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Abstract

In this study the usability of the AHN2 ALS-LiDAR data-set for the prediction of a shrub 
layer was investigated. Two LiDAR structure indices, the Undergrowth Return Fraction 
(URF), and the Undergrowth Cover Density (UCD), were proposed. The shrub layer was 
described using a binomial parameter that indicated whether a shrub layer was absent 
or present. The binomial parameter was derived from field measurements. The presence 
of a shrub layer was predicted with the URF and UCD in a logistic regression for six for-
est species compositions. The URF performed slightly better than the UCD in the logistic 
model but the overall predictive power of the model was low with a maximum R² of 0.44. 
The species composition of the shrub layer has a significant effect on the UCD but not 
the URF. Furthermore, the results also indicate there is a difference in detectability of ev-
ergreen species and deciduous species when leaf-off  ALS-LiDAR is used. The low model 
performance for deciduous species combined with the apparent difference in detectabil-
ity between evergreen and deciduous species indicate that leaf-off LiDAR data might not 
be suitable for the purpose of shrub layer detection, thus limiting the usability of the AHN2 
for shrub cover prediction. 

Keywords: ALS-LiDAR, AHN, leaf-off, Shrub layer, Forest structure,
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1 Introduction
Forests are important ecosystems and 
provide habitat for a large number of spe-
cies (Hermy & Bijlsma, 2010). Forest struc-
ture is an important indicator of ecolog-
ical quality, as a forest rich in structure 
generally supports more niches and thus 
increases species richness (Bazzaz, 1975). 
More specifically, high structural diversity 
due to the presence of shrubs and dead-
wood is an important  habitat  require-
ment for birds (Hanzelka & Reif, 2016; 
James & Wamer, 1982; Martinuzzi et al., 
2009), arthropods (Müller & Brandl, 2009; 
Roberson et al., 2016; Vierling et al., 2011) 
and mammals (Ewald et al., 2014). In con-
clusion, mapping and monitoring forest 
structure is important, as it provides val-
uable ecological information for nature 
management. 

The structure of a forest is the product 
of all vegetation elements within a for-
est stand. These vegetation elements in-
clude: living trees, shrubs, standing and 
lying deadwood, and herbaceous plants. 
The number and density of these vegeta-
tion elements and how they relate to each 
other in the vertical and horizontal space 
can be described in terms of structural 
variation or structural richness. A forest is 
considered structurally rich if more vege-
tation elements are present and there is a 
large variety in the composition of these 
structure elements. The importance of 
different structure elements and the scale 
at which the structure variation should 
occur, differs per organism (Tews et al., 
2004). Quantification of the forest struc-
ture allows forest managers to monitor 
changes in the ecological value of forest 
stands, as well as provide insight into the 
areas where the structure can be enriched 
to achieve management goals.

The quantification of forest structure has 
been the focus of many studies, which 
employed a multitude of different meth-
ods. Generally a parameter is derived or 
calculated from field measurements and 

used as an index of structure. These indi-
ces either describe forest structure in the 
horizontal or vertical dimension, where 
vertical indices describe structure varia-
tion over height, while horizontal indices 
describe structure variation over distance. 
Good examples of vertical structure indi-
cators are the vegetation cover values in 
different height strata (Williams & Marsh, 
1998) and the foliage height diversity (FHD), 
which is obtained by counting vegetation 
contacts with a pole (Ding, Liao, & Yuan, 
2008). The number of plant species and 
their respective canopy cover in a plot is 
a prime example of a horizontal structure 
indicator (Bazzaz, 1975). A combination of 
different structure indices is often used to 
predict the abundance of a certain spe-
cies in so called habitat structure-species 
diversity (HS-SD) relationships (Simonson 
et al., 2014). 

The recent introduction of Light Detection 
And Ranging (LiDAR) has sparked renewed 
interest in forest structure assessment, 
as this enables the direct measurement 
of vertical forest structure for large areas 
(Dubayah & Drake, 2000). The advent of 
LiDAR saw the introduction of  many new 
structure indicators which mainly focus 
on the canopy. Some notable LiDAR struc-
ture indicators include: mean height or 
the standard deviation of the mean height 
(Müller & Brandl, 2009), density or height 
related percentiles (Naesset & Naesset, 
2003; Zellweger et al., 2014), fractional 
vegetation cover values (Latifi et al., 2016), 
and vegetation density (Næsset, 1997).

While plenty of LiDAR-based forest struc-
ture assessment studies have focussed 
on the forest canopy structure, fewer 
work has been done on the assessment 
of sub-canopy vegetation layers such as 
secondary tree layers or shrubs. This is 
largely due to the difficulty an Arial Laser 
Scanner (ALS) has to penetrate to low-
er vegetation layers, which require high 
scanning densities for accurate mapping 
(Hamraz et al., 2017). ALS-LIDAR has been 
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used to map the undergrowth of a forest 
with varying success.

Martinuzzi et al. (2009) predicted under-
storey shrub presence or absence for 
20 by 20 m pixels with a random forest 
model. Understorey shrubs were deemed 
present if the total cover of all shrub spe-
cies, excluding tree seedlings, exceeded 
25%. The model achieved an 83% classi-
fication accuracy using the proportion of 
ground returns, the proportion of returns 
from 1–2.5 m and the terrain slope. Lat-
ifi et al. (2016) used LiDAR to predict the 
density of the first, second and third tree 
layer as well as the density of the shrub 
and herb layers. The final regression mod-
el for the shrub cover used the vegetation 
density and the number of returns below 
0.5 m divided by the number of returns 
below 5 m and yielded an R2 = 0.37.  Wing 
et al. (2012) presented a new LiDAR index 
called the Understorey LiDAR Cover Den-
sity (ULCD) and showed a strong relation 
with the field measured shrub cover in in-
terior Ponderosa Pine (Pinus ponderosa) 
stands. A weighted regression model with 
the ULCD, standard deviation of canopy 
height and proportion of points between 
30 – 40 m predicted the shrub cover with 
an R2 = 0.74. Hill & Broughton (2009) pre-
dicted the presence or absence of an un-
derstorey in deciduous forests, using first 
and last LiDAR returns from data acquired 
in early spring (leaf-off) and mid-summer 
(leaf-on). The model using the leaf-on and 
leaf-off data achieved a  77% classification, 
and the model using only leaf-off data 
achieved a 72% classification accuracy. 
However all these studies required exten-
sive field measurements and used leaf-on 
LiDAR-data.

