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ABSTRACT: 19 

The objective of the study was to assess the ranking of dairy cows using individual level 20 

correlations for methane (CH4) emission phenotypes on-farm using sniffers and in respiration 21 

chambers. In total 20 lactating dairy cows, ten Danish Holstein and ten Danish Jerseys were 22 

recorded using sniffers installed in milking robots for three weeks of lactation prior to relocation 23 

and acclimation at the respiration chamber (RC) facility where they were each recorded on three 24 

occasions within the RC. Pairwise bivariate linear mixed models were used to determine the 25 

individual level correlations (rI) between sniffer phenotypes and RC phenotypes as proxies for 26 

genetic correlations. Despite differences in feeding and management, the predicted CH4 production 27 

on farm from sniffers correlated well with CH4 production in the RC (CH4_RC) rI = 0.77 ± 0.18 28 

and the direct CH4 breath concentration (CH4_C) correlated nearly as well with CH4_RC rI  = 0.75 29 

± 0.20. The correlations between CH4 emission phenotypes on-farm from sniffers and CH4_RC 30 

exceeded that of energy corrected milk yield, live weight and dry matter intake demonstrating the 31 

potential of sniffers measurements as large-scale indicator traits for CH4 emissions in dairy cattle.  32 

Keywords: Methane, sniffers, breath concentration, respiration chambers 33 

Introduction  34 

Methane (CH4) is a potent greenhouse gas produced by dairy cattle and other ruminants as a natural 35 

by-product of fermentation. Research on mitigation strategies such as nutritional additives, 36 

vaccines, and genetic improvement, has gained impetus in recent years (Hill et al., 2016). Whilst a 37 

reliable and accurate measure of CH4 emission forms the basis of evaluating all of the 38 

aforementioned strategies, they differ in requirements of accuracy and precision as well as the 39 

number, frequency and duration of measurement (Hammond et al., 2016). For instance, genetic 40 

evaluations require measurements on large numbers of animals under the environmental conditions 41 



they are expected to perform in order to obtain accurate estimated breeding values (EBV) (Falconer 42 

and Mackay, 1996). The accuracy of EBV is in part conditional on the accuracy and precision of the 43 

phenotypes recorded. However, the accuracy of EBVs can be increased through increasing the 44 

number of records per animal and/or increasing the sample size of related animals recorded (Mrode, 45 

2003), i.e. increasing throughput of less precise phenotypes can still result in accurate EBVs.  46 

Indirect calorimetry respiration chambers (RC) are the ‘gold standard’ for CH4 emission, meaning 47 

RC are regarded as the most accurate and precise measurement from which different instruments or 48 

techniques are benchmarked (Grainger et al., 2007; Hill et al., 2016). The high accuracy and 49 

precision of RC have the benefit of detecting relatively small effects of diets and treatments on CH4 50 

production with small numbers of animals (Patra, 2016). However, the capital investment cost for 51 

RC are high and the method is labour intensive, proving to be prohibitive to obtaining 52 

measurements on large numbers of animals (Grainger et al., 2007; Madsen et al., 2010). 53 

Furthermore, the effects of confinement within the chamber may alter animal behaviour and are not 54 

necessarily representative of all production systems like extensive grazing systems (Storm et al., 55 

2012), although promising developments have led to reductions in costs and reduced stress due to 56 

confinement (Hellwing et al., 2012). Thus the merit of genetic selection under RC conditions and 57 

the expectation of reduced CH4 emissions under environmental conditions in which animals are 58 

expected to perform, have been called into question (Lassen and Løvendahl, 2016). 59 

A method that has proven well suited to obtaining large numbers of records on individual animals 60 

under commercial conditions is the high-throughput, cost effective, and non-invasive ‘sniffers’ 61 

installed in the feed bin of automated milking stations (AMS) or concentrate feeders (Garnsworthy 62 

et al., 2012; Lassen et al., 2012; Negussie et al., 2016). The non-invasiveness is achieved by 63 

limiting the animal-to-instrument interface, so that the animal is not aware it is being measured and 64 

measurement does not disrupt farm activities. The disadvantages of this are a loss of precision due 65 



to variable barn gas dynamics and added noise if head movement of the cow and background barn 66 

gas levels are not accounted for (Huhtanen et al., 2015; Difford et al., 2016; Wu et al., 2018). 67 

