Long-term effects of phosphate fertilization on crop yields, soil and leaching: Phosphate trial Lelystad

LTE conference Rothamsted, 21 May 2018 Janjo de Haan, Willem van Geel, Phillip Ehlert

Research questions

Does balance fertilization of phosphate lead to a decrease

- 1. in crop yield and quality?
- 2. in phosphate availability for crop growth?
- **3.** in organic matter content of the soil?
- 4. in phosphate leaching?

Phosphate trial Lelystad (since 1990)

- Part of larger project with other long-term grassland and arable experiments
- Marine light clay soil
- 4 P-levels with yearly fertilization (TSP)
 - 0, 70, 140 en 280 kg P₂O₅/ha/year
- Since 2005 plots split in two: one half no fertilization
- Measurements
 - Crop yields
 - Phosphate balances
 - Phosphate stocks and availability in soil
 - P-CaCl₂, P-water, P-Al, P-total...
 - Phosphate concentrations in soil moisture

Relative crop yields (P2 70 = 100%)

P-water 0-30 cm

Average stabilized P-water and phosphorus surplus (kg P_2O_5 /ha/year)

Phosphate removal P2 70 in a standard crop rotation

Сгор	% in crop rotation	Phosphate removal at P2 70 (kg P ₂ O ₅ /ha/year)
Potato	25	52
Sugar beet	30	66
Spring barley	30	55
Onion	12,5	50
Carrot	12,5	82
Total	100	66

Profile sampling P-water

Phosphorus in soil moisture (2004-2010)

Lelystad

Conclusions

- 1. Balance fertilization leads to lower yields for phosphate demanding crops, especially when status is low.
- 2. Fertilization with small surplus leads to phosphate status neutral on this soil. In general risk for lower available phosphate with balance fertilization.
- **3.** Organic matter content of the soil is not decreasing
- **4.** Phosphate leaching is low at balance fertilization

Thank you for your attention

