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Abstract 
 
Natural products (NPs) are an important source of therapeutic agents whose innovation and improvement 
depends on NP discovery. The knowledge about the assembly of NPs increases as biosynthetic gene clusters 
(BGCs) are identified and annotated. However, the majority of BGCs have yet to be linked to the compounds 

they encode for. To study unknown NPs, the analytical method of choice is often tandem mass spectrometry 
(MS/MS). The disadvantage of using MS/MS for NP discovery is the lack of reference spectra which makes 
interpreting newly analyzed structures very challenging. The BGC and mass spectra interpretation problems 
are a big bottleneck for structural NP elucidation. A promising solution to enhance successful NP elucidation is 
the recognition and annotation of NP biochemical building blocks (substructures). Ideally, the chemical 
composition of the recognized substructure is identical to the precursor in BGCs and the annotated mass 
fragment in MS data as defined by others. In order to generate all relevant substructures, it is important to 
cover the largest number of NP structures possible and therefore, first NPDatabase was built that stores more 
than unique 320,000 NPs. The most well-known fragmentation methods, using a top-down approach (i.e. 
BRICS and RECAP), result substructures without similar chemical compositions to those found in BGCs and MS 
data. To generate higher quality substructures, a new fragmentation ruleset was developed, NPRules. NPRules 

is implementable in the structure fragmentation program molBLOCKS and highly suitable for NPs from 
saccharide, ester and peptide classes. Additionally, an alternative and opposite (bottom-up) approach for 
structure fragmentation is proposed. This method first generates pre-substructures which then are filtered 
through several steps such that only the qualitative substructures remain. The bottom-up method is not 
optimal yet but does offer a new perspective and can, after optimization, be used if the top-down method fails. 
NPRules creates more relevant substructures than the other top-down methods confirmed by validation with 
identified and annotated BGCs and mass spectra. NPRules results in equal substructure quantities but the 
substructure quality is better as the recall and precision are higher. Generation of relevant substructures for 
all NPs in NPDatabase allows linkage from precursors in BGCs and mass fragments in mass spectra to the 
candidate structure they originally represented. The recognition and annotation of NP substructures as 
described here enhances successful NP elucidation and tackles a big problem in the genomics and metabolomics 
fields. 
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1. Introduction 
 
Natural products (NPs) are specialized molecules produced by living organisms. NPs are synthesized by 
microorganisms, for example in the mammalian gut, in and on plant roots and in the marine environment. A 
broad range of scientists, in fields including drug discovery, ecology, biosynthesis, and chemical biology, show 

a major interest in NPs as they are used in the commercial product development for human medicine, animal 
health, and plant crop protection [1]. Between 20–25% of all approved therapeutic agents today trace their 
origins to NPs by providing or inspiring the development. These numbers are even higher in the field of cancer 
where they reach 75%. For the innovation and improvement of human medicine and other commercial 
products, NP discovery and therefore, NP research will always be of great importance [2]. 
 
The knowledge about the assembly of NP compounds increases, together with the growing accessibility of 
genome sequence data. Biosynthetic gene clusters (BGCs) are identified by the recognition of physically 
clustered genes that encode for the enzymes responsible for NP assembly [3]. However, a majority of BGCs 
remain orphan, as they have yet to be linked to the compounds they encode for [4]. Linkage of NP compounds 
to BGCs enables genome sequence data to facilitate NP discovery. 

 
To study unknown metabolic substances often untargeted analysis is used which takes all detected metabolite 
features into consideration. The advantage of this high-throughput approach is that no prior knowledge about 
the structure’s identity is required. Tandem mass spectrometry (MS/MS) combined with liquid chromatography 
is often the analytical method of choice; the (unknown) analyzed chemical structures are represented by mass/ 
fragmentation spectra [5]. The disadvantage of using MS/MS for NP discovery is the lack of reference spectra 
which makes interpreting newly analyzed structures very challenging. Recently, a study has introduced an 
infrastructure to enable sharing and curation of raw, processed and identified MS data which stimulates 
knowledge sharing within the NP community [6]. Another recent study, focusing on interpreting mass spectra, 
has introduced a metabolome mining strategy that extracts biochemically relevant molecular substructures 
(“Mass2Motifs”) as sets of co-occurring mass fragments and neutral losses in an unsupervised manner [7]. NP 
studies as such are a step in the right direction, however, interpreting mass spectra remains a big bottleneck 

for structural NP elucidation which leads to unanswered questions about NP diversity and identity till today. 
 
A promising solution to enhance successful NP elucidation is the recognition and annotation of NP biochemical 
building blocks (substructures). These substructures play a key role in linking BGCs and mass spectra to the 
NP structures they represent. Ideally, the chemical composition of the substructure is identical to the precursor 
in BGCs and the annotated mass fragment in MS data as defined by others [8-29].  
 
Several open source tools that provide substructure generation use fragmentation rules. These rules specify 
bond breakage between atoms or atom groups defined by Smiles Arbitrary Target Specification (SMARTS) 
patterns. The best-known fragmentation methods are breaking retrosynthetically interesting chemical 
substructures (BRICS) and retrosynthetic combinatorial analysis procedure (RECAP). BRICS creates more 

fragments than RECAP and also the number of fragments with multiple connection point is higher [30]. The 
latter is considered as a disadvantage since ring structures are less preserved and the number of undesired 
substructures increases. RECAP does preserve ring structures but is not comprehensive enough as crucial 
bonds are missed, also undesirable side chains cleavage occurs. Another well-known rule in the field is the 
CCQ rule. This single rule cleaves the bond between two carbons of which one is next to a hetero atom. The 
resulting substructure quantities are sufficient but the specificity lacks as this rule is too general [31]. These 
different rulesets are implemented in the suite molBLOCKS [32]. molBLOCKS was optimized by Heikamp et. al 
as new parameters were implemented and a new ruleset, extendedRECAP (redefined and extended RECAP 
rules), was added. ExtendedRECAP is more comprehensive than RECAP but also increases undesirable side 
chain cleavage.  
 
