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Vaccines 

Vaccination is a proven method of preventing infectious diseases [1]. Through the 

administration of antigenic material, vaccines stimulate an individual’s immune system 

and thereby provide protection against subsequent infection. Vaccines that are used to 

protect healthy individuals against disease in the form of a preventive intervention are 

called prophylactic vaccines. Prophylactic vaccination has resulted in the eradication of 

smallpox and rinderpest [2, 3] and the eradication of poliomyelitis lays in sight [4]. 

Because of these successes, there is an increasing demand for new prophylactic 

vaccines. This increase is due to a variety of reasons. Firstly, infectious diseases show 

antigenic variation resulting in evasion of the immune responses elicited by existing 

vaccines, thereby reducing their potency [5]. Secondly, it is becoming increasingly 

difficult to treat bacterial disease by antibiotics as more bacteria arise that acquired 

antimicrobial resistance [6]. Vaccination would be an effective method to prevent 

bacterial infections that are increasingly difficult to treat with antibiotics due to 

antimicrobial resistance [7, 8]. Thirdly, the introduction of single serogroup-specific 

vaccines for a disease can cause another serogroup to emerge [9]. Lastly, prophylactic 

vaccine development is needed for diseases that were previously not recognized as 

infectious diseases, such as cervical cancer, which is linked to Human Papiloma Virus, 

and Type I diabetes, which is linked to Coxsackievirus [10, 11]. 

Besides the growing need for the development of prophylactic vaccines to prevent 

infectious disease, there is increasing attention for the development of therapeutic 

vaccines. In contrast to prophylactic vaccines, therapeutic vaccines are used as 

immunotherapy to treat existing disease. Therapeutic vaccines stimulate the immune 

system such that the cause of the disease is countered by the immune system. 

Therapeutic vaccines can be personalized and show a huge potential in for example 

cancer immunotherapy [12].  

Vaccine development and vaccine platforms 

The development of traditional prophylactic vaccines is based on the inactivation or 

attenuation of the infectious agent. Although proven successful in preventing infectious 

disease, these traditional methods have drawbacks. Live attenuated vaccines are based 

on weakened pathogens that could revert to a pathogenic form. Although very rare, this 

may lead to serious adverse effects. Inactivated vaccines do not hold this risk, but 
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require the cultivation of large volumes of the pathogen during the production process 

instead. Moreover, the development period of traditionally manufactured vaccines is 

rather long because for each pathogenic candidate a new production method needs to 

be designed and tested. A very promising concept that can tackle the problems that 

arise with these traditional methodologies is a vaccine platform. In a vaccine platform, 

the pathogen is not grown, but a selected protective part of the pathogen (antigen) is 

produced instead. Importantly, the platform that forms the basis of the vaccine can be 

maintained and used for the development of any new vaccine (Figure 1). In other 

words: the production process of new vaccines is essentially the same as the production 

process of other vaccines based on the vaccine platform. As such, vaccine platforms 

have the potential to drive the development of safe and effective vaccines in less time 

and at a lower cost. The initial development of robust and high-yielding production 

processes is of major importance for vaccine platforms to form a solution to the 

increasing demand for vaccines. 

 

Outer membrane vesicle-based vaccine platforms 

Bacterial outer membrane vesicles (OMVs) are highly suitable as a basis for the 

development of a vaccine platform. OMVs are 20-200 nm sized vesicles shed by Gram-

negative bacteria and consist of a lipid bilayer, outer membrane proteins and OMV 

cargo [13]. The membrane of the vesicle consists of phospholipids, lipopolysaccharides 

Figure 1. Basic concept of a vaccine platform. Antigens against varying targets can be exchanged on the 

vaccine platform, in this case an outer membrane vesicle (OMV). This new vaccine can be produced in the 

well-defined production process of the carrier OMV, since the addition of an antigen should minimally 

affect this process. 
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(LPS), and proteins (Figure 2). The lumen of the vesicle has been shown to contain 

cytoplasmic components as well as ribonucleic acid (RNA), and deoxyribonucleic acid 

(DNA). Biologically, OMVs are generally thought to be advantageous to the survival 

chances of the bacterium. OMVs can deliver virulence factors, modulate host immune 

responses, mediate cell-to-cell communication, or be involved in nutrient acquisition 

[13-15]. Moreover, OMVs can provide protection for the bacterium against the infection 

of bacteriophages, which are viruses that infect bacteria. This has been shown for V. 

cholerae where OMVs inhibit bacteriophage infection by forming OMVs as a decoy [16].  

OMVs offer a combination of the most important characteristics of vaccines, making 

these nanoparticles intriguing vaccine-platform candidates. The surface of OMVs is 

filled with immunogenic components of the bacterium from which the vesicles have 

been derived [17-19], but because OMVs are non-replicative particles, they cannot 

cause the disease. As such, OMV-based vaccines can be regarded as safe. A second 

advantage is the particle shape of OMVs in combination with their ability to activate the 

innate immune system, which makes OMVs self-adjuvating [14]. The OMVs are filled 

with components that act as pathogen-associated molecular patters (PAMPS), such as 

LPS and DNA [20]. These components can be recognized by the human immune system 

Figure 2. Outer membrane vesicle composition. OMVs are spherical nanoparticles secreted from bacteria. 

An OMV consists of a membrane with lipopolysaccharides, phospholipids, and outer membrane proteins. The 

lumen of the vesicle is filled with components as proteins, DNA, and RNA. 
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and induce infection-like innate immune response. The small size and particle shape of 

OMVs allows for distribution throughout the body, resulting in a systemic innate 

immune response [21]. Another advantage of OMV-based vaccines is that OMVs are 

highly stable at varying temperatures [22-24], which facilitates storage and transport of 

OMV-based vaccines. OMVs have been shown to elicit long-term memory responses 

[25], which are important for the efficacy of the vaccine. Lastly, OMVs induce both 

humoral and cellular mediated immune responses against OMV-presented antigens. 

These immunogenic properties of OMVs distinguish OMV-based vaccines from other 

vaccine types that have been regarded as highly safe, such as subunit vaccines. Subunit 

vaccines are a combination of a purified antigen formulated with an adjuvating agent 

and are regarded as a highly safe due to their high purity. However, the induced 

immune response of subunit vaccines is often low. Various research is performed to 

optimize subunit vaccines, by finding a perfect mix of adjuvant agents and formulation 

for each new vaccine [26]. Expressing antigens on OMVs combines the advantages of the 

high purity of subunit vaccines with balanced immune responses.  

Design of a Neisseria meningitidis OMV-based vaccine platform 

OMVs have been used to control epidemic outbreaks of Neisseria meningitidis (Nm) 

serogroup B meningitis in Norway, Chile, Cuba, Brazil, and New-Zealand [27-32]. 

Despite the experience with OMV-based vaccines during outbreaks and over 30 years of 

research on OMV-based vaccines, only recently the first vaccine containing an OMV, the 

meningococcal serogroup B vaccine 4CMenB, has been approved by the FDA and EMA 

for routine use [33].  

New vaccines based on a modular OMV-based vaccine platform should express specific 

disease-associated antigens. A vaccine platform based on the OMVs from the pathogen 

N. meningitidis rules out possible side-effects against commensal bacteria. In contrast, 

heterologous antigens can be expressed on the laboratory workhorse E. coli derived 

OMVs [34, 35]. Expression of antigens in E. coli is relatively straightforward, although 

vaccines based on these OMVs could cause unwanted immune responses against 

commensal strains of E. coli. OMVs derived from Nm have been shown safe and genetic 

modification of Neisseria spp. is feasible [36].  

In this thesis we study Nm serogroup B OMVs as a basis for a vaccine platform. To 

develop such a vaccine platform, heterologous antigens were produced by expression of 
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the heterologous antigen in the OMV producing Nm strain. Surface localization was 

reached through fusion of the antigen to an N-terminal part of the Nm factor H binding 

protein (fHbp)[37]. In this way, OMVs can be produced with surface exposed 

heterologous antigens. In addition to the expression of heterologous antigens, multiple 

modifications are required to develop a vaccine platform base. In this thesis, a Nm 

production strain was used based on a Nm serogroup B isolate, which has been the 

basis of the serogroup B meningococcal vaccines HexaMen® and NonaMen®. These 

meningococcal vaccines have been developed at Intravacc (and its predecessors) [38], 

where the work of this thesis has been performed. This pathogen has been modified in 

such a way that its OMVs can be used as the basis for a modular vaccine platform. These 

modifications are made to improve OMV formation, reduce the endotoxicity, modulate 

the immune response, and express heterologous antigens on the surface of the OMVs. 

The modifications to the Nm OMV producing strain and the rationale behind them are 

described below. 

1. Increased OMV formation 

The OMV productivity was enhanced artificially by stimulating the release of OMVs from 

the bacterium by reducing the linkage between the outer membrane and the 

peptidoglycan layer. For Nm, a knock-out mutation of the rmpM gene causes reduced 

linkage of the outer membrane to the peptidoglycan layer and stimulates OMV release 

(Figure 3). The knockout of rmpM has resulted in a 2-fold increase in the production of 

detergent extracted OMV and a 10-fold increase of the production of OMV from the 

culture supernatant [39].  
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2. Reduced endotoxicity 

A proposed biological role of OMVs is the delivery of bacterial virulence factors to the 

host [40]. Lipopolysaccharides are an important virulence factor of Nm that can trigger 

intense inflammation and result in septic shock [41]. LPS activates the innate immune 

system by activation of the Toll-like receptor 4 (TLR4) [42], which results in 

Figure 3. Design of a Neisseria meningitidis OMV-based vaccine platform. Outer membrane vesicles 

(OMVs) are nanoparticles formed by blebbing of the outer membrane. Heterologous protein antigens are 

expressed and directed to the outer membrane. Blebbing is induced by reduced linkage of the outer 

membrane to the peptidoglycan layer to stimulate OMV release (1). LPS is modulated to lower its toxicity 

and modulate the activation of the innate immune system (2). LPS is further modified to stimulate the 

induced antigen specific immune response by enhancing the binding to DC-SIGN (3). The capsular 

polysaccharide is removed for enhanced safety during production (4), Lastly, the Neisserial antigen PorA is 

removed to direct immune responses against heterologous antigens (5). 
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proinflammatory cell activation. To be able to use OMVs as vaccine, the LPS needs to be 

severely reduced or detoxified. Reduction of LPS has been reached by the production of 

OMVs by detergent extraction of bacteria. Immune modulation by the genetic 

modification of LPS allows the engineering of the degree of TLR4 activation [43] and is 

required for the direct use of spontaneous released OMVs. Genetic modification of the 

lpxL1 gene results in penta-acylated lipid A LPS instead of hexa-acylated LPS [44]. This 

penta-acylated LPS shows reduced endotoxicity, making detergent extraction to reduce 

excess LPS reactogenicity obsolete [39]. 

3. Skewing of T-cell responses 

Besides being a potent adjuvant, Nm LPS can selectively induce the desired arm of the 

immune response. Targeting vaccines directly to dendritic cells, that efficiently take up 

antigens and stimulate antigen specific immune responses, is a method to enhance the 

potency of vaccines [45]. LPS-deficient mutants are poorly internalized in dendritic cells 

and lack the ability to activate dendritic cells [46]. LPS can be further modified to exhibit 

strong adhesion and internalization properties towards dendritic cells [47]. An lgtB 

gene knockout results in a truncated oligosaccharide LPS form, which improves the 

interacting with DC-SIGN, and thus enhancing phagocytosis [48]. OMVs containing LgtB 

mutated LPS in combination with penta-acylated lipid A showed increased uptake by 

dendritic cells and maturation of dendritic cells. Alternatively, LPS from N. gonorrhoeae 

expressing a terminal N-acetylgalactosamine results in skewing towards T-helper type 

2 (TH2) responses [49]. Here we use a LgtB LPS mutant of Nm to enhance the antigen 

specific immune response. 

4. Prevention of auto-immune responses  

The capsular polysaccharide of Nm is used as the basis of Nm serogroup A, C, W, and Y 

vaccines [50]. The capsular polysaccharide (CPS) of Nm serogroup B consists of α(2–8)-

linked N-acetylneuraminic acid polymers, that are also found on human neural cells 

[51]. Although the serogroup B capsule is not immunogenic due to immune tolerance, 

including serogroup B capsular polysaccharide in a vaccine composition could lead to 

autoimmunity [52]. Bacterial capsules prevent phagocytosis, thus removing the Nm 

capsule results in reduced virulence of the bacteria [53]. Removing the Nm capsule 

rules out possible autoimmunity and it enhances the safety of the production host, 

which is a practical advantage in development and production in the laboratory. 
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Capsule deficient mutants of Nm can be obtained by deletion of the complete cps locus 

[54, 55], or by knockout mutation of the siaD gene [56]. SiaD is involved in the synthesis 

of α(2,8) polysialic acids [57]. A SiaD knockout mutant was used as the basis of the Nm 

OMV platform. 

5. Reduced OMV-backbone antigenicity 

A vaccine platform should have reduced immune responses against the carrier platform 

to optimize the response against heterologous antigens and to be able to reuse the 

platform backbone for subsequent vaccines. Nm outer membrane porin A (PorA) is the 

major protein component of Nm OMVs and identified as a major antigenic protein [58]. 

Serum bactericidal antibodies directed against PorA correlate with protection against 

meningococcal disease [59]. Nm serogroup B meningitis vaccines expressing multiple 

PorA variants have been developed [60-62]. In this thesis a Nm strain without PorA was 

used to improve the immune response against heterologous antigens. 

OMV production processes 

OMVs as the basis of a modular vaccine platform can provide important standardization 

of the elicited immune responses, as well as the delivery of antigens on nanoparticles. A 

vaccine platform based on OMVs spontaneously released from the bacteria (sOMVs) is 

only viable if the production yields are high. Currently, OMVs are regarded as expensive 

vaccine component to produce [63, 64]. These OMV production processes have 

moderate yields as these first-generation OMVs were based on extraction with the 

detergent deoxycholate to reduce the endotoxic lipopolysaccharide content of OMVs 

[65]. In the production process, crude yields are high although the detergent extraction 

reduces the content of important protective lipoprotein antigens and impairs vesicle 

integrity [63]. This results in aggregation upon cooled storage and subsequent 

difficulties in sterile filtration of the product. Additionally, deoxycholate used for OMV 

extraction is a product of animal origin that remains in the vesicle product and is thus 

undesirable [66]. OMVs spontaneously released by bacteria retain lipoproteins in their 

vesicles. Purifying OMVs from the supernatant of bacterial cultures would be preferred 

because they better mimic the natural situation, have improved stability, and have a 

shortened purification process. Despite these advantages, current Nm sOMV production 

processes are low yielding. As the release of OMVs by the bacterium mimics their 
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biological role, research in the biogenesis of OMVs can result in biologically inspired and 

improved production processes.  

Recently, the proposed mechanisms of OMV biogenesis have been categorized in to 

three models [67]. One model is based on OMV release through altered lipid asymmetry 

in the outer membrane, which normally consist of LPS in the outer leaflet and 

phospholipids in the inner leaflet. Phospholipid accumulation in the outer leaflet of the 

outer membrane results in OMV release. A second model describes that OMVs are 

released by accumulation of misfolded and unfolded proteins in the periplasm. The 

third model describes OMV formation because of LPS modifications that impair the 

stability of the outer membrane. It remains unclear if the biogenesis of OMVs is shared 

among bacterial species. For Nm it was previously shown that cysteine depletion results 

in the release of OMVs in a batch culture [68]. Cysteine depletion caused impaired sulfur 

supply, the onset of the stationary growth phase, and transcriptome responses of 

oxidative stress. This state was accompanied with increased OMV release although the 

exact mechanism of OMV release remained unknown. To improve the yield of Nm OMV 

production, more understanding of the biogenesis of OMVs is required.  

Aim and thesis outline 

The aim of this thesis is to obtain a better understanding of outer membrane vesicle 

formation by Neisseria meningitidis and OMV quality, and use this to develop improved 

OMV production processes that can become a cost-effective basis for an OMV-based 

vaccine platform. 

In Chapter 2 we review the possibilities of an OMV-based vaccine platform. We assess 

the possibilities of introducing heterologous antigens to the OMV and assess the effect 

of the antigen location on the immune system and production process. To enhance the 

development of OMV production systems, analytical tools for direct OMV quantification 

method are required. In Chapter 3, a nanoparticle characterization method was 

assessed and made suitable for the analysis of OMVs. To improve the volumetric 

productivity both the biomass concentration and the specific OMV productivity can be 

increased. This thesis focusses on improving the OMV release of the individual 

bacterium. Based on the research on cysteine depletion as trigger of OMV release, we 

hypothesized that sulfur depletion in general causes OMV release. Chapter 4 researches 

the role of the sulfur source and the effect of sulfur depletion on the release of OMVs. 



Chapter 1  

 

17 
 

Sulfur sources with different oxidation states were used as the intracellular redox state 

was hypothesized to be involved in the release of OMV. Additionally, oxidative stress 

responses have been observed previously upon OMV release after cysteine depletion. In 

Chapter 5, the effect of oxidative stress on the release of OMVs was studied by applying 

increased dissolved oxygen concentrations directly to the cultures. In Chapter 6, a new 

production process of OMVs was researched, based on the OMV stimulating triggers 

found in the previous chapters. The possibility of producing heterologous antigens in 

this process was tested. The OMVs were characterized to assess whether the vesicles 

had sufficient quality to be used as vaccines. Further process intensification of OMV 

production was studied in Chapter 7. The volumetric yield of OMV production in 

bioreactors was improved by applying triggers of OMV release in a continuous 

cultivation process. This continuous production approach of OMVs allows the 

development of vaccines for low-and middle-income countries as well as other low-cost 

applications of OMVs. Lastly, Chapter 8 discusses the major findings in this thesis and 

provides an outlook of the future of OMV-based vaccine platforms.  

  

Figure 4: Graphical outline of the chapters in this thesis. An overview of the current state of research on 

OMV-based vaccine platform is given in Chapter 2. Chapter 3 describes an improved method of OMV 

quantification that is required for the research in the following chapters. Chapter 4 and 5 research the release 

of OMVs from bacteria. The triggers found in these chapters are applied in two different approaches of OMV 

production. Batch-wise OMV production is used to provide a proof of concept for producing heterologous 

antigens on OMVs in Chapter 6. In Chapter 7, continuous OMV production is researched to further improve 

the productivity, followed by a general discussion in Chapter 8. 
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Abstract 

Outer membrane vesicles (OMVs) are naturally non-replicating, highly immunogenic 

spherical nanoparticles derived from Gram-negative bacteria. OMVs from pathogenic 

bacteria have been successfully used as vaccines against bacterial meningitis and sepsis 

among others and the composition of the vesicles can easily be engineered. OMVs can be 

used as a vaccine platform by engineering heterologous antigens to the vesicles. The 

major advantages of adding heterologous proteins to the OMV are that the antigens 

retain their native conformation, the ability of targeting specific immune responses, and 

a single production process suffices for many vaccines. Several promising vaccine 

platform concepts have been engineered based on decorating OMVs with heterologous 

antigens. This review discusses these vaccine concepts and reviews design 

considerations as the antigen location, the adjuvant function, physiochemical 

properties, and the immune response 
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1. Vaccine platforms  

Many vaccines are developed based on Pasteur’s principle: “isolate, inactivate and 

inject” or by the selection of attenuated strains [6]. Although many very effective 

vaccines have been developed by these methods, they have often led to adverse effects. 

Nowadays, vaccines must combine the lowest possible adverse effects with a high 

efficacy. Vaccine platforms can standardize the provoked immune response with high 

safety and low adverse effects, while the design allows for easy switching of displayed 

antigens leading to high efficacy. Protection against different diseases can be addressed 

by presenting different antigens.  

The development of a highly safe and effective vaccine requires a lot of resources and 

time. At the same time the upcoming post-antibiotic era may require the development 

of more vaccines that also need to be developed in a short period [7]. The development 

trajectory can be shortened by vaccine platforms [9], since these platforms provide a 

blueprint for development of many different vaccines instead of a specific development 

trajectory for each separate vaccine with all its uncertainties. The safety of a vaccine 

platform can be established by thorough development of the platform itself. Once the 

safety and efficacy of a platform has been established, development time can be reduced 

for new vaccines, since less testing will be required and unexpected failures will occur 

less. This advantage of vaccine platforms will reduce significantly the time to market, 

which is notoriously long for new vaccines.  

A vaccine platform should provoke a strong specific immune response. This response is 

triggered by conformationally correct antigen presentation, PAMPs (see glossary) to 

activate antigen presenting cells, and a nanosized particulate nature. Furthermore, it 

should be possible to easily add antigens onto the vaccine platform. Platform 

nanovaccines can be based on many components, for example VLPs, ISCOMs, polymeric 

nanoparticles, inorganic nanoparticles, liposomes, and emulsions. A component that is 

often overlooked are OMVs [10]. While many nanoparticles are capable of transferring 

heterologous antigens to antigen presenting cells, the ability to properly stimulate the 

immune system is often not natively present [11]. OMVs, however, combine antigen 

presentation with proper adjuvant properties, making them highly suitable as a vaccine 

platform. 
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OMVs are non-replicative vesicles that are naturally produced by Gram-negative 

bacteria and contain excellent intrinsic immunostimulatory properties based on their 

particulate nature and composition [12]. The vesicles consist of phospholipids, 

lipopolysaccharides (LPS), outer membrane proteins and entrapped periplasmic 

components [13]. OMVs are ascribed many biological functions such as cell to cell 

communication, surface modifications and the expulsion of components [13]. Overall, 

OMVs have been shown to be highly stable even upon elevated temperatures and 

several chemical treatments [14]. This review addresses the latest state of research 

with respect to the development of an OMV based vaccine platform. First, we discuss the 

location of the antigen, which is either inside the OMV or displayed on the OMV surface. 

Location is important for the provoked type of immune response. Two 

approaches of location specific antigen addition are discussed, namely the endogenous 

addition based on antigen production by the bacterium itself and the exogenous 

methods that introduce the antigen in a separate process step. The bioengineering of 

the provoked immune response and the endotoxicity is discussed. Additionally, we 

discuss the bioengineering of the physiochemical properties of the OMV and the 

potential of outer membrane vesicles as vaccine platforms. Lastly, we propose a uniform 

naming of different vesicles based on the origin of the OMVs.   
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2 Designing the OMV: antigen location  

Heterologous antigens on OMVs can be presented with or without surface exposure, 

attached to the vesicle or non-attached and directly produced by the bacterium or 

combined in a later production stage. Various possibilities of antigen locations and their 

production method are schematically shown in Figure 1. At this moment it is unclear 

what the most preferred setup for an OMV based vaccine platform is. This section 

describes the impact of the heterologous antigen location, the endogenous loading of 

antigens to the vesicle lumen and the vesicle surface, and the exogenous loading of 

antigens to the vesicle lumen and the vesicle surface. 

 

Figure 1. Methods of antigen decoration on OMVs. Top row shows surface exposed antigens on the 

vesicles, bottom row shows the antigens as luminal cargo of OMVs. Antigens can be produced by the OMV 

production bacterium (left), while antigen addition to purified vesicles can be divided in mixing, 

conjugation and encapsulation (middle and right).  

 

Surface exposed antigens are accessible for antigen-specific B cell binding, while the 

inside of the vesicle is shielded from these cells. Luminal antigens may be skewed 

towards cytotoxic T-cell responses [15], hence the desired immune response 

determines the design of the OMV. Many groups have expressed antigens in the lumen 

of OMVs to develop OMV vaccines (Table 1) [16-21]. Surprisingly, these studies also find 

antibody-mediated immune responses against the luminal heterologous antigen. 
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Muralinath et al. studied the luminal expression of Pneumococcal PspA in Salmonella 

enterica serovar Typhimurium OMVs [16]. These vesicles triggered minor antibody 

responses against OMVs and PspA in immunized mice and provided protection in a 

challenge experiment. OMVs without PspA or purified PspA alone did neither evoke an 

antibody response nor provide protection. Schild et al. showed minor specific antibody 

responses against periplasmic alkaline phosphatase (PhoA) from Escherichia coli 

expressed in Vibrio cholerae OMVs [17]. In addition to the minor antibody titers found 

in the previous two studies, it was shown by Fantappie et al. that also high functional 

antibody titers can be obtained by expressing heterologous antigens in their native 

conformation in the lumen of E. coli OMVs [18]. This systematic study characterized the 

vesicles by showing incorporation of the antigens and antigen localization. Because of 

the findings in a previous study that the Chlamydial HtrA protein expressed in OMVs 

was partially surface exposed, the authors checked the antigen localization (Box 1) by 

proteinase K treatment [20]. After all, contamination with surface exposed antigen 

could be a cause for the observed response. The heterologous antigens in OMVs were 

found not to be surface exposed. Further analysis of these proteins showed their native 

conformation in the vesicle lumen that remarkably appears to be sufficient to trigger 

antibody mediated responses.  

Antigens can be presented on OMVs surface with exposure to the environment outside 

the OMV. We recently studied the expression of the Borrelial surface-exposed 

lipoprotein OspA in Neisseria meningitidis OMVs [1]. Expression of the protein in 

meningococci did not result in surface exposure on OMVs. To obtain surface exposure, 

OspA was fused to a Neisserial lipoprotein. The immunogenicity of this surface exposed 

fusion construct was compared to that of a luminal expressed OspA in mice. Results 

showed that only the surface-exposed OspA was able to elicit an OspA-specific antibody 

response. In a study on Salmonella OMVs by Muralinath et al., higher immune responses 

against outer membrane proteins and LPS were found than against the heterologous 

expressed antigen present in the vesicle lumen [16].  

It remains unclear whether antigens in the lumen of OMVs provide sufficient antibody 

responses. The observed antibody responses of some studies may be biased by 

extracellular antigen or surface attached antigen. On the contrary the lack of an antigen 

specific antibody response against non-surface exposed OspA may not be predictive for 



Chapter 2  

  

27 
 

other antigens [1]. Antibody responses have been observed for all surface exposed 

antigens, while for luminal antigens the provoked responses remain ambiguous. 

Altogether more research is required on the exact effect of the antigen location on 

efficacy of an OMV vaccine platform.  

Box 1: Analyzing the surface exposure of antigens on OMVs 

Analysis of the surface exposed protein expression is important, but challenging. 

Expression levels of the antigen can be assessed by immunostaining. The 

heterologous antigen expressed on the bacteria and on the OMV can be stained by 

a labeled antibody and detected by fluorescent microscopy [1]. Alternative options 

for the detection of immunostained bacteria or vesicles can be flow cytometry [5], 

ELISA or nanoparticle tracking analysis. Besides immunostaining, proteins 

associated to the outside of the outer membrane can be determined by proteinase 

K digestion of surface exposed proteins followed by SDS-PAGE analysis. Western 

Blotting can be used to test the proteinase K susceptibility of a specific antigen. 

This method has been used since the early 1980s for the detection of surface 

exposed proteins [8]. The protein profile of proteinase K treated vesicles can be 

compared to the protein profile of non-treated OMVs to detect proteinase K 

susceptibility of certain proteins. As a control, SDS can be added to the treatment 

to check the digestion of previously shielded proteins. 
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Table 1.  

Overview of heterologous antigens expressed on OMVs as vaccine concept.  

