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Chapter 1 
 

1 Introduction 
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The constant increase of human population put more and more pressure on 

agricultural production systems (FAO, 2018a). Agriculture in last several decades 

adopted more intensive practices for productivity increase on the already 

cultivated lands. Moreover, new lands have been included in cultivation. This 

increased pressure on lands and cultivation of new lands by wrong agricultural 

practices lead to many environmental problems. Likely outcomes on the negative 

side are a continuing rise in groundwater nitrate levels from poor fertilizer 

management, further land and yield losses through salinization, and growing air 

and water pollution from livestock (FAO, 2003). One of these problems, namely soil 

salinization, is the focus if this thesis. 

 

Soil salinization is a process during which concentration of water-soluble salts is 

increasing to the levels that negatively influence plant growth and development. It 

can happen as a consequence of natural processes, like weathering of a parent 

material (primary salinization), but on cultivated areas more often this is a 

consequence of human activity (secondary salinization). One of the examples of 

such an activity is a massive expansion of irrigated cotton growing areas in the 

Soviet Central Asia in the 1950s. The turning point was the Golodnaya (Hunger) 

steppe irrigation project which was the first one in a row of large scale irrigation 

projects (Ghassemi et al., 1995). The implementation of this and following irrigation 

projects had several problems which after decades of development lead to soil 

salinization. Water use has been inefficient and excessive, climatic and 

hydrogeological conditions of the area were not taken into account to the necessary 

degree, drainage problems and mistakes in water management allowed highly 

saline return flows to be discharged to the rivers (Ghassemi et al., 1995). Nowadays 

the area of this irrigation project and those that followed are suffering severe soil 

salinization and, therefore, decreased productivity. 
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 Salt stress in plants 

Decreased productivity is a result of the plant responses to salt stress. Salt stress is 

very similar to drought stress, but not completely. Plant response to salt stress 

consists of two phases (Figure 1.1): osmotic phase (very similar to drought stress), 

and ion toxicity phase (specific for each ion) (Munns, 1993). 

Salt in soil solution inhibits plant growth for two reasons. First, it reduces the 

plant’s ability to take up water, and this leads to slower growth. This is the osmotic 

or water-deficit effect of salinity. Second, it may enter the transpiration stream and 

eventually injure cells in the transpiring leaves, further reducing growth. This is the 

salt-specific or ion-excess effect of salinity (Munns, 2005). In general, ion toxicity 

effects (Figure 1.1) show greater variation between species than osmotic effects 

(Munns, 2002). 

 

Figure 1.1. Illustration of the two phase growth response to salt for three varieties of a 

given species that differ in salt tolerance: sensitive (S), moderately tolerant (M) and 

tolerant (T). From Munns (1993).  
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All this together leads to many negative effects (Figure 1.2), one of which is 

photosynthetic inhibition. Total photosynthesis decreases due to inhibited leaf 

development and expansion, as well as early leaf abscission, and as salt stress is 

prolonged, ion toxicity, membrane disruption, and complete stomatal closure 

become the prime factors responsible for photosynthetic inhibition (Farooq et al., 

2015). When photosynthesis is expressed on a unit chlorophyll basis, rather than a 

leaf area basis, a reduction due to salinity can usually be measured. In any case, the 

reduction in leaf area due to salinity means that photosynthesis per plant is always 

reduced (Munns and Tester, 2008). Salinity leads to chlorophyll degradation (Don 

et al., 2010) and decrease in pigment content, including chlorophyll a and b (Manaa 

et al., 2011). 

Salinity

Osmotic 
effects

Specific ion 
effects

Succulence; growth 
stimulation; 

increased dissolved 
solids in fruits

Disturbed water 
relations (osmotic 

adjustment)

Sodicity
High Na/(Ca+Mg) Toxicity

Essentiality for 
growth; specific 

functions

Disturbed mineral 
nutrition (e.g. Ca, P 

and K)

Disturbed Soil 
Physical Properties 
(crusting, reduced 
infiltration, poor 

aeration)
 

Figure 1.2. Effects of salinity on plants (From Läuchli and Grattan (2012)). 

Changes in plant morphology in response to salinity also can be observed. Leaves 

from salt-treated plants have a higher weight/area ratio, which means that their 

transpiration efficiency is higher (more carbon fixed per water lost), a feature that 

is common in plants adapted to dry and to saline soil (Shabala and Munns, 2012).  
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Curiously, shoot growth is more sensitive than root growth, a phenomenon that 

also occurs in drying soils and for which there is yet no mechanistic explanation. 

The benefit is that a reduction in leaf area development relative to root growth 

would decrease the water use by the plant, thus allowing it to conserve soil 

moisture and prevent an escalation in the salt concentration in the soil (Shabala and 

Munns, 2012). But in an experiment of Gama et al. (2009) on common bean there 

was a marked reduction in root/shoot ratios. Some reports showed that root 

biomass increased with salinity in some species (Hester et al., 2001), indicating that 

roots grows faster to adjust to water deficit. But their data agreed that the root dry 

weight was considerably decreased as salinity intensified. Root-to-shoot ratio was 

able to differentiate population salt tolerance; under salinity stress the most salt 

tolerant populations of the same species displayed smaller root-to-shoot ratios 

than the least salt-tolerant populations (Hester et al., 2001). So morphological 

changes depend on plant species and salt concentration in growing media. 

 Canopy temperature change in response to soil 
salinity 

Besides the effects mentioned above, the stress response in crops due to soil salinity 

is evident in decreased stomatal conductance (Álvarez and Sánchez-Blanco, 2014; 

Biber, 2006; Hussain et al., 2012; James et al., 2002; Munns and Tester, 2008; 

Rahnama et al., 2010). As a result of stomatal closure, significant changes in canopy 

temperature can be observed. Multiple controlled laboratory and greenhouse 

studies have examined changes in canopy temperature in response to soil salinity 

at the plant level. The crops studied were euonymus (Gómez-Bellot et al., 2015), 

Syngonium podophyllum and Philodendron erubescens (Urrestarazu, 2013), 

grapevine (Grant et al., 2007), barley (Peñuelas et al., 1997), wheat (Hackl et al., 

2012), sorghum (Kluitenberg and Biggar, 1992) and cotton (Howell et al., 1984). All 

these studies concluded that temperature change can be used as an indicator of 

salinity stress in plants. Observed differences in canopy temperature varied from 
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less than one degree (Urrestarazu, 2013) to 1–3°C (Hackl et al., 2012; Kluitenberg 

and Biggar, 1992) and even 8°C (Peñuelas et al., 1997). 

 Extent of the problem 
Soil salinity is a globally widespread problem. About a third of all agricultural lands 

are increasingly saline, encompassing more than 100 countries and spanning all 

types of climates. While statistics vary on the extent of salt-affected lands, estimates 

suggest that close to 1 billion hectares worldwide are salinized (Squires and Glenn, 

2004; Szabolcs, 1989). Soil salinization is spreading at a rate of up to 2 million 

hectares per year, offsetting a significant proportion of crop production (Abbas et 

al., 2013).  

Having such a big spatial extent, soil salinization is more and more often monitored 

and assessed by remote sensing methods. The extensive overview of broad range 

of methods and sensor types used for this is given in Metternicht and Zinck (2009). 

Here I will mention the most important groups of the approaches used. 

 Remote sensing in soil salinity assessment1 

The methods applied in remote sensing of soil salinity can be divided in two big 

groups. The first group, which might be called direct estimation, uses the 

reflectance of the soil when it is free of vegetation to assess salinity. The second 

group, termed indirect estimation, uses vegetation reflectance as an indicator of soil 

salinity; salinity stress is thus inferred via the spectral response of vegetation and 

crop cover. For both approaches, multiple techniques and methods exist, though 

most use salinity indices, calculated for bare soil or vegetated areas.  

                                                 
 
 
1 This section is partially based on the extracts from Ivushkin, K., Bartholomeus, H., Bregt, A.K., 
Pulatov, A., 2017. Satellite Thermography for Soil Salinity Assessment of Cropped Areas in Uzbekistan. 
Land Degradation & Development 28, 870-877. 10.1002/ldr.2670 
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Numerous indices exist and have been applied with a various degrees of success in 

arid and semi-arid areas across the world (Abbas et al., 2013; Al-Khaier, 2003; 

Allbed et al., 2014a; Douaoui et al., 2006; Hamzeh et al., 2013). Few studies have 

gone on to test these indices in a variety of regions and for different soil types than 

those for which they were developed. Those doing so have found much lower 

correlations and predictive power than reported for the initial applications (Allbed 

et al., 2014a; Douaoui et al., 2006).  

A larger body of research has explored the sensitivity of spectral data to soil salinity 

and proposed classification techniques based on sensitivity data. These studies – 

based both on laboratory and field spectrometry of soils and on aerial and satellite 

imagery analysis – have shown good performance for bare soil areas. As a result, 

some sensitive spectral features and spectral bands have been defined. Most 

mentioned among these are the near-infrared (NIR) and short wave infrared 

(SWIR) bands of Landsat and other multispectral satellites (Setia et al., 2013b; 

Sidike et al., 2014; Yu et al., 2010) and the narrower absorption features of the same 

(NIR and SWIR) spectral region (Bannari et al., 2007; Farifteh et al., 2008; Howari, 

2003; Mashimbye et al., 2012; Melendez-Pastor et al., 2010; Wang et al., 2012). 

Some authors have proposed use of visible spectra in addition to infrared (IR) 

(Noroozi et al., 2012; Setia et al., 2013b; Zhang et al., 2012). Karavanova et al. (2001) 

noted that dry saline soils have increased overall reflectance compared to 

unaffected soils. Similar findings were mentioned by Abbas et al. (2013) and 

Howari (2003), and this is considered useful in soil salinity delineation. Almost all 

currently available spectral bands have been evaluated for soil salinity analysis. 

A number of researchers have investigated the use of vegetation as an indirect 

indicator for soil salinity (Akramova, 2008; Dehni and Lounis, 2012; Ding et al., 

2011; Elhaddad and Garcia, 2009; Fernández-Buces et al., 2006; Scudiero et al., 

2015; Wang et al., 2013). Salinity undermines plant growth and diminishes yields, 

and these effects can be detected by remote sensing. In general, reduced reflectance 

in the NIR band compared to the Red band is indicative of vegetation health and as 

such could provide an indirect measure of salinity levels. As any indirect indicator, 

however, use of vegetation data for soil salinity assessments introduces additional 
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inaccuracies. For example, a reduced normalized difference vegetation index 

(NDVI) can be caused by many factors, including limited water availability and poor 

management. It is also difficult to find vegetation indices that can be accurately 

correlated with salinity levels for specific soils and vegetation species. A diversity 

of approaches have been used, including averaging vegetation index values per field 

(Akramova, 2008) and decision tree classification (Ding et al., 2011). None, 

however, has proven universally applicable, with performance tested in different 

areas. 

 Problem statement and research questions 

Widespread distribution and severity of soil salinity problem requires up to date 

and spatially explicit information on the extent of the problem. This information is 

required on the scales from local to global. Traditionally, soil salinity assessment 

has been done by analysing soil samples, either by defining total dissolved solids 

content or by measuring electrical conductivity of soil saturated paste (ECe). 

Though these methods are accurate and reliable, their high cost and spatial non-

continuity are serious drawbacks. 

Though remote sensing approaches are used, they still have drawbacks that make 

them not universally applicable. Therefore, it made us looking into the question of 

developing an approach that will be more universal. 

To base it on direct estimation, using the soil reflectance itself, seemed to be less 

promising. The main reason of this is the wide range of soil spectral responses 

influenced by many other factors except soil salinity. That would require the 

approach calibration on many occasions to suit it for each soil type and probably 

for many other soil properties. Moreover, the direct estimation will characterise 

salt content only on the surface, but not in the root layer, which is of highest interest 

for agriculture. 

The indirect assessment by using vegetation signal as a proxy has higher potential, 

especially on cultivated areas. There the variety of species grown is limited, 
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therefore tailoring the methods to different areas will require less time. Moreover, 

the plants’ responses to many stressors are similar among majority of plants, and 

soil salinity is not an exception here. Among these responses I considered canopy 

temperature change having a potential to constitute a base for the development of 

a more universal remote sensing approach. 

Most previous studies of canopy temperature changes in response to soil salinity 

were done at the individual plant level. The use of satellite or aerial thermography 

for this purpose has not yet been investigated. Therefore, the overall objective of 

this thesis is to investigate the potential of thermal imagery analysis as an approach 

for soil salinity assessment in cropped areas at different scales. 

To achieve it the next research questions have been developed: 

1. Can remotely sensed canopy temperature be used as an indicator of soil 

salinity in cropped areas?  

2. Do UAV based observations show comparable result to satellite based 

observations? 

3. How robust is the thermography approach when applied on study areas 

with different crops grown in both rainfed and irrigated conditions? 

4. Can a combination of soil properties maps and thermal imagery allow us to 

track the development of soil salinity in space and time on global scale? 

 Thesis outline 
This thesis consists of 6 chapters. The first introductory chapter focuses on the 

background information and the line of reasoning that brought me to the 

development of the thermography approach.  

Chapter 2 represents a proof of concept where the first results of application on the 

study area in Uzbekistan are presented. The chapter addresses research question 1 

and shows the applicability of the thermography approach. 

Chapter 3 describes the thermography approach validation on local (plot) scale in 

the Netherlands. Moreover, it discusses the specifics of UAV use and remote sensing 
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data integration. Therefore, this chapter addresses question 2. The auxiliary line of 

research described in this chapter is the specificities of application on salt tolerant 

crops (quinoa).  

Chapter 4 is devoted to the validation of the thermography approach on regional 

scale and a robustness test, by applying the approach in several different locations 

of Australia where different crops are grown both in irrigated and rainfed 

conditions. This way research question 3 is addressed. 

Chapter 5 describes the validation on the global scale and issues of temporal 

development of the soil salinization problem. Comparison with several studies 

describing soil salinity change presented in the chapter together with global 

assessment of affected lands and its change in the period from 1986 to 2016. 

Chapter 6 synthesises the findings from all the chapters, puts them into a broader 

perspective and reflects on implications, methods and data used. Moreover, 

suggestions for further research are given. 

The general overview of the structure is given in Figure 1.3. 

Introduction Chapter 2
(Uzbekistan, first 

application)

Chapter 6

Chapter 3
(the Netherlands, 
plot scale, UAV)

Chapter 4
(Australia, regional 

scale, different 
crops and sensors)

Chapter 5
(global scale, 
change maps)

 

Figure 1.3. Structure of the thesis. 
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This chapter is based on: 

Ivushkin, K., Bartholomeus, H., Bregt, A.K., Pulatov, A., 2017. Satellite 

Thermography for Soil Salinity Assessment of Cropped Areas in Uzbekistan. Land 

Degradation & Development 28, 870-877. 10.1002/ldr.2670. 
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Abstract   
A change of canopy temperature can indicate stress in vegetation. Use of canopy 

temperature to assess salt stress in specific plant species has been well studied in 

laboratory and greenhouse experiments, but its potential for use in landscape-level 

studies using remote sensing techniques has not yet been explored. Our study 

investigated the application of satellite thermography to assess soil salinity of 

cropped areas at the landscape level. The study region was Syrdarya Province, a 

salt-affected, irrigated semi-arid province of Uzbekistan planted mainly to cotton 

and wheat. We used moderate-resolution imaging spectroradiometer (MODIS) 

satellite images as an indicator for canopy temperature and the provincial soil 

salinity map as a ground truth dataset. Using analysis of variance (ANOVA), we 

examined relations between the soil salinity map and canopy temperature, 

normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), 

and digital elevation model (DEM). The results showed significant correlations 

between soil salinity and canopy temperature, but the strength of the relation 

varied over the year. The strongest relation was observed for cotton in September. 

The calculated F-values were higher for canopy temperature than for the other 

indicators investigated. Our results suggest that satellite thermography is a 

valuable landscape-level approach for detecting soil salinity in areas under 

agricultural crops.  
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 Introduction 

Soil salinization is a major driver of land degradation, which usually goes hand in 

hand with accelerated soil erosion rates, agricultural mismanagement, overgrazing, 

mining, and deforestation (Gómez-Acata et al., 2016; Novara et al., 2015; Seutloali 

and Beckedahl, 2015). Salinization of soils is a consequence of both natural 

processes and human interference (Hack-ten Broeke et al., 2016; Oo et al., 2015; 

Panagea et al., 2016; Young et al., 2015). Salinity particularly affects arid and semi-

arid regions. Globally, about a third of all agricultural lands are increasingly saline, 

encompassing more than 100 countries and spanning all types of climates. While 

statistics vary on the extent of salt-affected areas, estimates suggest that close to 1 

billion hectares worldwide are salinized, including 77 million hectares salinized as 

a result of human activity (secondary salinization) (Squires and Glenn, 2004). Soil 

salinization is spreading at a rate of up to 2 million hectares per year, offsetting a 

significant proportion of crop production (Abbas et al., 2013).  

Central Asia has large expanses of salinized lands. Of this region’s 7.8 million 

irrigated hectares, about 50% is saline, of which 29% has a moderate to high 

salinity level. Indeed, soil salinity is one of major factors in diminishing agricultural 

production in Central Asia (Shirokova et al., 2000). In Uzbekistan, 51% of irrigated 

land is affected by some degree of soil salinity (Bucknall et al., 2003). There are 

nearly 2 million hectares of highly saline areas, costing Uzbekistan some US $1 

billion annually (UNDP, 2009; World Bank, 2007).  

Current information on soil salinity is vital for initiating appropriate management 

practices and reclamation strategies. Especially valuable in this regard is data at a 

high spatial and temporal resolution. Conventional soil sampling and associated 

laboratory analyses are slow, expensive, and unsuitable for providing high 

temporal and spatial specificity (Zribi et al., 2011). In Uzbekistan, for example, soil 

mapping is executed every five years at a sampling density of at least one soil profile 

per 100 hectares (V.V. Dokuchaev Soil Science Institute, 1970). In view of the 

considerable variability of soil salinity, in both spatial and temporal terms, there is 
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an urgent need for improved salinity mapping of soils in cropped areas. We set out 

to explore the use of remote sensing for this purpose. 

Remote sensing has been employed to assess soil salinity for some three decades 

(Metternicht and Zinck, 2009). Two groups of remote sensing techniques have been 

applied. The first group, called direct estimation, uses the reflectance of the soil 

when it is free of vegetation to assess salinity. The second group, termed indirect 

estimation, uses vegetation reflectance as an indicator of soil salinity; salinity stress 

is thus inferred via the spectral response of vegetation and crop cover. For both 

approaches, multiple techniques and methods exist, though most use salinity 

indices, calculated for bare soil or vegetated areas. Numerous such indices exist and 

have been applied with a various degrees of success in arid and semi-arid areas 

across the world (Abbas et al., 2013; Al-Khaier, 2003; Allbed et al., 2014a; Douaoui 

et al., 2006; Hamzeh et al., 2013). Few studies have gone on to test these indices in 

a variety of regions and for different soil types than those for which they were 

developed. Those doing so have found much lower correlations and predictive 

power than reported for the initial applications (Allbed et al., 2014a; Douaoui et al., 

2006). A larger body of research has explored the sensitivity of spectral data to soil 

salinity and proposed classification techniques based on sensitivity data. These 

studies – based both on laboratory and field spectrometry of soils and on aerial and 

satellite imagery analysis – have shown good performance for bare soil areas. As a 

result, some sensitive spectral features and spectral bands have been defined. Most 

mentioned among these are the near-infrared (NIR) and short wave infrared 

(SWIR) bands of Landsat and other multispectral satellites (Setia et al., 2013b; 

Sidike et al., 2014; Yu et al., 2010) and the narrower absorption features of the same 

(NIR and SWIR) spectral region (Bannari et al., 2007; Farifteh et al., 2008; Howari, 

2003; Mashimbye et al., 2012; Melendez-Pastor et al., 2010; Wang et al., 2012). 