For this project, first the open-source NPDatabase was build that stores more than 320,000 unique NP 

structures. NPDatabase can be used by others and was the starting point for this project, as the structures in 
it were fragmented for the generation of substructures. Since the CCQ, BRICS, RECAP and extendedRECAP 
rulesets did results substructures without similar chemical compositions to those found in BGCs and MS data, 
a new set of fragmentation rules was developed, NPRules. NPRules is a more specific ruleset, highly suitable 
for NPs from saccharide, ester and peptide classes, that is easy to use as it is implementable in the molBLOCKS 
suite. NPRules performs better than the other rulesets confirmed by validation with identified and annotated 
BGCs and mass spectra. Additionally, an alternative and opposite (bottom-up) approach for structure 
fragmentation is proposed. This method does not depend on external tools or fragmentation rules and is 
applicable for a wide range of NP structures. This bottom-up approach is not optimal yet, because of the high 
computational burden, but it definitely deserves thought and deeper study. 
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Figure 3. SQL schema for NPDatabase. The structure table contains all NP data including the canonical SMILES. The structure table is linked to the 

data_source table through the Structure_has_data_source table which provide information about the external data source where the structures 

originate from. All relevant NP substructure data can be stored in the Substructure table. 

 

 

2. Methods and Implementation 

Data sources and processing 

The NP data from eleven external databases was collected which resulted in a total of 497,610 structures 
(figure 1). The data included overlapping structures within and between databases. The minimum input data 
required was the structure’s simplified molecular-input line-entry specification (SMILES) and its external 
database identifier. Three open source tools provided NP structure processing in Python programming 
language. The RDkit library (www.rdkit.org) was used to generate the SMILES, International Chemical 

Identifier (InChI), molecular weight and molecular formula. Based on the canonical SMILES, the number of 
unique input structures was reduced to 322,242. The standardized InChIKeys were generated by the JChem 
tool from ChemAxon (www.chemaxon.com, in collaboration with Rutger Ozinga). The structures were classified 
according to kingdom, superclass, class and subclass by ClassyFire (classyfire.wishartlab.com, in collaboration 
with Oscar Hoekstra). 

 
 

 

 

 

 

 

 

Database design and content 

All generated data from 322,242 NP structures was implemented in NPDatabase (figure 3) with SQLite in 
python programming language. NPDatabase can be downloaded from www.dropbox.com/s/qumnikhiaszrwjh/ 
NPDatabase.sqlite?dl=0 and contains six tables. Since NPDatabase is kept up to date, small alterations between 
versions can occur. The data in the database can be extracted with Structured Query Language (SQL). The 
Structure table stores the generated data mentioned above together with its primary key, the structure_id. 
The Structure_has_data_source and the Data_source tables provide external source information. The 
attributes source_name and source_id enable the user to easily search for the structure and its original data 
source online. Data of an example NP structure stored in the Structure table is shown in figure 2. The relevant 

substructures are not yet included, however, NPDatabase is prepared for substructure storage as the 
Structure_has_substructure and Substructure tables are designed to store all substructural information. When 
relevant substructures represented with their SMILES are created and collected with the fragmentation 
methods explained later on, all other Substructure attributes can be generated correspondingly to the Structure 
attributes. The attribute nr_of_matches in the junction table is the number of substructure matches within the 
structure. Ultimately, NPDatabase will enable substructure mapping onto candidate structures.  

  

Figure 1. NP data sources. Figure 2. Example structure stored in the Structure table 

showing the attributes and data. 
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Generating substructures 

To fragment the NP structures present in NPDatabase into substructures two methods were implemented. The 
first method makes use of a top-down approach and the second method makes use of a bottom-up approach. 
The structure’s input for both methods is the canonical SMILES and its structure identifier. The workflow 
schemes for both methods are shown in figure 4, the methods are explained in more details in the sections 
below. 
 

              
Figure 4. Workflow schemes for the top-down and bottom-up structure fragmentation methods. 

 

Top-down approach 

The top-down approach is a method that directly fragments the structure into one or more substructure(s). 
The user-friendliness of several tools working with this approach, e.g. eMolFrag using BRICS [33] and the 

RECAP and BRICS Implementation from RDkit were tested. Ultimately, the most user-friendly tool tested was 
the modified version of molBLOCKS [31]. MolBLOCKS was preferred among other tools because of the 
possibility to add and test new fragmentation rules, the ability to easily adjust fragmentation parameters, and 
the convenient output format (the substructures are represented by SMILES). The four default molBLOCKS 
rulesets (CCQ, BRICS, RECAP and extendedRECAP) did not perform sufficient since they resulted substructures 
without similar chemical compositions to those found in BGCs and MS data. Another challenge faced was the 
wide variety of NP structures, it is almost impossible to expect that one ruleset results perfect substructures 
for each NP type (i.e. proteins, lipids and carbohydrates). For that reason a more specific approach was chosen 
and a new fragmentation ruleset was defined, called NPRrules. NPRules contains 45 rules that mainly focus on 
structures with cyclic compounds. To optimally preserve the ring structures, only cyclic compounds that are 
connected through one bond are targeted. The sidechains are preserved. Acyclic substructures are not fully 
ignored as pentane and pentene (and longer carbon chains) are also taken into account. NPRules contain 9 

rules that target glycosidic bonds, 14 rules that target ester bonds and 2 rules that target amide bonds. For 
that reason, NPRules is highly suitable for NP structures from saccharide, ester and peptide classes. The other 
rules are aromatic or cyclic and carbon and/or nitrogen and/or oxygen related, which are abundant in NPs. The 
balance between fragmenting the input structure too little or too much was found by visual substructure 
examination after fragmentation with the addition of each rule. The new fragmentation rules, that together 
represent the NPRules ruleset, are listen in SI Appendix, table S-1. 
Since the molBLOCKS suite was chosen for substructure generation and NPRules implementation, several 
standard parameters values had to be selected. The parameters that determines the maximum molecular 
weight (g/mol) of a substructure was set to 1000 (-w), and the number of fragments that should be connected 
and considered as new fragment was set to 1 or 2 (-k). The minimum number of atoms in the substructure 
was set to 5 (-n), the maximum was set to 100 (-m)  and the fragment size relative to the parent structure 

was set to 0.99 (-s). The exact parameter settings can be found in the result section if other values than the 
standards mentioned here were used. 
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Bottom-up approach 

