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3. Big data analyses can extract high value information from data sets 
having low value density. 
 

4. The complexity of food systems cannot be captured with models 
that only consider part of the system.  
 

5. Planning for flexibility gives more flexibility in planning. 
 

6. Writing scientific propositions is more an art than a science. 
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1.1  Introduction 

Drying is employed in the food industry to preserve and extend the shelf-lives 

of foods, since at very low water content, microbial spoilage and many chemical 

reactions are slowed down or even halted. Moreover, drying decreases the 

product volume and its weight, which benefits handling and transportation 

costs 1, 2. There is a growing market of dried food ingredients with high added 

value, such as thickeners, emulsifiers, flavouring, and pigments, which requires 

increasing drying capacity and further optimisation of the quality of the final 

dried product 3. 

Optimal design and control of drying operations are highly relevant to the food 

industry. During drying, food formulations are transformed from a liquid or 

semi-solid moist product into a dry product. During this transformation 

various physical and chemical reactions occur that generally affect the product 

quality including flavour, colour, nutritional properties, etc. 4. Drying also 

creates specific functional properties in foods and ingredients such as 

rehydration properties, solubility, hygroscopicity, etc., which are crucial to their 

application.  

In addition to product quality, drying impacts the total environmental footprint 

and costs of food production. It is estimated that drying operations account for 

9% to 25% of the total industrial energy consumption in developed countries 
3, 5, 6. Given the limited available resources and global warming, continuous 

efforts should be made to radically increase the efficiency in drying operations. 

However, such efforts should not only focus on the development of more 

energy efficient dryer designs or operation strategies, but also on the 

understanding of the transformation of products during drying, which is critical 

to the success or failure of drying processes with respect to product quality. 

Therefore, this thesis focuses on obtaining better insights in more energy-

efficient conductive drying technologies, and providing better scientific 

support for successful drying of foods.  
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1.2  Classification of drying technologies  

According to open literature, there are more than 400 different dryer designs, 

amongst which 100 distinct designs are applied more or less commonly 5. Most 

drying technologies are based on either convective or conductive heat transfer.  

More than 85% of the industrial dryers are convective dryers 7-9. During 

convective drying, usually hot air is used, which is in direct contact with the 

product (Figure 1-1). Examples are belt dryers, spray dryers, and (batch or 

continuous) tray dryers. In the food industry, spray drying is one of the most 

commonly used drying methods to produce dried powder ingredients. It is a 

relatively mild drying method, since fast evaporation prevents excessive heating 

of the sprayed droplets and the particle temperature increases only gradually 

towards the outlet air temperature 10. A disadvantage of spray drying is the 

relatively poor energy efficiency, which is due to the energy loss via the warm 

and moist exhaust gas.  

 
Figure 1-1 Schematic representation of drying mechanisms of (A) convective (direct) 
drying and (B) conductive (indirect or contact) drying. 

The second largest category of dryers relies on conductive drying. Heat is here 

transferred from condensed steam or hot water to the product via conduction 

through a (metal) wall (Figure 1-1) 5. The product is applied as a thin film 

(stagnant or agitated) on the heated surface to minimise the drying time. A 

disadvantage of conductive drying is the relatively high product temperature, 

which is equal to the boiling temperature and can negatively affect the product 

quality. Therefore, some conductive dryers operate at reduced pressure, which 

Product

Heat recoveryHeat transfer

Water vapour

Conductive dryingConvective drying

Hot air Hot moist air

Dried product

Wet product
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allows milder drying at lower temperature, albeit at the cost of larger equipment 

complexity. Typical conductive dryers are (vacuum) drum dryers, agitated thin 

film dryers and refractance window dryers 11. Table 1-1 provides a more 

extensive comparison between convective (direct) and conductive (indirect) 

drying technologies 9, 12. 

Table 1-1 Comparison of direct and indirect drying 9, 12. 

Aspects Convective drying Conductive drying 
Heat medium Heating medium can be air 

(most common), inert gas (i.e. 

N2 for drying materials with 

organic solvent), and 

superheated steam. 

Heat medium has direct contact 

with the surface of the material 

to be dried.  

Heat for evaporation is supplied 

by convection. 

Heating medium can be 

saturated steam, hot water or 

electricity. 

Heating medium is separated 

from the material by a wall. 

Heat for evaporation is supplied 

by conduction through the wall. 

Moisture removal The evaporated moisture is 

carried away by the heating 

medium.  

Only low gas flow or vacuum is 

needed to carry away the 

evaporated moisture 

Application under 

vacuum 

Not possible. Possible. But it is difficult to be 

operated in a continuous mode 

under vacuum.  

Energy efficiency Low due to the energy loss via 

exhaust gas. 

High due to the limited exhaust 

gas. 

Production 

capacity 

Generally higher than 

conductive dryers 

Lower production capacity due 

to the limited availability of the 

heat transfer areas.    

Cost High Higher capital cost. 

Difficult to design, fabricate and 

maintain 

Cross 

contamination 

Remains Avoided as the heat medium 

does not contact the product 

Dusting High Minimal cleaning of exhaust gas 

is need. Additional benefit is the 

low emission of fines and 

particles.  

Solvent recovery Difficult because a large volume 

of gas needs to be cooled to 

recover the solvent. 

Easier as vapour released can be 

easily condensed. 

Suitability for toxic 

materials 

Not suitable. Suitable as limited exhaust gas 

needed.  
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1.3  Conductive drying 

Conductive drying is less thoroughly understood compared to convective 

drying 9. The kinetics of conductive drying is a complex function of both the 

operation conditions and the material properties. Compared to convective 

drying, the hydrodynamics of the drying phase is much more complex, often 

accompanied by boiling, inducing local turbulence and chaotic flow. Direct 

analysis of conductive drying kinetics in situ therefore remains a great challenge. 

To ultimately enhance the application of the more energy efficient conductive 

drying methods for food production, more insights should thus be generated 

on a better understanding of the conductive drying principle. This will allow 

systematic comparison of different conductive thin film drying technologies, 

such as (vacuum) drum drying, refractance window drying, and agitated thin 

film drying, which are all promising alternatives to conventional convective 

drying. Whereas drum drying employs a large heat load to products, vacuum 

drum drying and refractance window drying allow milder film drying conditions 

which may be suitable for heat sensitive foods. Agitated thin film drying applies 

high shear to disrupt a drying film and is generally operated under mildly 

reduced pressure conditions. 

1.3.1  (Vacuum) drum drying 

Drum drying is extensively used for industrial drying of viscous pasty or pureed 

foods, such as pre-gelatinized starches, mashed potatoes, caseinate and fruit 

purees 13-15. Drum dryers can be classified as single, double and twin drum 

dryers 16. Figure 1-2 (A) shows a schematic representation of a double drum 

dryer. It has two counter-rotating hollow steel drums of equal diameter. The 

gap between the two drums can be adjusted. During operation, the feed is 

supplied to the feeding pool and heats up to the boiling point, leading to fast 

initial vapour release. Due to drum rotation and gravity, the material then flows 

through the gap and adheres to the outer surface of the two drums as a semi-

solid film. The film is relatively thin (<0.5 mm), which makes the drying fast 

(10-30 s) 12. At the opposite side of the drum, the dried product is scraped off 

by blades and the hot surface is reused. Drum drying is reported as one of the 

most energy efficient drying methods, consuming on average 40% less energy 
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compared to spray drying 10. Although most drum dryers are operated at 

atmospheric pressure, vacuum drum dryers are available that can operate at 

reduced boiling temperature. The capital costs of vacuum drum dryers are 

however higher than those of regular drum dryers. 

 
Figure 1-2 (A) Schematic representation of a double drum dryer, and pictures of (B) a 
regular drum dryer in Unilever (Tummers Machinebouw B.V., Hoogerheide, The 
Netherlands) and (C) a vacuum drum dryer in ANDRITZ Gouda (Waddinxveen, the 
Netherlands). 

1.3.2  Agitated thin film drying (ATFD) 

Agitated thin film drying (ATFD) is a relatively novel and mild conductive 

drying method as it is generally operated under reduced pressure. The drying 

takes place in a scraped heat exchanger, consisting of a drying chamber with a 

heated jacket and a rotor with fixed blades (Figure 1-3). During ATFD, the feed 

is supplied to the top of the drying chamber and flows down mainly due to 

gravity. It is distributed by the rotating action of the blades as a thin film across 

(A)

(B) (C)
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the heated surface. Vapour is released from the drying chamber and 

subsequently condensed in a separate chamber. The product film is 

progressively dried, transforming from a liquid, into a paste and finally into a 

brittle solid state. The brittle solid film is fragmented into small particles by the 

rotating blade. ATFD is suitable for heat and oxygen sensitive products as it 

can be operated under reduced pressure 17. A major challenge for the 

application of ATFD is that its operation is sensitive to the dried material 

properties, which makes it applicable only to specific products. 

 
Figure 1-3 (A) Schematic representation and (B) picture of a pilot-scale agitated thin 
film dryer in Bodec (Helmond, the Netherlands). 

1.3.3  Refractance window drying (RWD) 

Refractance window drying (RWD) is another mild conductive drying method, 

which is especially investigated for drying various pureed or sliced fruits and 

vegetables, e.g. tomato, carrot, strawberry, asparagus, mango, kiwi, etc. 6, 18-21. 

The wet product is spread as a thin film and dried on a transparent polyethylene 

conveyor belt moving over circulating hot water (Figure 1-4). The plastic belt 

was originally aimed to allow mostly radiative heat transfer. However, it has 

been shown that radiative heat transfer contributes only ~3% of the total heat 

transfer and most heat is transferred by conduction 18. In contrast to drum 

(A) (B)
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drying and ATFD, no boiling occurs as the whole process is operated below 

the boiling temperature (<95 ˚C) at atmospheric pressure. The driving force 

for mass transfer is the difference in relative humidity between the air and the 

film. At the final stage of the process, the dried product is conveyed over a cold 

water bath and cools down below the glass transition temperature. In this way, 

a brittle film is obtained, which can be scraped off and fragmented into flakes 

or particles. RWD is considered as a mild technology, applicable to especially 

heat sensitive products. At the same time, RWD is limited in capacity and 

scalability, as very thin films need to be applied to accommodate the slow 

drying. 

 
Figure 1-4 (A) Schematic representation and (B) picture of the refractance window 
dryer at ILVO (Melle, Belgium). 

(A)

(B)
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1.4  Research aim  

This thesis is part of a project entitled “Exploration on mild film drying 

technologies for more efficient dehydration of liquid concentrated foods”. The 

overall project aimed at obtaining better insight in conductive drying and 

systematically comparing different conductive dryers in terms of product 

quality, energy consumption and costs. A techno-economic assessment was 

carried out at the Energy Research Centre of the Netherlands (ECN) 22.  

The objective of the study reported in this thesis was to investigate the principle 

of conductive drying of foods and to translate the insights generated to the 

operation of different mild conductive drying technologies. The main 

hypothesis behind this objective is that lower drying temperatures and faster 

drying to lower moisture content lead to higher product quality. Therefore, 

conductive drying processes that can operate at lower temperature (e.g. VDD, 

ATFD and RWD) are expected to provide milder drying conditions and thus 

better product quality. An added hypothesis is that RWD may be less mild than 

VDD and ATFD, since its drying time is longer. 

The product quality is here defined as the level of micronutrients and taste 

components that are sensitive to heat, such as non-volatiles and volatiles. The 

principle of conductive drying is assessed in custom-built laboratory-scale 

drying systems designed to mimic non-agitated (e.g. drum drying) and agitated 

conductive thin film drying (e.g. ATFD), allowing better analysis of the drying 

behaviour and the impact of drying on the product quality.  

The influence of material properties and operating conditions on drying 

behaviour and product quality were studied via experimental analyses and 

kinetic modelling. Finally, ATFD and RWD were compared at pilot scale to 

regular and vacuum drum drying, investigating the effect of the drying 

procedures and operating conditions applied on the powder quality. 
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1.5  Outline of this thesis 

The research results reported in this thesis can be divided into two aspects, 

namely processing and product quality. Figure 1-5 shows the schematic outline 

of the thesis.  

Chapter 2 focuses on the influence of thermal processing and drying on the 

presence of tomato taste markers, i.e. citric, malic, ascorbic and pyroglutamic 

acids (PCA). The levels of the four markers in the processed tomato juice were 

experimentally assessed. In addition, kinetic models were developed to predict 

ascorbic acid degradation and PCA formation considering the coupled effect 

of temperature and moisture content. 

Chapter 3 explores the transient drying kinetics of conductive thin film drying, 

relevant to drum drying. The drying kinetics was characterised by using a novel 

custom-built experimental system, allowing simultaneous on-line monitoring 

of both mass and temperatures in the process. The impact of different 

processing parameters, such as material properties, film thickness and feed 

concentration, on the drying kinetics was studied. 

Chapter 4 proposes a heat-transfer governed model to describe the drying 

process in a lab-scale conductive thin film dryer. The model calculations were 

compared with the experimental data reported in Chapter 3. Subsequently, the 

model was modified to describe the industrial drum drying process.  

Chapter 5 reports on the drying behaviour of foods using the ATFD process 

and investigates the influence of process parameters on the final product 

properties. A customized laboratory-scale ATFD dryer was applied to different 

food formulations: solutions of whey protein isolate and sucrose, and juices of 

bell pepper, tomato and spinach. The drying behaviour of each food was 

compared. Specifically, spinach juice was selected as a model system to study 

the influence of drying parameters.  

Chapter 6 compares the organoleptic quality of tomato powders prepared with 

four conductive drying technologies, i.e. regular and vacuum drum drying, 

agitated thin film drying and refractance window drying. Pilot-scale 
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experiments were carried out and the flavour quality of the resulting powders 

was evaluated by quantitatively determining the concentrations of key volatile 

and non-volatile compounds that contribute to tomato flavour. Principal 

component analysis (PCA) and partial least-square discriminant analysis (PLS-

DA) were performed to study the relationship between powder quality and 

conductive drying methods. 

Chapter 7 provides a general discussion, verifying the earlier results with and 

extending these to conductive drying of milk powders and a primary economic 

assessment of different conductive dryers. In addition, a perspective on the 

future research and an insight-based guideline for conductive drying of foods 

are discussed. 

 
Figure 1-5 Schematic outline of the content in this thesis. 

Chapter 5
Investigation of drying behaviour

of foods during agitated thin film

drying by a small-scale ATFD.

Assessment of conductive 

drying behaviour 

Chapter 6
Comparison of tomato

powder quality prepared by

different conductive dryers

Effect of conductive drying on 

food quality

Chapter 1: Introduction

Chapter 7: General discussion

Chapter 4
Model development for the lab-

scale conductive dyer.

Chapter 3
Analysis of conductive drying

kinetics relevant to drum drying

using a lab-scale device.

Chapter 2 
Investigation of kinetics of

organic acids in concentrated

tomato juice during processes.
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Abstract 

Tomato products are often thermally processed or concentrated to obtain their 

desired shelf life and to facilitate transport. However, processing negatively 

affects the quality of tomato products. This study focused on the influence of 

processing on the presence of important tomato taste markers, i.e. citric, malic, 

ascorbic and pyroglutamic acids (PCA). Isothermal heat treatment of tomato 

juice was experimentally assessed at varying moisture content (0.18 to 0.95 

kg/kg total), temperature (60 to 100 ˚C) and time (0 to 18 h) combinations. 

Increasing ascorbic acid degradation (up to 70%) and PCA formation (up to 

0.032 mmol/g FT) were measured, while citric and malic acids were unaffected. 

First order reaction kinetics described the degradation and formation of 

ascorbic acid (R2 = 0.76) and PCA (R2 = 0.98), where the coupled effect of 

both moisture content and temperature on the reaction rates was modelled with 

an Arrhenius-type equation. Higher temperature enhanced both reaction rates 

with factors of 4.2 and 5.1 for ascorbic acid and PCA, respectively (from 60 to 

100 ˚C at 95 w/w), while at lower moisture content the rate of the ascorbic acid 

degradation decreased with a factor of 3.5 and the rate of the PCA formation 

increased with a factor of 3.5 (both from 95 down to 5 w/w at 90 ˚C). Finally, 

by implementation of the kinetic models in a process model, it was estimated 

that 25% of ascorbic acid degrades during co-current drying while after 

counter-current drying only 21% degrades. Similarly, during co-current drying 

0.021 mmol/g FT PCA is formed, which is more than during counter-current 

drying (0.008 mmol/g FT). This approach yields an interesting insight on the 

effect of processing on the presence of ascorbic acid and PCA and thus offers 

opportunities for process optimisation.    
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2.1  Introduction 

The main purpose of thermal processing and drying in the food industry is 

preservation. During thermal treatment, microbial and enzymatic activities are 

reduced, while drying aims at reductions in water activity preventing the growth 

of microbes and the occurrence of undesired chemical reactions during storage. 

In addition, dried products have reduced volume and are easier to handle 

during storage and transportation. However, during processing various physical 

and chemical reactions may occur that negatively affect the product quality 

including the decline of the nutritional properties, aroma loss, as well as changes 

in taste and colour 1. The impact of processing on product quality can be 

minimised by the optimisation of the process conditions, for example by a 

short time - high temperature heat treatment. Minimally processed foods are 

perceived more fresh by consumers while having extended shelf-life 2.  

The focus in this study is the thermal processing and drying of (concentrated) 

tomato juice. Tomato (Lycopersicum esculentum) is amongst the most popular 

fruits globally 3. Tomato is considered as a useful source of fibres, proteins, 

minerals, vitamins, lycopene and antioxidants and thus fits in a healthy diet 4, 5. 

Tomatoes are consumed fresh and incorporated in processed foods, e.g. juice, 

puree, sauce, canned varieties and dried products 6. Annually, over 40 million 

tons of tomatoes are processed worldwide into a large variety of foods 7. 

As discussed above, it is desired that the processing of tomato should have 

minimum effect on the perceived freshness and nutritional properties of the 

final product. Numerous studies reported the impact of processing on tomato 

quality specifically in terms of nutritional quality decline and colour retention. 

Only a few studies focused on the retention of non-volatile taste characteristics, 

such as sour taste. The sour taste of tomato is an important organoleptic quality 

attribute connected to the perceived freshness and is related to the presence of 

specific organic acids 8-10. Organic acids comprise over 0.15 kg/kg dry weight 

of tomatoes. The most abundantly present organic acids in tomatoes are citric, 

malic, and ascorbic acids 9, 11. Specifically, ascorbic acid, also known as vitamin 
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C, is well known for its sensitivity towards heat and the presence of oxygen and 

thus degrades during processing and storage 12, 13.  

During thermal processing some organic acids are formed as well, which results 

in an overall increase of the total amount of organic acid. An important organic 

acid with a large influence on the taste of tomato products is 5-oxopyrrolidine-

2-carboxylic acid, or pyroglutamic acid (PCA). PCA is the degradation product 

of glutamine or glutamic acid 11, 14, 15. The formation route of PCA in tomato 

juice can be catalysed both enzymatically and non-enzymatically. The enzymatic 

reaction is facilitated by γ-glutamylcysteine synthetase (γ-GCS) and Glutamate-

5-Kinase (G5K), with optimum reaction conditions of 35˚C at pH 7.9 and 83˚C 

at pH 6.0, respectively 16-19. The non-enzymatic reaction is catalysed by weak 

acids and is enhanced at elevated temperatures (Figure 2-1) 20, 21. The formation 

of PCA contributes to the perceived loss of freshness and gives the product a 

bitter and undesirable sour taste, and leads to the off-flavour of processed 

tomato 9, 10. Quantitative understanding of the changing levels of citric acid, 

malic acid, ascorbic acid and PCA in tomato products could provide a better 

control to retain taste during processing. 

 
Figure 2-1 Schematic conversion of (A) glutamine and (B) glutamic into pyroglutamic 

acid (PCA) catalysed by a weak acid 21. 

(A)

(B)
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In the present study, we investigated the kinetic modelling of ascorbic acid 

degradation and PCA formation. The developed models can be applied to 

optimise heating and drying processes of tomato juice. In most previous studies 

the degradation of ascorbic acid and the formation of PCA were studied as a 

function of the temperature only 22-24. A major challenge here is to extend the 

kinetic modelling to describe the combined effect of temperature and moisture 

content. The combined effect on the degradation of ascorbic acid was studied 

when storing the kiwifruits and air drying the fruit rosehip 23, 25, but no studies 

on tomato processing were carried out. In terms of the PCA formation, no 

kinetic models considering the combined effect of temperature and moisture 

content have been proposed.   

Therefore, the objective of this study is twofold: (1) to experimentally assess 

the levels of citric acid, malic acid, ascorbic acid and PCA of tomato juice after 

thermal processing and drying; (2) to develop kinetic models that can predict 

ascorbic acid degradation and PCA formation considering the effect of both 

temperature and moisture content.  

2.2  Mathematical models 

2.2.1  Kinetic Modelling 

First order kinetics is applied to describe the ascorbic acid degradation 23:  

 
−
𝑑𝐶

𝑑𝑡
= 𝑘𝐶 Eq. 2-1 

in which C is the concentration of ascorbic acid, t is time and k is the reaction 

rate constant (time-1).  

Integration of Eq. 2-1 yields: 

 𝐶𝐴𝐴,𝑡
𝐶𝐴𝐴,0

= exp(−𝑘𝐴𝐴𝑡) Eq. 2-2 

where CAA,t is the concentration of ascorbic acid after a specific time and CAA,0 

is the initial concentration of ascorbic acid.  
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Glutamine and glutamic acid are converted into PCA during thermal 

processing of tomato as depicted in Figure 2-1 14-16, 24. This conversion reaction 

is also assumed to follow first order reaction kinetics and the total 

concentration of glutamine and glutamic acid can then be described as a 

function of time as follows 22: 

 
𝐶𝐺𝑙𝑢,𝑡 = 𝐶𝐺𝑙𝑢,0 exp(−𝑘𝑃𝐶𝐴𝑡) Eq. 2-3 

Because PCA is the product of the conversion it can be described as: 

 
𝐶𝑃𝐶𝐴,𝑡 = 𝐶𝐺𝑙𝑢,0 − 𝐶𝐺𝑙𝑢,𝑡 Eq. 2-4 

Substitution of Eq. 2-4 into Eq. 2-3 yields the following expression: 

 
𝐶𝑃𝐶𝐴,𝑡 = 𝐶𝐺𝑙𝑢,0(1 − exp(−𝑘𝑃𝐶𝐴𝑡)) Eq. 2-5 

where CPCA,t and CGlu,0 are the concentrations of PCA and the total initial 

concentration of glutamic acid and glutamine in tomato, respectively. 

The temperature dependency of both reactions can be described with the 

following modified Arrhenius equation: 

 
𝑘 = 𝑘𝑟𝑒𝑓 exp [−

𝐸𝑎
𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)] Eq. 2-6 

where T is temperature, Tref is a reference temperature, kref is the reaction rate 

constant at Tref, Ea is the activation energy, and R is the ideal gas constant. 

