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Abstract

The current Amazon tropical rainforest’s "climate-vegetation" equilibrium is one of the
ecosystems at risk of entering an alternative stable state. Heat, drought and tree mortality
can cause the current equilibrium as a carbon (C) sink to shift to the "fire dominated tropical
savanna" equilibrium, as a C source. The critical transition of the C balance can eventually
have a huge impact on the global C cycle. However, it is poorly understood what pro-
cesses drive the critical transition in ecosystem states. As a result, there is a need to identify
early warning signals to help us have a better understanding of critical transition mechanisms.

Early warning metrics (EWMs) are commonly used to characterize resilience under stressed
regimes, by measuring the properties of time series. Therefore it is important to understand
whether critical transitions are preceded by any spatio-temporal ecosystem dynamics. In
this study we aimed to evaluate whether a series of EWMs, derived from remote sensing
time series (i.e. LST, vegetation indices and VOD), can provide relevant knowledge for
better predicting both forest fires and drought vulnerability. To do so, we implemented a
baseline random forest (RF) model, constrained by the aforementioned remote sensing vari-
ables, which only characterize the contemporary conditions of the ecosystems. Further, we
benchmark the baseline model against a RF model constrained both by the current condition
and EWMs. It allowed us to better understand the importance of EWMs for predicting fire
vulnerability on a local scale and drought stress on a regional scale.

We showed that adding EWMs that are consistent with theoretical expectations based on
critical slowing down increased the overall accuracy of the predictions by 4.71%, from 68.52%
to 73.23%, for the fire vulnerability predictions and by 1.48%, from 85.69% to 87.17%, for
the drought stress predictions. Among the different predictive variables tested, spatial au-
tocorrelation derived from LST night datasets was the most important followed by spatial
variance derived from LST night datasets.

We conclude that the addition of EWMs shows potential for the prediction of fire and
related drought stress. But critical note should be made that these additions are relatively
small, further research is needed to evaluate whether EWMs can strengthen existing drought
stress and related fire risk frameworks. The VOD dataset used in this research was too coarse
to use in the RF models, but the time series showed significant signs of critical slowing down
for the drought stressed areas. Further research is needed to assess whether a less coarse
VOD dataset could increase the accuracy of the predictions for both drought stress and fire
vulnerability.

Keywords: Tipping points, Early warning metrics, spatial early warning metrics, forest
fires, NDVI, LST, VOD, NBR, critical slowing down, resilience, random forest.
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Chapter 1

Introduction

1.1 Setting the scene

The Amazon rainforest is of critical importance as a carbon (C) pool, for the maintenance of
tropical biodiversity and for both local and regional climate stability (Field et al., 1998, Dirzo
& Raven, 2003, Nobre at al., 1991, Brienen et al., 2015). Climate extremes (e.g. heat and
drought) and anthropogenic disturbances (e.g. deforestation) cause gradual changes in the
Amazonian rainforest (Nobre & Borma, 2009). Over the past years the Amazon forest has
dealt with several climate extreme events, e.g. the 2015-2016 El Niño Southern Oscillation
(ENSO) event (Jiménez-Munoz et al., 2016). Such episodes of heat and drought negatively
impact tree productivity and can eventually result in tree mortality, causing a rise in atmo-
spheric CO2 concentration (Jiménez-Munoz et al., 2016). Different lines of evidence point
towards a scenario in which these gradual changes in the ecosystem state might result in the
Amazon forest transiting from a “climate-vegetation” equilibrium to a “fire dominated tropi-
cal savanna” equilibrium (Reyer et al., 2015, Nobre & Borma, 2009, Verbesselt et al., 2016,
Hirota et al., 2011, Staver & Hansen, 2015, Nepstad et al., 2007, da Costa et al., 2010,
Brando et al., 2014). The latter state will result in an ecosystem composed by drought-
and fire-adapted vegetation, causing the loss of the Amazon rainforest’s biodiversity and
its function to sequester C. As a consequence, this ecosystem state transition will shift the
Amazon forest’s C balance from a C sink to a C source, having an eventual impact on the
global C cycle (Brando et al., 2014, Nobre & Borma, 2009).

Drought and associated high temperature stresses are the primary climate characteristics
associated with tree mortality (Allen et al., 2010; Williams et al., 2013). Although tree
mortality from a single drought event can be severe (Michaelian et al., 2011; Anderegg
et al., 2013), mortality is often related with prolonged or repeated droughts (Bigler et al.,
2006; Gustafson & Sturtevant, 2013; Mitchell et al., 2013; Jump et al., 2017, Nepstad et
al., 2007, Brando et al., 2008, Fisher et al., 2007, Meir et al., 2008). Severe droughts and
high temperature stress can cause forest fires, resulting in a positive feedback loop. Burned
areas dry out more easily and are again more susceptible to forest fires (Nepstad et al., 2008,
Davidson et al., 2012, Nepstad et al., 2001). In addition, tropical rainforest species in the
Amazon are poorly adapted to forest fires, leading to lower resilience against fire and making
the return to the current “climate-vegetation” state challenging (Nobre & Borma, 2009).

The positive feedback loop of drought stress and related forest fires could lead to the
transition from a “climate-vegetation” equilibrium to a “fire dominated tropical savanna”
equilibrium. This transition can be induced when a critical threshold, called a tipping point
is exceeded (Scheffer et al., 2001, Scheffer, 2009, Dakos et al., 2012). Over the past years
the evaluation of these tipping points of Earth systems has gained scientific interest (Lenton
et al., 2008). Current examples of ecosystems at risk of collapsing are the Atlantic ther-
mohaline circulation, the decay of the Greenland ice sheet and the dieback of the Amazon
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rainforest (Rahmstorf & Ganopolski, 1999, Cox et al., 2000, Huybrechts & de Wolde, 1999).
Small perturbations can have long-term consequences, once the tipping point is reached the
effects are irreversible (Lenton et al., 2008). Resilience towards these perturbations can be
defined as:"The ability of a forest to absorb disturbances and re-organize under change to
maintain similar functioning and structure" (Scheffer, 2009). The lower the resilience the
longer it takes for a system to recover to the original state, this is due to the phenomenon of
critical slowing down (CSD) (see figure 1.1). Mathematically, CSD means that the system
at equilibrium vanishes when it comes to close to the dominant eigenvalue (Beisner et al.,
2003).

Figure 1.1: Shift from high resilience to low resilience due to perturba-
tions. The steepness and the width determine the absorption capacity of a
system without shifting to an alternative stable state (Beisner et al., 2003).

Potential to timely identify areas with a low resilience towards drought and related for-
est fires remains in the analysis of time series of ecosystem dynamics. Time series often
indicate that the productivity of an ecosystem declines when the resilience towards a regime
shift is lowered. The resulting temporal dynamics could precede mortality years to decades
before the death of forests (Rogers et al., 2018). Typically, tree vigor gradually declines by
the accumulation of drought- and/or biotic- stress until the tipping point is reached and
finally triggers tree mortality, which exhibits itself in early warning signals, e.g. declining
productivity rates and subtle variations (Beisner et al., 2003, Rogers et al., 2018). Previous
studies have used Early Warning Metrics (EWMs) as a measures of CSD. EWMs are generic
statistical measures that can detect the proximity of a system towards a critical transition
to an alternative stable state in time series, without having full knowledge about the drivers
of the tipping point under research (Beisner et al., 2003, Dakos et al., 2012, Scheffer et al.,
2009).

Ecosystems with a high resilience will recover fast and show significantly different ecosystem
properties between time steps. Ecosystems with a low resilience need more consecutive time
steps to recover to the original state than the ecosystem far from transition. This results
in ecosystem properties that remain relatively similar between time steps because recovery
takes longer (see figure, 1.2). Direct EWMs of CSD are temporal autocorrelation and re-
turn rate (ReRa). An increase in autocorrelation shows that a system is becoming more
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similar between consecutive observations suggesting that the return to the original states
takes longer (see figure 1.3 a.2& b.2)(Kleinen et al., 2003). The ReRa EWM calculates the
distance towards the stable state, the slower the return time the more time steps needed to
recover (see figure 1.3 a.1 & b.1). Indirect measures of CSD are variance, skewness, kurtosis
and conditional heteroscedasticity (see figure 1.3 a.3, a.4, b.3 & b.4). Assuming that a sys-
tem close to transitions is less resilient to disruptions, it will take longer for the ecosystem to
return to the original stable state. The time spent away from the stable state will increase
once the system comes closer to transition. Therefore, variance, skewness, kurtosis and con-
ditional heteroscedasticity will increase compared to the stable state (Scheffer et al., 2009,
Dakos et al., 2012, Guttal., 2008, Bigg et al., 2009, Seekell et al., 2011). Studies suggest
that spatial structures of ecosystems can also provide early warning signals for an impending
regime shift. Due to increased recovery time to the local equilibrium the spatial coupling
between neighbouring cells becomes the dominant force. This favours neighbouring units
to become more like each other, i.e. they become increasingly correlated (Kefi et al., 2014,
dakos et al., 2011).

Figure 1.2: The first time series shows the recovery time after a disruption
for forest areas with a low resilience. The second time series shows the

recovery time after a disruption for forest areas with a high resilience.

