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Abstract  26 

Fat is an important component of human milk and infant formula (IF), delivering half of the 27 

energy a baby needs. Nowadays, mostly vegetable fats are used in IFs, however, the use of 28 

bovine milk fat in formulas is currently increasing. Bovine milk fat contains a different 29 

composition of fatty acids and lipid components than vegetable fats. We have compared the 30 

lipid profile of human and bovine milk to infant formulas with different fat sources. 31 

Furthermore, current knowledge of how infant digestion, absorption, metabolic responses, gut 32 

immunity, microbiota and/or cognition is affected by dietary fat is reviewed. The possible 33 

opportunities and drawbacks of the application of bovine milk fat in infant nutrition are 34 

described. Future perspectives for the development of IF containing bovine milk fat and future 35 

research directions are highlighted. 36 

 37 

1 Introduction 38 

Milk is essential for babies. For a newborn child breast milk is the preferred nutrition (EU 39 

Directive 2006/141). However, when breastfeeding is not an option, infant formula (IF) is the 40 

best alternative. About four percent of human milk consists of fat, which delivers approximately 41 

50% of the total energy to infants (Manson & Weaver, 1997). Therefore, this is a major 42 

component to focus on in the development of optimal IF.  43 

Currently, different fat sources are used for IF, of which most contain a mixture of vegetable fats. 44 

The most commonly used vegetable fats are coconut oil, corn oil, soybean oil, palm oil (palm 45 

olein, palm kernel oil), (high oleic) sunflower oil, high oleic safflower oil and low erucic acid 46 

rapeseed oil (Berger, Fleith, & Crozier, 2000; Mendonça, Araújo, Borgo, & Alencar, 2017). 47 

Besides vegetable fats, the addition of bovine milk fat to IF is quite common. Sun et al analyzed 48 

180 infant formulas reflecting 75% of the market share in China, from which 66 products (37%) 49 

contained bovine milk fat. Bovine milk fat is added to IF in two different ways; either as 50 

anhydrous milk fat (containing triglycerides and other components like cholesterol and fat-soluble 51 
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vitamins), or as full fat milk or cream (containing besides triglycerides and cholesterol all 52 

components of the fat globule membrane). 53 

Until the 1970s, bovine milk fat was part of IF (Delplanque, Gibson, Koletzko, Lapillonne, & 54 

Strandvik, 2015; Innis, 2011), mainly through the use of whole milk in the recipes. However, as 55 

the formulas were further developed, animal fat was replaced by vegetable fats (Institute of 56 

Medicine, 2004). This was done for several reasons; to provide (higher levels of) mono- and poly-57 

unsaturated fatty acids (Innis, 2011), and due to the fear of contaminants, like dioxins. Also, it 58 

was  believed that formulas similar to home-made evaporated milk formulas increased the level 59 

of constipation (Fomon, 2001a), and the odor of regurgitated butterfat was found to be unpleasant 60 

(Fomon, 2001b). In addition, the cost of using bovine milk fat was high, compared to the 61 

alternatives found in vegetable fats. Today, research focus is on adding complex lipids and milk 62 

fat globular membrane components to support infants’ development (Koletzko, 2016). 63 

Furthermore, EFSA states that “the obvious and previously used staple sources of fat for use in 64 

the production of IF and follow-on formula are cow’s milk, to a certain extent goat’s milk and 65 

different types of vegetable oils” (EFSA Panel on Dietetic Products Nutrition and Allergies 66 

(NDA), 2014). In this review, we compare the composition of human milk fat, bovine milk fat 67 

and vegetable fats and focus on their implications for infant health. 68 

2 Lipid composition in bovine milk, human milk and infant formula 69 

Human as well as bovine milk contains approximately 4% fat in the form of globules (Jensen, 70 

Ferris, Lammi-Keefe, & Henderson, 1990b; Månsson, 2008). During different stages of lactation 71 

the total fat content and fatty acid composition changes to a minor extent (Giuffrida et al., 2016; 72 

Kay et al., 2005; Moltó-Puigmartí, Castellote, Carbonell-Estrany, & López-Sabater, 2011; Qi et 73 

al., 2018; Stoop, Bovenhuis, Heck, & van Arendonk, 2009). However, since this is not the focus 74 

of this review, and since the recommendations for the composition of IF is the same for newborns 75 

and up to 6 months, we chose to only include mature human milk as comparison for IF in this 76 

review. Fat globules are filled with triglycerides, which represent 98% of the total fat (Jensen, 77 

Ferris, Lammi-Keefe, & Henderson, 1990a). The so-called milk fat globular membrane (MFGM), 78 
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which is composed of proteins and lipids, cover the milk fat globules (MFG). Proteins within the 79 

MFGM include glycoproteins and enzymes (Dewettinck et al., 2008; Zou et al., 2015). The 80 

structure of the MFGM was recently reviewed by Martini et al. (Martini, Salari, & Altomonte, 81 

2016) and nicely illustrated by Hernell et al (Hernell, Timby, Domellöf, & Lönnerdal, 2016). The 82 

lipids within the MFGM include mainly polar lipids, but also some neutral lipids like 83 

triglycerides, diglycerides, monoglycerides, sterols (mainly cholesterol) and gangliosides. 84 

Furthermore, bovine milk fat contains trace amounts of ether lipids, hydrocarbons, fat-soluble 85 

vitamins, flavor compounds and other minor compounds (Månsson, 2008). The triglyceride 86 

composition and structure, polar lipids and cholesterol are described in more detail below.  87 

 88 

2.1 Triglycerides  89 

The fatty acids in human and bovine milk fat, as well as in vegetable fat, are mostly present in 90 

the form of triglycerides (~98%). A triglyceride consists of a glycerol backbone with three fatty 91 

acids attached to it. Both the fatty acids and the triglyceride structure of different fat sources are 92 

described in the sections below. 93 

 94 

2.1.1 Fatty acids 95 

Nearly 200 different fatty acids, ranging from C4:0-C26:0, are present in human milk fat 96 

(Jensen, Ferris, Lammi-Keefe, & Henderson, 1990c; Månsson, 2008). For bovine milk fat this 97 

number is even higher, almost 400 fatty acids are present in bovine milk fat (Jensen et al., 98 

1990a). Only about 15% of those are present at 1% or higher, the others are only present in trace 99 

amounts. Since most vegetable fats (except coconut oil) do not contain fatty acids ranging from 100 

C4:0-C12:0, and no odd-chain fatty acids (Dorni, Sharma, Saikia, & Longvah, 2018) the variety 101 

of fatty acids in vegetable fats is lower compared to bovine and human milk fat Table 1 shows 102 

the fatty acid composition of human milk, bovine milk and IF products with different fat blends. 103 

For clarity, very low abundant fatty acids were left out.  104 

 105 
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2.1.1.1 Fatty acids in human milk 106 

Table 1 contains an average fatty acid composition of mature human milk (studies from 2000 107 

until 2018 were included). Of all fatty acids in human milk, almost 98% are long-chain fatty acids 108 

(LCFA (>C10)), of which about 40% are saturated fatty acids (SFA). The remaining 2% of the 109 

fatty acids in human milk fat consist of medium-chain fatty acids (MCFA (C6:0-C10:0)). Most 110 

studies are not able to detect the short-chain fatty acid (SCFA) butyrate (C4:0) in human milk; 111 

however, some studies do report the presence of butyric acid in low concentrations. For example, 112 

Wan et al. showed that human milk of Chinese mothers contained 0.6 g butyric acid per 100 g 113 

fatty acids (Wan, Wang, Xu, Geng, & Zhang, 2010). The values represented in Table 1 are an 114 

estimation of the true levels in human milk. Analytical factors influence the fatty acid 115 

compositions, including differences in extraction protocols and detection methods. Furthermore, 116 

there is a natural variation both between individual mothers and between geographical regions 117 

(Kumar et al., 2016), since the fatty acid composition of human milk is influenced by diet as well 118 

as genetics. To give an insight in these regional differences, data from human milk obtained in 119 

