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ABSTRACT 

Future genomic evaluation models to be used routinely in breeding programs for pigs and 

poultry need to be able to optimally use information of crossbred animals to predict breeding 

values for crossbred performance of purebred selection candidates. Important challenges in 

the commonly used single-step genomic best linear unbiased prediction (ssGBLUP) model, 

are the definition of relationships between the different line compositions and the definition of 

the base generation per line. The use of metafounders (MFs) in ssGBLUP has been proposed 

to overcome these issues. When relationships between lines are known to be different from 0, 

the use of MFs generalizes the concept of genetic groups relying on the genotype data. Our 

objective was to investigate the effect of using MFs in genomic prediction for crossbred 

performance on estimated variance components, and accuracy and bias of genomic estimated 

breeding values. This was studied using stochastic simulation to generate data representing a 

three-way crossbreeding scheme in pigs, with the parental lines being either closely related or 

unrelated. Results show that using MFs, the variance components should be interpreted with 

caution, especially when comparing them to estimates obtained with e.g. a pedigree based 

model. The accuracies of genomic estimated breeding values that were obtained using MFs 

were similar to accuracies without using MFs, regardless whether the lines involved in the 

crossbred were closely related or unrelated. The use of MFs resulted in a model that had 

similar or somewhat better convergence properties compared to other models. We recommend 

the use of MFs in ssGBLUP for genomic evaluations in crossbreeding schemes. 

 

INTRODUCTION 

In pig and poultry breeding, crossbreeding programs are generally used. The breeding 

objective is therefore to improve crossbred (CB) performance. Traits expressed in purebred 

(PB) and CB individuals are genetically not the same (Wei and Van der Werf, 1995; Wientjes 

and Calus, 2017). Therefore, it seems reasonable to use performance and genotypic data on 
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CB individuals for genomic prediction of CB performance. However, collecting CB 

information might be difficult and expensive.  

In breeding programs using genomic selection, single-step genomic best linear unbiased 

prediction (ssGBLUP) is the model of choice, as it enables to use phenotypes of both animals 

with and without genotypes (Aguilar et al., 2010; Christensen and Lund, 2010). In the 

implementation of ssGBLUP, ensuring compatibility between the pedigree based relationship 

matrix and the genomic relationship matrix is one of the main issues (Christensen, 2012; 

Legarra et al., 2014; Legarra et al., 2015). In crossbreeding, genomic prediction enables to 

accurately link CB phenotypes to PB animals, and considers multiple breed compositions 

simultaneously. Important challenges are the definition of relationships between different line 

compositions and to appropriately define the different base generations. A proposed solution 

to both make the pedigree based and the genomic relationship matrix compatible and to 

appropriately deal with multiple base generations is the use of metafounders (MFs), which are 

pseudo-individuals that are included in the pedigree as founders without known parents 

(Legarra et al., 2015). These MFs are arbitrarily grouped based on e.g. line, sex, age, similar 

to genetic groups. Genetic groups are considered unrelated, while MFs are considered to be 

related, and their relationships are computed by genotypes of their descendants. Xiang et al. 

(2017) showed that single-step genomic evaluation with MFs performs at least as good as the 

breed-of-origin-based ssGBLUP in genomic prediction for crossbreeding breeding programs. 

Our objective was to investigate the effect of using MFs in genomic prediction for CB 

performance, depending on the relatedness of lines involved in the cross, on the accuracy and 

bias of genomic estimated breeding values (GEBVs). In addition, the impact of the use of 

MFs on estimated variances was evaluated. To address these questions, we used simulated 

data for a three-way cross reflecting a pig breeding scheme. 
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MATERIAL AND METHODS 

Data simulation 

To investigate the effect of using MFs in genomic prediction on the accuracy and bias of 

GEBV, data for the historical, PB and CB lines were simulated using the software QMSim 

(Sargolzaei and Schenkel, 2009). Phenotypes and genotypes of the individuals were simulated 

using a crossbreeding scheme. We simulated 5 correlated traits; one trait for each line 

composition, respectively the three PB lines 1, 2 and 3, and the CB animals 23 and 123. 

Phenotypes and true breeding values (TBV) for the line composition to which they belonged 

were simulated under additive gene action using a custom Fortran program.  

The traits were correlated, by assuming the same correlations among QTL effects as the 

genetic correlations between traits. Genetic correlations between traits were randomly 

sampled in the range of 0.2 to 0.8 from a uniform distribution (Table 1), and heritabilities 

were randomly sampled in the range of 0.2 to 0.4 from a uniform distribution. Within a line 

composition, 4500 QTLs that explained 95% of the total additive genetic variance, and a 

residual polygenic effect that explained 5% of the total additive genetic variance, were 

underlying the associated simulated trait. True breeding values were computed as the sum of 

the products of the simulated allele substitution effects with the genotypes of the 4,500 QTLs 

coded as 0, 1, and 2, and a polygenic effect. Allele substitution effects of QTLs were sampled 

from a multinormal distribution with means of 0 and variances of 1. Within each line 

composition to which a trait belongs, the variance explained by all QTLs was computed as the 

sum of the variances across all QTLs, assuming no correlation between the QTLs. The 

variance of each jth QTL was calculated as 𝜎𝑗
2 = 2𝑝𝑗(1 − 𝑝𝑗)𝛼𝑗

2, where 𝑝𝑗 is the allele 

frequency and 𝛼𝑗 is the allele substitution effect of jth QTL. Within each line composition, the 

allele substitution effects of the associated trait were rescaled to obtain a variance explained 

by all the QTLs equal to 1. Finally, the phenotypes for each animal for the trait associated 

with its line composition were generated by summing the true breeding values and a residual 

error sampled from a normal distribution with a mean 0 and a variance computed such that the 
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heritability within a line composition was equal to the simulated heritability. Marker and QTL 

mutation rates of 2.5*10-5 were assumed. In total 52,908 markers were available with a minor 

allele frequency (MAF) > 0.05, spread across 18 chromosomes representing the pig genome. 

