre-grown for 25 days in growth cabinets under fluorescent WL and sprayed with substrate luciferin (1 mM) 

one day before placing in LUMINATOR with diurnal R+B+FR LED light regime. After adaptation for one day in 

LUMINATOR, LUC activity images were obtained every half hour (7 min. exposure) for a full diurnal cycle under 

mixed LED light. The relative LUC activity was quantified in Image J and corrected for background signal. Number 

of replicate plants for each reporter line: N=6. Error bars represent mean ±SE. 
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Figure S3. pPHYB-LUC activity in 14 day old seedings in WT and phy mutants under mixed, R, FR and 

B LED. Seeds of pPHYB-LUC reporter in WT and the five single PHY mutant backgrounds were stratified and 

germinated in growth cabinets under diurnal fluorescent WL (12L/12D). At 14 days after germination seedlings 

were sprayed with substrate luciferin (1 mM) and one day later placed in LUMINATOR for adjustment under 

diurnal R+B+FR for one day. Subsequently plants were exposed to light regimes 12mixed/12D, 12R/12D, followed 

by 12FR/D and finally 12B/12D. Luciferin (1 mM) solution was sprayed once per day. LUC activity images were 

obtained every half hour (7 min. exposure) for each full diurnal cycle. The relative LUC activity was quantified in 

Image J and corrected for background signal. Number of replicate seedlings for each reporter line: N=6. Error 

bars represent mean ±SE. 
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Figure S4. pPHY:LUC activity in phy mutant compared WT rosette plants in response to changing R:FR 

ratios. Seeds of all WT and phy mutant pPHY:LUC reporter lines were stratified and germinated in growth 

cabinets under diurnal fluorescent WL (12L/12D). At 25 days after germination plants were sprayed with 
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substrate luciferin (1 mM) and one day later placed in LUMINATOR for adjustment under diurnal mixed R+B+FR 

for one day. Subsequently seedlings were exposed to R light with increasing levels of FR (in blocks of 3 hours), 

resulting in R:FR ratio’s of 8, 1, 0.5 and 0.2. After the following night plants were exposed to the reverse light 

regime. Luciferin (1 mM) solution was sprayed once per day. LUC activity images were obtained every half hour 

(7 min. exposure) for each full diurnal cycle. The relative LUC activity was quantified in Image J and corrected for 

background signal. Number of replicate seedlings for each reporter line: N=6. Error bars represent mean ±SE.  

A: pPHYA:LUC activity in WT and the five phy mutant backgrounds. Note that for the phyD mutant background 

the scale of relative LUC activity is different. B: pPHYB:LUC activity in WT and the five phy mutant backgrounds. 

C: pPHYC:LUC activity in WT and the five phy mutant backgrounds. D: pPHYD:LUC activity in WT and the five phy 

mutant backgrounds. pPHYE:LUC activity in WT and the five phy mutant backgrounds showed barely above 

background (data not showed). 
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Figure S5. PIF4 is not involved pPHYD:LUC activity. A 25 days after germination pPHYD:LUC reporter in WT 

and pif4-2 mutant backgrounds were exposed to R light with increasing levels of FR (in blocks of 3 hours), 

resulting in R:FR ratio’s of 8, 1, 0.5 and 0.2. After the following night plants were exposed to the reverse light 

regime. LUC activity images were obtained every half hour (7 min. exposure) for each full diurnal cycle. The 

relative LUC activity was quantified in Image J. Background value subtracted from average of observed value (O-

B). Number of replicate seedlings for each reporter line: N=11. Error bars represent mean ±SE. In conclusion, PIF4 

does not regulates PHYD expression although it was found G-box motif in the promoter site of PHYD. 
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LUC reporter lines, 

constructs 

Description Plasmid 

notes 

Reference 

pPHYA:LUCWT pPHYA:LUC reporter in Col-0 HygR/pPCVH this study 

pPHYA:LUCphyA pPHYA:LUC reporter crossed to phyA mutant HygR/pPCVH this study 

pPHYA:LUCphyB-9 pPHYA:LUC reporter crossed to phyB-9 mutant HygR/pPCVH this study 

pPHYA:LUCphyC pPHYA:LUC reporter crossed to phyC mutant HygR/pPCVH this study 

pPHYA:LUCphD pPHYA:LUC reporter crossed to phyD mutant HygR/pPCVH this study 

pPHYA:LUCphyE pPHYA:LUC reporter crossed to phyE mutant HygR/pPCVH this study 

pPHYB:LUCWT pPHYB:LUC reporter in Col-0 HygR/pPCVH this study 

pPHYB:LUCphyA pPHYB:LUC reporter crossed to phyA mutant HygR/pPCVH this study 

pPHYB:LUCphyB-9 pPHYB:LUC reporter crossed to phyB-9 mutant HygR/pPCVH this study 

pPHYB:LUCphyC pPHYB:LUC reporter crossed to phyC mutant HygR/pPCVH this study 

pPHYB:LUCphD pPHYB:LUC reporter crossed to phyD mutant HygR/pPCVH this study 

pPHYB:LUCphyE pPHYB:LUC reporter crossed to phyE mutant HygR/pPCVH this study 

pPHYC:LUCWT pPHYC:LUC reporter in Col-0 HygR/pPCVH this study 

pPHYC:LUCphyA pPHYC:LUC reporter crossed to phyA mutant HygR/pPCVH this study 

pPHYC:LUCphyB-9 pPHYC:LUC reporter crossed to phyB-9 mutant HygR/pPCVH this study 

pPHYC:LUCphyC pPHYC:LUC reporter crossed to phyC mutant HygR/pPCVH this study 

pPHYC:LUCphD pPHYC:LUC reporter crossed to phyD mutant HygR/pPCVH this study 

pPHYC:LUCphyE pPHYC:LUC reporter crossed to phyE mutant HygR/pPCVH this study 

pPHYD:LUCWT pPHYD:LUC reporter in Col-0 HygR/pPCVH this study 

pPHYD:LUCphyA pPHYD:LUC reporter crossed to phyA mutant HygR/pPCVH this study 

pPHYD:LUCphyB-9 pPHYD:LUC reporter crossed to phyB-9 mutant HygR/pPCVH this study 

pPHYD:LUCphyC pPHYD:LUC reporter crossed to phyC mutant HygR/pPCVH this study 

pPHYD:LUCphD pPHYD:LUC reporter crossed to phyD mutant HygR/pPCVH this study 

pPHYD:LUCphyE pPHYD:LUC reporter crossed to phyE mutant HygR/pPCVH this study 

pPHYE:LUCWT pPHYE:LUC reporter in Col-0 HygR/pPCVH this study 
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pPHYE:LUCphyA pPHYE:LUC reporter crossed to phyA mutant HygR/pPCVH this study 

pPHYE:LUCphyB-9 pPHYE:LUC reporter crossed to phyB-9 mutant HygR/pPCVH this study 

pPHYE:LUCphyC pPHYE:LUC reporter crossed to phyC mutant HygR/pPCVH this study 

pPHYE:LUCphD pPHYE:LUC reporter crossed to phyD mutant HygR/pPCVH this study 

pPHYE:LUCphyE pPHYE:LUC reporter crossed to phyE mutant HygR/pPCVH this study 

pPHYB:LUCpif4-2 pPHYB:LUC reporter crossed to pif4-2 mutant HygR/pPCVH this study 

pPHYD:LUCpif4-2 pPHYD:LUC reporter crossed to pif4-2 mutant HygR/pPCVH this study 

35S:PHYB  Expression vector SpR/pKGW this study 

35S:PIF4  Expression vector SpR/pKGW this study 

35S:BZR1  Expression vector SpR/pKGW this study 

 

Table-S1. List of reporter lines and expression constructs were used in study. The pPHY:LUC 

reporter was created in Col-0 and its crossed with different mutant background lines. 
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№ Sequence (5’-3’) Target Description 

 

1 

ccagtcagctcagcaattttc -LB PHYA 

(AT1G09570) 

Screening of mutant 

aatgcaaaacatgctagggtg -RB 

 

2 

ttaggcttacgtagcttcccc -LB PHYC 

(AT5G35840) 

Screening of mutant 

gatggagctgagcatagaacg -RB 

 

3 

gctttttacacgaatcttgcg -LB PHYD 

(AT4G16250) 

Screening of mutant 

agtctcgcgtcgacagtgtac -RB 

 

4 

aaagaggcggtctagttcagc -LB PHYE 

(AT4G18130) 

Screening of mutant 

tatcagtggttaaacccgtcg -RB 

 

5 

acctcctcaagtcatggttaagcctaagcc -LB PIF4 

(AT2G43010) 

Screening of mutant 

tccaaacgagaaccgtcggt -RB 

6 attttgccgatttcggaac -LB SALK T-DNA Screening of mutant 

7 tagcatctgaatttcataaccaatctcgatacac -LB SAIL T-DNA Screening of mutant 

 

8 

agagatacgccctggttcct -F  

LUC 

 

qPCR ctgttgagcaattcacgttca -R 

 

9 

tccactgggtattgtgtcgc -F  

PHYA 

 

qPCR agctatctcctgcaggtgga -R 

10 cgttgggtgttgctcctagt -F  

PHYB 

 

qPCR gataccccgcatcgcctaaa -R 

 

12 

tccgccatgaagtgaaggac –F  

PHYC 

 

qPCR ccgaattcgctgcaatccag -R 

 

13 

cgattcctccgtaccagagc -F  

PHYD 

 

qPCR tttcccgcgcattttcactg -R 

 

14 

attgaaaccgcaactgcacc -F  

PHYE 

 

qPCR tcatcggcaagtgacttccc -R 

 

15 

ccatcgacagtgctgatcca-F  

AT2G39960 

Housekeeping for 

qPCR 
ccattgggtgacacttttggt-R 

Table-S2. Primers were used for this study. 
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Feedback at the PIF4 locus: PIF4 is a negative regulator of its own expression 
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Abstract 

Growth and specific growth responses like shade avoidance or thermomorphogenesis induced 

plant elongation responses are mediated by transcription factors PIF4 and BZR1. The 

brassinosteroid (BR) signalling activated transcription factor BZR1 is a positive factor for PIF4 

gene expression and together PIF4 and BZR1 regulate genes required for elongation. 

Moreover, PIF4 protein activates BR biosynthesis and BR signalling, which leads to more 

nuclear active BZR1 to stimulate PIF4 gene expression even further. It is proposed that the 

potential runaway activity of this positive feedback regulation is limited by factors that act at 

the post-translational level on PIF4. Here we identify the PIF4 protein itself as a dominant 

factor to limit PIF4 gene transcription. Both in transient expression assays and in PIF4-LUC 

reporter plants, PIF4-LUC reporter activity is suppressed by PIF4 overexpression. However, 

because of the complicated multiple feedback regulation on PIF4 it remains difficult to predict 

PIF4 activity in mutant background pif4-2 or bzr1-1D. n WT and mutants plants. Combined, 

these studies uncover a novel direct negative feedback interaction on PIF4 gene activity, which 

counterbalance the positive feedback interaction of BZR1 on PIF4 gene activity and 

demonstrate a remarkable buffering capacity for PIF4 gene activity under different conditions. 

 

 

Key words: PIF4, BZR1, Feedback regulation,  
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Introduction  

Regulation of plant cell elongation is an important factor in how plants deal with varying 

environmental signals such as light and temperature. For instance, light quality conditions in 

canopy shade may trigger stem cell elongation, which is important for plant survival in order 

to outgrow neighbouring plants that compete for direct sunlight. Similarly, temperature has a 

strong effect on plant cell elongation, as demonstrated by the reduced elongation of plants 

under a regime of alternative day/night temperatures (Thingnaes et al., 2003; Bours et al., 

2012; Cagnola et al., 2012; Bours et al., 2013; Bours et al., 2015). Elongation is also an 

important response for plants under high ambient temperature (warmth), even when this 

temperature is still below the range that may induce heat stress. The warmth-induced 

elongation response is named thermomorphogenesis and for Arabidopsis results in a more 

open plant architecture, which allows for better cooling of leaves (Jung et al., 2016; Delker et 

al., 2017). The molecular components involved in normal growth, shade avoidance induced 

elongation or warmth induced elongation are mostly the same, but activity of individual 

components may be modulated by different environmental conditions (Box et al., 2015; Jung 

et al., 2016; Ma et al., 2016). Key players in growth responses are the Phytochrome Interacting 

Factor (PIF) transcription factors of which PIF4 has been studied most intensively (Huq and 

Quail, 2002; Sun et al., 2012; Choi and Oh, 2016).  

The role of PIF4 in the plant elongation response is very complex as PIF4 transcription, 

PIF4 protein-stability and PIF4 protein-activity are affected by numerous factors whose 

activities may be regulated by the clock, by light or by temperature. The brassinosteroid (BR)-

activated transcription factor BZR1 is a key regulator of PIF4 transcription, acting in a positive 

feedback loop in which upregulation of PIF4 gene expression by BZR1 results in biosynthesis 

of BR and BR signalling, which may lead to more active nuclear BZR1 (Ibañez et al., 2018). The 

role of PIF4 in BR biosynthesis was recently elucidated: the BZR1 homo-dimer binds to BRRE‐ 

and G‐box elements in the promoters of BR biosynthetic genes and inhibits their expression. 

The BZR1 and PIF4 proteins can physically interact to form a BZR1/PIF4 hetero-dimer (Oh et 

al., 2012), and this heterodimer is not active on BR biosynthetic genes (Martínez et al., 2018). 

Thus, at elevated PIF4 levels, formation of the BZR1/PIF4 heterodimer competes with the 

formation of the repressor BZR1 homo-dimer, resulting in de‐repression of BR biosynthesis 
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(Martínez et al., 2018). The increased BR signaling subsequently blocks activity of the kinase 

BIN2, a repressor of BZR1 (He et al., 2002), resulting in more nuclear BZR1 activity. In addition, 

because BIN2 also phosphorylates PIF4 to target PIF4 for destruction (Bernardo-Garcia et al., 

2014), the reduced BIN2 activity results in stabilization of PIF4 protein.  

Supposedly, the positive feedback on PIF4 transcription and PIF4 protein stability is 

kept under control by the other factors that act on PIF4 at the post-translational level. Indeed, 

multiple kinases (PPKs, CK2, BIN2, and phytochrome itself) and multiple families of ubiquitin 

ligases (SCFEBF 1/2, CUL3LRB, CUL3BOP, and CUL4COP1-SPA) regulate PIF4 protein stability 

(Pham et al., 2017). For instance, light activated phytochromes promote the turnover of PIFs 

through phosphorylation, ubiquitination, and proteasome-mediated degradation (Park et al., 

2012; Xu et al., 2015). The transcriptional activity of PIF4 protein is limited by ELF3, which links 

PIF4 activity to the circadian clock (Box et al., 2015; Raschke et al., 2015; Zhu et al., 2016). PIF4 

transcriptional activity is also blocked by light activated CRY1, linking PIF4 activity to blue light 

signaling (Ma et al., 2016; Pedmale et al., 2016) and PIF4 is sequestered by Della proteins, 

linking PIF4 activity to gibberellin (GA) signaling (Li et al., 2016). The transcriptional activity of 

PIF4 is also modulated by competition for binding to the G/E-box in PIF4-target promoters by 

HY5 (Toledo-Ortiz et al., 2014; Box et al., 2015; Gangappa and Kumar, 2017). The molecular 

and genetic control of plant thermomorphogenesis and the role of PIF4 has recently been 

reviewed (Choi and Oh, 2016; Quint et al., 2016). 

The G-box and E-box motifs are enriched in PIF4 target genes and the PIF4 promoter also 

contains a G-box and E-box (Pfeiffer et al., 2014; Ibañez et al., 2018). However, the role of PIF4 

in transcriptional regulation of the PIF4 gene has not specifically been investigated. Here we 

studied the role of PIF4 on PIF4 promoter activity and show that PIF4 is a negative factor for 

its own gene transcription. This is demonstrated by the reduced endogenous PIF4 expression 

upon ectopic overexpression of PIF4 in stable transformed Arabidopsis plants. Moreover, PIF4 

overexpression suppresses pPIF4:LUC reporter activity in transient expression assays in 

N.benthamiana leaves, even when co-expressed with BZR1. In addition, we analysed the 

activity of a pPIF4:LUC reporter construct in stable transformed Arabidopsis WT and mutant 

plants. Results show that compared to WT the pPIF4:LUC activity is strongly decreased in a 

PIF4OE background. Surprisingly, pPIF4:LUC is also mildly decreased in a pif4-2 mutant 
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background and in a gain of function mutant in which BZR1 is constitutively active (bzr1-1D). 

pPIF4:LUC activity in WT and mutants was also monitored under warmth and different light 

conditions, indicating that PIF4 transcription is buffered against changes in both BZR1 and PIF4 

activity. Combined, we have identified a direct negative feedback component in the regulation 

of PIF4, which help counterbalance the positive feedback by BZR1. But we also show that is 

remains difficult to integrate our extensive knowledge on dynamic PIF4 regulation to predict 

PIF4 activity under different conditions without computer modelling.  

 

Materials and Methods 

Plant material and growth conditions.  

The Arabidopsis thaliana (L.) mutant lines were obtained from the Nottingham Arabidopsis 

Stock Centre (NASC). Mutant plants used in these studies were all in Col-0 genetic background 

and are listed in Table 1. The different reporter lines used here are listed in Table 2. Double 

mutant and transgenic lines were created in this study.  

For the Arabidopsis plant experiments seeds of the different genotypes were first incubated 

for five days at 4ᵒC in darkness. After cold treatment the imbibed seeds were sown onto rock 

wool blocks. The Arabidopsis plants were then grown in at 12L22ᵒC /12D12ᵒC on Hoagland-

nutrient solution. Seven days old reporter seedlings were used to measuring LUC activity. 

Table 1. List of mutants and transgenic lines were used in study. 

Mutants Description Ref. 

pif4-2 T-DNA insertion mutant (SAIL_1288_E07) NASC stock 

bzr1-1D Gain of function point mutant NASC stock 

PIF4OEWT 35S:PIF4 in Col-0 this Study 

PIF4OE bzr1-1D 35S:PIF4 in bzr1-1D this study 

 

The pif4-2 mutant line was confirmed to be homozygous by PCR on genomic DNA using T-DNA 

insertion (SAIL LB-2 primer) and gene-specific primer sets. For screening of bzr1-1D 
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homozygous lines, a 306 bp BZR1 DNA fragment was amplified from genomic DNA using the 

BZR1 primer set. The resulting DNA fragment from bzr1-1D unable to digestion with HpaII 

restriction enzyme (C^CGG), while the fragment amplified from WT DNA is digested into a 119 

bp and 189 bp fragment.  

Transformants with PIF4 overexpression (PIF4OE) were selected by the red seed coat marker 

which is included in the PIF4OE construct. For fair comparison of LUC activity in WT and 

mutant lines, the LUC reporters were crossed into mutant background (no position effect 

between genotypes).  

Table 2. List of reporter lines were used in study. The pPIF4:LUC reporter was created in Col-0 and its 

crossed with different background lines. 

Reporter lines Description Ref. 

pPIF4:LUCWT pPIF4:LUC reporter in Col-0 this study 

pPIF4:LUCpif4-2 pPIF4:LUC reporter crossed pif4-2  this study 

pPIF4:LUCbzr1-1D pPIF4:LUC reporter crossed bzr1-1D this study 

pPIF4:LUCPIF4OE pPIF4:LUC reporter crossed 35S:PIF4 in Col-0 this study 

 

Cloning of expression constructs and LUC reporter constructs. 

The LUC reporters, PIF4 and BZR1 overexpression constructs were made using standard 

cloning techniques. For the ectopic expression of PIF4 the PIF4 cDNA was amplified and cloned 

into a binary expression vector under control of the CaMV 35S promoter. Cloning details will 

be given on request. For construction of the pPIF4:LUC reporter constructs the 2487 bp 

intergenic region upstream of the PIF4 (At2g43010) start codon was amplified by PCR (primers 

listed in Table S1) using Q5® High-Fidelity DNA polymerase (New England Biolabs, Ipswich, 

MA, USA) and cloned by TOPO® Cloning reaction (Invitrogen, Carlsbad, CA, USA) into the 

pENTRTM TOPO® entry vector. To generate pPIF4::LUC expression constructs the entry 

vectors containing the PIF4 promoter sequences were recombined into the pGREEN-

GW:LUC68 destination vector by LR recombination using Gateway® LR Clonase® II enzyme mix 

(Invitrogen, Carlsbad, CA, USA). The pPIF4:LUC expression constructs were transformed into 

Agrobacterium tumefaciens (AGL0).  
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Transformation and selection of homozygous lines.  

Agrobacterium tumefaciens was used for plant transformation using the floral dip method as 

described (Zhang et al., 2006). PIF4 OE transgenic T0 seeds were identified by DsRed 

pigmentation of the seed coat. It should be notes that 12 out of 15 T0 PIF4OE plants did not 

produce seeds. Therefore, seeds harvested from three T1 PIF4OE plants may not be 

representative of PIF4 overexpression. Homozygous PIF4OE plants were selected from the T2 

generation.  

Same story for bzr1-1D transformed with 35S:PIF4 by floral dipping. Over 14 positive T0 seeds 

were grown from this transformation. From these 14 T1 plants were grown of which most 

plants did not set seed, again indicating that PIF4OE has severe effects on seed set. Only from 

two plants T2 seeds could be harvested from which a homozygous mutant bzr1-1DPIF4OE line 

was developed.  

Gene Expression Analysis by Quantitative Real-Time RT-PCR (qPCR). 

For gene expression analysis total RNA was isolated from pooled seedlings or pooled rosette 

leaves using the InviTrap® Spin Plant RNA Kit and treated with Ambion® TURBO DNA-free Kit 

according to the manufacturer’s instructions. cDNA synthesis was performed using Super 

Script III RT KIT (Invitrogen) from purified total RNA. qPCR was carried out using iQ SYBR Green 

Super mix (Bio-Rad) and gene specific primers. The AT1G13320 gene was used as a reference 

gene for normalization of relative gene expression levels. The primers used are listed in Table 

S1. 

Imaging and quantification of in planta Luciferase activity 

For the imaging of LUC-reporter activity in stable transformed Arabidopsis plants, the plants 

were pre-sprayed with 1 mM D:Luciferin (Duchefa, Haarlem, NL) 24 hour prior to imaging to 

inactivate accumulated luciferase protein. Spraying with D:LUCiferin was repeated one hour 

before imaging. Imaging was with an (-80°C) air-cooled CCD Pixis 1024B camera system 

(Princeton Instruments, Massachusetts, USA) equipped with a 35mm, 1:1.4 Nikkon SLR 

camera lens (Nikon, Tokyo, Japan) fitted with a DT Green filter ring (Image Optics Components 

Ltd, Orsay, France) to block chlorophyll fluorescence. Exposure time for the LUC activity 
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measurements is as indicated. For each reporter line the average LUC activity is given from at 

least 18 individual seedlings or 8 rosette plants. For the imaging of LUC activity in transient 

assays, agro-infiltrated leaves were sprayed with 1 mM D:LUCiferin at 24 hr and 1 hr before 

imaging (7 minutes exposure time). Leaves were harvested at 4 day post agro-infiltration. 

Relative luminescence from LUC activity was quantified in ImageJ (Bethesda, Maryland, USA), 

using background subtraction. For each treatment in the transient assays, the average LUC 

activity in leaves from 6-8 independent plants is given.  

Statistical analysis. 

Data significance was assessed using either Student’s t test or one-way ANOVA and indicated 

by **P<0.05 or ***P<0.01 in the figure legends. 
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Results 

BZR1 and PIFs have different role in PIF4 expression 

Both the G-box motif (CACGTG) and E-Box motif (CACATG ) are highly enriched in PIF4 target 

promoters (Oh et al., 2012; Zhang et al., 2013; Pfeiffer et al., 2014), suggesting that PIF4 binds 

to both to E-Box and G-Box. The promoter of PIF4 itself also contains a G-box and E-box (Ibañez 

et al., 2018) and it has been shown that tagged-PIF4 is bound to its own promoter in Chip 

experiments on DNA isolated from two week old plants (Oh et al., 2012) but not on DNA 

isolated from two day old seedlings (Oh et al., 2012; Pfeiffer et al., 2014). Binding of the BZR1 

protein to the PIF4 promoter was confirmed by CHIP assay experiments with tagged BZR1 

(Ibañez et al., 2018). Transcript comparison between the double mutant pifq; bzr1-1D and the 

bzr1-1D single mutant identified PIF regulated genes (Oh et al., 2012). Among these PIF 

regulated genes we identified PIF4, which shows a 3.5 fold upregulation in pifq. This suggests 

that PIFs are repressors of PIF4 expression. In contrast, for BZR1 it was shown that the 

interaction of BZR1 with the PIF4 promoter can stimulate transcription in an expression assay 

in protoplast from A.thaliana leaves (Ibañez et al., 2018). Combined, these results indicate 

that BZR1 and PIFs may have opposite roles in the regulation of PIF4 gene expression and that 

PIF4 gene activity may depend on the relative level of activated BZR1 versus PIF protein.  