To offer an alternative fragmentation method, which is less specific and does not rely on external tools or pre-
defined fragmentation rules, a bottom-up approach to create fragments was developed. The bottom-up 
approach first generates a wide range of pre-substructures and then filters them through five steps such that 
only the qualitative substructures remain. The RDkit library is required for this approach and two different 
methods; the permutation method and the environmental method, are implemented for the pre-substructure 
generation step. 
 
Permutation method 
The permutation method actually generates all possible substructures based on the SMILES string. First all 
combination from two characters on until the full length of the SMILES string (parentheses and bond characters 

included) are gathered. A SMILES string with a length of 6 characters has 56 combinations. Only valid SMILES 
strings are tested whether they match the original structure or not. All substructures that indeed do match are 
considered pre-substructures. The permutation method is recommended for SMILES with a maximum length 
of 18 characters since the execution time increases exponentially (SI Appendix, section S1.2). 
 
Environmental method 
The second method to generate pre-substructures, and recommended for longer input SMILES, is the 
environmental method. This method first creates substructure environments based on atom number and 
radius. Each atom in a structure has been assigned an atom number and the radius is defined as the number 
of atoms that should be included in that specific radius. The total number of atoms in a structure is used to 
create all atom number and radius combinations that determine the environment. Due to the radius some 
substructures are not taken into consideration. A simple example is given in table 1 for the structure propane 

that consist of 3 atoms (hydrogens excluded). Therefore, the atom numbers are 0, 1 and 2 (from left to right 
considering the SMILES ‘CCC’), which also are used for the values of the radii. All possible atom-radius 
combinations together with the resulting environments (highlighted in green) and substructure are shown in 
the table below. 
 

Table 1. Example for the structure 'CCC' for generating substructures with the environmental method. 

Atom-radius 
combination 

Environment Substructure 

0-0; 1-0; 2-0 
 

    
 

- 

0-1 
 

 
 

CC 

0-2; 1-1; 1-2; 2-2 
 

 
 

CCC 

2-1 
 

 
 

CC 

 
Ultimately, these environments are used to generate the corresponding substructures. Again only valid SMILES 
strings are considered as pre-substructures. The environment method has a shorter execution time than the 
permutation method (0.13 seconds for a SMILES string of 20 characters versus 3.00 seconds). 
 
Substructure filtering 
The pre-substructures then are filtered through several steps. The parameter settings in all steps can be 
adjusted. The first filter step eliminates substructures which are too small and checks if the structure has a 

certain molecular weight. The second filter step checks whether the substructure contains hetero atoms. This 
step is included since hetero atoms (especially halogens) are more distinctive in MS analysis than hydrogen or 
carbon atoms. In step 3, the number of rings in the substructure is determined, which can be beneficial for 
cyclic structures. The fourth step checks the abundancy of the substructure. The abundancy here is defined to 
be the percentage of input structures that contains the substructure. This to eliminate too general or too 
specific substructures. Note that this filter step totally depends on the input structures as a total. The last filter 
step checks the substructure’s number of bonds which are connected to the rest of the structure. This step is 
important regarding MS analysis. In general, a substructure with little connected bonds (≤3) is more likely to 
appear as actual mass fragment than substructures having more connected bonds.  
The bottom-up approach for structure fragmentation was used with plausible and consistent but not necessary 
optimal filter parameters settings (molecular weight ≥40 g/mol, hetero atoms ≥ 0, number of rings ≥ 1, 
abundancy 0-100, number of connected bond ≤ 2), this to provide comparison possibilities between different 

NP classes. The python scripts for generating (both methods) and filtering substructures can be downloaded 
from https://github.com/SamStokman/NPThesis. 
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Method validation 

Substructure quantity 
Substructure quantity analysis was conducted first in order to determine the ability of each fragmentation 
method to fragment NP structures. The NP input structures were selected from NPDatabase based on their 
class. NP classes contain a sufficient number of input NP structures as well as information about the structure 
characteristics. Using different NP classes allowed comparison between fragmentation methods and 
assessment of the performance of each method for each class.  
 
Substructure quality 
The quality of the resulting substructures generated with the top-down method, in order to validate NPRules, 
was manually examined and compared to ‘correct’ substructures. These correct substructures were 

biosynthetic precursors and annotated mass fragments defined by others [8-29]. The two different information 
sources were kept separated and the results of the other top-down fragmentation rules were also taken into 
account. Since NPRules was created with a purpose to be used for more specific NP classes, mainly NPRules 
suitable validation structures were used.  
For BGC based validation, 12 NP structures [8-18] (SI Appendix, section S1.3, figure S-3 ̶ S-14) were 

fragmented with the top-down approach using all fragmentation rulesets (NPRules, CCQ, BRICS, RECAP and 
extendedRECAP). The molBLOCKS parameters values were set as mentioned before. The resulting 

substructures were regarded as visually correct/ recognized if they were identical to the validation 
substructures. To allow small substructure alterations also non-identical substructure were examined. These 
non-identical substructures were still regarded as correct if four condition were met. The first condition was 
that the substructure can differ one (more or less) atom at the connection point between the substructure and 
the structure. The second one states that cyclic structures must be closed and thus no bonds should be missing. 
The third condition required that side chains must be included and the last one states that double substructures 
within the same structure count as one correct substructure. 
Next to BGC based validation, also MS data was used for validation purposes. 12 NP structures [19-29] (SI 
Appendix, section S1.4, figure S-15  ̶  S-26) were fragmented with the top-down method, again using the five 

