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Propositions 

 

1. The rate of gut microbiome maturation in early life influences the risk of 

developing allergic disease.  

(this thesis) 

 

2. Using the term ‘dysbiosis’ to describe microbial configurations in the 

context of complex diseases, such as allergy, is misleading.  

(this thesis) 

 

3. If there is anything that distinguishes ‘data science’ from ‘traditional 

statistics’, it is the urge to learn from data. 

 

4. Experiencing and, above all, creating music benefits your brain.  

(Ross B et al., J Neurosci. 2017;37(24):5948-59.) 

 

5. Colour-blindness hinders the modern microbiologist more than ever! 

 

6. A lie may have no legs but has become faster than ever. 
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Introduction 

The microscopic observations of “putrefying bodies” (fungi) by Robert Hooke 

and of “animalcules” (bacteria) by Antoni van Leeuwenhoek between 1665 and 1683 

uncovered for the first time the microbial world we live in. The observations by these 

two pioneers in microbiology, both fellows of the prestigious Royal Society of London, 

were made possible by the first versions of the microscope, which still is a central 

instrument in microbiology (1). Since these first discoveries, the techniques we use to 

understand this “invisible” world have evolved: from isolation and cultivation 

techniques (end of the 19
th
 century), to strictly anaerobic cultivation techniques (late 

1960’s) and cultivation-independent molecular techniques (end of the 20
th
 century) (2). 

Finally, high throughput approaches to study microbial molecules at the level of DNA 

and RNA (through next generation sequencing), but also at the protein (through 

proteomics and metaproteomics) and metabolite levels (through metabolomics and 

metabonomics) revolutionized the field of microbiology. They enabled researchers to 

describe the composition and activities of the microbial communities found everywhere 

around us (3). Moreover, these culture-independent methods also allow researchers to 

explore the microbial diversity and functionality of the large ‘not-yet culturable’ fraction 

(2). Since the study of microbial communities is a relatively new field in microbiology, it 

is important to have clear definitions of the terms used. The terms, which have been 

adopted in this thesis come from those proposed by Marchesi and Ravel (4): 

 

Microbiota: all the microorganisms (archaea, bacteria, viruses and microscopic 

eukaryotes) that live in a specific environment, e.g. the gut or the root nodule of a plant. 

The study of it mainly relies on the phylogenetic analysis of marker genes, such as 

those encoding for the prokaryotic 16S ribosomal RNA (bacteria and archaea) and the 

eukaryotic 18S rRNA. Although viruses are an integral part of the microbiota, they are 

non-cellular and lack a universal marker gene that can be used for taxonomic 

classification. However, viruses can be assessed through metagenomics, which is a 

technique that enables the study of the full microbial genetic content within an 

environment (5). Most studies so far merely measure or consider the bacterial 
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members, which is also the scope for this thesis. Formerly, the microbiota was often 

referred to as “microflora”, but this term is misleading as it implies to describe plants. 

 

Microbiome: this term refers to the ecosystem or habitat, including all the 

microbes and the surrounding environmental conditions (for example: pH, 

temperature, oxygen pressure). Often this term is limited to describing the collection of 

microbial genes and genomes, which however is more correctly referred to as 

metagenome. The prefix “meta” is used to designate the analysis of the collection of 

molecules from all microbes, instead of from a single organism. The profiling of the 

RNA-transcripts, the synthesized proteins or metabolites of the community is thus 

referred to as metatranscriptomics, metaproteomics, and metabolomics (or more 

correctly: metabonomics), respectively. These three methods go beyond the analysis 

of the taxonomic composition and genetic potential of the community and provide 

insight into the functional activity of the genes that are expressed under certain 

conditions (6). 

The human microbiome 

The most intensively researched microbial community in the last two decades is 

probably the human microbiome (7). Microbes are found everywhere the human body 

is exposed to the outside world; namely the skin, the urogenital tract, the respiratory 

tract and the digestive tract. The composition of the microbial communities is primarily 

determined by body habitat but is also unique to each person and relatively stable in 

adults (8). The average adult has a total estimated number of microbes in the order of 

magnitude of 10-100 trillion cells; the majority of which is found in the lower digestive 

(gastro-intestinal) tract (9). Along the gastro-intestinal tract (GI tract), an increasing 

bacterial density is observed from the stomach (<10
4
 cells/gram) to the small intestine 

(10
4
-10

8
 cells/gram), up to the most densely populated compartment, the large 

intestine (10
11
-10

13
 cells/gram). This progressive increase is partially explained by the 

differences in hydrogen potential (pH), oxygen levels and food transit times between 

the different digestive compartments (10).  

Two large-scale research initiatives, i.e. the European Metagenomics of the 

Human Intestinal Tract (MetaHIT) (11) and the American Human Microbiome Project 
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(HMP) (12), that were joint under the International Human Microbiome Consortium 

(IHMC) (13) provided vast amounts of metagenomic sequence data that aimed to 

improve our understanding of the human microbiome, and especially that of the gut, in 

health and in disease. The millions of microbial genes that were identified from the 

faecal specimens in these initiatives can be regarded as a functional expansion of our 

own ~20.000 human genes (7, 11, 14). Most of the microbial genes in the gut were 

found to be of bacterial origin (>99%) and are estimated to represent more than 1000 

bacterial species, of which an individual person harbours at least 160 species (11). 

Although highly subject-specific community compositions were observed, a large 

fraction of species and genes identified were shared between individuals, which 

indicated the existence of a core metagenome. The bacterial species identified mostly 

belong to 5 phyla, namely Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria 

and Verrucomicrobia (11, 14). These first descriptions of the human gut microbiome 

have led to increased understanding and awareness of the roles these indigenous gut 

microbes have in human physiology, and how that may affect human health or 

disease.  

The human gut microbiome in health and disease 

The digestive tract is unique among the internal organs, because it forms a 

large interface with our external environment. This interface is greatly enlarged by the 

folds, villi and microvilli of the GI tract, resulting in an estimated surface area of 32 m
2 

(15). Naturally, it is the central organ for the digestion and absorption of the food we 

eat, but it is also tightly connected with the immune, neural and endocrine systems that 

all interact together to optimally process the food and sense the external environment 

(16).  

The trillions of gut microbes developed several essential activities that 

complement our own metabolism through the digestion of complex dietary and 

host-derived substrates, resulting in the production of, for example, secondary bile 

acids, vitamins and short-chain fatty acids (SCFA), thereby contributing nutrients, 

energy and bioactive compounds (17, 18). Moreover, our gut inhabitants are known to 

react to or modify foreign chemical components (e.g. drugs, pollutants), eliminate 
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exogenous toxins (19), and to provide protection against the colonization of potential 

pathogens by nutrient competition or through direct anti-microbial mechanisms (20). 

Perhaps not surprising that due to the large surface area, the gut is known to 

house the largest number of immune cells in the body that need to maintain immune 

homeostasis locally and systemically. This involves a complex interaction of the innate 

and adaptive immune system in response to innocuous substances (commensal 

microbes, food-, and self-antigens) while protecting the body from potentially harmful 

ones (21-23). Given the interdependency we have with our microbial inhabitants, a 

relationship which has co-evolved over millions of years (24), and the essential roles 

they have in several physiological processes, it is not surprising that they are the focus 

of research into a broad range of chronic diseases. Indeed, a growing body of evidence 

implicate an altered composition and activity of the gut microbiome that influence the 

onset and persistence of several diseases that have rapidly increased in prevalence 

over the last decades. These range from metabolic-related diseases, such as obesity 

(25, 26) and type 2 diabetes (27), to immune-related diseases, such as inflammatory 

bowel disease (28) and allergies (29), to even neurological-related diseases, such as 

autism spectrum disorders (30). All these diseases have a multifactorial or polygenic 

aetiology, which means that they are partially explained by genetic susceptibility, but 

that lifestyle and environmental factors, such as diet, also contribute to the onset (31). 

Perturbations of the gut microbiome in early life are thought to increase the risk of 

developing some of these multifactorial diseases, while a child’s immunity, metabolism 

and cognition are still developing (9). 

Early life, gut microbiota and immune development 

The host-microbe cross-talk is a crucial factor in the proper development of the 

immune system, a process that starts at birth, when the infant is first exposed to 

significant numbers of maternal and environmental microbes (32). Some studies have 

suggested that even within the healthy fetal milieu, exposure to microbes or microbial 

signals may occur (33), which is currently heavily debated in scientific literature (34, 

35). Importantly, the maturation of the immune system is for a large part taking place in 

the first months and years of life, which is also the period when the gut microbiota 

gradually develops towards a mature adult-like ecosystem (36, 37). Initial microbial 
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inoculation strongly depends on maternal transfer of a select number of microbes, 

which mostly include strains from the genus Bifidobacterium and from the class 

Bacteroidia, to the vaginally born infant. These strains have been proven to originate 

from the maternal gut and are ecologically better adapted to persistently colonize the 

infant gut than strains acquired from other sources, such as the maternal skin and 

vagina (38). In contrast, caesarean-born infants show a striking lack of vertical transfer 

and delayed colonization of these pioneering microbes (32, 39, 40). 

The maternally transmitted strains show persistence in infancy with an 

additional continuous, but rare, influx of strains from the direct family environment (32, 

41). The latter type of transmission, known as horizontal transfer, seems to be 

facilitated by endospore formation, which is common among gut-associated Clostridia, 

to survive the environment outside the gut (32, 42). Human milk, as the sole source of 

nutrition, is of major influence on the establishment of the gut microbiota in early life. Its 

influence is not limited to the period of exclusively breastfeeding but is still apparent in 

the period of complementary feeding until full transition to family foods around the age 

of 3 years (43-45). In addition to the essential nutrients, vitamins and antibodies, 

human milk contains numerous complex glycans known as human milk 

oligosaccharides (HMOs). These compounds pass the infant’s digestive system, and 

are efficiently consumed by especially Bifidobacterium, which results in an infant gut 

microbiome that is predominated by this genus, which is in stark contrast with that of 

infants receiving formula based on cow’s milk (46, 47). Additionally, human milk is also 

found to be a source of microbes including bifidobacteria (38, 48). This specific 

co-development observed for vaginally-born breastfed infants leads to a relatively 

stable infant microbiota which probably contributes to human health throughout life. A 

detailed review on these ‘first 1000 days’ of gut microbiota and immune development, 

the pivotal role of early life nutrition herein, and the association of perturbations of gut 

microbiota on the development of allergic disease, is provided in Chapter 2.  

The rise of allergies 

The epidemic rise of allergies, such as food allergy, atopic eczema, allergic 

rhinitis and asthma in developed and developing countries during the last 60 years 

has led to an immense global health problem, which is expected to affect up to 4 
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billion individuals in the 2050’s (49). The recognition that several environmental 

factors and exposures, in addition to genetic risk factors, contributed to the ‘allergy 

epidemic’ was already postulated in 1989 by David Strachan in what became known 

as the hygiene hypothesis (50). Originally, Strachan proposed that the increased 

post-industrial hygiene standards and declining family sizes reduced the opportunities 

for cross-viral-infections, thereby increasing the risk of allergic disease, which was 

based on a strong inverse correlation in the incidence of hay fever in children with 

older siblings. More recently this hypothesis has been revisited and revived by 

implicating the early resident microbial communities in allergic disease (51, 52).  