Furthermore, sniffer methods record the concentration of gases in the captured breath of the cow 68 

during milking and are thus a spot measure of gas concentrations and not a full 24 hour mass flux 69 

measure (Huhtanen et al., 2015). Rather they utilise the ratio of measures CH4 to carbon dioxide 70 

(CO2) and predicted CO2 as a tracer gas to approximate CH4 production (Madsen et al., 2010).  71 

New methods which are cheaper, faster or less invasive are continually under development and are 72 

of value when the gold standard proves expensive or prohibitive to largescale recording. For genetic 73 

evaluations, a new method can replace a gold standard method if the new method is heritable and 74 

their genetic correlation (rG) exceeds 0.80 (Robertson, 1959). If the rG is moderate and the new 75 

method is heritable, it can be an indicator trait (Negussie et al., 2017). However, the number of 76 

related animals with simultaneous measurements from both methods required to accurately estimate 77 

rG with meaningful standard errors, is around 103-104 of animals (Visscher, 1998). If measurements 78 

with both methods are taken on different animals or the same animals at different time points, the 79 

required numbers for accurate estimation of rG will be even higher (Bijma and Bastiaansen, 2014). 80 

For CH4 emission, the RC constitutes a separate environment, as other methods cannot be recorded 81 

simultaneously within the RC. It is of interest to determine the ranking of animals prior to the 82 

investment in thousands of records using both methods, particularly when the gold standard is 83 

expensive. To this end, estimating the repeatability of each method and the individual level 84 

correlations (rI) between methods is of value. The repeatability of a method serves as the upper 85 

threshold for heritability estimates and rI serve as proxies for rG, respectively (Falconer and 86 

Mackay, 1996; Wolak et al., 2012). The objective of this study was to assess the consistency in 87 

ranking of dairy cows for CH4 emission using sniffers and respiration chambers.  88 

Materials and Methods: 89 



Design and Animals  90 

This experiment was designed to compare CH4 measurements from the non-invasive sniffer method 91 

during AMS milking with the open circuit RC, which is the intensive and traditional method. The 92 

link between the two methods was obtained by having 20 cows (ten Holstein and ten Jersey) 93 

measured first by the sniffer in a commercial setting and then transferred to the RC facility. All 94 

handling of animals was conducted according to a protocol approved by The Animal Experiments 95 

Inspectorate, Ministry of Environment and Food of Denmark (Approval number 2016-15-0201-96 

00959). 97 

Sniffer AMS measurement  98 

Data on CH4 and CO2 gas concentrations from the breath of individual Holstein and Jersey cows 99 

recorded during milking at Danish Cattle Research Centre (DCRC, Foulum, Denmark), where 100 

sniffer sensors were installed in each of the three AMS (DeLaval International AB, Tumba, 101 

Sweden). The sniffer instrumentation comprises two sensors, the CH4 sensor (Guardian NG, 102 

Edinburgh Instruments Ltd, Livingston, UK) and the CO2 sensor (Gascard, Edinburgh Instruments 103 

Ltd, Livingston, UK).The equipment installation, and calibration procedures for the sensors are 104 

described elsewhere (Difford et al., 2016). The DCRC barn is a free-stall housing system with 105 

individual cubicles and cows were offered TMR with an approximate forage to concentrate ratio of 106 

(70:30) ad libitum in individualized feeding troughs (RIC-system, Insentec, Marknesse, The 107 

Netherlands). Cows were provided up to 3 kg of concentrate per day within the feed bin of the 108 

AMS, based on levels of production and thus differences in the forage:concentrate ratio between 109 

cows is expected. Cows had free access to AMS and presented on average 2.4 ± 0.86 visits/d (mean 110 

± SD) during the measurement period. Data on live weight is recorded 10 times every second 111 

during AMS milking and processed as described in (Bossen et al., 2009). Milk production from the 112 