The simulation process was started with the simulation of a historical population with 100 

generations. The size of the historical generations was set to 18,840, with equal numbers of 

males and females, for the first 70 generations. In the next 10 generations, the population 

gradually decreased to 390 individuals to mimic a bottleneck. During the last 20 generations 

(81-100) the population size increased up to 18,840 again. The number of males in the last 

generation was 90.  

After formation of the historical generations, breeding of lines 1, 2 and 3 started. Each line 

used 30 founder males and 1,000 founder females. A litter size of 2 was assumed with one 

male and one female progeny, such that each generation consisted of 2000 individuals. All 

animals were replaced each generation. Matings were done at random between 30 males 

(randomly selected) and the 1000 females. This scheme of line breeding was continued for 10 

generations to represent a scenario with closely related lines and 100 generations to represent 

a scenario with unrelated lines, before starting the three-way crossbreeding program. 

Hereafter, these will be referred to as the related and unrelated scenarios, respectively. 

Starting from the last of those 10 or 100 generations, a three-way crossbreeding program with 

nine generations of random selection was simulated (see Figure 1 for a schematic overview). 

Random selection was used for simplicity, as selection would especially complicate the 

interpretation of estimated variances. In the generations 1 to 3 of line breeding only pedigree 

was recorded, no genotypes or phenotypes. From generation 6 onwards crossbreeding started 

by crossing lines 2 and 3, after which this two-way cross was crossed with line 1, creating a 

three-way cross representing a pig breeding scheme. This crossbreeding was performed in 

generations 6 to 8. To mimic a practical situation where not all animals are phenotyped, and to 

limit the total number of phenotypes to enable computations within reasonable time, about 

15,000 PB phenotypes were randomly recorded for generations 4 to 8, and about 3,500 CB 
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phenotypes were randomly recorded for generations 6 to 8. About 5,250 PB genotypes were 

randomly recorded for generations 6 to 8, and about 925 CB phenotypes were randomly 

recorded for generations 7 and 8. Random mating was applied in generations 1 to 8. 

In total, about 2,125 individuals had both a phenotype and a genotype. Finally, the 9th 

generation consisted of selection candidates for which only genotypes were available. The 9th 

generation contained 6,000 individuals, i.e. 2,000 for each of the PB lines 1, 2 and 3. 

Additionally,  the same simulations were run with 500 individuals genotyped for each line 

composition within each genotyped generation, with the aim to test the influence of the 

number of genotypes on the estimation of MF relationships, variance components, and 

GEBV. Results were, however, very similar and therefore only the results for the initial 

scenarios are presented in this paper. The complete simulation was replicated 10 times. 

 

Statistical analysis 

A 5-trait ssGBLUP model (Aguilar et al., 2010; Christensen and Lund, 2010; Legarra et al., 

2014) was used where the 5 traits modelled the PB performance of lines 1, 2 and 3 and the CB 

performance of crosses 23 and 1(23). The ssGBLUP model uses the inverse of a matrix with 

combined pedigree and genomic relationships. Inverses of the different combined pedigree 

genomic relationship matrices were computed using calc_grm (Calus and Vandenplas, 2016), 

considering MFs or not. The different inverses are described below. The variance components 

were estimated using Gibbs2f90 (Misztal et al., 2002) for which 50,000 samples were used, a 

burn-in of 3,500 and each 10th sample being stored. To limit the computational burden for the 

variance components estimation, all the genotyped animals of generation 9 were discarded 

from the datasets. The genomic estimated breeding values were computed using MiXBLUP 

(ten Napel et al., 2017). When the MFs were not considered, a genomic relationship matrix 𝐆 

required for the computation of the inverse of the combined pedigree-genomic relationship 

matrix 𝐇−𝟏 was computed without line-specific adjustments. The matrix 𝐆 was equal to: 
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𝐆 = 0.95𝐆𝑎 + 0.05𝐀22  

where 𝐀22 stores the pedigree relationships among genotyped animals, and the adjusted 

genomic relationship matrix 𝐆𝑎 is computed as follows: 

𝐆𝑎 = (1 − 𝑓�̅�)𝐆∗ + 2𝑓�̅�𝐉 

where 𝐆∗ is a raw genomic relationship matrix computed following the first method of 

VanRaden (2008) using current allele frequencies computed from all genotyped animals, 𝐉 is a 

matrix of ones, and 𝑓�̅� is the average pedigree inbreeding coefficient across genotyped 

animals, according to the FST method (Powell et al., 2010; Vitezica et al., 2011). 

When the MFs were considered in the ssGBLUP model (ssGBLUP_MF), one MF was 

assigned to each PB line, making a total of three MFs. Self-relationships and relationships 

between MFs were estimated based on genotypes of their descendants, and pedigree 

information, following the Generalized Least Squares (GLS) method for multiple populations 

as shown by Garcia-Baccino et al. (2017), and implemented in the software createHmf 

(Legarra, 2016b). Briefly, the MF (self-)relationships are computed as twice the (co)variances 

of the estimated allele frequencies for the base generation of the pedigree. These base 

population allele frequencies were computed using the GLS method and all PB and CB 

genotypes (Garcia-Baccino et al., 2017). The computation of the inverse of the combined 

pedigree-genomic relationship matrix including MFs, 𝐇(𝛾)−𝟏, was computed using the 

software calc_grm (Calus and Vandenplas, 2016), following  Legarra et al. (2015) and 

assuming a residual polygenic effect of 5 percent, by giving a weight of 0.05 to 𝐀22 as 

explained above, while in this case 𝐆𝑎 =
𝐌𝐌′

1

2
𝑛

 where n is the number of SNPs and M stores the 

genotypes coded as {−1,0,1}. Note that this 𝐆𝑎 can be obtained using the first method of 

VanRaden assuming that all allele frequencies are equal to 0.5. Finally, for reasons of 

comparison, the same model was also applied using the ordinary inverse of the pedigree based 

relationship matrix 𝐀−𝟏. This model is hereafter referred to as PBLUP. 
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Evaluation of model performance 

Several aspects of the results were evaluated, between analyses with and without MFs. 