 

PIF4 represses the positive action of BZR1 on pPIF4:LUC in transient assays 

To determine the effect of PIF4 on PIF4 promoter activity we used the transient expression 

system in N. benthamiana leaves. For this a pPIF4:LUC reporter construct was made using a 

2487 bp promoter fragment of PIF4. This reporter was co-expressed with either a BZR1 

effector construct (BZR1OE) or a PIF4 effector construct (PIF4OE). Results show that in the 

presence of a BZR1 overexpression construct, the pPIF4:LUC reporter activity is not 

significantly increased (Figure 1A). In contrast, when pPIF4:LUC is co-expressed with the PIF4 

effector construct, this resulted in a significant down regulation of pPIF4:LUC activity (Figure 

1B). The opposite action of BZR1 and PIF4 on PIF4 gene transcription, raises the question what 

happens to pPIF4:LUC activity when BZR1 and PIF4 are co-expressed with pPIF4:LUC? When 

the pPIF4:LUC reporter is co-expressed with both the BZR1 and PIF4 effector construct (both 



74 

 

under control of the same 35S promoter), the expression of pPIF4:LUC is down regulated 

(Figure 1C). This indicates that the repressor activity of PIF4 on its own promoter is dominant 

over the activator activity of BZR1 on the PIF4 promoter. Subsequently we tested whether 

these interactions are also valid in stable transformed plants with ectopic expression of PIF4.  

 

Fig.1. PIF4 suppresses PIF4 transcription in transient expression assays. pPIF4:LUC activity when co-

expressed with empty vector effector construct (EV) or with the BZR1 effector construct (A), when co-expressed with empty 

vector effector construct (EV) or with the PIF4 effector construct (B) and pPIF4:LUC activity when co-expressed with 2x empty 

vector effector construct (EV) or with the BZR1 and PIF4 effector constructs (C). Each quantification is based on minimum of 

5 agro-infiltrated leaves. Significant differences are indicated by *** (P=0.05). 

 

PIF4OE in Arabidopsis represses endogenous PIF4 expression.  

To determine the effect of ectopic expression of PIF4 in stable transformed plants we used 

the 35S:PIF4 effector construct for transformation of Arabidopsis Col-0 plants. Although most 

primary transformants with PIF4 overexpression (PIF4OE) did not set seeds we obtained three 

lines with PIF4OE. From these a homozygous line with PIF4OE was developed. However, we 

note that surviving progeny may not be representative of general PIF4OE. The expression level 

of the endogenous PIF4 gene was quantified by qPCR using primers specific for the 3’UTR of 

the endogenous PIF4 gene. Results show that in the homozygous PIF4OE plant the expression 

from the endogenous PIF4 gene is suppressed compared to that in control WT plants (Figure 

2), indicating that also in stable transformed plants PIF4 is a negative regulator of its own 

expression. The transcription factor BZR1 is a major positive regulator of PIF4 expression 

(Ibañez et al., 2018) and in the mutant bzr1-1D, the BZR1 protein activity has been uncoupled 
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from BR signaling (Ibañez et al., 2018). The PIF4OE construct was also transformed into the 

bzr1-1D mutant using the floral dip method and expression of endogenous PIF4 in T1 progeny 

plants was quantified. Results show that also in the bzr1-1D mutant background, the 

expression of endogenous PIF4 is suppressed by ectopic PIF4OE(Fig. 2).  

 

Figure 2. PIF4 OE in Arabidopsis suppresses endogenous PIF4 expression. The PIF4OE construct was 

introduced into WT and bzr1-1D by floral dipping and endogenous PIF4 mRNA levels were quantified in RNA isolated from 

leaves of 25-day old plants. Specific reverse primer were designed to 3UTR region of PIF4 transcript and used for the 

endogenous PIF4 gene expression. Significant differences are indicated by *** (P=0.05). 

 

pPIF4:LUC reporter activity is suppressed in PIF4OE plants  

To monitor PIF4 promoter activity in different backgrounds and at different temperatures we 

developed a pPIF4:LUC reporter line in A.thaliana (Col-0). Primary transformants were 

selected based on LUC activity in seedlings and in total 10 independent transformants were 

obtained. From these one homozygous line with representative pPIF4:LUC activity was 

developed and used for further study. Meantime, also a 35S:PIF4 OE transgenic line was 

generated in Arabidopsis (Col-0) by floral dipping. Approximately, 16 T0 seeds were selected 

based on the red seed coat marker present in the 35S:PIF4 effector construct. From the 16 T1 

plants only three plants were able to produce seed, indicating that PIF4 overexpression has 

severe effects on seed set. From the three T2 plants a homozygous PIF4-OE line was developed 



76 

 

and one of them crossed with pPIF4:LUC transgenic plant. Analysis of the pPIF4:LUC activity in 

the original WT pPIF4:LUC reporter plant and pPIF4:LUC/PIF4-OE plant shows that ectopic 

expression of PIF4 suppresses pPIF4:LUC activity (Figure 3), confirming that PIF4 is a negative 

regulator of its own promoter activity.  

 

Figure 3. pPIF4:LUC activity in WT, PIF4OE, pif4-2 and bzr1-1D. Relative pPIF4:LUC activity quantified in 

7 day old seedlings at ZT= 9 hr. St error bars are shown, N=11. Letters indicate statistically significant differences 

(P=0.05) between WT and genotypes. 

 

pPIF4:LUC activity is reduced in the pif4-2 and bzr1-1D mutant background 

The pPIF4:LUC reporter was crossed into the pif4-2 mutant background to determine the 

effect of loss of PIF4 protein on PIF4 promoter activity. As results above identify PIF4 as a 

suppressor of its own promoter activity, the simple prediction was that pPIF4:LUC shows 

higher activity in a pif4-2 mutant background. However, results show that pPIF4:LUC activity 

is lower in pif4-2 (Figure 3). Similarly, the pPIF4:LUC reporter was crossed into the bzr1-1D 

mutant background (pPIF4:LUCbzr1-1D), in which BZR1 activity is constitutively active due to a 

mutation in the BZR1 protein (Wang et al., 2002). However, the activity of pPIF4:LUC is not 

significantly higher in bzr1-1D compared to that in WT (Figure 3). This indicates that there are 

no simple predictions for PIF4 action on PIF4 promoter activity, most likely because PIF4 is 

affecting the different feedback interactions in different ways.  
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Transcriptional regulation of pPIF4:LUC as function of temperature 

To test the effect of warmth on PIF4 gene activity in WT and the different mutants, the 

different pPIF4:LUC reporter plants were grown under diurnal white light for 7 days. At day 

seven seedlings were placed in LUMINATOR for two days under mixed LED light at 22ᵒC. The 

LUC activity was measure every 30 minutes (7 min. exposure time) during the day and at night. 

The next day the temperature was raised from 22 to 27ᵒC at ZT=0 hr. Figure 4 shows the 

pPIF4:LUC activity profile over a full day at 22 and full day at 27ᵒC. Results show that the switch 

to 27ᵒC results in an immediate upregulation of pPIF4:LUC in all genetic backgrounds (WT, 

bzr1-1D, pif4-2 and in the PIF4OE line), however, the relative increase in pPIF4:LUC activity 

depends on the genetic background. Figure 4B shows the ratio between maximum pPIF4:LUC 

activity at 27ᵒC and at 22ᵒC. Because the phase of pPIF4:LUC activity is slightly advanced in 

PIF4OE (Figure 4A), the peak activities at 22 and 27ᵒC are compared at ZT= 9 hr for WT, bzr1-

1D and pif4-2 and at ZT=8 hr for PIF4OE. Results show that although PIF4 promoter activity is 

repressed by PIF4 overexpression, the relative response to warmth is the highest in the PIF4OE 

plant. Although the pPIF4:LUC activity is lower in pif4-2 and bzr1-1D, the relative response to 

warmth is about the same as in WT (Figure 4). 

 

Figure 4. pPIF4:LUC activity in WT, bzr1-1D, pif4-2 and PIF4OE at 22ᵒC and 27ᵒC. Seedlings were pre-

grown under diurnal white light for 7 days after which they were transferred to LUMINATOR for growth under 

mixed LED light for two days (results for second day shown). The third day the temperature was raised to 27oC 

at ZT=0 hr. A). diurnal LUC profile under 22 and 27oC. B: ratio of pPIF4:LUC at 27 and 22oC. B). Ratio in average 

pPIF4:LUC activity at 27oC and 22oC for WT, pif4-2, bzr1-D and PIF4OE. Ratio’s were calculated for peak time in 

expression (ZT=8 hr for PIF4OE, ZT=9 hr for others). Although PIF4OE represses the PIF4 promoter activity, the 

relative response to warmth is enhanced in PIF4OE.  
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Transcriptional regulation of pPIF4:LUC as function of light quality 

To test the role of PIF4 and BZR1 in pPIF4:LUC promoter activity as function of different light 

conditions the different pPIF4:LUC reporter plants were grown under diurnal white light for 7 

days and at day seven seedlings were placed in LUMINATOR under mixed LED light at 22oC 

after adjusting to LUMINATOR for one day, the pPIF4:LUC activity was imaged every 30 min. 

for seedlings grown under 12mixed/12D, followed by on day under 12R/12D, followed by one 

day under 12FR/12D and finally under one day of 12B/12D. The full diurnal response under 

the different light conditions is shown in Figure S1 and the peak responses of pPIF4:LUC in WT, 

pif4-2, PIF4OE and in bzr1-1D under the different light colors are shown in Figure 5A. Results 

show that PIF4 gene expression is induced by R light, but remarkably, also by FR light. Figure 

6B shows the relative response to R, FR and B compared to the peak expression under mixed 

LED. These results indicate that the relative response to light quality is not much affected in 

the pif4-2 and bzr1-1D mutant. Remarkably, although expression of pPIF4 is lowest in PIF4OE 

plants, the relative response to FR is strongest in PIF4OE plants (Figure 5B).  
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Figure 5. pPIF4:LUC under different light colors in WT, bzr1-1D, pif4-2 and PIF4OE. A) peak PIF4:LUC 

activity quantified under mixed LED at ZT=9hr, under R at ZT=12hr, under FR at ZT=10h) and under B at ZT=12hr. 

B) pPIF4:LUC response relative to mixed LED for plants under R (R:mixed), FR (FR:mixed) and B (B:mixed).  
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Discussion 

PIF4 limits the feedforward regulation of PIF4 gene expression by BZR1 

During growth of plants internal hormonal signals and external environmental signals are 

integrated through the actions of the transcription factors PIF4 and BZR1 (Lucyshyn and 

Wigge, 2009; Choi and Oh, 2016). Understanding the regulation of PIF4 activity is therefore 

the basis for understanding how environmental signals may affect plant growth. While 

previous research has demonstrated the central role of BZR1 in transcriptional regulation of 

the PIF4 gene (Ibañez et al., 2018) the role of PIF4 itself in PIF4 gene expression has been 

largely ignored. BZR1 acts in an amplifying feed-forward loop on transcription of PIF4, in which 

the activity of PIF4 supposedly is kept under control by different post-transcriptional 

interactions with PIF4 protein. Here we show that the potential indirect feed-forward 

regulation of PIF4 gene transcription by BZR1 is actually also kept under control by the direct 

negative feedback of PIF4 on its own promoter activity. This is demonstrated by the 

suppression of endogenous PIF4 expression in plants by ectopic PIF4 overexpression, by the 

suppression of a pPIF4:LUC reporter activity in plants with ectopic PIF4 overexpression and by 

a transient expression assay in N.benthamiana leaves with the pPIF4:LUC reporter and PIF4 

effector. Moreover, the transient assays also show that the PIF4 is still able to suppress 

pPIF4:LUC activity in the presence of BRZ1. The indirect positive feedback of BZR1 on PIF4 

promoter activity involves several steps: PIF4 transcription, transcription of BR biosynthesis 

genes (Ibañez et al., 2018), BR biosynthesis, inhibition of BIN2 (He et al., 2002), de-

phosphorylation of BZR1 by PP2A (Tang et al., 2011), accumulation of the non-phosphorylated 

form of BZR1 in the nucleus and binding of BZR1 to the promoter of PIF4 and other target 

genes (He et al., 2005; Sun et al., 2010; Oh et al., 2012). In contrast the negative feedback of 

PIF4 on PIF4 promoter activity is more direct. Such positive and negative interactions on the 

same target may easily result in day-night cycles, as can be observed for PIF4 expression 

(Figure 4). Moreover, we provide evidence that PIF4 is part of the component that determines 

the phase of PIF4 expression as the day-night cycle in PIF4 expression show a late phase in the 

pif4-2 mutant and an early phase in the PIF4 overexpression line during the day, compared to 

the phase in WT (Figure 4).  
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PIF4 expression strongly induced under FR 

Our pPIF4:LUC reporter plants grown under either mixed LED, R, FR or B show that PIF4 

expression is a function of light color. Most remarkably, PIF4 gene expression is strongly 

induced under R and FR light (Figure 5 and Figure S1). The strong induction under R may not 

be effective for PIF4 protein activity, as at the same time phytochromes are light activated and 

this may cause high turnover of PIF4 protein. However, the high expression of PIF4 under FR 

can result in high levels of PIF4 protein (Costa Galvao et al., 2018), because under FR 

phytochromes are not effectively activated. Therefore, either PIF4 is not a suppressor of its 

own gene activity under FR, or FR activates also some of the genes encoding components like 

CRY2 that have been shown to interfere with PIF4 activity or DNA binding (Wang et al., 2002; 

Box et al., 2015; Ma et al., 2016; Gangappa and Kumar, 2017). FR light induced PIF4 expression 

drops quickly in the dark and future experiments need to show what happens to PIF4 

expression under continuous FR light.  

 

Lower expression of pPIF4:LUC in bzr1-1D explained? 

Even with the advanced insight that PIF4 is a suppressor of its own gene activity it is difficult 

to predict PIF4 gene activity in different mutant backgrounds. BZR1 is the positive factor for 

PIF4 transcription but BZR1 needs to be activated through BR signalling. Therefore, we 

expected that in the gain of function mutant bzr1-1D, with constitutively active BZR1, the PIF4 

gene activity would be constitutively higher compared to that in WT. However, our results 

show that the pPIF4:LUC reporter activity in a bzr1-1D mutant background is not higher but 

slightly lower compared to that in WT. It could be that the higher BZR1 activity in bzr1-1D is 

affecting expression of one of the multiple components that lead to destabilisation or 

sequestering of PIF4 protein, such as PHYs, CRYs, DELLAs HFR1, HY5 or COP1. Indeed there is 

evidence that BR signalling affects phytochrome PHYB level, as the BR signalling mutant bri1-

116 accumulates higher level of PHYB protein than wild type (Sun et al., 2010). Moreover, BR 

signalling negatively regulates the transcription of several key components of the light 

response pathways, including photoreceptors phytochrome B (PHYB), phototropin1, and the 

phytochrome-interacting proteins PIF3 and FHL and it is assumed that this is through 
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BZR1/BES1 acting as suppressor of these genes (Sun et al., 2010). This could imply that an 

enhanced activity of BZR1 in bzr1-1D, may result in lower PHYB gene transcription and thus in 

lower PHYB protein levels. Because interaction of PHYB with PIF4 prevents binding of PIF4 to 

target promoters (Park et al., 2012) and PHYB suppresses PIF4 protein stability (Huq and Quail, 

2002), lower PHYB protein levels in bzr1-1D could lead to higher PIF4 protein levels in bzr1-

1D. The increased binding of PIF4 to its own promoter would then explain the modest activity 

of pPIF4:LUC in a bzr1-1D mutant background.  

However, at the same time, enhanced BZR1 protein activity in bzr1-1D can result in a negative 

feedback on BR biosynthesis (Sun et al., 2010; Martínez et al., 2018). BR-signalling represses 

the kinase BIN2 activity on BZR1 and PIF4. The phosphorylation of both BES1/BZR1 and 

PIF4/PIF5 by BIN2 marks these transcription factors for proteasome degradation (He et al., 

2002; Bernardo-Garcia et al., 2014). Therefore, if higher BZR1 activity in bzr1-1D results in 

lower BR signalling, one could expect higher BIN2 kinase activity and reduced PIF4 protein 

stability in bzr1-1D compared to that in WT (Bernardo-Garcia et al., 2014). As PIF4 is a negative 

regulator of PIF4 gene expression, a putative reduced PIF4 activity in bzr1-1D would result in 

higher PIF4 transcription level. Thus, current insights into the regulation of PIF4 provide 

opposing predictions for the activity of PIF4 in bzr1-1D: higher nuclear PIF4 protein stability 

due to lower PHYB expression and lower nuclear PIF4 stability due to higher BIN2 activity. The 

question is which of these two effects is stronger? Results of the pPIF4:LUC reporter in bzr1-

1D suggest a higher PIF4 protein activity in bzr1-1D (stronger suppression of pPIF4:LUC 

activity).  

 

Lower expression of pPIF4:LUC in pif4-2 mutant explained? 

If PIF4 is a negative regulator of its own expression, the simple prediction is that PIF4 gene 

activity is higher in the pif4-2 mutant, while pPIF4:LUC shows lower activity in pif4-2 (Figure 

3). However, this may be explained if in the pif4-2 mutant background also activity of the 

positive factor BZR1 is affected. Indeed, PIF4 is a positive regulator for BR biosynthesis and 

signalling (Martínez et al., 2018). In pif4-2 there may thus be lower BZR1 activation and thus 

lower activation of the pPIF4:LUC reporter. In addition, it could be that PIF4 is involved in the 
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expression of one of the multiple components that lead to destabilisation of PIF4 protein or 

sequestering of PIF4 protein, such as PHYs, CRYs, DELLAs HFR1, HY5 or COP1. Indeed, in a pif4-

2 mutant the PHYB expression is reduced (Chapter 2.Figure 8). The lower PHYB transcription 

levels in 7-day old seedlings of pif4-2 could lead to more stable PIF4 protein, which is 

consistent with the observed higher suppression of pPIF4:LUC activity in pif4-2.  

 

Limited induction of pPIF4:LUC by PIF4 in transient expression assays 

Our transient expression assay with pPIF4:LUC and effector BZR1 shows only limited induction 

of LUC activity. Although qualitatively this is similar to the induction of PIF4 promoter activity 

by BZR1 in a protoplast assays of Col-0 mesophyll cells (Ibañez et al., 2018), the induction in 

the N.benthamiana leaf agro-infiltration assay (Figure 1) is much lower than the induction of 

PIF4 by BZR1 in the Arabidopsis protoplast assay (Ibañez et al., 2018). This may be caused by 

lower BR biosynthesis in agro-infiltrated leaves. Indeed, transcriptomic analysis of mRNA 

isolated from non-infiltrated N.benthamiana leaves and mRNA isolated from agro-infiltrated 

leaves show that in response to agro-infiltration most of the gene activity encoding enzymes 

that provide the precursors of brassinolide biosynthesis are significantly downregulated by 

agro-infiltration (Ting et al., 2015) (Figure S2). 

In conclusion 

We have shown that PIF4 protein itself provides a direct negative feedback of PIF4 gene 

transcription, to limit the indirect feed-forward regulation of PIF4 gene transcription by BZR1. 

However, with the pleiotropic effects of PIF4 and BZR1 on components that affect PIF4 protein 

activity it remains difficult to predict the dynamics of PIF4 gene activity under different 

conditions and in mutant backgrounds. The role of PIF4 in expression of PIF4 under FR light 

will need further investigation. The Luc reporter system would provide an ideal method to get 

dynamic and quantitative data in several mutant backgrounds, which could be an excellent 

base for a mathematical model that could help explain the result of positive and negative 

feedback loops. 
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Supplemental files 

Primers name Sequence Used for Ref 

PIF4-F agcaaatctagaatggaacaccaaggttggag Overexpression In this study 

PIF4-R agcaaagcggccgcctagtggtccaaacgagaacc Overexpression In this study 

BZR1-F agcaaatctagaatgacttcggatggagctacg Overexpression In this study 

BZR1-R agcaaagcggccgctcaaccacgagccttccc Overexpression In this study 

qPIF4-F actcagatgcagccgatgg qPCR for endogenic PIF4 In this study 

qPIF4-R acgtaatgaagttgcacgttt qPCR for endogenic PIF4 In this study 

qBZR1-F gggaatctatcgctaagcaat qPCR for BZR1 gene, 

mutant screening 

In this study 

qBZR1-R tctcttggaaggcagcagta qPCR for BZR1 gene, 

mutant screening 

In this study 

qPHYB-F cgttgggtgttgctcctagt qPCR for PHYB In this study 

qPHYB-R gataccccgcatcgcctaaa qPCR for PHYB In this study 

AT1G13320-F taacgtggccaaaatgatgc housekeeping (Ibañez et al., 2018) 

AT1G13320-R gttctccacaaccgcttggt housekeeping (Ibañez et al., 2018) 

pif4-2-LB acctcctcaagtcatggttaagcctaagcc Mutant screening In this study 

pif4-2-RB tccaaacgagaaccgtcggt Mutant screening In this study 

SAIL-LB2 tagcatctgaatttcataaccaatctcgatacac T-DNA screening In this study 

 

Table S1. List of primers were used in this study. 
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Figure S1. A relative pPIF4:LUC activity in seedlings under different light conditions. pPIF4:LUC reporter 

in WT, bzr1-1D, pif4-2 and PIF4 OE lines were stratified and germinated in growth cabinets under diurnal 

fluorescent WL (12L/12D). At 7 days after germination plants were sprayed with substrate luciferin (1 mM) and 

one day later placed in LUMINATOR for adjustment under diurnal mixed R+B+FR for one day. Next three days, 

the light changed to pure R, FR and B light respectively. LUC activity was imaged every 30 min. minimum number 

of seedlings for each genotype: n=18 
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Figure S2. A reduced activity of genes involved in BR biosynthesis in agroinfiltrated leaves (Ting et 

al., 2015). Green: genes down regulated more than 2-fold by agroinfiltration of vector expressing DsRED. Red: 

genes upregulated more than 2-fold by agroinfiltration with vector expressing DsRED.  
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Abstract 

Thermo-morphogenesis is characterised by warmth-induction of auxin biosynthesis genes, 

including YUCCA8, resulting in strong hypocotyl elongation. The induction of YUCCA8 gene 

expression is mediated by transcription factors PIF4 and BZR1 and it has been shown that 

increased activity of PIF4 under warmth requires Histone Deacetylase 9 (HDA9). The Mediator 

complex functions as a bridge between transcription factors bound to specific promoter 

sequences and the basal transcription machinery containing RNA polymerase II. In plants the 

Mediator complex consists of 34 subunits of which the Mediator 25 (MED25) acts as hub for 

the transcriptional regulation of abiotic and biotic stress responses. A mutant of MED25 (pft1-

2) shows reduced hypocotyl elongation and reduced expression of YUCCA8 under warmth, 

suggesting that MED25 affects PIF4 transcriptional activity at the YUCCA8 promoter. In a split 

luciferase assay we show that MED25 interacts with both PIF4, BZR1 and HDA9 in planta. 

Moreover, both PIF4 and HDA9 bind to the same polyQ domain of MED25. Genetic interaction 

studies indicate that pft1-2 and hda9-1 operate in the same pathway. In addition we 

demonstrate that MED25 enhances turnover of a HDA9-Luciferase fusion protein. Combined 

results uncover a central role for MED25 in thermo-morphogenesis induced elongation.  

Key words: Mediator complex, thermomorphogenesis, elongation 
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Introduction  

  Mediator of RNA polymerase II transcription (Mediator) is a conserved co-regulator of 

transcription conserved in yeast, metazoans and plants, consisting of a multi-subunit protein 

complex which comprises 25 subunits in budding yeast, 30 subunits in metazoans and 34 

subunits in plants (Soutourina, 2018). The Mediator complex functions as a bridge between 

gene-specific regulatory proteins and the transcription initiation complex (TIC) containing RNA 

Pol II (Kidd et al., 2011; Samanta and Thakur, 2015). Of the different protein subunits forming 

the mediator complex, MED25/PFT1 is specific for metazoans and plants, but is absent in yeast 

and algae. Plant MED25 was initially identified as a gene affecting phytochrome signalling and 

flowering time and was therefore named PHYTOCHROME AND FLOWERING TIME1 (PFT1) 

(Cerdan and Chory, 2003). MED25/PFT1 interacts with a specific subset of transcription 

factors, as was determined by yeast two hybrid assays, by BiFC or by a split luciferase assay 

(see Table-S1). In plants, MED25 has been shown to convey transcriptional information related 

to methyl jasmonate (MeJA) signalling (Kidd et al., 2010; Cevik et al., 2012), flowering (Inigo 

et al., 2012), stress responses (Elfving et al., 2011) and floral organ size (Xu and Li, 2011). The 

MED25/PFT1 mutant (pft1-2) show reduced hypocotyl elongation under both red and far-red 

light (Kidd et al., 2009; Klose et al., 2012) and pft1-2 young rosette plants are smaller than WT 

plants (Cerdan and Chory, 2003). In contrast, the pft1-2 mutant has larger floral organ size, 

which was attributed to prolonged cell proliferation and elongation in petals of pft1-2 (Xu and 

Li, 2011). A role of MED25/PFT1 in hypocotyl elongation response as function of light intensity 

was confirmed by the dominant mutation PFT1eid3 (Klose et al., 2012). It was shown that 

PFT1eid3 enhances light sensitivity downstream of phytochrome A (phyA) and modulates phyB 

function, resulting in expression of light regulated genes in darkness (Klose et al., 2012). 

MED25/PFT1 is also required for the sugar-hypersensitive hypocotyl elongation phenotype of 

an UDP-arabinose synthesis mutant (hsr8-1) (Seguela-Arnaud et al., 2015).  

