

Genome-wide association study for α S1- and α S2-casein phosphorylation in
Dutch Holstein Friesian

Fang, Z. H., Bovenhuis, H., van Valenberg, H. J. F., Martin, P., Duchemin, S. I., Huppertz, T., & Visker, M. H. P. W.

This is a "Post-Print" accepted manuscript, which has been published in "Journal of
Dairy Science"

This version is distributed under a non-commercial no derivatives Creative Commons

([CC-BY-NC-ND](#)) user license, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and not used for commercial purposes. Further, the restriction applies that if you remix, transform, or build upon the material, you may not distribute the modified material.

Please cite this publication as follows:

Fang, Z. H., Bovenhuis, H., van Valenberg, H. J. F., Martin, P., Duchemin, S. I., Huppertz, T., & Visker, M. H. P. W. (2019). Genome-wide association study for α S1- and α S2-casein phosphorylation in Dutch Holstein Friesian. *Journal of Dairy Science*, 102(2), 1374-1385. DOI: [10.3168/jds.2018-15593](https://doi.org/10.3168/jds.2018-15593)

You can download the published version at:

<https://doi.org/10.3168/jds.2018-15593>

1 **Interpretive Summary**

2 **Fang**

3 Proteins in cow's milk, particularly caseins, play an important role in human nutrition and
4 producing dairy products, such as yogurt and cheese. These caseins are phosphorylated and
5 interact with large amounts of calcium and phosphate. As a result, these minerals can be
6 delivered efficiently to the neonate without damaging mammary epithelial cells. Moreover,
7 several studies show that the phosphorylation levels of the caseins have impact on the cheese-
8 making properties of milk. In this study, we investigated the genetic background of
9 phosphorylation levels of α_{s1} - and α_{s2} -casein. These results can help us understand genetic
10 control of variation in phosphorylation.

11

12 **Genome-wide association study for α_{s1} - and α_{s2} -casein phosphorylation in Dutch**
13 **Holstein Friesian**
14 Z. H. Fang,*†1 H. Bovenhuis,† H. J. F. van Valenberg,‡ P. Martin,* S. I. Duchemin,# T.
15 Huppertz§2, M. H. P. W. Visker,†3
16 *Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay,
17 78350 Jouy-en-Josas, France
18 †Animal Breeding and Genomics, Wageningen University and Research, PO Box 338, 6700
19 AH Wageningen, the Netherlands
20 ‡ Dairy Science and Technology Group, Wageningen University, PO Box 17, 6700 AA,
21 Wageningen, the Netherlands
22 § NIZO, PO Box 20, 6710 BA, Ede, the Netherlands
23 # Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences,
24 SE-750 07 Uppsala, Sweden
25 1 Current address: Animal Genomics, ETH Zürich, 8092 Zürich, Switzerland
26 2 Current address: FrieslandCampina, Amersfoort, The Netherlands
27 3 Corresponding author: Marleen Visker (marleen.visker@wur.nl)
28

ABSTRACT

30 Phosphorylation of caseins (CN) is a crucial post-translational modification that allows
31 caseins to form colloid particles known as casein micelles. Both α_{s1} - and α_{s2} -CN show varying
32 degrees of phosphorylation (isoforms) in cow's milk and were suggested to be more relevant
33 for stabilizing internal micellar structure than β - and κ -CN. However, little is known about the
34 genetic background of individual α_{s2} -CN phosphorylation isoforms and the phosphorylation
35 degrees of α_{s1} - and α_{s2} -CN (α_{s1} -CN PD and α_{s2} -CN PD) defined as the proportion of isoforms
36 with higher degrees of phosphorylation in total α_{s1} - and α_{s2} -CN, respectively. We aimed to
37 identify genomic regions associated with these traits using 50K SNP for 1,857 Dutch Holstein
38 Friesian cows. A total of 10 QTL regions were identified for all studied traits on 10 *Bos*
39 *taurus* autosomes (BTA1, 2, 6, 9, 11, 14, 15, 18, 24 and 28). Regions associated with multiple
40 traits were found on BTA1, 6, 11, and 14. We showed two QTL regions on BTA1: one affects
41 α_{s2} -CN production, and the other one harbors the *SLC37A1* gene that encodes a phosphorus
42 antiporter and affects α_{s1} -CN PD and α_{s2} -CN PD. The QTL on BTA6 harbors the casein gene
43 cluster and affects individual α_{s2} -CN phosphorylation isoforms. The QTL on BTA11 harbors
44 the *PAEP* gene that encodes β -lactoglobulin (β -LG) and affects relative concentrations of α_{s2} -
45 CN-10P and α_{s2} -CN-11P, α_{s1} -CN PD and α_{s2} -CN PD. The QTL on BTA14 harbors the
46 *DGAT1* gene and affects relative concentrations of α_{s2} -CN-10P and α_{s2} -CN-11P, α_{s1} -CN PD
47 and α_{s2} -CN PD. Our results suggest that effects of identified genomic regions on
48 phosphorylation of α_{s1} -CN and α_{s2} -CN are related to changes in milk synthesis and
49 phosphorus secretion in milk. The actual roles of *SLC37A1*, *PAEP* and *DGAT1* in α_{s1} - and α_{s2} -
50 CN phosphorylation in Dutch Holstein Friesian require further investigation.

51 Key words: posttranslational modification, milk protein composition, quantitative trait loci

INTRODUCTION

53 Protein phosphorylation regulates nearly every aspect of cell life, including disease states, by
54 altering the structural confirmation of proteins to either activate, deactivate or modify their
55 function. Caseins from cow's milk are the most well-studied group of phosphoproteins. They
56 play an important role in human nutrition and also affect manufacturing properties of dairy
57 products (Wedholm et al., 2006; Hallén et al., 2008; Caroli et al., 2009). Phosphorylation of
58 caseins is a crucial post-translational modification that affects the formation and stability of
59 casein micelles as the structure of micelles partly relies on the interactions between calcium
60 phosphate nanoclusters and phosphoserine residues of α_{s1} -, α_{s2} -, and β -casein (CN) (De Kruif
61 and Holt, 2003; De Kruif et al., 2012). As a result of casein micelle formation, large amounts
62 of calcium and phosphorus can be delivered efficiently to the neonate without damaging the
63 mammary gland of the mother by evoking either pathological calcification or amyloidosis
64 (Holt et al., 2013).

65 Although α_{s1} -, α_{s2} -, β -, and κ -CN are all phosphorylated, α_{s1} - and α_{s2} -CN are more heavily
66 phosphorylated, possess multiple phosphoserine clusters, and show varying degrees of
67 phosphorylation (isoforms) in cow's milk. Previous studies suggest that α_{s1} - and α_{s2} -CN
68 might be more important for stabilizing internal micellar structure than β - and κ -CN
69 (Dagleish and Corredig, 2012; Huppertz et al., 2017). α_{s1} -CN has been observed to carry 8 to
70 9 phosphate groups (P), and α_{s1} -CN-8P is the predominant isoform (Holland and Boland,
71 2014). α_{s2} -CN has been observed to carry 9 to 15 phosphate groups, and α_{s2} -CN-11P is the
72 predominant isoform (Fang et al., 2016).

73 Relative concentrations of individual α_{s1} - and α_{s2} -CN phosphorylation isoforms vary
74 considerably among milk of individual cows (Bijl et al., 2014; Fang et al., 2016), and
75 exploitable genetic variation for these isoforms exists in French Montbéliarde (Fang et al.,
76 2017a), Danish Holstein and Danish Jersey (Buitenhuis et al., 2016), and Dutch Holstein

77 Friesian (Bijl et al., 2014; Fang et al., 2017b). Furthermore, the phosphorylation degrees (**PD**)
78 of α_{s1} -CN and α_{s2} -CN, defined as the proportion of isoforms with higher degrees of
79 phosphorylation, are heritable in French Montbéliarde (Fang et al., 2017a) and highly
80 heritable in Dutch Holstein Friesian (Fang et al., 2017b). This indicates that the difference in
81 the phosphorylation process is to a great extent determined by genetic factors. Additionally,
82 Bijl et al. (2014) showed that α_{s1} -CN-8P and α_{s1} -CN-9P are largely regulated by different sets
83 of genes. Our recent work also suggests that α_{s1} -and α_{s2} -CN phosphorylated at lower degrees
84 is regulated differently from α_{s1} - and α_{s2} -CN phosphorylated at higher degrees (Fang et al.,
85 2016; Fang et al., 2017b). To date, little is known about the genetic backgrounds of individual
86 α_{s2} -CN phosphorylation isoforms, α_{s1} -CN PD and α_{s2} -CN PD. Therefore, this study aimed to
87 identify genomic regions associated with these traits.

MATERIALS AND METHODS

89 *Animals*

90 Test-day morning milk samples were collected from approximately 2,000 primiparous Dutch
91 Holstein-Friesian cows as part of the Dutch Milk Genomic Initiative. Cows were located on
92 398 herds in the Netherlands, and at least 3 cows per herd were sampled. The pedigree of the
93 cows was supplied by cattle improvement organization CRV (Arnhem, the Netherlands).