Estimated genetic variances were compared against true variances. True variances were 

empirically calculated as the variances of TBV of all the PB 2000 animals in generation 1, and 

of all the 2000 CB animals in generation 4. Similarly, true residual variances were empirically 

calculated as the variances of errors of all the PB 2000 animals in generation 1, and of all the 

2000 CB animals in generation 4. Genetic variances estimated with the ssGBLUP_MF model 

were rescaled to get them on the same scale as the estimates of the other models where the 

genetic parameters relate to a base generation of supposedly unrelated animals (Legarra et al., 

2015; Xiang et al., 2017). This scaling involved multiplying the genetic variances for the PB 

traits with (1 −
𝛾𝑃𝐵

2
), where 𝛾𝑃𝐵 is the self-relationship in the corresponding PB line. For the 

CB traits, this transformation should be done for each breed-of-origin specific genetic 

variance component, and then summing across breed-of-origins. We did not consider breed-

of-origin in the model, however, computed a weighted average of the scaling factor (1 −
𝛾𝑃𝐵

2
) 

across the PB lines involved in the CB animals, where weights were based on the breed 

composition of the cross. This approach is valid under the assumption that the genetic 

variance for CB performance is the same for each PB line. Finally, estimated genetic 

correlations were compared to simulated values. For ssGBLUP_MF, the estimates were 

computed from the unscaled estimated (co-)variances following Xiang et al. (2017). 

The accuracy of GEBV for both PB and CB performance was computed as the correlation 

between the TBV and the GEBV for the PB selection candidates in generation 9. The bias of 

the level of the GEBV and the bias of the scale of the GEBV were evaluated, respectively, as 

the intercept and slope of the regression of the TBV on the GEBV. Accuracies and bias were 

computed for each PB line separately. Finally, the convergence of ssGBLUP was compared in 

both situations with and without MFs. 

 



10 
 

RESULTS 

Genetic differentiation between lines 

For the two scenarios, i.e. related and unrelated scenarios, the level of genetic differentiation 

between the three PB lines was measured using the global Wright’s FST statistic, as 

implemented in the software Genepop (4.2) (Raymond and Rousset, 1995; Rousset, 2008). 

Using the genotypes of all PB animals in generation 6, the estimated global Wright’s FST 

statistics were on average equal to 0.06 for the related scenario, and to 0.36 for the unrelated 

scenario, across the 5 replicates. 

Relationships among metafounders and estimated variance components 

The estimated self-relationships of the MFs were around 0.17 for the related and around 0.74 

for the unrelated scenario (Table 2). The relationships among MFs showed to be very similar 

in the scenarios with related or unrelated lines, ranging from 0.045 to 0.049.  

The average variance component estimates (and SD) for the related and unrelated scenarios 

are presented for PBLUP, ssGBLUP and ssGBLUP_MF (Tables 3 and 4). For comparison, 

presented genetic variances estimated with the ssGBLUP_MF model were rescaled as 

described in a previous section. The estimated variances were compared against the 

empirically calculated true values outlined in Table 5. For both the related and unrelated 

scenarios, estimated residual variances were close to the empirically calculated true values for 

all three models, with deviations from the simulated values ranging from -5.3 to 2.6%. 

Estimated genetic variances differed for the related and unrelated scenarios. In the related 

scenario the genetic variances were in all cases overestimated, with deviations from the 

simulated values ranging from 1.7 to 32.4%. Genetic variances were on average overestimated 

by 12.9, 14.9 and 11.5%, respectively, with the models PBLUP, ssGBLUP and 

ssGBLUP_MF. In the unrelated scenario the most extreme estimates across the models 

underestimated the genetic variance by 4.1% or overestimated it by 27.3%. The genetic 

variance was on average underestimated by 3.8 and 0.3% by PBLUP and ssGBLUP_MF, 
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respectively, while it was overestimated by 16.8% for ssGBLUP. For both scenarios, not 

performing the scaling of the estimates for ssGBLUP_MF yielded genetic variances that were 

overestimated by 22.0 and 58.7% for the related and unrelated scenarios, respectively 

(Supplementary Table 3).  

Estimates of the genetic correlations among PB lines showed large deviations from the 

simulated values, and were on average underestimated, both for the unrelated and related 

scenarios. Estimated genetic correlations between the PB lines 1, 2 and 3 and the CB 23 and 

1(23) animals were generally close to the simulated values. Across models, estimated genetic 

correlations were similar, both within the related and the unrelated scenario. The largest 

differences were observed for the related scenario, where the estimated genetic correlations of 

the PBLUP and ssGBLUP model were on average 0.06-0.07 lower than those of 

ssGBLUP_MF, whose estimates were closer to the simulated values.  