Plant cell elongation responses are also strongly enhanced under high temperature 

(Gray et al., 1998; Quint et al., 2016). Auxin is an important hormone that mediates such 

thermo-morphogenesis responses (Gray et al., 1998; Delker et al., 2014; Bours et al., 2015; 

Ibañez et al., 2018) and it has been shown that MED25/PFT1 directly affects auxin signalling 

through interaction with Auxin Response Factors (ARFs) (Ito et al., 2016). Under low auxin 
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levels, the activity of auxin response factors like ARF7 and ARF19 is blocked by the repressor 

Aux/IAA14 due to binding of another Mediator component MED13 (Ito et al., 2016). MED13 

forms part of a CDK8 kinase domain of the Mediator complex. At low auxin, MED13 together 

with the co-repressor TOPLESS (TPL) inhibits the interaction between the ARF bound core 

Mediator complex and the transcription initiation complex (TIC) containing RNA Pol II. In high 

auxin, the Aux/IAA14 protein is targeted for degradation by the SCFtir1 complex this results in 

the dissociation of TPL and MED13 from the complex. Subsequently, ARF7 and ARF19 interact 

with MED25 to recruit TIC containing RNA Pol II (Ito et al., 2016). The altered hypocotyl 

elongation responses of pft1-2 mutant could therefore be caused by the altered auxin 

signaling through ARFs in pif1-2. However, the MED25 protein interacts with transcription 

factors acting in auxin, jasmonic acid, ABA and ethylene hormone signalling pathways (Kazan, 

2017). Therefore in the pft1-2 mutant, multiple hormone signalling pathways may be affected, 

all of which could influence hypocotyl elongation responses.  

 PIF4 and BZR1 are the central integrators in the transcriptional network regulating 

thermo-morphogenisis (Huq and Quail, 2002; Koini et al., 2009; Franklin et al., 2011; Kumar et 

al., 2012; Martínez et al., 2018). BZR1 was identified as a dominant regulator of PIF4 

expression (Ibañez et al., 2018) and PIF4 mediates temperature-induced hypocotyl elongation 

by stimulating auxin biosynthesis via direct binding to the promoters of auxin biosynthesis 

genes, including YUCCA8 (Oh et al., 2012; Sun et al., 2012) and the auxin/indole-3-acetic acid 

(IAA) genes IAA19 and IAA29 (Sun et al., 2013). The PIF4 induced expression of auxin 

biosynthesis genes results in increased auxin levels and auxin-signaling, which mediates the 

cell elongation response (Bours et al., 2015; Ibañez et al., 2018). In addition, the interaction 

between PIF4 and BZR1 regulates BR biosynthesis (Martínez et al., 2018). Upon enhanced PIF4 

activity through BZR1, BR synthesis is stimulated and the enhanced BR levels result in 

enhanced BR signalling, which in turn activates BZR1 in a feed forward loop (Ibañez et al., 

2018). This positive feedback regulation of PIF4 transcription is supposedly kept under control 

by multiple factors acting on PIF4 protein stability (Zhang et al., 2017), on PIF4 DNA binding 

activity (Park et al., 2012) or by competition for PIF4 binding sites in the promoters of target 

genes of PIF4 (Nawkar et al., 2017). The activity of PIF4 is strongly regulated by phytochrome 

signalling because photo-activated phytochrome B (phyB) induces the degradation of PIF4 and 

PIF5 protein (Huq and Quail, 2002; Leivar et al., 2008). The pft1-2 mutant shows a reduced 
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response under R and FR light, suggesting that MED25 may be involved in regulating PIF4 

activity. However, PIF4 tested negative for interaction with MED25 in a yeast two hybrid assay 

(Ou et al., 2011).  

Recently it was shown that thermo-morphogenesis requires histone deacetylation by 

Histone deacetylase 9 (HDA9) at the PIF4 target gene YUCCA8 (Tasset et al., 2018) (van der 

Woude et al., 2018 under review). Although histone deacetylation is typically associated with 

suppression of gene transcription, the activating role of HDA9 in PIF4 and downstream target 

gene activity under heat stress was linked to an effect on H2A.Z nucleosome dynamics in 

plants (van der Woude et al., 2018 under review). Indeed, heat stress has been shown to lead 

to the eviction of H2A.Z nucleosomes at thermo-responsive genes and this eviction improves 

chromatin accessibility for transcription factors and thus can lead to enhancement of gene 

expression (Kumar and Wigge, 2010; Cortijo et al., 2017). H2A.Z nucleosome dynamics may 

also be important for general response to external stimuli (Coleman-Derr and Zilberman, 

2012; Sura et al., 2017). HDA9 is recruited to the promoter of PIF4 target genes by the 

POWERDRESS (PWR), which can bind to HDA9 (Tasset et al., 2018). In the model in which the 

eviction of H2A.Z at the YUCCA8 promoter is linked to the activity of HDA9 under warmth it is 

not clear how HDA9 is recruited to the YUCCA8 locus. 

 Here we investigated the role of MED25 in cell elongation responses under ambient 

temperature and warmth using hypocotyl elongation assays under ambient and high 

temperature conditions for WT, pft1-2 and MED25 overexpression plants. We demonstrate 

that MED25 can interact with both PIF4 and HDA9, but not with BZR1 in planta in a split-

luciferase assay. Both PIF4 and HDA9 interact with the same C-terminal polyQ–domain of 

MED25, suggesting that the interaction with MED25 by PIF4 and HDA9 may be sequential. 

Moreover, we demonstrate that the interaction between MED25 and HDA9 results in 

destabilisation of HDA9. We speculate on a model in which MED25 recruits HDA9 and PWR at 

the YUCCA8 promoter, resulting in local histone deacetylation. Thus MED25 may be the 

missing factor that recruits HDA9 and PWR to targets of PIF4 under heat stress. The de-

acetylation activity of HDA9 on histones leads to eviction of H2A.Z, while the interaction 

between MED25 and HDA9 leads to HDA9 turnover. Subsequently this allows for binding of 

PIF4 to MED25, which then aids in the stimulation of gene expression under heat stress.  
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Materials and Methods 

Plant material and growth conditions. 

Col-0 wild type genetic backgrounds were used for all experiments. Genotypes used in this 

paper are listed in Table 1. The different T-DNA insertion mutants were obtained from 

the Nottingham Arabidopsis Stock Centre (www.arabidopsis.info) and homozygous mutant 

genotypes were confirmed by PCR using gene specific and T-DNA specific primers (Table S2). 

The double/triple and other hybrid lines were obtained by crossing in this study. Seeds were 

first incubated for 3-4 days at 4ᵒC in darkness. After cold treatment the water-imbibed seeds 

were sown onto rock wool. Arabidopsis plants were then grown in at 12L22ᵒC /12D12ᵒC on 

rock-wool on half strength Hoagland-nutrient solution.  

Genotypes Description Source  

pft1-2 Endogenous MED25 KO SALK_129555C 

35S:HDA9-LUCWT 35S:HDA9-LUC reporter in Col-0 Under review 

35S:HDA9-LUC pft1-2 35S:HDA9-LUC wt crossed to pft1-2 mutant this study 

35S:HDA9-LUCMED25OE this study this study 

Table-1. Mutants and reporter lines used in this study. 

Plasmid Constructs. The full length of PIF4, BZR1 and MED25 CDS was amplified from Col-0 

cDNA library using a gene specific primer set including 5’overhang XbaI and 3’overhang NotI 

restriction sites (Table-S2). The expected PCR products were digested and ligated with T4 DNA 

ligase (#M1801, Promega, Madison,USA) into pIV1A2.1 entry vector (www.impactvector.com) 

in the middle of CaMV35S promoter and RbcS1 terminator. For the gene promoter with LUC 

reporter constructs, the length of promoter sequence for YUCCA8 predicted according to 

reference (Sun et al., 2012) and the fragment amplified from gDNA by using 5’overhang AscI 

and 3’overhang XbaI restriction site primers (Table-S2). The PCR products first digested with 

restriction enzymes and ligated into after removed CaMV35S promoter of pIV1A2.1 entry 

vector in front of LUC cDNA. The entry vectors were then cloned into binary vector named 

pKGW-Red Seed (www.gateway.psb.ugent.be/vector/) by LR reaction. Thereafter, pKGW-Red 

Seed/ expression and reporter vectors (Table-2) were transformed into A.tumefaciens AGL-0 

stain which were used in transient expression assays in N.benthamiana or were used for 

http://www.arabidopsis.info/
http://www.impactvector.com/
http://www.gateway.psb.ugent.be/vector/
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Arabidopsis (Col-0) transformation using the floral dip method as described (Zhang et al., 

2006). Transgenic T0 seeds were identified by DsRed pigmentation of the seed coat or by LUC 

reporter activity. Seeds were harvested from T1 plants and homozygous plants were selected 

based on Mendelian- genetic segregation obtained the DsRed florescence at seed stage. For 

each representative homozygous line was selected from at least 10 primary transformants for 

further experiments.  

Table-2. Expression constructs used in transient expression assays. 

Plasmid name marker/ori/selection Source 

35S:cLuc KanR/pCAMBIA (Chen et al., 2008) 

35S:nLuc KanR/pCAMBIA (Chen et al., 2008) 

35S:MED25-nLuc KanR/pCAMBIA this study 

35S:MED25vWF-A-nLuc KanR/pCAMBIA this study 

35S:MED25 MD-nLuc KanR/pCAMBIA this study 

35S:MED25ACID-nLuc KanR/pCAMBIA this study 

35S:MED25GD-nLuc KanR/pCAMBIA this study 

35S:cLuc-PIF4 KanR/pCAMBIA this study 

35S:PIF4-nLuc KanR/pCAMBIA this study 

35S:cLuc-HDA9 KanR/pCAMBIA this study 

 

Gene Expression Analysis by Quantitative Real-Time RT-PCR (qPCR). 

Total RNA were isolated from selected lines using homogenised young leaf tissues with 

InviTrap® Spin Plant RNA Kit and treated with Ambion® TURBO DNA-free Kit according to the 

manufacturer’s instructions. cDNA synthesis was performed using the iScrip II mix reagent that 

included 10mM oligo (dT) primer according to the manufacturer’s instruction (Bio-Rad, 

CA,USA). qPCR was carried out using iQ SYBR Green Super mix(Bio-Rad, CA,USA) on the CFX 

Connect Real Time System machine (Bio-Rad, CA, USA). The IPP2 or Actin genes were used as 

a reference gene for normalization of relative expression levels. Gene expression level is 

calculated from the average level detected in three biological replicate samples.  

Imaging and quantification of in planta Luciferase activity in Arabidopsis  
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For the imaging of LUC-reporter activity in stable transformed Arabidopsis plants, the plants 

were pre-sprayed with 1 mM D-luciferin (Duchefa Biochemie, Haarlem, NL) 24 hour prior to 

imaging to inactivate accumulated luciferase protein. Spraying with D-luciferin was repeated 

one hour before imaging. Imaging was with LUMINATOR consisting of an air-cooled (-80°C) 

CCD Pixis 1024B camera system (Princeton Instruments, Massachusetts, USA) equipped with 

a 35mm, 1:1.4 Nikkon SLR camera lens (Nikon, Tokyo, Japan) fitted with a DT Green filter ring 

(Image Optics Components Ltd, Orsay, France) to block chlorophyll fluorescence. Exposure 

time for the LUC activity measurements is as indicated. In the diurnal LUC activity experiment, 

a spraying of D-luciferin was repeated once a day. For each reporter line the average LUC 

activity is given from at least 8 individual plants. Relative luminescence from LUC activity was 

quantified in Image J (Bethesda, Maryland, USA), using background subtraction. 

Transient expression assays using agro-infiltration in N.benthamiana leaves. 

To test the YUCCA8 transcription activity in N.benthamiana, the leaves were agro-infiltrated 

with the pYUCCA8:LUC-reporter and effector constructs 35S:PIF4, with or without the 

35S:MED25 expression construct. Relative gene dosage of the different expression constructs 

was kept an equal by complementing the agro-infiltration with an agrobacterium containing 

an empty vector (EV) construct when necessary. Agro-infiltration also included a P19 

expression construct to suppress gene silencing (Saxena et al., 2011) and Renilla luciferase 

construct as the control reporter. At least six leaves were infiltrated with per construct 

combination. After four days, the co-infiltrated leaves were harvested for further analysis. 

From each leaf, three leaf disks (1cm size) were taken for technical replicates. These leaf disk 

in 2ml tube is frozen with liquid nitrogen and subsequently grounded using metal bead in the 

shaking machine . 200 mL of passive lysis buffer was added to each sample, vortexed and 

frozen in liquid nitrogen. After 10-15 minutes on ice, samples were vortexed and spinned 

down on 14800 rpm for 3 minutes. The supernatant was pipetted on a 96-wells plate for 

measurement in the Glomax machine. The subsequent measuring was done according to the 

specifications of the kit. Through co-infiltration with a vector containing the Renilla gene, it 

was possible to quantify the amount of protein inside leaf material labelled with luciferase. By 

dividing the value of Renilla by the value of luciferase to obtain a normalised value for 
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luciferase. As all samples had 3 technical replicates, the average was taken from these 

samples.  

Split luciferase assays in N.benthamiana leaves 

The spit luciferase assays demonstrating the interaction between candidate proteins were 

performed by transient expression in N.benthamiana. Both pDEST-cLuc and pDEST-nLuc 

vectors we used as a backbone to modification (Chen et al., 2008). The Gateway cassette was 

amplified from pDEST-15 and cloned into nLUC and cLUC conventional vectors in Plant 

Developmental Biology, WUR and provided us. Modified destination vector was also included 

stop codon. Therefore, without stop codon of the coding sequence of MED25 and PIF4 were 

amplified from cDNA library used the listed primer sets (Table S1). The amplified PCR products 

were first cloned into the pCRTM8 TOPO entry vector (Invitrogen, Carlsbad, USA) by TOPO 

reaction and generated pENTR-MED25, pENTR-PIF4 and pENTR-HDA9. The positive insert of 

pENTR-MED25 were transferred into the destination vector pDEST-NLuc to generate MED25-

nLUC. Other constructs pENTR-PIF4, and pENTR-HDA9 were transferred into pDEST-cLUC to 

form cLUC-PIF4, and cLUC-HDA9, respectively, through one way Gateway LR recombination 

reactions (Table-2). Addition, PIF4-nLUC construct was also created with same way above to 

examining PIF4 and HDA9 interaction. As a negative control, the 35S:cLuc (pCAMBIA-cLuc) and 

35S:nLuc (pCAMBIA-nLuc) expression constructs were used as described by Chen(Chen et al., 

2008). Expression constructs were transformed to Agrobacterium tumefaciens (AGL-0) and 

grown at 27ᵒC for 48 h and regrown 24 h in LB medium containing 10 μg ml−1 Rifampicin and 

50 μg ml−1 kanamycin. Agrobacterium tumefaciens cells were re-suspended in agro-infiltration 

buffer including 10 mM MES (2-morpholino ethanesulfonic acid, Duchefa Biochemie, 

Haarlem,NL), 10 mM MgCl, and 100 mM acetosyringone (4’-hydroxy-3;,5;-

dimethoxyacetophenone, Sigma Aldrich, US) and incubated at room temperature for 3 h with 

low level shaking. For the assay an equal volume of two Agrobacterium stains (OD600=0.3) 

were co-infiltrated to 5 weeks old N.benthamiana leaves. At least 6 N.benthamiana leaves 

were used to each combination experiment. After 72 h post-agro infiltration the leaves were 

harvested. For the imaging of LUC activity the leaves were sprayed with 1 mM D-luciferin at 

24 hr and 1 hr before imaging. LUC activity was captured under LUMINATOR by seven minutes 
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exposure. The relative LUC activity in the images was quantified by using Image J (Bethesda, 

Maryland, USA).  

Seedling hypocotyl elongation assays  

The seeds were surface sterilised using the gas-phase seed sterilisation protocol (Clough and 

Bent, 1998). After sowing the seeds on the 1% MS–agar plates, seeds were stratified at 4ᵒC 

for 3 days in the dark. For germination, plates were transferred to growth chambers with 

specified light conditions at temperature of either 22ᵒC or 27ᵒC. After one week, images were 

taken of the germinated seedlings and hypocotyl lengths were quantified from the images 

using Image J software. 

Statistical analysis. 

Comparison of means was analysed for statistical significance with a 2-sample t-test (P 

<0.001). 

 

Results 

MED25 affects hypocotyl elongation 

To investigate the role of MED25 in elongation responses in Arabidopsis, we measured 

hypocotyl elongation response of seedlings at ambient temperature (22ᵒC ) and during 

warmth (27ᵒC ) for WT and pft1-2. For this seeds were imbibed on MS-agar plates and 

stratified for 4 days in the dark at 4ᵒC after which seeds were germinated under diurnal 

12WL/12D for 7 days at 22ᵒC or 27ᵒC . Although pft1-2 hypocotyl elongation was not 

significantly different from WT at 22ᵒC, the pft1-2 mutant had a significantly shorter hypocotyl 

at 27ᵒC (Figure 1), indicating an impaired thermo-morphogenesis response in pft1-2. These 

results identify a role for MED25 in warmth induced-hypocotyl elongation in Arabidopsis. The 

MED25 protein is known to interact with multiple bHLH transcription factors (Ou et al., 2011). 

Both BZR1 and PIF4 are a key transcription factors in thermo-morphogenesis and we therefore 

investigated whether the effect of MED25 on thermo-morphogenic response is caused by an 

effect of MED25 on PIF4 or BZR1 transcriptional activity.  
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Figure 1. MED25 is required for full hypocotyl elongation at 27ᵒC. WT and pft1-2 plants were grown for 

7 days on MS-agar plate at 22ᵒC and 27ᵒC in 12L/12D after which hypocotyl length was quantified. Data 

represents the mean ± SE (n = 15 seedlings). Different letters indicate significant differences (P < 0.05). 

 

Uncoupling of PIF4 expression with hypocotyl elongation in pft1-2 mutant. 

The transcription factor PIF4 acts upstream in the signal transduction pathway towards 

elongation. Since absence of MED25 reduces the warmth-induced elongation response, we 

tested whether MED25 influences the expression of PIF4 under warmth. For this purpose 

mRNA was isolated from WT (Col-0) and pft1-2 mutant plants grown for seven days at either 

22ᵒC or 27 ᵒC . The sampling for RNA was at 6PM which is around the peak expression of PIF4 

for plants grown under 12L/12D. Analysis of the PIF4 mRNA levels confirm the previously 

reported upregulation of PIF4 gene expression from 22ᵒC to 27ᵒC (Figure 2A). Surprisingly, 

PIF4 expression is upregulated at 22ᵒC in pft1-2 compared to WT at 22ᵒC, even though 

hypocotyl length of pft1-2 is not significantly different from WT at 22ᵒC. Moreover, the 

expression of PIF4 was very strongly upregulated in pft1-2 under warmth, while the hypocotyl 

elongation of pft1-2 is smaller than in WT under warmth. Combined, the results indicate that 

MED25 affects PIF4 expression, but that the elevated expression level of PIF4 in pft1-2 is 

uncoupled from strong elongation responses.  
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Figure 2. MED25 affects the expression of PIF4 (A) and YUCCA8 (B). Expression level of PIF4 and YUCCA8 

was quantified by qPCR on mRNA isolated from WT and pft1-2 seedlings grown at 22ᵒC or 27ᵒC.  

In WT the hypocotyl elongation in response of warmth is the result of upregulation of PIF4 

and BZR1 activity and subsequent upregulation of PIF4 target genes, such as the auxin 

biosynthesis gene YUCCA8 (Oh et al., 2012; Sun et al., 2012). Because the high expression of 

PIF4 in pft1-2 does not correlate with a strong elongation response we tested the expression 

of the PIF4 target gene YUCCA8 and of BZR1 to determine the cause of reduced hypocotyl 

elongation in pft1-2 under warmth. Surprisingly, results show that the expression of YUCCA8 

is reduced in pft1-2 compared to that in WT, both at 22ᵒC and at 27ᵒC. The expression of BZR1 

was not much affected in pft1-2, both at 22ᵒC and 27ᵒC (Figure 2B). The results indicate that 

PIF4 protein levels are uncoupled from the activity at the target gene expression YUCCA8 and 

suggests that MED25 is required for normal PIF4 protein activity. We therefore next tested 

whether PIF4 can interact with MED25.  

MED25 protein binding to PIF4 and BZR1 in in planta split luciferase assays 

In a previous screen using yeast two hybrid assays, PIF4 and BZR1 were not identified as 

targets for MED25 (Ou et al., 2011). However, it could be that either PIF4, BZR1 or the MED25 

protein require plant specific modifications for an interaction between these transcription 

factors and MED25. Therefore the putative interaction between PIF4/BZR1 and MED25 was 

tested using an in planta split-luciferase binding assay (Chen et al., 2008). A split luciferase 

binding assay has been used before for MED25 to test the interaction between MED25 and 

TCP and COI1 (An et al., 2017; Liu et al., 2017). For this expression constructs were made 

encoding MED25 fused to the C-terminal end (cLUC) or N-terminal end (nLUC) of split 

Luciferase (MED25-cLUC and MED25-nLUC) and the expression constructs encoding PIF4-cLUC 
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and BZR1-cLUC. The fusion proteins with split luciferase were expressed in N.benthamiana 

leaves by co-agro-infiltration of different combinations of the nLUC and cLUC constructs. 

Results show that the expression of the combination of MED25-nLUC and PIF4-cLUC in leaves 

resulted in a reconstitution of Luciferase activity, indicating an effective interaction between 

MED25 and PIF4 (Figure 3). Similarly, the expression of the combination of MED25-nLUC and 

BZR1-cLUC resulted in reconstituted luciferases activity, indicating that MED25 also can 

interact with BZR1 (Figure 3).  

Having established that MED25 can bind to PIF4 and BZR1, we next tested to which 

domain of MED25 these two proteins bind. The MED25 protein contains multiple domains, 

each with specific functions (Figure 4C). The amino terminus MED25 has a conserved von 

Willebrand Factor Type A (vWF-A) domain. This domain mediates the interaction with the 

Mediator complex via binding the subunit MED16 (Yang et al., 2014). Transcription factors 

such as AP2/ERF, MYCs and suppressors such as JAZ proteins interact with the ACID (Activator 

Interacting Domain) domain of MED25 (see Table S1). At the C-terminus MED25 has a 

conserved glutamine rich (polyQ) tract named GD domain and it has been speculated that this 

domain is involved in transcriptional activation (Cerdan and Chory, 2003; Backstrom et al., 

2007; Elfving et al., 2011). Moreover, the length of this polyQ rich region influences the effect 

of MED25 on flowering (Rival et al., 2014). The different domains of MED25 were cloned by 

adding an ATG start codon separately and fused to the nLUC sequence in expression 

constructs (vWF-A-nLUC; MD-nLUC; ACID-nLUC and GD-nLUC). These were tested in transient 

expression assays by co-agroinfiltration with either PIF4-cLUC or BZR1-cLUC. Results show that 

BZR1 cannot interact with the isolated domains of MED25 (Figure 3E), while PIF interacts with 

the GD domain of MED25 and weakly with the Acid domain (Figure 3D). This makes the 

interaction of PIF4 with MED25 different from other transcription factors that interact with 

MED25 (Figure S1).  
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Figure 3. MED25 interacts with PIF4 and BZR1. (A) N.benthamiana leaves were infiltrated with different 

combinations of cLUC. nLUC, cLUC-PIF4 and MED25-nLUC expression constructs. Only the combination of cLUC-

PIF4+MED25-nLUC resulted in reconstitution of LUC activity. ). (B) N.benthamiana leaves were infiltrated with 

different combinations of cLUC. nLUC, cLUC-BZR1 and MED25-nLUC expression constructs. Only the combination 

of cLUC-BZR1+MED25-nLUC resulted in reconstitution of LUC activity. (C) the four sub domains of MED25 protein 

used in interaction studies. (D) N.benthamiana leaves were infiltrated with different combinations of MED25-

vWF-A-nLUC, MED25-MD-nLUC, MED25-GD-nLUC, MED25-ACID-nLUC and cLUC-PIF4. The combination of cLUC-

PIF4+MED25-GD-nLUC and cLUC-PIF4+ MED25-ACID-nLUC resulted in reconstitution of LUC activity. (E) 

N.benthamiana leaves were infiltrated with different combinations of MED25-vWF-A-nLUC, MED25-MD-nLUC, 

MED25-GD-nLUC, MED25-ACID-nLUC and cLUC-BZR1. None of the combination resulted in reconstitution of LUC 

activity. LUC activity images were taken three days post-agroinfiltration. 
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MED25 protein binds to HDA9 in in planta split luciferase assays 

Recently, a role for HDA9 in the heat induced hypocotyl elongation has been described, 

indicating that histone modifications are also part of the thermo-morphogenesis response 

(Tasset et al., 2018). It has been shown that HDA9 is recruited to the promoter of YUCCA8 and 

that de-acetylation by HDA9 at the YUCCA8 promoter is required for exchange of H2A.Z 

histones at the YUCCA8 promoter at high ambient temperature (van der Woude et al., 2018, 

under review). However, it is at present not clear how HDA9 is recruited to the YUCCA8 

promoter. Here we tested whether MED25 can recruit HDA9 to the YUCCA8 promoter, based 

on an interaction between MED25 and HDA9. For this we used again the split luciferase assay 

in N. benthamiana. Expression constructs encoding PIF4-nLUC vs cLUC-HDA9, MED25-nLUC vs 

cLUC-HDA9 were made. Co-expression of MED25-nLUC + cLUC-HDA9 resulted in strong 

luminescence in N.benthamiana leaves, while cells co-expressing a combination of PIF4-

nLUC+cLUC-HDA9 fusion proteins did not result in reconstituted LUC activity (Figure 4A). This 

confirms that MED25 and HDA9 can interact in planta, but that HDA9 does not interact with 

PIF4. MED25 domain mapping with split luciferase assays revealed that the MED25–HDA9 

interaction is with the GD and ACID domains of MED25 (Figure 4B). This is different from the 

interaction of MED25 with another histone modifying enzyme, HAC1, which binds to the 

combined MD+ACID domain of MED25 (An et al., 2017). However, the binding of HDA9 to GD 

and ACID domain is similar to the interaction of PIF4 with MED25 (Figure 3D).  
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Figure 4. MED25 interacts with HDA9. (A) N.benthamiana leaves were infiltrated the combination PIF4-nLUC 

+cLUC-HDA9 or MED25-nLUC+ cLUC-HDA9. Only the combination of MED25-nLUC+ cLUC-HDA9 resulted in 

reconstitution of LUC activity. (B) N.benthamiana leaves were infiltrated with different combinations of MED25-

vWF-A-nLUC, MED25-MD-nLUC, MED25-GD-nLUC, MED25-ACID-nLUC and cLUC-HDA9. The combination of 

cLUC-HDA9 with MED25-GD-nLUC. MED25-ACID-nLUC and MED25-MD-nLUC resulted in reconstitution of LUC 

activity. LUC activity images were taken three days post-agroinfiltration. 