Remote sensing is capable of observing these changes in ecosystem dynamics, i.e. the
potential decline in forest productivity or the increase in variance, on a large spatial scale
and could therefore be suitable for monitoring drought stress and related fire vulnerability
(Rogers et al., 2018). Areas that are at risk of forest fires are currently monitored with
wireless sensor networks or can be predicted based on satellite images, wind speeds and
weather forecasts, which is on a small temporal scale (Hefeeda & Bagheri, 2007, Oštir et
al., 2003).
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Figure 1.3: EWMs far from transition and EWMs close to transition
(Early Warning Signals Toolbox, 2014)

1.2 Problem statement

The trees of the Amazonia contain 90-140 billion tons of C, which is comparable to 9-14
decades of current human-induced C emissions (Soare-Filho et al., 2006, Canadell et al.,
2007). By reaching the tipping point the rainforest could potentially lose its role as a giant
C reservoir (Nepstad et al., 2008). The prospect of reducing global warming and keeping
global average temperatures from rising 2◦ C will be near impossible when the current “cli-
mate vegetation state” collapses (Gullison et al., 2007). Therefore, insight into indicators
that estimate the resilience of an ecosystem towards drought stress and related forest fires
would add to prevention and adaptation strategies.

What precisely degrades the resilience of a system during drought and heat waves remains
a topic of debate, but the emerging view is we need to focus on systematic resilience of
trees rather than focusing on isolated elements (Hartman et al., 2015, Anderegg et al.,
2012). To overcome these challenges previous studies have used generic temporal EWMs
in time series to detect the proximity of a tipping point (Scheffer et al., 2009, Kefi et al.,
2014, Verbesselt et al., 2016). Detecting and characterizing change over time is the first
step towards identifying and understanding change mechanisms (Nepstad et al., 2008). The
temporal EWMs have been widely examined in literature, however theoretical studies suggest
spatial structures of ecosystems can also provide information about the ecosystem degrada-
tion level (Kefi et al., 2014). Hence, one can wonder whether the use of spatio-temporal
EWMs can provide a better understanding of drought and fire processes.
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1.3 Research objectives and research questions

Given the lack of knowledge in understanding forest resilience and tipping points, this study
aims to evaluate whether the use of early warning metrics could help identifying drought
stressed and related vulnerable forest fire areas. The overall objective of this thesis is to
analyze whether surface temperature and vegetation related EWMs can differentiate between
fire versus non-fire conditions on a local scale and drought vs non-drought conditions on a
regional scale. Such metrics would allow us to characterize forest resilience under fire and
drought regimes as ecosystems approach thresholds for critical transitions. This study aims
to answer the following research questions:

1. Can spatio-temporal early warning metrics improve the predictions of fire vulnerability
estimates in a drought stressed forest ecosystem on a local scale?

2. Can spatio-temporal early warning metrics help differentiate between drought stressed
and non-drought stressed forest scenari on a regional scale?

1.4 Hypothesis

The overarching hypothesis is that characterizing the properties of time series using spatio-
temporal EWMs is important to understand drought and fire regimes.

We hypothesize that properties related to temporal autocorrelation matter for predicting
drought and forest fires (Verbesselt et al., 2016, Dakos et al., 2012, Pace et al., 2013).
In addition, we expect that spatial autocorrelation related properties are also important for
predicting drought and forest fires (Dakos et al., 2010).
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Chapter 2

Materials

2.1 Study area

In order to test our hypothesis, we selected two areas in the region of the amazon rainforest;
that is (i) a region around Santarem prone to forest fires (Fig. 2.1) and (ii) a subset of
the Amazon region with drought and non-drought stressed areas (Fig. 2.2). Santarem lies
next to the banks of the river the Amazone and the area is covered by tropical rainforest.
The rainforest is struck by forest fires due to the dry conditions of the 2015-2016 ENSO
event (Salisbury, 2017). The region of Santarem of 740.000 hectares was burned between
August-November 2015 and January-May 2016. Satellite surveillance was unable to detect
the forest fires until June 2016 due to heavy cloud cover (Pegurier & Vieira, 2016). The
subset of the Amazon region covers an area of 12.601.400 hectares.

Figure 2.1: The locations of the fire areas are shown in the red polygons.
The red box on the left shows the location of the fire vs non-fire analysis

within the Amazon.
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Figure 2.2: The locations of the drought areas are shown in the red pixels
while the locations of the non-drought areas are shown by the blue pixels.
The red box on the left shows the location of the drought/non-drought

analysis within the Amazon.

2.2 Data

2.2.1 Fire data

A dataset with the locations of the fires that took place in the area of Santarem was
used. The locations of the fire patches were collected between August-November 2015 and
January-May 2016. The dataset provides the locations and the extent of the fire patches
within the area (Pegurier & Vieira, 2016).

2.2.2 Climate data

Tropical rainfall measuring mission’s (TRMM) monthly precipitation data (TMPA/3B43)
was used to differentiate between drought vs non-drought stressed areas. The data was
obtained from the Goddard Earth Sciences Data and Information Services Center. See
Methods section 3.1.2 and Appendix A for more information on how we defined drought
stress.

2.2.3 Remote sensing data

• Normalized Difference Vegetation Index (NDVI). In this study the MODIS NDVI 16-
day product (MOD13Q1) from the Terra satellite is used at 250 - by 250- meters for
the period 2002-2015. The NDVI is sensitive to chlorophyll abundance and photosyn-
thetically active biomass of the leaves (Liu et al., 2013)

• Vegetation Optical Depth (VOD). The VOD represents water content in above ground
woody and leaf biomass and is sensitive to long-term climate change (Liu et al.,
2013). The AMSR2 2/3-day VOD (x-band) product is used in this research. The
dataset is distributed with a spatial resolution of 0.25 degree (≈ 27.64 km) and
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covers a period of 2007-2015. Previous studies indicate that VOD values correlate to
precipitation variations, and that the mutually independent VOD and NDVI values do
not necessarily correspond in an identical manner (Zhou et al., 2014). Considering
both products together provides a more robust assessment also because the VOD has
the ability to penetrate clouds, resulting in less no-data values in the dataset (Liu et
al.,2013).

• Land Surface Temperature (LST). The MODIS LST 8-day product (MOD11A2) from
the terra satellite is used. The dataset is distributed with a spatial resolution of 1-
by 1- kilometre and covers a period of 2000-2015. Both the LST day and LST night
datasets are used. The LST dataset is an indirect measure of soil moisture conditions
and yields a distinctive thermal signature. Moisture deficiencies in the root zone lead
to vegetation stress and elevated canopy temperatures (Anderson et al., 2007). During
dry conditions, rising leaf temperatures are good indicators of plant moisture stress
and precede the onset of drought, this thermal response can occur even when the
plants are green (Wan et al., 2004).

• Normalized Burn Ratio (NBR). In this study the MODIS surface reflectance 8-day
product (MOD09A1) from both the Terra and Aqua satellite is used at 500- by 500-
meters for the period 2002-2015. The NBR is sensitive to the changes in the amount
of live green vegetation, moisture content and soil conditions which may occur after
fire (Miller & Thode, 2007).

• Global Forest Change database (GFC). The GFC database is based on Landsat data
(i.e. Landsat 4, 5, 7, 8) and was freely downloaded from the Global Forest Change
(GFC) database (Hansen et al., 2013).The database contains a dataset with the forest
cover in 2000 and the stable forest cover from 2001 till 2015. The dataset is distributed
with a spatial resolution of 30 meters (Hansen et al., 2013).

2.3 Software

The software packages to carry out this research will be R for the statistical analysis, Earth
Engine for the downloading of the data, and Quantum GIS (2.18.12) for visualization.
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Chapter 3

Methods

Figure 3.1 gives an overview of the methods used to answer the research questions in section
1.3. First the datasets used to (i) calculate the EWMs and contemporary conditions of the
ecosystem, (ii) create the forest mask and (iii) validate the results were pre-processed. To
evaluate whether a series of EWMs derived from aforementioned remote sensing variables
could provide knowledge for better predictions of both forest fires and drought vulnerability a
baseline random forest (RF) model, constrained by variables characterizing the contemporary
conditions of the ecosystem, was implemented. The predictive power of our baseline RF
model was further compared to a second RF model, which was constrained by both the
contemporary conditions of the ecosystems and the EWMs.

Figure 3.1: Schematic framework of the methodology section, which in-
dicates pre-processing steps, metric calculations and sub-research questions

(SRQ).
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3.1 Pre-processing

3.1.1 Vegetation indices

The NDVI was based on the ratio between the red 0.66 micrometer wavelength and the near
infrared (NIR) 0.83 micrometer wavelength. The NDVI was calculated based on formula 3.1
(Tucker et al., 1979).

NDVI =
NIR − Red
NIR + Red

(3.1)

The NBR index was based on the NIR 0.79-0.90 micrometer wavelengths and the short-
wave infrared (SWIR) 2.08-2.35 micrometer wavelengths and was used to estimate burn
severity. For the MOD09A1 imagery the NBR was calculated based on formula 3.2, using
band 2 as the NIR and band 7 as the SWIR (van Wagtendonk et al., 2004).

NBR =
NIR − SWIR
NIR + SWIR

(3.2)

3.1.2 SPI calculation

Mckee’s Standardized Precipitation Index (SPI) was used to differentiate between drought
and non-drought stressed areas. For this research a moving window of 6 months was used to
calculate the SPI index for the Amazonia. The SPI was calculated for the dry season before
occurrences of the first fires (30/07/2015). We assumed the dry season to be between July
and September, a simplification often used by other studies (Samanta et al., 2012). The
10% of the lowest SPI pixel values were used to identify drought stress and the 10% of
the highest SPI pixel values were used to identify non-drought stress. The TRMM dataset
was used to calculate the SPI and stores the precipitation in millimetres per hour-1. The
cumulative monthly precipitation was estimated in mm per month considering a 30-day
month for all the datasets (Aragao et al., 2007).