Ideally, shrub cover and other structural 
parameters of forest stands can be de-
rived from data that are already available, 
without the need for new measurements 
to be made. This  could be achieved 
by using information from nationwide 
ALS-LiDAR height surveys. The validation 

of the structure assessment can be done 
from field data recorded in regular forest 
stand surveys. The Actueel Hoogtebe-
stand Nederland (AHN) or Height Data-
base Netherlands is an ongoing nation-
wide ALS-LiDAR mapping effort to create 
a high-fidelity Digital Evelation Model 
(DEM) of the Netherlands. The AHN pro-
vides open ALS-LiDAR data and offers an 
unique opportunity for forest structure 
assessment.

The aim of this study is to investigate 
whether the shrub layer can be predicted 
for fully developed deciduous, coniferous, 
and mixed forests using ALS-LiDAR data 
from the AHN. To answer if the struc-
ture of the understorey of a forest can be 
mapped using ALS-LiDAR, the AHN point 
clouds  will be combined with available 
field data. Three research questions are 
adressed. The first question that is ad-
dressed is: (1) Can the presence of a shrub 
layer be determined from the AHN? The 
Dutch forests are highly heterogenous 
and have a large spatial variation in spe-
cies composition. Therefore, the second 
question is defined as: (2) Does the ef-
fectiveness of structure assessment vary 
between different tree species? The AHN2 
data is aqcuired under leaf-off conditions, 
which differs from prior studies. A third re-
search question is therefore defined as: (3) 
Does the vegetation species composition 
affect shrub layer prediction using ALS-Li-
DAR in leaf-off conditions?

2 Material and Method

2.1 Study area
For this study, data from forest surveys in 
two different locations in the Veluwe na-
ture area were used. The Veluwe is the larg-
est forested area in the Netherlands locat-
ed in the province of Gelderland. The first 
location is the forest area around the vil-
lage of Kootwijk (52°11’05.8”N 5°46’12.7”E), 
located at the western edge of the Veluwe 
(fig. 1). The area is dominated by conifer-
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ous species, including: Scots pine (Pinus 
sylvestris), Douglas Fir (Pseudotsuga men-
ziesii), and Japanese Larch (Larix kaemp-
feri). Most of these stands were planted at 
the start of the 20th century as part of the 
large reforestation campaign by the State 
Forestry Service. The second location are 
the forests near the village of Vierhouten 
(52°19’55.5”N 5°49’46.5”E), located at the 
northeast corner of the Veluwe (fig. 1). 

This area shows a larger variety in spe-
cies composition with a larger presence 
of broadleaf species, including European 
Beech (Fagus sylvatica) and Common Oak 
(Quercus Robur); alongside Scots pine and 
Douglas Fir. The study areas were selected 
because they were surveyed by the State 
Forestry Service around the same time 
the LiDAR data was acquired.

Figure 1: An overview of the study area and the forest inventory plots with their respective AHN-LiDAR scanning den-
sity in number of points per plot. The coordinates are in Rijksdriehoek (m).
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2.2 Valdidation data
Field observations from 825 plots that are 
part of the State Forestry Service forest 
inventory system or Systeem Houtmeet-
kundige Inventarisatie (SyHI), were used 
as ground truth. The SyHI-method con-
sists of regular stand surveys on an evenly 
spaced grid of circular plots, and is used 
by the State Forestry Service for stand 
monitoring. Every year a different forest 
on the Veluwe is surveyed. The radius of 
a plot depends on the forest density and 
varies between 5 and 20 m. The radius is 
chosen in such a way that at least 20 trees 
fall inside the plot (Berg, 1996). For each 
tree within a plot the Diameter Breast 
Height (DBH) and tree species is record-
ed, to get insight into stand composition, 
stand development and tree growth. The 
number of seedlings as well as the densi-
ty and composition of the shrub layer are 
recorded using a fixed radius of 8 m (Silve, 
n.d.). The field observations used in this 
study were done in different years, with 
the area around Kootwijk being measured 
between 2009 – 2010, and the area around 
Vierhouten being measured in 2011.

There are three different structure param-
eters the State Forestry Service recognizes 
in the undergrowth: the shrub cover (%), 

the number of recent seedlings (n/ha) and 
the number of established seedlings (n/
ha). The shrub cover is expressed as the 
percentage of a plot covered by the crown 
projection of the shrubs in a plot, where a 
shrub is defined as a woody plant with a 
height between 50 cm and 5 m and a DBH 
smaller than 5 cm. Recent seedlings are 
young trees which are larger than 50 cm 
and have a DBH smaller than 5 cm, while 
established seedlings are young trees with 
a DBH between 5 and 8 cm. Simply put, 
the recent seedlings are part of the shrub 
layer, while established seedlings form the 
youngest cohort of trees. 

Beside the undergrowth parameters the 
surveys also include a stand based struc-
ture indicator, the forest development 
stage. Six developmental stages are rec-
ognized: the open phase, the juvenile 
phase, the dense phase, the pole phase, 
the tree phase, and the deterioration 
phase (Verheyen et al., 2010). The for-
est development stages are a description 
of the forest vegetation structure during 
its development, and give an indication 
of the quantities in which certain forest 
structure elements are present (fig. 2), 
providing valuable information about the 
expected forest structure.

30 m

5 m

0 m
0.5 m

open phase
juvenile phase

dense phase
stake phase

tree phase

Crown layer

Shrub layer

Herb layer

Figure 2: Conceptual structural model of a forest thorugh different development stages.
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From the SyHI-surveys the forest devel-
opment stage, the dominant tree species, 
the dominant tree height, the number of 
seedlings, the shrub cover percentage and 
the shrub composition are used in this 
study.

