
Geo-information Science and Remote Sensing

Thesis Report GIRS-2018-18

INTEGRATING TIME SERIES FOREST LOSS INTO
STREAMFLOW PREDICTION BY RANDOM FOREST IN
KEY WATERSHEDS OF THE PHILIPPINES

Arnan Araza

A
pr

il
18

,2
01

8



INTEGRATING TIME SERIES FOREST LOSS INTO
STREAMFLOW PREDICTION BY RANDOM FOREST

IN KEY WATERSHEDS OF THE PHILIPPINES

Arnan Araza

Registration number 86 12 12 017 120

Supervisors:

Prof. Dr. Lars Hein
Prof. Dr. Martin Herold

A thesis submitted in partial fulfillment of the degree of Master of Science
at Wageningen University and Research Centre,

The Netherlands.

April 18, 2018
Wageningen, The Netherlands

Thesis code number: GRS-80436
Thesis Report: GIRS-2018-18
Wageningen University and Research Centre
Laboratory of Geo-Information Science and Remote Sensing



Contents

1 Abstract 1

2 Introduction 2

3 Problem Statement 5

4 Research objectives and research questions 7
4.1 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Research questions (RQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Methodology 8
5.1 Data acquisition and pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Streamflow prediction for Research Question #1 . . . . . . . . . . . . . . . . . . . 12

5.2.1 Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2.2 Valuetables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.3 Random forest model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.4 Accuracy assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.5 Comparison with other models . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3 Forest loss and associated covariates effect to the models for Research Question #2 22
5.3.1 Permutation and removal measures . . . . . . . . . . . . . . . . . . . . . . 22
5.3.2 Partial Dependence Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 Forest loss effect to full-scale predicted streamflow for Research Question #3 . . . . 24
5.4.1 Full-scale prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.2 Forest loss and streamflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Results 27
6.1 Predicted flow assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1.1 General findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.2 Per grouping-learning method findings . . . . . . . . . . . . . . . . . . . . 28
6.1.3 In-depth comparison of simulated and observed flows . . . . . . . . . . . . . 31
6.1.4 Comparing with other models . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1.5 Validation sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 Forest loss and associated covariates (FLAC) assessment . . . . . . . . . . . . . . . 36
6.2.1 Permutation indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2.2 Removal measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.3 Partial Dependence Plots (PDP) . . . . . . . . . . . . . . . . . . . . . . . 40

6.3 Forest loss and full-scale predicted streamflow . . . . . . . . . . . . . . . . . . . . 42
6.3.1 Full-scale prediction assessment . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.2 Start-end year comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.3 Forest loss effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Discussion 51
7.1 Grouping-learning RF models accuracy . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1.1 Valuetable grouping effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.1.2 Number of observations effect . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.1.3 Water regulating structures effect . . . . . . . . . . . . . . . . . . . . . . . 52

7.2 Predicted streamflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

iii



7.2.1 Hydrograph assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2.2 Peak flows assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.3 Average monthly seasonal flows assessment . . . . . . . . . . . . . . . . . . 54
7.2.4 Validation outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3 The forest loss effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3.1 The linear trend of predicted streamflow and forest loss . . . . . . . . . . . 55
7.3.2 Regulating streamflow over-prediction . . . . . . . . . . . . . . . . . . . . . 58
7.3.3 Prediction performance effect . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Conclusions and Recommendations 60

Appendices 70

Annex A Acronym and actual name of subwatersheds. 70

Annex B Scripts used to pre-process covariates. 71

Annex C Regression results of accuracy measure to area and number of observa-
tions. 75

Annex D Basin and subwatershed models validation results. 76

Annex E Variable importance measure graphs for basins and subwatersheds. 79

Annex F PDP per subwatershed. 82

Annex G Precipitation and predicted wet season streamflow correlation graphs. 84

Annex H Hydrographs for rainfall-responsive subwatersheds. 85

Annex I Location of water regulating structures within the study area (source:
basin master plans, RBCO. 86

Annex J Hydrographs for rainfall-responsive validation subwatersheds. 87

Annex K Forest loss and predicted dry season streamflow correlation graphs. 88

Annex L Peak flow-rainfall correlated with forest loss. 89

Annex M Subwatershed area, forest area, and forest areas from 3 forest loss rate for
dry and wet season flows. 90



1 Abstract

Water from watersheds or catch basins are being regulated by forest ecosystem and forest loss is af-
fecting it negatively. Philippine government started accounting for “Ecosystem Services” (ES) where
water regulation service is often quantified using data-intensive process-based models. The indicator
of this ES is streamflow (l/sec) or river flows in watersheds often modeled using a single period land
cover/land use input, with series of parameterization, resulting to a time series output.

This study performed an innovative Remote Sensing-dependent technique to predict streamflow at
large scales using Random Forest (RF) regression within 6 major river basins in the Philippines. It
integrated yearly forest loss pixels in predicting daily seasonal streamflow looking at evidences of forest
loss effect in the context of water regulation service. A total of 58 physical and climatic covariates
were assembled using 4 grouping-learning methods of “valuetable”, or covariates pool of information,
to assess how good RF is in predicting at varying degree of watershed information. The best model
was used to predict at full-scale time series from 2000 to 2016 and applied to 6 validation sites without
observed data.

The RF models learned better when combination of subwatershed valuetable is applied. The RF
model also captured and learned from mixed information. Results revealed which subwatersheds have
artificial water regulating structures like dams (regulated subwatersheds) which were outperformed by
unregulated subwatersheds based on accuracy measures. The latter also showed rainfall-responsiveness
or being linearly reactive to rainfall (i.e. high rainfall-high streamflow) in a daily basis. Streamflow
predictions were not correlated with the number of training data and subwatershed size. The 6 vali-
dation sites, which are all unregulated, showed rainfall-responsiveness and good potential for upscaling.

Forest loss and its associated covariates (FLAC) were valuable explanatory based on permutation and
removal measures. More importantly, the RF models were capable of learning forest loss effect to
seasonal streamflow based on the following indicators: (1) decrease and increase in dry and wet pre-
dicted daily mean streamflow, respectively; (2) linear trends between forest loss and predicted seasonal
streamflow according to regression and partial dependence plots; and (3) regulation of wet season
streamflow by controlling outliers and reducing over-prediction. Moreover, an increase in forest loss
rate resulted into decrease in streamflow during dry season and increase in peak flows during extreme
rainy days for unregulated subwatersheds.
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2 Introduction

Ecosystem service is defined as the direct and indirect contributions of ecosystems to human well-
being (Sukhdev, 2008). Water from watersheds or catch basins are being used by half of Philippine
agricultural lands and domestic water users (Philippine Statistics Authority, undated). There are 18
large watersheds or river basins and 142 critical watersheds in the country (River Basin Control Office,
undated) that are at risk to human and climate change-induced threats. Almost three-fourths of the
Philippine terrain are ch9aracterized by these watersheds. The remaining xha of forests regulate water
from watersheds, one of the many intangible services provided by Philippine forests.

The water flows coming from interconnected river network of a watershed is termed as “streamflows”
measured in water volume per unit time, usually at liters per second (l/sec). In hydrology, water
availability from river systems can be quantified using streamflow as a measuring entity (Milly et al.,
2005). Moreover, health of watersheds can be reflected by the quality and quantity of streamflows
from both natural and human-induced conditions (Erwin and Hamilton, 2002) like land use changes
(LUC). In the Philippines, one of the prominent LUC is caused by deforestation and it is affecting
the water flows (Kummer, 1992). Studies exist how a deforested watershed is very different from a
healthy watershed as indicated by streamflows (Aquino et al., 2014; Hurkmans et al., 2009; Ochoa et
al., 2016; Rawlins et al., 2017).

Remote sensing (RS) is a powerful tool to quantify ecosystem services (Vargas et al., 2017). Remote
sensing performs synoptic, spatially continuous, and regular observations over the globe (Maes et
al., 2013). In a review paper, 5,920 studies were found using remote sensing applications for ES
researches (de Araujo et al., 2015). A study by Feng et al. in 2010 concluded that RS-ES link hap-
pens in three ways: direct monitoring, indirect monitoring, and combined use with ecosystem models.
For ES models in particular, RS-ES has essentially an “input-output” relationship where RS images
serve as key inputs. For example, using land-use/land-cover (LULC) classifications from time-series of
Landsat images, many studies were able to measure deforestation rates (Wang, 2006; Volante et al.,
2012; Klepeis et al., 2013). Another example is a study by Shortridge et al. (2016) using agricultural
land cover temporal changes to simulate streamflow.

In this decade, RS products with high spatial and temporal resolution are getting more accessible.
For instance, the opening of the Landsat archive is used to analyze past and present global land
and water change that paved way to products like the global forest loss (Hansen et al., 2013) and
global surface water (Pekel et al., 2016). These kinds of accessible RS products further strengthens
time series-based research and applications for large area monitoring of land and water dynamics
(Broich et al., 2011). Numerous studies exist that capitalized time series RS data. An example is
a near real-time monitoring of ecosystem disturbances methods which are being widely tested and
standardized to address ecological issues (Verbesselt et al., 2012). Similarly, the study by Pasquarella
et al. in 2016 assessed the potential of using Landsat time series to further the study of land cover
characterization, vegetation phenology and landscape dynamics. Having easily accessible time series
data can very advantageous to the RS-ES link by having historical up to near real-time RS inputs.

This study offers an innovative RS-dependent technique to predict streamflow in selected subwater-
sheds of Philippine major river basins. It integrates a time series forests loss input to a machine
learning algorithm where its importance along with other predictors are assessed. Machine learning is
perceived as an alternative to process-based models to address data and processing intensity issues

2



of the latter (Shortridge et al., 2016). Moreover, machine learning is considered as a non-parametric
spatial modeling approach (Xu et al., 2016) that is free of series of parameterization unlike that
of process-based modeling approach. Random forest, one of the best machine learning techniques,
is applied successfully to various real-world classification and regression particularly on streamflow
prediction by the following previous studies: Carlisle et al., 2011; Galelli & Castelletti, 2013; Rasouli
et al. 2012; Reynolds & Shafroth, 2016; Sando & Chase, 2017; Shortridge et al., 2016; and Zhao
et al., 2011. The study by Shortridge et al., (2016) found out that RF model had the lowest mean
absolute error of streamflow prediction among other machine learning methods. By definition, the
algorithm is a rule-based, non-parametric regression approach where randomized subsets are created
(trees and branches), trained from separate bootstrapped data using small/random subset of predict-
ing variables, and on a majority rule assign classes by decision tree votes (Breiman, 2001). A set of
dynamic and static predictors or covariates are used for this study. The former consist primarily of
weather data and forest loss with “associated covariates” or those parameters that are functions of
forest loss. These are Curve Number and Manning’s roughness coefficient which both characterize
surface run-off or how slow or fast surface water moves to the rivers. The latter, on the other hand,
include physical inputs like soil characteristics, elevation, and slope.

The study area shown in Figure 1 composes 6 major river basins in Luzon, Philippines namely Abra,
Agno, Apayao-Abulug, Cagayan, Marikina, and Pampanga with an average size of (10,790km2) per
basin. More than half (60%) of the total basin area are forest lands by law according to River Basin
Coordinating Council. Since 2000, the forest cover is reduced by 1,258km2 (Hansen et al., 2013) at
an alarming deforestation rate. The focus areas of the study include a total of 21 subwatersheds out
of a data-driven selection seen also in figure below. The acronyms used and designated subwatershed
names are shown in Annex A.
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Figure 1: Study area overview.
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3 Problem Statement

Philippine forest cover was almost half of its total land area during the 1960s (DENR-FMB, undated).
However, logging companies abused it by rampant clear cutting from 1960 to 1990s. Even in the
past 16 years, the country lost almost a million hectares of forests according to globalforestwatch.org.
Losing forests linearly means decline in ecosystem services it provide (Pilot Ecosystem Account for
Southern Palawan, 2016).

Quantifying ecosystem services could be complex depending on the type of service and its correspond-
ing modeling approach/es. In theory, it contains non-linear dynamic processes, feedback mechanisms
and control strategies to deal with complex ecosystem dynamics (Remme et al., 2014). Ecosystem
services modeling is within the domain of social-ecological systems which is an integration of biophys-
ical and social factors characterized by complexity (Levin et al., 2013). Moreover, ES quantification
highly rely on scale, data availability, and technical expertise. In modeling water services, method-
ologies vary as there is no standard modeling blue-print to capture hydrological dynamics relative to
ecosystem structure/landscape. There is a particular spatial-temporal dimensions requirement for hy-
drological modeling (Wang & Ren, 2008) which is dependent on the modeling objective and analysis
scale.

Water services from watersheds is often quantified by modeling streamflows using process-based mod-
els. In other words, streamflows are simulated after series of parameter setup using a modeling tool
or software. This technique often uses a single period LULC input in simulating time series outputs.
In some cases, periodic LULC is implied in process-based models by using two LULC periods. This
could be sufficient if the watershed is properly managed and protected (meaning no conversion is
happening), but if not, fixing land use inputs into just one period may not reveal the true picture on
streamflow simulations. Most apparent transformations in watersheds over the past 150 years is the
change in land use and natural land cover (Mustard et al., 2012) meaning these changes should be
accounted historically and regularly. Moreover, the continuity of the simulations from process-based
programs might get altered as the process needs warm-up years to run smoothly (Arnold et al., 2012).
There were some attempts to integrate yearly land use dynamics to process-based models but data
availability and calibration efficiency became the limitations (Koch et al., 2012). In the Philippines,
temporal resolution of land cover model inputs is a limitation as the official land cover is released
every 5 years at least. Examples are studies by Principe (2012) and Alibuyog (2009) in the Philippines
where a land cover of a certain year was used to simulate time series streamflow.

Theoretically, deforestation and degradation alters hydrologic system of watersheds (Ataroff et al.,
2000). Forests can play a very important role in hydrology as it regulates water in dry months and
act as sponge during extreme rain events like tropical storms (Calder, et al., 2008). Evidences exist
how forest conversion can affect the lowland or service areas immediately like irrigation and domestic
water stakeholders in dry months or a flood plain area during rainy season especially during extreme
rainy days like typhoons (Aquino et al., 2014; Calder and Aylward, 2006; Rawlins et al., 2016; Sahin
et al., 1996).

Despite the deforestation-related water issues, penalization are seldom and often missing. There is
limited technical capability and political will that can enable policy implementation on the said mat-
ter. For example, the water-polluting mining area is closed for investigation, the deforested area is a
private property, and the upland cultivations are too remote. This physical inaccessibility can be over-
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come by remote sensing techniques as it can acquire land features without physical contact regularly.
Being specific on when and where forest changes occur on a regular basis could be helpful legislatively.