Asia and Europa is presented. Some regional differences are observed, as the level of PUFA is 120 

somewhat higher in Asia compared to Europe, and the level of SFA and MUFA is somewhat 121 

lower. Overall, the fatty acid composition between regions is quite similar.  122 

 123 

2.1.1.2 Fatty acids in bovine milk 124 

About 70% of bovine milk fat consists of SFA. Of all fatty acids, almost 90% are LCFA, 6-7% 125 

are MCFA, and butyrate is present in about 3-4%. The most characteristic fatty acids for bovine 126 

milk fat are odd chain fatty acids, conjugated linoleic acid and butyrate. This latter fatty acid is 127 

not present in vegetable fats and only present in trace amounts in human milk.  128 

Bovine milk fat contains higher levels of saturated fatty acids compared to human milk fat, about 129 

67% vs 43% respectively, and lower levels of MUFA’s (24% vs 36%) and PUFAs (2% vs 18%). 130 

Even though low in human milk, docosahexaenoic acid (DHA) and arachidonic acid (ARA) are 131 

present in even lower amounts in bovine milk fat. Similar to human milk fat, the main fatty acids 132 
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present in bovine milk fat are oleic acid and palmitic acid (C16:0). In human breast milk, palmitic 133 

acid alone accounts for approximately 10% of the infant’s energy intake, making palmitic acid a 134 

key nutrient for infants (Innis, 2015). In bovine milk fat, palmitic acid is present in higher levels 135 

compared to human milk fat (30% vs 22%), for oleic acid this is reverse (22% vs 34%). A major 136 

difference between human milk fat and bovine milk fat is the level of linoleic acid. Human milk 137 

fat contains around 15% linoleic acid, while in bovine milk fat this is only about 1.5%.   138 

 139 

   2.1.1.3 Fatty acids in vegetable fat 140 

Different vegetable fats present in IF are blended in such a way that the fatty acid composition 141 

closely resembles that of human milk (Table 1). However, since different vegetable fats are used, 142 

there is also some variation between products. This is indicated by the ranges in Table 1, which 143 

shows examples of fat mixtures used in IF. Compared to an infant formula containing bovine milk 144 

fat, an infant formula that contains only vegetable fat contains lower levels of butyrate and MCFA 145 

and higher levels of MUFA. When a mixture of only vegetable fats is used, a source of palm oil 146 

needs to be added to reach a similar level of palmitic acid as found in human milk. A vegetable 147 

source of palmitic acid is palm (kernel) oil. IFs without palm oil contain only 8% of palmitic acid, 148 

and higher levels of oleic acid, linoleic acid and lauric acid compared to human milk fat.  149 

 150 

2.1.2 TAG structure 151 

A triglyceride consists of a glycerol backbone with three positions for fatty acids to attach, the 152 

outer positions are called sn-1 and sn-3, and the center position is called sn-2. Specific fatty acids 153 

have their own favorable position at the glycerol backbone, which differ among species. With the 154 

current analytical methods available, only the percentage of fatty acids at the sn-2 position of the 155 
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total fatty acids can be determined. The fatty acids present at sn-1 and sn-3 cannot be determined 156 

separately. 157 

 158 

  2.1.2.1 TAG structure in human milk fat 159 

In human milk, the main fatty acid, palmitic acid, is mostly placed at the sn-2 position, 160 

representing about 70-88% of the total palmitic acid, see Table 2 (Bracco, 1994; López-López, 161 

López-Sabater, Campoy-Folgoso, Rivero-Urgell, & Castellote-Bargalló, 2002; Sun, Wei, Su, 162 

Zou, & Wang, 2018). Of the other long-chain saturated fatty acids (LCSFA), 34-66% are also 163 

placed at the sn-2 position in human milk (López-López et al., 2002; Sun et al., 2018). The only 164 

exception is stearic acid (C18:0), of which only 10% is placed at the sn-2 position (López-López 165 

et al., 2002; Sun et al., 2018). The major TAG structures present in human milk are structures 166 

with palmitic acid at the sn-2 position, and oleic acid (18:1) attached to sn-1 or sn-3, like C18:1-167 

C16:0-C18:2, C18:1-C16:0-C18:1, and C16:0-C16:0-C18:1 (Linderborg et al., 2014; Morera 168 

Pons, Castellote Bargalló, & López Sabater, 1998; Tu, Ma, Bai, & Du, 2017). 169 

 170 

2.1.2.2 TAG structure in bovine milk fat 171 

In bovine milk fat, butyrate is mostly located at sn-3. MCFAs, as well as C12:0-C16:0, are 172 

preferably located at the sn-1 and sn-2 positions. Stearic acid (18:0) is selectively located at 173 

position sn-1, while oleic acid  is mostly present at sn-1 or sn-3 (Månsson, 2008). For bovine milk 174 

fat, the amount of palmitic acid at the sn-2 position is about 40-45% of the total amount of palmitic 175 

acid (Bracco, 1994). Sun et al. showed data for IFs containing bovine milk fat; however, the 176 

percentages of bovine milk fat used were not specified. Here, the percentage of LCSFA 177 

(excluding stearic acid) positioned at the sn-2, instead of sn-1 or sn-3, was between 30-49% (Sun 178 

et al., 2018). Like human milk fat, bovine milk fat contains a wide variety of fatty acids, resulting 179 

in many different triglyceride structures. Just like human milk, the major TAG structures in 180 
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bovine milk fat contain palmitic acid in the sn-2 position, and oleic acid attached to the sn-1 or 181 

sn-3 position (Jensen, 2002; Michalski, 2009). 182 

 183 

2.1.2.3 TAG structure in vegetable fat 184 

The TAG structure of vegetable fats used in IF differ from human milk fat. For vegetable fat 185 

blends used in IF the amount of palmitic acid at the sn-2 position reaches levels of 10-20% 186 

(Bracco, 1994; Sun et al., 2018). Sun et al. reported that 19-59% of the LCSFA are positioned at 187 

the sn-2 position in IFs with vegetable fats, of which some contain interesterified palm oil (Sun 188 

et al., 2018). Clearly, in vegetable fat-based IF’s, high levels of triglyceride structures with 189 

saturated fatty acids at the sn-1 and/or sn-3 position are present, such as C18:1-C18:1-C16:0, 190 

C16:0-C18:1-C16:0, C18:2-C18:1-C16:0, and C16:0-C18:2-C16:0 (Tu et al., 2017). Since less 191 

different fatty acids are present in vegetable fat, also the pool of triglycerides is less diverse 192 

compared to human and bovine milk fat.  193 

 194 

  2.1.2.4 Structured TAGs 195 

The distribution of fatty acids along the glycerol backbone at the sn-2 vs sn-1/sn-3 positions can 196 

be changed with inter-esterification (Berger et al., 2000). Recently, TAGs generated through an 197 

enzymatic process from vegetable fats or combinations of vegetable and other fats e.g. from fish 198 

have become available (Álvarez & Akoh, 2016; Ghosh, Sengupta, Bhattacharyya, & Ghosh, 199 

2016). The most common product is beta-palmitate, which is used in IF products currently on the 200 

market. Beta-palmitate is the resulting product of the enzymatic inter-esterification of palm oil 201 

and high oleic sunflower oil, where C16:0-C18:1n-9-C16:0 is transformed to C18:1n-9-C16:0- 202 

C18:1n-9  (L. Zou, Pande, & Akoh, 2016). These “structured TAGs” make it possible to produce 203 

IFs with TAG structures higher in sn-2 palmitate, often above 40% (ranging from 39-47%) of the 204 

total palmitic acid content (17-25%) (Bar-Yoseph, Lifshitz, & Cohen, 2013; Sun et al., 2018) .  205 

 206 

2.2 Minor components 207 
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2.2.1 Polar lipids  208 

Polar lipids encompasses amongst others phospholipids and sphingolipids. Those lipids contain 209 

a hydrophobic tail and a hydrophilic head (Dewettinck et al., 2008). Polar lipids have a 210 

fundamental role in milk; the emulsification of fat in water (Contarini & Povolo, 2013). The 211 

concentration of total polar lipids is comparable between human milk fat and bovine milk fat. 212 