different fragmentation rulesets. The correctness of a generated substructure was based on the correlation 
between the mass to charge ratio (m/z) of the mass fragment found in the reference mass spectra and the 
exact mass of that resulting substructure, also neutral losses were taken into account. In theory, the m/z in a 
mass spectra and exact mass of the same substructure do not have exactly the same value, this is due to the 
differences caused by the cation fragment in MS analysis (often minus 1.008 for a missing hydrogen atom), 
variation in MS analysis methods, and decimal rounding. Also, if the mass does match, there is no guarantee 
that it represents the actual substructure, as it can have the same chemical elements and number of atoms 
but differs in structural formula. For this reason the substructures were also examined whether they were 
visually correct/ recognized using the same conditions as set for the BGC validation method. 
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3. Results 

Quantitative fragmentation results 

The top-down and bottom-up methods were both used to fragment the structures from the flavonoid, 
polypeptide, polysaccharide and lactone classes. For the bottom-up method only the environmental approach 
was used due to the length of the SMILES strings. The results for all four classes are shown in figure 5. The 
values above the bars represent the generated number of unique substructures.  
 

 
Figure 5. Quantity results flavonoid, polypeptide, polysaccharide and lactone class NP structures. 

 

For the flavonoid, polypeptide and polysaccharide classes, the number of fragmented structures and unique 
substructures generated using NPRules is comparable to those of the other fragmentation methods. RECAP 
performs poor for the polysaccharide class. Taking only the top-down methods into consideration, 
extendedRECAP results the highest (sub)structure quantities followed by BRICS. RECAP generated the lowest 

number of substructures what was to be expected according to literature. Looking at the results of each ruleset 
individually, k=1 and k=2 have similar values for the number of fragmented structures. The number of unique 
substructure generated increases for each ruleset if k=2 was used. As to be expected, the lactone results 
obtained using NPRules show fewer fragmented structures compared to the other methods, this is due to the 
complex cyclic structures in lactones as they are connected through several bonds instead of just one. This is 
an example of a NP class where the bottom-up method could be used instead. Without filtering, this method 
fragments 99-100% of the input structures and generates the highest number of unique substructures for each 
class. These substructures were filtered (post-filter) with example parameter settings which show that this 
method has the capability to perform fragmentation with similar (sub)structures quantity results as the 
classical top-down methods. 
 
To assess the quantitative results of the bottom-up method using the permutation approach to generate pre-

substructures, non-class specific structures (2025 in total) with SMILES strings with a maximum length of 10 
characters were fragmented. To make a fair comparison between the bottom-up and the top-down method 
results, the top-down parameter that determines the minimal number of the substructure’s atoms (-n) was 
also set to 2 (figure 6). 
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Figure 6. Quantity results for NP structures that have short SMILES strings (length ≤10). 

The results show that the permutation method fragments the most structures and generates the highest 
number of unique substructures followed by the environmental method. These findings do meet the 

expectations and prove that the bottom-up method can certainly be useful. Note that the substructures are 
not filtered, this is to show the maximum capacity for quantitative substructure generating. The permutation 
bottom-up method does not fragment 100% of structures because (sub)structures with a length of one or two 
characters are excluded.  
 

BGC based validation results 

The 12 reference structures used are provided in SI Appendix, section S1.3. Because of the extensive amount 
of data, the results of one example structure for all top-down methods with k =1 are showed in figure 7. The 
substructures are represented with a green or red colour. The green substructures in figure 7a are regarded 
as ‘correct’ according to the literature [8]. For the substructures generated with top-down methods, the green 
colour implies a correct substructures and the red colour an incorrect substructure. The black colour represents 
bonds and substructures that are not covered. The black bond right next to a green or red substructures is the 
bond that is broken during fragmentation. 
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The reference structure (figure 7a) contains eight (one substructure is present twice) correct substructures. 

NPRules resulted in four correct substructures and all other methods did not result a single correct structure. 
Note that CCQ and BRICS both result substructures that can match the structure on several locations, however,  
this can be ignored due to the incorrectness of the substructures. The overview, with all substructure results 
generated with the 12 reference structures using the different fragmentation rule sets, can be found in SI 
Appendix, table S-27. The precision (correct generated substructures/ all generated substructures) and recall 
(correct generated substructures/ correct reference substructures) for all results using all top-down methods 
and reference structures are shown in figure 8, the standard deviations are represented by the error bars. 
 

 
Figure 8. Precision and recall found for the BGC based validation results. The five different fragmentation rulesets were used to 

fragment 12 validation structures. 

 
The NPRules results score the highest precision (0.79 for k=1 and 0.45 for k=2) and recall (0.80 for k=1 and 
0.85 for k=2). BRICS and RECAP both result in a low precision and recall but still perform better than 

extendedRECAP. ExtendedRECAP does increase the substructure quantities compared to RECAP but, according 
this validation, decreases the quality. All fragmentation rulesets showed their own unique characteristic 
behaviours in substructure generation. CCQ resulted acyclic substructures and ignored crucial bonds while 
BRICS created many illogical (acyclic) substructures and caused some side chain cleavage. RECAP missed 
crucial bonds and excluded some side chains, extendedRECAP did not miss that many important bonds, but 
did exclude many side chains. The latter also explains why extendedRECAP scored the lowest precision and 
recall. 
 