 

Accuracy and bias  

A total of 2,000 genotyped selection candidates per line were used for computing accuracy 

and bias. Across the related and unrelated scenarios, for PB performance the accuracies 

ranged from 0.37 to 0.47 with PBLUP (Supplementary Table 4), and from 0.47 to 0.59 for 

ssGBLUP (Figure 2; Supplementary Table 4). For CB performance the accuracies ranged 

from 0.13 to 0.27 with PBLUP, and from 0.27 to 0.40 with ssGBLUP. Accuracies of 

ssGBLUP and ssGBLUP_MF within the same scenario were very similar, with any 

differences being smaller than the standard errors (Figure 2; Supplementary Table 4). 

Accuracies of PBLUP were very similar between the related and unrelated scenario, because 

effectively no information was used across lines due to lack of pedigree links between the 

lines, leading to very similar amounts of information being available in both scenarios. 

Accuracies of ssGBLUP were comparable across the related and unrelated scenarios, except 

for PB performance of lines 1 and 3, where the accuracies were higher for the related scenario 

(Figure 2; Supplementary Table 4). 



12 
 

The mean values of all sets of (G)EBV were unbiased, as the intercepts of the regression of 

TBV on EBV were in most cases not significantly different from 0 (Supplementary Table 5). 

The coefficients of the regression of TBV on EBV were in all cases close to 1 for PB 

performance (Figure 3; Supplementary Table 6). The regression coefficients for CB 

performance were in most cases smaller than 1, indicating that the variance of the GEBV 

tended to be somewhat inflated. Intercepts and regression coefficients for ssGBLUP and 

ssGBLUP_MF were very similar within the same scenario. 

 

Convergence of ssGBLUP 

In the closely related scenario, ssGBLUP and ssGBLUP_MF required a similar number of 

iterations to reach convergence. In the unrelated scenario ssGBLUP needed substantially more 

iterations compared to ssGBLUP_MF, resulting in approximately 30% additional computation 

time (Figure 4).  

 

DISCUSSION 

The models ssGBLUP and ssGBLUP_MF have been compared in terms of estimated variance 

components, accuracy, bias and computational efficiency in order to evaluate the possible 

benefit of MFs in genomic evaluations for a crossbreeding program. Our results showed that 

using MF in genomic prediction for CB performance does not affect the prediction accuracies, 

while it may speed up convergence in specific cases. At the same time, estimated variances 

for ssGBLUP_MF, after appropriate scaling, were in closer agreement with the empirical true 

values than ssGBLUP. 
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Relationships among metafounders 

Models used in breeding value estimation commonly assume that parents with unknown 

ancestors are sampled from an infinite base population with common genetic variance, and 

that these base animals are unrelated. In practice, due to pedigree incompleteness, in addition 

to animals from the oldest generation in the pedigree, in later generations there usually are 

also animals with unknown ancestors. In this case, animals from the same generation may in 

fact be more closely related to each other. This is commonly solved by allocating genetic 

groups to animals with unknown parents that can be grouped based on line, generation, birth 

date, sex or a combination of these or other factors (Westell et al., 1988). All base animals 

within the same genetic group are assumed to come from ancestors with similar breeding 

values, while the animals between genetic groups all have a considered relationship of zero. 

By using MFs instead of genetic groups, relationships between the pseudo individuals 

representing genetic groups are computed based on the genotypes of the descendants (Legarra 

et al., 2015), and used in the model. Because MFs are considered to represent a finite-size 

pool of gametes, the MFs also have a self-relationship (Legarra et al., 2015). 

We obtained a self-relationship of the MFs of ~0.17 for the related and ~0.74 for the unrelated 

scenario. This suggests that the base generation of the related scenario is much more diverse 

than the base generation of the unrelated scenario. In fact, the base generation of the unrelated 

scenario had its base generation after 90 generations more of line breeding than the related 

scenario, and was therefore subject to considerably more accumulated inbreeding. This was 

reflected in the higher self-relationship of the MF for the unrelated compared to the related 

scenario. The self-relationship of the MFs in the unrelated scenario is very similar to the 

values found for pigs (Xiang et al., 2017), and close to the expected value of 
2

3
 when assuming 

that base generation allele frequencies are uniformly distributed (see Appendix 1). Other 

reported values in literature varied from values of 0.55 for Holstein and 0.77 for Jersey cattle 

(Legarra et al., 2015), and 0.30 to 0.47 for dairy goat and sheep (Legarra et al., 2015; Colleau 
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et al., 2017). The latter values are closer to the level of the self-relationship of the MFs in our 

related scenario, suggesting higher diversity in the base generations of those populations. It 

should be noted that in all those cases, including our study, a 50k type of chip was used, 

where the SNPs were selected based on MAF, which is expected to have some impact on the 

estimated MF relationships. If the relationships among MF would be computed using whole 

genome sequence instead, considering that this would have a U-shaped rather than a uniform 

distribution of allele frequencies, it is expected that higher values would have been obtained in 

all those cases. 

 

Estimated variance components 

The estimated residual variances were similar across the different models and not significantly 

different from the empirical true values. However, this was not the case for all the estimated 

genetic variances of the three models. Estimates of the models PBLUP and ssGBLUP should 

be expressed in an unrelated base population. While the estimated genetic variances for the 

PBLUP models were similar to the empirical true values, genetic variance estimates for the 

ssGBLUP model overestimated the empirical true variances. This could be explained by the 

fact that across-breed allele frequencies and across-breed adjustments of the genomic 

relationship matrix were used to make it compatible with the pedigree relationship matrix. 