Human milk fat contains about 20.4± 2.8 mg of polar lipids per 100 ml compared to 19.2 ± 0.8 213 

mg of polar lipids per 100 ml for bovine milk fat (calculated from Zou et al., 2013). The 214 

composition of the different polar lipids is slightly different between the two different fat sources. 215 

Furthermore, the exact phospholipid content of the bovine globule membrane is dependent on the 216 

cow breed, season, feed of the cow and size of the globule (Z. Liu, Logan, Cocks, & Rochfort, 217 

2017; Michalski, 2009). The main polar lipids present, in both the human and bovine fat globule 218 

membrane, are phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol 219 

(PI), phosphatidylserine (PS), and sphingomyelin (SM) (Dewettinck et al., 2008; X. Zou et al., 220 

2015). Human milk contains higher levels of sphingomyelin (40.2% ±1.1 vs 27.4 ±1.1)  and 221 

phosphatidylserine (14.4 ± 2.0 vs 7.3 ± 1.0), while in bovine milk fat more 222 

phosphatidylethanolamine is present (12.5 ± 2.9 vs 30.2 ± 2.7) (Zou et al., 2013), see Figure 1. In 223 

IF, based on vegetable fat, the phospholipids are provided by lecithin, derived from either 224 

sunflower seeds or soybeans (Delplanque et al., 2015) and from residual bovine milk fat from 225 

skimmed milk powder (Berger et al., 2000). The phospholipids from skimmed milk powder also 226 

account for the presence of sphingomyelin, which cannot be sourced via plant-based fat blends. 227 

The level of phospholipids varies among IFs, but IFs consist mostly of PC, SM, and PE with 228 

lower levels of PI and PS (Braun, Flück, Cotting, Monard, & Giuffrida, 2010; Fong, Ma, & Norris, 229 

2013). 230 

 231 

2.2.2. Cholesterol 232 

One of the minor components of human and bovine milk lipids are sterols, which make up 0.3% 233 

of total fat. Cholesterol constitutes about 95% of the total sterols. Human milk is a rich source of 234 
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cholesterol, it contains about 90-150 mg/L of cholesterol (Berger et al., 2000; Koletzko, 2016). 235 

Bovine milk fat contains higher levels, around 300 mg/L of cholesterol (Jensen et al., 1990a), 236 

whereas IFs contain 0-4 mg/L of cholesterol (Koletzko, 2016). A recent study investigating sterol 237 

contents of IFs showed that IFs based on vegetable fats contained on average 0.185 mg/L of 238 

cholesterol (Claumarchirant, Matencio, Sanchez-Siles, Alegría, & Lagarda, 2015). In line with 239 

the findings on phospholipids, the cholesterol present in IF based on vegetable fats also mostly 240 

originates from small amount of milk fat present in skimmed milk (Berger et al., 2000). Newer 241 

types of IF, containing a blend of vegetable fats and bovine milk fat, contain higher levels of 242 

sterols, on average 0.927 mg/L (Claumarchirant et al., 2015), which is still surprisingly low. 243 

However, the amount of milk fat in these IF products was not specified, so the fraction of bovine 244 

milk fat might have been low. Calculations based on literature values (NEVO online) indicate 245 

that per addition of 10% bovine milk fat to a fat blend for infants formula 5.5 mg/L of cholesterol 246 

could be added.  247 

 248 

3 Effects of milk fat related components on infant physiology and health 249 

In recent years, the importance of dietary fats in infant nutrition has gained increasing scientific 250 

interest. Rather than merely a source of energy, it has become clear that the composition and 251 

structure of dietary fats in the infant diet could have profound influence on infant development, 252 

physiology and health. In this section, we will review how; 1) digestion/absorption, 2) 253 

metabolic responses, 3) gut immunity, 4) microbiota and 5) cognition could be affected by the 254 

composition and structure of milk fat related components. The main effects are illustrated in 255 

Figure 2. Since only very few studies have been performed to study the effects of these 256 

components in infants, other studies have been included to indicate possible interesting leads for 257 

infant health. These effects are indicated with a dotted line in Figure 2. 258 

 259 

3.1 Digestion/absorption 260 

 3.1.1 Triglyceride digestion 261 
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The fat composition in the diet of infants affects the digestion and absorption of nutrients in 262 

infants. A well-studied example is the digestion and absorption of TAGs. During digestion, 263 

gastric and pancreatic lipases release the fatty acids positioned at the sn-1 and sn-3 positions of 264 

the TAG. As mentioned in paragraph 2.1.2, in human breast milk, these positions are 265 

predominantly occupied by MCFA, long-chain unsaturated fatty acids as well as low levels of 266 

butyrate. Butyrate and MCFA are, unlike LCFA, rapidly absorbed in the intestine as free fatty 267 

acids (FFA) (Innis, 2011). The sn-2 fatty acid remains on glycerol as sn2-monoglyceride 268 

(MAG). In human milk, the most abundant fatty acid in the sn-2 position is palmitic acid. Due 269 

to the more polar nature of the sn2-MAG, this fatty acid is more efficiently absorbed in the 270 

intestine in the form of sn2-MAG rather than as a FFA (Innis, 2015). In contrast, IF based on 271 

vegetable fats mainly has palmitic acid in sn1 and sn3 position, that are released by the 272 

digestive lipases, resulting in large amounts of unesterified palmitic acid, as well as other low 273 

absorbable FA, freely present in the lumen (Innis, 2011). These long-chain saturated FFA form 274 

complexes with calcium ions, generating non-absorbable soaps (Quinlan, Lockton, Irwin, & 275 

Lucas, 1995; Yao et al., 2014a). These calcium soaps are described to be associated with 276 

negative effects for infants, such as constipation, stool hardness (Bongers et al., 2007) (Nowacki 277 

et al., 2014a) and reduced bone mineralization (Litmanovitz et al., 2013). As described in 278 

section 2.1.2 bovine milk and human milk contain respectively 40-45% (Bracco, 1994) and 70-279 

88% (Bracco, 1994; López-López et al., 2002; Sun et al., 2018) of the palmitic acid at the sn-2 280 

position and therefore less soap formation will most likely occur with IF containing bovine milk 281 

fat.  282 

 283 

3.1.2 Cholesterol absorption 284 

Cholesterol is a key component in cell membranes, it is important in brain maturation through 285 

myelination, and cholesterol is a precursor for bile acids and steroid hormones (Haque, 286 

Mozaffar, & Mozaffor, 1992). Furthermore, cholesterol is an important structural part of 287 
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chylomicrons and lipoproteins, which are key factors for the absorption and transportation of 288 

LCFA in the body.  289 

As mentioned in section 2.2.2, IFs contain much less cholesterol than human breast milk 290 

(Claumarchirant et al., 2015; Huisman et al., 1996). The low amounts of total cholesterol in IF, 291 

is most likely the reason for the lower serum levels of total cholesterol and LDL cholesterol 292 

found in formula fed infants compared to breast fed infants (Shamir et al., 2003). Furthermore, 293 

it could explain the three times higher cholesterol synthesis rate seen in formula fed infants 294 

(Cruz et al., 1994), as these infants would have to compensate for the lack of total cholesterol 295 

otherwise present in human breast-milk. Studies suggest that supplementing IF with cholesterol, 296 

does not entirely correct the lower plasma cholesterol levels found in formula fed neonates or 297 

piglets, respectively (Bayley et al., 2002; Rioux & Innis, 1993). In contrast, Timby et al, showed 298 

that MFGM-enriched formula increased cholesterol levels, so at the age of 6 months, 299 

cholesterol levels were similar to breast-fed infants (Timby, Lönnerdal, Hernell, & Domellöf, 300 

2014). Although these studies are not directly comparable, these observations may indicate that 301 

cholesterol associated with the MFGM is more easily absorbed by the infant intestine than free 302 

cholesterol. Another factor which may influence cholesterol absorption in infants is the presence 303 

of plant sterols in IF, such as brassicasterol, campesterol, stigmasterol, β-sitisterol and 304 

sitostanol, which are absent in human breast milk (Claumarchirant et al., 2015; Huisman et al., 305 