AMS and fat, protein and lactose percentage estimated from 48 hour periods each week (Løvendahl 113 

and Bjerring, 2006). The estimated milk components were used to correct milk production for fat, 114 

protein, and lactose content (ECM) (Sjaunja et al., 1991).  115 

Gas concentrations from the AMS was aligned and merged with the entrance and exit time for each 116 

cow visit to the AMS. Data was omitted when the cow’s head was predicted to be outside the feed 117 

bin using the algorithm described in Difford et al. (2016). The CH4 and CO2 gas concentrations for 118 

the morning cleaning cycle, when the AMS is empty of any cow, were taken as the ambient barn 119 

concentrations for each day, and deducted from the means of each cow visit. The starting time for 120 

each visit in the AMS was converted to 24 hour angular radians for modelling of diurnal variation 121 

(Lassen et al., 2012). The following model was used on all available DCRC data, within AMS to 122 

obtain daily visits corrected for sensor drift, daily variation, and time of day: 123 

yijklm = μ + di + bj +  ∑3k=1(f1ksinθ + f2kcosθ) + Cl + eijklm     (1) 124 

where yijklm is the natural logarithm of background corrected AMS visit means of CH4 and CO2; di 125 

is the effect of test day i (i = 23 d); bj is the effect of the first day after each calibration j (j = 3); f1k 126 

and f2k are regression coefficients of Fourier series linear covariates of the time of day of 127 

measurement, modelled as harmonic pairs. The time of day of visit expressed as 24 hour angular 128 

radians is denoted by θ. Term Cl is the random effect parameter for each cow Cl ~ ND (0, Iσ2c), and 129 

eijklm is the residual ~ ND (0, Iσ2e). In order to correct daily AMS visit means, the residuals for each 130 

visit are combined with random cow solutions, intercept, calibration day, and the regression 131 

coefficients f1k and f2k multiplied by the angular radian corresponding to 12:00:00 a.m. Further, the 132 

CH4 and CO2 concentration in ppm was averaged per week of lactation, using an average of visits 133 

weighted by the duration of visits. The average weekly CH4 and CO2 concentrations were natural 134 

log transformed, here after defined as CH4_C and CO2_C and combined with the weekly 135 



performance data from DCRC for ECM (ECM_C), LW (LW_C), and gestation length (GL). The 136 

average daily CH4 production per week of lactation (CH4_P; L CH4/d) was calculated using the 137 

ratio of CH4_C to CO2_C and the equation for CO2 production from heat production units (HPU) 138 

which utilizes ECM_C, LW_C, and GL (CIGR, 2002) and the conversion from HPU to CO2 to 139 

obtain predicted CO2 production (CO2_P; L CO2/d) (Pedersen et al., 2008) as suggested by Madsen 140 

et al. (2010). Data for the 10 Holstein and 10 Jersey cows from the last three weeks prior to 141 

relocation to the facilities with the RC was retained for further analysis together with RC records.  142 

Respiration chamber measurements 143 

The 10 lactating Holstein cows and 10 lactating Jersey cows were entered into a trial containing two 144 

dietary treatments, a control and a high concentrate diet with respective forage to concentrate ratios 145 

of (68:32) and (39:61) in a cross-over design with back-cross (Olijhoek et al., 2018). The trial was 146 

divided into three periods with blocking consisting of four cows per block (five blocks in total per 147 

period) with the same cows in each block over periods. Each cow was recorded for duration of 3 d 148 

in period 1 and 2 d in periods 2 and 3. Methane and CO2 production in the RC (CH4_RC and 149 

CO2_RC) was calculated from the product of the total flow of outgoing air at standard temperature 150 

and pressure, and the difference between the gas concentrations in the outgoing air and the gas 151 

concentrations in the incoming air from the barn (background). Methane and CO2 concentration 152 

readings from when the chambers were opened twice daily for milking were omitted before 153 

calculating the average CH4 and CO2 production for each cow, during each period. Live weight was 154 

recorded when cows entered and left the RC and the average of these two readings taken from the 155 

RC recording period (LW_RC) as per Olijhoek et al. (2018). Milk yield was recorded during 156 

milking in the RC and composition determined from two subsequent milkings. The average milk 157 

yield and milk composition was used to determined average energy corrected milk yield in the RC 158 

(ECM_RC) during RC recording periods (Sjaunja et al., 1991; Olijhoek et al., 2018). The records 159 



from these cows were retained for comparison with sniffer measures recorded at DCRC for the 160 

same 20 cows. 161 

Statistical Analysis 162 

Pairwise bivariate animal repeatability models were used to estimate variance components 163 

controlling for fixed effects. All analyses were performed using DMU version 6 (Madsen and 164 