The dependency on moisture content is incorporated in this modelling 

approach by making the reaction rate coefficients (kref and Ea) moisture content 

dependent 26. Perdana et al. 27 investigated and extended this modelling 

approach to describe the inactivation of β-galactosidase during single droplet 

drying. The dependency of the reaction rate constant (k(T,Xw)) on temperature 

and moisture content is described as follows 27: 

 
k(T, Xw) = kw(T) exp [ln (

ks(T)

kw(T)
) ∙ exp (−p

Xw
1 − Xw

)] Eq. 2-7 
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where Xw is the mass fraction of water and p is an empirical parameter 

describing the effect of moisture content on the reaction rate constant. Further, 

kw(T) and ks(T) are the reaction rate constants at infinite dilution (Xw = 1) and 

in pure solid form (Xw = 0), respectively, and can be expressed as a function of 

temperature: 

 
𝑘𝑤(𝑇) = 𝑘𝑟𝑒𝑓,𝑤 exp [−

𝐸𝑎
𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)] Eq. 2-8 

  
𝑘𝑠(𝑇) = 𝑘𝑟𝑒𝑓,𝑠 exp [−

𝐸𝑎
𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)] Eq. 2-9 

This kinetic model includes four fitting parameters, namely kref,w, kref,s, Ea and p. 

It describes the combined effect of temperature and moisture content, which 

is especially relevant during drying processes. 

2.2.2  Modelling of convective drying  

The developed kinetic models can be applied to evaluate the effect of drying of 

a tomato product on ascorbic acid and PCA levels if combined with a process 

model that can predict the temperature and moisture content history of a 

product during drying. As an example, a co- and counter-current air drying 

model reported by Pakowski and Mujumdar 28 was implemented in the present 

work. The moisture removal during convective drying is driven by the 

difference between the moisture content of the product (Wp, kg/kg dry solid) 

and the equilibrium moisture content of the air (Wg, kg/kg dry air). When the 

product moisture content is higher than its critical moisture content (Wp > Wc), 

the drying rate JD can be determined by: 

𝐽𝐷 = 𝐾(𝑊𝑔,𝑒 −𝑊𝑔) Eq. 2-10 

where K is the mass transfer coefficient and Wg,e is the equilibrium moisture 

content of the dry air. If Wp < Wc, JD can be calculated by: 

𝐽𝐷 = 𝐾(𝑊𝑔,𝑒 −𝑊𝑔) (
𝑊𝑝 −W𝑠,𝑒

𝑊𝑐 −𝑊𝑠,𝑒
)

1.5

 Eq. 2-11 

where Ws,e  is the equilibrium moisture content of the product.  
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The moisture content change in the air and the product can be expressed by 

Eq. 2-12 and Eq. 2-13, respectively: 

𝑑𝑊𝑔

𝑑𝑥
= 𝐽𝐷

𝑆

𝜒𝐹𝑔
𝑎𝑣 Eq. 2-12 

𝑑𝑊𝑠

𝑑𝑥
= −𝐽𝐷

𝑆

𝐹𝑠
𝑎𝑣 Eq. 2-13 

where S is the cross-sectional area of the dryer chamber, av is the contact area 

of the product and the air per volume of the dryer chamber, Fg is the dry air 

flow rate, Fs is the dry solid flow rate and x is the position along the length of 

the dryer. Specially, χ = 1 represents co-current drying, while χ = -1 represents 

counter-current drying.  

The heat transfer rate q is determined by the temperature difference between 

the dry air and the product: 

𝑞 = 𝛼(𝑇𝑔 − 𝑇𝑝) Eq. 2-14 

where Tg is the dry air temperature, TP is the product temperature and α is the 

heat transfer coefficient. 

The temperature change of the dry air and the product can be expressed by Eq. 

2-15 and Eq. 2-16, respectively: 

𝑑𝑇𝑔

𝑑𝑥
= −

𝑆

𝜒𝐹𝑔

𝑎𝑣
𝑐𝑔 + 𝑐𝑤𝑣𝑊𝑔

(𝑞 + 𝐽𝐷 (𝑐𝑤(𝑇𝑔 − 𝑇𝑝))) Eq. 2-15 

𝑑𝑇𝑝

𝑑𝑥
=

𝑆

𝐹𝑠

𝑎𝑣
𝑐𝑠 + 𝑐𝑤𝑊𝑝

(𝑞 + 𝐽𝐷 ((𝑐𝑤 − 𝑐𝑤𝑣)𝑇𝑝 − ℎ𝑤)) Eq. 2-16 

where cg is the specific heat of dry air, cw is the specific heat of water, cwv is the 

specific heat of water vapour, cs is the specific heat of the solid and hw is the 

latent heat of water. 

The governing equations are solved simultaneously using MATLAB R2015b 

(Mathworks, Natick, USA) to obtain the product temperature and moisture 

content history. By combining the outcome of the drying model with the 
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kinetic model, the levels of ascorbic acid and PCA could be calculated as a 

function of the drying time and applied conditions. 

2.3  Materials and Methods 

2.3.1  Chemicals 

Reference chemicals for all organic acids (citric acid, malic acid, ascorbic acid 

and PCA), as well as phosphoric acid (H3PO4) and potassium phosphate 

monobasic (KH2PO4) used for the mobile phase, were purchased from Sigma-

Aldrich® (Zwijndrecht, the Netherlands). Analytical grade water (Milli-Q water) 

was purified by a Merck Milli-Q® water system (Amsterdam, the Netherlands).    

2.3.2  Sample preparation 

Cut and frozen tomato cubes were kindly provided by Unilever (Vlaardingen, 

the Netherlands). The cubes, with a volume of approximately 1 cm3, were 

blended with an electronic blender (Vorwerk Thermomix Tm 31, Vorwerk, 

Wuppertal Germany) and squeezed into a tomato juice. The moisture 

concentration of the juice was 0.95 kg/kg wet basis. To vary the moisture 

content of the tomato juice with minimal thermal influence, the squeezed 

tomato juice was concentrated by freeze drying in batches of 1 L. For this the 

tomato juice was first frozen and then freeze-dried at a pressure of 100 Pa and 

a shelf temperature of -20 ˚C for 4 h. Thereafter, the shelf temperature was 

increased to -15 ˚C and maintained at this temperature for different time 

intervals (between 25 and 49 h) to obtain tomato concentrates with moisture 

contents of 0.85, 0.60, 0.51, 0.19 and 0.13 kg/kg wet basis. Each drying 

procedure was ended by increasing the temperature to -5 ˚C, which was 

maintained for 6 h. Subsequently, the shelf temperature was further increased 

to 10 ˚C and finally to 20 ˚C, while the pressure decreased to 0.1 Pa. This last 

drying step lasted 13 h.  

2.3.3  Isothermal heating tests 

Samples were pipetted into 5 mL vials, sealed and heated to a constant 

temperature in an Eppendorf Thermomixer®C (Eppendorf, Hamburg 

Germany). The constant temperature was achieved within 2 min, which is very 

short compared to the total heat treatment time. The temperature range of the 
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experiments in this study was between 60 and 100 ˚C and the mixing speed was 

fixed at 300 rpm. After heat treatment, the vial was transferred immediately 

into an ice bath, in order to quickly decrease the temperature. Subsequently, the 

sample was stored in the freezer for further analysis.  

2.3.4  Extraction and analysis of organic acids 

To prepare a sample for HPLC analysis an extraction method for organic acids 

from tomato juice was used as described by Selli et al. 29 who developed this 

method for the extraction of organic acids from cherry tomato. The first step 

involved the addition of 25 g of 25 mmol/L KH2PO4 buffer (adjusted to pH 

2.5 by H3PO4) to a 5 g tomato sample and subsequent mixing at 300 rpm for 

10 min to homogenise the sample. The homogenised mixture was centrifuged 

at 12,000 g and 10 ˚C for 8 min. Then the supernatant was filtered through a 

0.45 µm Minisart® Syringe filter (Sartorius, Goettingen, Germany) and used for 

HPLC analysis.    

An UltiMate® 3000 HPLC system equipped with a diode array detector (DAD) 

(Dionex, Dreieich, Germany) was used to simultaneously separate and detect 

the organic acids. The system was run at 1.0 mL/min using a PrevailTM Organic 

Acid column with 150 mm × 4.6 mm and 5 µm particle size (Grace, USA). The 

column temperature was maintained at 30 ˚C and the organic acids were 

detected with the DAD at a wave length of 210 nm. The injection volume was 

5 µL. The mobile phase was 25 mmol/L KH2PO4 buffer adjusted to pH 2.5. 

The concentrations of organic acids were quantified by comparing the peak 

areas of organic acids to those of external standard references. The 

concentrations of organic acids are expressed as mmol per gram fresh tomato 

(mmol/g FT) as the moisture content of fresh tomatoes is assumed constant. 

2.3.5  Data acquisition and modelling procedures 

Isothermal heating experiments were carried out in duplicate at different time 

intervals. Analysis of variance (ANOVA) was applied, to evaluate if citric acid 

and malic acid concentrations significantly differ at different heating time 

within each treatment. From series of experiments at a specified temperature 

and moisture content, the kinetic reaction rate constants (k) were calculated for 
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the degradation of ascorbic acid and the formation of PCA (Eq. 2-2 and Eq. 2-

5). Parameter optimisation was carried out using a non-linear least squares 

method solved by a Trust-Region Algorithm method. All the calculations were 

performed with the curve fitting toolbox of MATLAB R2015b (Mathworks, 

Natick, USA). 

2.4  Results and Discussion 

2.4.1 Degradation and formation of organic acids during isothermal 

heating  

Figure 2-2 (A, B) shows the citric acid concentration during the heating for 

(concentrated) tomato juice with a moisture content of 0.95 kg/kg and 0.19 

kg/kg wet basis, respectively. One-way ANOVA showed that within each 

treatment, the concentration of citric acid at different heating time did not 

significantly differ (p > 0.05). The citric acid concentration remains constant at 

different temperatures for both moisture concentrations in time. Citric acid was 

previously found to be very heat stable compared to other organic acids. 

Barbooti and Al-Sammerrai 30 found that citric acid remained stable at 100 ˚C, 

and decomposed only above 148 ˚C, followed by rapid decomposition above 

153 ˚C when melting. Similar to citric acid, ANOVA showed that the 

concentration of malic acid remained constant at different heating conditions 

(p > 0.05), as can be observed in Figure 2-2 (C, D). Only for two treatments 

(Xw = 0.19, T = 70 and 100 °C) the p value was lower than 0.05; however, no 

clear trends could be observed. To confirm our observations heating 

experiments with model solutions of citric and malic acids at 90 ̊ C were carried 

out. Both acids remained stable over long periods of heating (data not shown). 

Our observations are in accordance with the work done by Jeyaprakash, Frank, 

and Driscoll 31, who reported on the stability of citric and malic acids during 

heat pump drying of tomatoes. Some earlier studies reported opposite results. 

Wiese and Dalmasso 32 reported an increase in citric and malic acids after heat 

processing of tomato juice, while Villari et al. 33 reported a decrease in citric and 

malic acids with increased storage temperature and time. In addition, Igual et al. 
34 reported that the concentration of citric acid decreased while that of malic 

acid was not affected during heat treatment of grapefruit juice. 
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Figure 2-2 Changes in the concentrations of citric acid in tomato samples with (A) Xw 
= 0.95 and (B) Xw = 0.19; malic acid in tomato samples with (C) Xw = 0.95 and (D) 
Xw = 0.19; ascorbic acid in tomato samples with (E) Xw = 0.95 and (F) Xw = 0.19; and 
pyroglutamic acid (PCA) in tomato samples with (G) Xw = 0.95 and (H) Xw = 0.19  
during the heating process. The concentrations are expressed as mmol per gram in 
fresh tomato (mmol/g FT). The symbols represent the experimental data: 60 ˚C (□), 
70 ˚C (◊), 90 ˚C (Δ), and 100 ˚C (○). The lines represent the model predictions: 60 ˚C 
(solid line), 70 ˚C (dotted line), 90 ˚C (dashed line), and 100 ˚C (dash-dot line). The 
error bars show the 95% confidence interval of the experimental data (n = 2).  
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The concentrations of ascorbic acid and PCA during the heating were also 

determined. Specifically, the initial concentrations of ascorbic acid in squeezed 

tomato juice were found to vary between 0.36 and 0.45 mmol/kg FT. The 

ascorbic acid concentration was shifted for a better presentation of the results 

(CAA,t/CAA,0 = 1). The initial PCA concentration (between 0.001 and 0.002 

mmol/g FT) was subtracted from each measured value, to remove the 

originally present PCA and thus obtain the amount of PCA formed during 

heating. Figure 2-2 (E to H) shows the normalized ascorbic acid and PCA 

concentrations as a function of heating time. Both organic acids exhibited a 

continuous change in concentration, i.e. a decreasing ascorbic acid 

concentration and an increasing PCA concentration. The solid lines represent 

the kinetic models fitted to the experimental data (Eq. 2-2 and Eq. 2-5). It can 

be observed that the kinetic models fit the experimental data well, indicating 

that a first order kinetic model is a valid approach to describe both reactions of 

organic acids. The calculated kinetic reaction rates are presented in Table 2-1. 

In the next section, the combined effect of temperature and moisture content 

on the reaction rate is discussed.    
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2.4.2  Experimental and modelling results of ascorbic acid and PCA 

Table 2-1 presents the reaction rate constants of the degradation of ascorbic 

acid and the formation of PCA for different combinations of temperature and 

moisture content. The reaction rate constants of ascorbic acid and PCA were 

calculated by Eq. 2-2 and Eq. 2-5, respectively. The value of CGlu,0 (0.032 

mmol/g FT) representing the total concentration of glutamic acid and 

glutamine in the tomato juice was taken as the average from two previous 

studies 35, 36. Specifically, this value is comparable to the maximum formation 

of PCA in our experimental work (between 0.030 and 0.033 mmol/g FT).  

From the data in Table 2-1, it can be observed that the reaction rate constants 

of ascorbic acid degradation increase with increasing temperature, as expected. 

The stability of ascorbic acid depends also on the moisture content of the 

tomato juice: in Table 2-1 a positive correlation between the reaction rate and 

the moisture content is shown. This may be attributed to higher diffusion 

coefficients of ascorbic acid and oxygen at higher moisture contents 23, 37. 

Concentrated tomato samples with a lower moisture content form a denser 

solid matrix retarding the penetration of oxygen. This may reduce the oxygen 

concentration inside the product and thereby reduce the ascorbic acid oxidation 

degradation. Uddin et al. 23 reported similar results by investigating ascorbic acid 

degradation in dried kiwifruits with different water activity during storage. 

Djendoubi Mrad et al. 38 reported that during air drying of pears, ascorbic acid 

initially degrades slowly when the moisture content is still high, followed by a 

sharper decrease when the moisture content becomes low. This is because 

during initial drying the temperature is equal to the wet bulb temperature. When 

the moisture content becomes low, the temperature of the product increases; 

and this explains the sharp decrease in ascorbic acid. 

In Table 2-1 the reaction rate constant of PCA is shown at different 

combinations of temperature and moisture content. Similar to the ascorbic acid 

degradation, the PCA formation is enhanced at high temperature. However, at 

higher moisture contents, the formation rate of PCA decreases. In the present 

study, PCA formation via the enzymatic route may be negligible, because the 

high temperatures (from 60 to 100 ˚C) lead to low activities of γ-
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glutamylcysteine synthetase (γ-GCS) and Glutamate-5-Kinase (G5K) 16-19. It is 

therefore expected that the non-enzymatic route determines the formation of 

PCA in our system 39. In the non-enzymatic conversion, PCA formation from 

either glutamine or glutamic acid is a unimolecular ring-closure reaction, 

catalysed by weak acids (Figure 2-1). At lower moisture contents the increased 

concentration of substrates (either glutamine or glutamic acid) and catalysts 

(weak acids) is expected to promote PCA formation. Moreover, PCA 

formation can even occur in the dry state because the amino group and the 

carboxamide group of glutamine can react in the absence of water 21. 

Meanwhile, the effect of temperature is more significant at low moisture 

contents, i.e. Xw = 0.13, than at high moisture contents, i.e. Xw = 0.95. 

Figure 2-3 (A, B) shows the reaction rate constants determined from the 

isothermal heating experiments at different moisture contents and the model 

predictions for the reaction rate constants of the ascorbic acid degradation (A) 

and the PCA formation (B) obtained by fitting. The model parameters for both 

reactions are shown in Table 2-2. The model is in good agreement with the 

experimental data for the PCA reaction. For ascorbic acid a reasonable 

agreement can be observed, but one parameter value, i.e. kref,s, could not be 

accurately determined, as it has a large 95% confidence interval. The limited 

agreement for ascorbic acid may be explained by the challenging HPLC analysis 

of this acid due to partial peak overlap with other acids present in tomato juice. 

This overlap especially hindered accurate analysis at low moisture content. 

Although one fitting parameter could not be accurately determined, the general 

dependency of the reaction rate constant on moisture content and temperature 

is well described. In Figure 2-3 (C, D), parity plots of the experimental data and 

model predictions are shown using logarithmic scales and show a reasonable 

distribution.  
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Figure 2-3 (A) and (B): Reaction kinetic constants of: (A) ascorbic acid and (B) 
pyroglutamic acid (PCA). The black dots represent the observed reaction kinetic 
constants from experimental data and the grid surfaces represent the model 
predictions. (C) and (D): Parity plots of the observed reaction kinetic constants of: (C) 
ascorbic acid and (D) PCA. The symbol (○) represents the parity between the 
experimental values and the corresponding predicted value for k. 

Table 2-2 Estimated parameter values and statistical evaluation of ascorbic acid 
degradation and pyroglutamic acid (PCA) formation models. 

Estimated parameters a Ascorbic acid PCA 
kref,w (h-1) 9.9∙10-2 ±1.1∙10-2 2.5∙10-2 ±2.1∙10-2 
kref,s (h-1) 1.5∙10-3 ±8.1∙10-3 0.64 ±0.09 
Ea (J/mol) 28750 ±9100 37610 ±4400 
p 8.0 ±6.9 0.66 ±0.32 
Tref (°C) b 90  90  
SSE 0.01  0.04  
Adjusted R2 0.76  0.98  
RMSE 1.9∙10-2  3.6∙10-2  
a: Uncertainty of the parameters at 95% confidence interval. 
b: Fixed value.   

The model was validated using datasets of ascorbic acid and PCA 

concentrations in tomato samples with a moisture content of 0.51 kg/kg wet 

basis. The model could reasonably well predict the ascorbic acid degradation 

and the PCA formation (Figure 2-4). However, it overestimated the PCA 
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formation when the heating temperature was low (60 and 70 ˚C). The 

discrepancy may be explained by the high sensitivity of the reaction rate of PCA 

to the temperature. However, because PCA formation at low temperatures is 

very small, the lower discrepancy at these temperatures has less effect when 

evaluating a real process. 

 
Figure 2-4 Validation of the model against data of (A) ascorbic acid and (B) 
pyroglutamic acid concentrations in tomato samples with Xw = 0.51. The symbols 
represent the experimental data: 60 ˚C (□), 70 ˚C (◊), 90 ˚C (Δ), and 100 ˚C (○). The 
lines represent the model predictions: 60 ˚C (solid line), 70 ˚C (dotted line), 90 ˚C 
(dashed line), and 100 ˚C (dash-dot line). The error bars show the 95% confidence 
interval of the experimental data (n = 2). 

2.4.3 The effect of convective drying on organic acids concentrations 

The developed kinetic models are used to assess the effect of air drying of a 

tomato product on quality via the degradation of ascorbic acid and the 

formation of PCA, being important taste markers. A heat and mass transport 

model for a co- and counter-current air dryer was used to calculate the 

temperature and moisture content of the product during drying. In this case, a 

tomato-based product with an initial moisture content of 15.7 kg/kg dry basis 

(0.94 kg/kg wet basis) is dried to a final moisture content of 0.05 kg/kg dry 

basis. In both dryer configurations, the inlet air temperature is 150 ˚C. The 

simulated product temperature and moisture content profiles are presented in 

Figure 2-5 (A). The temperature of the product is first heated up to the web 

bulb temperature and keeps constant during the initial constant rate drying 

period. When the moisture content is lower than the critical moisture content 

of 7.85 kg/kg dry basis 40, the process enters the falling rate drying period and 

the product temperature gradually increases to the air temperature.  
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Subsequently, based on Figure 2-5 (A), the degradation and formation of the 

two organic acids were estimated. In Figure 2-5 (B, C) the reaction rate 

constants of ascorbic acid and PCA are shown as a function of temperature 

and moisture content. Additionally, in the same plot the estimated temperature 

and moisture content of the tomato product during co-current and counter-

current drying are shown. These figures provide information on the impact of 

these two different drying technologies on the reaction rates of ascorbic acid 

degradation and PCA formation. In Figure 2-5 (B) the ascorbic acid 

degradation is relatively fast in the initial constant rate drying period, while the 

formation of PCA is very slow as can be observed in Figure 2-5 (C). When the 

process enters the falling rate period, the degradation rate of ascorbic acid 

increases first while later in this period it decreases again. This is due to the 

opposite effect of the increasing temperature and the decreasing moisture 

content on the degradation rate. However, the formation rate of PCA increases 

strongly as decreasing moisture content and increasing temperature both 

promote a faster reaction. 

In Figure 2-5 (D, E) the estimated concentrations of ascorbic acid and PCA are 

shown during the drying process. It is calculated that during co-current drying 

25% of the ascorbic acid degrades, while during counter-current drying 21% 

degrades. Only at the end of the process there is a difference between both 

drying strategies, which is explained by the higher temperature at the end of the 

process during counter-current drying. Due to the higher temperature, the 

degradation in the counter-current dryer is faster. However, the residual 

ascorbic acid content is still higher as the total time for counter-current drying 

is shorter. For PCA the differences occur also primarily at the end of the 

process. The estimated PCA formation (0.021 mmol/g FT) after co-current 

drying is much larger than after counter-current drying (0.008 mmol/g FT). 

Therefore, on the basis of Figure 2-5 (D, E), one might suggest to apply 

counter-current drying to dry tomato-based products, which gives lower 

estimated concentrations of PCA and higher estimated concentrations of 

ascorbic acid. 
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Figure 2-5 (A): Simulations of moisture content of the tomato-based product in co-
current (solid line) and counter-current (dotted line) convective drying; and 
temperature profiles in co-current (solid line with symbol □) and counter-current (solid 
line with symbol ○) convective drying. (B) and (C): Contour plot of the reaction kinetic 
constants of (B) ascorbic acid and (C) pyroglutamic acid (PCA). The isolines represent 
the reaction kinetic constants; the solid lines are the average temperature-moisture 
content history of the tomato samples; the symbols in the line represent a time step of 
0.02 h in co-current (◊) and counter-current (□) convective drying. (D) and (E): (D) 
ascorbic acid degradation and (E) PCA formation with time during co-current (solid 
line) and counter-current (dotted line) convective drying. 
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Concluding, during the drying process both moisture content and temperature 

vary in time, which has complex effects on the degradation and formation of 

the organic acids. The effects can be predicted using the developed kinetic 

models. The next step may be optimisation of the process towards less 

degradation of ascorbic acid and less formation of PCA, beyond mere co-

current and counter-current process conditions. A possible optimisation 

method could be to split the process in two steps. In the second step, a lower 

air temperature may be used, to better retain the quality of the dried tomato 

product. 