 

MED25 affects HDA9 protein stability 

It has been shown that the HDA9 protein is stabilised during heat stress (van der Woude, 

2018). Since we have established that MED25 can bind to HDA9 we investigated whether this 

interaction affects the HDA9 protein stability. The HDA9 protein stability is measured using 

plants transformed to express an HDA9-LUC fusion protein (35S:HDA9-LUC) (van der Woude 

et al., 2018 under review). A representative homozygous WT reporter line expressing 

35S:HDA9-LUC was crossed to pft1-2 and a line expressing a 35S:MED25 expression construct 

(MED25OE). From the F2 progeny plants homozygous for the 35S:HDA9-LUC construct and the 

pft1-2 mutation or homozygous for 35S:HDA9-LUC and MED25OE were selected for further 

investigation. The HDA9-LUC activity was measured in seven day old seedling in LUMINATOR 

under diurnal 12L/12S mixed LED (R+FR+B) at 22ᵒC (Figure 5). Images of LUC activity were 
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captured every 30 min. by a seven min. exposure. The relative LUC activity per seedling is 

quantified by image analysis using Image J. Results show that in the pft1-2 background the 

average activity of HDA9-LUC is higher than in WT, especially during the dark period. This 

suggests that MED25 contributes to a destabilisation of HDA9-LUC protein, especially in the 

dark. The destabilising effect of MED25 on HDA9-LUC is confirmed by the activity of HDA9-

LUC in the MED25OE background, which is barely above background, both during day and 

night (Figure 5A). Next, we determined the effect of MED25 on HDA9-LUC activity at 27ᵒC . 

The seven-day old reporter seedlings were grown at 22ᵒC in LUMINATOR and after 2 hours at 

22ᵒC the temperature was raised to 27ᵒC. LUC activity was imaged every 30 minutes. Results 

show an immediate effect on LUC activity, indicating an immediate increase of HDA9 protein 

stability (Figure 5B). We note that the initial rate of increase in LUC activity is higher in the 

absence of MED25 (in pft1-2) than in WT. Curiously, the LUC activity increases near the end of 

the day and increases even further during the night to reach a maximum at three hours after 

onset darkness at 27ᵒC.  

 

Figure 6. HDA9-LUC stability is affected by MED25. Six day old seedlings of Arabidopsis WT, pft1-2 or 

MED25OE plants expressing the same 35S:HDA9-LUC reporter were sprayed with substrate luciferin (1 mM) and 

placed in LUMINATOR under 12L/12D at 22oC. LUC activity was quantified every 30 min (10 min image capturing). 

(A) result after one day adaptation at 22oC. (B) temperature was raised from 22oC to 27oC at ZT=3hr. At least 18 

seedlings tested for each reporter lines. Error bars represent mean ±SE.  

In contrast, the LUC activity is not increased at all at 27ᵒC in the MED25OE background, 

indicating that the effect of MED25 is a dominant over the stabilising effect of heat on HDA9. 

Because MED25 negatively affects HDA9 protein stability we checked whether increased 
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HDA9 stability coincides with a decrease in MED25 gene expression. For this we retrieved the 

diurnal expression patterns of HDA9 and MED25 as function of temperature and light from 

Diurnal database (Mockler et al., 2007). These data show that expression of MED25 is 

increasing up to 2-fold during high temperature (Figure S2A), while expression of MED25 

slightly decreases in the light at high temperature (Figure S2B). Thus, the stabilisation of HDA9 

at high temperature in WT cannot be explained by strong downregulation of MED25 at high 

temperature. Rather, the stabilisation of HDA9 at high temperature is despite upregulation of 

MED25 under high temperature. Combined these findings identify MED25 as a destabiliser for 

HDA9 protein.  

 

Discussion 

MED25 has a central role in thermo-morphogenesis responses 

Here, we have uncovered a central role for MED25 in thermo-morphogenesis. This role of 

MED25 in thermo-morphogenesis is demonstrated by (1) a reduced hypocotyl elongation of 

the MED25 mutant pft1-2 at warmth (Figure 1), (2) the interaction of MED25 with the key 

transcription factors of the thermo-morphogenesis response, BZR1 and PIF4 (Figure 3). (3) the 

reduced activity of PIF4 at the PIF4-target YUCCA8 (Sun et al., 2012; Ibañez et al., 2018) under 

warmth in pft1-2 (Figure 2). (4) the regulation of YUCCA8 during warmth requires the activity 

of the histone deacetylase enzyme HDA9 (van der Woude et al., 2018 under review) and we 

demonstrate that MED25 can interact with HDA9 (Figure 4). (5) and the fact that MED25 is 

involved in stability of the HDA9 protein (Figure 5).  

The central role of MED25 in the regulation of YUCCA8 is explained by the fact that 

MED25 potentially brings together three key players in the regulation of gene expression 

related to warmth induced elongation (e.g. YUCCA8): the transcription factors PIF4 and BZR1 

and the histone deacetylase activity encoded by HDA9. The interaction of PIF4, BZR1 and 

HDA9 with the YUCCA8 promoter has been demonstrated by CHIP analysis (Franklin et al., 

2011; Sun et al., 2012; Tasset et al., 2018), however, the YUCCA8 promoter was also identified 

as target in CHIP and transcriptome experiments with ARF6, PIF1, PIF3 and PIF5 (Oh et al., 
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2014; Kim et al., 2016), suggesting that overall regulation of YUCCA8 may be far more complex. 

Future analysis using CHIP RNA seq with a tagged MED25 may confirm that MED25 can also 

be found at the YUCCA8 promoter.  

 

Relevance of MED25 interaction with PIF4 and BZR1 is gene dependent 

Our results show that MED25 can interact with BZR1, PIF4 (Figure 3) and HDA9 (Figure 4). In 

the context of regulation of YUCCA8 expression the interaction of MED25 with PIF4 and HDA9 

seem to be relevant, as CHIP experiments have demonstrated that PIF4 and HDA9 are 

associated with the YUCCA8 locus (Tasset et al., 2018). However, CHIP experiments with 

tagged BZR1 have not identified YUCCA8 as target, so the interaction between MED25 and 

BZR1 may not be relevant for the regulation of YUCCA8. In contrast, the PIF3, PIF4 and PIF5 

genes all were identified as target for BZR1 and PIF4 in CHIP experiments (Lee et al., 2007; 

Hornitschek et al., 2012; Oh et al., 2012; Oh et al., 2014; Pfeiffer et al., 2014), suggesting that 

the interaction of BZR1 with MED25 and the interaction of PIF4 with MED25 may be relevant 

for the expression of these PIF genes. Of the phytochrome genes only PHYB was identified as 

target for both BZR1 and PIF4 in CHIP experiments, while PHYD was only identified as target 

for PIF4 (Table 3).  

 

BZR1 (Oh et al., 2012) 
(5 days)  

PIF4 (Pfeiffer et al., 2014) 
(2 days) 

PIF4 (Oh et al., 2012) 
 (14 days) 

BZR1 x   
HY5  x x 
PIF1    
PIF3 x  x 
PIF4 x  x 
PIF5 x  x 

MED25 x  x 
YUCCA8 x x x 
PHYA   x 
PHYB x x x 
PHYC    
PHYD   x 
PHYE    

Table 3. CHIP results with BZR1 and PIF4 for selected target genes. Data obtained from published CHIP 

experiment with BZR1 (Oh et al., 2012), with PIF4 (Oh et al., 2012; Pfeiffer et al., 2014). 
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MED25 interacts with Histone acetylase (HAC1) and Histone deacetylase (HDA9) 

In the context of Jasmonic Acid (JA) signalling it has been described that MED25 binds to both 

COI1 (the receptor for the active form of JA) and to the transcription factor MYC2. MED25 thus 

links the Mediator complex and COI1 to MYC2 target genes (An et al., 2017). Moreover, in the 

context of JA signaling, it has been shown that MED25 can bind to HISTONE 

ACETYLTRANSFERASE1 (HAC1) and that HAC1 interacts with the combined ACID+MD domain 

of MED25 (An et al., 2017), similar as was shown here for the interaction of PIF4 with MED25 

(Figure 3). This interaction plays an important role in JA signaling by selective acetylation of 

histones at MYC2 target promoters allowing transcription of MYC2 target genes.  

 

Sequential binding of HDA9 and PIF4 at the YUCCA8 locus? 

We found that MED25 can interact with HDA9 through the GD and ACID domain of MED25 

(Figure 4B). These are the same domains to which can bind PIF4 (Figure 3D) and raises the 

obvious question whether these proteins can bind simultaneously to MED25. This needs to be 

tested in the future in competition assays with PIF4 and HDA9 with MED25. However, the 

interaction between MED25 and HDA9 leads to destabilisation of HDA9. Therefore it is also 

possible that binding of HDA9 to MED25 is followed by binding of PIF4 to MED25, after 

degradation of HDA9.  

 

MED25 recruits different histone modifying activities  

The full Mediator complex is known to interact with different chromatin modifying protein 

complexes, such as SWI/SNF and histone deacetylases and acetylases (Sharma and Fondell, 

2002; Malik and Roeder, 2010). The paralog of MED25 in human can interact with histone 

acetylases (Black et al., 2006). Moreover, in mammalian cells Mediator can counteract 

Polycomb dependent repression of gene activity though the MED25 subunit, which blocks the 

binding of Polycomb Repressor Complex2 (PRC2) to specific target genes (Englert et al., 2015). 

Assuming a conserved function between human MED25 and plant MED25, this suggests that 

MED25 in plants may also interact with chromatin modifying complexes. Indeed, in the 
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context of JA signalling, MED25 has been shown to interact with COI1 and histone acetylase 

HAC1 (An et al., 2017). Interestingly, it also has been shown that COI1 interacts with the 

histone deacetylase HDA6 (Devoto et al., 2002), indicating that regulation of genes targeted 

by COI1 signaling may involve both histone acetylase and histone deacetylase activities, 

perhaps acting in a sequential way. Recently, it is revealed HDA9 and HDA6 genetically 

interacts to control of auxin signalling genes for elongation of silique valve cells (Yuan et al., 

2018). 

In the context of auxin signalling MED25 can recruit the CDK8 kinase module (CKM) to change 

the module composition of Mediator. CKM contains HEN3, the transcription corepressor 

LEUNIG, but also histone deacetylase HDA19 (Gonzalez et al., 2007). It was not tested whether 

MED25 interacts directly with HDA19 in this context.  

In the context of the PIF4/BZR1 target gene YUCCA8 we now have shown that MED25 plays a 

role in the recruitment of HDA9. Previously it was shown that the activity HDA9 at the YUCCA8 

locus is required for a normal gene induction under warmth (van der Woude et al., 2018 under 

review). However, this activity of HDA9 automatically implies that at some point also histone 

acetylase activities may be recruited to the YUCCA8 locus. This raises the more general 

question whether MED25 has dual functions in recruiting both histone acetylases and histone 

deacetylases for the transcription factors to which MED25 can bind? (e.g. in the context of 

ARF targets, PIF4/BZR1 targets and MYC2 targets)?  

 

A putative model for the role of MED25 in regulating YUCCA8 expression.  

Our results and those by van der Woude (2018) combined now provide the basis for an 

updated model for transcription at the YUCCA8 locus induced by warmth: at normal 

temperature the YUC8 promoter is mostly closed due to packaging in H2A.Z type histones. 

Both PIF4 and BZR1 may be bound infrequent to the YUCCA8 promoter and potential 

recruitment of HDA9 to the YUC8 promoter by binding to PIF4 is inefficient due to high 

turnover of HDA9 at ambient temperature. Upon warmth also HDA9 protein is stabilised and 

is now more efficiently recruited to the YUC8 promoter by binding to MED25, possibly 

replacing bound PIF4. At the YUC8 promoter HDA9 causes the deacetylation of histones near 
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the transcription start, which leads to eviction of repressing H2A.Z histones (van der Woude 

et al., 2018 under review). Subsequently, the interaction between MED25 and HDA9 results 

in a destruction of HDA9 protein, as demonstrated by the increased HDA9 stability in pft1-2 

and decreased stability of HDA9 in MED24OE. The removal of HDA9 from the GD-domain of 

MED25 allows subsequently interaction with PIF4 protein, which is now more abundant due 

to increased transcriptional activity of BZR1 (Ibañez et al., 2018). Future research will need to 

determine the role of histone acetylases in the regulation of YUCCA8 and whether MED25 

plays a role in this as well.  
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Supplementary Files  

 

Figure S1. Interaction of different proteins with sub-domains of MED25.  
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Figure S2. MED25 and HDA9 diurnal expression profiles under LLHC and LDHH. The expression pattern 

of HDA9 and MED25 genes was retrieved from Diurnal database from Mockler Laboratory database 

(http://www.diurnal.cgrb.oregonstate.edu). The normalized data were profiled under (A) diurnal temperature 

cycles LLHC (31ᵒC, day, 20ᵒC, night) or (B) diurnal light cycles at high temperature (31ᵒC; HH) 
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 # Gene  ID acc. TF family Responses Methods Ref 

1 DREB2A AT5G05410 AP2; ERF drought  
Y2H (Elfving et al., 2011; 

Cevik et al., 2012) 

2 RAP2.2 AT3G14230 AP2; ERF ethylene  Y2H (Ou et al., 2011) 

3 ERF95 AT3G23220 AP2; ERF ethylene  Y2H (Ou et al., 2011) 

4 TDR1 AT3G23230 AP2; ERF ethylene  
Y2H (Ou et al., 2011; 

Cevik et al., 2012) 

5 ERF1 AT3G23240 AP2; ERF ethylene  
Y2H (Ou et al., 2011; 

Cevik et al., 2012) 

6  - AT4G18450 AP2; ERF ethylene  Y2H (Ou et al., 2011) 

7 ERF109 AT4G34410 AP2; ERF ethylene  Y2H (Ou et al., 2011) 

8 ORA59 AT1G06160 AP2; ERF ethylene  Y2H (Cevik et al., 2012) 

9 ERF15 AT2G31230 AP2; ERF ethylene  Y2H (Cevik et al., 2012) 

10 WIN1 AT1G15360 AP2; ERF ethylene - (Zhu et al., 2014) 

11 EIN3 AT3G20770 EIN3; EIL ethylene  
Y2H, BiFC, 
Split LUC (Yang et al., 2014) 

12 EIL1 AT2G27050 EIN3; EIL ethylene  

Y2H,BiFC, 

Split LUC (Yang et al., 2014) 

13 BZS1 AT4G39070 DBB 
BR 
signalling 

Y2H (Ou et al., 2011; 
Cevik et al., 2012) 

14 WRKY10 AT1G55600 WRKY - Y2H (Cevik et al., 2012) 

15 MYB104 AT2G26950 MYB -  Y2H (Cevik et al., 2012) 

16 ZFHD1 AT1G69600 ZF-HD 

Salt, 
drought, 
ABA 

Y2H 

(Elfving et al., 2011) 

17 POSF21 AT2G31370 bZIP Salt stress Y2H (Cevik et al., 2012) 

18 PHL1  AT5G29000 Myb/SANT P starvation 
Y2H (Elfving et al., 2011; 

Ou et al., 2011) 

19 MYC2 AT1G32640 bHLH JA signaling Y2H (Cevik et al., 2012) 

20 MYC3 AT5G46760 bHLH JA signaling IP (Zhang et al., 2015) 

21 MYC4 AT4G17880 bHLH JA signaling Y2H (Cevik et al., 2012) 

22 ABI5 AT2G36270 bZIP 
ABA 
signaling 

BiFC 
(Chen et al., 2012) 

23 ARF7 AT5G20730 B3; ARF 
Auxin 
signaling 

Y2H 
(Ito et al., 2016) 
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24 ARF19 AT1G19220 B3; ARF 
Auxin 
signaling 

Y2H 
(Ito et al., 2016) 

25 TCP4 AT3G15030 TCP 
Flowering 
time 

Split LUC 
(Liu et al., 2017) 

26 FBH1 AT1G35460 bHLH 
Flowering 
time 

Split LUC 
(Liu et al., 2017) 

27 PIF4 AT2G43010 bHLH Growth Split LUC In study 

29 BZR1 AT1G75080 BES1 
BR 
signalling 

Split LUC 
In study 

 

Table-S1. List of Transcription factors that physically interact with the MED25. 
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Primer name Sequence Used for Ref. 

pft1-2-F TGGAACTGGTCCAACAGAAC Mutant screening this study 

pft1-2-R TGCATTGGCTTTCTTCCATAC Mutant screening this study 

Salk LBb1.3 ATTTTGCCGATTTCGGAAC Mutant screening this study 

PIF4 CDS F ATGGAACACCAAGGTTGGAG LCI construct this study 

PIF4 CDS R GTGGTCCAAACGAGAACCGT LCI construct this study 

HDA9 CDS F ATGCGTTCCAAGGACAAAAT LCI construct this study 

HDA9 CDS R TGACGCATCGTTATCGTTGT LCI construct this study 

MED25 CDS F ATGTCGTCGGAGGTGAAACA LCI construct this study 

MED25 CDS R TCCCATGAAGCCAGCTCC LCI construct this study 

MED25vWF-A-nLUC_F ATGTCGTCGGAGGTGAAACA LCI construct this study 

MED25vWF-A-nLUC_R CTCCGAGATCAGGACAAGATAGA LCI construct this study 

MED25MD-nLUC_F ATGAATTTTGTGGAGGCATGTGC LCI construct this study 

MED25MD-nLUC_R CTGCATAGCCCCCGATG LCI construct this study 

MED25ACID-nLUC_F ATGACTTCACAATCCAAATATGTGAA LCI construct this study 

MED25ACID-nLUC_R ATTTGGAATTTGTGGTTTAAACA LCI construct this study 

MED25GD-nLUC_F ATGCAGCAACAGCAGCAGCAACAACAA LCI construct this study 

MED25GD-nLUC_R TCCCATGAAGCCAGCTCC LCI construct this study 

qPIF4-F ACTCAGATGCAGCCGATGG qPCR this study 

qPIF4-R ACGTAATGAAGTTGCACGTTT qPCR this study 

qYUCCA8-F TTTTCTCCCGTAGCCACCAC qPCR this study 

qYUCCA8-R CGATGAGACCAGTGGCTTGT qPCR this study 

 

Table S2. The list of primers were used in this work. 
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Abstract  

Background  

Recently, putative pre-miRNAs locations have been identified in the introns of plant genes, 

raising the question whether such genes can show a dual functionality by having both correct 

maturation of the host gene pre-mRNA and maturation of the miRNAs from the intron. Here, 

we demonstrated that such dual functionality is indeed possible, using as host gene the firefly 

luciferase gene with intron (ffgLUC), and different artificial intronic miRNAs (aimiRNA) placed 

within the intron of ffgLUC. 

Results  

The miRNAs were based on the structure of the natural miR319a. Luciferase (LUC) activity in 

planta was used to evaluate a correct splicing of the ffgLUC mRNA. Different target sequences 

were inserted into the aimiRNA to monitor efficiency of silencing of different target mRNAs. 

After adjusting the insertion cloning strategy, the ffgLUCaimiR-319a gene showed dual 

functionality with correct splicing of ffgLUC and efficient silencing of TEOSINTE 

BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) transcription factor genes 

targeted in-trans by aimiR-319a or targeting the transgene ffLUC in-cis by an aimiR-LUC. 

Silencing of endogenous target genes by aimiRNA or amiRNA is efficient both in transient 

assays and stable transformants. A behave as strong phenotype the PHYTOCHROME B (PHYB) 

gene was also targeted by ffgLUCaimiR-PHYB. The lack of silencing of the PHYB target was most 

likely due to an insensitive target site within the PHYB mRNA which can potentially form a 

double stranded stem structure. 

Conclusion 

The combination of an overexpression construct with an artificial intronic microRNA allows 

for a simultaneous dual function in plants. The concept therefore adds new options to 

engineering of plant traits that require multiple gene manipulations.  

Keywords: Intron, imiRNA, aimiRNA, miRNA, amiRNA, luciferase 
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Background 

Important traits of crop plants have successfully been manipulated by selection of mutants 

(Peng et al., 1999), by ectopic expression of a transgene (Kasuga et al., 1999; Karaba et al., 

2007; Chen et al., 2016), or by silencing of a single gene (Schwab et al., 2006; Park et al., 2009). 

However, because of the complexity of gene-networks in plants, the effect of many single-

gene disturbances is limited due to buffering capacity of such networks (Prelich, 2012; Watson 

et al., 2013). Moreover, plant trait manipulation may potentially benefit from synergistic 

interaction between independent transgene manipulations. Stacking of independent 

transgenes is time-consuming, especially in crops that are difficult targets for transformation. 

Engineering in recalcitrant crops may therefore benefit from techniques that can target 

multiple genes by a single transformation event. 

MicroRNAs (miRNA) are short (19-22nt) non coding RNAs that can silence the expression of 

specific target genes and natural miRNAs form an integral part of developmental decisions in 

plants (Reinhart et al., 2002; Bartel, 2004). From all plant miRNAs listed in the microRNA 

database ( http://www.mirbase.org/ ) only a small number have been functionally 

characterised. Moreover, while most miRNA are processed from regular non-coding miRNA-

genes, recently, protein-coding genes with introns containing potential miRNA sequences 

have been identified both in mammals and plants. For instance, the Arabidopsis thaliana 

genome contains 37 protein coding genes with intronic miRNAs (imiRNAs) and the rice 

genome contains 181 protein coding genes with imiRNAs (Yang et al., 2012). At present, there 

is no experimental evidence that plant genes containing imiRNAs show simultaneous dual 

functionality: a correct intron splicing of the host gene pre-mRNA to form a mRNA encoding a 

functional protein and processing of the miRNA from the intron for effective silencing of the 

target gene. For instance, in some cases the miRNA encoded in the intron is only produced as 

alternatively spliced transcript (Yan et al., 2012). In such cases, correct mRNA splicing and gene 

expression and miRNA production from the intron may be mutually exclusive. Functionality of 

intron-derived miRNAs has been demonstrated in mammals, C. elegans, zebra fish, and 

chicken (Lin et al., 2006). It has been demonstrated that an imiRNA can be correctly processed 

from the intron sequence, without interfering with the accuracy of the splicing process of the 

host gene (Parsi et al., 2012; Kashyap et al., 2013). The intron-derived miRNAs require type-II 

http://www.mirbase.org/
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RNA polymerases (Pol-II) and spliceosome components for their biogenesis. In animals, it has 

been shown that regular miRNA processing is dependent on Drosha-mediated cleavage, but 

initial processing of some imiRNAs are Drosha-independent. Instead, initial imiRNA processing 

is coupled to the intron splicing reaction (Ruby et al., 2007). How imiRNAs are processed in 

plants is not fully known at present. Introns and active 5' splice sites (5'ss) have been shown 

to stimulate the accumulation of miRNAs encoded within the first exons of intron-containing 

MIR genes and Knop et al found that the 5’-splice site is crucial for the regulation of intronic 

miRNA-402 biogenesis from the first intron of host gene At1g77230 (Knop et al., 2017). 

Moreover, the gene encoding dicer protein DCL1 contains imiR838 in intron 14 and the gene 

can produce both functional DCL1 mRNA and mature miR838. In this instance the imiRNA 

biogenesis and DCL1 mRNA biogenesis are mutually exclusive but in a population both gene 

products may be produced (Ren and Yu, 2012).  