2.3 LiDAR data
The point clouds used for this study were 
recorded as part of the second iteration of 
the AHN also named AHN2. The AHN is an 
ongoing effort to create a high precision 
and resolution DEM of the Netherlands. 
Currently, data for the third iteration, called 
AHN3, is being acquired and expected to 
be completed in 2019. The current version 
available for the entire Netherlands is the 
AHN2 for which the data was acquired 
between 2007–2012 with an minimum 
density of 6–10 points per m2, to achieve a 
DEM with a maximum stochastic and sys-
tematic error of 5 cm (van der Zon, 2013). 

The AHN data is made available as pre-pro-
cessed point clouds containing X, Y, and 
Z-coordinates. Other parameters, such as 
the return intensity, scan angle, and return 
number, are not published. The LiDAR 
data is split in two distinct point clouds: 
a point cloud containing only ground lev-
el returns, which is defined  as the bor-
der between ground and air, and ground 
and water (van der Zon, 2013); and a point 
cloud containing all non-ground returns. 
The latter dataset thus contains points de-
scribing the vegetation in forested areas. 

The AHN-LiDAR data was acquired using 
the helicopter based FLI-MAP 400 system 
(Ludikhuize & Stroeven, 2008), and was 
recorded between 1 December 2010 and 
31 March 2011 (van der Zon, 2013).

2.4 Methodology

2.4.1 Lidar Data Processing

The LiDAR data was processed in order to 
develop the model and compare the Li-
DAR data to the field validation data. First, 
the AHN point clouds were projected to 

the Rijksdriehoek system (EPSG:28992). 
Next, the point clouds were clipped to the 
extent of the plots using a radius of 35 m 
for the ground returns point clouds and a 
radius of 28 m for the non-ground returns 
point clouds. The ground points were 
clipped to a larger plot radius to ensure 
ground level information was present for 
all the vegetation points, which is needed 
for point cloud normalization. 

Cloud point normalization is a process in 
which height of the ground level is sub-
tracted from all the non-ground returns, 
making the height of all non-ground re-
turns relative to the ground level. The 
normalization was accomplished by con-
verting the ground point clouds to a DEM 
with a raster size of 50 cm using LAStools. 
The point cloud normalization was then 
done using the ‘lidR’ library for R. 

After the normalization was completed all 
points below 50 cm were removed to en-
sure that no returns from herbs were in-
cluded in the model. Finally, the points in 
the ground and non-ground clouds were 
classified based on their distance from the 
plot centre. The classes used were 0–8 m, 
8–18 m, and 18–28 m, which were used in 
further analysis. 

2.4.2 LiDAR indices

There is a large variation in the number of 
LiDAR returns between the different SyHI-
plots, in some cases the number of returns 
differs more than 5000 points (fig. 1). The 
variation in the number of LiDAR returns 
between plots is caused by two factors. 
First, a LiDAR pulse can be partially reflect-
ed by vegetation before hitting the forest 
floor, resulting in multiple discrete returns 
for each pulse. Second, some plots are lo-
cated at overlapping flight lines, increasing 
point density. Flight lines overlap to en-
sure good LiDAR coverage at the edges of 
a scan swath. fraction based LiDAR struc-
ture indices were used for the shrub layer 
model, to allow for comparison of  plots 
despite the differences in LiDAR returns.
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Two different LiDAR indices were de-
fined and used for the shrub layer model. 
Namely, the Undergrowth  Cover Density 
(UCD) and the Undergrowth Return Frac-
tion (URF). The URF is a measure of the 
fraction of LiDAR returns present between 
0.5–5 m, in respect to the total number of 
ground and non-ground returns in a plot 
and is obtained with the following formu-
la:

where n
shrub 

is the number of LiDAR re-
turns between 0.5 and 5 m in a plot, and 
n

total
 is the total number of ground and 

non-ground returns combined in a plot. 
The UCD is a measure of the fraction of 
Lidar returns present between 0.5-5 m in 
relation to the number of ground returns 
and is obtained by the following formula:

where n
shrub

 is the number of LiDAR re-
turns between 0.5-5 m in a plot, and n

ground
 

is the number of LiDAR ground returns in 
a plot.

The concept behind the URF and UCD 
can be explained by comparing the LiDAR 
vegetation return profile of three differ-
ent conceptual stands: one stand with-
out  shrub layer (fig. 3a) one stand with 
a dense shrub layer (fig. 3b), and a stand 
with a dense shrub layer and a low over-
storey (fig. 4). By calculating the fraction 
of LiDAR vegetation returns for different 
height strata the vertical distribution of 
vegetation elements can be visualized. 
When more vegetation elements are 
present in a stratum, more LiDAR pulses 
are expected to reflect from that stratum, 
leading to a higher return fraction. These 
return profiles can be compared to make 
differences in the vertical distribution of 
vegetation elements apparent. So, a stand 
with a dense shrub layer (fig. 3b) is expect-
ed to have a higher fraction of returns in 
the first five meters, than a stand without 
a shrub layer. 

The return fractions are negatively cor-
related to the height of a stand. Overall 
return fractions decrease if a stand in-
creases in height and thus the number 
of strata increases. When two conceptu-
al stands with identical shrub layers and 
different tree heights are compared, the 
return fractions, and specifically the URF, 
are different (figs. 3b & 4). The number of 
ground returns is directly affected by the 
height and density of vegetation present. 
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Figure 3: Conceptual presentation of a coniferous forest stand with the expected fraction of LiDAR returns from dif-
ferent height classes. (A) situation when a shrub layer is absent, with an URF of 0.02 and an UCD of 0.05; (B) situation 

when a shrub layer is present, with an URF of 0.16 and an UCD of 0.36. 
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By using the number of ground returns 
the UCD aims to remove the effect of 
stand height on URF by using the number 
of ground returns, to standardize for veg-
etation height. 

2.4.3 Selection of field data

A proper separation of canopy and shrub 
layer is a large concern for LiDAR-based 
shrub cover models. A good separation of 
the shrub and canopy is most likely in the 
tree phase. Therefore, only the plots that 
were in the tree phase were selected for 
analysis. In other phases a shrub layer is 
either absent (pole phase) or not proper-
ly separated from the canopy layer (open, 
juvenile and dense phase) (fig. 2).