Jensen, 2014). The model for the RC traits was as follows: 165 

yijklmn = μ + Bi + Pj + Lk + Dl + Cm + eijklmn     (2) 166 

Where yijklmn is the trait of interest (CH4_RC, CO2_RC, LW_RC and ECM_RC), μ is the intercept, 167 

B is the i'th breed (I = 2 levels), P is the j’th effect of block nested in period (j = 12 levels), L is the 168 

k’th lactation number (k = 3 levels), D is the l’th effect of diet (l = 2 levels), Cm is the random effect 169 

of the m’th cow Cm ~ ND (0, Iσ2c), and e is the residual ~ ND (0,Iσ2e).  170 

The model for the on-farm traits was as follows: 171 

yijklm = μ + Wi + BRj +  Lk + Cl + eijklm      (3) 172 

Where yijklm is the trait of interest (CH4_P, CO2_P,CH4_C,CO2_C, LW_C and ECM_C), μ is the 173 

intercept, W is the i'th week of lactation (I = 2 levels), BR is the j’th breed nested within AMS (j = 3 174 

levels), L is the k’th lactation number effect (k = 3 levels), Cl is the random effect of the l’th cow Cl 175 

~ ND (0, Iσ2c), and e is the residual ~ ND (0,Iσ2e). 176 

For all pairwise comparisons between RC and on-farm traits it was necessary to restrict residual 177 

covariance to zero as cows were recorded in different environments. Repeatability estimates (t) 178 

were obtained from the variance components by using the equation: 179 

𝑡𝑡 =  
𝜎𝜎𝑐𝑐2

(𝜎𝜎𝑐𝑐2 + 𝜎𝜎𝑒𝑒2)
 180 



Individual level correlations (rI), were computed as the correlation between random cow 181 

effects using variance components as show in equation 4: 182 

𝑟𝑟𝑟𝑟 =  
𝜎𝜎2𝑐𝑐1,𝑐𝑐2

�𝜎𝜎2𝑐𝑐1.�𝜎𝜎2𝑐𝑐2 
 183 

The standard errors of the individual level correlations and repeatability estimates where derived 184 

using Taylor series approximations.  185 

Results and Discussion 186 

The descriptive statistics for sniffer and RC phenotypes can be found in Table 1. The sniffer 187 

predicted mass flux CH4_P and CO2_P were closer to that of RC mass flux phenotypes CH4_RC 188 

and CO2_RC albeit with lower means, higher variability and consequently higher coefficients of 189 

variation (CV). The sniffer breath concentration phenotypes (CH4_C and CO2_C) were more 190 

different from predicted and measured mass flux phenotypes, with lower means, higher variability 191 

and CV. All CH4 and CO2 phenotypes where moderately to highly repeatable ranging from t = 0.53 192 

for CH4_C to t = 0.87 for CO2_P. Live weight and ECM were retained as control variables to 193 

ensure that the RC environment was not considerably different from that of the on-farm 194 

environment for these production traits. The means, SD and CV for LW and ECM were compared 195 

across environments with similar descriptive statistics and repeatability estimates for example 196 

LW_C and LW_RC had similar means 568.2 vs 564.5 kg and repeatability t=0.93 and t=0.98, 197 

respectively. Recognizing that in the case of the sniffer phenotypes, they are an average of many 198 

measurements from the AMS over a full week of lactation whereas RC phenotypes are the average 199 

of measurements over a 2 – 3 d period in the RC. 200 

The individual level correlations between sniffer and RC phenotypes are reported in Table 2. For 201 

ECM and LW the individual level correlations (rI) between on-farm AMS and RC were close to 202 

(4) 

(5) 



unity 0.86 ± 0.15 and 0.92 ± 0.04, respectively. These rI indicate very similar ranking of cows 203 

across environments, suggesting confinement within the RC had limited effects on ranking for these 204 

traits. Many studies have reported that confinement within RC alters behavior and can induce stress 205 

resulting in a drop in feed intake (Beauchemin and McGinn, 2006; Llonch et al., 2016). However, 206 

the RC in the present study were constructed from transparent polycarbonate to reduce costs and 207 

increase cow welfare, as supported by a study describing that these RC provoked no drop in DMI, 208 