94 Detailed description of the experimental design is provided by Schopen et al. (2009).

95 *Phenotypes*

96 Milk production traits, phosphorous, and milk protein composition from 1,857 milk samples
97 collected in winter (February and March 2005) were available for the current study.

98 ***Milk production traits and phosphorus.*** Protein percentage was determined by infrared
99 spectroscopy using MilkoScan FT 6000 (Foss Electric, Hillerød, Denmark) at the milk control
100 station laboratory (Qlip, Zutphen, the Netherlands). Phosphorus concentration was determined
101 by inductively coupled plasma-atomic emission spectrometry (Vista Axial, Varian, Australia)
102 from whole milk as described in van Hulzen et al. (2009). Test-day morning milk yield was
103 available for 1,721 cows and was obtained from CRV. Yields of protein and phosphorus were
104 calculated by multiplying the respective content traits by the observed test-day morning milk
105 yield.

106 ***Milk protein composition.*** Relative concentrations (% wt/wt) of individual milk proteins and
107 their isoforms were determined by capillary zone electrophoresis (CZE) by Heck et al. (2008)
108 and Fang et al (2017b). Yields (in grams) of individual milk proteins and their isoforms were
109 calculated by multiplying relative concentrations (% wt/wt) by protein yield (in grams).

110 Relative concentrations of α_{s1} - and α_{s2} -CN phosphorylation isoforms are the result of two
111 distinct processes: the production of α_{s1} - and α_{s2} -CN and the posttranslational modification of
112 both caseins. To specifically characterize the phosphorylation process, we defined the

113 phosphorylation degrees of α_{s1} -CN and α_{s2} -CN as the proportion of isoforms with higher
114 degree of phosphorylation (Fang et al., 2017b), which were calculated as

115
$$\alpha_{s1}\text{-CN PD} = \left(\frac{\alpha_{s1}\text{-CN-9p}}{\alpha_{s1}\text{-CN-8p} + \alpha_{s1}\text{-CN-9p}} \right) \times 100\%$$

116
$$\alpha_{s2}\text{-CN PD} = \left(\frac{\alpha_{s2}\text{-CN-12p}}{\alpha_{s2}\text{-CN-10p} + \alpha_{s2}\text{-CN-11p} + \alpha_{s2}\text{-CN-12p}} \right) \times 100\%$$

117 **Casein Phosphate.** The phosphorus distribution that is bound to casein was quantified by
118 estimating the content of phosphate groups attached to caseins in milk (i.e. molar
119 concentration of casein phosphate, P_{CN}) and the total amount of phosphate groups attached to
120 caseins in milk (i.e. output of casein phosphate, P_{CN} yield). To derive P_{CN} , we first calculated
121 the molar concentration (C_{molar}) of each casein (α_{s1} -, α_{s2} -, κ - and β -CN) as its concentration in
122 milk (g/L), calculated as protein percentage (% wt/wt) \times 10, divided by its respective
123 molecular weight (Da). As κ -CN carried 1 phosphate group and β -CN carried 5 in our milk
124 samples, C_{molar} of phosphate groups attached to κ -CN and β -CN were approximated by
125 multiplying C_{molar} of κ -CN and β -CN by 1 and 5, respectively. The C_{molar} of phosphate groups
126 attached to α_{s1} -CN was the sum of C_{molar} of α_{s1} -CN-8P multiplied by 8 and C_{molar} of α_{s1} -CN-
127 9P multiplied by 9. The C_{molar} of phosphate groups attached to α_{s2} -CN was the sum of C_{molar}
128 of α_{s2} -CN-10P multiplied by 10, C_{molar} of α_{s2} -CN-11P multiplied by 11, and C_{molar} of α_{s2} -CN-
129 12P multiplied by 12. Therefore, P_{CN} was the sum of C_{molar} of α_{s1} -, α_{s2} -, κ - and β -CN.
130 Subsequently, P_{CN} yield was approximated by multiplying P_{CN} by test-day morning milk
131 yield.

132 **Genotypes**

133 DNA was isolated from blood samples of 1,868 cows for genotyping. As described in detail
134 by Schopen et al. (2011), a 50K (~50,000) SNP chip developed by CRV was used to genotype
135 cows with the Infinium assay technology (Illumina Inc., San Diego, CA). The map positions
136 of the SNP were based on bovine genome assembly BTAU 4.0 (Liu et al., 2009).

137 Monomorphic SNP, SNP with a genotyping rate < 80%, and SNP with less than 10
138 observations for one of the genotype classes were discarded (SNP with only two genotype
139 classes instead of three were kept in the final marker set in case at least 10 observations per
140 genotype class). After filtering, 44,669 SNP were retained for the genome-wide association
141 study (**GWAS**). The data set used in the association study consisted of 1,667 animals with
142 both phenotypes and genotypes. Protein variants A and B for β -lactoglobulin (β -LG) were
143 genotyped for 1,671 cows as described by Ganai et al. (2009). Genotypes for the
144 diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism were obtained for 1,702
145 cows as described by Schennink et al. (2007).

146 **Statistical Analyses**

147 **GWAS.** Single-SNP associations were analyzed using the following animal model:

$$148 \quad y_{klmno} = \mu + \beta_1 dim_{klmno} + \beta_2 e^{-0.05*dim_{klmno}} + \beta_3 ca_{klmno} + \beta_4 ca_{klmno}^2 + season_k \\ 149 \quad + scode_l + animal_m + herd_n + SNP_o + e_{klmno}, \quad [1]$$

150 where y_{klmno} is the observation of the trait of interest; μ is the overall mean of the trait; $\beta_{1,2}$
151 are the regression coefficients for dim_{klmno} ; $\beta_{3,4}$ are the regression coefficients for ca_{klmno} ;
152 dim_{klmno} is a covariate describing the effect of days in lactation, modeled with a Wilmink
153 curve (Wilmink, 1987); ca_{klmno} is a covariate describing the effect of age at first calving;
154 $season_k$ is the fixed effect for calving season (June–August 2004, September–November 2004,
155 and December 2004–February 2005); $scode_l$ is the fixed effect accounting for possible
156 differences in genetic level between proven bull daughters and young bull daughters; $animal_m$
157 is the random additive genetic effect assumed to be distributed as $N(\mathbf{0}, \mathbf{A}\sigma_a^2)$, where \mathbf{A} is the
158 additive genetic relationships matrix consisting of 26,300 animals, and σ_a^2 is the additive
159 genetic variance; $herd_n$ is the random herd effect assumed to be distributed as $N(\mathbf{0}, \mathbf{I}\sigma_{herd}^2)$,
160 where \mathbf{I} is the identity matrix, and σ_{herd}^2 is the herd variance; SNP_o is the fixed effect of the

161 SNP modeled as a class variable; e_{klmno} is the random residual effect assumed to be distributed
162 as $N(\mathbf{0}, \mathbf{I}\sigma_e^2)$, where \mathbf{I} is the identity matrix, and σ_e^2 is the residual variance. Variance
163 components were fixed to estimates obtained from model [1] without the SNP effect. The
164 effects of β -LG protein variants and DGAT1 genotypes were estimated using model [1] by
165 replacing the SNP effect by protein variant and genotype effects, respectively. All statistical
166 analyses were performed using ASReml 4.1 (Gilmour et al., 2015).

167 **Significance Thresholds.** The genome-wide false discovery rate (**FDR**) was calculated based
168 on the P-values obtained from the single-SNP analyses using the R package qvalue (Dabney
169 et al., 2010; R Core Team, 2015). The FDR was calculated for each trait separately.
170 Associations with an $FDR < 0.01$ were considered significant. Obtained results are shown as
171 Manhattan plots constructed by qqman R package (Turner, 2014).

172 **QTL regions.** Because of strong linkage disequilibrium between neighboring SNP, significant
173 SNP located close to each other might be associated with the same causal variant. Therefore,
174 we defined QTL regions as follows: a QTL region starts with the first significant SNP on a
175 chromosome that is followed by an additional significant SNP within 10 Mega-base pairs
176 (**Mbp**), extends as long as another significant SNP occurs within 10 Mbp from the previous
177 one, and ends at the last significant SNP that is not followed by another significant SNP
178 within the next 10 Mbp.

179

180

RESULTS AND DISCUSSION

181 In this study, we explored the genetic background of individual α_{s2} -CN phosphorylation
182 isoforms (% wt/wt), and the phosphorylation degrees of α_{s1} -CN (α_{s1} -CN PD) and α_{s2} -CN (α_{s2} -
183 CN PD). Phenotypic means, standard deviations, heritability estimates and proportions of
184 variance explained by herd for all studied traits are given in Table 1. For α_{s2} -CN, the
185 predominant isoform was α_{s2} -CN-11P. The proportion of isoforms with higher degree of
186 phosphorylation was 26% for α_{s1} -CN and 34% for α_{s2} -CN. Heritability estimates were
187 moderate to very high for all traits. Results have been discussed in detail by Fang et al.
188 (2017b).