This renewed view of the hygiene hypothesis, which is sometimes referred to 

as the biodiversity hypothesis, proposes that significant perturbations of the resident 

microbial communities during early life immune development may disrupt the 

mechanisms of mucosal immunologic tolerance against innocuous antigens, such as 

food proteins (51-53). Several epidemiological observations yielded support for this 

hypothesis by the association of increased antibiotic-exposure (54-56), C-section 

delivery (57, 58), decreased breastfeeding-duration (59-61) and absence of exposure 

to pets (62) and farm-environment due to urbanization (63, 64) with an increased risk 

of developing allergic diseases, such as food allergy. Moreover, the loss of ancient 

members of the gut microbiota, due to compromised transmission from one 

generation to the next, may have compromised the context of establishing a healthy 

symbiosis in early life (52, 65, 66). Another important risk factor that more recently has 

been identified is reduced food diversity in the infants’ diets and the delayed 

introduction of allergenic foods (67), the latter of which has led to changing the 

guidelines for complementary feeding to not unnecessarily avoid the introduction of 

allergenic foods after 4 months of age once weaning has started, irrespective of atopic 

heredity (68, 69). 
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Dietary approaches in the primary prevention and management of cow’s milk 

allergy 

Protein hydrolysates and amino acid-based formulas 

If breastfeeding is insufficient or not possible, international guidelines 

recommend partially hydrolysed cow’s milk protein formulas (pHF) for infants with a 

family history of allergic disease (and therefore deemed ‘high-risk for allergy’) (68, 70). 

Clinical trials have shown the potential of reduced allergen exposure by specific pHF 

to reduce the risk of developing eczema in high-risk infants (71). This is, however, 

challenged by a 2016 meta-analysis that evaluated several different hydrolysed 

formulas and concluded there was no consistent evidence for prevention of allergy 

(72). The mixed outcomes may be explained by the combined evaluation of various 

types of hydrolysed formulas (71) and the differences in tolerogenic potential of the 

peptides present in formulas from different manufacturers (73).  

For the dietary management of infants with cow’s milk allergy (CMA) and when 

breastfeeding is not possible, expert opinion recommends the use of hypoallergenic 

formula, such as extensively hydrolysed cow’s milk protein-based formula (eHF) and 

amino acid-based formula (AAF) to quickly resolve symptoms through allergen 

avoidance (74, 75). Although an eHF is suitable for most CMA infants and children, 

between 10–40% of patients require an AAF when allergic symptoms do not resolve 

with an eHF (76). 

Prebiotics, probiotics and synbiotics 

There is growing research into the potential role of the microbiome in patients 

with asthma, atopic dermatitis, and food allergy. This is complemented by an 

increasing number of trials that investigate prebiotics, probiotics or a combination of 

both (synbiotics) (77) to manipulate the microbiome to influence the development of 

sensitisation and allergy (51, 78), which generally reflects the move from allergen 

avoidance towards more active management of allergy (79). Probiotics are ‘live 

microorganisms that, when administered in adequate amounts, confer a health benefit 

on the host’, as defined by the Food and Agriculture Organization/World Health 

Organization in 2001 (80) and updated in 2014 by the International Scientific 
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Association of Probiotics and Prebiotics (ISAPP) (81). The core-group of well-studied 

and widely applied bacterial species are strains of Bifidobacterium (adolescentis, 

animalis, bifidum, breve and longum) and Lactobacillus (acidophilus, casei, 

fermentum, gasseri, johnsonii, paracasei, plantarum, rhamnosus and salivarius), 

respectively (82). The next-generation probiotics may also include more recently 

identified key members of the human gut microbiota, which have been associated 

with healthy states in metagenomic studies (81). These include Akkermansia 

muciniphila (83) and butyrate-producing bacteria, such as Faecalibacterium 

prausnitzii, Roseburia spp., Anaerostipes spp. and Eubacterium hallii (84). 

In 2017, the ISAPP reviewed the definition and scope of prebiotics as originally 

coined by Gibson and Roberfroid in 1995 (85) and updated the definition to 

‘substrates that are selectively utilized by host microorganisms conferring a health 

benefit’ (86). This definition broadened the initial location of action beyond the 

gastro-intestinal tract and added the possibility of including non-carbohydrate 

substances. Currently established prebiotics are mostly carbohydrate-based 

fructo-oligosaccharides (FOS and inulin) and galactans (galacto-oligosaccharides or 

GOS) that have been shown to selectively stimulate Bifidobacterium spp. and/or 

Lactobacillus spp. in the GI-tract (82). The mimicry of these compounds with HMOs, 

both in effects, building blocks and size, led at the beginning of this century to the 

development of the first infant formula that were enriched with specific short-chain 

galacto-oligosaccharides (scGOS) and long-chain fructo-oligosaccharides (lcFOS), 

which were added in a 9:1 ratio and at a total dosage of 0.8 g/100ml to mimic the 

molecular weight profile and concentrations of HMOs in breast milk (87). This specific 

prebiotic mixture has since its introduction been investigated in several clinical 

investigations, which confirmed its safety and its efficacy in shifting microbiota 

composition, metabolic signatures, stool frequency and stool softness closer to that of 

breastfed infants. Moreover, these studies provided evidence towards the prevention 

of allergies and infections as has been summarized recently (87). 
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Evidence for prebiotics, probiotics and synbiotics in the prevention and 

treatment of allergy 

The most recent evaluation on the preventive effect of probiotics and prebiotics 

was performed in a joint effort of the World Allergy Organization (WAO) and the 

Department of Clinical Epidemiology & Biostatistics at McMaster University using the 

Grading of Recommendations Assessment, Development and Evaluation (GRADE) 

approach, which resulted in the Guidelines for Atopic Disease Prevention (GLAD-P) 

(88, 89).  

In relation to probiotics, the panel concluded that based on the available 

evidence (up to November 2014) probiotic supplementation did not reduce the risk 

that children will develop allergy (89). However, when considering all critical outcomes 

(costs, risk of adverse events), the panel determined that ‘there is a likely net benefit 

from using probiotics resulting primarily from prevention of eczema’ and suggested to 

use probiotics a) in pregnant women at high-risk of having an allergic child; b) in 

women who breastfeed infants at high-risk of developing allergy; and c) in infants at 

high-risk of developing allergy (89). Obviously, the evaluation included various types 

of probiotic strains (and species), plus a variety of study designs; no evaluation is 

currently made among the strains of the same species for example. 

In relation to prebiotics, the panel suggested prebiotic supplementation in 

not-exclusively breastfed infants, both those at increased (based on family history of 

allergy) and normal risk for developing allergy. The majority of studies with infant 

formula (11 out of 15) included the specific scGOS:lcFOS (9:1) mixture. The effects of 

supplementing prebiotics during the first year of life was associated with reduced risk 

of developing asthma or recurrent wheezing, food allergy and probably eczema, 

however with low certainty due to risk of bias and imprecision of estimates (88). 

Currently no recommendations are available concerning the use of prebiotics 

and/or probiotics in the treatment of allergy using a GRADE-like evaluation of 

available evidence. This probably is explained by the lack of studies that could be 

evaluated. However, recently a meta-analysis was performed by Chang and 

colleagues who evaluated the use of synbiotics for the treatment and prevention of 

atopic dermatitis, which offers encouraging findings based on a decrease in the 
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severity scoring of atopic dermatitis (SCORAD) values observed when combining 6 

treatment studies (90).  

Further studies are required to confirm and determine the beneficial effects of 

specific prebiotics, probiotics and synbiotic combinations for prevention and treatment 

of allergy, which may ultimately translate to specific clinical recommendations. 

 

Aim and outline of this thesis 

Aim 

A suboptimal implementation of the gut microbiota in early life could contribute 

to the onset of allergy and/or enhancement of allergic symptoms. The main aim of this 

thesis was to investigate normal gut microbial trajectories in early life and to identify 

deviating patterns that are associated with allergic manifestations, such as atopic 

dermatitis and food allergy. 

Outline 

In Chapter 2, we give an overview of the development of the gut microbiota in 

early life, the factors impacting this development and the importance of the 

microbe-immune cross-talk to establish a healthy symbiosis. The review additionally 

includes a summary of paediatric studies on the association between gut microbiota 

composition and allergic disease.  

Bifidobacteria are the most abundant bacteria in early life, but often 

under-represented in 16S rRNA-gene sequencing surveys of gut microbiota, due to 

poor DNA extraction techniques, poor PCR primer choice or a combination of both. 

When the research described in this thesis was initiated, we modified a commonly 

used ‘universal’ primer-set to improve the recovery of this genus and tested and 

validated its performance on a set of infant stools (Chapter 3). 

In the research described in Chapter 4 we applied the ‘bifidobacteria-optimized’ 

16S rRNA-gene sequencing method to analyse the gut microbiota of infants at 

high-risk of developing allergy, who participated in a clinical trial that investigated the 

effects of a partially hydrolysed protein formula supplemented with prebiotics on the 
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prevention of eczema. We investigated the effects of the nutritional intervention on the 

assembly of intestinal microbiome compared to infants receiving standard formula 

(without prebiotics) and the breastfed reference group. Additionally, in a nested 

case-control we investigated the association of microbiota with development of atopic 

dermatitis (AD). 

When breastfeeding is not possible, infants suffering from CMA often require a 

hypoallergenic amino acid-based formula (AAF) to meet their nutritional needs and to 

quickly resolve allergic symptoms. In the clinical trial described in Chapter 5 we 

investigated the modulatory effects of an AAF supplemented with synbiotics on the gut 

microbiota in infants with suspected CMA with reference to healthy, breastfed infants. 

In Chapter 6 we screened the intestinal microbiota of CMA-infants and healthy 

controls with reference to the observations done in the clinical trial described in 

Chapter 5. Next, we selected one representative donor per condition for faecal 

transfer to a murine model of CMA to investigate whether the alterations in gut 

microbiota composition contributed to the pathology of the disease. 

Finally, the findings described in this thesis are summarized, discussed, and 

concluded in Chapter 7.  
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Abstract 

The development of the intestinal microbiota in the first years of life is a 

dynamic process significantly influenced by early life nutrition. Pioneer bacteria 

colonising the infant intestinal tract and the gradual diversification to a stable climax 

ecosystem play a crucial role in establishing host-microbe interactions essential for 

optimal symbiosis. This colonisation process and establishment of symbiosis may 

profoundly influence health throughout life. Recent developments in microbiological 

cultivation-independent methods allow a detailed view of the key players and factors 

involved in this process and may further elucidate their roles in a healthy gut and 

immune maturation. Aberrant patterns may lead to identifying key microbial signatures 

involved in developing immunological diseases into adulthood, such as asthma and 

atopic diseases. The central role of early life nutrition in the developmental human 

microbiota, immunity and metabolism offers promising strategies for prevention and 

treatment of such diseases. 