Here, we tested whether a protein coding transgene can be effectively expressed in plants, 

while also producing a functional miRNA. The feasibility and requirements for such dual gene 

functionality were determined using three gene construct (ffgLUCaimiR-319a, ffgLUCaimiR-LUC and 

ffgLUCaimiR-PHYB), designed to report on both protein and miRNA function. For overexpression, 

the firefly Luciferase gene with a single intron (ffgLUC) was used, which allows for easy 

monitoring of gene activity and splicing accuracy. As template for the miRNA sequence in the 

intron, the sequence of the natural ath-miR319a was used (Nag et al., 2009). For alternative 

targets, the 21-bp sequence targeting TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 

(TCP) transcription factor in miR319a was replaced by a 21 nucleotide sequence targeting ffgLUC 

mRNA (Liang et al., 2012) or 21-bp targeting the Arabidopsis thaliana PHYB mRNA 

(AT2G18790). Initially, insertion of the miRNA into the LUC intron resulted in a loss of LUC 

activity, indicating incorrect splicing of the intron from the LUC pre-mRNA. However, after 

adjusting the miRNA position within the intron, the transgene showed normal LUC activity 

when expressed in plants, indicating accurate splicing of the LUC pre-mRNA. Moreover, the 

aimiRNA targeting TCPs or ffgLUC both were able to suppress target gene expression, 

indicating effective processing of the aimiRNA from the ffgLUC intron. The concept of a 

transgene containing an aimiRNA could be useful for simultaneous manipulation of several 

gene activities, which could be an important tool for plant biotechnology. 
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Methods 

Plant materials and growth condition. Arabidopsis thaliana (Col-0 background, N1092) was 

used for stable transformation. The Arabidopsis phyB-9 T-DNA insertion mutant (#CS6217) 

was obtained from the NASC stock collection. Plants were grown on rock-wool in a growth 

chamber at 12hL/12hD at 22oC on half strength Hoagland-nutrient solution.  

Cloning of expression constructs. Artificial microRNAs constructs were created using ath-

miR319a backbone as described by Liang (Liang et al., 2012). The primer sequences used are 

listed in Table S2. The artificial miRNA nucleotide sequences 5’-TAACTGTAAACCGAAAGGCTG-

3’ for the AthPHYB (AT2G18790) were selected using WMD3-Web MicroRNA Designer 

(http://wmd3.weigelworld.org/cgi-bin/webapp.cgi). The IDT RNAi design tools (Integrated 

DNA Technologies) was used to design the amiRNA nucleotide sequence targeting the 

luciferase mRNA (5’-TAGAACTGCCTGCGTCAGATT-3’). Pre-microRNA 319a was amplified 

directly from A. thaliana genomic DNA using primers (CAAACACACGCTCGGACGCAT-F and 

CATGGCGATGCCTTAAATAAAG-R). The aimiRNA sequences were amplified from pre-

miRNA319a using specific primers which added EcoR V and EcoR I restriction sites for cloning 

into the intron of ffgLUC (GATATCAGAGAGCTTCCTTGAGTCCATTCAC-F and 

GAATTCAGGGAGCTCCCTTCAGTCCAATC-R). For amplification of the aimiR-LUC the TCP target 

sequence in the primers was replaced by the selected LUC target sequence 

(GATATCTATAACTGCCTGCCTCAGATAAGGTCGTGATATGATTCA-F and 

GAATTCTAGAACTGCCTGCGTCAGATTAAAGAGAATCAATGATCCA-R). For the amplification of 

the aimiR-PHYB the TCP target sequence in the primers was replaced by the selected PHYB 

target sequence (GATATCTAGCTGTAAACCGTAAGGCTCAGGTCGTGATATGATTCA-F and 

GAATTCTAACTGTAAACCGAAAGGCTGAAAGAGAATCAATGATCCA-R). To generate of ffgLUC 

del
aimiR319a construct the first exon plus 10 nucleotides from 5’ site of intron was amplified by 

using primer which introduce Nco I at start codon and EcoRV site in intron 

(CCATGGAAGACGCCAAAAAC-F and GATATCAGAAACTTACGTAATGTTCACCTCG-R). The second 

exon plus 61 base pair from 3’ site of the intron was amplified using primers which introduce 

an EcoR I site at the end of the intron sequence and an Not I site after the stop codon 

(GAATTCAACTTTTCTAATATATGACCAAAATTTGTT-F and 

GCGGCCGCTTACAATTTGGACTTTCCGCCCTT-R). To generate of ffgLUCimiR319a ffgLUCaimiR-LUC and 

http://wmd3.weigelworld.org/cgi-bin/webapp.cgi
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ffgLUCaimiR-PHYB constructs, the first exon plus 33 nucleotides from the 5’ end of the intron was 

amplified by using primer pairs introducing an Nco I at the ATG start codon and an EcoR V site 

at the end of the intron sequence (CCATGGAAGACGCCAAAAAC-F and 

GATATCTACTAATTAATGATAATTATT-R). The second exon of ffgLUC was amplified from 135 

base pairs from 3’ splice site to after the stop codon, introducing an EcoR I site at in the intron 

and Not I site after the stop codon, using the primer pairs 

(GAATTCGTAATATAATATTTCAAATATTTTTTTCAAAATAA-F and 

GCGGCCGCTTACAATTTGGACTTTCCGCCCTT-R). The resulting PCR products were digested with 

EcoR I and EcoR V and the amiRNAs product was ligated into the ffgLUC intron. The ffgLUC 

was amplified with primers introducing an Nco I site at the ATG and Not I site after the stop 

codon (CCATGGAAGACGCCAAAAAC-F and CGGCCGCTTACAATTTGGACTTTCCGCCCTT-R). The 

ffgLUC, ffgLUCimiR319a, ffgLUCaimiR-LUC or ffgLUCaimiR-PHYB constructs were subsequently ligated 

into the Nco I/Not I sites of pIVA2.1 entry vector which contained double 35S promoter and 

RubescoS terminator. To generate the binary vector, all pIVA2.1-based vectors were cloned 

into the pKGW_RedSeed vector (Ali et al., 2012) through gateway based site-specific 

recombination technology with one way LR reaction. The pKGW RedSeed vector contains a 

DsRed marker gene that is expressed in the seed coat which allows for selection of T0 

transformed seeds.  

For confirmation of LUC or PHYB silencing in trans the artificial microRNAs 2x35S::amiR-LUC 

and 2x35S::amiR-PHYB constructs were generated using primer sets which replace the TCP 

target sequence in miR-319a with target sequences for LUC or PHYB respectively (LUC: 

CCATGGTATAACTGCCTGCCTCAGATAAGGTCGTGATATGATTCA-F and 

GCGGCCGCTAGAACTGCCTGCGTCAGATTAAAGAGAATCAATGATCCA-R or PHYB: 

CCATGGTAGCTGTAAACCGTAAGGCTCAGGTCGTGATATGATTCA-F and 

GCGGCCGCTAACTGTAAACCGAAAGGCTGAAAGAGAATCAATGATCCA-R). The PCR products 

were cloned into pIVA2.1 entry vector which was subsequently used for recombination into 

the pKGW_RedSeed vector. All destination vectors were subsequently transformed to 

Agrobacterium tumefaciens (AGL0). 

Plant transformation and selection transformants  
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Agrobacterium tumefaciens was used for plant transformation using the floral dip method as 

described (Zhang et al., 2006). Transgenic T0 seeds were identified by DsRed pigmentation of 

the seed coat. For germination seeds were plated on 3% water agar plates and cold-treated 

for 5 days at 4o C after which plates were incubated in growth chambers in the light at room 

temperature. After three days, germinated seedlings were transferred to soil or rock wool for 

plant growth.  

Agrobacterium-mediated transient expression in N.benthamiana leaves  

Agro-infiltration in N. benthamiana using agrobacterium strains carrying the different 

expression vectors (or empty vector) was done as described by Wang (Wang et al., 2016). 

LUC activity measurement  

For LUC activity measurements in stable transformed Arabidopsis thaliana plants were 

sprayed with 1 mM D-luciferin (Duchefa, Haarlem, NL) 24 hour and one hour before imaging 

with an (-80°C) air-cooled CCD Pixis 1024B camera system (Princeton Instruments, 

Massachusetts, USA) equipped with a 35mm, 1:1.4 Nikkon SLR camera lens (Nikon, Tokyo, 

Japan) fitted with a DT Green filter ring (Image Optics Components Ltd, Orsay, France) to block 

chlorophyll fluorescence. Exposure time is as indicated.  

For transient assays, N.benthamiana leaves were harvested 4 days post agro-infiltration. 

Leaves were sprayed with 1 mM D-luciferin at 24 hr and 1 hr before imaging (5 minutes 

exposure time). Relative luminescence from LUC activity was analysed in Image J (Bethesda, 

Maryland, USA), using background subtraction. For each treatment LUC activity in leaves from 

6-8 independent plants was quantified.  

Hypocotyl length measurement. For hypocotyl length measurement, seeds were surface 

sterilized and imbibed on 0.25% water agar plates at 4°C in the dark, after which plates were 

transferred to a Red LED light box (50 uMol) at 22oC. Seedlings were flattened at 5 days after 

transfer, and hypocotyl length was determined from photograph in Image J (Bethesda, 

Maryland, USA). At least 20 seedlings were scored from each genotype.  
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Quantitative RT-PCR. For RNA analysis, T3 generation plants were grown for four weeks. The 

RNA was extracted from rosette leaves from WT (Col-0), ffgLUCdel
aimiR-319a, ffgLUCaimiR-319a or 

ffgLUCaimiR-PHYB transformants using InviTrap Spin Plant RNA mini Kit (Berlin, Germany), 

following manufacturer’s instructions. Purified total RNAs were subjected to TURBO DNA-

free™ DNase (Thermo Fisher Scientific Inc., Waltham, Massachusetts) treatment to avoid with 

contaminated genomic DNA. For reverse transcription the iScrip II mix reagent was used that 

included 10mM oligo (dT) primer according to the manufacturer’s instruction (Bio-Rad, 

CA,USA). The primers listed in Table S2 were used for the real time qPCR. Reaction were 

carried out with RNA isolated from pooled samples from three individual plants, with triple 

biological replicates using SYBR Green PCR Master Mix (Bio-Rad, CA,USA) on the CFX Connect 

Real Time System machine (Bio-Rad, CA, USA). For Arabidopsis the A. thaliana ACTIN1 was 

used as reference. RNA analysis from transient assays in N. benthamiana were carried out on 

RNA isolated from three pooled agro-infiltrated leaves, in triple biological replicates, using 

N.benthamiana UBI3 as reference genes. The Ct method (2-ΔΔCt) was used to analysis the 

differences in mRNA values (http://www.bio-rad.com/). All expression constructs used in the 

transient assays contain a 35S::DsRed marker gene and quantification of the DsRED gene 

expression in the transient assays was used to confirm similar transformation frequencies in 

the different agro-infiltration treatments.  

Small RNA extraction and stem-loop RT-PCR assays 

Detection of specific small RNAs was by the step-loop PCR method as described by Varkonyi-

Gasic (Varkonyi-Gasic et al., 2007). Briefly, leaf material was collected from ffgLUC (as control), 

ffgLUCdel
aimiR-319a, ffgLUCaimiR-319a, and ffgLUCaimiR-PHYB plants and immediately ground in liquid 

nitrogen with a mortar and pestle. Approximately 100 mg ground leaf tissue was used to small 

RNA extraction. The extraction of small RNAs were performed by using Prima microRNA 

Isolation Kit (Lot#SLBL6958V, Sigma Aldrich, USA) according to the manufacturer’s protocol. 

The small RNA purity and concentration was measured by NanoDrop spectrophotometer 

(Thermo Scientific, USA).  

The specific RT primers were used for miR319a and amiR-PHYB in stem-loop RT reaction. 

Reverse transcription reaction were performed according to Varkonyi-Gasic et al (Varkonyi-

http://www.bio-rad.com/
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Gasic et al., 2007). Forward primers for mature miR319a or amiR-PHYB and universal reverse 

primer (see Table S2) were used in RT-PCR. The PCR amplification products analysed by gel-

electrophoresis on a 4% agarose gel in 1xTAE buffer.  

 Statistical analyses. Comparison of means was analysed for statistical significance with a 2-

sample t-test (P <0.001). 

Results 

ffgLUC gene with intron-deletion miR-319a (ffgLUCdel
aimiR-319a) shows only single 

functionality: impaired LUC mRNA splicing but efficient silencing of TCP targets. 

To determine whether a functional microRNA can be efficiently generated from an intron of a 

transgene, without affecting accuracy of intron splicing, both accuracy and efficiency of 

transgene splicing and efficiency of silencing by the aimiRNA need to be monitored. To 

monitor transgene splicing the firefly luciferase (ffgLUC) reporter gene with an intron was used 

(Luke Mankin et al., 1997) (see Fig. 1 ). To study the efficiency of target gene silencing, the 

precursor of the native miRNA319a, which targets several members of the Arabidopsis TCP 

transcription factor family, was used (Palatnik et al., 2007). When the artificial intron-miRNA, 

aimiR-319a, is correctly processed, it should be active and elicit a leaf growth phenotype 

similar to that induced by 2x35S::miR-319a (Liang et al., 2012). 
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Figure 1. Structure of aimiRNA expression constructs. 1: The Firefly Luciferase gene with intron 

2x35S:ffgLUC. 2: aimiRNA gene with miR319a in ffgLUC intron with small deletion: 2x35S:ffgLUCdel
aimiR-319a. 3: 

aimiRNA gene with miR319a in ffgLUC intron without deletion: 2x35S:ffgLUCaimiR-319a. 4: aimiRNA gene targeting 

AthPHYB: 2x35S:ffgLUCaimiR-PHYB. 5: aimiRNA gene targeting ffLUC: 2x35S:ffgLUCaimiR-LUC. “a” indicates the intron 

branch point site, “gu” indicates the 5’-splice site and “ag” indicates the 3’-splice site. Exchange of 21 bp target 

sequence in miR319a for LUC or PHYB target sequences is indicated with green lines. 
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The initial cloning procedure for insertion of the miR-319a precursor sequence into the intron 

of ffgLUC resulted in a 37 base pair deletion in the ffgLUC intron (for sequence see Fig. S1). 

This gene is named ffgLUCdel
aimiR-319a (see Fig. 1-2). In ffgLUCdel

aimiR-319a the intron branch point 

and both 5’ and 3’ intron border sequences remained intact (see Fig. S1). The ffgLUCdel
aimiR-319a 

was cloned into a binary expression vector under control of the enhanced CaMV 2x35S 

promoter and a red seed coat transformation marker gene (Ali et al., 2012). The ffgLUCdel
aimiR-

319a expression construct was introduced into Agrobacterium tumefaciens and activity of the 

constructs was tested both by transient expression in N.benthamiana leaves and by stable 

transformation of A.thaliana. In the transient expression assay in N. benthamiana, LUC activity 

of ffgLUCdel
aimiR-319a was compared to that of a ffgLUC at 4 days post-agro infiltration. Results 

show a high LUC activity in leaves expressing ffgLUC, but only low LUC activity for leaves 

expressing ffgLUCdel
aimiR-319a (Fig. 2A). This indicates that intron splicing accuracy from 

ffgLUCdel
aimiR-319a is impaired compared to that of ffgLUC. The transient expression assays in N. 

benthamiana are not suitable to assess if aimiR-319a elicits a leaf phenotype. Therefore, we 

tested whether endogenous N. benthamiana TCP4 (NbTCP4) gene expression was affected by 

ffgLUCdel
aimiR-319a as the AthTCP target sequence of aimiR-319a shows substantial overlap with 

sequences in NbTCP4. Results show that NbTCP4 expression level was reduced in leaves 

expressing ffgLUCdel
aimiR-319a compared to the control leaves expressing ffgLUC (Fig. 2A).  

Transformants of Arabidopsis thaliana with the ffgLUCdel
aimiR-319a or ffgLUC expression 

constructs were identified in T0 seeds by expression of the red seed coat marker present in 

the binary vector (Table S1). From the red ffgLUCdel
aimiR-319a T0 seeds 19 independent 

transformants were grown. All these plants showed a leaf growth phenotype (data not 

showed) as described for plants expressing 2x35S::miR319a (Liang et al., 2012), indicating that 

the miR319a is efficiently processed from aimiR-319a in stable transformed plants. Indeed, 

expression analysis of the miR319a target genes AthTCP2, AthTCP3, AthTCP4 indicated that 

their expression was reduced by ~90% in the ffgLUCdel
aimiR-319a plants (Fig. 2B).  
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Figure 2. Single activity of ffgLUCdel
aimiR-319a in transient assays and stable transformed plants.  

A). Left: LUC activity of ffgLUC and ffgLUCdel
aimiR-319a at four days post-agro-infiltration in Nicotiana benthamiana 

transient assay. Significant differences between samples (***) is based on standard error (student’s t-test, 

P<0.01). Right: RT-PCR analysis of NbTCP4 expression in transient assay with ffgLUC or ffgLUCdel
aimiR-319a. 

Quantification of the DsRED gene expression was used to confirm similar transformation efficiencies in the agro-

infiltration with ffgLUC and ffgLUCdel
aimiR-319a (see Fig. S3). 

B). Left: Representative stable transformed Arabidopsis rosette plant and leaf expressing ff-gLUC or ffgLUCdel
aimiR-

319a. Right: (reference gene AthActin1, expression of TCP2,3 and 4 each normalized to that in one WT plant). 

Significant differences between samples (***) is based on standard error (student’s t-test, P<0.01).  
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C). LUC activity in representative stable transformant Arabidopsis expressing ff-gLUC or ffgLUCdel
aimiR-319a. Graph: 

quantified LUC expression of eight independent transformants expressing either ff-gLUC or ffgLUCdel
aimiR-319a .  

D). Top: PCR forward and reverse primer positions in ffgLUCdel
aimiR-319a. Bottom: PCR products on RNA isolated 

from ffgLUCdel
aimiR-319a plants. At each band position the structure of the mRNA sequence is shown (see Fig. S2). 

However, the LUC activity in plants expressing ffgLUCdel
aimiR-319a is low compared to control 

plants (expressing ffgLUC) of the same age (Fig. 2C). Both the reduced LUC activity of 

ffgLUCdel
aimiR-319a in transient assay and stable transformants suggest an incorrect maturation 

of the luciferase pre-mRNA derived from the ffgLUCdel
aimiR-319a. Indeed, PCR analysis of the 

luciferase mRNA across the intron splice site showed that there were multiple aberrant 

products and only very low levels of correctly spiced luciferase mRNA derived from 

ffgLUCdel
aimiR-319a (Fig. 2D). Presumably, the dual action at the intron in luciferase pre-mRNA by 

both an intron-splicing protein-complex and an miRNA processing protein-complex leads to 

spatial interference, which in this case especially affects correct maturation of the pre-mRNA. 

Sequence analysis of the aberrant PCR products showed that both aberrant 3’- and 5’ splice 

site selection occurred, while the major PCR product was derived from unspliced mRNA (Fig. 

2D and Fig. S2). To solve the putative spatial interference during processing of ffgLUCdel
aimiR-

319a mRNA maturation, we next adapted the cloning strategy for miRNA insertion into the 

intron.  

 

ffgLUCaimiR-319a displays dual functionality: correct LUC mRNA splicing and TCP silencing. 

The miRNA insertion cloning strategy was adapted by direct insertion of the aimiRNA into the 

ffgLUC intron, without deletion of intron sequence, resulting in the expression construct 

ffgLUCaimiR-319a (Fig. 1 and Fig. S1). The ffgLUCaimiR-319a expression construct was introduced into 

Agrobacterium tumefaciens and was again tested both by transient expression in N. 

benthamiana and by stable transformation of Arabidopsis. In the transient expression assays, 

the activity of ffgLUCaimiR-319a was compared with that of ffgLUC without intronic miR319a (Fig. 

3A). This resulted in a similar LUC activity in leaf tissue expressing either ffgLUCaimiR-319a or 

ffgLUC, suggesting an efficient and accurate splicing of the intron from ffgLUCaimiR-319a mRNA 

(Fig. 3A). To test the functionality of aimiR-319a in targeting TCP genes in N. benthamiana, 
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NbTCP4 mRNA level was checked by RT-PCR in control treatments and leaves expressing 

ffgLUCmaimiR-319a. NbTCP4 expression was reduced by 60% in leaves infiltrated with 

ffgLUCaimiRNA319a, suggesting that a functional miRNA319a can be produced from aimiR-319a 

(Fig. 3A). 

 

Figure 3. Dual activity of ffgLUCaimiR-319a in transient assays (A) and stable transformed plants (B and C). 

A). Left: LUC activity of ffgLUC and ffgLUCaimiR-319a at four days post-agro-infiltration in Nicotiana benthamiana 

transient assay (n=five leaves per treatment). Right: RT-PCR analysis of NbTCP4 expression in transient assay with 

ffgLUC or ffgLUCdel
aimiR-319a. Quantification of the DsRED gene expression was used to confirm similar 

transformation efficiencies in the agro-infiltration with ffgLUC and ffgLUCaimiR-319a (see Fig. S3). 
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B). Left: Representative stable transformed Arabidopsis thaliana rosette plant and leaf expressing ff-gLUC or 

ffgLUCaimiR-319a Right: average relative expression level of TCP2/3/4 genes in five WT and ffgLUCdel
aimiR-319a plants 

(reference gene AthActin1, expression of TCP2,3 and 4 each normalized to that in one WT plant). Significant 

differences between samples (***) is based on standard error (student’s t-test, P<0.01).  

C). Left: LUC activity in representative stable transformant Arabidopsis thaliana expressing ff-gLUC or ffgLUCaimiR-

319a. Right: quantified LUC in expression of eight independent transformants expressing either ff-gLUC or 

ffgLUCaimiR-319a. 

From the stable transformation of Arabidopsis, T0 seeds expressing the red seed coat marker 

were selected, from which 19 independent T1 transformants were grown (Table S1). Out of 

these 19 plants, two plants did not survive, while 17 plants produced T1 seeds. Each of these 

17 T1 plants showed the phenotype associated with constitutively overexpressed native 

miR319a (Liang et al., 2012; Alvarez et al., 2016) (Fig. 3B). This indicates that an miR319a was 

efficiently processed from imiR-319a located in the intron of ffgLUCaimiR-319a in stably 

transformed plants, leading to efficient silencing of TCP genes. This is also confirmed by qPCR 

analysis of RNA isolated from a representative ffgLUCaimiR-319a transformant, which shows 

>90% reduction in TCP2, TCP3 and TCP4 mRNA levels compared to plants expressing 

conventional ffgLUC (Fig. 3B). Nevertheless, LUC activity in the same ffgLUCaimiR-319a 

transformant is similar compared to the ffgLUC control (Fig. 3C). These results indicate that 

the luciferase pre-mRNA is correctly spliced and simultaneously aimiR-319a provides silencing 

of TCPs in transformed plants. 

 

aimiR-LUC silences ffgLUC in-cis in stable transformants, but not in transient assays. 

An aimiRNA was made targeting the luciferase mRNA itself (aimiR-LUC). The aimiR-LUC is 

based on the sequence and structure of the native miR319a precursor, but the 21 base-pair 

sequences targeting TCPs are replaced by 21 base-pairs targeting luciferase mRNA (Fig. 1 and 

Fig. S1). In cells expressing ffgLUCaimiR-LUC, aimiR-LUC targets expression of the LUC transgene 

from which it is derived (silencing in-cis). Both mature aimiR-LUC and LUC mRNA are produced 

from the same pre-mRNA and silencing of LUC activity provides information on the relative 

efficiency of the two maturation processes (mRNA vs miRNA). In the transient expression 
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assays, LUC activity in N. benthamiana leaves expressing ffgLUCaimiR-LUC showed no significant 

reduction compared with leaves expressing ffgLUC (Fig. 4A). This indicates correct splicing of 

the luciferase pre-mRNA, but no effective silencing by aimiR-LUC in-cis. To compare the 

silencing in-cis with silencing in-trans in the transient assay, an ffcLUC (LUC cDNA) expression 

construct was co-infiltrated with a 2x35S::amiR-LUC expression construct. This showed that 

also 2x35S::amiR-LUC is not capable of silencing transiently expressed LUC (Fig. 4A). 

Combined, these results indicate that efficient maturation of luciferase mRNA from 

ffgLUCaimiR-LUC occurs upon transient expression but that silencing by aimiR-LUC or amiR-LUC 

is not effective under these conditions. 

The ffgLUC and ffgLUCaimiR-LUC binary vectors were also stably transformed into Arabidopsis 

and T0 seeds with the red seed coat were identified (Table S1). For each transformation event, 

16 independent transformants were grown and LUC activity was quantified in independent 

transformed plants at 21 days post germination. On average, the LUC activity was reduced by 

65% in the 16 individual ffgLUCaimiR-LUC T1 plants compared to that in 16 individual T1 ffgLUC 

plants (Fig. 4B). This indicates that amiR-LUC is efficiently processed from aimiR-LUC in stably 

transformed plants. For comparison of silencing in-cis with silencing in-trans in stably 

transformed plants, one line expressing 2x35S::ffcLUC was transformed with a 2x35S::amiR-

LUC expression construct. In three T2 double transformants (homozygous for both 

2x35S::ffcLUC and 2x35S::amiR-LUC) the LUC activity was reduced by 69-53% compared to the 

original ffcLUC line (Fig. 4C). Silencing efficiency in-trans therefore seems to be in the same 

range as silencing efficiency in-cis. 
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Figure 4. Evaluation of silencing in cis- and 

trans in transient assays (A) and stable 

transformed plants (B and C). 

A). Left: evaluation silencing in-cis transient assay: 

LUC activity of ffgLUC and ffgLUCaimiR-LUC at four 

days post-agro-infiltration in Nicotiana 

benthamiana transient assay (n=five leaves per 

treatment). Right: evaluation silencing in-trans 

transient assay: LUC activity in Nicotiana 

benthamiana transient assay of ffcLUC co-

infiltrated with empty vector and ffcLUC co-

infiltrated with amiR-LUC at four days post-agro-

infiltration (n=five leaves per treatment). 