189 The GWAS showed significant associations for all studied traits, and a total of 10 QTL
190 regions were identified (FDR < 0.01) on 10 different chromosomes (BTA1, 2, 6, 9, 11, 14, 15,
191 18, 24 and 28, see Figure 1). Recently, FAM20C was discovered as the kinase that
192 phosphorylates secretory pathway proteins with S-X-E/pS motifs (X represents any amino
193 acid residue, and p indicates phosphorylation) including the caseins found in milk as well as
194 several other proteins implicated in biomineralization (Tagliabracci et al., 2012). We did not
195 detect a QTL signal on BTA25 where the *FAM20C* gene is located (between 43.86 to 43.90
196 Mbp (BTAU 4.0)), neither for individual α_{s2} -CN phosphorylation isoforms, nor for α_{s1} -CN
197 PD and α_{s2} -CN PD. This is in line with results reported by Bijl et al. (2014) and Buitenhuis et
198 al. (2016) and suggests that no *FAM20C* variants are segregating in the Dutch Holstein
199 population or in the Danish Holstein and Danish Jersey populations. Regions associated with
200 multiple traits were found on BTA1, 6, 11, and 14, and their effects will be discussed in
201 detail. Furthermore, producing casein phosphorylation isoforms is a function of casein
202 synthesis and their subsequent phosphorylation. Little is known about genes regulating the
203 phosphorylation process. This process might be interlinked with different pathways of milk
204 production, including milk protein synthesis and phosphorus secretion in milk. To investigate

205 if the detected QTL specifically affect the phosphorylation, we extended the analyses for the
206 QTL on BTA1, 6, 11 and 14 which were associated with multiple traits. Estimated genotypic
207 effects on a range of traits, including content and yield of phosphorus and phosphate groups
208 attached to caseins (P_{CN} and P_{CN} yield) are expected to provide insight in the nature of the
209 observed QTL. Genotype effects of the most significantly associated (lead) SNP in each QTL
210 region are reported in Table 2.

211 **BTA1**

212 The QTL region between 145.55 and 152.18 Mbp on BTA1 was significantly associated with
213 relative concentrations of α_{s2} -CN-11P and α_{s2} -CN-12P, and with α_{s1} -CN PD. However, the
214 lead SNP differed between traits: ARS-BFGL-NGS-8140 at 149.19 Mbp was the lead SNP
215 for α_{s2} -CN-11P concentration [$-\log_{10}(P) = 8.01$], ARS-BFGL-NGS-91705 (rs43282015) at
216 149.65 Mbp was the lead SNP for α_{s2} -CN-12P concentration [$-\log_{10}(P) = 8.51$] and ARS-
217 BFGL-NGS-24811 at 146.63 Mbp was the lead SNP for α_{s1} -CN PD [$-\log_{10}(P) = 5.50$].
218 Interestingly, significant associations on BTA1 were found for all studied traits except for α_{s1} -
219 CN-8P concentration. For both α_{s2} -CN-10P and α_{s2} -CN PD, only one SNP reached the
220 significant threshold (BTB-00068200 as the lead SNP for α_{s2} -CN-10P and ULGR_BTA-
221 55413 as the lead SNP for α_{s2} -CN PD), so they did not qualify as a QTL region.
222 To investigate if this region harbors multiple QTL (see Figure 2A for associations of α_{s2} -CN-
223 12P and α_{s1} -CN PD as examples), associations for all studied traits were reanalyzed after
224 adjusting for the lead SNP for α_{s2} -CN-12P concentration (ARS-BFGL-NGS-91705) for all
225 studied traits (see Figure 2B for α_{s2} -CN-12P and α_{s1} -CN PD as examples). This analysis
226 resulted in no significant associations for α_{s2} -CN-11P and α_{s2} -CN-12P except for one isolated
227 SNP for α_{s2} -CN-12P. However, significant associations remained for α_{s2} -CN-10P, α_{s1} -CN PD
228 and α_{s2} -CN PD. To identify which of the lead SNP of the different traits tags this region for
229 all studied traits (see Figure 2C for the most significant SNP of each trait), associations were

230 reanalyzed after adjusting for the lead SNP of α_{s1} -CN PD for all studied traits. The same
231 analyses were repeated with the respective lead SNP of α_{s2} -CN-10P and α_{s2} -CN PD. Only
232 after adjusting for the lead SNP for α_{s2} -CN-10P concentration (BTB-00068200), the QTL
233 signal for α_{s2} -CN-10P, α_{s1} -CN PD and α_{s2} -CN PD disappeared, whereas the signals for α_{s2} -
234 CN-11P and α_{s2} -CN-12P were hardly affected (Figure 2D). These results suggest that BTA1
235 harbors two QTL affecting α_{s1} - and α_{s2} -CN phosphorylation: QTL1 located in the region
236 between 147.5 and 152.1 Mbp and represented by ARS-BFGL-NGS-91705 and QTL2 located
237 in the region between 144.41 and 147.3 Mbp and represented by BTB-00068200. The low
238 level of linkage disequilibrium between ARS-BFGL-NGS-91705 and BTB-00068200
239 ($r^2=0.09$) supports the presence of two QTL in this region.

240 The effects of SNP ARS-BFGL-NGS-91705 (QTL1) and BTB-00068200 (QTL2) on relative
241 concentrations of individual α_{s1} - and α_{s2} -CN phosphorylation isoforms, α_{s1} -CN PD and α_{s2} -
242 CN PD are given in Table 2. For ARS-BFGL-NGS-91705, the *G* allele was associated with
243 lower α_{s2} -CN-11P and α_{s2} -CN-12P concentrations but not with α_{s1} -CN PD or α_{s2} -CN PD. For
244 BTB-00068200, the *G* allele was associated with lower α_{s1} -CN-9P concentration and higher
245 α_{s2} -CN-10P and -11P concentrations. This results in lower degrees of phosphorylation of α_{s1} -
246 CN and α_{s2} -CN as shown by the negative association of the GG genotype with both α_{s1} -CN
247 PD and α_{s2} -CN PD. Taken together, our results suggest that QTL1 affects α_{s2} -CN production,
248 and QTL2 affects the phosphorylation degrees of α_{s1} - and α_{s2} -CN. Furthermore, combining
249 our results with those reported by Bijl et al. (2014) and Schopen et al. (2011) indicates that
250 QTL1 on BTA1 is involved only in α_{s2} -CN production but not in α_{s1} -CN production,
251 suggesting α_{s1} -CN and α_{s2} -CN are regulated differently. The lead SNP (ARS-BFGL-NGS-
252 91705) of the QTL1 region is an intergenic variant. The gene closest to the lead SNP is F-box
253 protein 25 (*FBXO25*) that is located at 149.56-149.59 Mbp on BTA1. In cattle, *FBXO25* is
254 involved in the pathway of post-translational protein modification as adding ubiquitin to the

255 substrate protein according to UniProt (<http://www.uniprot.org/>) but has not been associated
256 with milk characteristics. The QTL2 region harbors the *SLC37A1* gene (145.72-145.80 Mbp)
257 encoding for a protein functioning as a phosphorus antiporter that translocates inorganic
258 phosphate in exchange of glucose-6-phosphate (Pan et al., 2011). Furthermore, a QTL
259 associated with phosphorus concentration has been identified in this region in Danish Jersey
260 (Buitenhuis et al., 2016) and Australian Holstein (Kemper et al., 2016).
261 We detected significant effects of ARS-BFGL-NGS-91705 (QTL1) on yields of α_{s1} -CN-8P,
262 α_{s2} -CN-10P, -11P and -12P, protein, phosphorus and P_{CN} (Table 2). These consistent negative
263 associations of the *G* allele with the yield traits confirm that QTL1 might affect only the
264 production of α_{s2} -CN. This is supported by the fact that we detected the significant effect of
265 QTL1 on test-day morning protein yield but did not detect significant effects on α_{s1} -CN PD
266 and α_{s2} -CN PD in the current study. The effect on protein yield is relatively small probably
267 because α_{s2} -CN contributes only about 10 % to the total milk protein. Furthermore, this QTL
268 has been reported to be associated with protein yield in Chinese Holstein (Jiang et al., 2010).
269 For BTB-00068200 (QTL2), we detected significant effects on yields of α_{s2} -CN-10P and -11P
270 and phosphorus as well as phosphorus content. The *G* allele was associated with higher yields
271 of α_{s2} -CN-10P and α_{s2} -CN -11P as well as higher content and yield of phosphorus.
272 Furthermore, we did not detect significant effects of BTB-00068200 on yields of milk and
273 protein. Therefore, the highly significant effect of QTL2 on phosphorus content [$-\log_{10}(P) =$
274 17.40] might be mainly due to the change of total phosphorus output in milk rather than a
275 change of milk volume. Similarly, significant effects of QTL2 on relative concentrations of
276 α_{s2} -CN-10P and -11P are probably mainly due to the change of yields of α_{s2} -CN-10P and α_{s2} -
277 CN -11P rather than a change of protein yield. Taken together, these associations suggest that
278 QTL2 has direct effects on phosphorylation degree by increasing the amount of the less
279 phosphorylated isoforms, which might be related to the regulation of phosphorus output in

280 milk. This is also supported by significant associations of BTB-00068200 with α_{s1} -CN PD
281 and α_{s2} -CN PD. Furthermore, the *SLC37A1* gene located in this region plays a role in
282 translocating inorganic phosphate (Pan et al., 2011), and it has been associated with the
283 phosphorus content in cows' milk (Kemper et al., 2016). Here, we show that this gene might
284 have a direct effect on total phosphorus output in milk, especially on the inorganic phosphorus
285 because we detected fairly small effects of BTB-00068200 on the content of phosphate groups
286 attached to caseins (P_{CN}) and no significant effect on the total amount of phosphate groups
287 attached to caseins (P_{CN} yield). Furthermore, the route of secreting inorganic phosphorus has
288 been shown to be similar to that of casein phosphate, which is via the Golgi apparatus
289 (Shennan and Peaker, 2000). We, therefore, hypothesize that the effect of QTL2 on
290 phosphorylation degrees of α_{s1} - and α_{s2} -CN might be because the secretion of inorganic
291 phosphate is interlinked with phosphorylation of caseins in the Golgi apparatus (Bingham and
292 Farrell, Jr., 1974; Moore et al., 1985) .