This review provides an overview of the development of the intestinal 

microbiota, its bidirectional relationship with the immune system, and its role in 

impacting health and disease, with emphasis on allergy, in early life. 
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Our microbial world 

We live in a microbial world. Micro-organisms were amongst the very first life 

forms and still today form the greatest biomass on this planet (1). They hardly exist as 

single cells in nature, but rather live in complex communities coevolved and adapted 

to the habitats they colonise. Surveys of these complex communities are taking great 

advantage from the use of high-resolution cultivation-independent methods such as 

phylogenetic microarrays or next generation sequencing (2). Especially the study of 

human intestinal microbial species of which approximately 70% have not been 

isolated, cultivated or sequenced, due to the inability to reproduce necessary growth 

conditions in the lab. Sequencing of PCR amplified 16S ribosomal RNA (16S rRNA), a 

conserved gene routinely used for phylogenetic identification of bacteria, and whole 

genome surveys (metagenomic sequencing) are now starting to reveal the true 

microbial diversity of the human intestine and their role in health and disease. The 

human intestinal tract is colonised with about ten times more microbial cells than 

human body cells and contain about 150 times more microbial genes than the human 

genome (2). The intestinal microbiota is coexisting in a homeostatic relationship with 

the host (3). This host-microbial relationship is maintained in a bidirectional manner 

with the immune system. The intestinal microbiota benefits from a stable environment 

and nutrient supply that are provided in the intestinal tract, while the host gains 

products from microbial fermentation conversion of host indigestible components 

(dietary fibres) into short-chain fatty acids (SCFA; mainly acetate, propionate and 

butyrate) contributing to an estimated 10% of our energy requirement (4), vitamin K 

and B12 production (5, 6), and protection against potential pathogens through 

competitive exclusion (7, 8). The importance of the human microbiota is particularly 

clear as alterations of the intestinal microbiota have been associated with short and 

long-term health and disease issues, such as intestinal bowel disease (IBD), allergy, 

diabetes, obesity and autism (9). 

The development of the intestinal microbiota is a dynamic process in the first 

years of life (10-12), a time frame that is also a critical period of gut and immune 

development and maturation (13). Indeed, the pioneer bacteria colonising the infant 

intestinal tract and the gradual diversification to a stable climax ecosystem play a 
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crucial role in establishing host-microbe interactions essential for optimal symbiosis; 

and this colonisation process may profoundly influence health throughout life (8). 

Future research should focus on the analyses of longitudinal data that may identify the 

patterns of early intestinal microbiota and functionality of not yet-cultivated species 

that could affect health later in life (14). 

Microbial pioneers 

Theodor Escherich (1857–1911) pioneered the study of intestinal microbiology 

in early life (15). In 1886, Escherich published his 177-page postdoctoral thesis 

entitled, “The Intestinal Bacteria of the Infant and Their Relation to the Physiology of 

Digestion” (16). Escherich demonstrated that meconium was sterile, and that bacterial 

intestinal colonisation is attributable to the infants’ environment and emphasized the 

value of breastfeeding herein. 

The rise of molecular biology in the second half of the twentieth century and the 

more recent revolution in sequencing technologies identified the key players of the 

developmental intestinal microbiota in more detail. The majority is assigned to 4 

phyla, namely the Actinobacteria (with genera like Bifidobacterium and Colinsella), the 

Bacteroidetes (with genera like Bacteroides and Prevotella), the Firmicutes (with 

genera like Lactobacillus, Clostridium, Eubacterium and Ruminococcus) and the 

Proteobacteria (e.g. Enterobacter spp.) (17). Another phylum identified throughout life 

is the Verrucomicrobia consisting of one major species, the mucin-degrading 

Akkermansia muciniphila (7). 

The composition of the microbiota changes substantially at two stages in early 

life: from birth to weaning, and from weaning to adulthood driven by further 

diversification of diet (4). The pioneer species in neonates are facultative anaerobic 

bacteria, like Staphylococcus, Streptococcus, Enterococcus and Enterobacter spp., 

these bacteria create an anaerobic environment that promote the growth of obligate 

anaerobes, such as Bifidobacterium, Bacteroides, Clostridium and Eubacterium spp., 

predominating after one or two weeks. Escherich’s observation of sterile meconium 

and thus supposed sterile intestine at birth has only recently been opposed with 

molecular surveys suggesting that microbial exposure may start before birth and that 
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infants may already receive microorganisms from the mother during gestation (18, 

19). Right after birth the early settlers are derived from the maternal microbiota 

(vaginal, faecal, human milk, mouth, skin) and the environment (20-22). Human milk 

forms an important continuous inoculum, while bacterial strains found in breast milk 

have also been detected in faecal samples from the corresponding infants (21, 23). 

These bacteria are postulated to translocate from the mothers’ intestine to the 

mammary gland via the mesenteric lymph nodes, suggesting a possible route of 

inducing immunological tolerance to these commensals (24). Another possible or 

contributing route may include the establishment of the mothers’ skin microbiota and 

infants’ oral microbiota into the mammary gland (25). Host genotype, gestational age, 

medical practices (i.e., antibiotic use), mode of delivery (caesarean section vs. vaginal 

delivery), geographical origin and linked to that, cultural traditions, especially 

regarding diet, are factors profoundly influencing the microbiota development (26, 27). 

Breastfed infants typically have a microbiota dominated by bifidobacteria, while 

formula-fed infants have a more diverse microbiota. Infants born preterm or by 

caesarean section show a reduced diversity and a delayed colonisation by 

bifidobacteria compared to infants born at term or vaginally (26, 28). Some studies 

applying PCR amplification and sequencing did not reproduce the early 

predominance of Bifidobacterium (12), however efficient DNA extraction and careful 

selection of PCR primers have proven to be critical to effectively detect this genus 

(29). 

Introduction of first solid foods around 4 to 6 months of age impacts the infant 

microbiota considerably. Although still “infant-like”, with decreased but still dominating 

levels of bifidobacteria, a gradual diversification is seen towards more adult-type 

species, mainly Bacteroides spp. and Clostridium clusters IV and XIV, the latter two 

clusters known to contain numerous butyrate producers (10, 30). Interestingly the 

factors influencing the early colonisation process strongly influence the post-weaning 

colonisation pattern. Early diversification, as observed under formula-feeding not 

containing prebiotics, promotes earlier acquisition of an adult-type microbiota (10, 30). 

Further diversification of diet gradually increases diversity and abundance of 

Bacteroidetes and Firmicutes towards adult levels and generally low abundant levels 
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of Bifidobacterium (27). Healthy adults have a stable microbiota; unique for individuals 

though sharing a core microbiome with other individuals, which may change and 

destabilise only at older age again (4, 31). Although low abundant in adults, 

Bifidobacterium species still play important metabolic roles in adults (32). On top of 

this ageing is generally associated with a significant decrease of bifidobacteria, along 

with other rearrangements and decreasing stability, all together associated with 

increased susceptibility to infections in elderly (31). The exact age at which a stable 

adult community is established is unclear but is thought to be reached around 3 years 

of age (11, 27). Changes in the genetic capacity of the microbiome with human 

development include changes in the abundance of genes involved in access to 

host-derived glycans (in human milk and intestinal mucosa) and vitamin biosynthesis, 

i.e. infants having more genes that encode enzymes involved in folate biosynthesis 

and adults more encoding for vitamin B12 (27). The influence of early colonisation 

patterns on the composition of the adult microbiome is not yet fully understood. 

However these patterns have been shown to influence gut maturation, immune 

development and host metabolism (8), and differences in composition driven by 

environmental factors in infancy may affect susceptibility to metabolic (e.g. obesity), 

immunological (e.g. IBD and allergy) and even behavioural (e.g. autism) disorders into 

adulthood (Figure 1), diseases which are increasingly prevalent in developed 

countries (9). The central role of diet in influencing the human microbiota, immunity 

and metabolism offers promising strategies for prevention and treatment of such 

diseases.  

Establishing a healthy symbiosis 

Neonates have a limited capacity to initiate immune responses and both innate 

and adaptive immune responses are not yet fully functional. In the months and years 

after birth the immune system gradually matures (8), concurrent with the infants’ 

microbiota development. The largest immune component in the body, the mucosal 

immune system, comprised of the gut-associated lymphoid tissue (GALT); the 

mucosal lamina propria; and the mucosal surface, have a central role in this 

developmental process.  
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Figure 1: Early life, gut microbiota and immune development – establishing a symbiosis. The establishment of the 

intestinal host-microbiota symbiosis is driven by both developmental and environmental signals especially in early 

life, profoundly influencing health throughout life. The prenatal intestine is thought to be sterile and development 

depends most importantly on genotype as well as on maternal factors, including nutrition and health status. The 

cryptopatches and lymphoid tissues (mesenteric lymph nodes and Peyer's patches) with dendritic, T and B cells 

develop in preparation of the exposure to the extra-uterine world. During birth infants are inoculated with maternal 

and environmental microbes, and the type and patterns strongly depend on birth mode and gestational age. The 

gut microbial development in the neonatal period is influenced by several early life factors and especially diet (type, 

composition and timing) drives the further diversification towards an adult complexity, which is reached around 3 

years of age. This postnatal colonization process provides several signals, known as microbe-associated 

molecular patterns (MAMPs), affecting the maturation of the immune system and the mucosal barrier, 

accompanied with increased mucus secretion. These signals also result in the proliferation of intestinal epithelial 

cells in crypts and the crypt-located Paneth cells, resulting in their increased depth and the production of 

antimicrobial peptides (defensins), respectively. Specialized epithelial cells (M cells), reside above Peyer's patches 

and facilitate direct interaction of the luminal content with the underlying lymphoid cells to stimulate mucosal 

immunity. SIgA is the most abundant immunoglobulin on mucosal surfaces and maternal SIgA is provided by 

human milk during the early postnatal period along with the initiation of the infants own SIgA.   
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The mucosal immune system is providing protection from the external environment 

and directly interacts with the environmental antigens and commensal bacteria (13). 

The epithelial layer in neonates shows a higher permeability in both the respiratory 

and gastrointestinal tracts and secretion of proteases and antimicrobial peptides have 

not fully developed (33). The epithelial production of mucus forms an important first 

line of defence against microbes. The thickness and continuity of the intestinal mucus 

layer increases from the small intestine towards the colon correlating with increasing 

bacterial loads (13). Mucin glycans are nutrients for some constituents of the 

microbiota, such as Bifidobacterium, Bacteroides spp. and Akkermansia muciniphila, 

giving them an ecologically advantage to reside in the outer mucous layer close to the 

intestinal epithelial cells (IECs) (34). Niche occupation by such commensals is not 

only establishing a physical barrier excluding potential pathogens, also the production 

of acetate and lactate form an effective chemical barrier toxic for potential pathogens 

(35, 36). Levels of faecal SCFA of human milk fed infants are characterized by 

relatively higher proportions of acetate and lower proportions of propionate and 

almost complete absence of butyrate, when compared to adults. Also, lactate is more 

commonly detected in the faeces of infants, while undetected in healthy adults due to 

immediate onward conversion by lactate-utilizing bacteria. These elevated levels of 

acetate and lactate in human milk fed infants are reflecting the dominance of 

bifidobacteria and lactobacilli (37). Although faecal levels of butyrate are generally low 

in human milk fed infants, acetate and lactate may in turn be used to gradually 

establish butyrate producers within the Firmicutes (4, 38), which have recently been 

shown to be less abundant in colicky infants at 2 weeks of age at the expense of 

increased levels of potential pathogenic members of the Proteobacteria (39). Many of 

the direct effects of SCFA on epithelial cells associated with maintenance of the 

epithelium relate mostly to their role as an energy source and their inhibition of histone 

deacetylases, the latter is directly impacting human gene expression and e.g. shown 

to downregulate inflammation in patients with ulcerative colitis (40). The SCFA have 

also been shown to influence immune function beyond the gut by signalling through 

G-protein-coupled receptors (GPR) on IECs. Mice deficient of GPR43 have 
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exacerbated and poorly resolving inflammation in inflammatory models of arthritis, 

allergic airway inflammation and colitis (41). 