Families in the upland are relying on traditional farming ever since. Most of them are still venturing
to unsustainable farming system like slash and burn within their ancestral lands. The outcome of this
land use practice appears in relatively small patches in a high resolution satellite image. Detecting
this land use practice can be difficult if a coarser resolution like MODIS (250m) is to be used for land
monitoring. Other forms of forest conversion due to small-scale mining and agriculture production
(i.e. coconut) could also appear in patches and are better seen in a higher resolution RS image. Inte-
grating these relatively small forest conversions in a hydrologic model can also contribute in analyzing
forest loss effects to hydrology (Jones et al., 2009).

Most farmers in the Philippines are still practicing traditional rice farming where farm lands are either
irrigated or rainfed with 2-3 and 1 cropping season, respectively. For the former, irrigation water
are coming from streamflows (National Irrigation Authority, undated). Droughts are experienced in
the past decade (2006 and 2012) within the study area which dried rivers and affected thousands of
hectares of rice lands (Taguinod, 2010 and The Northern Forum, 2016). More than that, future cli-
mate and weather patterns are foreseen to be unpredictable due to climate change (PAGASA, 2016).
Forecasting the streamflow that integrates the said extreme scenarios can help the government in
planning and land management for the farmers.

To briefly address the abovementioned problems, this study puts high spatial and temporal deforesta-
tion input in the modeling process to predict present (and even future) streamflow. More significantly,
the study highlights the link between forest loss and seasonal water flows which can aid in forest
ecosystem accounting at large scales. These two rationale serve as its main added value among other
studies with similar methodology but lack the said time series input and observation. Additionally,
the methodology can offer an alternative to process-based models easing data-intensity requirement
and flexibility to model watersheds at different sizes. Furthermore, it can increase pre-processing and
modeling efficiency via processes automation with the use of ready-made packages, especially random-
Forest, in a programming interface. Lastly, study results can provide support to justify deforestation
effects to water availability in forestry policies perspective.
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4 Research objectives and research questions

4.1 Research objectives

The overall objective of the study is to integrate yearly forest loss in streamflow prediction and assess
its implications to seasonal streamflow at varying watersheds.

Below are the three specific objectives of the thesis:
1. Create four (4) random forest (RF) models that include net forest loss time series (2000 to 2016)
and assess the best model for time series streamflow prediction.
2. Assess the importance of forest loss and its associated covariates (FLAC) using three (3) accuracy
indicators.
2. Assess the effects of forest loss to the predicted streamflow seasonally using hydrographs, historical
flows, and regression results.

4.2 Research questions (RQ)

To answer RQ #1, covariates information were grouped in different ways to assess whether RF is
capable of learning at varying degree of subwatershed information. Accuracy indicators in Section 4.2
were measured after and served as indicators.

To answer RQ #2, three measures were assessed with and without the forest loss and associated co-
variates (FLAC) to evaluate the effect of FLAC to the random forest models. These are permutation
measure, removal measure, and partial dependence plots.

To answer RQ #3, evidences pertaining to the effect of forest loss to seasonal streamflow were in-
vestigated. Focus of analysis were subwatersheds with historical data and good performing models
based on accuracy indicators.

The research questions of the study are the following:
1. Is RF able to predict streamflow well at varying degree of subwatershed information?
2. How do FLAC affect the RF model and predicted streamflow according to accuracy measures?
3. Can forest loss affect the predicted streamflow during wet and dry season?
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5 Methodology

This thesis part narrates all the steps accomplished from data acquisition to results analysis. It has
4 main sections starting from data acquisition and pre-processing together with the methodology of
the 3 research questions. The overall work flow diagram of the methodology is shown in Figure 2.

5.1 Data acquisition and pre-processing

Overview

This section basically pertains to the acquisition process with basic metadata of all data acquired
and its preprocessing, often in steps, that preceded after. In general, the acquired data were all open
source spatial raster images except for the weather and streamflow data. All spatial data underwent
re-projection into UTM Zone 51N then mosaicking and masking raster operations since the study
area is covered by several raster tiles. On the other hand, the weather and streamflow data were just
formatted accordingly. At the end of all preprocessing, each data input was overlaid per subwater-
shed. Other intermediate preprocesses are explained per subsection in details. As a last note, most
preprocessing steps were automated in R programming language as shown in Annex B.

DEM and DEM-derived data

Digital Elevation Model (DEM)-derived inputs namely elevation, slope, and watershed boundary were
obtained from the Shuttle Radar Topography Mission Digital Elevation Model (SRTM-DEM) at 90m
resolution from a personal copy originally acquired from https://earthexplorer.usgs.gov/. The
choice of DEM was based on study area size which is relatively large therefore using the SRTM than a
higher resolution could save processing time. Moreover, a handful of publications reported the use of
the said DEM for hydro-modeling and online discussion users preferred it than its main counterparts
because of less topographic errors (Ali, 2015). The DEM error known as “sinks” or the topographic
holes of the DEM were filled first in a GIS interface (ArcMap) using fill sinks tool. That process was a
common preliminary intervention to DEMs especially in hydrological modeling to get rid of erroneous
water flow direction, accumulation, and watershed delineation (Van Remortel et al., 2001).

Elevation input was essentially the DEM itself in meters above sea level (MASL) units. The only
processing to it was reclassification into 5 classes since its value range, being a continuous data type,
was enormous to be a covariate each. The classes were derived by a quantile type of classification
Using reclassification tool of ArcMap. This was chosen among 5 other reclassification tool to assure
equal assignments per class, thus, not having empty classes or classes with too few or too many values.

The slope input in % rise was derived from the DEM using the slope tools in ArcMap. The product
of the procedure was reclassified manually using the reclassification tool of the same software to have
5 slope classes that jive with the official slope classification of Philippines: 0-8%, 8-18%, 18-30%,
30-50%, and 50% above.

The watershed boundaries were derived from the DEM using a hydrologic extension tool in ArcMap.
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Figure 2: Schema showing the methodology of the thesis per methodology phase.
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It was used because of a Graphical User Interface (GUI) availability defining the following necessary
parameters to delineate watersheds: flow direction, flow accumulation, area, and inlet-outlet. The
first three parameters were generated using default values and the outlet was manually selected for
each discharge point. In the end, the 6 major river basins have 142 subwatersheds. The delineation
was satisfactory since both small and large subwatersheds were among the 142 delineations. This is
important since watershed size is one of the analysis angles of the study.

The elevation and slope inputs were overlaid with the subwatershed boundary by rasterizing the sub-
watershed polygon then being stacked together with the two rasters using stack function from raster
package in R. Its values were derived using getValues, also from raster package, which gave the
attributes of all raster layers in one data frame.

Forest loss and land cover

Yearly forest loss pixels were downloaded from Global Forest Change at https://earthenginepar
tners.appspot.com (Hansen et al., 2013) which was Landsat-derived at 30m resolution. The study
area was covered by two raster tiles so mosaicking was needed and was done in R. Forest gain pixels
which happened not to be yearly were subtracted to the forest loss pixels to derive the net change
pixels. In other words, those deforested earlier which happened to regenerate after the end period
in 2016 was not included as a forest loss pixel. This step was accomplished by masking the 2016
gain pixels to the 16-year forest loss pixels. The purpose of this was to not amplify forest losses and
also account for the forest gain impact to hydrology. Forest gain in the study area, however, was
perceived to be relatively small compared to what were lost based on periodic land cover comparisons.

On the other hand, the baseline land cover data was obtained from global land cover (glc30) also
at 30m resolution from the site http://www.globallandcover.com. The study area was covered
by 2 raster tiles which also underwent mosaicking and masking procedures, respectively. This land
cover dataset was chosen to be consistent with the spatial resolution of 30m, same with the forest
loss pixels and also both Landsat-sourced.

There was an attempt to overlay forest loss and land cover inputs together with the subwatersheds
in R, however, the computer power demand was too much. As such, the operation shifted to ArcGIS
for mosaicking and masking per individual input then overlaying the two with subwatersheds. Reclas-
sification was found out to improve efficiency by quickly getting rid of undesired pixels of the land
cover image rather than directly doing the clipping process.

Soil data

High resolution soil classification from World Soil Information (ISRIC) via soilgrids.org and its key
parameters bulk density, texture (sand, silt, clay), and soil depth were downloaded. These parameters
affect water infiltration and regulation, the two important soil hydrologic parameter (Calder, 2008).
For so long, coarse soil inputs (1km or more) were used for hydro-modeling but the highly variable
ISRIC soil grids at 250m can make soil inputs more relevant.

Preprocessing the soil inputs required mosaicking of tiles since it took four tiles to cover the whole
study area. This step was done in R using mosaic function from raster package. The mosaicked
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soil raster was masked after using the polygon of the whole study area. The raster needed to be
re-projected first using projectRaster function then needed to be of the same extent with the subwa-
tershed using crop function before doing the actual masking using the mask function. A function was
made to automate this process for each soil input using the soil code as input variable. The mosaicked
soil rasters were reclassified in a GIS interface using quantile type of classification resulting into 5
classes for each soil input. This was done to avoid crowded class covariates and save computing time
since a soil input had 60 classes originally. Soil data were combined with the subwatershed raster then
values were extracted using same procedure as the raster inputs above.

Streamflow data

The heart and soul among the data inputs were the actual streamflow data from selected river stations
of the Philippines. All records within year 2000-2016 from any available stations within the study
area of the Department of Public Works and Highways (DPWH) - Bureau of Designs were secured
for model training/fitting. The said office records daily river flows from river monitoring stations in
the Philippines for infrastructure development. Every local river station is being tasked to store daily
streamflows then the main office are integrating it. Historical data from 1980s to 1999 was also
acquired to derive historical mean water flows needed for detecting streamflow anomalies in Research
Question 3, however, the data was only for 4 stations.

Most of the streamflow data were below 2010 because the bureau is currently updating their database
and most of the current data are still in hard copies subjected for validation. However, the acquired
data has an average of 2,461 observations per subwatershed and is seemed to be sufficient for the
thesis’ purpose. It should be carefully noted that the choice of subwatersheds were dependent on the
available streamflow data. After the acquisition, 21 river stations fell into the study area therefore
having 21 subwatersheds to be officially called “subwatersheds-of-interests”.

The data were formatted accordingly taking-off from the bureau’s formal template. Each river station
was re-formatted into individual comma separated value (csv) sheets with heading of the watershed
and river station name. This was purposely done for proper subwatershed-observed data pairing that
happened afterwards during the assembly of the covariates table. The streamflow data had minimal
NAs or Not Available but since it serve as the “observed data” for model training, no imputation/gap-
filling was done as NAs data were just simply omitted.

Weather data

A stretch of 16-year time series (2000-2016) weather data was acquired from 12 stations of Philippine
Atmospheric Geophysical and Astronomical Service Administration (PAGASA), the official weather
institution of the Philippines. These are precipitation, relative humidity, wind speed, minimum tem-
perature, and maximum temperature. The weather data were recorded manually from local stations
then were collated at PAGASA main office. Manual encoding with high quality checking were done
by the office data administrators to put the data in the weather database. Though global weather
data were extensively available in the study area, local weather data were favored for a more localized
and higher resolution data.

Since weather stations in the Philippines contained gaps from station malfunctioning, preprocessing
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the missing value using imputation packages in R was needed. However, some stations were not oper-
ational for months. As such, data gaps were predicted using Inverse Distance Weights (IDW) spatial
interpolation method among the stations under the same climate type. Prediction using regression
from adjacent weather stations was the first attempt to fill the gaps but low correlation was observed
due to high climatic variability. Another attempt was to do an ordinary kriging, however, the data
points were insufficient to account for short distance variability and to create a well fitted variogram.
Moreover, the climate variability might need a block kriging approach to really account for the climate
types, such work can be a stand-alone study. The gap-free weather tables were binded in one data
frame with station names as the column heading not just for proper formatting but also for some
filtering technique later on during all covariates assembly.

Other data

The recent versions of the master plans for the 6 major river basins within the study area were down-
loaded from the River Basin Coordinating Office of the Philippines or RBCO. These documents were
used as supplemental information for results analysis. Moreover, some intermediate results like forest
loss rates and conversion trends, were validated through these plans.

The official land cover data of the Philippines for two periods (2003 and 2010) were acquired also from
a personal copy which were originally generated by the official mapping authority of the Philippines.
According to its metadata, the land covers at 30m and 10m respectively, had significant classification
accuracy outcome. The land covers served as validation inputs for the forest conversion test case
which will be explained in Research Question #3 methodology section.

5.2 Streamflow prediction for Research Question #1

Overview

The randomForest and ranger R packages were used to produce random forest models to predict
streamflow as it was used in previous studies (Carlisle et al., 2011; Galelli & Castelletti, 2013; Short-
ridge et al., 2016; Zhao et al., 2011). As an overview, every covariate was assembled into a valuetable
or simply the collection of all covariates values/information. A subset of it containing of 90% the
valuetable became the “training data” for model fitting while the other 10% was used for model test-
ing. The RF models were used to predict streamflow using predict function in R and its predictions
were assessed versus the observed data using accuracy measures. All scripts used at this point are
too long to be placed in the annex section. However, all scripts can be accessed at *insert hyperlink*
depository page.

5.2.1 Covariates
There were a total of 58 covariates coming from the 18 inputs in Table 3 which were categorized as
static and dynamic covariates to give emphasis in temporal resolution. In concept, the static covari-
ates taught the model on the watershed’s geophysical features while the dynamic variables were more
temporally important. The dynamic covariates included weather data and FLACs while the rest were
considered as static. Layout maps of the selected main inputs are shown in Figure 3
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The covariates could be as many as 200 given the open source data available. However, having
multiple predictors that are highly correlated can be an issue in streamflow prediction (Kroll et al.,
2004). As such, other soil and vegetation static parameters were left out. The chosen soil and land
cover covariates depicted hydro and land dynamics specifically water infiltration and surface run-off
more significantly (Calder, 2008).

Forest loss and associated covariates (FLAC)
The forest loss was one of the key predictors as it affected two land cover covariates and 2 other
covariates aside from being a covariate itself.

The net forest loss integration to each subwatershed was automated taking off from the pre-processed
forest loss data with land cover and subwatershed information. It essentially provided hectares of for-
est loss in every subwatershed that enabled a cumulative decline of baseline forest cover per year.
First, yearly forest loss was replicated on a daily basis by creating sequence of days from 2000 to 2016
using functions seq and as.Date in R then using the function rep. Three sub functions were created
to make this happen. A function (1) that generated its cumulative difference per year was made then
supplied to a function (2) that deducted it yearly from the baseline land cover per subwatershed was
run yielding a 16-year output per subwatershed. Lastly, a replacement function (3) into the valuetable
was created to integrate the second function’s output. Main R functions used were lapply and mapply
which enabled to do functions over a series of years.