Some authors have proposed use of visible spectra in addition to infrared (IR) 

(Noroozi et al., 2012; Setia et al., 2013b; Zhang et al., 2012). Karavanova et al. (2001) 

noted that dry saline soils have increased overall reflectance compared to 

unaffected soils. Similar findings were mentioned by Abbas et al. (2013) and 
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Howari (2003), and this is considered useful in soil salinity delineation. Almost all 

currently available spectral bands have been evaluated for soil salinity analysis. 

A number of researchers have investigated the use of vegetation as an indirect 

indicator for soil salinity (Akramova, 2008; Dehni and Lounis, 2012; Ding et al., 

2011; Elhaddad and Garcia, 2009; Fernández-Buces et al., 2006; Wang et al., 2013). 

Salinity undermines plant growth and diminishes yields, and these effects can be 

detected by remote sensing. In general, reduced reflectance in the NIR band 

compared to the Red band is indicative of vegetation health and as such could 

provide an indirect measure of salinity levels. As any indirect indicator, however, 

use of vegetation data for soil salinity assessments introduces additional 

inaccuracies. For example, a reduced normalized difference vegetation index 

(NDVI) can be caused by many factors, including limited water availability and poor 

management. It is also difficult to find vegetation indices that can be accurately 

correlated with salinity levels for specific soils and vegetation species. A diversity 

of approaches have been used, including averaging vegetation index values per field 

(Akramova, 2008) and decision tree classification (Ding et al., 2011). None, 

however, has proven universally applicable, with performance tested in different 

areas. 

Our study was done in a semi-arid cropped area where losses due to soil salinity 

are particularly high. The stress response in crops due to soil salinity is evident in 

decreased chlorophyll fluorescence (Biber, 2006; Jimenez et al., 1997; Li et al., 

2010; Percival, 2005; Wankhade et al., 2013) and stomatal conductance (Álvarez 

and Sánchez-Blanco, 2014; Biber, 2006; Hussain et al., 2012; James et al., 2002; 

Munns and Tester, 2008; Rahnama et al., 2010). As a result of stomatal closure, 

significant changes in canopy temperature can be observed. Multiple controlled 

laboratory and greenhouse studies have examined changes in canopy temperature 

in response to soil salinity at the plant level. The crops studied were euonymus 

(Gómez-Bellot et al., 2015), Syngonium podophyllum and Philodendron erubescens 

(Urrestarazu, 2013), grapevine (Grant et al., 2007), barley (Peñuelas et al., 1997), 

wheat (Hackl et al., 2012), sorghum (Kluitenberg and Biggar, 1992) and cotton 

(Howell et al., 1984). All these studies concluded that temperature change can be 
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used as an indicator of salinity stress in plants. Observed differences in canopy 

temperature varied from less than one degree (Urrestarazu, 2013) to 1–3°C (Hackl 

et al., 2012; Kluitenberg and Biggar, 1992) and even 8°C (Peñuelas et al., 1997). 

Most previous studies of changes in canopy temperature in response to soil salinity 

were done at the individual plant level. To the best of our knowledge, use of satellite 

thermography for this purpose has not yet been investigated. In the current study 

we therefore investigated the potential of thermal imagery as a non-destructive and 

rapid method of soil salinity assessment in cropped areas at the landscape level. We 

furthermore compared the performance of thermal imagery with other approaches 

previously used, particularly NDVI, the enhanced vegetation index (EVI), and 

terrain properties. 

 Methods and materials 

2.2.1 Study area 

The study area is Syrdarya Province of Uzbekistan, which is a highly salt affected 

semi-arid region. Syrdarya Province is located at the centre of the country on a vast 

piedmont plain on the west bank of the Syrdarya River. On the terraces above the 

floodplain the water table depth is 1–2.5 m, while in the central plain it increases to 

2–3 m. In depressions and hollows, water table depth is 0.5–1 m. High groundwater 

levels are also observed on the Syrdarya River floodplains (0.5–1 m) 

(Goskomgeodezkadastr, 2010). Most agricultural lands in the province are affected 

by various degrees of salinity: 9% is extremely saline, 60% is highly saline, and 21% 

has moderately saline soils (State Research Institute of Soil Science and 

Agrochemistry, 2005). The area has a mean annual temperature of –5°C in winter 

and +28°C in summer and an average annual precipitation of 180–220 mm. Crops 

are furrow irrigated. The main crops are cotton (Gossypium hirsutum L.) and winter 

wheat (Triticum aestivum L.). 
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2.2.2 Soil salinity map 

For our core dataset we used 2005 provincial soil salinity data and maps based on 

Goskomgeodezkadastr (2010) and the State Research Institute of Soil Science and 

Agrochemistry (2005) sources. Maps from 2005 were chosen, as they were the 

latest with coverage of the whole study area. The maps were created in accordance 

with methodological guidelines for melioration of solonetz soils and accounting of 

salt affected soils (V.V. Dokuchaev Soil Science Institute, 1970). According to these 

guidelines, at least one soil profile of 2 m deep is analysed for each square kilometre 

of area. Salinity classification was based on the content of Cl and SO4 ions (Table 

2.1). Four soil salinity classes were distinguished: non-saline, slightly saline, 

moderately saline, and highly saline (Figure 2.1a). According to the maps, the 

slightly saline class was most abundant in the area. 

Table 2.1. Classification of saline soils used in the ground truth map (V.V. Dokuchaev 

Soil Science Institute, 1970). 

Salinity level Cl content (%) SO4 content (%) 

Non saline <0.01 <0.006 

Slightly saline 0.01–0.03 0.006–0.02 

Moderately 
saline 

0.03–0.10 0.02–0.06 

Highly saline 0.10–0.25 0.06–0.13 

 

2.2.3 Satellite imagery analysis 

For this research we used satellite imagery captured by the moderate-resolution 

imaging spectroradiometer (MODIS) sensor aboard the Aqua satellite, which passes 

at around 13:30 local time. We selected the Aqua satellite instead of the Terra 

because Gómez-Bellot et al. (2015) observed the best correlation between canopy 

temperature and salinity treatment at midday. 
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First, all datasets were projected to the WGS 1984 UTM Zone 42N coordinate 

system and clipped to the extent of the study area. After that, we used an NDVI mask 

to extract the vegetated areas. Using the MOD13A2 vegetation index with an NDVI 

threshold of 0.3, we distinguished vegetated from non-vegetated pixels. All further 

analysis, both on thermal data and other remote sensing datasets, was done on the 

vegetated areas only (NDVI > 0.3). For elevation analysis, we used the Shuttle Radar 

Topography Mission digital elevation model (DEM) with 30 m resolution (accessed 

through EarthExplorer of the US Geological Survey). For every unit of the soil 

salinity map, we calculated mean values for the different parameters (surface 

temperature (T), NDVI, EVI, and elevation). Statistical analysis was performed using 

the SPSS Statistics software (IBM Corp, 2015). Analysis of variance (ANOVA) was 

our main method, with F-values compared to evaluate the different indicators’ 

performance. 

For cropped areas, the point of time of monitoring is important. To determine the 

best time for salinity monitoring we repeated our analysis at different points during 

the growing season. All images available for the period from April to September 

were analysed, and F-values were calculated for T, NDVI, and EVI. 

 Results 

To determine the best time for soil salinity monitoring, we analysed images 

throughout the growing season (April–September). Figure 2.2 presents temporal 

profiles of NDVI and EVI. Two vegetation peaks are clearly evident, for wheat in 

May and for cotton in August. The difference between salinity classes is obvious, as 

both NDVI and EVI decrease when moving from non-saline to highly saline classes. 

The cotton season data is clearer and demonstrates greater differences between 

salinity classes. The canopy temperature time series (Figure 2.3) also shows a clear 

and consistent distinctions between salinity classes. The highest temperatures are 

observed in highly saline areas and the lowest temperatures in non-saline areas. 

The figure presents averaged data for the whole study area. The standard deviation 

of the thermal data for different periods varies from 1 to 2°C. 
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Figure 2.1 Comparison of soil salinity, canopy temperature, normalized difference 

vegetation index, and enhanced vegetation index maps of Syrdarya province in 

Uzbekistan: (a) soil salinity map in 2005; (b) canopy temperature (°C) map on 14 

September 2005; (c) normalized difference vegetation index map on 13 August 2005; 

(d) enhanced vegetation index map on 28 July 2005. 

According to the results of our ANOVA test, the best relation between the soil 

salinity map and thermal imagery occurs from end August to mid-September (Table 

2.2). For NDVI and EVI, the strongest relation is found from end July to mid-August. 

In general, F-values are high for the whole period of maximum cotton development, 

which is from end July to mid-September. This indicates that cotton is influenced 
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most by soil salinity in this period. The F-values during wheat season are much 

lower, but still significant, meaning that wheat was less salt-affected. 

 

Figure 2.2 Time series of normalized difference vegetation index and enhanced 

vegetation index for Syrdarya province in Uzbekistan (averaged for the whole study 

area). 

 

 

Figure 2.3 Time series of canopy temperature for Syrdarya province in Uzbekistan 

(averaged for the whole study area). 
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Table 2.2. F-values of ANOVA tests between soil salinity map and MODIS thermal 

imagery, NDVI, and EVI for Syrdarya Province in Uzbekistan (all p-values are less than 

0.01, except for elevation data). 

Date 22 
Apr 

10 
May 

28 
May 

12 
Jun 

25 
Jun 11 Jul 28 Jul 13 

Aug 
30 
Aug 

14 
Sep 

30 
Sep 

Canopy T 18.6  27.4  16.3 29.6 36.1 25.1 37.6  30.4 39.0  41.7 20.5  

NDVI 8.9 17.6 19.4 20.8 23.1 33.7 37.1 39.4 27.3 34.0 21.9 

EVI 5.9 16.2 12.1 7.9 13.3 20.2 29.2 27.9 23.4 26.2 12.9 

Elevation 0.3 (p-value = 0.87) 

 

Figure 2.4 presents the differences in means between the salinity classes. Higher F-

values are indicative of larger differences between salinity classes.  

 

Figure 2.4 Boxplots of canopy temperature, NDVI, EVI, and elevation data versus 

salinity levels for Syrdarya province in Uzbekistan. 
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In general, data variability is high, but similar for all the evaluated variables. The 

classes do show overlap, but the means are significantly different. The boxplots in 

the figure show that mean temperatures increased with increased salinity level, in 

line with previous plant-level studies (Gómez-Bellot et al., 2015; Hackl et al., 2012; 

Howell et al., 1984). However, we found only small differences between the slight 

and the moderate salinity classes. Distinguishing these classes will therefore be 

difficult. 

Differences in means were also observed in the boxplots of NDVI and EVI for the 

different salinity classes, but here we see a decrease in NDVI and EVI as salinity 

level increases, indicating that NDVI and EVI also respond to changes in soil salinity. 

ANOVA results for NDVI and EVI data indicate significant differences between 

salinity classes (p-value <0.01), but F-values are smaller than those found using 

thermal imagery analysis, especially in the case of the EVI. It is interesting to note 

that the maximum F-values for NDVI and EVI were observed in different months 

than for canopy temperature. For canopy temperature the strongest correlation 

with the salinity map occurs from end August to mid-September, while for NDVI 

and EVI it is from end July to mid-August. 

DEM analysis results suggest that elevation is not a good predictor of soil salinity 

(Figure 2.4). ANOVA results (Table 2.2) show an F-value of 0.245 and a p-value of 

0.865, indicating no significant relation between altitude and salinity. We also 

analysed derivatives of the DEM (slope and aspect) and found no significant 

relations for these either. 

A visual comparison of the soil salinity map and the canopy temperature map 

revealed some similar spatial patterns (Figure 2.1a and b). The central part of the 

province, where the most highly saline areas are located, had higher canopy 

temperatures. Visual interpretation of the NDVI and EVI maps revealed a random, 

noisy pattern, which was less pronounced on the thermal map. This is surprising, 

considering the ANOVA results and boxplots. We would expect more similarity with 

salinity, since these vegetation indices were previously used for salinity monitoring 

and other studies found high correlations. 
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 Discussion 

The main goal of our research was to investigate the potential of thermal imagery 

as a rapid, non-destructive landscape-level method for assessing the soil salinity of 

areas under crops. Our results confirm that remotely sensed canopy temperature 

at the landscape level is significantly related to soil salinity. Statistical analysis 

showed significant differences between salinity classes. Differences between 

salinity classes were also pronounced in the thermography time series graph 

(Figure 2.3), despite a standard deviation of 1–2°C in the dataset. Interestingly, the 

ANOVA of canopy temperature was higher than that of vegetation indices, as seen 

in the larger F-values. Many previous studies have used vegetation indices, and 

often found strong correlations with soil salinity (Aldakheel et al., 2006; Brunner et 

al., 2007; Platonov et al., 2013). Several factors may explain why we found canopy 

temperature to perform better and show more statistically significant differences 

between salinity classes. First, our study area was a uniform agricultural province, 

the vast majority of which was covered by only one crop at a particular point in time 

(wheat in spring and cotton in summer). This uniformity allowed us to use MODIS 

data with a 1 km resolution. The coarse data resolution and large size of the study 

area might have masked other factors that could influence the temperature, like 

irrigation schedule and management differences. These features might have made 

of our study area amenable to aggregation over larger areas and allowed 

identification of patterns that might not have been visible with more detailed data. 

However, the coarse resolution of the MODIS data could impose limitations as well. 

The large pixel size might mix vegetation and soil signals, mediating temperature 

values. In this respect, use of Landsat data may be a worthwhile path for future 

research. The Landsat archive provides continuous data for most of the Earth 

starting from the 1970s. Moreover, Landsat data’s potential for use in soil salinity 

monitoring has already been shown at the regional level (Judkins and Myint, 2012; 

Scudiero et al., 2015) and at the local level (Akramova, 2008; Hamzeh et al., 2016; 

Setia et al., 2013b). 
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We found the strongest correlation between thermal data and soil salinity from end 

August to mid-September. This confirms Metternicht and Zinck (2003), who found 

the end of a dry season to be the best time for monitoring. However, their study 

used optical remote sensing for bare soil rather than canopy thermography. 

Nevertheless, their explanation is also plausible in our case. In Syrdarya Province, 

leaching of salts occurs from December to February. Thus, in May, when winter 

wheat is fully developed and at peak biomass, the salt content in the root zone is 

low because of recent leaching. As a result, no strong correlation between canopy 

temperature and soil salinity is observed. The influence of salts is greater closer to 

the end of a dry season due to the capillary rise of saline groundwater. Therefore, 

despite the fact that cotton is considered to be more salt tolerant than wheat (Ayers 

and Westcot, 1985), we observed a stronger correlation between canopy 

temperature and salinity during cotton season. Considering cotton’s relatively high 

salt tolerance (Ayers and Westcot, 1985), we would expect less salt-tolerant crops 

(e.g., rice, corn, vegetables) to show an even stronger relation between canopy 

temperature and soil salinity. 

Our DEM analysis did not reveal any influence of topography on soil salinity, even 

though topography and micro relief are known to be significant factors in soil 

salinity distribution (Akramkhanov, 2005; Hillel and Feinerman, 2000; US Salinity 

Laboratory Staff, 1954). A plausible explanation for this finding is that our study 

area was overall relatively flat. 

The methods applied in this study were simple, which favours further practical 

applications and dissemination of the approach to other areas. Of course, the 

simplicity raises issues as well, like the problem of differentiating the signals from 

soil and vegetation and the need to take irrigation schedule into account, as 

irrigation will influence temperature. These issues can also be considered potential 

directions for future studies. As an additional path for future research we suggest 

inclusion of auxiliary data in the analyses, such as data on soil types and 

groundwater level. Inclusion of auxiliary data could help create a soil salinity 

assessment method for agricultural areas that is flexible enough for application in 

various different arid and semi-arid regions of the world. The methods we used 
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here were straightforward, and the data are open and universally available. We 

therefore consider this research a first step towards development of a more widely 

applicable approach for soil salinity assessment. 

 Conclusions 

The present study explored the potential of canopy temperature as an indicator of 

soil salinity at the landscape level, and compared the performance of this indicator 

with NDVI, EVI, and elevation. We concluded that satellite thermography data is 

significantly correlated to soil salinity. Our satellite thermography data clearly 

distinguished between salinity classes, producing F-values higher than those for the 

other indicators investigated. Moreover, visual examination of maps showed that 

actual salinity patterns were more similar to the canopy temperature map than to 

the map produced using vegetation indices. Satellite thermography thus appears to 

harbour substantial potential for salinity monitoring on cropped areas. However, 

the timing of monitoring is important. Thermal images taken in September 

produced the highest F-values, meaning they had the greatest predictive power. 

Nevertheless, for the whole period from end July to mid-September, F-values were 

fairly steady and showed significant relations, indicating considerable potential for 

use in monitoring. In our study region of Syrdarya Province, the highest F-values 

corresponded with the period of maximum crop development at the end of the dry 

season. Maximum F-values for vegetation indices were observed a bit earlier in the 

season, in July and August, when cotton’s green biomass was close to its maximum. 

Therefore, the point of maximum vegetation development after the dry season can 

be considered the best time for application of the methods we used. 

Similarly, we found promising results for use of satellite thermography to detect 

soil salinity on irrigated croplands for our study area in Uzbekistan. A promising 

path of future research might be evaluation of the general applicability of the 

proposed approach in terms of different crops and regions. 

 





 

 
 
Chapter 3 

3 UAV based soil salinity assessment of cropland 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This chapter is based on: 

Ivushkin, K., Bartholomeus, H., Bregt, A.K., Pulatov, A., Franceschini, M.H.D., 

Kramer, H., van Loo, E.N., Jaramillo Roman, V., Finkers, R., 2018. UAV based soil 

salinity assessment of cropland. Geoderma. 

https://doi.org/10.1016/j.geoderma.2018.09.046. 



28 Chapter 3 

Abstract   
Increased soil salinity is a significant agricultural problem that decreases yields for 

common agricultural crops. Its dynamics require cost and labour effective 

measurement techniques and widely acknowledged methods are not present yet. 