293 **BTA6**

294 The QTL region between 46.52 and 103.18 Mbp on BTA 6 was significantly associated with
295 relative concentrations of α_{s2} -CN-10P, α_{s2} -CN-11P, and α_{s2} -CN-12P. This region harbors the
296 casein gene cluster (around 87 Mbp). The SNP ARS-BFGL-NGS-94898 at 87.66 Mbp was
297 the lead SNP for α_{s2} -CN-10P concentration [-log₁₀(P) = 5.44]. The SNP ULGR_BTC-053514
298 at 83.57 Mbp was the lead SNP for both α_{s2} -CN-11P concentration [-log₁₀(P) = 38.49] and
299 α_{s2} -CN-12P concentration [-log₁₀(P) = 46.04]. This SNP was also previously reported as the
300 lead SNP for α_{s1} -CN-9P concentration (Bijl et al., 2014) and for total α_{s2} -CN concentration
301 (Schopen et al., 2011). No significant association on BTA6 was found with α_{s1} -CN PD and
302 α_{s2} -CN PD (Figure 1), suggesting this region is only involved in casein production but not in
303 the phosphorylation process. As shown by Fang et al. (2017b), the proportion of isoforms

304 with higher degrees of phosphorylation is hardly affected when more α_{s1} - and α_{s2} -CN are
305 produced, indicating that phosphorylation might not be an important rate limiting step.

306 The estimated effects of the lead SNP for α_{s2} -CN-12P concentration on relative concentrations
307 of individual α_{s2} -CN phosphorylation isoforms, α_{s1} -CN PD and α_{s2} -CN PD show that the *G*
308 allele was associated with lower concentrations of individual α_{s2} -CN phosphorylation
309 isoforms (Table 2). Highly significant effects on yields of individual α_{s2} -CN phosphorylation
310 isoforms confirm that this QTL affects α_{s2} -CN production. Note that this SNP did not pass the
311 genome-wide significance threshold for α_{s1} -CN PD and α_{s2} -CN PD.

312 **BTA11**

313 The QTL region between 95.06 and 109.41 Mbp on BTA11 was significantly associated with
314 relative concentrations of α_{s2} -CN-10P and α_{s2} -CN-11P, α_{s1} -CN PD and α_{s2} -CN PD. This
315 region harbors the *PAEP* gene encoding for β -LG. The SNP ULGR_SNP_X14710_1740
316 (rs41255679) at 107.2 Mbp was the lead SNP for α_{s2} -CN-10P concentration $[-\log_{10}(P) =$
317 $4.96]$, α_{s2} -CN-11P concentration $[-\log_{10}(P) = 10.42]$, α_{s1} -CN PD $[-\log_{10}(P) = 6.33]$ and α_{s2} -CN
318 PD $[-\log_{10}(P) = 10.42]$. This SNP was previously reported as the lead SNP on BTA11 for α_{s1} -
319 CN-8P concentration (Bijl et al., 2014). It is located in the promoter region of the *PAEP* gene
320 and is in linkage disequilibrium with β -LG protein variants A and B (Ganai et al., 2009).

321 The estimated effects of β -LG genotypes on all studied traits (Table 2) show that the BB
322 genotype was associated with higher α_{s1} -CN-8P, α_{s2} -CN-10P and α_{s2} -CN-11P concentrations
323 (isoforms with lower degrees of phosphorylation). This results in lower degrees of
324 phosphorylation of α_{s1} -CN and α_{s2} -CN as shown by the negative association of the BB
325 genotype with both α_{s1} -CN PD and α_{s2} -CN PD. Buitenhuis et al. (2016) and Fang et al.
326 (2017a) did not detect significant effects of β -LG genotypes on individual α_{s2} -CN
327 phosphorylation isoforms, α_{s1} -CN PD and α_{s2} -CN PD in Danish Holstein and Danish Jersey,
328 and in French Montbéliarde, respectively. Differences between studies might be due to the

329 genetic differences between studied breeds (Holstein, Montbéliarde and Jersey) such as
330 differences in linkage disequilibrium between β -LG genotypes and other variants that affect
331 the traits of interest, limited sample size of Buitenhuis et al. (2016) and Fang et al. (2017a),
332 and the use of different analytical methods. Regarding differences in linkage disequilibrium
333 between β -LG genotypes and other variants across breeds, Bijl et al. (2014) detected a
334 significant effect of β -LG genotypes only on α_{s1} -CN-8P concentration in Dutch Holstein
335 Friesian, whereas Fang et al. (2017a) detected significant effects of β -LG genotypes on both
336 α_{s1} -CN-8P and α_{s1} -CN-9P concentrations in French Montbéliarde. The reported effect of β -
337 LG BB genotype on β -LG concentration in French Montbéliarde by Fang et al. (2017a) was
338 about 1.5 times larger than the one in Dutch Holstein Friesian reported by Heck et al. (2009).
339 Therefore, the observed genotype effect of β -LG in French Montbéliarde might be the result
340 of multiple linked variants. This might explain the differences in effects of β -LG genotypes
341 on individual α_{s1} - and α_{s2} -CN isoforms, α_{s1} -CN PD and α_{s2} -CN PD in different breeds.
342 Differences between CZE used by Bijl et al. (2014) and LC-ESI/MS used by Fang et al.
343 (2017a) seem to be negligible for the measurement of α_{s1} -CN isoforms and α_{s1} -CN PD
344 according to Fang et al. (2017b). However, protein fractions measured with the same
345 analytical method, such as LC (as used by Buitenhuis et al., 2016 and by Fang et al., 2017a),
346 may still differ because of differences in separation conditions.
347 Significant effects of β -LG genotypes on yields of α_{s1} -CN-9P, α_{s2} -CN-10P and -11P were
348 detected (Table 2), but the effects on α_{s1} -CN-9P yield were relatively small. The BB genotype
349 was associated with higher yields of α_{s2} -CN-10P and -11P. Surprisingly, we did not detect a
350 significant effect on the yield of α_{s1} -CN-8P, whereas we detected a highly significant effect on
351 α_{s1} -CN-8P concentration. Furthermore, we detected highly significant effects of β -LG
352 genotypes on P_{CN} content [$-\log_{10}(P) = 6.49$] but no effect on P_{CN} yield. This might be due to
353 the fact that β -LG genotype is associated with higher proportion of caseins. Previous studies

354 have shown that the β -LG B variant decreases the proportion of β -LG, which results in
355 increased proportions of caseins (Bobe et al., 1999; Hallén et al., 2008; Heck et al., 2009;
356 Bonfatti et al., 2010; Fang et al., 2017a). We show that the β -LG B variant increases only the
357 proportions of α_{s1} - and α_{s2} -CN isoforms phosphorylated at a lower degree and thus decreases
358 α_{s1} -CN PD and α_{s2} -CN PD. Three possible explanations could be that either phosphorylation
359 is a rate limiting step due to increased casein production, the interaction between the amount
360 of phosphorus available and increased α_{s1} - and α_{s2} -CN production, or β -LG has a role in the
361 phosphorylation. As discussed above, phosphorylation might not be an important rate limiting
362 step for the production of α_{s1} - and α_{s2} -CN phosphorylation isoforms, thus, increased α_{s1} - and
363 α_{s2} -CN production that is associated with the β -LG B variant in itself should not affect α_{s1} -CN
364 PD and α_{s2} -CN PD. Furthermore, we did not detect significant interactions between β -LG
365 genotypes and QTL2 on BTA1 for α_{s1} -CN PD ($P = 0.26$) and α_{s2} -CN PD ($P = 0.56$),
366 suggesting the amount of phosphorus available is not rate limiting. Taken together, β -LG
367 seems to play a role in regulating milk protein composition, proportion of individual α_{s1} - and
368 α_{s2} -CN phosphorylation isoforms, and the phosphorylation process. Several roles have been
369 suggested for β -LG but its true biological function remains elusive (Kontopidis et al., 2002).
370 Therefore, the actual mechanism causing the effects of β -LG genotypes on the concentrations
371 of caseins is currently unknown as well as the role of β -LG in the phosphorylation process.