While such across-breed adjustments may not affect the accuracy (Makgahlela et al., 2014; 

Lourenco et al., 2016), they may affect the compatibility between the two types of 

relationships and the estimates of genetic (co)variances (Legarra, 2016a; Wientjes et al., 

2017). For the ssGBLUP_MF model, estimated genetic variances were similar to the 

empirical true genetic variances, after rescaling. Rescaling for the ssGBLUP_MF model was 

needed because the estimated genetic variance components from the ssGBLUP_MF model are 

expressed in a hypothetical related base population with allele frequency of 0.5 for all SNPs 

(Legarra et al., 2015; Garcia-Baccino et al., 2017). 
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Estimated genetic correlations were similar across the three models, even if some deviations 

were observed from the simulated values. For example, the estimated genetic correlation 

among the PB lines 2 and 3 especially deviated from the simulated value, most likely because 

of the weak link between the lines, and because of the limited amount of information available 

for this particular genetic correlation. On the other hand, estimated genetic correlations 

between PB and CB performances, for which more information was available, were generally 

close to the simulated values. For the unrelated scenario, overall ssGBLUP_MF in fact 

yielded estimated genetic correlations that were closest to the simulated values. This 

superiority for the unrelated scenario compared to PBLUP may be due to the higher 

importance of having genomic information to provide stronger links between the different 

categories of animals, while ssGBLUP_MF additionally profits from making pedigree and 

genomic relationships better compatible, and therefore may have more correct estimated 

variance components compared to ssGBLUP. This could be explained by the fact that across-

breed allele frequencies and across-breed adjustments of the genomic relationship matrix were 

used to make it compatible with the pedigree relationship matrix. 

Based on these results, further studies are required to develop and validate an approach to 

estimate easily (co)variance components for ssGBLUP_MF in the context of crossbreeding 

and multivariate evaluations, when switching from PBLUP (or ssGBLUP) routine evaluations 

to ssGBLUP_MF evaluations. A straightforward approach would be to re-estimate variance 

components, however, such an approach may be time consuming. Legarra et al. (2015) 

proposed an approach to compute variance components for ssGBLUP_MF by scaling the ones 

from PBLUP (or ssGBLUP) with the following factor: 𝑘 = 1 + 𝑑𝑖𝑎𝑔(𝚪)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 2⁄ − �̅�, where the 

matrix 𝚪 describes the relationships among MFs. According to Legarra et al. (2015), the 

scaling factor 𝑘 should be <1, meaning that the genetic variances assuming related founders 

are larger in comparison to the ones assuming unrelated founders. This is also what we 

observed for our estimated genetic variances, especially for the unrelated scenario. However, 

scaling the estimated genetic variances for PBLUP or ssGBLUP as proposed by Legarra et al. 
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(2015) for the related and unrelated scenarios did not result in estimated genetic variances of 

ssGBLUP_MF that were in agreement with the empirical true values. The scaling factor for 

the related scenarios was close to 1 (that is 0.996), and the one for the unrelated scenario was 

larger than 1 (that is 1.09), meaning that the estimates for the unrelated scenario only deviated 

more from the empirical true values (results not shown). Based on our results, a third 

approach could be to compute variance components expressed in a related base population 

from variance components obtained with PBLUP (or ssGBLUP) and metafounders’ 

relationships. Covariance components could be computed from genetic correlations estimated 

with PBLUP (or ssGBLUP) and variance components expressed on a related base population. 

Effect of metafounders on performance of genomic evaluations 

Adding the MF in ssGBLUP did not affect the prediction accuracy. It did reduce the number 

of iterations until convergence by ~27% for the unrelated scenario. For the unrelated lines, the 

G and A matrix may be less compatible, because the considered base generation falls after 

100th generations of line breeding, compared to only 10 for the related lines. Poor 

compatibility of G and A may have affected the convergence of ssGBLUP. The use of MFs 

likely results in a more consistent relationship matrix in ssGBLUP_MF, as it adjusts the base 

of the pedigree relationships to have the same base as the genomic relationships (Garcia-

Baccino et al., 2017). This is the likely explanation for the observation that the use of MFs for 

the unrelated scenario resulted in improved convergence and estimated genetic variances and 

genetic correlations that were closer to the simulated values compared with ssGBLUP.  

Results from Xiang et al., (2017) show that in terms of model-based reliabilities and 

predictive abilities, ssGBLUP_MF performs at least as well as ssGBLUP using the breed-of-

origin of alleles in the crossbred animals which requires a step of phasing genotypes and of 

assigning breed-of-origin of alleles in CB animals. These additional steps are computationally 

time consuming. Use of MFs only requires to compute the relationships among MFs, which 

can be done using the general least squares estimator of base generation allele frequencies 
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(McPeek et al., 2004; Garcia-Baccino et al., 2017), whose computing time using sparse 

matrices (Strandén et al., 2017) is trivial relative to all computations needed for ssGBLUP 

(Aldridge et al., 2018). The ssGBLUP_MF model is therefore more convenient while 

achieving similar accuracies and biases. Also, while this issue was not considered in this 

study, fitting genetic groups in ssGBLUP is not as straightforward as for PBLUP, and requires 

additional computations for the contributions of genotypes animals to genetic groups (Misztal 

et al., 2013). Using MFs instead only influences the computation of the inverse of pedigree-

based relationship matrix. Finally, in genomic evaluations with multiple lines or breeds it is 

not easy to scale G and A properly (Legarra et al., 2015), unless relationships are dissected by 

breed-of-origin (Christensen et al., 2014; Christensen et al., 2015), but this is straightforward 

with the use of MF. Therefore, there are several advantages and no clear obstructions to use 

MFs in genomic evaluations, and especially in crossbreeding schemes.  

 

CONCLUSIONS 

Based on the results in our study, the ssGBLUP model using MFs is the preferred model for 

implementation of genomic prediction for CB performance in practical breeding programs. 