Type1 Antigen location Antigen display Antigen Target Backbone Reference Year 

sOMV Surface exposed ClyA fusion Omp22 Acinetobacter baumannii  Escherichia coli [22] 2016 

sOMV Surface exposed ClyA fusion M2e Influenza A Escherichia coli [23] 2016 

eOMV & 

sOMV 

Surface exposed fHbp fusion OspA Lyme’s disease Neisseria meningitidis [1] (Intravacc) 2016 

glycOMV Surface exposed Lipid A glycan F. tularensis O-PS Francisella tularensis Escherichia coli [24] 2016 

geOMV Surface exposed Lipid A glycan CPS14 Pneumococcal disease Escherichia coli [25, 26] 2016 

sOMV Mixing Mixing AnAPN1, Pfs48/45 Malaria Escherichia coli [27] 2016 

sOMV Not determined Hybrid flagellin FlaA FliC ETEC Vibrio cholerae [28] 2015 

sOMV Surface exposed Hbp fusion PspA or Ply fragments Pneumococcal disease Salmonella typhimurium [29] (Abera Biosciences) 2015 

sOMV Surface exposed Hbp fusion ESAT6, Ag85B fragments, 

and Rv2660c 

Tubercolosis Salmonella typhimurium/ 

Escherichia coli 

[30] (Abera Biosciences) 2014 

sOMV Surface exposed Hbp fusion MOMP fragments Chlamydia Salmonella typhimurium [30] (Abera Biosciences) 2014 

sOMV OMV lumen OmpA fusion SpyCEP, Streptolysin O, 

Spy0269 

Group A Streptococcus 

disease 

Escherichia coli [18] (Novartis) 2014 

sOMV OMV lumen OmpA fusion SAM_1372 Group B Streptococcus 

disease 

Escherichia coli [18] (Novartis) 2014 

sOMV Mixing Mixing O-antigen Shigellosis Shigella spp. [31, 32] 2013 
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sOMV OMV lumen 

 

 

OmpA fusion HtrA Chlamydia Escherichia coli [20, 33] (Novartis) 2012 

sOMV Outer membrane OprI fusion 

(Pseudomonas 

aeruginosa) 

A104R African swine fever Escherichia coli [34] 2012 

sOMV OMV lumen Type II secretion signal 

from β-lactamase  

PspA Pneumococcal disease Salmonella enterica 

(serovar Typhimurium 

[16] 2011 

dOMV Mixing Mixing glycoprotein D Genital herpes Neisseria meningitidis [35, 36] 2010 

sOMV OMV lumen OmpA fusion FLAG Proof of concept Escherichia coli [21] 2009 

sOMV Surface exposed AIDA fusion KMP-11 Leishmaniosis Escherichia coli [37] 2009 

sOMV Vesicle lumen Inherent PhoA Proof of concept Vibrio cholerae [17] 2009 

sOMV Surface exposed ClyA fusion GFP Proof of concept Escherichia coli [38, 39] 2008 

dOMV Mixing mixing Dermatophagoides siboney 

allergens 

Dust mite allergy Neisseria meningitidis [40] 2006 

sOMV Surface exposed  Inherent NspA Neisseria meningitidis Neisseria flavescens [41] 2004 

sOMV Outer membrane Inherent Ail Proof of concept Escherichia coli [19] 2004 

sOMV OMV lumen Tat signal GFP Proof of concept Escherichia coli [19] 2004 

1 See Box 2 for an explanation of the OMV types. 
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2.1 Endogenous loading of surface exposed antigens 

Recombinant expression of proteins in bacteria is a large and ever-growing field [42, 

43]. Several approaches have been described to express proteins on the outer 

membrane of bacteria [44]. However, many of these approaches have a low yield or are 

only suited for small proteins or parts thereof. One method relies on antigenic proteins 

that are normally exported beyond the cell surface by proteolytic processing. These 

antigens can be retained by preventing the proteolysis [45]. Another method relies on 

targeting the protein to the outer membrane and thus to the OMVs [19]. One of the first 

concepts of outer membrane targeting for surface exposed antigen expression was 

based on autotransporters. Autotransporters are transported as unfolded protein over 

the inner membrane via the Sec pathway. Next, the autotransporter is transported over 

the outer membrane by a so far unknown mechanism that most likely requires direct 

involvement of the BamA protein [46]. The rightly folded autotransporter anchors to 

the outer membrane via a C-terminal β domain. Fusion to the autotransporter 

hemoglobin protease (Hbp) of E. coli was used to express recombinant proteins in an 

attenuated strain of Salmonella typhimurium [47]. The authors engineered Hbp to 

facilitate the surface expression of Mycobacterium tuberculosis proteins and epitopes of 

the major outer membrane protein MOMP from Chlamydia thrachomatis [30]. This 

method of antigen display is highly efficient, however it seems limited to smaller 

protein fragments [48].  

To express larger proteins on the surface of the outer membrane, Kim et al. fused 

several heterologous proteins including GFP with a 5 residue glycine linker to the C-

terminus of the pore-forming cytotoxin ClyA [38]. These fusion constructs were 

efficiently transported across the inner membrane to the outer membrane of E. coli. 

Recently it was shown by their group that surface expressed M2e antigens on E. coli 

OMVs provided protection against influenza A infection in a mice study [23]. Besides 

single M2e-ClyA fusion constructs, the authors also successfully constructed a nearly 50 

kDa multimeric variant containing the serine analogs of human, swine and two avian 

M2e variants. Apart from incorporation of a single protein on the OMV it was shown in a 

different study that a three-enzyme cascade could also be successfully engineered on E. 

coli OMVs [49]. The enzyme scaffold was expressed in the bacterium and anchored to 

the outer membrane by the truncated ice nucleation protein anchor [50]. The enzymes 

were produced separately from the OMV, which would allow the expression of different 



Chapter 2  

 

31 
 

enzymes on the OMV by simple replacement of these enzymes for different proteins. 

The enzymes were attached to the protein anchor by using three cohesin-dockerin 

pairs. Cohesin domains interact with dockerin domains of enzymes to form multiprotein 

complexes [51]. To decorate the OMV with a three-enzyme cascade, the authors used 

the unique interaction between each of the three cohesin-dockerin pairs for the 

sequential attachment of the enzyme complex. The OMVs with the enzyme scaffold had 

a 23-fold higher conversion rate when compared to the individual enzymes free in 

solution [49]. Although this example is not related to vaccines it shows the potential of 

attaching proteins to the outside of the OMV.  

Surface exposed expression of heterologous lipoproteins has been achieved by fusion of 

the heterologous lipoprotein to a membrane anchoring second lipoprotein. In this way, 

the heterologous lipoprotein signaling is not required to match the hosts signaling to 

achieve surface exposure. The borrelial lipoprotein OspA was fused via a tether to the 

N-terminal part of factor H binding protein that acts as a membrane anchor [1]. The 

extracted OMV (eOMV) contained surface exposed OspA. With this approach it was 

possible to purify OMVs with surface exposed heterologous lipoprotein antigens. 

2.2 Endogenous loading of antigens to the OMV lumen 

Differences in protein composition of OMVs and the outer membrane have been 

described [52-54]. This difference hints towards a regulated protein sorting to OMVs or 

a regulated OMV release but the mechanism of protein enrichment remains unclear. 

Accumulation of misfolded and aggregated proteins in the periplasm is suggested as one 

of the possible mechanisms of vesicle release [13]. An increase in OMV formation was 

found in strains lacking the chaperone DegP, resulting in enrichment of misfolded DegP 

substrates in OMVs [55]. McBroom and Kuehn showed that it was possible to selectively 

enrich a protein in the OMV lumen by adding a misfolded outer membrane protein 

sequence to the periplasmic cytochrome b562 [56]. A 12-fold enrichment of cytochrome 

b562 in OMVs was observed based on SDS-PAGE analysis. Although this method provides 

valuable insights in the method of protein sorting in OMVs, it may not be beneficial for 

the folding of the antigen. Thus, this method might not be preferred for the addition of 

antigens that require proper folding in the lumen of OMVs. 

Antigens have been bioengineered to be targeted to the lumen of OMVs. Kesty and 

Kuehn fused GFP to the twin-arginine (Tat) signal sequence to produce E. coli OMVs 
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with GFP in their lumen. This Tat pathway transfers folded proteins over the 

cytoplasmic membrane. To transfer unfolded proteins over the cytoplasmic membrane 

the Sec pathway could be used. However, GFP and some other proteins are unable to 

fold correctly in the periplasm. The OMVs containing GFP in their lumen showed to 

shield GFP from proteinases, which indicates the stability of proteins inside the vesicles 

[19]. Another method for luminal protein expression in E. coli OMVs is based on the 

fusion of proteins to the periplasmic side of the abundant outer membrane protein 

OmpA [21]. A FLAG-tag was attached to the truncated C-terminus of the OmpA protein, 

which is located at the periplasmic side of the outer membrane [21]. OmpA truncations 

or deletions are known to result in a blebbing phenotype. This approach combines 

stimulation of OMV production by the host with a site for antigen addition. This method 

was successfully used to express fusions of OmpA to several different antigens against 

Group A Streptococcus, Group B Streptococcus and Chlamydia [18, 20].  

Another study has directed the pneumococcal protein PspA to the lumen of Salmonella 

typhimurium OMVs by fusion of PspA to the N-terminal β-lactamase signal sequence 

[16]. This signal sequence allows the transport of β-lactamase to the periplasm by the 

type II secretion system, which yields OMVs with PspA in their lumen.  

Taken together, heterologous antigens can be expressed in the lumen of OMVs by fusion 

of the antigen to secretion signals or periplasmic proteins. These fusion based methods 

are relatively straightforward and have been successfully used to express full size 

antigens in a conformational correct manner and antibodies have been found against 

these antigens. While it is unclear how the antigens are processed to eventually elicit 

antibody mediated immune responses, heterologous expression of antigens in the 

lumen of OMVs may be a feasible approach for an OMV vaccine platform.  

2.3 Exogenous loading of surface exposed antigens 

Antigens can be added afterwards by introducing affinity to the antigen on the OMV. 

This method of exogenous loading was used by adding a SpyTag to OmpA [57]. The 

SpyTag peptide is designed to form a covalent bond with the SpyCatcher protein to ease 

conjugation of proteins [58]. The SpyTag-OmpA fusion was expressed on OMVs and can 

be coupled to SpyCatcher fused to any protein. By this method, OMVs can be produced 

in mass production followed by adding antigens on the OMV. Similarly, this SpyTag 

based approach has been used to decorate VLPs with antigens as vaccine platform [59]. 
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2.4 Exogenous loading of antigens to the OMV lumen 

Loading of antigens to the vesicle lumen, after the vesicles and antigens have separately 

been produced in bulk, can be an attractive approach. The concentration of the active 

components may be better controllable when compared to endogenous loading. To load 

antigens in their native conformation to the OMV lumen in vitro, the vesicle should be 

opened and closed again without permanent damage. The exogenous loading of 

proteins to the vesicle lumen has not been described although several methods of 

loading smaller molecules into extracellular vesicles (EVs) are explored. EVs can be 

loaded by simple incubation (passive loading) or by active treatment of the EVs (active 

loading). Methods of loading EVs by electroporation, saponin-treatment, extrusion or 

dialysis are well described for EVs and even compared in a side by side study [60]. In 

this study different porphyrins were loaded in endothelial, stem cell, and cancer derived 

EVs. Active encapsulation techniques and especially saponin-treatment showed higher 

porphyrin loading than passive techniques. Active encapsulation by electroporation has 

been described to load small-molecule drugs and siRNA in to EVs (reviewed in [61]). 

Active encapsulation of siRNA in to E. coli OMVs by electroporation was applied by 

Gujrati et al. [62]. This siRNA targets kinesin spindle protein, which is upregulated in 

tumor and rapidly growing cells. The siRNA was electroporated to the lumen of the OMV 

resulting in intact siRNA-loaded vesicles. The loaded vesicle was targeted to HER2+ 

tumor cells by a HER2 antibody fused to ClyA. The authors were successful in reducing 

tumor growth in mice by treatment with these OMVs. For the loading of vesicles derived 

from the fungus Neurospora crassa, a single freeze-thaw method has been shown to be 

very effective [63]. Loading efficiencies of over 80% were reported and the authors 

claim the method is suitable for any protein. Interestingly, this method has to our 

knowledge not been tested for bacterial OMVs.  

2.5 Mixing OMVs 

It is currently unknown whether antigens require attachment to the vesicles. It has been 

shown that for Adjuvant System 03, a marketed oil in water adjuvant, it is sufficient to 

inject the antigen at the same location as the adjuvant to obtain an adjuvating effect 

[64]. In this case, simple mixing of the adjuvant and antigen is sufficient. The mixing of 

the weak antigen GFP with E. coli OMVs showed however, that immunized mice did not 

elicit anti-GFP IgG responses [39]. Attachment of GFP to the OMVs showed enhanced 

responses, comparable to GFP absorbed to the commercial standard adjuvant alum. If 
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attachment is desired, the antigens could be conjugated to the OMV. This has been 

successfully accomplished for Brucella LPS that was conjugated to N. meningitidis OMVs 

[65]. Along the same line capsular polysaccharides from serogroup C meningococci 

were conjugated to a N. meningitidis serogroup B OMV [66]. Using conjugation, mixing, 

heterologous expression, or a combination thereof, also multivalent vaccines can be 

designed using OMVs as a main component. A combination of mixing and recombinant 

antigen expression has been applied for the eOMV based N. meningitidis serogroup B 

concept vaccines Hexamen and Nonamen [67, 68]. Mixing dOMVs from two strains has 

been applied to produce a combined N. meningitidis serogroup A and W concept vaccine 

[69]. Mixing OMVs has been applied by a recently proposed sOMV based Shigellosis 

concept vaccine [31]. The authors of this latter study produced sOMV from 6 serogroups 

of Shigellae that were mixed to form a hexavalent vaccine. This composition was named 

MOMV (not to be mistaken with modified OMVs or the previous naming of 

mitochondrial EVs, see box 2 for naming of different types of OMVs) because of the 

multi-serotype OMV composition [31]. Roier et al. created OMV mixtures of nontypeable 

H. influenzae strains to obtain a broad covering immunization mixture [70]. The OMV 

mixture showed a broadly covering protective immune response, although it should be 

noted that OMVs derived from a single strain also showed cross-protection against 

other nontypeable H. influenzae strains. Mixing of OMVs from enterotoxigenic E. coli and 

V. cholerae was described by Leitner and coworkers [28]. The authors showed an 

improved protection for the mixed OMVs when compared to the provoked immune 

response from the individual OMVs alone. Mixing of OMVs can thus be a simple yet very 

effective method of improving protection. 

3 Designing the OMV: Bioengineering the immune response 

The interaction of the OMV with the immune system can be considerably tuned. Outer 

membrane vesicles can be directly used as a vaccine, since the vesicles are non-

replicating and contain antigens as well as PAMPs in a particle configuration. 

Furthermore, OMVs can induce both humoral and cellular immune responses [12]. 

Recently it was shown by Rosenthal et al. that E. coli OMVs can trigger a Th1-biased 

immune response [71]. The authors were able to induce both protective humoral and 

Th1-biased cellular immune responses against the heterologous antigen by using the 

probiotic E. coli Nissle 1917 bacteria as OMV production host. This probiotic bacterium 

itself is highly immunosuppressive, and thus not an obvious vaccine candidate, 
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nevertheless its OMVs lack this capacity [72]. In contrast to the OMVs from E. coli K12, 

the probiotic derived OMVs elicit Th1 cellular immune responses, however these 

responses were not necessarily directed against the heterologous expressed antigens 

[71]. To improve the immune response against an antigen of interest, the antigen 

amount per OMV can be increased or multiple antigens can be included. Zhang and co-

workers improved the immunogenicity of a trivalent N. meningitidis vaccine by genetic 

engineering a second fHbp protein in the porB gene, which increased fHbp yields in the 

OMV and increased antibody responses against fHbp [73].  

Box 2: Naming of OMVs 

With the production of extracted OMVs, many prefixes have been used to clarify the origin of 

the OMVs [2]. The naming of the different types of vesicles has been based on the method of 

extraction, for example, the detergent deoxycholate (DOC) has been used to extract OMVs 

from bacteria to develop the first OMV-based vaccines [3]. This harsh extraction method was 

used to decrease the toxic LPS in the vesicles and the produced vesicles were referred to as 

detergent OMVs (dOMVs). The use of prefixes in OMV naming starts to become confusing 

due to the development of more and more methods of extracting vesicles and methods of 

increased “spontaneous” release of vesicles in the culture supernatant. The term nOMV has 

been used for both natural OMVs and native OMVs, where native OMVs were extracted by 

EDTA. It was shown that EDTA-extracted OMVs were similar to natural OMVs and hence the 

term nOMVs or N-OMVs was used [4]. To distinguish between spontaneous and extracted 

vesicles we favor to refer to EDTA extracted vesicles as extracted OMV: eOMV. Moreover, 

spontaneously released OMV in vivo should be distinguished from OMV released in vitro. 

The in vitro production of spontaneous released OMV during cultivations is known to be 

induced by many mutations or stressors. The possible difference between these stress 

released vesicles and vesicles released spontaneously by the bacterium are more difficult to 

observe and researchers should be careful when comparing differently produced OMV. We 

suggest to refer to in vitro produced OMVs as spontaneous released OMVs: sOMVs. Overall it 

has become challenging to apply a uniform naming system of OMVs and thus it should be 

cared for that the method of producing OMVs is accurately described. We propose to 

uniform the naming of OMVs as listed in Table 2. 
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OMVs can be engineered such that the vesicles contain proteins altered in their 

interaction with human receptors. Opacity (Opa) proteins of Neisseria sp. are known to 

interact with human CEACAM receptors [74]. This interaction causes a reduced Opa-

specific immune response, however the immune response against the other OMV 

antigens was not significantly affected [75]. Another hypothesis is that binding of OMV 

proteins by human complement inhibitors could interfere with the development of the 

immune response. A reduction in antibody responses was shown due to binding of the 

antigen with a human protein [76]. Human factor H could be bound by Neisserial fHbp, 

NspA and Porin B2. Especially the interaction with fHbp is studied widely due to the 

recent licensing of two fHbp based N. meningitidis serogroup B vaccines [77, 78]. It was 

shown that partial inhibition of fH binding did not enhance the immunity in a mouse 

model [79]. Human Factor H transgenic mice were immunized with low fH binding fHbp 

and showed to elicit higher serum bactericidal antibody responses than when 

immunized with fHbp capable of binding fH [80]. Furthermore, immunizations with a 

low fH binding recombinant fHbp in an infant rhesus macaques model showed antibody 

responses directed to the region of fHbp that binds human factor H [81]. Antibody 

responses against these host protein binding antigens can be improved by low-binding 

mutants, although these show no alteration in the antibody responses against other 

proteins present on the OMV. 

Table 2. Overview of the proposed naming of OMVs 

Abbreviation Type of OMV 

dOMV Detergent extracted OMVs from in vitro cultured bacteria 

eOMV All non-detergent extracted OMV from in vitro cultured bacteria 

mOMV Preferably not to be used due to its ambiguity (modified OMV, 

multivalent OMV, mitochondrial OMV) 

nOMV Preferably not to be used due to its ambiguity (native OMV or 

natural OMV) 

sOMV Spontaneous released OMV, typically obtained from the 

supernatant of in vitro cultured bacteria 
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OMVs contain by nature many immunogenic components that could cause a reaction 

against the OMV backbone. Currently it is unknown whether this reaction causes 

undesired effects. The possibility of this effect affects the choice of backbones (Table 1). 

The use of E. coli as backbone has the advantage of being extensively studied [18, 19, 

21-25, 33, 34, 37, 38, 82], however the immune response directed against E. coli could 

negatively influence commensal populations. This negative effect could be prevented by 

the use of a pathogenic bacterium as backbone. Pathogenic backbones as N. 

meningitidis, S. typhimurium and V. cholerae have been described [1, 17, 30], although it 

is unknown what the effect is on the spread of the production pathogen itself. Another 

aspect is the possible response against the backbone during the repetitive use of the 

OMV platform against different diseases. Alternatively, a stealth backbone could be 

developed. Cross reactivity of the backbone with closely related species was described 

for N. meningitidis [83, 84] illustrating the possible broader effect of immune responses 

against the OMV backbone. Currently it is unknown to what extent minor cross-

reactivity impacts a vaccine platform or if a complete stealth OMV backbone is required.  

4. Designing the OMV: Bioengineering toxicity and adverse effects 

As a very potent activator of the immune system, LPS can induce severe side effects and 

must be detoxified. Detoxification by reducing the amount of LPS has been performed 

by a detergent extraction process yielding dOMV [85]. To use native or spontaneous 

OMVs, most vaccine concepts are based on genetically detoxified LPS, with potent 

activation of the innate immune system by TLR4. The TLR4 activation can be altered by 

bioengineering the LPS [86], since too potent TLR4 reactivity causes endotoxicity [87]. 

The endotoxin activity of LPS was modified by msbA deletion in E. coli or lpxL1 deletion 

in N. meningitidis, resulting in lipid A without the secondary acyl chain [88, 89]. These 

modifications strongly alter the endotoxicity by reducing the TLR4/MD-2 activation by 

the LPS. Further bioengineering of N. meningitidis LPS showed that a broad range of 

TLR4 activation can be obtained [86]. Furthermore, a broad range of differential 

cytokine inducing properties was observed by the different bioengineered LPS species. 

LPS bioengineering to reduce LPS reactivity has been applied on many different species 

[90]. Besides OMVs from bioengineered N. meningitidis, vesicles with genetically 

detoxified LPS have also been produced from E. coli and V. cholarae [28, 91]. Recently, E. 

coli OMVs containing only the lipid IVa of LPS instead of the full LPS have been produced 
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[92]. These OMVs retained sufficient capabilities of eliciting immune responses against 

the included heterologous antigens.  

Besides targeted attempts to alter the endotoxicity of the OMV, it is important to take 

into account that the production method has severe impact on the endotoxicity. It was 

shown that different OMVs (sOMV, eOMV and dOMV, see Box 2) derived from the same 

strain have differences in TLR4 and TLR2 activation [93]. To improve the OMV 

productivity of H. pylori, Tol-Pal knockouts were constructed [94]. However, the 

downside of the increased vesicle production was the more potent induction of 

inflammation of these OMVs, by significantly higher IL-8 levels, in host cells than 

wildtype OMVs. This indicates once more the complexity involved in the design of an 

OMV based vaccine.  

Recently a novel type of vaccine platform based on OMVs was described by two groups, 

based on heterologous expressed glycan antigens instead of antigenic proteins [24-26]. 

These glyco-engineered OMVs (geOMVs) designed by Price et al. are based on the 

similarity between the polysaccharide translocation in the expression host and the 

vaccine target [25]. The capsular polysaccharide of S. pneumoniae was expressed in an 

E. coli strain lacking its own O-antigen yielding attachment of the S. pneumoniae 

capsular polysaccharides to the E. coli lipid A core. In another study, Chen et al. 

produced glycosylated OMVs that provided protection against F. tularensis challenge in 

mice, by expression recombinant O-antigen polysaccharide on E. coli OMVs [24]. 

Furthermore, several lipid A modifications were made resulting in lowered TLR4 

activation similarly to the attempts of detoxifying OMV associated LPS. The ease of 

adding heterologous glycans on OMVs emphasizes the potential of an OMV based 

vaccine platform for polysaccharide vaccines. 

5. Designing the OMV: physiochemical properties 

The size of OMVs is an overlooked part of OMV vaccine research that is, however, very 

relevant since the size influences the uptake by antigen presenting cells (APCs). 

Macrophages preferentially take up larger particles (Figure 2) where dendritic cells 

(DCs) take up particles in the size range of OMVs and VLPs [95]. OMVs range in size 

from 20-250nm in diameter [13] and size is assumed to be homogeneous and similar 

between different bacterial species. However, minor differences are reported in the size 

distributions of sOMV, eOMV and dOMV from the same bacterium in similar production 
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processes [4]. The size of OMVs is important for the design of the production process 

[96]. For example, sterile filtration is only possible for smaller sized OMVs. Moreover, a 

minimum size of OMVs is required for adequate analysis of OMV quality. Conventional 

flow cytometry, for example, is not suitable for the analysis of particles smaller than 300 

nm [97]. Improvements on flow cytometry have been made improving the detection 

limit [98] and methods focused on nanoparticles, such as Nanoparticle Tracking 

Analysis (NTA)[99] and Tunable Resistive Pulse Sensing [100], have been developed. 

With these improved methods a size limit of around 20 nm remains for appropriate 

detection of nanoparticles.  

Figure 2. The size of vaccine concepts and the required size range for accessible production 

compared to the interaction with the immune system. The possibility of sterile filtration simplifies the 

design of the production process, while the analysis of nanoparticle size and the number of nanoparticles 

is essential for quality control. The green box highlights the overall preferred size window for vaccine 

production. 

The size and shape are important parameters in the field of synthetic nanoparticles, and 

these physiochemical properties are highly tunable. Recently Gao and co-workers made 

an interesting combination of bacterial outer membrane vesicles and synthetic gold 

nanoparticles (AuNPs) [101]. OMVs were coated with mechanical force on gold 
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nanoparticles to produce 30 nm sized membrane-coated AuNPs. Mice vaccinated 

subcutaneously with these nanoparticles showed rapid activation of DCs in lymph 

nodes, while vaccination with 90 nm sized membrane coated nanoparticles showed 

reduced accumulation of DCs. The membrane coated AuNPs of 30 nm showed higher 

induction of specific antibody responses, IFN-gamma production, and IL-17 production 

when compared to OMVs alone. The IL-4 production was low for all groups indicating a 

strong Th1- and Th17-biased cellular response. Another study compared ovalbumin 

loaded styrene nanoparticles with different size and shape, concluding that the smallest 

(193 nm) spherical particles elicit the strongest Th1 and Th2 immune responses [102]. 

This smaller spherical particle showed a Th1-biased response while the larger (1530 

nm) rod-shaped particle elicits a Th2-biased immune response. Smaller nanoparticles 

(10 – 200 nm) are able to drain freely to the lymph nodes, while larger nanoparticles 

(500 nm - 2000 nm) require dendritic cells [103]. The larger particles are thus unable to 

target cells residing in the lymph nodes. Size of the vesicles is thus an important 

parameter in navigating the immune response by the efficient uptake by antigen 

presenting cells and efficient entry in to lymph nodes.  

6. Concluding Remarks and Future Perspectives 

OMVs have been proven to be a flexible vaccine production platform. Heterologous 

proteins and glycan antigens can be easily added to the vesicle, the immune stimulating 

properties of the vesicle can be engineered, and the toxicity can be reduced. Future 

research should address the immune response against the platform backbone, the 

heterogeneity of the vesicle product and the relatively underexplored effects of luminal 

OMV components. Besides the use of OMVs as prophylactic vaccines, vast possibilities of 

OMVs as therapeutic vaccines exist. With the approval of human use of several OMV 

based meningococcal vaccines, the future of OMV vaccines is bright, paving the way to 

designer and tailor made OMV vaccines. The use of OMV based vaccine platforms will 

facilitate enhanced vaccine design and will speed up the introduction of new much 

needed vaccines.  
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Abstract 

Outer membrane vesicles (OMVs) are spherical membrane nanoparticles released by 

Gram-negative bacteria. OMVs can been quantified in complex matrices by nanoparticle 

tracking analysis (NTA). NTA can be performed in static mode or with continuous 

sample flow that results in analysis of more particles in a smaller time-frame. Flow 

measurements must be performed manually despite the availability of a sample changer 

on the NanoSight system. Here we present a method for automated measurements of 

OMVs in flow mode. OMV quantification in flow mode showed a mean particle 

concentration (coefficient of variation (CV) of 6% CV static measurements of 14%). 

Sizing of OMVs was expected to be less favorable in flow mode due to the increased 

movement of the particles. However, we observed a CV of 3% in flow mode and a CV of 

8% in static measurements. Flow rates of up to 5 μL/min displayed correct size and 

particle measurements, however, particle concentration was slightly lower than in static 

measurements. The automated method was used to assess OMV release of batch 

cultures of Neisseria meningitidis. The bacteria released more OMVs in stationary 

growth phase, while the size of the vesicles remained constant throughout the culture. 

Taken together, this study shows that automated measurements in flow mode can be 

established with advanced scripting to reduce the workload for the user.  
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Introduction 

Bacterial derived nanoparticles, known as outer membrane vesicles (OMVs), have 

gained more and more attention in the development of bacterial vaccines [1, 2]. These 

OMVs are 20-200 nm spherical particles that resemble the outside of the bacterium [3]. 

OMVs are complex nanoparticles consisting of proteins, lipopolysaccharides, 

phospholipids and DNA that are involved in cellular communication, toxin delivery, 

surface modifications, removal of undesired components, and polysaccharide 

degradation [4-7].  

The quantification of OMVs has been challenging since indirect methods had to be used 

for detection of the particles. Often, the total protein concentration of the OMV sample 

was used as a measure of the number of vesicles [8-12]. Another indirect method was 

based on the integration of a hydrophobic dye in vesicle membrane, resulting in a 

measurable change in absorbance [13]. These indirect methods can be largely 

influenced by impurities and are thus not suited to measure unpurified and 

intermediate samples.  

Direct measurement of OMVs by nanoparticle tracking analysis (NTA) can be used for 

the quantification and sizing of OMVs [14]. Besides measurement of the number and 

size of the particles, the refractive index of individual particles can be calculated [15]. 

NTA can be performed in static mode by measuring the particles trapped in the 

measurement chamber or in flow mode by slowly flowing the nanoparticle sample 

through this measurement chamber. Static measurements allow the analysis of single 

nanoparticles in time, for example the study of nanoparticle aggregation by elevated 

temperatures [16]. Flow mode NTA measurements for nanoparticle quantification are 

advantageous over static measurements since more particles can be measured in a 

smaller time-frame resulting in less variance in particle quantitation [17]. NTA can be 

used to measure specifically fluorescent labelled particles [18]. In this fluorescence 

measurement, continuous measurement is advantageous since the sample flow 

prevents photobleaching of the fluorescent label [19].  

Despite the availability of both a syringe pump and a sample changer on the NanoSight 

NS500, there is no option for automated measurements in flow mode available. As a 

result, the analysis of samples under flow mode require more time than automated 

static measurements. In this work we describe a method that combines the 
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measurement of samples in flow mode with the sample changer to allow high 

throughput measurement under flow. For this, we have compared the accuracy of NTA 

measurements of OMVs in static measurements and in flow mode. The influence of the 

flow rate on the NTA analysis has been assessed. Lastly, we applied the automated 

measurement method to quickly assess a large set of samples to research the OMV 

formation in batch cultivations. 