3.1.3 Cloud filter

A cloud mask was applied to the NDVI, LST and NBR datasets. For the NDVI and LST
datasets the pixel reliability layers were used to mask out the clouds. For the NBR datasets
the surface reflectance quality assurance (QA) layers were used to mask out the clouds. All
the time series that were cloud contaminated for more than 50% of the total time of the
time series were removed from the analysis.

3.1.4 Forest mask

To exclude areas that were not stable forest a forest mask was applied. To create the mask
the GFC dataset with the (i) percentage of forest cover in 2000 and the GFC dataset with
(ii) forest loss from 2000 to 2015 was used. The pixels that represented a loss of forest
from 2000 till 2015 were selected and merged with the forest cover from 2000. The new
mask represents the stable forest cover from 2000 till 2015 right before the forest fires
occurred. Gain of forest is not considered in this research because these forest areas were
not stable during the time period of this research. We filtered out the forest pixels with a
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forest coverage below 60% (Baumann et al., 2012, Gregorio, 2005). See Appendix G for the
local and regional forest masks.

3.2 Early warning calculations

The temporal and spatial EWMs are calculated with the aforementioned remote sensing
data: NDVI, LST, VOD and NBR, see material section 2.2.3.

3.2.1 Temporal early warning metrics

Figure 3.2 summarizes the different steps followed to calculate the temporal EWMs (Dakos
et al., 2012, Dakos et al., 2015). The preprocessing phase involved the linear interpolation
of the missing data in the time series (Dakos et al., 2012). The Detrending and Filtering
phase involved the application of a Gaussian filter to the rolling window to remove seasonal
periodicities (Dakos et al., 2012). The length of the Rolling window was set to half the
length of the time series, which is the most commonly used window size (Dakos et al.,
2012). The calculation of the metrics phase involves the calculation of six temporal EWMs
based on CSD: autocorrelation, return time, skewness, kurtosis, variance and conditional
heteroscedasticity, using the earlywarning package in R(Dakos et al., 2012, Dakos et al.,
2015). The quantifying trends phase involved the quantification of the trend by using
Kendall’s tau. Kendall’s Tau rank correlation coefficient was used to check against the
null hypothesis of randomness (Dakos et al., 2008). Kendall’s tau ranges between 1, for an
indicator that is always increasing to -1 for an indicator that is always decreasing. A Kendall’s
tau of 0 implies that there is no net trend in the indicator or that the trend increases as
much as it decreases (Boulton et al., 2013).

Figure 3.2: Schematic framework for the calculation of the temporal early
warning metrics.

3.2.2 Spatial early warning metrics

Figure 3.3 summarizes the different steps followed to calculate the spatial EWMs (Kefi et
al., 2014). The preprocessing phase involved the linear interpolation of the missing data
in the time series. The calculation of metrics phase involved the calculation of the three
simplest spatial EWMs: spatial autocorrelation, spatial skewness and spatial variance. The



Chapter 3. Methods 12

amount in which neighbouring cells look and behave alike is measured with Moran’s I to
calculate spatial autocorrelation (Moran, 1950, Geary, 1954, Anselin, 1995). The spatial
EWMs autocorrelation, variance and skewness were calculated within a kernel. The kernel
size used in this research was 3x3. The last step was the quantifying trends phase. After
the metrics were applied to every time step the results were stacked and quantified by using
Kendall’s Tau, as explained in section 3.2.1.

Figure 3.3: Schematic framework for the calculation of the spatial early
warning metrics.

3.3 Model development and assessment

3.3.1 Input variables

Input features for the baseline model were calculated based on one-time step before the
occurrence of the fires in the remote sensing images for both the local and the regional scale
(30/07/2015). The contemporary conditions of the ecosystem calculations were spatial
variance, spatial skewness and spatial correlation. For the temporal model the contem-
porary conditions of the ecosystem were added to the temporal EWMs: autocorrelation,
variance, kurtosis, skewness, return time, conditional heteroscedasticity, and spatial EWMs:
correlation, variance and skewness. See table 3.1 for all the input variables.

Table 3.1: Input variables for the random forest predictions for both the
RF baseline model and the RF EWMs model. The input variables were

composed from NDVI, LST, VOD and NBR time series.

contemporary conditions and EWMs Metric

Baseline Contemporary spatial variance
Baseline Contemporary spatial skewness
Baseline Contemporary spatial autocorrelation
Spatial EWM Autocorrelation
Spatial EWM Variance
Spatial EWM Skewness
Temporal EWM Autocorrelation
Temporal EWM Variance
Temporal EWM Kurtosis
Temporal EWM Skewness
Temporal EWM Return time
Temporal EWM Conditional hetroscedasticity
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3.3.2 Variable selection

Only metrics that are consistent with theoretical considerations based on CSD were con-
sidered useful in this research. To identify whether a metric was consistent with EWM
theory the mean Kendall’s tau for both the fire/drought and non-fire/non-drought areas
were compared. For example the slope of temporal autocorrelation should rise more for the
fire/drought areas than for the non-fire/non-drought areas. A two-sampled, two-tailed t-test
was used to determine whether the difference between the fire/drought and non-fire/non-
drought was significant per metric.

3.3.3 Model training

After the features were calculated a random forest classification is constructed to predict
which areas were drought stressed, non-drought stressed, fire and non-fire (either 1 for
fire/drought stress and 0 for no-fire/no-drought stress) (Breiman, 2001, Kuhn, 2017). The
random forest classifier was based on a machine learning algorithm that constructs decision
tree classifiers based on bootstrapped samples (Breiman, 2001).

Two model set-ups were defined: the RF baseline model and RF EWMs models. The RF
baseline model was constructed with the contemporary conditions of the ecosystem while
the RF EWMs model was constructed with the baseline + spatio-temporal EWMs.

3.3.4 Model evaluation

The performance of the random forest was evaluated by directly comparing model estimates
with observed fire/drought occurrence for each fire/drought patch. We corroborated the
models by using a k-fold cross-validation. The results of the RF baseline model predictions
were compared to the RF EWMs model predictions to see if the addition of EWMs add to
drought stress and fire vulnerability estimations.

3.3.5 Variable importance

To asses which input variable had the biggest importance in the random forest predictions
the Boruta package was used (Kursa & Rudnicki, 2017). The Boruta algorithm introduced
noise to one input variable at the time and assessed whether that influences the accuracy
of the predictions of the random forest. The variable importance score is based on the ratio
between the mean accuracy loss and the σ of accuracy loss.



14

Chapter 4

Results

4.1 Spatial autocorrelation for fire and drought

We hypothesized that spatial autocorrelation would be among the best performing EWMs
in the predictions of fire/drought and non-fire/non-drought areas. Figure 4.1 shows the
distribution for the fire/drought and non-fire/non-drought pixels for spatial autocorrelation
derived from the LST night, LST day, NDVI and NBR datasets. For the local scale it is vis-
ible that the boxplots are relatively similar for the fire and non-fire areas, but the LST night
boxplots shows a difference. The mean Kendall’s tau for the LST night fire and non-fire
areas are 0.01605 and -0.00431 respectively with a p-value lower than 0.001, suggesting that
the difference between fire and non-fire patches is significant. A positive Kendall’s tau for
the fire areas suggests that spatial autocorrelation is increasing over time while a negative
Kendall’s tau for the non-fire patches suggests a decrease in spatial autocorrelation over
time, which is consistent with theoretical expectations based on CSD. The other datasets
have a higher Kendall’s tau for the non-fire areas, which is not consistent with theoretical
expectations, see Appendix C for the complete list of mean values for fire and non-fire areas
for all the metrics. For the regional scale it is visible that both the NDVI and the LST night
dataset show a higher median Kendall’s tau values for the drought areas in the boxplots as
well as in the mean Kendall’s tau values, see Appendix E. Figure 4.2 shows two time series

Figure 4.1: This figure shows the distribution of fire/drought and non-
fire/non-drought pixels for spatial autocorrelation. The line in the middle
of the box represents the median, the hinges of the box represent the 1st
and 3rd quartiles and the whiskers represent 1.5 of the interquartile range.
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of scenario fire/drought and non-fire/non-drought pixels for the LST night time series. The
time series for the local scale show variation for both the fire and the non-fire time series,
but the time series for the fire areas increases more, which was also visible in the boxplots.

Both of the time series for the regional scale show variation, but the drought time se-
ries appears to have higher peaks. The mean kendall’s tau for drought and non-drought
areas are -0.00387 and -0.00801 respectively with a p-value lower than 0.001, suggesting
that the difference between drought and non-drought patches is significant. A less negative
kendall’s tau for the drought areas suggests that spatial correlation is decreasing less over
time while the more negative kendall’s tau for non-drought suggests a decrease in spatial
correlation over time, which is consistent with theoretical expectations based on CSD.

Figure 4.2: This figure shows two scenario time series for a fire/drought
and non-fire/non-drought pixel based on spatial autocorrelation derived from

the LST night dataset.