2.5  Conclusions  

Thermal processing and drying affect the levels of organic acids in tomato-

based products with a consequent impact on the perceived freshness. Both 

citric and malic acids are heat stable organic acids, which only increase in level 

by a concentration effect during drying. This is different for ascorbic and 

pyroglutamic acids (PCA), which are degraded and formed, respectively. Both 

organic acids can be considered as taste markers, indicating the taste retention 

of thermally processed tomato products. The reactions of ascorbic acid and 

PCA were described with first order kinetics using an extended Arrhenius 

model to describe the dependence of the kinetics on both moisture content 

and temperature. The full kinetic description of the degradation and formation 

kinetics of these two acids is a large improvement to previous studies that 

employ an empirical approach by correlated processing conditions and the 

levels of organic acids after processing. The availability of the kinetic model 

makes it possible to carry out further process optimisation on processing of 

tomato products on perceived freshness. 

As an example the developed kinetic model was integrated in a process model 

of a convective air drying process. The simulations yielded an interesting insight 

on the effect of thermal drying on the final levels of both acids, where counter-

current appears to provide less ascorbic acid degradation and less PCA 

formation than co-current drying. Obviously, the kinetic models can also be 
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integrated in other process models for e.g. sterilisation, evaporation or other 

drying processes.  
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Nomenclature 

av Contact area of the product and air per volume 
of the dryer chamber 

[m2/m3] 

C Concentration [mmol/g FT] 
c Specific heat [kJ/ (kg K)] 
Ea Activation energy [J/mol] 
F Flow rate [kg/s] 
hw Latent heat of water [kJ/kg] 
JD Drying rate [kg/(m2 s)] 
K Mass transfer coefficient [kg/(m2 s)] 
k Reaction rate constant [h-1] 
p Parameter to describe the effect of moisture 

content on reaction rate constant 
 
[-] 

q Heat transfer rate [kJ/(m2 s)] 
R Ideal gas constant [J/(mol k)] 
S Cross-sectional area of the dryer chamber [m2] 
T Temperature [K] 
t Time [h] 
W Moisture content [kg/kg db] 
X Mass fraction [kg/kg total] 
x Position along the length of the dryer [m] 
   
α Heat transfer coefficient [kJ/(K m2 s)] 
χ Co- (1) or counter (-1) current operation   

   

Subscript   

0 Initial condition  

c Critical value (Wc = 7.85 kg/kg db)  

e Equilibrium  

g Gas  

p Product  

ref Reference  

s In pure solid form (Xw = 0)  

t At certain time  

v Vapour  

w In a solution with infinite dilution (Xw = 1)  
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Abstract 

Direct assessment of the kinetics of drum drying operations has been a difficult 

task as the mass and temperature profiles are hard to monitor. Still, developing 

a better understanding of conductive drying would help to identify new 

operating windows for this technology. The drying kinetics was investigated by 

drying maltodextrin and starch suspensions with a novel custom-built 

laboratory-scale apparatus, which allows on-line monitoring of mass and 

temperatures. During drying, three separate periods were identified: the 

heating, the boiling and the conductive drying (declining rate) periods. The 

duration of the initial heating period was proportional to the film thickness and 

was responsible for a relatively small amount of water evaporated due to natural 

convection. During the boiling period, the drying rate kept constant while 

bubble formation impeded the heat transfer. Larger bubbles were observed for 

starch suspensions due to its viscoelastic properties. Thus, large temperature 

gradients between the heating pan and the film were observed for starch 

suspensions. During the conductive drying period, the initial amount of dry 

solids per surface area determines the drying rate as it determines the thickness 

of the semi-moist layer subjected to conductive drying. Application of a thin 

film is preferred to avoid boiling, especially at increasing solid content. This 

situation also better approaches double drum drying processes, where boiling 

occurs in the pool and conductive drying occurs on the drum. 
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3.1  Introduction 

Drying is a widely applied technique in food industry to reduce moisture 

content and to extend product shelf-life. Drying facilitates packaging, 

transportation and storage of foods by reducing weight and volume of the 

product 1. Although many types of drying techniques exist, one can distinguish 

two main categories, i.e. convective and conductive drying technologies that 

rely on a different mode of heat transfer. Convective dryers, also known as 

direct dryers, constitute over 85% of the industrially applied dryers 2, 3. During 

convective drying the heat for evaporation is supplied by hot air, which 

contacts with the wet product to remove the moisture 4. In contrast, during 

conductive drying heat is supplied through a (metal) wall 5. Conductive dryers 

are more energy efficient than convective dryers, having a more efficient heat 

supply and lower energy loss via the exhaust gases 5, 6. During conductive drying 

the product feed is usually applied as a thin wet film 4. A potential disadvantage 

of conductive drying is that the product is dried at the boiling point, which is 

detrimental to heat sensitive products. This can only be alleviated by operating 

at reduced pressure to reduce the boiling temperature. Moreover, powders 

obtained from conductive drying have different properties such as bulk density 

and reconstitution behaviour compared to those obtained with direct drying 

processes, such as spray drying 7. 

Different conductive dryer designs have been developed throughout the years, 

such as drum dryers, refractance window dryers and agitated thin film dryers 8-

10. Drum drying is frequently applied to dry pasty or viscous (food) materials, 

for example for drying starch, sodium caseinate, baby foods, mashed potatoes, 

fruit purees, and soup formulations 11-13. The influence of design and operating 

variables of conductive drying processes on product quality has been 

investigated especially for drum dryers, the most commonly applied conductive 

drying method.  

Fritze 14 compared the performance of different drum dryer designs during 

drying of gelatinized maize starch with varying combinations of feed 

concentration and drum speed. Kalogianni et al. 12 used an industrial-scale 
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double drum dryer to prepare pre-gelatinized maize starch and showed that in 

addition to the drying temperature, also the rheological and handling properties 

of the material are important in the drying process. Valous et al. 15 examined the 

effects of the steam pressure, drum rotation speed and feed pool level, on the 

final moisture content and capacity during double drum drying of pre-

gelatinized maize starch. Gavrielidou et al. 16 measured the temperature profiles 

inside the feed pool of pre-gelatinized starch slurries and suggested that the 

heat transport in the pool is dominated by the convection of flow currents 

induced by the rising bubbles. After pool boiling, the product is rolled into a 

wet film on the rotating drum wall. Depending on the conditions, the film is 

still boiling or is further dried by conductive drying. During conductive drying, 

the temperature of the film increases above the boiling point. A dry layer forms 

and grows, starting from the hot wall surface, until it encompasses the whole 

film. In this period the heat conduction of the dry layer limits the drying rate 17. 

Apart from drum drying, other conductive thin film drying technologies have 

emerged, such as agitated thin film and refractance window drying 9, 10, 18. 

The previous studies were conducted on pilot or industrial-scale equipment, 

and therefore could not accurately establish the transient drying kinetics. Only 

a few studies investigated the drying kinetics at laboratory scale. Fudym et al. 8 

used an experimental device to monitor the product temperature and thus the 

heat flux during contact drying, but did not measure the mass decrease as a 

function of time. Karapantsios 19 used a Simultaneous Thermal Analyser to 

combine thermo-gravimetric and differential scanning calorimetry (DSC) 

measurements to record mass and product temperature during drying of starch, 

but the pan temperature was not registered, which is important to determine 

the heat flux during drying. Thus, the heat transfer between the hot pan and 

the product could not be well characterized. Therefore, to better understand 

the conductive drying processes, an in depth analysis of the drying kinetics is 

still necessary.   

Therefore, the objective of this study was to unravel the transient drying 

kinetics of conductive thin film drying using an experimental system that allows 

simultaneous on-line monitoring of both mass and relevant temperatures. 
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Potato starch and maltodextrin were chosen as representative model systems 

for conductive drying.  

3.2  Materials and Methods 

3.2.1  Sample preparation 

Maltodextrin suspensions with different solid concentrations (10%, 15% and 

30% w/w total) were prepared by dispersing maltodextrin DE12 powders 

(Roquette, Hoofddorp, the Netherlands) into cold deionized water. The 

samples were mixed at room temperature for 1 h by a magnetic stirrer (IKA 

KMO2 basic, Staufen, Germany) with a mixing speed of 400 rpm, to ensure 

the homogeneity and dissolution. The suspensions were freshly prepared and 

used on the same day. 

Native potato starch was purchased from Merck KGaA (Darmstadt, 

Germany). Potato starch suspensions were prepared with different solid 

concentrations (5%, 10%, 15% and 40% w/w total) by adding native potato 

starch granule powders to cold deionized water in a glass beaker. The 

suspensions with low solid concentrations (5%-15%) were heat treated to 

gelatinize the starch according a procedure used by Karapantsios 19. The 

suspensions were stirred (500 rpm) and heated to 80 ˚C for approximately 10 

min (IKA C-MAG HS 7, Staufen, Germany). To avoid evaporation of water 

during the heat treatment, the beaker was covered with aluminium foil. The 

duration of this procedure (10 min) matches approximately with the residence 

time of the product inside the feeding pool of a double drum dryer 16. After 

heating, the agitated gelatinized starch suspensions were allowed to cool down 

to room temperature prior to drying. The heat treatment was skipped for the 

highest solid concentration (40% w/w) due to gel formation, which hindered 

the application of the suspensions as a homogeneous film for subsequent 

drying.  

3.2.2  Design of the DryVaGram 

Figure 3-1 (A) shows a schematic drawing of the laboratory-scale conductive 

thin film dryer. The major parts are the steel heating pan, the induction coil and 
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the Sartorius Cubis MSE analytical balance with 1 mg resolution (Geottingen, 

Germany).  

 
Figure 3-1 Schematic drawing of (A) the system and (B) side and top views of the steel 
pan and (C) a picture of the experimental thin film dryer set-up.  

The induction coil was designed to avoid any undesired interaction with the 

balance and/or the pan. During heating a small systematic deviation (e.g. 0.4 g 

at 200 ˚C) in mass recording was observed, which scaled linearly with the 

measured pan temperature. The measurements were corrected for this small 

deviation. The equipment was also equipped with two Type K thermocouples 

(National InstrumentsTM, Woerden, the Netherlands), which were used to 

record temperatures of the product and the pan. Mass and temperatures were 
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recorded each second. Figure 3-1 (B) shows the side and top views of the steel 

pan. The pan had an inner and an outer ring with a height of 5 mm to avoid 

loss of sample. The pan area between the rings (0.0163 m2) was evenly heated 

with the induction coil and thus used to dry the sample.  

3.2.3  Experimental procedure 

To evaluate the operation of the apparatus, the evaporation of a water film was 

evaluated. A film of 1 mm thickness was prepared by spreading 16.3 mL water 

onto the surface between the rings. Induction heating of the pan at a constant 

power was used to evaporate the water. The experiment was stopped until all 

water evaporated. These experiments were repeated six times.  

Films of maltodextrin and starch suspensions with different thickness were 

dried with the apparatus as well. For this, 8.2, 16.3 and 32.6 mL of suspensions 

were carefully spread across the pan surface, to form thin films of 0.5, 1.0 and 

2.0 mm, respectively. Again, films were dried at a constant power input. The 

drying process was automatically stopped when the pan temperature reached 

190 ̊ C to prevent overheating of the system. All measurements were conducted 

in duplicate. 

The drying process was recorded on video, while the mass decay and 

temperatures were measured every 1 second. Subsequently, the obtained data 

were used to investigate the corresponding drying kinetics. The specific drying 

rate is expressed in g/(s∙m2). For the experiments with pure water, the 

coefficient of variation (= standard deviation/mean) was calculated to evaluate 

the repeatability of the system. 

3.3  Results and discussions 

3.3.1  Conductive thin film evaporation of water 

Six experiments were carried out with water to evaluate the operation of the 

system. Figure 3-2 shows the mass and temperature profiles against drying time 

during the evaporation of water. A thin film of water of 1 mm thickness took 

83.2 ± 3.7 s to evaporate completely. The coefficient of variation of the 

evaporation time (= standard deviation/mean) was less than 0.05. From the 
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mass and temperature curves three distinct periods could be distinguished 

(Figure 3-2). In period 1, the films gradually heat up from room temperature to 

the boiling temperature, while the mass of the film slightly decreases, due to 

the difference in relative humidity of the air and the water, respectively 17. In 

the second period the film is boiling. Both the evaporation rate and the 

difference between the temperatures of the pan and film remain constant, 

which indicates that all transferred heat is used for evaporation. For periods 1 

and 2, the accuracies of mass and temperature measurements were high. The 

coefficients of variation of the film mass, film temperature and pan temperature 

were lower than 0.08, 0.05 and 0.06, respectively.  

 
Figure 3-2 (A) The mass (solid line) and temperature (dotted line) profiles of water 
and the temperature profile (dashed line) of the heated pan during the conductive thin 
film drying measurement (Film thickness = 1 mm). The curves represent the average 
of six independent measurements. The error bars show the standard deviation of the 
experimental data (n = 6); (B) specific drying rate curves versus time of the water film. 

Towards the end of period 2 and during period 3, the evaporation rate declines 

and the temperature difference between the pan and the film increases. This is 

observed as dry spots on the pan appear (according to video analysis) and thus 

not all supplied heat is used anymore for evaporation. In period 3 a temporary 

decrease of the film temperature can be observed, because the sensor was not 

submerged in the water anymore, and measured the temperature of the air 

instead. This may be the reason why the accuracy of the temperature 

measurements in period 3 was lower than those in periods 1 and 2.  
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3.3.2  Drying kinetics of maltodextrin 

Figure 3-3 shows the temperatures during drying of maltodextrin DE12 

slurries, using three different thickness of slurry layers. Also here, the drying 

process can be split into three different periods. The temperatures of pan and 

film linearly increase until the film temperature reaches the boiling temperature 

(period 1). The duration of period 1 increases with film thickness due to the 

increased thermal mass. In period 2 the film temperatures and evaporation rate 

are constant, whereas the pan temperatures gradually increase during this 

period (Figure 3-3 and Figure 3-4). This temperature increase can be explained 

by the reduced heat transfer coefficient from the pan to the film due to bubble 

formation and increased solid concentration. With increasing solute 

concentration and thus viscosity vapour bubbles are hindered to depart from 

the boiling film and collapse, which resists heat transfer. Towards the end of 

period 2 and in period 3, both the pan and film temperatures increased faster 

due to a decline in the evaporation rate and boiling temperature elevation 

(Figure 3-3 and Figure 3-4). This decreasing evaporation rate occurs when most 

of free water is removed. The remaining water is bound water, which results in 

a higher boiling temperature 20. At this point the concentrated liquid film 

transforms into a moist semi-solid film, in which bubbles cannot nucleate and 

grow and thus boiling is inhibited 21. Instead vapour is removed via diffusion, 

most probably progressively from the interface close to the heating wall 

towards the surface of the film 19. At this stage we assume that a dry layer is 

first formed close to the wall, which grows thicker until the total film is dried 
17. The drying is therefore limited by the conductive heat transfer through the 

dry layer. For the film with a thickness of 0.5 mm a distinct boiling stage (period 

2) was not observed, due to the limited amount of water available. Small 

deviations across the pan can be observed: closer to the edges of the rings, less 

vigorous boiling takes place than in the middle position between the rings, 

which might result from a local thicker film near the edge due to capillary action 

(Figure 3-9). Despite this edge effect, we expect that this has limited influence 

on the overall observed drying behaviour of the film.  
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Figure 3-3 The temperature profiles of the heated pans (dashed lines); and the mass 
(solid lines) and temperature profiles (dotted lines) of the maltodextrin DE12 films of 
varying film thickness: 0.5 mm (black lines), 1 mm (dark grey lines), 2 mm (white grey 
lines); and varying initial concentrations: (A) 10% w/w total, (B) 15% w/w total, (C) 
30% w/w total. 
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The mass (g) profiles of the maltodextrin DE12 films were also studied (Figure 

3-3). During heating up, already some evaporation was observed, due to the 

differences in relative humidity between the film and the environment as 

explained before. The slopes of the drying curves became progressively steeper 

and reached a maximum value, and period 2 has started in which the drying 

rates and film temperatures are constant. The duration of period 2 increases 

with increasing film thickness, due to the larger amount of water that needs to 

be evaporated. Only for the smallest film thickness (0.5 mm thickness), the 

drying rates quickly declined after the heating up stage and the maximum drying 

rate was not achieved.  

 
Figure 3-4 Specific drying rate versus time of the maltodextrin DE12 films of varying 
initial solid concentrations: 10% w/w total (solid lines), 15% w/w total (dotted lines), 
30% w/w total (dashed lines); and film thickness: 0.5 mm (black lines), 1 mm (dark 
grey lines) and 2 mm (white grey lines).  

The specific drying rate (g/(s∙m2)) for the maltodextrin DE12 films were also 

investigated using one film thickness, but using different solid contents (Figure 

3-4). It shows that films with similar thickness, but different initial dry matter 

content exhibit different maximum drying rates. With increasing initial dry 

matter content, a lower maximum drying rate was observed (especially for 30% 

w/w), while period 2 becomes shorter. The increasing solid mass results in a 

larger solid matrix, which leads to more resistance to vapour migration and thus 

slower heat transfer due to the creation of a porous matrix. Because the process 
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is operated at a constant heat flux, the pan temperature increases as a result 

(Figure 3-3), while the evaporation will slow. 

The amount of solids present also affects the drying during the last period. 

Figure 3-5 shows the comparison of the specific drying rates of the films with 

different initial conditions (e.g. thickness and initial solid content) but similar 

initial amount of dry matter. The drying rates start to decline after the solid 

content increases to ~40% w/w. It should be noticed that to increase the solid 

content from 15% to 40% w/w, approximately 74% of water is dehydrated. 

After removal of such a large amount of water, the drying rate curves of the 

films converge in the last period, indicating that the amount of solids 

determines the drying behaviour in the last stage. 

 
Figure 3-5 Specific drying rate versus solid concentration for the maltodextrin DE12 
films with varying initial solid concentrations and film thickness: 30% w/w total and 
1 mm (Δ), 15% w/w total and 2 mm (○). The symbols represent a time step of 3 s. 
The lines are added to guide the eye. 

3.3.3  Drying kinetics of pre-gelatinized starches 

Figure 3-6 shows the temperature of the pans and films during drying of starch 

slurries. Films of 2 mm thickness with solid content of 10% and 15% w/w 

could not be dried due to excessive bubble formation. Similar to the drying of 

the 1 and 2 mm maltodextrin films, the temperature curves can be split into 3 

periods, whereas the film of 0.5 mm does not exhibit a clear period 2.  
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The pan temperatures increased faster and more significantly in period 2 for 

the films of 10% and 15% w/w total, compared to those during drying of 

maltodextrin. These higher pan temperatures may be attributed to the different 

molecular properties of starch compared to maltodextrin that result in different 

boiling behaviour. Starch is built from linear amylose and branched 

amylopectin components 22. The linear amylose molecules are responsible for 

entanglement and network formation and thus give starch suspensions high 

viscosity and elasticity, leading to gelation. These properties are also responsible 

for the entrapment of vapour bubbles inside the boiling films and hinder fast 

bubble departure due to retarded film breakup 23. Bubbles in the boiling starch 

suspensions need to expand much in volume before they collapse, leading to 

suboptimal heat transfer. In contrast, maltodextrin, being a hydrolysed product 

from starch, has much lower molecular weights. Maltodextrin solutions exhibit 

therefore lower viscosity and no molecular network formation, leading to 

bubbles that collapse quickly, allowing better heat transfer 23. The higher 

porosity from the larger and more numerous bubbles during drying of starch 

films especially at the end of period 2 (~70 s) (Figure 3-9), provide higher 

thermal resistance, leading to larger temperatures in the pan. Similar behaviour 

was observed during double-drum drying of pre-gelatinized starch slurries and 

is generally known as vapour blanketing 16. 
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Figure 3-6 The temperature profiles of the heated pans (dashed lines); and the mass 
(solid lines) and temperature profiles (dotted lines) of the potato starch films of varying 
film thickness: 0.5 mm (black lines), 1 mm (dark grey lines), 2 mm (white grey lines); 
and varying initial concentrations: (A) 5% w/w total, (B) 10% w/w total, (C) 15% w/w 
total. 
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The temperature profiles for the starch films of 5% w/w differed not much 

from those of the maltodextrin films, because the amount of solids was not 

large enough to provide sufficient viscosity and network formation 23. Similar 

to the drying behaviour of maltodextrin, the drying rate for the starch films of 

1 and 2 mm reached a maximum constant value for a certain period (period 2) 

after which it decreased again (Figure 3-7). Again for the film of 0.5 mm, the 

drying rate declines rapidly after the initial increase without achieving a 

significant period 2.  

 
Figure 3-7 Specific drying rate curves versus time of the starch films of varying initial 
solid concentrations: 5% w/w total (solid lines), 10% w/w total (dotted lines), 15% 
w/w total (dashed lines); and film thickness: 0.5 mm (black lines), 1 mm (dark grey  
lines) and  2 mm (white grey lines). 

To identify the influence of the amount of solids present, we compared the 

specific drying rates of the starch films with different film thickness but similar 

initial amount of dry matter (Figure 3-8). The drying rate curves for the film 

being 1 and 2 mm thick converge rapidly after the initial steep increase, while 

the drying rate for the film with 0.5 mm curve converges at a later stage with 

the two other curves. This shows that the amount of solids determines the 

drying behaviour especially of the last period in which the last bits of water are 

removed from the semi-moist film.  
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Figure 3-8 Specific drying rate versus solid concentration for the starch films with 
varying initial solid concentrations and film thickness: 10% w/w total and 0.5 mm (Δ), 
5% w/w total and 1 mm (○), 2.5% w/w total and 2 mm (□). The symbols represent a 
time step of 2 s. The lines are added to guide the eye. 

If we compare the influence of solids on drying between maltodextrin and 

starch, we can observe that the amount of initial dry matter affects the drying 

rate more for starch slurries than for maltodextrin slurries (Figure 3-4 and 

Figure 3-7). As an example, if we compare the drying curves of the films with 

1 mm thickness, the maximum specific drying rate of the starch drying curves 

change more sharply than that of maltodextrin, indicating the more difficult 

heat transfer to comparable starch slurries. In conclusion, the differences in the 

properties of starch and maltodextrin greatly affect the boiling behaviour (in 

period 2) and drying behaviour (in period 3). 
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Figure 3-9 Images of drying (A) maltodextrin and (B) starch films of 1 mm and 15% 
w/w total. 

3.3.4  Conductive thin film drying of high starch concentrations 

One of the major advantages of conductive drying is that also more viscous 

products can be dried. Drying of starch suspensions up to 40% w/w total has 

been reported for drum dryers 14. Drying of such concentrated starch films 

requires thinner film thickness to avoid the formation of large vapour bubbles 

that impede the drying and may result in local overheating. With a thin film, 

undesired bubble formation and even the formation of a vapour blanket 

beneath the film can be prevented. Moreover, the application of only a thin 

solid layer will result in lower resistance to heat transfer in period 3. In 

experiments with native starch solutions with a solid content of 40% w/w, it 

was found that with decreasing film thickness, smaller bubbles formed and 
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vapour blanketing became much less present (Figure 3-10). For films with a 

thickness of 0.5 and 1 mm, a vapour blanket formed below the gelled starch 

film, which was so strong that the vapour bubbles expanded, but did not 

collapse. Ultimately, the bubbles combined and the starch layer detached from 

the pan surface. The formation of large vapour bubbles also lead to irregular 

drying across the pan. Homogeneous drying was only observed with the 

smallest film thickness of 0.25 mm. This illustrates that the mass of the solids 

present, should be less than a critical value. In our system we estimate this for 

starch to be approximately 76.3 g/m2. In terms of maltodextrin DE12, no 

critical value is estimated, because maltodextrin could not form strong 

molecular network, resulting in quick collapse of bubbles. Thus, vapour 

bubbles will not induce irregular drying. 