Quantification of the DsRED gene expression was 

used to confirm similar transformation efficiencies 

in the agro-infiltration with ffgLUC and ffgLUCaimiR-

LUC (see Fig. S3). B). Evaluation of silencing in-cis: 

Relative LUC activity in sixteen independent T1 

generation of ffgLUC and ffgLUCaimiR-LUC plants. “A“ 

indicates average LUC activity in set of transgenic 

plants. Significant differences between samples 

(***) is based on standard error (student’s t-test, P<0.01). C). Evaluation of silencing in-trans: Relative LUC 

activity in homozygous ffcLUC line and T1 of same ffcLUC line transformed with 2x35S:amiR-LUC. Significant 

differences between samples (***) is based on standard error (student’s t-test, P<0.01). 

ffgLUCaimiR-PHYB shows efficient mRNA maturation, but no silencing of AthPHYB. 

In addition to the aimiRNA targeting TCP and LUC, an aimiRNA targeted against the PHYB 

mRNA of Arabidopsis thaliana was tested. The aimiR-PHYB was again placed at the same 

intron position as in the functional ffgLUCimiR-319a and ffgLUCaimiR-LUC constructs. The aimiR-LUC 

is based again on the miR319a but with a replacement of the 21 base pairs in miR319a 

targeting TCP by 21 base pairs targeting AthPHYB mRNA (ffgLUCaimiR-PHYB) (Fig. 1 and Fig. S1). 

In transient assays, the leaf tissues expressing ffgLUCaimiR-PHYB showed similar LUC activity as 

leaves expressing ffgLUC (Fig. 5A), again indicating efficient and accurate maturation of the 

luciferase pre-mRNA from the ffgLUCaimiR-PHYB expression construct. 
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Figure 5. Activity of ffgLUCaimiR-PHYB in transient assays (A) and stable transformed plants (B and C). 

A). Relative LUC activity of ffgLUC and ffgLUCaimiR-PHYB at four days post-agro-infiltration of Nicotiana benthamiana 

leaves (n=five leaves per treatment); 

B). Relative LUC activity in eight independentstable transformants of Arabidopsis thaliana expressing either ff-

gLUC or ffgLUCaimiR-PHYB;  

C). Average relative expression level of AthPHYB in five ff-gLUC and ffgLUCaimiR-PHYB plants (reference gene 

AthActin1, expression of AthPHYB normalized to that in one ffgLUC plant); 

D). Image of LUC activity in representative transgenic plants expressing ff-gLUC (left) or ffgLUCaimiR-PHYB (right); 

E). Detection of mature amiR-PHYB by stem-loop RT PCR analysis in small RNA isolated from ffgLUCaimiR-PHYB plants 

but not in small RNA isolated from control ffgLUC plants. 

After stable transformation of Arabidopsis thaliana with ffgLUCaimiR-PHYB, T0 seeds with the red 

seed coat were identified (Table 1) and 10 independent transformed T1 plants were grown. 

From these, eight transformants with a single copy transgene insertion were selected for 

further analysis. On average, the LUC activity in these eight lines was comparable with that of 

eight independent transformants expressing ffgLUC (Fig. 5B). This again indicates that also the 
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intron in ffgLUCaimiR-PHYB is efficiently and correctly spliced from the luciferase pre-mRNA. In 

contrast, the silencing of PHYB is not effective in ffgLUCaimiR-PHYB lines as expression of PHYB 

mRNA is similar in ffgLUCaimiR-PHYB and ffgLUC lines (Fig. 5C). The silencing of PHYB mRNA 

expression can also be tested in a bioassay. When seedlings are grown under constant Red 

(cR) light, lines with reduced PHYB expression are expected so show enhanced hypocotyl 

elongation. Ten independent homozygous T1 lines of ffgLUCaimiR-PHYB were germinated under 

cR. While the hypocotyl length of a phyB-9 mutant was elongated compared with WT, the 

hypocotyl length of the ten ffgLUCaimiR-PHYB transformants was not statistically different from 

WT (data not shown). All together, these results suggest that the mature amiR-PHYB derived 

from ffgLUCaimiR-PHYB is not functional in silencing PHYB expression. 

 

Discussion 

Functional aimiRNA requires sufficient spacing in intron.  

 Intron-derived miRNAs (imiRNAs) are an alternative source for miRNAs in mammals and 

plants (Berezikov et al., 2007; Ruby et al., 2007; Meng and Shao, 2012; Sibley et al., 2012; Tong 

et al., 2013). Evidence has been obtained that functional miRNAs can be derived from imiRNAs 

in mammalian cells and plants (Naqvi et al., 2012; Ha and Kim, 2014) but plant genes 

containing intronic miRNA sequences have only been studied sparsely. Here, we demonstrate 

that the concept of an imiRNA can be used to construct a transgene with dual functionality: 

overexpression of the transgene and silencing of an endogenous target gene of interest. Our 

constructs demonstrate that the structural sequence information of the pre-miRNA mi319a is 

sufficient for full functionality when placed correctly into an intron, allowing for both normal 

maturation of the pre-mRNA and for generation of a functional mature microRNA. 

In all aimiRNA constructs tested here, the aimiRNA was inserted into an 189 long intron 

sequence of the ffgLUC gene. In the first construct the insertion was done at 10 bp from the 

5’-end of the LUC-intron sequence. For this construct the LUC activity was low compared to 

ffgLUC control construct in both in transient and stable (Fig. 2A,C). This indicates that a certain 
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distance is needed between the 5’-splice site and the imiRNA insertion site for efficient pre-

mRNA maturation. It could be that the reduced distance between 5’-splice site and imiRNA 

sequence in ffgLUCdel
aimiR-319a resulted in spatial constraints because of simultaneous assembly 

of spliceosome and miRNA-processing protein complexes. In contrast, the aimiRNA placed at 

55 bp from the 5’-splice site resulted in efficient maturation of the LUC mRNA, resulting in 

similar LUC activity for ffgLUCaimiRNA-319a and ffgLUC in transient expression as well as stable 

transformants (Fig. 3A,C). It was not investigated whether mRNA and aimiRNA derive from the 

same pre-mRNA transcript or whether the two mature products are produced mutually 

exclusive. However, since LUC activity from ffgLUCaimiRNA-319a is similar as from ffgLUC it 

suggests the same level of mRNA production from both constructs. If part of the pre-mRNA is 

exclusively used for mature amiRNA production and the other part for mature ffgLUC mRNA 

production we would expect a lower LUC activity from ffgLUCaimiRNA-319a, which is not the case 

(Fig. 3). Whether both products (mRNA, aimiRNA) are indeed derived from the same pre-

mRNA needs further investigation but for practical purposes the ffgLUCaimiRNA constructs seem 

to function as dual functional transgenes. 

The imiRNA positioning within the intron may be further improved for functionality, for which 

positioning of natural imiRNA in plant genes may be used as a guide. The average length of 

introns is 101 bp in Arabidopsis and 160 bp in rice (Wang and Brendel, 2006; Schuler, 2008). 

By contrast, the average length of introns containing imiRNAs is 625 bp in Arabidopsis and 

2178 bp in rice (Yang et al., 2012). Therefore, it may still be possible that a larger distance 

between inserted miRNA and the 5’- and 3’ splice sites enhances functionality of the imiRNA 

(more efficient splicing and processing to miRNA).  

Efficiency of silencing is function of both aimiRNA and target gene expression level.  

The construct ffgLUCaimiRNA-LUC with the miRNA targeting the LUC mRNA in-cis showed ~65% 

reduction in LUC activity, which is very similar to the silencing in-trans reached by a 

2x35S::amiR-LUC in stably transformed plants (Fig. 4B,C). Presumably the LUC mRNA and 

aimiR-LUC are produced in equal molar amounts from ffgLUCaimiRNA-LUC pre-mRNA, suggesting 

that miRNA needs to be in excess to its target mRNA in order to obtain higher levels of 

silencing. For instance, silencing of the TCP transcription factor genes, which are expressed at 
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low levels, by the aimiRNA is very efficient (Fig. 2B and 3B). In contrast to the stable 

transformed plants, the constructs targeting LUC mRNA in-cis or in-trans are not effective in 

transient assays. In transient assays the gene copy number is artificially high and may result in 

saturation of the gene silencing machinery.  

 

amiRNA-PHYB not functional because of target mRNA secondary structure?  

The construct ffgLUCaimiRNA-PHYB showed correct splicing but this did not result in significant 

down regulation of PHYB mRNA levels in transformed Arabidopsis. Analysis of small RNA 

isolated from the plants expressing ffgLUCaimiRNA-PHYB by stem-loop PCR (Varkonyi-Gasic et al., 

2007) with specific primers did show that the expected aimiRNAPHYB product is produced in 

these plants (Figure 5E), but apparently it is not active against the PHYB mRNA.  

 

Figure 6. Predicted secondary structure of mRNAs targeted by miRNA. RNA secondary structure 

prediction by UNAFold (http://unafold.rna.albany.edu/) (Buratti and Baralle, 2004).  

Also when the same amiR-PHYB was expressed directly from a 2x35S-promoter, transformants 

did not show a PHYB silencing phenotype under constant cR (Fig. S5). The lack of silencing by 

either aimiR-PHYB or amiR-PHYB suggests that the PHYB target sequence cannot be effectively 

silenced. For selection of the PHYB miRNA target sequence the WMD3-Web MicroRNA 

Designer online tool was used, which selects the best target sequence based on both target 

and off-target sequences (Schwab et al., 2006). However, recently it was shown that 

http://unafold.rna.albany.edu/
http://unafold.rna.albany.edu/
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effectiveness of miRNA sequences also depends on the secondary structure of the target 

mRNA (Zheng et al., 2017). Indeed, when the secondary structure of the target mRNA is taken 

into account (Buratti and Baralle, 2004), it turns out that both the amiR-LUC and native 

miR319a target the mRNA at a part that is largely single stranded. In contrast, the chosen 

amiR-PHYB sequence targets the PHYB mRNA at an internal stem loop structure (Fig. 6). 

Possibly, this explains why the ffgLUCaimiR-PHYB construct does not show effective silencing of 

PHYB. 

In conclusion, the method with transgenes containing an amiRNA in their intron allows for 

combining ectopic overexpression of the transgene with silencing of a target gene of interest. 

Artificial miRNA genes containing functional clusters of miRNAs have been engineered (Wang 

et al., 2016). Therefore, our concept of transgenes containing aimiRNA may be extended by 

multiple aimiRNAs in a single intron or in different introns in the same transgene provided 

that these aimiRNAs are still efficiently processed and allow dual/multiple functionality of the 

transgene. 
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imiRNA: intronic microRNA, aimiRNA: artificial intronic microRNA, ffgLUC: firefly genomic 
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PHYTOCHROME B, 5'ss: 5' splice sites 

Declarations: 

Authors' contributions 

US developed the method, carried out the experimental work and drafted the manuscript. 

MvH made Luminator system and analysed the data. MS developed the plant material. IA and 

HB helped writing the manuscript. SvdK supervised manuscript writing and the project.  

Consent for publication 

All authors read and approved the final manuscript.  



145 

 

Competing interests 

The authors declare that they have no competing interests.  

Ethics approval and consent to participate 

Not applicable. 

Funding 

This research is funded by the STW project (13149) ‘Compact Plants’. 

Acknowledgements 

The first author would like to thank the Erasmus Mundus Action 2 projects TIMUR.  

 

References 

Ali MA, Shah KH, Bohlmann H (2012) pMAA-Red: a new pPZP-derived vector for fast visual 
screening of transgenic Arabidopsis plants at the seed stage. BMC Biotechnology 12: 
37 

Alvarez JP, Furumizu C, Efroni I, Eshed Y, Bowman JL (2016) Active suppression of a leaf 
meristem orchestrates determinate leaf growth. Elife 5 

Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-
297 

Berezikov E, Chung W-J, Willis J, Cuppen E, Lai EC (2007) Mammalian Mirtron Genes. 
Molecular Cell 28: 328-336 

Buratti E, Baralle FE (2004) Influence of RNA Secondary Structure on the Pre-mRNA Splicing 
Process. Molecular and Cellular Biology 24: 10505-10514 

Chen Y, Han Y, Zhang M, Zhou S, Kong X, Wang W (2016) Overexpression of the Wheat 
Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in 
Transgenic Tobacco Plants. PLOS ONE 11: e0153494 

Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15: 509-524 
Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, 

Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency 
in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc 
Natl Acad Sci U S A 104: 15270-15275 

Kashyap N, Pham B, Xie Z, Bleris L (2013) Transcripts for combined synthetic microRNA and 
gene delivery. Molecular bioSystems 9: 1919-1925 



146 

 

Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant 
drought, salt, and freezing tolerance by gene transfer of a single stress-inducible 
transcription factor. 17: 287-291 

Knop K, Stepien A, Barciszewska-Pacak M, Taube M, Bielewicz D, Michalak M, Borst JW, 
Jarmolowski A, Szweykowska-Kulinska Z (2017) Active 5΄ splice sites regulate the 
biogenesis efficiency of Arabidopsis microRNAs derived from intron-containing genes. 
Nucleic Acids Research 45: 2757-2775 

Liang G, He H, Li Y, Yu D (2012) A new strategy for construction of artificial miRNA vectors in 
Arabidopsis. Planta 235: 1421-1429 

Lin SL, Miller JD, Ying SY (2006) Intronic microRNA (miRNA). J Biomed Biotechnol 2006: 26818 
Luke Mankin S, Allen GC, Thompson WF (1997) Introduction of a plant intron into the 

luciferase gene ofPhotinus pyralis. Plant Molecular Biology Reporter 15: 186-196 
Meng Y, Shao C (2012) Large-scale identification of mirtrons in Arabidopsis and rice. PLoS One 

7: e31163 
Nag A, King S, Jack T (2009) miR319a targeting of TCP4 is critical for petal growth and 

development in Arabidopsis. Proc Natl Acad Sci U S A 106: 22534-22539 
Naqvi AR, Sarwat M, Hasan S, Roychodhury N (2012) Biogenesis, functions and fate of plant 

microRNAs. J Cell Physiol 227: 3163-3168 
Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann 

N, Allen E, Dezulian T, Huson D, Carrington JC, Weigel D (2007) Sequence and 
expression differences underlie functional specialization of Arabidopsis microRNAs 
miR159 and miR319. Dev Cell 13: 115-125 

Park W, Zhai J, Lee JY (2009) Highly efficient gene silencing using perfect complementary 
artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL 
genes. Plant Cell Rep 28: 469-480 

Parsi S, Soltani BM, Hosseini E, Tousi SE, Mowla SJ (2012) Experimental Verification of a 
Predicted Intronic MicroRNA in Human NGFR Gene with a Potential Pro-Apoptotic 
Function. PLOS ONE 7: e35561 

Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, 
Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) 
'Green revolution' genes encode mutant gibberellin response modulators. Nature 400: 
256-261 

Prelich G (2012) Gene Overexpression: Uses, Mechanisms, and Interpretation. Genetics 190: 
841-854 

Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. 
Genes Dev 16: 1616-1626 

Ren G, Yu B (2012) Post-transcriptional control of miRNA abundance in Arabidopsis. Plant 
Signal Behav 7: 1443-1446 

Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha 
processing. 448: 83-86 

Schuler MA (2008) Splice Site Requirements and Switches in Plants. In Nuclear pre-mRNA 
Processing in Plants. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 39-59 

Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene 
silencing by artificial microRNAs in Arabidopsis. Plant Cell 18: 1121-1133 



147 

 

Sibley CR, Seow Y, Saayman S, Dijkstra KK, El Andaloussi S, Weinberg MS, Wood MJA (2012) 
The biogenesis and characterization of mammalian microRNAs of mirtron origin. 
Nucleic Acids Research 40: 438-448 

Tong YA, Peng H, Zhan C, Fan L, Ai T, Wang S (2013) Genome-wide analysis reveals diversity 
of rice intronic miRNAs in sequence structure, biogenesis and function. PLoS One 8: 
e63938 

Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive 
RT-PCR method for detection and quantification of microRNAs. Plant Methods 3: 12-
12 

Wang B, Kashkooli AB, Sallets A, Ting H-M, de Ruijter NCA, Olofsson L, Brodelius P, Pottier 
M, Boutry M, Bouwmeester H, van der Krol AR (2016) Transient production of 
artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein 
from A. annua. Metabolic Engineering 38: 159-169 

Wang BB, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants. 
Proc Natl Acad Sci U S A 103: 7175-7180 

Wang T, Xie Y, Tan A, Li S, Xie Z (2016) Construction and Characterization of a Synthetic 
MicroRNA Cluster for Multiplex RNA Interference in Mammalian Cells. ACS Synth Biol 
5: 1193-1200 

Watson E, MacNeil Lesley T, Arda HE, Zhu Lihua J, Walhout Albertha JM (2013) Integration 
of Metabolic and Gene Regulatory Networks Modulates the C. elegans Dietary 
Response. Cell 153: 253-266 

Yan K, Liu P, Wu CA, Yang GD, Xu R, Guo QH, Huang JG, Zheng CC (2012) Stress-induced 
alternative splicing provides a mechanism for the regulation of microRNA processing 
in Arabidopsis thaliana. Mol Cell 48: 521-531 

Yang GD, Yan K, Wu BJ, Wang YH, Gao YX, Zheng CC (2012) Genomewide analysis of intronic 
microRNAs in rice and Arabidopsis. J Genet 91: 313-324 

Zhang X, Henriques R, Lin S-S, Niu Q-W, Chua N-H (2006) Agrobacterium-mediated 
transformation of Arabidopsis thaliana using the floral dip method. 1: 641-646 

Zheng Z, Reichel M, Deveson I, Wong G, Li J, Millar AA (2017) Target RNA secondary structure 
is a major determinant of miR159 efficacy. Plant Physiology  

 

 

 

 

 

 

 



148 

 

Supplementary files 

 

> Genomic Luciferase sequence (ffgLUC) 

ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTAGAGGATGGAACCGCT

GGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATTGCTTTTACAGATG

CACATATCGAGGTGAACATTACgtaagtttctgcttctacctttgatatatatataataattatcattaattagtagtaatata

atatttcaaatatttttttcaaaataaaagaatgtagtatatagcaattgcttttctgtagtttataagtgtgtatattttaatttataactt

ttctaatatatgaccaaaatttgttgatgtgcagGTACGCGGAATACNNNN.......NNNNTAA 

---------------------------------------------------------------------------------------------------------------- 

> Id-amiR-319a in intron of ffgLUC (ffgLUCaimiR-319a) 

ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTAGAGGATGGAACCGCT

GGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATTGCTTTTACAGATG

CACATATCGAGGTGAACATTACgtaagtttctgcttctacctttgatatatatataataattatcattaattagtagatatcag

agagcttccttgagtccattcacaggtcgtgatatgattcaattagcttccgactcattcatccaaataccgagtcgccaaaattcaaa

ctagactcgttaaatgaatgaatgatgcggtagacaaattggatcattgattctctttgattggactgaagggagctccctgaattcgt

aatataatatttcaaatatttttttcaaaataaaagaatgtagtatatagcaattgcttttctgtagtttataagtgtgtatattttaattt

ataacttttctaatatatgaccaaaatttgttgatgtgcagGTACGCGGAATACNNNN.......NNNNTAA 

---------------------------------------------------------------------------------------------------------------- 

> Id-amiR-LUC combined ffgLUC intron sequence (as used ffgLUCaimiR-LUC) 

ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTAGAGGATGGAACCGCT

GGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATTGCTTTTACAGATG

CACATATCGAGGTGAACATTACgtaagtttctgcttctacctttgatatatatataataattatcattaattagtagatatcta

taactgcctgcctcagataaggtcgtgatatgattcaattagcttccgactcattcatccaaataccgagtcgccaaaattcaaactag

actcgttaaatgaatgaatgatgcggtagacaaattggatcattgattctctttaatctgacgcaggcagttctagaattcgtaatata

atatttcaaatatttttttcaaaataaaagaatgtagtatatagcaattgcttttctgtagtttataagtgtgtatattttaatttataactt

ttctaatatatgaccaaaatttgttgatgtgcagGTACGCGGAATACNNNN.......NNNNTAA 
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---------------------------------------------------------------------------------------------------------------- 

> Id-amiR-PHYB combined ffgLUC intron sequence (as used ffgLUCaimiR-PHYB) 

ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTAGAGGATGGAACCGCT

GGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATTGCTTTTACAGATG

CACATATCGAGGTGAACATTACgtaagtttctgcttctacctttgatatatatataataattatcattaattagtagatatcta

gctgtaaaccgtaaggctcaggtcgtgatatgattcaattagcttccgactcattcatccaaataccgagtcgccaaaattcaaacta

gactcgttaaatgaatgaatgatgcggtagacaaattggatcattgattctctttcagcctttcggtttacagttagaattcgtaatata

atatttcaaatatttttttcaaaataaaagaatgtagtatatagcaattgcttttctgtagtttataagtgtgtatattttaatttataactt

ttctaatatatgaccaaaatttgttgatgtgcagGTACGCGGAATACNNNN.......NNNNTAA 

--------------------------------------------------------------------------------------------------------------- 

> Id-amiR319a in intron ffgLUC with deletion of intron sequence (ffgLUCdel
aimiR-319a) 

ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTAGAGGATGGAACCGCT

GGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATTGCTTTTACAGATG

CACATATCGAGGTGAACATTACgtaagtttctgatatcagagagcttccttgagtccattcacaggtcgtgatatgattcaa

ttagcttccgactcattcatccaaataccgagtcgccaaaattcaaactagactcgttaaatgaatgaatgatgcggtagacaaattg

gatcattgattctctttgattggactgaagggagctccctgaattcaacttttctaatatatgaccaaaatttgttgatgtgcagGTAC

GCGGAATACNNNN.......NNNNTAA 

----------------------------------------------------------------------- 

Figure S1. Nucleotide sequences of all ff-gLUC/aimiRNA constructs used in this study. gatatc: – EcoR 

V site; gaattc: EcoR I site; Capital letter: exon sequences; small letters black: intron sequences; small letters 

blue: Id-amiRNA sequences based on miR319a. Specific sequences targeting TCP, LUC or PHYB are underlined. 

