New data and big data analysis for forest and land monitoring: A practical demonstration

SDG-conference 'Towards Zero Hunger: Partnerships for Impact"

30 August 2018 Sabina Roșca, Wageningen University

Background

> My work

- PhD candidate Laboratory of Geo-information Science and Remote Sensing
- Project: "Large scale forest change monitoring using satellite data"
- Collaborating with FAO to develop tools for monitoring forest change
- What data is needed to obtain information on forest and forest change?
 - Direct observations in the field
 - Remote sensing data

Image Credits

Landsat 8: NASA
Sentinel 1: ESA/P. Carril
Sentinel 2: CC BY-SA 2.0 fr (Rama @ Wikipedia)
TLS: ELTE Department of Cartography and
Geographic Information Science, 2012

Large scale = Big data

> Why is big data so BIG in our case?

Multiple satellites acquire images globally every day

In August 2017: 620 EO satellites¹

Optical imaging: 327Radar imaging: 45Infrared imaging: 7

• • •

Large scale = Big data

Why is big data so BIG in our case?

https://landsat.usgs.gov/landsat-project-statistics

- Landsat 8 captures more than 700 scenes a day
- For the continent of Africa from 01/01.2014 to 31/12/2016 there are 77 528 scenes = 3.14 trillion pixels

 When counting Landsat and both Sentinel A and Sentinel B -> mean of 162 images per year at any point

Li, Jian, and David P. Roy. "A global analysis of sentinel-2A, sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring." *Remote Sensing* 9, no. 9 (2017): 902.

Big data = cloud computing

Why is cloud computing the solution for EO?

- No need to acquire expensive hardware
- It already has the data you need, or it makes data acquisition very easy
- It provides some already built in tools for processing

Most popular platforms for geospatial analysis:

- Google Earth Engine
- SEPAL

System for Earth Observation Data Access Processing and Analysis for Land Monitoring

What is SEPAL?

- Tool that helps producing information from remote sensing data
- Autonomous
- Uses supercomputing power
- Open source
- Software maintenance

> FAO Objectives

"Improve data access and delivery of satellite data and forest information products to enable the autonomous national capacity to monitor land surface"

SEPAL-FAO

What can you do on it?

- Search visualize and arrange data as you need:
 - Mosaics
 - Time-series
 - Change detection
- Process data as you need using RStudio
- Explore data using the custom tools
 - BFAST explorer
 - Time-series analysis
 - SAR toolkit
 - MSPA (Morphological Spatial Pattern Analysis)
 - Stratified Area Estimator

Practical demonstration

Take home message

We have the data...

More and more research focuses on developing or improving geospatial analysis tools to obtain *information* from satellite imagery

...We have produce the information

Questions?

Thank you!
Sabina.rosca@wur.nl