We investigated the potential of Unmanned Aerial Vehicle (UAV) remote sensing to 

measure salt stress in quinoa plants. Three different UAV sensors were used: a 

WIRIS thermal camera, a Rikola hyperspectral camera and a Riegl VUX-SYS Light 

Detection and Ranging (LiDAR) scanner. Several vegetation indices, canopy 

temperature and LiDAR measured plant height were derived from the remote 

sensing data and their relation with ground measured parameters like salt 

treatment, stomatal conductance and actual plant height is analysed. The results 

show that widely used multispectral vegetation indices are not efficient in 

discriminating between salt affected and control quinoa plants. The hyperspectral 

Physiological Reflectance Index (PRI) performed best and showed a clear 

distinction between salt affected and treated plants. This distinction is also visible 

for LiDAR measured plant height, where salt treated plants were on average 10 

centimetres shorter than control plants. Canopy temperature was significantly 

affected, though detection of this required an additional step in analysis – 

Normalised difference Vegetation Index (NDVI) clustering. This step assured 

temperature comparison for equally vegetated pixels. Data combination of all three 

sensors in a multiple linear regression model increased the prediction power and 

for the whole dataset R2 reached 0.46, with some subgroups reaching an R2 of 0.64. 

We conclude that UAV borne remote sensing is useful for measuring salt stress in 

plants and a combination of multiple measurement techniques is advised to 

increase the accuracy. 
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 Introduction 

Increased soil salinity is a significant agricultural problem that decreases yields for 

common agricultural crops (Maas and Grattan, 1999). Moreover, soil salinity is a 

dynamic phenomenon which makes timely soil salinity data essential for 

agricultural management of affected regions. Remote sensing can provide the 

necessary spatial and temporal resolution, but widely acknowledged methods and 

techniques for soil salinity monitoring of cropland using remote sensing are not 

present yet. Most of them propose to use vegetation indices, Normalised Difference 

Vegetation Index (NDVI) being the most popular(Rahmati and Hamzehpour, 2017; 

Zhang et al., 2015). Other plant parameters, like remotely sensed canopy 

temperature (Ivushkin et al., 2017; Ivushkin et al., 2018), have been applied as a 

proxy for soil salinity. Bare soil remote sensing was also used, though less often (Bai 

et al., 2016; Nawar et al., 2014). This can be explained by the fact that upper layer 

of soil does not reflect actual salinity levels in root zone, which is the most 

important information for agriculture. 

Though the above mentioned studies reported high correlations and accuracies of 

prediction in some situations, their application on other study areas did not show 

the same usability and accuracy (Allbed et al., 2014a; Douaoui et al., 2006). 

Moreover, widely available satellite images cannot provide high spatial resolution 

and temporal flexibility of data acquisition, which are important for agricultural 

application.  

One of the solutions to overcome the issues of scale, resolution and temporal 

flexibility is the use of Unmanned Aerial Vehicles (UAV) as a sensor platform. UAV-

based remote sensing is currently used for a wide range of applications in 

agriculture and soil science. These applications include but are not limited to: soil 

erosion monitoring (Oleire-Oltmanns et al., 2012), crop and soil mapping for 

precision farming (Honkavaara et al., 2013; Sona et al., 2016), quantifying field-

based plant–soil feedback (van der Meij et al., 2017) and measuring physiological 

indicators of crops (Domingues Franceschini et al., 2017; Roosjen et al., 2018). 

There is an increasing amount of operational UAV service providers in agriculture 
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industry and many farmers start to maintain their own fleet. All this makes UAV’s 

widely available remote sensing platforms with vast potential applications, 

including soil salinity monitoring. 

Several studies discuss the potential of UAV-borne remote sensing for soil salinity 

and water deficit stresses, which often leads to a similar stress response in plants. 

Romero-Trigueros et al. (2017) investigated Citrus species grown under deficit 

irrigation with reclaimed water of increased salinity. They found that Red and Near 

Infrared spectral bands are significantly correlated with the chlorophyll content, 

stomatal conductance and net photosynthesis and concluded on the feasibility of an 

UAV-borne imagery to assess physiological and structural properties of Citrus 

under water and saline stress. Quebrajo et al. (2018) used thermal imagery from a 

UAV mounted camera to detect water stress in sugar beet plants. They concluded 

that this a reliable method to monitor the spatio-temporal variations of crop water 

use in sugar beet fields, but further research is required to propose optimal 

recommendations for a specific plant species. 

These examples show that effects of salt and water stress in plants are definitely 

detectable by UAV remote sensing systems, but UAV’s specific application for 

salinity stress was investigated only in one of them (Romero-Trigueros et al., 2017) 

and with the focus on water stress rather than salinity stress. Therefore, 

considering that available research on the topic is limited, we have formulated two 

research questions: 

1. Do the UAV sensed variables significantly change in salt treated plants on 

plot scale? 

2. Does a combination of the different variables have an added value? 

To answer them we have conducted our research using UAV platforms with three 

significantly different sensors: thermal camera, hyperspectral camera and Light 

Detection and Ranging sensor (LiDAR). The research was conducted in the frame of 

a bigger experiment on salt tolerance of quinoa crop which has been set up on the 

experimental field at Wageningen University & Research, the Netherlands. 
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 Methods and materials 

3.2.1 Planting experiment set-up 

The experiment was set up on the experimental farm of Wageningen University & 

Research located in the central part of the Netherlands. Plants for the experimental 

trial were sown on March 28, 2017 in a greenhouse, the plants were put outside for 

cold acclimation on April 21, 2017 and were planted in the field on April 24, 2017 

(salt trial) and April 25, 2017 (control trial).  

 

Figure 3.1 Planting experiment spatial layout. The planting units are marked by the 

coloured squares on an aerial photo background. Each variety is colour coded. 

Control 
plot 

Salt 
treated 
plot 
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The two experimental plots of 13 x 13 m were planted with in total 97 different 

genotypes and varieties of quinoa Figure 3.1. The three varieties were Atlas, Red 

Carina and Pasto. The other 94 genotypes were F3-families of a cross between Atlas 

and Red Carina. Each plot consists of 110 planting units measuring 60x70 cm with 

a gap between the units of 40 cm (gross unit size = 100 x 110 cm). In the unit, the 

inner 60 x 70 cm was planted with 42 plants spaced at 10 x 10 cm. The southern 

plot is treated with salt and the northern plot is used as control plot. Around each 

plot of 110 planting units, an edge row of Pasto plants was planted in order to make 

sure the light conditions of the experimental edge rows were similar to that further 

away from the edge. 

Salt was applied to the salt treated plot in 14 steps to create a final EC of just above 

30 dS/m (equivalent to 300 mM NaCl) by adding irrigation water with NaCl, initially 

at 200 mM and later at 400 mM NaCl (Table 3.1). In the end natural rainfall occurred 

so frequently, that prior to a rainfall event an equivalent amount of salt was added 

equal to the amount applied with each 400 mM NaCl irrigation application. These 

solid applications quickly dissolved in the rainwater and infiltrated in less than 24 

hours. 

Table 3.1. Salt applications. From 11/5 to 30/6 each application was given in 

irrigation water as 5 L of solution at the mentioned concentration of NaCl.  

Date mM, concentration of 
NaCl solutions 

g NaCl/planting unit 

11/5/2017 200 58 

15/5/2017 400 117 

17/5/2017 400 117 

24/5/2017 400 117 

2/6/2017 400 117 

9/6/2017 400 117 

16/6/2017 400 117 

30/6/2017 400 117 

11/7/2017 as solid 120 

14/7/2017 as solid 240 

17/7/2017 as solid 240 
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21/7/2017 as solid 240 

Total (g per planting unit) 
 

1717 

Total (g per m2) 
 

1561 

 

Electrical conductivity was measured at 0-10, 10-20 and 20-30 cm soil depth 

regularly. For each planting unit, three locations were sampled. Soil samples were 

weighed fresh and dried in order to see humidity of the current soil. Following this, 

electric conductivity meter (ProfiLine Cond 315i, Xylem Analytics, Germany) was 

used to measure the concentration of salts in saturated soil. Twenty grams of soil 

and 160 ml of water (1:8) were mixed and EC of the solution measured by EC meter. 

During the salt applications, soil samples were taken three days after the 

treatments. The EC values increased from about 2 dS/m (the same level as in the 

control plot at the start of the season after fertilisation) to about 40 dS/m in the 

layer 0-10 cm, 15 dS/m in the layer 10-20 cm and 18 dS/m in the layer 20-30 cm of 

soil depth (at flowering, after June 16, 2017). EC-levels were variable as they were 

higher just after application and lower after rainfall events, but gradually increased 

as mentioned. The level of 40 dS/m in the top layer exactly reflects the NaCl 

concentration of 400 mM used in the application. The surface soil salinity of 40 

dS/m corresponds to extremely saline conditions (>16dS/m) and 10-20 cm values 

of up to 15 correspond to highly saline conditions (8-16 dS/m). In general, 

experimental setup corresponds to highly-extremely saline conditions where only 

tolerant species can grow. 

The total irrigation plus rainfall from planting to harvest (on August 7, 2017) was 

229 mm. The initial soil moisture content was about 100 mm (30 % relative water 

content taken over the first 30 cm soil). At harvest the relative water content was 

about 20-25 % (or 60-75 mm in the first 30 cm of soil). So, on average the total 

water use (soil evaporation and transpiration) was about 260-270 mm.  
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3.2.2 Field measurements of plant variables 

3.2.2.1 Stomatal conductance measurements 
The stomatal conductance measurements were taken on two consecutive days from 

two leaves per one plant in each planting unit twice a day, in the morning and the 

afternoon using a Decagon SC-1 porometer. The morning measurement took place 

from 10 to 12 o‘clock and afternoon from 13 to 15 o’clock. The standard deviation 

between the units on control plot is 68 mmol/m2/s and on salt treated plot 28 

mmol/m2/s. In our analysis we have used the average value of these four 

measurements as an estimate of the midday values to ensure best comparison with 

the UAV flight data which were taken at midday. The stomatal conductance map 

(Figure 3.2) is based on these ground measurements and is produced for 

visualisation and spatial analysis. 

3.2.2.2 Plant height measurements 
Final plant height was measured after the final harvest (on August 7, 2017) by 

taking the 90 % quantile of the plant height (so from the 42 plants the longest four 

plants were excluded, so the length of the 5th longest plant was taken). Plant height 

was measured from the base of the plant to the top of the head on the main stem 

using regular ruler. 

3.2.2.3 Biomass and grain measurements 
After the final harvest, the plants were split into stem (plus some remaining leaves, 

but most were dead and/or fallen off) and head. The head was dried at 35°C until 

the weight was stable (about 4 days) prior to separating grain and residual head in 

order to obtain viable seeds for follow-up experiments. The weight of residual head 

and grain were determined after being dried at 35°C and from these dried materials 

subsamples were taken to determine dry weights after 24h drying at 105°C. Stem 

weights were also determined after drying at 105°C. The total biomass (dry weight) 

is the sum of the dry grain weight, the dry residual head weight and the stem dry 

weight. 
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Figure 3.2. Stomatal conductance map showing the average stomatal conductance 

per planting unit. Units of stomatal conductance are mmol/m2/s. 

3.2.3 UAV data acquisition and processing 

The UAV data used were acquired on 20th of June 2017. Two flights were made with 

an Altura AT8, one carrying the hyperspectral camera and the other one with the 

thermal camera on board. A third flight was conducted with the Riegl Ricopter 

system, carrying the Riegl VUX-SYS LiDAR system. The systems and data are 

described in more detail below. 

Control plot 

Salt 
treated 
plot 
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3.2.3.1 Hyperspectral data system and processing 
A light weight hyperspectral camera (Rikola Ltd., Oulu, Finland) based on a Fabry-

Perot interferometer (FPI) (Honkavaara et al., 2013; Roosjen et al., 2017) has been 

used. The image produced has a resolution of 1010x1010 pixels. In total 16 bands 

were sampled in a range of 515-870 nm with full width at half maximum (FWHM) 

varying between 13 and 17 nm, as described in Table 3.2. 

Table 3.2. Characterization of the spectral bands of the camera. 

Spectral 
bands 
centre 
(nm) 

51
5 

53
0 

55
0 

57
0 

63
0 

67
0 

68
0 

69
0 

70
0 

71
0 

72
0 

74
0 

76
0 

78
0 

80
0 

87
0 

FWHM 
(nm) 

14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 17 

 

The area of the 2 plots was captured in 4 flight lines, parallel to the longest side of 

the area. The flight height was 20 meters above ground level and the flight speed 

was 2 meters/second. The overlap between flight lines was approximately 80%, 

within the flight line the overlap between images is approximately 60%. The images 

were acquired with a ground sampling distance of 0.015 m. The flight lines were 

constructed with the Unmanned Ground Control Software mission planning 

software (UGCS, 2017). 

Due to intrinsic sensor characteristics, images corresponding to different 

wavelengths were not registered at the same time, since changes in the 

wavelengths measured depend on internal adjustment of the sensor system. The 

mismatch between images corresponding to different wavelengths was solved 

during photogrammetric processing of the images in Agisoft PhotoScan software 

(Agisoft LLC, 2017). This procedure depends on implementation of the Structure 

from Motion (SfM) algorithm, with feature matching, self-calibrating bundle 

adjustment and image-to-image registration based on overlapping imagery 

(Harwin et al., 2015). For that, image alignment and dense point cloud derivation 

were performed using the original resolution of the images (i.e., setting quality to 

‘high’ and ‘ultra-high’ during these steps in the software processing chain, 

respectively).  
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Conversion of digital numbers (registered with 12-bit radiometric resolution) to 

radiance, in mW*sr-1*m-2*nm-1, was performed based on dark current 

measurements, which were taken before the flight, using proprietary software 

provided with the camera (HyperspectralImager version 2.0). Radiance values 

were then converted into reflectance factor through the empirical line approach 

using images, also acquired before the flight, of a Spectralon reference panel with 

50% reflectance (LabSphere Inc., North Sutton, NH, USA), under same general 

illumination conditions observed during the data acquisition. 

3.2.3.2 Thermal data processing 
The thermal camera used is a Workswell WIRIS 640 (Workswell s.r.o., Praha, Czech 

Republic). This thermal camera captures images with 640x512 pixels resolution, 

and has a temperature sensitivity of 0.05°C, with a spectral range of 7.5-13.5 μm. 

The default setting for emissivity of 0.95 was used. The thermal camera captures 

calibrated images which means that the actual temperature is recorded. 

The area of the 2 plots was captured in 4 flight lines, parallel to the longest side of 

the area. The flight height was 20 meters above ground level and the flight speed 

was 2 meters/second. The overlap between flight lines was approximately 80%, 

within the flight line the overlap between images is approximately 60%. The images 

were acquired with a ground sampling distance of 0.025 m. The flight lines were 

constructed with the Unmanned Ground Control Software mission planning 

software (UGCS, 2017). 

The calibrated images were processed with Agisoft PhotoScan software (Agisoft 

LLC, 2017) where a mosaic for the whole trial has been constructed. Unfortunately, 

the GPS malfunctioned during the acquisition, so no GPS coordinates were available 

for the imagery. Since the images were captured with sufficient overlap (70%), 

PhotoScan still can construct a mosaic applying the Structure from Motion (SfM) 

algorithm, but the result is without geo-reference. The geo-referencing was done 

manually in ArcMap (ESRI, 2016) by selecting recognizable locations on the 

thermal mosaic and a georeferenced hyperspectral image of the area. 
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3.2.3.3 Lidar height measurements and data processing 
The RIEGL RiCOPTER with VUX®-1UAV (RIEGL Laser Measurement Systems 

GmbH, Horn, Austria) integrated UAV and sensor system has been used for LiDAR 

data acquisition. The RiCOPTER is a battery-driven octocopter with an empty 

weight (no batteries and equipment) of 9 kg that can carry a payload of up to 8 kg. 

Together with the VUX®-1UAV scanner (3.75 kg), the system controller (0.9 kg), 

the IMU (0.7 kg) and optional cameras the total system weights just under 25 kg. 

The batteries allow flight times of up to 30 min at 30 km/h maximum cruise speed. 

This allows flying multiple overlapping flight lines to increase target coverage 

(Brede et al., 2017).  

The VUX®-1UAV is a survey-grade laser scanner that is mounted underneath the 

RiCOPTER. It uses a rotating mirror with a rotation axis in flight direction to direct 

the laser pulses and achieve an across-track Field Of View (FOV) of 330° 

perpendicular to the flight direction. This means that lateral flight line overlap is 

only restricted by the maximum operating range of the laser. An Applanix AP20 IMU 

attached to the VUX®-1UAV and Global Navigation Satellite System (GNSS) 

antennas on top of the RiCOPTER record flight orientation and GNSS data. The on-

board instrument controller manages all sensors’ data streams and includes a 

220GB SSD storage, which is sufficient for several missions (Brede et al., 2017). 

The area of the 2 plots was captured in 6 flight lines, 3 parallel to the longest side of 

the area, situated to the left, middle and right of the plots and 3 parallel to the 

shortest side of the area, also situated to the left, middle and right of the plots. This 

way, the quinoa plants are scanned from all sides. For each flight line a scan line is 

captured. The flight lines were constructed with the Unmanned Ground Control 

Software mission planning software (UGCS, 2017). 

Pre-processing of the trajectory data (flight orientation and GNSS data) was 

performed with the POSPac Mobile Mapping Suite (Applanix, 2017) using base 

station data provided by 06-GPS (06-GPS, 2017). This makes it possible to achieve 

centimetre accuracy for the geo-location of the laser data. 
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Processing of the raw scanning data was done with the RIEGL RiPROCESS software 

which is the default software tool for processing data from the VUX®-1UAV 

scanner. With RiPROCESS, the raw data is converted to a geo-referenced point cloud 

using the pre-processed trajectory data for accurate geo-positioning. Internal co-

registering of the different scan line data was carried out with the RiPRECISION 

tool. This tool finds matching control planes between scan lines and performs the 

co-registration. The resulting LiDAR point cloud data was exported as LAS files for 

further processing with the LAStools software (rapidlasso GmbH, 2017). 

Classification of ground points and calculation of the plant height was done with the 

LAStools software suite. For ground point classification, the lasground_new tool 

was used with the wilderness option. This enables the detection of smaller features 

on the ground in high resolution LiDAR. The results were visually evaluated and the 

pattern of the ground classification was found accurate enough for further 

processing. Next, the height of all points above the ground was calculated with the 

lasheight tool. The result is still a point cloud with the Z value of each point is the 

relative height above the ground. The Z value for ground points is 0. This point cloud 

was rasterized into a raster file with the lasgrid tool using the highest option with 

a step size of 2.5 cm. This means that within a grid cell of 2.5 by 2.5 centimetres the 

highest Z value of LiDAR points that fall within this grid is assigned as value to the 

grid cell. The result is a raster file covering the whole plot area with the maximum 

height of the vegetation per 2.5 by 2.5 cm’s. This file is used to derive statistical 

information about the plant height for each planting unit. 

3.2.4 Vegetation indices calculation 

Three vegetation indices were calculated for the research. The first one is well 

known and broadly used Normalised Difference Vegetation Index (NDVI): 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁

                                         (1) 

The second one is Optimized Soil Adjusted Vegetation Index (OSAVI) (Rondeaux et 

al., 1996), calculated as: 
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𝑂𝑂𝑂𝑂𝑂𝑂𝑁𝑁𝑁𝑁 =  
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁

𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁 + 0.16
                       (2) 

In our calculation NIR is the reflectance at 870 nm and R is reflectance at 690 nm 

spectral band. The third index is PRI (Gamon et al., 1992), calculated as: 

𝑃𝑃𝑁𝑁𝑁𝑁 =
R531– R570

R531 + R570
                                 (3) 

where Rx is the reflectance on the corresponding wavelength in nm. PRI is known 

to be responsive to salinity stress in plants (Zinnert et al., 2012). 