The MFs can easily accommodate for differences in base populations for different lines 

involved, as the genomic and pedigree relationships are compatible by construction. In 

comparison to ssGBLUP, this leads, potentially, to improved convergence behaviour of the 

iterative solver, without affecting the prediction accuracies. Our results also suggest that 

rescaled variance components estimated with ssGBLUP_MF may be more accurate than those 

of ssGBLUP. Further studies are needed for developing and validating approaches to compute 

variance component estimates for ssGBLUP_MF. 
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APPENDIX 1: Expected metafounder self-relationship with uniformly distributed base 

generation allele frequencies 

The self-relationship of a metafounder can be computed as (Christensen, 2012; Garcia-

Baccino et al., 2017): 𝛾 = 8𝜎𝑝
2 where 𝜎𝑝

2 is the variance of the allele frequencies (p) in the 

base population. We can write the expectation of this variance as:  

𝐸(𝜎𝑝
2) = 𝐸(𝑝 − �̅�)2 = ∫(𝑝 − �̅�)2𝜑(𝑝)𝑑𝑝

1

0

 

If the allele frequencies in the base follow a standard uniform distribution, i.e. U(0,1), the 

probability density function is equal to 𝜑(𝑝) =
1

1−0
= 1. Thus, in this case: 

𝐸(𝜎𝑝
2) = ∫(𝑝 − �̅�)2𝑑𝑝

1

0

 

Considering that �̅� =
1

2
, the primitive of (𝑝 − �̅�)2 is 𝐹 ((𝑝 −

1

2
)

2

) = 𝐹 (𝑝2 − 𝑝 +
1

4
) =

1

3
𝑝3 −

1

2
𝑝2 +

1

4
𝑝, so 

𝐸(𝜎𝑝
2) = ∫(𝑝 − �̅�)2𝑑𝑝

1

0

= 𝐹(1) − 𝐹(0) =
1

12
 

Thus, if the allele frequencies in the base are uniformly distributed, the expectation of the self-

relationship of a metafounder is: 𝐸(𝛾) = 8𝐸(𝜎𝑝
2) =

2

3
. The above can also be derived using a 

Beta(1,1) distribution, noting that this is equivalent to a U(0,1) distribution. 

If the distribution of the allele frequencies in the base is U-shaped, there is an increased 

frequency of alleles with low minor allele frequency, such that 𝐸(𝜎𝑝
2) >

1

12
, and 𝐸(𝛾) >

2

3
. If 

the distribution of the allele frequencies in the base is concave , there is a decreased frequency 

of alleles with low minor allele frequency, such that 𝐸(𝜎𝑝
2) <

1

12
, and 𝐸(𝛾) <

2

3
.  
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TABLES AND FIGURES 

Figure 1. Schematic overview of the simulation for the unrelated scenario, indicating which 

animals were genotyped (G) or phenotyped (P). For the scenario with related lines the number 

of generations for populations 1, 2 and 3 is 10. 
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Figure 2. Accuracies of genomic estimated breeding values for purebred selection candidates 

in generation 9, either for purebred or crossbred performance, using ssGBLUP models with or 

without metafounders, for lines with related and unrelated pedigrees in purebred and 

crossbred performances. Red (blue) bars represent models with (without) metafounders. 
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Figure 3. Bias, defined as the regression slope of the true on the genomic estimated breeding 

values for purebred selection candidates in generation 9, either for purebred or crossbred 

performance, using obtained for ssGBLUP models with and without using metafounders for 

lines with related and unrelated scenarios in purebred and crossbred performances. Red (blue) 

bars represent models with (without) metafounders. 
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Figure 4. Convergences of ssGBLUP models with and without using metafounders (MF) for 

related and unrelated scenarios. Red bars represent models with MF. 
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Table 1. Genetic correlations used for simulated true breeding values for related and unrelated 

lines 

Line PB-1 PB-2 PB-3 CB-23 

PB-2 0.46    

PB-3 0.27 0.80   

CB-23 0.33 0.58 0.30  

CB-1(23) 0.55 0.31 0.26 0.69 
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Table 2. Relationships among metafounders for related and unrelated scenarios (average of 10 

replicates; SE within brackets). 

Related scenario Unrelated scenario 

Line 1 Line 2 Line 3 Line 1 Line 2 Line 3 

0.171 (0.005) 0.049 (0.002) 0.047 (0.002) 0.746 (0.020) 0.046 (0.005) 0.045 (0.006) 

0.049 (0.002) 0.171 (0.007) 0.046 (0.002) 0.046 (0.005) 0.741 (0.016) 0.046 (0.005) 

0.047 (0.002) 0.046 (0.002) 0.171 (0.006) 0.045 (0.006) 0.046 (0.005) 0.743 (0.020) 
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Table 3. Estimated variance components for the related scenario for three different models: 

PBLUP, ssGBLUP and ssGBLUP using metafounders. Residual and genetic variances 

estimates are presented for purebred traits 1, 2, and 3 and crossbred traits 23 and 1(23). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Variances are on the diagonal, correlations are on the off-diagonal. Standard errors of the 

variances ranged 0.031 to 0.062, and from 0.023 to 0.130 for the genetic correlations. 

Standard errors for each estimate are presented in Supplementary Table 1. 

2Genetic variances after scaling are presented.  