5’intron splice sequences are boxed (ag: 3’intron splice site, gt: 5’intron splice site)  
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> CDS Luciferase sequence (correct spliced) 

ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTAGAGGATGGAACCGCT

GGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATTGCTTTTACAGATG

CACATATCGAGGTGAACATTACGTACGCGGAATACTTCGAAATGTCCGTTCGGTTGGCAGAAGCTAT

GAAACGATATGGGCTGAATACAAATCACAGAATCGTCGTATGCAGTGAAAACTCTCTTCAATTCTTTA

TGCCGGTGTTGGGCGCGTTATTTATCGGAGTTGCAGTTGCGCCCGCGAACGACATTTATAATGAACG

TGAATTGCTCAACAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 

> shorter CDS Luciferase sequence (3’splice site shifted) 

ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTAGAGGATGGAACCGCT

GGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATTGCTTTTACAGATG

CACATATCGAGGTGAACATTACAGCTATGAAACGATATGGGCTGAATACAAATCACAGAATCGTCGT

ATGCAGTGAAAACTCTCTTCAATTCTTTATGCCGGTGTTGGGCGCGTTATTTATCGGAGTTGCAGTTG

CGCCCGCGAACGACATTTATAATGAACGTGAATTGCTCAACAGNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 

---------------------------------------------------------------------------------------------------------------- 

> shorter CDS Luciferase sequence (5’and 3’splice site shifted) 

ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTAGAGGATGGAACCGCT

GGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATTGCTTTTACAGATG

CACATATCGAGGAGCTATGAAACGATATGGGCTGAATACAAATCACAGAATCGTCGTATGCAGTGAA

AACTCTCTTCAATTCTTTATGCCGGTGTTGGGCGCGTTATTTATCGGAGTTGCAGTTGCGCCCGCGAA

CGACATTTATAATGAACGTGAATTGCTCAACAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 

---------------------------------------------------------------------------------------------------------------- 

Figure S2. RT-PCR products sequence from ffgLUCdel
aimiR-319a transgenic plant. 
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Figure S3. A similar transformation efficiency were confirmed by quantify the DsRED gene expression 

in transient assay samples. The quantification data is normalized against the N.benthamiana reference with 

UBI3 as internal control. Error bars represent standard error.  
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Figure S4. Confirmation of mature aimiR-319a expression in stem-loop RT-PCR assay. Illustration of 

RT-PCR method for amplification of mature microRNA (A). Gel electrophoresis results from stem-loop RT (B). 

ffgLUC plant used as a positive control for endogenous mature miR319a. A mature microRNA specific forward 

primer and universal reverse primer were used for PCR amplification. Mature microRNA products were obtained 

using 25 cycling of RT-PCR and analysed on 4% agarose gel in 1xTAE. Predicted products were compared with 

50bp DNA ladder. 
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Figure S5. PHYB silencing phenotype under constant cR.  
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Transformation in 

A.thaliana  

Positive 

seeds 

transformants 

tested 

LUC 

expression 

TCP silencing/ 

leaf 

phenotype 

LUC 

silencing 

PHYB 

silencing 

35S::ffgLUC NA NA NA NA NA NA 

35S::ffgLUCdel
aimiR-319a >25 17 17* 17 NA NA 

35S::ffgLUCaimiR-319a >25 19 19 17 (2 dead) NA NA 

35S::ffgLUCaimiR-LUC >20 20 20** NA 20 NA 

35S::ffgLUCaimiR-PHYB >12 10 10 NA NA  

35S::amiR-LUC/35S::ffcLUC >19 19 19** NA 19 NA 

 

Table S1. Stable transformation of Arabidopsis WT or Arabidopsis line ff-gLUC-1 with the different 

expression constructs. NA: not applicable, * very low LUC activity; ** low LUC activity. 
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PRIMER NAME SEQUENCE USED FOR REF 

Luc-F-NcoI agcaaaccatggaagacgccaaaaac cloning of full LUC gene This study 

Luc-R-NotI agcaaagcggccgcttacaatttggactttccgccctt cloning of full LUC gene This study 

Luc-intron-R-EcoR V  aaagatatctactaattaatgataattatt cloning of first exon+ intron LUC This study 

Luc-intron-F-EcoR I  aaagaattcgtaatataatatttcaaatatttttttcaaaataa cloning of intron + second exon LUC  This study 

miR319a_F-EcoR V  aaagatatcagagagcttccttgagtccattcac cloning of miRNA319a  (Liang et al., 2012) 

miR319a_R-EcoRI  tttgaattcagggagctcccttcagtccaatc cloning of miRNA319a  (Liang et al., 2012) 

AmiRphyB-F-EcoR V  aaagatatctagctgtaaaccgtaaggctcaggtcgtgatatgattca cloning of artificial miR-PHYB This study 

AmiRphyB-R-EcoR I  aaagaattctaactgtaaaccgaaaggctgaaagagaatcaatgatcca cloning of artificial miR-PHYB This study 

AmiRluc-F-EcoR V  aaagatatctataactgcctgcctcagataaggtcgtgatatgattca cloning of artificial miR-LUC This study 

AmiRluc-R-EcoR I  aaagaattctagaactgcctgcgtcagattaaagagaatcaatgatcca cloning of artificial miR-LUC This study 

Luc splice 2_R-EcoR V  aaagatatcagaaacttacgtaatgttcacctcg cloning of first exon + intron splice LUC  This study 

Luc splice 2_F-EcoR I  aaagaattcaacttttctaatatatgaccaaaatttgtt cloning of intron splice + second exon LUC  This study 

AthPHYB_F cgttgggtgttgctcctagt qPCR in A.thaliana (At2g18790) This study 

AthPHYB_R gataccccgcatcgcctaaa qPCR in A.thaliana (At2g18790) This study 

AthTCP2_F aacggcggagcattcaatctt qPCR in A.thaliana (At4 g18390) (Nag et al., 2009) 

AthTCP2_R gcctttacccttatgttctga qPCR in A.thaliana (At4 g18390) (Nag et al., 2009) 

AthTCP3_F catccagtttatagccaaa qPCR in A.thaliana (At1 g53230) (Nag et al., 2009) 

AthTCP3_R atggcgagaatcggatgaa qPCR in A.thaliana (At1 g53230) (Nag et al., 2009) 

AthTCP4_F ccttcaacgacgtcgtttcagccag qPCR in A.thaliana (At3 g15030) (Nag et al., 2009) 

AthTCP4_R gtgaaccggtggaggaaggtgatg qPCR in A.thaliana (At3 g15030) (Nag et al., 2009) 

NbTCP4_F ctgcatctgctgcaaacatt qPCR in N.benthamiana 

(Niben101Scf01002g02011.1) 

This study 

NbTCP4_R aacccattgggaaaaaggac qPCR in N.benthamiana 

(Niben101Scf01002g02011.1) 

This study 

AthActin F ggtaacattgtgctcagtggtgg qPCR in A.thaliana This study 

AthActin R aacgaccttaatcttcatgctgc qPCR in A.thaliana This study 

NbUbi3_F gccgactacaacatccagaagg qPCR in N.benthamiana This study 

NbUbi3_R tgcaacacagcgagcttaacc qPCR in N.benthamiana This study 

DsRED F gaagctgaaagacggtggtc qPCR in N.benthamiana This study 

DsRED R cgtccctcggttctttcata qPCR in N.benthamiana This study 

LUC-RT-F cgaggtgaacattacgtaagtttc RT-PCR This study 

LUC-RT-R gtattccgcgtacctgcac RT-PCR This study 

MIR-319A RT gtcgtatccagtgcagggtccgaggtattcgcactggatacgacagggag RT-PCR This study 

MIR-319A F  cggcggttggactgaagggag RT-PCR This study 

AMIRPHYB RT gtcgtatccagtgcagggtccgaggtattcgcactggatacgactaactg RT-PCR This study 

AMIRPHYB F cggcggcagcctttcggttta RT-PCR This study 

UNIVERSAL REVERSE gtgcagggtccgaggt RT-PCR (Varkonyi-Gasic et 

al., 2007) 

 

Table-S2. List of primers were used in this work. 
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CHAPTER-6 

General Discussion 
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The need for a scientific basis for plant growth control in horticulture 

The on-going climate changes are predicted to have a negative impact on crop yields in 

agriculture and therefore a negative impact on food security. This is happening at a time when 

the increase in the global population is raising food demand. Food production in greenhouses, 

with in-door climate control, may be part of the solution to secure food demand. Indeed, the 

coming decades the focus could be to improve crop production in both small and large scale 

greenhouse farming. Already in many countries greenhouse farming is at an industrial scale, 

growing the maximum amount of crop foods at a minimum price. However, at the same time, 

these efforts need to keep a friendly relationship with the social or environmental 

consequences. Farming output at an industrial level requires a scientific basic understanding 

of the regulation of plant growth in order to apply the most effective growth control 

measures. Indeed, fundamental research can help to improve crop quality, yield and resilience 

against biotic stresses induced by different pathogens.  

One option for control of plant growth in greenhouses is the use of chemical growth 

regulators, which is not environmentally friendly. As an alternative to chemical treatment for 

inhibiting of plant growth in horticulture, nowadays light/temperature regimes named -DIF 

are used. This is a more sustainable solution compared to the use of chemical growth 

inhibitors. In –DIF condition, plants are exposed to cold day and warm night instead of cold 

night and warm day (+DIF) (Carvalho et al., 2002). This results in more compact plants due to 

reduced elongation (Stavang et al., 2005). Understanding the molecular basis of growth 

control under –DIF and translating these insights into new or improved protocols to control 

plant growth has been the aim of the STW project ‘Compact Plants’ (13149). Within this 

project, my own research and that of PhD candidate Mark van Hoogdalem focused on 

understanding the light and temperature regulation of a specific subset of transcription 

factors involved in elongation (PIFs) or suppression of elongation (HY5). Previous results had 

shown that the activity of PIF4 is limited under –DIF, resulting in reduced auxin and ethylene 

signaling (Franklin et al., 2011; Kunihiro et al., 2011) and eventually reduced PIF3 activity 

which regulates downstream elongation responses (Bours et al., 2013)¸ The action of PIFs in 

the light is strongly influenced by phytochromes (Li et al., 2011; Jung et al., 2016; Legris et al., 

2016) and this was the motivation to get a better understanding of the transcriptional 
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regulation of phytochrome genes. This work resulted in improved insight in how PHY genes 

influence each other’s transcriptional activity depending on the light conditions and as 

function of development. In this research we also discovered the strong induction of PHYA 

and PHYB expression under FR light, which may have its application in steering plant growth 

once understood better (Chapter 2).  

 

Things are different at warm temperature 

Plant growth and morphology is altered under warm ambient temperature. The 

morphological response of plants to warmth is different from changes induced by actual heat 

stress, during which protein folding and function may be compromised. The specific growth 

response to warm ambient temperature is called thermo-morphogenesis (Quint et al., 2016), 

and understanding thermo-morphogenesis is just another aspect of understanding general 

growth regulation in plants. Thermomorphogenesis simultaneously affects plant growth 

(positive effect) and plant resilience (negative effect) and PIF4 and BZR1 function at the 

molecular switch that can steer the plant in these two different modes (Gangappa et al., 2017; 

Martínez et al., 2018). Recent research indicates that thermo-morphogenesis is accompanied 

by chromatin modification at specific gene loci that affect gene regulation (Tasset et al., 2018), 

photoreceptor protein activity (PHYB) (Jung et al., 2016; Legris et al., 2016) or auxin 

biosynthesis and other phytohormone signalling (Ibañez et al., 2018). In this thesis we 

discovered how MED25 may play a role in the epigenetic changes that mediate these warm 

temperature responses by demonstrating that MED25 binds to PIF4 and BZR1 and that MED25 

is required for normal transcriptional activity of PIF4. 

 

Complex regulation PIF4 

Besides understanding the transcriptional regulation of PHY genes, my thesis research was 

also about understanding the regulation of PIF4 and PIF4 transcriptional activity. Multiple 

studies have been shown that PIF4 acts as a hub in plant elongation responses and immunity 

(Koini et al., 2009; Nomoto et al., 2012; Choi and Oh, 2016; Gangappa et al., 2017). Most 
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studies focus on the regulation of downstream targets of PIF4. However, we felt that in order 

to understand regulation of PIF4 target genes we also need to understand the regulation of 

the PIF4 gene itself. PIF4 protein activity is the combined function of PIF4 gene transcription, 

PIF4 mRNA translation, PIF4 protein activation and PIF4 protein stability. In this thesis work 

we especially aimed for a better understanding of the transcriptional regulation of the PIF4 

gene itself (Chapter 3). In addition, in Chapter 4 we investigated the transcriptional activity of 

PIF4 protein in combination with the Mediator component MED25. These two studies are 

linked by the fact that transcriptional activity of PIF4 protein with MED25 is also part of the 

transcriptional regulation of the PIF4 gene itself. There are no studies on the role of PIF4 on 

its own PIF4 gene expression. Regulation of PIF4 gene transcription is complicated by the many 

factors that either affect PIF4 transcriptional activity or PIF4 protein stability. In addition, many 

of these factors are under direct or indirect control of PIF4 itself, resulting in a very complex 

feedback regulation that seems to keep tight control on PIF4 activity under different 

environmental conditions and different genetic backgrounds. Each study on PIF4 activity 

reveals only part of the total puzzle, and integration of all these parts into a full picture is still 

not easy. However, by investigating the expression of PIF4 in a certain mutant or in response 

to a given environmental signal, new aspects of PIF4 gene regulation can be revealed.  

 

Integrating results into an updated growth model 

The work in this thesis mostly relates to understanding the transcriptional regulation of PIF4 

and to understanding the transcriptional activity of PIF4, because PIF4 is a key transcription 

factor in growth responses of Arabidopsis. This thesis research started with the simplified 

growth model shown in Chapter 1, which depicts the key upstream position of PIF4 and 

downstream position of PIF3 in regulating growth genes. It also depicts the role of 

phytochrome on the action of PIF4 and PIF3, although more transcription factors besides PIF4 

are involved in regulating growth. Indeed, the action of PIF4 and PIF5 seem to be closely 

related (Sun et al., 2013). Moreover, PIF4 acts together with BZR1 (Oh et al., 2012) and PIF4 

and BZR1 are now recognized as two key factors in growth responses. Also BZR1 is not acting 

alone, as the close homolog of BZR1, BES1 is shown to have very similar activity as BZR1 

(Martínez et al., 2018; Wu et al., 2018). Recent insights show that, because of the intimate 
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way PIF4 and BZR1/BES1 influence each other’s activity, their actions cannot be viewed 

separately (Martínez et al., 2018). In the four years of this thesis work, 117 additional papers 

on PIF4, 49 papers on PIF5, 99 papers on BZR1 and 69 papers on BES1 have been published, 

illustrating the importance of these transcription factors in control of plant growth. Moreover, 

recent papers also describe the role of PIF4 and BZR1 in the trade-off between growth and 

resistance (Gangappa et al., 2017) and the role of PIF4 and BZR1 in thermomorphogenesis 

(Ibañez et al., 2018). This provides additional motivation to understand the transcriptional 

regulation of the PIF4 and BZR1 genes themselves and to understand how the PIF4 and BZR1 

protein regulate transcription of different target genes. As the name implies (Phytochrome 

Interacting Factors) the PIF proteins interact with light activated phytochromes in the nucleus, 

which leads to their proteasome mediated destruction. Thus, the level of active phytochrome 

is an important determinant of PIF4 activity. The level of phytochrome protein is initially 

determined by transcription of the phytochrome genes. Therefore, also understanding 

phytochrome gene transcription is an integral part of understanding the actions of PIF4. In this 

thesis we focussed on the transcriptional regulation of the phytochrome genes (Chapter 2) 

and the PIF4 gene itself (Chapter 3). Here, I will describe how the results presented in this 

thesis and recent published research can be integrated into an updated model of growth 

control (Figure 1).  

A key finding published during our research, is the central role of BZR1 in 

transcriptional control of PIF4, especially under warmth (Ibañez et al., 2018). BZR1 is a positive 

regulator of PIF4 but activity of BZR1 is indirectly coupled to the action of PIF4 through a 

feedback loop involving brassinosteroid (BR) biosynthesis and signalling (Ibañez et al., 2018; 

Martínez et al., 2018). The PIF4 activated BR signalling inhibits the kinase BIN2 which leads to 

further activation of BZR1 but also to further activity of PIF4, as phosphorylation of both BZR1 

and PIF4 by BIN2 leads to destabilisation of these two transcription factors. We have shown 

that this positive feedback regulation of PIF4 is kept under control by a negative feedback 

regulation at the transcription level by PIF4 protein itself, as PIF4 is a negative transcription 

factor for its own promoter activity (Chapter 3). In addition we have shown that PIF4 can 

stimulate transcription of PHYB (Chapter 2, 3), thus PIF4 protein stimulates the activity of a 

component that limits PIF4 protein stability, providing an additional negative feedback on PIF4 

activity. Recently it was shown that transcription of PHYA is under control of PIF4 and PIF5. 
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PHYA interacts with PIF3 (which is downstream in the model) leading to its destabilisation. 

Thus, PIF4 (which is upstream in the model; Figure 1) may indirectly negatively affect PIF3 

activity. As PIF3 is more directly linked to activation of growth genes, stimulation of upstream 

PIF4 in the light may therefore be limited by increased activity of PHYA on downstream PIF3. 

 

 

Figure 1. Model PIF4 regulation at start and end of thesis: feedback at PIF4 locus by PIFs, PHYs, 

MED25 and BR, BIN2, BZR1. open boxes: genes, closed boxes: proteins. black arrows: transcription, red 

arrows: negative interaction, green arrows: positive interaction. red lightning bolt: light activated phytochrome. 

The updated interaction model (Figure 2 ) explains why PIF4 gene expression is a 

complex function of light: in the light PIF4 protein destabilised by activated PHYB, resulting in 

less negative feedback on its own gene expression. However, reduced PIF4 activity in the light 

also leads to reduced PHYB expression, which has a positive effect on PIF4 protein stability. At 

the same time, reduced PIF4 protein activity reduces the BR biosynthesis and signalling and 

therefore BIN2 action, resulting in an opposite effect on PIF4 stability. We give two examples 

of how difficult it is to predict PIF4 expression in different mutant backgrounds: with a 

negative feedback on its own promoter activity initial prediction would be that PIF4 

transcription is higher in a pif4-2 mutant background, and with the positive action of BZR1 on 

PIF4 promoter activity the initial prediction was that PIF4 expression is higher in bzr1-1D. Both 

simple predictions are wrong: in both mutants PIF4 promoter activity is reduced, which can 

be explained by stronger effects of PIF4 in the different indirect feedback loops acting on its 
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own promoter activity (see discussion Chapter 3). Therefore, it seems that the more we learn 

about the regulation of PIF4 gene transcription, the more complex it becomes to make 

predictions about its actual regulation without the aid of computer modelling. With such 

models it may become possible to predict the outcome of short term light treatments for 

optimized PIF4 and PIF3 control and related control of downstream growth genes.  

 

Figure 2. Signal transduction pathway towards elongation as elucidated near the end of this project. 

Red arrows: negative interaction; Green arrows: positive interaction; Grey arrows: different signal transduction 

pathways. The different positions where MED25 interacts with transcription factors are indicated in red blocks 

with MED25. The role of MED25 for PIF3 is speculative at this moment.  

 

FR High Irradiance transcriptional responses for PHYB and PHYA  

In Chapter 2, I describe the regulation of PHY genes, making use of pPHY:LUC reporter plants. 

The interactions that we uncovered in this research may need further validation by 

endogenous PHY gene expression analysis for all the interactions we uncovered. However, the 

main novel observations that were uncovered with the use of the pPHY:LUC reporter plants 

were validated by qPCR analysis of the respective endogenous PHY genes. For instance, the 

qPCR analysis confirmed the FR induction of PHYA and PHYB, it confirmed for PHYB that the 

induction of PHYB expression under FR is not a function of PHYA, that expression of PHYA is 
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suppressed by PHYD and that upregulation of PHYA by FR requires PHYE. The strong and acute 

induction of pPHYB:LUC by FR could make the PHYB promoter an attractive tool for (FR) light 

induced expression in plants, for instance for proteins whose activity have a negative impact 

on plant survival like some of the terpene synthases that can produce useful products in 

plants. However, for such potential application it first needs to be tested whether the default 

low expression of a transgene under the PHYB promoter is low enough to avoid deleterious 

effects on plant growth.  

Our results indicate that for the FR light treatments PIF4 is required for the 

transcriptional response of PHYB. PIF4 was already identified as regulator of PHYA expression 

and future analysis will have to show whether the induction of PHYA under FR is also 

dependent on PIF4. However, we note that the expression profile of PIF4 under FR closely 

matches the expression profile of PHYA under FR, suggesting a direct regulation of PHYA by 

PIF4 under FR. The strong direct induction of PHYB does not match the expression profile of 

PIF4 and suggests other factors may be involved in the direct transcriptional response of PHYB 

under FR. Also the putative role of PIF4 in PHYA expression under FR is not entirely in line with 

our findings that PIF4 represses PIF4 expression. Such a mechanism should limit large changes 

in PIF4 expression. The alternative explanation could be that negative feedback of PIF4 on its 

own promoter is conditional, as is described for the action of PIF4 at the YUCCA8 promoter 

(vd Woude 2018 under review). For the PIF4 target gene YUCCA8 the change in PIF4 activity 

at normal temperature and under warmth is related to a change in histone modifications and 

histone exchange at the YUCCA8 promoter (vd Woude 2018 under review). We have shown 

that MED25 is involved in this switch of histones activity by demonstrating that MED25 binds 

to HDA9 and that MED25 destabilizes HDA9 (Chapter 4). It still needs further investigation 

whether a similar regulation occurs at the PIF4 promoter itself. However, CHIP analysis with 

HDA9 does indeed identify PIF4 as target (Chen et al., 2016). Moreover, similar questions can 

be raised about the strong upregulation of PIF4 expression under FR, especially since the 

expectations are the PIF4 protein is stabilized under FR. Therefore, further research is needed 

to determine whether the upregulation of PIF4 under FR involves histone modifications at the 

PIF4 locus and what the potential role of MED25 is in this. Indirect evidence that MED25 is 

important for the negative feedback regulation of PIF4 on its own promoter activity comes 
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from the observation of higher PIF4 expression in pft1-2 at normal temperature and the even 

stronger upregulation of PIF4 expression in pft1-2 under warmth (Chapter 4).  

 

Confusion about the effect of PIF4 overexpression 

In this research, I have made use of firefly luciferase reporter genes to test promoter activity 

in stable transformed plants, or to test promoter activity in transient expression assays in 

N.benthamiana leaves for evaluating the contribution of transcription factors to the 

expression of the LUC reporter. The measurement of LUC activity in stable transformed plants 

or in leaves of N.benthamiana using LUMINATOR is easy and versatile, as promoter activity 

can be monitored as function of both light quality and temperature. However, we also 

encountered some problems with the interpretation of LUC reporter activities, especially in 

transient expression assays using PIF4 target gene reporters and PIF4 effector genes. In 

addition, the effect of PIF4 overexpression in our results was often different from what is 

reported in literature. While some issues still need to be resolved, the seemingly contradictory 

results with PIF4 could eventually be explained by the fact that we use untagged PIF4 in 

overexpression experiments, while in many published papers a tagged version of PIF4 was 

used. Here, I discuss the discrepancies between our results compared to published results: 

(1) different results of PIF4 effector construct in transient assays with PIF4 target genes: 

the tag on PIF4 is affecting PIF4 activity in transient assays.  

(2) difference between in planta and leaf-extract LUC activity: for PIF4 overexpression in 

leaf cells lower efficiency of the LUC reaction, e.g. due to competition for ATP? 

(3) different effect for PIF4OE on hypocotyl elongation: examples used in literature about 

PIF4OE stimulating hypocotyl elongation is the exception rather than the rule.  

(4) Higher PIF4 expression in the MED25 mutant pft1-2 does not link to increased 

hypocotyl elongation: in pft1-2 the PIF4 expression is uncoupled from downstream 

PIF4 target gene expression.  

Different results with untagged and tagged PIF4 in plant transient expression assays. 
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During tests of the role of PIF4 in the activation of PIF4 target genes (YUCCA8, IAA29) in 

transient expression assays by agro-infiltration of N.benthamiana leaves, we found that our 

own results are different from published results. Several groups have used the transient 

expression system in N.benthamiana leaves to demonstrate to positive action of PIF4 on 

YUCCA8. PIF4 binds to the G-box present in the YUCCA8 promoter but not to G-box present in 

promoter of YUCCA5/9/10 (Sun et al., 2012). A PIF4 effector construct was used to 

demonstrate that PIF4 activates the pYUCCA8:LUC reporter in a transient expression assay in 

N.benthamiana leaves (Sun et al., 2012). We repeated this experiment with our own PIF4 

effector gene. When co-expressed with the reporter YUCCA8-LUC, the PIF4 effector construct 

resulted in lower LUC activity in the agro-infiltrated leaf instead of higher activity as shown by 

Sun et al., (Sun et al., 2012). We ascribe this discrepancy in results to differences in the PIF4 

effector construct: according to methods in Sun et al., (Sun et al., 2012), their PIF4 coding 

fragment for the effector construct was amplified by PCR with the forward primer 5-

CACCATGGAACACCAAGGTTGGAG-3 and reverse primer 5-GTGGTCCAAACGAGAACCGT-3 (Sun 

et al., 2012). This reverse primer used for the PIF4 amplification does not contain a stop codon, 

suggesting that their effector gene expresses a PIF4 protein with an unknown extension at the 

C-terminus (35S:PIF4-x). In contrast, our own PIF4 effector construct expresses PIF4 without 

C-terminal extension (35S:PIF4). 

Moreover, the studies on the regulation of BR biosynthesis genes by Martinez et al., 

(Martínez et al., 2018) presented us with a similar discrepancy. In these studies a PIF4 effector 

construct is used, expressing a tagged version of PIF4 (35S:PIF4-HA) in combination with the 

PIF4 target reporter pPIL1:LUC. In their assay, the pPIL1:LUC activity was quantified in intact 

N.benthamiana leaf discs and these assays show a very strong stimulation of pPIL1 promoter 

activity by PIF4-HA. In contrast, in a similar assay with pPIL1:LUC and our own PIF4 effector 

gene (without C-terminal tag) the pPIL1:LUC activity is suppressed in N.benthamiana leaves 

(data not shown). Combined, this leads us to speculate/propose that untagged PIF4 and C-

terminal tagged PIF4 do not behave the same in transient expression assays for PIF4 target 

reporter genes: untagged PIF4 leads to suppression of PIF4-target reporter genes, while 

tagged PIF4 leads to stimulation of PIF4-target reporter genes. Thus, we tested the untagged 

PIF4 effector (35S:PIF4) and two PIF4 effector constructs with a C-terminal tag: 35S:cLUC-PIF4, 

expressing PIF4 with a C-terminal half cLUC extension, or 35S:PIF4-nLUC, expressing PIF4 
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protein with a C-terminal half nLUC extension. These half-LUC proteins do not have any LUC 

activity by themselves. The different PIF4 effector constructs were tested with our pIAA29:LUC 

reporter. The IAA29 gene is induced by PIFs and PIF4 binds to the promoter of IAA29 

(Hornitschek et al., 2009; Hornitschek et al., 2012). The pIAA29:LUC was co-expressed with 

different PIF4 effector constructs. When LUC activity is imaged in infiltrated N.benthamiana 

leaves, results show that the PIF4 effector without extension reduces LUC activity from the 

pIAA29:LUC compared to control pIAA29:LUC+EV (Figure 3). In contrast, the PIF4 effectors 

with a C-terminal or N-terminal extension show increased activity for the pIAA29:LUC reporter 

in leaves (Figure 3). This shows that the C-terminal or N-terminal tagged PIF4 proteins are 

active, but their activity is different from the untagged PIF4 protein in N.benthamiana leaves. 
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Figure-3. Effect of TAG to PIF4 function on pIAA29:LUC co-expression in N.benthamiana transient 

assay. (A). Three type of constructs were created for PIF4 function. 1) cLUC fused PIF4 (without own stop codon); 

2) PIF4 (without stop codon) fused with nLUC; 3) PIF4 with own stop codon. All three construct derived with 35S 

promoter. (B, C, D). The pIAA29:LUC reporter was co-expressed in N.benthamiana leaves with Empty Vector (EV) 

and effectors cLUC-PIF4-x, PIF4-nLUC or PIF4 without tag. An average value of each samples is based on six 

individual leaves. Bars with a different letter (a,b,c,d) show significant differences (p-value<0.05). 

 

Different LUC activity in in planta and in leaf extract assays? 