4.2 Temporal autocorrelation for fire and drought

We hypothesized that next to spatial autocorrelation, temporal autocorrelation would be
among the important EWMs in the predictions of fire/drought and non-fire/non-drought
areas. Figure 4.3 shows the distribution of fire and non-fire pixels for temporal autocorrelation
derived from the LST night, LST day, NDVI and NBR datasets in a boxplot. It can be
seen that, only the NBR dataset shows a higher Kendall’s tau value for the fire areas. The
boxplots for the regional scale show that the Kendall’s tau is higher for the LST day and NBR
dataset, which is consistent with theoretical expectations. Figure 4.4 shows two scenario
time series for a fire/drought and non-fire non-drought pixel derived from LST day datasets.
The time series for the local scale appear to show an increase in temporal autocorrelation
for the non-fire time series and a decrease in temporal autocorrelation for the fire areas
which is confirmed by the Kendall’s tau. The mean Kendall’s tau for fire and non-fire areas
are -0.00313 and 0.08410 respectively with a p-value lower than 0.001, suggesting that the
difference between the fire and non-fire patches is significant. A negative Kendall’s tau for
the fire areas implies that autocorrelation is decreasing while a positive Kendall’s tau for
the non-fire areas implies that autocorrelation is increasing, which is not consistent with
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Figure 4.3: This figure shows the distribution of fire/drought and non-
fire/non-drought pixels for temporal autocorrelation derived from the NDVI,

LST day, LST night and NBR datasets.

theoretical expectations based on CSD. See Appendix C for the complete list of mean values
for fire and non-fire areas for all the metrics. The time series of the regional scale shows
an increase in Kendall’s tau for the drought pixels and a decrease in Kendall’s tau for the
non-drought areas. The mean Kendall’s tau for drought and non-drought areas are 0.04731
and -0.01162 respectively with a p-value lower than 0.001, suggesting that the difference
between the drought and non-drought patches is significant. A positive Kendall’s tau for the
drought areas suggests that temporal autocorrelation is increasing while a negative Kendall’s
tau for the non-drought areas suggests that temporal autocorrelation is decreasing, which is
consistent with theoretical expectations based on CSD.

Figure 4.4: This figure shows two scenario time series for a fire/drought
and non-fire/non-drought pixel based on temporal autocorrelation derived

from the LST night dataset.
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4.3 Model performance and variable importance analysis

4.3.1 Local scale: fire vulnerability

Variable selection

Table 4.1 shows which EWMs perform consistent with theoretical expectations based on
CSD. The LST night derived metrics are most consistent with the expectations while the
NDVI derived metrics perform worst: only 2 out of 9 metrics are consistent. The spatial
variance metric performs best and is measured according to expectations in 3 different
datasets followed up by spatial skewness, temporal variance, temporal skewness and temporal
kurtosis. Only the metrics that perform consistent with theoretical expectations based on
CSD were used as input variables in the RF EWMs model.

Table 4.1: Metrics that are consistent with theoretical expectations based
on CSD for the local scale

Metric NDVI LST day LST night NBR Sum

Spatial autocorrelation - - X - 1
Spatial skewness X X - - 2
Spatial variance X - X X 3
Temp variance - X - X 2
Temp skewness - X X - 2
Temp kurtosis - X X - 2
Temp CH - - X - 1
Temp autocorrelation - - - X 1
Temp return rate - - - X 1
Sum 2 4 5 4 -

Model predictions

Table 4.2 shows the results of the RF baseline model and the RF EWMs model, respectively.
The addition of the spatial and temporal EWMs to the baseline model increases the overall
accuracy of the model by 4.71% from 68.52% to 73.23%. The accuracy of the fire areas
increased by 0.9% and the accuracy of the non-fire areas increased with 3.9%, suggesting
that the addition of the EWMs mainly increases the accuracy of the predictions of the non-
fire areas. The error of omission decreased by 3.9% and the error of commission decreased
by 0.9%.

Table 4.2: Confusion matrices local scale

Prediction RF baseline model
Fire Non-Fire Total

Reference data
Fire 36.7% 18.2% -
Non-Fire 13.3% 31.8% -
Total - - 68.52%

Prediction RF EWMs model
Fire Non-Fire Total

Reference data
Fire 37.6% 14.3% -
Non-Fire 12.4% 35.7% -
Total - - 73.23%
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Variable importance

The importance scores of the top 10 predictive variables are shown in table 4.3, see Appendix
D for the complete list. The most important predictors are spatial autocorrelation derived
from the LST night dataset, non-temporal spatial correlation derived from the LST night
dataset and non-temporal spatial variance derived from the NDVI dataset. None of the
variables were deemed unimportant. Overall the LST day derived metrics, the LST night
derived metrics and the NDVI derived metrics had the highest importance scores per metric,
the NBR derived metrics performed less. We hypothesized that temporal autocorrelation
and spatial autocorrelation were the top performing EWMs in the predictions. Our findings
show that spatial autocorrelation derived from the LST night dataset is the most important
EWM in the predictions. The temporal autocorrelation metrics do not perform as expected
in our hypothesis.

Table 4.3: Mean importance per metric for the RF EWMs model local
scale. The EWMs are shown in bold.

Metric Mean

LST night spatial autocorrelation

20 30 40 50 60

54.15
LST night contemporary spatial correlation 37.27

NDVI contemporary spatial variance 37.17
LST day contemporary spatial correlation 35.36

LST night 34.86
LST day contemporary spatial variance 33.73

LST day 33.39
LST night spatial variance 31.73

NDVI 27.95
NDVI contemporary spatial correlation 21.24

4.3.2 Regional scale: drought stress

Variable selection

Table 4.4 gives an overview of the metrics that are consistent with theoretical expectation.
The LST day derived metrics performed best, with 6 out of 9 metrics that are consistent with
the theory. The second best performing metrics are the NBR derived EWMs. Remarkable is
the performance of the LST night dataset, only 2 out of 9 metrics are consistent with theory.
The temporal kurtosis metric performs best with 3 out of 4 datasets that show consistent
results with theory. Only the metrics that perform consistent with theoretical expectations
based on CSD were as input variables in the RF EWMs model.

Model predictions

Table 4.5 shows the results of the RF baseline model and the RF EWMs model predictions.
The addition of the spatial and temporal EWMs to the baseline model increases the overall
accuracy of the model by 1.48% from 85.69% to 87.17%. The accuracy of the drought areas
increased by 0.5% and the accuracy of the non-fire areas increased with 1%, suggesting that
the addition of the EWMs mainly increases the accuracy of the predictions of the non-fire
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Table 4.4: Number of EWMs that are consistent with theoretical expec-
tations based on CSD for the regional scale.

Metric NDVI LST day LST night NBR Sum

Spatial autocorrelation X - X - 2
Spatial skewness X - - - 1
Spatial variance - - - X 1
Temp variance - X X - 2
Temp skewness X X - - 2
Temp kurtosis X X - X 3
Temp CH - X - X 2
Temp autocorrelation - X - X 2
Temp return rate - X - X 2
Sum 4 6 2 5 -

areas. The error of omission decreased by 1% and the error of commission decreased by
0.5%.

Table 4.5: Confusion matrices regional scale

Prediction RF baseline model
Drought Non-Drought Total

Reference data
Drought 42.3% 6.6% -
Non-Drought 7.7% 43.4% -

Total - - 85.69%
Prediction RF EWMs model
Drought Non-Drought Total

Reference data
Drought 42.8% 5.6% -
Non-Drought 7.2% 44.4% -

Total - - 87.17%

Variable importance

The importance scores of the top 10 predictive variables are shown in table 4.6, see Appendix
F for the complete table. The most important predictive variables when introducing noise to
the separate variables are LST night, LST day and LST night spatial autocorrelation. None of
the variables were deemed unimportant. Overall the LST day derived EWMs and LST night
derived EWM had the highest importance scores per metric, while the NDVI derived EWM
and the NBR derived EWM performed less. We hypothesized that temporal autocorrelation
and spatial autocorrelation would be the most important EWM in the predictions. Our
findings show that 2 of the 4 datasets performs consistent with theoretical expectations for
the temporal autocorrelation metrics. The spatial autocorrelation is the best performing
EWM in the random forest predictions. Our findings are not in line with our hypothesis, we
expected temporal autocorrelation to play an important role.
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Table 4.6: Mean importance per metric for the regional scale RF EWMs
model.The EWM are in bold.

Metric Mean

LST night

60 80 100 120

121.72
LST day 111.1

LST night spatial autocorrelation 88.91
LST day contemporary spatial variance 86.08

LST night contemporary spatial autocorrelation 80.50
LST day contemporary spatial autocorrelation 80.28
LST day contemporary spatial autocorrelation 71.59

NDVI spatial autocorrelation 64.99
LST night contemporary spatial variance 62.11

NBR contemporary spatial variance 60.02

4.4 Spatial patterns of predictions

Figure 4.5 shows the spatial distribution of the correct and incorrect predicted fire and non-
fire areas for both the RF baseline model and the RF EWMs model. In the RF baseline model
(figure 4.5 a.1), the false positive predictions within the fire areas were more dispersed then
in the RF EWMs model (figure 4.5 a.2). After the addition of the EWMs the false positive
predictions in the RF EWMs model are more clustered around the borders of the fire areas,
with a few exceptions. It is visible that less non-fire areas are predicted as false negatives
compared to the RF baseline model predictions. The non-fire areas that are near the fire
areas are predicted as false negatives fewer times compared to the RF baseline model.

Figure 4.5: This figure shows the spatial results of the random forest
predictions for the RF baseline model in a.1 and the results for the RF EWMs
model in a.2. The correct predicted areas are green while the incorrect

predicted areas are red.