The constant power conditions applied in our system do not fully mimic the 

conditions during drum drying, which is operated at a constant wall 

temperature. This is partly a limitation of the experimental system, which is 

heated via induction heating. During drum drying the heat flux becomes lower 

when the heat resistance increases, while in our system the heat flux is constant. 

During drum drying, the formation of larger bubbles is therefore more limited 

and somewhat higher amount of initial solids in the feed may be applied. 

However, the blanketing vapour film could still be observed, hindering energy 

transport from the hot drum walls to the starch films 16. 
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Figure 3-10 Images of drying 40% w/w native starch films with (A) 0.25 mm, (B) 0.5 
mm and (C) 1 mm. 

3.4  Conclusions  

The transient drying kinetics during conductive thin film drying of maltodextrin 

DE12 and native potato starch suspensions were investigated using a novel-

developed laboratory-scale device. Drying of films of more than 1 mm 

thickness could be subdivided in three distinct periods. In the first period, the 

product is heated up to the boiling temperature. In period 2 the films are boiling 

and water is evaporated at a constant rate, whereas in period 3 evaporation is 
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limited by heat transfer and the drying becomes progressively slower. A distinct 

boiling stage (period 2) could not be observed when drying 0.5 mm films, due 

to the limited amount of free water present.  

In addition to the free water, the amount of solids strongly affect the 

conductive drying behaviour. For films with the same thickness, the increased 

solid content leads to slower drying in period 2, since the increased porosity 

formed by stable bubbles, hinder the heat transfer. The amount of solids also 

determines the drying behaviour of the last period, by leaving a thicker film that 

represents more resistance against heat transfer.  

Comparison of the drying curves of maltodextrin and starch shows that 

material properties influence the conductive drying kinetics. The starch 

suspensions form more stable bubbles and hence form a more porous matrix, 

slowing the drying down, due to its higher viscosity and elasticity. This 

accumulation of vapour (vapour blanketing) is detrimental to the heat transfer 

from the pan to the film and leads to less homogeneous drying, and local 

overheating of the solids. A thin film is therefore required.  

The results of this study may contribute to verification of physical models that 

describe the conductive drying behaviour and thus can be used to establish 

guidelines for this technology to achieve higher energy efficiency and better 

product quality. 
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Abstract 

A heat-transfer governed model is proposed to describe drying in a lab-scale 

conductive thin film dryer, which was designed to investigate the drying kinetics 

relevant to drum drying. The model calculations were compared to 

experimental data from drying experiments with maltodextrin DE12 and 

potato starch, considering the three distinct periods (heating, boiling and 

conductive drying) of the lab-scale process. The model uses the measured 

temperatures and evaporation rate during the boiling period, to estimate the 

decrease in moisture content over time during the entire drying process. The 

model was successful in describing the decrease in moisture content during 

drying of maltodextrin and starch slurries. The model was subsequently adapted 

to describe the drum drying of maltodextrin suspensions, which involves only 

the third (conductive) drying period. The initial heat transfer coefficient for 

drum drying of maltodextrin was obtained from the experiments (starting heat 

transfer coefficient of period 3). The simulations provide the moisture contents 

and optimal drying times for different drying conditions.  
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4.1   Introduction 

Drying is one of the most ancient processing methods applied for preserving 

perishable foods 1. The two most commonly applied drying principles in food 

industry are convective and conductive drying. Of these two principles, 

conductive drying is more energy efficient as it does not suffer from large 

energy loss via the exhaust air 2-4. Drum drying relies on conductive drying and 

is used extensively for industrial drying of pasty or viscous food materials, such 

as starch, vegetable and fruit purees 5. During drum drying, the product slurry 

is applied as a thin film on the heated surface of a rotating drum, where it is 

rapidly dried at the boiling temperature and even exposed to higher 

temperatures within a short residence time 6. Despite drying time typically 

shorter than one minute, the exposure to high temperatures can still lead to 

colour changes, aroma loss and degradation of heat sensitive components in 

the product. A better understanding on the drying kinetics during drum drying 

processes, may contribute to more optimal operation of these processes 

achieving high energy efficiency combined with good product quality. 

Drum drying conditions are usually determined via trial and error or at most 

via statistical approaches using pilot-scale experiments that are costly and time 

consuming 7. An experimental study was carried out on the effect of drum 

drying on jackfruit powders by Pua et al. 8. The water activity, solubility and 

colour of double-drum dried jackfruit powders were assessed and optimal 

drying conditions were determined following a statistical approach. Jittanit et al. 
9 studied the feasibility of double-drum drying of tamarind juice using 

maltodextrin or Arabic gum as process additives and determined the optimal 

combination of the additive ratio and drying temperature for the sensory quality 

of the tamarind powder. Tonin et al. 10 experimentally evaluated the use of 

different process additives in single-drum drying of mango pulp, considering 

various powder quality aspects, such as nutrient concentration, colour, 

hygroscopicity and solubility.  

As a complement to experimental studies, modelling can help in process 

development and optimization of drum drying. To evaluate the impact of 
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drying on the quality changes, a process model of the drying process can be 

applied together with kinetic models of specific product quality parameters 11. 

Subsequently, the models can be used to optimize the drying conditions 7, 11. 

However, modelling of drum drying is still challenging, due to the limited 

knowledge of the complex drying kinetics of drum drying. Direct assessment 

of the kinetics is difficult because the mass and temperature profiles are hard 

to be monitored on-line on drum dryers. Therefore, we earlier developed a 

laboratory-scale conductive thin film dryer to analyse the drying kinetics 

relevant to drum drying 5. This dryer allows on-line monitoring of mass and 

temperatures, which supports the analysis of the transient conductive drying 

behaviour and facilitates model development.  

This study focuses on the development of a model, to complement the 

experiments with this lab-scale conductive thin film dryer. The model 

calculations are compared to the experimental data reported in our previous 

paper 5, which  were used for the parametrization of the model description of 

the drum drying process using the heat transfer coefficient obtained from the 

lab-scale drying experiments. 

4.2   Model description  

4.2.1  Modelling of the lab-scale conductive thin film dryer  

Three periods can be distinguished during conductive thin film drying: heating 

up (period 1), boiling (period 2) and conductive drying (period 3) 5. The 

following assumptions were made to model water evaporation during 

operation of the lab-scale conductive thin film dryer: 

1. The temperature and moisture content are homogeneous during the 

heating up and boiling periods.  

2. In the boiling period, a thin layer of vapour is formed between the wall 

and the fluid, which acts as a resistance to heat conduction (Figure 4-1 

(A)).  

3. During conductive drying, a dry layer gradually develops starting close 

to the pan surface and increasing in thickness until the total film is 
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dried. This dried porous layer has a low thermal conductivity, limiting 

the heat transfer from the pan to the evaporation front (Figure 4-1 (B)).  

4. During conductive drying, evaporation takes place at the evaporation 

front. The wet film is assumed homogenous in both temperature and 

moisture content.  

5. To simplify the calculations, shrinkage of the film during drying is 

neglected.  

 

Figure 4-1 Schematic diagram of the film during conductive drying in (A) period 2 and 
(B) period 3. 

During the heating period, the film temperature gradually increases to the 

boiling temperature, while the mass of the film (mf) decreases slightly due to 

evaporation driven by the difference of the relative humidity between the air 

and the film: 

𝑑𝑚𝑓

𝑑𝑡
=
𝐴𝑘𝑤𝑣𝑀𝑤

𝑅
(
𝑃𝑠𝑎𝑡,𝑓

𝑇𝑓
−
𝑅𝐻 ∙ 𝑃𝑠𝑎𝑡,𝑎𝑖𝑟

𝑇𝑎𝑖𝑟
) Eq. 4-1 

where A is the surface area of the pan, kwv is the convective mass transfer 

coefficient of water vapour in air, Mw is the molecular weight of water, R is the 
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ideal gas constant, RH is the relative humidity of the air, Psat,f and Psat,air are the 

saturated vapour pressures at film (Tf) and air temperatures (Tair), respectively. 

In the heating-up period, the evaporation rate is calculated on the basis of the 

measured film temperature (Tf). Specifically, the convective mass transfer 

coefficient (kwv) is calculated from 12: 

𝑆ℎ =
𝑘𝑤𝑣

𝐷𝑤𝑣𝑑 𝑎𝑛
= 0.664𝑅𝑒1/2𝑆𝑐1/3 Eq. 4-2 

where Dwv is the diffusivity of water vapour in air and dpan is the diameter of the 

pan. 

During the subsequent drying periods (periods 2 and 3), the water evaporation 

rate can be expressed by: 

𝑑𝑚𝑓

𝑑𝑡
=
ℎ𝑜𝑣(𝑇 − 𝑇𝑓)

ℎ𝑤
 Eq. 4-3 

where hw is the latent heat of water vapour, hov is the overall heat transfer 

coefficient from the pan to the film, TP and Tf are the temperatures of the pan 

and the film, respectively. Specifically, for the custom-built lab-scale apparatus, 

TP is not constant as the dryer operates with constant heat flux, instead of 

constant temperature. It is noted that during boiling the pan temperature is a 

few degrees above the boiling temperature (Tf), due to the thin layer of water 

vapour between the pan and the fluid. The boiling temperature itself increases 

slowly in time due to the boiling point elevation. 

A direct measurement of the heat transferred from the device to the film was 

not possible due to undefined heat losses to the environment. Therefore, we 

used the measured temperatures and the measured constant evaporation rate 

during boiling (period 2). This yields the overall heat transfer coefficient (hov) 

during the boiling period via Eq. 4-3. We interpret that this heat transfer 

coefficient results from the small vapour layer between the pan and the product 

(Figure 4-1 (A)), which develops during the boiling period, as the increasing 

solute concentration and viscosity hinder the escape of vapour 5. At the end of 

the boiling period, this heat transfer resistance is assumed to remain constant 
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until the end of drying and thus determines the starting heat transfer coefficient 

of period 3.  

When the water evaporation rate declines, the temperature in the film near the 

pan wall starts to increase. This corresponds to the start of period 3. The overall 

heat transfer coefficient (hov) is now calculated by: 

ℎ𝑜𝑣 = (
1

ℎ0
+
𝑧

𝜆𝑓
)

−1

 Eq. 4-4 

in which h0 is the overall heat transfer coefficient at the beginning of period 3, 

λf is the thermal conductivity of the dried solid layer and z is the thickness of 

the dry layer. The growth of the dry layer can be described by:  

𝑧 = 𝑑 (1 −
𝑋𝑤,𝑡
𝑋𝑤,𝑐

) Eq. 4-5 

where d is the thickness of the film, Xw,t is the moisture content at time t, and 

Xw,c is the moisture content at the start of period 3. The water evaporation rate 

is calculated by substituting Eq. 4-4 and Eq. 4-5 into Eq. 4-3. 

The above equations were solved simultaneously using MATLAB R2016b 

(Mathworks, Natick, USA). The physical parameters used in the model 

calculations were listed in Supplementary data 4-1. The calculated moisture 

content profiles were compared to the experimental data. 

4.2.2.  Modelling of drum drying 

The proposed model was modified to describe the larger scale drum drying 

process. We do this by using the heat transfer coefficient of maltodextrin 

obtained from the lab-scale model calculations. In contrast to the lab-scale 

dryer, in larger scale drum drying the wall temperature (Tp in Eq. 4-3) remains 

constant throughout the process. The following assumptions were made: 

1. During larger scale drum drying only the third period is considered, i.e. 

no heating up and no boiling. The drums are heated continuously, while 

most boiling occurs in the feeding pool between the drums. As soon as 

the material is cast as a film, it enters the third period. We also assume 
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that the initial heat transfer coefficient for the larger scale drum drying, 

can be determined by the lab-scale dryer (starting heat transfer 

coefficient of period 3). 

2. The undried film material is at boiling temperature Tf, which increases 

during drying due to boiling point elevation. The film temperature is 

calculated by combining the Clausius-Clapeyron equation and Raoult’s 

law 13: 

𝑇𝑓 = 𝑇𝑤 +
−𝑇𝑤

1 +
𝐻𝑣𝑤

𝑅𝑇𝑤ln⁡(1 − 𝑋𝑠)

 
Eq. 4-6 

where Tw is the boiling temperature of water, Hvw is the latent heat of 

water in J/mol, and Xs is the molar fraction of the solute. It should be 

mentioned that Eq. 4-6 is less accurate at lower moisture content since 

the semi-dried film can no longer be regarded as an ideal system. A 

more complete thermodynamic model of the solution may mitigate 

this. We did not do this here to avoid too much complexity in the 

model.  

4.3   Results and discussions 

4.3.1  Model development for the lab-scale conductive thin film dryer 

Data from the drying experiments with maltodextrin DE12 and potato starch 

films of 1 and 2 mm reported in our previous research 5 were used as the basis 

for model development. The results from 0.5 mm films were not used because 

the measurements of the film temperatures of such thin films were not 

accurate. Figure 4-2 shows the calculated and measured values of the moisture 

contents of films with thicknesses of 1 and 2 mm for different initial solid 

contents. The model describes the moisture content profiles of all experiments 

well. It should be noticed that for the starch films with an initial solid content 

of 5%, the model underestimated the moisture content at the end of period 2 

and in period 3 (Figure 4-2 (B)). This may be attributed to the larger shrinkage 

of these more dilute films in experiments, which was neglected in the model. 

With a larger apparent film thickness, the model underestimates the heat 

transfer and thus the drying rate, leading to higher calculated moisture contents. 
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Figure 4-2 Calculated and measured moisture content profiles of the (A) maltodextrin 
DE12 and (B) photo starch films. The symbols represent the experimental data with 
a time step of 5 s: 1 mm (□) and 2 mm (○). The lines represent the model calculations: 
1 mm (dashed line) and 2 mm (solid line).  

The calculated overall heat transfer resistance (1/hov) during period 3 is 

visualised as a function of the dry layer thickness (Figure 4-3). The starting heat 

transfer resistance of period 3 (1/h0) was obtained from the end of period 2, 

related to the bubble formation during boiling. The starch films had higher 

initial heat transfer resistance than maltodextrin, because drying of starch 

resulted in the formation of larger vapour bubbles in the boiling period that 

impeded the heat transfer 5. The initial heat transfer resistance of the films with 

varying dry matter amounts on the pan surface were similar. During period 3, 

the heat transfer resistance significantly increased with increasing dry layer 

thickness (Figure 4-3). When the dry layer thickness increased to 1 mm, the 

heat transfer coefficients of the maltodextrin and starch films were reduced by 

~92% and ~88%, respectively, which indicates that the dry layer determined 

the heat transfer and thus the drying behaviour. 
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Figure 4-3 Calculated overall heat transfer resistance (1/hov) as a function of dry layer 
thickness of 1 mm films of maltodextrin DE12 (black lines) and potato starch (grey 
lines) with varying initial concentrations: 10% w/w total (solid lines), 15% w/w total 
(dashed lines) and 30% w/w total (dotted lines). 

To conclude, even though the model calculations are on the basis of measured 

data, a fairly good description of the moisture content profiles during lab-scale 

conductive drying is obtained. From the experiments on the lab-scale dryer, the 

starting heat transfer coefficient of period 3 can be determined, which is related 

to the material properties of the feed product, and can be subsequently used in 

the modelling of drum drying. Therefore, the proposed model calculations 

combined with the lab-scale drying experiments are useful from an engineering 

point of view and can be exploited to describe the drum drying process.  

4.3.2  Modelling of drum drying  

The proposed model for the lab-scale conductive dryer can be modified to 

describe the drum drying process using the heat transfer coefficient obtained 

from the lab-scale model calculations. In this case, films of maltodextrin with 

an initial solid content of 30% w/w total (2.33 kg/kg solid) are dried using a 

drum dryer at a drying temperature of 130 ̊ C (Tp in Eq. 4-3). The rotation speed 

of the drum is 1 rpm and the angular distance between the feeding point and 

the scraper is 270˚. Thus, the drying time of the maltodextrin film is about 45 
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s. As discussed before, only the conductive drying period is considered with an 

initial heat transfer coefficient of 4000 W/(m2 K) obtained from the lab-scale 

dryer.  

The simulated moisture content and product temperature profiles are 

presented in Figure 4-4. As expected, thicker films yield a slower relative 

moisture loss. When the moisture content reduces to ~0.006 kg/kg solid, the 

drying curves reach a plateau, indicating that the drying stops because the film 

temperature is heated up to the wall temperature (Figure 4-4 (B)). For the films 

of 0.2, 0.3, 0.4, 0.5 mm, their drying curves reach the plateau at about 8, 15, 24 

and 35 s, respectively, indicating the optimal drying time for these films to avoid 

overheating. The drying times were comparable to those reported in literature 
14. 

 
Figure 4-4 Simulated (A) moisture content and (B) product temperature profiles of 
maltodextrin films with varying film thickness as a function of angular distance from 

the feeding point (Steam temperature: 130 ˚C; Rotation speed of the drum: 1 rpm; 

Angular distance between feeding point and scraper: 270˚).  

4.4   Conclusions 

A water evaporation model was developed for a lab-scale conductive thin film 

dryer, and subsequently was translated to larger scale drum dryers. The model 

is based on the assumption that the drying process is controlled by heat transfer. 

The model takes into account three distinct periods during drying.  
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- In period 1, the heating-up period, a small amount of water evaporates 

during heating, due to the difference in relative humidity between the air 

and the film.  

- In period 2, the boiling period, the water evaporation generates an 

insulating layer of vapour between the wall and the drying fluid, but also 

extensive turbulence in the film, giving homogeneous temperatures and 

water contents in the film itself.  

- In period 3, the conductive drying (declining rate) period, the insulating 

layer gradually enlarges and encompasses the dried porous material situated 

between the pan wall and the still drying film.   

The model calculations were compared with the experimental data obtained 

from the drying experiments with 1 and 2 mm maltodextrin DE12 and potato 

starch films. A good description of the moisture content profiles was obtained. 

The overall heat transfer coefficient obtained from the lab-scale system was 

used to describe large scale drum drying of maltodextrin suspension. Moisture 

content profiles during drum drying were calculated and optimal drying times 

for different drying conditions were suggested. The predicted drying times were 

comparable to the values reported in literature.  

The model can be further combined with kinetic models to describe product 

quality parameters, which offers opportunities for process optimization 

considering quality changes. 
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Nomenclature 

A Area [m2] 
b Molality of the solution [-] 
Dwv Diffusivity of water vapour in air  [m2/s] 
d Film thickness [m] 
dPan Diameter of the pan [m] 
hw Latent heat of water [J/kg] 
Hvw Latent heat of water [J/mol] 
h Heat transfer coefficient [W/(m2 K)] 
JD Drying rate [kg/(m2 s)] 
kwv Convective mass transfer coefficient of water 

vapour in air 
[kg/(m2 s)] 

Mw Molecular weight of water [mol/g] 
m Mass [g] 
Psat Saturated pressure exp⁡(A −

𝐵

𝐶+𝑇𝑓
) [Pa] 

R Ideal gas constant [J/(mol K)] 
Re Reynolds number 

𝑉𝑎𝑖𝑟 𝑝𝑎𝑛

𝜈𝑎𝑖𝑟
 [-] 

RH Relative humidity [-] 
Sc Schmidt number 

𝜈𝑎𝑖𝑟

𝐷𝑤𝑣
 [-] 

Sh Sherwood number 
𝑘𝑤𝑣

𝐷𝑤𝑣 𝑝𝑎𝑛
 [-] 

T Temperature [K] 
t Time [s] 
Vair Air velocity [m/s] 
Xw Moisture content [kg/kg db] 
Xs Molar fraction of the solute [mol/mol total] 
z Dry layer thickness [m] 
   
λp Thermal conductivity of the dry layer [W/(m K)] 
ν Kinematic viscosity  [m2/s] 
   

Subscript   

c Critical value   

f Film  

p Pan  

t At certain time  

w Water  
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Supplementary data 4-1: Physical parameters used in the model calculation and 

modelling of drum drying. 

Parameters Value Units 

Material properties 

Thermal conductivity of dry 

layer (λf) * 15 

𝜆𝑓 = 4.1 ∙ 10−3Tf − 0.21 W/(m K) 

Molar mass of maltodextrin 16 1625 g/mol 

Relative humidity of air (RH) 0.25 - 

kinematic viscosity of air (ν) 17  ν = 6 ∙ 10−11Tf
2 + 6 ∙ 10−8Tf − 9 ∙ 10−6 m2/s 

Diffusivity of water vapour in 

air (Dwv) 18 

Dwv = 10−10Tf
2 + 10−7Tf − 2 ∙ 10−5 m2/s 

Latent heat of water (hw) 2257000 J/kg 

Air velocity  2 m/s 

Air temperature 20 ˚C 

   

Antoine constants (Temperature in ˚C) 

A 16.38  

B 3878.82  

C 229.86  

   

Other parameters used in modelling of drum drying 

Diameter of the drum 0.3 m 

Length of the drum 0.3 m 

Rotation speed of the drum 1 rpm 

Drying temperature 130 ˚C 

Initial heat transfer coefficient 

for conductive drying of 

maltodextrin (h0) 

4000 W/(m2 K) 

Latent heat of water (Hvw) 45000 J/mol 

*: It is assumed that the thermal conductivity of maltodextrin is the similar to that of 

starch. 
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Abstract 

Agitated thin film drying (ATFD) has been proposed for efficient and mild 

drying of viscous liquid foods, pastes or pureed foods. We reported a study on 

the influence of product and process parameters on ATFD. During ATFD of 

spinach leaf slurries, the wall temperature mainly affected the specific 

evaporation rate, while the absolute evaporation rate was proportional to the 

feed rate. The fact that blade rotation speed had limited effect on the drying 

rate suggested that the process is limited by heat transfer through the wall. 

ATFD is especially suitable for slurries that show relatively limited sticky 

behaviour during drying and liquid-solid phase transition with corresponding 

brittle viscoelastic behaviour. This was demonstrated by drying juices from 

tomato and bell pepper, giving poor results, and by drying solutions from whey 

protein isolate (WPI) and sucrose, which could be successfully dried. 
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5.1  Introduction 

Drying is a commonly used technology to preserve food products. Various 

types of dryers have been developed that are tailored to specific feed properties 

and product requirements 1. The most commonly applied drying technologies 

to liquid feeds can be categorised into two types, i.e. convective and conductive 

drying. Spray drying is one of the most commonly applied convective drying 

methods, where energy for evaporation is supplied by contacting a dispersion 

of the product with hot air 2. Drum drying, refractance window drying and 

agitated thin film drying (ATFD) are examples of conductive drying methods, 

where energy for evaporation is supplied by steam condensation and/or hot 

water, which is then transferred through a wall to a thin product film that is 

present at the other side of the wall. ATFD is done by spreading the product 

on the inside of a hollow cylinder, and supplying heat from the outside. The 

product film is continuously agitated with a knife that rotates inside the 

cylinder. In general, conductive drying is especially suitable for high viscous 

(food) products. Drum drying is for example extensively applied for drying of 

starch, mashed potatoes, fruit purees, dry soup mixtures, casein, etc. 3. 

Refractance window drying is reported especially suitable for drying of pureed 

fruits and vegetables, i.e. strawberry pulp, mango pulp, carrot puree and 

pumpkin puree 4-6. Whereas drum drying and refractance window drying are 

more readily applied and effective for drying of viscous liquid foods, pastes or 

purees, agitated thin film drying is not yet widely applied 1, 5, 7, 8. 