MS based validation results 

The 12 reference mass spectra and the corresponding NP structures are provided in SI Appendix, section S1.4. 
The example structure shown in figure 9 is novobiocin. The green substructures in figure 9a are regarded as 
‘correct’ according to the literature [23]. For the substructures generated with the different fragmentation 
rules, again, green implies a correct substructures and red implies an incorrect substructure. For each reference 

substructures the m/z value is shown and for the top-down generated substructures the exact mass is given 
(hydrogen atoms included).  
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Figure 9. Novobiocin fragmented with NPRules, CCQ, BRICS, RECAP and extendedRECAP (b-f). The reference (a) shows the 

fragments, detected during MS analysis, used as reference substructures [23]. The correct substructures are indicated by green and 

the incorrect substructures are indicated by red. The values showed next to the substructures present in the reference structure 

represents the m/z value and for the others (b-f) the exact mass. 

The MS reference spectra contains three major peaks (the heaviest ion excluded), see SI Appendix, section 
S1.4, Fig S-26. The fragment with an m/z of 395.8 has in itself another fragment, indicated by the green 

fragment on the right of the dotted line, with a m/z of 188.8 (figure 9a). The residual part, on the left of the 
dotted line, is considered a neutral loss of 207.0 (395.8 – 188.8). The substructures created with NPRules did 
have one ‘exact’ match with a difference of +1.30. This difference is legit as it is caused by the hydrogen loss 
due to ionization during MS analysis. The other match found was ‘non-exact’ with a difference of +17.31. Here, 
again one hydrogen atom was lost through MS analysis but also an oxygen atom (molecular mass 15.999) was 
missed by fragmentation with NPRules. The substructure we mention here is shown in figure 9b with a 
molecular mass of 235.11 g/mol. The last match was also ‘non-exact’, it missed an oxygen atom, and has a 
mass of 191.06 g/mol (figure 9b). Results of the other top-down methods for this example did not have any 
matches. For the MS validation result the number of exact and non-exact matches is determined for all 12 
structures fragmented with the five different top-down fragmentation rules, the table with all results can be 
found in SI Appendix, table S-28. The results per ruleset are shown in table 2. The precision is calculated using 

both exact and non-exact matches as true positives.  
 

Table 2. MS validation results using five different fragmentation rulesets. 

Fragmentation 
ruleset 

k Total number of 
substructures 

Exact match Non-exact 
match 

Precision 

NPRules 1 33 17 3 0.606 

2 55 25 3 0.509 

CCQ 1 22 1 2 0.136 

2 81 5 3 0.099 

BRICS 1 29 3 2 0.172 

2 97 11 7 0.186 

RECAP 1 23 2 3 0.217 

2 84 6 5 0.119 

extendedRECAP 1 28 2 0 0.071 

2 112 6 7 0.116 
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The MS validation approach is more demanding than the BGC validation approach since more conditions should 

be met (correlation between m/z and exact mass and visual substructure recognition). Therefore, it does make 
sense that a decrease in precision was found using the MS validation method. NPRules creates the most exact 
matches, the number of non-exact matches is low/medium, and the precision again is the highest (0.606 for 
k=1 and 0.509 for k=2). BRICS and extendedRECAP (both k=2) do generate a sufficient number of 
substructure matches, 16 and 13, respectively. The high numbers of undesired substructures counteract the 
fragmentation method effects and causes a low precision. 
 
 

Qualitative bottom-up results 

The substructure’s quality of the bottom-up results are ignored on purpose during validation since further 
method optimization is required (better pre-substructure generation and filter extension by implementing extra 
steps). Both pre-substructures generation methods (permutation and environmental) have their disadvantaged 
as mentioned in the methods and implementation section but do work and also the filter steps correctly 
eliminate substructures. To show the outcome of several parameter settings an example structure is 

fragmented (canonical SMILES: ‘OC1C2CCC12’) with two different sets of selected parameter settings. First a 
total of 18 pre-substructures was generated with the permutation method, tables 3 and 4 list the exact 
parameter settings values used during filtering. The final substructures are represented with a blue colour 
(figure 10 and 11).  
 
 
                        Table 3. Parameter settings set 1. 

Filter step Parameter value Number of 
substructures left 

Molecular weight ≥ 40 16 

Hetero atoms ≥ 0 16 

Number of cycles ≥ 1 9 

Abundancy ≥ 0 and ≤100 9 

Number of bonds ≤ 2 5 

 
 
                        Table 4. Parameter settings set 2. 

Filter step Parameter value Number of  
substructures left 

Molecular weight ≥ 0 18 

Hetero atoms ≥ 1 8 

Number of cycles ≥ 0 8 

Abundancy ≥ 0 and ≤100 8 

Number of bonds ≤ 3 7 

 
 
 
 
The bottom-up method works according the given filter parameter values as can be observed in both figures. 
For example, figure 11 only shows substructures that include an oxygen atom, this is due to the parameter 
value of ≥ 1 for the hetero atom filter step. The bottom-up method, suitable for a wide range of different NP 
structures, can be used as starting point and inspiration for alternative structure fragmentation if the top-down 
method fails.  
 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 10. Final substructures left after filtering with parameter 

settings set 1. The substructures are represented by the blue colour. 

Figure 11. Final substructures left after filtering with parameter 

settings set 2. The substructures are represented by the blue colour. 
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4. Discussion and Conclusion 
 
The open-source NPDatabase was built for the storage of more than 320,000 unique NPs collected from other 
databases. It was important to cover the largest number of NP structures possible, in order to map the 
substructures found in BGC and mass spectra onto the correct structure. NPDatabase is user-friendly as data 

can be extracted with SQL. NP structures can be found with their canonical SMILES (generated with RDkit). 
Next to this straight forward approach, a selection of structures can be extracted for example based on 
molecular weight. The classification of the structures provides a selection of NP structures that share structural 
characteristics. NPDatabase can also be extended as new NP structures can be added.  
 
First, the substructure quantity results were analyzed in order to examine the performance of the top-down 
and bottom-up methods. It is important to mention here that substructure quantities do not provide that much 
information. A fragmentation method can result a lot of substructures, but if those substructures are rubbish 
then the fragmentation method is useless. However, substructure quantities do give an indication whether a 
fragmentation method is able to fragment a NP structure, and in our case, NP structures of certain classes. 
 