An important extra layer of innate mucosal defence in neonates is derived from 

human milk. In addition to a unique mix of human milk oligosaccharides (HMO), and 

antimicrobial proteins that influence the ecology of the neonatal microbiota, human 

milk provides abundant secretory immunoglobulin A (sIgA), the specificities of which 

have been shaped by the maternal digestive system and microbiota (13). SIgA is the 

most abundant immunoglobulin on mucosal surfaces, where it neutralizes harmless 

food and microbial antigens and prevents them from penetrating the epithelium. 

However IgA can also function in high-affinity modes for neutralization of toxins and 

pathogenic microbes, and as a low-affinity system to contain the dense commensal 

microbiota within the intestinal lumen (42). Next to sIgA, also maternal IgG-antigen 

complexes play a major role in shaping the infants’ immune system. Antigen bound to 

IgG will be very efficiently transferred across the gut barrier using the neonatal Fc 

receptor (43). Therefore, both maternal sIgA and IgG may be important in the 

development of non-responsiveness to harmless commensals and food antigens, i.e. 

induction of oral tolerance (44). The developmental microbiota is essential for the 

initiation of an infants’ own sIgA while germ-free mice show drastically reduced 

mucosal IgA-secreting cells. Studies using prebiotics or synbiotics (combination of 

pre- and probiotics) treatment given for 6 months to infants showed increased levels 

of faecal sIgA (45, 46) and is linked to reduced risk of allergy before 2 years of age in 

one of these studies (46). 

More evidence is mounting in how commensal bacteria directly influence 

adaptive immunity and oral tolerance and is focusing on the mechanisms involved in 

the cross-talk between the intestinal microbiota and the host. This cross-talk is 

mediated through pattern-recognition receptors (PRRs), such as toll-like receptors 

(TLRs), specifically recognising conserved microbial molecular structures, called 

microbe-associated molecular patterns (MAMPs) (8). Recognition of these patterns 

may promote pro-inflammatory responses or repress them and seem to depend on by 

whom (i) and where (ii) they are triggered (13). First (i), subtle differences between 

commensal bacteria, probiotic and pathogenic microorganisms may mediate different 
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host responses (47) and second (ii), apical signalling normally promotes intestinal 

homeostasis, however basolateral signalling, implicating intestinal barrier disruption 

and infection, initiates inflammatory responses of innate and adaptive immune cells 

(13) and can lead to exacerbate intestinal inflammation (48). Pro-inflammatory 

responses are counterbalanced by specialized T cells known as regulatory T (Treg) 

cells and play a crucial role in maintaining immune homeostasis. Treg cells are 

characterized by production of IL-10, one of the main immunoregulatory cytokines 

required for immune tolerance of the intestinal microbiota (13). The role of TLR in 

sensing the microbiota in this process is evident by the absence of colonic 

inflammatory disease in germ-free IL-10-deficient mice and mice deficient for both 

IL-10 and myeloid differentiation factor 88 (MyD88). Remarkably IL-10-producing T 

cells can be induced to develop in response to specific commensals or their products. 

This was first shown for a common commensal, Bacteroides fragilis through its 

polysaccharide A (PSA) mediating through the TLR2–MyD88 pathway (49). More 

human symbionts are thought to exert comparable mechanisms to induce mucosal 

tolerance, i.e. a probiotic Bifidobacterium breve, but not a Lactobacillus casei strain, 

induced development of IL-10-producing Treg cells and were shown to prevent 

inflammation in a colitis model (50). 

In these and other studies, MyD88-dependent TLR signalling has proven to be 

a key mediator for maintenance of intestinal homeostasis, requiring active 

communication among epithelial cells, immune cells, and the intestinal microbiota 

(48). Hill et al. (51) showed that antibiotic-mediated disruption of the microbiota is 

sufficient to predispose mice to allergic disease. The authors showed that the 

commensal microbiota modulates B-cell production of IgE antibody in a 

MyD88-dependent manner and that perturbation leads to high circulating levels of 

basophils and high serum IgE concentration. Exposure of antibiotic-treated mice with 

DNA motifs specific for bacteria (unmethylated cytosine-guanosine CpG 

oligonucleotides), a known Toll-like receptor 9 (TLR9)-dependent microbial ligand, 

was sufficient to reduce serum IgE as well as the frequency and total number of 

circulating basophils. These findings identify intriguing links between the adaptive 
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immune system interacting with the intestinal microbiota and will further elucidate the 

specific microbes involved in promoting a healthy host-microbiota symbiosis. 

Early microbiota and allergy 

The prevalence of atopic manifestations (atopic dermatitis, food allergy, allergic 

rhinitis and asthma) has been increasing worldwide, predominantly in the western 

world and particularly among children (52). Expression of an allergic phenotype is 

dependent on the interaction between 2 major factors: a genetic predisposition and 

gene-environment interactions (e.g. lifestyle, diet). Infants suffering from atopic 

dermatitis and or food allergy are more susceptible to develop other allergies like 

allergic asthma later in life, a process known as the atopic march (53). There is 

mounting evidence that modifications in the pattern of microbial exposure early in life 

represents a critical factor underlying the development of an allergic phenotype 

(54-57), such as the protective effects observed for exposure to siblings or a farming 

environment (58, 59). Accumulating preclinical studies start to reveal pathways linking 

aberrant microbial patterns to atopic diseases (51, 60). The classical explanation for 

the increasing prevalence of allergies in western countries, and a possible role of 

“early” microbes, was postulated in the hygiene hypothesis in 1989 (61). This 

hypothesis focuses merely on decreased exposure to infectious agents under 

improved hygiene standards to explain the hypersensitive reaction of the immune 

system towards normally harmless substances in the environment. The supposed 

mechanism proposes a lack of shifting of allergen-specific responses from the T 

Helper 2 to the T Helper 1 phenotype, because of reduced exposure to infectious 

agents in early childhood (62). More recently the possible implication of the resident 

human intestinal microbiota in developing allergy has been suggested to play a crucial 

role in the development of mucosal immunologic tolerance. The discovery of Treg 

cells and their role in immune suppression and self-tolerance (63), lead to an 

important explanatory mechanism of reduced activity of Treg to a loss of microbial 

symbionts, which may partly explain the increasing prevalence of other western 

diseases, like IBD, obesity and diabetes (9, 62). The role of the endogenous 

microbiota in developing allergy under this extended hygiene hypothesis is supported 
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by the positive correlation of environmental factors, known to impact microbial 

colonisation, and allergic manifestations (i.e. antibiotic use and caesarean section), 

correlations with an altered microbiota composition and increasing evidence of 

successful prevention or reduction of allergy through microbiota modulating diets (52). 

Altered microbial composition and activity between healthy and atopic children have 

been shown in several cross-sectional epidemiologic studies and have been 

extensively reviewed up to January 2007 by Penders et al. (64). Table 1 gives an 

overview of observational studies summarised in a similar approach, from 2007 

onwards, considering type of atopic disease under study, the study population, design 

and methodology to examine the intestinal microbiota. Interestingly, differences in the 

intestinal microbiota composition often precede the manifestation of atopic symptoms 

and atopic sensitization (65-69), although two studies reported no meaningful 

differences between groups (70, 71), possibly explained, as the authors suggest, by 

the application of cultivation methods overlooking the unculturable bacteria. Reduced 

bacterial diversity in the early microbiome has been associated with developing atopic 

disease by several comparative studies (54, 65, 66, 72, 73). Abrahamsson et al., 

applying 16S rRNA sequencing, linked reduced bacterial diversity at 1 month to 

IgE-associated eczema in infants at 2 years of age, which was subsequently confined 

to developing asthma at 7 years of age (74), supporting the importance of pioneer 

microbes in early immune maturation. This early reduced diversity was mainly 

attributed to a decreased diversity of Bacteroides spp. within the Bacteroidetes 

phylum. At 12 months of age a decreased diversity of Proteobacteria was observed 

and a tendency of higher levels of the phylum Firmicutes in atopic infants, a phylum 

indicating development towards a more “adult-type” microbiota. Nylund et al., applying 

a phylogenetic microarray, reported increased diversity at 18 months of age, but not at 

6 months, in eczematous versus healthy infants. This increased diversity at 18 months 

of age was associated with higher abundances of Clostridium clusters IV and XIVa, 

members of the Firmicutes phylum. At this age healthy infants showed increased 

abundance of members within Bacteroidetes (56), a group of bacteria which may 

have been underestimated in early life, due to molecular bias (75). Notably species 

within the Bacteroidetes have been shown, next to Bifidobacterium spp., to be 
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efficient fermenters of human milk oligosaccharides in contrast to species within the 

Firmicutes phylum (76). Interestingly a recent study showed that colonisation of 

germ-free mice with the faecal microbiota of a healthy infant rich in Bifidobacterium 

spp. and Bacteroides spp. protected against the development of cow’s milk allergy 

following sensitization to β-lactoglobulin (77). The genera within the phyla 

Bacteroidetes and Firmicutes linked to allergy in both observational studies, may thus 

play important roles in the gradual succession of an infant-type microbiota, dominated 

by bifidobacteria, towards a stable adult-type microbiota.  

The observations of both decreased and increased bacterial diversity linked to 

allergic manifestations may seem contradictory but were made at different stages of 

early life and development of allergic disease. Bacterial diversity as such is difficult to 

interpret in early childhood, while the early microbiota is highly dynamic with high 

inter-individual variation. Also, bacterial diversity gradually increases towards 

adulthood reaching adult levels no earlier than around 3 years of age (11, 27). There 

is an ongoing debate whether low total diversity of the gut microbiota in early 

childhood is more important than the altered prevalence of particular bacterial species 

in allergy development (78), but more likely the combination of both may lead to 

identifying the key microbial signatures for developing allergy and response to 

nutritional strategies.  

Early microbiota and nutrition 

The initial bacterial colonisers of our gastrointestinal tract may determine the 

composition of our intestinal microbiota throughout life. Furthermore, this early 

development occurs concomitantly to the development of our metabolism, cognitive 

and immune systems, which have been described to be closely linked to the intestinal 

microbiota. Knowing that the microbiota can significantly interfere with the human 

metabolic, cognitive, and immune systems, the initiation of symbiosis seems a crucial 

step for preparing optimal health later in life. Consequently, understanding the early 

interaction between the intestinal microbiota and the human body opens new avenues 

for important nutritional innovations, particularly for infants and young children. 
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Table 1: Human observational studies on the association between the gut microbiota composition and atopic 

diseases. Studies applying next generation sequencing or microarray technologies as microbial analysis tool are 

indicated in bold. 