Figure 4.6 shows the spatial distribution of the correct and incorrect predicted drought and
non-drought areas for both the RF baseline model and the RF EWMs model. Comparing
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figure 4.6 a.1 and a.2, there are no big differences visible. The spatial patterns are not
changed after the addition of the EWMs.

Figure 4.6: This figure shows the spatial results of the random forest
predictions for the RF baseline model in a.1 and the results for the RF EWMs
model in a.2. The correct predicted areas are green while the incorrect

predicted areas are red.

4.4.1 Fire vulnerability map

Figure 4.7 shows the map with the areas that are vulnerable to forest fires based on the RF
EWMs model in the year 2015, before the fires took place. Most of the vulnerable areas are
the same areas as where the forest fires took place. The other vulnerable areas that are not
inside the fire polygons are relatively isolated areas.

Figure 4.7: This figure shows which areas were predicted to be vulnerable
to forest fires in 2015 before the actual fires took place.
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4.5 Potential of VOD dataset

The VOD dataset is coarse and therefore too little samples were available for the random
forest predictions, but the few results that we had showed potential. The time series of
the VOD temporal autocorrelation and spatial autocorrelation metrics are shown in figure
4.8. The temporal autocorrelation time series shows a drop for the non-drought time series
around 2011, while there is an increase for the drought time series around 2008. Mainly
the spatial autocorrelation time series show big differences, with an almost flat line for the
non-drought time series. Table 4.7 gives an overview of the metrics that are consistent with
theoretical expectations based on CSD. The VOD derived metrics perform best with 7 out
of 9 metrics that are consistent with theory. Appendix H shows the relationship of VOD and
SPI values.

Figure 4.8: This figure shows two scenario time series for spatial auto-
correlation and temporal autocorrelation derived from the VOD dataset.

Table 4.7: Number of EWMs that are consistent with theoretical expec-
tations based on CSD for drought stress, with VOD

Metric NDVI LST day LST night NBR VOD Sum

Spatial autocorrelation X - X - X 3
Spatial skewness X - - - X 2
Spatial variance - - - X X 2
Temp variance - X X - X 3
Temp skewness X X - - X 3
Temp kurtosis X X - X - 3
Temp CH - X - X - 2
Temp autocorrelation - X - X X 3
Temp return rate - X - X X 3
Sum 4 6 2 5 7 -
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Chapter 5

Discussion

5.1 Performance of the EWMs

We showed that spatial autocorrelation derived from the LST night and NDVI datasets and
spatial variance derived from the LST night dataset are the most important EWMs in the
predictions of fire vulnerability and drought stress, see table 4.3 & 4.6. These outcomes are
not in line with our hypothesis and findings of Dakos et al. (2012) & Pace et al. (2013)
that temporal autocorrelation and variance are the most robust EWMs to identify an im-
pending tipping point. The spatial EWMs have not been applied often in research and it
is remarkable that both spatial autocorrelation and spatial variance perform better than the
widely tested temporal EWMs (Kefi et al., 2014).

We hypothesized that temporal autocorrelation would be among the most important met-
rics in the predictions. Our outcomes showed that the metric had little importance in the
predictions and was not consistent with theoretical expectations based on CSD. For the
local scale only the NBR dataset is consistent with theory and for the regional scale the
NBR and LST day datasets are consistent with theory. A potential explanation of the weak
performance of the temporal autocorrelation metric is the use of interpolation on the time
series. Interpolation of the datasets can cause an artificial rise in temporal autocorrelation,
resulting in inaccurate resilience estimates.

Our second hypothesis that spatial autocorrelation would be one of the most important
metrics in the predictions is accepted. The spatial autocorrelation derived metrics were the
most important metrics for the predictions of both the local and the regional scale. A pos-
sible explanation of the good performance of spatial autocorrelation compared to temporal
autocorrelation could be that temporal autocorrelation is more sensitive to interpolation and
the related artificial rise of autocorrelation. Further research into the effect of interpolation
on spatial autocorrelation is needed.

Analysis of temporal kurtosis and temporal skewness showed ambiguous results and had
little importance in the predictions of the fire vulnerability and drought stress. Dai et al.
(2012) found that skewness did not provide early warnings in a laboratory yeast population
undergoing a regime shift (Pace et al., 2013), while Pace et al. (2013), found that the
results of kurtosis and skewness were less useful in providing early warnings for the collapse
of the zooplankton ecosystem. In this research skewness and kurtosis performed consistent
with theoretical expectations for the LST day and LST night datasets for the local scale.
Temporal skewnessl was the best performing metric for the regional scale: with 3 out of 4
dataset showing consistent relations with theory. Even though skewness and kurtosis showed
consistent signs of CSD the variables did not have a big importance in the predictions, which
is in line with findings of Pace et al. (2013) and Dai et al. (2012).
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The conditional heteroscedasticity (CH) metric was not successful in this research. The
differences between the fire/drought and non-fire/non-drought patches were in most cases
not significant, adding little extra accuracy to the predictions. The CH test for structure in
variance has proven to be useful and un-useful as an EWM in other studies (seekel et al.,
2010). The usefulness of CH mostly depended on the length of the time series which was
the source of failure in the zoo-plankton study (Pace et al., 2013). In this study we used
time series with a length between 350 and 690 observations, suggesting that even longer
time series could lead to a better result. Further research is needed to identify if longer time
series are able to differentiate between fire/drought based on conditional hetroscedasticity
derived variables.

Return rate (ReRa) mirrored the temporal autocorrelation statistics presented in this study.
Therefore we assume that the weak performance of ReRa can also be caused by interpolation
of the datasets. Further research is needed to identify is ReRa would perform better in an
analysis without interpolation

In general, the LST day- and LST night derived EWMs had the highest mean importance
for the predictions, suggesting that drought stress and related fire vulnerability is mainly
temperature driven. The LST dataset is an indirect measure of soil moisture conditions
and yields a distinctive thermal signature (Anderson et al., 2007). During dry conditions
rising leaf temperatures are good indicators of plant moisture stress and precede the onset
of drought, this thermal response can occur even when the plants are green (Wan et al.,
2004). This suggests that LST datasets detect vegetation stress faster than NDVI and NBR
dataset and are therefore more suitable for timely resilience estimates.

The weak performance of some of the EWMs could be explained by the quality of the
datasets used to derive the metrics. The NDVI time series are often hindered by noise aris-
ing from varying atmospheric conditions and sun-sensor-surface viewing geometries (Hird
& Mcdermid, 2009). To be usable as an EWM, system behaviour must be detectable well
enough in advance of a tipping point to serve in decision making and be distinguishable
from other patterns (Boettiger et al., 2013).The NDVI datasets used in this research are
often noisy and sparse due to cloud cover, resulting in NA values. Figure 5.1 shows the
cloud cover percentage for the NDVI regional scale dataset for the time period 2002-2015.
Some areas have been covered by clouds 80% of the duration of the time series. This results
in irregular time series and is a problem for the NDVI, LST and NBR datasets. Removing
scenes from the time series entails the risk of reducing the ability of the algorithm to detect
change. Therefore, in this research all the areas that have been covered by clouds for more
than 50% of the time are removed from the analysis. But still interpolation was needed for
the incomplete time series, otherwise not enough data was available for the random forest
predictions. Interpolation of the missing values can cause an artificial rise in autocorrelation
for both the spatial and temporal variant. Perretti and Munch (2012) identified that under
common levels of noise found in data, CSD based EWMs often fail.

Another reason the NDVI dataset performed below expectations could be due to the rate
at which a system is sampled. A low sampling rate could potentially cause a missed alarm
(Boulton et al., 2013). The sampling rate of the system has to be small enough to capture
fast dynamics in a system caused by short term perturbations (Kleinen et al., 2003). The
LST datasets had a sampling rate of once every 8-days, while the NDVI datasets are sampled
once every 16-days.
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Figure 5.1: Cloud cover percentage for the time period 2002-2015.

5.2 Local scale predictions

We hypothesized that the addition of EWMs would increase the accuracy of the predictions
and that temporal autocorrelation and spatial autocorrelation would be the most important
EWM in the predictions. Our results show that the addition of consistent EWMs increases
the accuracy from 68.52% to 72.23%, which is in line with our hypothesis. Remarkable is
that the addition of EWMs increases the prediction accuracy for the non-fire areas more
than for the fire areas, which was expected otherwise. This could be due to the ambigu-
ity of our validation dataset. The shift from the "climate-vegetation" equilibrium to the
"fire dominated tropical savanna" equilibrium is depicted by the validation dataset fire vs
non-fire. This dataset implies that the proximity of a tipping point in the fire dominated
areas was very close and that the proximity of a tipping point was distant in the non-fire
areas. However, the true distance to a tipping point remains unknown. It could be pos-
sible that the whole local study area had a close proximity towards a tipping point, only
the ignition missed. Therefore, using the fire vs non-fire dataset on a local scale entails the
risk of predicting the proximity of a tipping point in an area in which the proximity was equal.