(Hellwing et al., 2012).   209 

Sniffer CH4_P showed the highest rI of any on-farm phenotype with CH4_RC 0.77 ± 0.18, which 210 

approaches the suggestive threshold of 0.80 for no significant re-ranking, however the standard 211 

errors thereof are large. This finding agrees with that of Hellwing et al (2013), who compared CH4 212 

production calculated from the ratio of CH4 to CO2 measured within the RC and predicted CO2 213 

production to CH4_RC and CO2_RC for 157 cow measurements in 8 feeding experiments and 214 

found an R2 of 55% corresponding to a correlations R= 0.74. The performance of CH4_P is reliant 215 

on the accuracy of CO2_P as a predicted tracer gas, the rI between CO2_P and actual measured CO2 216 

production (CO2_RC) was similarly high rI = 0.79 ± 0.14 as that of CH4_P and CH4_RC. A 217 

criticism of this CO2 prediction equation is that the metabolizable energy (ME) efficiency and 218 

mobilization of body tissues is not taken into account, running the risk of over predicting CO2 219 

production of efficient cows (increased LW and ECM at a fixed level of intake) and under 220 

predicting CO2 production of inefficient cows (Madsen et al., 2010; Huhtanen et al., 2015). It may 221 

be possible to improve the rI between CH4_P and CH4_RC through improving the prediction 222 

accuracy of CO2_RC by taking into account ME utilization. For instance, Negussie et al (2016) 223 

compared CH4_P in the breath of 20 lactating Nordic Red cattle from concentrate feeders and 224 

CO2_P predicted from ME intake and found CH4_P to have a high concordance correlation 225 

coefficient 0.70 and phenotypic correlation 0.80 with CH4_RC.  226 



Since all prediction equations have some level of inherent error and traits used in the prediction of 227 

CO2_P, e.g. ECM_C, are already in the breeding goal, there is interest in assessing value of directly 228 

measured traits like CH4_C and CO2_C with RC traits. In this instance CH4_C ranked animals 229 

comparatively well with CH4_RC rI = 0.75 ± 0.20 as compared to CH4_P and CH4_RC rI = 0.77 ± 230 

0.18 and exceeded that of commercial control variables ECM_C, LW_C and DMI_C, which are 231 

routinely used to predicted CH4 production (Ramin and Huhtanen, 2013).  232 

A number of authors have labelled breath gas concentration measures as imprecise (Huhtanen et al., 233 

2015; Goopy et al., 2016; Wu et al., 2018), which is congruent with our results as seen by the lower 234 

repeatability estimates of CH4_C and CO2_C and the increased CV. However, the aforementioned 235 

studies often compare mass flux CH4 production (g/day) to CH4 breath concentrations using the 236 

coefficient of determination (R2) and its radicand Pearson’s correlation coefficient R, with the 237 

expectation that a deviation of R2 or R from unity (1.0) indicates imprecision. Recognizing that 238 

CH4_C is a separate, by likely correlated trait from CH4_RC, deviations in R2 from 1.0 are to be 239 

expected regardless of imprecision. Moreover, these studies often compute R in the presence of 240 

repeated measures per subject without explicitly modelling the random effect of subject, which has 241 

the effect of biasing correlations downwards when one or both of the traits has some imprecision  242 

(i.e t < 0.80), known as attenuation of error (Spearman 1904; Adolph & Hardin 2007). Conversely, 243 

these studies often fail to account for non-genetic between subject variation (for instance parity, 244 

lactation stage, breed etc.) which can inflate estimates of R. When repeatability (t >0.80) and 245 

precision is high in one or both phenotypes, and between subject non-genetic factors are accounted 246 

for and single measurement are taken per subject, then the phenotypic correlation (rP) can be a good 247 

predictor of rG (Cheverud, 1988; Roff, 1995). In the case of repeated measurements per subject 248 

when one or both traits have some imprecision rP is still biased downwards and it is necessary to 249 

partition variation into between subject variation and within subject variation (i.e. residual error or 250 



imprecision) and compute rI which are one step closer to rG (Adolph and Hardin, 2007; Dingemanse 251 

and Dochtermann, 2013). Individual level correlations have been used as proxies for rG in difficult 252 

or expensive to measure traits in dairy cattle such as DMI (Veerkamp et al., 2013), CH4 production 253 