Allergic phenotype Study design (country) Tool Allergic vs non-allergic (ref) 

Ecz (Williams' criteria) 

and/or sIgE+ until 18m 

PC: 324 infants at risk for 

allergy (SE, UK and IT) 

Cultivation No differences observed (70) 

Allergic manifestations 

(ISAAC questionnaire) 

until 2y 

PC: 15 infants (JP) qPCR 

Increased abundance of Bacteroidaceae at 

the ages of 1 and 2m of age (67) 

Any allergic 

manifestation or SPT+ 

until 6m 

CC: 10 allergic and 16 

non-allergic infants (JP) 
PCR 

Higher prevalence of Bifidobacterium 

catenulatum group at 1m and higher 

prevalence of B. bifidum at 6m of age (79) 

Ecz (PD) until 6m 

CC: 9 allergic and 12 

non-allergic infants (USA) 
DGGE Lower diversity at 1 and 4m of age (73) 

Ecz (PD) until 6m 

CC: 37 allergic and 24 

non-allergic infants (NZ) 

TTGE,  

FISH 

Higher prevalence of Bifidobacterium 

pseudocatenulatum (80) 

API: wheezing +  Ecz 

/wheezing + allergic 

heredity until 3y 

PC: 117 infants (B) Cultivation 

Higher prevalence of Bacteroide fragilis at 3w 

of age (81) 

Ecz (Williams' criteria) 

and/or sIgE+ until 18m 

CC: 15 allergic and 20 

non-allergic infants (SE, 

UK, IT) 

T-RFLP,  

TTGE,  

qPCR 

Lower diversity at 1w of age (72), same cohort 

as (70) 

Allergic manifestations 

and at least 1 SPT+ 

until 5y 

CC: 16 allergic and 31 

non-allergic infants (SE) 
qPCR 

Lower prevalence of Lactobacilli, 

Bifidobacterium adolescentis and Clostridium 

difficile during first 2m of life (82) 

Ecz (PD) until 2y 

CC: 3 allergic and 5 

non-allergic, C-section 

(USA) 

16S rRNA 

seq 

Lower abundance of Bifidobacterium, higher 

abundance of Enterococcus, Klebsiella and 

Shigella in 1
st

 y of life (83) 

Allergic manifestations 

(PD) until 1y 

CC: 24 allergic and 72 

non-allergic, VLBW (NL) 
FISH 

Lower prevalence of Bifidobacterium at 1y of 

age (84) 

SPT+ and sIgE+ 

and/or allergic 

manifestations (PD) 

until 6y 

PC: 411 infants with 

maternal history of 

asthma (DK) 

Cultivation 

DGGE 

Low diversity at 1 and 12m with SPT+/sIgE+ 

and allergic rhinitis, but not with asthma or AD 

(65) 

Allergic manifestations 

and SPT+ and/or 

sIgE+ until 5y 

CC: 16 allergic and 19 

non-allergic infants (SE) 
qPCR 

Lower prevalence of lactobacilli (L.casei, L. 

paracasei, L. rhamnosus) in 1
st

 2m, lower 

prevalence of Bifidobacterium bifidum in 1
st

 w 

of life (55) 

Allergic manifestations 

(ISAAC questionnaire) 

until 2y 

CC: 11 allergic and 11 

non-allergic infants (JP) 

16S rRNA 

seq. 

Higher abundance of Bacteroides, lower 

abundance of Clostridium and Proteobacteria 

(other than Klebsiella) at 1m and higher 

abundance of Klebsiella at 1 and 2m (85). 

Same cohort as (67) 
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Table 1 (continued) 

Allergic phenotype Study design (country) Tool Allergic vs non-allergic (ref) 

CMPA with SPT+, 

sIgE+ and DBPCFC+ 

for cow's milk, age 2 

to 12m 

CC: 46 allergic and 46 

non-allergic (SP) 

FISH 

Increased abundance of Clostridium 

coccoides group and Atopobium cluster, 

increased concentrations of butyric acid and 

branched-chain SCFA (86) 

API: wheezing + Ecz 

/wheezing and allergic 

heredity until 3y 

PC: 110 infants (B) DGGE 

Association of Clostridum coccoides XIVa 

species and Bacteroides fragilis species at 3w 

(68). Same cohort as (81) 

SPT+ and/or positive 

atopic patch test 

and/or 

radioallergosorbent 

test, age from 6-24m 

CC: 10 allergic and 20 

non-allergic infants (FR) 

Cultivation 

TTGE 

BOX-PCR 

No differences observed in bacterial groups 

cultivated nor in the bifidobacterial-specific 

fingerprinting (71) 

Ecz with SPT+ and/or 

sIgE+ until 2y 

CC: 20 allergic and 20 

non-allergic infants (SE) 

16S rRNA 

seq. 

Lower microbial diversity at 1m of age, linked 

to reduced Bacteroides spp. diversity (54) 

Allergic manifestations 

(PD) and/or sIgE+, 

age from 4-14y 

CC: 19 allergic children 

and 12 non-allergic (IT) 

16S rRNA 

µarray, 

qPCR 

Decreased abundancies of Clostridium cluster 

IV with Faecalibacterium prausnitzii, 

Akkermansia muciniphila and increased 

abundance of Enterobacteriaceae (87) 

Ecz (PD) with or 

without SPT+ until 

12m 

PC: 98 high risk infants 

(AUS) 

T-RFLP 

Low microbial diversity at 1w of age with Ecz 

development but not with SPT+ or parental 

allergic status (both/single) (66) 

Allergic manifestations 

and SPT+ until 7y 
CC: 47 infants (SE) 

16S rRNA 

seq. 

Low microbial diversity at 1w and 1m in infants 

having SPT+ associated Ecz in first 2y of life, 

subsequently developing asthma at 7y of age 

(74), same cohort as (54) 

Ecz (PD) with or 

without SPT+ until 2y 

CC: 15 allergic and 19 

non-allergic high risk 

infants (FI) 

16S rRNA 

µarray, 

qPCR 

Higher diversity at 18m, increase of 

Clostridium clusters IV and XIVa and lower 

abundance of Bacteroidetes members (56) 

Ecz (PD) and/or sIgE+ 

until 3y 

PC: 606 high risk infants 

(DE) 
qPCR 

Increased prevalence of Clostridium cluster I 

at ages 5 and 13w associated with Ecz, but 

not sIgE+ (69) 

FA and SPT+, food 

challenge and/or 

sIgE+, age from 

2-11m 

CC: 34 allergic and 45 

non-allergic infants (CN) 

16S rRNA 

seq. 

Lower abundance of phyla Bacteroidetes, 

Proteobacteria, and Actinobacteria and 

increase of Firmicutes (88) 

CMPA: Cow's Milk Protein Allergy; CC/CS/PC: Case-controlled study/Cross-sectional study/Prospective cohort; 

DBPCFC+: positive for double-blind placebo control food challenge; DGGE/TTGE: denaturing gradient gel 

electrophoresis/ temporal temperature gel electrophoresis, Ecz: Eczema; FA: Food Allergy; FISH: Fluorescent In 

Situ Hybridisation; ISAAC: International Study of Asthma and Allergies in Childhood; (q)PCR: (quantitative) 

Polymerase Chain Reaction; PD: Physician-diagnosed; sIgE+: positive serum specific IgE; SPT+: positive skin 

prick test; T-RFLP: terminal-restriction fragment length polymorphism, VLBW: very low birth weight infants.  
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Human milk is the natural source of nutrition in early life and exclusive breastfeeding 

is recommended for at least 6 months by WHO. In allergy breastfeeding is thought to 

be protective because of both the presence of numerous allergens in human milk that 

are absent from artificial milks and their tolerogenic presentation due to human milk 

feeding related factors such as antigen handling by maternal gut, allergens found in 

immune complexes in milk, the presence of tolerogenic immune mediators in milk, 

increased gut maturation and a microbiota favouring tolerance induction in breastfed 

infants (44). The latter is linked to the HMO, naturally present in human milk. 

Consequently, a significant number of studies have been performed with different 

types of prebiotic oligosaccharides, defined as non-digestible carbohydrates that 

reach the colon intact and are known for their ability to selectively stimulate the growth 

and or activity of intestinal bacteria that impact health positively as postulated by 

Gibson & Roberfroid (89). Interestingly, intervention with infant milk formulas 

containing a specific mixture of short-chain galacto-oligosaccharides and long-chain 

fructo-oligosaccharides  (scGOS/lcFOS, 9:1 ratio, 8 g/L) till 6 months of age reduced 

the risk of atopic dermatitis and some allergic manifestations in infants with a familiar 

history of atopy not only at 6 months, but also at 2 and 5 years of age (90-92) and 

reduced the number of infectious episodes in healthy term infants (93) or infants with 

a high risk of developing allergy (90), underlining the importance of early nutrition on 

infant health. Efforts to prevent or manage atopic dermatitis and food allergy may 

prevent the onset of other atopic manifestations such as allergic asthma later in life. A 

study applying synbiotics gives indications that this may actually be possible. The 

combination of scGOS/lcFOS (9:1) and Bifidobacterium breve M16-V in a 12-week 

intervention in infants around 5 months of age showed reduced severity of atopic 

dermatitis in a subgroup of infants with elevated IgE levels but not in the whole study 

group. However, at one year of age it was found that the synbiotic group showed 

attenuated use of asthma medication and lower prevalence of asthma-like symptoms 

in the whole study group suggesting long-term effects of the intervention early in life 

(94). Microbial analysis of the dominant bacterial groups affected in this 12-week 

intervention showed an increase of bifidobacteria at the expense of mainly adult-type 

clostridial clusters XIV and clostridial clusters containing potential pathogens C. 
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difficile and C. perfringens (95). Establishing such infant-type microbiota and reducing 

the adult-type clusters may lead to a more gradual diversification, while e.g. clostridial 

cluster XIV has been associated with atopic manifestations later in life (56). The exact 

mechanism of this synbiotic concept remains to be elucidated. Recently induction of 

galectin-9 (a soluble-type lectin expressed by IEC exhibiting binding specificity for 

β-galactosides) by this synbiotic concept has been suggested to be involved in 

suppression of IgE-mediated allergy (96). Galectin-9 was shown to neutralize IgE and 

to induce Th1 and Treg type immune responses and was indeed enhanced in serum 

of the synbiotic treated infants. The exact mechanism underlying induction of 

galectin-9 expression remains to be clarified, however the synergy shown for the 

combination of scGOS/lcFOS and Bifidobacterium breve M-16V in enhancing serum 

galectin-9 levels in mice, suggest a possible interaction between microbe-induced 

TLR signalling and direct interaction of scGOS/lcFOS with IECs. Recently in-vitro 

studies confirmed that galectin-9 is secreted by IEC apically exposed to TLR9 ligand 

(either synthetic or DNA derived from B. breve M-16V) in the presence of 

scGOS/lcFOS is involved in inducing Th1 and Treg immune responses (97). These 

results give important mechanistic insights and may be a promising target to prevent 

or treat allergic disease. 

Concluding remarks 

Clearly the first 1000 days in life are very important, since this is the period 

where we encounter external stimuli for the first time and the body is trained to 

respond to these stimuli. Longitudinal studies of this critical period are limited and 

include several confounding factors that complicate the identification of specific 

microbes associated with e.g. atopic disease. In the light of the recent revolution of 

next generation sequencing technologies we can gain important new insight how 

early-life events like type of feeding, mode of delivery, genetic background or 

geographical differences, may interfere with the colonisation pattern and therefore 

determine a predisposition to disease later in life. The challenge will be to go from 

taxonomic mapping to functionality of the microbiota. Omics-technologies, like 

transcriptomics, proteomics or metabolomics, will certainly catalyse our further 
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understanding of the intestinal microbiota. Our genome is more or less fixed, but still 

the environment can have a major impact on the development. Processes like 

epigenetics are particularly interesting and we are just starting to understand how 

DNA methylation and histone modification mechanisms can regulate gene expression 

and confer phenotypical changes. And where our genome is fixed, we can still 

influence the epigenome and our microbiota. Knowing the importance of the intestinal 

microbiota for human physiology, the incredible development of infants in the first 

years of life, and the concurrent colonisation of the body with microbes makes it 

reasonable to believe that the intestinal colonisation of early life may be very 

important for health also in later life. Whether immunological, metabolic or 

neurological, all these systems are developing at this period. Therefore, it is important 

to understand the impact of factors like early life nutrition, but also the increase of 

caesarean deliveries or the increasing use of antibiotics. Disturbances in early life 

may lead to altered growth, immune diseases like allergy, metabolic diseases like 

obesity or cardiovascular diseases and maybe even brain and behavioural problems. 