   Genetic variances and correlations1 

Model Trait Residual 1 2 3 23 1(23) 

PBLUP 1 2.672 1.141 0.614 0.236 0.534 0.505 

 2 1.659 0.614 1.063 0.291 0.466 0.212 

 3 3.699 0.236 0.291 1.182 0.308 0.195 

 23 1.907 0.534 0.466 0.308 1.092 0.512 

 1(23) 3.456 0.505 0.212 0.195 0.512 1.286 

ssGBLUP 1 2.656 1.173 0.653 0.096 0.576 0.506 

 2 1.651 0.653 1.079 0.186 0.528 0.249 

 3 3.690 0.096 0.186 1.202 0.288 0.183 

 23 1.862 0.576 0.528 0.288 1.155 0.517 

 1(23) 3.497 0.506 0.249 0.183 0.517 1.256 

ssGBLUP-MF2 1 2.689 1.110 0.754 0.035 0.550 0.474 

 2 1.652 0.754 1.071 0.095 0.521 0.376 

 3 3.687 0.035 0.095 1.196 0.253 0.215 

 23 1.846 0.550 0.521 0.253 1.159 0.530 

 1(23) 3.539 0.474 0.376 0.215 0.530 1.160 
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Table 4. Estimated variance components for the unrelated scenario for three different models: 

PBLUP, ssGBLUP and ssGBLUP using metafounders in the model. Residual and genetic 

variance estimates are presented for purebred traits 1, 2, and 3 and crossbred traits 23 and 123. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Variances are on the diagonal, correlations are on the off-diagonal. Standard errors of the 

variances ranged from 0.035 to 0.074, and from 0.040 to 0.130 for the genetic correlations. 

Standard errors for each estimate are presented in Supplementary Table 2. 

2Genetic variances after scaling are presented.  

   Genetic variances and correlations1 

Model Trait Residual 1 2 3 23 1(23) 

PBLUP 1 2.673 1.112 0.604 0.115  0.352 0.410 

 2 1.670 0.604 1.039 0.187 0.516 0.300 

 3 3.720 0.115 0.187 1.099 0.269 0.106 

 23 1.856 0.352 0.516 0.269 0.904 0.510 

 1(23) 3.581 0.410 0.300 0.106 0.510 0.900 

ssGBLUP 1 2.615 1.244 0.597 0.069 0.341 0.517 

 2 1.640 0.597 1.126 0.151 0.490 0.332 

 3 3.651 0.069 0.151 1.245 0.245 0.158 

 23 1.827 0.341 0.490 0.245 1.041 0.533 

 1(23) 3.544 0.517 0.332 0.158 0.533 1.018 

ssGBLUP-MF2 1 2.688 1.080 0.729 0.183 0.468 0.506 

 2 1.680 0.729 1.026 0.292 0.475 0.469 

 3 3.714 0.183 0.292 1.100 0.297 0.094 

 23 1.903 0.468 0.475 0.297 0.826 0.554 

 1(23) 3.518 0.506 0.469 0.094 0.554 0.835 
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Table 5. Empirically calculated true variance components for the related and unrelated 

scenarios.  

Trait Related scenario Unrelated scenario 

 Residual 

variancea 

Additive genetic 

variancea 

Heritabilityb Residual 

variancea 

Additive genetic 

variancea 

Heritabilityb 

1 2.720 1.040 0.28 2.670 1.060 0.28 

2 1.635 1.045 0.39 1.645 1.061 0.39 

3 3.697 1.074 0.22 3.857 1.070 0.22 

23 1.859 0.985 0.35 1.873 0.817 0.30 

1(23) 3.580 0.971 0.21 3.554 0.871 0.20 

a All standard errors were <0.045. 

b All standard errors were <0.01. 

  



32 
 

E-SUPPLEMENTS 

Supplementary Table 1. Standard errors for the estimated variance components for the 

related scenario for three different models: PBLUP, ssGBLUP and ssGBLUP using 

metafounders. Residual and genetic variances estimates are presented for purebred traits 1, 2, 

and 3 and crossbred traits 23 and 1(23). 

 

 

 

 

 

 

 

 

 

 

 

1Standard errors for the genetic variances are on the diagonal; standard errors for the genetic 

correlations are on the off-diagonal. 

  

   Genetic variances and correlations1 

Model Trait Residual 1 2 3 23 1(23) 

PBLUP 1 0.034 0.035 0.130 0.103 0.093 0.079 

 2 0.023 0.130 0.040 0.088 0.058 0.067 

 3 0.040 0.103 0.088 0.055 0.037 0.085 

 23 0.056 0.093 0.058 0.037 0.062 0.023 

 1(23) 0.043 0.079 0.067 0.085 0.023 0.060 

ssGBLUP 1 0.032 0.033 0.084 0.108 0.081 0.062 

 2 0.022 0.084 0.040 0.068 0.059 0.053 

 3 0.042 0.108 0.068 0.061 0.044 0.101 

 23 0.053 0.081 0.059 0.044 0.059 0.030 

 1(23) 0.037 0.062 0.053 0.101 0.030 0.060 

ssGBLUP-MF 1 0.029 0.031 0.054 0.101 0.064 0.102 

 2 0.022 0.054 0.038 0.078 0.056 0.054 

 3 0.042 0.101 0.078 0.053 0.049 0.101 

 23 0.050 0.064 0.056 0.049 0.055 0.025 

 1(23) 0.043 0.102 0.054 0.101 0.025 0.054 
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Supplementary Table 2. Standard errors for the estimated variance components for the 

unrelated scenario for three different models: PBLUP, ssGBLUP and ssGBLUP using 

metafounders. Residual and genetic variances estimates are presented for purebred traits 1, 2, 

and 3 and crossbred traits 23 and 1(23). 

 

 

 

 

 

 

 

 

 

 

 

1Standard errors for the genetic variances are on the diagonal; standard errors for the genetic 

correlations are on the off-diagonal.  