Another major concern is a mismatch of 
the plot locations in the field measure-
ment with the plot locations in the Li-
DAR point clouds. While each plot has its 
own set of coordinates, it is uncertain as 
to whether the provided coordinates are 
accurate. When SyHi-measurements are 
made, the plot centre is determined using 
compass and tape measurer. It is unclear 
for which plots the accuracy of the coor-
dinates is low and unknown how large 
the offsets are.

In order to minimize the potential effect 
of errors induced by a mismatch between 
field and LiDAR data, the plots were filtered 
based on the variation in forest structure 
of their direct surroundings. This spatial 
variation filtering consists of a number of 
steps. First, the URF and UCD were calcu-
lated for each plot for a radius of 8, 18 and 
28 m. Second, the difference (Δ) between 
the URF for a radius of 8 and 18 m (URF 
Δ

8–18m
), and 8 and 28 m (URF Δ

8–28m
), were 

calculated for each plot by subtracting 
the larger radius from the smaller radi-
us. Third, the UCD Δ

8–18m
, and UCD Δ

8–28m
 

were calculated similarly. Fourth, the dif-
ference between the field observed tree 
height and LiDAR derived tree height 
(Δ

height
) was calculated for each plot by 

subtracting the LiDAR tree height from the 
field tree height, where the LiDAR derived 
height was defined as the highest vege-
tation return for a radius of 8 m. Fifth, the 
interquartile range (IQR) or mid-spread, 
which is the range between the 25% and 
75% percentiles of a dataset, for Δ

8–18m
, Δ

8–

28m
 of the URF, UCD, and Δ

height
, are derived 

and used to calculate the upper (Q
3
 + 1.5    

× IQR) and lower (Q1 - 1.5 × IQR) bound-
aries (fig. 5). Finally, all plots of which the 
URF Δ

8–18m
, URF Δ

8–28m
, UCD Δ

8–18m
, UCD 

Δ
8–28m

, or Δ
height

, fell outside the previous-
ly calculated boundaries were removed 
from the analysis. This approach ensured 
that the plots with the largest spatial var-
iation were removed, while some spatial 
variation was still allowed. 
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Figure 4: Conceptual presentation of a coniferous for-
est stand with the expected fraction of LiDAR returns 
from different height classes when a shrub layer is 
present under a low overstorey, with an URF of 0.21, 

and a UCD of 0.38.

Q₁ Q₃ 

IQR

Median

Q₃ + 1.5 × IQRQ₁ − 1.5 × IQR

Figure 5: Example of a boxplot with different terms, 
where Q

1
 is the first quantile, Q

3
 is the third quantile and 

IQR is the interquartile range.
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2.4.4  Model discription

First a binominal parameter, called S
lay-

er
 was defined that indicated whether a 

shrub layer was present (1) or absent (0). 
The S

layer
 was derived from the field data 

and is a description of the shrub layer 
based on the shrub cover (%), the number 
of recent seedlings (n/ha), and the number 
of established seedlings (n/ha). The S

layer
 

was used because the number of LiDAR 
vegetation returns between 0.5–5 m was 
expected to increase with shrub cover. 
However, the number of LiDAR vegetation 
returns from 0.5–5 m was also expected 
to increase when forest regeneration or 
young established trees were present in 
the undergrowth. 

The inclusion of forest regeneration and 
small trees in the S

layer
 should increase 

model performance. Furthermore, the 
inclusion of small trees and forest regen-
eration into the shrub layer model is also 
appropriate from an ecological perspec-
tive. Tree seedlings and young trees are 
important structure elements in the un-
dergrowth of a forest. 

Whether the S
layer

 was 1 (present) or 0 (ab-
sent) was determined using thresholds for 
the shrub cover, number of established 
seedlings, and number of recent seed-
lings. A shrub layer was present when one 
of the three parameters in a plot exceed-
ed a threshold. Three different variants of 

the S
layer

 derived using different thresh-
olds, were used in the model (Table 1).  
The thresholds were selected based on 
the distribution of the structure parame-
ters (fig. 6). The main reason for the use of 
three variants of the S

layer
 was the possibil-

ity that different tree species had different 
optimal thresholds for the binominal pa-
rameter. 

Table 1: Threshold combinations for S
layer

 

Shrub 
cover

Established 
seedlings

Recent 
seedlings

S
layer

 low 5% 250 2500

S
layer

 medium 15% 500 5000

S
layer 

high 25% 750 7500

Finally, the logistic regression models pre-
dicted the S

layer
 low, S

layer
 medium or S

layer
 

high (dependent variable), based on the 
value of either the URF or UCD (independ-
ent variable). A logistic regression model 
predicts the probability of the dependent 
variable being 1 or 0, based on one or 
more independent variables. The logistic 
regression was fitted independently for six 
different canopy layer tree species com-
positions. The fitted compositions were: 
Mixed compositions, European Beech (Fa-
gus sylvatica), Common Oak (Quercus ro-
bur), Douglas Fir (Pseudotsuga menziesii), 
Japanese Larch (Larix kaempferi), and 
Scots Pine (Pinus sylvestris). The goodness 
of fit of these compositions was examined 

Figure 6: Histograms of the field parameters used to determine the S
layer

 for all plots in the tree phase (n = 570) the. 
(A) Histogram of the shrub cover with a bin size of 5; (B) Histogram of the number of established seedlings with a bin 
size of 50; (C) Histogram of the number of recent seedlings with a bin size of 1000. the thresholds used for the S

layer
 

are plotted as lines.
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for UCD and URF to investigate the effec-
tiveness of the proposed shrub cover pre-
diction model for different tree species.

To compare model performance and fit 
the Tjur (2009) pseudo-R2 value was cal-
culated for each model. The Tjur pseu-
do-R2 is similar to an R2 of a linear regres-
sion model. Both have a range from 0–1, 
and in both cases a higher value indicates 
a better fit. The Tjur pseudo-R2 is obtained 
by calculating the mean of the predicted 
probabilities for both groups and taking 
the difference between them. The use of a 
pseudo-R2 allowed for comparison of the 
performance URF and UCD for the same 
species.