3.2.5 NDVI clustering 

To filter out the influence of the total biomass on a UAV measured temperature we 

applied NDVI clustering. In this way we ensure that we compare the temperatures 

of the equal amount of a plant material per pixel. The clusters were created by 

sorting the plant units based on their average NDVI value and assigning them into 

groups of equal size. A total 5 clusters were established each containing 24 planting 

units, which means that 120 planting units were included into regression analysis. 

NDVI ranges for each class are indicated in Table 3.3. 

3.2.6 Further geospatial and statistical analysis 

Further geospatial analysis was implemented in ArcGIS Pro software package 

(ESRI, 2017). That analysis consisted of calculating average NDVI, PRI, OSAVI and 

temperature values for each planting unit using Zonal Statistic as Table tool. Then 

importing of the table into the readable form for IBM SPSS Statistics software (IBM 

Corp, 2015) for further statistical analysis and plotting. In SPSS correlation 

coefficients of Table 3.4 were calculated and boxplots were created. The Multiple 

Linear Regression model also has been calculated in SPSS software package. For 

that, functionality of Linear Regression tool has been applied, where canopy 

temperature, PRI and LiDAR measured plant height were chosen as independent 

variables. All statistical analysis has been implemented on a planting unit level, 

therefore average pixel values per planting units were used for producing boxplot 

graphs and calculating regression and correlation coefficients. 
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 Results and discussion 

3.3.1 Vegetation indices analysis 

The multispectral indices did not show significant differences between control and 

salt treated plots, and to some extent even show an inverted correlation, where 

both NDVI and OSAVI showed slightly higher values for salt treated planting units 

(Figure 3.3). We connect this outcome with adaptation mechanisms of quinoa 

plants. Since quinoa is a well-known halophyte, it can increase its fresh weight 

under salinity stress and leaves show the highest increase in weight (Koyro et al., 

2008). This means that multispectral vegetation indices that mainly relate to the 

greenness and green biomass will not be useful for salt tolerant plants like quinoa, 

where relationship of salt stress and biomass are not straightforward. 

 

Figure 3.3. NDVI and OSAVI boxplots of control and salt treated quinoa plots. 

Even though the total biomass of salt affected plants was slightly higher than for the 

control, the actual yield was lower (i.e. the harvest index was reduced by the salt 

treatment), which means that there are certain negative physiological responses 

even in such salt tolerant plants as quinoa. To detect these responses we have 

investigated Physiological Reflectance Index (PRI) values, which is known to be 

influenced by salinity stress (Zinnert et al., 2012). In this case results were more in 

line with previous studies and showed that PRI values of salt treated plants were 

lower than for the control (Figure 3.4). This confirms that actual photosynthetic 
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efficiency has decreased 

because of the salt stress. 

Visual assessment of the 

PRI map in Figure 3.6 

shows these differences, 

with more reddish colours 

(higher PRI) on the control 

plot and more yellow 

(lower PRI) on salt treated 

plot. The map also shows 

that there are quite some 

inconsistencies and 

sometimes very low values 

in control plot and very 

high in the treated one. Because of this, the differences between two means reached 

only 0.005. Suspecting that these inconsistencies appear because of the differences 

in canopy cover per pixel and not because of actual performance of the plant at the 

moment of measurement, we applied NDVI clustering (ranges per cluster are in 

Table 3.3), as described in the Methods section. This allowed us to compare planting 

units with comparable canopy cover. 

In Figure 3.5 it is visible that application of NDVI clustering increased the 

differences of means on average twofold, now reaching 0.01, which leads to a 

clearer distinction between control and salt treated plants. Therefore, NDVI 

clustering appears to be a useful step in the analysis for plants with non-common 

salinity stress responses, like quinoa. 

Figure 3.4. Physiological Reflectance Index 

(PRI) boxplot. 
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Figure 3.5. Physiological Reflectance Index (PRI) boxplot for different NDVI clusters 
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Figure 3.6. PRI map. The salt treated plot has visibly lower PRI values. 

  

Control plot 

Salt 
treated 
plot 
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Figure 3.7. Physiological Reflectance Index (PRI) boxplot clustered by variety. 

In addition to differences between control and salt treated plants, PRI was quite 

variable between different quinoa varieties (Figure 3.7). Pasto variety showed the 

most remarkable result because of the inverted relation – salt treated plant showed 

higher PRI values than control, which suggests that Pasto is the most salt tolerant 

variety among the three. These values correspond well with ground measured 

indicators of plant performance. Red Carina’s mean PRI is also slightly higher on 

salt treated plot, but this difference is barely reaching 0.001 and the general boxplot 

distribution shows that the majority of the values are in the lower range, therefore 

PRI values in the case of Red Carina are not significantly different between control 

and salt affected plants. Atlas variety followed a general pattern of reduced PRI on 

salt treated plants compared to control.  
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3.3.2 Canopy temperature analysis  

Analysis of canopy 

temperature differences 

between saline and non-

saline plot are also much 

clearer when NDVI 

clustering is applied. Figure 

3.8 shows that when 

temperature data are 

stratified only by soil 

salinity treatment, the 

temperature measurements 

are not significantly 

different. But in case of 

NDVI clustered analysis, 

depicted in Figure 3.9, in 4 

out of 5 cases the average 

temperature of the plant is 

higher for salt affected 

plants. This suggests that 

the general principle of 

canopy temperature 

increase in response to 

salinity, which was 

previously observed with 

satellite sensors on 

landscape scale (Ivushkin et 

al., 2017; Ivushkin et al., 2018), is also present with aerial data acquired from a UAV 

on a plot scale. 

Figure 3.8. Temperature boxplot for the 
unclustered dataset. 

Figure 3.9. Temperature boxplot for different 
NDVI clusters. 
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The fact that a higher correlation is observed only after NDVI clustering, suggests 

that even though the canopy temperature is influenced by soil salinity, the amount 

of vegetation in each pixel is crucial for valid soil salinity assessment. 

Moreover, this connection between canopy temperature and soil salinity can be 

observed in salt tolerant crop, which is a surprising finding, taking into account that 

salt tolerant and salt sensitive plants have different salt stress adaptation 

mechanisms (Shabala and Munns, 2012). In this trial this distinguishing was 

possible by applying additional step in the analysis – NDVI stratification. Therefore, 

canopy temperature increase in response to salinity stress can be observed in salt 

tolerant plants, though the effect is less pronounced compared to conventional 

crops (Ivushkin et al., 2017; Ivushkin et al., 2018). 

Canopy temperature generally depends on stomatal conductance. Figure 3.10 and 

Table 3.3 show how they correspond in our case. When the dataset is analysed 

without any clustering the correlation between stomatal conductance and UAV 

recorded temperature was -0.188. This is quite surprising considering that 

stomatal conductance ground measurements have a clear spatial distribution 

(Figure 3.2) which shows significantly lower stomatal conductance on the salt 

affected plot. The reason for this is the different amount of vegetation signal per 

pixel and specifics of adaptation mechanism of quinoa, as described before. In this 

case, though stomatal conductance is decreased with a higher salinity level, the 

increase in total amount of vegetation per pixel (and, as a result total amount of 

stomata per pixel) leads to temperature compensation and there is no difference 

between control and salt affected plot observed in remote sensing data. But when 

the analysis was done on the NDVI clustered dataset the correlation coefficient 

reached -0.657 and 3 out of 5 coefficients are significant. However, the two marginal 

clusters (first and the last) showed low correlation coefficients. This suggests that 

plants with highest and lowest green biomass of the study area are less suitable for 

the thermal monitoring of salt induced stress. 
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Table 3.3. Correlation coefficients between stomatal conductance and UAV measured 

canopy temperature per NDVI cluster (correlation is significant at the *0.05 or **0.01 

level). 

NDVI rank 1 2 3 4 5 NDVI unclustered 
NDVI range <0.781 0.781-0.800 0.800-0.809 0.809-0.816 0.816-0.840 - 
Correlation 
coefficient 

-0.285 -0.445* -0.406* -0.657** 0.008 -0.188* 

 

 

Figure 3.10. Stomatal conductance vs. canopy temperature scatterplot. Different 

colours represent different NDVI clusters. Lines are the best fit lines for each cluster.  
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3.3.3 LiDAR height measurements analysis 

 

Figure 3.11. Scatterplot of plant height measured by Lidar and by hand 48 days later. 

The line is 1:1 line. 

LiDAR measurements of plant height were compared with actual ground 

measurements. The results show that LiDAR can accurately predict plant height 

with the R2 of 0.78. This is remarkably good as the height measurements of the 

LiDAR predict the height of the crop at the harvest 48 days later. That means that 

LiDAR data has a potential for plant height prediction at the time of harvest, which 

can further be used for yield prediction. 

Moreover, the R2 most likely has been decreased by the fact that not every single 

plant has been measured by ground measurements, but only the 90 % quantile of 

the plant height of 42 plants was determined, while LiDAR provided an average of 

every plant’s height in each planting unit. 



50 Chapter 3 

The plant height was 

significantly affected by salt 

treatment. The salt treated 

plants are on average 10 cm 

shorter than the control 

plants (Figure 3.12). 

However, this is not true for 

the Pasto variety, which 

showed a reversed 

correlation and salt affected 

plants are 5-10 cm higher 

than control. This can clearly 

be seen on the LiDAR height map, where Pasto can be identified by its difference in 

height compared to the neighbouring planting units of other varieties (Figure 3.13). 

Considering that plant height is usually affected by salt stress, LiDAR systems have 

an added value in soil salinity monitoring allowing to obtain plant height 

measurements over big areas in short period of time. Adding this data into 

multivariable analysis will increase the prediction power and accuracy of the 

results, which is demonstrated in the next subsection. 

Figure 3.12. Lidar measured plant height. 
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Figure 3.13. Lidar measured plant height (m) map (Pasto planting units are marked 

by the circles). 

3.3.4 Multiple Linear Regression 

Application of Multiple linear regression has showed higher regression coefficient 

compared to the cases when only a single predictor is used. When data from all 

three sensors were used (thermal, hyperspectral, LIDAR) the R2 reached 0.64 (0.58 

R2 adjusted) for the fourth NDVI class (Table 3.4) and 0.46 for all classes combined 

(Figure 3.14). The predictors in this case were PRI, canopy temperature and LIDAR 

measured plant height. Though the average regression coefficient has been 

increased by application of multiple linear regression, the deviations of the 

Control plot 

Salt 
treated 
plot 
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regression coefficients between different NDVI clusters are quite high and R2 varies 

from 0.1 to 0.64 (Table 3.4) so there is a room for improvement on the consistency 

of the results. 

Table 3.4. Determination coefficients (R2) for different indicators vs. stomatal 

conductance (MLR combines PRI, canopy temperature and LIDAR measured plant 

height). 

NDVI rank 1 2 3 4 5 NDVI unclustered 
MLR .590 .376 .410 .638 .104 .241 

Canopy temperature .081 .198 .165 .431 .000 .035 
PRI .434 .184 .200 .263 .043 .142 

LIDAR measured plant height .487 .218 .263 .417 .079 .213 
 

 

Figure 3.14. Scatterplot of MLR predicted vs measured stomatal conductance values. 

The line is 1:1 line. 
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It is fully conceivable that the remote sensing data could be more accurate than the 

actual stomatal conductance measurements, which were only done using 

measurements on four leaves and on two different days in a morning and afternoon 

part. The amount of work does not allow to finish this large number of stomatal 

conductance measurements on a larger number of leaves within a few hours. This 

might add bias and residual error in the stomatal conductance measurements. The 

remote sensing data have been collected in a much shorter period (less bias 

between different parts of the experiment) and on the whole planting unit instead 

of only on four leaves per planting unit. 

In addition to salt stress, stomatal conductance can be used as an indicator of other 

stresses, like water stress. Its effective measurements using such cost and labour 

effective technique as UAV remote sensing can be useful as a component of a 

precision agriculture systems. In general, remote sensing measurements methods 

for different plant properties, might be a useful addition for modern agricultural 

management system, where UAVs are already playing an important role. 

Among the directions for a future research we suggest investigating the application 

of the method to other crops. It is likely that other crops might have different degree 

of responses and with more sensitive crops the data analysis might be more 

efficient by skipping the NDVI stratification step. Though we are sure that the trend 

will be the same, since general physiological mechanisms are similar in most of the 

plants. Taking into account that salt treatments in this experiment correspond to 

highly and extremely affected lands we see an added value in conducting 

experiment with lesser concentrations, which will correspond to salinity conditions 

that are more widespread on cultivated lands. 

 Conclusions 
This study investigated plot scale assessment of soil salinity using three different 

UAV mounted sensors: thermal camera, hyperspectral camera and LiDAR. The 

results showed that an increase of canopy temperature in response to salt stress is 

also happening in salt tolerant plants, like quinoa, though this increase is less 
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pronounced. The other variables investigated, namely Physiological Reflectance 

Index and LiDAR measured plant height, are also affected by soil salinity stress. 

Physiological Reflectance Index of quinoa plant is significantly decreased because 

of the increased soil salinity and seems to be a valuable indicator of salt stress, in 

opposite to multispectral indices like NDVI or OSAVI, which showed insignificant 

differences between control and salt treated plants, with even reverted 

correlations. LiDAR measured height of quinoa plant is significantly decreased 

because of the increased soil salinity. Stratification of an area by NDVI values 

ensures the equal amount of vegetation per pixel and, therefore, increases the 

correlation’s strength between soil salinity level and remotely sensed physiological 

variables like PRI and canopy temperature. The combination of multiple remote 

sensing variables in Multiple Linear Regression model has improved regression 

coefficient and therefore we conclude that implementation of multiple 

measurement techniques bears a lot of potential for soil salinity monitoring of 

cropland by remote sensing. 



 

 
 
Chapter 4 

4 Soil salinity assessment through satellite 
thermography for different irrigated and rainfed 
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Abstract  
The use of canopy thermography is an innovative approach for salinity stress 

detection in plants. But its applicability for landscape scale studies using satellite 

sensors is still not well investigated. The aim of this research is to test the satellite 

thermography soil salinity assessment approach on a study area with different 

crops, grown both in irrigated and rainfed conditions, to evaluate whether the 

approach has general applicability. Four study areas in four different states of 

Australia were selected to give broad representation of different crops cultivated 

under irrigated and rainfed conditions. The soil salinity map was prepared by the 

staff of Geoscience Australia and CSIRO Land and Water and it is based on thorough 

soil sampling together with environmental modelling. Remote sensing data was 

captured by the Landsat 5 TM satellite. In the analysis we used vegetation indices 

and brightness temperature as an indicator for canopy temperature. Applying 

analysis of variance and time series we have investigated the applicability of 

satellite remote sensing of canopy temperature as an approach of soil salinity 

assessment for different crops grown under irrigated and rainfed conditions. We 

concluded that in all cases average canopy temperatures were significantly 

correlated with soil salinity of the area. This relation is valid for all investigated 

crops, grown both irrigated and rainfed. Nevertheless, crop type does influence the 

strength of the relations. In our case cotton shows only minor temperature 

difference compared to other vegetation classes. The strongest relations between 

canopy temperature and soil salinity were observed at the moment of a maximum 

green biomass of the crops which is thus considered to be the best time for 

application of the approach. 
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 Introduction 

Soil salinity is one of the severe land degradation problems that affects 1 billion 

hectares in more than 100 countries (Squires and Glenn, 2004). Moreover, it will 

increase at a rate of 2 million hectares per year (Abbas et al., 2013) because of the 

continuing global warming, resulting in desertification and sea water intrusion 

(Dasgupta et al., 2014). The causes of soil salinity differ from place to place and can 

be both natural and anthropogenic. There are areas where soils naturally has an 

increased content of soluble salt because of the weathering process and areas 

where the main cause is secondary salinization of irrigated areas because of 

inefficient irrigation schemes and absence or malfunction of a drainage system 

(Ghassemi et al., 1995). The effect of soil salinity on agricultural crops are extremely 

negative as it leads to leaf necrosis, altered phenology and ultimately plant death 

(Volkmar et al., 1998) 

Most often soil salinity is measured by the use of geophysical instruments that 

measure soil or soil water extract electrical conductivity. That is done either in the 

field or in the lab, if soil saturated paste extract should be prepared. With a proper 

calibration this is considered a standard measurement procedure in most of the 

countries that produce regular soil salinity surveys. The more classical chemical 

analysis of samples are still used sometimes, but less and less because of the high 

costs associated and the amount of time required. There is a rich body of literature 

on the topic of soil salinity assessment by field and laboratory analysis and main 

points are well summarised in FAO Irrigation and Drainage Paper #57 by Rhoades 

et al. (1999). 

Nevertheless, even improved methods of assessment, like the use of geophysical 

instruments mentioned earlier, are labour and cost intensive and cannot be 

implemented several times per season or even early on a big scale. Given this 

situation, timely monitoring of the problem is crucial. Remote sensing is widely 

used for the monitoring of different environmental phenomena, including soil 

salinity (Metternicht and Zinck, 2009). Both the spectra of bare soils and vegetation 

have been used, the latter more widely. Assessment of bare soil salinity has been 
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implemented mainly as a two-step process where firstly soil samples are spectrally 

analysed in laboratory conditions and a predictive model is built to relate the 

laboratory measurements to satellite spectral data which is subsequently applied 

for landscape scale assessments (Aldabaa et al., 2015; Bai et al., 2016; Nawar et al., 

2014; Sidike et al., 2014). The vegetation canopy has been studied mainly by 

calculating different vegetation indices, from which normalised difference 

vegetation index (NDVI), enhanced vegetation index (EVI) and soil-adjusted 

vegetation index (SAVI) are the most popular ones (Elhag and Bahrawi, 2017; 

Hamzeh et al., 2016; Muller and van Niekerk, 2016; Rahmati and Hamzehpour, 

2017; Scudiero et al., 2015). But current methods using vegetation indices and bare 

soil reflectance are site specific and do not demonstrate good performance on 

different study areas (Allbed et al., 2014b). 

The use of canopy thermography is an innovative approach for salinity stress 

detection in plants (Ishimwe et al., 2014; Urrestarazu, 2013). The mechanism of the 

temperature change is based on plant salt stress response. One of the first 

components of this response is stomatal closure, which leads to reduced 

transpiration of a plant and increase of its canopy temperature (Munns and Tester, 

2008). The effectiveness of canopy thermography was proven in laboratory and 

small scale field trials for many plants, including wheat, cotton, barley, euonymus 

(Gómez-Bellot et al., 2015; Hackl et al., 2012; Howell et al., 1984; Peñuelas et al., 

1997), but its applicability for landscape scale studies using satellite sensors is still 

not well investigated. 

