Post-harvest loss reduction in Nigeria, pilot I

Results and observations of the effects and benefits from alternative product packaging in the tomato value chains

13 January 2018, IITA Ibadan, Nigeria
Christine Plaisier, WFBR \& WeCR

口
WAGENINGEN
$\xrightarrow[\substack{100 y e a r s \\ 19218}]{\substack{1020}}$

Research approach \& methodology (1)

- Living lab workshop in November: reduction of post-harvest losses in tomato \rightarrow what to do?
- Workshop with stakeholders from 5 value chains
- definition of value chains \& participants
- classification product quality
- how to use the crates
- Measurement protocol:
- how, what, when and where to measure
- transfer of methodology to enumerators
- Feedback workshop with stakeholders:
- Results measure
- How to proceed?

Research approach \& methodology (2)

- Measurement in the field:
- load tracking from farmer to retailer
- 2 measurement rounds per VC
- 5 value chains / markets
- 2 types of packaging: raffia basket and plastic crate
- Recording of data and observations in the field
- Analysis of data by WFBR and WEcR
- Preliminary reporting to AgroFair and stakeholders (this PPT)
- Final reporting to AgroFair

Parallel measurement: basket vs crate

WAGENINGEN
UNIVERSITY \& RESEARCH

Measurements

- In general very good data gathering by the enumerators
- Our compliments!

WAGENINGEN
UNIVERSITY \& RESEARCH

Results

- More Grade A remains when using crates

Baskets: 65\%
Crates: 85\%

- Less total loss in weight from farmer to retailer

Baskets: 11\% loss

Results

- Weighted averages show Grade B sometimes more sold at higher price than Grade $A \rightarrow$ probably selling strategy retailer? (to start with Grade B)
- VC3 excluded in graphs

- Weight between baskets (small ones and large ones) differ a lot
- Distances and road conditions cannot be linked to losses due to low amount of measurement in

	VC 1	VC 2	VC 3	VC 4	VC 5
average weight Baskets (total all qualities)	5.7	25.0	6.1	7.5	23.3
average weight Crates (total all qualities) 20.8 22.5 20.0$\quad 22.9$	22.5				
distance F-W	140	80	300	5	210
distance W-R	0.5	15	5	245	33

Results

- Calculations based on and average of Value Chains 1,2,4 and 5
- Crates tend to have more Grade A at a retailer
- Total value of produce increases with 5%

Observations - Popularity

- "Popularity grows, even just being introduced"
- "Importance in term of reduction of wastage was noticeable and the innovation was fully lauded"
- "The drivers find it easier to load using the crates"
- "The amount of grade C was more reduced using the crates"
- "products from the crates especially grade B deteriorates slower"

Observations - Seasonality

- Currently limited capacity to plant this season (due to lack of irrigation system)
- Season is coming to an end -> low amount of produce
- Northern varieties are in this season more popular, retailers do not want buy the variety of tomatoes from the south.
- In round 2 not all actors are involved due to low amount of produce (and fuel price)
- Low produce -> effect of bulking and packing during transportation is less, however still present

Observations - Concerns 1

- "The retailers need more education about the amount of tomatoes in a crate, some do not believe 3 small baskets fit in one crate"
- "Retailers are concerned around the ready availability and the cost per unit of a crate"
- "The farmer shows concern about the extra cost moving the crate back to him"
- "The driver believes he cannot load more using crates meaning increase transportation cost"

Observations - Concerns 2

- "The wholesaler had a tough time convincing the retailers using crates because of quantity comparisons"
- "The retailers are willing to adopt the plastic crates when cost effective"
- "The retailers perceive an increase in cost of moving the crates back to the wholesalers"
- "A paradigm shift can happen when it is clear how much produce fits in a crate compared to a basket"

Observations - Difficult circumstances

- $2^{\text {nd }}$ round had some difficulties:
- Harvested amount too small, no normal transportation possible
- The prices skyrocketed due toe fuel prices and yuletide season
- The journey was tedious but successful"
- "There was a grid lock of vehicles couples with high fuel scarcity, I had to carry the tomatoes on my head for 500m"

- "
-

Validity of the results

- Due to low produce in this season few baskets and crates are harvested, prices fluctuate and effects can not be well monitored -> measurements are therefore not well comparable.
- The results are not usable for investment calculations
- They give a good insight in the performance of crates compared with baskets

Conclusions

- When using crates:
- Less loss
- More Grade A to sell, higher sales
- Easier to handle
- Awareness of volume of crates and baskets can be improved (introduction of kilogram system?)
- Measurements in high season improve validation

Discussion on data collection

- Improvements:
- Measure in high season
- The same person should grade at farm and retail level the same way
- Results can only be compared well when measurements take place from farm to market

Discussion on intervention

- Less losses with crate use
- More Grade A to sell with crate use
- Total value of produce increases

Attention:

- Weighing: pricing in kg
- Grade B > price than grade A at retailer level
- Who benefits from the increased value?
- Return, costs \& ownership of crates?

And now what? Prospects

1. Formulation of a business model
2. How to upscale?
-000-
3. Willing and able to continue in June?
4. Second measurement basket - crate

Thank you all!

Paradigm shift?!

WAGENINGEN
UNIVERSITY \& RESEARCH