2.4.5 Vegetation composition

A large concern was the difference in de-
tectability between deciduous and ev-
ergreen species by ALS-LIDAR in leaf-off 
conditions. Leaf-off refers to the leave-less 
state of deciduous species in mid-win-
ter, which were the conditions when the 
AHN-LiDAR scans were made. In leaf-off 
conditions, the only part of a deciduous 
plant that can be detected by LiDAR are 
the woody structures, while in evergreen 
plants both woody structures and leaves 
can be detected. This is expected to cre-
ate a difference between the detectabili-
ty of deciduous and evergreen species in 
leaf-off conditions. 

Two test were performed to ensure there 
was no effect of species composition of 
the shrub layer and the overstorey on the 
shrub layer model. The first test compared 
the difference in URF and UCD values for 
two species composition of the shrub lay-
er. The second compared the difference in 
occlusion effect of the overstorey for dif-
ferent species compositions.

The effect shrub composition had on the 
detectability by ALS-LiDAR was tested 
by selecting all plots with a shrub cover 
above 10% (n = 138) and splitting the plots 
into two groups based on the composi-
tion of the shrub layer, one group con-

taining plots with a shrub layer predom-
inantly made up of evergreen species, 
and another group containing plots with 
a shrub layer predominantly made up of 
deciduous species. If the shrub layer in a 
plot consisted for more than 50% of ever-
green species it was put in the first group;  
the rest was put in the second group. 
The means of the URF and UCD for both 
groups were compared with a Wilcox-
on-Mann-Whitney test. 

The effect canopy species composition 
had on the detectability of the shrub lay-
er was tested by comparing the means of 
the Overstorey Return Fraction (ORF) of 
the canopy species compositions used in 
the shrub cover model. The ORF was de-
fined as the fraction of returns above 5 m 
in a plot and is obtained using the follow-
ing formula:

were n
canopy

 is the number of vegetations 
returns above 5 m and n

total
 is the total 

number of returns including ground re-
turns in a plot. A Kruskal-Wallis test was 
used, to examine if there was a significant 
difference in the average ORF between 
the fitted species compositions. A Dunn 
(1964) post-hoc test using the Hochberg 
& Benjamini (1995) method for p-value 
adjustment was used to determine which 
overstorey canopy compositions differ 
significantly from each other.
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3 Results

3.1 Data filtering
Before the model was tested, the plots 
were selected on the forest development 
phase and the six dominant species that 
were tested for the model, reducing the 
number of plots from 825 to 529. These 
529 plots were used to calculate the filter-
ing thresholds of the URF Δ

8-18m
, URF Δ

8–28m
, 

UCD Δ
8–18m

, UCD Δ
8–28m

, and Δ
height

. After 
the spatial variation filtering was complet-
ed 426 plots remained, with a small part of 
the plots removed with each filtering step 
(Table 2).

The distribution of the URF Δ
8–18m

, URF 
Δ

8–28m
, UCD Δ

8–18m
, and UCD Δ

8–28m
 were 

similar (fig. 8). The absolute differences 
of the URF were smaller compared to the 
UCD. This was caused by the fact that the 
UCD had higher values across all stand 
heights. The thresholds calculated for the 
Δ

height
 were -4.38 m for the lower bound 

and 5.64 m for the upper bound. Further-
more, the Δ

height 
 showed a large spread 

with values of up to +10  and  -15 m being 
observed (fig. 7). No clear spatial patterns  
in the Δ

height
 could be observed (fig. 9).

3.2 URF and UCD
The URF and UCD both describe the shrub 
layer and both range from 0 to 1. However, 
they responded differently to stand char-
acteristics. First, the range of observed 
UCD values was higher than the range of 
observed URF values. Second, the URF was 
negatively related to the maximum height 
of the plot, while the UCD did not appear 
to be related to tree height at all (fig. 10a & 
c). Third, the UCD was positively related to 
the vegetation density, while the URF ap-
peared to be unaffected (fig. 10b & d). The 
vegetation density was calculated as the 
percentage of vegetation LiDAR returns 
in a plot (Næsset, 1997). The relation be-
tween tree height and the URF is caused 
by a decrease in the absolute value of the 
return fractions from individual strata, as 
vegetation height increases. The UCD is 
calculated using the number of ground 
returns  and as the number of ground re-
turns approach 0 the UCD approaches 1. 
An increase in the amount and density of 
vegetation elements in a plot causes few-
er LiDAR pulses to reach the forest floor. 
Therefore, a higher vegetation density 
leads to an increase of the UCD.

Table 1: The number of plots after each filtering step.

Filtering used Plots remaining

None 825

Selected species 783

Tree phase 529

Δ
height

496

URF Δ
8-18m

448

URF Δ
8-28m

439

UCD Δ
8-18m

429

UCD Δ
8-28m

426

Figure 8: Histograms of the (A) URF Δ
8-18m

, (B) URF Δ
8-28m

, (C) UCD Δ
8-18m

, (D) URF Δ
8-28m

. The thresholds used for filter-
ing are plotted in each histogram as dotted lines.

Figure 7: Histogram of the Δ
height

. The thresholds used 
for filtering are plotted as dotted lines.
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Table 3: Significance of the URF and the Tjur pseudo-R2 of the binominal regression model, separated by main tree 
canopy species. S

layer
 low, medium, and high indicate the different threshold settings of the S

layer
 parameter (see Table 

1). Empty cells or missing species indicate that a logistic model could not be fitted or was insignificant.

S
layer

 low         S
layer

 medium S
layer

 high

Sig. R2 Sig. R2 Sig. R2

Common Oak .041 .138 - - - -

Mixed Composition .001 .123 .004 .078 .013 .058

Scots Pine .000 .103 .047 .024 - -

Japanese Larch - - .030 .352 .030 .352

Douglas Fir .012 .298 .006 .435 .006 .379

Table 4: Significance of the UCD and the Tjur pseudo-R2 of the binominal regression model, separated by main tree 
canopy species. S

layer
 low, medium and high indicate the different threshold settings of the S

layer
 parameter (see Table 

1). Empty cells or missing species indicate that a logistic model could not be fitted or was insignificant.