The advantage of spray drying is that it is a mild and fast dehydration process 

due to the fast evaporation. Reported disadvantages of spray drying are the low 

energy efficiency, the high capital costs and the relatively low bulk density of 

the dried products 9. The lower energy efficiency of spray drying is related to 

the large energy loss via the warm and moist exhaust gas. In that respect, drum 

drying is more efficient as it consumes on average 40% less energy due to 

almost others lower energy loss via the exhaust gas 2, 9. A major drawback of 

atmospheric drum drying is however that the product is exposed to the boiling 

temperature (100 °C), which can lead to undesired damage to heat sensitive 

foods 1, 7. The operation of drum drying processes under reduced pressure 
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could be an attractive alternative, but the capital costs of vacuum drum dryers 

are relatively large. During refractance window drying the product is dried as a 

thin film on a belt, which moves over a bath filled with hot water (~90 °C) and 

the film is dried under atmospheric conditions 6. A drawback is for example 

that very thin films need to be casted to facilitate the drying, which limits 

capacity and troubles scale-up. Agitated thin film drying is therefore identified 

as a promising alternative conductive drying method. 

ATFD is a continuous drying process carried out in a scraped heat exchanger, 

which can be easily operated under reduced pressure and is thus suitable for 

heat sensitive products. The ATFD consists of two major elements, i.e. the 

drying chamber with a heating jacket and the rotor with fixed blades. Two 

different blade configurations can be distinguished, namely the small-gap and 

the scraped surface blades. For the small-gap blade configuration, a gap is 

present between the blade-tips and the wall. The rotating blades agitate the 

liquid feed, which spreads as a falling thin film within the gap and a falling bow 

wave is created at the tip of the blades, as shown in Figure 5-1 (A) 10, 11. For the 

scraped surface blade configuration, the blade-tips directly contact the wall with 

a negligible gap. This blade constitution forms a larger falling bow wave with 

minimal film formation, as shown in Figure 5-1 (B) 12. The latter blade 

configuration is more efficient in preventing the formation of an undesired dry, 

insulating layer on the wall and thus promote efficient heat transfer, especially 

for materials with higher fouling tendency 13, 14.   
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Figure 5-1 Schematic representation of product distribution in the ATFD with 
different blade constitutions: (A) small-gap blades and (B) scraped surface blades. 

Figure 5-2 provides a schematic drawing of the drying process within the 

ATFD with scraped surface blades. The product progressively passes through 

different consistencies, i.e. liquid, paste, and solid. When the feed enters the 

ATFD, the liquid feed forms two bow waves on the front edge of the blades. 

The blades rotate fast and contact the liquid feed with the heating wall. The 

high rotation speed generates a well-mixed liquid flow within the two bow 

waves. The liquid flows down spirally due to gravity and concentrates as water 

is removed by evaporation. Due to this concentration, the viscosity increases 

and thus the flow rate goes down. The concentrated product becomes 

increasingly viscous and transforms from a paste into a brittle material. 

Depending on the brittleness of the resulting product, which is dependent on 

its moisture content and material properties, the product will fracture into 

smaller powder particles due to the rotating action of the blades.  

(A)

(B)

Bow wave formation near the tip of 

the rotating blades

Thin film formation within the 

clearance
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Figure 5-2 Schematic representation of the drying process in an agitated thin film 
dryer. 

Several studies have investigated flow distribution and heat and mass transfer 

during agitated thin film evaporation (ATFE) processes, which are the first 

stages of ATFD. Komari, Takata and Murakami 10 investigated the flow and 

mixing behaviour of a fluid with a high viscosity in an agitated thin film 

evaporator with a single small-gap blade. They found that more than 70% of 

the supplied feed end up in the bow waves and that the mass transfer between 

the bow waves and the thin film was negligible. Komari, Takata and Murakami 
15 improved the apparatus by using multiple vertically aligned blades, and 

reported that the vertically aligned blades could strongly promote mass transfer 

between the bow waves and the thin film and thus increase the efficiency of 

the equipment. De Goede and De Jong 16 studied the heat transfer properties 

of a scraped surface heat exchanger and developed a model by combining a 

regular model for turbulent pipe flow with the penetration theory. McKenna 17 

presented a model for the design of a wiped film evaporator, by considering 

both fluid and mass transport phenomena.  

Only very few studies investigated ATFD as such. Pawar et al. 1, 11 studied the 

heat and mass transfer during ATFD and proposed a stage-wise penetration 

Sample products

Inlet hot 

water

Outlet hot water
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+ Vacuum
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Stage 1: Liquid

Bow wave growth
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theory model, by assuming ideal mixing between the bow wave and the thin 

film. Their model implies that the resistance to heat transfer would be in the 

film. The model was validated with ATFE instead of ATFD experiments, 

which is only one part of the overall ATFD process: during ATFD, the feed 

will transform from a viscous liquid into a paste and subsequently into a solid, 

and the mass and heat transfer during operation will be different 18. Hitherto, 

to the best of our knowledge no experimental studies have systematically 

investigated this product transformation during ATFD drying and its 

consequence on the drying behaviour. Given the changes in product 

consistency, we expect that the product properties will have large influence on 

the drying behaviour in an ATFD.   

The aim of this study was therefore to create a better understanding of drying 

behaviour of foods during ATFD drying and how it is affected by process 

parameters and product properties. Juice from spinach leaves was selected as a 

model system to investigate the influence of drying parameters, i.e. heating 

temperatures, feeding rates and rotation speeds. The obtained results were 

compared to the existing ATFD model proposed by Pawar et al. 1.  Different 

food formulations, such as whey protein isolate (WPI) solution, sucrose 

solution, bell pepper juice and tomato juice, were dried using ATFD. Drying 

behaviour of spinach juice was taken as a reference and compared to drying 

behaviour of the other materials in the ATFD.  

5.2  Materials and Methods 

5.2.1  Materials 

Spinach suspensions for ATFD experiments were prepared starting from fresh 

spinach leaves, which were purchased from the local supermarket. The fresh 

spinach leaves were juiced by an Angelia AG-7500 Juicer (Angel Co. Ltd, 

Republic of Korea). After juicing, the squeezed juice and fibre residues were 

collected separately. The obtained insoluble fibre residues were dried in a hot 

air oven (Binder, Tuttlingen, Germany) at 60 ˚C for 20 h. The dried fibres were 

milled by the Rotor Mill Pulverisette-14 (FRITSH International, USA) at 6000 

rpm with a 0.2 mm sieve. The drying and milling of fibres was necessary 
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because the fibre particles had to be small enough to avoid blockage of the 

feeding pump. Subsequently, the milled fibres were added back into the 

squeezed juice to obtain a spinach suspension with approximately again 2% 

w/w fibers. In addition, around 5 drops of Antifoam B aqueous silicone 

emulsion (Sigma-Aldrich®, Zwijndrecht, the Netherlands) were added into 1 L 

juice to prevent excessive foaming.  

5.2.2  Lab-scale Agitated Thin Film Drying 

Figure 5-3 shows a schematic diagram of the experimental lab scale apparatus. 

The ATFD chamber was made from transparent glass to facilitate observation 

of the heat exchange area. The ATFD chamber was equipped with a Liebig 

condenser and a dropping funnel (L.G.S. B.V, Ubbena, the Netherlands) to 

condense and quantify the vapour release. The entire system was operated 

under reduced pressure (50 mbar) using a vacuum pump (SC 950, KNF 

Neuberger GmbH, Freiburg, Germany). The dimensions of the lab-scale 

ATFD are shown in Table 5-1. 

 
Figure 5-3 Schematic representation of the experimental apparatus. 

ATFD body

Condenser

Dropping funnel

Vacuum

3 cm

6 cm

35 cm



AGITATED THIN-FILM DRYING OF FOODS 

89 

Experiments were performed to determine the (specific) evaporation rates of 

the spinach suspensions at different drying conditions. The spinach suspension 

was preheated to 33 ̊ C and then supplied to the system with a flow rate ranging 

from 0.3 to 0.5 kg/h, by a peristaltic pump (205S, Watson Marlow, Falmouth, 

England) with rotation speeds from 30 to 50 rpm. The drying temperatures of 

the heating chamber ranged from 70 to 90 ˚C. The condenser was operated 

with cooling water of 2 ˚C. The amount of condensed water was measured and 

used to obtain the evaporation rate. The specific evaporation rate was 

calculated by dividing the evaporation rate by the used heat exchange area. 

Table 5-1 Dimensions of the lab-scale agitated thin film dryer. 

Parameters Value Unit 

Inner diameter of the drying chamber 0.030 m 

Outer diameter of the heating jacket 0.060 m 

Diameter of the scraped surface blades 0.030 m 

Effective length of the drying chamber 0.350 m 

Thickness of the wall 0.002 m 

Maximum heat exchange area 0.033 m2 

Numbers of blades 2 - 

5.2.3  Analysis of the moisture content and water activity 

Powders were collected at the bottom of the lab-scale ATFD for analysis of 

the moisture content and water activity.  To determine the moisture content, 

around 1.5 g of the powder was dried in a hot air oven (Binder, Tuttlingen, 

Germany) at 105 ˚C for 16 h. The water activity was measured by an AquaLab 

4TE dew point water activity metre (METER Food, Munich, Germany). 

Measurements were carried out in duplicate. 

5.2.4.  Ratio of soluble and insoluble compounds 

The ratio of soluble and insoluble compounds was determined by adding 1 g 

of the powder into 30 mL of water, mixed for 60 min by the Multi Reax test 

tube shaker (Heidolph, Germay). Subsequently, the suspensions were 

centrifuged by the Sorvall Legend XFR Centrifuge (Thermo SCIENCE, USA) 

at 10,000 g and 20 ˚C for 30 min. After centrifugation, the supernatant was 
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removed and the pellet was dried in an oven at 105 ˚C for 16 h. The fraction 

of soluble powder (p) was calculated by: 

𝜂𝑝 =
𝑚1(1 − 𝑋𝑤) − (𝑚2 −𝑚3)

𝑚1(1 − 𝑋𝑤)
 Eq. 5-1 

Where Xw is the moisture content of the ATFD dried powders; m1, m2 and m3 

are the mass of the ATFD dried powders, the dried sediments and the 

centrifuge tube, respectively. The measurements were carried out in duplicate. 

5.2.5  Morphology of the ATFD dried powders 

Scanning electron microscopy images of ATFD dried powders were made 

using a Phenom G2 Pure SEM (Phenom-World BV, Eindhoven, the 

Netherlands). The dried powders were fixed on an aluminium pin-type mount 

(JEOL BV. Nieuw-Vennep, the Netherlands) with carbon tabs. Pre-treatment 

of the samples was not necessary. 

5.2.6  Statistical analysis and mathematical modelling 

A one-way analysis of variance (ANOVA) and a Tukey multiple regression 

analysis were applied to evaluate the obtained results at a significance level of 

0.05. The ATFD process model from Pawar et al. 1 was implemented and 

compared to experimental results. The statistical analysis and modelling work 

were carried out using MATLAB R2016b (Mathworks, Natick, USA). 

5.3  Results and discussions 

5.3.1  ATFD experiments with spinach leaf suspensions 

The lab-scale ATFD rig was used to dry the spinach suspensions at different 

conditions, which are reported in Table 5-2. The effect of the drying 

temperature on the evaporation rate and the specific evaporation rate was 

determined. Figure 5-4 (A) shows that with the increase of drying temperature, 

the overall evaporation rate does not change significantly (p > 0.05), but the 

specific evaporation rate increases significantly (p < 0.05), based on one-way 

ANOVA analysis. At a higher drying temperature, the surface area required for 

drying decreases, as shown in Figure 5-4 (B). Since the feed is dried completely, 

the total evaporation rate is fixed. When the drying temperature is increased, 
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the specific evaporation rate will increase due to the larger driving force, which 

will result in a smaller total surface used for evaporation. Indeed, we see at 

higher drying temperatures that a larger part of the wall is not used.  

 
Figure 5-4 (A) The evaporation rate and the specific evaporation rate in the ATFD for 
different temperatures (Rotation speed = 600 rpm, Feed rate = 0.3 kg/h). The error 
bars represent the standard deviation of the experimental data (n = 3). The same letters 
represent no significant difference at the 95% confidence interval. The dotted lines are 
added to guide the eye. (B) Images showing the occupied surface area in the ATFD 
chamber at different drying temperatures. 

Figure 5-5 shows the influence of the rotation speed and the feed rate on the 

evaporation rate and the specific evaporation rate. As shown in Figure 5-5 (A), 

both the evaporation rate and the specific evaporation rate did not change at 

different rotation speeds (p > 0.05). The constant specific evaporation rate 

implies that mixing of the feed is not rate limiting for the drying process. 

Therefore, the heat transfer has to be limited by the heat transfer through the 

glass wall. This observation is opposite to the predictions by the model 

proposed by Pawar et al. 1, who proposed that the heat transfer coefficient of 

the ATFD may be derived from the heat penetration theory, and therefore 

should increase with the rotation speed. According to this model, the specific 

evaporation rate should increase as well. In fact, these authors also 

experimentally observed that the water evaporation rate was independent of 

the speed of the blades, when they concentrated a 20% w/w ammonium 

sulphate solution in an ATFE. Our conclusion is therefore that the blades do 

not directly influence the mass and heat transfer of the drying process, even 

though they are still essential for removing the solidified material from the wall. 
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As shown in Figure 5-5  (B), we found that the effect of the feed rate is opposite 

to that of the temperature. The increased feed rate does not influence the 

specific evaporation rate (p > 0.05), but does influence the total evaporation 

rate (p < 0.05), since a larger feed rate leads to a larger surface covered by the 

drying feed, and therefore a larger total evaporation rate. The total evaporation 

rate depends on the feed rate, as long as the system is not at its maximum 

capacity. 

 
Figure 5-5 The evaporation rate and the specific evaporation rate in the ATFD for 
different (A) rotation speeds (Temperature = 70 ˚C, Feed rate = 0.3 kg/h) and (B) 
feed rates (Temperature = 90 ˚C, Rotation speed = 600 rpm). The error bars represent 
the standard deviation of the experimental data (n = 3). The same letters represent no 
significant difference at the 95% confidence interval. The dotted lines are added to 
guide the eye. 
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Table 5-2 shows the moisture content and water activity (aw) of the dried 

spinach powder and the fraction of soluble powder at different drying 

conditions. The moisture content of the powder ranges from 0.049 to 0.114 

kg/kg total and the water activity ranges from 0.26 to 0.60. Although foods 

with aw < 0.6 may be considered as microbiologically stable, they may still be 

susceptible to undesired chemical reactions and stickiness, and further drying 

in such as a fluidized bed would be recommended for vegetable powders to 

further decrease the water activity to aw < 0.2 19. In most cases, the fraction of 

soluble powder was higher than 0.31. This was higher than that of spinach 

fibres after squeezing (0.21), indicating that the powders collected from ATFD 

were not only fibres. Therefore, ATFD did not selectively scrape insoluble 

particles from sticky lumps. It should be mentioned that during experiment No. 

2, no powder was collected at the bottom of the setup. Instead, all the material 

stuck to the blades as lumps so that the moisture content, water activity and 

fraction of soluble powder in this experiment could not be measured. Probably 

this was due to the low rotation speed, which did not provide enough 

mechanical stress to fracture the material. Therefore, even though the rotation 

speed does not affect the heat transfer (Figure 5-5 (A)), it is crucial for powder 

formation.  
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5.3.2  Comparison between experimental data and model predictions 

As mentioned in the introduction a model was proposed by Pawar et al. 1  for 

the ATFD process. Figure 5-6 compares the experimental and predicted 

fraction of the used heat exchange area. The predicted values are much lower 

than the experimental results. The underestimation by the model can be related 

to several inappropriate model assumptions.  

(1) Our finding of the independence of the specific evaporation rate of the 

blade rotation speed (Figure 5-5 (A)) points towards heat transfer limited 

by the wall (and possibly the heating fluid outside), but not by the feed 

slurry itself. One should note that Pawar et al. 1 found the same 

independence in their experiments, which in fact contradicts their own 

model.  

(2) Their model assumes that the blades continuously remove the boundary 

layer and mix the feed suspension ideally. This assumption is not valid 

for highly concentrated products (Stage 2 in Figure 5-2), with high 

viscosity and thus a low rotational Reynolds number (ReR < 100) 1. For a 

solid-like product (Stage 3 in Figure 5-2), mixing will stop completely. 

This leads to overestimation of the heat transfer coefficient in the 

concentrated and final paste/solid phases.  

(3) It is assumed that the rotating blade completely removes material from 

the heat exchange surface and thus heat transfer resistance due to fouling 

is neglected. In practice always some deposited material is observed on 

the wall probably leading to increased and significant heat transfer 

resistance over time, adding to the dominance of the heat transfer 

limitation of the wall (point 1).  

(4) The model assumes that evaporation occurs only at the surface of the 

thin film, while the hottest location in the feed slurry is at the surface. 

Most probably, the evaporation already takes place close to the wall. 

Indeed, we see the generation of bubbles indicating boiling inside the 

slurry. If this is the case, then the mass transfer from wall to bow wave 

does not contribute directly to the evaporation process; even though it is 

still important to remove the dry matter from the wall.  
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Figure 5-6 Fraction of used heating area for different drying temperature in the ATFD 
compared to predicted values (Rotation speed = 600 rpm; Feed rate = 0.3 kg/h). The 
symbols represent the experimental data. The solid line represents the predictions 
from the model developed by Pawar et. al 1. The error bars show the standard deviation 
of the experimental data (n = 3). 

All of the above discussed assumptions contribute to the observed differences 

between predicted and experimental values and we therefore conclude that the 

penetration theory based model may be suitable for ATFE, but not for ATFD 

processes.  

5.3.3  Application of ATFD to other food products 

In addition to spinach juice, other food materials, i.e. whey protein isolate 

(WPI) solution, sucrose solution, bell pepper juice and tomato juice, were dried 

in the lab-scale ATFD, to investigate the role of the properties of the feed 

materials in the ATFD process. Both WPI and sucrose solution were dried 

successfully in the setup, while bell pepper and tomato juices could not. These 

juices were only concentrated into a paste-like rubbery lump, which became 

very sticky and could not be scraped off by the blades anymore. The sticky 

rubbery lump accumulated in the setup impaired the operation of the dryer. 

The high concentrations of glucose and fructose, approximately 10 times 

higher than in spinach leaves, probably explains the observed drying behaviour 
20. These low molecular weight sugars do not crystallise easily and have a low 

glass transition temperature. Thus, these components contribute very much to 
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sticky behaviour during drying, leading to the formation of a paste-like rubbery 

lump instead of a hard brittle solid 21-23. This was further confirmed by drying 

spinach juice with 2% w/w glucose and 2% w/w fructose added. This sugar-

rich spinach suspension could not be successfully dried, just as the bell pepper 

and tomato juices.  

In contrast to glucose and fructose, sucrose solutions could be dried 

successfully, probably because of the fast crystallisation of sucrose. Figure 5-7 

(A) indeed gives evidence of crystallised sucrose in the SEM micrograph of 

ATFD dried sucrose particles. The sucrose consists of agglomerates of 

amorphous sugar and small regular hexagon crystals, which are indicated in the 

micrograph. It is indicative of that the fast crystallisation may facilitate the 

solidification and fragmentation of the lump during drying. Also WPI could be 

dried with the lab-scale ATFD, as is shown in Figure 5-7 (B); The WPI powder 

particles are irregularly shaped with smooth break surfaces and some cracks, 

reflecting a brittle material fragmented by blade rotations. WPI consists of 

globular whey proteins that behave as ‘hard spheres’ 24, 25. During drying, when 

the volume fraction of the proteins increases to a critical level, the hard spheres 

jam, which results in a dramatic change from a liquid-like to a solid-like state 

with a corresponding large viscosity change 26. The jammed WPI system is 

assumed to exhibit viscoelastic behaviour similar to that of non-deformable 

hard sphere colloids 24, 25. The dried WPI resists to further deformation 24, being 

a hard brittle material, but can be broken by mechanical action via the blade 

rotation. Finally, Figure 5-7 (C) shows that the ATFD dried spinach powder 

consists of irregular agglomerated particles with fibres.  
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Figure 5-7 Regular and Scanning Electron Microscope images of ATFD dried (A) 
sucrose (B) whey protein isolate (WPI) and (C) spinach and the ATFD chamber with 
the respective products.  
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A solid lump could be removed from the equipment after drying of WPI, as 

shown in Figure 5-8. The lump was tough (by manual tactile inspection), with 

a triangular cross section and probably did not contact the wall directly, but slid 

over a thin film on the surface. The powder formation may have resulted from 

attrition from the lump due to the mechanical action. This powder formation 

processes was also visualised in the schematic drawing of the ATFD process in 

Figure 5-2. Because the WPI lumps are mechanically tough, the degree of 

attrition was not sufficient in the lab-scale ATFD and after a certain time 

impaired the operation of the dryer. In large scale operations, the tip speed of 

the blades can be much higher and combined with a stronger impeller motor, 

the disintegration of such a tough bow wave is faster and more thorough. Very 

fast blade rotation and a strong impeller motor could however also lead to local 

heating and damage to the product components. 

We conclude that the product properties, and especially the combination of 

phase transition and viscoelastic properties, determine whether ATFD is a 

suitable dying process.  
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Figure 5-8 Pictures of solidified bow-waves formed by accumulation of material during 
drying of a WPI solution in the ATFD. 

5.4  Conclusions  

Suspensions prepared from spinach leaves were dried in a lab-scale agitated 

thin film dryer (ATFD). The spinach powders that were obtained had good 

flowability. The drying behaviour was characterised and especially wall 

temperature was identified as important for the specific evaporation rate, giving 

a parameter to set the dryer capacity. The blade rotation speed does not affect 

the drying rate, but mechanically disintegrates the material into small powder 

particles during drying. The independence of the specific drying rate of the 

blade rotation speed shows that in our system the drying process is limited by 

heat transfer through the wall, which falsifies the existing model for ATFD, 

based on the penetration theory.  

Surface contacting the blades Triangular cross-section

Oriented towards the wall, without direct 

contact 

Oriented towards the axis
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Successful drying is strongly dependent on the product properties. A liquid-

solid phase transition at high concentrations and corresponding brittle 

viscoelastic behaviour make a material potentially suitable for ATFD. This was 

demonstrated by drying of slurries of whey protein isolate (WPI), sucrose, and 

bell pepper and tomato juices. Larger scale ATFD enables higher blade 

velocities and stronger shearing, which may make the process somewhat less 

sensitive to the product properties. Disadvantage of high blade speed velocities 

may however be undesired elevation of the local temperature due to friction.  
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Abstract 

Conductive drying is an energy-efficient drying method, suited for drying of 

highly viscous products, like tomato puree. Four pilot-scale conductive dryers, 

namely a vacuum drum dryer (VDD), a drum dryer (DD), an agitated thin film 

dryer (ATFD) and a refractance window dryer (RWD) were applied to dry 

tomato puree. Drying induced colour differences between the reconstituted 

tomato puree and the original tomato puree, especially for RWD and ATFD. 

In addition, drying strongly affected the volatile and non-volatile profiles of the 

powders. Four separated groups corresponding to the different drying methods 

were identified by principal component analysis (PCA), indicating that the 

drying methods caused significant variance in compound profiles. 