372 **BTA14**

373 The QTL region between 0.2 and 19.36 Mbp on BTA14 was significantly associated with
374 relative concentrations of α_{s2} -CN-10P and α_{s2} -CN-11P, α_{s1} -CN PD, and α_{s2} -CN PD. This
375 region harbors the *DGAT1* gene. The SNP ULGR_ SNP_AJ318490_1c (rs109234250) at 0.44
376 Mbp was the lead SNP for α_{s2} -CN-10P concentration [$-\log_{10}(P) = 17.04$], α_{s2} -CN-11P
377 concentration [$-\log_{10}(P) = 21.98$], α_{s1} -CN PD [$-\log_{10}(P) = 48.79$] and α_{s2} -CN PD [$-\log_{10}(P) =$
378 21.55]. This SNP was previously reported as the lead SNP on BTA14 for α_{s1} -CN-9P

379 concentration (Bijl et al., 2014), and is one of two SNPs responsible for the DGAT1 K232A
380 polymorphism.

381 The effects of DGAT1 genotypes on all studied traits (Table 2) show that the *K* allele was
382 associated with higher α_{s2} -CN-10P and α_{s2} -CN-11P concentrations (isoforms with lower
383 degrees of phosphorylation) and lower concentration of α_{s1} -CN-9P (isoform with higher
384 degrees of phosphorylation). This results in lower degrees of phosphorylation of α_{s1} - and α_{s2} -
385 CN as shown by the negative association of the *K* allele with both α_{s1} -CN PD and α_{s2} -CN PD.
386 Furthermore, *DGAT1* does not affect α_{s1} -CN-8P concentration (Bijl et al., 2014) and α_{s2} -CN-
387 12P concentration (this study) at the genome wide significance level. Bovenhuis et al. (2016)
388 showed that *DGAT1* affects α_{s2} -CN concentration in Dutch Holstein Friesian and Danish
389 Holstein Friesian. The *K* allele was associated with higher α_{s2} -CN concentration. Here, we
390 show that the increase of α_{s2} -CN concentration is due to the increase of α_{s2} -CN-10P and α_{s2} -
391 CN-11P concentrations in Dutch Holstein Friesian.

392 For the effects of DGAT1 genotypes on the yields of individual isoforms and milk production
393 traits, we detected significant effects on yields of all α_{s1} - and α_{s2} -CN phosphorylation
394 isoforms, milk, protein, phosphorus and P_{CN} as well as contents of protein, phosphorus and
395 P_{CN} . The effects of the DGAT1 genotypes on the yields of α_{s1} -CN-8P, α_{s2} -CN-11P and α_{s2} -
396 CN-12P were relatively small, and might be due to the change in the protein yield as the
397 genotype effects on the yields of α_{s1} -CN-8P, α_{s2} -CN-11P, α_{s2} -CN-12P and protein were in the
398 same direction and of similar magnitude. The highly significant effects on yields of α_{s1} -CN-
399 9P and α_{s2} -CN-10P suggest direct effects of DGAT1 on these isoforms as the direction and
400 magnitude of effects on their relative concentration in milk and yields are similar. The
401 biological relation between DGAT1, content and yield of fat, and fatty acid composition are
402 easier to comprehend as the DGAT1 enzyme is involved in biosynthesis of triacylglycerol
403 (Coleman and Lee, 2004), whereas the biological relation of DGAT1 and phosphorylation of

404 caseins is still unclear. The contribution of DGAT1 to the variation in specific isoforms in
405 Dutch Holstein Friesian seems similar to the contribution of QTL2 on BTA1, suggesting a
406 similar mode of action. This is in line with Bovenhuis et al. (2016), who showed that DGAT1
407 might affect the distribution of phosphorus between casein micelles and milk serum.

408 ***Additional Regions***

409 In addition to the four QTL regions with effects on multiple casein phosphorylation traits, we
410 also detected trait-specific QTL on BTA2, 9, 15, 18, 24 and 28. On BTA2, a QTL region
411 located between 113.63 and 113.67 Mbp was associated uniquely with α_{s2} -CN-12P
412 concentration. The gene closest to this QTL region is ephrin type-A receptor 4 precursor
413 (*EPHA4*) that is located at 114.15-114.20 Mbp on BTA2. In cattle, *EPHA4* is an
414 uncharacterized protein, whereas in human, it is a kinase phosphorylating tyrosine and is
415 involved in cell adhesion and neurogenesis (Murai et al., 2003; Poitz et al., 2015). Two QTL
416 regions were associated uniquely with α_{s2} -CN-11P concentration. The first QTL region is
417 located between 98.45 and 99.32 Mbp on BTA9. The lead SNP ARS-BFGL-NGS-102803
418 (rs109099768) is an intron variant located in the serine active site containing 1 (*SERAC1*)
419 gene. In human, the *SERAC1* protein plays an important role in mediating phospholipid
420 exchange that is essential for both mitochondrial functioning and intracellular cholesterol
421 trafficking (Wortmann et al., 2012). The second QTL region located between 18.55 and 19.13
422 Mbp on BTA28 harbors the receptor accessory protein 3 (*REEP3*) gene. A total of three
423 unique QTL regions were associated with α_{s1} -CN PD, which were located at 54.61 Mbp on
424 BTA15, between 35.68 and 36.09 Mbp on BTA18, and between 20.49 and 21.11 Mbp on
425 BTA24, respectively. On BTA15, the gene closest to the QTL region is microtubule affinity-
426 regulating kinase 1 (*MARK1*). On BTA18, the QTL region harbors the proteasome 26S
427 subunit, non-ATPase 7 (*PSMD7*) gene (36.00-36.02 Mbp). On BTA24, the QTL region
428 harbors the CUGBP Elav-like family member 4 (*CELF4*) gene. None of the genes mentioned

429 above has been associated with milk characteristics. Thus, no clear candidate genes could be
430 identified for those trait-specific QTL.

431 **CONCLUSION**

432 We detected a total of 10 QTL regions for relative concentrations of individual α_{s2} -CN
433 phosphorylation isoforms and the phosphorylation degrees of α_{s1} - and α_{s2} -CN (α_{s1} -CN PD and
434 α_{s2} -CN PD) on chromosomes 1, 2, 6, 9, 11, 14, 15, 18, 24 and 28. Regions associated with
435 multiple traits were found on BTA 1, 6, 11, and 14. We showed two QTL regions on BTA1:
436 one affects α_{s2} -CN production and the other harboring the *SLC37A1* gene affects the
437 phosphorylation of α_{s1} -CN and α_{s2} -CN. The QTL region on BTA6 harbors the casein gene
438 cluster and affects the production of casein. The QTL region on BTA11 harbors the *PAEP*
439 gene encoding β -LG and affects both casein production and phosphorylation. The QTL region
440 on BTA14 harbors the *DGAT1* gene and effects on phosphorylation of α_{s1} -CN and α_{s2} -CN are
441 likely to be indirect, i.e. due to the effect of DGAT1 on traits like milk yield and protein
442 content. Elucidation of the actual roles of *SLC37A1*, β -LG and DGAT1 in α_{s1} - and α_{s2} -CN
443 phosphorylation in Dutch Holstein Friesian requires further investigation. Furthermore, more
444 knowledge on the effects of the phosphorylation degrees of α_{s1} -CN and α_{s2} -CN on
445 technological properties of milk is needed before results can be implemented in breeding.

446 **ACKNOWLEDGMENTS**

447 This study is part of the Dutch Milk Genomics Initiative, funded by Wageningen University
448 (Wageningen, the Netherlands), the Dutch Dairy Association NZO (Zoetermeer, the
449 Netherlands), Cooperative Cattle Improvement Organization CRV (Arnhem, the
450 Netherlands), and the Dutch Technology Foundation STW (Utrecht, the Netherlands). The
451 first author benefited from an Erasmus-Mundus fellowship and a grant by APIS-GENE,
452 within the framework of the European Graduate School in Animal Breeding and Genetics
453 (EGS-ABG, Paris, France).

REFERENCES

455 Bijl, E., H.J.F. van Valenberg, T. Huppertz, A.C.M. van Hooijdonk, and H. Bovenhuis. 2014.
456 Phosphorylation of α S1-casein is regulated by different genes. *J. Dairy Sci.* 97:7240–
457 7246. doi:10.3168/jds.2014-8061.

458 Bingham, E.W., and H.M. Farrell, Jr. 1974. Casein kinase from the Golgi apparatus of
459 lactating mammary gland. *J. Biol. Chem.* 249:3647–3651.

460 Bobe, G., D.C. Beitz, A.E. Freeman, and G.L. Lindberg. 1999. Effect of milk protein
461 genotypes on milk protein composition and its genetic parameter estimates. *J. Dairy Sci.*
462 82:2797–2804. doi:10.3168/jds.S0022-0302(99)75537-2.