Ivushkin et al. (2017) demonstrated that there is a significant correlation between 

satellite-derived canopy temperature and soil salinity levels, using MODIS satellite 

thermal images together with NDVI and EVI vegetation indices and a soil salinity 

map. Using an NDVI threshold they selected only cropped areas and implemented 

an ANOVA analysis on series of images for the growing season of wheat and cotton 

(April-October) in Syrdarya province of Uzbekistan. That study showed that 

satellite thermography data is significantly correlated to soil salinity and has a 

potential application in soil salinity mapping. Moreover, the F-values were higher 

for the thermography data then for commonly used vegetation indices. Despite the 
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positive outcome, the research had some limitations. It was conducted on a 

homogeneous irrigated area with mainly two crops grown in one climatic zone. As 

a result, questions about the method’s applicability in different arid and semi-arid 

regions of the world and on different crops remained. 

Therefore, the aim of this research is to test the satellite thermography soil salinity 

assessment approach (Ivushkin et al., 2017) on a different study area with different 

crops, grown both in irrigated and rainfed conditions, to evaluate whether the 

approach has general applicability. Three research questions are addressed. Does 

the satellite thermography soil salinity assessment approach apply to study areas 

different from the one on which it was developed? Is it applicable for different 

crops? Does it apply to both irrigated and rainfed agriculture? 

 Methods and materials 

4.2.1  Study area 

Among many affected areas of the world we have chosen Australia as a test area. 

This continent has vast salt-affected areas and a thriving agriculture sector where 

different crops are grown, both under irrigated and rainfed conditions. Moreover, 

Australia has an extensive database of land cover and soil salinity data, which 

allows us to answer our research questions about applicability of the technique for 

different crops and different agricultural practices (rainfed and irrigated) together 

with the question about application on different study areas. 

Four study areas in four different states were selected to give broad representation 

of different crops cultivated under irrigated and rainfed conditions (Figure 4.1 and 

Table 4.2). 
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Figure 4.1. Study areas marked on soil salinity map of Australia (soil salinity data 

source: CSIRO Land and Water, Geoscience Australia). 

The Western Australian study area is located to the North of Esperance and is the 

most arid area among the 4 selected locations (Table 4.1). Main crops grown here 

are wheat, barley and rapeseed. The main soil type is Sodosols. The other three 

study areas have comparable rainfall and temperature characteristics with mean 

annual rainfall of 500-600 mm. The South Australian study area is located on Yorke 

Peninsula, known as the barley capital of Australia. Main crops here are barley and 

wheat, with small part of areas for rapeseed. The most abundant soil type is 

Calcarasols with some areas covered by Rudosols, Tenosols and Sodosols. The New 

South Wales study area is located between Moree and Dubbo. Most of the cropped 

areas here are sown by wheat with small part for barley, irrigated and rainfed 

cotton. The area has diverse soil cover with an extensive cover of Vertosols and 

Sodosols and some areas of Kandosols, Ferrosols and Tenosols. The Queensland 
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study area is located to the west of Brisbane and sown mainly with sorghum and 

wheat, with small areas of irrigated and rainfed cotton. The most abundant soil 

types are Vertosols and Sodosols with smaller areas of Tenosols and Chromosols.  

Table 4.1. Climatic characteristics of the study areas (Australian Bureau of 

Meteorology, 2017).  

Study area 
state 

Mean annual 
maximum 
temperature (°C) 

Mean minimum 
temperature (°C) 

Mean 
rainfall, 
mm 

High rainfall 
months  

Average soil 
salinity on the 
area investigated 

Queensland 26.8 11.9 602 Dec, Jan, Feb Slightly 
New South 
Wales 

26.7 11.6 646 Dec, Jan, Feb Slightly 

South 
Australia 

21.7 11.3 506 May, Jun, Jul, 
Aug 

Slightly to 
moderate 

Western 
Australia 

23.4 9.0 355 May, Jun, Jul, 
Aug 

Moderately 

4.2.2  Land use data 

All land use data was accessed through the Australian Bureau of Agricultural and 

Resource Economics and Sciences website (ABARES, 2008a, b, 2009, 2012). Cotton 

was explicitly marked in the land use dataset and the class of (Irrigated) Cropping 

and Cereals were assumed to be either wheat or barley based on statistical data on 

agricultural lands areas from Australian Bureau of Statistics (2008). The data was 

collected in a period from 2006 to 2010. Based on the available land use classes we 

were able to analyse nine ‘crop – study area’ combinations (Table 4.2). 

Table 4.2. Investigated ‘crop - study area’ combinations and their areas (ha). 

4.2.3 Description of soil salinity data 

The soil salinity data was prepared by the staff of Geoscience Australia and CSIRO 

Land and Water. The sampling campaign lasted from mid-2007 till the end of 2009, 

1315 sites were sampled over Australia and EC values of 1:5 soil:water extract for 

  Irrigated 
cropping 

Rainfed 
cropping 

Rainfed 
cereals 

Irrigated 
cotton 

Rainfed 
cotton 

Queensland 117877 1338606 - 62056 19742 
South Australia - 418656 406920 - - 
Western Australia - 149037 - - - 
New South Wales 89329 - - 107145 - 
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the 0-80 cm layer were measured (de Caritat and Cooper, 2011). Then log-

transformed EC1:5 for the whole continent were predicted using decision tree 

models that used climate variables, elevation and terrain attributes, soil and 

lithology classes, geophysics, and MODIS vegetation indices extracted at the same 

locations as the EC points. Values from 71 predictor variables in total were 

extracted from spatially co-registered 90-m grids. The machine learning software 

‘Cubist’ (www.rulequest.com) was used as the inference engine for the modelling. 

Cubist builds piecewise linear regression trees. Models take the form: if 

[condition(s)], then [linear model], e.g., if [clim_etaaann > 259 and clim_rainsum <= 

106.2 and soil_asc in (4, 6)], then log10 EC = [linear model]. A 90 : 10 training : test 

set data split was used to validate results, and 100 randomly sampled trees were 

built using the training data (Bui et al., 2017). The method is similar to the one used 

for mapping calcium carbonate across Australia, documented in Wilford et al. 

(2015). To use the currently most common classification of US Salinity Laboratory 

Staff (1954) EC1:5 values were converted into ECe values by applying appropriate 

coefficients depending on soil texture. The final map we used is in a form of a raster 

grid with ≈90m resolution (Figure 4.1). Soil salinity classes used are based on FAO 

bulletin by Abrol et al. (1988) and described in Table 4.3. 

Table 4.3. Soil salinity classes. 

Soil salinity class ECe (dS/m) Effect on crops 
Non saline 0 - 2 Salinity effects negligible 
Slightly saline 2 - 4 Yields of sensitive crops may be restricted 
Moderately saline 4 - 8 Yields of many crops are restricted 
Highly saline 8 - 16  Only tolerant crops yield satisfactorily 
Extremely saline > 16 Only a few very tolerant crops yield 

satisfactorily 
 

4.2.4 Description of Remote Sensing data 

For analysis we used two kinds of satellite images products of Landsat 5 TM 

satellite. To mask out non-vegetated areas we used the NDVI product and to derive 

canopy temperature we used the Brightness Temperature product (USGS, 2017a). 

The NDVI product has a resolution of 30m and the Brightness Temperature has 
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120m resolution originally, but the system resamples it to 30m. To keep the data 

closer to its original resolution, both products has been ordered in 100m resolution 

and further analysis was implemented on a 100m grid. The Brightness temperature 

provided in kelvins with the accuracy up to one decimal place. All the products were 

downloaded through the ‘On Demand Interface of Earth Science Processing 

Architecture’, U.S. Geological Survey (USGS, 2017b). In total we analysed 118 

images (38 for Queensland, 36 for New South Wales, 14 for South Australia and 30 

for Western Australia) for the period from January 2007 to December 2009. These 

years were selected to have the best correspondence with the soil salinity map, 

which also was produced as a result of the sampling in the period from mid-2007 

until the end of 2009. 

4.2.5 Data analysis 

First, images were clipped to the extent of the study area. After that, NDVI masks 

were applied to extract only vegetated areas for further analysis. The NDVI 

threshold we used is 0.3. This value was chosen after series of trials and ensures 

reasonable area coverage together with assurance that the area is vegetated. 

Further, all the images were clipped based on ‘crop - study area’ combinations 

(Table 4.1) to separately analyse different vegetation types. A special step was 

included for Western Australia because many small waterbodies were spread over 

the study area. To avoid their influence on canopy temperature data we buffered all 

waterbodies from the land use dataset by 200m and applied this buffer to the 

thermal data so only pixels farther then 200m from waterbody were used in the 

analysis. In the next stage all pixel values of all rasters (soil salinity, temperature, 

NDVI) were combined into database tables and relations between canopy 

temperature and salinity levels were statistically analysed by applying Analysis of 

Variance (ANOVA). The total amount of records analysed for each ‘crop - study area’ 

combination can be seen in Table 4.2, since the pixel size we used is equal to 1 ha. 

All geodata was processed by means of a Python script in combination with ArcGIS 

software package through arcpy library (ESRI, 2016). Statistical analysis and data 
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visualisation was implemented with Python scripts and SPSS software (IBM Corp, 

2015). 

The analysis was implemented for different times during a growing season. That 

allowed us to investigate seasonality of the relationship between canopy 

temperature and soil salinity. 

To enable a graphical comparison between different dates, study areas, and crops, 

we have plotted not the absolute temperature values but the deviation from the 

mean average temperature value for the scene under consideration (Figure 4.2). 

The schematic workflow is available in the Supplement material. 

 Results 
Though we analysed the satellite images for three years, the data from 2007 

demonstrated the most conclusive results and that is why here we show mainly 

results from that year. The data from 2008 and 2009 suffered from image quality 

issues, because of the intensive cloud cover, and being quite distant in time from 

the sampling dates, they were not included here. 

There is a clear trend of temperature increase as soil salinity increases, as shown in 

the boxplots in Figure 4.2. The trend is more pronounced in the case of rainfed 

agriculture (Figure 4.2, South Australia and Queensland graphs), where differences 

between adjoining classes are usually more than 1°C. Irrigated vegetation on 

average shows less pronounced differences though the pattern is not significantly 

different from rainfed vegetation. Queensland graphs in Figure 4.2 demonstrate 

this as well, where the images for both areas (irrigated and rainfed) were captured 

on the same day. The irrigated and rainfed cotton boxplots also show identical 

patterns, but here the results are less conclusive, since we had only two salinity 

classes. Nevertheless, these results mean that the satellite thermography approach 

to assess soil salinity is applicable for both rainfed and irrigated agriculture. 
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Figure 4.2. Canopy temperature boxplots for different study areas. All p-values < 0.01. 

Between vegetation types there are also some differences. Under cotton, both 

rainfed and irrigated, there are lower mean temperature differences, which rarely 

reach 0.5 °C. This is an anticipated result and means that crop species under 

investigation should be taken into account and that less salt-tolerant crops will 

exhibit higher temperature differences. 

Between study areas there are no significant differences, the trends are ascending 

in all 4 cases. This indicates that soil salinity leads to a general increase in canopy 

temperature independent of the crop type and presence or absence of irrigation. 

The F-values, which are testing the relationship between canopy temperature and 

salinity level, and between canopy temperature and NDVI time series show that 

there is seasonality in the correlation (Figure 4.3). Highest F-values (the full ANOVA 
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tables are in the Supplement materials) are usually observed from August to 

October, which is a period of maximum green biomass for the main winter crops in 

Australia (wheat, barley, canola, rapeseed). On two study areas, where cotton is 

present, we detected a second peak of high correlations in March, when cotton is at 

its peak of green biomass. In most of the cases the peaks of NDVI and F-values 

coincide, which tells us that development stage of the crop is an important factor 

for the strength of the correlation. 

In Figure 4.4 you can see and compare the soil salinity and canopy temperature map 

for the Yorke Peninsula. The general pattern is that high salinity values correspond 

quite well with high temperature values. For example, in the circles near the coast 

we can observe both high salinity and temperature values. In the map low salinity 

values corresponds overall also quite well with low temperature values. This is also 

clearly illustrated in the circle in the North-East part of the peninsula. 

The Figure 4.5 also shows two maps of the soil salinity and canopy temperature for 

study areas in Queensland. The general pattern visible here is the difference 

between North and South parts. Highest temperatures are observed in the North 

part, the same as the highest salinity values. In the South there are less salt affected 

areas and also the lowest canopy temperature is observed. 
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Figure 4.3. F-values and NDVI time series for different crops and areas. 
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Figure 4.4. Maps of soil salinity and canopy temperature (South Australia, Yorke 

Peninsula). 

 

Figure 4.5. Maps of soil salinity and canopy temperature (Queensland, rainfed crop 

fields). 
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 Discussion 

The aim of the research was to test general applicability of satellite thermography 

to assess soil salinity on different areas. Australian study areas provided us with 

diverse set of environments in a range of arid and semi-arid climatic zones. 

Moreover, here we were able to investigate the method applicability for different 

crops including wheat, cotton, barley and rapeseed under different climatological 

and management conditions. 

The temperature differences between salinity classes (Figure 4.2) are present in all 

study areas and for all crops, which suggests that soil salinity significantly 

influenced the crop temperature. These findings are in line with what was 

described in Ivushkin et al. (2017). However, in our current research cotton 

exhibited only a slight increase in canopy temperature as salinity increases while 

in Uzbekistan cotton was more sensitive to soil salinity compared to wheat. But that 

is explained by the leaching regime on the study area in Uzbekistan and its timing. 

In general, cotton is more salt tolerant than wheat and most other cereals (Ayers 

and Westcot, 1985). That is what we see in the Australian results, where cotton, 

both irrigated and rainfed, shows only a slight temperature increase, compared to 

other crops. 

The investigation of seasonality suggests that the approach is not equally applicable 

all year round. Figure 4.3 shows that highest F-values in most of the cases 

corresponds with NDVI peaks, but there are some inconsistencies. To avoid them 

in the future we suggest to increase the NDVI threshold used from 0.3 to 0.5 on 

study areas with dense vegetation. We did not do it in the current study to be able 

to investigate seasonality patterns of the phenomena. But in operational application 

that will provide more clear results because then only highly developed vegetation 

at the peak of green biomass will be included into analysis. 

The approach is universal in terms of thermal satellite images used. MODIS 

(Ivushkin et al., 2017) and now Landsat data show similar patterns and 

relationships between soil salinity and canopy temperature. Which means that both 

coarse resolution of MODIS (1km) and medium resolution of Landsat (120m) can 
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be effectively used. Though Landsat would be more applicable for farm and field 

scales, and MODIS for landscape scale, to characterise soil salinity in the whole 

province, for example. 

Obviously, there might be other factors influencing canopy temperature, water 

bodies for example most likely will decrease canopy temperature in their vicinity. 

To mitigate this effect, we removed pixels adjacent to surface water bodies from the 

analysis in the Western Australia study area. Some other interfering factors like 

irrigation and irregular management may be irrelevant depending on scale. 

Irrigation schedule is unlikely to significantly influence temperatures on a regional 

scale, although definitely should be taken into account when farm or field scale 

assessment is implemented. The same is true for uniformity of land management. 

Moreover, even when correct canopy temperature readings are obtained, there 

might be other stress factors that lead to canopy temperature increase. The most 

common of these factors is the water stress, which causes a response which is 

similar to salinity stress. Most of the work about canopy temperature which we 

referred to in the introduction are mentioning water stress as an important factor 

defining canopy temperature (Gómez-Bellot et al., 2015; Hackl et al., 2012). 

Mitigating this influence is possible by making sure that water stress is not present, 

or that its effect is negligible. That can be done by obtaining the water status of the 

investigated area. In case of irrigated agriculture this is less of a problem since most 

of the time crops will avoid water stress, and in case of rainfed agriculture the data 

on precipitation might be used. Moreover, water stress will change the 

measurements a lot in case of multitemporal or broad scale assessment, where 

multiple scenes will be used, but inside one scene plants’ water status will be 

similar, even if stressed, and influence of water stress on the measurements will be 

nullified. 

Of course, the ultimate goal of these kind of research would be an inversion model, 

which will allow conversion of temperature values into soil salinity values. Though 

additional factors of increased thermal energy dissipation, like macro and 

micronutrient deficiencies or metal toxicities should be accounted for (Morales et 
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al., 2014). The outcomes of the research suggest that inversion model could be done 

if auxiliary data is available. Preliminary data on the study area will be required. 

The extent to which an area is affected by salinity should be known to properly 

calibrate the model. Application without any prior knowledge and ground truth 

data will hardly lead to any meaningful assessment. Also, it is obvious that cropping 

pattern will matter, because of different salt tolerance of crops. The management 

practices data will also positively contribute to the model accuracy, temperature 

decrease caused by recent irrigation must be considered. That will especially 

matter in case of small scale assessment (several fields). In case of rainfed 

agriculture rainfall data will be of use. In general, we see potential for predictive 

models in case auxiliary data are available and contemporary computational 

capabilities, like machine learning, are applied. 

 Conclusions 

The current study investigated the applicability of satellite remote sensing of 

canopy temperature as an approach of soil salinity assessment for different crops 

grown under irrigated and rainfed conditions. We concluded that in all cases 

average canopy temperatures were significantly correlated with soil salinity of the 

area (in the period of green biomass peak all p-values<0.01). It is valid for all 

investigated crops, grown both irrigated and rainfed. Nevertheless, crop type does 

influence the strength of the relations. In our case cotton, as salt tolerant plant, 

shows only minor temperature difference compared to other vegetation classes 

which suggests that less salt tolerant species will demonstrate higher temperature 

differences and will allow a more accurate assessment of soil salinity. 

The approach is also flexible in terms of thermal imagery used. It has been applied 

using both MODIS and Landsat data and, in both cases, similar patterns and trends 

were present, despite the very different spatial resolution of these two sensors. 

Up to now the method has been tested in two different parts of the world: 

Uzbekistan and Australia. In both cases soil salinity significantly defined canopy 
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temperature of the crops grown. That allows us to conclude that the method can be 

applied in other arid and semi-arid parts of the world. 

Since the method is based on canopy temperature measurements, there is an 

obvious limitation for timing of the monitoring. The strongest relations between 

canopy temperature and soil salinity were observed at the moment of a maximum 

green biomass of the crops thus that is the best time for application of the approach. 
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Abstract  
Soil salinity increase is a serious global threat to agricultural production. The only 

database that currently provides soil salinity data with global coverage is the 

Harmonized World Soil Database, but it has several limitations when it comes to 

soil salinity assessment. Therefore, a new assessment is required. We hypothesized 

that combining soil properties maps with thermal infrared imagery and a large set 

of field observations within a machine learning framework will yield a global soil 

salinity map. The thermal infrared imagery acts as a dynamic variable and allows 

us to characterize the soil salinity change. For this purpose we used Google Earth 

Engine computational environment. The random forest classifier was trained using 

7 soil properties maps, thermal infrared imagery and the ECe point data from the 

WoSIS database. In total, six maps were produced for 1986, 2000, 2002, 2005, 2009, 

2016 respectively. The validation accuracy of the resulting maps was in the range 

of 67-70%. The total area of salt affected lands by our assessment is around 1 billion 

hectares, with a clear increasing trend. Comparison with 3 studies investigating 

local trends of soil salinity change showed that our assessment was in 

correspondence with 2 of these studies. The global map of soil salinity change 

between 1986 and 2016 was produced to characterize the spatial distribution of 

the change. We conclude that combining of soil properties maps and thermal 

infrared imagery allows mapping of soil salinity development in space and time on 

global scale.  
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 Introduction 

Soil salinity increase is a serious global threat to agricultural production. It affects 

an area of more than 1 billion hectares in more than 100 countries all over the world 

and these numbers are constantly growing (Abbas et al., 2013; FAO and ITPS, 2015; 

Squires and Glenn, 2004; Szabolcs, 1989). Besides this estimate of the global area 

affected by soil salinity, several others are available which differ in the extent of the 

affected area, sometimes quite dramatically (IAEA, 1995; Oldeman et al., 1991). 