Subsequently, pairwise comparison of different dried powders was performed 

by partial least square discriminant analysis (PLS-DA). This resulted in a 

selection of discriminative volatile and non-volatile markers, which could be 

related to flavour quality variance of tomato powder caused by the different 

drying methods. RWD and VDD produced powders with high volatile markers 

that can be related to preservation of aroma. While DD dried products 

contained more non-volatile markers that can be related to flavour perception. 

ATFD processed powders had a lower level of discriminant compounds. The 

results and approach used in the study provide interesting insight on the impact 

of different drying technologies on tomato powder quality, and may benefit 

efficient drying of high quality tomato powder and even other vegetable 

powders. 
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6.1  Introduction 

Tomato (Lycopersicum esculentum) is a healthy source of nutrients such as fibres, 

proteins, vitamins, lycopene and other antioxidants 1, 2. With a water content of 

around 94%, fresh tomatoes are easily perishable resulting in wastes and losses, 

thus drying is commonly applied for preservation.  

Conductive drying is a good option to dry tomato puree into powders, as it is 

energy efficient and especially suitable for highly viscous (food) products 3, 4. 

Throughout the years different types of conductive dryers have been 

developed, such as drum dryers (DD), agitated thin film dryers (ATFD) and 

refractance window dryers (RWD) 5-7.  

Drum drying is successfully applied with viscous pasty or pureed foods, such 

as pre-gelatinized starches, mashed potatoes, caseinate and fruit purees 8-10. The 

puree is applied to the outer surface of the rotating drum, where it is rapidly 

dried by heat supplied through the steel wall by steam condensing inside the 

drum 11. The dried product film is then scraped off from the drum surface, 

which allows reuse of the hot drum surface. Drum drying is one of the more 

energy-efficient drying techniques as it consumes on  average 40% less energy 

than spray drying 6, but the product is exposed to high temperatures, which can 

result in severe quality loss. The thermal damage can be alleviated by applying 

reduced pressure to lower the boiling temperature, although the capital costs 

of vacuum drum dryers (VDD) remain a concern 12.  

Agitated thin film drying (ATFD) is a continuous drying process carried out 

under reduced pressure. The ATFD mainly consists of a cylindrical drying 

chamber with a heating jacket and an internal rotor with fixed blades. The 

blades agitate and spread the liquid feed as a thin film across the heated surface. 

The liquid flows down by gravity and progressively passes through different 

phases, from liquid, to a paste and finally into a solid. The dried solid product 

is fractured by the rotor blades into smaller particles. The entire process can be 

easily operated under reduced pressure and is therefore suitable for heat and 

oxygen sensitive products 7. Nevertheless, successful drying with an ATFD is 

strongly dependent on the material properties, such as its stickiness and 
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viscoelasticity. A higher tip velocity of the blades provides stronger shearing, 

which can make the process more robust to the product properties, but it may 

also lead to local overheating due to friction and thermal damage to the product 
12. 

Refractance window drying (RWD) is a relatively new gentle drying technique, 

which has been applied on drying pureed or sliced fruits and vegetables under 

atmospheric conditions 13-15. During RWD, a thin film of the food product is 

dried on a transparent polyethylene conveyor belt moving over circulating hot 

water. At the end of the drying process, the dried film moves over a cooling 

water bath, where the products cool down below its glass transition 

temperature to avoid stickiness and facilitate scraping-off 16. RWD is aimed at 

heat sensitive products with a low drying temperature 17. However, RWD has 

limitations with respect to capacity, throughput and scale-up, as very thin films 

need to be casted to accommodate reasonable drying rates. 

Several studies evaluated the effects of different drying technologies on the 

perceived freshness and nutritional properties of various food products, such 

as asparagus, carrots, strawberry, mango, etc. 14, 18, 19. However, no studies have 

yet been conducted to compare the effect of different conductive drying 

methods on tomato powders quality, especially in terms of the retention of taste 

and aroma specifically. The changes in perceived fresh-tomato flavour during 

the drying process can be related to loss and/or formation of specific volatile 

and non-volatile compounds, which have been described in previous studies 20-

24. These changes may lead to the perception of lower quality by consumers 25. 

Assessment of the volatile and non-volatile profiles in processed fruits and 

vegetable products, combined with multivariate data analysis, has been applied 

to investigate the process impact on flavour quality 26-28. Nevertheless, to the 

best of our knowledge, no research has been performed to evaluate the effect 

of drying methods on the flavour quality of tomato powder by this approach.  

The objective of this study is thus to create a better understanding of the 

relationship between organoleptic quality of tomato powders (colour and 

flavour) and conductive drying methods. The tomato powders were prepared 
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with four conductive drying technologies (DD and VDD, ATFD and RWD) 

using different conditions (temperature and initial solid content). The flavour 

quality was evaluated by quantitatively determining the concentrations of key 

volatile and non-volatile compounds, which contribute to tomato flavour. 

6.2  Materials and Methods 

6.2.1  Preparation of tomato puree 

The hot-break tomato puree used in this study was purchased from AGRAZ, 

S.A.U. (Badajoz, Spain). The tomato puree was sterilized and aseptically packed 

in multilayer polyethylene bags. The bags with puree were stored under freezing 

conditions in a galvanized steel drum, while transported to ILVO (Melle, 

Belgium), Bodec (Helmond, the Netherlands), ANDRITZ Gouda 

(Waddinxveen, the Netherlands), and Unilever R&D (Vlaardingen, the 

Netherlands). The puree was kept frozen until it was ready for drying. The 

tomato puree was maintained at 20-22 ˚Brix and pH 4.0-4.4 with a moisture 

content of ~0.75 kg/kg wet basis before drying. 

6.2.2  Drying experiments 

The frozen tomato puree was thawed just before it was used for drying. To 

vary the moisture content, a specific amount of puree was thoroughly mixed 

with added tap water. Thereafter, different batches of diluted tomato puree 

were obtained with moisture contents of 0.80, 0.81 and 0.82 kg/kg wet basis. 

The range of the moisture content is small because the initial moisture content 

of the puree was restricted by the consistencies that could be used with the 

RWD. For the ATFD dryer, more diluted puree (0.86 and 0.93 kg/kg wet basis) 

was needed. The prepared puree was dried to below 0.04 kg/kg wet basis by 

regular and vacuum drum drying, agitated thin film drying or refractance 

window drying. The drying conditions of each experiment were shown in 

Supplementary data 6-1. 

6.2.2.1  Drum drying 

Two types of pilot scale double drum dryers, i.e. a regular drum dryer (DD) 

and a vacuum drum dryer (VDD), were utilised for drying tomato puree in this 

study. The DD (Tummers Machinebouw B.V., Hoogerheide, the Netherlands) 
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had two hollow steel drums with 0.30 m external diameter and 0.30 m length. 

The drums were internally heated by steam with a pressure varying from 1.0 to 

3.0 bars, which provided a hot wall temperature ranging from 99.6 to 133.5 ˚C. 

The rotation speed of the drums was set at ~1.6 rpm. The VDD (ANDRITZ 

Gouda, Waddinxveen, the Netherlands) consisted of two steel drums with 0.20 

m external diameter and 0.48 m length, was enclosed in a vacuum chamber and 

operated under reduced pressure (60 mbar). The drums rotated at a fixed speed 

of ~2.6 rpm and a heating temperature ranging from 81.3 to 133.5 ˚C, by using 

steam of different pressures (0.5 to 3.0 bar). The vacuum chamber itself was 

maintained at 80 ˚C to prevent the condensation of vapour. 

For both drum drying experiments, the clearance between the two drums was 

fixed at 0.2 mm. The drum temperature was first stabilised before feeding the 

puree to the dryer. The prepared puree with different moisture contents (0.80 

to 0.82 kg/kg wet basis) was poured manually and evenly over the hot feeding 

pool and passed through the gap of the drums forming a thin layer attaching 

on the drum surface. After traveling approximately three fourths of the drum 

circumference, the dried sample was scraped from the drum surface by doctor 

blades. The dried product collected from the same drying conditions was mixed 

together for further analysis. 

6.2.2.2  Agitated thin film drying (ATFD) 

A pilot scale ATFD dryer was used to dry tomato puree (Bodec, Helmond, the 

Netherlands). The ATFD dryer consisted of a cylindrical drying chamber with 

a heating jacket and a rotor with three fixed blades. The drying chamber had 

an internal diameter of 0.20 m and an effective length of 0.40 m, and the 

diameter of the blades was 0.198 m. The clearance between the blade tip and 

the hot surface was 1.0 mm. Before drying, the drying chamber was pre-heated 

by steam via the wall to the required temperature (60, 75 or 80 ˚C). The 

prepared puree (0.86 and 0.93 kg/kg wet basis) was then pumped into the 

system with a flow rate of 6 kg/h. The rotation speed of the blades was varied 

from 500 to 700 rpm, depending on the possibility of scraping the dried 

product from the drying surface. The dried product was collected at the bottom 
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of the dryer for further analysis. The whole system was operated under a 

reduced pressure of 50 mbar. 

6.2.2.3  Refractance window drying (RWD) 

Refractance window drying was performed with a custom made system (ILVO, 

Melle, Belgium). The total effective length of the dryer was 3 m in the direction 

of the belt motion, including a heating part of 2 m and a cooling part of 1m. 

The conveyor belt was made of polyethylene terephthalate (Mylar). During 

drying, the prepared puree (0.80 to 0.82 kg/kg wet basis) was continuously 

applied to the plastic conveyor belt with a film thickness of ~1.5 mm. The film 

of puree was gradually dried while conveyed across the surface of recirculating 

hot water (85 and 95 ̊ C), and then was cooled down by recirculating cold water 

(30 ˚C). The water removal from the film was facilitated by an air suction hood 

(~20 ˚C) over the puree at an average air velocity of 1.5 m/s. The belt was set 

in motion with a speed of 0.1 m/min. At the end of the belt, the dried product 

was scraped off the belt and collected for further analysis.  

6.2.3  Colour measurements of reconstituted tomato puree 

For colour measurements ~5 g of dried tomato powder was reconstituted by 

adding hot distilled water to attain the water content similar to that of the 

original tomato puree. The reconstituted puree was mixed with a spatula until 

a homogeneous puree was obtained. Subsequently, it was stored at room 

temperature for 24 h for full hydration. The prepared sample was transferred 

in a 5 cm diameter transparent PE petri dish. Their colour parameters (L*, a*, 

and b*) were measured with a colorimeter (Colorquest XE, Hunterlab, Murnau, 

Germany), with the original tomato puree as a reference. The total colour 

difference between original and reconstituted puree (Δ𝐸∗) was calculated by: 

Δ𝐸∗ = √(L𝑠𝑎𝑚𝑝𝑙𝑒
∗ − L𝑟𝑒𝑓

∗ )2 + (a𝑠𝑎𝑚𝑝𝑙𝑒
∗ − a𝑟𝑒𝑓

∗ )2 + (b𝑠𝑎𝑚𝑝𝑙𝑒
∗ − b𝑟𝑒𝑓

∗ )2 Eq. 6-1 

All measurements were conducted in duplicate. 

6.2.4  HS-SPME-GC-MS analysis of volatiles 

~1 g reconstituted puree was homogenised in a 20 mL headspace vial sealed 

with a screw cap and a PTFE/silicon septum (Supelco, Sigma-Aldrich, 



CHAPTER 6 

112 

Zwijndrecht, the Netherlands). The vial was heated at 60 ˚C for 30 min. 

Subsequently, the headspace vial was exposed to a PDMS fibre (Agilent 

Technologies, Santa Clara, USA) to adsorb the volatile compounds. This fibre 

had been preconditioned at 250 ˚C for 30 min before use. After extraction, the 

fibre was transferred to the injection port of a GC-MS, where the adsorbed 

volatiles were thermally desorbed for 1 min at 250 ̊ C. The GC-MS analysis was 

conducted on an Agilent 7890A-5975C system (Agilent Technologies, Santa 

Clara, USA), equipped with an MPS autosampler (Gerstel, Mülheim, Germany). 

The volatiles were injected in splitless mode, and separated on a DB-Wax 

column with 20 m × 0.18 mm and 0.3 µm film thickness (Agilent Technologies, 

Santa Clara, USA). Helium was the carrier gas with a constant rate of 1 

mL/min. The column oven started with a temperature of 35 ˚C for 4 min. It 

was then heated to 230 ˚C with a rate of 4.6 ˚C/min and maintained at this 

temperature for 4 min. Mass spectra were obtained by electron ionisation at 

1758 eV, with a scanning range of 20-250 m/z. MS ion source and quadrupole 

temperatures were 230 and 150 ˚C, respectively. All the measurements were 

conducted in triplicate.  

The obtained chromatograms were processed using ChemStation and 

MassHunter software (Agilent Technologies, Santa Clara, USA). The peak areas 

were used for multivariate data analysis. 

6.2.5  NMR spectrometry analysis of non-volatiles 

6.2.5.1  Materials 

Deuterated water (D2O, 99.96% atom) was purchased from Euriso-top (Saclay, 

France). Ethylenediaminetetraacetic-d12-acid (EDTA-d12, 98% atom) was 

purchased from Cambridge Isotope Laboratories, Inc (Tewksbury, USA). 3-

(Trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt (TSP-D4, 98% atom) was 

purchased from Sigma-Aldrich® (Zwijndrecht, the Netherlands). (Difluoro-

trimethylsilanyl-methyl)phosphonic acid (DFTMP) was purchased from Bridge 

Organics Co (Vicksburg, USA).   
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6.2.5.2  Sample preparation 

Tomato powder (50 mg) was dissolved in 3 mL D2O. Next, 600 µL of this 

sample solution were diluted with 100 µL of internal standard solution (0.2 

mg/mL of TSP-d4 and 0.1 mg/mL DFTMP in D2O), 100 µL of 5 mg/mL 

EDTA-d12 solution in D2O and 300 µL of 0.2 M phosphate buffer in D2O (pD 

7.4, containing 0.05% w/w NaN3 in D2O). The NMR sample solution was 

mixed for 3 minutes using an Eppendorf Thermomixer®C (Hamburg, 

Germany) at room temperature. Then the solution was centrifuged at 17,000 g 

and room temperature for 5 min. Subsequently, 650 µL of the supernatant was 

transferred to a 5 mm NMR tube for analysis. 

6.2.5.3  NMR spectrometry analysis 

1D 1H NMR spectra were recorded at 25 ˚C on a Bruker Avance III 600 NMR 

spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) equipped with 

a 5 mm cryoprobe. The probe was tuned to detect 1H resonances at 600.25 

MHz. 64 scans were collected in data points of 57 k with a relaxation delay of 

10 s, an acquisition time of 4 s and a mixing time of 100 ms. Low power water 

suppression (16 Hz) was applied for 0.99 s. The resultant data were processed 

in TopSpin software Version 3.5 pl 1 (Bruker BioSpin GmbH, Rheinstetten, 

Germany). The data of the free induction decay (FID) were Fourier 

transformed after multiplying by an exponential window function with a line-

broadening factor of 0.15 Hz. Manual phase and baseline correction was 

applied to all 1D 1H NMR spectra. The spectra were referenced against the 

methyl signal of TSP (δ 0.0 ppm). The measurements were carried out in 

duplicate. 

The NMR spectra were imported in Chenomx software (Chenomx NMR Suite 

Professional v7.63, Edmonton, Alberta, Canada) to calculate the 

concentrations of the pre-selected target non-volatile compounds. The 

concentrations of the compounds were expressed as milligram per gram sample 

(mg/g). A relative error of 10% was taken into account. 



CHAPTER 6 

114 

6.2.6  Multivariate data analysis 

Experimental data of volatiles and non-volatiles were used for multivariate data 

analysis using SIMCA 14 (Sartorius Stedim, Malmö, Sweden). As a pre-

processing step, all data were mean-centred and then weighed by their standard 

deviation to give them equal variance. Hereafter, principal component analysis 

(PCA) was performed to evaluate the variance of each sample and detect 

outliers without considering the information of the classes (i.e. drying 

methods). Subsequently, in order to detect the inter-class variance (differences 

between the samples dried with different conductive drying technologies), 

partial least square discriminant analysis (PLS-DA) was carried out. For PLS-

DA, different volatiles and non-volatiles were considered as X-variables and 

the four drying techniques as categorical Y-variables. Considering the 

complexity of PLS-DA, only pairwise comparison was performed (in total 6 

comparisons). The lowest number of latent variables (LVs) resulting in the 

separation was selected for each comparison. To assess model performance, a 

permutation test was conducted and r2 (goodness of fit) and Q2 (goodness of 

prediction) values were calculated.  

Variable importance in projection (VIP) scores were calculated to identify 

discriminant compounds, which contributed the most to the explanation of Y-

variable variance estimated by PLS-DA. In the present work, X-variables with 

a VIP score higher than 1 were considered as discriminant markers.  

6.3  Results and discussions 

6.3.1  Performance of the four drying technologies for producing tomato 

powders 

The four dryers required different preconditioning. The original tomato puree 

(0.75 kg/kg wet basis) could be directly fed to the DD and VDD, while the 

RWD and ATFD required some dilution.  

For DD and VDD, significant amounts of water were evaporated during 

boiling in the feeding pool. After the tomato passed through the gap between 

the two drums, it formed a moist, semi-solid film without visible boiling, as 

bubbles could not nucleate and grow 29. It is assumed that water vapour 
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migrates through pores in the film from the evaporation front inside the film 

towards to the surface of the film until the film has completely dried 30. The 

drying processes lasted ~17 and ~28 s for VDD and DD, respectively.  

For RWD, dilution of the feed was required due to the applicator design, the 

minimum belt speed and the maximum drying temperature of the applied 

RWD: the original puree was too viscous to be formed into a homogeneous 

thin film, while a puree that was too diluted could not be totally dried. At a 

drying temperature of 85 ˚C only the puree with a water content of 0.80 kg/kg 

could be successfully dried. Due to the low drying temperature (<95 ˚C), no 

boiling took place, and water evaporated due to the difference in relative 

humidity between the air and the film. Thus, the residence time of RWD (~30 

min) was much longer than that of drum drying.  

For ATFD, also dilution of the original puree had to be carried out (0.86 and 

0.93 kg/kg wet basis). The puree with a moisture content of 0.86 kg/kg could 

only be dried at low temperatures (60 ˚C). At higher temperatures, the 

concentrated puree transformed into a sticky mass forming large lumps, which 

could not be easily dried and scraped from the wall. Unfortunately, it is 

impossible to visually inspect the drying behaviour in the stainless steel ATFD 

equipment. The relatively difficult drying of tomato puree in ATFD could be 

related to its high concentration of glucose and fructose, which contributed to 

sticky behaviour during drying 12. The rotation speed of the blades had to be 

well controlled as well: faster rotation facilitates powder formation, but can also 

lead to local overheating and damage to the product. Therefore the feed rate, 

feed moisture, drying temperature and blade rotation speed should be well 

tuned for proper operation of ATFD. To conclude, RWD and ATFD are more 

challenging in their operation and require more optimization for successful 

drying of tomato puree.  

The different drying methods resulted in different product morphology (Figure 

6-1). DD and RWD yielded smooth, thin flakes. VDD produced a sausage-like 

product due to the high chamber temperature (80 ˚C): after scraping-off, the 

film remained in the rubbery state and thus curled into a sausage shape along 
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with the rotation of the drums 31. During ATFD, the product was fractured 

into small particles by the rotating action of the blades. 

 
Figure 6-1 Visual images of the tomato powders produced from (A) vacuum drum 
drying; (B) drum drying; (C) refractance window drying and (D) agitated thin film 
drying. 

6.3.2  Impact of drying technologies on colour 

Figure 6-2 shows the luminosity values of the reconstituted tomato purees. All 

reconstituted samples had lower L* values than the reference (original tomato 

puree) indicating a darker colour. This may be attributed to non-enzymatic 

(A) Vacuum drum drying (B) Drum drying

(C) Refractance window drying (D) Agitated thin film drying
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browning (Maillard reaction) during drying 18. Comparing each drying method, 

the L* values of VDD (except the samples dried at 133.5 ˚C) and DD dried 

samples were closer to the reference than those from RWD and ATFD. The 

reconstituted ATFD dried puree was darker, due to local overheating by the 

blade rotation, in spite of the low drying temperature. Overheating might lead 

to caramelization of sugars contributing to darkening during drying. The colour 

degradation was more pronounced at a higher rotation speed. The unexpected 

darker samples produced by RWD could be attributed to the long drying time, 

and the extended exposure to oxygen. As the product stayed in a moist state 

with high water activity for long time, more browning or Maillard reactions 

might occur, although the drying temperature was much lower than during 

VDD and DD. The impact of temperature was more pronounced for VDD 

than the other methods. The possible reason could be that during VDD the 

product temperature quickly increases to the wall temperature, leading to more 

pronounced overheating and darkening. The effect of the moisture content on 

the feed was limited due to the small range of the moisture content considered.  

 
Figure 6-2 Luminosity of reconstituted tomato powders dried from puree of varying 
initial feed moisture contents at different drying conditions: 0.75 w/w (white bars); 
0.80 w/w (light grey bars); 0.81 w/w (dark grey bars); 0.82 w/w (black bars); 0.86 w/w 
(bars with dots) and 0.93 w/w (bars with lines). The error bars represent the standard 
deviation of the experimental data (n = 2). 

The colour of tomato puree is red, which is mainly due to the presence of 

lycopene 32. It is commonly regarded as a measure of quality and can be 

represented by a* values (Figure 6-3). Similar to L*, all reconstituted purees had 
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lower a* values than the reference, mainly because of the degradation of 

lycopene during the process 32. The decrease of a* was more pronounced with 

ATFD and RWD, probably also due to high blade rotation and long drying 

time, respectively. The impact of the temperature was more pronounced for 

VDD and DD. The higher temperature led to a decrease of a* in VDD, 

whereas an increase of a* in DD. On one hand, a higher temperature may 

induce more lycopene degradation. On the other hand, an increased 

temperature leads to faster drying of the tomato matrix, which may prevent 

penetration of oxygen and limit the oxidation of the lycopene 33. For VDD, the 

effect of temperature is dominant since the vacuum creates a low-oxygen 

environment. For the DD, the influence of oxidation is probably more 

pronounced. Again, the impact of moisture content was limited.  

 
Figure 6-3 Redness of reconstituted tomato powders dried from puree of varying 
initial feed moisture contents at different drying conditions: 0.75 w/w (white bars); 
0.80 w/w (light grey bars); 0.81 w/w (dark grey bars); 0.82 w/w (black bars); 0.86 w/w 
(bars with dots) and 0.93 w/w (bars with lines). The error bars represent the standard 
deviation of the experimental data (n = 2). 

Figure 6-4 shows the total colour difference between the reconstituted puree. 

The VDD (81.3 ˚C) and DD (99.6 ˚C, 0.75 kg/kg) dried samples had minimal 

colour changes, indicating that their colour quality was closest to that of the 

reference. Increasing temperature induced larger colour changes for VDD, 

while smaller changes were observed for DD. Especially for drying at 133.5 ˚C, 

VDD led to more significant colour changes than DD. This could be explained 

by a faster increase in the product temperature during VDD as the samples 
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were dried much faster, which resulted in a longer exposure to a high 

temperature and thus more thermal damage. Therefore, under applied high wall 

temperatures, the drums of VDD could be rotated faster to shorten the 

residence time and to prevent overheating. Another option to reduce thermal 

damage is to use low-pressure steam to operate at lower drum wall temperature. 