Nutrition in early life and acquiring the essential microbes is probably a critical factor in 

this process. 
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Abstract 

The 16S rRNA gene is conserved across all bacteria and as such is routinely 

targeted in PCR surveys of bacterial diversity.  PCR primer design aims to amplify as 

many different 16S rRNA gene sequences from as wide a range of organisms as 

possible, though there are no suitable 100% conserved regions of the gene, leading to 

bias.  In the gastrointestinal tract, bifidobacteria are a key genus, but are often 

under-represented in 16S rRNA surveys of diversity.  We have designed modified, 

‘bifidobacteria-optimised’ universal primers, which we have demonstrated allow 

detection of bifidobacterial sequence present in DNA mixtures at 2% abundance, the 

lowest proportion tested. Optimisation did not compromise the detection of other 

organisms in infant faecal samples. Separate validation using fluorescence in situ 

hybridisation (FISH) shows that the proportions of bifidobacteria detected in faecal 

samples were in agreement with those obtained using 16S rRNA based 

pyrosequencing. For future studies looking at faecal microbiota, careful selection of 

primers will be key in order to ensure effective detection of bifidobacteria. 
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Introduction 

With the advent of next-generation sequencing, semi quantitative, in-depth 

characterisation of microbial communities that has never been practically possible is 

now becoming increasingly accessible to researchers. In samples from the 

gastrointestinal (GI) tract, use of universal primers for amplification of the bacterial 

16S rRNA gene followed by pyrosequencing is beginning to reveal the role of the GI 

microbiome in diverse diseases such as obesity (1), atopic disease (2, 3), colonic 

cancer (4) and necrotizing enterocolitis (5). Two of the key questions surrounding the 

role of the GI microbiota in health are how the microbiota is involved in 

immunomodulation (6, 7), and how imbalance may lead to disease states. Organisms 

such as the bifidobacteria, which rapidly colonise the gastrointestinal microbiota in the 

first year of life are thought to be central in the establishment and maintenance of a 

‘healthy microbiota’.  

Universal PCR primers allow amplification, and therefore detection of all the 

bacteria in a mixed population. A number of primer sets amplifying different regions of 

the 16S rRNA gene exist and are in common use (8, 9). A truly universal primer pair 

that binds to the 16S rRNA of all eubacteria is impossible to design since the longest 

number of consecutive nucleotides in the gene that are 100% conserved is 11 

(Escherichia coli 16S rDNA positions 788 to 798), and in general, the number of 

sequential absolutely conserved nucleotides in other regions of the gene is four (10). 

The decreased amplification efficiency due to differential annealing of universal 

primers when a heterogeneous template is used leads to bias against the detection of 

certain taxa (11). For example, even well designed primers matching over 95% of 

sequences in the Ribosomal Database Project (RDP) (12) from the dominant bacterial 

phyla present in the gut, may miss specific taxa; primer 967F (13) will detect less than 

five percent of Bacteroidetes whilst primer 1492R (14) detects only 61% of 

Actinobacteria and 54% of Proteobacteria (15). Mismatches towards the 3’ end are 

likely to lead to greater amplification inefficiency than that at the 5’ end (16). 

Pragmatic approaches to primer use are often taken, accepting that not all bacteria 

will be fully represented, but that between sample comparisons making use of the 
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same primer pair are valid and that particular organisms of interest are successfully 

amplified. 

In order to address this issue, different approaches may be adopted to ensure 

that detection of the specific taxa of interest to the study are maximised. The universal 

primer set used can be optimised by either introducing a degenerate base pair at the 

positions of mismatch.  Alternatively, taxa-specific primers can be added to the 

primer pool. Frank et al. (16) used a primer pool consisting of seven different primer 

sequences (fourfold-degenerate primers and three primers specific for amplifying 

Bifidobacteriaceae, Borrelia and Chlamydiales) and were able to dramatically 

increase the detection of genera which were previously missed from clinical samples. 

Increasing the number of degenerate bases in the primer set may however introduce 

a bias in the template to product ratios when a heterogenous template is used since 

templates with a greater GC content at the primer site will be preferentially amplified 

(17). Furthermore, inclusion of a large number of degenerate bases equates to 

dilution of the primer pool, and the number of templates which exactly match each 

primer sequence is reduced, resulting in a potential decrease in the overall annealing 

efficiency (16). Using an inosine residue at the mismatched positions is an alternative 

approach (10), but as it forms a stable bond with all four nucleotides, this may lead to 

erroneous PCR products (16).  

Bifidobacteria 

Bifidobacteria are considered to be a major component of the GI microbiota in 

healthy breast-fed infants (18, 19). This is mainly driven by a high level of complex 

oligosaccharides (10-12 g/L) available as a natural prebiotic in breast-milk (20).  

Their use as a probiotic, or their stimulation by adding prebiotics (synbiotics) has 

become increasingly widespread. Specific prebiotics or synbiotics added to infant milk 

formula have been shown to induce a more ‘breastfed-like’ microbiota with associated 

physiological changes (metabolic end products and pH) compared to standard 

formula (21, 22). These changes are considered as an important mechanism for the 

inhibition of pathogens in the gut (23). Used as a prophylactic infant feed supplement 

bifidobacteria have been found to be effective at reducing both the severity as well as 

the risk of developing rotavirus diarrhoea. Their use also appears to reduce the risk of 
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antibiotic-associated diarrhoea (24). Moreover, bifidobacteria may be beneficial in the 

treatment of atopic disease (25) and a synbiotic infant formula has been found to 

prevent asthma-like symptoms in infants with atopic dermatitis (26). 

Bifidobacteria were found to constitute only a minor component of the faecal 

microbiota in healthy, full term infants (27). The authors acknowledge that this was 

surprising and speculated that this result might arise through the 8F universal primer 

having a three base pair mismatch against Bifidobacterium longum, and that the 

genus in general does not have 100% sequence identity to the 8F primer sequence. 

In our study, we have therefore sought to assess the impact of using a standard 

‘universal’ primer set with one exactly matched to the target region of bifidobacteria, in 

detecting this genus. 

We designed a ‘bifidobacteria-optimised’ universal primer set by modification of 

a well-established primer set 357F/926R, originally designed by the Muyzer group 

(28, 29) for denaturing gradient gel electrophoresis. Primer set 357F/926R is one of 

two primer pairs recommended by the NIH Human Microbiome Project protocols (30, 

31) for 16S rRNA amplicon pyrosequencing. We demonstrate that our 

‘bifidobacteria-optimised’ primer set increased the bifidobacteria detection rate in both 

pure DNA mixtures as well as faecal samples, without compromising the detection of 

other genera.  In addition, we have independently confirmed the relative abundance 

of bifidobacteria detected using fluorescence in situ hybridisation (FISH).   

 

Results 

Pyrosequencing 

Pyrosequencing of the standard mixes and the faecal samples was carried out 

in a single multiplexed run on the GS Junior platform and resulted in 85 126 reads.  

After denoising and chimera-removal 60 794 high quality reads remained and these 

were assigned to samples using the barcode sequences, 37 977 reads for faecal 

samples, 22 817 for the standard DNA mixtures. 
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DNA mixtures 

Standard universal primers detected Streptococcus pneumoniae and 

Moraxella catarrhalis sequences in correct relative proportions in the DNA mixtures.  

The primers however, consistently failed to correctly quantify the bifidobacterial 

sequences present. The standard universal primers failed to amplify bifidobacterial 

DNA to a level above 1% in four out of the five mixtures, and the maximum proportion 

of bifidobacteria that was detected was 1.6%, even when the bifidobacterial DNA 

constituted 90% of the mixture. 

This was in contrast to the relative proportions of species-specific reads 

obtained with ‘bifidobacteria-optimised’ universal primers, which correlated far better 

with the original proportions of the species’ DNA in the mixture (R
2

 = 0.955) (Table 1, 

Figure 1). With the ‘bifidobacteria-optimised’ primers, bifidobacterial DNA could be 

detected at the lowest concentration tested (2%). 

 

 

Figure 1: Proportions of 454 sequencing reads obtained using both primer sets. Increased 

detection rate of Bifidobacterium dentium demonstrated using the ‘bifidobacteria-optimised’ 

universal primers (b) compared to regular universal primers (u). 
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Table 1: Proportions of DNA in each mixture. 

Sample 

Bifidobacterium 

dentium 

Streptococcus 

pneumoniae 

Moraxella  

catarrhalis 

1 2% 49% 49% 

2 15% 50% 35% 

3 50% 25% 25% 

4 75% 5% 20% 

5 90% 5% 5% 

 

Faecal samples 

Operational taxonomic unit (OTU) analysis 

The most abundant taxa at phylum level were the Firmicutes and 

Actinobacteria, followed by Proteobacteria and Bacteroidetes, irrespective of which 

primer set was used. The ten samples all comprised of different numbers of OTUs and 

OTU abundances (Figure 2), but, the most striking difference was the increased 

number of bifidobacterial reads present in the sample set analysed with the 

‘bifidobacteria-optimised’ universal primers.  

Fluorescence in situ hybridisation (FISH) analysis 

Table 2 shows the proportion of faecal bifidobacteria, expressed as a 

percentage of the total number of bacteria in faeces as enumerated by FISH and the 

relative read abundances by 454-sequencing.  

Comparing data obtained with the two primer sets to the FISH using Pearson 

correlation shows significant correlation of FISH with the pyrosequencing using the 

‘bifidobacteria-optimised’ primer set (Table 3). To confirm good agreement between 

two methods Bland-Altman agreement tests were performed (32). The agreement 

between two methods is tested by comparing the differences between two methods 

against the average of the methods.  The results from bifidobacteria-optimised 

pyrosequencing against the FISH method shows agreement in determining the level 

of bifidobacteria in the faecal samples tested (Table 4).  
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Figure 2: Heatmap displaying the relative abundance of OTUs per sample. Samples are grouped by hierarchical 

cluster analysis on the x-axis and by neighbour-joining phylogenetic tree with nearest neighbour interchange on 

the y-axis. Samples amplified with ‘bifidobacteria-optimised’ primers are in red and with the standard primers in 

blue. Bifidobacterial OTUs are highlighted in the red box. 
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Table 2: Relative proportions of faecal bifidobacteria in ten faecal samples as determined by FISH and 

454-sequencing using ‘bifidobacteria-optimised’ universal primers (926Rb) or regular universal primers (926R). 

Sample 926Rb 926R FISH 

P1 0.2% 0.0% 0.3% 

P2 81.1% 1.0% 61.2% 

P3 69.0% 1.7% 70.9% 

P4 63.5% 0.4% 75.8% 

P5 0.2% 0.0% 0.6% 

P6 62.7% 4.4% 67.3% 

P7 74.1% 10.8% 47.5% 

P8 90.6% 5.3% 75.0% 

P9 16.9% 0.0% 10.4% 

P10 8.0% 0.1% 67.0% 

 

Table 3: Correlation matrix (Pearson) shows the Pearson correlation coefficients and p-values. Values in bold are 

different from 0 with a significance level alpha=0.05. 

Variables 926Rb 926R FISH 

926Rb n/a 0.593 (p=0.071) 0.761 (p=0.011) 

926R 0.593 (p=0.071) n/a 0.297 (p=0.404) 

FISH 0.761 (p=0.011) 0.297 (p=0.404) n/a 

 

Table 4: P-values resulting from Bland-Altman agreement tests. Values in bold are different from 0 with a 

significance level alpha=0.05. 