S
layer

 low         S
layer

 medium S
layer

 high

Sig. R2 Sig. R2 Sig. R2

Mixed composition .000 .120 .007 .062 .009 .062

Scots Pine .000 .091 .031 .028 - -

Japanese Larch - - .034 .269 .034 .269

Douglas Fir .024 .241 .010 .401 .014 .284

Figure 9: The remaining forest inventory plots after data selection with their respective Δ
height

 in m. The coordinates 
are in Rijksdriehoek (m).

Figure 10: Scatter plot of the URF and the UCD against the maximum tree height (A & C) and the vegetation density 
in a plot (B & D).
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3.3 Shrub cover model
A logistic regression was fitted separate-
ly for each canopy species composition, 
using either the URF or UCD to predict 
one of the three S

layer 
parameters (see Ta-

ble 1). Since a binominal regression does 
not provide the significance for the over-
all model, the significance of the inde-
pendent variable was used to determine 
whether a model was significant. From 
the 36 models that were fitted 21 were 
significant (Tables 3 & 4).

The models where the URF was used to 
predict the shrub layer was significant for 
11 of the 16 cases, while the UCD was sig-
nificant for 10 of the 16 cases. The mod-
el was insignificant or could not be fitted 
for European Beech due to an insufficient 
number of plots where a shrub layer was 
present (less than 2). In general no shrub 
layer was present in Beech stands. 

The species compositions of Douglas Fir 
and Japanese Larch achieved the best 
results in the logistic model with a max-
imum pseudo-R2 of 0.435 for Douglas Fir 
and a maximum pseudo-R2 of 0.352 for 
Japanese Larch. However, the pseudo-R2 
values for both species are still relatively 
low, and highlight that the overall model 
performance was poor.

The poor performance of the logistic re-
gression is illustrated by the strong over-
lap of S

layer
 groups (absent, present), with 

the respect to the URF and UCD (figs. 11 & 
12). This was especially true for Scots Pine 
stands, where for an URF of zero the prob-
ability that a shrub layer is present was 
50% (fig. 11). The same is true for stands 
with a mixed composition where the 
probability that a shrub layer was present 
is 25% when the URF was zero (fig. 11). In 
case of a good fit the probability should 

Figure 11: Boxplots of the URF of SyHI-plots grouped by their presence or absence of a shrub layer for three canopy 
species compositions. The predicted probabilities of logistic regression are plotted as a black line. The thresholds of 

S
layer

 low were used to create the groups. The Tjur pseudo-R2 is plotted in the lower right corner.

Figure 12: Boxplots of the URF of SyHI-plots grouped by their presence or absence of a shrub layer for Douglas Fir 
and Japanese Larch. The predicted probabilities of logistic regression are plotted as a black line. the thresholds of S

layer
 

medium were used to create the groups. The Tjur pseudo-R2 is plotted in the lower right corner.
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follow a S-shape, similar to the predicted 
probabilities for Douglas Fir (fig. 12) and 
the values for the groups should sparsely 
intersect. But even for stands dominated 
by Douglas, which exhibited a relatively 
decent fit compared to other composi-
tions, there was still quite some overlap of 
the S

layer
 groups.

3.4 Vegetation composition
A Wilcoxon-Mann-Whitney test was used 
to determine whether the URF and UCD 
were affected by the shrub layer compo-
sition. The results indicated that the aver-
age value of the UCD was greater for plots 
with a shrub layer consisting mostly of 
evergreen species (Median = 0.195), com-
pared to plots dominated by a deciduous 
shrub layer (Median = 0.115), W = 2534, p < 
.000. The difference between the URF for 
plots dominated by an evergreen shrub 
layer and  plots dominated by a deciduous 
shrub layer was not significant. Even when 
the threshold for an evergreen shrub layer 
was raised from 50% of the composition 
to 100% of the composition, the differenc-
es for the URF remained insignificant (fig. 
13). 

A Kruskall-Wallis test was used to com-
pare the means of the ORF for different 
dominant plot species. The test indicated 
that there was a significant difference in 
the mean of the ORF between different 
tree species. (H

5
 = 105.75, p < .000) with a 

mean rank of 372.82 for Douglas Fir, 216.31 
for Scots Pine, 213.31 for Japanese Larch, 
191.01 for mixed compositions, 135.92 for 
Common Oak, and 125.17 for European 
Beech. 

A Dunn (1964) post-hoc test using the 
Hochberg & Benjamini (1995) method 
for p-value adjustment resulted in three 
groups of tree species for which the ORF 
differed significantly from each other. One 
group containing Douglas Fir; one group 
containing Japanese Larch, Scots Pine, 
and Mixed compositions; and one group 
containing Common Oak and European 
Beech (fig. 14). Douglas Fir had a much 
higher ORF than other species indicating 
that relatively fewer LiDAR-pulses reached 
the shrub layer. The remaining species 
have smaller differences in the ORF, but 
coniferous species and mixed stands still 
had a higher ORF than the deciduous spe-
cies.

Figure 13: . Boxplots of the URF and UCD split by shrub composition, with a 50% evergreen shrub composition thresh-
old (A, B); and a 100% evergreen shrub composition threshold (C, D).

Figure 14: Boxplots of the ORF for the six different plot stand compositions. The letters indicate the groups of species 
with significantly different ORF values than other species groups.
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4 Discussion

4.1 Model performance
This study aimed to assess whether the 
AHN LiDAR data could be used to pre-
dict the presence of a shrub layer in for-
est stands. The results show a poor pre-
dictive power of the URF and UCD for the 
presence or absence of a shrub layer. The 
UCD and URF both performed differently 
in the logistic model. The URF could be 
significantly fitted for more species than 
the UCD. Furthermore, the models using 
the URF achieved higher pseudo-R2 values 
than the models using the UCD. 