463 Bonfatti, V., G. Di Martino, A. Cecchinato, L. Degano, and P. Carnier. 2010. Effects of β - κ -
464 casein (CSN2-CSN3) haplotypes and β -lactoglobulin (BLG) genotypes on milk
465 production traits and detailed protein composition of individual milk of Simmental cows.
466 *J. Dairy Sci.* 93:3797–3808. doi:10.3168/jds.2009-2779.

467 Bovenhuis, H., M.H.P.W. Visker, N.A. Poulsen, J. Sehested, H.J.F. van Valenberg, J.A.M.
468 van Arendonk, L.B. Larsen, and A.J. Buitenhuis. 2016. Effects of the diacylglycerol o-
469 acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral
470 composition of dairy cattle milk. *J. Dairy Sci.* 99:3113–3123. doi:10.3168/jds.2015-
471 10462.

472 Buitenhuis, B., N.A. Poulsen, G. Gebreyesus, and L.B. Larsen. 2016. Estimation of genetic
473 parameters and detection of chromosomal regions affecting the major milk proteins and
474 their post translational modifications in Danish Holstein and Danish Jersey cattle. *BMC*
475 *Genet.* 17. doi:10.1186/s12863-016-0421-2.

476 Caroli, A.M., S. Chessa, and G.J. Erhardt. 2009. Invited review: milk protein polymorphisms
477 in cattle: effect on animal breeding and human nutrition. *J. Dairy Sci.* 92:5335–5352.

478 Coleman, R.A., and D.P. Lee. 2004. Enzymes of triacylglycerol synthesis and their regulation.
479 *Prog. Lipid Res.* 43:134–176. doi:10.1016/S0163-7827(03)00051-1.

480 Dabney, A., J.D. Storey, and G.R. Warnes. 2010. qvalue: Q-value estimation for false
481 discovery rate control. *R Packag.* version 1.

482 Dalgleish, D.G., and M. Corredig. 2012. The structure of the casein micelle of milk and its
483 changes during processing. *Annu. Rev. Food Sci. Technol.* 3:449–467.
484 doi:10.1146/annurev-food-022811-101214.

485 Fang, Z.H., H. Bovenhuis, A. Delacroix-Buchet, G. Miranda, D. Boichard, M.H.P.W. Visker,
486 and P. Martin. 2017a. Genetic and nongenetic factors contributing to differences in α S-
487 casein phosphorylation isoforms and other major milk proteins. *J. Dairy Sci.* 100:5564–
488 5577. doi:10.3168/jds.2016-12338.

489 Fang, Z.H., H. Bovenhuis, H.J.F. van Valenberg, P. Martin, T. Huppertz, and M.H.P.W.
490 Visker. 2017b. Genetic parameters for α S1- and α S2-casein phosphorylation isoforms in
491 Dutch Holstein Friesian. *J. Dairy Sci.* 101:1–11.

492 Fang, Z.H., M.H.P.W. Visker, G. Miranda, A. Delacroix-Buchet, H. Bovenhuis, and P.
493 Martin. 2016. The relationships among bovine α S-casein phosphorylation isoforms
494 suggest different phosphorylation pathways. *J. Dairy Sci.* 99:8168–8177.
495 doi:10.3168/jds.2016-11250.

496 Ganai, N.A., H. Bovenhuis, J.A.M. van Arendonk, and M.H.P.W. Visker. 2009. Novel
497 polymorphisms in the bovine beta-lactoglobulin gene and their effects on beta-
498 lactoglobulin protein concentration in milk. *Anim. Genet.* 40:127–133.
499 doi:10.1111/j.1365-2052.2008.01806.x.

500 Gilmour, A.R., B.J. Gogel, B.R. Cullis, S.J. Welham, and R. Thompson. 2015. ASReml user
501 guide release 4.1 structural specification. Hemel Hempstead VSN Int. Ltd.

502 Hallén, E., A Wedholm, A Andrén, A Lundén, A. Wedholm, A. Andrén, and A. Lundén.

503 2008. Effect of beta-casein, kappa-casein and beta-lactoglobulin genotypes on
504 concentration of milk protein variants. *J. Anim. Breed. Genet.* 125:119–129.
505 doi:10.1111/j.1439-0388.2007.00706.x.

506 Heck, J.M.L., C. Olieman, A. Schennink, H.J.F. van Valenberg, M.H.P.W. Visker, R.C.R.
507 Meuldijk, and A.C.M. van Hooijdonk. 2008. Estimation of variation in concentration,
508 phosphorylation and genetic polymorphism of milk proteins using capillary zone
509 electrophoresis. *Int. Dairy J.* 18:548–555. doi:10.1016/j.idairyj.2007.11.004.

510 Heck, J.M.L., A. Schennink, H.J.F. Van Valenberg, H. Bovenhuis, M.H.P.W. Visker, J.A.M.
511 Van Arendonk, and A.C.M. van Hooijdonk. 2009. Effects of milk protein variants on the
512 protein composition of bovine milk. *J. Dairy Sci.* 92:1192–1202. doi:10.3168/jds.2008-
513 1208.

514 Holland, J.W., and M.J. Boland. 2014. Post-translational modifications of caseins. Second
515 Edi. H. Singh, A. Thompson, and M. Boland, ed. Elsevier Inc.

516 Holt, C., J.A. Carver, H. Ecroyd, and D.C. Thorn. 2013. Invited review: Caseins and the
517 casein micelle: Their biological functions, structures, and behavior in foods. *Journal Dairy*
518 *Sci.* 96:6127–6146. doi:10.3168/jds.2013-6831.

519 van Hulzen, K.J.E., R.C. Sprong, R. van der Meer, and J.A.M. van Arendonk. 2009. Genetic
520 and nongenetic variation in concentration of selenium, calcium, potassium, zinc,
521 magnesium, and phosphorus in milk of Dutch Holstein-Friesian cows. *J. Dairy Sci.*
522 92:5754–5759. doi:10.3168/jds.2009-2406.

523 Huppertz, T., I. Gazi, H. Luyten, H. Nieuwenhuijse, A. Alting, and E. Schokker. 2017.
524 Hydration of casein micelles and caseinates: Implications for casein micelle structure.
525 *Int. Dairy J.* 74:1–11. doi:10.1016/j.idairyj.2017.03.006.

526 Jiang, L., J. Liu, D. Sun, P. Ma, X. Ding, Y. Yu, and Q. Zhang. 2010. Genome wide
527 association studies for milk production traits in Chinese Holstein population.. *PLoS One*
528 5:e13661. doi:10.1371/journal.pone.0013661.

529 Kemper, K.E., M.D. Littlejohn, T. Lopdell, B.J. Hayes, P.M. Visscher, M. Carrick, and M.E.
530 Goddard. 2016. Leveraging genetically simpler traits to identify small-effect variants for
531 complex phenotypes. *BMC Genomics* 1–9. doi:10.1186/s12864-016-3175-3.

532 Kontopidis, G., C. Holt, and L. Sawyer. 2002. The ligand-binding site of bovine β -
533 lactoglobulin: Evidence for a function?. *J. Mol. Biol.* 318:1043–1055.
534 doi:10.1016/S0022-2836(02)00017-7.

535 De Kruif, C.G., and C. Holt. 2003. Casein micelle structure, functions and interactions. 3rd
536 ed. P.F. Fox and P.L.H. McSweeney, ed. Springer US.

537 De Kruif, C.G., T. Huppertz, V.S. Urban, and A. V. Petukhov. 2012. Casein micelles and
538 their internal structure. *Adv. Colloid Interface Sci.* 171–172:36–52.
539 doi:10.1016/j.cis.2012.01.002.

540 Liu, Y., X. Qin, X.Z. Song, H. Jiang, Y. Shen, K.J. Durbin, S. Lien, M.P. Kent, M. Sodeland,
541 Y. Ren, L. Zhang, E. Sodergren, P. Havlak, K.C. Worley, G.M. Weinstock, and R.A.
542 Gibbs. 2009. Bos taurus genome assembly. *BMC Genomics* 10:180. doi:1471-2164-10-
543 180 [pii]\r10.1186/1471-2164-10-180.

544 Moore, A., A.P. Boulton, H.W. Heid, E.D. Jarasch, and R.K. Craig. 1985. Purification and
545 tissue-specific expression of casein kinase from the lactating guinea-pig mammary gland.
546 *Eur. J. Biochem.* 152:729–37.

547 Murai, K.K., L.N. Nguyen, F. Irie, Y. Yamaguchi, and E.B. Pasquale. 2003. Control of
548 hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. *Nat.*
549 *Neurosci.* 6:153.

550 Pan, C.J., S.Y. Chen, H.S. Jun, S.R. Lin, B.C. Mansfield, and J.Y. Chou. 2011. SLC37A1 and
551 SLC37A2 are phosphate-linked, glucose-6-phosphate antiporters. *PLoS One* 6:1–8.
552 doi:10.1371/journal.pone.0023157.