1996). Total plant sterol levels exceeded the levels of total animal sterols in most formulas, 306 

except those with added anhydrous milk fat and/or MFGM, where total animal sterol levels 307 

were slightly higher than plant sterol levels (Claumarchirant et al., 2015). Plant sterols have 308 

been described to reduce cholesterol intestinal absorption in adults (Alphonse, Ramprasath, & 309 

Jones, 2017; Smet, Mensink, & Plat, 2012). However, the role of plant sterols in healthy term 310 

formula fed infants is unknown and needs to be investigated.  311 

 312 

 3.1.3 Effect of milk fat globular membrane on digestion and absorption 313 
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Bovine milk lipids in IF could also influence digestibility of proteins. In vivo and in vitro 314 

studies have shown that adding products including, but not exclusively containing MFGM and 315 

bovine milk fat to IF, leads to higher resistance of casein and β-lactoglobulin to digestion, as 316 

compared to formula based on vegetable fats. However, the exact composition and amount of 317 

the MFGM ingredients used in these studies are unknown and they may contain a variety of 318 

bioactive components. In a “minimally processed” model IF based on dairy fats with native 319 

MFG, casein and β-lactoglobulin were hydrolyzed slower, than the same formula after 320 

homogenization and pasteurization in an in vitro digestion system (Bourlieu et al., 2015). A 321 

similar reduction in protein digestion was reported in neonatal piglets receiving modified IF 322 

containing a mixture of milk and vegetable lipids and MFGM (Le Huërou-Luron et al., 2016). 323 

The resulting higher numbers of β-casein peptides in the gut, may exhibit bioactive functions 324 

that accelerates gut maturation (Le Huërou-Luron et al., 2016). 325 

Lipolysis is also altered by lipid structure and components that are part of the MFGM, such as 326 

polar lipids. For example, the size and interfacial composition of MFG have shown to impact 327 

digestibility of lipids in simulated gastro-duodenal digestion (Garcia, Antona, Robert, Lopez, & 328 

Armand, 2014). Replacing polar lipids from soybean with milk polar lipids, changed the blood 329 

levels of lipids in mice after meals, with milk polar lipids resulting in a quicker elevation and 330 

clearance of plasma TAG (Lecomte et al., 2015). Finally, Mathiassen et al. showed that 331 

exchanging soy lecithin with dairy phospholipids increased gastric lipase activity by 2.5-fold 332 

(Mathiassen et al., 2015). Human breast milk contains bile-salt stimulated lipase (BSSL), which 333 

accounts for 20-40% of lipase activity in infants (Koletzko, Agostoni, Bergmann, Ritzenthaler, 334 

& Shamir, 2011). Since this lipase is not present in IF, formula-fed infants lack this extra lipase 335 

activity. Thus, the increased gastric lipase activity, when replacing soy lecithin with bovine milk 336 

polar lipids, might possibly be beneficial for formula-fed infants. A review about the structure 337 

of the milk fat and the relation with digestibility has been published by Bourlieu and Michalski 338 

(Bourlieu & Michalski, 2015). 339 

 340 
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3.2 Metabolic responses 341 

Generally, the body compositions and growth curves differ between breastfed and formula-fed 342 

infants, as breastfed infants tend to have slower weight gain (Dewey, 1998) and breastfeeding 343 

shows less association with childhood obesity (Gunnell, Neher, & Safranek, 2016; Harder, 344 

Bergmann, Kallischnigg, & Plagemann, 2005). These differences on infant growth performance 345 

have been linked to protein concentration (and thereby energy density) (Koletzko et al., 2009; 346 

Weber et al., 2014) and general feeding practices (Appleton et al., 2018). Nevertheless, there 347 

has recently been increasing focus in literature on how the lipid composition of the infant diet 348 

influence metabolism and metabolic programing in infants as well.  349 

 350 

3.2.1 Milk fat globule membrane, cholesterol, polar lipids and metabolic responses 351 

The dietary lipid structure is a focus area within neonatal lipid metabolism research. Both the 352 

lipid droplet size, as well as the components of the MFGM, may possibly contribute to the 353 

preventive effects of breastfeeding on childhood obesity. Studies in mice have shown, that 354 

consumption of pellets with phospholipid-coated large lipid droplets, reduced fat accumulation 355 

and improved the metabolic profiles in adult mice (Oosting et al., 2012), and protected against 356 

obesity in adult life during a Western-style diet (highly processed, high saturated fat and high 357 

carbohydrate content) challenge (Baars et al., 2016). In a clinical study, where infants received a 358 

low-energy, low-protein, MFGM-enriched formula, cholesterol levels were normalized to the 359 

levels of breast-fed infants, most likely due to the cholesterol in MFGM (Timby, Lönnerdal, et 360 

al., 2014). However, there was no difference in growth performance between infants receiving 361 

standard or low-energy, low-protein, MFGM-enriched formula (Timby, Domellof, Hernell, 362 

Lonnerdal, & Domellof, 2014).  363 

Interestingly, mice fed a high-fat diet rich in polar lipids (phospholipids and sphingolipids) from 364 

soybeans, showed white adipose tissue hypertrophy and inflammation. White adipose tissue 365 

hypertrophy is indicative of an imbalance in fat metabolism that is associated with obesity 366 

mechanisms. This was not observed when the mice were fed a similar high-fat diet based on 367 
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milk polar lipids (Lecomte et al., 2016). In two other studies, feeding mice bovine milk 368 

sphingomyelin, compared to egg sphingomyelin, attenuated the consequences of high-fat-369 

induced obesity in mice (Norris, Jiang, Ryan, Porter, & Blesso, 2016; Norris, Porter, Jiang, 370 

Millar, & Blesso, 2017). More long-term studies on infants are required to elucidate the 371 

relationship between MFGM, metabolism and metabolic programming. For a recent review on 372 

health-benefits of phospholipids in milk, see Verardo et al (Verardo, Gómez-caravaca, Arráez-373 

román, & Hettinga, 2017).  374 

 375 

3.2.2 Medium-chain fatty acids and metabolic responses 376 

Since MCFA are not dependent on incorporation into the chylomicrons for absorption, MCFA 377 

are easily absorbed. Moreover, in contrast to LCFA,  MCFA uptake in mitochondria occurs 378 

independent of the carnitine shuttling, contributing to a faster oxidation of MCFA (Marten, 379 

Pfeuffer, & Schrezenmeir, 2006). Since the uptake of MCFA is easier, compared to LCFA, IFs 380 

for premature born children are enriched with MCFA, in the form of medium-chain triglyceride 381 

fats. Consumption of MCFA has been shown to increase diet-induced heat generation and fat 382 

oxidation in adults (Kasai et al., 2002; Ogawa et al., 2007; Scalfi, Coltorti, & Contaldo, 1991), 383 

and in preterm infants the consumption of MCT was found to increase energy metabolism and 384 

improve thermoregulation (Telliez, Bach, Dewasmes, Leke, & Libert, 1998; Telliez, Bach, 385 

Leke, Chardon, & Libert, 2002) .  386 

A few studies on rodents have investigated the impact of infant consumption of MCFA. In rats, 387 

high dietary intake of MCFA during pregnancy, prevented obesity in their offspring later in life 388 

(Dong et al., 2011). In a study of both rats and mice, increased early-in-life intake of MCFA 389 

protected against the negative effects of a high-energy diet in adulthood, such as fat 390 

accumulation and insulin sensitivity (Van de Heijning, Oosting, Kegler, & Van der Beek, 2017). 391 

In term infants, the role of MCFA on short- and long-term metabolism remains unclear. 392 

 393 

3.2.3 Linoleic acid and metabolic responses  394 
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The essential fatty acid linoleic acid (LA) is needed by the body to synthesize arachidonic acid 395 