The transient expression of the LUC reporter with different effectors can be assayed in intact 

leaves with LUMINATOR to obtain an image of the in planta LUC activity or results can be 

obtained in an extract of N.benthamiana leaves by measuring LUC activity in an in vitro extract 

assay. Leaf imaging of pYUCCA8:LUC resulted in reduction in luminescence with PIF4 co-

expression compared to EV control (Figure 4A). In the leaf extract assay the variation in agro-

infiltration can be corrected by calibration with a 35S-renillaLUC control construct. When the 

PIF4 effector construct is assayed in a leaf extract assay the results show an almost three fold 

stimulation of pYUCCA8:LUC activity (Figure 4B). Therefore, there is a discrepancy between 

the pYUCCA8:LUC activity detected in intact leaves and in leaf extracts. For this reason, we 

used only extract assay for the evaluation of the transient expression assays. One possible 

explanation is that untagged PIF4 activates many ATP consuming activities, resulting in a 

bigger competition for ATP and consequently a lower apparent LUC activity in living cells. In a 

leaf extract assay the ATP is provided and the cell physiology does not affect the quantification 

of LUC activity. However, at this point this explanation remains speculative.  
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Figure 5. Difference in in planta LUC activity and LUC activity in leaf extacts. (A). Leaves of 

N.benthamiana were agro-infiltrated with the pYUCCA8-LUC reporter in combination with an empty vector 

construct or a 35S-PIF4 effector construct. LUC activity was imaged in leaves at 5 days post agroinfiltration. The 

relative LUC activity is quantified in ImageJ and adjusted for background signal. Number of replicate leaf: N=5. 

Error bars represent mean ±SE. (B) same agro infiltration experiment as in A but LUC activiaty was scored in leaf 

extracts instead of by imaging. The LUC activity is normalised by Renilla LUC from a 35S-renillaLUC expression 

construct used in each infiltration as control for agro-infiltration efficiency. Each average values is based on five 

biological and 3 technical replicates. Technical replicates were all similar (Δ>1%). Significant differences between 

EV and PIF4 effector treatment are indicated by "a" (p-value<0.05). 

PIF4 overexpression affects seedling hypocotyl elongation?  

In one of the first papers on PIF4, two lines are presented with overexpression of PIF4 without 

C-terminal extension (35S:PIF4). One line shows 1.1-fold and the other a 1.3-fold longer 

hypocotyl elongation for seedlings grown under R light (Huq and Quail, 2002). Our own 

transformation of Arabidopsis Col-0 with a 35S:PIF4 expression construct resulted in over 24 

individual primary transformants. From these only 2 showed a substantial increase of 

hypocotyl elongation when grown under mixed light (Figure 5). This indicates that stimulation 

of hypocotyl elongation by PIF4OE under this condition is more the exception than the rule, 

or could vary depending on the growth conditions. However, when PIF4 with a C-terminal tag 

is overexpressed, the stimulation of hypocotyl elongation under R, WL or B seems to be much 

stronger: 2,7-fold for PIF4-HA (Sun et al., 2012), 3-fold for PIF4-YFP and 2.5-fold for PIF4-myc 

(Ma et al., 2016), 4-fold for PIF4 GFP (de Lucas et al., 2008; Bernardo-Garcia et al., 2014). 

Therefore, we conclude that PIF4 proteins with tag can act as transcription factor, but that 
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PIF4 with tag is more active in stimulating seedling hypocotyl elongation than PIF4 without C- 

or N-terminal tag. When the goal of an experiment is to assess whether PIF4 can stimulate 

gene expression for elongation, the PIF4+tag can still be used. However, when the goal of the 

experiment is to understand the regulation of PIF4 expression and regulation of PIF4 target 

genes, the use of PIF4+tag can give misleading results.  

 

Figure 5. Distribution of the hypocotyl length in T1 PIF4OE lines. A total of 24 transgenic T0 progeny seeds 

were selected by red seed coat marker. Seeds were imbibed on the MS-agar plate at 4 ᵒC for four days. Then 

plates transferred to 12hrWL/22ᵒC and 12hrD/18ᵒC. After 7 days the hypocotyl length of each T1 seedling was 

measured and compared to average length of WT hypocotyl (N=17). The graph shows that only 2 PIF4OE lines 

have hypocotyl length more than 2-fold of WT hypocotyl length.  

PIF4 overexpression in MED25 does not link to hypocotyl elongation 

Another confusion result we obtained was during the analysis of the role of MED25 in 

elongation responses. The hypocotyl length of the MED25 mutant pft1-2 is not much affected 

under normal 12L/12D conditions compared to WT. However in pft1-2 seedlings the 

expression of PIF4 is substantially increased. Moreover, under warmth, the expression of PIF4 

is stimulated in WT seedlings, resulting in increased hypocotyl elongation, while under warmth 

the expression of PIF4 is much stronger activated in pft1-2, but hypocotyl elongation is 

reduced compared to WT. Eventually we could show that this uncoupling of PIF4 activity and 

elongation responses may be linked to the uncoupling of PIF4 expression and PIF4 target gene 

expression in pft1-2. What made things also confusing was the expression of increased auxin 

signaling in pft1-2. To monitor auxin signalling in plants the artificial auxin sensing promoter 

eDR5v2 (Liao et al., 2015) was fused to the ffLUC coding region and the eDR5v2:LUC was 

introduced into WT plants. One of the representative eDR5v2:LUC reporter plants was 
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developed into a homozygous reporter line. This line was crossed with pft1-2 to develop a 

pft1-2eDR5:LUC reporter line. Analysis of the auxin signalling activity in these plants show that 

eDR5v2:LUC activity is higher in pft1-2 (Figure 6), even though auxin biosynthetic gene activity 

YUCCA8 expression is lower in pft1-2: Chapter 5). We ascribe this higher auxin signalling 

activity to the role of MED25 in regulating transcriptional activity at promoters regulated by 

ARFs, as the eDR5v2 promoter is regulated by ARFs (Liao et al., 2015). When auxin levels are 

low, ARF activity is inhibited by Aux/IAA proteins and recently it was shown that this involves 

recruitment of a repressor complex that may also involve MED25 (Ito et al., 2016). At high 

auxin this repressor complex is released because of destruction of the AUX/IAA protein. 

Eventually the transcriptional activity of auxin-induced genes is counteracted by new 

production of AUX/IAA. We speculate that MED25 may play a role in recruitment of AUX/IAA 

and/or the repressor complex that binds to AUX/IAA proteins at auxin-induced genes after 

initial induction by auxin. MED25 is bound to the ARF7/19 at ARF target promoters and the 

mediator complex can interact with the dissociable CDK8 kinase module (CKM), which 

putatively blocks RNA polymerase II recruitment to targets of ARF7 and ARF19 (Ito et al., 

2016). Part of the CKM complex is HEN3 (Wang and Chen, 2004) while HEN3 is bound to the 

transcription corepressor LEUNIG and the histone deacetylase HDA19 (Gonzalez et al., 2007). 

It is not known whether MED25 plays a direct role in recruiting this complex to ARF target 

promoters through interaction with HDA19. However, if HDA19, as part of the overall 

repressor complex, is recruited by specific interaction with MED25 to ARF target promoters, 

we predict that in a pft1-2 mutant background the auxin induced ARF transcriptional activity 

may be sustained longer when re-recruitment of the CKM repressive complex through 

interaction with HDA19 is less efficient without MED25. In the absence of MED25 auxin-

induced genes can apparently still be repressed, but the dynamics of suppression may be 

slower in the absence of MED25. The default higher eDR5v2:LUC activity as observed in pft1-

2 may therefore be the result of prolonged auxin induced activity rather than an increased 

auxin induced activity. Indeed, when leaf tissues of WTeDR5:LUC or pft1-2eDR5:LUC reporter plants 

are treated with auxin, the induced LUC activity in WT declines more rapid than in pft1-2 

(Figure 6). This experiment was repeated four times with qualitatively similar results. 

However, the more prolonged auxin signalling activity in the pft1-2 mutant apparently does 
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not cause increased elongation in contrast with the shorter hypocotyl or smaller rosette size 

of pft1-2 at 22ᵒC (Chapter 4. Figure 1).  

 

Figure 6. eDR5-LUC activity in response to auxin treatment. Leaf pieces of WT and pft1-2 expressing eDR5-

LUC were placed in 1 mM luciferin and after 2 hours NAA was added to final concentration of 10 µM NAA. 

Subsequently, the eDR5:LUC activity was imaged in continuous darkness every 10 min. Y axis= relative LUC 

activity. X axis= image numbers.  

 

The uncoupling of PIF4 expression and elongation response in pft1-2 at normal temperature 

and during thermo-morphogenesis may be explained by the pleiotropic action of MED25 as 

MED25 associates with transcription factors involved in JA signalling (Kidd et al., 2009; Cevik 

et al., 2012; An et al., 2017), in auxin signalling (Raya-Gonzalez et al., 2014), in ABA signalling 

(Chen et al., 2012). For uncoupling of increased PIF4 expression or increased auxin signaling 

in pft1-2 and elongation, we predict a downstream component of the signal transduction 

pathway towards elongation (Figure 2) is affected in the pft1-2 mutant. For instance, such 

downstream target could be PIF3 (Bours et al., 2015). This will need further investigation in 

the future. 

-DIF elongation responses involve regulation of miRNAs 

As part of the “Compact plant” project, we performed RNA-seq on Arabidopsis plants under 

+DIF and –DIF for time point end-of-night (EON) and end-of-day (EOD) (M van Hoogdalem). 

For the same EOD and EON time points also microRNAs were isolated, with the aim to 

determine whether some of the differential mRNAs can be related to differential miRNA 
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expression. MicroRNAs (miRNAs) are non-coding 21-24 nt small RNAs that function as post 

transcriptional regulators of gene expression in eukaryotes (Bartel, 2004). The mature miRNA 

may targets specific mRNA targets for degradation or for blocking mRNA translation. Since the 

first identification of a plant miRNA in 2002 (Reinhart et al., 2002), more than 1000 plant 

miRNAs have been identified (Zhang et al., 2005). Moreover, at present about 24500 miRNAs 

are registered in the Central Registry Database of MicroRNAs (www.mirbase.org, Release 

20.0). 

The –DIF response of plants is in part mediated through altered auxin responses and 

literature indicates that some of the genes that some of the auxin response genes are 

regulated by miRNAs. For instance, ath-miR167 and miR-160 suppress auxin signaling via 

cleavage of ARF6, ARF8 and ARF10 respectively (Wu et al., 2006; Liu et al., 2007). The 

overexpression of ath-miR319a results in small of plants and margined leaf shape (Shapulatov 

et al., 2018) and ath-miR156 target SPL genes which are involved in virtually every aspect of 

plant growth (Xie et al., 2017). This thesis has been about the role of PIFs in the DIF responses 

and PIF activity link to miRNAs by the fact that they can regulate expression of miRNA genes. 

For instance, it has been shown that PIF5 binds to promoter of MIR156 genes and repress 

MIR156 expression (Xie et al., 2017). 

The analysis of the miRNAs isolated from the +DIF and –DIF experiment is still 

preliminary at this stage. All counts from miRNA samples per time point were combined and 

expression differences could only be determined from absolute counts and could not be based 

on statistical differences between treatments or time points. This limited results to only 4 

miRNAs that showed at least a two-fold difference between +DIF and –DIF samples at EOD 

and EON. All these miRNAs are up regulated at EOD of -DIF and down-regulated at EON of –

DIF compared to the +DIF control (Figure 7). One of these miRNAs is ath-miR156d which 

targets SPL genes. Interestingly, it previously was shown that expression of the MIR156 genes 

is suppressed by PIFs (Xie et al., 2017). This result is in accordance with the effect of –DIF on 

PIF expression as determined by the RNA seq results, which show that under –DIF expression 

of PIF4 and PIF5 is significantly lower at EOD and significantly higher at EON (van Hoogdalem 

et al, unpublished). This indicates that part of the –DIF response on PIFs is translated into 

differential regulation of MIR156 miRNAs and downstream targets of miR156. It also shows 
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that stimulation of elongation responses induced by shade or inhibition of elongation 

responses as under –DIF, are obtained through opposite regulation of the same set of 

components.  

 

Figure-7. Profiling microRNA expression under negative DIF condition in Arabidopsis. A number of 

microRNAs from end of day (EOD) and end of night (EON) where up- or down-regulated under negative DIF 

condition. Heat map profile of four relevant microRNAs illustrates increased expression (red) and reduced 

expression (green) in DIF. 

Distractions: increased floral dip transformation frequency in pft1-2 and bzr1-1D 

The floral dip method is a widely-used technique to transform Arabidopsis by Agrobacterium 

tumefaciens (Zhang et al., 2006). The floral dip method is an in planta technique and does not 

require in vitro plant tissue culture or regeneration. Young floral buds are dipped into a 

suspension of Agrobacterium after which the Agrobacterium can penetrate the buds and 

reach the female gamete. Agrobacterium can than insert the T-DNA into the DNA of the 

female gamete and transformants can subsequently be selected from the seeds that have 

developed on the floral-dipped inflorescence (Zhang et al., 2006). Usually, the frequency at 

which transgenic seeds are found is between 0.1%-1.0% (Chung et al., 2000; Weigel and 

Glazebrook, 2006). I used floral dip to transform the pft1-2 and bzr1-1D mutants using a vector 

which contains the red-seed coat marker (Ali et al., 2012), making it easy to identify 

transformed seeds in the T0 progeny after floral dip. During these experiments a higher 
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transformation frequency was observed for the pft1-2 and bzr1-1D mutants and especially in 

the pft1-2/bzr1-1D double mutant compared to WT: per 100 ug seeds, 29 red seeds in WT, 61 

in pft1-2, 70 in bzr1-1D and 110 in pft1-2/bzr1-1D. There can be several explanations for this 

difference in transformation frequency in the different mutant lines:  

1) The transformation frequency could be related to the flower size of WT, single mutant and 

double mutant. It has been noted before that the pft1-2 mutant has larger floral organs 

compared to WT (P=0.001) (Xu and Li, 2011). We noted a similar larger floral organs in the 

gain of function mutant bzr1-1D (P=0.002) and in the pft1-2/bzr1-1D double mutant this effect 

on floral organ size is further enhanced (compared to bzr1-1D P=0.027), indicating that BZR1 

and MED25 have independent effects on floral organ size (Figure 8). The flower size does is 

affecting stigma size (not quantified) but does not noticeably affect the seed size. The 

increased flower size could result in more Agrobacterium penetrating the flower, or the 

difference in flower development could create a longer time window during which 

agrobacterium can transform ovules. 

 

Figure 8. Flower size in WT, pft1-2, bzr1-1D and pft1-2/bzr1-1D. A) left to right: Representative flower 

of WT, pft1-2, bzr1-1D and pft1-2/bzr1-1D (scale bar = 1mm). B) Average flower areas (mm2) per line including 

standard error bars (n=8).Different letters indicate statistical differences at P < 0.05. 
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2) Alternatively, the difference in transformation frequency could be related to effects at the 

chromatin level in pft1-2 and bzr1-1D mutants. A number of bacterium proteins including VirD 

and VirE (Stachel and Nester, 1986; Eckardt, 2004) and in plants including Histone proteins 

(Lacroix et al., 2008) are participated during the T-DNA integration into host plant genome. 

Loss of function of H2A-1 gene which encode core histone protein results in reduced T-DNA 

integration, while overexpression of this gene increased transformation frequency (Tenea et 

al., 2009). It has been shown before that mutants in histone modification show an altered T-

DNA transformation frequency (Gelvin and Kim, 2007). This would be consistent with the 

observations that MED25 interacts with HAC1 (An et al., 2017), HDA9 (Chapter 5).  

3) The higher transformation could also be related to a lower resistance against 

Agrobacterium in pft1-2 due to lower SA levels. In the pft1-2 mutant and the bzr1-1D mutants 

the Salicylic Acid (SA) defence genes are less activated (Miyaji et al., 2014). Indeed it has been 

shown that SA negatively influences the growth of Agrobacterium (Anand et al., 2008). 

Being able to manipulate the transformation frequency is of potential interest for 

transformation of recalcitrant crops. We therefore tried to confirm the results of different 

transformation frequencies in WT and the MED25 and BZR1 mutant lines. In this second 

experiment, the transformation frequencies in pft1-2 and bzr1-1D mutant background were 

again higher than in WT, but the double mutant did not show the highest transformation 

frequency. We did note that more of the different floral branches on pft1-2 and bzr1-1D 

contain siliques with transformed seeds (data not shown), suggesting that Agrobacterium may 

have a longer time window to do transformations in these mutants. This would support the 

3rd hypothesis of reduced defence against agrobacterium in these mutants, but additional 

research would be necessary to further address this.  

Future perspectives: research and applications 

This thesis is finished, but the work on understanding regulation of Phytochromes, PIF4, the 

role of MED25 and the translation of the activities of these components into elongation 

responses in plants is far from finished. While all studies here were done in Arabidopsis, the 

novel insights should be applicable to crops as well. PIFs have been studied in tomato, apple, 



177 

 

grape and rice (Pham et al., 2017). Indications are that the basic interactions of PHYs with PIFs 

are conserved and that PIFs play similar roles in regulating elongation in crops. The number of 

interactions that I was able to uncover using the model system Arabidopsis would not have 

been possible when this research would have been done in a model crop. However, with the 

obtained knowledge, these studies can now be performed much faster in crops for validation 

and potential applications. Our findings of the light sensitivity of phytochrome gene 

expression especially under the artificial LED light conditions provide crucial new fundamental 

insights that may be used to control plant growth, yield and quality in greenhouses and indoor 

farming industries  
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Summary 

Light and temperature signalling response is a central mediator of plant growth plasticity. This 

thesis aimed to provides new molecular insights into control of plant growth. This may have 

its application in greenhouses for improved growth control under artificial light and 

temperature conditions. In the introduction chapter 1, I describe the history and context of 

research on light/temperature regulation of plant growth. I provide background information 

on how phytochromes play an important role in the response to plant elongation, especially 

as function of the R:FR ratio in the light spectrum. The input phytochrome protein level is 

determined by transcription of the different PHY genes and the role of transcriptional 

regulation of PHY genes has not been investigated extensively. Using PHY-LUC reporter plants 

it was shown that at the seedling stage PHY gene expression shows oscillations under 

continuous white light, indicating that PHY genes are under control of the circadian clock. In 

this thesis one of the major research questions was to determine the transcriptional 

regulation of PHY genes in Arabidopsis under different light conditions, to determine what the 

potential input in PHY protein levels is during the photoperiod at which PHYs are activated. 

Ultimately this can then also answer the question whether PHY protein levels can be limiting 

or saturating for PIF protein stability. In experimental chapter 2, I investigated the role of 

phytochrome gene activity as function of light quality and temperature. Five PHY-LUC reporter 

lines were constructed and each of the PHY-LUC reporters were also crossed in phytochrome 

single KO mutant backgrounds. Analysis of the LUC activity in seedlings and rosette plants 

were done under mixed LED (consisting of R, FR and B), pure R, pure Fr and pure B light. In this 

way we made several new discoveries: (1) At the seeding stage there are many interactions 

between the different PHY genes, as PHY-LUC activity was substantially affected in the 

different single PHY mutants. However, most of these interactions were gone in the mature 

rosette stage of Arabidopsis. (2) we found that PHYD is a consistent repressor of PHYA 

transcriptional activity. (3) we discovered strong and direct upregulation of PHYB under FR 

light, which is not dependent on PHYA (the usual regulator of FR responses), but was 

dependent in part on PHYE and in part on PHYB. (4) we observed a slow, but steady and 

ultimately strong increase in PHYA expression under FR, which is not dependent on PHYA, but 

on PHYE. (5) overall the results identify PHYE as a possible novel sensor for FR light. The 
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consequences of these strong effects of FR LED light on PHYA and PHYB expression need 

further exploration and needs to be linked to transcription factors that are activated under FR 

light. Future research will have to show whether the strong manipulation of PHY expression 

by pure FR LED light can be mobilised for growth control in greenhouses.  

The experimental chapter 3 is about the complex feedback regulation at the PIF4 

locus. PIF4 functions as a hub in the control of plant growth and plant resilience and a full 

understanding of PIF4 gene regulation is therefore crucial for understanding plant growth and 

resilience. During this thesis work it became known that BZR1 is a key transcriptional regulator 

of PIF4 expression, especially under higher temperature. This regulation by BZR1 is part of an 

indirect positive feedback loop through BR synthesis, BR signaling and further activation of 

BZR1. Such positive feedback has the danger of unrestricted increase in PIF4 and BZR1 activity. 

However, it was thought that this positive feedback regulation of PIF4 is kept under control 

by factors acting at the post-transcriptional level. We discovered that this positive feedback 

regulation by BZR1 is actually broken by PIF4 itself, which acts as a negative regulator of its 

own expression. The negative action of PIF4 can also compete with the positive action of BZR1. 

Overall this adds a new layer to the regulation of transcription of PIF4 and shows that overall 

PIF4 transcription may be determined by the relative levels of PIF4 to BZR1 protein. Near the 

very end of this thesis work a publication revealed the action of PIF4 and BZR1 on genes of the 

BR biosynthesis pathway. For these BR biosynthetic genes BZR1 homodimers act as a 

repressor and heterodimer formation between PIF4 and BZR1 lead to a release of the BZR1 

homodimer repressor from these target promoters. It was not clear whether excess PIF4 is 

subsequently acting as positive factor on these target promoters. We propose a similar model 

for the regulation of PIF4, but with the change of BZR1 homodimer acting as positive factor 

for PIF4 transcription. When PIF4 protein levels rise, formation of the PIF4/BZR1 heterodimer 

removes the positive acting BZR1 homodimer. It is not clear whether subsequently excess PIF4 

than acts as negative factor for its own gene transcription. In addition, we show in chapter 3 

that PIF4 regulate PHYB and PHYD expression. As light activated PHY protein leads to 

destruction of PIF4, this adds another indirect feedback on PIF4 activity.  

In experimental chapter 4 we investigated the role of MED25 in transcriptional 

regulation of PIF4. MED25 is a plant specific component of the Mediator complex, which acts 
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between transcription factors bound to promoters and the general transcription machinery 

containing Polymerase II. First we discovered that in the MED25 mutant pft1-2 the hypocotyl 

elongation under warmth is attenuated. Moreover, we demonstrate that MED25 can interact 

with PIF4 and BZR1, adding these two transcription factors to the subset of transcription 

factors that can interact with MED25 (unpublished data). We subsequently show that PIF4 

expression is upregulated in pft1-2 at ambient temperature, while PIF4 expression is super 

induced compared to WT at warm temperature. However, this upregulation of PIF4 expression 

is uncoupled from induction of PIF4 target gene YUCCA8 and from the elongation response. 

The regulation of PIF4 gene transcription and regulation of PIF4 target genes by PIF4 has an 

additional layer, as histone modifications at these promoters also become part of the 

equation. We provide evidence that MED25 may actually recruit histone modifying activity for 

PIF4 target genes. During this thesis research it was shown that the SANT (SWI3/DAD2/N-

CoR/TFIII-B) domain protein POWERDRESS (PWR) acts as a subunit in a complex with HDA9 to 

result in lysine deacetylation of histone H3 at specific genomic targets. We assisted M.van 

Zanten from Utrecht University in elucidating the role of HDA9 in transcriptional activity of 

PIF4 target genes under warmth by monitoring different LUC reporters at 22 oC and 27oC. 

These studies led to a model in which HDA9 is stabilized under warmth and is recruited to PIF4 

target promoters to facilitate local histone deacetylaton. This in turn facilitates exchange of 

repressive H2A.Z histones at these promoters for permissive canonical H2A histones, which 

are evicted more rapidly under warmth and thus freeing the promoter for a positive PIF4 

action. Unclear in this model was how HDA9 is stabilized under warmth and how HDA9 is 

recruited to these specific promoter sites. This question was addressed by our studies which 

show that MED25 can bind both to PIF4, BZR1 and to HDA9. A role for MED25 in recruiting 

histone modifying activity has previously been described for Jasmonic Acid (Ja-Ile) signaling 

responses, during which MED25, bound to MYC2 at MYC2 target promoters can recruit 

Histone acetylase enzyme (HAC1). However, in this context MED25 recruits a HAC1 which 

activates transcription of the MYC2 target genes. Mediator is also involved in recruiting HDA19 

to promoters regulated by ARF7 and ARF19, while MED25 can bind to these ARFs. However, 

in the context of ARF regulated promoters it is not yet clear whether MED25 plays a direct role 

in recruitment of HDA19. 
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Finally, in experimental chapter 5 I describe a novel strategy by which plants can be 

transformed with a single construct to obtain overexpression of the transgene and silencing 

of an endogenous target gene of interest. This strategy was inspired by observing that a few 

plant genes in nature contain a miRNA encoded in an intron. Although for plant microRNA 

containing genes it has not been fully investigated whether such genes can produce the two 

potential products of host gene encoded protein and intron encoded miRNA I used this 

concept to design a transgene with intron in which an artificial intron miRNA (aimiRNA) was 

placed. As host gene the sequence of the firefly luciferase with intron was used and as miRNA 

template we used the miRNA319a sequence, also because the activity of this miRNA gives a 

clear plant leaf phenotype. After adjusting the positioning of the aimiRNA within the intron 

we obtained several examples of a working transgene which also produces a functional 

miRNA. Such concept may now be combined with the research we did on plant growth control, 

for instance by making a bzr1-1D overexpression construct with a miRNA in the intron that 

targets MED25. Such single construct could be used to transform ornamentals to test whether 

larger flowers are formed for crops, like cotton to determine if this allows for more cotton 

fiber elongation. 

In the final discussion chapter, I discuss some of the many questions that remain after 

this research. In general this research has been broad, leading to many new discoveries, but 

some discoveries now need follow up to get a full understanding of the underlying mechanism.  
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