Material and methods 

Preparation of outer membrane vesicle stock 

A highly purified Neisseria meningitidis spontaneous released OMV (sOMV) 

investigational vaccine was prepared from a batch culture of Neisseria meningitidis. 

From this culture broth, the vesicles were separated from the bacteria by tangential 

flow filtration using a 0.2 µm cutoff mPES hollow fiber module (Spectrum Labs, The 

Netherlands). Vesicles were concentrated by tangential flow filtration using a 100 kDa 

cutoff mPES hollow fiber module (Spectrum Labs, The Netherlands), and the sOMVs 

were subsequently purified by preparative size exclusion chromatography using 

SepharoseTM 6 Fast Flow resin (GE Healthcare Life Sciences, USA). Lastly, a dead-end 

sterile filtration step was performed to ensure sterility of the sOMV product before it 

was stored at 4°C. To assess the total protein content of the OMV stock, a Lowry protein 

assay with Peterson’s modification was used according to the manufacturer’s protocol 

(Sigma-Aldrich, The Netherlands). The sOMVs were diluted in freshly tapped MilliQ 

water up to a concentration of approximately 8.5 x 108 particles/mL. This concentration 

was chosen so that the NTA measurements yield 40 to 50 particles per frame to ensure 

measurements are in the linear range of NTA measurements [20].  

Nanoparticle tracking analysis 

A NanoSight NS500 with a 488 nm laser module and sCMOS camera module was used 

for all NTA measurements (Malvern Instruments, UK). Additionally, a Gilson 223 sample 

changer and a Harvard Apparatus syringe pump (Catalog No. 98-4730) were connected 

to the NS500 by a 4-way connector as described in the results section. The syringe 

pump was equipped with a 500 µL glass syringe (Hamilton Model 1750 RN). Static 

measurements were obtained by capturing 10 measurements of 60-seconds of a sample 

loaded in the measurement chamber. Measurements in flow mode were performed with 

a flow rate of 25 (~2.6 µL/min), yielding a y-drift of 4.0 pixels per frame. Like the static 
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measurements, these flow measurements consisted of 10 measurements of 60-second, 

but with an additional 30-second delay between measurements. The method for 

automated measurements in flow mode are described in the results section. The script 

file used for these automated measurements can be found in the Supplemental File 1. All 

measurements were performed with temperature controlled at 25°C, and the captured 

data of both static and flow measurements was analyzed using NTA 3.2 software build 

3.2.16. The capture settings and the analysis settings of the NTA software are shown in 

Table 1. The machine was calibrated by the NanoSight NTA concentration 

Measurement upgrade. The NS500 is cleaned with Decon 90 monthly, according to the 

recommendations described in the manual. Before all sample measurements, we 

confirmed that the MilliQ diluent contained less than 1.0 particle per frame by 

measuring the MilliQ diluent for 60 seconds in static mode. 

Table 1. NTA software settings 

Capture settings  

CAMERASHUTTER  1206  

CAMERAGAIN  366  

CAMERALEVEL 15  

CAMERAHILIM  3294  

CAMERALOLIM  0  

STAGE  -20376  

FOCUS  27  

   

Analysis settings  

DETECTTHRESHOLD  3  

AUTOBLUR  ON  

AUTOMINTRACKLENGHT  ON  

 

Statistics 

Statistics of the static and flow NTA measurements were performed in RStudio [21], 

version 0.99.903. Significance of the static and flow NTA measurements was calculated 

by an exact, unpaired Mann-Whitney U test by using the exactRankTests package 

version 0.8-28 [22]. 



  

 

50 
 

Dynamic light scattering   

DLS measurements were performed by using a Zatasizer Nano-ZS (Malvern 

Instruments, UK). Measurements were made in disposable polystyrene semi-micro 

cuvettes (Greiner bio-one, 613101) using the Zetasizer 7.11 software. A standard 

operating procedure (SOP) was used for the measurements with sample set as protein 

with a refractive index of 1.450 and an absorption of 0.001. Water was used as 

dispersant with a viscosity of 0.8872 cP and refractive index of 1.330. Three 

measurements were performed using a measurement angle of 173° (backscatter), auto 

measurement duration and “seek for optimal position” as positioning setting. Data 

processing was performed with the general purpose (normal resolution) analysis 

model.  

Bioreactor cultivations 

Batch cultivation for OMV stock production was performed in a 3L working volume 

dished bottom bioreactors with a H/D ratio of 1.0 based on working volume (Applikon 

Biotechnology, The Netherlands). Cultures were controlled at 35 ± 0.5°C, pH 7.2 ± 0.05 

with 1M HCl and 1M NaOH, and a dissolved oxygen tension of 30% using a Trytoni 

controller (Pierre Guerin, France). Dissolved oxygen tension was controlled by the 

agitation rate (300 – 1000 RPM) and the concentration of oxygen in the headspace gas 

flow of 1 NL/min. Culture samples were sterile filtered with a disposable syringe filter 

with 0.22 µm cutoff and stored at 4°C.  
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Results 

Static vs. flow measurements 

NTA can be performed by static measurements or by measurements in flow mode. 

Sample flow allows more particles to be analyzed in a single capture, but the software 

has to correct for the particle drift in the measurement. To assess the most accurate 

method for OMV enumeration and OMV sizing, we compared static and continuous flow 

NTA measurements. From a N. meningitidis OMV stock, 100 measurements were 

obtained in both static and in flow-mode, by manually capturing 10 videos of 60 

seconds of 10 replicate samples. 

OMV quantification of the 100 static measurements showed a mean particle 

concentration of 9.07*108 particles/mL with a coefficient of variation of 14% (Figure 1). 

Flow measurements showed a mean concentration of 8.63*108 particles/mL with a 

coefficient of variation (CV) of 6%. Sizing of the particles showed a mean size of 77.6 nm 

(CV = 8%) and 78.2 nm (CV = 3%) for resp. static and continuous flow measurements. 

The lower measurement variation in for both particle size and particle number in the 

flow measurements can be explained by the increased number of particles analyzed due  

Figure 1. Static (blue) and flow (green) measurements of outer membrane vesicles. Boxplot A shows the 

result of NTA particle concentration measurement and plot B of NTA particle sizing. Boxes represent 10 

measurements of 60 seconds. Outliers represent measurements 1.5 times the interquartile range below 

the lower quartile or above the upper quartile. 
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to the increased observation volume. The reduced variance in the size measurement 

under flow shows that the software is capable of correcting for the particle drift. Based 

on the lower variation in the continuous flow measurement, the number of captures per 

sample measurement could be reduced and we used this method of NTA for the 

automated quantification of OMVs.  

Automated flow measurements 

To automate the sample measurement in flow mode, we connected both the sample 

changer and the syringe pump to a NanoSight NS500 (Figure 2). The connection was 

made with a 4-way valve allowing the sample to be loaded in to the syringe pump 

before the sample was measured. The flow path through the 4-way valve was controlled 

by the two pumps on the NanoSight and the syringe-pump. All pumps block their flow 

path when switched off so that the flow path can be directed by rational programming 

of the pumps. To realize the flow from the autosampler to the syringe pump, which 

crosses two pumps, the syringe pump was calibrated with the integrated pump of the 

NanoSight. The approach of this programming is described in this section and the 

developed script for automated continuous flow measurements can be found in 

Supplemental File 1. 

Figure 2. The schematic setup of the NanoSight setup for automated flow measurements. Both the 

sample changer and the syringe pump are connected to the NanoSight by a 4-way valve. 
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Automated continuous flow measurements start with an initialization phase, followed 

by the measurement phase and end by a finalization phase (Table 2). In the initialization 

phase (INIT) the syringe pump, sample changer and the measurement cell are flushed 

with MilliQ. The MilliQ is measured to confirm the absence of particles in the MilliQ 

supply. During the measurement phase (MEAS) the number of measurements can be set 

by a loop from MEAS1 to MEAS7. Within this loop the sample is transferred from the 

sample changer to the syringe pump, before the sample is loaded in to the measurement 

chamber. A second loop is programmed in MEAS3 which determines the number of 

captures per sample. After each measurement, sample changer, the syringe, and the 

measurement chamber are washed with MilliQ water before a new sample is measured. 

In the finalization phase (FINA) the captures are processed and the result can be 

exported. 

Table 2. Schematic overview of the script for automated measurement in flow mode 

 

Step Action  

INIT1 Flush syringe with MilliQ  

INIT2 Flush sample changer with MilliQ  

INIT3 Measure particle background of MilliQ stock  

INIT4 Set the number and positions of the samples 
in the sample changer 

 

MEAS1 Load the syringe with sample 
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MEAS2 Load measurement chamber with sample 

MEAS3 Measurement of the sample 

MEAS4 Emptying the syringe 

MEAS5 Washing the syringe 

MEAS6 Wash sample changer 

MEAS7 Processing of measurement 

FINA2 Exporting results  

FINA3 Shutdown  

 

For a measurement in flow mode, the sample was loaded from the sample changer to 

the syringe in the syringe pump. We ensured the purity of the sample by setting the 
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sample pump at a slightly higher rate than the syringe pump. As a result, a small fraction 

of the sample was directly flushed through the measurement chamber to the waste. 

Similarly, this methodology was used to flush the syringe pump and the measurement 

chamber with MilliQ. 

Washing of the syringe pump was required to prevent cross contamination between 

samples. A single flush cycle consists of emptying the syringe and loading the syringe 

with MilliQ. To complete the wash cycle, the syringe was emptied. Because of the 

inevitable holdup volume of the tubing and in the connection with the syringe, sample 

cross contamination could be detected. After 1 flush cycle, sample carryover of 

approximately 5% was observed. The cross contamination for up to 5 wash cycli was 

tested (Figure 3). In the first two flushes particles derived from the measured OMV 

stock could be detected. The particle concentration after 3 flushes showed a similar 

background particle concentration as the MilliQ water. An excess of 5 flush cycles of the 

syringe was programmed in the script for automated continuous flow measurements to 

minimize the possibility of cross contamination between samples.  

Figure 3. Automated cleaning of the syringe pump. NTA measurements were made from 

the diluent MilliQ water and MilliQ water loaded in the syringe to assess background particles. 

A OMV stock yielding 80 particles per frame was prepared and measured by recording a single 

60 second capture. Next the syringe was emptied and filled with MilliQ and measured again 

(Flush 1). Flushes were repeated to assess the carry-over of particles.  
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Influence of the sample flow rate on NTA 

NTA measurements in flow mode showed a significant lower (p=0.0003) particle 

concentration of 5% compared to static measurements (Figure 1). It is unknown which 

value resembles the exact value of the OMV stock solution the closest. To assess the 

possible influence of the flow rate on the particle quantification, we have measured the 

OMV stock at different flow rates. 

The OMV stock was measured in static mode and at flow rates up to 200 units of the 

NTA software. This maximum flow rate corresponds, in combination with the 500 µL 

syringe, to a liquid flow of 21 µL/min (Figure 4, A). NTA analysis showed that the 

detected particle drift linearly correlates to the flow rate up to a flow of 15 µL/min 

(Figure 4, B). The tracking of particles and the calculated particle concentration shows 

to be constant at flow rates up to 5 µL/min (Figure 4, C-D). Flow rates of 10 µL/min and 

higher showed to result in unrealistic low particle concentrations. The mean size of the 

OMVs analyzed in flow measurements up to 5 µL/min was comparable to 

measurements by DLS. Similar to concentration measurements, size measurements 

were not accurate at flow measurements of 10 µL/min and higher (Figure 4, E-F). The 

flow rate of 2.6 µL/min showed to be in the proper range for both size and 

concentration measurements and is therefore used in the script for automated 

measurements in flow mode. 
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Figure 4. The influence of sample flow rate on NTA. The artificial flow rate of the NTA software 

has been calibrated using a 500 μL syringe (A). OMV stock was measured at different flow rates. 

The observed particle drift (B), total and valid particle tracks (C), concentration (D), mean size (E) 

and mode size (F) are plotted against the sample flow rate 
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OMV release by Neisseria meningitidis 

The script for automated measurements in flow mode was used to assess the OMV 

release during bacterial growth. Three N. meningitidis cultures were grown in benchtop 

bioreactors and supernatant samples were analyzed by NTA (Figure 5). Between 2h and 

8h the growth is exponential and the observed release of vesicles is low. The OMV 

release shows an increase in the stationary phase, 10 - 18h. Interestingly the size of the 

vesicles remains similar during the whole duration of the cultivation (Figure 5). 

Discussion 

Continuous flow NTA measurements were automated using the sample changer in 

combination with the scripting possibilities of the NTA software. NTA measurements of 

an OMV stock showed that continuous flow measurements are advantageous over static 

measurements in quantifying and sizing of OMVs. The automated method severely 

reduced the workload per measurement. Steppert et al. report that static NTA 

measurements on a NanoSight LM10 requires 30 to 45 min time per sample [23], which 

Figure 5. Growth of Neisseria meningitidis in a benchtop batch cultivation. Upper panel shows the 

growth pattern of the bacteria (black) and shows that OMVs (green) are increasingly produced after the 

exponential growth phase. The lower panel shows the size of OMVs. The size of OMVs released in the 

exponential growth phase is similar to the size of OMVs produced in the stationary phase. The increased 

size of OMVs in the first 6 hours of the cultivations deviates, possibly caused by the increased 

measurement error due to concentrations in the range of the lower limit of detection. 
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corresponds to our experience with static NTA on the NS500. A small fraction of this 

time is required for sample preparation, which makes it advantageous to automate the 

measurement. Automated NTA can also be used for samples of unknown concentration 

whereas serial dilutions can be processed by the automated method described here. 

Cross-contamination of too-concentrated samples is prevented by the number of 

syringe wash steps in the automated measurement. Overall the workload for analysing 

24 samples by the automated method is roughly 2 hours. Depending on the chosen 

capture settings, the required measurement time of the equipment is around 30 

minutes per sample. The automated method is not limited to OMV samples and 

theoretically the method can be applied to all samples analysed by flow-mode NTA. 

NTA at different flow rates showed that flow measurements applying flows of 10 

μL/min or higher altered the measured particle concentration and the measured size 

for the N. meningitidis OMV stock. This effect has also been shown by NanoSight for the 

analysis of 100 nm polystyrene latex beads [24]. In their measurement a higher flow 

rate of 20 to 50 AU (in combination with a 1 mL syringe, corresponding to 

approximately 4 to 11 µL/min) showed to be ideal [17, 24]. The difference between 

these two measurements are the particles used and their refractive index, although the 

refractive index is not expected to influence the concentration measurement. Recent 

studies suggest that flow measurements alter the observed concentration of various 

extracellular vesicles already at low flow rates [25-27]. Here we also observed a minor 

difference between static and flow measurements. This study showed that flow rates 

below 10 µL/min are suited for OMV quantification and sizing. 

The batch-wise cultivation of N. meningitidis showed an increased OMV release in the 

stationary growth phase. This pattern of release was similar to the previously described 

OMV release that was analysed by the hydrophobic dye Synaptored C2 [28]. By using 

NTA, we showed that the size of OMVs remains constant during the cultivation, although 

in the first hours of the cultivation the size shows to be increased. This is probably 

caused by particle concentration near the limit of detection although it could be possible 

that the observed switch in the culture could affect the size of the produced OMVs. Gene 

regulation may be of possible influence to OMV size since it has been previously shown 

that OMV size differs between mutants with deletion of genes possibly involved in the 

OMV biogenesis [29].  
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Alternative methods for combined OMV quantification and sizing are high-resolution 

flow cytometry (hFC) [30] and tunable resistive pulse sensing (TRPS) [31, 32]. These 

two techniques have recently been compared to static NTA for the analysis of 

extracellular vesicles by two groups [33, 34]. Both groups conclude that hFC, TRPS and 

NTA are suited to quantifying and sizing extracellular vesicles. The reduction in 

workload required for NTA measurements can be an important consideration in the 

choice of analysis techniques, whereas automated sample measurement is not available 

for TRPS. 

The automated method of NTA reduced the workload, but several practical implications 

should be noted. The automated method can be used for large numbers of samples, but 

when samples were applied in open (Eppendorf) tubes, we observed increased 

concentrations of particles. It appeared that the increased concentration was caused by 

evaporation before the sample was loaded in the measurement chamber. The use of 

sample vials with a septum solved this issue. With this approach, diluted samples can be 

in the sample changer for extended periods of time prior to measurement. OMVs are 

highly stable, however less stable samples could benefit by automated dilutions directly 

prior to measurement. The current hardware could be compatible with automated 

sample dilutions and adding this feature will be an improvement to the NanoSight 

system. Furthermore, the extended time-span of using the equipment may cause gas 

bubbles in the measurement chamber. These bubbles can interfere with the 

measurement by expelling sample from the observation volume or by disturbing the 

liquid flow in the measurement chamber. Gas bubble formation was avoided by 

degassing the MilliQ water bottle by vacuum degasification. A last practical adjustment 

to the equipment was made by replacing the plastic syringe for a glass version to 

prevent particles from sticking to the syringe and to reduce the number of flushes 

required between the measurement of samples. 

In conclusion, the automation of continuous flow measurements can be applied with the 

described script on all NanoSight equipment when connected to both a sample changer 

and a syringe pump. This method can improve both the quality of the measurement 

while the workload is reduced simultaneously. Furthermore, the script secures the 

measurement settings, which further standardizes the use of NTA. 
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Abstract  

Outer membrane vesicles (OMVs) produced by bacteria are interesting vaccine 

candidates. OMVs are nanoparticles that contain many immunogenic components, are 

self-adjuvating, and non-replicative. Despite recent insights in the biogenesis of OMVs, 

there is no consensus on a conserved mechanism of OMV release and the OMV yield 

from bacterial cultures remains low. For Neisseria meningitidis, a Gram-negative human 

pathogen causing meningitis and sepsis, a feasible OMV production method based on 

triggering OMV release by cysteine depletion has been described. In this study, we 

investigated the mechanism behind this external trigger for OMV release to improve the 

production process. Since enhanced OMV release upon cysteine depletion was 

associated with oxidative stress and redox responses, we investigate the influence of 

more oxidized sulfur sources on OMV release. We show that N. meningitidis grows 

similarly on sulfate, the most oxidized sulfur source, and OMV release is triggered by 

sulfur depletion in general. Sulfate depletion induced increased release of OMVs over 

cysteine depletion. Proteomics showed that sulfur depletion resulted in oxidative stress 

responses and upregulated phospholipid and LPS biosynthesis. Furthermore, OMVs 

produced by sulfur depletion were enriched in phospholipids. Mechanistically, we 

hypothesize that sulfur depletion results in overproduction of phospholipids causing 

increased bulging of the outer membrane and subsequent OMV release.  
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Introduction 

Outer membrane vesicles (OMVs) are spherical nanoparticles that contain the natural 

components of the bacterial outer membrane, including antigenic components [1]. 

OMVs have been effectively used as vaccines [2-6]. The OMV-based vaccines are 

currently not based on OMVs that are spontaneously released by the bacteria (sOMVs), 

but on vesicles extracted by a detergent (dOMVs). This extraction method was required 

to remove endotoxic lipopolysaccharides (LPS) from the OMVs, to make them suitable 

as vaccine. However, detergent extraction also caused a reduction in lipoproteins, 

reduced vesicle stability, and increased amounts of cytoplasmic components, all of 

which lower the vaccine quality [7]. Recently, LPS has been genetically engineered to 

reduce the toxicity of LPS by altering the LPS structure [8, 9]. This approach of genetic 

LPS detoxification makes the detergent extraction obsolete and allows much milder 

detergent-free extraction methods. These milder OMV extraction methods can be used 

to produce detergent-free extracted OMVs (eOMVs) with improved yield, stability and 

immunogenicity as compared to dOMVs[10, 11]. Alternatively, genetic detoxification of 

LPS also allows the use of sOMVs as vaccines. 

Using sOMV over eOMVs simplifies the vesicle production process. OMV extraction 

requires several additional unit operations while sOMVs could be directly obtained 

from the culture supernatant. Another advantage of using spontaneous vesicles as 

vaccines is the enhanced immunogenicity of the vesicles [10]. Compared to both Nm 

eOMVs and dOMVs, the evoked immune response of sOMVs from Neisseria meningitidis 

(Nm) is higher and shows a broader cross-protection against PorA types that are not 

included in the vesicles itself [10]. sOMV production however, is challenging since 

typical sOMV productivity is low. The release of OMVs has been proposed as a regulated 

mechanism based on the observation that OMVs differ in protein composition from the 

bacterial outer membrane [12-16]. Many biological functions have been ascribed to 

OMVs, that are advantageous for the survival chances of the bacterium by for example 

delivery of virulence factors or modulation of host immune response [1, 17]. 

Progression in understanding OMV biogenesis has been made, however the mechanism 

of OMV formation remains unclear and even the question remains whether a conserved 

mechanism exists [7, 18]. The biogenesis of OMVs has been categorized in three models 

[19]. In a first model, OMV release is based on the maintenance of lipid asymmetry in 

the outer membrane, that is based on increased phospholipid content in the outer 
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leaflet of the outer membrane instead of LPS. A second model proposes that OMV 

release is induced by misfolded and unfolded proteins in the periplasm. In a third 

model, OMV formation is induced by alterations in the stability of the outer membrane 

due to LPS modifications.  

Since the exact biogenesis of OMVs remains unknown, engineering approaches were 

applied to improve OMV productivity. One approach is based on the observation of 

increased vesicle release by strains with a reduced linkage of the outer membrane to 

the peptidoglycan [1]. It has been shown for several bacterial species that reducing the 

OM-peptidoglycan linkage, by knockout mutation of membrane anchoring proteins, 

increases the release of OMVs [10, 20-23]. In this work, we use the knockout of the 

membrane anchoring RmpM protein to increase the sOMV release of Nm. Additionally, 

we showed previously that cysteine depletion could be used as external trigger of Nm 

OMV release in a batch culture [24]. Cysteine depletion resulted in impaired sulfur 

supply, the onset of the stationary growth phase, oxidative stress as shown by 

upregulation of genes involved in oxidative stress responses, and in an increased OMV 

release. However, the mechanism of this increased vesicle formation remains unknown. 

Based on the fact that oxidative stress responses seem to be involved in OMV release, 

we hypothesize that the oxidation state of the sulfur source affects the release of OMVs. 

Sulfur is an essential component of proteins and the sulfur metabolism of Nm has been 

extensively studied [25-28]. Originally it was described that reduced sulfur (cysteine or 

cystine) is necessary for growth [25, 26], and Catlin described an absolute requirement 

of cysteine for growth of a few Nm strains [29]. However, growth of Neisseria on the 

oxidized sulfur source sulfate has been shown [27, 28], indicating that Nm metabolism 

is capable of sulfate reduction. The cysteine biosynthesis in Neisseria species has been 

recently reviewed [30]. For the assimilation of cysteine from sulfate, sulfate is converted 

to adenosine 5’-phosphosulfate (APS) and via phosphoadenosine-5’-phosphosulfate 

(PAPS) the sulfur is reduced to sulfite [31]. After further reduction of sulfite to hydrogen 

sulfide the sulfur is incorporated in cysteine. It has been proposed that the Nm pathway 

may differ slightly from the described classical cysteine assimilatory pathway, since APS 

could be directly reduced to sulfite without PAPS as intermediate [31]. Besides sulfate, 

thiosulfate can be used as well for the assimilation of sulfur source since the presence of 

thiosulfate reductase has been shown [28]. Growth of Nm on oxidized sulfur sources is 
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thus possible and the availability of multiple sulfur-acquisition routes illustrates the 

importance of sulfur in the metabolism of meningococci. 

This study aims to increase the understanding of OMV formation in Nm triggered by 

sulfur depletion by looking at the influence of different sulfur sources on OMV release 

upon sulfur depletion. First, we assess growth of Nm on sulfate as the sole sulfur source 

in a chemically defined medium. Next, the effect of cysteine and sulfate depletion is 

assessed by proteomics. Lastly, to gain further insight in the mechanism of OMV 

biogenesis upon sulfur-source depletion, the biochemical composition of OMVs 

produced in different growth phases and upon both cysteine and sulfate depletion was 

assessed.  

Materials and Methods 

Shaker flask cultures 

A recombinant derivate of the Neisseria meningitidis serogroup B isolate H44/76 [48] 

was used in this study. This strain had a non-encapsulated phenotype due to the siaD 

knockout, lpxL1 deletion to attenuate LPS-toxicity, rmpM deletion to improve vesicle 

formation and lgtB was mutated to skew towards dendritic cells [10, 49]. The selected 

strain was a PorA lacking derivate of the H44/76 isolate. This strain was stored in a 

two-tiered seedlot system containing glycerol at -135°C. All cultivations were 

performed with chemically defined growth medium [50]. Growth on sulfate, sulfite and 

thiosulfate was performed with adapted strains since cysteine is the preferred sulfur 

source. Adaptation was performed by subculturing the strain in shaker flasks in 

medium without cysteine (Supplemental Fig. 1). Initial growth was observed, possibly 

caused by carryover of cysteine, followed by an adaptation phase of 26 hours. After 

exponential growth on sulfate was observed, the culture was subcultured on medium 

with sulfate as the only sulfur source and cryopreserved for further experiments. 

Shaker flask cultivations of 150 mL were performed in 500 mL baffled shaker flasks 

incubated at 200 RPM at 35°C. Cultures were inoculated from a shaker flask culture in 

the exponential growth phase. Samples with a fixed volume of 2.0 mL were taken for 

optical density measurements (590 nm), pH measurements and used for sOMV 

concentration measurements after sterile filtration (0.22 µm) and storage at 4°C. 
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Bioreactor cultures 

Batch cultivations were performed in 5 liter dished bottom Applikon bioreactors with 

an H/D ratio of 1.6 based on total volume. Cultivations with a 3 liter working volume 

were operated from a Pierre Guerin Trytoni controller. Temperature was controlled at 

35 ± 0.5°C and pH was controlled at pH 7.2 ± 0.05 using 1M HCl and 1M NaOH as titrant. 

Dissolved oxygen tension (DOT) was controlled at 30%. In the first phase of the 

cultivation, DOT is controlled by the stirrer (300 - 1000 RPM) and next the fraction of 

oxygen is increased in the headspace aeration (1 NL/min). Samples were taken for 

optical density measurements and used for nutrient and sOMV concentration 

measurements after sterile filtration (0.22 µm) and storage at 4°C. Offgas composition 

was measured by a Thermo Scientific Prima δb process mass spectrometer.  

Proteomics 

Protein Digestion: bacterial suspensions were denaturated at 100°C for 30 min in a 

potassium phosphate buffer (100mM, pH 7.8) containing 0.1 % Rapigest (Waters) at a 

protein concentration 0.2 mg/mL. Proteins were digested with 0.25 µg endoproteinase 

Lys-C (Roche) for 4 h at 37 °C followed by overnight digestion with 1 μg trypsin 

(Promega) at 37 °C.  

Peptide Labeling: relative quantification of proteins in each protein sample was 

performed using dimethyl labeling of peptides and a common reference as internal 

standard as described previously [51]. Individual protein digests were incubated with 

native formaldehyde (CH2O; Sigma-Aldrich) and NaCNBH3 (Sigma-Aldrich) in final 

concentrations of 50 mM. A common reference was prepared by mixing thoroughly 20 

μg of each unlabeled digest. The common reference was incubated with deuterium-

labeled formaldehyde (CD2O; Sigma-Aldrich) and NaCNBH3 in final concentrations of 50 

mM. The individual dimethylated (C1H3)2 peptide samples were mixed with the 

deuterium dimethylated (C1D2H1)2 common reference in equal amounts. Analytes were 

purified by solid phase extraction (SPE) using 1 mL Sep-Pack C18 cartridges (Waters) 

according to the manufacturer’s protocol. Peptides were recovered from the SPE using 

60% acetonitrile and 0.1% formic acid and dried using a vacuum centrifuge 

(Eppendorf). Differentially labeled peptide mixtures were dissolved in 100 μL 

water/DMSO/formic acid (94.9/5/0.1%) and diluted 1:20 in water/DMSO/Formic acid 

(94.9/5/0.1%). 
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Peptide Identification by LC−MS/MS Analysis: the peptide samples were analyzed by 

nanoscale reversed-phase liquid chromatography electrospray mass spectrometry 

using an Orbitrap Fusion Lumos (Thermo Scientific, USA) and Agilent 1290 (Agilent 

Technologies, USA), as previously described [52]. A survey scan was performed in the 

Orbitrap with a resolution of 120 000 (fwhm) (m/z 300−1500) followed by collision-

induced dissociation (CID) in the ion trap of the twenty most abundant precursor ions. 