553 Poitz, D.M., G. Ende, B. Stütz, A. Augstein, J. Friedrichs, C. Brunssen, C. Werner, R.H.
554 Strasser, and S. Jellinghaus. 2015. EphrinB2/EphA4-mediated activation of endothelial
555 cells increases monocyte adhesion. *Mol. Immunol.* 68:648–656.

556 R Core Team. 2015. R: A language and environment for statistical computing. R Foundation
557 for Statistical Computing, Vienna, Austria. URL <http://www.R-project.org>.

558 Schennink, A., W.M. Stoop, M.H.P.W. Visker, J.M.L. Heck, H. Bovenhuis, J.J. Van Der
559 Poel, H.J.F. Van Valenberg, and J.A.M. Van Arendonk. 2007. DGAT1 underlies large
560 genetic variation in milk-fat composition of dairy cows. *Anim. Genet.* 38:467–473.
561 doi:10.1111/j.1365-2052.2007.01635.x.

562 Schopen, G.C.B., J.M.L. Heck, H. Bovenhuis, M.H.P.W. Visker, H.J.F. van Valenberg, and
563 J.A.M. van Arendonk. 2009. Genetic parameters for major milk proteins in Dutch
564 Holstein-Friesians. *J. Dairy Sci.* 92:1182–1191. doi:10.3168/jds.2008-1281.

565 Schopen, G.C.B., M.H.P.W. Visker, P.D. Koks, E. Mullaart, J.A.M. van Arendonk, and H.
566 Bovenhuis. 2011. Whole-genome association study for milk protein composition in dairy
567 cattle. *J. Dairy Sci.* 94:3148–3158. doi:10.3168/jds.2010-4030.

568 Shennan, D.B., and M. Peaker. 2000. Transport of milk constituents by the mammary gland..
569 *Physiol. Rev.* 80:925–51. doi:10.1152/physrev.2000.80.3.925.

570 Tagliabracci, V.S., J.L. Engel, J. Wen, S.E. Wiley, C.A. Worby, L.N. Kinch, J. Xiao, N. V
571 Grishin, and J.E. Dixon. 2012. Secreted kinase phosphorylates extracellular proteins that
572 regulate biomineralization. *Science* 336:1150–3. doi:10.1126/science.1217817.

573 Turner, S.D. 2014. qqman: an R package for visualizing GWAS results using QQ and
574 manhattan plots. *BioRxiv* 5165. doi:10.1101/005165.

575 Wedholm, A., L.B. Larsen, H. Lindmark-Måansson, A.H. Karlsson, and A. Andrén. 2006.
576 Effect of protein composition on the cheese-making properties of milk from individual
577 dairy cows. *J. Dairy Sci.* 89:3296–305. doi:10.3168/jds.S0022-0302(06)72366-9.

578 Wilmink, J.B.M. 1987. Adjustment of test-day milk, fat and protein yield for age, season and
579 stage of lactation. *Livest. Prod. Sci.* 16:335–348. doi:10.1016/0301-6226(87)90003-0.

580 Wortmann, S.B., F.M. Vaz, T. Gardeitchik, L.E.L.M. Vissers, G.H. Renkema, J.H.M.
581 Schuurs-Hoeijmakers, W. Kulik, M. Lammens, C. Christin, and L.A.J. Kluijtmans. 2012.
582 Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function
583 and intracellular cholesterol trafficking and cause dystonia and deafness. *Nat. Genet.*
584 44:797.

585

586 **Table 1.** Mean, standard deviation (SD), intra-herd heritability estimate (h^2)^a, and proportion
 587 of phenotypic variance explained by herd (h_{herd})^a for relative concentrations of individual α_{s1} -
 588 CN and α_{s2} -CN phosphorylation isoforms, and for the phosphorylation degrees (PD)^b of α_{s1} -
 589 CN and α_{s2} -CN measured on test-day morning milk samples from 1,857 Dutch Holstein
 590 Friesian cows (SE in parentheses).

Trait (%wt/wt)	Mean	SD	σ_p^2	h^2	h_{herd}
α_{s1} -CN ^c	33.64	1.66	2.80	0.52 (0.11)	0.11 (0.02)
α_{s1} -CN-8P ^c	21.26	1.13	1.32	0.48 (0.10)	0.12 (0.02)
α_{s1} -CN-9P ^c	7.42	1.07	1.18	0.76 (0.12)	0.08 (0.02)
α_{s2} -CN	6.67	0.95	0.98	0.94 (0.12)	0.08 (0.02)
α_{s2} -CN-10P	0.99	0.39	0.16	0.54 (0.11)	0.10 (0.02)
α_{s2} -CN-11P	3.44	0.57	0.33	0.89 (0.12)	0.08 (0.02)
α_{s2} -CN-12P	2.24	0.22	0.05	0.71 (0.12)	0.07 (0.02)
Phosphorylation degree					
α_{s1} -CN PD	25.79	2.72	7.66	0.78 (0.12)	0.08 (0.02)
α_{s2} -CN PD	34.01	4.24	18.18	0.64 (0.11)	0.09 (0.02)

591 ^{a,b} Adopted from Fang et al. 2017b

592 ^c α_{s1} -CN PD = α_{s1} -CN-9P / (α_{s1} -CN-8P + α_{s1} -CN-9P) \times 100; α_{s2} -CN PD = α_{s2} -CN-12P / (α_{s2} -
 593 CN-10P + α_{s2} -CN-11P + α_{s2} -CN-12P) \times 100. P = phosphate group attached.

594

595

596 **Figure 1.** Significance $[-\log_{10}(P)]$ of associations of 44,669 genome wide SNP located on 29
 597 *Bos taurus* autosomes and the X chromosome with individual α_{s2} -CN phosphorylation
 598 isoforms and the phosphorylation degrees of α_{s1} -CN (α_{s1} -CN PD) and α_{s2} -CN (α_{s2} -CN PD).
 599 α_{s1} -CN PD = α_{s1} -CN-9P / (α_{s1} -CN-8P + α_{s1} -CN-9P) $\times 100$; α_{s2} -CN PD = α_{s2} -CN-12P / (α_{s2} -
 600 CN-10P + α_{s2} -CN-11P + α_{s2} -CN-12P) $\times 100$. P = phosphate group attached. The horizontal
 601 line represents a false discovery rate of 1%. The y-axes are cut off at $-\log_{10}(P)=20$.

602 **Figure 2.** Significance $[-\log_{10}(P)]$ of associations of SNP between 141 and 152.5 Mbp on
603 BTA1 with (A) $\alpha_{s2}\text{-CN-12P}$ and the phosphorylation degree of $\alpha_{s1}\text{-CN}$ ($\alpha_{s1}\text{-CN PD}$), (B) after
604 including SNP ARS-BFGL-NGS-91705 genotypes as a fixed effect, (C) showing only the
605 most significant SNP for individual $\alpha_{s1}\text{-CN}$ and $\alpha_{s2}\text{-CN}$ phosphorylation isoforms, and the
606 phosphorylation degrees of $\alpha_{s1}\text{-CN}$ ($\alpha_{s1}\text{-CN PD}$) and $\alpha_{s2}\text{-CN}$ ($\alpha_{s2}\text{-CN PD}$), and (D) after
607 including SNP BTB-00068200 genotypes as a fixed effect. $\alpha_{s1}\text{-CN PD} = \alpha_{s1}\text{-CN-9P} / (\alpha_{s1}\text{-CN-}$
608 $8\text{P} + \alpha_{s1}\text{-CN-9P}) \times 100$; $\alpha_{s2}\text{-CN PD} = \alpha_{s2}\text{-CN-12P} / (\alpha_{s2}\text{-CN-10P} + \alpha_{s2}\text{-CN-11P} + \alpha_{s2}\text{-CN-}$
609 $12\text{P}) \times 100$. P = phosphate group attached. The shaded region corresponds to the location of
610 the *SLC37A1* gene.
611

612 **Table 2.** Effects of SNP ARS-BFGL-NGS-91705 (BTA1, QTL1), SNP BTB-00068200 (BTA1, QTL2), SNP ULGR_BTC-053514 (BTA6), β -
613 LG (BTA11) and diacylglycerol acyltransferase 1 (DGAT1, BTA14) genotypes on relative concentrations and yields of individual α_{s1} - and α_{s2} -
614 CN phosphorylation isoforms, the phosphorylation degrees (PD)^a of α_{s1} - and α_{s2} -CN, protein and phosphorus (P) contents, and milk, protein and
615 phosphorus yields measured on test-day morning milk samples from 1,857 Dutch Holstein Friesian cows (SE in parentheses).