Therefore, only a rough approximation of salt affected areas globally can be given. 

FAO (2018b) recognises this issue and stresses that the divergence of current 

estimations of the extent of salt affected areas are quite often the result of 

differences in methods for collecting and aggregating statistics. They specifically 

state that there is a need for data on the rate of change in areas affected by 

salinization at regional and global level (FAO, 2018b). Status of the World’s Soil 

Resources report by FAO and ITPS (2015) also mentions that information on the 

extent and characteristics of salt-affected soils is very scattered. 

The only database that currently provides soil salinity data with global coverage is 

the Harmonized World Soil Database. This database is an important source of soil 

data for global studies, but it has several limitations when it comes to the soil 

salinity assessment. First, the database consists of soil mapping units, rather than 

continuous grid with soil properties’ values unique for each pixel. It has > 15,000 of 

such units and has only a single soil salinity value per unit, of which some are 

stretching for hundreds of kilometres. So, although the spatial resolution of the 

maps produced from this database is around 1 km, the actual spatial resolution in 

case of soil salinity is much coarser. Second, though the database was updated 

several times in the past (last time in 2012; version 1.2), most of it is based on the 

FAO/UNESCO Soil Map of the World created in 1970-1981, which can be considered 

outdated given the highly dynamic nature of soil salinity. Lack of spatial detail and 

outdated data illustrate the need for an updated global soil salinity map. 

Having up to date information on spatial distribution and severity of soil salinity is 

crucial for agricultural management of affected areas, to take necessary measures 
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to reduce or even avoid economical losses and restore the productivity of the soil. 

Mapping dynamic soil properties like salinity has challenges compared with other, 

less dynamic properties. Soil salinity can rapidly change after irrigation or a rainfall 

event. Drought on the other hand might increase salinity in the course of several 

weeks. Therefore, monitoring by traditional methods will require sampling 

frequently in time, which can be cost-prohibitive. That is one of the reasons why 

remote sensing methods are now used more and more often for soil salinity 

monitoring and mapping (Allbed and Kumar, 2013). 

Remote sensing is used for soil salinity mapping already for years (Metternicht and 

Zinck, 2009). Nevertheless, there are still no universally acceptable methods to 

derive soil salinity parameters from remote sensing data that can be used for 

different environments. On field and local scales many studies have been conducted 

that proposed conversion models from remote sensing variables to soil salinity 

levels on the ground. Nevertheless, these models usually do not demonstrate the 

same high accuracy in different parts of the world (Allbed et al., 2014a; Allbed et al., 

2014b; Douaoui et al., 2006), which means that scaling up to global scale is 

problematic. 

Recently, thermal infrared imagery was used to distinguish between different levels 

of soil salinity on agricultural lands (Ivushkin et al., 2017; Ivushkin et al., 2018). The 

principle behind this approach is that the canopy temperature of the plants grown 

on the affected area will be higher than of plants growing in a non-affected area. 

The approach has been tested on regional and local scales and showed its 

robustness in different climatic conditions and on areas covered with different 

crops. Therefore, it seems promising for use on a global scale. 

We foresee, however, that scaling up to the global level will bring additional 

challenges like the issue of different climatic zones. The thermal approach has been 

previously applied to areas small enough to presume a constant air temperature 

per single satellite image acquisition scene, therefore there was no need to 

normalise the values. On the global scale this will be impossible because of the 

different climatic zones and extreme temperature differences between regions; and 
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use without normalisation will just lead to characterisation of a climate, rather than 

soil salinity. But even with some kind of normalisation using only the thermal data 

on the global scale will be insufficient because of other factors that will influence 

the temperature. 

Here we propose to tackle that challenge by using auxiliary data. It is known that 

other soil properties are correlated with soil salinity. For example, Al-Busaidi and 

Cookson (2003) described the interrelations of pH and soil salinity, Setia et al. 

(2013a) studied the influence of soil salinity on the soil organic carbon content. A 

connection between cation exchange capacity and soil salinity has also been 

reported (Saidi, 2012). Moreover, bulk density and soil texture can have some 

auxiliary information for soil salinity monitoring. Often saline and alkaline soils are 

affected by compaction and lower water retention in sandy soils will make them 

less prone to salinity problems. Global maps of properties relevant for soil salinity 

mapping are available from the SoilGrids portal2 (Hengl et al., 2017). 

We hypothesize that combining these maps together with the thermal infrared 

imagery and a large set of field observations on soil salinity indicators, such as the 

electrical conductivity within a machine learning framework will yield a global soil 

salinity map. Moreover, since the SoilGrids data is static, using the thermal data 

from different time periods will enable us to assess soil salinity change in the area 

of interest over time. Therefore, the overall aim of this study is to investigate if 

combination of soil properties maps and thermal imagery will allow us to map the 

development of soil salinity in space and time on global scale and measure how 

accurate these estimates will be. 

 Methods and materials 

Because our study was implemented at global scale, we decided to use Google Earth 

Engine (GEE) as freely available platform especially tailored for analysis and 

                                                 
 
 
2 https://soilgrids.org  
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processing of geodata at global scale. Among GEE advantages are the extensive 

library of geospatial datasets, including the widely used satellite imagery, and 

computational power enough to process these data on the global scale. GEE has 

already been used for soil properties mapping. For example for soil moisture 

mapping (Sazib et al., 2018) or soil type and soil organic carbon mapping (Padarian 

et al., 2015). Therefore, it became our platform of choice for a further analysis. 

5.2.1 Ground truth data 

As ground truth we used the WoSIS Soil Profile Database (Ribeiro et al., 2015), 

which is maintained by ISRIC – World Soil Information and includes over 100,000 

georeferenced soil profiles. For our study we selected soil profiles containing 

electrical conductivity (ECe) values for upper soil layer, which varied from 0-5 cm 

to 0-60 cm. In total, 15,188 data points were selected and used in further analysis. 

The spatial distribution of the data points is shown in Figure 5.1. 

The ECe values were classified into Non saline (12,160 points), Slightly saline 

(2,106 points), Moderately saline (440 points) , Highly saline (232 points) and 

Extremely saline (250 points) classes according to the widely used classification of 

Abrol et al. (1988). 

Table 5.1. Soil salinity classification used. 

Salinity class Non-saline Slightly Moderately Highly Extremely 
ECe, ds/m <2 2-4 4-8 8-16 >16 
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5.2.2 Data processing and analysis 

5.2.2.1 Thermal remote sensing data pre-processing 
Two thermal datasets were used. The first one is the USGS Landsat 5 Surface 

Reflectance Tier 1 collection and second is the USGS Landsat 8 Surface Reflectance 

Tier 1 collection, both of which are available from the GEE data catalogue. Both 

collections provide orthorectified brightness temperature acquired in wavelength 

range from 10.4 to 12.5 micrometres. Landsat 8 data were used in this study for the 

year 2016, Landsat 5 data were used for 1986, 2000, 2002, 2005, 2009. In these 

years average mosaics from available cloud-free images in the period from March 

to September were calculated on per-pixel basis and used in further analysis. As an 

input variable for our modelling we chose to work with the temperature anomaly 

instead of the absolute temperature to harmonise the data for the global analysis. 

This means that for each pixel the recorded temperature value was subtracted from 

the long-term temperature average for this pixel. This was done for each global 

layer in our thermal time series. The long term average dataset have been 

constructed from the Landsat 5 GEE dataset mentioned before by calculating the 

average in the period from 1999 to 2012 from all available cloud-free images on 

per-pixel basis. 

5.2.2.2 Data modelling  
We used the temperature difference layers together with several SoilGrids layers. 

SoilGrids is a collection of global soil class and soil properties maps (Hengl et al., 

2017). In our analysis we used seven grids that contain information indirectly 

connected with soil salinity: sand content, silt content, clay content, pH in H2O, 

cation exchange capacity, bulk density, organic carbon content. These grids are 

available for seven depths up to two metres. Here we used the top layer (0 cm). The 

Landsat thermal images have been resampled during the processing to 250 m by a 

built-in functionality of GEE. 

The random forest classifier was trained using the eight variables mentioned and 

the ECe data from the WoSIS database. The random forest algorithm constructs an 

ensemble of decision trees and lets them “vote” for the most probable class 
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(Breiman, 2001; Strobl et al., 2009). We set the number of trees parameter to 50 

and mtry parameter (variablesPerSplit argument in GEE) to the square root of the 

number of variables. This number of trees was chosen after a set of trial runs during 

which we established that further increase in the number of trees does not bring 

any significant increase in the map validation accuracy.  

In total six models were trained and six maps were produced. For each model we 

used thermal imagery from a different year. The maps have been produced for six 

time steps: 1986, 2000, 2002, 2005, 2009, 2016. These years have been selected to 

correspond with other studies describing temporal changes in soil salinity (Fan et 

al., 2012; Taghadosi and Hasanlou, 2017; Wang et al., 2008).  

In the learning stage we used around 3500 points from the WoSIS database. They 

were selected by random stratified sampling, preserving the relative salinity class 

distribution in the ground-truth dataset. Meaning that the non saline class will be 

the most abundant and the highly and extremely saline classes will be less abundant 

in the training dataset. The final learning dataset consisted of 2,000 points of Non 

saline class, 1,000 of Slightly saline, 210 of Moderately saline, 105 of Highly saline 

and 110 of Extremely saline classes. The trained classifier was applied to the eight 

layers mentioned earlier to produce the final global map of soil salinity. 

The map was validated by selecting randomly 100 points of each class from the 

WoSIS database. The 100 was selected as a maximum because of the limited amount 

of points in Highly and Extremely saline classes. A higher number would lead to 

significant overlap between learning and validation points in these classes. For the 

selection of validation points a different randomisation seed was used than for the 

learning stage. The equal amount of points for each class ensures that the final 

validation accuracy represents the accuracy throughout the entire range of salt 

affected areas. We expected that the Non-saline class will have the highest 

classification accuracy and using non-stratified selection of validation points will 

unjustly overestimate the accuracy. During the validation we compared the salinity 

class at the validation site with the mapped values. The same validation set has been 

used for maps of all years by using the same seed in random stratified sampling 
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function. The main accuracy metrics calculated are provided further in the results 

and these are confusion matrix, overall accuracy, user’s accuracy and producer’s 

accuracy. 

We did not select more than 3500 points because attempts to increase the number 

of training points lead to critical errors in most runs, and for runs where the 

computation did finish the increase in validation accuracy was not significant. 

Therefore 3500 has been selected as a number of data points for all further runs. 

The resolution of the final maps is 250 m, which is similar to the resolution of the 

SoilGrids input layers. 

 Results and discussion 

5.3.1 Global distribution of soil salinity 

Figure 5.2 shows a global map of soil salinity classes using the thermal image of 

2016. It highlights main salt affected areas in North America, Central Asia, Middle 

East. 

Global statistics of affected area for all six time steps are presented in Figure 5.3 and 

Table 5.2. Our analysis shows that the total area of salt affected lands increased with 

more than 100 Mha between 1986 and 2016, though some natural variation is 

present. The majority of the increase is the increase in slightly saline area. This 

suggests that more and more previously unaffected areas are starting to suffer from 

soil salinization. That is supported by the fact that the total area of affected lands is 

continuing to increase. The actual area of Moderately saline areas has decreased, 

while Highly and Extremely saline are more volatile in time. 
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Table 5.2. The world salt affected area as predicted from ground truth data, thermal 

satellite imagery and soil property maps for different years, Mha. 

  Slightly 
saline 

Moderately 
saline 

Highly 
saline 

Extremely 
saline 

Total 

May/86 877.9 30.3 2.1 5.2 915.5 

May/00 809.6 27.7 3.8 7.7 848.8 

May/02 919.5 20.0 2.7 4.5 946.7 

May/05 888.3 22.2 2.0 5.8 918.3 

May/09 1,028.2 19.8 2.3 7.4 1,057.7 

May/16 1,036.2 24.8 2.5 5.8 1,069.3 
 

We found two sources referring to a global distribution of salt affected lands. 

Szabolcs (1989) assessed the total area of salt affected lands globally to be around 

955 Mha, which is not far from our assessment of 914 Mha in 1986. The second 

source is the review by Squires and Glenn (2004) where the salt affected area 

approximately covers 1 billion hectare. We consider correspondence of other 
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Figure 5.3. Salt affected lands composition in different years (y-axis uses offset). 
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studies with our assessment quite encouraging, since 68% validation accuracy 

(Table 5.3) and unequal distribution of training and validation data might suggest 

bigger discrepancy with other assessments that were based more on field studies. 

Another interesting observation from the global map in Figure 5.2 is that affected 

areas in Central Asia have been captured. We had almost no training points in that 

area (Figure 5.1), but the region is known to be one of the most severely affected by 

soil salinization. In our opinion, this finding is supporting the principal validity of 

the method. However, we acknowledge that comparison with ground truth data 

from this area is required to further assess how well the maps produced here 

represent the spatial soil salinity patterns in Central Asia. 

The map generally captures known hotspots in salinity-affected regions, which we 

further discuss towards the end of this section, but also shows overestimation of 

salt-affected areas. For example, the map shows that Mexico is almost completely 

salt affected, which is an overestimation. Szabolcs (1989) states that 1.65 Mha is 

the area of salt affected lands in Mexico. This number would increase to this time, 

but still would be far from the total area of the country. We supposed that one of 

the reasons for this overestimation is an underrepresentation of Non saline class 

data points in the samples collected in Mexico. But after scrutinizing the sample 

dataset this appeared not to be the case. A vast majority of these samples (77%) 

belong to the Non saline class, which is comparable with the distribution in the 

dataset for the whole world. Moreover, trial maps produced with different seed 

numbers still had the same overestimation for Mexico. Therefore, it is not the result 

of a sampling bias, but probably the specific combination of values in soil properties 

maps we used for prediction that lead to this overestimation. In global affected area 

assessments this overestimation was probably negated by some cases of 

underestimation, like in Australia, where only few patches of salt affected lands are 

shown.  

The validation accuracy of this map is 68%. For different time steps classification is 

in a range of 67-70%, depending on the date of thermal images used. In general, 
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highest accuracy of 70% has been achieved when thermal images of 2000-2002 

were used. 

Most of the classification errors appear in highly and extremely saline classes 

(Table 5.3). Those are the less common classes globally and they represented only 

a small fraction of WoSIS database, therefore we presume that using a larger 

number of highly and extremely saline training points might increase the accuracy. 

The influence of the amount of training points is especially visible if you compare 

the accuracy of two classes. The highly saline class is even less abundant in WoSIS 

database than Extremely saline. Therefore, less training points for the Highly saline 

class have been used and accuracy for it is less than for Extremely saline, though in 

reality Highly saline areas are more widespread than Extremely saline ones. 

The important result is that when a point is misclassified, in most cases this point 

is still in a saline class, though maybe of different degree, and only rarely is assigned 

to the Non saline class. When only two classes are considered (saline and non 

saline) producer’s accuracy raises up to 89%. That suggests that the approach is 

quite useful in distinguishing between salt affected and non affected lands, and only 

the definition of the degree of salinity remains challenging.  

Table 5.3. Confusion matrix and accuracy statistics of 2016 map. 

  Predicted  
 Salinity class Non 

saline 
Slightly 
saline 

Moderately 
saline 

Highly 
saline 

Extremely 
saline 

Total Producer’s 
accuracy, % 

O
bs

er
ve

d 

Non saline 90 10 0 0 0 100 90 
Slightly saline 10 88 1 0 1 100 88 
Moderately saline 11 28 61 0 0 100 61 
Highly saline 15 34 4 47 0 100 47 
Extremely saline 18 29 1 0 52 100 52 
Total 144 189 67 47 53 500  

 User’s accuracy, % 62.5 46.6 91 100 98.1   

Together with random forest algorithm we checked two other classifiers available 

in GEE that are based on machine learning principles. The Support Vector Machine 

did not produce any meaningful results in our case. Almost the whole map has been 

classified as non-saline area. Classification and Regression Trees (CART) algorithm 

showed some better results, but still worse than the Random Forest algorithm. The 
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accuracy was around 50% and the map unrealistically overestimated highly and 

extremely saline areas. 

As we mentioned previously in this section, the global maps captured known soil 

salinization hotspots. One of them is Grand Forks county on the border of North 

Dakota and Minnesota in the United States. It is a known salt affected area (Seelig, 

2000) and it has been depicted on the map we produced (Figure 5.4). In Seelig 

(2000) this area is marked as an area of frequent inclusion in productive land, 

which correspond to areas marked as Moderately saline in Figure 5.4. 

One of a few countries in Europe affected by inland soil salinity problem is Hungary. 

Our map of the area in Figure 5.5 shows some slightly affected areas, which is 

correct for the area where ECe values are just slightly higher than 2 ds/m (Kovács 

et al., 2006). Though some areas have been correctly identified, the big areas in the 

east of Hungary have been missed. The probable cause is that most of the areas with 

higher salinity are grasslands and croplands with more tolerant species, therefore 

our method, which includes crop canopy temperature metric, did not capture those 

areas. 
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5.3.2 Local soil salinity change 

To verify our hypothesis that integration of thermal infrared imagery from different 

periods of time will allow us to asses temporal change in soil salinity, we compared 

our maps with outcomes of several studies where such change is assessed for 

certain areas. 

Figure 5.6 shows the soil salinity map for study area in Xinjiang Province, China. 

According to Wang et al. (2008) this area in a period from 1983 to 2005 suffered an 

increase in soil salinity due to irrigation and a rise in the shallow water table. A 

similar increase is shown by the maps. 

Another area of interest we found data on is the Bakhtegan Salt Lake region in Iran. 

According to Taghadosi and Hasanlou (2017) more that 76% of vegetated areas of 

this region experienced increase in soil salinity from 2000 to 2016. This is in 

accordance with the maps shown in Figure 5.7, where the map from 2016 shows 

significantly more salt affected areas compared with the map from 2000. 

The next area we investigated is the Yellow river delta in China. Fan et al. (2012) 

have researched the dynamics of the soil salinization in the region for the period 

from 1985 to 2006. Their results show that while in 1985 salt affected areas were 

mostly located in the immediate vicinity of the river, in 2006 the majority of salt 

affected areas have been mapped around the coast. In general, during those two 

decades the area suffered rapid increase in soil salinity.  
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Figure 5.6. Soil salinity maps (upper from 1986 and lower from 2005) of the Fubei 

region of Xinjiang Province, China. According to Wang et al. (2008) soil salinity 

increased in this area. 
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Figure 5.7. Soil salinity maps (upper from 2000 and lower from 2016) of the 

Bakhtegan Salt Lake region in Iran. According to Taghadosi and Hasanlou (2017) 

soil salinity increased in this area.  
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Figure 5.8. Soil salinity maps (upper from 1986 and lower from 2005) of the Yellow 

River Delta, China. According to Fan et al. (2012) the soil salinity increased in this 

area. 
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On contrary to the cases described previously, our map of the Yellow River Delta is 

not in complete accordance with the reference. In Figure 5.8 the map from 1986 

shows visibly more salt affected areas compared with the map from 2005. 