The threshold value for these precursor ions was set at 25000 counts. The normalized 

collision energy was set at 35%, the isolation width at 1.6 Da and the isolation offset at 

0.25 Da. Proteome Discoverer 2.2 software was used for processing the raw MS data. 

MS/MS scans were searched against the protein database of N. meningitidis H44/76 

(NCBI 909420) with trypsin enzyme specificity and mass tolerance of precursor ions 

and fragment ions set to 5 ppm and 0.4 Da, respectively. Asparagine deamidation and 

methionine oxidation were set as variable modifications and lysine dimethylation and 

N-terminal dimethylation as a fixed modification. Peptides were filtered to <1% FDR 

using the Percolator algorithm (Thermo Scientific). Abundance ratios of the proteins 

were determined with the default dimethyl quantification workflow of Proteome 

Discoverer using the dimethyl (C1H3)2 (+28.03130) and (C1D2H1)2 (+32.05641) 

channels.  

The protein abundance ratios of the biological triplicates were excluded from the 

dataset if the protein was detected in less than two out of three replicates. This resulted 

in a dataset of 621 proteins that were detected in all time-points of the samples. The 

abundance ratios of the proteins were log2 transformed to obtain fold changes and heat 

maps were generated. 

OMV purification 

From the bioreactor cultures, 50 mL samples were obtained. Samples were centrifuged 

for 20 minutes at 3000 × g, 4°C, to separate bacteria from the OMV containing 

supernatant. Next, the supernatant was filtered over a 0.2 µm filter (Nalgene Rapid 

Flow, PES) and the sterile OMV fraction was concentrated and washed with one volume 

of 0.01M Tris buffer pH 7.4 containing 3% sucrose on 100 kDa MWCO Amicon Ultra-15 

Centrifugal Filter Units according to manufacturer’s protocol (Merck Millipore). Lastly, 

the OMVs were pelleted by ultracentrifugation (125,000 × g, 2h, 4°C) and the OMV pellet 

was resuspended in a 0.01M Tris buffer pH 7.4 containing 3% sucrose.  
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OMV composition 

Phospholipid and LPS content was analyzed by fatty acid composition measurement 

using a modified gas chromatography method as described previously [10]. LPS 

quantification was based on the peak area of C14:3OH (two molecules per LPS moiety) 

using C12:0-3OH as internal standard. Phospholipid was quantified by the sum of the 

peak areas C16:0, C16:1, C18:0 and C18:1 using C15:0 as the internal standard. 

Nanoparticle tracking analysis 

To analyze purified sOMVs, a NanoSight NS500 (Malvern Instruments) with 488 nm 

wavelength laser module and sCMOS camera was used for nanoparticle tracking 

analysis (NTA)[53]. A sample was measured in static mode by capturing 10 movies of 

30-seconds with temperature control at 25°C. Movies were analyzed in the NTA 3.2 

software build 3.2.16. The NS500 was calibrated by the NanoSight NTA concentration 

Measurement upgrade. The sample changer was used to increase the throughput of 

samples measured [54]. The NS500 is cleaned monthly with Decon 90, following the 

manufacturers recommendations. Before every set of sample measurements, we 

confirmed the absence of particles in the MilliQ diluent by measuring the MilliQ diluent 

for 60 seconds in static mode.  
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Results 

Influence of sulfur depletion on sOMV release  

After initial adaptation of Nm on sulfate, growth on other oxidized sulfur sources such 

as sulfite and thiosulfate was also possible without the requirement of an additional 

adaptation phase. Growth in shaker flasks on oxidized sulfur sources was comparable to 

growth on cysteine (Data not shown). Growth on sulfate, the most oxidized sulfur 

source was compared to growth on the preferred (reduced) sulfur source cysteine in 

benchtop bioreactor cultures. The dissolved oxygen tension of the cultures was 

controlled at 30% air saturation. The growth pattern of Nm on sulfate shows 

exponential growth with an average specific growth rate of 0.47 h-1 until the maximum 

optical density in this medium is reached (Fig. 1A). The average specific growth rate on 

cysteine is similar, 0.46 h-1. The carbon dioxide production pattern of the cultivation on 

both sulfur sources shows the typical pattern of a batch culture, with a respiratory 

quotient of 1.0 throughout the culture. Previously it was shown that cysteine depletion 

causes growth arrest [24] and with similar biomass yields on sulfate we assume sulfate 

limitation is the cause of the onset of the stationary phase of the sulfate based culture. 

At this point in both cultures, other nutrients like the carbon, nitrogen, and phosphate 

source are still available in abundance (data not shown). Both cultures show minimal 

OMV release during the exponential growth phase (Fig. 1B). In the stationary phase 

both cultures produce sOMVs. However, the sOMV release upon sulfate depletion 

showed higher than during cysteine depletion. 

 Figure 1 Growth and sOMV release of Nm during sulfur source depletion. Nm cultures are grown on 

cysteine (black) and sulfate (green) as sulfur source. The growth curve based on optical density is shown 

in graph A, and the concentration of OMV is given in graph B. Graphs are the overlay of two replicate 

cultures to practically allow for sufficient data points covering 24h. 
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Proteome analysis of cysteine and sulfate depleted batch cultures 

To understand how the bacterium copes with the onset of sulfur depletion during 

cultivation the proteome was examined. Triplicate bioreactor cultures with either 

cysteine or sulfate as sole sulfur source were analyzed at different time-points during 

the cultivation (Fig. 2A). Culture supernatants showed depletion of the corresponding 

sulfur source at 7h (Fig. 2A, time-point t2). Sulfur depletion results in increased OMV 

concentrations in the culture (Fig. 2B), confirming the previous results (Fig. 1). During 

growth in the presence of cysteine (t1), the proteome of Nm shows no upregulation of 

the cysteine biosynthesis pathway as expected as cysteine is sufficiently available (Fig. 

2C, Supplemental File 1 for the complete dataset). The pathway is also not upregulated 

Figure 2. Experimental approach for proteomics. Triplicate Nm batch cultures on cysteine or sulfate 

as the sole sulfur source were sampled during exponential growth (t1,t2), onset stationary phase (t3,t4), 

and late stationary phase (t5)(A). The OMV concentration was measured by NTA throughout the 

cultivation (B). Error bars indicate standard deviation from the mean. The proteome is assessed for the 

cysteine assimilation pathway as shown in the heat map (C). 
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when cysteine becomes limiting (t3-t5), possibly because no sulfur is available for the 

generation of new proteins, or since no other sulfur source is available. CysW, CysT and 

CysH were below the detection limit of the LC-MS/MS analysis. During growth on 

sulfate the cysteine biosynthesis pathway was upregulated throughout the cultivation 

as expected. 

We then performed gene ontology enrichment on the proteome data. Proteins 

categorized in the gene ontology antioxidant activity (GO:16209) were found to be 

upregulated upon cysteine depletion (time points t3, t4) (Fig. 3). This agrees to the 

previously described antioxidant and redox-stress responses found in the 

transcriptome upon cysteine depletion [24]. Upon sulfate depletion proteins with 

antioxidant activity are upregulated as well. Upon cysteine depletion, AhpD and AhpC 

are upregulated. Upon sulfate depletion these appear not to be regulated, while another 

protein with ascribed alkylhydroxyperoxidase activity (ahpD, E6MUC5) was observed 

to be regulated on sulfate as sulfur source. Proteins involved in phospholipid (GO:8654), 

fatty acid and LPS production (GO:9103) were upregulated after both cysteine depletion 

and sulfate depletion, simultaneously with increased OMV release. Both phospholipid 

biosynthesis and fatty acid biosynthesis proteins were more upregulated after sulfate 

depletion than after cysteine depletion. This upregulation is consistent with the 

increased release of OMV observed after sulfate depletion. Interestingly, the VacJ/Yrb 

ABC (ATP-binding cassette) transporter, which has a proposed role in maintaining lipid 

asymmetry in the outer membrane by transport of phospholipids from the outer leaflet 

to the inner leaflet, is strongly upregulated upon growth on sulfate as sulfur source and 

is not regulated upon cysteine depletion.  

Sulfur depletion results in phospholipid enriched OMVs 

During OMV production as a result of sulfur depletion, increased phospholipid 

production takes place, which could result in OMVs enriched in phospholipid content. 
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This changed composition of the OMVs could also affect their size. To test this, OMVs 

were isolated from batch cultures containing either sulfate or cysteine, during the 

exponential growth phase, onset of the stationary phase and in the stationary phase. 

The size of OMVs was measured by NTA and was found to be similar throughout the 

cultivation and between sulfate depletion and cysteine depletion (Fig. 4A). A small trend 

Figure 3. Heat maps based on gene ontology. Heat maps for specific gene ontology groups from 

the proteome dataset. The gene ontologies for antioxidant activity (GO:16209), Fatty acid 

biosynthesis (GO:6633), LPS biosynthesis (GO:9103), and phospholipid biosynthesis (GO:8654) are 

shown. Additionally, the expression level is shown of the VacJ/Yrb ABC transport system. VacJ was 

included although it was only detected in 8 out of 10 time-points, since the VacJ levels were near the 

detection limit in the cysteine culture. Samples indicated by “nd” were not detected.  
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in increased OMV size upon sulfur depletion was observed, although non-significant. 

The phospholipid content of OMVs increased upon sulfate depletion, while upon 

cysteine depletion the phospholipid content only shows a minor increase (Fig. 4B). The 

relative content of LPS, based on fatty acid analysis, decreased similarly for both sulfate 

and cysteine depletion (Fig. 4C).  

Discussion 

This study shows that not cysteine depletion specific, but sulfur depletion in general 

induces OMV release in Nm cultures. Growth of Nm on sulfate was comparable to 

growth on cysteine as sulfur source. Upon sulfur depletion, the proteome showed 

increases in antioxidant activity, phospholipid biosynthesis and LPS biosynthesis. OMVs 

released after sulfur depletion were enriched in phospholipids. The most interesting 

finding was that sulfate depleted cultures showed increased OMV release over cysteine 

depleted cultures.  

OMV formation upon sulfur depletion can be the result of increased phospholipid 

biosynthesis. Especially OMVs produced after sulfate depletion showed to be enriched 

in phospholipids. This finding was supported by the increased phospholipid 

biosynthesis observed in the proteome. Recently, an important role was shown for the 

 

Figure 4. OMV characteristics upon sulfur depletion. OMV size by Nanoparticle Tracking Analysis of 

purified sOMV at different growth stages of the batch cultures on cysteine and sulfate (A). Error bars 

indicate standard deviation of the mean of 10 measurements. The biochemical composition of OMVs 

produced upon sulfur depletion show increased phospholipid/OMV ratio (B). The fatty acid distribution 

between phospholipid and LPS is shown upon sulfur source depletion (C). 
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VacJ/Yrb ABC (ATP-binding cassette) transporter in OMV biogenesis [16]. This 

transporter has a proposed role in maintaining lipid asymmetry in the outer 

membranes as phospholipid transporter [32], by transporting phospholipids from the 

outer leaflet of the membrane to the inner leaflet, and is annotated in the Nm genome. It 

was shown by Roier et al. that the VacJ/Yrb ABC transporter was downregulated by the 

ferric uptake regulator (FUR) upon iron limitation in H. influenzae, V. cholerae and E. coli 

[16]. Disruptions of the VacJ/Yrb ABC transport system resulted in increased OMV 

formation, due to phospholipid accumulation in the outer membrane. This increase in 

OMV production in H. influenzae was not accompanied with increased fatty acid 

biosynthesis. In this study we show that sulfur depletion causes increased release of 

OMVs that are enriched in phospholipids. It should be noted that we used a strain with 

reduced linkage between the peptidoglycan and the outer membrane (rmpM knockout 

mutant). Interestingly, our Nm proteomics data upon sOMV formation by sulfate 

depletion showed simultaneous upregulation of the VacJ/Yrb ABC transporter and 

phospholipid biosynthesis. Possibly, this transporter is upregulated to counteract the 

accumulation of phospholipids in the outer membrane due to the increased synthesis 

and stop of growth. The overproduction of OMVs could be a method to dispose of the 

excess phospholipids in the outer membrane because the transporter has insufficient 

capacity. This suggests that upon sulfur depletion, OMV release is triggered in a 

different manner than downregulation of the VacJ/Yrb ABC transport system. Although 

it does support the OMV biogenesis model of phospholipid accumulation based OMV 

release [19]. 

The increased phospholipid production upon growth on sulfate can be a result of the 

altered redox state. During cysteine assimilation from sulfate, NADPH is required to 

reduce the oxidized sulfur source [30]. NADPH replenishment is thus higher during 

growth on sulfate, than for growth on cysteine. We hypothesize that upon sulfate 

depletion the high NADPH replenishment causes a surplus of NADPH since no NADPH is 

used for cysteine assimilation anymore. Phospholipid production, which also requires 

NAPDH, is then increased as a sink for the NAPDH that is produced in excess. As NADPH 

is one of the key cofactors in the metabolic network and influenced by many reactions 

[33] it can be argued whether a short perturbation causes a prolonged state of OMV 

release. After sulfur depletion, increased levels of serine could be expected since no 

sulfide is available anymore to produce cysteine. Besides conversion to cysteine, serine 
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can be used for the production of phospholipids by the conversion to 

phosphatidylserine. Engineering the redox metabolism is a method for enhanced lipid 

production in microbes [34]. For example, lipid production in Yarrowia lipolytica has 

been boosted by introduction of pathways that convert NADH to NADPH [35]. Another 

important role of NADPH is as cofactor of enzymes involved in oxidative stress 

responses as catalase, superoxide dismutase and glutathione peroxidase [36].  

Alternatively, the increased phospholipid production can be required to maintain the 

membrane integrity because of the increased OMV release. Moreover, sulfur depletion 

could stimulate OMV release through a secondary mechanism such as oxidative stress. 

Sulfur is an important component of major oxidative stress responses [37] and sulfur 

starvation may induce OMV release by affecting these oxidative stress responses. 

Oxidative stress responses were observed in the gene expression profile after cysteine 

depletion previously [38]. As sulfur was unavailable, glutathione biogenesis and iron-

sulfur protein biogenesis was impaired. Biologically, Nm encounters sudden oxidative 

stress in the oxidative burst that phagocytes apply to eliminate invading pathogens [37, 

39]. Increased OMV release upon oxidative stress can be a method to release oxidative 

stress or a method to enhance survival upon oxidative bursts. 

OMV formation as a result of nutrient limitation has been posed as an evolutionary 

trigger for OMV release as survival is enhanced through nutrient scavenging [40]. 

Recently, amino acid deprivation was found to stimulate OMV and tubular OMV 

structures in Francisella tularensis [41]. Nm OMVs have been found associated with 

iron-scavenging proteins [42] and Bacteroides succinogenes OMVs have been found to 

contain xylanases or cellulases that can assist in nutrient acquisition [43]. OMV 

formation upon nutrient limitation may thus assist in nutrient acquisition and improve 

bacterial survival.  

The size of OMVs was similar for OMVs produced after depletion of sulfate and cysteine, 

while OMV size can be highly subjectable to changes. The induction of OMV release of 

Pseudomonas aeruginosa by gentamycin yields enlarged OMVs [15, 44]. Mitomycin C 

treatment of Shigella dysenteriae induces the release of larger OMVs [45]. The size of 

OMVs can affect both the production process of OMVs, as it influences purification and 

analysis of OMVs, and the immunogenicity as the size influences the uptake by antigen 

presenting cells [46]. The observed similarity in size distribution of OMVs in this study 
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is somewhat surprising as the vesicles produced upon sulfate depletion where enriched 

in phospholipids. This results in a lower content of LPS, which could affect the use of 

these OMVs as vaccines. The biological activity of native Nm LPS is high, as 

characterized by its activation of the TLR4/MD-2 complex. LPS can be engineered such, 

by changes in lipid A acylation and phosphorylation, that these LPS derivates have 

various strengths of TLR4/MD-2 activation [47]. Future work should tune the required 

LPS activity of these spontaneously released OMVs with reduced LPS content to 

optimize the amount of immune activation while limiting toxic side effects for an 

optimal vaccine composition. 

Taken together, the findings of this study expand the knowledge on OMV release by Nm. 

Sulfur depletion can be used as general mechanism to trigger vesicle formation in Nm 

and the use of sulfate as sulfur source improves the OMV productivity of Nm batch 

cultures. Sulfur depletion caused overproduction of phospholipids and especially sulfate 

depletion resulted in OMVs enriched in phospholipid content. OMV biogenesis remains 

a complicated and poorly understood process that leaves many research questions 

remaining. Refined understanding of OMV biogenesis will boost production processes of 

OMVs released in the supernatant of bacterial cultures and will ultimately make OMV 

extraction processes obsolete for the production of OMV-based vaccines. 
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Supplemental Figure 1. Adaptation of Neisseria meningitidis from cysteine to sulfate as sulfur 

source. Optical density is shown by the square markers, and the growth rate by the triangular markers. 

Growth on cysteine medium is shown in black and growth on sulfate medium in green. A culture 

inoculated from a frozen seed was grown on cysteine containing medium (0h - 20h). Next this culture was 

subcultured to medium with sulfate. A period of adaptation (22h - 48h) was required until growth is 

observed.  

 

Supplemental File 1 Dataset proteomics (Dataset proteomics.xlsx) 



 
 

82 
 

  



 
 

83 
 

 

 

 

 

Chapter 5 

 

 

High dissolved oxygen tension triggers outer membrane 

vesicle formation by Neisseria meningitidis 
 

 

 

 

 

 

 

 

 

 

 

 

 

Published as: 

Gerritzen, M.J.H., R.H.W. Maas, J. van den IJssel, L. van Keulen, D.E. Martens, R.H. Wijffels 
and M. Stork (2018). "High dissolved oxygen tension triggers outer membrane vesicle 
formation by Neisseria meningitidis." 
Microbial Cell Factories, 2018. 17(1): p. 157. 



  

 

84 
 

Abstract 

Outer membrane vesicles (OMVs) are nanoparticles released by Gram-negative bacteria 

and can be used as vaccines. Often, detergents are used to promote release of OMVs and 

to remove the toxic lipopolysaccharides. Lipopolysaccharides can be detoxified by 

genetic modification such that vesicles spontaneously produced by bacteria can be 

directly used as vaccines. The use of spontaneous OMVs has the advantage that no 

separate extraction step is required in the purification process. However, the 

productivity of spontaneous OMVs by bacteria at optimal growth conditions is low. One 

of many methods for increasing OMV formation is to reduce the linkage of the outer 

membrane to the peptidoglycan layer by knocking out the rmpM gene. A previous study 

showed that for Neisseria meningitidis this resulted in release of more OMVs. 

Furthermore, cysteine depletion was found to trigger OMV release and at the same time 

cause reduced growth and oxidative stress responses. Here we study the effect of 

growth rate and oxidative stress on OMV release. First, we identified using chemostat 

and accelerostat cultures of N. meningitidis that increasing the growth rate from 0.03 h-1 

to 0.18 h-1 has a limited effect on OMV productivity. Thus, we hypothesized that 

oxidative stress is the trigger for OMV release and that oxidative stress can be 

introduced directly by increasing the dissolved oxygen tension of bacterial cultures. 

Slowly increasing oxygen concentrations in a N. meningitidis changestat showed that an 

increase from 30% to 150% air saturation improved OMV productivity four-fold. Batch 

cultures controlled at 100% air saturation increased OMV productivity three-fold over 

batch cultures controlled at 30% air saturation. Increased dissolved oxygen tension 

induces the release of outer membrane vesicles in N. meningitidis cultures. Since oxygen 

concentration is a well-controlled process parameter of bacterial cultures, this trigger 

can be applied as a convenient process parameter to induce OMV release in bacterial 

cultures. Improved productivity of OMVs not only improves the production costs of 

OMVs as vaccines, it also facilitates the use of OMVs as adjuvants, enzyme carriers, or 

cell-specific drug delivery vehicles. 
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Introduction 

Outer membrane vesicles (OMVs) are naturally produced by Gram-negative bacteria 

and play a role in pathogenesis, cell-to-cell communication and stress responses [1]. 

OMVs are spherical nanoparticles that consist of a phospholipid bilayer with proteins 

and lipopolysaccharides (LPS) [1]. The lumen of the vesicle contains DNA and 

periplasmic components of the bacterium [2, 3]. Membrane vesicle formation has been 

shown recently in Gram-positive bacteria and archaea as well [4, 5]. 

OMVs are highly similar to the outer membrane of the bacteria, are non-replicating, and 

characteristically are full of pathogen associated molecular patterns. With this they 

fulfill major criteria for vaccine design and have been successfully used as such [6, 7]. 

These vaccines have been produced by extraction of vesicles from the bacterial outer 

membrane using detergents. In this way, vesicles are artificially formed and the amount 

of toxic LPS could be reduced [8, 9]. However, extraction of vesicles is disadvantageous 

since the proteome of extracted OMVs (eOMVs) shows a lowered amount of possible 

immunogenic proteins over spontaneously released OMVs (sOMVs) [10, 11]. 

Furthermore, extraction methods are not required anymore for LPS removal since the 

introduction of genetically modified low toxicity LPS [12, 13], which forms the basis for 

the use of spontaneously released OMV. Thus, the use of spontaneous released vesicles 

simplifies the purification of OMVs since it obsoletes the extraction step in the down-

stream processing of the vaccine product [10, 11]. Sera from mice immunized with 

spontaneous OMVs show immunity against a broader range of serotypes than mice 

immunized with detergent extracted OMVs [14]. Furthermore, omission of detergent 

also preserves vesicle integrity, yielding a more uniform vaccine product. 

Feasible sOMV production has not been straightforward since sOMV productivity at 

optimal growth conditions is low. Despite the research on OMV biogenesis over the past 

4 decades, the exact mechanism triggering the release of OMVs by a bacterium remains 

unknown. Because the composition of OMVs differs from the outer membrane of the 

bacteria, it is generally thought that the release of vesicles is not a random process [15]. 

Biogenesis of OMVs has been described by several models although it remains unclear 

whether a shared mechanism exists [16]. OMV biogenesis is hypothesized to be based 

on peptidoglycan fragments accumulation in the periplasm, less anchoring of the outer 

membrane to the peptidoglycan layer, or O-antigen charge repulsion. These models are 
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reviewed in [17] and [2]. Recently, Roier et al. suggested a novel mechanism based on 

phospholipid accumulation that is conserved among Gram-negative bacteria [18]. The 

proposed phospholipid transporter VacJ/Yrb ATP-binding cassette was shown to be 

involved in OMV production and could be part of regulated OMV release. Increasing the 

OMV production by Neisseria meningitidis is possible by deleting the rmpM gene, the 

product of which anchors the outer membrane to the peptidoglycan layer [14]. 

Reducing the linkage between the outer membrane and the peptidoglycan layer results 

in so-called blebbing mutants of bacteria that show increased release of OMVs in the 

supernatant. This was found not only for N. meningitidis, but also for E. coli [19]. 

External triggers for OMV release could be a convenient way to enhance production in 

bioreactor cultures. Van de Waterbeemd et al. showed that cysteine depletion can be 

used as a trigger to stimulate the release of vesicles in N. meningitidis cultures [20]. 

Simultaneously with cysteine depletion, the growth rate is reduced and oxidative stress 

responses were observed in the transcriptome of the bacterium. It is unknown whether 

cysteine directly triggers OMV formation or works indirectly through a reduction in 

growth rate and/or increase in oxidative stress. Furthermore, increased release of 

vesicles under hydrogen peroxide addition has been shown [20]. The method of 

hydrogen peroxide addition, however, is not feasible for scalable production processes 

of OMV since local hydrogen peroxide addition to a bacterial culture will result in 

significant cell death and lysis. In this study we hypothesize that extracellular oxidative 

stress is directly induced by high concentrations of dissolved oxygen, which is one of the 

controlled parameters in bioreactor cultivations. The dissolved oxygen tension is 

typically kept low, to minimize the stress from hyperoxia and to prevent oxygen 

inhibition [21]. Especially for a facultative anaerobic pathogen it is obvious to design the 

cultivation with low oxygen concentration [22]. For example, N. meningitidis cultivation 

for both the vaccine concepts HexaMen and NonaMen has been designed with levels of 

30% air saturation [23, 24].  

The aim of this study is to obtain more insight in the role of growth rate and oxidative 

stress in the release of OMVs. The first section of this paper will examine whether a 

decrease in growth rate can trigger OMV release by using accelerostat experiments. 

Next, oxidative stress is introduced in continuous cultures by increasing the dissolved 
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oxygen tension. Lastly, increasing the dissolved oxygen concentration is tested on batch 

cultures. 

Material and methods 

Bacterial strains 

A recombinant derivate of the Neisseria meningitidis serogroup B isolate H44/76 [25] 

was used in this study. The selected strain was a PorA lacking derivate of the H44/76 

isolate [26]. This strain has a non-encapsulated phenotype due to the siaD knockout, 

lpxL1 deletion to attenuate LPS-toxicity, rmpM deletion to improve vesicle formation 

(unless indicated otherwise) and lgtB mutation to promote interactions with dendritic 

cells [14, 27]. This strain was stored in glycerol as working seedlots. All cultivations 

were performed in chemically defined growth medium [28].  

For the cultivation with Escherichia coli strain JC8031 (TolRA) was used [29]. A shaker 

flask culture was started by adding 10 µL of frozen glycerol stock (-80°C) to 100 mL LB 

medium (Large Capsules: tryptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L, MP 

Biomedicals) and incubating the shaker flask at 37°C for 16 hours. Bioreactor 

cultivations were performed on LB medium without antifoam with a maximum stirrer 

speed of 600 RPM at 37°C. 

Bioreactor cultivations 

Batch cultivations were performed in 5-liter dished bottom Applikon bioreactors with 

an H/D ratio of 1.6 based on total volume. Cultivations were operated with 3 liter 

working volume on a Pierre Guerin Trytoni controller. Temperature was controlled at 

35 ± 0.5 °C and pH was controlled at pH 7.2 ± 0.05 using 1M HCl and 1M NaOH. 

Dissolved oxygen tension was controlled at 30% unless indicated otherwise. The 

membrane covered polarographic oxygen sensor (InPro 6850i, Mettler Toledo) was 

calibrated at 100% in air-saturated sterile growth medium of 35 °C. In the first phase of 

the cultivation, the dissolved oxygen tension is controlled by increasing the agitation 

rate (300 - 1000 RPM) followed by increasing the fraction of oxygen in the headspace 

aeration (1 L/min) by the addition of pure oxygen. The agitation rate of the 100% air 

saturation cultures was fixed at 1000 RPM directly after inoculation after which the 

oxygen tension was controlled by the addition of pure oxygen in the headspace. Samples 

were taken for optical density measurements and used for nutrient and sOMV 
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measurements after sterile filtration (0.22 µm pore-size) and storage at 4 °C. Off-gas 

composition was analyzed by a Thermo Prima δb process mass spectrometer. 

Chemostat cultivations 

Continuous cultivations were performed in a similar setup as the batch cultivation 

setup. The working volume of the 5-liter bioreactor was decreased from 3.0 liter to 2.0 

liter to reduce the feed medium required for the experiments. The vessel was equipped 

with a medium inlet and two outlet pipes, one submerged in the cultivation broth at the 

height of the stirrer and one directly at the liquid-gas interphase. The latter allowed the 

control of the working volume to be exactly 2.0 liter at a fixed maximum stirrer speed, 

independent of foaming. The weight of the bioreactor, the feed medium and the pH 

titrant solutions was measured by balances and used for verification of the dilution rate. 

Samples were taken for optical density measurements and off-gas analysis was similar 

to the batch cultivation. The bioreactor was controlled with the same control loops as 

used in the batch cultivations. After 8 hours of growth the feed and the bleed pumps 

were started to initiate a continuous culture. Steady state of the culture was assumed 

based on stable bacterial density values and stable carbon dioxide emission for at least 

3 dilutions of the bioreactor volume.  

Accelerostat and dissolved oxygen changestat cultivation 

An accelerostat was started from a chemostat fermentation in steady state at D = 0.03 h-

1, operated as described in the previous section, by increasing the dilution rate linearly 

with aD = 0.0055 h-2. The dilution rate was changed by increasing the medium inflow 

rate and equally increasing the broth outflow rate. From the culture broth, 50 mL 

samples were drawn to purify sOMVs. The samples were centrifuged at 4000 × g for 30 

min at 4°C and the sterile filtered supernatants (Nalgene RapidFlow 0.2µm pore-size 

PES filter unit) were concentrated on 100kDa cut-off spin filters. The concentrated 

sOMVs were washed with 3% sucrose buffered by 10 mM TrisHCl (pH 7.4) to wash out 

contaminating proteins. Next, the diafiltrated sOMVs were centrifuged at 125.000 × g 

for 2h. The sOMV containing pellet was dissolved in 1 mL 10 mM TrisHCl (pH 7.4) with 

3% sucrose.  

The dissolved oxygen tension changestat was started from a chemostat culture. For this, 

a continuous culture in steady state with µ = 0.04 h-1 was obtained as described 

previously. During this steady state, the oxygen concentration was controlled at 30% air 
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saturation, the starting point for the changestat. From the start of the changestat, the 

oxygen concentration was increased linearly with aDOT = 1.0 %/h.  

Escherichia coli JC8031 (TolRA) was used for the dissolved oxygen tension changestat of 

E. coli [29]. A shaker flask culture was started by adding 10 µL of frozen glycerol stock (-

80°C) to 100 mL LB medium (Large Capsules: tryptone 10 g/L, yeast extract 5 g/L, NaCl 

10 g/L, MP Biomedicals) and incubating the shaker flask at 37°C for 16 hours. 

