Reliability of breeding values for DMI by adding data from additional research farms

Ghyslaine C.B. Schopen, Y. de Haas, J.J. Vosman, G. de Jong and R.F. Veerkamp

Contents

- Introduction
- Materials & Methods
- Results
- Conclusions

Introduction

Feed

- Milk production
- Maintenance
- Growth
- Main part of variable costs
- Breed for efficient cows
 - Reduce costs
 - Reduce greenhouse gases

Aim

To evaluate the **reliability** of **gEBV for DMI** after combining data from research farms and feeding companies

DMI data

Data from 1990 onwards:

- Research farms
 - WLR (historic)
 - ILVO
- Feeding companies
 - Trouw Nutrition (historic)
 - Schothorst Feed Research (historic)
 - AVEVE

DMI data

Data criteria:

- \geq 5 weekly DMI records per cow per parity
- \geq 5 animals per experimental treatment
- Standardise DMI (excl. experimental treatments)
- Lactation 1, 2 and 3

DMI data in June 2018

About: 160,000 records **5,400 cows** 1,102 experimental treatments 8,400 lactations

Genotypes : ~2,300 cows

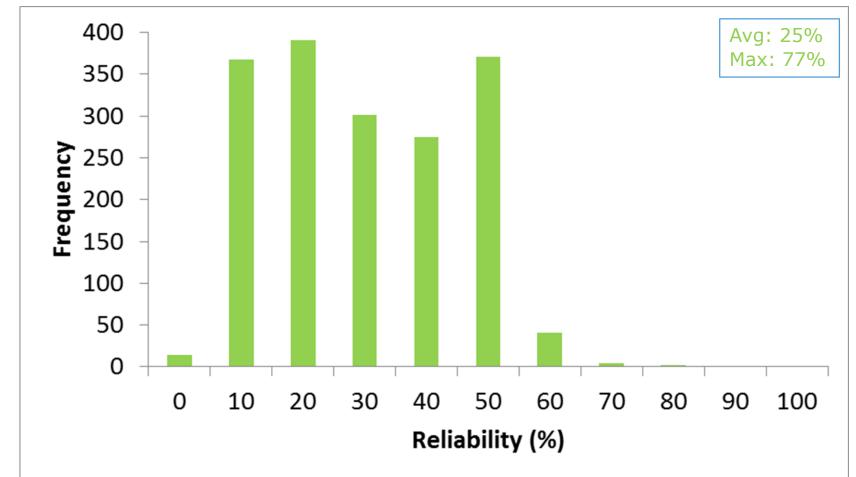
Multivariate model

- Corrections for different effects using a multivariate model:
- dmi1 dmi2 dmi3 = breed + dim + agec + exp + herdmonth + herdyear + perm + animal + e
- H⁻¹ matrix

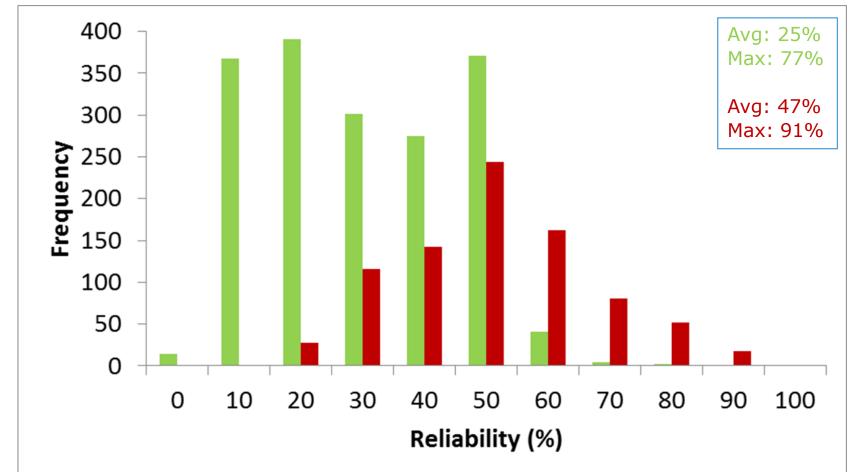
Predictor traits

- Genomic EBV DMI directly from DMI genetic evaluation combined with national EBV for four predictor traits:
 - Kg milk Genetic correlations DMI1 DMI2 DMI3 • Kg fat 0.55 0.58 0.56 Kg milk Kg prot Kg fat 0.58 0.60 0.58 Kg prot 0.59 0.61 0.59 Liveweight LiveWeight 0.67 0.45 0.41
- Selection index weighted based on reliabilities
- Model reliability

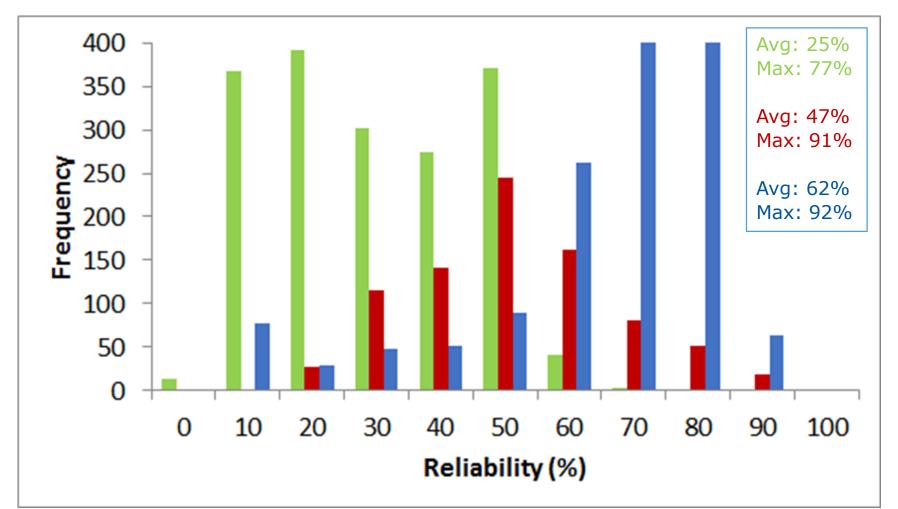
Reliabilities DMI – only genomics



Reliabilities for bulls without daughters with DMI in pedigree of genetic evaluation DMI



Reliabilities for bulls without (green) and with (red) daughters with DMI in pedigree of genetic evaluation DMI



Reliabilities for all bulls in pedigree of genetic evaluation DMI + predictors (blue)

Conclusions

- June 2018:
 - ~ 25% more DMI data compared to 2017
 - Reliability on average increased to **62**%
- December 2018:
 - DMI data will increase with another:
 - Exp2% teector discred sexpediration i dity abt 700% ments
 - 8-9% animals and lactations.
 - Official genetic evaluation with more bulls with information through predictors

Acknowledgements

Reliability breeding value for DMI

- On average 62% in June 2018
- Expected to increase further (coming closer to 70%) in December 2018!