To train the model on land conversion effects, a separate covariate for land cover gain were made for 4
subwatersheds. In other words, this covariate is exactly the opposite of forest loss that changes yearly
alongside the associated covariates. These were pre-selected subwatersheds based on the significance
of forest loss indicated by forest loss rate in Table 1. Moreover, these areas depicted different type
of conversion from forest to grass, forest to barren, and forest to croplands. Another reason for
selecting the areas was validation materials availability as what are reported to the basin master plans
were considered. More details of this are shown in the next main section. To integrate this to the
valuetable, the conversions were tabulated and put to the first integration function that deducted the
forest loss to forest cover and adds it to the known conversion.

Table 1: Rate of forest loss per subwatershed per year (source:Hansen et al., 2013)

Basin Forest loss rate Basin Forest loss rate
aarb_a 12.5% crb_p 7.6%
aarb_n 4.0% crb_s 5.5%
abrb_s 0.8% crb_t 5.0%
arb_b 3.6% crb_u 8.2%
arb_c 6.5% mrb_s 5.6%
crb_a 11.7% prb_b 3.9%
crb_be 3.4% prb_c 4.2%
crb_bu 8.1% prb_a 4.2%
crb_d 6.9% prb_p 3.7%
crb_j 7.9% prb_r 2.3%
crb_m 4.2%

Reactive also to forest loss were the associated covariates Curve Number (CN) and Manning’s rough-
ness coefficient as both are functions of forest loss. The parameters are essentially surface runoff

13



coefficients per land cover which change whenever forest conversion happens. Moreover, these are
hydrologic sensitive parameters (Grimaldi et al., 2013) which can necessitate the model to learn land
conversion. Each land cover were assigned (Table 2) to its standard CN and Manning’s coefficient
value from United States Department of Agriculture (USDA), 1989. The same procedure of cumula-
tive difference and integration to the main valuetable was applied for both covariates.

Table 2: Curve Number and Manning’s coefficient values used per land cover (source: USDA).

.

Land cover Curve Number Manning’s coefficient
Forest 60 0.6

Perennial crop 79 0.22
Annual crop 81 0.17
Grassland 80 0.15

Wooded grassland 76 0.3
Barren land 91 0.01
Built-up 90 0.01
Water 70 0
Wetland 70 0

Weather covariates
Each of the following daily weather data were standalone covariates: precipitation, minimum tem-
perature, maximum temperature, relative humidity, and wind speed. But aside from these, four (4)
more weather covariates were derived to strengthen the highly variable weather pattern of the study
areas. The mean precipitation per month, mean precipitation per week, maximum precipitation per
week, and maximum precipitation in a day were added as separate covariates similar to the study by
Reynolds and Shafroth in 2016 for a random forest-based streamflow prediction in a highly seasonal
watershed. The first three were essentially a proxy to soil saturation effect from series of rainy days
since knowing the maximum rainfall in a week could help the model distinguish random rainy days to
rainy season. The maximum rain of the day was added to supplement model learning on peak flows
of extreme rainy days especially typhoons and monsoons. However, due to data limitation, maximum
rain per day covariate was tested for 1 subwatershed only.

Static covariates
Soil covariates, slope, and elevation were assembled in a script. Essentially, these were supplemental
covariates to train the model how the physical environment affect the water flows especially when it
comes to water infiltration contributed by soil texture, bulk density and soil depth covariates. The
elevation helped by sufficing the model that highly elevated areas are also high-rainfall areas. The
slope affected the model by contributing to the lag time effect or the time difference of the peak
rainfall and peak flow. Combining these covariates resulted into 35 predictors which is 65% of the all
covariates.

Other covariate
A “month” covariate was added due to climate and weather seasonality of the study areas. This way
the model learned which months were dry and rainy in a 16-year stretch. Another covariate that
distinguished each subwatershed was added (subwatershed code) that served as “labels” per subwa-
tershed during valuetable grouping.
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Table 3: All streamflow covariates/predictors for the random forest models.

No. Predictor Class/es Unit Nature Time nature
1 Daily Rainfall 1 millimeter climatic dynamic
2 Mean Daily Temperature 1 ◦C climatic dynamic
3 Wind Speed 1 m/s climatic dynamic
4 Relative Humidity 1 % climatic dynamic
5 Mean Monthly Rainfall 1 % climatic dynamic
6 Max Monthly Rainfall 1 % climatic dynamic
7 Max Weekly Rainfall 1 % climatic dynamic
8 Soil types 5 pixel count physical static
9 Bulk Density 5 kilogram physical static
10 Soil depth 5 cm physical static
11 Curve Number 1 coefficient hydrologic dynamic
12 Manning’s Roughness 1 coefficient hydrologic dynamic
13 Forest loss 1 pixel count physical dynamic
14 Land cover gain 1 pixel count physical dynamic
15 Other land covers 6 pixel count physical static
16 DEM 5 meters physical static
17 Slope 5 %rise physical static
18 Month 1 1-12 categorical static
19 Subwatershed code 1 1-21 categorical static
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Figure 3: Key spatial inputs used as covariates.
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5.2.2 Valuetables
All covariates were assembled into one main table/data frame termed as valuetable per subwater-
shed. The valuetables underwent a specific grouping-learning method before being supplied to the
random forest model. These two-way process were done using a long R script with a combination of
spatial and data frame manipulation packages namely raster, rgdal, dplyr, plyr, data.table, reshape2,
varhandle, xts, Hmisc, splitstackshape.

Assembly
The main function to assemble the valuetable took subwatershed name and a conversion boolean
string as arguments. Series of scripting steps also shown in Annex B were accomplished to assemble
a valuetable. An if-else statement was included also if the subwatershed had data on conversion since
that variable was applicable only to 4 subwatersheds as explained above.

First, all individual covariate tables were loaded, all had subwatershed information except for the
weather and streamflow. To deal with that, subset-pairing scripts were written. A subset method
was done using grep function which selected columns based on respective headings of subwatersheds.
To determine which is which for the subwatersheds, the filter function was used to predetermined
subwatershed numbers which were assigned during the watershed delineation. The basis of deter-
mining the numbers were based on the discharge point location. Querying of the 21 out of 142
subwatersheds was done ArcMap’s model builder because of its querying advantages and also for ease
of map layout afterwards. Moreover, the basis for selecting the weather stations was also based on
weather station location. The nearest stations within the subwatershed was selected. This is also the
selection method of process-based models like SWAT (SWAT Documentation, 2012). In some cases,
a thiessen polygon-based weather data assignment can be derived especially for smaller watersheds
with numerous weather stations and for more in-depth goal like for flood forecasting. In this study, a
1:1 weather station-subwatershed was perceived to be sufficient given the relatively huge study area
and amount of weather data acquired.

A table merging scheme was accomplished next after getting the values for the desired subwatershed.
Control measures, including removal of NAs, to assure that valuetable had a total of 6210 days (2000-
2016) was made. At that point, proper heading name was accomplished. The merging of individual
valuetables was done lastly using the SW codes assigned from the watershed delineation.

Grouping-learning methods
The training data were assembled and trained in 4 different ways to assess how RF models are af-
fected by watershed variability. Moreover, the grouping-learning method also served as the basis to
choose which method is the ideal to use for the full-scale streamflow prediction from 2000 to 2016.
The 4 kinds of valuetable grouping were: (1) “learn-all”, (2) basin-level, (3) subwatershed-level, and
(4) size-based. The first grouping was built by combining the 21 valuetables into one collated table
resulting into 51,690 observations run in one model. The second method or the basin-level method
assigned each of the 21 subwatersheds on its corresponding 6 major river basins resulting into 6
models. For the third method, each subwatershed was trained individually resulting into 21 models.
Lastly, the valuetables were arranged per SW size resulting into 2 sub-models. Those watersheds
below and above 100,000 ha were assigned to small and large model, respectively. Shown in Figure 4
is a diagram on how subwatersheds were arranged.

17



Figure 4: Hierarchy of valuetable grouping-learning methods used for random forest training.

A script to automate the grouping-learning methods was made not only to group the valuetables but
also to facilitate the data division into training and testing datasets afterwards. It took grouping
name, training data percentage, and conversion hint as script variables.
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5.2.3 Random forest model
The algorithm
Random forest algorithm is an ensemble type of bagging or averaging method that reduces the vari-
ance of individual trees by randomly selecting many trees from the dataset, and averaging them. In
bagging, successive trees do not depend on earlier trees where each is independently constructed using
a bootstrap sample of the data set (Liaw and Wiener, 2002).

The RF algorithm proposed by Breiman (2001) adds a layer of randomness to bagging. In addition to
constructing each tree using a different bootstrap sample of the data, random forests change how the
classification or regression trees are constructed.In standard trees, each node is split using the best split
among all variables. In a random forest, each node is split using the best among a subset of predictors
randomly chosen at that node. This somewhat counterintuitive strategy turns out to perform very
well compared to many other machine learning algorithms and is robust against overfitting (Breiman,
2001). Each tree undergoes a simple binary decision and the final decision of each tree is averaged
among the rest to get the final predicted value. A simple diagram of RF algorithm is shown in Figure 3.

Figure 5: Diagram on how random forest algorithm is implemented (source: Nakahara, 2017).

Parameters
Two optimization methods were tested for key RF variables mtry and number of trees (ntrees). The
former is the number of variables randomly sampled as candidates at each split while the latter is
the number of subsets/trees to be grown. The optimization was to assure robust sub-setting leading
to lower Out of Bag (OOB) error given a manageable computation time. The OOB is essentially a
held-out data from the training data itself internal to the RF algorithm to produce initial validation
measure of RF model. Moreover, mtry and ntrees parameters were perceived to be the most impor-
tant for regression according to Breiman, 2001. Increasing the mtry is favorable but the trade-off is
computation time (Breiman, 2001). Moreover, there is a “leveling-off” or a threshold where the OOB
error will stabilize and not change despite increasing the parameter values (Sumatiphala, 2014). As
such, the 3rd mtry value was chosen. The second optimization of key RF variables was done using
mlr package tuneParams function. A range of +-10 to the 3rd mtry value given by function tuneRF
were tested. Though slower than the first optimization method by far, this was done to see more
details on how optimization was done and also to counter-check the first optimization method. This
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became an intermediate experiment also as no existing study was made to compare the optimization
methods but just user insights in related online forums. However, the only downside of optimizing
was the computation time as it took longer hours to accomplish.

After tuning, the following were the optimized parameters with OOB error rate: mtry = 25, number
of trees = 2500, nodes = 5.

Training data %
The percentage of training data were experimented for the basin-level grouping to determine which
training-testing ratio was best to use for whatever random forest model. Moreover, it also revealed
which basin was more sensitive to training data. As it appeared, the training % that attained the
highest accuracy was 90% for all basins Table 4.

Table 4: Accuracy results per % training data used.

Basin No. of observation R2 per training data %
90% 80% 70%

AARB 6954 0.64 0.62 0.60
ABRB 1461 0.44 0.40 0.45
ARB 5113 0.80 0.42 0.30
CRB 27402 0.61 0.54 0.52
MRB 2191 0.65 0.49 0.42
PRB 8570 0.67 0.62 0.66

The relationship among number of observation and watershed size with R2 was also assessed using
to investigate if it influences model results. Climatic and some biophysical information per site were
also supplemented to support analysis.

Artificial high correlation which is a common sign of model over-fitting was avoided by controlling the
training data attained using the sample function in R. This was done by activating set.seed random
generator first before dividing the dataset into training and testing. The function is an integer vector,
containing the random number generator state for random number generation in R (R documenta-
tion, undated). This was done since sampling is repeated twice in two processes during training and
predicting and there were tendencies that the sample function chose different training observation
when run twice.

Models
The grouped valuetables were run using ranger function for faster implementation of random for-
est in R developed and documented by Wright and Ziegler in 2015 except for subwatershed-level
grouping which used randomForest. A comparison study was made by the said developers compar-
ing ranger with other random forest ensemble methods. It was found out that ranger is the fastest
and most computational-memory efficient implementation of random forest. It automatically assigns
the processing to computer cores while taking the same computer memory. This was proven by an
intermediate test at the basin level whereas virtually the same accuracy results were attained by the
ranger and randomForest models. However, it did not work when implemented inside a function for
sequential subwatershed processing, so randomForest function was used per subwatershed which took
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way longer to run.

The rule of thumb was to have one RF model per valuetable grouping method. The product of the
valuetable grouping script was fed to the RF models that were setup using the optimized parameters.
Each model training was explicit in every grouping method. Running the RF models was straightfor-
ward but a separate script was still formulated to automate the sequence of variable optimization and
model training. Moreover, the script automatically plotted the following results: optimization graph,
variable importance measures (VIM), partial dependence plots (PDP). These intermediate results will
be discussed more in the next section.

5.2.4 Accuracy assessment
Accuracy of the models was assessed using the predicted streamflow from the held-out data. Two rel-
ative measures were used for easier accuracy unit comparability also. A simple linear regression using
lm package in R was used to derive the widely-used pearson’s coefficient R2. A threshold of above
0.60 R2 was used to declare significant results. The second accuracy measure used NashâĂŞSutcliffe
Efficiency (NSE) to assess the predictive power of hydrological models especially when used for pre-
diction. It was computed using the nse function of hydroGOF package in R. Literature differ from
judging the NSE performance into good or bad. Researchers at USGS reported 0.5 and above NSE
represents a good fit for streamflow conditions (Christiansen 2012). Similarly, the SWAT calibration
and validation documentation affirmed that threshold as good. A list of published NSE performance
judgment was reported in a study by Moriasi et al. in 2005 (Table 5).

The Root Mean Square Error (RMSE) was not included as an accuracy indicator because RMSE is
an absolute measure. The subwatersheds differ a lot in streamflow values because of varying sizes
and characteristics, as such, absolute error comparisons is not advisable.

5.2.5 Comparison with other models
Secondary open source results of hydro modeling from the basins used for this study were compared
with the thesis results. Most of the information came from the master plans of the river basins. It
should be noted, however, that results of these secondary information were also modeling output with
different methodology, temporal scale, and resulting units. As such, a simple regression to capture
results trend was made between the thesis results and the secondary results. Capturing “similarity”

Table 5: NSE satisfactory values from various sources (source: Moriasi et al., 2005)

Model NSE Value Performance Rating
HSPF >0.80 Satisfactory
APEX >0.40 Satisfactory

SAC-SMA <0.70 Poor
SAC-SMA >0.80 Efficient
DHM >0.75 Good
DHM 0.36 to 0.75 Satisfactory
DHM <0.36 Unsatisfactory
SWAT 0.54 to 0.65 Adequate
SWAT >0.50 Satisfactory

SWAT and HSPF >0.65 Satisfactory
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by regressing two modeling outputs can be sufficient just for comparison purposes.