Bioreactor cultivations were performed on LB medium without antifoam with a 

maximum stirrer speed of 600 RPM at 37°C. 

Quantification of sOMVs  

Culture samples were sterile filtered (0.22 µm pore-size) before the sOMV were 

measured. sOMV concentration was measured with a phospholipid specific probe FM 4-

64 (SynaptoRed C2, Biotium) by mixing 50 µL of 2 to 50-fold diluted samples with 50 µL 

of dye solution (0.05 mM FM 4-64). Fluorescence was measured directly after mixing 

this solution using a plate fluorometer (Synergy MX, Biotek ex480, em650). The 

concentration of sOMV in the culture supernatants was calculated from a calibration 

curve which was based on the responses of the standards (sOMV corresponding with 0 

– 2.5 mg/L total protein). In the changestat experiments, nanoparticle tracking analysis 

[30] was used for sOMV quantification. Static measurements (10 captures of 30-

seconds) were made on a NanoSight NS500 with 488 nm laser module and sCMOS 

camera, that was calibrated with the concentration upgrade [31]. Temperature was 

controlled at 25°C and captures were analyzed with the NTA 3.2 software build 3.2.16. 

Automated flow measurements were made as described previously [32]. 

OMV size was assessed by dynamic light scattering in a Zetasizer Nano-ZS with 

Zetasizer 7.11 software (Malvern Instruments). Measurements were performed using a 

SOP that takes three measurements in backscatter mode, with auto measurement 

duration and “seek for optimal position” as positioning setting. The sample was 

assumed to be protein with a refractive index of 1.450 and 0.001 absorption, in water as 

dispersant with a viscosity of 0.8872 cP and refractive index of 1.330. Data was 

processed with the normal analysis model.  
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SDS-PAGE  

Purified OMVs were assessed for total protein content by the Lowry protein assay using 

Peterson’s modification. OMVs corresponding to 4 µg of protein were loaded on a 

precast polyacrylamide gel (Lonza) to perform SDS-gel electrophoresis. The gel was 

stained with InstantBlue protein stain (Expedeon).  
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Results 

Neisseria meningitidis sOMV release at reduced growth rate 

The increased productivity of OMVs during the stationary phase of a batch cultivation 

[20] raised the question what the direct influence of the growth rate on the sOMV 

release was. Here we assessed the influence of growth rate on sOMV release in three 

chemostat cultures in steady state at different dilution rates, and in an accelerostat, by 

slowly increasing the dilution rate of a chemostat culture of N. meningitidis. The slow 

change in dilution rate (aD) should keep the culture in steady state in this approach [33]. 

In this accelerostat an acceleration rate (aD) of 0.0055 h-2 was used (Figure 1B). The 

carbon dioxide evolution rate (CER) and the optical density increased simultaneously 

with the dilution rate (Figure 1A). In the accelerostat, OMVs were produced during the 

whole culture and were also similar in size and protein composition throughout the 

culture (Figure 1C-D). The specific sOMV production was constant throughout the 

culture with the growth rate ranging from 0.03 h-1 to 0.18 h-1 (Figure 1B). Chemostat 

cultures at three different growth rates showed comparable productivity to the 

accelerostat at a growth rate of 0.18 h-1, while the two lower growth rates show a minor 

increase in OMV productivity. From these results, we conclude that reducing the growth 

rate from 0.18 h-1 to 0.03 h-1 is not an important trigger for sOMV release. 

 

 

Influence of oxidative stress in a dissolved oxygen tension changestat 

The effect of increased oxygen concentration on bacterial growth and OMV release was 

assessed with a changestat approach. The dissolved oxygen tension of a chemostat 

culture is linearly increased at a rate (1%/h) that should be sufficient low to maintain a 

 

Figure 1. Influence of the growth rate on OMV release in a N. meningitidis accelerostat. Graph A shows the 

optical density (black squares) and the carbon dioxide evolution rate of the accelerostat culture (grey line). Graph B 

shows the increase of the dilution rate (black line, aD of 0.0055 h-2), the actual measured dilution rate (diamonds). 

Graph C shows the resulting specific OMV productivity (mg of total protein (TP) per liter culture of OD590=1 per hour) 

at different dilution rates for the accelerostat (solid circles) and chemostats (open circles). Vesicles were purified from 

the accelerostat at different dilution rates and the size of the purified OMVs is shown in Graph D. Error bars represent 

the standard deviation of the measurement. The protein composition of the OMVs is analysed by SDS-PAGE (Graph E). 

Lane 1 contains a molecular weight marker and lane 2-8 contain sOMVs purified at increasing dilution rates. 
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steady state culture (Figure 2A). N. meningitidis is capable of growth up to 150% air 

saturation without significant impact on the carbon dioxide evolution rate (Figure 2B). 

The release of sOMVs is linearly linked to the concentration of oxygen in the culture 

broth (Figure 2C). sOMV production can be increased by a factor 4 at high oxygen 

concentration, while preserving growth of the bacteria. Between dissolved oxygen 

concentrations of 150% and 220% air saturation, bacterial growth is affected, 

illustrated by the declined carbon dioxide production rate and lower biomass 

concentration (Figure 2B). Production of OMVs at these levels is not preferred.  

 

Figure 2. The influence of increased dissolved oxygen tension on growth and OMV productivity.  

Graph A shows the control of the dissolved oxygen concentration in the changestat, where the dissolved 

oxygen tension was increased by 1% per hour. The effect of the elevated oxygen concentration on the 

growth is shown in Graph B. The carbon dioxide evolution rate (grey) and bacterial biomass density 

(black squares) is similar for oxygen concentrations up to 150% air saturation. Graph C shows the specific 

productivity of sOMVs as a function of DO for three replicate cultures. The results for replicate 1 as shown 

in graph A and B are representative for the two other replicates. 
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Next, the changestat was repeated until a dissolved oxygen concentration of 150% after 

which the setpoint was maintained constant at this value. The culture showed a steady 

state productivity at a similar level as at the corresponding oxygen concentration during 

the changestat (Figure 3A), confirming that the accelerating factor of the changestat was 

sufficiently low to keep the culture in steady state. Last, a third changestat culture was 

done where after reaching a dissolved oxygen concentration of 150% the setpoint was 

returned to the starting value of 30%. The specific productivity returned to the level at 

the start of the changestats indicating that the changestat culture did not induce 

changes to the bacteria (Figure 3B). Furthermore, the increased oxygen concentrations 

also showed to trigger sOMV release in an E. coli dissolved oxygen changestat (Figure 

S1). In summary, it is shown that increased oxygen tension triggers OMV formation. 

 

Figure 3. Verification of the dissolved oxygen changestat cultures. One replicate of the N. meningitidis 

dissolved oxygen changestat was maintained at 150% air saturation upon reaching this value (A). The 

specific sOMV productivity remained at 7x1010 sOMVs per liter culture OD590=1 per hour, confirming the 

measurements in the changestats. Another replicate was returned to a steady state at 30% air saturation 

(B). During 5 dilutions, wash out of the OMVs produced at increased oxygen concentrations during the 

changestat was observed, resulting in a steady with similar productivity (1.6 x1010 sOMVs per liter 

culture OD590=1 per hour) to the beginning of the changestat (1.7 x1010 sOMVs per liter culture OD590=1 

per hour). 

 

Improved productivity of batch cultures at increased oxygen concentrations 

The high dissolved oxygen concentration was applied to a N. meningitidis batch 

cultivation to assess the feasibility of increased sOMV production. A dissolved oxygen 

tension of 100% air saturation was used since this value showed increased OMV release 

while maintaining similar growth characteristics as at 30% air saturation in the 
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changestat (Figure 2B). Bacteria were grown in chemically defined medium that results 

in sOMV release from the onset of the stationary phase. The bacterial growth profile was 

similar for the batch cultures at 30% and 100% air saturation, showing the capability of 

N. meningitidis to deal with higher oxygen concentrations (Figure 4A). The higher 

oxygen concentration triggered an increased release of vesicles resulting in a three-fold 

higher productivity at the end of the culture compared to the standard level of 30% 

(Figure 4B). The size of OMVs remains constant throughout the culture and is similar 

between the two oxygen concentrations (Figure 4C). High dissolved oxygen levels are 

therefore a convenient method for increasing sOMV production in batch cultures. 

 

Figure 4. High dissolved oxygen tension induces OMV release in N. meningitidis batch cultures.  

Growth curves of N. meningitidis batch cultures controlled at 30% (open symbols) and 100% air 

saturation (solid symbols) show similar growth (Graph A). The increased oxygen concentration showed 

to induce a higher level of vesicle release (Graph B). Graphs are the overlay of two replicate cultures to 

practically allow for sufficient data points covering 24h. The first replicate consists of data points at 0h to 

12h cultivation and at 24h cultivation, and the second replicate at 0h and 15h to 22h. Graph C shows the 

mode size of sOMV particles as measured by NTA in the supernatants from a N. meningitidis batch 

cultivation at two dissolved oxygen concentrations (30% air saturation and 100% air saturation). 

 

Discussion 

In this study, we investigated reduced growth rate and oxidative stress as triggers to 

induce sOMV formation in N. meningitidis. In the accelerostat experiment, the growth 

rate increases linearly with the CER up to a growth rate of 0.18 h-1. At higher dilution 

rates, a reduction in CER was observed and the experiment was stopped. The maximum 

specific growth rate of N. meningitidis on this medium is 0.5 h-1 [14] and wash-out is 

thus not expected at this dilution rate. A change in limiting substrate could explain the 
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results at growth rates over 0.18 h-1. All chemostats showed depletion of the carbon 

sources glucose and glutamate and the cultures were likely carbon limited. A lowered 

bacterial density was observed at reduced bacterial growth rates, that could be 

explained by the increased energy requirement for maintenance. The biomass yield on 

substrate(Yxs) and the maintenance coefficient (ms) were 0.43 gbiomass.gglucose-1 and 0.08 

gglucose.gbiomass-1.h-1, calculated using the maintenance model of Pirt [34]. These values 

were in line to the values of aerobic glucose limited chemostat cultures reported by 

Baart et al. (0.44 gbiomass.gglucose-1 and 0.04 gglucose.gbiomass-1.h-1 for resp. Yxs and ms) [28]. 

For the chemostats there seems to be an increase in specific productivity when the 

growth rate is lowered, where the point at the lowest growth rate significantly deviates 

from the accelerostat measurement. Since the lowest growth rate is the starting point of 

the accelerostat, which is certainly in steady state, this difference is not due to a too high 

acceleration rate in the accelerostat. Together, this data shows that reducing the growth 

rate from 0.18 h-1 to 0.03 h-1 does not have a large effect on OMV productivity, although 

due to the contrasting results it is not clear if a minor increase in productivity is 

associated with lowered growth rates.  

The effect of oxidative stress was assessed by changestat cultures with increasing 

dissolved oxygen tensions. N. meningitidis showed to be capable of handling dissolved 

oxygen concentrations of up to 220% air saturation. OMV productivity was increased 

four-fold in a changestat culture at oxygen concentrations elevated to 150% air 

saturation and three-fold in a batch culture controlled at 100% air saturation in 

comparison to cultures at 30% air saturation. Applying increased dissolved oxygen 

tension on E. coli resulted in a similar increase in sOMV release. The production of 

sOMVs by oxidative stress could be triggered in the bioreactor by controlling the oxygen 

concentration in the culture broth, although the exact route of OMV induction remains 

to be elucidated. Oxidative stress triggers sOMV release on top of the known genetic 

mutations that increase OMV formation [14, 19, 35]. These mutations reduce the linkage 

between the outer membrane and the peptidoglycan layer. Here we show the effect of 

oxidative stress on a rmpM knockout strain of N. meningitidis and on a Tol-Pal mutant 

strain of E. coli. Oxidative stress may be a general mechanism to induce sOMV release. 

Applying increased oxygen concentrations on a batch culture showed enhanced release 

of OMVs of similar size to OMVs produced in a batch culture with sulfur depletion alone, 

which is an indication that oxidative stress is the underlying trigger in OMV release 
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triggered by sulfur depletion. Moreover, Sabra et al. showed by electron micrographs 

that Pseudomonas aeruginosa seldom forms membrane vesicles under anoxic conditions 

(~0% of air saturation), while under extreme oxidative stress conditions (350% of air 

saturation) membrane vesicles were observed [36]. Biologically Neisseria spp. 

encounter oxidative stress upon oxidative bursts of phagocytes [37, 38]. Lappann et al. 

showed that OMVs of N. meningitidis serve as a decoy for the bacteria to circumvent 

binding of the bacteria to neutrophil extracellular traps (NETs) by binding of OMVs to 

the NETs [39]. The response of forming OMVs by the bacterium could thus enhance 

bacterial survival by avoiding phagocytosis and NET‐mediated killing. During infection, 

sOMV release probably contributes to disease progression and the severity of fulminant 

meningococcal sepsis [40, 41]. The biological role of OMVs in the interaction with 

phagocytes should gain more interest. Another explanation of OMV release under 

oxidative stress conditions would be that the OMVs alleviates stress of the bacterium. 

This method of stress release could be in the form of eliminating misfolded and 

unfolded proteins, as shown for Pseudomonas aeruginosa[42]. For E. coli, OMV 

formation has been shown advantageous to bacterial survival as response to 

periplasmic protein accumulation, and periplasmic peptidoglycan and LPS fragment 

accumulation was found to be associated with increased OMV release [43, 44]. 

Increased OMV release as response to increased oxidative stress could be advantageous 

to the bacterium in a similar manner. 

During exponential growth in the batch culture, only minor OMV production is observed 

and high dissolved oxygen tension does not induce OMV release in this phase. A 

probable explanation is that N. meningitidis can handle the increased oxygen 

concentrations by their metabolism during unlimited growth. Production of oxidative 

stress is a characteristic of aerobic bacterial growth as components of the respiratory 

chain are oxidized [45]. Neisseria spp. are oxidase positive pathogens containing a 

mitochondrial like respiratory chain [46] and typically show high levels of respiration 

[47]. The N. meningitidis genome encodes multiple small c-type cytochromes and a 

single terminal cytochrome oxidase of the cbb3 type [48-51]. Li et al. hypothesized that 

the high respiratory capacity of Neisseria spp. and the excess capacity for oxygen 

reduction acts as defense against endogenous reactive oxygen species (ROS) [50]. SodA 

and MntC are the major effectors involved in the Neisseria spp. oxidative stress response 

[52, 53]. Upon cysteine depletion in batch cultures, high oxygen concentrations enhance 
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the production of sOMVs. This increased release may be caused by a reduction in 

capacity of handling oxidative stress by the oxidative stress defense mechanisms due to 

cysteine limitation. 

Our initial results show that OMV size was not affected although oxidative stress can 

cause damage to bacteria. In general, increased oxygen concentrations could affect 

bacterial growth and the production of biological compounds [54], as was observed in 

the changestat culture at concentrations over 150% air saturation. Neisseria spp. are 

adapted to ROS production, since reactive oxygen species accumulate as byproducts of 

the aerobic respiration [55, 56]. They thus contain several methods to handle ROS [49, 

52]. The changestat experiments showed that increased oxygen concentrations can be 

controlled such that growth remains possible. Future work should ensure the quality of 

OMVs produced under oxidative stress remains consistent. Promising applications such 

as the additions and stabilization of enzymes on OMVs [57-59], the study of proteins in 

their native membrane environment [60], or the delivery of drugs packed in OMVs to 

specific cells [61] could also benefit from this production method. 

Conclusion 

In summary, this study shows that the dissolved oxygen tension of N. meningitidis 

cultivations could be used to stimulate OMV release by the introduction of oxidative 

stress. Increasing the dissolved oxygen concentration of batch cultures from 30% to 

150% resulted in a factor 4 increased specific productivity. The dissolved oxygen 

tension is a well-controlled process parameter to induce outer membrane vesicle 

formation. With this approach, OMV production can be improved reducing the 

production costs of OMV-based vaccines and facilitating the use of OMVs for other 

applications 
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List of abbreviations 

OMV Outer membrane vesicle 

sOMV Spontaneously released OMV 

eOMV Extracted OMV 

dOMV Detergent extracted OMV 

LPS Lipopolysaccharides 

D Dilution rate 

aD Acceleration rate of the dilution rate 

aDOT Acceleration rate of the dissolved oxygen tension 

CER Carbon dioxide evolution rate 

OUR Oxygen uptake rate 

RQ Respiratory quotient 

DO Dissolved oxygen 

ROS Reactive oxygen species 

TP Total protein 

NTA Nanoparticle tracking analysis 

NET Neutrophil extracellular trap 

Ypx OMV yield per biomass 

Yxs Biomass yield on substrate 

ms Maintenance coefficient 

OD590 Optical density at 590nm 
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Supplemental Figure 1. Increased 

dissolved oxygen tension triggers 

OMV release in E. coli. Changestat of E. 

coli (A) shows growth at dissolved 

oxygen tensions up to 200% air 

saturation in a changestat with aDOT = 

1.5%/h. OMV release is directly related 

to the increased oxygen concentration. 
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Abstract  

Outer membrane vesicles (OMVs) are nanoparticles produced by Gram-negative 

bacteria that can be used as vaccines. The application of OMVs as vaccine component 

can be expanded by expressing heterologous antigens on OMVs, creating an OMV-based 

vaccine platform. This study aims to develop a production process for such OMV-based 

vaccines and studies the production method based on meningococcal OMVs that express 

heterologous antigens on their surface. As a proof of concept, the B. burgdorferi antigens 

OspA and OspC were expressed on Neisseria meningitidis OMVs to create a concept anti-

Lyme disease vaccine. Production of OMVs released in the culture supernatant was 

induced by high dissolved oxygen concentrations and purification was based on scalable 

unit operations. A crude recovery of 90 mg OMV protein could be obtained per liter 

culture. Expressing heterologous antigens on the OMVs did result in minor reduction of 

bacterial growth, while OMV production remained constant. The antigen expression did 

not alter the OMV characteristics. This study shows that production of well 

characterized OMVs containing heterologous antigens is possible with high yields by 

combining high oxygen concentrations with an optimized purification process. It is 

concluded that heterologous OMVs show potential as a vaccine platform. 
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Introduction 

Vaccination is one of the most successful inventions as vaccines have saved many lives 

by preventing infectious diseases. Despite the successes, infectious diseases remain a 

major source of mortality worldwide. The development of new vaccines is continuously 

required as new infectious diseases emerge and there is an increasing demand for 

therapeutic vaccines. There is thus a need for new vaccine production technologies that 

enable more rapid production of vaccines. Vaccine platforms can provide enhanced 

safety, productivity and simplicity in vaccine development by thorough initial 

development of the platform. A vaccine platform for prophylactic vaccines aims at 

eliciting high and lasting antibody responses against specific antigens, while evoking a 

standard supportive innate immune response. The design of the vaccine platform 

should be such that protection against different infectious diseases can be induced by 

displaying different antigens. Bacterial outer membrane vesicles (OMVs) are suitable 

candidates for vaccine platforms. OMVs are nanoparticles derived from Gram-negative 

bacteria that are highly immunogenic while non-infective and non-replicating [1]. 

However, not all Gram-negative pathogens are suitable OMV vaccine producers because 

of their high pathogenicity, low growth rate, complex media requirements, lack of 

genetic accessibility, or low OMV productivity. Adding heterologous antigens to OMVs 

creates an OMV-based vaccine platform. Bacteria have been engineered so that they 

produce heterologous antigens in OMVs [2, 3]. Alternatively, the antigen can be 

produced separately and added to the OMV [4-6]. Besides targeting infectious disease 

targets, OMV-based vaccine platforms can be designed as therapeutic vaccines [7-9]. 

Gram-negative bacteria produce spontaneously released OMVs (sOMVs) that are 

secreted in the culture medium. However, the amount of sOMVs produced per amount 

of biomass is generally low and therefore other methods of OMV production have been 

developed, like extraction of vesicles from the bacterial cells by detergents (dOMVs) or 

by EDTA or other detergent-free methods (eOMVs) [10]. Detergent extraction has been 

used in the production of OMVs since the detergent extraction reduces the 

lipopolysaccharide (LPS) content of the OMVs resulting in safer to use vaccine 

compositions. However, with the development of genetically detoxified LPS variants 

there remains no necessity of detergent extraction to reduce the LPS toxicity of OMVs 

[11].  



  

 

106 
 

OMVs from Neisseria meningitidis (Nm) are well studied, used to control outbreaks of 

serogroup B meningococcal disease, and Nm dOMVs are included in the 

4CMenB/Bexsero vaccine [12]. Here we test the expression of heterologous antigens on 

both Nm eOMV and Nm sOMV. Outer surface protein A (OspA) and Outer surface 

protein C (OspC) of Borrelia burgdorferi were chosen as model antigens. B. burgdorferi 

causes Lyme disease and is the most common tick-borne illness in the Northern 

hemisphere [13, 14]. Recombinant OspA has been shown safe and effective in 

randomize controlled trials and has been the basis of novel vaccine concepts [15-17]. 

These model antigens are surface expressed because we hypothesized that surface 

exposure of antigens in an OMV vaccine platform is advantageous. However, the 

induction of antibody responses has also been shown for antigens expressed in the OMV 

lumen [18-21]. The heterologous antigens are surface expressed by fusion of the 

proteins to short N-terminal part of the Nm lipoprotein fHbp [22]. Spontaneous OMV 

production was triggered in batch cultures by cysteine depletion of the culture media 

[23], which is associated with oxidative stress responses. Additionally, high dissolved 

oxygen concentrations were used during cultivation to enhance OMV production [24].  

This study aims to develop a production platform for Nm OMVs expressing 

heterologous antigens. First a purification process for sOMVs is designed on the 

available unit operations of the eOMV purification process. Optimization of the 

separation of sOMVs from the bacterial cells was required to achieve sufficient yields. 

Next, the impact of expressing heterologous antigens on the growth of the bacterial 

culture the quality of OMVs expressing heterologous antigens are assessed. 

Furthermore, the characteristics of eOMVs and sOMVs are compared. 

Methods 

Bacterial strains 

The H44/76 isolate of Neisseria meningitidis serogroup B [25] was used as OMV 

production host. In this strain the rmpM gene was knocked out to induce vesicle 

formation [26]. Furthermore, the strain is non-encapsulated by siaD knockout, has 

reduced LPS toxicity by lpxL1 knockout [27], has increased interaction with dendritic 

cells by lgtB knockout [28], and lacks the major outer membrane protein and 

immunodominant antigen porA [29]. Outer surface protein A (OspA) and Outer surface 

protein C (OspC) from Borrelia burgdorferi were expressed in Nm as heterologous 
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antigens. The OspA and OspC genes were codon optimized for the codon usage of Nm 

and expressed by placement after a hybride porA-nadA promotor [30]. To ensure 

surface exposure, OspA and OspC were linked to fHbp (fHbp-OspA, fHbp-OspC) as based 

on the method described previously [22]. An overview of the strains used in this study 

is given in Table 1. 

Table 3. Overview of bacterial strains used in this study. The heterologous antigens Outer surface 

protein A (OspA) and Outer surface protein C (OspC) from B. burgdorferi were expressed in N. 

meningitidis (Nm) by insertion of the gene in either the rmpM gene of Nm or the lpxL1 gene of Nm, 

disrupting the function of the native Nm gene. 

Strain Knockout mutations Heterologous antigen 

  OspA OspC 

Nm rmpM, siaD, lgtB, 
lpxL1 

- - 

Nm OspA rmpM, siaD, lgtB, 
lpxL1 

in rmpM - 

Nm OspC rmpM, siaD, lgtB, 
lpxL1 

- in rmpM 

Nm OspA+OspC rrmpM, siaD, lgtB, 
lpxL1 

in lpxL1 in rmpM 

 

Batch cultivations  

Pre-cultures were started by adding 10 mL of frozen working seedlot in to a shaker 

flask containing 155 mL chemically defined growth medium [31]. The shaker flask was 

incubated in a shaker incubator at 35°C, 200 RPM and after growth it was used to 

inoculate a second shaker flask. At OD590=1.5±0.5 this was transferred to a bioreactor 

containing 3 L medium to start the batch culture. The bioreactor (Pierre Guerin Trytoni) 

controlled the temperature at 35°C, pH at 7.2. The dissolved oxygen tension was 

controlled at 30% air saturation by increased agitation rate (300-1000 RPM) followed 

by addition of oxygen in the overlay aeration. The growth medium was designed such 

that cysteine depletion causes growth arrest and triggers sOMV release [23]. sOMV 

release can be further induced by oxidative stress from high dissolved oxygen 

concentrations in the culture. These cultures were controlled at 100% air saturation, 

further referred to as high dissolved oxygen. Filtered off-gas (0.22 µm cut-off) was 

measured by a Thermo Prima δb mass spectrometer to monitor oxygen consumption 

and carbon dioxide production.  
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Downstream processing of sOMVs 

The harvested culture broth was cooled to 20°C and transferred to a tangential flow 

microfiltration setup (Spectrum MiniKros pilot or Spectrum KR2i) with a 20 cm mPES 

hollow fiber module. The hollow fiber was used according to the manufacturer’s 

instructions (Spectrum Labs). Transmembrane pressure scouting (TMP-scouting) and 

flow excursion were performed using the harvest of two 3 L batch cultures grown at 

100% DOT as described above. For the TMP-scouting, 3 L harvest was cooled to 20°C 

and transferred to a tangential flow filtration (TFF) setup using the Spectrum KR2i and 

Spectrum 85 cm2, 0.65 µm pore size hollow fiber module with 0.7 mm lumen diameter. 

The permeate flowed back in to the feed. TMP was controlled by the automatic 

backpressure valve. For the flow excursion, a similar setup was used with a new culture 

harvest, using a new 85 cm2 0.65 µm pore size membrane module without backpressure 

valve. The permeate flow was controlled by the KRJ pump of the KR2i. To produce 

sOMVs, a 520 cm2 0.65 µm pore size mPES hollow fiber module was used on a KroFlo 

MiniKros Pilot TFF system (Spectrum). The cooled harvest was concentrated 6-fold by 

processing 16.000 s-1 shear rate with a constant flux rate of 15 liter per m2 surface area 

per hour (LMH). Next, the remaining sOMVs were washed out by 2 volumes diafiltration 

by constant volume diafiltration performed at the same operating settings, using a 10 

mM Tris-HCl 3% sucrose buffer of pH 7.2. Next, sOMVs were purified starting with the 

addition of 300 U/L Benzonase (Merck) to the crude sOMVs to digest DNA. The sOMVs 

were concentrated using a 790 cm2, 100 kDa cut-off mPES membrane, followed by 3 

volume diafiltration with buffer (10 mM Tris-HCl 3% sucrose buffer of pH 7.2). The 

concentrated OMVs were clarified by dead-end microfiltration (1.2 µm – 0.5 µm cut off) 

before group separation by size-exclusion chromatography on a Sepharose 6 Fast Flow 

column (GE Life Sciences). Lastly, sOMVs were sterile filtered using a 0.2 µm cut-off 

dead-end filter (Pall). 

Downstream processing of eOMVs 

Nm eOMVs were produced based on the process described by Van de Waterbeemd et al. 

[32]. In brief, the biomass of the cooled culture harvest was concentrated 5-fold using a 

790 cm2 mPES hollow fiber module with 0.2 µm pore size and 0.5 mm lumen diameter 

(Spectrum Labs), followed by 2 volumes diafiltration in a buffer suited for OMV 

extraction (100mM Tris-HCl pH 8.6). eOMVs were separated from residual bacterial 
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cells by 10 volumes diafiltration. Next, purification of eOMVs was identical to the 

purification of sOMVs described above.  

Analytical methods 

OMV samples were quantified by Nanoparticle Tracking Analysis (NTA) [33]. Culture 

samples were filtered (0.22 µm pore size) before measurement. NTA was performed on 

a calibrated NanoSight NS500 by capturing 10 captures of 30 seconds at 25°C. Purified 

water was used to prepare correct sample dilutions. Automated flow-measurements 

were obtained as described previously [34]. Captures were analyzed using the NTA 3.2 

software build 3.2.16. Total protein content of purified OMV samples was assessed 

using Lowry’s protein assay with Peterson’s modification and Bovine Serum Albumin as 

protein standard. The assay was performed according to manufacturer’s protocol 

(Sigma-Aldrich). LPS content was measured by a modified gas chromatography method 

[35, 36]. In brief, the LPS was quantified based on the peak area of C14:0-3OH using 

C12:0-2OH as internal standard [31]. Protein composition of OMVs was assessed by 

SDS-PAGE by loading OMVs with a total protein content of 4 µg on a precast 

polyacrylamide gel (Lonza) to perform SDS-gel electrophoresis. The gel was stained 

with InstantBlue protein stain (Expedeon). 