The top-down method using NPRules was validated with BGC and MS data, the other fragmentation rulesets 
(CCQ, BRICS, RECAP and extendedRECAP) were also taken into account. Now the substructure’s quality was 
examined. Looking at BGC validation, NPRules results in the highest precision (0.79 for k=1 and 0.45 for k=2).  
and recall (0.80 for k=1 and 0.85 for k=2). NPRules also performed the best according to MS based validation 
with a precision of 0.606 for k=1 and a precision of 0.509 for k=2. Several challenges were faced during 
validation with MS data. The spectra were often not annotated and identified, variation between MS analyses 
methods (i.e. equipment and solvents) that result in different mass spectra for the same structure and the 
difference between noise and actual peaks is not always clear (which is also the reason for recall exclusion). 
The most important conclusion of the validation process is that NPRules does result more substructures similar 
to those in BGC and mass spectra than the other fragmentation rulesets do. 
 
The bottom-up method is not optimal yet, but does offer new perspective with an opposite approach to 

generate substructures. This method is developed from scratch and the resulting substructures met the 
conditions set by the parameter values for the filter steps given by the user. The bottom-up results, using the 
method’s current form, contain a lot of overlapping substructures that do not match those from BGC and MS 
data. 
 
For now, the recommendation is to use the top-down method. NPRules is recommended for saccharide, ester 
and peptide classes but also for other NP structures that contain simple (implying connection through one 
bond) aromatic and cyclic compounds. For polypeptide/ amino acid structures, the advice is to use k=1 as that 
results single amino acids. It is also recommended to use a value of 2 for the parameter n (minimal number 
of atoms in a substructure). The BGC validation example for NPRules (figure 7b) would then have resulted in 
one extra correct substructure. According to the BGC validation results, looking at the NPRules results, k=1 

causes a higher precision (0.343) and k=2 causes a slightly higher recall  (+0.051). For the MS results, the 
precision is higher with 0.097 for k=1. Generally, k=1 is recommended for NPRules usage. If NPRules performs 
poor (low quantity results), other rulesets can be used instead. In that case BRICS or RECAP (RECAP not for 
polysaccharides) is recommended as it results high substructure quantities and better precision and recall than 
CCQ and extendedRECAP. For RECAP a value of 1 is recommended for parameter k. The differences between 
the k=1 and k=2 results for BRICS are lower, therefore the value choice of this parameter setting shall be left 
to the user. 
 
The final goal, that goes beyond this project, is to generate all relevant substructures for every single NP 
structure stored in NPDatabase. These relevant substructures, linked to the structure they are fragmented 
from, then can be stored in the Substructure table. Ultimately, precursors from BGCs and mass fragments 
from mass spectra can be linked to the corresponding substructures, which provide further linkage to the 

structure they originated from. This  structure then can be assigned as candidate structure to the BGC or the 
mass spectrum. An automated process that includes everything would be the most ideal. The recognition and 
annotation of NP substructures as described here promotes interpreting BGCs and MS data, which tackles a 
big problem in the genomics and metabolomics fields. 
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5. Future perspective  
 
To achieve the final goal mentioned in the section above, first other steps have to be taken. To generate 
relevant substructures for all NPs in NPDatabase classification should be taken into account. NPRules can be 
used as base and extra fragmentation rules can be added which are more class specific. The NP structures now 

present in NPDatabase are subdivided in 499 classes and in 29 superclasses. Because of the latter, defining 
extra rules for each superclass is very reasonable. Note that knowledge about SMARTS patterns is required in 
order to define new fragmentation rules.  
The bottom-up method also has to be optimized, a method to generate all possible pre-substructures with a 
short execution time should be found. Also extra filters should be added, for example a filter to exclude 
overlapping substructures and a filter that excludes substructures with missing side chains. If the bottom-up  
method is optimized, it can be used to generate substructures for more challenging (super)classes, like 
lactones having complex cyclic structures which are difficult to fragment with the top-down method. 
 
 

6. Footnotes 
 
NPDatabase can be downloaded at: 
https://www.dropbox.com/s/qumnikhiaszrwjh/ NPDatabase.sqlite?dl=0 
 
The instructions to install molBLOCKS, the NPRules text file and the python scripts for the bottom-up method 
(permutation and environmental) can be found at:  
https://github.com/SamStokman/NPThesis 
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Section S1. Fragmentation methods 
This section contains supplementary information about the development and the validation of the top-down 
and bottom-up fragmentation methods. 
 

Section S1.1 Top-down fragmentation with NPRules 

In total 45 rules, listed in table S-1, were defined which together represent the new fragmentation ruleset 
NPRules. NPRules is highly suitable for NPs from saccharide, ester and peptide classes.  
 
 

Table S-1. NPRules defined with SMARTS patterns. 