Three sets of monthly average streamflow for basins aarb (master plan) and mrb (master plan and
other study) were obtained (Table 6). Two were process-based model results while the other one
was based on regression. The temporal scale of aarb included a historical scope which could have
implications when compared to the results of this study.

Table 6: Other hydrologic model results within the study area of this thesis.

Basin Source Modeling Technique Software Temporal scale
aarb master plan process-based SWAT 1980-2012
mrb master plan regression unknown 2005-2010
mrb other study process-based SWAT 2005-2010

5.2.6 Validation
A separate validation set shown in Figure 6 was run at full-scale (2000-2016) in order to evaluate
if the models perform well in outside subwatersheds or those with no observed data but still within
the 6 major river basin study area. There were 6 subwatersheds selected based on distribution and
representation of the 6 basins. The naming of the validation sites correspond to it basin (first 3 or 4
letters) and size (last letter).

The predicted streamflow from the validation areas were judged based on seasonality since observed
data were missing to perform accuracy measures.

5.3 Forest loss and associated covariates effect to the models for Re-
search Question #2

5.3.1 Permutation and removal measures
The models with different valuetable assembly-training methods were tested on how FLAC affected
the models. The FLAC were assessed using two covariate manipulating measures: permutation and
removal. For the former, each modelâĂŹs importance measure based on post-permutation accuracy
was compared. That measure gives the average accuracy difference on pre and post permutation
between the RF trees. The higher the value, the more it influences the model by decreasing un-
explained variance or simply increasing accuracy. Value ranges vary depending on the number of
training samples so basins that have similar ranges were grouped for plotting purposes. Moreover,
for the 21 subwatersheds, an extra graph containing %MSE change when covariate is permuted were
included and assessed. This was at the subwatershed-level method because remember that it used
the randomForest function instead of ranger. For the latter, each FLAC was removed and all models
were re-run to check how the accuracy indicators (R2, NSE, and MSE) changed after. The regression
results were examined carefully to check for prediction changes and outliers. Observed and predicted
line graphs were generated to visually aid the comparison.

The ranking of the covariates based on the importance measure was graphed to check how the FLAC
performed with other covariates. This was done for all the models at the basin-level. The %breakdown
was shown in both table and graph of at least 13 out of 58 covariates.
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Lastly, the discrepancy from the observed data was compared for simulated flows with and without
FLAC by computing for the % change using the simple equation below. This step was done to make
a relative comparison, in line graphs, among basins using monthly streamflow averages and to check
for over and under prediction of the predicted flows.

%change =
simulated - observed

observed
× 100

5.3.2 Partial Dependence Plots
Partial dependence plots (PDP) which measures how a particular covariate influence the prediction
of the dependent variable by changing the value of one covariate while leaving all other covariates
constant also served as an accuracy indicator. The PDPs were in the form of line graphs which are
essentially similar to regression graphs that depict linearity among the two variables. The PDPs were
derived using the generatePartialDependenceData function of mlr package in R for the full-learning
and basin models. This is because there is still no exclusive PDP generator for ranger function.
But for the subwatersheds that used randomForest, function partialPlot was used which is more
straightforward. The PDPs of FLACs were assessed by comparing graphs and tables among the 21
subwatersheds, getting the common trend among the subwatersheds, and explaining the trend gener-
ated by each FLAC. The PDP showed the covariate of interest in the x-axis while streamflow in the

Figure 6: Map showing study area and validation sites.

23



y-axis. The trends of the PDP line graph gave hints on how the specific covariate values affected
specific streamflow values. Moreover, specific pattern of the trend was observed to check for sensitive
range of values to corresponding streamflow ranges. On the other hand, the PDPs that appeared in
a straight line can mean that the specific covariate did not affect the model at all.

5.4 Forest loss effect to full-scale predicted streamflow for Research
Question #3

5.4.1 Full-scale prediction
A full-scale, per subwatershed, and automated streamflow prediction from 2000 to 2016 was gener-
ated using the best prediction model out of the different grouping-learning methods. Although the
accuracy measures were capable enough to show which training model method was the best, still,
all models from varying valuetable grouping methods were run to compare the full-scale predictions.
This was more applicable to the basin and size-level models since the subwatershed models were more
prone to low accuracy result because of limited training power. Moreover, comparing the full-scale
prediction was a good tie-breaker among models with very close results. As a rule of thumb, the
model selection for full prediction only chose one grouping-learning method model and not mixed.

Summary statistics
Summary statistics of the full-scale predicted streamflow were derived in box plots to capture an
overview of the predicted streamflow. The box plots were graphed per watershed size to have a
better value scale distribution thus being more visually appealing. A separate plot for small and large
subwatersheds were produced as well. This was helpful to provide the overview of wet and dry seasons
with respect to the median value. Moreover, the plots characterized the subwatershed seasonality
extremes via the range of the minimum and maximum values.

Time series graphs
Predicted streamflow and precipitation graphs or simply “hydrographs” were produced and assessed to
investigate if the predicted water flows were rainfall-responsive seasonally. In other words, hydrographs
were used to check whether the subwatersheds discharge higher if there is more rain. Several measures
are being used in hydrology to check how rainfall and streamflow are linked. One common measure is
lag time which measures the time difference between peak rainfall and peak flow. The larger the lag
time means the longer the travel time of water to the discharge point. However, this measure was not
used for this study because of the very high temporal resolution of the prediction as lag time are mostly
used for flood modeling. The other incidental use of the hydrographs were to assess whether the sub-
watersheds have potential regulating infrastructures like dams since these structures alter water flows.
This step further validated the subwatershed with poor prediction and low accuracy result as regu-
lated subwatersheds behave differently especially during dry season. Theoretically, subwatersheds with
dams have steady water flows even during dry season because of water regulation by purpose. On the
other hand, it has lesser flows during rainy season because of water storage. Validation with the basin
master plans was done for those subwatershed with dam-like behavior as indicated by the hydrographs.

The hydrographs of the 6 validation sites were created also to inspect if the predicted streamflow from
subwatersheds without observed data are also capable of being rainfall-responsive. That assessment
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also served as an accuracy measure.

5.4.2 Forest loss and streamflow
Deviation from historical mean
Three “well-predicted” subwatersheds and those with historical data were used to investigate how
full-scale streamflow prediction deviated from historical mean flows because of limited data availabil-
ity for all 21 areas. Two set of graphs were prepared for this section: (1) graph comparing with
and without FLAC relative to historical mean flow, and (2) comparing dry and wet season relative
to historical flow data. Seasonality was captured by accustoming to the climate type of the area.
This was automated also using functions in R (aggregate, melt, filter) to summarize monthly flows
and arrange accordingly per different subwatershed season. The historical seasonal flow was drawn
as a threshold line to that of the predicted seasonal flow averages. Its deviation was closely in-
vestigated per season to assess the potential impacts of forest loss. Anomaly can be assessed by
comparing predicted streamflow in a given month compares to its long-term average (Shortridge et
al., 2016). Standard deviation of the historical mean was used to declare an extreme flow as an outlier.

Mean daily streamflow per season
Yearly mean daily seasonal flows per year were graphed and regressed with forest loss for 6 selected
subwatersheds as well as to 6 validation sites. This was one of the key indicators on how forest loss
affected the flows seasonally. The choice of subwatersheds were those that performed well as per
accuracy measures in section 4.2.4 and rainfall-responsiveness. The purpose of this step was not to
find good regression results because the data points were so limited (16 points/subwatershed). The
revealed pattern (inverse or not) of forest loss and seasonal flows was more favored. However, R2

was still reported.

The regression for wet season produced one collated graph since all subwatersheds depicted a positive
linear relationship between forest loss and wet flows.

The effect of precipitation was evaluated also using the same regression procedure since rainfall can
also affect the seasonal streamflow pattern. Moreover, this step served as the basis which drives the
seasonal trend better - forest loss or precipitation?

Rainfall - peak flow ratio (RPFR)
Peak flows of extreme rainy days were divided into its corresponding rainfall to get the ratio of both
as a relative measure on how peak flows change over time. The lower the RPFR value the more
streamflow it generates relative to rainfall. The basis for determining “extreme” was sorting the rain-
fall value and filtering the top 100 rainy days over the 16-year time series. This step served as an
indicator to assess the change of forest regulation service in wet season. The most rainfall-responsive
subwatersheds were chosen as test sites.

The yearly (2000-2016) rainfall-peak flow ratio of the selected subwatersheds were regressed again
with forest loss to assess how strong the correlation is.
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Scenarios
A forecasting method was generated using the linear relationship of forest loss to dry season flow and
RPFR from unregulated subwatersheds. Three scenarios based on forest loss rate were created: (1)
current rate, (2) additional 5% rate, and (3) additional 10% rate. The unit of measure was relative
(% increase/decrease). Only those subwatersheds with above 0.30 in R2 were modeled.
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6 Results

6.1 Predicted flow assessment

This subsection assesses the predicted/simulated streamflows from different grouping-learning meth-
ods relative to the observed/actual data. Accuracy measures (R2 and NSE) comparison and in-depth
predicted streamflow assessments are the gist of this section.

6.1.1 General findings
Accuracy results using held-out or test data varied per RF grouping-learning method. One general
finding was that grouping the valuetables instead of having 1:1 valuetable-model yielded better ac-
curacy results. In other words, subwatershed-level grouping performed beyond the other grouping
methods. This finding was evident when mean accuracy (R2 and NSE) result is the basis as the
“learn-all” method seemed to outperform the other grouping methods as shown in Figure 7. The re-
sults of model testing (10% of remaining observed data) for basin and subwatershed levels are shown
in Annex D.

Figure 7: Mean accuracy measures from different random forest grouping-learning models.

Another common finding to all grouping-learning method was that high absolute number of observa-
tions was a non-factor to attain higher prediction accuracy, again using R2 and NSE as measures. This
finding was more evident from the basin and subwatershed grouping-learning methods where models
are comparable because the methods have 6 and 21 sub-models, respectively. Similarly, accuracy indi-
cator R2 was not correlated with watershed size. Shown in Annex C is the relationship between the R2

and the said two indicators (number of observations and watershed size). The said two observations
hint that model training accuracy can be affected more by the combination of watershed features
itself and not by one single factor especially the number of observations. Lastly, a general observation
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was that R2 and NSE coincide with a 0.94 correlation value. However, NSE was always lower than R2.

6.1.2 Per grouping-learning method findings
The “learn all” method, which collated individual valuetables into one very informative table, yielded a
significant accuracy reulst of 0.69 R2. The regression results of model testing (10% of over-all data)
is shown in Figure 8. This result can mean that training the model with every bit of data available can
result to the highest model accuracy even though watersheds are from different basins. This finding
further means that the model is able to nullify the extreme low R2 observed from the subwatershed
models. In other words, those irrelevant information at subwatershed-level can make more sense when
combined with other subwatershed information. The last observation was NSE result just deviated a
bit at 0.67 for learn-all method.

Figure 8: Model test result using 10% of remaining observed data for âĂĲlearn-allâĂİ grouping-training method.
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Basin models performed relatively good as only one model (abrb) was below the significant threshold
of R2 (> 0.60). There was no clear trend relating R2 to sample and basin size. The basin with
most number of sample size (crb) was only 4th in correlation results ranking. However, basin abrb,
being lowest from the correlation results, was also the smallest in area and sample size. Judging the
observation-accuracy for basin abrb can be a combination of the earlier said findings that models
from small subwatersheds and ungrouped valuetables perform relatively poorer as both situations are
present in basin abrb. On the other hand, the basin (arb) with the highest R2 and NSE did not have
clear connection with the sample size. Again, it signifies that the number of training data is not the
mere basis of attaining high accuracy result. The per basin accuracy results, sample size, and area
are summarized in Table 7 and visualized in Figure 9 below.

Table 7: Accuracy results, sample size, and basin area.

Basin Sample size Area (ha) R2 NSE
aarb 6,954 25,5396 0.59 0.58
abrb 3,461 1,461 0.44 0.30
arb 5,113 68,116 0.80 0.73
crb 27,402 4,120,698 0.6 0.58
mrb 2,191 63,444 0.65 0.64
prb 8,569 977,516 0.67 0.5

Figure 9: Summarized plot of accuracy result, number of observations, with labels of watershed size for basin models.
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Higher variability of accuracy outcome was observed for the subwatershed models as shown in Table 8
judging from the results of R2 and NSE. The variability can be attributed to the method itself since
subwatershed-level grouping-learning method essentially took away the essence of static covariates
because no valuetable grouping happened. Almost half (48%) or 10 out of 21 had positive strong
correlation results or those above 0.6 R2. Bulk of the relatively poor models belonged to basin crb.
Comparing it with the basin-level learning, the 1:1 method performed way below. For example, those
belonging to basin crb resulted to a mean of only 0.41 R2 or beyond by 0.19 compared to crb at
the basin-level method. This discrepancy was also evident, but in lower magnitude, in basin prb
where 1:1 subwatershed models were beyond in R2 by 0.05. Moreover, sample size with an average
of 2,461 observations and subwatershed area were also not affecting the accuracy results but here,
accuracy-sample size variability was more evident than the basin-level results. Affirming variability
are the top left points in Figure 10 where basins showed significant accuracy results given a lower
sample size. Looking at the climate type, those belonging to climate type 1 or pronounced wet and
dry season had better accuracy results which can hint that distinct seasonality can be learned by the
random forest algorithm well.

Table 8: Accuracy results, sample size, and subwatershed area.

Subwatershed Area (ha) climate type Sample size R2 NSE
aarb_a 236,119 3 3969 0.56 0.55
aarb_n 19,277 3 2985 0.72 0.71
abrb_s 1,461 1 1461 0.44 0.30
arb_b 31,609 1 2191 0.82 0.81
arb_c 36,507 1 2922 0.1 -1.5
crb_a 104,525 4 3287 0.62 0.6
crb_be 27,211 3 1645 0.21 0.2
crb_bu 1,851,853 3, 4 2040 0.65 0.58
crb_d 169,590 4 3584 0.4 0.38
crb_j 293,539 4 4384 0.62 0.58
crb_m 215,601 3 1096 0.51 0.27
crb_p 1,187,380 4 3409 0.65 0.59
crb_s 85,267 3 2843 0.2 0.11
crb_t 66,994 4 3653 0.1 0.019
crb_u 118,738 4 1461 0.18 0.16
mrb_s 63,445 1 2191 0.65 0.65
prb_a 622,280 1 2026 0.2 0.17
prb_b 37,406 1 1826 0.76 0.68
prb_c 84,287 1,3 912 0.86 0.72
prb_p 85,739 1 1432 0.4 0.39
prb_r 147,804 1 2373 0.91 0.91
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Figure 10: Summarized plot of accuracy result, number of observations, with labels of watershed size for subwatershed
models.