For LC-MS/MS analysis, OMVs were denaturated at 100°C for 30 min in potassium 

phosphate buffer (100 mM, pH 7.8), also containing 100 mM Rapigest (Waters), at a 

protein concentration of 200 µg/mL. Reduction and alkylation of the proteins were 

performed by subsequent incubations with TCEP (1 hour at 55°C) and iodoacetamide 

(30 minutes at ambient temperature in the dark). Proteins were digested with LysC (0.4 

µg, Roche) and trypsin (1 µg, Promega) by overnight incubation at 37°C. Solid-phase 

extraction was performed to remove excess reagents using 1-mL C18 Sep-pack 

cartridges (Waters) according to the manufacturer’s protocol. The peptide fraction was 

dried in a vacuum concentrator and reconstituted in 1 mL of water containing 5% (v/v) 

DMSO and 0.1% (v/v) formic acid for LC–MS/MS analysis. Nanoscale reversed-phase 

liquid chromatography was used for peptide separation [37]. Briefly, 10 µl of the 

reconstituted digest sample was loaded on a C18-trapping column (20 mm L x 100 µm 

I.D., made in-house) with solvent A (0.1% (v/v) formic acid in water) in 10 min at 5 

μL/min. The analytes were separated on a C18-analytical column (27.5 cm L x 50 µm 

I.D., made in-house) at a flow rate of 125 nL/min with a nonlinear gradient of solvent B 
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(0.1% (v/v) formic acid in acetonitrile): 8% to 29% in 140 min, 29% to 60% in 15 min 

and a direct step to 85% (hold for 10 min). The ElectroSpray Ionization interface 

comprised of a fused silica tapered tip (25 µm I.D., TipID=3.5 µm, made in-house), 

operated at 2100 V. The peptides were measured in an Orbitrap Fusion Lumos mass 

spectrometer (Thermo Scientific) utilizing data-dependent scanning: the MS-scan (m/z 

300–1500) with an orbitrap readout (120,000 FWHM). Precursor ions with +2 to +7 

charge states (intensity threshold 25,000 counts) were selected for collision-induced 

dissociation (CID) with an ion trap readout using default settings. Proteome Discoverer 

2.1 software (Thermo Scientific) was used for peptide identification and quantification 

(based on the High-3 method, i.e. the average peak areas of the top 3 peptides for each 

protein). Identification of peptides was performed against the protein database of N. 

meningitidis H44/76 (NCBI 909420) (2406 entries) and the databases of the fHbp-OspA 

and fHbp-OspC constructs. Asparagine deamidation and methionine oxidation were set 

as dynamic modifications while cysteine carbamylation was set as static modification. 

The data were searched with full trypsin cleavage specificity, allowing 2 missed 

cleavages. Precursor ion and MS/MS tolerances were set to 5 ppm and 0.4 Da, 

respectively. Peptides were filtered using Perculator (1% FDR). Reported protein areas 

were multiplied with their respective molecular masses and used to calculate the 

percentage of the protein abundance for each individual protein relative to the total 

sum of all identified proteins. Protein localization was predicted using PSORTb v3.0 

[38]. 

Stability of OspA expression during cultivation 

A bioreactor culture was subcultured in shaker flasks from OD590=0.1 to OD590=3.0±0.5 

for over 20 generations after the end of a batch bioreactor culture. Culture samples 

from the shaker flasks as well as from the frozen seedlots, the preculture and the 

bioreactor culture were analyzed for the presence of OspA by Western blot analysis. As 

primary antibody a polyclonal rabbit anti-OspA (Rockland) was used with goat-anti-

rabbit IgG-AP (Southern BioTech) as secondary antibody.  
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Results 

Overall process design for sOMV production 

A production process for Nm sOMVs was designed based on the scalable unit operations 

of the Nm detergent-free extracted OMV (eOMV) production process (Figure 1). The 

production of biomass starts from a frozen working cell-bank, by growth in a shaker 

flask (1.1). After growth, this is subcultured to an inoculum culture (1.2) that is 

subsequently used to start a bioreactor production culture (1.3). The culture is cooled to 

reduce bacterial activity (1.4) during OMV purification. The biomass is concentrated 

(2.0) for eOMV production using tangential flow filtration (TFF). Next, the bacteria are 

diafiltrated to extraction buffer on the same hollow fiber module (2.1). eOMVs are 

extracted by incubation with EDTA (2.2) and separated from the residual bacterial 

biomass by collecting the filtrate (3.0). Next, eOMVs are purified by DNA degradation 

(4.0) and concentrated on a 100 kDa cut-off hollow fiber module (4.1). The 

concentrated OMVs are changed to a different buffer (4.2) and clarified (5.1) before 

separation from soluble proteins by size-exclusion chromatography (6.1). Lastly, the 

purified eOMVs are filtered to obtain sterile OMVs (7.1). For sOMVs, purification starts 

by separation of the sOMVs from the bacterial biomass by tangential flow filtration 

(2.0). Further purification of sOMVs is equivalent to the eOMV process, omitting the 

extraction process (2.1-3.0). In the following sections the sOMV separation process from 

the biomass is further discussed, followed by a proof of concept of OMV production of 

Nm OMVs containing heterologous antigens and analysis of their quality.  

Optimizing tangential flow microfiltration-based recovery of OMVs 

Tangential flow microfiltration was used to separate sOMVs from the bacterial cells. A 

process was tested based on the process of biomass concentration used previously in 

eOMV production. Where for eOMV production tangential flow microfiltration is used 

for concentrating the biomass (step 2.0), for sOMV production, the same step is used to 

remove bacterial cells. A cooled Nm culture was processed by operating an 0.2 µm pore 

size hollow fiber filter in constant transmembrane pressure (TMP) mode. The 

production of Nm sOMVs yielded a total of 4x1014 particles in the bacteria-free OMV 

fraction, which corresponds to a recovery of 77% of the 5x1014 OMVs produced in a 3 L 

culture (Figure 2A). The productivity of another culture was improved four-fold to 

2.0x1015 sOMVs in 3L culture broth by increasing the dissolved oxygen concentration to 
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100% air saturation. Surprisingly, the recovery of sOMVs in step 2.0 (TFF 

microfiltration) from this culture was reduced to 1.0% (Figure 2A).  

Figure 1. Schematic 

production process of eOMVs 

and sOMVs. Production of both 

Nm eOMV as Nm sOMV starts 

by batch cultivation of N. 

meningitidis on chemically 

defined growth medium. After 

bacterial growth, sOMVs can be 

purified from the culture 

supernatant directly, while the 

production of eOMVs requires 

an extraction process of the 

concentrated biomass under 

specific conditions. Further 

down-stream processing of 

both types of OMVs consists of 

the same process steps: DNA 

removal, vesicle concentration, 

buffer exchange, removal of 

residual proteins, and sterile 

filtration. The unit operations 

are explained in the main text. 

OMV induction by high dissolved oxygen concentration showed severely reduced 

recovery of sOMVs using the 0.2 µm pore size hollow fiber filter. Since the size of the 

OMVs (100 nm) is close to the cutoff of the 0.2 µm pore size membrane, transmission 

can be affected by small increases in OMV size or slight fouling of the filter pores. Since 

we found previously that the size of OMVs was not affected by the increased oxygen 

levels, we hypothesized that the mild stress may have caused a decrease in pore size 

due to DNA or other cell debris. We assessed the performance of a hollow fiber 

membrane filter with increased pore size to restore the recovery of sOMVs. A pore size 

of 0.65 µm resulted in complete retention of bacteria, which are 0.6-1.0 µm in diameter, 

and OMV recovery increased to 29% (Figure 2B). Additionally, it was tested whether 

DNA degradation by DNAse before filtration would improve the transmission, but the 

transmission was similar (31%) to processing without DNA degradation (Figure 2B). 
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Figure 2. N. meningitidis biomass removal and sOMV recovery by tangential flow filtration. 

Recovery of sOMVs by tangential flow filtration at constant TMP from a bioreactor culture (harvest) (A). 

Nm sOMVs produced in a sulfur-source (cysteine) depleted culture (black) showed 77% recovery, while a 

sulfur-source depleted culture combined with a high dissolved oxygen concentration (green) showed 1% 

recovery. Recovery of sOMVs from a culture with high oxygen concentration by tangential flow filtration 

at constant TMP is optimized using an increased pore size membrane and DNAse treatment (B)  

Further analysis of the filtration performance showed that initial transmission of OMVs 

over the 0.65 µm pore size membrane was high, but reduced quickly, indicating fouling 

of the filter membrane. To explore the possibilities of improving the recovery of sOMVs 

induced by the high dissolved oxygen concentration, TMP scouting was performed. By 

measuring the flux at different transmembrane pressures, an optimum flux can in 

princicple be found at increased shear rates and increased transmembrane pressures 

(Figure 3A). Interestingly, we observed that the passage of OMVs through the filter was 

highly reduced at increasing transmembrane pressures (Figure 3B), while the 

transmission of total protein remained unaffected for all samples (data not shown). 

Especially at a moderate shear rate of 5000 s-1, the cross flow along the membrane was 

apparently not strong enough to clean the surface. If only a minor amount of fouling 

occurs, it reduces the possibility of the relatively large OMVs to pass the pores of the 

membrane. Operating the membrane at higher TMPs will thus cause a reduced recovery 

of OMVs. 
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Figure 3. TMP scouting of the TFF of a dissolved oxygen induced sOMV harvest. Filter performance 

at varying shear rates and increasing transmembrane pressures using a N. meningitidis high dissolved 

oxygen induced sOMV harvest. The resulting permeate flux in liter per m2 surface area per hour (LMH) is 

shown at increasing transmembrane pressures (A). The transmission of sOMVs at increasing 

transmembrane pressures is given for crossflow rates at 5,000 s-1 shear, 10,000 s-1 shear, and 16,000 s-1 

shear (B). 

Minimization of membrane fouling by this highly fouling culture harvest can be 

achieved by operating with a constant permeate flow, instead of at constant TMP. This 

constant flux method ensures the lowest fouling conditions since the flow through the 

pores of the membranes is limited by the permeate pump, while the cleaning action of 

the flow along the membrane is maintained. To determine the operating conditions for 

this mode, the critical flux was determined at three different shear rates (Figure 4). The 

shear rate of 5,000 s-1 showed the lowest critical flux (10 LMH), while the shear rates 

10,000 s-1 and 16,000 s-1 showed higher critical fluxes (22 LMH). Transmission of the 

OMVs through the membrane was constant up to the critical flux. For the higher shear 

rates transmission was constant at 70%. Processing the culture harvest at high shear 

rates and a flux below the critical flux should allow the processing of the entire harvest 

volume with 70% transmission. By processing 5/6th of the volume, followed by 2 

volumes diafiltration, theoretically 93% of OMVs could be recovered. 
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Production of meningococcal sOMVs containing heterologous antigens 

The process with optimized microfiltration (step 2.0) was used to produce Nm sOMVs, 

and Nm sOMVs containing heterologous antigens. Heterologous antigens were added to 

sOMVs by genetical linkage to an outer membrane linking protein of N. meningitidis to 

ensure surface exposure [22]. Fusion constructs of fHbp to Outer Surface Protein A 

(OspA) and Outer Surface Protein C (OspC) of Borrelia burgdorferi were expressed 

individually in Nm (Nm OspA, Nm OspC) as well as combined (Nm OspA + OspC). The 

stability of the heterologous expression of antigens was analyzed for the OspA 

expressing Nm strain. Western blot analysis showed that OspA was expressed for at 

least 20 generations after the end of the batch production culture (supplemental Figure 

Figure 4. Flux excursion of the TFF of a dissolved oxygen induced OMV harvest. The performance of 

constant flux-mode processing of a high dissolved oxygen induced sOMV harvest was tested. The permeate 

flux (grey line) at increasing transmembrane pressures (black line) was monitored at shear rates of 5,000 s-1 

(A), 10,000 s-1 (B), and 16,000 s-1 (C). The resulting sOMV transmission is shown (D).  
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1). All three strains, and the control strain without OspA and OspC, were grown in a 

batch culture with cysteine depletion in combination with high dissolved oxygen 

concentrations to trigger sOMV release. The growth of the four cultures was similar 

during the first 7 hours of cultivation (Figure 5). Then, a reduction in growth rate for the 

strains expressing heterologous antigens was observed resulting in a shift of 4 h (Nm 

OspA, Nm OspC) and 7 h (Nm OspA+C) before reaching the maximum carbon dioxide 

evolution rate. Cultures were harvested 6±1 h after reaching the maximum carbon 

dioxide evolution rate, resulting in an average harvest of 2.0x1015 sOMVs in 3 L culture. 

The optimized microfiltration process results in an average recovery of 90 ± 17% of 

sOMVs. Next, the sOMVs were further purified using the same unit operations as the 

detergent-free purification process (data not shown). In brief, sOMVs were treated with 

DNAse, concentrated and diafiltrated. After clarification, the sOMVs were further 

purified using size-exclusion chromatography and filter sterilized. 

 

Figure 5. Bacterial growth and sOMV production of N. meningitidis expressing B. burgdorferi 

antigens. Bacterial growth of Nm strains expressing heterologous antigens in batch cultures at high 

oxygen concentrations is plotted (A) by the carbon dioxide evolution rate (CER). The respiratory quotient 

remained 1.0±0.05 throughout the cultivation for all cultures (data not shown). The resulting amounts of 

sOMVs in the harvested culture (harvest) and after removal of bacterial cells (crude sOMV) are shown in 

panel B.  

sOMV characteristics 

The optimized sOMV production process was used to produce sOMVs and the effect of 

introducing different antigens on the characteristics of sOMVs was assessed. Purified 
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sOMVs were highly similar in size distribution with a mean particle size of 105 nm. 

(Figure 6A). The average composition of purified OMVs also showed high similarities for 

the sOMVs containing heterologous antigens. The ratio of protein per vesicle and the 

ratio of LPS per vesicle was determined by combining concentration measurements of 

protein and LPS to the concentration of particles (Figure 6B). The protein pattern on an 

SDS-PAGE gel is also very similar (Figure 6C). The most abundant protein in all sOMVs is 

PorB (33.8 kDa). A minor amount of OspA (29.1 kDa) can be observed in the Nm OspA 

and Nm OspA + OspC OMVs. The fusion construct of OspC to fHbp (10.8 kDa) was not 

observed at the expected size in the Nm OspC sOMVs or the Nm OspA & OspC sOMVs. 

However, analysis of the protein content by LC-MS/MS showed that OspC was 

nevertheless present in OMVs, although due to its small size and low concentration it 

was below the detection limit of SDS-PAGE. Based on LC-MS/MS, an estimated relative 

protein content of 0.04% (w/w) and 0.07% (w/w) OspC was retrieved for the Nm OspC 

and Nm OspA + OspC OMVs. The estimated relative content of OspA in Nm OspA and Nm 

OspA + OspC OMVs was 2.2% (w/w) and 0.31% (w/w). Since repetitive epitope 

presentation is required in proper vaccine function [39], we estimated the average 

number of OspA and OspC antigens per vesicle based on the particle and protein 

concentration and the relative abundance of the antigens. The strains expressing single 

antigens contain 55 and 2 molecules of OspA and OspC per OMV, respectively. 

Simultaneous expression yields 10 molecules of OspA and 4 molecules of OspC per OMV.  

Besides OspA and OspC, the overall protein composition of OMVs produced by the 

different production methods (eOMV, sOMV and sOMV by increased oxygen 

concentration) were compared. Based on the LC-MS/MS data the subcellular protein 

location of the OMV proteome was predicted by PSORTb. The sOMVs produced at high 

dissolved oxygen concentrations using the improved purification process are mainly 

composed of outer membrane proteins (55%) and cytoplasmic proteins (25%). The 

sOMVs produced at standard oxygen concentration show a comparable composition. 

However, eOMVs contain more cytoplasmic proteins (39%) than outer membrane 

proteins (37%) and are also enriched in cytoplasmic membrane associated proteins. 

Overall, eOMVs show a different protein composition to sOMVs. Expressing OspA or 

OspC on the surface of sOMVs does not impair the tested characteristics of the sOMVs. 

Furthermore, the results show that sOMVs formed at high dissolved oxygen 
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concentrations have similar protein compositions to sOMVs produced at standard 

oxygen concentration. 

Discussion 

In this study, Nm sOMVs containing B. burgdorferi antigens were produced in a batch 

process by a purification process with scalable unit-operations. These heterologous 

antigens were expressed on the outer surface of the bacterium and were found in 

spontaneously released OMVs. sOMVs are advantageous over eOMVs production wise, 

since no extraction step is required in the production process. Here we applied high 

dissolved oxygen concentrations to bacterial cultures to stimulate sOMV production. 

Applying high dissolved oxygen concentrations to trigger sOMV release resulted in 

increased productivity but was lowering the recovery during microfiltration. 

Microfiltration optimization showed that at constant TMP, sOMV transmission, but not 

protein transmission, is reduced in slightly fouling conditions. Using a larger pore size  

membrane and operating the tangential flow filtration at a constant permeate flux of 

50% of the critical flux, improved the recovery to 90%. sOMV quality attributes were 

highly consistent between the different antigen expressing strains, and highly 

comparable to sOMVs produced at standard oxygen concentrations. Compared to 

detergent-free extracted eOMVs, the sOMVs were enriched in outer membrane proteins.  

The amount of Nm sOMVs recovered in this study reached 2*1015 OMVs for a 3 L 

culture, corresponding to approximately 90 mg of OMV associated protein per liter 

culture (mg/L). This is an improvement over N. meningitidis eOMV production, where 

20 to 50 mg/L was reached [32], and N. meningitidis dOMV production where up to 22 

mg/L was reached [40, 41]. It should be noted that the strains used in the other studies 

harbored different mutations than this strain. The parental strain, however, is the same. 

Other sOMV production described in literature include the Shigella sonnei sOMV yields 

of 140 mg/L [42], and 68 to 80 mg/L [43]. These yields were obtained from high-cell 

density cultures (OD600 35 to OD600 45), while this study is based on cultivation of up to 

4 gram dry weight per liter culture (gdw/L). Interestingly a high cell density N. 

meningitidis perfusion cultivation has been described to reach a biomass concentration 

of 58 gdw/L [44], indicating that there is a possibility of process intensification if 

enhanced productivities are desired.  
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Expressing heterologous antigens in N. meningitidis resulted in cultures with a lowered 

growth rate, however, production of sOMVs was maintained. More research is needed to 

assess the repeatability, the effect of additional antigens, and possibly the screening of 

clones or the use of an inducible production system could further improve the 

productivity of the heterologous antigens.  

The number of antigens present on OMVs reported here are between 2 and 55 antigenic 

proteins per vesicle. These values were based on semi-quantitative LC-MS/MS protein 

composition measurements combined with nanoparticle tracking analysis of the OMV 

concentration and should thus be interpreted with some caution. Furthermore, the level 

of expression could have been influenced by the genomic location of the heterologous 

antigen as OspA was expressed by insertion in either rmpM or lpxL1. Hypothetically 

more antigens per vesicle would increase the potency of the composition, but it is 

Figure 6 Characteristics of the OMVs. Nm sOMVs produced at high oxygen concentrations using the 

improved purification method were characterized. The size distribution of Nm sOMVs containing 

heterologous antigens shows a mode size of 105 nm (A). The composition of the sOMVs is shown in amount 

of protein per OMV, amount of LPS per OMV and amount of LPS per protein (B). Protein composition of the 

sOMVs is analyzed by SDS-PAGE (C). Proteins from OMVs with different production methods (eOMV, sOMV 

by cysteine depletion (sOMV 30), sOMV by high dissolved oxygen (sOMV 100)) were measured by LC-MS/MS 

and their subcellular location was assessed by PSORTb (D).  
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unknown what an optimum composition would be. Together, these design criteria are 

important aspects of future research. 

In designing an OMV production process, sOMVs are advantageous over eOMVs from a 

process perspective. Here we show that the composition of eOMV differs from sOMV, 

but it is unknown what the effect of OMV type is on the immunogenicity for a vaccine 

platform. sOMVs are enriched in outer membrane proteins, which are usually 

immunogenic proteins. For a nonavalent PorA based Nm serogroup B vaccine, the cross-

protection against PorA not included in the strain were assessed for dOMV, eOMV and 

sOMV [26]. dOMVs did not show bactericidal titers against strains not included in the 

vaccine, whereas eOMVs showed some cross-protection against strains expressing PorA 

not included in the vaccine. sOMVs did elicit broad cross protection against all tested 

strains and a minor response against a strain lacking PorA. sOMVs are thus 

advantageous over eOMV and dOMV for vaccine compositions providing protection 

against the OMV-producing strain. However, further research is required to elucidate 

the differences between the type of OMV on the efficacy of an OMV-based vaccine 

platform.  

In this platform design we use a pathogenic bacterium as production host, in contrast to 

common production bacteria that are closely related to commensal bacteria. This 

approach ensures that the vaccine platform does not cause unwanted responses against 

commensal bacteria. Another concern of vaccine platforms is the possible response 

against the platform itself, possibly causing immune dominance of the carrier. Currently 

it is unknown if reduction of the antigenicity of the OMV-backbone is required to yield 

an effective vaccine platform. Here we aimed to reduce the antigenic content of the 

backbone by removing the capsular polysaccharide, LPS and the antigen outer 

membrane porin A (PorA). However, the OMVs showed to be enriched in another porin, 

PorB. Nm PorB is a TLR-2 ligand [45], that may be advantageous because of its 

adjuvating function [46]. The observation of a large amount of PorB in sOMVs is 

contrary to the proteome of Nm sOMVs described by Lappann et al., where sOMVs were 

found to be reduced in PorA and PorB [47], which bind to the periplasmic protein 

RmpM [48]. Here we used a Nm strain without RmpM to enhance OMV release, which 

could explain the increase of PorB, since linkage of PorB with RmpM and the 

peptidoglycan is not possible in this strain.  
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Overall, this study demonstrates the feasibility of the production of an OMV-based 

vaccine platform based on the expression of heterologous antigens on N. meningitidis 

sOMV. We showed that the addition of two Lyme disease antigens affected the growth, 

but yielded similar amounts of OMVs with similar characteristics as the Nm OMV 

control. Purification of sOMVs was possible by optimizing the purification process. By 

applying high oxygen concentrations to the bacteria, yields of 90 mg/L highly pure 

OMVs were obtained. With this process it becomes feasible to produce sufficient N. 

meningitidis OMVs with various heterologous antigens and study their potential as 

future vaccines.  
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Supplemental Figure 1. Stability of heterologous expression OspA on N. meningitidis. The genetic 

stability of expressing a heterologous antigen in Nm OMVs was assessed. Bacterial culture samples 

(whole cells) show by Western blot analysis the presence of OspA in the master frozen seedlot (MSL), 

working frozen seedlot (WSL), preculture (PC), production culture (BR), and subcultures after the end of 

the batch production culture (SF3-SF6). The OspA construct was detected in all samples at the expected 

size (29.1 kDa), proving the stability of the expression for at least 20 generations after the production 

culture. The amount of sample loaded varied between samples causing differences in the intensity of the 

OspA-band. 
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Abstract 

Outer membrane vesicles (OMVs) are nanoparticles secreted by Gram-negative bacteria 

that can be used for diverse biotechnological applications. Interesting applications have 

been developed, where OMVs are the basis of drug delivery, enzyme carriers, adjuvants, 

and vaccines. Historically, OMV research has mainly focused on vaccines. Therefore, 

current OMV production processes have been based on batch processes. The production 

of OMVs in batch mode is characterized by relatively low yields and high costs. 

Transition of OMV production processes from batch to continuous processes could 

increase the volumetric productivity, reduce the production and capital costs, and result 

in a higher quality product. Here we study the continuous production of N. meningitidis 

OMVs to improve volumetric productivity. Continuous cultivation of N. meningitidis 

resulted in a steady state with similar high OMV concentrations as are reached in 

current batch processes. The steady state was reproducible and could be maintained for 

at least 600 hours. The volumetric productivity of a continuous culture reached 

4.0x1014 OMVs per liter culture per day, based on a dilution rate of 1/day. The tested 

characteristics of the OMVs did not change during the experiments showing feasibility 

of a continuous production process for the production of OMVs for any application. 
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Introduction 

Outer membrane vesicles (OMVs) are nanoparticles produced by Gram-negative 

bacteria. OMVs are non-replicative and consist of lipopolysaccharides (LPS), 

phospholipids, and periplasmic and membrane-bound proteins [1]. Biologically, OMVs 

play roles in intercellular communication, competition, virulence, and nutrient 

acquisition [2]. In biotechnology, OMVs can be used as enzyme carriers [3], as drug 

delivery vehicles [4], as vaccines [5], or as adjuvants [6].  

Most research on OMVs has focused on vaccine development. Especially the 

development of OMV-based vaccines for serogroup B Neisseria meningitidis (Nm) has 

been researched extensively [7, 8]. Nm OMVs have been successfully used in outbreaks 

of meningococcal disease [9-11]. Moreover, OMVs are included in the currently 

available serogroup B vaccine Bexsero [12]. Traditionally, the production processes of 

Nm OMV vaccines have been based on the extraction of vesicles from biomass using 

detergents (dOMV). This was necessary to reduce the endotoxicity of Nm LPS. Genetic 

detoxification of Nm LPS allowed the use of detergent-free extracted OMVs as well as 

spontaneously released OMVs (sOMVs) [13]. sOMVs are released by N. meningitidis, and 

other bacteria, during normal growth, without the use of any detergents as used for 

dOMVs or chelating agents as used for extracted OMVs (eOMVs). Compared to both 

dOMVs and eOMVs, the sOMVs have a different biochemical composition and superior 

immunogenicity [14]. However, the yield of sOMV production processes is currently too 

low for feasible vaccine production. If the sOMV yield could be improved, sOMVs are the 

preferred basis for vaccine development, instead of dOMVs or eOMVs. Additionally, 

sOMVs can be purified with less unit operations as the vesicles can be directly purified 

from the supernatants of bacterial cultures without any extraction steps. Besides the 

use as vaccines, high-yield sOMV production processes would allow the use of sOMVs 

for other biotechnological applications. 

Recently, we showed high yields of sOMV from a batch cultivation [15]. This was 

reached by using a production strain with reduced linkage of the outer membrane to the 

peptidoglycan in combination with sulfur source depletion [16], and high dissolved 

oxygen levels [17]. Cysteine depletion triggers OMV release [16, 18]. However, this mild 

stress also results in growth arrest and accumulation of undesired components, like 
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DNA that complicates filtration and ammonium that inhibits the nuclease required for 

DNA removal [18].  

Despite the recent developments for improved OMV production processes, higher yields 

are required to facilitate the use of OMVs as low-cost vaccines, adjuvant, enzyme carrier 

or drug delivery vehicle. Continuous bioprocessing can be a solution for high yield OMV 

production. Continuous bioprocessing can result in higher equipment utilization rates, 

reduced cycle times, and smaller facility footprints [19], which in turn results in lower 

production and investment costs. Conversion of batch processes to continuous 

processes has already shown to be an improvement in many industries [20]. The 

potential of continuous bioprocessing for the production of biopharmaceuticals shows 

great potential and has been recognized as a paradigm shift in biologicals production 

[20]. Additionally, development of continuous biopharmaceutical production has been 

encouraged by the FDA [21, 22]. The aim of this study is to assess the use of steady-state 

chemostat cultures as an upstream process for continuous processing to obtain a high 

volumetric productivity of Nm sOMVs. We first assess the production of OMVs in a 

continuous culture. Then, we further characterize the pre-steady-state phase of the 

culture and the reproducibility of OMV production was assessed by comparing five 

replicate steady state continuous cultures. Optimization of the volumetric productivity 

was assessed by testing different dilution rates. Lastly, we compare continuous OMV 

production to the production of OMVs in batch and fed-batch cultures. 

Methods 

Bacterial strain 

A derivative of the H44/76 isolate of Neisseria meningitidis serogroup B [23] was used 

as described previously [24]. In brief, the strain was non-encapsulated due to a siaD 

knockout [25], and has reduced LPS-toxicity from an lpxL1 deletion. This strain has 

further improved vesicle formation due to the rmpM deletion, lacks the major abundant 

outer membrane protein PorA [26], and has improved interaction with dendritic cells 

by lgtB deletion [27]. 

Chemostat cultures 

Continuous cultures with a working volume of 2 liter were performed in 5-liter 

benchtop bioreactors (Applikon) with an H/D ratio of 1.6 based on total volume. The 

culture medium was chemically defined without animal derived components containing 



Chapter 7  

 

129 
 

glucose, amino acids, salts, iron, and trace elements [28]. The reactors were controlled 

using a Trytoni (Pierre Guerin), that controlled the temperature at 35 ± 0.5 °C and pH at 

pH 7.2 ± 0.05 using 1M HCl and 1M NaOH. Dissolved oxygen tension was measured 

using polarographic oxygen sensors (InPro 6850i, Mettler Toledo) that were calibrated 

at 100% in air-saturated medium of 35°C. The cultivations were controlled at 30% air 

saturation by increasing agitation rate in the batch phase of the cultivation (300-1000 

RPM) and mixing of oxygen and air in the headspace aeration (fixed flow rate of 1 

L/min). The off-gas composition was measured by a mass-spectrometer (Prima δb, 

Thermo Scientific). Feed and bleed pumps were started after 8±2 hours of growth to 

initiate a continuous culture. The bioreactor weight, the feed medium weight and the pH 

titrant solutions were measured by balances to verify the dilution rate. The dilution rate 

was set to 0.04 h-1 unless indicated otherwise. Culture samples were analyzed for 

biomass density by measuring the optical density at 590 nm. Steady state was assumed 

after 3 dilutions based on steady bacterial density measurements and carbon dioxide 

emission. 