Trait	BTA1 ARS-BFGL-NGS-91705 ^b			BTA1 BTB-00068200 ^c			BTA6 ULGR_BTC-053514			BTA11 β -LG			BTA14 DGAT1		
	AA	GG	-Log(P)	AA	GG	-Log(P)	AA	GG	-Log(P)	AA	BB	-Log(P)	AA	KK	-Log(P)
(% wt/wt)	n=821	n=131		n=50	n=1121		n=637	n=945		n=539	n=262		n=628	n=276	
α_{s1} -CN-8P	0.00 (0.05)	0.05 (0.10)	0.06 ^{NS}	-0.19 (0.15)	0.02 (0.06)	0.39 ^{NS}	-0.42 (0.11)	0.49 (0.06)	23.80***	-0.32 (0.06)	0.41 (0.07)	17.20***	-0.06 (0.06)	0.01 (0.07)	0.27 ^{NS}
α_{s1} -CN-9P	-0.03 (0.05)	0.06 (0.10)	0.19 ^{NS}	0.06 (0.14)	-0.20 (0.06)	2.94**	-0.12 (0.11)	0.33 (0.05)	9.39***	0.07 (0.05)	-0.12 (0.07)	1.14 ^{NS}	0.53 (0.05)	-0.44 (0.06)	43.16***
α_{s2} -CN-10P	0.02 (0.02)	-0.06 (0.04)	0.87 ^{NS}	-0.03 (0.05)	0.09 (0.02)	4.13***	0.03 (0.04)	-0.08 (0.02)	4.42***	-0.06 (0.02)	0.09 (0.03)	5.33***	-0.12 (0.02)	0.13 (0.02)	19.47***
α_{s2} -CN-11P	0.08 (0.03)	-0.17 (0.05)	5.71***	-0.14 (0.08)	0.11 (0.03)	4.59***	0.20 (0.05)	-0.33 (0.03)	38.49***	-0.12 (0.03)	0.16 (0.04)	9.87***	-0.23 (0.03)	0.14 (0.03)	23.97***
α_{s2} -CN-12P	0.05 (0.01)	-0.07 (0.02)	8.51***	-0.03 (0.03)	-0.00 (0.01)	0.16 ^{NS}	0.13 (0.02)	-0.14 (0.01)	46.04***	-0.00 (0.01)	-0.00 (0.02)	0.07 ^{NS}	0.01 (0.01)	-0.04 (0.01)	1.50*
α_{s1} -CN PD ^a	-0.11 (0.12)	0.20 (0.22)	0.39 ^{NS}	0.40 (0.33)	-0.55 (0.13)	4.57***	-0.10 (0.26)	0.46 (0.13)	3.25 ***	0.42 (0.13)	-0.60 (0.16)	6.62***	1.32 (0.11)	-1.12 (0.15)	21.46***
α_{s2} -CN PD ^a	0.05 (0.13)	0.23 (0.24)	0.21 ^{NS}	0.12 (0.36)	-0.62 (0.14)	4.44***	-0.04 (0.28)	0.39 (0.13)	2.22 **	0.49 (0.13)	-0.89 (0.17)	10.73***	0.94 (0.13)	-0.88 (0.16)	23.45***
Yield (g)	n=760	n=119		n=45	n=1045		n=81	n=868		n=492	n=245		n=578	n=250	
α_{s1} -CN-8P	0.21 (0.93)	-4.53 (1.76)	1.55*	-0.12 (2.69)	1.66 (1.01)	0.60 ^{NS}	-1.93 (2.05)	0.72 (1.00)	0.29 ^{NS}	-0.89 (0.98)	1.21 (1.25)	0.48 ^{NS}	0.18 (0.96)	-3.76 (1.24)	2.21**
α_{s1} -CN-9P	-0.05 (0.36)	-1.25 (0.68)	0.65 ^{NS}	0.19 (1.04)	-0.17 (0.40)	0.05 ^{NS}	-0.47 (0.79)	0.96 (0.38)	1.46*	0.60 (0.38)	-0.80 (0.48)	1.4*	2.68 (0.36)	-3.17 (0.46)	28.95***
α_{s2} -CN-10P	0.10 (0.11)	-0.59 (0.20)	2.31**	-0.32 (0.31)	0.42 (0.12)	3.34***	0.14 (0.23)	-0.45 (0.11)	4.28***	-0.26 (0.11)	0.35 (0.15)	2.99**	-0.60 (0.11)	0.40 (0.14)	10.66***
α_{s2} -CN-11P	0.42 (0.21)	-1.64 (0.40)	5.23***	-0.46 (0.61)	0.74 (0.23)	2.52**	0.88 (0.45)	-1.78 (0.22)	16.86***	-0.55 (0.23)	0.55 (0.29)	2.57**	-1.03 (0.22)	-0.08 (0.28)	5.05***
α_{s2} -CN-12P	0.27 (0.11)	-0.83 (0.21)	5.78***	-0.10 (0.32)	0.18 (0.12)	0.55 ^{NS}	0.60 (0.24)	-0.81 (0.12)	13.71***	-0.03 (0.12)	-0.14 (0.15)	0.23 ^{NS}	0.06 (0.11)	-0.60 (0.15)	4.24***
Production and P	n=760	n=119		n=45	n=1045		n=85	n=945		n=492	n=245		n=578	n=250	
Protein content (%)	-0.01 (0.01)	-0.03 (0.03)	0.29 ^{NS}	-0.03 (0.04)	0.03 (0.02)	1.12 ^{NS}	0.02 (0.03)	-0.09 (0.01)	8.25***	-0.02 (0.01)	0.02 (0.02)	0.75 ^{NS}	-0.15 (0.01)	0.11 (0.02)	44.41***
P content (mg/kg)	4.92 (4.58)	-9.29 (8.60)	0.62 ^{NS}	-18.35 (12.61)	42.63 (4.96)	17.40***	1.20 (9.99)	-8.90 (4.88)	0.77 ^{NS}	-3.93 (4.90)	2.90 (6.26)	0.22 ^{NS}	-47.90 (4.50)	38.66 (5.81)	41.94***
P _{CN} content ^d (mM)	-0.02 (0.04)	-0.61 (0.07)	0.18 ^{NS}	-0.16 (0.11)	0.08 (0.04)	1.44*	0.04 (0.08)	-0.22 (0.04)	7.40***	-0.16 (0.04)	0.15 (0.05)	6.49***	-0.34 (0.04)	0.24 (0.05)	29.65***
Milk yield (kg)	0.06 (0.13)	-0.49 (0.24)	1.05 ^{NS}	0.19 (0.36)	0.11 (0.14)	0.16 ^{NS}	-0.07 (0.28)	0.13 (0.14)	0.19 ^{NS}	0.15 (0.13)	-0.19 (0.17)	0.65 ^{NS}	0.65 (0.13)	-0.88 (0.17)	15.48***
Protein yield (kg)	0.00 (0.00)	-0.02 (0.01)	1.91*	0.00 (0.01)	0.01 (0.00)	0.51 ^{NS}	0.00 (0.01)	-0.01 (0.00)	0.57 ^{NS}	0.00 (0.00)	-0.00 (0.01)	0.30 ^{NS}	0.00 (0.00)	-0.02 (0.01)	2.65**
P yield (mg)	121 (132)	-712 (248)	2.30**	47 (379)	650 (143)	4.56***	-23 (286)	-13 (140)	0.00 ^{NS}	104 (140)	-130 (177)	0.30 ^{NS}	-6 (137)	-448 (178)	1.46*
P _{CN} yield ^e (g)	0.20 (0.99)	-5.18 (1.00)	1.80*	-0.12 (2.85)	1.77 (1.07)	0.61 ^{NS}	-0.21 (2.18)	-1.96 (1.06)	0.78 ^{NS}	-0.80 (1.05)	0.57 (1.32)	0.21 ^{NS}	0.36 (1.02)	-4.44 (1.32)	2.83**

616 ^a α_{s1} -CN PD = α_{s1} -CN-9P / (α_{s1} -CN-8P + α_{s1} -CN-9P) \times 100; α_{s2} -CN PD = α_{s2} -CN-12P / (α_{s2} -CN-10P + α_{s2} -CN-11P + α_{s2} -CN-12P) \times 100. P =
617 phosphate group attached.

618 ^bARS-BFGL-NGS-91705 (rs43282015) is the lead SNP of α_{s2} -CN-12P concentration (% wt/wt) in the QTL region between 147.5 and 152.1 Mbp
619 on BTA1.

620 ^cBTB-00068200 (rs43281569) is the lead SNP of α_{s2} -CN-10P concentration (% wt/wt) in the QTL region between 144.4 and 147.3 Mbp on
621 BTA1.

622 ^dP_{CN} content= $\Sigma \left[\frac{\text{concentration of individual casein fraction in milk (g/L; \% wt/wt} \times \text{protein percentage} \times 10)}{\text{molecular weight (Da) of respective individual casein fraction}} \times \right.$

623 $\left. \text{number of phosphate groups attached to the respective casein fraction} \right].$

624 ^eP_{CN} yield= $\left\{ \Sigma \left[\frac{\text{concentration of individual casein fraction in milk (g/L; \% wt/wt} \times \text{protein percentage} \times 10)}{\text{molecular weight (Da) of respective individual casein fraction}} \times \right.$

625 $\left. \text{number of phosphate groups attached to the respective casein fraction} \right] \right\} \times \text{milk yield.}$

626 NS = $P \geq 0.05$, * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$

627