(ARA). Therefore, LA is added to IF in similar levels as found in human milk. The LA levels in 396 

commercially available IF are approximately around 16% of total FA (Table 1), which is similar 397 

to the LA levels in today’s human milk. During the last 50-60 years the lipid composition in 398 

human breast milk has changed, so that today higher concentrations of LA are observed,  from 399 

about 5% to 16% LA (Ailhaud et al., 2006), whereas levels of alpha-linolenic acid (ALA) have 400 

remained stable the past 40 years. This has brought up a lot of debate in the scientific field 401 

about the optimal level of LA and the optimal ratio with ALA (Gibson, Makrides, Koletzko, 402 

Brenna, & Craig-Schmidt, 2008; Simopoulos et al., 1994). In bovine milk, LA concentrations 403 

are approximately 10 times less than in the current human breast milk, 1.44% (Table 1). Bovine 404 

ALA levels are about half of the levels in human milk; 0.49% and 1.04%, respectively. 405 

In recent studies on mice and rats, reducing LA (3.16 energy percentage (en%) vs 1.36 en%) in 406 

early life programmed towards relative metabolic resistance to a Western style diet (2.54 en%) 407 

in adult life. In mice, low LA diet (1.36 en% LA) decreased fat accumulation, reduced fasting 408 

TAG levels and lowered fasting leptin levels, whereas in rats a beneficial adipocyte composition 409 

was reported (Oosting, Kegler, van de Heijning, Verkade, & van der Beek, 2015). Furthermore, 410 

mice fed a Western-like diet high in LA and low in ALA (LA/ALA ratio 28), showed enhanced 411 

fat mass accumulation through four generations (Massiera et al., 2010). To elucidate the role of 412 

the ratio and levels of LA and ALA in infant nutrition more future research is required. 413 

 414 

3.3. Gut immunity 415 

The neonatal period is unique, in the sense that this is the time for maturation of the gut immune 416 

system and for the establishment of the gut microbiota. At birth, the gastrointestinal tract in 417 

humans is immature and adequate stimulation through diet and microbiota is essential for the 418 

gut to mature (Davis, Wang, & Donovan, 2017; M. Wang, Monaco, & Donovan, 2016). These 419 

processes are also influenced by the fat composition of the neonatal diet.  420 
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Dietary fats have been linked to host immune responses and have been associated with 421 

functions such as gut immune maturation, gut integrity and the establishment of gut immune 422 

homeostasis. Several studies have focused on the group of sphingolipids (including 423 

sphingomyelin, glycosphingolipids and gangliosides) and their potential protective functions 424 

against pathogenic bacteria and toxins, and their impact on gut immune maturation. The topic 425 

was recently reviewed by Nilsson (Nilsson, 2016). In particular, sphingosine-1-phosphate 426 

(S1P), a metabolite from the degradation of sphingomyelin has gained much interest due to its 427 

intestinal immune modelling functions (Kunisawa & Kiyono, 2012). These include a role in 428 

intestinal epithelial cell barrier function, proliferation of IgA producing cells and lymphocyte 429 

trafficking, as demonstrated in cell lines (Greenspon et al., 2011). Furthermore, imbalance of 430 

S1P may be involved in the development of diseases, which evolve due to inadequate regulation 431 

of the intestinal immune response, such as food allergies and intestinal inflammation, as 432 

reviewed recently by Kunisawa & Kiyonon (Kunisawa & Kiyono, 2016).  433 

Besides the effect of sphingolipids, immunomodulatory effects of IF supplemented with bovine 434 

MFGM have been reported, in several animal and in vitro models, as well. The maturation of 435 

the mucosal immune system was accelerated in piglets receiving MFGM, based on the higher 436 

secretion of the immune system mediating cytokine interferon gamma from cells in the lymph 437 

nodes lining the small intestinal tissue (mesenteric lymph nodes). The authors indicate that these 438 

results might be related to the presence of sphingolipids in the MFGM fraction (Le Huërou-439 

Luron et al., 2016). In some studies, gangliosides reduced proinflammatory signaling in the 440 

intestine in an in vitro gut model (Schnabl et al., 2009), whereas others have not observed this 441 

effect in preterm piglets (Møller et al., 2011). 442 

Butyrate has been shown to have an important function in maintaining intestinal barrier function 443 

(Leonel & Alvarez-Leite, 2012). However, studies on Caco-2 cells have shown that in contrast 444 

to 2 mM butyrate, 8 mM butyrate has an adverse effect on a model for intestinal barrier function 445 

(Peng, He, Chen, Holzman, & Lin, 2007). Furthermore, intestinal mucosal injury has been 446 

associated with administration of SCFA to young neonatal rats (Nafday et al., 2005). An effect, 447 
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which ceases with intestinal maturation. These studies have led to the hypothesis that too much 448 

SCFA, as a result of microbial overproduction, may be a cause of necrotizing enterocolitis (a 449 

major condition of illness in newborn children) in premature infants (Lin, 2004). However, 450 

when butyrate is digested (rather than produced by colonic microbes), butyrate is most likely 451 

rapidly absorbed in the upper gastrointestinal tract. The digestion and absorption of butyrate in 452 

premature and term infants is not well described in the literature, as this fatty acid is only 453 

present in human breast milk in very low levels (see Table 1). Therefore, further investigations 454 

are needed to elucidate the health effect of butyrate in bovine milk fat containing IF, since 455 

butyrate is digested and expected to be readily absorbed. 456 

Clinical studies have shown that supplementing IF with bovine lipid components may 457 

potentially prevent some types of infection in infants as well. A fat blend containing bovine 458 

MFGM was shown to decrease episodes of bloody diarrhea in Peruvian infants/young children 459 

(Zavaleta et al., 2011) and reduce the risk of acute otitis media (middle ear infection) (Timby et 460 

al., 2015). On the contrary, a study on rotavirus diarrhea did not show any effect of 461 

supplementing IF with a spray-dried ganglioside concentrate (Poppitt et al., 2014) and the study 462 

by Timby et al. did not show a reduction in other types of infections. However, both studies 463 

were hampered by a low level of background infections. For reviews, see (Hernell et al., 2016; 464 

Rueda, 2007).  465 

 466 

3.4 Microbiota  467 

Distinct differences are observed in the microbiota between breast-fed and formula-fed infants 468 

(Davis et al., 2017; Kashtanova et al., 2016; Le Huërou-Luron, Blat, & Boudry, 2010) and it is 469 

wellknown that the gut microbiome plays a crucial role in the maturation of the gastrointestinal 470 

immune defense (Kaplan, Shi, & Walker, 2011; Stokes, 2017; M. Wang et al., 2016). Key 471 

factors modulating the microbiota are the presence of human milk oligosaccharides (Castanys-472 

Muñoz, Martin, & Vazquez, 2016; Donovan & Comstock, 2016) and maternal factors (Mueller, 473 
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Bakacs, Combellick, Grigoryan, & Dominguez-Bello, 2015). In addition, the lipid composition 474 

of the infant’s diet could possibly alter the microbiota composition, as discussed below. 475 

SCFA and MCFA are described to exhibit antimicrobial effects against E. coli, Listeria 476 

monocytogenes and Staphylococcus aureus in vitro and in vivo (Kelsey, Bayles, Shafii, & 477 

McGuire, 2006; Sprong 1999; ). In particular, caprylic acid (C8:0) has shown inhibitory 478 

functions against pathogens, it both reduces bacterial growth in reconstituted IF (Choi, Kim, 479 

Lee, & Rhee, 2013) and weaning mortality in rabbits, fed a diet supplemented with caprylic 480 

acid-containing TAGs (Skrivanova, Skrivanova, Volek, & Marounek, 2009).  For a review on 481 

dietary fatty acids and food-borne bacterial infections, see Harrison et al. (Harrison, Balan, & 482 

Babu, 2013). This review mainly focuses on effects observed in chickens or cell cultures. 483 