Looking at the spatial patterns of the predictions a few potential explanations of why the
addition of EWMs increased the accuracy of the non-fire areas more are visible. The false
negative classification of high fire vulnerability in the non-fire areas could be the isolation
of the patches, see the fire vulnerability map in figure 4.5. When large areas are susceptible
to forest fires the probability of a forest fire is much higher than when a susceptible area is
surrounded by resilient forest patches. The low resilience to forest fires could be accurately
predicted by the model, but no fires occurred because the neighbouring areas did have a
high resilience. In figure 4.4 it can be seen that most of the predictions errors are made
near the borders of the fire areas. It is unlikely that the difference between areas with a
low resilience and areas with a high resilience is a sharp line, but more likely a continuous
decline of resilience and therefore predictions errors could be expected. Another problem
occurring around the edges of the fire and non-fire areas is the use of a kernel for the spatial
calculations. Near the edges the kernel calculates skewness, variance and autocorrelation
based on both fire and non-fire areas.
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5.3 Regional scale predictions

The results of the regional scale are similar to the results of the local scale. The addition
of EWMs increased the total accuracy from 85.69% to 87.17%, which is a smaller increase
of accuracy than for the local scale. This small increase suggests that drought stress can
already be predicted relatively accurately by using contemporary conditions of the ecosystem
alone.

The spatial patterns of the predictions are also less profound than the changes on the
local scale. The reason for the weaker performance of the EWMs for the regional scale
could be found in the validation dataset. The drought vs non-drought validation dataset
is based on the SPI index. The SPI was chosen based on its simplicity and its ability to
calculate relative drought in situ (Hayes et al., 1999, McKee et al., 1993). In respect to the
SPI index itself, it is important to know how well it can reproduce water stress. Currently
and as far as our research stretched we could not find a systematic assessment of the power
of the SPI index in the context of the tropical rain forest. However, Li et al. (2008) did a
30-year trend study of SPI in the Amazonia to assess how drought conditions develop under
a variety of different scenarios of climate change. The outcome of the research was positive
in the sense that the SPI was a flexible index, which adapts to local rainfall regimes. On the
other hand, it should be mentioned that according to Hayer (1999) and Gutmann (1999)
long time series of at least 50 years of data are needed to analyse drought periods, while
in the research of Li et al. (2008) a time series of respectively 30-years was used. In this
research we only have a time-series of 18 years available. It is not clear if the short time
series had an impact on the final predictions of the EWMs. Another point of critique for
the SPI was identified by Trenberth et al. (2014): the index is based on precipitation alone,
without considering the forest’s demand for water. Soil moisture conditions and topography
are not taken into account in the calculations (Hayes et al., 1999).

A point of critique on the whole drought vs non-drought concept was found by Verbesselt
et al. (2016). Their results showed that elevated temporal autocorrelation as a measure of
CSD is sometimes found in places where one would not expect low resilience based on mean
annual precipitation alone. Low resilience was found in areas with high annual precipitation
levels (Verbesselt et al., 2016). By only taking annual precipitation values into account our
validation dataset could potentially point out drought as an area with low resilience wrongly,
while non-drought areas could also contain areas of low resilience.

Potential of VOD dataset

We found that the coarse-scaled VOD imagery showed huge potential. 7 Out of 9 EWMs
performed consistent with theoretical expectations based on CSD, which is the best score
for the five datasets used in this research. Even though too little sample were available for
our study area the results show potential for upscaling. Verbesselt et al., (2016) showed that
VOD derived temporal autocorrelation was a good indicator of the resilience of ecosystems
such as the Amazon.

The VOD dataset represents water content in above ground woody and leaf biomass, sug-
gesting that drought vs non-drought could be well predicted by the above ground water
content in the vegetation (Liu et al., 2013). The potential of the VOD dataset could be in
the sampling scheme. The sampling rate of a system has to be small enough to capture fast
dynamics in a system caused by short term perturbations (Kleinen et al., 2003). The VOD
dataset is sampled daily and therefore the chance of missing fast dynamic is a lot smaller
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then for the LST dataset (8-days) or the NDVI dataset (16-days). Another explanation of
the consistent performance of the VOD metrics is the lack of effect atmospheric and weather
conditions have on the VOD datasets (Verbesselt et al., 2016). The LST, NBR and NDVI
datasets are constantly influenced by weather conditions. Clouds are a major obstacle in the
optical remote sensing of the tropical rainforest of the Amazon (Gu et al., 2012; Gu et al.,
2009; Kennedy et al., 2010; Michishita et al., 2014; Poulter & Cramer., 2009). Hence the
results of the VOD datasets are much more stable than the results of the other datasets.

The consistent results for the VOD datasets might be explained by the weak correlation
to the SPI dataset. Appendix H shows that the datasets have an R-square of -0.1, which
indicates that there is a weak negative correlation. The weak correlation between the two
datasets could be the reason that the VOD derived EWMs perform well. Further research
is needed to identify the magnitude of this minor correlation.

5.4 Limitations of the thesis

5.4.1 Large data volumes

Time series analysis is a powerful tool to identify changes over time. Increasing the length
and resolution of time series gives lots of opportunities to identify changes over time, and
offers more data to create a robust baseline. But longer and more detailed time series comes
at the cost of very large data volumes that have to be (pre-)processed. For example, NDVI
imagery from 2002 till 2015 has a download size of around 25 gigabyte. Overall longer and
more detailed time series might give better and more accurate results, but suitable hardware
is needed to accomplish that.

5.4.2 Reference data generation

Experts gave an average of 20% chance of tipping the Amazon (which means that at least
half of its current area is converted from year-round forest to a tropical savanna) if global
warming is between 2 and 4 degrees, and 70% if global warming exceeds a rise of 4 degrees
(Kriegler et al., 2009). However, the future of the Amazon rainforest is highly uncertain
(Boulton et al., 2013). In recent years, research into the field of tipping points and their
predictability has yield several suggestions for generic early warning signals of an approaching
tipping point (Scheffer et al., 2009, Lenton, 2011). In this research we assumed that the
fire vs no-fire and the drought vs non-drought datasets (based on the 2015-2016 El Niño
event) depicted the resilience and proximity of a tipping point. This research is at risk of
predicting the proximity of a tipping point while the system might not be at risk of tipping.

5.4.3 Definition of resilience

We use the term resilience in the same sense Scheffer (2009) used it: "The ability of a
forest to absorb disturbances and re-organize under change to maintain similar functioning
and structure". This definition accounts for the fact that a system rarely recovers to the
exact same pre- disturbance conditions (Scheffer, 2009). Furthermore, with this definition
one can frame resilience as the rate of recovery after a disturbance and as the maximum
amount of disturbances a system can absorb before reaching a tipping point (Gunderson,
2000, Scheffer, 2009). In this research the resilience of a system towards a regime shift
is measured in statistical metrics based on the CSD principle. However, CSD cannot be
used as evidence of regime shifts on its own. In some cases, CSD will be measured but no
transition is approaching while in other cases regime shifts occur without CSD (Boettiger
et al., 2013).
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5.4.4 Potential failure of EWMs

Foundational research in EWS identified certain patterns that may forecast a sudden tran-
sition in a wide variety of systems (Scheffer et al., 2009). Subsequently work has identified
a growing library of case studies in which the EWS are not present before a transition
(Schreiber, 2003, Schreiber & Rudolf, 2008, Hastings & wysham, 2010, Bel et al., 2012,
Boettiger et al., 2013).The examples are distinct for the statistical-error case, the signal
is present, but too weak to detect due to insufficient available data (Dakos et al., 2008,
Scheffer et al., 2009, Perretti & Munch, 2012).

Using generic EWMs one does not take into account the change of background condi-
tions like changing CO2 concentrations and human-driven pressures such as alterations of
fire regimes, deforestation, management and their interactions (Reyer et al., 2015). External
drivers interacting with internal processes may also cause regime shifts and the best indicator
variables are often unknown, suggesting that an absence of EWMs does not imply a high
resilience (Pace et al., 2013). One can identify indicators of reduced resilience but EWMs
are not capable of predicting the total resilience of a system. The processes to be predicted
are too complex and resilience is dependent on heaps of identified and unidentified drivers.

Another reason the detection of EWMs might fail is the use of satellite imagery. Remote
sensing registers signals from the entire plot, in which some trees may be dying and others
are healthy and even benefiting from neighbouring trees dying (Rogers et al., 2018). The
use of aggregated information can send the wrong signal.

5.4.5 Variable selection

In section 3.3.2 a framework to select EWMs that were consistent with theoretical consider-
ations based on CSD was presented. The mean Kendall’s tau values were used to determine
whether the average trend line showed the expected difference for the fire/drought and non-
fire/non-drought time series. When taking the mean of thousands of time series a lot of
variation is removed from the analysis. It could be possible that half of the time series was
consistent with theoretical considerations and half of it was not. By using this method of
variable selection EWMs that are consistent with theory could be excluded from the analysis
while they did measure CSD.

Another point of critique on the variable selection method is the interpretation of the nega-
tive trend lines. If the trend line for the fire areas was decreasing less than the trend line for
the non-fire areas it was assumed that this was a sign of CSD. Stricter rules could have been
applied in the variable selection method by only accepting trends that show an increasing
Kendall’s tau value.
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Chapter 6

Conclusions and
recommendations

6.1 Conclusions

The overall objective of this thesis was to analyze whether surface temperature and veg-
etation related EWMs can differentiate between fire versus non-fire conditions on a local
scale and drought vs non-drought conditions on a regional scale. With four main research
questions:

1. Can spatio-temporal early warning metrics improve the predictions of fire vulnerability
estimates in a drought stressed forest ecosystem on a local scale?

2. Can spatio-temporal early warning metrics help differentiate between drought stressed
and non-drought stressed forest scenari on a regional scale?