The last grouping-learning method size-based grouping yielded 0.35 R2 for small subwatersheds,
0.56 R2 for large subwatersheds using 24,061 and 27,629 number of observations, respectively. The
0.21 deviation among the two sub-models is considered significant and essentially translates that
large subwatershed information can be more sensible to the RF algorithm. Moreover, the smaller
subwatersheds are just “part” of the larger ones in the case of this study and it seems the smaller
subwatersheds exhibit more heterogeneity.

6.1.3 In-depth comparison of simulated and observed flows
The graphs in (Figure 11) showcase the daily average flow per month deviation of the simulated data
from the actual data at basin level. Generally, the predictions deviated more during rainy months as
there was an average of 3.8 rainy months in a year with over-predicted steamflow. However, there
were some months that under-predicted rainy months but are just 1.3 month per year on the average.
The rainy season over-prediction can be observed also from the regression graph in (Figure 8) where
bulk of points were above the 1:1 line at 5e+05 to 6e+06 range. On the other hand, the predicted
streamflow during dry season coincided better with the observed data better than that of the rainy
months.

The seasonality became more obvious as line graph smoothing was observed when the daily flows
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Figure 11: Predicted daily mean streamflow per month using test data compared with observed data for 6 basins.

for both simulated and observed are averaged in a monthly basis. There were no evidences of the
extreme flows effect which can be attributed to the “averaging out” effect or cancellation of highs
and lows that mixes extreme flows to more regular flows.

The prediction using the test data came up short in predicting peak flows of severe rainy days in
general as observed in Figure 8 above. This was also the observation from the three other grouping
methods seen in the Annex F. To reiterate, the remedy during the midway of the thesis was to
sample a good performing subwatershed to include a maximum daily rainfall covariate. Incidentally,
the comparison of with and without max rainfall in a day revealed that indeed predicted peak flows
can improve (Figure 12) by as much as 30%. It can be seen also that the flows aside from the peak
or those very high discharge days remain similarly the same.
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Figure 12: With (left) and without (right) peak rainfall per day covariate full scale prediction.
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6.1.4 Comparing with other models
The results for basins mrb and aarb were compared with other hydrologic models from basin master
plans (aarb and mrb) and the study by Rawlins et al., 2017 for mrb. It appeared that the monthly
average predicted streamflow by this study exhibited similarity between other models especially for
mrb as shown in (Figure 13). However, in basin aarb, the two model results were not that very similar
(but still linearly related) mainly because of the temporal scale discrepancy as the other model used
1980 to 2012 range.

Figure 13: Regression graphs of thesis results versus other hydrologic model results from master plans and other studies.
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6.1.5 Validation sites
All validation sites depicted seasonality based on the full-scale prediction using the learn-all RF model
as shown in Figure 14. The prediction also coincided with the climate type of the sites where distinct
seasonality was observed in aarb_vs, abrb_vl, abrb_vs belonging to climate type 1 (pronounced wet
and dry season).

Figure 14: Full-scale streamflow prediction for 6 validation sites.
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6.2 Forest loss and associated covariates (FLAC) assessment

This subsection pertains to the assessment of the effects of FLAC covariates to the random forest
models and predictions using 3 measures (permutation, removal, and partial dependence plots) for
each of the grouping-learning method.

6.2.1 Permutation indicator
The randomForest function produced an importance measure based on covariate permutation called
as “variable importance measure” or simply VIM. The measure VIM was derived using the average
difference of accuracy decrease when a covariate of interest is to be permuted. The FLAC, when
permuted, affected the model by decreasing accuracy of 18% on the average. This effect can be
attributed to the yearly change in forest loss values resulting into cumulative decline in forest cover
as the RF model seems to be reactive to this trend which is reflected also, of course, to its associated
covariates. The FLAC impact as per VIM can be observed visually for the “learn all” model shown
in Figure 15 and the rest of the models in Annex E. Highest among the FLAC covariates at 20%
accuracy decrease was forest loss and forest cover which are essentially forest conversion outcome. A
bit below (12%) the importance measures were associated covariates Curve Number and Manning’s
coefficient. The result for these two associated covariates makes sense since the two are relative values
with narrower range of values compared to absolute values in hectares which can be more sensitive
to permutation.

The FLAC were within the top 13 (out of 58 covariates) important to the basin models and contribute
for 18% of the total VIM (Figure 16) for all basins on the average. Majority of the VIM contribution
were given by weather covariates due to its higher variability in nature. Note that these are daily data
and when permuted, can affect the model performance worse compared to yearly dynamic covariates
which FLACs are. Covariate month (mo) was the top VIM contributor for the 6 basins or simply
the “most important” covariate indicating the distinct seasonality of Philippine climate. Interestingly,
covariate month has lesser temporal resolution than the weather covariates (monthly versus daily),
nevertheless, has higher VIM value.

The pattern on how FLAC vary per basin was noticeable. In huge basins like prb and crb, the amount
of forest loss was relatively bigger also. That magnitude seems to affect VIM scores when absolute
forest loss in hectares are to be permuted. For crb, the conversion effect was amplified by the high
importance values of forest cover. This basin also has the highest forest loss rate among all basins
caused by rampant illegal logging in early 2000s. Moreover, years 2000-2004 for crb had the highest
forest loss incidence among other basins which resulted into a steep increase of forest loss graph
from that phase. Unfortunately, there is no temporal measure given by the VIM to better support
the influence of the abrupt forest loss change within 2000-2004. For prb, covariate LC.for or forest
cover was the second highest among all covariates. Incidentally, that basin despite having low forest
cover, but, with considerable forest loss yearly at 4% seems to trigger the model. In other words, it
is equivalent to higher cover-loss ratio also which makes forest cover a significant VIM contributor.
Each VIM graph per basin is shown in Annex E.
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Figure 15: Per covariate importance measures for learn-all prediction model.

Figure 16: Top covariates with %breakdown of variable importance measure per basin.
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Variable importance measures of randomForest differed by that of ranger although both are pack-
ages for random forest algorithm. Again, this variation happened since the ranger script was not
operational at subwatershed level due to some function-calling limitation. However, both measures
(unexplained variance increase for ranger and MSE increase for randomForest) are relative measures,
as such, the subwatersheds can be compared accordingly. Even at per subwatershed learning, FLAC
increased %MSE if permuted. In fact, the FLAC at the subwatershed-level VIMs had more model
effect as FLAC were consistently within the top 10 contributors of VIM for all subwatersheds. Same
observation with the basin-level VIM was observed as forest loss and forest cover covariates were the
top VIM contributor among the FLAC group. Highest influence of the said two FLACs was observed in
prb_r which could affect MSE by as much as 50%. This subwatershed coincidentally performed well
via accuracy indicators meaning there can be a correlation between significant VIM result of FLAC
and model accuracy. Another observation with the subwatershed-level VIM graphs was that FLACs
tend to outperform some weather covariates. Located in Annex E are VIM graphs per subwatershed.

6.2.2 Removal measures
There was an average of 0.06 difference with a relative decrease of 17% in R2 and 7.5E+08 change
in MSE for all basins when FLAC were removed as covariates as shown in Table 9. Note that, in this
case, MSE was added as a measure even though it is an absolute measure since it was easily accessed
from the random forest models. To make the measure relative, percent change was computed and
it turned out that FLAC increased the MSE by 4%. The discrepancy after FLAC removal based on
MSE and R2 can still be considered important even the changes are relatively insignificant (aside from
basin prb with the only basin with > 0.1 R2 decrease). It is because the baseline regression results
were not very high as only 3 out of 6 basins were below the 0.6 significance threshold after FLAC
removal. Basins prb and arb had the highest R2 decline when FLAC were removed which can be
attributed to some abnormal high flows even in dry season and extreme flows that can be considered
as outliers (Figure 17). Looking beyond the R2 difference from with and without FLAC models, the
significant decline when FLAC are removed can hint about the regulating effect of FLAC in water
flows to control abnormal high flows. In mrb, it was more evident and could be affected by relatively
smaller training data. Basin abrb with the smallest training data number had the highest discrepancy
on R2 with and without FLAC. Regression graphs per basin with and without FLAC are shown in
Annex F.

Table 9: Effect of FLAC removal on R2 and MSE per basin.

Basin Sample size R2 decrease % change in R2 MSE difference
aarb 6,259 0.07 20% 2.50E+07
abrb 1,315 0.05 14% 1.00E+07
arb 4,602 0.08 23% 3.00E+08
crb 24,662 0.01 3% 3.20E+09
mrb 1,972 0.04 11% 1.20E+08
prb 7,713 0.11 31% 8.00E+08
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Figure 17: Outliers observed in sample basins (arb and mrb) when FLACs are removed as covariates.
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A summary of the simulated and actual flows seasonal comparison (basin-level) in relative values
is shown in Table 10. In an overview, both (with and without FLAC) simulated flows exhibited
over-prediction of 10% on the average from the 6 basins. Dry month flows (6%) had relatively
lesser over-prediction than wet month flows (14%). Seasonal comparison of with and without FLAC
predicted flows revealed that the latter under-predicted streamflow during dry season in 4 basins while
it over-predicted during wet season for 5 basins compared to the former. This simply means that
without FLAC, the seasonal flows can be a bit more erratic than the models with FLAC.

Table 10: With and without FLAC predicted flows % change compared to observed flows seasonally

Basin with FLAC without FLAC
dry wet dry wet

aarb -2 -2 -10 7
abrb 20 20 -10 24
arb 4 23 2 29
crb 4 3 4 4
mrb 10 7 13 -3
prb 18 23 12 25

6.2.3 Partial Dependence Plots (PDP)
In the case of the 21 subwatershed RF models, 20 out of 21 models depicted that FLAC influence
the streamflow prediction by having linear trend represented by Figure 18, the rest of the graphs
are located in Annex F. This is a good indication since a mere straight line graph PDP means the
covariate does not influence the dependent variable at all (Strobl, 2008). In other words, a sloping
PDP line is essentially equivalent to a strong streamflow prediction link. To be more specific, the
linear observation from PDPs, either inverted or not, exhibits that there are low-high/high-low and
high-high/low-low values link between streamflow and FLAC.

The trends shown in Figure 18 for the 4 FLAC was common to 70% of the models where a positive
linear trend was observed between streamflow to forest loss and Curve Number. That two sub-graphs
above show that low to high forest loss and Curve Number values have strong influence in predicting
low to high streamflow, respectively. This result make sense since forest loss are accumulated and
higher Curve Number meant more deforestation.

Oppositely, the two sub-graphs below in Figure 18 show that forest cover and Manning’s coefficient
were strongly affecting streamflow prediction the other way around compared to forest loss and Curve
Number. The finding can be translated to a high-low/low-high link between streamflow and the said
two FLAC. This pattern is essentially a result of forest cover covariate declining constantly per year
as well as Manning’s coefficient since its value declines when deforestation happens.

The PDP graphs revealed some pattern also relative on how steep and gradual the drops or rise are.
This can be attributed on how a particular FLAC covariate values influence per certain streamflow
ranges. Steep drop and rise were observed in Manning’s and Curve Number sub-graphs respectively
(LC10.man and LC9.CN). It can mean that wider streamflow range can be influenced by narrower
covariate values. On the other hand, the gradual drop and rise observed from forest cover and loss
(LC2.for and LC11.fl, respectively) had more balance between the magnitude of the pairing values.
The gradual drop or rise of the line is capturing seasonality of streamflow better essentially. In other
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Figure 18: PDP graphs of selected basin for the 4 FLAC (top left: forest loss, top right: Curve Number, bottom left:
forest cover, and bottom right: Manning’s coefficient.

words, FLAC with absolute values has more “magnitude effect” than relative ones. Note that the de-
pendent variable streamflow has absolute values also. As such, the finding in this last paragraph can
be interpreted also as absolute-absolute variable had sensible prediction impact than absolute-relative
variable pairing.
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6.3 Forest loss and full-scale predicted streamflow

Overview

This section shows 2 main results about the full-scale (2000-2016) predicted streamflow and the
effect of forest loss to it. First, 3 indicators were used to evaluate the full-scale predicted stream-
flows. These are box plots, hydrographs, and start-end year comparison. Secondly, the effect of
forest loss was evaluated via 2 indicators: the deviation to historical mean daily streamflow; and the
regression of forest loss to dry flows and RPFR. The summary of the key results for this section is
shown in Annex G. The summary table also shows supplemental information used for highlighting re-
sults in this section like number of water regulating structures, model accuracy, climate type, and size.

6.3.1 Full-scale prediction assessment
Box plots
The summary statistics in the form of box plots for all subwatersheds together with those assigned
as small and large are shown in Figure 19. The proportion of boxes in the figure reveals that most
subwatersheds had longer wet season in general having larger values above the median line. Moreover,
the range of the upper values were also way higher as observed from the dashed line. This simply
depicts the actual climate type in the Philippines which has relatively more rainy months than dry
months.

Figure 19: Box plots of full-scale predicted streamflow for small (top left), large (top right), and every (below)
subwatersheds.
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Hydrographs
Hydrographs or streamflow-precipitation graphs served as the second indicator to assess if the full-scale
streamflow predictions are good. To reiterate, rainfall-responsiveness is defined as the linear reaction
of streamflow discharge to a specific rainfall event i.e. high rainfall is equals to high streamflow.
Using the “learn all” grouping-learning method, the full-scale prediction of 13 out of 21 subwatersheds
looked to be rainfall-responsive. These were aarb_a, aarb_n, abrb_s, arb_b, crb_a, crb_bu, crb_d,
crb_j, crb_p, mrb_s, prb_b, prb_c, and prb_r. Figure 20 displays the most rainfall responsive hy-
drographs, the rest are shown in Annex H. Judging visually, the four sub-graphs in Figure 20 have
a distinct seasonal flow throughout the 16-year stretch as streamflow corresponded to the amount
of daily rain in most cases. Incidentally, most of the rainfall-responsive subwatersheds were also the
subwatersheds with high accuracy prediction (0.6 and above R2) when individually trained. In other
words, the full-scale prediction agreed well with the accuracy results. Moreover, it can indicate that
the characteristics of these areas are so definitive as both the “learn all” and individual models can
predict the flows similarly. On the average, rainfall-responsive subwatersheds had 0.66 in R2. More
interestingly, the rainfall-responsive subwatersheds were those considered to have the least water reg-
ulating infrastructures as shown in Annex I.