SMARTS pattern Rule description 

[c]!@[c]         aro_c-aro_c 

[c]!@[n]         aro_c-aro_n 

[c]!@[C$(C[!Ch3,Cl,S])]  aro_c-ali_C_Cl_S 

[c]!@[C$(C(@C)@C)]   aro_c-cyclic_ali_c 

[c]!@[C$(C(@c)@C)]       aro_c-cyclic_ali&aro_c 

[c]!@[C$(C!@C!@C!@C!@C)]  aro_c-pentane_chain 

[c]!@[C$(C!@=C!@-C!@=C!@-C)]  aro_c-pentene_chain 

[c]!@[C$(C!@N@C)]        aro_c-specific1 

[c]!@[C$(C=C@C)]  aro_c- specific2 

[c]!@[S$(S[c,C])]       aro_c-S_ali&aro_c 

[C$(C(@C)@C)]!@[n]       ali_cyclic_C-aro_n 

[C$(C(@C)@C)]!@[C$(C(@C)@C)]     ali_cyclic_C-ali_cyclic_C 

[C$(C(@C)@C)]!@[C$(C(@C)@O)]     ali_cyclic_C-ali_cyclic_C&O 

[C$(C(@C)@C)]!@[C$(C(!@C@O)!@C)]         ali_cyclic_C-specific1 

[C$(C(@C)@C)]!@[C$(C(!@C!@C)!@C)]        ali_cyclic_C-specific2 

[C$(C(@C)@C)]!@[C$(C!@C!@C!@C!@C)]  ali_cyclic_C-pentane_chain 

[C$(C(@C)@C)]!@[C$(C!@=C!@-C!@=C!@-C)]  ali_cyclic_C-pentene_chain 

[C$(C(@[C,c])@O)]!@[C$(C(@[C,c])@N)]     cyclic_ali_C&O-cyclic_ali_C&N 

[C$(C(@O)=@C@C)]!@[C$(C=!@C!@C)]         specific3-specific4 

[C$(C(c)=O)]-[O$(OC@C)]  specific5-specific6 

[c]-[$(*1O****1)]        aro_c-sugar_wildcards1 

[c]-[$(*1**O**1)]        aro_c-sugar_wildcards3 

[c]-[O$(OC1OCCCC1)]      aro_c-O_sugar1 

[c]-[O$(OCC1OCCCC1)]     aro_c-O_sugar1.1 

[O$(OC1OCCCC1)]-[C$(C1COCCC1)]   O_sugar1-sugar2 

[O$(OC1OCCCC1)]-[C$(C1CCOCC1)]   O_sugar1-sugar3 

[O$(OC1OCCCC1)]-[C$(C!@C@C)]     O_sugar1-acylcic_C_cyclic_C 

[O$(OC1OCCCC1)]-[C$(C(@C)@C)]    O_sugar1-cyclic_ali_c 

[O$(OC1OCCC1)]-[C$(C1OCCC1)] O_fructose1-fructose 

[NH1,NH0]-[CH0$(C=!@O)]  amide=O 

[NH0]=[CH0$(C-O)]        amide-OH 

[C$(C(=O)c)]!@[O$(O!@C!@C@C)]    ester-aro&specific 

[C$(C(=O)c)]!@[O$(Oc)]   ester-aro&aro 

[C$(C(=O)c)]!@[O$(OC(@C)(@C))]   ester-aro&ali 

[C$(C(=O)c)]!@[O$(O!@C!@C@C)]    ester-aro&specific 

[C$(C(=O)C(@C)@C)]!@[O$(Oc)]     ester-ali&aro 

[C$(C(=O)C(@C)@C)]!@[O$(OC(@C)(@C))]     ester-ali&ali 

[C$(C(=O)!@-C!@=C!@-C!@=C)]!@[O$(OC(@C)(@C))]  ester-pentene_chain&ali 

[C$(C(=O)!@-C!@-C!@-C!@-C)]!@[O$(OC(@C)(@C))] ester pentane_chain&ali 

[C$(C(=O)!@-C!@=C!@-C!@=C)]!@[O$(Oc)]  ester-pentene_chain&aro 

[C$(C(=O)!@-C!@-C!@-C!@-C)]!@[O$(Oc)]    ester-pentane_chain&aro 

[C$(C(=O)C(@C)@C)]!@[O$(O!@-C!@-C!@-C!@-C)]  ester-ali&pentane_chain 

[C$(C(=O)C(@C)@C)]!@[O$(O!@-C!@=C!@-C!@=C)] ester-ali&pentene_chain 

[C$(C(=O)c)]!@[O$(O!@-C!@-C!@-C!@-C)]  ester-aro&pentane_chain 

[C$(C(=O)c)]!@[O$(O!@-C!@=C!@-C!@=C)]  ester-aro&pentene_chain 
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Section S1.2 Bottom-up fragmentation; pre-substructure generation 

 
The execution time for pre-substructure generation with varying SMILES strings lengths (2 to 28) was 
determined for the permutation and the environmental approach. The results are shown in figure S-2. 
 
 

 

Figure S-2. Execution time permutation vs. environmental pre-substructure generation. 

 
The relationship between the execution time and SMILES string length using the permutation approach is 
exponential with a R2 of 0.9893. Therefore, only NP structures with a maximum SMILES string length of 18 are 
recommended. The environmental approach shows a linear relationship with a R2 of 9.344 and is recommended 
for longer input SMILES.  
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Section S1.3 BGC validation structures 

 
In total 12 reference structures (figure S-3 – S-14) originating from BGC data were used for method validation. The substructures showed here are 

considered as ‘correct’ substructures, and used for comparison to the substructures generated with all top-down methods. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S-3. Validation structure 
erythomycin[13]. 

Figure S-4. Validation structure simocyclinone [16]. Figure S-5. Validation structure rubradirin [17]. 

 

Figure S-6. Validation structure landomycin 
A[3] 

 

Figure S-7. Validation structure urdamycin A[3] 

 

Figure S-8. Validation structure 
calicheamicin[20] 
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Figure S-9. Validation structure chlorothricin[10]. Figure S-10. Validation structure polyketomycin[4]. 

 

Figure S-11. Validation structure echinocandin 
B[2]. 

Figure S-12. Validation structure nostophycin[9]. Figure S-13. Validation structure 
enterobactin[19]. 

 

Figure S-14. Validation structure vancomycin[5]. 
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Section S1.4 MS validation structures 

 
In total 12 reference structures (figure S-15 – S-24) represented by MS spectra were used for method validation. The substructures showed here are 
considered as ‘correct’ substructures, and used for comparison to the substructures generated with all top-down methods. 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S-15. Validation structure noscapine[7] 

 

Figure S-16. Validation structure phomopsin 

A[13]. 
Figure S-17. Validation structure cholesterol 
d6[15]. 

 

Figure S-182. Validation structure 
sildenafil[6]. 