Among the applied conditions, the effect of temperature and moisture content 

was not obvious for RWD and ATFD.   

 
Figure 6-4 Total colour difference of reconstituted tomato powders dried from puree 
of varying initial feed moisture contents at different drying conditions: 0.75 w/w 
(white bars); 0.80 w/w (light grey bars); 0.81 w/w (dark grey bars); 0.82 w/w (black 
bars); 0.86 w/w (bars with dots) and 0.93 w/w (bars with lines). The error bars 
represent the standard deviation of the experimental data (n = 2). 

6.3.3  Impact of drying technologies on volatile and non-volatile profiles 

To assess the effect of the conductive drying methods on tomato flavour 

quality, we determined the concentrations of volatile and non-volatile 

compounds in the tomato powders. We selected 14 volatiles and 16 non-

volatile compounds that are key compounds for flavour of tomato products 

(shown in Supplementary data 6-2) 20, 21, 34. Some key volatile compounds, 

previously reported, e.g. hexanal, cis-3-hexenal, hexanol and cis-3-hexenol 21, 

were not detected either in the tomato powders or the original tomato puree, 

possibly due to the hot-break process used for the production of the starting 

puree. These volatiles, known as C6 aldehydes, are derived from the oxidation 

of fatty acids via the lipoxygenase pathway. Inactivation of the enzymes at 

higher temperatures during hot-break (ranging from 85 – 100 ˚C) resulted in 
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the reduced generation of these volatiles 35. In addition, the hot-break 

processing may have further reduced their level especially that of cis-3-hexenal, 

because of their instability to heat and metal surfaces 36-38. 

6.3.3.1  Principal component analysis (PCA) 

Principal component analysis was first applied to the data of volatiles and non-

volatiles. The first two principal components (PCs) could explain 33.6% and 

21.0% of the total variability, respectively. The score plot (Figure 6-5) showed 

the differences in the volatile and non-volatile profiles of the different tomato 

powders. Four separated groups could be identified, corresponding to the 

different drying methods, which indicates that the variance of the compound 

profiles caused by the drying methods was more significant than that caused by 

the drying conditions within a single drying technology, i.e. temperature and 

initial moisture content.  

 
Figure 6-5 A score plot of the PCA performed on the volatile and non-volatile data of 
the tomato powders obtained from: vacuum drum drying (yellow circle), regular drum 
drying (blue triangle), agitated thin film drying (green square) and refractance window 
drying (red diamond). The variance explained by each component is indicated on the 
respective axis.  
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6.3.3.2  Partial least square discriminant analysis (PLS-DA) 

In order to further understand the variance, partial least square discriminant 

analyses (PLS-DA) were carried out to pairwise compare each drying method. 

All PLS-DA models had Q2 values > 0.5 and were statistically significant, 

indicating that the groups could be discriminated beyond chance 39. All the 

PLS-DA models were validated without overfitting according to permutation 

tests (Supplementary data 6-3). 

A PLS-DA bi-plot using the first two latent variables (LVs) was constructed to 

visualize the different impact of VDD and DD on tomato powder quality 

(Figure 6-6). The VDD and DD dried samples are well separated and their 

variance can be explained mainly by the first LV, indicating processing impact. 

The significance of the individual compounds for the discrimination of 

differently processed samples increased with their distance from the centre. In 

Figure 6-6, compounds with higher concentrations in the VDD dried samples 

are projected close to the VDD side (mainly in the left-hand side of the plots). 

In contrast, compounds located closer to the DD side, have lower 

concentration in the VDD dried powders. PLS-DA bi-plots of the other 

comparisons are not shown. 
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Figure 6-6 A PLS-DA bi-plot visualizing impact differences between vacuum drum 
drying (blue triangle) and regular drum drying (green square). The circles represent the 
volatile and non-volatile compounds detected, of which the selected discriminant 
compounds (VIP > 1) are highlighted in red. The vector and black stars represent the 
correlation loading for the categorical Y-variables. The X- and Y- variance explained 
by each latent variable (LV) is indicated on the respective axis. 

To quantitatively rank the importance of volatiles to the discrimination 

between VDD and DD, variable-importance-in-projection (VIP) scores were 

calculated. In the present work, only compounds with VIP > 1 were selected 

and considered as discriminant markers, and were highlighted in red (Figure 6-

6). Table 6-1 shows the regression coefficients of the discriminant markers in 

the indicated class (VDD). Positive regression coefficients indicate higher 

concentrations in VDD, and vice versa. Six volatiles and eight non-volatiles 

markers were selected. Nine markers had positive coefficients, indicating their 

higher concentration in VDD dried powders. All the discriminative volatiles 

were detected in a higher abundance in VDD.  
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The identification of the discriminative compounds provide valuable 

information about differences amongst drying technologies. For example, the 

higher concentration of 2-isobutylthiazole in VDD can be understood from 

the limited presence of oxygen in the vacuum chamber, as 2-isobutylthiazole is 

sensitive to oxidation 40. Phenylacetaldehyde was also detected in larger 

amounts in VDD. This component can be associated with a cooked flavour, 

originating from Strecker degradation of amino acids (a minor pathway of the 

Maillard reaction) 41. More Strecker and/or Maillard reactions could occur 

during VDD as the product temperature quickly increased to the wall 

temperature due to the fast drying and thus the product was exposed to high 

temperatures for longer time during the process. Conversely, many of the 

compounds with negative coefficients were amino acids in the VDD samples, 

which might also be explained by Strecker and/or Maillard reactions 

considering that amino acids are substrates for these reactions. In addition to 

the chemical changes, fast drying and solidification of the tomato matrix during 

VDD may also entrap volatiles in the matrix, facilitating the retention of 

volatiles despite the lower pressure that would in principle favour the release 

of volatiles 40.   
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Table 6-1 Discriminant volatile and non-volatile compounds, selected in tomato 
powders, based on VIP values. The compounds are listed in decreasing order of 
regression coefficients, where positive value indicates a higher concentration of a 
compound of the indicated class compared to the other; and negative value indicates 
lower concentration compared to the other class.  

 
  

VDD versus DD VDD versus ATFD VDD versus RWD

Compound

Regression

coefficient

(VDD)

Compound

Regression

coefficient

(VDD)

Compound

Regression

coefficient

(VDD)

α-Terpineol 0.17 Geranial 0.10 Tryptophan 0.14

Linalool 0.16 ß-Ionone 0.10 Malate 0.11

ß-Ionone 0.15 Neral 0.10 Nerylacetone 0.01

3-Methylbutanoic

acid
0.12 α-Terpineol 0.09 3-Ethylbenzaldehyde, -0.06

Acetate 0.12 Tryptophan 0.09
6-Methyl-5-hepten-2-

one
-0.08

2-Isobutylthiazole 0.08 Linalool 0.08 Geranial -0.08

Phenylacetaldehyde 0.03 2-Isobutylthiazole 0.08 Neral -0.08

Valine 0.02
3-Methylbutanoic

acid
0.07 α-Terpineol -0.11

Glutamate 0.01 AMP 0.07 Linalool -0.12

Asparagine -0.004 Nerylacetone 0.07 ß-Ionone -0.16

Glucose -0.01 Citrate 0.07

Aspartate -0.04 Malate 0.06

Isoleucine -0.06 Nonanoic acid -0.07

UMP -0.11

DD versus ATFD DD versus RWD ATFD versus RWD

Compound

Regression

coefficient

(DD)

Compound

Regression

coefficient

(DD)

Compound

Regression

coefficient

(ATFD)

AMP 0.16 AMP 0.09 Nonanoic acid 0.07

Citrate 0.15
3-Ethylbenzaldehyde -0.08

6-Methyl-5-hepten-2-

one
-0.06

α-Terpineol 0.13 2-Isobutylthiazole -0.10 Nerylacetone -0.07

Geranial 0.08 3-Methylbutanoic

acid
-0.11 AMP -0.07

Neral 0.07 α-Terpineol -0.13 Neral -0.08

Fructose 0.05 Linalool -0.13 Geranial -0.08

Glucose 0.05 ß-Ionone -0.13 Citrate -0.09

Tryptophan 0.04 2-Isobutylthiazole -0.09

Isoleucine 0.03 Linalool -0.09

Asparagine 0.03 3-Methylbutanoic

acid
-0.09

Aspartate 0.03 ß-Ionone -0.10

Valine 0.03 α-Terpineol -0.10

Glutamate 0.02

Acetate -0.15
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Comparing the impacts of VDD and ATFD on product quality, eight volatiles 

and five non-volatiles were selected as markers (Table 6-1). Most compounds 

(twelve) had positive regression coefficients, indicating they were more 

abundant in the VDD class. Similar results were observed when comparing 

ATFD with DD or RWD. The comparison between DD and ATFD showed 

that thirteen of the fourteen markers (three volatiles and eleven non-volatiles) 

were in higher concentration in DD dried powders (Table 6-1). Regarding 

ATFD versus RWD, eleven of the thirteen markers (eleven volatiles and two 

non-volatiles) were more retained in RWD (Table 6-1). These findings show 

that ATFD retained less flavour compounds than the others, under the applied 

drying conditions. This may be due to the thermal damage induced by the fast 

blade rotation. Therefore, more optimization of the processing parameters, i.e. 

feed moisture content and blade rotation speed, etc., is necessary in order to 

produce tomato powders of higher quality. 

When comparing RWD with VDD, ten markers (eight volatiles and two non-

volatiles) were selected, while seven of them had negative regression 

coefficients in VDD. Similarly, in the comparison of RWD and DD, six of the 

seven markers had a negative coefficient in DD. In both comparisons, all the 

discriminative volatiles (except nerylacetone) were detected in high levels in 

RWD (Table 6-1). The reason could be attributed to the low operating 

temperatures (<95 ˚C) applied in RWD, resulting in less release of volatiles 

from tomato puree. The more abundant volatiles might contribute to higher 

aroma retention in RWD processed products. Specifically, for VDD compared 

to RWD, a lower concentration of 6-methyl-5-hepten-2-one in VDD could also 

be related to the absence of oxygen in VDD. 6-methyl-5-hepten-2-one is 

regarded as a marker compound for lycopene degradation as it forms when 

lycopene is oxidized 42, 43. This was also consistent with the observation that 

VDD dried powders had higher a* values than RWD. 

Concluding, RWD processing has the best potential to produce powders with 

a high level of volatile compounds (i.e. retained aromas), followed by VDD. 

Although DD processing led to lower levels of volatiles compared to RWD 

and VDD, it produced powders with more non-volatiles, known to contribute 
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to overall taste of tomato. ATFD processed powders contained lowest amount 

of (non)-volatiles compared to other conductive drying technologies, making 

ATFD probably less suitable for drying of tomato products. 

6.3.3.3  Changes of discriminative compounds during drying processes 

To further substantiate differences between the drying methods, Figure 6-7 

shows the individual plots of several discriminative markers. The 

concentrations of these markers were also compared to the original tomato 

puree (as a reference) to visualise how they changed after drying. It can be 

observed that phenylacetaldehyde and 6-methyl-5-hepten-2-one had higher 

concentration in the tomato powders. Especially, formation of 

phenylacetaldehyde was more pronounced for VDD at high temperature, 

probably because more Strecker/Maillard reactions occurred. Formation of 6-

methyl-5-hepten-2-one in VDD and ATFD dried powders was less than RWD 

and DD, which is related to less oxidation of lycopene in a low oxygen 

environment. Differently, the concentration of ß-ionone decreased during 

drying probably due to its low boiling point 44. RWD dried powders had the 

highest ß-ionone level practically similar to the reference, due to its mild 

operating conditions. Again, all the dried powders, except those obtained from 

DD at 100 ˚C and 0.82 w/w, contained less glutamate (known as a marker for 

umami taste) compared to the reference. One possible reason could be that 

glutamate converted into pyroglutamic acid during thermal processing, which 

contributes to a more bitter and undesirable sour taste of the product 1. 
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Figure 6-7 Discriminative components (A) phenylacetaldehyde, (B) 6-methyl-5-
hepten-2-one, (C)  ß-ionone and (D) glutamate of reconstituted tomato powders dried 
from puree of varying initial feed moisture contents at different drying conditions: 0.75 
w/w (white bars); 0.80 w/w (light grey bars); 0.81 w/w (dark grey bars); 0.82 w/w 
(black bars); 0.86 w/w (bars with dots) and 0.93 w/w (bars with lines). The Y-axis of 
volatiles indicates the peak area × 105. The error bars represent the standard deviation 
of the experimental data (n = 3). The Y-axis of non-volatiles indicates the 
concentration in mg/g. The error bars represent the standard deviation of the 
experimental data (n = 2). 
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6.4  Conclusions  

Tomato puree was dried into powders applying four conductive drying 

methods and the organoleptic quality (colour and flavour) of the resulting 

powder was compared. Operation of RWD and ATFD was more challenging 

than DD and VDD because more optimization of the processing conditions, 

i.e. feed moisture content, drying temperature and blade rotation speed (for 

ATFD), was needed.  

The drying methods strongly affected the final powder morphology of the dried 

products. DD and RWD produced smooth thin flakes, while VDD dried 

products were sausage-like after collection, due to the high temperature in the 

vacuum chamber. The products from ATFD were fractured into small particles 

because of the blade rotation. All samples were milled afterwards to produce 

powder. 

All the drying methods resulted in a change in colour when comparing the 

reconstituted tomato puree and the original tomato puree. The colour changes 

were most obvious for ATFD and RWD, due to the high local shear and long 

drying time, respectively. In addition to colour, the different technologies also 

led to different volatile and non-volatile profiles in the powders that might be 

related to perceived flavour quality. In general, RWD resulted in a higher level 

of discriminative volatiles, due to the lower operation temperature. Comparing 

to DD, discriminative volatiles were more abundant in VDD, while 

discriminative non-volatiles especially amino acids were less. Under the applied 

conditions, ATFD dried powders had a lower level of flavour compounds. 

However, since the ATFD is operated under vacuum and at lower drying 

temperature, we had expected to prepare tomato powders with more flavour 

compounds. Possibly, further process optimization, i.e. feed moisture content 

and blade rotation speed, etc., might improve ATFD processing.  

Choice of technology depends on the specific requirements on product quality 

and costs involved. RWD has potential for making powders with high retention 

of volatiles, with amongst other aromas. However, RWD is a relative slow 

process for drying of concentrated tomato puree, and thus has limitations with 
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respect to capacity and scale-up. Following RWD, VDD can be an alternative 

to retain aromas during drying. Nevertheless, also its high capital costs need to 

be concerned. Although DD dried products contain less volatiles, they have 

higher concentration of certain non-volatile compounds, i.e. amino acids, 

which contributes to the taste. ATFD is probably less suitable for sticky 

materials like tomato, while it can be applied to products with limited sticky 

behaviour, such as spinach juice 12. The results in the present work may be 

considered a starting point for selecting conductive drying technologies for the 

production of tomato powders and even other vegetable powders of desired 

quality. Sensory analysis of processed powders combined with corresponding 

volatile and non-volatile profiles is recommended to achieve more detailed 

information about how powder flavour quality is perceived by consumers. 
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Supplementary data 6-1 Drying conditions of each experiments 

No. 

Drying conditions 

Temperature 
(˚C) 

Initial solid 
content 
(w/w) 

Rotor 
speed 
(rpm) 

Film 
thickness 

(mm) 

Vacuum 
(mbar) 

Residence 
time 
(s) 

Vacuum drum drying (VDD)     

1 81.3 0.25 

- 0.1 a 60 ~17 

2 111.4 0.25 
3 133.5 0.25 
4 81.3 0.20 
5 111.4 0.20 
6 133.5 0.20 
7 81.3 0.19 
8 111.4 0.19 
9 133.5 0.19 
10 81.3 0.18 
11 111.4 0.18 
12 133.5 0.18 

Drum drying (DD)     

13 99.6 0.25 

- 0.1 a - ~28 

14 111.4 0.25 
15 99.6 0.20 
16 111.4 0.20 
17 133.5 0.20 
18 99.6 0.19 
19 111.4 0.19 
20 133.5 0.19 
21 143.6 0.19 
22 99.6 0.18 
23 111.4 0.18 
24 133.5 0.18 
25 143.6 0.18 

Agitated thin film drying (ATFD)     

26 60 0.14 600 

1 b 50 - 
27 60 0.07 600 
28 75 0.07 600 
29 75 0.07 700 
30 80 0.07 500 

Refractance window drying (RWD)     

31 85 0.20 

- 1.5 c - ~1800 
32 95 0.20 

33 95 0.19 

34 95 0.18 
a: Estimated from the gap between two drums.  
b: Estimated from the gap between the blade tips and the inner surface of the heating jacket. 
c: Controlled by the applicator. 
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Supplementary data 6-2 Detected key volatile and non-volatile compounds, which 
contribute to tomato flavour. 

Volatile compounds Non-volatile compounds 

3-Methylbutanoic acid Asparagine 

Nonanoic acid Aspartate 

Benzaldehyde Glutamate 

Phenylacetaldehyde Isoleucine 

3-Ethylbenzaldehyde Phenylalanine 

Neral Tryptophan 

Geranial Tyrosine 

Linalool Valine 

α-Terpineol Fructose 

6-Methyl-5-hepten-2-one Glucose 

Nerylacetone Sucrose 

ß-Ionone Acetate 

2-Isobutylthiazole Citrate 

4-Methylbenzaldehyde Malate 

 AMP 

 UMP 

 

Supplementary data 6-3 Performance of the PLS-DA models of the pairwise 
comparison of the drying technologies. 

PLS-DA Number of Latent variables r2X r2Y Q2 P-Values a 

VDD versus DD 2 0.51 0.90 0.81 <0.001 

VDD versus ATFD 1 0.31 0.94 0.88 <0.001 

VDD versus RWD 2 0.42 0.82 0.79 <0.001 

DD versus ATFD 2 0.58 0.88 0.74 <0.001 

DD versus RWD 2 0.60 0.94 0.88 <0.001 

ATFD versus RWD 2 0.71 0.96 0.89 <0.001 

a: Significance of the model determined from a permutation test using 999 iterations. 
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7.1  Introduction 

Throughout the years, different conductive dryers have been developed and 

applied for drying of foods. Although conductive drying is inherently more 

energy efficient than convective drying, its practical application to drying of 

foods is still limited due to the relatively harsh conditions during the process 

that may negatively affect the product quality. More recently, mild conductive 

drying approaches have been developed, often operating at lower (vapour) 

pressure and hence allowing the use of lower temperatures. However, the exact 

principle of conductive drying is still relatively poorly understood. Therefore, 

the aim of this thesis is to obtain better insights on the principle of conductive 

drying of foods and to translate insights generated to operation of different 

mild conductive drying technologies. This objective relies on the hypothesis 

that a lower drying temperature and faster drying to lower moisture content 

during conductive drying lead to higher product quality. Therefore, it may be 

expected that the conductive drying processes, namely vacuum drum drying 

(VDD), agitated thin film drying (ATFD), and refractance window drying 

(RWD) provide milder drying conditions and thus higher product quality 

compared to regular drum drying (DD). RWD may be less mild than VDD and 

ATFD, since the residence time is very long.  

In this chapter we first summarise the main findings of the thesis. We extend 

the comparison of conductive drying technologies to drying of milk and report 

on a primary techno-economic assessment of conductive drying technologies. 

Subsequently, we discuss guidelines how to select the optimal conductive 

drying method for a specific product. Finally, this chapter concludes with an 

outlook towards needs for future research.  

7.2  Discussion of main findings 

Thermal processing, such as drying, induces changes in food quality. In this 

thesis, tomato juice was used as a model food to evaluate the impact of thermal 

processing on quality. In Chapter 2, we studied the influence of heating and 

drying on tomato taste by monitoring the presence of important tomato taste 

markers, citric, malic, ascorbic and pyroglutamic acids (PCA). The levels of 
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these four organic acids were experimentally assessed by isothermal treatment 

of concentrated tomato juice at varying moisture content, temperature and time 

combinations. Both citric and malic acids were not affected by heating, only 

increasing in concentration due to the reduction in volume by drying. In 

contrast, ascorbic acid was significantly degraded and PCA was formed during 

heating. The degradation rate of ascorbic acid and the formation rate of PCA 

depend on both temperature and moisture content. Increase of the temperature 

accelerates both reactions. At a lower moisture content the ascorbic acid 

degradation rate decreases, while the PCA formation rate increases. 

Subsequently, the reaction kinetics were successfully described using an 

Arrhenius-type equation. These kinetic models were combined with a dryer 

model to assess the effect of co- and counter-current air drying on the presence 

of ascorbic acid and PCA in tomato.  

Drum drying is a widely used conductive drying method for pasty and/or 

viscous food materials. Assessing the conductive drying kinetics on-line during 

drum drying is challenging since the mass and temperature profiles are difficult 

to monitor. Therefore, in Chapter 3, the drying kinetics of conductive drying 

was studied by drying a stagnant thin film of maltodextrin DE12 and native 

potato starch suspensions with a custom-built experimental system that allows 

on-line monitoring of mass and temperatures. During drying of films that were 

thicker than 1 mm, three distinct periods could be identified: heating (period 

1), boiling (period 2) and conductive drying (period 3). During the boiling 

period, the drying rate remains constant while large bubbles formed that greatly 

hinder the heat transfer. The degree of bubble formation depends on the 

properties of the product that is dried: larger bubbles were observed with starch 

suspensions than with maltodextrin, due to its higher viscosity and elasticity. 

Increased solid content also leads to larger bubbles and hence slower drying in 

period 2. During the conductive drying period (period 3), drying gradually 

slows. The drying rate during this period depends on the initial amount of dry 

solids per surface area because this determines the final thickness of the semi-

moist layer that is dried during period 3 into a completely dry film. During 

drying of starch suspensions with high initial solid contents (40%), a thin film 
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was required to avoid accumulation of vapour below the film (vapour 

blanketing), which was detrimental to the heat transfer and led to less 

homogeneous drying. 

In Chapter 4, a heat-transfer governed model is presented to describe the 

drying process in the lab-scale conductive thin film dryer that was used in 

Chapter 3. The model considered the three distinct periods (e.g. heating, 

boiling and conductive drying periods) of the drying process. The input 

parameters of the model are the boiling temperature and rate of heat transfer, 

measured as the temperatures and evaporation rate during the boiling period. 

Based on this, the model determines the decrease in moisture content over time 

during all three stages of the drying process. The model calculations described 

the experimental data in Chapter 3 well. An overall heat transfer coefficient 

was calculated to describe the heat transfer during the conductive drying in 

period 3. This overall heat transfer coefficient and the conductive drying model 

(period 3 only) were used to predict the course of drum drying of maltodextrin. 

Moisture content profiles during drum drying were calculated and optimal 

drying times for different drying conditions were suggested. The predicted 

drying times were comparable to reported literature values.  

In Chapter 5, agitated thin film drying (ATFD) was studied. A laboratory-scale 

ATFD was developed and applied for drying different food formulations, to 

create a better understanding of ATFD drying behaviour and how this is 

influenced by process parameters and product properties. ATFD could be 

applied to specific products such as spinach leaf juice, sucrose solutions and 

whey protein isolate (WPI) solutions. However, drying of tomato juice and bell 

pepper juice gave poor results, due to their high concentrations of glucose and 

fructose. We conclude that ATFD is suitable for materials that are not too 

sticky during drying, and have fast crystallisation kinetics or transform into a 

brittle solid matrix. Spinach leaf juice was selected as a model suspension to 

investigate the influence of drying parameters, being the heating temperature, 

feeding rate and blade rotation speed. The wall temperature and feed rate 

greatly affect the specific drying rate and the absolute drying rate, respectively. 