Nevertheless, some of the changes seem to be captured. For example, from 1986 to 

2005 salt affected areas in immediate vicinity of the Yellow river have decreased. 

Moreover, some highly affected spots appeared on the coastal area in the north of 

the 2005 map. Both of which is in accordance with the results of Fan et al. (2012). 

The probable reason of the discrepancy in this result is the specifics of soil salinity 

development in this area. Here the main reason is the seawater intrusion, while in 

previous cases we looked into the problem of inland, dryland salinity. Moreover, 

close proximity of the sea could also influence the thermal data results. 

5.3.3 Global changes map 

To understand the spatial distribution of soil salinity change we produced a soil 

salinity change map (Figure 5.9). That is a difference map between 1986 and 2016 

maps. In accordance with the statistics presented earlier (Table 5.2, Figure 5.3) the 

map shows mainly an increase in soil salinity. Yellow colours, representing the 

increase, are prevalent, while only few areas of the decrease can be seen. The 

majority of the salt affected areas experienced a change to a neighbouring class (i.e. 

from Non saline to Slightly saline or from Extremely saline to Highly saline) that is 

why only two colours are shown in the map. However, there are some areas of 

interest where more dramatic changes appeared. Those are marked by circles on 

the map. The area in Kazakhstan experienced an increase in soil salinity severity of 

up to 3 classes up and areas in the North of the US have experienced a decrease of 

up to two classes. 
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5.3.4 Discussion of the method and implications 

The trend in soil salinity increase over time we showed was in most of the cases in 

accordance with other studies (Taghadosi and Hasanlou, 2017; Wang et al., 2008). 

However, a comparison with studies that describe soil salinity decrease over time 

would provide better validity of the method. Though areas where soil salinity 

decreased in time might exist, they definitely would not be widespread. Overall 

consensus among experts is that soil salinization is expanding on global scale, 

probably at a rate of 2 Mha per year (Abbas et al., 2013). As a result, we could not 

find a study describing soil salinity decrease through time. Without it, the trend 

might also represent general trend of global warming. Interestingly enough, even if 

so, our change maps still might be valid. Climate change is promoting soil 

salinization through more frequent drought events, seawater intrusion in coastal 

areas and general increase in temperature (Dasgupta et al., 2015; Várallyay, 1994). 

Therefore, we can assume that many areas suffering from climate change would be 

prone to soil salinization. 

The basis of thermal infrared imagery approach we used is described in Ivushkin et 

al. (2017); Ivushkin et al. (2018); Ivushkin et al. (2019). In those studies certain pre-

processing has been done to assure that the thermal infrared data used in the 

analysis were coming from cropped areas vegetated above a certain threshold of 

vegetation cover. Therefore, that thermal infrared data could be related to canopy 

temperature. In our case we did not do such a pre-processing because of issues that 

are the consequence of a global scale study, like vegetation season spanning all year 

round. Nevertheless, since increase in canopy temperature is a universal response 

to salt stress for a vast majority of plants (Munns, 1993, 2002), we assume that it 

will hold for other vegetation covers. In case of extremely saline areas where no 

vegetation is present, the surface temperature will be affected anyway, because 

open soil at a day time will have higher temperature than vegetated areas. 

One of the limitations of the WoSIS dataset we used is the quite unequal sample 

distribution spatially. That might be one of the reasons why the amount of salt 

affected lands in Mexico is overestimated. On the other hand, our approach was able 
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to map salt affected areas in regions where training data were absent, like Central 

Asia. Therefore, we conclude that the unequal spatial distribution of training points 

did influence the results, but did not influence them significantly.  

Though Google Earth Engine is a powerful tool that provides access to the biggest 

library of open earth observation data and computational power to process it, the 

scientific community is quite cautious in adopting it. The main reason is that exact 

implementation of different functions, including random forest we used, is not 

always known. Moreover, these implementations can be changed at any moment, 

leading to different results even if you use the same functions to compute these 

results later. We recognise this issue. Nevertheless, its free of charge access and rich 

earth observation data archive makes GEE a useful tool for global assessments of 

different kinds. 

As we mentioned before, assessments of salt affected soils on global scale are quite 

limited and approximate. Though the knowledge about the total affected area and 

its change would be an important information to improve global food security. The 

economic costs of soil salinity are also impressive. For example, just 2 million 

hectares of salt affected lands are costing Uzbekistan about US $1 billion annually 

(UNDP, 2009; World Bank, 2007). On global scale the economic losses are just 

tremendous. A proper inventory of the affected lands would allow proper 

mitigation measures to be applied and cut the losses to the minimum. We hope that 

our study will contribute to this cause. 

 Conclusions 

The results show that GEE random forest classifier is a useful tool for the global 

assessment of soils salinity. The resulting global soil salinity maps have a validation 

accuracy of up to 70% with several known hotspots captured by the maps. The 

assessment of global area affected is comparable with the assessments of other 

authors. The addition of thermal infrared imagery into the analysis can act as a 

dynamic variable that allow to capture the trend of soil salinity change. That was 

confirmed in 2 out of 3 investigated cases. The one case where our results were 



98                                                     Chapter 5  

different from the referred study had soil salinity of different origin and we suspect 

that this might be the reason why the method did not perform well in this case. The 

method we applied allowed to predict affected areas even in the areas where 

training data were unavailable. Therefore, we conclude that a combination of soil 

properties maps and thermal infrared imagery can allow mapping of soil salinity 

development in space and time on global scale. 

The code and data used to produce the global soil salinity maps can be accessed by 

registered Google Earth Engine users at 

https://code.earthengine.google.com/d43e5a92ae1deed32a0929f57b572756. 
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 Main results 

The overall objective of this thesis is to investigate the potential of thermal imagery 

analysis as an approach to soil salinity assessment in cropped areas at different 

scales. To achieve this objective, four research questions have been formulated and 

researched. Following are the main findings for each question. 

6.1.1 Can remotely sensed canopy temperature be used as an 

indicator of soil salinity in cropped areas?  

The majority of the previous studies investigated canopy temperature mainly on a 

small scale and using ground thermal cameras. Only few of them are focused on soil 

salinity specifically and no studies on landscape scale are described. 

In Chapter 2 I explored the potential of canopy temperature as an indicator of soil 

salinity at landscape scale and compared its performance with more traditionally 

used indicators like Normalised Difference Vegetation Index, Enhanced Vegetation 

Index, and elevation. To do this, I investigated the relationship between a high 

accuracy soil salinity map and thermal data on a salt affected agricultural area in 

Uzbekistan, where 51% of irrigated land is affected by some degree of soil salinity. 

The Syrdarya province of Uzbekistan, which was selected as a study area, is an 

agricultural province with large irrigated fields, where mainly two crops (wheat 

and cotton) are grown under uniform management. I considered this province as 

an appropriate area for a proof-of-concept study of the thermography approach. 

From the results of this study, I conclude that satellite thermography data is 

significantly correlated to soil salinity. Statistical analysis showed that satellite 

thermography data clearly distinguished between salinity classes, producing F-

values higher than those for NDVI and EVI. Moreover, visual examination of maps 

showed that actual salinity patterns were more similar to the canopy temperature 

map than to the map produced using vegetation indices. Overall, the first step in 

this thesis confirmed that the satellite thermography approach has substantial 

potential for salinity monitoring on cropped areas. 
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Another finding of this study was that the timing of the assessment is important. 

Thermal images taken in September produced the highest F-values, meaning they 

have the greatest predictive power. Nevertheless, for the whole vegetation period 

from end July to mid-September, F-values were steady and showed significant 

relations, indicating considerable potential for use in monitoring. In the study area 

the highest F-values corresponded with the period of maximum crop development 

at the end of the dry season. Maximum F-values for vegetation indices were 

observed a bit earlier in the season, in July and August, when cotton’s green biomass 

was close to its maximum. Therefore, I conclude that the point of maximum 

vegetation development after the dry season can be considered the best time for 

application of the thermography approach. 

Summarizing all above, I can answer the question of this section with yes; remotely 

sensed canopy temperature can be used as an indicator of soil salinity in cropped 

areas. 

So, I confirmed that satellite based thermography is indeed useful in soil salinity 

monitoring, but other sensor platforms are also used in agriculture. A platform that 

becomes more and more popular is the Unmanned Aerial Vehicle (UAV). 

6.1.2 Do UAV based observations show comparable result to 

satellite based observations? 

The UAV becomes more and more popular in the fields like surveying, media 

industry, and agriculture. Therefore, investigating if the thermography approach is 

applicable to UAV based sensors is of vital importance for the operationalisation of 

the approach. 

For this I implemented plot scale assessment of soil salinity using UAV based 

thermal camera (Chapter 3). The study set up included two test plots, one control 

and one salt treated plot, where quinoa plants were grown. The plots’ areas were 

0.1 ha, which made them quite suitable for multiple UAV surveys. A remarkable 

feature of this experimental setup is that quinoa plant is very salt tolerant, and 

testing if the thermography approach is applicable to salt tolerant plants became 
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an additional goal. This is important because more and more halophyte varieties 

are proposed as a viable alternative for cultivation on salt affected lands, where 

conventional crops are no longer economically feasible.  

The results showed that an increase of canopy temperature in response to salt 

stress is also detectable using UAV based thermal camera. Moreover, in this study I 

also confirmed that it is happening in salt tolerant plants, like quinoa, though this 

increase is less pronounced. The detection of this increase required an additional 

step in the analysis – NDVI clustering – which ensures that the temperatures of the 

equal amount of a plant material per pixel are compared. In addition to thermal data 

the Physiological Reflectance Index and LiDAR measured plant height were 

investigated, which were also affected by soil salinity stress. 

The Physiological Reflectance Index of quinoa plants was significantly decreased 

because of the increased soil salinity and seems to be a valuable indicator of salt 

stress, in opposite to multispectral indices like NDVI or OSAVI, which showed 

insignificant differences between control and salt treated plants, with even 

reverted correlations. LiDAR measured height of quinoa plant was significantly 

decreased because of the increased soil salinity. 

The UAV is a universal platform, which allows mounting of different sensors in 

short period of time, so integration of different kind of data is possible. In case of 

this study the combination of multiple remote sensing variables in a Multiple Linear 

Regression model has improved R2 values and therefore I concluded that 

implementation of multiple measurement techniques bears a lot of potential for soil 

salinity monitoring of cropland by remote sensing. 

All aspects considered, I can say that UAV based thermal observations show 

comparable results to satellite based observations and have the same usability in 

soil salinity assessment. 

In this section I described that the thermography approach is working in the case 

of a single crop grown in small plot under controlled, irrigated conditions. But a 

robustness test is required, where several different crops are grown under both 

irrigated and rainfed conditions. 
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6.1.3 How robust is the thermography approach when applied on 

study areas with different crops grown in both rainfed and 

irrigated conditions? 

While answering previous questions the selected study areas had irrigated 

cultivation. Irrigation schedule and water stress in plants may influence the thermal 

measurements. Therefore, understanding how applicable the thermography 

approach is in case of rainfed agriculture is important. Moreover, the crop species 

would also influence the results. Testing the thermography approach on as many 

different crop species as possible would strengthen my argument. 

In Chapter 4 I investigated the robustness of the thermography approach. It has 

been done by applying the approach on a regional scale for different crops grown 

under irrigated and rainfed conditions in 4 Australian states. The main crops grown 

there are wheat, barley, rapeseed and cotton. For most of them, I was able to make 

a comparison between irrigated and rainfed cultivation. The results showed that in 

all cases average canopy temperatures were significantly correlated with soil 

salinity of the area. In the period of green biomass peak all p-values were <0.01. 

These findings are valid for all investigated crops, grown both irrigated and rainfed. 

Nevertheless, crop type does influence the strength of the relations. Cotton, as a 

relatively salt tolerant plant, shows only minor temperature difference compared 

to other vegetation classes which suggests that less salt tolerant species will 

demonstrate higher temperature differences and will allow a more accurate 

assessment of soil salinity. 

During this study in Australia it is demonstrated that the thermography approach 

is also flexible in terms of satellite sensors used. It has been applied using both 

MODIS and Landsat data and, in both cases, similar patterns and trends were 

present, despite very different spatial resolution of these two sensors. 

The results from Chapter 4 allow me to conclude that the thermography approach 

is robust in relation to different study areas and different crops in both rainfed and 

irrigated conditions. 
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In the questions answered up to now the scale of the application consistently 

decreased. Therefore, the last question deals with the ultimate scale for earth 

observation sciences – global scale. 

6.1.4 Can a combination of soil properties maps and thermal 

imagery allow us to track the development of soil salinity in 

space and time on global scale? 

Having tested the thermography approach on different scales while answering the 

three previous questions I dared to implement a global assessment. It was clear that 

too many influencing factors on global scale would make the use of thermal data 

alone insufficient. Therefore, in this study the main role of thermal data is to 

introduce a dynamic component into the analysis and allow us to track the 

evolution of soil salinity in time. 

The main base in the analysis were maps of soil properties correlated with soil 

salinity. These maps together with global thermal mosaics of different time periods, 

were processed in Google Earth Engine environment to produce global soil salinity 

maps for different periods in time. The results showed that Google Earth Engine 

random forest classifier is a useful tool for the global assessment of soils salinity. 

The resulting global soil salinity maps have a validation accuracy of up to 70% with 

several known hotspots captured on them. The assessment of global area affected 

was comparable with the assessment of other authors and summed up to 1 billion 

hectares. 

The addition of thermal imagery into the analysis can act as a dynamic variable that 

allows to capture the trend of soil salinity change. That was confirmed in 2 out of 3 

investigated cases. The one case where my results were inconsistent with the 

referred study had soil salinity of different origin and I suspect this is the reason of 

the disagreement in the results. The approach applied, allowed us to predict 

affected areas even in the regions where training data were unavailable. Therefore, 

I can conclude that a combination of soil properties maps and thermal imagery 

allows mapping of soil salinity development in space and time on global scale.  
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 Reflection and outlook 

The increasing demand on food production and non-food agricultural products will 

lead to a greater pressure on agricultural ecosystems (FAO, 2018a). Majority of this 

pressure will result in a more intensive use of already cultivated lands, rather than 

in cultivation of new lands. In this case, problems that are often the consequence of 

wrong intensification practices, like soil salinization, will exacerbate. 

To prevent this, first the severity and spatial extent of the problem should be 

known. Considering the dynamic nature of soil salinity, remote sensing assessment 

techniques will play an increasingly important role (Metternicht and Zinck, 2003). 

The traditional methods of soil survey are much more labour and cost intensive 

compared to remote sensing. Therefore, they are barely done on a required 

temporal and spatial resolution for soil salinity, which can differ dramatically at the 

beginning and end of a vegetation season. 

Nevertheless, remote sensing approaches have their limitations and can in the 

current stage of development hardly be applied without using ground truth data of 

more traditional soil surveys. One of the reasons for this is that current remote 

sensing methods for soil properties are quite site specific. Therefore, this thesis is 

about developing a remote sensing approach that can be more universal, producing 

a comparable soil salinity assessment in different parts of the world. 

6.2.1 Is the overall objective achieved? 

The overall objective of this thesis was to investigate the potential of thermal 

imagery analysis as an approach to soil salinity assessment in cropped areas at 

different scales. This objective was achieved by developing and applying the 

thermography approach where the relationship between satellite/UAV-borne 

thermal images and soil salinity of the area were investigated. The investigation 

was done on local, regional and global scales and on study areas located in 

Uzbekistan, the Netherlands and Australia. The results confirmed that remotely 

sensed canopy temperature of plants is significantly correlated with soil salinity of 
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the soil they are grown on. That was observed on local and global scales on study 

areas in different parts of the world, where different crops were cultivated under 

rainfed and irrigated conditions. On the global scale the thermography approach 

was adjusted, therefore direct comparison is not possible. The added value of 

thermal imagery on global scale was characterization of temporal soil salinity 

change. 

One of the important characteristics for a successful assessment approach is 

universality of application in different environments. Lack of it is the main 

drawback of the existing assessment approaches. Therefore, universality of the 

approach was an important criterion of success. The proposed thermography 

approach has this universality trait. This is shown by application on different crops, 

including the case of salt tolerant crop described in Chapter 3, where the advantage 

of the proposed approach over traditional vegetation indices is especially clear. 

All in all, I can say that thermography approach has a significant potential for soil 

salinity assessment and worth further development to the stage of 

operationalisation. 

6.2.2 On operationalisation of the thermography approach 

One of the concerns I often hear as a response to the proposed approach of using 

remote sensing in soil salinity assessment is the difficulty of operationalisation and 

the associated cost. It is true that currently the thermography approach proposed 

in the previous parts of this book will require certain skills in remote sensing data 

analysis and software for this analysis. This expertise is mainly provided by private 

companies as a ready to use product (like eLEAF or AgroCares in the Netherlands). 

The problem I see here is that only a few of these companies are operational in 

developing countries, where the majority of salt affected areas are located. Among 

developed countries, where earth observation services are more developed, only a 

few of them are dealing with soil salinity (FAO and ITPS, 2015), therefore 

operationalisation of soil salinity assessment by remote sensing is not among their 

priorities. 
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Nevertheless, I think that in a few years time, growth of precision agriculture will 

increase the demand for spatially and temporally precise monitoring of soil 

properties. This monitoring will include a strong remote sensing component, be it 

satellite or UAV based remote sensing. In the areas affected by soil salinization, soil 

salinity assessment will be an important part of this monitoring. Therefore, I see 

the most probable model for operationalisation of soil salinity remote sensing as a 

part of a more complex monitoring approach that will characterise an area in 

question by general usability for cropping. This kind of product would be more 

attractive for farmers. 

But farmers would be not the only potential users. Local and national governments 

might be also interested in the assessment of the extent and severity of soil 

salinization on their area. The expected economic losses in case of salinization 

might reach billions of dollars (UNDP, 2009; World Bank, 2007). Therefore, there is 

a clear incentive for governments to steer water management and guide 

investments to fight soil salinization. 

International organisations and agencies might be more interested in global 

assessment. And on this scale operationalisation might be not so straightforward, 

as I encountered issues myself while upscaling the thermography approach to 

global scale. 

6.2.3 Global scale issues 

The information on the extent of salt affected lands is very scattered and existing 

assessments are mainly rough approximation (FAO, 2018b; FAO and ITPS, 2015). 

Therefore, the need exists for accurate and up to date assessment, which I attempt 

to provide in Chapter 5. 

The assessment is based on the same principle of canopy temperature increase 

under salt stress (Gómez-Bellot et al., 2015; Hackl et al., 2012). When I applied the 

thermography approach on local and regional scales, I ensured that I measure 

canopy temperature by using thermal data only from pixels that are above a certain 

NDVI threshold. But implementation of the same technique on global scale proved 
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to be unfeasible. The vegetation season on global scale stretched through the whole 

year, therefore the application of the same technique with NDVI thresholds would 

lead to a global thermal mosaic with radically different temperatures collected with 

the difference in time of up to one year. Though being quite a cumbersome task, 

such a mosaic could have been produced, but another global scale issue would 

render it irrelevant. 