 

Figure S-19. Validation structure DCAX[12] 

  

Figure S-201. Validation structure Reactive 
metabolite of Acetaminophen (NAPQI)[9] 
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Figure S-21. Validation structure protochelin[1]. Figure S-22. Validation structure yuvalamide 
A[14] 

 

Figure S-23. Validation structure  haloperidol[11]. 

 

Figure S-24. Validation structure azide 
derivade[9]. 

  

Figure S-25. Validation structure paclitaxel[18]. Figure S-263. Validation structure 

novobiocin[8]. 



9 
 

Section S2. Supporting Results 
This section provides the supplementary tables that contain the validation results based on BGC and MS data. 
 

Section S2.1 BGC validation results 

 
The substructure results generated with the 12 BGC reference structures using the different fragmentation rulesets are showed in table S-27. ‘Total’ is 
the total number of generated substructures and ‘Correct’ represents the number of substructures considered correct. Also the number of correct 
substructures in the reference structure is included. 
 

 

Table S-27. Validation results BGC data 
 

 
 

NP structure 

Erythrom 
ycin 

Simocycl
inone 

Rubradiri
n 

Landomy
cin 

Urdamyc
in 

Calichea
micin 

Chlorothr
icin 

Polyketo
mycin 

Echinoca
ndin B 

Nostoph
ycin 

Enteroba
ctin 

Vancomy
cin 

Number of correct 
reference substructures 

3 3 4 4 5 6 4 4 3 8 2 9 

Ruleset k   

NPRules 1 Total 3 4 4 4 5 5 4 4 6 6 2 6 

Correct 3 2 4 4 5 3 4 4 3 4 1 4 

2 Total 5 7 7 9 9 10 7 7 13 14 3 14 

Correct 3 3 4 4 5 4 4 4 3 4 1 5 

CCQ 1 Total 2 4 4 2 2 6 4 4 4 3 1 3 

Correct 0 0 1 0 0 0 1 1 0 0 0 0 

2 Total 15 17 18 13 15 29 18 17 17 15 3 18 

Correct 0 0 1 0 0 0 1 1 1 1 0 0 

BRICS 1 Total 2 3 5 1 5 4 4 3 3 3 1 6 

Correct 0 1 1 1 1 0 0 0 0 0 0 1 

2 Total 14 12 20 11 13 27 20 13 12 8 3 23 

Correct 0 1 1 1 1 1 1 1 0 3 0 4 

RECAP 1 Total 1 2 3 0 1 2 2 2 3 1 1 1 

Correct 0 1 0 0 0 0 0 1 0 0 0 0 

2 Total 5 7 13 0 4 2 9 10 13 10 2 3 

Correct 0 1 0 0 0 0 0 1 0 0 0 0 

Extended- 
RECAP 

1 Total 2 3 4 2 2 3 3 3 4 2 2 3 

Correct 0 0 0 0 0 0 0 0 0 0 0 0 

2 Total 20 18 22 11 12 26 16 19 17 9 5 22 

Correct 0 0 0 0 0 0 0 0 0 0 0 1 
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Section S2.3 MS validation results 

The substructure results for MS validation, using 12 input structures, are showed in table S-28. The total number of substructures, the exact and the 
non-exact matches can be observed. 
 

Table S-28. Validation results MS data 

 
 

Ruleset k 
 

NP structure 

Noscapi
ne 

Phomop
sin A 

Cholest
erol d6 

Sildenaf
il 

DCAX NAPQI Protoch
elin B 

Haloperi
dol 

Azide 
derivate 

Yuvala
mide A 

Paclitax
el 

Novobio
cin 

NPRules 1 Total 2 5 2 3 2 4 3 2 2 3 2 3 

Exact match 2 2 2 1 2 3 2 0 0 2 0 1 

Non-exact match 0 0 0 0 0 0 0 0 0 0 1 2 

2 Total 2 10 2 5 2 8 7 2 2 6 4 5 

Exact match 2 5 2 2 2 6 3 0 0 2 0 1 

Non-exact match 0 0 0 0 0 0 0 1 0 0 2 3 

CCQ 1 Total 2 4 1 1 1 3 1 2 0 1 4 2 

Exact match 1 0 0 0 0 0 0 0 0 0 0 0 

Non-exact match 0 0 0 0 0 0 0 1 0 0 1 0 

2 Total 3 17 1 4 3 10 5 5 0 9 17 7 

Exact match 2 0 0 0 1 1 1 0 0 0 0 0 

Non-exact match 0 0 0 0 0 1 0 1 0 0 1 0 

BRICS 1 Total 1 3 2 2 2 4 2 3 1 3 3 3 

Exact match 0 0 1 0 1 0 1 0 0 0 0 0 

Non-exact match 0 1 0 0 1 0 0 0 0 0 0 0 

2 Total 6 14 3 6 4 10 7 7 1 12 14 13 

Exact match 0 2 2 1 2 1 2 1 0 0 0 0 

Non-exact match 0 1 0 0 2 1 0 0 0 1 1 1 

RECAP 1 Total 1 2 0 3 2 3 3 2 1 1 3 2 

Exact match 0 0 0 0 1 0 1 0 0 0 0 0 

Non-exact match 0 0 0 0 0 1 1 1 0 0 0 0 

2 Total 6 13 0 8 6 11 9 4 3 6 11 7 

Exact match 0 0 0 1 1 1 2 1 0 0 0 0 

Non-exact match 0 0 0 0 0 1 1 1 0 0 1 0 

Extended- 
RECAP 

1 Total 2 3 2 3 2 4 3 2 1 1 2 3 

Exact match 0 0 0 0 1 0 1 0 0 0 0 0 

Non-exact match 0 0 0 0 0 0 0 0 0 0 0 0 

2 Total 6 16 7 9 5 13 9 9 3 7 13 15 

Exact match 1 0 0 0 1 2 2 0 0 0 0 0 

Non-exact match 0 1 0 0 1 1 0 2 1 0 1 0 
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