Not much is known on the effect of milk fat on microbiota composition. In piglets, 484 

supplementing IF with bovine milk fat and MFGM increased Proteobacteria and Bacteroidetes 485 

while decreasing Firmicutes phyla, compared to piglets receiving formula exclusively based on 486 

vegetable lipids (Le Huërou-Luron et al., 2016).  487 

IF with structured vegetable TAGs increased Bifidobacteria and Lactobacillus strains compared 488 

to IF containing standard vegetable fats in two clinical intervention studies with a duration of 489 

respectively 6 and 8 weeks (Yao et al., 2014a; Yaron et al., 2013). 490 

Furthermore, adding gangliosides to IF reduced the levels of fecal E. coli and increased fecal 491 

Bifidobacteria in pre-term newborn infants (Rueda, Sabatel, Maldonado, Molina-Font, & Gil, 492 

1998). Although the lipid composition in the diet of neonates indeed does alter gut microbiota, 493 

the mechanisms, as well as the effects of milk fat based IF on the microbiota composition in the 494 

child needs to be further elucidated.  495 

 496 

3.5 Cognition 497 

Population studies have established that even after elimination of socioeconomic factors, breast-498 

fed infants have an advantage over formula-fed infants when measuring cognitive functions 499 

(Anderson, Johnstone, & Remley, 1999; Kramer et al., 2008). Although IFs continuously are 500 
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being improved, these data suggest that the nutritional components, composition and structure 501 

of IF still needs to be optimized, in order to achieve optimal infant neurodevelopment. 502 

 503 

3.5.1 Cognition and dairy fat components 504 

Several individual lipid components present in human breast milk have been shown to be 505 

beneficial for brain development, including gangliosides, sphingomyelin and cholesterol. These 506 

lipids are all part of the MFGM and are present in lower concentration in IF, than in human 507 

breast milk, especially in formulas based entirely on vegetable fats (Claumarchirant et al., 2015; 508 

Pan & Izumi, 2000; B. Wang, Brand-Miller, McVeagh, & Petocz, 2001; Zeisel, Char, & Sheard, 509 

1986).  510 

Clinical studies have demonstrated that supplementing IF with bovine lipid components, 511 

including MFGM fraction (Timby, Domellof, et al., 2014), sphingomyelin (Tanaka et al., 2013) 512 

and gangliosides (Gurnida, Rowan, Idjradinata, Muchtadi, & Sekarwana, 2012), improves the 513 

cognitive score of infants. Besides clinical trials on infants evaluated by cognitive tests, animal 514 

studies have given more insight in the influence of certain lipid components on brain 515 

development and cognitive function. In mice, the diet was supplemented with bovine 516 

phospholipids to obtain large phospholipids-coated lipid droplets, which improved cognitive 517 

performance (Schipper, van Dijk, et al., 2016). Dietary cholesterol (Haque et al., 1992) and 518 

sphingomyelin (Oshida et al., 2003) improved brain myelination in mice and rats, respectively, 519 

whereas sialic acid supplementation increased the levels of these gangliosides in rat brain 520 

(Scholtz, Gottipati, Gajewski, & Carlson, 2013). Piglets received a diet supplemented with 521 

either MFGM, lactoferrin and prebiotics (Mudd et al., 2016) or a combination of bovine 522 

phospholipids and gangliosides (Liu et al., 2014), which in both cases induced physiological 523 

changes in the brain. Furthermore, mice fed diets supplemented with dairy lipids, were 524 

protected against cognitive impairment due to LPS challenge in adulthood (Dinel et al., 2016). 525 

 526 
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3.5.2. Interplay between arachidonic acid, docosahexaenoic acid, linoleic acid and dairy 527 

lipids 528 

Today, supplementing IF with ARA (from fungus Mortierella alpina) and DHA from either 529 

single cell oil (algae) or from fish (tuna) has become common, to ensure adequate levels for 530 

normal infant brain development. DHA is essential for normal growth and development of the 531 

infant brain, where DHA accumulates during the first years of life (Bernard et al., 2017).  Like 532 

DHA, ARA is important for infant neurological development and together, DHA and ARA, 533 

account for approximately 25% of fatty acids in the brain (Hadley, Ryan, Forsyth, Gautier, & 534 

Salem, 2016). When using human milk as a golden standard for IF, the ARA addition level 535 

should be higher than DHA levels (Koletzko, 2016; Lien, Richard, & Hoffman, 2017). 536 

Irrespective of the fat blend used, DHA and ARA are added as separate ingredients to IF.   537 

Recently some studies have investigated whether differences in the dietary fat blends may affect 538 

the efficiency of DHA accumulation in the blood cells and ultimately in brain tissues. It has 539 

been proposed that a dairy fat matrix enriched in ALA might improve DHA accretion in rodents 540 

(Du et al., 2012). It has been suggested that lowering the LA/ARA ratio increase brain DHA, as 541 

both compounds compete in the same pathway to be converted from LA to ARA, and ALA 542 

through EDA to DHA, respectively. This has been reviewed by Astrup et al. (Astrup et al., 543 

2016). As mentioned before in paragraph 3.2.3, the levels of LA and the ratio with ALA in IF 544 

are under debate. In mice, reducing the LA in the maternal diet increased brain n-3 LC-PUFA 545 

(ALA, EPA, DPA (C22:5 n-3) and DHA) in the offspring (Schipper, Oosting, Scheurink, van 546 

Dijk, & van der Beek, 2016), whereas increasing ARA in sow diet increased DHA in piglet 547 

brains (Bazinet, McMillan, & Cunnane, 2003). However, this topic is a matter of much debate. 548 

In one clinical trial, formulas with lower LA:ALA ratios increased DHA and ARA levels in 549 

plasma and erythrocyte phospholipids, but was insufficient to ensure DHA and ARA levels that 550 

match the levels of circulation of a breast-fed infant (Makrides, Neumann, Jeffrey, Lien, & 551 

Gibson, 2000). This study did not, however, include dairy fat. 552 
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It has been speculated that the high levels of butyric acid and MCFA in dairy fat may possibly 553 

spare ALA from oxidation, as energy is generated from the rapid absorption and oxidation of 554 

butyric acid and MCFA (Gianni et al., 2018; Jones, 1994). Therefore, bioconversion from ALA 555 

to DHA might be favored.  556 

Further studies involving infant clinical trials are needed to elucidate the potential cogitative 557 

benefits of adding dairy fats to IF.  558 

 559 

4 Advantages and drawbacks of different fat source for IF 560 

In this review, we have discussed the different components of bovine milk fat, and compared 561 

those to human milk fat and vegetable fat. Furthermore, we have reviewed the existing evidence 562 

from both clinical trials and animal studies, on how bovine milk fat impacts (infant) physiology 563 

and health. Based on this, we would like to highlight some of the advantages and drawbacks of 564 

different fat sources for IF.  565 

Bovine milk fat contains valuable lipids, such as cholesterol, phospholipids and sphingolipids. 566 

These lipids are present in human milk, but cannot be obtained from vegetable sources (see 567 

paragraph 2.2). Although more research is needed, these components seem to have several 568 

beneficial effects on infant physiology and health, as discussed in this review. Furthermore, 569 

bovine milk fat contains a high variety of TAGs, with a high percentage of palmitic acid 570 

positioned at the sn-2 position, which is also the case in human milk (Bracco, 1994; López-571 

López et al., 2002; Sun et al., 2018). It has been shown that a high percentage of palmitic acid at 572 

sn-2 could positively affect TAG digestion and absorption in infants, as well as the comfort of 573 

infants (Bongers et al., 2007; Nowacki et al., 2014b; Quinlan et al., 1995; Yao et al., 2014b). So 574 

in contrast to that what was thought in the 1960s (Fomon, 2001b), addition of bovine milk fat to 575 

IF might decrease constipation instead of causing it.  576 

However, bovine milk fat cannot be used as a single source of lipids, as it contains higher levels 577 

of saturated fatty acids compared to human milk fat and lower levels of LCFA (LA and ALA) 578 

and DHA and ARA (Table 1). Because of the low levels of LA in bovine milk fat, adding 579 
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vegetable fat is necessary to reach the required level of LA. A maximum of 67% of bovine milk 580 

fat can currently be used in IF, when using todays preferred LA levels. These LA levels are 581 

based on current breast milk levels. However, LA levels can be lowered from an average of 582 