The results of the local scale have proven that fire vulnerability can be predicted with an
accuracy of 68.25% in the RF baseline model and with an accuracy of 73.23% in the RF
EWMs model. The addition of EWMs that are consistent with theoretical expectations in-
creases the prediction accuracy. The LST derived spatial autocorrelation metric has proven
to be the most important metric in the prediction. This suggests that low fire resilience
is related to spatial autocorrelated patterns of indirect soil moisture conditions and related
vegetation stress.

The results of the regional scale have proven that drought vs non-drought areas can be
predicted with an accuracy of 85.69% in the RF baseline model and with an accuracy of
87.17% in the RF EWMs model. The addition of EWM that are consistent with theoretical
expectations does increase the prediction accuracy. The LST derived spatial autocorrelation
is again the most important EWM in the prediction for the drought vs non-drought areas.
This suggests that drought resilience is also related to spatial autocorrelated patterns of
indirect soil moisture conditions and related vegetation stress.

This research has shown that future tipping points of climate systems have the potential to
be predicted in some cases. Mainly the spatial EWMs show potential. However there are
some obstacles preventing EWMs from giving strong signals on the approach to a tipping
point. These include noisy datasets, cloud contamination, external perturbations and the
unknown distance towards a tipping point.

The addition of EWMs increases the accuracy of the predictions for both the local and
the regional scale by 4.98% and 1.64% respectively. These results prove that EWMs help in
the understanding of forest fire/drought stress resilience. But critical notes should be made
that these additions are relatively small. Further research is needed to evaluate whether
EWMs can strengthen existing drought stress and related fire risk frameworks.
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6.2 Recommendations

1. This research has shown the potential of the VOD dataset for the identification of
EWMs in drought vs non-drought areas. The upcoming higher resolution VOD dataset
could be used in further research towards EWMs. In this way enough data-points are
available to make a reliable random forest prediction.

2. The coarse resolution of the VOD dataset (0.25 degrees) and the LST dataset (1km)
could have been a cause of missed EWS. Using datasets with a high-resolution could
improve the predictions. On the other hand Rogers et al. (2018) found that coarse
data did not influence their research towards EWMs. However this may still be a
matter of further investigation.

3. Another data driven problem is the shortage in usable data. Due to thick cloud
covers above the Amazon rainforest time series are incomplete. In further research
towards the resilience of forests more complete datasets are needed. This could be
accomplished by using datasets based on cloud penetrating wavelength.

4. Using datasets with a higher temporal resolution could also improve the detection of
EWMs. In our results in can be seen that the NDVI (16-day product) performed less
than the LST (8-day product) and VOD (daily product) dataset. Whether the lower
performance is due to temporal resolution has to be assessed in further research. Dif-
ferent datasets like NDVI 8-day products could be used in further research (Landsat).

5. The drought vs non-drought map could be improved in further research. The main
improvement could be to use another drought index. The SPI is based on precipitation
alone, without considering the forest’s demand for water. This could lead to the wrong
assumption that areas with a high SPI value are areas with a high resilience and areas
with a low SPI value are areas with a low resilience. Verbesselt et al. (2016) found
that there is no direct relationship between low precipitation levels and a low resilience.
Therefore a different drought index could improve the predictions e.g. a drought index
that also takes topography and soil moisture into account. Further research is needed
to clarify what difference it would make to use a different drought index.
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Appendix A

SPI background

The SPI was introduced by McKee et al. (1993) as a tool to identify and monitor drought
for multiple time scales. The time scales used reflects different changes. Soil moisture condi-
tions respond to precipitation anomalies on a short time scale while groundwater, streamflow
and reservoir storage are reflected in long-term precipitation anomalies. McKee originally
calculated the SPI with a moving window of 3-, 6-, 12-, 24,- and 48- months (McKee et
al., 1993). The SPI function uses the months within the moving window and historical data
and fits it to a gamma distribution (Beguería et al., 2017). The SPI can be interpreted in
terms of occurrence probability of a given precipitation amount compared to historical data,
which makes it a relative drought index (Brede et al., 2015). Values from -1.5 onwards are
considered very dry and values from 1.5 onwards are considered very wet, see table A.1.

For this research a moving window of 6 months was used to calculate the SPI index for
the Amazonia. The SPI was calculated for the dry season before occurrences of the fires.
We assumed the dry season to be between July and September, a simplification often used
by other studies (Samanta et al., 2012). The 10% of the lowest SPI pixel values were used
to identify drought stress and the 10% of the highest SPI pixel values were used to identify
non-drought stress. The TRMM dataset was used to calculate the SPI and stores the pre-
cipitation in millimetres per hour-1. The cumulative monthly precipitation was estimated
in mm per month considering a 30-day month for all the dataset (Aragao et al., 2007). A
disadvantage of using TRMM datasets to calculate the SPI is the need of long time-series
(Hayes, 1999). Guttman (1999) recommends a time-series of at least 50 years of data to
analyse drought periods. However other studies used shorter time periods to calculate the
SPI: Lingtong et al. (2012) and Naresh Kumar et al. (2009) used respectively 12- and 30-
years. Unfortunately, in this research we only had a time-series of 18 years available for the
calculations of the SPI.

Table A.1: SPI classification (McKee et al., 1993)

SPI value Category

>2.0 Extremely wet
1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet
-0.99 to 0.99 Near normal
-1.0 to -1.49 Moderately dry
-1.5 to -1.99 Very dry
<-2.0 Extremely dry
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Appendix B

Window sizes

B.1 Sensitivity analysis of the window size on temporal
EWMs for the local scale

The estimations of the metrics were influenced by the choices made in the application of
the metrics. (i) The rolling window size could influence the results and therefore window
sizes of 25%, 50% and 75% are used in the calculations. (ii) Regular time series are of
importance in the case of indicators such as autocorrelation that estimate the memory in
time series. Interpolating the missing values in time series could cause spurious correlations,
therefore interpolated time series are often checked against the original time series (Dakos et
al., 2008). Unfortunately, the datasets used in this research make it impossible to compare
the interpolated time series against the original time series. Due to thick cloud covers it is
impossible to select enough complete time series to compare the interpolated data against.

Table B.1 shows the results of the sensitivity analysis per dataset when using a window
size of 25%, 50% and 75% to calculate the temporal EWMs. The sensitivity analysis is
performed on 10% of the total data per dataset (5% fire areas and 5% non-fire areas).The
performance of the LST day and night dataset increases when using a bigger window size.
The NBR dataset performs best when using a window size of 25% and the predictive per-
formance decreases when using a window size of 50%. The NDVI dataset is relatively stable
in its predictive performance when changing the window sizes.

B.2 Sensitivity analysis of the window size on temporal
EWMs for the regional scale

Table B.2 show the results of the sensitivity analysis per dataset when using a window size of
25%, 50% and 75% to calculate the temporal EWMs. The sensitivity analysis is performed
on 10% of the total data per dataset (5% fire areas and 5% non-fire areas). The performance
of the LST day dataset is best at a window size of 25% and decreases when using a bigger
window size. The performance of the LST day dataset increases when using a bigger window
size. The NBR dataset performs best when using a window size of 50% and performs worst
of all datasets when using a window size of 75%. The performance of the NDVI dataset is
relatively stable when changing the window sizes.

B.3 Recommendations for further research

A recommendation for further research is to experiment with different window sizes. Each
dataset has a different temporal resolution: NDVI (16- day product), NBR (8-day product),
LST (8-day product) and VOD (daily product. Using datasets with different temporal
resolutions could mean that using one temporal window size could be beneficial for one
dataset and not for the other.
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Table B.1: Sensitivity analysis for the local scale on window sizes
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Table B.2: Sensitivity analysis for the regional scale on window sizes
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Appendix C

Mean values per metric local
scale

Table C.1: Significance test for fire and non-fire pixels

Metric per index µ fire µ non-fire p-value
NDVI 8545.942 8531.996 <0.001
NDVI contemporary spatial correlation 0.57802 0.45196 <0.001
NDVI contemporary spatial skewness -0.42826 -0.37139 <0.001
NDVI contemporary spatial variance 5014.644 3453.776 <0.001
NDVI spatial correlation -0.00747 -0.00671 0.06202
NDVI spatial skewness -0.0062 -0.004979 <0.001
NDVI spatial variance 0.01803 0.01493 <0.001
NDVI temp variance 0.00072 -0.00743 <0.001
NDVI temp skewness -0.00355 -0.01248 <0.001
NDVI temp kurtosis -0.00439 -0.02042 <0.001
NDVI temp conditional hetroscedasticity -0.00664 -0.001434 0.4698
NDVI temp autocorrelation -0.02015 -0.00183 <0.001
NDVI temp return rate 0.02015 0.00180 <0.001
LST day 300.3892 0.300.6382 <0.001
LST day contemporary spatial correlation -0.00313 -0.08410 <0.001
LST day contemporary spatial skewness 0.05372 0.08011 <0.001
LST day contemporary spatial variance 0.00212 0.00280 <0.001
LST day spatial correlation -0.01785 -0.01564 <0.001
LST day spatial skewness 0.00822 0.00681 <0.001
LST day spatial variance -0.00146 0.00900 <0.001
LST day temp variance 0.03536 0.02958 <0.001
LST day temp skewness -0.04363 -0.01922 <0.001
LST day temp kurtosis -0.07265 -0.02394 <0.001
LST day temp conditional hetroscedasticity -0.02190 -0.02292 0.6602
LST day temp autocorrelation -0.00313 0.08410 <0.001
LST day temp return rate 0.00313 -0.08410 <0.001
LST night 295.9961 295.8813 <0.001
LST night contemporary spatial correlation 0.17643 0.35644 <0.001
LST night contemporary spatial skewness 0.03714 0.03286 0.1556
LST night contemporary spatial variance 0.00083 0.00114 <0.001
LST night spatial correlation 0.01605 -0.00431 <0.001
LST night spatial skewness -0.00044 -0.00068 0.3912
LST night spatial variance 0.00222 -0.01879 <0.001
LST night temp variance 0.05564 0.06400 <0.001