The subwatersheds used for validation all depicted rainfall-responsiveness. It happened that these 6
subwatersheds were pre-selected not to have regulating structures. The graphs can be seen in Annex J.

Figure 20: Subwatersheds representing the rainfall-responsive group.

On the other hand, there were 8 out of 21 subwatersheds that did not depict rainfall-responsiveness.
These were arb_c, crb_be, crb_m, crb_s, crb_t, crb_u, prb_a, and prb_p. Least rainfall-
responsive subwatersheds were mostly from crb basin as shown in Figure 21. Basin crb has a lot
of big and small dams constructed for irrigation and flood control (Cagayan River Basin Master Plan,
2013) as shown in Annex I. The hydrographs that were not rainfall responsive were also subwatersheds
that yielded low accuracy having just an average of 0.23 in R2. Judging from the hydrographs, it can

43



be observed that the time series streamflow pattern was a bit irregular despite showing a seasonal
trend. Looking at specific season and year revealed some instances. In crb_t for example, water
flows tended to become more regulated from mid-2007 onwards. A similar observation was seen in
the crb_m graph where rainfall responsiveness was observed until year 2003, beyond that year were
more regulated flows even in rainy season. These flow irregularities can be caused by the start of the
water regulating structures operation.

Figure 21: Subwatersheds representing the group that are not rainfall-responsive.

6.3.2 Start-end year comparison
The average predicted streamflow per season was compared (Figure 22) for the starting and ending
year (2000 and 2016). Generally, most subwatersheds showed decline of water flows in dry season
(18 out of 21) and otherwise during wet season (14 out of 21). Relatively, there was an average of
148% decrease in dry season and 7% increase in wet season, respectively. The highest changes for
both seasons was observed in subwatersheds arb_b, crb_d, and prb_b. These subwatersheds were
relatively small and with no water regulating structures.
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Figure 22: Dry and wet season comparison of flows in 2000 and 2016.

6.3.3 Forest loss effect
Deviation from historical flows
The two figures (Figure 23 and Figure 24) display the comparison of the seasonal predicted daily mean
streamflow to its historical average (1980-1998) for subwatershed arb_b. The chosen subwatershed
depicted the FLAC effect better than the other 2 subwatersheds although all showed the same effect.
Note again that there were only 3 subwatersheds with historical data.

The first figure (Figure 23) shows how the seasonal flows differed without FLAC. Generally, the time
series trend was more obvious from the seasonal predictions with FLAC. During dry season (upper
images), there was a decreasing trend with fewer fluctuations over the years relative to the historical
flow when the predictions included FLAC. Oppositely, there was an increasing trend during wet season
for the FLAC predictions while extreme fluctuation was observed from the predictions without FLAC.
Remember that this observation occurs also in Figure 17 where outliers appeared from models without
FLAC. This subwatershed (arb_b) has a very pronounced dry season so rainy summer days are very
unlikely. Moreover, there was no extreme typhoon from the area in 2004 so the high fluctuation
observed in lower right graph is also unlikely.

The next figure (Figure 24) presents how the seasonal predicted daily mean streamflow deviated with
the historical flows per season. The sub-graphs belong to subwatersheds with historical data namely
arb_b, crb_d, and crb_m. The graphs on left are for dry season while the other side is for wet season.
In general, the dry season graphs depicted a decline in streamflow while wet season graphs portrayed
otherwise relative to the historical mean flow threshold. The most deviation was observed in crb_d,
a large subwatershed with no regulating structures, as shown by the middle graphs. Another extreme
change is shown by the upper right graph (arb_b, wet season) which started in 2003, also the same
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Figure 23: Predicted mean daily dry and wet streamflows (above and below images) with and without FLAC (left and
right images) with the historical mean daily dry and wet streamflow threshold.

year when the subwatershed started to be below the historical dry flow threshold. This subwatershed
was neither a subwatershed with regulated infrastructure nor a poor model result. As forest loss
happened, only one year was above the historical dry season average flow except for subwatershed
crb_m mainly because it has water regulating structures.

Forest loss and dry season streamflows
An inverse linear trend between daily average dry season streamflow and forest loss was observed for
14 out of 21 subwatersheds. Figure 25 shows the 6 subwatersheds with the strongest link or highest
R2, the rest are shown in (Annex K). Out of the 6 chosen, 4 were without water regulating structures
(arb_b, crb_d, prb_c, prb_r) while 2 were with (crb_be, crb_m). Note that the dots from each
sub-graphs were 16 in total depicting the full-scale prediction from 2000 to 2016. The 4 subwatersheds
without regulating structures incidentally had an average of 0.76 R2 while the 2 subwatersheds with
regulating structures had 0.40 from its accuracy test. It means these 6 subwatersheds are generally
good performing from the ranks of without and with regulating structures, respectively. The inverse
trend from the 6 graphs interprets that there is a link between higher forest loss and drier water flows.
Moreover, it indicates that even subwatersheds with regulating structures can suffer incremental water
shortage during dry season.

Similarly, the 6 validation sites depicted an inverse relation between forest loss and dry streamflow as
shown in Figure 26. The trend were strong in subwatershed prb_vl and abrb_vs, both have a distinct
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dry season according to its climate type.

Rainfall - peak flow ratio (RPFR) and forest loss
The ratio of rainfall and peak flow is a relative measure on how peak flow is changing over time.
The lower the value means there is relatively higher streamflow given a certain rainfall. The 3 most
rainfall-responsive subwatersheds (aarb_n, crb_d, crb_p) showed significant relationship with forest
loss with 0.52, 0.90, and 0.72 R2, respectively. The results for the rest of all subwatersheds is shown in
Annex L. The said subwatersheds happened to be unregulated subwatersheds also. The subwatershed
with the highest correlation (crb_p) showed a distinct decreasing trend of the ratio. This means

Figure 24: Predicted dry (left images) and wet (right images) mean daily streamflow compared to its historical mean
for 3 subwatersheds with historical data.
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Figure 25: Mean dry flows and forest loss regression graph for 6 subwatersheds with strongest correlation.

Figure 26: Mean dry flows and forest loss regression graph for the 6 validation sites.

low-high forest loss is correlated with a high-low RPFR.
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Figure 27: Rainfall-peak flow ratio and forest loss relationship.

Forest loss rate scenarios
A mean of 34% decrease in dry season daily streamflow was observed retaining the current rate of
forest loss at 3%. Streamflow decreased more at 41% and 48% when forest loss rate is increased by
5% and 10%, respectively. The results had a confidence interval of +- 14%. Subwatersheds aarb_vs,
arb_b, and prb_r were the only areas above 30% decrease for all 3 scenarios. These are relatively
small subwatersheds. On the other hand, subwatersheds with lowest % decrease were crb_m and
crb_d, both large subwatersheds with 71,897 ha and 111,512 ha remaining forests.

On the other hand, peak flows was more affected by forest loss by exhibiting higher % increase by
having a mean of 88% increase with a confidence interval of +- 5%. Scenario-wise, the crb subwa-
tersheds exhibited significant increase doubling the peak flow indicator (RPFR) when forest loss rate
is increased by 10%.
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Shown in Figure 28 are the scenarios for both dry and wet season, indicated by % decrease in stream-
flow and % increase in peak flows (RPFR). The supplemental information on forest area, subwatershed
area, and forest areas from the 3 scenarios are shown in Annex M).

Figure 28: Forest loss rate scenarios effect to dry season flow and peak flow.

Precipitation and seasonal flows
The same regression procedure was applied to precipitation and seasonal daily mean streamflow to
evaluate their relationship. It was found out that precipitation and the seasonal flows (both dry and
wet) did not have any relationship at all. All regression results yielded very low correlation outcome
with an average of 0.009 in R2.
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7 Discussion

7.1 Grouping-learning RF models accuracy

7.1.1 Valuetable grouping effect
The learn-all method attained the highest mean accuracy result for both R2 and NSE among the
grouping-training methods. This finding indicates that supplementing the RF algorithm with all in-
formation coming from the 21 subwatersheds can be the best way of model training. However, the
basin-level method did not perform beyond the learn-all method. In fact, only one basin was below
the R2 threshold of > 0.60. This means that as long as there is sufficient grouping of information
even at basin scale, the RF algorithm can learn and predict fairly well. This finding was not found
for two relatively poor performing grouping-learning methods: the subwatershed-level and the small-
size subwatershed grouping. The main reason for the former is because no “outside information” are
included from the model (since no valuetable grouping happened), as such, static covariates namely
elevation, slope, and soil are nullified. The insignificance of the static covariates were reflected from
the VIM graphs by having 0 importance values. Another reason why the subwatershed-level method
performed poorly is that the subwatersheds are located in different parts of a larger basin exhibiting
different water flow properties relative to its location. Given that the static covariates are out of the
picture, it become insignificant during the model training process. Hence, the model lacks information
from the following characteristics: (1) a more sloping subwatershed has higher surface runoff because
of gravity (Engman, 1986), (2) upstream subwatersheds have the least streamflow by having no in-
flux or incoming water to it (SWAT Documentation, 2012), (3) subwatershed in high altitudes have
more rain (Winiger et al., 2005), (4) clayish soils are less penetrable by water (USDA, 1986). The
second poor performer among the grouping-learning method was the small subwatershed grouping.
In essence, smaller subwatersheds are just parts of larger basins and these larger entities have more
defined hydrology dynamics (Jones and Grant, 1996). Moreover, the smaller subwatersheds belong to
3 different climate types while larger ones are confined to 2 types. That can amplify climate variability
within the grouping method for smaller subwatersheds. The size classes could have been 5 classes to
have more distinction among subwatershed sizes, however, 21 subwatersheds are insufficient to have
enough number per size class.

7.1.2 Number of observations effect
Higher number of observation was not always equivalent to higher accuracy result. This was observed
from the basin and subwatershed grouping-learning methods where the basin and subwatershed with
the most number of training data just got 0.58 in R2, on the average. There seems to be a tipping
point where the RF algorithm fully learns the area of interest regardless of the number of observation.
Again, the degree of variability among the subwatersheds and even basins cause this. For example,
the RF algorithm can learn better from a subwatershed with very distinct wet and dry season rather
than a subwatershed with twice the number of observations but is more heterogeneous physically and
climatically. An example of this are subwatersheds arb_b and prb_r attaining the highest accuracy
result and both belong to climate type 1 (distinct wet and dry season). But when the RF algorithm
starts to distinguish different characteristics of basins and subwatersheds, the number of observations
make more sense because of the grouping process. That is why the learn-all method performed well
because it has the most “outside information”. In other words, combining information from various
subwatersheds is more sensible than having more training data for one subwatershed or basin.
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7.1.3 Water regulating structures effect
Model performance was affected by the presence of water regulating structures within subwatersheds.
Logically, those artificially regulated flows can behave differently in regression models (Shortridge et
al., 2016). At subwatershed-level, there were 11 out of 21 that performed below the significant R2

threshold. Most of the poor performing subwatersheds (9 out of 11) belong to basins crb and prb
where most water regulating structures are located (Annex I). Most of it are dams for irrigation and
flood control structures since within the two basins are top producing rice provinces in the country
(PSA, undated) but also the most flooded (DPWH, undated). At basin-level, information from sub-
watersheds are mixed including those with and without regulating structures. This can also be the
reason why those information-rich basins like crb and prb, which combine for almost 70% of the total
number of observations, did not attain the highest accuracy results. These structures, when operat-
ing in smaller subwatersheds, have more effect on streamflow rate than that of large subwatersheds
because practically of the size difference. For instance, dams are mostly located in the main stream
of small subwatersheds while it is just in tributaries for larger subwatersheds. Most of the regulating
structures are constructed in small subwatersheds which can be the reason why size-based grouping
yielded lower result for small subwatersheds. Moreover, it can be observed also from the box plots of
the small subwatersheds (Figure 19) that there was more balance on wet and dry flows compared to
unregulated subwatersheds with more rainy day flows (which is natural in Philippine climate). As said,
this can be attributed to the release of irrigation water during dry cropping season. Moreover, farmers
tend to have 3 cropping seasons instead of the traditional twice a year leading to more irrigation water
use. The RF algorithm could have learned this if a covariate distinguishing with and without regu-
lating structures was included. Otherwise, a separate grouping-learning method for with and without
these structures could be made. Other information specific to the operationalization of the structures
could also be supplemented as this is highly variable given a 16-year span. For example, irrigation
systems in the Philippines are always being repaired either because of typhoon damage or substandard
construction. But still, despite mixing the information, the RF can manage to learn artificial water
regulation in an extent. The number of subwatershed with and without regulating structures were 11
and 10, respectively. Because of that balance, the learn-all model have more capability to distinguish
it than other grouping-learning methods.

Given the said findings, it can be summarized that combining each subwatershed information, even
with different characteristics, and taking information from both with and without regulating structures
can still yield a significant accuracy result but not the highest.

7.2 Predicted streamflow

7.2.1 Hydrograph assessment
Hydrographs or streamflow-rainfall graphs were used to assess full-scale (2000-2016) predicted stream-
flow. A watershed can be assessed by being “rainfall-responsive” or a discharge behavior in accordance
to a rainfall event using hydrographs (Akhtar et al. 2009). There were two distinction among the
21 subwatersheds as per hydrographs: those rainfall-responsive and not. Assessing the former is vi-
sually obvious since rainfall-streamflow has a linear relationship meaning high rain is equals to high
streamflow and vice versa. Additionally, rainfall-responsiveness can be attributed to the accuracy
measures as it was found out that rainfall-responsive subwatersheds were also those above 0.60 R2.
However, for the latter, assessment can be more complicated. One reason why a subwatershed is
not rainfall-responsive is because of water flow alteration. A similar observation is reported by the
study by Shortridge et al., (2016) where the model did not capture the rainfall responsiveness of
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the discharge. They concluded non-linearity between rainfall and discharge because of dampening
effect of wetlands and floodplains. As discussed from the previous paragraph, the presence of water
regulating structures alter water flow. This behavior was observed in the hydrgoraphs visually and
it was evident from subwatersheds crb_t and crb_m where dam operationalization was traced from
the rainfall-streamflow patterns. However, despite capturing dam water regulation in an extent, a
stringent attribution to it still needs in-depth assessment with inclusion of operationalization dates
and water release mechanisms. There are protocols followed by these structures i.e. water release at
certain dam water height. Nevertheless, it can be concluded that hydrographs can give clues which
subwatersheds have water regulating structures.