In contrast, the blade rotation speed had only limited effect, but it is crucial for 
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fragmentation of the dried material into powder particles. The limited effect of 

blade rotation on drying suggests that the process is limited by heat transfer 

through the wall, which falsifies an existing model for ATFD based on 

penetration theory. 

Different conductive drying methods affect the product quality (e.g. during 

drying of tomato puree) in a different way. In Chapter 6, we studied the 

influence of the choice of conductive drying process on the organoleptic quality 

of tomato powders (colour and flavour) by carrying out pilot-scale experiments 

with a vacuum drum dryer (VDD), a regular drum dryer (DD), an agitated thin 

film dryer (ATFD) and a refractance window dryer (RWD). The flavour quality 

of the resulting powders was evaluated by quantitatively determining the 

presence of a range of volatile and non-volatile components, which contribute 

to the aroma and taste characteristics. The drying methods, especially RWD 

and ATFD, induced colour differences between the reconstituted tomato puree 

and the original tomato puree. The colour change during RWD is related to 

chemical reactions during the longer drying time, while for ATFD it is due to 

heat dissipation from the fast rotating blades. Drying strongly affected the 

volatile and non-volatile profiles of the powders. These profiles were analysed 

by advanced statistical analysis (principal component analysis (PCA) and partial 

least square discriminant analysis (PLS-DA)). The results showed that RWD 

(before VDD) leads to high retention of volatiles in powders that may be 

related to a different driving force for evaporation during RWD. In contrast, 

products dried with drum drying had less volatiles, but retained higher levels of 

specific non-volatile compounds (i.e. amino acids) that can contribute to taste 

perception. ATFD processed powders have a lower level of discriminant 

volatiles and non-volatiles, probably because it is less suitable for sticky 

materials like tomato puree (as discussed in Chapter 5). 

7.3  Application of conductive drying on dairy products 

As mentioned before, conductive drying was successfully used for drying of 

tomato puree and the quality of the resulting powders was compared (Chapter 

6). However, it was observed that drying behaviour is very product dependent. 
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Therefore, in order to render the conclusions more generic, in addition to a 

comparison for drying of tomato puree also a comparison for drying of 

reconstituted milk was carried out with the four different conductive drying 

technologies. 

We carried out pilot-scale drying of reconstituted skim milk and whole milk 

concentrates (0.25 kg dry matter/kg total) with RWD, ATFD and regular and 

vacuum drum drying (the same dryers as used in Chapter 6). The reconstituted 

milk was prepared from spray dried skim milk powder (SMP) and whole milk 

powder (WMP). The compositions of the SMP and WMP are shown in Table 

7-1. 

Table 7-1 The concentrations of different compositions in the skim milk powders 
(SMP) and whole milk powders (WMP). 

Compositions  
(kg/kg total) a 

Skim milk powder Whole milk powder 

Moisture 0.035 ± 0.007 0.033 ± 0.018 
Total solids 0.965 ± 0.007 0.968 ± 0.018 

Fat 0.009 ± 0.005 0.273 ± 0.018 
Protein 0.355 ± 0.021 0.255 ± 0.021 
Lactose 0.508 ± 0.018 0.385 ± 0.035 
Minerals 0.084 ± 0.003 0.060 ± 0.007 

a: Each value is expressed as mean ± SD (n = 2). 

Figure 7-1 shows the morphology of milk powders dried by different drying 

methods. Similar to tomato powders (Chapter 6), DD and RWD produced 

flake-like samples, while VDD dried sheets that rolled into a sausage shape. At 

the end of ATFD, fractured particles were collected directly.  

The type of reconstituted milk may lead to a visually different final product. 

For DD and VDD, there was no obvious visual difference between the SM and 

WM products, however for RWD, the SM flakes were transparent while the 

WM flakes were opaque. This visual difference might be attributed to the high 

fat content in the WM flakes (Table 7-1), which has been observed before 1.  

Scanning electron microscopy (SEM) shows the detailed morphology of the 

products (Figure 7-1). The DD, VDD and RWD powders consist of small 



GENERAL DISCUSSION 

143 

flake-like particles with a smooth surface, while the ATFD dried products 

consist of densely agglomerated particles with small regular hexagon lactose 

crystals (indicated in the SEM pictures). The fat could be observed in the WM 

particles as dark spots, which are indicated in the SEM pictures with a black 

circle.  

 
Figure 7-1 Visual and scanning electron microscopy (SEM) images of skim milk 
powder and whole milk powders prepared by regular drum drying (DD), vacuum drum 
drying (VDD), refractance window drying (RWD) and agitated thin film drying 
(ATFD). 

The operation of ATFD for WM was challenging and no significant amount of 

product was obtained. This is probably due to the presence of high levels of 

free fat leading to the formation of sticky lumps during ATFD drying, which 

accumulate inside the dryer 2. The WM powders from conductive dryers had 

very high free fat concentrations compared to spray dried WM (Figure 7-2). 

Moreover, similar to the ATFD dried SM (Figure 7-1), lactose may crystallise 

during ATFD drying of WM, which also contributes to larger amounts of free 

fat and thus the formation of sticky lumps 3.  

Fat

Fat

Fat

Crystalline 

lactose 

Skim milk powder

Whole milk powder

DD VDD ATFDRWD
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Figure 7-2 Free fat concentrations of the reference (spray dried whole milk powder) 
and whole milk powders prepared by different conductive drying technologies. 

An important functional property for milk powder is its solubility. We followed 

an empirical method to assess solubility of milk powder, according to the GEA 

Niro analytical method A 5b 4. 10 ± 0.1 g of SMP or 13 ± 0.1 g WMP is 

dissolved and stirred in 250 ± 1.0 mL of deionized water at 40 ± 0.1 ˚C for 

~15 s. The reconstituted suspensions were then poured through a 0.6 mm 

sieve, which retained the undissolved powder (Figure 7-3).  

Except for ATFD, all other conductive drying methods produced SMP with 

high solubility, comparable to spray dried SMP. The poor solubility of ATFD 

processed SMP may be related to the very dense powder particles that it gives, 

as shown in Figure 7-1. In contrast to the SMP, the WMP prepared by 

conductive drying was less soluble compared to spray dried WMP, mainly 

because of the higher levels of free fat (Figure 7-2) 5, 6. 

To conclude, DD, VDD and RWD could produce SMP with the desired 

solubility and thus could offer an alternative to spray drying. Conductive drying 

of WM would only be an option if the higher free fat would not be negative, 

and thus good solubility would not be required for their final application.  
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Figure 7-3 Solubility of skim milk powder and whole milk powders prepared by spray 
drying (SD), regular drum drying (DD), vacuum drum drying (VDD), refractance 
window drying (RWD) and agitated thin film drying (ATFD).  

7.4  Energy and economic evaluation on conductive 

drying compared to spray drying 

Conductive drying has been reported as being more energy efficient than 

convective drying, such as spray drying 7, 8. However, this has not yet been 

specified in the energy consumption and economic costs for conductive drying 

of foods. Availability of such data can help food industries to implement more 

efficient technology on a large scale. Therefore, in the framework of the overall 

research project on thin film drying, the Energy Research Centre of the 

Netherlands (ECN) carried out a first techno-economic assessment for the 

different conductive drying technologies 9. The conductive drying methods 

considered in the assessment were vacuum drum drying (VDD), refractance 

window drying (RWD) and agitated thin film drying (ATFD). Regular drum 

drying (DD) was considered not comparable due to its higher operating 

temperature. Spray drying was a reference technology in the assessment.  

7.4.1  Comparison of energy consumption 

The energy use and efficiency of the conductive dryers were calculated using a 

generic model. Figure 7-4 shows a schematic representation of the calculations 

with the employed boundary conditions. The operating conditions for each 

drying method (e.g. mass flow, capacity, feedstock, etc.) were defined based on 

expert input and were used in the energy calculations (Table 7-2). Specifically, 

the efficiencies for the production of electricity and heat from the power plant, 

Skim milk powder

Whole milk powder

DD VDD RWDSD ATFD
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the hot water boiler, the steam boiler and the air heater were taken as 45%, 

95%, 95%, and 85%, respectively. The energy consumption was compared on 

the basis of energy use per ton water removed (GJ/ton water evaporated).  

 
Figure 7-4 Schematic representation of the calculations for the reviewed drying 
processes.  
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Table 7-2 Inputs used for the calculations of the energy consumptions 

  

 Vacuum drum drying Agitated thin film drying Refractance window drying 

Drying capacity [kg H2O/h] 500 500 500 

Process pressure [mbar] 50 50 1000 

Feedstock input    

          Temperature [˚C] 20 20 20 

          Solid content [w/w] 20 20 20 

Product output    

          Temperature [˚C] 60 60 60 

          Solid content [w/w] 90 90 90 

Drying surface [m2] 41 21 32 

Supply air     

          Temperature [˚C] - - 25 

          Humidity [g H2O/kg] - - 10 

Infiltration air    

          Mass [kg/h] 0.25 0.25 - 

          Humidity [g H2O/kg] 10 10 - 

          Temperature [˚C] 25 25 - 

Exhaust air    

          Temperature [˚C] - - 27 

          Humidity [g H2O/kg] - - 21 

Exfiltration air    

          Humidity [g H2O/kg] 33 33 - 

Hot water/steam system    

          Pressure [bar] 2 2 1 

          Inlet temperature [˚C] 120 120 95 

          Outlet temperature [˚C] 100 100 t.b.c. 

Electric power    

          Total power [kW/m2] - 1.4 1.3 

          Vacuum pump [kW] t.b.c. - - 

          Drive power [kW/m2] 1.8 - - 

          Pumps, fans [kW] t.b.c. - - 

          Conveyor belt [kW] - - - 

Heat loss [% of Fuel supply] 5 5 5 

t.b.c.: To be calculated 
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Figure 7-5 shows the calculated energy consumptions of the drying processes. 

All conductive dryers consume less energy for heating (which is energy used 

for the water boiler, the steam boiler, etc.) than spray drying. If we compare the 

conductive dryers, the energy demands of VDD and ATFD are comparable 

and lower than that of RWD. In contrast, conductive dryers have higher 

electricity demand (used for drive power, the pump, etc.) than spray dryers. 

VDD has the highest electricity use, followed by ATFD and then RWD. 

Regarding the total energy consumption, spray drying has the highest total 

energy use, while VDD consumes more energy than ATFD and RWD. 

The heat used for water evaporation is divided by the overall use of energy, to 

calculate the thermal efficiencies for spray drying, VDD, ATFD and RWD, 

which are 46%, 53%, 63% and 63%, respectively.     

 

Figure 7-5 Calculated energy consumptions for different drying processes. 

7.4.2  Capital expenditures (CAPEX)  

The capital expenditures (CAPEX) were estimated from price quotes given by 

equipment manufacturers and from experiences by industrial partners (Figure 

7-6). For similar drying capacity, all conductive dryers have lower investment 

costs than the spray dryer. The investment costs for the ATFD and RWD are 

comparable, while VDD is slightly more expensive. Except RWD, all drying 

technologies benefit from economy of scale. The cost price of RWD is linearly 

related to the scale (Figure 7-6), because scale-up of RWD is mainly by modular 

build-up of separate individual modules according to the RWD manufacturer 

(GW-dryer, USA).  
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Figure 7-6 Estimated CAPEX for different drying processes at different dewatering 
capacities: spray drying (○), vacuum drum drying (□), agitated thin film drying (◊), and 
refractance window drying (Δ).  

7.4.3  Operating expenditures (OPEX) 

The operating expenditures (OPEX) are the recurring costs necessary to 

operate the drying facilities. It can be subdivided into personnel, maintenance 

and energy costs. Only the costs of maintenance and energy were considered 

here since there is limited information about personnel costs of conductive 

drying processes. The assumptions used for the calculations are shown in Table 

7-3. 

Table 7-3 Assumptions used for OPEX calculations. 

Figure 7-7 summarises the OPEX of the reviewed drying processes at a 

dewatering capacity of 500 kg/h. As expected, the total costs of the conductive 

drying technologies are lower compared to that of spray drying, mainly due to 

the lower energy consumption (natural gas and electricity). The natural gas 
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costs for all conductive dryers are comparable. The maintenance costs of spray 

dryers are highest. If we compare the OPEX of each conductive dryer, VDD 

has a higher OPEX than ATFD and RWD, due to its higher demand of 

electricity and maintenance cost. It should be mentioned that the calculations 

are very sensitive to the assumed energy prices, which will be certainly vary in 

time.  

 

Figure 7-7 Estimated OPEX for different drying processes at a dewatering capacity of 
500 kg/h. 

To conclude, the energy assessment shows that conductive drying may reduce 

the total energy consumption between 7% and 17% compared to spray drying, 

contributing to a reduction in OPEX for conductive drying. At the mentioned 

dewatering capacity of 500 kg/h, a yearly reduction of OPEX can be expected 

between 77 and 106 k€ for the evaluated conductive dryers, which represents 

approximately 37% to 50% of the OPEX of the spray dryer. In addition, 

reductions in CAPEX are also expected for the conductive drying, as the spray 

drying requires equipment for redundant feed and atomization, intake air 

heating and exhaust air handling. Specifically, for the dewatering capacity of 

500 kg/h, the expected CAPEX reductions range from 1.05 to 1.6 M€, 

corresponding to a reduction of 45% to 65% comparing to the spraying drying. 

Although the CAPEX and OPEX of DD were not estimated in this study, they 

are expected to be lower than those of VDD, as no vacuum is needed.  
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7.5  Selection of conductive drying technologies 

Selection of a drying technology is a complex decision, depending on many 

aspects, such as costs and technical operation of the dryer and the requirements 

in terms of product quality. In this section, we conceptually discuss the 

selection of different conductive drying technologies for tomato powders as an 

example, based on the above-mentioned techno-economic assessment and the 

results from Chapter 6 (Figure 7-8).  

The first question is the suitability of a technology to dry a specific raw material. 

ATFD is not very suitable to dry tomato puree, since it contains significant 

amounts of low molecular weight sugars that lead to formation of sticky lumps 

during drying (Chapter 5 and Chapter 6). For drying spinach juice 

concentrate, ATFD may be an interesting choice as it is technically feasible and 

may give high product quality (Chapter 5).  

Other specifications on product quality may steer our choice for a specific 

drying technology. For a premium tomato powder, RWD could be a preferred 

option as it can produce powders with both high levels of volatiles and non-

volatiles. However, RWD has limitations in capacity and scale-up and thus 

would only be suitable for a high-quality, small-volume product. Alternatively, 

VDD might be used to produce high-aroma powders on larger scales with a 

small compromise on product quality, while DD is the best option to make 

powders with more taste retention but will retain less aromas.  

Such decisions become clearer when visualised in a decision tree (Figure 7-8). 

To make such decision trees applicable to a wider range of foods, more expert 

information and experimental data input is required.  
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Figure 7-8 A conceptual decision tree for the selection of an appropriate conductive 
drying methods in this case applied to drying of tomato puree. 

7.6  Outlook for future research 

In Chapter 3, the custom-built experimental conductive dryer was 

demonstrated to be a reliable tool to better understand the transient drying 

kinetics. However, this device is operated at constant heat flux, while drum 

dryers are operated at constant temperature. Although the drying mechanism 

itself does not change, the difference of heat supply can result in slightly 

different drying behaviour (e.g. faster conductive drying in period 3 in our lab-

scale apparatus). Therefore, to better mimic real drying processes, the lab-scale 

dryer could be equipped with fast temperature control to operate at constant 

pan temperature. In addition to the drying behaviour itself, the influence of 

material properties and operating conditions on product structure formation 

during drying could be studied with this equipment, just like the impact of 

drying on specific quality parameters (e.g. functional properties, protein 

denaturation, Maillard reactions).  
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In Chapter 5, the effect of the material properties on ATFD drying behaviour 

was qualitatively described for selected products. However, a quantitative 

description of the drying behaviour during ATFD drying is still missing and is 

important to further development of this technology. More in-depth 

investigations should be carried out towards better understanding how material 

properties (especially composition in relation to rheological properties) change 

with moisture content, temperature and shear and how these interact with the 

operation of the ATFD dryer.  

One approach would be to construct state diagrams of materials of interest and 

combine these with measurements on rheological properties of materials with 

varying moisture content, temperatures and deformation. This then supports 

the description of the rheological property changes during ATFD drying (going 

from a liquid, to a paste and a solid).  

In this thesis, the effect of the operation conditions on ATFD drying behaviour 

was experimentally assessed. The next step is to develop a predictive model for 

ATFD drying that incorporates the rheological changes of the materials. A 

model is available for the initial stage of ATFD drying (i.e. when the feed is still 

liquid) 10, but for the subsequent stages (when the product transforms into a 

paste and solid) process models still need to be developed. Ultimately, this 

research could contribute to a more rational assessment of the suitability of a 

material for ATFD drying. 

7.7  Conclusions 

The work reported in this thesis has provided further insights on the principle 

of conductive drying of foods, by gaining understanding on the drying 

behaviour using two custom-built lab-scale dryers. In addition to well defined 

experiments on the lab-scale, the effect of different conductive dryers on the 

product quality was investigated by carrying out pilot-scale experiments and 

subjecting powders to extensive quality analysis. This could be translated into 

the first set of guidelines for choosing a conductive drying process.  
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The work confirmed but also nuanced the hypotheses that were the basis of 

the research reported in this thesis. Novel insights on conductive drying of 

foods are obtained and conclusions are drawn on directions for future research 

to develop energy efficient conductive drying technologies that deliver high 

quality products. 
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Drying is one of the most energy-intensive operations in the food industry and 

has big impact on the quality and properties of foods. This why there is interest 

in developing more energy efficient, mild drying technologies. The focus of this 

thesis is on understanding conductive drying processes, which are more energy 

efficient and may be mild when operated at reduced pressure. Laboratory-scale 

analyses were carried out to understand the degradation and formation 

dynamics of product quality parameters and to characterise drying behaviour 

during conductive drying processes. Additionally, an experimental pilot scale 

programme was carried out to compare and study the effect of different 

conductive drying technologies on tomato powder quality. 

First, isothermal heat treatment of tomato juice was carried out to 

experimentally assess the effect of heat and water content on the presence of 

important tomato taste markers, such as citric acid, maleic acid, ascorbic acid 

and pyroglutamic acid (PCA) (Chapter 2). The levels of citric and malic acids 

levels were unaffected, while ascorbic acid was degraded and PCA was formed 

during thermal processing. The reaction kinetics of ascorbic acid and PCA can 

be described as first order. Both reactions increase with increasing temperature, 

while a decrease in moisture content reduces ascorbic acid degradation, but 

accelerates PCA formation. These coupled effects of temperature and moisture 

content on the reaction rates were modelled with an Arrhenius-type equation. 

The developed kinetic models were combined with a process model for a 

convective tray dryer to assess the changes of ascorbic acid and PCA during 

co- and countercurrent drying of tomato products. 

The transient conductive drying kinetics relevant to drum drying was 

experimentally assessed with a custom-built experimental system (Chapter 3). 

Maltodextrin and native potato starch were applied as model systems, and their 

corresponding drying kinetics were followed by on-line monitoring of mass and 

temperatures. Three distinct periods were identified: heating (period 1), boiling 

(period 2) and conductive drying (period 3). During the boiling period, the 

drying rate remained constant while extensive bubble formation hindered the 

heat transfer. The degree of bubble formation were dependent on the 

viscoelastic properties of the formulation: larger bubbles were observed during 
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drying of starch suspensions than maltodextrin solutions with the same 

concentration. During the conductive drying period, the total amount of dry 

solids per surface area is crucial as it determines the thickness of the semi-moist 

layer subjected to conductive drying. 

Subsequently, the experimental data reported in Chapter 3 were used for 

model development (Chapter 4). For model calculations we assumed that the 

processes was heat-transfer governed, considering the three distinct periods of 

the drying process. As input the model uses the measured temperatures and 

evaporation rate during the boiling period. As output the model calculates the 

decrease in moisture content over time during the entire drying process. The 

model calculations describe the experimental data in Chapter 3 well. With the 

calculations also the overall heat transfer coefficient for period 3 could be 

obtained. The heat transfer coefficient and the conductive drying model (period 

3 only) were finally used to predict the course of industrial drum drying of 

maltodextrin solutions. This model predicts the moisture content and 

temperature profiles during drum drying and can be used to suggest optimal 

drying times for different drying conditions. This process model can be 

combined with kinetic models to describe product quality changes during drum 

drying. 

The drying behaviour of various formulations in an agitated thin film dryer 

(ATFD) was investigated in a laboratory-scale set-up (Chapter 5). Successful 

drying for the ATFD was only obtained with specific feed materials. Materials 

that crystallise (e.g. sucrose) or contain insoluble particles (spinach juice) could 

be dried well, while more sticky materials accumulate inside the drying chamber, 

which impairs the drying process. The effect of operating parameters was 

investigated: the wall temperature affects the specific drying rate, while the 

absolute drying rate is proportional to the feed rate. The blade rotation speed 

has limited effect on the drying rate, indicating that the process is governed by 

heat transfer through the wall. In contrast, the mechanical action of the blade 

was found to be crucial in fragmenting the material into fine powder particles.   
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In Chapter 6, pilot-scale experiments were carried out to compare the quality 

(colour and flavour) of tomato powders prepared by four pilot-scale dryers, 

namely a vacuum drum dryer (VDD), a drum dryer (DD), an agitated thin film 

dryer (ATFD) and a refractance window dryer (RWD). VDD and the ATFD 

are operated at a reduced pressure and DD at atmospheric pressure. RWD 

relies on conductive drying below the boiling temperature, in which 

evaporation is driven by the relative humidity difference between product film 

and air. The drying methods induced colour differences between the 

reconstituted tomato puree and the original tomato puree, especially for RWD 

and ATFD. In addition, drying caused significant variance in the volatile and 

non-volatile profiles of the powders, which might contribute to different aroma 

and taste characteristics. From advanced statistical analysis (principal 

component analysis (PCA) and partial least square discriminant analysis (PLS-

DA)), it was found that RWD produced powders with high volatile markers, 

followed by VDD. In contrast, DD dried products had less volatiles, but 

contained larger amounts of specific non-volatile compounds (i.e. amino acids) 

that can contribute to taste perception. ATFD processed powders had a lower 

level of discriminant volatiles and non-volatiles, because ATFD is less suitable 

for sticky feed materials like tomato puree (Chapter 5). 

The results obtained in this thesis are discussed in Chapter 7. In the general 

discussion, the comparison of the different conductive drying technologies are 

extended to drying of skim milk and of whole milk. Subsequently, a first 

techno-economic assessment of different conductive drying technologies is 

presented. It is concluded that conductive drying technologies show lower 

energy consumption, operating expenditures and capital expenditure than 

conventional spray drying. By combining the techno-economic assessment and 

the results from Chapter 6, guidelines for selecting an appropriate conductive 

drying method for a (tomato-based) product are formulated. The final 

technology choice for making a product depends largely on the ability of a 

process to dry the raw materials to the desired product specifications. Finally, 

an outlook for future research is provided.  
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