Continued on next page
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Table C.1 – continued from previous page
Metric per index µ fire µ non-fire p-value

LST night temp skewness -0.11546 -0.07331 <0.001
LST night temp kurtosis 0.12879 0.08719 <0.001
LST night temp conditional hetroskedasticity -0.06689 -0.10548 <0.001
LST night temp autocorrelation -0.30101 -0.20170 <0.001
LST night temp return rate 0.30101 0.20170 <0.001
NBR 0.73306 0.718017 <0.001
NBR contemporary spatial correlation 0.09082 1.10519 <0.001
NBR contemporary spatial skewness -0.11156 -0.11634 0.1334
NBR contemporary spatial variance 0.000002 0.00002 <0.001
NBR spatial correlation -0.00265 0.00216 <0.001
NBR spatial skewness 0.00517 0.00759 <0.001
NBR spatial variance 0.02115 0.01915 <0.001
NBR temp variance -0.01146 -0.02206 <0.001
NBR temp skewness -0.18965 -0.18928 0.8785
NBR temp kurtosis -0.13799 -0.15060 <0.001
NBR temp conditional hetroskedasticity 0.0538 0.04678 0.1528
NBR temp autocorrelation 0.15189 0.11884 <0.001
NBR temp return rate -0.15189 -0.11883 <0.001
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Appendix D

Mean importance local scale

Table D.1: Continuation of table 4.4

Metric Mean

LST night spatial moran

0 10 20 30 40 50 60

54.15
LST night contemporary spatial correlation 37.27

NDVI contemporary spatial variance 37.17
LST day contemporary spatial correlation 35.36

LST night 34.86
LST day contemporary spatial variance 33.73

LST day 33.39
LST night spatial variance 31.73

NDVI 27.95
NDVI contemporary spatial correlation 21.24

LST night temporal skewness 20.92
LST night contemporary spatial variance 18.72

NBR spatial variance 17.55
NBR contemporary spatial correlation 15.62

LST night temporal kurtosis 15.87
NBR contemporary spatial variance 15.62

NBR 15.19
LST night temporal CH 12.26

LST day temporal variance 8.94
LST day temporal kurtosis 6.93

NBR contemporary spatial skewness 5.02
NBR temporal variance 4.73

LST day contemporary spatial skewness 4.7
LST day temporal skewness 4.31

NDVI spatial variance 4.22
NBR temporal autocorrelation 4.13
NBR temporal return rate 4.08

LST night contemporary spatial skewness 3.41
LST day spatial skewness 3.18

NDVI contemporary spatial skewness 2.33
NDVI spatial skewness 0.37
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Appendix E

Mean values per metric regional
scale

Table E.1: Significance test for drought and non-drought pixels

Metric per index µ drought µ non-drought p-value
NDVI 8439.435 8491.193 <0.001
NDVI contemporary spatial correlation 0.11103 0.14655 <0.001
NDVI contemporary spatial skewness -0.29943 -0.35267 <0.001
NDVI contemporary spatial variance 0.11103 0.14655 <0.001
NDVI spatial correlation 0.03196 0.026911 <0.001
NDVI spatial skewness -0.00526 -0.00324 <0.001
NDVI spatial variance 0.00204 0.02097 <0.001
NDVI temp variance -0.01934 -0.01870 <0.001
NDVI temp skewness 0.06434 -0.00267 <0.001
NDVI temp kurtosis 0.03193 -0.02505 <0.001
NDVI temp conditional hetroscedasticity 0.02439 0.03371 <0.001
NDVI temp autocorrelation -0.08181 -0.02867 <0.001
NDVI temp return rate 0.08164 0.02864 <0.001
LST day 15073.33 15080.37 <0.001
LST day contemporary spatial correlation 0.32905 0.35691 <0.001
LST day contemporary spatial skewness 0.02261 0.07048 <0.001
LST day contemporary spatial variance 3.13909 4.63065 <0.001
LST day spatial correlation -0.00189 0.00582 <0.001
LST day spatial skewness 0.00422 0.00856 <0.001
LST day spatial variance -0.00285 0.5797432 <0.001
LST day temp variance 0.04468 0.04359 <0.001
LST day temp skewness -0.07392 0.00867 <0.001
LST day temp kurtosis -0.14383 -0.06236 <0.001
LST day temp conditional hetroscedasticity -0.029618 -0.03241 0.0136
LST day temp autocorrelation 0.04731 -0.01162 <0.001
LST day temp return rate -0.04731 0.01161 <0.001
LST night 14781.39 14749.30 <0.001
LST night contemporary spatial correlation 0.45063 0.33086 <0.001
LST night contemporary spatial skewness 0.06705 0.10704 <0.001
LST night contemporary spatial variance 3.11676 3.44870 <0.001
LST night spatial correlation -0.00387 -0.00801 <0.001
LST night spatial skewness 0.00231 -0.00301 <0.001
LST night spatial variance -0.01013 -0.00931 <0.001
LST night temp variance 0.08999 0.08519 <0.001

Continued on next page
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Table E.1 – continued from previous page
Metric per index µ drought µ non-drought p-value

LST night temp skewness -0.02949 0.08962 <0.001
LST night temp kurtosis 0.10662 0.17224 <0.001
LST night temp conditional hetroscedasticity 0.02439 0.03371 <0.001
LST night temp autocorrelation -0.08795 -0.05266 <0.001
LST night temp return rate 0.08795 0.05266 <0.001
NBR 0.71487 0.71058 <0.001
NBR contemporary spatial correlation 0.60803 0.45992 <0.001
NBR contemporary spatial skewness -0.13082 -0.17729 <0.001
NBR contemporary spatial variance 0.000007 0.000006 <0.001
NBR spatial correlation -0.00624 0.00264 <0.001
NBR spatial skewness 0.00476 0.00612 <0.001
NBR spatial variance 0.01635 0.01296 <0.001
NBR temp variance -0.10012 -0.06169 <0.001
NBR temp skewness -0.00608 -0.00949 <0.001
NBR temp kurtosis -0.07075 -0.02221 <0.001
NBR temp conditional hetroscedasticity 0.09645 0.07937 <0.001
NBR temp autocorrelation 0.07493 0.03809 <0.001
NBR temp return rate -0.07493 -0.03808 <0.001
VOD 1.05152 0.81513 <0.001
VOD contemporary spatial correlation 0.45062 0.33086 <0.001
VOD contemporary spatial skewness 0.06705 0.10704 <0.001
VOD contemporary spatial variance 3.11676 3.44870 <0.001
VOD spatial correlation -0.00113 -0.00673 <0.001
VOD spatial skewness 0.01979 0.00644 <0.001
VOD spatial variance 0.02452 0.01068 <0.001
VOD temp variance 0.03201 0.02944 <0.001
VOD temp skewness 0.00842 -0.00691 <0.001
VOD temp kurtosis 0.01797 0.05395 <0.001
VOD temp conditional hetroscedasticity 0.00773 0.05979 <0.001
VOD temp autocorrelation -0.05526 -0.08574 <0.001
VOD temp return rate 0.05526 0.08574 <0.001
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Appendix F

Mean importance regional scale

Table F.1: Continuation of table 4.8

Metric Mean

LST night

0 20 40 60 80 100 120 140

121.72
LST day 111.1

LST night spatial autocorrelation 88.91
LST day contemporary spatial variance 86.08

LST night contemporary spatial autocorrelation 80.50
LST day contemporary spatial autocorrelation 80.28
LST day contemporary spatial autocorrelation 71.59

NDVI spatial autocorrelation 64.99
LST night contemporary spatial variance 62.11

NBR contemporary spatial variance 60.02
NBR spatial variance 56.67

NBR 55.53
NDVI 55.09

NDVI contemporary spatial variance 54.92
LST night temporal variance 54.79

NDVI contemporary spatial autocorrelation 54.65
NDVI contemporary spatial skewness 44.19

NDVI spatial skewness 43.32
LST day temporal kurtosis 41.95
LST day temporal variance 41.01
LST day temporal skewness 38.17

NBR temporal autocorrelation 30.68
NBR temporal return rate 30.27

LST day temporal autocorrelation 30.2
LST day temporal return rate 29.89

LST day contemporary spatial skewness 29.84
LST night contemporary spatial skewness 25.67

NDVI temporal kurtosis 24.73
NBR contemporary spatial skewness 23.13

LST day temporal CH 20.51
NBR temporal kurtosis 17.67
NBR temporal CH 5.79
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Appendix G

Forest mask

Figure G.1: Forest mask local scale

Figure G.2: Forest mask regional scale
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Appendix H

VOD in relation to SPI

Figure H.1 shows the relationship between SPI values and VOD values before fire occurrence.
The blue line shows the fitted regression line with a negative R-square of -0.1, which indicates
that there is a weak negative correlation between VOD and SPI.

Figure H.1: This figure shows the correlation between VOD and SPI.
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