16g/100g fatty acids to about 6 g/100g fatty acids without challenging current Codex 583 

Alimentarius legislation (FAO) (Commission, 2011). The minimum level LA required, reflects 584 

the levels of LA in human milk at the start of industrialization, and preclinical studies indicate 585 

that lowering the LA levels may possibly have a positive impact of infant health (Massiera et 586 

al., 2010; Oosting et al., 2015).  587 

In addition, bovine milk fat contains butyrate, which only is present in trace amounts in human 588 

milk, as well as elevated levels of MCFA (Table 1). Most likely, these components are rapidly 589 

absorbed and metabolized in infants. However, the nutritional needs of infants are complex 590 

matters, and although no adverse effects in infants have been reported on neither butyrate nor 591 

MCFA, the effect of elevated levels in IF on infant health and development remains unknown. 592 

 593 

Vegetable fats can be blended in such a way, that they represent the fatty acid profile of human 594 

milk. This human milk profile includes some of the valuable LCFA (LA and ALA), which only 595 

can be obtained in low amounts from bovine milk fat. However, the structure of vegetable 596 

TAGs differ from that of human milk, which results in suboptimal digestion of specific 597 

triglycerides. To address this problem, vegetable fats can be re-structured by industrial 598 

processing. Thereby, a TAG structure with more palmitic acid in the sn-2 position can be 599 

obtained. Still, the overall TAG composition is less diverse compared to human and bovine milk 600 

fat TAGs.  601 

A commonly used vegetable fat is palm oil, although some commercial parties avoid the 602 

inclusion of palm oil in IF (Leite et al., 2013; Lloyd et al., 1999; Oliveira De Souza et al., 2017). 603 

The latter is due to concerns related to digestion (discussed above), unsustainable production 604 

methods, and the presence of elevated levels of processing-induced contaminants in palm oil 605 

(i.e. glycidol esters and 3-monochloro-1,2-propanediol (3-MCPD-esters)) which are known to 606 
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have adverse health effects (IARC Working Group on the Evaluation of Carcinogenic Risks to 607 

Humans, 2013). However, when palm oil is avoided, the level of palmitic acid, one of the most 608 

abundant FA in human milk, is very low (Table 1). Another possible concern is the presence of 609 

plant sterols in vegetable fats, which are not present in human milk. Although this issue has 610 

gained little attention, it deserves further investigation  611 

 612 

The use of fat blends containing both bovine milk fat and vegetable fats seems to be a good 613 

solution for making the best possible IF. This will provide infants with both the valuable bovine 614 

milk lipids, which cannot be obtained from vegetable fats, as well as the necessary LCFA 615 

profile by adding vegetable fats. Furthermore, combined bovine milk and vegetable fat blends 616 

allow the production of palm oil-free fat blends with the same palmitic acid level as observed in 617 

human milk (Table 1). Independent on the major fat source used for IF, DHA and ARA are 618 

always added separately to the chosen fat blend to accomplish their preferred fatty acid 619 

composition.  620 

Although the levels of palmitic acid at the sn-2 position is higher in IF’s containing either 621 

bovine milk fat or structured vegetable TAGs, the levels of palmitic acid at sn-2 of human milk 622 

is still not reached in the current IFs (see Table 2). Addition of structured vegetable TAGs to a 623 

blend with bovine milk fat and vegetable fat opens new possibilities to increase the sn-2 624 

percentages, and to get closer to the TAG composition of human milk. Another possibility to 625 

improve IF is the generation of phospholipid coated droplets. A disadvantage of all current fat 626 

blends is that, due to processing, all fat droplets have the same globule size. This is unlike 627 

human milk fat, which contains larger globules in varying sizes. A new concept has emerged, in 628 

which larger phospholipid coated droplets are produced (Gallier et al., 2015). These artificial 629 

lipid droplets are closer to human MFG than regular produced infant formula, since they have a 630 

more comparable particle size with human milk fat, compared to normal IF lipid droplets, and 631 

they contain bovine MFGM components at their membrane (Gallier et al., 2015). However, 632 

these globules contain TAGs from vegetable fat, which are structurally different from human 633 
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milk fat. Probably, it would be more optimal if both the membrane components, globule size 634 

and TAG composition and structure would more closely resemble the composition of human 635 

milk fat. 636 

  637 

 638 

5 Future perspectives  639 

In this review we have pointed out several health effects of bovine milk lipids. Still, the health 640 

impact of some bovine lipids have not been studied in infants yet. Although butyrate is well-641 

known to be produced by the microbiota in the lower gastrointestinal tract, the health effects of 642 

butyrate in IF needs to be studied. Furthermore, MCFA, as MCT fats, are known to affect 643 

metabolism. But more dedicated research is needed to elucidate how elevated MCFA levels in 644 

TAGs influence infant health. Clinical trials on MFGM do not always specify the dose and 645 

composition of the MFGM components used. Therefore, more research is needed to understand 646 

which specific MFGM components trigger the health effects that were found.  647 

 648 

An alternative way to use bovine milk fat in IF in the future would be to use MFG with the milk 649 

fat globular membrane intact. Today, this is not possible due to the processing techniques used 650 

to produce IF powder, such as homogenization and spray drying. Recent work indicates that 651 

pasteurization after microfiltration may be a more gentle approach (Hansen et al., 2018). Mild 652 

processing seems to be a promising option to maintain bioactivity and structure of the milk 653 

components, but extensive research is required to identify technological options maintaining the 654 

nativity of the milk ingredients in a safe manner concerning microbiology. Technical 655 

possibilities include low heating, low or no homogenization, UV-C irradiation instead of 656 

pasteurization and alternative ways of (spray) drying. Current legislation does not allow the use 657 

of non-pasteurized milk for IF production, which makes collaboration between regulatory 658 

bodies and science a crucial part of any progress to take place in the future. However, recent 659 

investigations suggests that inactivation of bioactive components through donor human milk 660 
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pasteurization is a key factor influencing growth performance in preterm infants (Li et al., 2017, 661 

2018). Interestingly, UV-C treatment seem a promising alternative (Li et al., 2017).  662 

 663 

In conclusion, inclusion of bovine milk fat in IF may bring additional health benefits to infant 664 

nutrition, as it delivers a variety of different components, which are present in human milk, but 665 

are lacking in vegetable fats. Hence, blending bovine milk fat with vegetable fat in combination 666 

with the development of more gentle processing techniques might be a future direction to 667 

improve IF.  668 
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Abbreviation list 

ALA  alpha-linolenic acid 

ARA  arachidonic acid 

DHA  docosahexaenoic acid 

IF  Infant formula 

LA  linoleic acid 

LCFA  long-chain fatty acids (>C11:0) 

LCSFA  long-chain saturated fatty acids 

MAG  mono-acylglycerol 

MCFA  medium-chain fatty acids (C6:0-C10) 

MFGM  Milk fat globular membrane 

MFG  Milk fat globules 

MUFA   mono-unsaturated fatty acids 

PUFA poly-unsaturated fatty acids 

SCFA   short-chain fatty acids (<C6:0) 

sn    stereospecific nomenclature   

TAG   triacylglycerol 
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Table 1: Fatty acid composition (g/100 g fatty acids) of human milk, bovine milk and infant formulas (IF) containing different fat sources 

(mean+range). 