(Zetouni et al., 2018) and energy balance (Løvendahl et al., 2010).  254 

The rG remains the most informative correlation metric for assessing how best to incorporate an 255 

alternative method into a selection index. This point is illustrated in the development of the portable 256 

accumulation chambers (PAC) which are a short-term total CH4 emission flux method alternative to 257 

RC used in sheep. Goopy et al. (2011) compared the two methods in 39 sheep, by measuring for 22 258 

hours in the RC and then measuring 1 and 2 hours immediately after, in the PAC and found rP = 259 

0.67. In a subsequent genetic study on 3601 lambs with 4733 records in PAC and 8655 in RC, 260 

Jonker et al. (2018) found rG = 0.67 ± 0.11 between the methods. In this case, rP was a good proxy 261 

for rG but at a fraction of the cost and justified the investment in obtaining the thousands of records 262 

required to accurately define rG. Furthermore, the PAC is not genetically equivalent to the RC, but 263 

has promise as a large scale, cost effective indicator trait. Importantly, Jonker et al. (2018) reported 264 

rP = 0.27 ± 0.02 in the presence of repeated measurements and not rI which was a biased predictor 265 

of rG. Given rI for sniffer CH4 traits ranged from 0.75-0.77 and were higher than PAC correlations 266 

with RC, should these correlations be validated in a genetic evaluation, sniffers have the potential to 267 

cost effectively generate the large scale recording of thousands of dairy cows for routine genetic 268 

evaluation of CH4 emissions.  269 

These are the first rI reported for any CH4 recording method with the RC method. Method 270 

comparisons to date have made inconsistent use of different correlation metrics. Garnsworthy et al. 271 

(2012) recorded CH4 production in 12 lactating Holstein cows for 10 days in the AMS using 272 

sniffers and found an R2 = 0.78 and R = 0.88 with a single record of CH4 production from RC. 273 

Similarly, Negussie et al. (2016) recorded CH4_P using sniffer senor installed in automatic 274 



concentrate feeders on 22 Finnish Ayrshire cows with subsequent records for CH4 production in RC 275 

and found (R = 0.80), repeated measures were not taken with the RC method nor were between 276 

subject non-genetic effects such as party or lactation stage accounted for. Conversely, (Muñoz et al., 277 

2004, 2012) compared CH4 production from the SF6 technique with the RC and had repeated 278 

measures per method per cow and controlled for technical factors such as bolus release rate, 279 

recording period etc. but failed to correct for breed, parity or lactation stage or to compute rI, instead 280 

reporting R2 = 0.69 and R = 0.83. A single study comparing multiple alternative methods has 281 

reported repeated measures correlations (rRP) taking into account repeated measures per cow per 282 

method (i.e. similar to rI without accounting for non-genetic between subject effects) (Sorg et al., 283 

2018). Sorg et al. (2018) found an rRP  ranging from 0.57 - 0.74 for CH4 production between the 284 

laser measuring device, GreenFeed and two sniffer systems in lactating Holstein cows from 285 

northern Europe. Although the different correlations metrics reported maybe be biased predictors of 286 

the rG between methods, the rI reported herein for sniffer CH4 phenotypes and CH4 production in 287 

the RC are promising as indicator traits. 288 

Conclusion 289 

Methane emission traits derived from breath gas measurements during milking correlated the 290 

highest with CH4 production in RC, exceeding that of LW, ECM and DMI. The individual level 291 

correlations with CH4 production in the RC indicate that sniffer CH4 traits have the potential to 292 

serve as large scale indicator traits of CH4 production in the RC. Genetic correlations between RC 293 

phenotypes and breath gas phenotypes are still needed for effective use in genetic selection indices. 294 

Given the difficulties in acquiring suitably large numbers of cows in RC, the most feasible current 295 

way to obtain accurate genetic correlations between alternative methods and the RC is through 296 

international collaborations and incorporation of genomic information. Given the promising 297 



individual level correlations between sniffer phenotypes and RC further research into genetic 298 

correlations between sniffers and RC for CH4 emission is warranted. 299 
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 440 