The predicted streamflows from rainfall-responsive subwatersheds can be used for quantifying the
water services. Since these are dynamic outputs (daily), it can be integrated with other modeling
techniques. Specifically, results of this methodology can be integrated with process-based models and
individual or non-aggregated models (Cellular Automata and Agent-based Models). For the former,
predicted/forecasted daily streamflow can be used for flood modeling. For the latter, social compo-
nent like ecosystem stakeholders (i.e. government offices, farmers, local government), can be included
in the streamflow modeling outcome. This is relevant at smaller scales i.e. municipal-level where the
focus of planning and management takes place. The local government units are mandated to enact
local plans which include scenario building for the future (25 years at most). Integrating ecosystem ser-
vices in that picture can make their plans more oriented towards the environment in a long-term basis.

7.2.2 Peak flows assessment
Peak flows from extreme rainy days or streamflows with relatively high values were under-predicted.
In fact, this finding was common to all models of different grouping-learning methods. One logical
reason of this shortcoming is that the extreme flows deviate from the mean flow (for the whole training
data) by far and these flows occur seldom and irregular. The study area is having around 3.7 typhoons
per year (Silent Garden, undated) and by being seldom, is treated by the model as outliers. Another
reason is the lag-time effect or the time difference between peak rainfall and peak flow which can occur
and be recorded in two adjacent days especially if the peak rainfall occurs during nights (Granato, G.
E., 2012). Mirroring this case are post-typhoon days where subwatersheds still have high streamflow
rate even without rain anymore (Abon et al.m 2011) or essentially a “no rainfall-high streamflow”
scenario. Those events essentially contradicts a “high rainfall-high streamflow” combination resulting
into an “averaged prediction” from the final prediction of RF trees with these cases. Midway this
study, this limitation was addressed when the maximum daily rainfall covariate was added, the peak
flows prediction improved even just using one test subwatershed. This proves that the predicted flows
are really sensitive to rainfall and can overcome the prior limitation of under-predicting extreme flows.

Despite the under-prediction of peak flows, a distinct trend was observed from the unregulated subwa-
tersheds from the RPFR results: peak flows were increasing from 2000 to 2016 during extreme rainy
days. This is an important result since the RPFR is an indication that more streamflow can occur over
the same rainfall magnitude over time. This can be tagged to the flood regulation service of forests,
however, that service cannot be quantified (in volume) based on this trend alone. Nevertheless, it
can be modeled using the methodology of this thesis if sub-daily weather and streamflow inputs are
to be integrated.

To discuss shortly about the importance of peak flows, around 80% of the area are considered flood
plains (Philippines DRRM, undated). Peak flows are important in assessing flood regulation service
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of forests during these events (Hein et al., 2006). Existing studies concluded that a more forested
watershed can reduce impact of flood as indicated by lag time and streamflow volume (Calder and
Aylward, 2006; Aquino et al., 2014; Rawlins et al., 2016). The main indicators for the said forest
service are: delay hours of flood water, influx decrease, inundation area decrease; and flood height
decrease.

7.2.3 Average monthly seasonal flows assessment
More smoothing and fitting with the observed data was noticed from the predicted streamflow line
graphs when averaged per month. Moreover, the comparison between predicted and observed stream-
flow was depicted better in a monthly basis rather than daily. The smoothing is mainly because of
the averaging effect of daily streamflows that included nullification of those from extreme rainy days.
The monthly averaging also revealed that there was more over-prediction during wet season (14%)
than in dry season (6%) from the simulated streamflows. The main reason for this is that there are
more wet than dry days in Philippine climate. Moreover, watersheds in mountainous tropics can have
its own micro-climate (Wang, et al., 2010) which defies the law of the general weather pattern by
raining more. The RF algorithm takes the final vote of each prediction tree and averages it. Given
there are more rainy days from the observed data, the RF algorithm has technically more “rainy days
learning” which somehow give bias leading to streamflow over-prediction. Aside from that, the RF
algorithm also captures two forms of those “pseudo rainy days”: (1) summer/no rain days where the
regulating structure release water and (2) post typhoon days that give “no rainfall-high streamflow” as
discussed from the last paragraph. Moreover, the training data is confined until 2010 only because of
data availability constraints. Climate change effects on weather is felt more in the past decade (Cruz
et al., 2017) with aggravated rainy season and drier dry season including irregular typhoon and even
monsoon patterns. Despite the slight over-prediction, the monthly average seasonal flows are helpful
in water yield quantification indicated by water users or service area. For example, monthly streamflow
can be sufficient for quantifying water requirement per cropping season of irrigated crop lands. It
can be used also in setting water usability threshold like Dependable Flow (DF) or the threshold for
“usable” water volume. Usually this measure is standard to tropical subwatersheds belonging to same
climate type and is set by water regulatory institutions. In the Philippines, common DF should be
around > 80% (Apayao-Abulug Master Plan, 2015).

7.2.4 Validation outcome
The validation results for 6 subwatersheds depicted both seasonality and rainfall-responsiveness. This
is one key result of the study indicating that the RF model can be applicable to subwatersheds without
observed data. This further means that the RF model can be used to upscale to other places preferably
to those within the Luzon island. Note that the 6 subwatersheds are pre-selected to have no regulating
structures. It would be interesting also to validate for those with regulating structures in the future
given the abovementioned suggestion to include a covariate or a separate grouping-learning method
accounting these structures. The validation results can be further compared with other studies and
master plan, however, time is scarce for that attempt.

The outcome of the validation can depict homogeneity in the study area. Logically, a more homo-
geneous area can be learned better by the RF model than a more heterogeneous area. Imagine a
heterogeneous area with hundreds of covariates resulting to tens of thousands of RF trees which is
possible for this study but impractical. Limiting the covariates for this study also over-fitting from
using highly correlated covariates (Kroll et al., 2004) which are common to hydrological parameters.
Moreover, it should be noted that 7 dominant land cover classifications were used for this study
(forests, perennial crops, annual crops, built-up area, grass land, water, and bare land). The static
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covariates like soil, slope, and elevation were reclassified into 5 classes. It was made to save processing
time since the static covariates have continuous data values. In terms of climate, the study area fell
into 3 different types of climate. The said aggregations made for this study can be practical based on
the “analysis scale”. It defines how the aggregation can be and given the study area is at basin scale
>15,000 km2, aggregation of spatial inputs are more possible. Despite the aggregation, however, the
inputs used for this study did not sacrifice spatial and temporal resolution.

7.3 The forest loss effect

There were three main effects of FLAC to the RF models and its predicted streamflow: (1) the linear
trend between forest loss and seasonal flows depicted by two indicators: (a) the PDPs and (b) the
correlation of forest loss to dry flows and peak flow-rainfall ratio; (2) regulation of over-predicted
streamflow indicated by the (a) deviations from historical flows and (b) actual/observed streamflow ;
and (3) reduction of RF model unexplained variance.

7.3.1 The linear trend of predicted streamflow and forest loss
Based on PDP
Almost all PDPs of subwatersheds (20 out of 21) exhibited low-high (negative linear) and high-
high/low-low (positive linear) link between streamflow and FLAC, respectively. Remember that linear
PDP graphs whether inverted or not both exhibit a strong effect with the prediction of streamflow.
A plausible explanation is that forest loss covariate being an absolute cumulative value is reflected
four times (since there are 4 FLACs) and in fact, that trend is exclusive only to FLAC among 58
covariates. Meaning to say, there are high chances that >= 1 of FLAC is/are always included to
the RF trees. The high number of mtry RF parameter assured that this trend is always produced in
every RF tree. As such, high chances also that the distinct trend of FLAC values would coincide the
distinct trend of the dependent variable streamflow. It would be interesting to assess also the % of
trees where FLAC is included and relate it to the prediction using test data, however, there is no easy
way to extract a tree-level information from the random forest function.

Based on correlation
Three key findings were linked to assess the effect of forest loss to the predicted seasonal stream-
flow. First, there was a 148% decrease and 7% increase, on the average for all subwatersheds, in
dry and wet predicted daily mean streamflow, respectively. Second, 14 subwatersheds exhibited an
inverse relationship between mean dry predicted streamflows and forest loss. A 16-year stretch could
be insufficient to perform a decent regression analysis giving 16 points to correlate. Nevertheless, 6
among 14 subwatersheds showed an inverse and decent regression result with an average of 0.32 R2

between forest loss and dry flows. Incidentally, these subwatersheds were good performing models,
accuracy-wise having an average of 0.76 R2. Third, the RPFR of all unregulated subwatersheds sig-
nified an inverse correlation with forest loss. The highest subwatershed attained 0.90 R2. Aside from
the linearity, the RF model proved that it can be rainfall-responsive during extreme rain events. The
said findings can attest that the RF algorithm can learn that increase-decrease of streamflow can be
a function of forest loss. Specifically, it can have 3 interpretations:

First, more forest loss can lead to lesser water in dry season. Theoretically, that behavior can be
perceived as the water regulating service of forests that assures water flows in summer days. This

55



is caused by the base flow (also called drought flow and groundwater recession flow) or the form of
water contributing to the streamflow during dry weather. In a study by USGS in 2017, it was con-
cluded that a more forested watershed can have more base flows especially during dry season with no
rains compared to a pastural-agricultural watershed (Rodriguez and Santiago, 2017). Moreover, the
trees within the forests of the study area are mostly indigenous or native trees (DENR-FMB, 2016)
which are found to have no water seeping effect that dries a watershed unlike exotic or introduced
trees (Zhou et al., 2002). Drought was also experienced within the service area in 2010 and 2016
(Taguinod, 2010 and The Northern Forum, 2016). Deforestation is aggravating the effects of climate
change (Staal et al., 2016) and prolonged drought is one of its outcomes. The Philippine government
was aware of that so total logging ban was enacted several times during the span of 2000 to 2016.
The government also irrigated 300,000 ha of farmlands during the 2006-2010 span (BSWM, undated).
Moreover, there was a massive national reforestation of indigenous trees happened in 2012 called the
National Greening Program (NGP) by the Philippine government which targeted 1.5 million hectares
of reforestation. Assuming a successful survival of the transplanted seedlings, these are still poles
(<8cm diameter) until 2016 and may not have a major hydrological impact, thus, its effect may not
yet captured from this thesis’ results. However, it would be interesting to capture its impact 5-10
years from now using this thesis’ methodology by integrating forest gain pixels yearly.

Second, more forest loss can lead to higher surface run-off in extreme rainy days based on peak flows.
Forests provide an important service during extreme rainy days i.e. typhoon and monsoon season. The
three main functions of forests during these events are increasing soil infiltration rates, reducing run-
off, and preventing soil erosion (Smithers et al., 2016). It should be noted that the forest pixels used
in this study were net forest loss meaning, forest gains were deducted already. Whatever land cover
preceded after forest loss, it seems forests can provide the least surface run-off when raining extremely.
This is justified in literature from the so-called “rainfall-runoff” ratio (USDA, 1989) which is very sim-
ilar to Curve Number in terms the values per land cover. It is a coefficient how run-off is affected by
the vegetation cover and soil. Moreover, it is also similar to the RPFR in terms of values but inversely.
Various reports in news articles from https://reliefweb.int/organization/govt-philippines
affirmed this as stakeholders are blaming forest loss to hastened flooding especially in basin crb. To
remedy this, the government spent billions of pesos in the past decade for flood control structures
within Luzon (DBM, undated). These structures can be the reason why the relative % increase
of predicted wet season streamflow is just 7% between 2000 and 2016. Moreover, the Philippine
government published high resolution rainfall projection in 20, 50, and 100 years (PAGASA, 2016)
out of climate change effects. One of its highlights was increase in rainfall projection in wet season.
Assuming that deforestation would continue, its impact could worsen the effects of climate change in
the study area especially on flooding. It would be fit for this thesis’ methodology to forecast those
climate change scenarios by changing the weather covariates. Moreover, deforestation rate scenarios
could be created to have support decisions on flood infrastructure construction and rehabilitation by
the government.

Third, water regulating structures can have functional limitation. Interestingly, decrease in water
flows during dry season for those subwatersheds with water regulating structures (regulated subwa-
tersheds) was evident for 6 subwatersheds. It indicates that water shortage can still be possible even
for subwatersheds with dams and irrigation canals. On the other hand, during wet season, 4 sub-
watersheds with water regulating structures experienced water flow increase. This means that the
water storage capacity of these infrastructures especially in rainy season can still be insufficient. One
main reason for this is sedimentation which is a function of forest loss and is amplified when forests
turn to bare lands (David, 1988). Desiltation efforts can be costly especially for dams and irrigation

56

https://reliefweb.int/organization/govt-philippines


canals. Moreover, dams tend to release water during successive rainy days when storage hits its
limit.This scheme can be irregular and varies depending on the protocols of the dam managers. It
further validates that indeed the behavior of subwatersheds with regulating structures are way more
complex than those without.

The forest loss effect to seasonal flows cannot be mis-attributed to rainfall trend. Remember that
weather information was also regressed with the seasonal flows since changes in rainfall pattern yearly
can reflect on yearly streamflow. It appeared that rainfall trend has no effect at all as shown by
the very low correlation with the dry flows. Moreover, typhoon records supported this as typhoons
appeared irregularly and not sequential from 2000 to 2016 (PAGASA, 2016 and de la Cruz, 2016).