Variables 926Rb 926R FISH 

926Rb n/a 0.0026 0.8974 

926R 0.0026 n/a 0.0011 

FISH 0.8974 0.0011 n/a 

 

Principal Coordinate Analysis and statistics 

In order to ensure that detection of other organisms was not compromised or 

that abundance levels were not altered by using ‘bifidobacteria-optimised’ primers, 

principal coordinate analysis (PCoA) was performed. PCoA using the weighted 

UniFrac metric (33) (Figure 3a) (which takes into consideration both the 

presence/absence as well as abundance of sequences,) demonstrates clustering of 

samples by primer set used except for pairs P1 and P5 (circled). On OTU analysis, 

(Figure 2) these are shown to have very small or only moderate numbers of 

bifidobacteria present. Removing bifidobacterial sequences from the principal 
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coordinate analysis (Figure 3b) resulted in tight clustering of all pairs of samples. This 

indicates that the main differences between the two principal coordinate analyses are 

due to the detection of bifidobacteria, and that ‘bifidobacteria-optimised’ universal 

primers do not compromise the quantitative detection of other organisms. 

Using a paired T-Test to compare OTUs and read abundance of the two 

sample sets (‘bifidobacteria-optimised’ universal primers vs. regular universal primers) 

there was a highly significant difference between the read abundance of bifidobacteria 

using ‘bifidobacteria-optimised’ primers compared to regular primers (P = 0.039, t = 

0.0026, with Bonferonni correction for multiple testing), but no significant differences 

between any of the other OTUs (P > 1.4). 

 

 

Figure 3: Principal Coordinate Analysis using the weighted UniFrac metric. (A) Sample pairs P9, P10 and in 

particular P1 and P5 cluster tightly together. These samples contain small or moderate numbers of bifidobacteria 

reads. (B) After removing bifidobacteria sequences from the analysis, all sample pairs cluster tightly showing that 

the main differences between the sets are due to the bifidobacteria sequences. U = regular universal primers 

(926R), B – ‘bifidobacteria-optimised’ universal primers (926Rb). 
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Primers 

Primer specificity of the 926Rb primer was compared in silico against that of 

926R using the Ribosomal Database Project’s (RDP) Probe Match tool.  Only 

sequences longer than 1200 bp, defined as good quality by the RDP were included 

and 92.4 % of these were hit with 0 mismatches with primer 926R compared to 94.5 % 

with 926Rb. Although this overall increase was modest, the difference on looking 

specifically at the order Bifidobacteriales was very marked and highly significant: 

926R hit just 0.2 % of sequences compared to 97.1 % with the 

‘bifidobacteria-optimised’ primer. 

 

Discussion 

Appropriate primer selection in microbiota studies using a 16S rRNA approach 

is essential to enable faithful representation of the organisms present in the samples. 

The study of Palmer et al. (27) revealed that the overall efficiency of amplification of 

DNA from bifidobacterial species was eight-fold lower than that from 

non-bifidobacterial species using the 8F/1391R primer pair. Our results show that 

even a one base pair mismatch not at the 3’ end of a primer can lead to a dramatic 

failure to amplify these organisms at all. 

It is well known that Gram-positive organisms (such as bifidobacteria) can be 

underrepresented in microbial profiling studies due to the presence of their thick cell 

wall (34). Due to concern that poor representation of bifidobacteria from faecal 

samples may be due to difficulties in cell lysis during DNA extraction, we first 

assessed target sequence recovery from pure DNA mixtures. We were able to 

demonstrate with the DNA mixtures that the bias observed against the detection of 

bifidobacteria was due to the PCR step. This was also confirmed by using FISH 

analysis which does not require cell lysis. From the FISH results, the bifidobacteria 

proportions present in the faecal samples were in agreement with those generated 

from our robust DNA extraction method combined with our ‘bifidobacteria-optimised’ 

universal primers and pyrosequencing. 
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Burgeoning interest in the development of the normal GI microbiota, and its 

impact on child and adult health, has led to increasing numbers of studies focusing on 

the bacterial colonisation of the gut (7). Metchnikoff’s (35) suggestion that it is 

“possible to adopt measures to modify the flora in our bodies and to replace the 

harmful microbes by useful microbes” over a hundred years ago has led to the 

concept of manipulating the GI microbiota to counter disease. Furthermore, the use of 

probiotics as a treatment or prophylaxis strategy not only for disease, but also for 

modulating the immune system has now become a focus of intense attention (36). 

Due to the escalating use of probiotics, the World Health Organization have published 

specific criteria that a probiotic must fulfil (37). One important quality of a probiotic is 

that it must be able to survive the GI tract, even if this is transient. This means that 

studies assessing the effectiveness of probiotics must be able to accurately detect in 

at least semi-quantitative fashion these probiotics organisms in the GI microbiota. 

We have demonstrated that erroneous conclusions as to the presence or 

absence, or relative proportions of, bifidobacteria are likely if universal primers which 

do not sufficiently complement the target sequence are used. The primers we have 

designed are able to detect bifidobacteria at low level abundance and can be used 

semi-quantitatively without distorting the proportions detected of other genera. This 

primer set can be successfully used in 16S rRNA pyrosequencing-based GI 

microbiota studies.  

 

Materials and methods 

PCR primer design 

Primers 357F/926R (357F - CCTACGGGAGGCAGCAG, 926R - 

CCGTCAATTCMTTTRAGT) were assessed for specificity using the ARB software 

package (38) and the SILVA 108 SSU Ref 16S rRNA database release (39). Almost 

all bifidobacteria (as well as some closely related Actinobacteria) were found to have 

a one base pair mismatch (C  T) to the 926R primer (CCGTCAATTCMTTTRAGT, 

mismatch in bold).  
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A new ‘bifidobacteria-optimised’ universal primer (926Rb) was therefore 

synthesised in which a T/C redundancy was incorporated at the mismatch position: 

CCGTCAATTYMTTTRAGT (where Y is T or C). 

Standard DNA Mixtures 

DNA was extracted from pure cultures of Bifidobacterium dentium, 

Streptococcus pneumoniae and Moraxella catarrhalis using the MP Bio Fast Soil DNA 

kit®. An extra bead-beating step (40 seconds, speed 6.0 m/s using the FastPrep®
 

FP120 Instrument, MP Biomedicals) was incorporated in order to ensure efficient 

lysis. 

Total genomic DNA concentration was measured using the Quant-iT, 

PicoGreen DNA assay (Invitrogen). 

Pre-defined mixtures using varying proportions of Bifidobacterium dentium, 

Streptococcus pneumoniae and Moraxella catarrhalis DNAs were prepared (Table 1). 

All three bacterial strains have 4 copies of the 16S rRNA operon. Consequently, gene 

copy number is dependent only on the number of bacteria present. 

Faecal samples 

Faecal samples were collected from five healthy term infants at two time points, 

4 weeks and 26 weeks of age. The samples were immediately frozen (-12°C to -20°C) 

prior to transfer (within one week of sampling) to -80°C prior to evaluation.  

Total DNA was extracted as described by Matsuki et al. (40) except that DNA 

was re-suspended in 0.1 ml of TE (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). 

Barcoded 16S rRNA PCR and pyrosequencing 

The V3-V5 regions of the bacterial 16S rRNA gene were amplified using 

primers 357F with adaptor B from 454 Life Sciences for pyrosequencing: 5’ 

CTATCCCCTGTGTGCCTTGGCAGTCTCAGCCTACGGGAGGCAGCAG 3’, and 

either the standard 926R or the ‘bifidobacteria-optimised’ primer 926Rb (Y in place of 

C, in bold): 5’ CCATCTCATCCCTGCGTGTCTCCGACTCAG NNNNNNNNNNNN 

CCGTCAATTCMTTTRAGT 3’. In addition the reverse primers included the 454 Life 

Sciences adaptor A and a unique 12 base-pair error-correcting Golay (41) barcode 
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(denoted by ‘Ns’, see Table S1). This allows multiplexing of samples in a single run. 

Primers were obtained from Eurofins MWG Operon (Ebersberg, Germany) and HPSF 

purified. 

PCR was carried out in quadruplicate to reduce random mispriming bias (17), 

and no-template PCR controls were included. Each 25µl reaction contained 1µL each 

of forward and reverse primers (10µM), 1µl of template DNA, 0.25µl of 5U/µl FastStart 

HiFi Polymerase (Roche, Mannheim, Germany), 1µl of 20g/mL BSA (Sigma, Dorset, 

United Kingdom), and 6.5µl of 5M Betaine (Sigma). PCR reactions were assembled 

within a PCR hood in under clean conditions. Thermal cycling consisted of initial 

denaturation at 94
o
C for 2 minutes followed by 30 cycles of denaturation at 94

o
C for 

20 seconds, annealing at 50
o
C for 30 seconds, and extension at 72

o
C for 5 minutes. 

The replicate amplicons were pooled, PEG precipitated (42)  (20%, MW 8 000 g/mol) 

and visualized by staining with ethidium bromide (10mg/mL) on a 1.0% agarose gel. 

Amplicon quantitation, pooling and pyrosequencing  

Amplicons were combined in a single tube in equimolar concentrations. The 

pooled amplicon mixture was purified twice (AMPure XP kit, Agencourt, Takeley, 

United Kingdom) and the cleaned pool requantified using the PicoGreen assay.  This 

pool was then diluted in TE such that it contained 10
5
 molecules/µl. 30µl of this pool 

was added to the emulsion PCR reaction to attain a ratio of 0.3 molecules of amplicon 

per bead. Pyrosequencing was carried out on a 454 Life Sciences GS Junior 

instrument (Roche) following the Roche Amplicon Lib-L protocol. 

Bioinformatics 

Shotgun processed data was denoised using AmpliconNoise (43) as part of the 

QIIME (44) (Quantitative Insights Into Microbial Ecology) package followed by 

chimera-removal with Perseus (43). The sequences were aligned using the 

Greengenes core alignment set as reference (DeSantis et al 2006) and clustered at 

97 % sequence identity into OTUs. Representative sequences (most abundant) for 

each OTU were selected and classified using the Ribosomal Database Project 

Classifier. Rarefaction was performed so that the number of reads per sample would 

be identical. Beta diversity assessment of the reads obtained from the faecal samples 
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using the two primer sets was carried out using the weighted UniFrac metric to 

generate principal coordinate analyses. Identification of OTUs that were significantly 

different in abundance was carried out in QIIME using a paired T-test with Bonferroni 

correction. 

Fluorescence in situ hybridisation 

To enumerate the Bifidobacterium genus by means of FISH the 16S 

rRNA-targeted oligonucleotide probe: Bif164-mod 5’- CATCCGGYATTACCACCC-3’ 

was used (45, 46). The probe was commercially synthesized and 5’-labelled with Cy3 

(Biolegio B.V., Nijmegen, the Netherlands). 

The FISH analysis was performed according to the method of Thiel (47), with 

some modifications. Briefly, portions of each faecal sample were fixed with 3% 

paraformaldehyde at 4°C for 16 hours. Following fixation, 1 ml of the cell suspension 

was centrifuged at 8 000 x g for 3 min and the cell pellet resuspended in 500 μl of PBS 

buffer, mixed with 500 μl of ethanol and then stored at -20°C until use. 3 µl of the 

fixed-cell suspension of the appropriate dilution (80, 160, 320 and 640-fold dilutions) 

was applied to chrome gelatine coated 18-well slides (Cel-Line HTC Super cured, 

Thermo Scientific Portsmouth, NH) and the cell smears were dehydrated for 3 min 

each in 60%, 80% and 96% ethanol. After hybridization of the probe at 50°C for 16 

hours, the slides were washed, dried, counterstained with 

4’,6-diamidino-2-phenylindole (DAPI) and mounted with Citifluor AF1 (Citifluor Ltd, 

London, United Kingdom). 