The UCD yielded insignificant model re-
sults for all deciduous species and this is 
likely caused by the fact that for a high 
number of ground returns, the sensitivity 
of the UCD to returns from the shrub layer 
is low. This implies that for an open veg-
etation structure, the predictive power of 
UCD is low, which is enhanced by the use 
of leaf-off data. This is further illustrated 
by the dependence of the UCD on over-
all vegetation density (fig. 10). Indeed, the 
shrub cover model was only significant 
for the four most dense species composi-
tions (fig. 14 & Table 4).

The UCD was based on the ULCD which 
Wing et al. (2012) used to predict the 
shrub cover in interior Ponderosa Pine 
(Pinus ponderosa) stands. The ULCD is 
calculated by selecting all points between 
the maximum and minimum shrub height 
measured in the field, and filtering these 
points based on the LiDAR return intensity 
values. The filtered points from the shrub 
layer are then divided by themselves plus 
the number of ground points. The UCD 
on the other hand takes all the points be-
tween 0.5 and 5 m and does not include  
the return intensity filtering. In his study, 
Wing et al. (2012) reported an R2 of 0.74 
between the ULCD and the field measured 
shrub cover which is a stark contrast with 
the results of this study. This contrast can 
be explained by the fact that Wing et al. 

(2012) used leaf-on LiDAR data and high 
precision field measurements explicitly 
collected for the goals of his study. 

When comparing the URF and UCD in-
dices, the results indicate that sensitivity 
of the URF to changes in the shrub layer 
decreases as stand height increases (fig. 
10).  The UCD, on the other hand, per-
forms better when the vegetation layer 
is very dense or very tall, as mentioned 
previously. Therefore, the use of the URF 
is recommended over the UCD when 
leaf-off LiDAR data is used. The relative-
ly high number of ground returns, which 
are obtained in leaf-off conditions limits 
the range of the UCD, reducing its perfor-
mance in comparison to the URF (Tables 
3 & 4). How the URF and UCD perform in 
leaf-on conditions is not clear and should 
be further tested. 

Hill & Broughton (2009) examined the 
difference between ‘leaf-off’ and leaf-on 
ALS-data in its ability to map the forest 
undergrowth in deciduous forests. To 
accomplish this, a combination of leaf-
on and leaf-off data was used to predict 
the presence of a shrub layer. The leaf-
off data was acquired in early April, when 
the shrubs had fully leaved-out but the 
trees just began budburst, which is dif-
ferent from the true leaf-off conditions of 
the AHN. The leaf-on data was acquired 
mid-summer when both the over and 
understorey had fully leaved-out. Hill & 
Broughton concluded that there was no 
large difference in the prediction accura-
cies of leaf-on and ‘leaf-off’ data, but rec-
ommended to further test how well the 
shrub layer can be detected in true leaf-
off conditions.

The AHN in contrast is acquired in leaf-off 
conditions, which is in mid-winter. Model 
performance is low compared to the val-
ues of Hill & Broughton (2009), though it 
is unclear to what extent this can be con-
tributed to the use of lead-off data. Re-
sults do indicate that the use of the UCD is 
less suitable when using lead-off data, as 
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previously mentioned. In this study, both 
deciduous and evergreen species are in-
cluded and the results suggest there is an 
inherit difference in the detectability of 
deciduous and evergreen species when 
using true leaf-off data (fig. 13). The de-
tectability of evergreen species is higher, 
supporting the notion that using leaf-off 
data limits the model performance. This 
is further discussed in section 4.2 and 4.3. 

More research is needed for to the deter-
mine the usability of the AHN for shrub 
layer prediction. The inclusion of return 
number and return intensity in the up-
coming AHN3, also acquired under leaf-
off conditions, might increase the poten-
tial of the AHN for shrub layer prediction.

4.2 Overstorey species effect
The secondary goal of this study was to 
assess if there was a difference between 
tree species in the shrub layer prediction 
model. The results show that there was 
a definite difference between tree spe-
cies, highlighted by the large variation in 
the pseudo-R2 values of species per S

lay-

er 
variant with some species performing 

better overall. Additionally, the six spe-
cies achieved an optimal fit with different 
shrub layer definitions (S

layer
). Tree species 

have an inherent difference in tree height, 
stand structure and vegetation density 
under similar growing conditions (Muys et 
al., 2010). These physiological differences 
between tree species are believed to be a 
large factor in the variation in the good-
ness of fit of species in the shrub cover 
prediction models.

Model performance was relatively good 
for both Douglas Fir and Japanese Larch. 
which are characterised by a low variety 
in vertical structure with straight trunks 
and few low hanging branches. On the 
other hand, Scots Pine and Common Oak 
typically have a much larger variation in 
vertical structure, with uneven trunks and 
a higher presence of low hanging branch-
es. Furthermore, there were large differ-

ences in the number of trees per hec-
tare between species. The species that 
performed poorly in the model also had 
a higher tree density, with large standard 
deviations (fig. 15). Not all returns between 
0.5-5 m originate from shrubs or small 
trees, some returns also originate from 
the trunks of overstorey trees. If the tree 
density increases the number of trunk re-
turns also increases, inflating the URF and 
UCD. If the tree density is low this inflation 
effect on the URF and UCD is reduced in-
creasing model accuracy.

Lastly, a significant difference in the den-
sity of the overstorey (ORF) between tree 
species was observed (fig. 14). The den-
sity of the overstorey affected the perfor-
mance of a species in the logistic model 
using the UCD. Douglas fir, which had the 
highest ORF also achieved the best fit with 
the UCD. However, Scots Pine, which had 
the second highest ORF, performed poor-
ly in models using the UCD. Striking is the 
fact that the model using the UCD was 
insignificant for Common Oak which had 
the lowest ORF. 

Figure 15: Bar graph of the mean number of trees per 
hectare for different species, with error bars represent-

ing the standard deviation.
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How the URF and UCD exactly respond 
to the inherent differences in the verti-
cal structure and the number of trees per 
hectare between tree species is not clear. 
More research is needed into the response 
of fraction-based LiDAR indices in respect 
to different tree species to examine how 
the overstorey species composition af-
fects LiDAR based forest structure assess-
ment.