The canopy temperature is firstly controlled by the ambient air temperature, and 

only secondly by other factors like stress responses of a plant. Therefore, absolute 

canopy temperature does not tell us anything about soil salinity and only difference 

in canopy temperature inside one scene, where air temperature is stable, will 

indicate salt affected areas. On local and regional scales, I assumed stable air 

temperature per scene and analysis was quite straightforward. But on global scale 

this is clearly impossible, so normalisation was required. To achieve this, it was 

decided to use the temperature difference from the long-term average for each 

pixel. That removed the influence of climate and allowed to focus more on spatial 

differences and anomalies in the year(s) of interest. 

Therefore, on the global scale thermal data acted as a dynamic variable that allowed 

tracking of the soil salinity change in space and time, while basic information on soil 

salinity was modelled using soil properties maps, as described in Chapter 5. 

6.2.4 Bare soil vs. vegetation as a proxy approach 

The two principally different approaches used in monitoring of soil salinity are the 

use of soil remote sensing signal or vegetation remote sensing signal as a proxy. I 

see more potential in the latter. 

My affinity with vegetation as a proxy approach stems from the applicability in 

specific conditions of cropped areas. Though naturally saline areas have their 

importance, the more pressing issues of soil salinity are in the agricultural sector. 

The focus of this thesis is on cropped areas because of the societal and economic 

importance of the problem in this setting. 
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Use of bare soil assessment is useful when soil salinization progressed to the 

extreme degree, which means that saline crusts are formed on the surface of the 

soil (Aldabaa et al., 2015; Bai et al., 2016; Nawar et al., 2014). In this situation no 

crops can be grown and land is lost for agriculture. But when the situation is still 

manageable, bare soil remote sensing can hardly provide any useful information to 

characterise soil salinization of the area. 

When land is still suitable for cropping to some degree, the use of the plant signal 

as a proxy is a better choice (Elhag and Bahrawi, 2017; Hamzeh et al., 2016; 

Scudiero et al., 2015). Firstly, if we are talking about cultivated land, most of the 

time the soil surface will be covered by a crop. Therefore, using the plant signal will 

allow more time for assessment, while only a short window of opportunity will be 

available in case of bare soil monitoring. Secondly, the plant signal will reveal soil 

conditions in the whole root zone (0-30 cm), which is the most valuable information 

in agriculture. Bare soil remote sensing will only characterise the surface of the soil, 

which can be misleading, since soil salinity on the surface can be quite different than 

soil salinity 10 cm below. Thirdly, many factors influence the spectral signature of 

a soil. This might be environmental factors, like soil moisture or ploughing, and 

intrinsic properties of soil, like texture or colour (Dwivedi, 2017). 

All in all, I propose to use vegetation as a proxy for soil salinity assessment. 

6.2.5 Discussion of methods and materials used 

To a large extent the methods described in this thesis are newly proposed and have 

not been tested previously. This introduced certain specificities to it: 

1. For example, the proposed thermography approach can be applied only on 

vegetated, preferably cropped, areas. What are the challenges when it is 

applied on different land cover types? 

2. Another specificity is the timing of the monitoring. The results show that 

the best moment of application is close to the end of a vegetation season. 

That limits the frequency of assessment to once or twice per year. This 

would be sufficient in most cases, but on areas where special measures are 
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in progress to reduce soil salinization more frequent assessment might be 

required. 

3. One of the key questions about the methods used in the global scale 

research (Chapter 5) is the question of climate. Namely, are we measuring 

the change in soil salinity or a change in climate? Since consensus is that 

soil salinity is increasing on global scale, the same is air temperature, it is 

hard to distinguish between these two phenomena. Comparison with a 

study describing soil salinity decrease in time would help to distinguish 

between these two phenomena, but no such studies were found at the 

moment of this thesis publication. However, on local and regional scales 

the thermal differences are clearly driven by differences in soil salinity. 

Next to the specificities mentioned above, there were some consequences of 

satellite sensors systems currently used. In remote sensing a trade-off between 

temporal and spatial resolution is always present. It is even more so with infrared 

thermography, because of the lower energy of the wavelengths used (Rodríguez-

Galiano et al., 2011). Therefore, the global assessment using current sensors would 

always be spread in time (Landsat), or low resolution (MODIS). In Chapter 5 the 

choice was made in favour of resolution, since 1km soil salinity map would have 

limited use because of the patchy character of soil salinization in general. 

Nevertheless, it meant that images with acquisition dates differences of up to 6 

months were combined in one mosaic and used in one model. That might lead to 

blurring of the resulting map and loss of details, especially on smaller scales. 

Therefore, a sensor platform combining spatial resolution of Landsat and temporal 

resolution of MODIS would be more optimal and would provide more detailed 

assessment of global soil salinity change. 

 Further research  

From the outcomes of this thesis I suggest the directions for a further research: 
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1. The global assessment chapter of this thesis has several questions left that 

require further research. The global soil salinity map proposed in that 

chapter had cases of local overestimation and underestimation, which 

probably were the consequence of the training dataset used. I used 

probably the fullest dataset on soil salinity currently available, 

nevertheless it has almost no points in Central Asia, which is one of the 

most severely affected regions of the world, and only few points in 

Australia. Moreover, the question of extracting canopy temperature from 

surface temperature on global scale will require further research for 

operationalisation of the thermography approach. 

2. In this thesis I did not focus on the socio-economic side of soil salinity 

assessment, which will be required for operationalisation of the 

thermography approach. Therefore, questions like economic benefits from 

having up-to date information on soil salinity and its influence on the 

effectiveness of mitigation measures should be investigated. I expect that 

timely information on soil salinity situation will allow application of 

mitigation measures in a more spatially targeted manner. That will reduce 

expenditure on those measures. Or, it will even lead to a decision to plant 

more salt tolerant crop or variety in coming season, which again will help 

to reduce losses. All these measures would positively influence the 

wellbeing of farming communities living on affected areas. In developing 

countries it can even prevent migration from the affected areas, which 

often happens when soil salinization degrade lands to an extreme degree. 

3. Despite all the efforts to stop its progression, soil salinization still 

continues and more and more lands are affected. Therefore, adaptation 

measures also should be taken. One of the most effective among them is 

biosaline agriculture, which is a cultivation of salt tolerant species and salt 

tolerant varieties of traditional crops (Abdelly et al., 2008; O� ztürk et al., 

2006). Further research in this direction will help to mitigate soil 

salinization impact and adapt farmers communities of affected regions to 

a new way of practicing agriculture on salinized lands. 
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Summary 
Increased soil salinity is a significant agricultural problem that decreases yields for 

common crops. It is quite dynamic in time, which makes timely soil salinity data a 

crucial point in agricultural management. Remote sensing can provide the 

necessary spatial and temporal resolution, but widely accepted methods and 

techniques for soil salinity monitoring using remote sensing are not present yet. 

Canopy temperature change is one of the stress indicators in plants. Its behaviour 

in response to salt stress on individual plant level is well studied, but its potential 

for field or landscape scale studies is not investigated yet. In this study, potential of 

satellite and UAV thermography for plot, regional and global scale soil salinity 

assessment was investigated. 

Chapter 1 is the introductory chapter where main terms and definitions are given 

and the extent of the problem is described. Moreover, the line of reasoning that lead 

to the selection of canopy temperature as a potential indicator of soil salinity is 

provided. Fundamental reasons of why canopy temperature is affected by salt 

stress are described and thermography approach is proposed. 

In Chapter 2 a proof-of-concept study is described, where first application of the 

thermography approach is made. This study was done in the Syrdarya province of 

Uzbekistan, which consists of salt affected irrigated croplands of mainly cotton and 

wheat. Moderate-resolution imaging spectroradiometer (MODIS) satellite images 

were used for canopy temperature measurements and the provincial soil salinity 

map as a ground truth dataset. Analysis of variance (ANOVA) was used to analyse 

relations between the soil salinity map and canopy temperature, normalised 

difference vegetation index (NDVI), enhanced vegetation index (EVI), and digital 

elevation model (DEM). The results showed significant relation between soil 

salinity and canopy temperature, but the strength of this relation varied over the 

year. The strongest relation between soil salinity and canopy temperature was 

observed for cotton in September. The calculated F-values were higher for canopy 

temperature than for all other compared indicators. Satellite thermography 
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appeared to be a valuable approach for detecting soil salinity under agricultural 

crops at landscape scale. 

Chapter 3 is devoted to the application of the thermography approach on the plot 

scale and the use of Unmanned Aerial Vehicles for this. Three different UAV sensors 

were used: a WIRIS thermal camera, a Rikola hyperspectral camera and a Riegl 

VUX-SYS Light Detection and Ranging (LiDAR) scanner. Canopy temperature, 

several vegetation indices and LiDAR measured plant height were derived from the 

remote sensing data and their relations with ground measured parameters like salt 

treatment, stomatal conductance and actual plant height were analysed. The results 

showed that widely used multispectral vegetation indices are not efficient in 

discriminating between salt affected and control quinoa plants. The hyperspectral 

Physiological Reflectance Index (PRI) performed better and showed a clear 

distinction between salt affected and control plants. This distinction is also visible 

for LiDAR measured plant height, where salt treated plants were on average 10 

centimetres shorter than control plants. Canopy temperature was significantly 

affected, though detection of this required an additional step in the analysis – 

Normalised Difference Vegetation Index (NDVI) clustering. This step assured 

temperature comparison for equally vegetated pixels. Data combination of all three 

sensors in a multiple linear regression model increased the prediction power and 

for the whole dataset R2 reached 0.46, with some subgroups reaching an R2 of 0.64. 

The UAV borne remote sensing proved to be useful for measuring salt stress in 

plants and a combination of multiple measurement techniques is advised to 

increase the accuracy. 

In chapter 4 the thermography approach is applied on regional scale and its 

robustness was tested. Four study areas in four different states of Australia were 

selected to give a broad representation of different crops cultivated under irrigated 

and rainfed conditions. In the analysis vegetation indices and brightness 

temperature were used as an indicator for canopy temperature. Applying analysis 

of variance and time series analysis I investigated the applicability of satellite 

remote sensing of canopy temperature as an approach of soil salinity assessment 

for different crops grown under irrigated and rainfed conditions. In all cases 
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average canopy temperature was significantly correlated with soil salinity of the 

area. This relation is valid for all investigated crops, grown both irrigated and 

rainfed. Nevertheless, crop type did influence the strength of the relations. Cotton 

showed only minor temperature difference compared to other vegetation classes. 

The strongest relations between canopy temperature and soil salinity were 

observed at the moment of a maximum green biomass of the crops, which is thus 

considered to be the best time for application of the thermography approach. 

In chapter 5 global scale assessment is presented. The only database that currently 

provides soil salinity information with global coverage is the Harmonized World 

Soil Database, but it has several limitations when it comes to soil salinity 

assessment. Therefore, a new assessment is required. I hypothesized that 

combining soil properties maps together with the thermal infrared imagery and a 

large set of field observations within a machine learning framework will yield a 

global soil salinity map. The thermal infrared imagery would act as a dynamic 

variable that will characterize the change. For this purpose, Google Earth Engine 

computational environment was used. The random forest classifier was trained 

using 7 soil properties maps, thermal infrared imagery and the ECe point data from 

the WoSIS database. In total six maps were produced for 1986, 2000, 2002, 2005, 

2009, 2016. The validation accuracy of the resulting maps was in the range of 67-

70%. The total area of salt affected lands by the presented assessment is around 1 

billion hectares, with a clear increasing trend. Comparison with 3 studies 

investigating local trends of soil salinity change showed that presented assessment 

was in correspondence with 2 of these studies. The global map of soil salinity 

change between 1986 and 2016 was produced to characterize the spatial 

distribution of the change. I conclude that the combination of soil properties maps 

and thermal infrared imagery can allow mapping of soil salinity development in 

space and time on a global scale. 

Chapter 6 synthesises the findings from all previous chapters, puts them into a 

broader perspective and reflects on implications, methods and data used. 

Moreover, suggestions for further research are given. 
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Краткое содержание 
Засоленность почвы является серьезной сельскохозяйственной проблемой, 

которая снижает урожайность многих культур. Феномен довольно 

динамичен во времени, что делает своевременные данные о засолении 

почвы важным фактором в управлении сельским хозяйством. 

Дистанционное зондирование может обеспечить необходимое 

пространственное и временное разрешение, но общепринятые методы для 

мониторинга засоленности почвы с использованием дистанционного 

зондирования сегодня отсутствуют. 

Изменение температуры надземной части растения является одним из 

показателей стресса. Особенности этой реакции на солевой стресс на уровне 

отдельных растений хорошо изучены, но потенциал для применения в 

масштабах целого поля или ландшафта еще не исследован. В работе изучен 

потенциал спутниковой термографии и термографии с использованием 

беспилотного летательного аппарата (БПЛА) для оценки засоленности почв 

в региональном и глобальном масштабе. 

Глава 1 является вводной главой, в которой приведены основные термины и 

определения, а также описаны масштабы проблемы. Более того, описан ход 

рассуждений, которые привели к выбору температуры растения как 

потенциального индикатора засоленности почвы. Перечислены 

фундаментальные причины того, почему температура растения зависит от 

солевого стресса, и предложен термографический подход. 

В Главе 2 описывается исследование для проверки концепции, в котором 

впервые применяется термографический подход. Это исследование было 

проведено в Сырдарьинской области Узбекистана, большая часть которой 

состоит из засоленных пахотных земель, где основными культурами 

является хлопок и пшеница. Снимки со спутника MODIS были использованы 

для измерения температуры растительного покрова и анализировались 

вместе с картами засоленности почвы, произведенных традиционными 

методами. Дисперсионный анализ (ANOVA) использован для выявления 
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связей между картами засоленности почвы и температурой растительного 

покрова, нормированным разностным индексом растительности (NDVI), 

улучшенным индексом растительности (EVI) и цифровой моделью рельефа 

(DEM). Результаты показали значительную зависимость температуры 

растительного покрова от степени засоления почвы, но эта зависимость 

менялась в течение года. Наиболее выраженной она была в сентябре в случае 

с хлопком. Рассчитанные F-значения были выше для температуры, чем для 

всех других сравниваемых индикаторов. Спутниковая термография 

оказалась многообещающим подходом для определения засоленности почвы 

под сельскохозяйственными культурами в региональном масштабе. 

Глава 3 посвящена применению термографического подхода в масштабе 

одного поля и использованию для этого БПЛА. Использовались три разных 

сенсора, монтированных на БПЛА: тепловизионная камера WIRIS, 

гиперспектральная камера Rikola и лазерный сканер Riegl VUX-SYS Light 

Detection and Ranging (LiDAR). Температура растительного покрова, 

несколько индексов растительности и LiDAR-измеренная высота 

растительного покрова были рассчитаны на основе данных дистанционного 

зондирования, и были проанализированы их связи с такими полевыми 

данными, как уровень засолённости, устьичная проводимость и фактическая 

высота растения. Результаты показали, что широко используемые 

мультиспектральные индексы растительности не эффективны для 

различения пораженных солью и контрольных растений киноа. Индекс 

физиологической отражательной способности (PRI) показал лучшие 

результаты и различие в значениях между пораженными солью и 

контрольными растениями. Это различие также заметно и в измерениях 

высоты растений, полученных при помощи LiDAR, где обработанные солью 

растения были в среднем на 10 сантиметров короче контрольных. 

Значительные изменения претерпела и температура растительного покрова, 

хотя обнаружение этого потребовало дополнительного этапа анализа - 

кластеризации NDVI. Этот шаг гарантировал сравнение температуры между 

пикселями с аналогичной площадью растительного покрова. Комбинация 
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данных всех трех сенсоров в модели множественной линейной регрессии 

повысила эффективность прогнозирования и для всего набора наблюдений 

регрессионный коэффициент R2 достиг 0,46, в некоторых подгруппах R2 

достиг 0,64. Дистанционное зондирование с помощью БПЛА оказалось 

полезным подходом для измерения солевого стресса растений. Для 

повышения точности рекомендуется сочетание нескольких методов 

измерения. 

В главе 4 термографический подход применяется в масштабе нескольких 

регионов. Четыре региона в четырех различных штатах Австралии были 

выбраны для того, чтобы в исследовании были представлены различные 

культуры, выращиваемые как в богарных условиях, так и в условиях 

орошаемого земледелия. В анализе комбинация индексов растительности и 

термальных спутниковых снимков использовалась в качестве индикатора 

температуры растительного покрова. Используя дисперсионный анализ и 

анализ временных рядов, исследована применимость спутниковой 

термографии для оценки засоленности почвы под различными культурами, 

выращиваемых как в богарных условиях, так и в условиях орошаемого 

земледелия. Во всех случаях, средняя температура растительного покрова 

достоверно коррелировала с засоленностью почвы в этом районе. Эта 

взаимосвязь справедлива для всех исследованных культур, выращенных как 

на орошаемых, так и на богарных участках. Тем не менее, вид культуры влиял 

на степень этой взаимосвязи. Хлопок показал лишь незначительную разницу 

температур по сравнению с другими культурами. Наиболее сильные 

зависимости между температурой растительного покрова и засолением 

почвы наблюдались в момент пика зеленой биомассы растений. Таким 

образом этот период может считается оптимальным для применения 

описываемого термографического подхода. 

В главе 5 представлена оценка в глобальном масштабе. Единственная база 

данных, которая в настоящее время предоставляет информацию о 

засоленности почв с глобальным охватом это Гармонизированная Мировая 

Почвенная База Данных, но она имеет несколько ограничений в случае 
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оценки засоленности почв. В связи с этим, необходима обновленная оценка. 

Я предположил, что объединение карт свойств почвы вместе с тепловыми 

инфракрасными снимками и большим набором полевых наблюдений в 

рамках алгоритма машинного обучения, позволит получить глобальную 

карту засоленности почвы. Тепловые инфракрасные снимки будут 

действовать как динамическая переменная, которая будет характеризовать 

изменения во времени. Для этой цели использовалась вычислительная среда 

Google Earth Engine. Классификатор случайных лесов был обучен с 

использованием 7 карт свойств почвы, тепловых инфракрасных снимков и 

значений электропроводимости почвы (ECe) из базы данных WoSIS. Всего 

было подготовлено шесть карт за 1986, 2000, 2002, 2005, 2009 и 2016 годы. 

Точность валидации полученных карт находилась в диапазоне 67-70%. 

Общая площадь засоленных земель, по представленной оценке, составляет 

около 1 млрд. Га, с явной тенденцией к увеличению. Сравнение с 3 

исследованиями, изучающими локальные изменения засоленности почвы, 

показало, что представленная оценка соответствовала двум из этих 

исследований. Была составлена глобальная карта изменений засоленности 

почв в период с 1986 по 2016 гг. Из полученных результатов можно сделать 

вывод, что комбинация карт свойств почвы и тепловых инфракрасных 

снимков может позволить картировать процессы развития засоления почвы 

в пространстве и времени в глобальном масштабе. 

В главе 6 обобщены результаты всех предыдущих глав, они рассмотрены в 

более широкой перспективе. Представлено критическое обсуждение 

методов и использованных данных. Более того, даются предложения по 

дальнейшим исследованиям.  
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