Despite the “linear” findings between forest loss and the streamflow indicators (seasonal flow, RPFR,
and PDP), the significance level of the correlations were not very high i.e. 0.90 R2 and above. This
can be attributed to two things: First, the preceded land cover/use after forest conversion and its
land management practice. Upland farming in the Philippines is very common and it is a “magnet”
for communities to migrate in forest areas and do forest conversion into agricultural lands. Croplands
(especially perennials) can also regulate water but relatively lower than forests (Rawlins et al., 2017).
The government was promoting Agroforestry or combining forest trees and agricultural crops in up-
land areas since early 90s which is perceived to be more sustainable and anti-soil erosion (Baguinon et
al., 2007). Forests turn into bare land in the Philippines by 4 common causes: (a) clear-cutting out
of logging, (b) slash and burn, (c) mining, and (d) forest fire. Often, those logged out areas tend to
regenerate after decades. However, those bare lands out of the other 3 causes result into grass lands
and wooded grasslands. As early as 1998, the government started investing for bio-interventions like
vetiver grass, a known grass for soil erosion control (Manarang et al., 2000), to cover erodible bare
lands. This grass is being planted both on steep barren slopes and river banks and by being a “grass”,
reflects and gets classified as grass lands in land cover. But, it has more hydrologic function than a reg-
ular grass land because of its soil holding capacity and run-off regulation. Similarly, there are coconut
fiber mats (also known as “erosion blankets”) used for the same purpose as vetiver grass that hold soil.
These projects were implemented within the scope of the study area (BSWM, undated; DENR, un-
dated; Rawlins et al., 2017). The report by Rawlins et al., in 2017 highlighted the immediate erosion
regulating effect by coco mats than reforestation. Again, these areas can be classified as bare land,
however, function differently as far as hydrology is concern. As abovementioned, including the land
conversion to this methodology would make it more definitive. Moreover, including the land manage-
ment practice given sufficing data could make the methodology more stringent. Second, the forest
pixels used for this methodology were not perfect. According to its source (Hansen et al., 2013), there
was an 83% and 87% of producer and user accuracy, respectively, on forest loss for tropics. As such,
there is still room for misclassification. Commonly, forests are mistaken as perennial crops/plantations
and wooded grassland, vice versa (NAMRIA, undated). Forest gains, on the other hand, depicted
lower accuracy results by just having 82% and 48% on producer and user accuracy, respectively. Now
that there are more accessible high spatial and temporal resolution optical images like Landsat and
Sentinel (2A and 2B), land cover classification can be more doable yearly. Moreover, fusion with
radar images can deal with the cloud problems of optical images (Joshi et al., 2016). Moreover, the
Philippines has a nationwide LiDAR data acquired via DREAM-LIDAR program of the government.
It created very high resolution agricultural maps (https://parmap.dream.upd.edu.ph/). These
maps can be integrated in creating future land cover time series in the future using this methodology.
Moreover, using time series algorithm like Breaks For Additive Season and Trend (BFAST), future
forest loss time series classification could be automated and integrated to this methodology.
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The linearity between forest loss to dry season streamflow and peak flow were used to forecast an
increase in forest loss rate. Streamflow in dry season decreased while peak flows doubled in values
when 10% of forest loss rate was added to the current rate. It was found out also that smaller
subwatersheds were more sensitive to forest loss than larger ones for dry season scenarios. This can
be attributed to the impact of remaining forests to smaller subwatersheds where rivers can dry faster
than those larger ones especially if the area has relatively lower forest %. The finding of Ogden et al.,
(2013) supports this as they found out that runoff from the forested subwatershed receded more slowly
than from the a mixed land use and pasture subwatersheds. The irrigation priorities in the Philippines
are those prone to this phenomenon (NIA, 2011) where river-drying technically known as baseflow
drying are happening often in smaller subwatersheds. As such, the small-scale irrigation system was
promoted by the government known as SSIP where the focus areas were those drying-prone rivers in
small subwatersheds. On the other hand, the size of the subwatershed has an opposite impact on
peak flows increase when forest loss increase. Larger-forested subwatersheds can be more sensitive to
deforestation during extreme rainy days with increasing peak flow indicator (RPFR) or simply more
water volume can be discharged given the same rainfall amount. It makes sense since in a larger
subwatershed, more influx are collated to the main stream. Logically, there is more gravity pull and
velocity also in larger subwatersheds. Comparatively, peak flows are more sensitive to forest loss than
dry flows by having higher magnitude of change. It can be attributed also to the function of the soil
where its water storage function is lost faster in extreme rainy days due to saturation given the same
forest loss scenario.

7.3.2 Regulating streamflow over-prediction
Deviation to observed/actual streamflow
The effect of FLAC was reflected from the comparison of the predicted and observed daily streamflow
per month. Remember that without FLAC, streamflow in wet months was over-predicted in 5 basins
by 14% on the average. This was also reflected from the accuracy measures having a relative 17% de-
crease in R2 and NSE when FLACs are removed. It should be given emphasis again that the 4 FLACs
have the only distinct cumulative trend among the 58 covariates. These findings justify the regulating
effect of forests during wet season minimizing over-prediction. It was discussed in section 6.2.3 that
the RF model can have more “rainy days learning”. Without FLAC, it can be more aggravated by
losing a distinct trend that coincide with the streamflow trend. Adding more associated covariate like
ground water and evapotranspiration variables could be more sound in the future. It could strengthen
the conversion learning of the RF model by not being limited to 3 associated covariates to forest loss.

Deviation to historical mean
Similarly, the deviation from the historical wet mean flows observed in Figure 24 justified that without
FLAC, there can be extreme over-prediction in wet season. The changes are considered extreme
fluctuation from the historical mean and can therefore be considered outliers. A change of around
70,000 l/sec can be too much considering that the standard deviation of the historical flows is just
12,000 l/sec. Typhoons cannot cause this since no typhoon record is found during 2003 where those
extreme flows occur. This observation was also evident from the daily predictions with and without
FLAC using the held-out data where extreme flows appeared. Again, the impact of FLAC trend to
the predictions is reflected on this finding. It can be stated that there can be more outlier-looking
flows in wet seasonal flow predictions without FLAC.
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7.3.3 Prediction performance effect
The RF model accuracy can decrease by 18% at basin-level when FLACs are permuted. In other
words, the unexplained variance can increase by 18%. The accuracy is measured by computing the
accuracy difference between two RF trees (original and permuted) and the averages it among the
RF trees. Shuffling a variable with cumulative trend like forest loss can lose the linear relationship
between the seasonal flows. At subwatershed-level, there were cases that FLAC tend to outperform
some weather covariates. It can be attributed to again to the distinct trend of FLAC since no val-
uetable grouping happened at subwatershed-level and if this distinct trend are permuted, can worsen
the models. However, this finding could be misleading in the sense that subwatershed-level can be
better models as per VIM. It should be noted that the VIM of FLAC can be greater than weather
covariates only in cases where FLAC have a cumulative trend and weather covariates have lesser
number of observations which happened at subwatershed-level grouping-learning method.
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8 Conclusions and Recommendations

Conclusions

Random forest algorithm is capable of predicting streamflow better when aggregation of valuetable
information is applied. The learn-all model, being relatively the best model (with 0.69 R2), outper-
formed other grouping-learning methods by an average of 0.2 in R2 and 0.3 in NSE. Moreover, the
same accuracy measures revealed that large watersheds are better predicted than relatively smaller
ones when grouping-learning pertains to subwatershed size.

The streamflow prediction models can distinguish which subwatersheds have regulated and unregu-
lated water flows. Unregulated subwatersheds or those with no water regulating structures like dams,
flood control structures, and irrigation canals performed well according to accuracy indicators (aver-
age R2 of 0.66). On the other hand, regulated subwatersheds reflected lower accuracy result (average
R2 of 0.23). The presence of water regulating structures are reflected also by the hydrographs. Those
unregulated subwatersheds show rainfall responsiveness. Mixed information coming from both regu-
lated and unregulated subwatersheds can still yield a significant accuracy result but not the highest.
This is proven by basins crb and prb having 70% of the total training data but just yielding 0.63 R2,
on the average.

There were two error sources of the predicted streamflow common to all grouping-learning models.
One was the inability to predict peak flows of extreme rainy days mainly because extreme peak flows
deviate from the mean flows by far. These flows are irregular and seldom (around 4/year) therefore
treated as outliers. The second error source came from over-prediction of models by around 9%
especially during wet season (14%) observed from the daily average streamflow per month at basin
models. There were more “rainy days learning” by RF model because of the natural Philippine climate.
However, there were “pseudo rainy days” or “no rainfall-high streamflow” days learned by RF models
which gave bias to rainy days. Three reasons are causing this: (1) lag time covering two days, (2)
post-typhoon days, and (3) release of water by the regulating structures during days without rain.

Forest loss and its associated covariates were valuable explanatory variables contributing almost 1/4
and within the top 13 among 58 covariates on permutation importance value. Moreover, FLAC has the
tendency to decrease RF model accuracy by 18% when permuted, on the average. More importantly,
the RF model was capable of learning forest loss effect to seasonal streamflow based on the evidences
below:

1. There is a 148% decrease and 7% increase in dry and wet predicted daily mean streamflow for
all subwatersheds, on the average;

2. There are linear trends between forest loss and streamflows depicted by three indicators: (1) the
PDPs of 20 out of 21 subwatersheds, (2) the 0.36 correlation between forest loss to dry season
streamflow on 6 high-accuracy subwatershed models, (3) 0.72 R2 correlation to rainfall-peak
flow ratio (RPFR); and

3. Regulation of wet season over-prediction by controlling outliers and reducing over-prediction
from daily streamflow average by 4%.

Using the linearity of forest loss to dry streamflow and peak flow (RPFR), forecasting scenarios re-
vealed that streamflow during dry months decreased by an average of 48% and peak flows increased
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by 114%. This is when an additional 10% is added to the current forest loss rate for unregulated sub-
watersheds. Moreover, smaller subwatersheds were more sensitive to forest loss while higher changes
were observed in larger subwatersheds during wet season. This was based on % dry streamflow de-
crease and % peak flow increase (RPFR) indicators, respectively.

The predictions for the 6 validation subwatersheds both depicted seasonality and rainfall-responsiveness.
This indicates that the RF model can be applicable to subwatersheds without observed data. This
further means that the RF model can be used to upscale to other places preferably to those within
the Luzon island.

The net forest loss of the study area was 221,376 ha from 2000 to 2016. Its impact to the hydrolog-
ical system in the area was a key driver for the Philippine government to enact nationwide actions to
address deforestation and degradation. The methodology of this thesis is capable of creating defor-
estation, reforestation, and climate change scenarios to assess the impacts of past government project
i.e. NGP and support further decisions by the government.

Recommendations

Classifying subwatersheds as regulated or unregulated and including a separate grouping-learning
method for this could deal with the mixed information given to the RF model. Otherwise, covariates
indicating the presence of water regulating structures and dates of operation could be included.

Including sub-daily weather inputs together with lag time as one covariate could allow the RF model
to learn the flood regulation service of forests. This “upgrade” could entail a trade-off between scale
(decrease) and spatial-temporal resolution (increase). So, it could be tested in one typhoon-prone
subwatershed.

The 8 weather inputs were the only non-spatial covariates for this study. A variogram for all weather
stations in the Philippines could be created to spatially interpolate weather inputs using block kriging
for two reasons: (1) come up with predicted spatial streamflow output; and (2) imputation of days
with missing weather information. A high resolution spatial output of water services even at monthly
temporal scale is advantageous in ecosystem accounting.

Yearly forest conversion pixels could be integrated to the RF model to better assess land conversion
effect to seasonal water flows. Adding the land management practice given its data availability could
make the conversion more realistic. This could also strengthen the forecasting method attempt in
this thesis. Time series algorithms like BFAST could be used in the future. Sentinel 2 satellite images
could be fused with other optical and even radar images for higher spatial-temporal resolution captur-
ing forest degradation more. In line with the said possibilities, it would be better to test it in smaller
scales to have more accurate land conversion classification in lesser processing time. Given a better
“land conversion learning” by the RF model, ecosystem services could be depicted better by creating
land cover scenarios. Additional associated covariates could be added relative to land conversion like
evapotranspiration and base flow ratio. Lastly, a forest gain yearly pixel could be integrated especially
now that the impact of the Philippine NGP needs to be assessed.
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The results of this thesis could be supplemented to local land use planning. In the Philippines, the
municipalities are mandated to enact their Forest Land Use Plans (FLUP) and Comprehensive Land
Use Plans (CLUP). An effort to integrate ecosystem services accounting to those local plans was pi-
loted in 3 sites by the DENR in 2016. The methodology and results of this study could help upscaling
that effort.

This thesis’ methodology could integrate with other modeling techniques for specific purposes. It
could be used for flood modeling using process-based techniques to quantify the flood regulation
service of forests. Moreover, it could be used for non-aggregated modeling techniques like Cellular
Automate and Agent-based Models to include the social component (ecosystem stakeholders) in the
modeling picture.

A more data driven approach to include every available subwatershed information, given that the
methodology is almost fully automated, could be made. It could be more efficient if the weather and
streamflow data can accessed by public online. A script that automatically integrates new subwater-
shed information could be made. This way, the model could learn other subwatersheds from areas
outside the 6 river basins of this study. Otherwise, validation of the existing RF model outside Luzon
could attest whether the current learned information by the RF model is sufficient for nationwide
upscaling.

Lastly, a graphical user interface (GUI) using Shinny package in R could be made to make the method-
ology of this thesis more reproducible and user-friendly. The technical personnel of government offices
like Climate Change Commission, DA, DENR, DOST, and DPWH could learn it and use this thesis
methodology for their respective functions relative to ecosystem accounting and other similar pro-
grams, projects, activities (PPA).
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A Acronym and actual name of subwatersheds.

Subwatershed code Basin Subwatershed name Area (ha)
aarb_a Apayao-Abulug River Basin Abulug 236,119
aarb_n Apayao-Abulug River Basin Nagan 19,277
abrb_s Abra River Basin Sinalang 1,461
arb_b Agno River Basin Bayaoas 31,609
arb_c Agno River Basin Camiling 36,507
crb_a Cagayan River Basin Aligapay 104,525
crb_be Cagayan River Basin Benay 27,211
crb_bu Cagayan River Basin Buenavista 1,851,853
crb_d Cagayan River Basin Dipantan 169,590
crb_j Cagayan River Basin Jones 293,539
crb_m Cagayan River Basin Magat 215,601
crb_p Cagayan River Basin Pinacuanan 1,187,380
crb_s Cagayan River Basin Saltan 85,267
crb_t Cagayan River Basin Pinacuanan Tugue 66,994
crb_u Cagayan River Basin Upi 118,738
mrb_s Marikina River Basin San Jose 63,445
prb_a Pampanga River Basin Arayat 622,280
prb_b Pampanga River Basin Baliwag 37,406
prb_c Pampanga River Basin Coronel 84,287
prb_p Pampanga River Basin Poblacion 85,739
prb_r Pampanga River Basin Rio Chico 147,804
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B Scripts used to pre-process covariates.
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74



C Regression results of accuracy measure to area and num-
ber of observations.
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D Basin and subwatershed models validation results.
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E Variable importance measure graphs for basins and sub-
watersheds.
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F PDP per subwatershed.
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G Precipitation and predicted wet season streamflow cor-
relation graphs.
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H Hydrographs for rainfall-responsive subwatersheds.
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I Location of water regulating structures within the study
area (source: basin master plans, RBCO.
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J Hydrographs for rainfall-responsive validation subwater-
sheds.
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K Forest loss and predicted dry season streamflow corre-
lation graphs.
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L Peak flow-rainfall correlated with forest loss.
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M Subwatershed area, forest area, and forest areas from
3 forest loss rate for dry and wet season flows.
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