Milk IF 

Fatty acid Human milk – 
Europe 1, a 

Human milk –  
Asia 2, a Bovine milk 3 

IFs containing 
vegetable fat blends 

4,  b 

IFs containing milk 
fat 5, c 

IFs containing palm 
oil free vegetable fat 

blend  6, d 

SCFA C4:0 Butyric acid  ND ND   3.50 (3.07-3.78) ND 2.4 ND 

MCFA 
C6:0 Caproic acid  0.39 8 0.07 7 2.29 (2.07 – 2.46) ND 1.3 0.2 

C8:0 Caprylic acid 0.19 (0.09-0.24) 0.17 (0.11-0.28) 1.38 (1.26-1.51) 1.2 (0.4-2.1) 1.7 2.5 

C10:0 Capric acid 1.29 (0.83-1.63) 1.31 (0.52-2.48) 2.94 (2.60-3.23) 1.1 (0.1-1.7) 2.2 1.8 

LCFA 

C12:0 Lauric acid 5.98 (4.15 – 8.33) 5.56 (2.97– 13.82) 3.87 (3.50-4.28) 5.4 (0.2-13.6) 6.3 13.4 

C14:0 Myristic acid 6.44 (4.98 – 9.38) 5.70 (3.50 – 12.12) 11.29 (10.67 – 11.94) 4.6 (0.9-7.0) 7.2 5.2 

C14:1 Myristoleic acid 0.18 8 0.26 (0.03-1.11) 9 1.08 (1.01 – 1.19) ND 0.8 ND 

C15:0 Pentadecanoic acid 0.25 (0.16-0.32) 0.20 (0.08-0.50) 1.03 (0.97-1.10) ND 0.6 ND 

C16:0 Palmitic acid  21.93 (15.43-25.62) 21.78 (17.55-29.00) 30.20 (28.31 – 31.85) 26.3 (15.9-31.7) 18.9 7.7 

C16:1 n-7 Palmitoleic acid 1.98 (1.65-2.31) 2.44 (1.29-4.59)  1.57 (1.45-1.68) 0.6 (0.2-1.1) 1.1 0.1 

C17:0 Heptadecanoic 
acid 0.29 (0.22-0.33) 0.28 (0.19-0.41) 0.59 (0.53-0.72) ND 0.3 ND 

C18:0 Stearic acid 7.37 (5.58-9.52) 5.58 (3.90-6.79) 9.85 (8.75-11.39) 5.3 (3.2-7.7) 6.7 3.2 

C18:1 n-9 Oleic acid  36.30 (28.93-41.69) 30.80 (21.85-36.96) 21.62 (19.37 – 24.25) 37.6 (31.6-42.3) 28.1 43.3 

C18:2 n-6 Linoleic acid (LA) 13.99 (10.16-16.59) 16.90 (7.53-24.29) 1.44 (1.36 – 1.76) 14.0 (10.0-18.9) 16.7 20.5 

C18:3 n-3  Alpha-linolenic 
acid (ALA) 0.76 (0.49-1.05) 1.47 (0.35-4.06) 0.49 (0.45-0.57) 1.6 (1.2-2.0) 1.5 1.8 
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C20:0 Arachidic acid 0.21 (0.14-0.31) 0.32 (0.03-2.97) 0.14 (0.12 – 0.17) ND 0.3 0.3 

C20:3 n-6 
Dihomo-gamma-
linolenic acid 
(DGLA) 

0.38 (0.29-0.52) 0.42 (0.23-0.83) 0.07 (0.06-0.08) ND ND ND 

C20:5 n-3  Eicosapentaenoic 
acid (EPA) 0.09 (0.05-0.13) 0.31 (0.07-1.59) 0.07 (0.06-0.09) ND - 0.0 

C22:0 Behenic acid 0.09 (0.05-0.13) 0.08 (0.05-0.14) 0.06 (0.05-0.07) ND 0.1 0.4 

C20:4 n-6 Arachidonic acid 
(ARA) 0.47 (0.37-0.64) 0.64 (0.30-2.57) 0.04 (0.03 - 0.05) 0.3 (0.1-0.4) - 0.3 

C24:0 Tetracosanoic acid 0.07 (0.03-0.16) 0.07 (0.01-0.14) 0.05 (0.04 – 0.07) ND ND 0.1 

C22:6  n-3 Docosahexaenoic 
acid (DHA) 0.28 (0.18-0.42) 0.55 (0.19-1.13) 0.01 (0.00-0.04) 0.2 - 0.2 

Total SC/MCFA 1.86 2.14 10.11 2.3 7.6 4.5 

Total LCSFA 42.62 39.59 57.08 41.6 40.4 30.3 

Total SFA 44.48 41.73 67.19 43.9 48 34.8 

Total MUFA 38.45 33.50 24.27 38.2 30.0 43.4 

Total PUFA 15.97 20.27 2.12 16.1 18.2 22.8 

Total UFA 54.42 53.77 26.39 54.3 48.2 66.2 
1: (Barreiro, Regal, López-Racamonde, Cepeda, & Fente, 2017; López-López et al., 2002; Marangoni et al., 2000, 2002; Moltó-
Puigmartí et al., 2011; Rist et al., 2007; Sala-Vila, Castellote, Rodriguez-Palmero, Campoy, & López-Sabater, 2005; Scholtens et al., 
2009; Wijga et al., 2003), 2: (Cruz-Hernandez, Goeuriot, Giuffrida, Thakkar, & Destaillats, 2013; Daud, Mohd-Esa, Azlan, & Chan, 
2013; Glew et al., 2001; Jiang et al., 2016; Nayak et al., 2017; Shi et al., 2011; Sun et al., 2016; Wan et al., 2010; Y.-H. Wang et al., 
2010; Wu, Lau, Chen, Wu, & Tang, 2010; Yuhas, Pramuk, & Lien, 2006), 3: (RIVM, 2016; van Valenberg, Hettinga, Dijkstra, 
Bovenhuis, & Feskens, 2013), 4: (Straarup et al., 2006), 5: (Berger et al., 2000; Prosser, Svetashev, Vyssotski, & Lowry, 2010), 6: (Leite 
et al., 2013; Lloyd et al., 1999; Oliveira De Souza et al., 2017), 7: (Wan et al., 2010), 8: (Barreiro et al., 2017), 9: (Jiang et al., 2016; 
Sun et al., 2016), a studies from 2000-2018 are included, data about breast milk for infants <12 months of age, b IF contained palm oils, 
rapeseed oil, soybean oil and coconut oil as major fats, c IF contained bovine milk fat, corn oil, and other non specified vegetable fats, d 
IF contained high oleic sunflower oil, coconut oil, soy oil as major fats, ND: not determined, SCFA: short-chain fatty acid, MCFA: 
medium-chain fatty acid, LCFA: long-chain fatty acid, LCSFA: long-chain saturated fatty acid, MUFA: mono-unsaturated fatty acid, 
PUFA: poly-unsaturated fatty acid, SFA: saturated fatty acids, UFA: unsaturated fatty acids, note: The analytical methods for fatty 
acid analyses used in the various cited papers are subject to inaccuracies in quantitative measurements over the whole range of fatty 
acid lengths.  
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Table 2: Stereospecific distribution of C16:0 in human milk, bovine milk and vegetable fats 

 % C16:0 at sn-2 

position of total C16:0 

Human milk 70-88% 1  

Bovine milk 40-45% 2  

Vegetable fats commonly 

used in IF 

10-20% 3*  

Structured triglycerides 39-47% 3** 

 

1: (Bracco, 1994; López-López et al., 2002; Sun et al., 2018), 2: (Bracco, 1994), 3:(Bracco, 1994; 

Sun et al., 2018) * based on data of IFs containing vegetable fat without interesterified palm oil 

from figure 1 of Sun et al, 2018., ** based on data of IFs containing vegetable fat with 

interesterified palm oil from figure 1 of Sun et al, 2018 
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Figure 1: Relative proportion of polar lipids (% of polar lipids) from mature human milk and 

bovine milk (Cilla, Diego Quintaes, Barberá, & Alegría, 2016; X. Zou et al., 2013), and from 

soybeans and sunflower kernels (van Nieuwenhuyzen & Tomás, 2008), 

(PE=phosphatidylethanolamine, PI=phosphatidylinositol, PS=phosphatidylserine, 

PC=phosphatidylcholine, SM=sphingomyelin). 

 
Figure 2: Schematic overview of the health effects of bovine milk fat (components) as described 

in this review, effects shown in infants are displayed with a solid arrow and effects shown in 

preclinical infants are displayed with a dotted arrow.  