Analytical 

Filtered culture samples (0.22 µm pore-size) were measured by Nanoparticle tracking 

analysis on a NanoSight NS500 with 488 nm laser module and sCMOS camera [29]. 

Temperature was controlled at 25°C and measurements (10 captures of 30-seconds) 

were analyzed with the NTA 3.2 software build 3.2.16. Measurements were taken under 

flow using the automated script described previously [24]. Residual genomic DNA was 

determined with a dsDNA assay based on fluorescence. In brief, sterile filtered culture 

samples were incubated with Quant-iT PicoGreen dsDNA reagent (Invitrogen), and 

fluorescence was measured to quantify the DNA concentration based on a calibration 

curve with salmon sperm DNA standard (Invitrogen). 

Nutrient and metabolite analysis 

Amino acids in culture supernatants were measured using the method based on 

derivatization by orthophtalic anhydride and High Performance Liquid 

Chromatography (HPLC) as described in [14, 30]. Organic acids were analyzed by HPLC 

on a Waters Acquity Class-H (Waters) HPLC system that was equipped with an Acclaim 

Organic acid guard column (3 x 10 mm, 5 µm, Thermo Scientific) and a Luna® Omega 3 

um polar C18 100 Å 4.6 mm x 150 mm LC column (Phenomenex). The eluent was 0.1 
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µm sterile filtered 20 mM Potassium phosphate pH 2.5 20 mM, set to pH 2.5 using 4 M 

HCl. Isocratic elution was performed at 1 mL/min followed by UV (210 nm) and 

refractive index detection. Samples from bacterial culture supernatants, standards and 

controls were first 0.22 µm filtered, to the filtered supernatant (284 µL) concentrated 

phosphoric acid (10 µL, 14.7 M) containing propionic acid as ISTD was added. Samples 

were mixed vigorously and subsequently centrifuged 10 min, 15.000 xg (Thermo 

Scientific MicroCL 21R) at ambient temperature. Supernatants were collected and 

analyzed for organic acid content. Organic acid contents were compared to a standard 

mixture containing L-Glutamic acid, D-(-)-Tartaric acid, D-(+)-Malic acid, L-(+)-Lactic 

acid, Citric acid, Acetic acid, Succinic acid, Fumaric acid of which a calibration curve was 

constructed. All chromatographic parameters were calculated using the Chromeleon 

software (v. 7.2, SR 8, Thermo Fisher Scientific). Ammonium was measured in sterile 

filtered samples using the BioProfile 100 plus (Nova Biomedical). Glucose concentration 

was determined by 1H-NMR as previously described [31]. 

SDS-PAGE  

For the protein analysis, OMVs were purified from culture samples by initial removal of 

biomass by centrifugation at 3000xg for 20 minutes at 4°C. Next, the supernatant was 

sterile filtered using a Nalgene™ Rapid-Flow™ filter unit (Thermo Fisher Scientific) 

containing a PES membrane with a 0.2 µm cut-off. Then, the sterile filtrate pool was 

concentrated 10 – 15 times using Amicon Ultra-15 Centrifugal filter units (Merck 

Millipore) at 4000xg for 40 minutes at room temperature. Finally, the concentrated 

filtrate was diafiltrated, in the same unit, with 2 volumes of buffer (100 mM Tris-HCl, pH 

8.6) by centrifugation (4000xg, 15 minutes, room temperature). Purified OMVs were 

assessed for total protein content by the Lowry protein assay using Peterson’s 

modification. OMVs corresponding to 4 µg of protein were loaded on a precast 

polyacrylamide gel (Lonza) to perform SDS-gel electrophoresis. The electrophoresis 

was run at 140V for 90 minutes with Accugene 1x Tris-Glycine SDS buffer. To determine 

the molecular weight a PierceTM pre-stained protein weight marker (Thermo Fisher 

Scientific) was used. The staining of the gel was performed by InstantBlue protein stain 

(Expedeon) for 1 hour.  
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Results 

Continuous cultivation of N. meningitidis 

A chemostat culture for the continuous production of Nm sOMVs was started as a batch 

culture. When the mid exponential growth phase was reached (8 hours), the dilution 

was started at a rate of 1/day. A steady state was reached after 100 hours, which equals 

4 dilutions of the culture (Figure 1). This steady state could be maintained for at least 

600 hours. The steady state biomass concentration was OD590nm= 14 ± 2. Interestingly, 

steady state OMV concentrations reached 4x1011/mL, which is similar to the maximum 

sOMV concentration reached in batch cultures in which OMV release was triggered by 

cysteine depletion [17, 32].  

Figure 1 Continuous production of N. meningitidis OMVs in a chemostat at a dilution rate of 0.04 h-

1. A: schematic presentation of the chemostat setup showing continuous dilution of the bioreactor with 

fresh culture medium (graph A). Steady state was reached after 100 hours, as shown by the steady carbon 

dioxide evolution rate (CER)(graph B), biomass density (graph C), and the OMV concentration (graph D). 

The culture shown is representative for the 5 replicates that were done.  
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The time to reach the steady state of the culture was characterized by periods of faster 

and slower growth. We hypothesize that this is a result of the complexity of the growth 

medium that contains glucose, glutamate, arginine, cysteine, and sulfate. The culture 

was fed a balanced medium composition that has been designed for batch cultivations 

[31]. We assume that the periods of slower and faster growth correlate with certain 

substrates becoming limiting and an induction period to switch to alternative 

substrates. Duplicate continuous cultures were performed to analyze nutrient 

utilization during the pre-steady state period. The cultures reached steady state based 

on carbon dioxide emission after approximately 4 dilutions (100 h) of the reactor 

(Figure 2). The growth of the replicates and the obtained steady state was similar to 

each other and to the culture shown in Figure 1. After 8 hours of exponential growth, 

dilution of the culture was started. At this point, cysteine is the first nutrient to be 

depleted (Supplemental Figure 1). In the next phase, sulfate was sufficiently available 

and presumably used for biosynthesis of cysteine. Additionally, arginine was depleted, 

after which Nm is capable of arginine biosynthesis from glutamate. Next, the glutamate 

concentrations decrease below 20 mM (16 h), after which glutamate concentrations 

stabilized as well as the carbon dioxide emission. From this moment, significant 

amounts of malic acid, tartaric acid and acetic acid have accumulated. After 36 hours the 

carbon dioxide emission increased again and after 50 hours of cultivation glucose was 

depleted. Upon glucose limitation the residual glutamate was consumed and a steady 

state was reached. In this steady state the biomass yield on glucose and on glutamate is 

respectively 0.42 ± 0.04 gdw/gglucose and 0.37 ± 0.05 gdw/gglutamate. Based on the glucose 

and glutamate depletion we assumed that the steady state was limited by the carbon-

source. To assess this limitation, a steady state culture was supplemented with a bolus 

feed of glucose to increase the glucose concentration in the reactor with 20 mM 

(supplemental Figure 2). In the first hour after addition, a decrease in bacterial density 

was observed that is caused by the volume of the addition. After this, an increase in 

bacterial growth was observed by an increasing optical density and increased carbon 

dioxide emission after this addition, indicating that the steady state culture is glucose-

limited. 
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Figure 2. Pre-steady-state of the continuous cultivation. Two replicate chemostat cultures were 

started to characterize the pre-steady state phase. Graph A shows the biomass concentration measured 

by optical density measurements and the carbon dioxide evolution rate (CER) is shown in Graph B. 

 

Steady state reproducibility 

The reproducibility of the obtained steady state was assessed by comparing 5 replicate 

cultures (Figure 3). Culture to culture variability is low as indicated by the standard 

deviation of the carbon dioxide emission rate. A small decreasing trend can be observed 

that is caused by a lowered inflow of feed medium due to peristaltic pump tubing wear. 

Additionally, the bioreactor volume decreases slightly in time. Biomass concentrations 

are reproducible between cultures. A small increasing trend in biomass concentration 

can be observed that is caused by the altered bioreactor dilution rate because of the 

changes in the bioreactor volume and medium inflow mentioned earlier. Steady state 

OMV concentrations were on average 4x1011/mL. Steady state OMV productivity was 

maintained for at least 500 h (20 dilutions). OMVs were purified from two of the 

replicates at different time-points in the culture and showed similarity based on their 

protein composition (Figure 3D). 
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Figure 3. Reproducibility of continuous OMV production in Nm chemostat cultures. 5 chemostat 

cultures were compared to assess the culture to culture variation in OMV productivity. Graph A shows the 

mean carbon dioxide evolution rate (CER, black line) and standard deviation (grey line). Graph B shows 

the average biomass density and Graph C shows the OMV concentration. Error bars indicate the standard 

deviation from the mean. The protein composition is shown of OMVs purified from two replicates of a 

steady state chemostat culture at different times in the cultivation (Graph D).  

 

Optimization of the continuous sOMV production  

The dilution rate is a critical process parameter of continuous production processes. 

The continuous cultures described here so far, were based on a practical dilution rate of 

1/day (0.04 h-1). To optimize the volumetric productivity, an accelerostat culture was 

performed by slowly increasing the dilution rate (αD= 0.0055 h-2) of a steady state 

chemostat culture. Previously, using the same accelerostat culture, we already showed 
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that the specific productivity of Nm was only minorly influenced by the growth rate 

between 0.03 h-1 and 0.16 h-1 [33]. Since the specific productivity remains constant, the 

volumetric productivity increases linearly with the dilution rate (Figure 4). Thus, 

operating the continuous culture at 0.15 h-1 shows the highest volumetric productivity 

of 1.0x1015 OMVs per liter reactor volume per day. 

Next, a chemostat was run at 3.6/day (0.15 h-1) to confirm the results from the 

accelerostat culture. For this, the dilution rate of a steady state culture at 0.04 h-1 was 

increased to 0.15 h-1 (Data not shown). This steady state at 0.15 h-1 showed an OMV 

concentration of 2.1x1014 OMVs/L, which was slightly lower than the OMV 

concentration of 2.5x1014 OMVs/L in the accelerostat culture at this dilution rate. As a 

result, the volumetric productivity was 7.4x1014 OMVs/L/day, which is slightly lower 

than the expected volumetric productivity of 1.0x1015 OMVs/L/day based on the 

accelerostat data. Taken together, a dilution rate of 0.15 h-1 shows an increased 

volumetric productivity of compared to the volumetric productivity of 4.0x1014 

OMV/L/day at a dilution rate of 0.04 h-1.  

  

Figure 4. Volumetric OMV productivity as a function of the dilution rate. The volumetric productivity 

of sOMVs in an accelerostat culture of Nm shows to be linearly related to the dilution rate for growth 

rates between 0.03 h-1 and 0.18 h-1 (solid circles) The volumetric productivities of steady-state cultures at 

0.04 h-1 and 0.15 h-1 are depicted as open circles. 
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Comparison to batch and fed-batch production 

The production of OMVs in continuous mode was compared to the production in batch 

and fed-batch mode. We compared these cultures (data shown in Supplemental Figure 

3) to the continuous production of OMVs (Table 1). For this, we assumed that 20 days of 

harvest could be obtained from a continuous bioreactor per month, while for the batch 

process one harvest can be obtained per week. For the fed-batch production mode, we 

assumed an identical throughput time of one week as for the batch process since the 

fed-batch process requires only 12 hours more cultivation time than the batch process. 

Additionally, we assumed similar recoveries of OMVs in downstream purification 

regardless of the OMV production method. Based on these assumptions, 16-fold more 

volume could be processed from a continuous reactor on a yearly basis with a dilution 

rate of 0.15 h-1 (Table 1). This corresponds to an 9-fold increase in OMV production in 

this continuous mode compared to batch mode. DNA release during the steady state of 

continuous cultivations was significantly reduced compared to the batch process. 

During batch and fed-batch cultivations, significant amounts of DNA accumulate caused 

by lysis of the bacteria (Supplemental Figure 3). Furthermore, accumulation of 

ammonium was observed during the glucose-limited fed-batch cultures, which inhibits 

enzymatic DNA degradation during OMV purification. Continuous OMV production is 

thus an improved method over batch and fed-batch production. 
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Table 1. Production characteristics of batch, fed-batch, and continuous OMV production. 

Benchtop N. meningitidis cultures were operated in three different operating modes. Batch 

mode is characterized by triggered OMV release through cysteine depletion. In fed-batch mode, 

glucose and glutamate was added to the culture to prolong the OMV releasing state. The 

continuous culture represents the steady state values of a culture with a dilution rate of 1/day. 

Values represent the mean and standard deviation of triplicate cultures, except for the 

continuous culture at the dilution rate of 3.6/day that represents a single replicate. Non-colored 

cells indicate measured values, grey cells indicate assumptions, and light green indicate 

calculated values. 

 BATCH  FED-BATCH CONTINUOUS CONTINUOUS 

CULTIVATION TIME (H) 24 40 1 volume / 24 h 3.6 volumes / 24 h 

[OMV] (1013/L) 38 ± 6 52 + 9 40 ± 7 21 

BIOMASS DENSITY 

(OD590) 

8.7 ± 1.5 11.1 ± 0.3 14 ± 1.6 - 

[DNA] (MG/L) 1.3 ± 0.2 0.48 ± 0.02 0.09 ± 0.03 - 

[AMMONIUM] (MM) 46 ± 2 51 ± 3 34 ± 5 - 

VOLUMETRIC 

PRODUCTIVITY (1014 

OMV/L/DAY) 

3.8 5.2 4.0 7.4 

HARVEST VOLUMES 

PER CAMPAIGN 

1 1 20 72 

CAMPAIGNS / YEAR 52 52 12 12 

YEARLY 

PRODUCTIVITY (1013/L 

BIOREACTOR VOLUME) 

1976 2704 9600 17712 

 

Discussion 

Continuous cultivations of Nm at a dilution rate of 1/day showed high and reproducible 

OMV concentrations. Increased volumetric productivities could be obtained, compared 

to batch and fed-batch cultivations. Further intensification of the process is possible by 

optimizing the volumetric productivity by increasing the dilution rate. Continuous OMV 

production at a dilution rate of 3.6/day results in a 9-fold increase in OMV production 

compared to batch-wise OMV production. 
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The start of the continuous cultivation at a dilution rate of 1/day showed an adjustment 

period of multiple dilutions, possibly caused by the complexity of the medium. The 

steady state was characterized by depletion of both carbon sources glucose and 

glutamate, as well as cysteine and arginine. Addition of glucose to a steady state culture 

resulted in bacterial growth, indicating that the culture was glucose limited. Future 

medium optimization should reduce the complexity of the medium, resulting in a single 

nutrient limitation that possibly reduces the time required to reach a steady state. 

Additionally, steady state biomass productivity can be optimized by future medium 

optimization. Specific OMV productivities can be further enhanced by inducing OMV 

release by for example high dissolved oxygen concentrations [17] . 

Increased dilution rates were assessed in an accelerostat culture. At dilution rates above 

0.18 h-1, the accelerostat culture showed reduced biomass concentrations, and was 

stopped. The maximum specific growth rate of Nm in batch cultures on this medium is 

0.5 h-1. This difference is possibly caused by a different nutrient consumption profile at 

these different growth rates. Additionally, the release of OMVs during exponential 

growth in batch cultures is low [18]. Dilution rates of 0.18 h-1 and above are thus not 

expected to further improve the volumetric productivity due to an anticipated decrease 

in specific productivity. Therefore, the volumetric OMV productivity on this medium 

composition is maximized at dilution rates just below 0.18 h-1. To compare the 

continuous OMV production with batch and fed-batch OMV production, we used the 

dilution rate of 0.15 h-1 (3.6/day) and assumed this state can be maintained for 20 days. 

This length should be carefully considered based on future research to the stability of 

Nm upon prolonged cultivations. The genome of Nm is generally known as variable [34], 

although Nm subcultured after a production cultures showed to be genetically stable for 

at least 30 generations during exponential growth [14]. Besides monitoring of the 

genetically stability of the production culture, the OMV product should be characterized 

completely and monitored throughout production cultures. Here we looked at protein 

profile and OMV size and found no significant changes over the course of the continuous 

cultivation, indicating the feasibility of the process. In comparison, perfusion based 

monoclonal antibody production systems have been described to be able of production 

periods of over 60 days [35]. The advantage of perfusion systems is that the growth rate 

can be kept low resulting in less bacterial generations in time. 
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Here we showed the continuous upstream production of OMVs. Purification of OMVs 

should be designed in a continuous manner to obtain a fully continuous OMV 

production process. Continuous separation of OMVs from the biomass, while 

maintaining the bacterial culture in a steady state, would be the most straightforward 

initial separation. Tangential flow microfiltration directly on the continuous reactor 

could be used. Such an approach would have similarities to high cell density perfusion 

based cultivation systems [36, 37]. Interestingly, a Nm perfusion based cultivation 

system has been described [38]. This system enabled the biomass production of 58 

gram dry weight per L, although the amount of OMVs secreted in the culture was not 

described [38].  

The development of new technologies for cleaner and more efficient manufacturing are 

supported by regulatory authorities [22], although currently no continuous production 

processes of vaccine have been described. Important aspects as suitable inline process 

analytical tools and the possibility of mutations introduced during the continuous 

production have to be addressed before registration of continuous products will be in 

sight. Continuous biopharmaceutical production processes have been researched for 

therapeutic proteins [39] and small molecules [40]. Recently, two production processes 

of monoclonal antibodies in a fully continuous manner have been described [41, 42].  

This study shows the potential of continuous production of Nm OMVs to reach high 

volumetric OMV productivities. The high OMV productivities could be beneficial for the 

production of low-cost biotechnological applications based on OMVs such as enzyme 

carriers. Future development should focus on a fully continuous purification processes. 

Further research on online product quality analysis methods and batch-to batch 

variability could be the basis of future continuous OMV production process for OMV 

adjuvants and low-cost price OMV-based vaccines. 
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Supplementary data 

Supplemental Figure 1. Nutrient and metabolite profile of the chemostat. Measurements represent 

the overlay of samples of the adaptation phased from two replicate chemostat cultures of Nm with a 

dilution rate of 1/day. All concentration measurement are in mM. Amino acids cystine (Cys-cys), arginine 

(arg), aspartate (Asp), lysine (Lys), leucine (Leu), phenylalanine (Phe), tyrosine (Tyr), alanine (Ala), 

isoleucine (Ile), tryptophan (Trp), glycine (Gly), serine (Ser) , threonine (Thr), and valine (Val) are 

measured, asparagine, glutamine, histidine, methionine, hydroxyproline, and proline were not detected 

(data not shown). 
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Supplemental Figure 2. Identification of the limiting nutrient. To a steady state culture of N. 

meningitidis, a shot of glucose solution was added to increase the glucose concentration with 20 mM 

(graph A, dashed line). The biomass concentration is measured by optical density measurements and the 

carbon dioxide concentration was measured in the offgas (graph B).  

 

 

Supplemental Figure 3. Batch and fed-batch N. meningitidis cultures. Nm cultures were operated in 

batch-mode, as well as in fed-batch mode using a glucose feed solution (Graph A). Accumulation of 

ammonia and DNA was measured in both cultures (Graph B). Data represents mean value of triplicate 

cultures; error bars indicate the standard deviation. 
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Vaccine platforms 

Infectious diseases spread quickly in today’s global and interconnected world. In the 

21st century there have been outbreaks of new emerging diseases like Zika, Ebola, and 

SARS, as well as outbreaks of known diseases like cholera, plaque, and yellow fever [2]. 

The threat of both new emerging diseases as well as outbreaks of old diseases can be 

mitigated by development of new vaccines. For example, meningococcal serogroup W 

infections have risen recently in The Netherlands. As a response, The Dutch National 

Immunization Programme introduced meningococcal serogroup W vaccination by 

expanding the meningococcal vaccination from the single serogroup C vaccine to a 

combinatorial serogroup A, C, W, Y vaccine [3, 4], which was already available. 

Additionally, there is need for the development of new vaccines for bacterial infectious 

diseases, that were traditionally treated by antibiotic drugs [5]. More and more 

bacterial strains are acquiring antibiotic resistance and pathogens emerge that are 

virtually resistant against all available antibiotics [6]. The development of new 

prophylactic vaccines can be a solution for these multidrug resistant pathogens [7]. 

Moreover, the development of new therapeutic vaccines requires the development of 

vaccines against many new targets.  

The vaccine development trajectory is a lengthy process for each new target. Traditional 

vaccines are based on the inactivation of the pathogens or on live attenuated pathogens. 

For their production, large amounts of pathogens are required, which form a risk to the 

production workers and to the environment in the case of impaired biocontainment [8]. 

The use of a vaccine platform, where the new vaccine antigens can be added or 

exchanged, can shorten the development period for new vaccines. This modular vaccine 

approach requires the identification of antigens, that can subsequently be expressed on 

the platform base (Figure 1). The immunogenicity of the expressed antigen should be 

enhanced by expressing it on the vaccine platform base, such that a safe vaccine is 

obtained without the risks associated to the pathogen to which the vaccine should 

induce protection. Additionally, the vaccine platform base should result in proper 

stability and allow for detailed characterization of the modular vaccine. A vaccine 

platform requires thorough initial development of the platform to ensure the 

robustness of the platform. This includes the development of a high yielding production 

process. Once the platform is developed, new vaccines can be generated in a much 

shorter time. Subunit vaccines, which are purified antigens produced in microbes, are 
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an example but do require proper adjuvating agents to induce a proper immune 

response. Expression of antigens on OMVs, however, can be a platform that is self-

adjuvating due to the OMV composition, and thus possibly an improved basis for 

vaccine platform development. In this chapter, the use of OMVs as vaccine platform is 

discussed with a focus on the production of OMVs and an outlook is given on future 

OMV-based vaccines for serogroup B meningococcal disease and other bacterial 

infection diseases. 

OMVs as vaccine platform 

Bacterial outer membrane vesicles (OMVs) are a good candidate for such a vaccine 

platform. OMVs are non-replicating nanoparticles that are packed with antigens and are 

self-adjuvating. OMVs contain proteins, phospholipids, and lipopolysaccharides derived 

from the bacterial outer membrane [9]. Outer membrane vesicles have been used in 

multiple meningococcal vaccines that were successfully used to stop epidemics in 

different countries [10-15]. The use of OMVs as vaccines has thus been shown to be safe 

and effective. A vaccine platform based on OMVs requires the addition of heterologous 

antigens to OMVs. Heterologous antigens can be added by expressing them in the OMV 

producing bacterium or by addition to the OMV by chemical coupling. The production 

process developed in this thesis is for a vaccine platform based on OMVs derived from 

Figure 1. Modular vaccine approach. The basis of a vaccine platform is the addition of antigens of a vaccine 

target to a vaccine platform base. The vaccine platform base is here a bacterial outer membrane vesicle, that 

is a non-replicative nanoparticle derived from the outer membrane of the bacterium. 
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Neisseria meningitidis (Nm) where the heterologous antigens are expressed by the 

bacterium itself. Nm OMVs are suitable as modular base for both prophylactic and 

therapeutic vaccines.  

The process development of most Nm OMV vaccine production processes have been 

based on detergent extraction (dOMV) to reduce the content of endotoxic LPS in Nm 

OMVs. This results in OMVs with reduced LPS and phospholipid content compared to 

biologically derived OMVs [1] (Figure 2). This reduction in LPS was required to prevent 

endotoxic effects. However, genetically modified LPS variants have been developed that 

result in reduced endotoxic effects, while maintaining its potency to stimulate the 

immune response [16]. This opens the possibility to use sOMVs as a basis for a vaccine 

platform. In addition, OMV formation of both extracted OMVs and spontaneously 

released OMVs can be increased by reducing the linkage of the outer membrane to the 

peptidoglycan layer. In Nm, the knockout of the peptidoglycan binding periplasmic 

protein RmpM, showed 2-fold increases in dOMV production and 10-fold increases in 

OMV released spontaneously by the bacterium (sOMV) [1]. The production of Nm OMVs 

by purification of OMVs released by the bacteria in the culture supernatant is 

advantageous over extraction-based OMV production. Less process steps are required 

as the extraction of OMVs can be omitted making the OMV production process more 

straightforward and more cost-effective. Therefore, OMVs released in the supernatant 

of the bacterial culture were chosen as the basis of the OMV vaccine platform.  

Figure 2. Biochemical composition of Nm OMVs. OMVs are extracted by detergent (dOMVs), EDTA (eOMV), 

or spontaneously released (sOMV). The composition of the major biochemical components was analyzed and 

given in relative amounts (weight %) by total protein (TP), phospholipid (PL), lipopolysaccharide (LPS), and 

DNA. The presence of large residual amounts of detergent in dOMV or EDTA in eOMV are not measured and 

thus not included in this graph. Data adapted from Van de Waterbeemd et al. [1]. 
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The platform was based on Nm due to the known safety of Nm OMVs [17] and the ability 

to express heterologous antigens in Nm. The use of a pathogenic bacterium for the 

platform was preferred over lab-strains as E. coli, to exclude undesired immune 

responses against commensal bacteria. Additionally, immune responses directed 

against the OMV backbone, that contains components of the OMV producing microbe, 

could reduce the efficacy of the vaccine by reducing the immune responses against the 

heterologous antigen or by reduced immune responses upon repetitive use. Therefore, 

we reduced the antigenic content of the Nm OMVs by removing the major antigenic 

outer membrane porin PorA. Nevertheless, more research is required on the effect of 

immune responses against the OMV backbone. Despite all the research performed 

previously on sOMV biogenesis, the yield of Nm sOMV production processes is still low. 

To improve the yield of sOMV production, either the number of OMVs produced per 

bacterium can be targeted or the amount of biomass generated in the production 

process. In this thesis, we focused on increasing the amount of sOMVs released per 

bacterium by increasing our understanding on OMV release.  

Production of OMVs 

To study OMV production, a new method for direct OMV quantification was required. 

The first OMVs were observed as outer membrane fragments by radioactive labelling 

and detection in the cell free supernatant of bacterial cultures [18]. With electron 

microscopy it could be observed that the outer membrane fragments were spherical 

nanoparticles [19]. Additionally, OMV quantification can be based on protein or 

phospholipid content after purification of OMVs from the sample by ultracentrifugation 

or filtration. Electron microscopy is not a quantitative method and both electron 

microscopy and phospholipid analysis are elaborate and time-consuming. Real-time 

quantification of OMVs would accelerate process development. New techniques can be 

used for direct detection of nanoparticles, for example tunable resistance pulse sensing 

(TRPS), nanoparticle tracking analysis (NTA), or size exclusion chromatography-multi 

angle light scattering (SEC-MALS) [20]. In chapter 3, we showed that NTA can be 

applied to measure OMVs in sterile filtered culture samples directly. NTA allows 

simultaneous size and concentration measurements of OMVs, and was modified in this 

chapter to process samples in high-throughput.  
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Analysis of purified OMV quality is currently mainly performed based on protein 

content and composition, in combination with OMV size. The OMV component of 

4CMenB, for example, is dosed based on total protein content (25 µg/dose) and the 

protein composition is assessed by SDS-PAGE [21, 22]. For a vaccine composition based 

on heterologous antigens expressed on OMVs, the amount of heterologous antigen is 

likely to be highly important for the efficacy of the vaccine. Determination of the amount 

of antigen can be performed by methods like ELISA or a protein composition 

measurement in combination with a total protein measurement. These methods result 

in an average concentration of antigen in the OMV product. However, the distribution of 

antigen over the OMVs is unknown and could be variable. Insight in this distribution 

could be generated by labeling of the antigen and subsequent measurement by for 

example gold-labelled electron microscopy. Alternatively, fluorescence NTA can be used 

where specific labeling of nanoparticles with highly fluorescent molecules as quantum 

dots give insight in the distribution of labelling over the particles, as has been shown for 

the fluorescent labeling of extracellular vesicles [23]. Moreover, high-resolution flow 

cytometry [24] and MALS [25] could be suited methods for these measurements.  

OMV release per bacterium could be enhanced by sulfur depletion of Nm cultures. 

Chapter 4 showed that sulfate depletion induced a higher release of OMVs than cysteine 

depletion. The release of OMVs by sulfur source depletion was associated with oxidative 

stress responses. Oxidative stress could be applied directly on bacterial cultures by 

increasing the dissolved oxygen concentration as shown in Chapter 5. Applying high 

dissolved oxygen concentrations on a cysteine depleted culture resulted in a four-fold 

increase in OMV concentrations. We speculate that application of high dissolved oxygen 

tensions on a sulfate depleted culture would result in an even higher OMV yield. 