4.3 Shrub layer species effect 
The final goal of this study was to assess 
if there was an effect of composition of 
the shrub layer on shrub layer prediction 
using leaf-off LiDAR data. The results of 
the Wilcoxon-Mann-Whitney test showed 
that the UCD was significantly higher for  
shrub layers which were dominated by 
evergreen  species (fig. 13). 

Further inspection of the 138 plots that 
had a shrub cover above 10% made clear 
that 11 of the 24 plots of which the shrub 
layer was dominated by evergreen spe-
cies (> 50%) were dominated by Doug-
las Fir trees. A similar pattern was found 
for the plots that had an evergreen shrub 
layer of 100%: 7 of 10 plots had a Doug-
las overstorey. This indicates that a shrub 
cover dominated by evergreens is likely to 
have a Douglas Fir overstorey, considering 

that the total number of Douglas fir plots 
was 13 (out of the 138 plots with a shrub 
cover above 10%). 

As shown earlier, the UCD increases with 
vegetation density (fig. 10) and Douglas 
Fir had a high average vegetation densi-
ty, which is highlighted by the high aver-
age ORF (fig. 14). This leads to significantly 
higher values for the UCD for plots which 
are for the most part dominated by Doug-
las Fir. Therefore, the significant relation 
between UCD and shrub layer composi-
tion is not necessarily caused by a differ-
ence in detectability of the shrub layer, as 
it is related to the overstorey species that 
mostly dominates stand with an ever-
green shrub layer.

4.4 Model remarks
Aside form the use of leaf-off LiDAR data 
there are a number of other factors that 
are thought to have influenced the model 
performance. First, the binominal S

layer
 pa-

rameter was used to circumvent the sharp 
distinction between a shrub and a tree 
in the field data. The inclusion of young 
trees and forest regeneration in the model 
did not solve all definition problems. Prob-
lems still arise with trees that have a DBH 
just over 8 cm and are no longer classed 
as established seedlings. A large part of 

Figure 16: Plot of the LiDAR vegetation returns of a Scots Pine stand with 0% shrub cover and 38 established seedlings. 
The high number of returns between 0.5–5 m are likely caused by young trees. With (A) the top view of the plot, (B) the 

side view of the plot and, (C) the vertical return fractions of the plot. The coordinates are in Rijksdriehoek (m). 
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the branches and structure of these trees 
is located between 0.5–5 m increasing 
the number of returns. There are multiple 
examples of stands were this is the case, 
and close inspection of a LiDAR plot of 
such stands illustrates this clearly (fig. 16).

Second, the presented model is unable 
to differentiate between a shrub layer 
and low hanging branches. Low hanging 
branches can increase the number of re-
turns in the lowest strata causing an over-
estimation of the shrub layer when they 
are present in a plot. A similar problem 
arises when the distribution of vegetation 
elements is very homogenous in the ver-
tical direction. In this case the understorey 
and overstorey seamlessly blend into one 
another (fig. 17). The effect of low hang-
ing branches on the prediction of the 
shrub layer is not the same for all species 
though. Deciduous species are generally 
more prone to this effect, because they do 
not shed their lower branches as rapidly 
as coniferous species. 

Third, it remains unknown whether the 
field data describes the forest at the giv-
en coordinates, due to the inherent diffi-
culty of finding exact coordinates in the 
field. While the presented method tries 
to compensate for a possible mismatch 
of field data and LiDAR data through the 
use of spatial filtering, it is unclear to what 

extent the spatial filtering was success-
ful and if all plots with a data mismatch 
were removed. It is also possible that the 
employed filtering method inadvertently 
removed plots where the location of the 
field and LiDAR data matched. In fact, the 
spatial filtering method used in this study 
does not check how the field data relates 
to the LiDAR data, but instead opted to re-
move all plots that have a dissimilar for-
est structure in their direct surroundings. 
This approach ensured that plots which 
could potentially be large outliers were re-
moved, but did not ensure the removal of 
plots with a data mismatch. That the spa-
tial filtering was only partially successful 
is highlighted by the large differences for 
some plots between the field measured 
tree height and the LiDAR derived tree 
height. Although some variation could 
originate from measurement errors or 
tree felling between the moment of field 
measurements and LiDAR data acquisi-
tion, a mismatch of datasets remains the 
most probable cause.

Finally, the data used for this research was 
not specifically acquired with the goal of 
undergrowth prediction and monitoring 
in mind, and the data could therefore lack 
the needed precision and detail for accu-
rate shrub layer prediction. This does not 
necessarily mean that it is impossible to 

Figure 17: Plot of the LiDAR vegetation returns of a Common Oak stand with a shrub cover of 0% and 0 established 
seedlings. The high number of returns between 0.5–5 m are likely caused by low hanging branches. With (A) the top 
view of the plot, (B) the side view of the plot and, (C) the vertical return fractions of the plot. The coordinates are in 

Rijksdriehoek (m).
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accurately map the undergrowth of a for-
est with open data, but clearly illustrates 
the high data requirements needed to ac-
curately model forest undergrowth. The 
use of high resolution or multiple LiDAR 
data sets acquired at the right time, such 
as used by Hill & Broughton, (2009), or 
the use of highly accurate field measure-
ments of the shrub layer, which were used 
by Wing et al. (2012), appear to drastically 
improve understorey model predictions.

5 Conclusions
This study investigated whether the shrub 
layer of a forest could be predicted using 
ALS-LiDAR data from the AHN. The re-
sults showed a poor explanatory power 
of the proposed LiDAR indices. The main 
reasons for the poor predictive power of 
the proposed shrub cover model are be-
lieved to be: (1) the use of leaf-off LiDAR 
data which appears to limit the detectabil-
ity of  deciduous shrubs and (2) the mis-
match between the LiDAR data and the 
used validation data. This does not mean 
that the AHN itself is unsuitable for under-
growth modelling, but highlights the data 
requirements needed for accurate shrub 
layer modelling. The use of leaf-on data 
is recommended when further research 
into the prediction of the shrub layer with 
ALS-LiDAR is attempted.
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