Table 1. Descriptive statistics for on farm measurements and respiration chamber measurements. 441 

 Unit Mean SD CV (%) t1 
On farm2     
CH4_P L/d 573 73.9 12.9 0.58 ± 0.11 
CO2_P L/d 6771 578.7 8.5 0.87 ± 0.11 
CH4_C ppm 410 137.0 33.4 0.53 ± 0.11 
CO2_C ppm 5746 1791.7 31.2 0.56 ± 0.12 
CH4/CO2_C ppm/ppm 0.071 0.009 12.7 0.38 ± 0.13 
ECM_C Kg/d 38.1 5.93 18.1 0.71 ± 0.08 
LW_C Kg 568.2 57.3 10.1 0.93 ± 0.02 
DMI_C Kg/d 22.2 4.9  21.5 0.73 ± 0.07 
Respiration Chamber3     



CH4_RC L/d 521 56 10.7 0.61 ± 0.12 
CO2_RC L/d 6538 702.3 10.7 0.72 ± 0.10 
CH4/CO2_RC L/L 0.081 0.006 7.7 0.57 ± 0.14 
ECM_RC Kg/d 28.3  5.6 19.8 0.65 ± 0.12 
LW_RC Kg 564.5 62.3 11.0 0.98 ± 0.01 

1t = repeatability intraclass correlation coefficient. 2On farm phenotypes: CH4_P = predicted 442 
methane production; CO2_P = predicted carbon dioxide production; CH4_C = methane breath 443 
concentration; CO2_C = carbon dioxide breath concentration; CH4/CO2_C = ratio of methane to 444 
carbon dioxide breath concentration; ECM_C = Energy corrected milk yield; LW_C = live weight; 445 
DMI_C = dry matter intake. 3Respiration chamber phenotypes: CH4_RC = methane production; 446 
CO2_RC = carbon dioxide production; CH4/CO2_RC = ratio of methane to carbon dioxide 447 
production; ECM_RC = energy corrected milk yield; LW_RC = live weight. 448 

Table 2 Individual level correlations between on farm phenotypes and respiration chamber 449 
phenotypes 450 

 Respiration chamber2 
On farm1 CH4_RC CO2_RC CH4/CO2_RC ECM_RC LW_RC 
CH4_P 0.77 ± 0.18 0.63 ± 0.10 0.70 ± 0.24 0.68 ± 0.21 -0.09 ± 0.29 
CO2_P 0.74 ± 0.13 0.79 ± 0.14 0.41 ± 0.29 0.58 ± 0.22 0.20 ± 0.27 
CH4_C 0.75 ± 0.20 0.80 ± 0.16 0.03 ± 0.39 0.21 ± 0.35 0.60 ± 0.22 
CO2_C 0.62 ± 0.24 0.76 ± 0.18 -0.35 ± 0.38 0.06 ± 0.40 0.69 ± 0.18 
CH4/CO2_C 0.60 ± 0.27 0.29 ± 0.37 0.83 ± 0.23 0.68 ± 0.23 -0.66 ± 0.24 
ECM_C 0.66 ± 0.20 0.54 ± 0.23 0.52 ± 0.26 0.86 ± 0.15 -0.14 ± 0.27 
LW_C 0.54 ± 0.22 0.68 ± 0.16 -0.32 ± 0.33 -0.24 ± 0.28 0.92 ± 0.04 
DMI_C 0.70 ± 0.17 0.64 ± 0.18 0.18 ± 0.33 0.33 ± 0.26 0.39 ± 0.22 

1On farm phenotypes: CH4_P = predicted methane production; CO2_P = predicted carbon dioxide 451 
production; CH4_C = methane breath concentration; CO2_C = carbon dioxide breath concentration; 452 
CH4/CO2_C = ratio of methane to carbon dioxide breath concentration; ECM_C = Energy 453 
corrected milk yield; LW_C = live weight; DMI_C = dry matter intake. 2Respiration chamber 454 
phenotypes: CH4_RC = methane production; CO2_RC = carbon dioxide production; CH4/CO2_RC 455 
= ratio of methane to carbon dioxide production; ECM_RC = energy corrected milk yield; LW_RC 456 
= live weight. 457 

 458 