Although the exact mechanism of OMV formation was not found in this study, we 

observed that OMV release upon sulfate depletion was associated with enhanced 

phospholipid and LPS production, and thus follows the model of phospholipid 

accumulation based OMV release [26]. The combination of cysteine depletion and high 

dissolved oxygen tension resulted in the production of 90 mg OMV associated protein 

per liter culture. Assuming a dose of 25 µg OMV associated protein, this process results 

in 3600 human doses per liter culture. A production scale of 300L would suffice to 

produce 1 million doses per campaign. This yield is highly sufficient for clinical testing 

of an OMV-based vaccine concept. The scalability of a similar batch cultivation of Nm 
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has been shown previously to be feasible up to 800L [27]. However, for this a low 

dissolved oxygen concentration was used [27]. High dissolved oxygen concentrations 

are a convenient parameter to use at production scale as this parameter is well 

controlled.  

For a vaccine platform it is worthwhile to invest extra time and resources to optimize 

the production process in terms of yield and quality, since all new vaccines made with 

this platform will profit. Interestingly, the yields obtained in Chapter 6 were based on a 

low cell-density cultivation process, with a maximum cell density of 4 gram dry weight 

per liter culture (gdw/L). Other studies have already shown that it is possible to 

cultivate Nm up to high cell densities [28], reaching densities of 58 gdw/L [29]. These 

densities have been reached by applying a perfusion process that allows for 

simultaneous nutrient supply and removal of cell debris and inhibiting components. 

Another approach to improve OMV productivity is by implementing continuous 

production processes. Chapter 7 showed that continuous cultivation results in increased 

yearly productivities over batch-wise production. A 60-liter continuous bioreactor 

culture suffices to produce 1 million doses per week, which is a 5-fold reduction in size 

compared to the batch process, assuming comparable purification losses and one batch 

production per week. Future research is required to assess the feasibility of 

implementing fully continuous processing. 

Outlook  

There are several targets that could benefit from vaccine development through an OMV-

based vaccine platform. A modular vaccine approach reduces the development time 

since a known production process can be used. Additionally, the known safety profile of 

the vaccine platform base could result in accelerated clinical trials. The OMV-based 

vaccine platform can form a solution for pathogens that are difficult to culture in lab 

conditions or pathogens that require high containment levels. The approach of this 

thesis is based on the expression of heterologous antigens by Nm, and thus limited to 

microbial targets or other targets characterized by non-glycosylated protein antigens. 

Alternatively, the reach of the vaccine platform can be expanded to viral and therapeutic 

targets if the antigen is produced separately and coupled to the OMV. In this section, an 

outlook on future production of OMV-based vaccine is given and vaccine targets are 

discussed that could benefit from development through the Nm OMV platform.  
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Future production of OMVs  

An OMV-based vaccine platform production process can profit from a process based on 

disposables. Since production in disposables prevents cross contamination during 

production of multiple drug substances in a single factory, changeover procedures are 

minimal to produce multiple products in the same production facility. However, the 

production of microbials in disposable equipment is still limited by the aeration, 

cooling, and the size of disposable bioreactors [30, 31]. Recently a single use fermenter 

was presented that is capable of growing high cell densities of Pichia pastoris up to 

2000L scale [32]. In this reactor, sparging aeration was applied in combination with 

antifoam to prevent foam buildup. Antifoam in OMV production processes should be 

used with caution since antifoam is likely to be included in the membrane structure of 

OMVs [33]. Therefore, mechanical foam disruption would be preferred over anti-

foaming agents, but this is currently unavailable for disposable bioreactors. To benefit 

from production in disposables, antifoaming agents approved as excipient could be 

used. Interestingly, the drug Simethicone has been based on an antifoaming agent to 

relieve pain and discomfort caused by excess gas in the intestine and stomach [34, 35]. 

This drug is approved for oral use, but also included in the intramuscular delivered 

antibiotic drug Retarpen® (Sandoz). Simethicone is sold as antifoaming agent as 

excipient grade and could therefore be used as antifoaming agent during the production 

of OMVs, although future research should elucidate the degree and effect of integration 

of antifoaming agent in OMVs. This antifoaming agent could thus be the basis to 

overcome aeration issues and allow for OMV production in disposable bioreactors. 

Broad coverage OMV-based Meningococcal disease vaccines 

The Nm OMV vaccine platform would be a good basis of a combinatorial meningococcal 

disease vaccine. Meningococcal disease in human is mainly caused by 6 serogroups of N. 

meningitidis (A,B,C,W,X,Y) that are classified based on their capsular polysaccharide [36, 

37]. Currently there are vaccines on the market for either serogroup B meningococcal 

disease (Bexsero®, TrumenBa®) and quadrivalent conjugate serogroup ACYW 

(Menveo®, Menactra®). At this time there is no serogroup X meningococcal vaccine 

available. However, a pentavalent conjugate vaccine for serogroup ACYWX has been 

designed and was shown to be well-tolerated in a phase I clinical trial [38].  
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N. meningitidis is a highly variable bacterium [39]. Antigenic outer membrane proteins 

will undergo antigenic shift or even gene deletion [40]. This can cause reduced efficacy 

of current serogroup B vaccines, which are based on outer membrane proteins. 

Moreover, serogroup replacement has been observed, although not associated with 

vaccine introduction [41, 42]. Additionally, unencapsulated strains of N. meningitidis 

have been observed as the cause of multiple cases of invasive meningococcal disease 

[43]. Although rare, and possible associated with immunocompromised individuals, this 

does show that future protein based Nm vaccines can have advantages over capsule 

based conjugate vaccines. A possible solution to prevent antigenic shift is to generate 

OMVs lacking the highly variable major outer membrane porin PorA to induce immunity 

against more conserved surface antigens [44, 45]. This approach was found to be safe, 

though less immunogenic than other vaccines [46]. Another approach, that was 

developed by the predecessors of Intravacc, is based on the expression of multiple 

variants of PorA on OMVs to induce protection against different Nm subtypes [47-49]. 

To improve this approach, a detergent-free extraction method has been developed to 

produce OMVs [1]. Interestingly, the use of sOMVs over eOMVs will result in an 

improved coverage against meningococcal disease as sOMVs showed immune responses 

against strains not included in the vaccine, indicating immune responses against other 

antigens than PorA, that were not observed in eOMV or dOMV groups [1]. Combination 

of the expression of multiple PorA variants and the use of Nm sOMVs could thus result 

in a broad protecting serogroup B meningococcal vaccine. Moreover, it would be 

possible to add polysaccharides to OMVs [50, 51]. Capsular polysaccharides can be 

added by conjugation to OMVs, or by expression of the gene cluster for capsular 

polysaccharide synthesis in the OMV producing bacterium. By displaying capsular 

polysaccharides from serogroup ACWYX on serogroup B OMVs, a Pan (hexavalent) 

meningococcal vaccine composition could be created (Figure 3).  

Taken together, the Nm OMV based vaccine platform could be the basis of new 

meningococcal vaccines. Such vaccines can provide a broad protection against different 

serogroups. Additionally, the use of spontaneous OMVs as vaccine basis could provide 

improved cross-protection over current vaccines. The development of a combinatorial 

meningococcal disease vaccine based on Nm OMVs is therefore promising. 
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OMV-based Lyme disease vaccine 

The production of heterologous antigens on Nm OMVs was assessed by introducing 

Lyme disease antigens as described in Chapter 6. The development of a Lyme disease 

(Lyme borreliosis) vaccine may thus be the most straightforward vaccine from the data 

presented in this thesis. A Lyme disease vaccine is highly desired since the incidence of 

Lyme disease continuously increases [52]. Lyme disease is caused by Borrelia 

burgdorferi sensu lato, that is transmitted to humans during the blood feeding of ticks 

[53, 54]. No herd immunity can be obtained since B. burgdorferi is maintained in cycles 

between ticks and small mammal reservoirs [55]. While antibiotic treatment during 

early infection is often successful, diagnosis of infection is difficult and if untreated the 

localized infection can cause serious systemic disease. A vaccine was available 

(LYMErix) and effective, but was withdrawn due to inadequate market results in 2002, 

which was partially caused by the uncertainty about the vaccine-induced immunity 

period. Based on this, booster vaccination was required as often as once per year [56]. 

To date, no vaccine is available, while there is a need for a new Lyme disease vaccine 

[57]. 

Figure 3. Multivalent meningococcal vaccine approach. The serogroup B N. meningitidis OMV can be used 

as carrier for capsular polysaccharides. Capsular polysaccharides from other serogroups could be either 

expressed on the OMV or produced separately followed by conjugation to the OMV vaccine base, to create a 

combinatorial meningococcal disease vaccine. 
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LYMErix was based on recombinant lipidated surface protein OspA of B. burgdorferi 

adjuvated with aluminum hydroxide [58]. Concerns have been raised on possible 

autoimmunity due to the homology between OspA residues 165-173 with human 

leukocyte function-associated antigen 1 [59]. However, increased risk of arthritis or 

other adverse effects were not observed [60]. Modified OspA molecules have been 

generated lacking OspA residues 165-173, and thus eliminating the possibility of 

autoimmunity [61]. In Chapter 6, we expressed OspA on spontaneous released Nm 

OMVs. The induction of specific antibodies was shown previously for OspA expressed in 

a similar manner on the surface of detergent-free extracted OMVs [62]. The surface 

localization of antigens is likely required to improve the immunogenicity [63], as has 

been shown for whole-cells [64, 65]. Immunogenicity experiments should be done to 

evaluate the evoked immune responses by the sOMVs produced in Chapter 6. An 

important question is whether there are differences in the immune response against the 

heterologous antigen expressed on eOMV or sOMV. Besides the immunogenicity, the 

location of expression needs to be characterized in more detail. This could be measured 

by antibody-labeled electron microscopy to elucidate the heterogeneity of antigens 

expressed on OMVs. The density of heterologous antigen is likely an important 

parameter for the efficacy of the vaccine. The expression of increased densities of 

heterologous peptides on virus-like particles, for example, showed that increasing 

densities enhanced the peptide specific immune response [66]. More research on the 

heterologous antigen concentration on OMVs is required to determine the design space 

of heterologous antigens expressed Nm OMVs as vaccine platform. 

It remains questionable whether OspA alone would be sufficient for a new Lyme 

disease. OspA is expressed in the midgut of the tick and severely downregulated upon 

feeding of the tick. Anti OspA antibodies would thus inhibit transmission by targeting 

spirochetes in ticks. To obtain targeting of spirochetes after infection, other antigens 

must be included in future vaccine compositions. Many other antigens than OspA have 

been found, although most are highly variable [67]. Antibodies targeting outer protein C 

(OspC), which is expressed in mammals, results in antibody mediated immunity [68].  

Expression of B. burgdorferi antigens on Nm OMVs allows straightforward expression of 

both OspA and other antigens like OspC on a single OMV. Additionally, multiple OspA 

and OspC types could be presented on this platform. Furthermore, the Nm OMV will 
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result in a balanced immune response, whereas more and more studies suggest a role 

for T-cell mediated immunity in the prevention of Lyme disease. Overall, the approach 

of expressing B. burgdorferi antigens on Nm OMVs shows potential as future Lyme 

disease vaccine.  

Nm OMV based vaccine platform for low income countries 

OMV-based vaccines could have potential for use in low-income countries. OMVs can be 

the sole active ingredient of a vaccine composition as OMVs are self-adjuvating and 

provoke broad immune responses. The use of OMV-based vaccines in low income 

countries may be counterintuitive, as the price of the current OMV-based meningitis 

vaccine Bexsero® is 102 $ or 97 € per dose [69, 70]. This price even made the OMV-

based vaccine not cost-effective for routine vaccination programs in high-income 

countries [71-74]. The high cost of OMV production has been posed as a drawback of 

OMV-based vaccines [75]. However, improved yields may reduce the cost-price of new 

OMV vaccines. Research on the biogenesis of OMVs has led to higher productivities. The 

volumetric yield of OMV production can be further enhanced by the implementation of 

continuous processing. Additionally, the production of OMVs released in the 

supernatant requires less unit-operations than extraction based production of OMVs.  

Besides production costs, cold-chain transport and storage is a major hurdle in vaccine 

availability. Cold-chain transport regularly copes with accidental freezing of vaccines 

and their subsequent loss in potency [76]. The vesicle structure of OMVs protects the 

antigens from degradation by its intrinsic thermostability. Bordetella pertussis OMVs in 

solution show to be stable in antigenicity after incubation at 40°C for 30 days [77]. 

More harsh incubation of Nm sOMVs at 100°C for 5 minutes did not rupture the 

vesicles, although it is unclear if in these extreme conditions the folding of antigens 

could be maintained (unpublished data). Incubation of B. pertussis OMVs at 65°C for 30 

days did result in minor loss of immunogenicity [77]. The authors showed that spray 

drying results in maintained effective immunogenicity and no change in antigenicity 

after incubation at 65°C for 30 days. Detergent extracted Nm OMVs showed 

degradation of the OMV structure upon storage at 37°C or 56°C during 1 year [78]. 

Detergent extraction of OMVs is thus unfavorable for the stability of the vesicles. 

Vaccines based on OMVs could thus likely lack expensive cold-chain storage without 

compromising vaccine quality. 
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Nm OMV vaccine platform for rapid response to emerging infectious diseases 

In case of rapidly emerging infectious diseases, vaccines should be developed in a 

severely shortened time period. This can only be accomplished by using suitable vaccine 

platforms. The Nm OMV-based vaccine platform can be used for such rapid responses. 

For this application, an antigen needs to be identified and sequenced, before it can be 

expressed in the platform. For expression, the antigen sequence is codon optimized for 

expression in Nm, linked to the surface-exposed expression system and synthesized by 

DNA-printing. Next, a clone expressing the heterologous antigen is generated. The 

expression of the antigen should be confirmed and production of OMVs can start. Lastly, 

release testing should ensure the newly generated OMVs have the desired 

characteristics. In the most optimal scenario, the production of a first batch of OMV-

vaccines starting from a novel antigen sequence expressed in Nm could be reached 

within 8 days (Figure 4). Likewise, it has been claimed by Abera Biosciences, that the 

design and manufacturing of an OMV-based vaccine decorated with surface antigens can 

be within 14-30 days [79]. Besides the promising potential of the vaccine platform in 

the scenario of disease outbreaks, this speed of production of new vaccine concepts can 

boost the development of new vaccines as the development trajectory can be shortened. 

In this process, getting the antigen expressed in Nm is highly important. For the 

expression of antigens on Nm in this thesis, traditional molecular biology tools were 

applied. Nm is naturally competent for the uptake of DNA sequences [80, 81]. This 

uptake is characterized by a preference for self-DNA, that is forced by preferred uptake 

of DNA that contains a short sequence that is repetitively found in the Neisserial 

genome [82]. This DNA uptake sequence (DUS) can be used to artificially improve the 

uptake of DNA sequence that are not found in the genome of Neisserria spp. The use of 

antibiotic markers in this method is preferably avoided since generation of strains 

expressing multiple antigens require many different markers. A marker-free method 

has been described for the genomic engineering of N. gonorrhoeae [83], which can be 

used for Nm [84]. Novel CRISPR-Cas9 based methods could further speed-up the 

expression of heterologous antigens. Moreover, the introduction of multiple genes of 

interest in a single transformation becomes feasible by this method. Nm contains a 

Type-II CRISPR system [85] that can be used for genome editing [86], although the 

serogroup B isolate H44/76 that was used throughout this thesis does not encode an 
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active CRISPR system. Since it is known that CRISPR interference blocks natural 

transformation [85], this may be the reason for natural competence of this isolate.  

The rapid expression of new antigens on the surface of Nm OMVs is the basis of a Nm 

OMV-based vaccine platform that can be used in as rapid response during infectious 

outbreaks. Moreover, it is an important aspect in the development of other new 

vaccines, since a quick expression method allows for rapid screening of many antigens. 

The Nm OMV-based vaccine platform could have potential especially for microbial 

targets. Viral and therapeutic targets can only be addressed by separate OMV and 

antigen production as these targets likely require complex glycosylation that cannot be 

obtained by expression in Nm. With the development of a rapid and markerless 

expression method a Nm OMV-based vaccine platform could be developed that supports 

rapid responses against emerging infectious microbial diseases. 

Conclusion: OMVs have potential as a modular vaccine platform  

The results of the studies in this thesis show that OMVs can be produced in large 

amounts based on scalable unit operations, which was reached by optimizing the 

amount of OMVs released by the bacteria in the culture supernatant. Heterologous 

Figure 4. Nm OMV-based vaccine platform for rapid response against emerging infectious diseases. 

After antigen selection, the sequence must be optimized for surface exposed expression in Nm. Clones 

expressing the antigen of interest are selected and used for OMV production. Starting from a shaker flask 

culture, a production culture is grown under OMV stimulating conditions, and OMVs containing the 

heterologous antigen are purified. After release testing and formulation, the OMVs can be directly used as 

vaccines.  
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antigens can be expressed on these OMVs, and the platform shows many interesting 

possibilities for the development of vaccines based on an Nm OMV-based vaccine 

platform. Increased knowledge on the release of OMVs can result in further 

optimization of OMV production processes and result in increased OMV yields and a 

further reduction in costs. Future studies should address the immune response against 

heterologous antigens and against the OMV-platform itself upon repetitive use. An OMV-

based vaccine platform can provide a cost-price reduction in OMV production which 

could make OMV-based vaccines feasible for low-income countries. The development of 

OMV-based vaccines is highly suitable for antimicrobial resistant pathogens, for which 

vaccines are quickly needed. The development of vaccines for Lyme disease and 

serogroup B meningococcal disease based on Nm OMVs is possible in the near future 

and would provide an actual improvement for human health.  
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Summary 

Development of new vaccines based on vaccine platforms forms an interesting 

opportunity to significantly reduce the development time. New vaccines are required to 

keep up with newly emerging diseases that spread quickly in the interconnected global 

world. The traditional development of new vaccines is a lengthy process, as a new 

production process must be developed for each vaccine. A vaccine platform allows the 

use of the existing production process for new vaccine targets. Bacterial outer 

membrane vesicles (OMVs) produced by Neisseria meningitidis are highly suitable 

candidates to form a vaccine platform. N. meningitidis OMVs have been safely used as 

meningococcal vaccines. OMVs are non-replicative nanoparticles derived from the 

bacterial membrane, that can display heterologous antigens. N. meningitidis OMVs have 

been produced by extraction of vesicle like structures from bacterial cells. However, 

OMVs spontaneously released from bacteria have advantages over extracted OMVs as 

they can be directly purified from the supernatant of the bacterial culture, have 

enhanced quality, and trigger broader immune responses. On the downside, the yields 

of spontaneously released OMVs are low. The aim of this thesis was to obtain a better 

understanding of outer membrane vesicle formation by Neisseria meningitidis and OMV 

quality, and use this to develop improved OMV production processes that can become a 

cost-effective basis for an OMV-based vaccine platform 

A vaccine platform should be versatile and adaptable for the addition of heterologous 

antigens onto the OMV. In Chapter 2 we explored existing methods for antigen 

decoration of OMVs through a comprehensive literature review. We distinguished two 

approaches of OMV platforms, based on either separate production of antigen and OMV 

followed by coupling or production of the antigen directly by the OMV producing 

bacterium. Separate antigen production seems more suitable for viral and therapeutic 

targets as it allows coupling of complex glycosylated targets to the OMV. Production of 

antigens directly by the OMV producing bacterium is probably more suited for 

microbial targets and allows for the most straightforward production process.  

To optimize OMV production processes, a new method for OMV quantification was 

needed as current quantification methods of OMVs were indirect and elaborate. In 

Chapter 3 we successfully used nanoparticle tracking analysis to quantify OMVs 

directly from sterile filtered culture samples, in a high-throughput manner. Now that we 

had a more reliable method available to quantify OMV release, our next step was to 

improve the OMV yields by studying the release of OMVs from the bacterium. A 

previous study had shown that cysteine depletion causes a stationary growth phase in 

which OMVs are released. In Chapter 4 we show that sulfur depletion in general 

resulted in OMV release of N. meningitidis cultures and found that sulfate depltion 

results in an even higher level of OMV release. Mechanistically, OMVs were enriched in 

phospholipids following sulfate depletion, suggesting that enrichment of phospholipids 

is an important factor in the OMV release process.  
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A second parameter is oxidative stress that had been previously observed in cysteine 

depleted cultures, as well as in the sulfate depleted cultures described in Chapter 4. We 

found that high dissolved oxygen tension could mimick this situation and trigger 

increased OMV release. Because dissolved oxygen tension is a well-controlled process 

parameter, high dissolved oxygen concentrations could be conveniently used to 

stimulate OMV release. This was demonstrated in Chapter 5 where we showed that 

sulfur depletion and high dissolved oxygen tension stimulate the OMV release per 

bacterium and can be applied in batch production processes.  

Chapter 6 presents a proof of concept of the OMV-based vaccine platform in which the 

findings from the previous chapters were combined. We expressed outer surface 

protein A and outer surface protein C of Borrelia burgdorferi, the cause of Lyme disease, 

on N. meningitidis OMVs. These OMVs with heterologous model antigens were produced 

in a batch production process. In this process, sulfur depletion and high-dissolved 

oxygen concentrations were combined to establish high OMV yields. Purification based 

on scalable unit-operations resulted in a recovery of 90 mg OMV associated protein per 

liter culture. This production proces could be used as a basis for the development of 

novel Lyme disease vaccines. Lastly, in chapter 7 we suggest that OMV production can 

be further improved by adopting continuous production processes. Continuous 

production results in increased volumetric productivities, enhanced process control, 

and reduced variability. However, before continuous OMV production can be used for 

OMV vaccines, a method to assure OMV quality in the lengthy cultivations needs to be 

developped. 

This thesis shows that high yields of spontaneously released N. meningitidis OMVs can 

be obtained by stimulating release of OMVs from the bacterium by process parameters. 

These OMVs show potential as modular production platform and could boost future 

vaccine development. OMV based vaccine platforms will reduce the time required to 

develop new vaccines, which is urgently needed to meet the demand for new vaccines.  
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Dankwoord 

Vlak voordat dit boekje naar de drukker gaat, voelt het als een bijzonder moment om 

iedereen te bedanken die een bijdrage heeft geleverd aan dit proefschrift. In de 

maanden vakantie die tussen het schrijven van de hoofdstukken en het printen van dit 

boekje zitten heb ik veel aan jullie gedacht.  

Als eerste wil ik uiteraard mijn promotieteam bedanken. Michiel, wat heb je veel tijd vrij 

gemaakt om dit project te begeleiden. Het was erg fijn dat de deur van je kantoor altijd 

open stond. Bedankt voor de vrijheid om mijn ideeën in dit project volledig de vrije loop 

te laten. René, bedankt voor het hartelijke welkom in jouw groep in Wageningen. Op de 

terugweg van onze overleggen heb ik eigenlijk elke keer teruggedacht aan jouw 

messcherpe samenvattingen, die elke keer begonnen met: “dus eigenlijk bedoel je…” 

Dirk, het was erg fijn dat je de tijd nam om zo vaak in Bilthoven te overleggen. Jouw 

betrokkenheid bij dit project heeft veel bijgedragen aan het onderzoek. Ik heb erg veel 

geleerd van jouw eerlijke en kritische blik op de proceskunde en de wetenschap. Ook 

heb je samen met René erg geholpen om mijn soms ietwat ambitieuze planning om te 

zetten in een realistische. 

Bacteriële PD-afdeling: Wat is het een leuke groep om in te werken! Jan, Ronald, 

Lonneke, Jikke, Shimaira, Jorike, Lilli, Carolien, Robert, Maarten, en natuurlijk ook 

Michiel. Jullie maken dat het ontwikkelen van een kwalitatief vaccinproductieproces 

voelt als een gezellige cursus bierbrouwen voor gevorderden. We mogen trots zijn op de 

megagrote labs en alle glimmende apparatuur die er staat. Ook op de iets sneller 

roestende toestellen. We kijken al lang uit naar de pizza’s in Zeist. Gaan we dat snel 

plannen? 

Bas, als mijn stagebegeleider in 2013 heb je een perfecte voorzet gegeven voor mijn PhD 

project. Ik heb nog vaak teruggekeken naar de experimenten die de basis zijn geweest 

van zo ongeveer elk hoofdstuk in dit boekje. Leo, als afdelingshoofd heb je mij de kans 

gegeven om verder met het OMV-project te gaan. Ik hoop dat jouw 

procesontwikkelings-ervaring in de toekomst kan helpen om het platform een fase 

verder te helpen. Daniëlle, ontzettend bedankt voor het oneindige vertrouwen en dat ik 

altijd bij je terecht kon voor advies! We moeten toch ons Achterhoeks wat vaker laten 

horen in Bilthoven.  
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Kamergenoten! Sven en Martijn, wat was het gezellig om met jullie een luxe kantoor met 

mini-bar te delen. Misschien dat we met iets geknutsel aan het mobiele kantoor-

koelsysteem zelfs nog wel climate control kunnen toevoegen. Merijn, bedankt voor fijne 

samenwerking op het Lyme project. Ik hoop dat we in de komende jaren kunnen 

aantonen hoe geweldig deze OMVs zijn! Joost, wat een fantastische inzichten heb jij 

zichtbaar kunnen maken met de mass-spec. Gideon en Diana, bedankt dat jullie een 

stapje extra doen en veel nuttige en opbouwende kritiek geven op de goed te keuren 

manuscripten.  During my thesis project there were several interns who wrote a MSc 

thesis on OMVs. Wannisa, Kristian, Jasper, Fabian, Kevin, Natalia, and Lilli. Thanks so 

much for your hard work! I learned a lot from your fresh views on single-use 

bioreactors, continuous processing of OMVs and Cas9-based gene editing of Neisseria. 

Met de privatisering van Intravacc staan er een boel veranderingen op de planning. Met 

alle glimmende apparatuur en de recente verbouwingen zijn we er meer klaar voor dan 

ooit. En belangrijker dan alle randzaken zijn natuurlijk alle fijne collega’s met bovendien 

een onschatbare waarde aan kennis en kunde. Dank jullie wel!  

Achterhoekers! Geen inspanning zonder ontspanning! Zonder dat jullie het weten 

hebben jullie ook veel bijgedragen aan dit boekje. Niet alleen staan jullie altijd klaar (ik 

wist niet dat een verhuiswagen zo snel ingeladen en uitgeladen kon worden!), maar is 

het ook altijd gezellig. Waar we ook zijn. Ik ben benieuwd waar we dit keer met 

Pinksteren onze tenten op gaan gooien! Patrick & Jesse Laten we nog vaak buiten de 

Achterhoek afspreken om wat te drinken. Ik hoop dat jullie inmiddels mijn 

hamburgerverslaving delen, want we hebben nog niet alle burgerrestaurants gehad! 

Lieve Mierenfamilie, wat hebben we samen een hoop meegemaakt de afgelopen jaren. 

Jullie steun is hartverwarmend. Lieve Jeanet, Brian, Bram & Eva, wat is het altijd fijn om 

bij jullie langs te waaien. Eigenlijk komen we veel te weinig... Ook de familie van 

Whitney ben ik erg dankbaar. Mike, Manon, Cheryl, Lucy, Jesse & Chrissy, wat is het leuk 

om jullie als (schoon)broers en zussen te hebben. Lieve Rob & Monique, bedankt dat ik 

me zo snel welkom voelde bij jullie. Ik heb alweer zin in de volgende zomervakantie 

onder de zon en de vreetborden na het eten. Het wordt tijd dat die traditie 

overgenomen wordt op maandagavond in De Goejestraat. Lieve Daniëlla & Harry, dank 

voor jullie uitgebreide interesse in mijn onderzoek. Ik kijk met plezier terug naar de 
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vele gezellige momenten samen zoals de fantastische avonden met het vreemde 

woorden woordenboekspel. 

Lieve pap, wat is het altijd fijn om weer bij jou thuis in Terborg te zijn. Nog geen seconde 

binnen en je hebt alweer een klus of project om te laten zien. Al maak ik me wel eens 

zorgen als je weer eens vrolijk vertelt dat er een boom is gesneuveld door de 

kettingzaag. Zelfs in de zware tijd toen mama ziek was bleef jij een grote steun en 

ontzettend zorgzaam. Het is zo fijn om te zien hoe gezellig je het nu samen met Alies 

hebt.   

Whitney, wat was het een ontzettend leuke tijd om (grotendeels) tegelijkertijd aan onze 

promotieonderzoeken te werken! Uiteraard was het soms even afzien als we allebei 

weer eens lange dagen maakten, maar ik kijk toch met veel plezier terug naar de 

afgelopen jaren. Zonder jou had ik nooit zo veel van de wereld gezien. En wat was onze 

laatste reis gaaf! Dan de boerderij met alpacaweiland die we op een haar na gekocht 

hadden. Wie weet wat de toekomst brengt. We hebben het nu ook erg goed voor elkaar 

in ons gezellig huisje in Leiden. Ik heb ook ontzettend veel zin in toekomst die ons hier 

samen te wachten staan! Whit, je bent de allerliefste! 
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