   Genetic variances and correlations1 

Model Trait Residual 1 2 3 23 1(23) 

PBLUP 1 0.039 0.055 0.080 0.108 0.084 0.083 

 2 0.026 0.080 0.037 0.101 0.046 0.061 

 3 0.039 0.108 0.101 0.040 0.057 0.072 

 23 0.038 0.084 0.046 0.057 0.064 0.050 

 1(23) 0.097 0.083 0.061 0.072 0.050 0.068 

ssGBLUP 1 0.041 0.064 0.078 0.101 0.068 0.075 

 2 0.025 0.078 0.041 0.103 0.052 0.073 

 3 0.044 0.101 0.103 0.048 0.047 0.067 

 23 0.030 0.068 0.052 0.047 0.074 0.046 

 1(23) 0.090 0.075 0.073 0.067 0.046 0.057 

ssGBLUP-MF 1 0.031 0.045 0.054 0.101 0.064 0.102 

 2 0.023 0.054 0.035 0.078 0.056 0.054 

 3 0.046 0.101 0.078 0.045 0.049 0.101 

 23 0.024 0.064 0.056 0.049 0.056 0.025 

 1(23) 0.077 0.102 0.054 0.101 0.025 0.036 
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Supplementary Table 3. Unscaled genetic variances estimated with ssGBLUP using 

metafounders for purebred traits 1, 2, and 3 and crossbred traits 23 and 1(23), for the related 

and unrelated scenario. 

 

 

 

 

 

 

 

  

Trait Related Unrelated 

1 1.214 1.722 

2 1.171 1.630 

3 1.308 1.750 

23 1.267 1.313 

1(23) 1.268 1.329 
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Supplementary Table 4. Accuracies (averages across10 replicates; SE within brackets) for 

purebred performance in lines 1, 2 and 3 (PB1, PB2, PB3) and crossbred performance in lines 

1, 2 and 3 (CB1, CB2, CB3), for the related and unrelated scenarios. 

 Related Unrelated 

Trait PBLUP ssGBLUP ssGBLUP_MF PBLUP ssGBLUP ssGBLUP_MF 

PB1 0.415 (0.018) 0.514 (0.013) 0.510 (0.013) 0.433 (0.017) 0.575 (0.015) 0.575 (0.014) 

PB2 0.467 (0.022) 0.586 (0.016) 0.585 (0.016) 0.452 (0.021) 0.588 (0.019) 0.587 (0.018) 

PB3 0.371 (0.025) 0.471 (0.015) 0.471 (0.015) 0.398 (0.022) 0.542 (0.015) 0.540 (0.014) 

CB1 0.265 (0.033) 0.364 (0.027) 0.338 (0.037) 0.264 (0.046) 0.395 (0.026) 0.398 (0.022) 

CB2 0.139 (0.030) 0.290 (0.026) 0.295 (0.026) 0.134 (0.025) 0.277 (0.021) 0.267 (0.026) 

CB3 0.224 (0.019) 0.339 (0.022) 0.336 (0.024) 0.193 (0.037) 0.310 (0.034) 0.297 (0.037) 
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Supplementary Table 5. Bias of the level of the (G)EBV (average for the 10 replicates; SE 

within brackets), measured as the intercept of the regression of TBV on (G)EBV, for purebred 

performance in lines 1, 2 and 3 (PB1, PB2, PB3) and crossbred performance in lines 1, 2 and 

3 (CB1, CB2, CB3) for the related and unrelated scenarios.  

 Related Unrelated 

Trait PBLUP ssGBLUP ssGBLUP_MF PBLUP ssGBLUP ssGBLUP_MF 

PB1 0.106 (0.116) 0.124 (0.127) 0.115 (0.120) -0.591 (0.473) -0.723 (0.464) -0.433 (0.466) 

PB2 -0.045 (0.108) -0.004 (0.123) 0.016 (0.124) -0.134 (0.385) -0.083 (0.366) -0.133 (0.383) 

PB3 0.164 (0.112) 0.112 (0.120) 0.137 (0.107) -0.286 (0.269) -0.290 (0.289) -0.166 (0.249) 

CB1 0.096 (0.188) 0.138 (0.184) 0.124 (0.179) 0.019 (0.329) -0.061 (0.339) 0.138 (0.335) 

CB2 -0.098 (0.187) -0.076 (0.174) -0.089 (0.185) -0.011 (0.250) 0.087 (0.232) 0.098 (0.238) 

CB3 0.158 (0.150) 0.160 (0.154) 0.176 (0.148) -0.006 (0.483) 0.021 (0.418) 0.120 (0.408) 

 

  



37 
 

Supplementary Table 6. Bias of the scale of the (G)EBV (average for the 10 replicates; SE 

within brackets), measured as the slope of the regression of TBV on (G)EBV, for purebred 

performance in lines 1, 2 and 3 (PB1, PB2, PB3) and crossbred performance in lines 1, 2 and 

3 (CB1, CB2, CB3) for the related and unrelated scenarios.  

 Related Unrelated 

Trait PBLUP ssGBLUP ssGBLUP_MF PBLUP ssGBLUP ssGBLUP_MF 

PB1 0.961 (0.042) 0.959 (0.030) 0.944 (0.029) 1.050 (0.051) 1.087 (0.044) 0.998 (0.033) 

PB2 1.054 (0.058) 1.050 (0.041) 1.023 (0.038) 1.022 (0.042) 1.078 (0.024) 0.988 (0.024) 

PB3 0.924 (0.050) 0.942 (0.036) 0.915 (0.034) 0.960 (0.057) 1.052 (0.048) 0.954 (0.041) 

CB1 0.859 (0.091) 0.883 (0.042) 0.797 (0.073) 1.097 (0.229) 1.048 (0.078) 1.019 (0.086) 

CB2 0.679 (0.137) 0.934 (0.094) 0.885 (0.099) 0.689 (0.149) 0.895 (0.095) 0.705 (0.081) 

CB3 0.845 (0.088) 0.886 (0.075) 0.864 (0.062) 0.865 (0.162) 0.954 (0.085) 0.819 (0.096) 

 