Image acquisition and image analysis was performed using the scan^R 

screening station (Olympus, Hamburg, Germany). The count and percentage of 

labelled bacteria per sample was determined in 25 positions divided over the well by 

counting all DAPI-stained bacteria and all doubly stained bacteria (DAPI and Cy3) in 

the same field of view using a quadruple band filter set (Set 84000, Chroma 

Technology Corp., Brattleboro, VT, USA). 
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Data Availability 

MIMARKS compliant (39) 16S rRNA amplicon data for the faecal samples has 

been deposited at MG-RAST (48) under accession numbers 4483884.3 to 4483903.3 

(static link http://metagenomics.anl.gov/linkin.cgi?project=329). 
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Supporting information 

 

Table S1: Barcoded primer sequences for 16S rRNA PCR. 

#SampleID BarcodeSequence LinkerPrimerSequence MID 

uP1 AACGCACGCTAG CCGTCAATTCMTTTRAGT MID1 

uP2 ACACTGTTCATG CCGTCAATTCMTTTRAGT MID2 

uP3 ACCAGACGATGC CCGTCAATTCMTTTRAGT MID3 

uP4 ACGCTCATGGAT CCGTCAATTCMTTTRAGT MID4 

uP5 ACTCACGGTATG CCGTCAATTCMTTTRAGT MID5 

uP6 AGACCGTCAGAC CCGTCAATTCMTTTRAGT MID6 

uP7 AGCACGAGCCTA CCGTCAATTCMTTTRAGT MID7 

uP8 ACAGACCACTCA CCGTCAATTCMTTTRAGT MID8 

uP9 ACCAGCGACTAG CCGTCAATTCMTTTRAGT MID9 

uP10 ACGGATCGTCAG CCGTCAATTCMTTTRAGT MID10 

uB1 AGCTTGACAGCT CCGTCAATTCMTTTRAGT MID11 

uB2 AACTGTGCGTAC CCGTCAATTCMTTTRAGT MID12 

uB3 ACCGCAGAGTCA CCGTCAATTCMTTTRAGT MID13 

uB4 ACGGTGAGTGTC CCGTCAATTCMTTTRAGT MID14 

uB5 ACTCGATTCGAT CCGTCAATTCMTTTRAGT MID15 

bP1 AGACTGCGTACT CCGTCAATTYMTTTRAGT MID1b 

bP2 AGCAGTCGCGAT CCGTCAATTYMTTTRAGT MID2b 

bP3 AGGACGCACTGT CCGTCAATTYMTTTRAGT MID3b 

bP4 AAGAGATGTCGA CCGTCAATTYMTTTRAGT MID4b 

bP5 ACAGCAGTGGTC CCGTCAATTYMTTTRAGT MID5b 

bP6 ACGTACTCAGTG CCGTCAATTYMTTTRAGT MID6b 

bP7 ACTCGCACAGGA CCGTCAATTYMTTTRAGT MID7b 

bP8 AGAGAGCAAGTG CCGTCAATTYMTTTRAGT MID8b 

bP9 AGCATATGAGAG CCGTCAATTYMTTTRAGT MID9b 

bP10 AGGCTACACGAC CCGTCAATTYMTTTRAGT MID10b 

bB1 AAGCTGCAGTCG CCGTCAATTYMTTTRAGT MID11b 

bB2 ACAGCTAGCTTG CCGTCAATTYMTTTRAGT MID12b 

bB3 ACCTGTCTCTCT CCGTCAATTYMTTTRAGT MID13b 

bB4 ACGTCTGTAGCA CCGTCAATTYMTTTRAGT MID14b 

bB5 AGAGCAAGAGCA CCGTCAATTYMTTTRAGT MID15b 
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Abstract 

Background: The development of gut microbiota in infancy is important in the 

maturation of the immune system. Deviations in colonization patterns have been 

associated with allergic manifestations, but exact microbiome dysfunctions underlying 

allergies remain unclear. We studied the gut microbiota of 138 infants at increased 

risk of developing allergy, participating in a clinical trial investigating the effectiveness 

of a partially hydrolyzed protein formula supplemented with non-digestible 

oligosaccharides (pHF-OS) on the prevention of eczema. 

Objective: The effects of the interventions and breastfeeding on fecal microbiota 

were investigated. Additionally, we aimed to identify microbial patterns associated 

with the onset of eczema.  

Methods: Bacterial taxonomic compositions in the first 26 weeks of life were 

analyzed using 16S rRNA-gene sequencing. Additionally, fecal pH and microbial 

metabolites were measured. 

Results: Fecal microbial composition, metabolites and pH of infants receiving 

pHF-OS was closer to breastfed infants than to infants receiving standard cow’s milk 

formula. Infants with eczema by 18 months showed discordant development of 

bacterial genera of Enterobacteriaceae and Parabacteroides spp. in the first 26 

weeks, as well as decreased acquisition of lactate-utilizing bacteria producing 

butyrate, namely Eubacterium and Anaerostipes spp., supported by increased lactate 

and decreased butyrate levels at 26 weeks.  

Conclusions: We showed that a pHF with specific prebiotics modulated the gut 

microbiota closer to that of breastfed infants. Additionally, we identified a potential link 

between the microbial activity and onset of eczema, which may reflect a suboptimal 

implementation of gut microbiota at specific developmental stages in infants at 

high-risk for allergy. 
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Graphical abstract 

 

Introduction 

Gut microbial development in the first years of life occurs concomitantly to the 

development of our cognitive, metabolic and immune systems, and form an interactive 

signaling network (1). The gradual diversification towards a relatively stable adult-like 

composition is a dynamic process influenced by several environmental factors such 

as birth mode, gestational age at birth and early life nutrition. Alterations in the early 

colonization process, e.g. through antibiotic-use or C-section delivery, have been 

associated with development of allergic manifestations later in life, but the exact 

microbiome dysfunction underlying this disease remains unclear (2).  

Eczema is typically the first allergic manifestation to appear, and its incidence 

is still increasing in many countries around the world. Considering the concurrent 

maturation of the immune system, the succession of species into a stable adult-type 

community, a process naturally guided by human milk, may be critically important. 

Breastfeeding is thought to protect against the development of allergy, via the 

presence of allergens and immune mediators in human milk that are absent from 

artificial milks (3), as well as via the presence of human milk oligosaccharides 

stimulating a gut microbiota which may favor tolerance induction (4).  

Therefore, several studies have been performed with different types of infant 

formulas (IF) enriched with non-digestible oligosaccharides, known as prebiotics. 
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Prebiotics typically reach the colon intact and selectively stimulate the growth and 

activity of specific beneficial members of the microbiota (5, 6). Interestingly, significant 

reductions in eczema risk were observed in intervention trials with IF supplemented 

with specific prebiotics (7-9).  

The present study arises from a parent registered study (PATCH trial) 

investigating the effects of a partially hydrolyzed formula containing specific 

oligosaccharides (pHF-OS) on the prevention of eczema in infants at increased risk to 

develop allergy. The pHF-OS was shown to induce hypo-antigenic and 

immune-modulatory effects including increased regulatory T cell numbers (Treg), but 

did not reduce eczema incidence by 12 or 18 months, when compared with infants 

receiving standard cow’s milk formula (10). 

In this work, 16S ribosomal RNA (rRNA)-gene sequencing was applied to 

obtain an in-depth characterization of the microbiota composition of feces collected at 

4 and 26 weeks of age in a subset of vaginally born infants, including breastfed infants 

(n=30) and infants randomized to receive pHF-OS (n=51) or standard cow’s milk 

formula (control, n=57). In addition, fecal pH, levels of lactate and short-chain fatty 

acids (SCFA) were determined in the stool specimens collected at 4, 12 and 26 weeks 

of age.  

There were two primary aims of this study: (i) to investigate whether a pHF-OS 

could modulate the developing gut microbiota closer to that of breastfed infants, and 

(ii) to identify patterns in the developing gut microbiota that may be implicated in the 

onset of eczema. The findings in this study confirm the major influence of early life 

nutrition on the assembly of the gut microbiota and provide new insights in how 

deviations in this assembly are associated with the development of eczema. 

 

Materials and methods 

Study design and fecal sample selection 

This study arises from a double-blind, randomized, controlled parallel-group 

nutritional intervention trial in infants with a parental history of allergic disease, 

conducted in 10 specialist pediatric centers in Australia, Singapore, England and 
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Ireland from April 2006 to March 2011 as described elsewhere (10). In total 1047 

infants were recruited and consisted of three groups of participants. The breastfed 

reference group consisted of exclusively breastfed infants for the first 18 weeks of life. 

Participants who chose to stop breastfeeding or to supplement with formula before 18 

weeks of age, were randomized to receive either partially hydrolyzed whey 

protein-dominant infant formula containing short-chain galacto-oligosaccharides and 

long-chain fructo-oligosaccharides (scGOS/lcFOS) (9:1) (0.68 g/100 ml) and 

pectin-derived acidic oligosaccharides (pAOS) (0.12 g/100 ml), or standard cow’s milk 

formula (control), up to 26 weeks of age. Information of trial ethics approvals, 

monitoring and regulatory compliance are summarized in the Online Repository 

(PATCH trial, study registration ISRCTN65195597 14th February 2006). 

Fecal samples for microbial analysis were selected from infants that met the 

following criteria: infants (I) were randomized to investigational formula before 4 

weeks of age, or were part of the breastfed reference group (n=942 infants), (II) 

vaginally-born (normal or instrumental delivery) (n=673 infants), (III) with stool 

specimens available at 4 and 26 weeks of age (n=324 infants). A subset of these 

infants was randomly selected to obtain 60 infants for each formula group and 30 

breastfed reference infants (n=150 infants). 

Sample collection and preparation 

The infants’ fecal samples were collected by the parents into 10 ml stool 

containers (Greiner Bio-One, Kremsmünster, Austria), immediately frozen (−12°C to 

−20°C) and transported within three months to the hospital. Upon arrival at the 

hospital and prior to evaluation at the laboratory, samples were kept and transported 

at -80°C. Frozen stool samples were defrosted on ice and stool pH was measured 

using a pH meter equipped with a glass-body pH electrode (Mettler-Toledo, 

Columbus, USA). Fecal samples were 10-fold diluted in PBS buffer (150 mM NaCl, 10 

mM Na2HPO4, 20 mM NaH2PO4, pH 7.4), and 5-10 glass beads (3 mm in diameter) 

were added to homogenize the sample by vortexing for 3 minutes, followed by 

centrifugation (300×g for 1 minute). Several 1 ml portions of supernatant were stored 

at -80°C for downstream processing. 
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16S rRNA gene sequencing and bioinformatics 

Fecal suspensions of 200 µl were mixed with 450 μl DNA extraction buffer (100 

mM Tris-HCl, 40 mM EDTA, pH 9.0) and 50 μl of 10% sodium dodecyl sulfate. 

Phenol-chloroform extractions combined with beat-beating were performed as 

described by Matsuki, et al. (11) except that extracted DNA was re-suspended in 0.1 

ml of TE (10 mM Tris-HCl, 1 mM EDTA, pH 8.0).  

The V3-V5 regions of the 16S rRNA gene were amplified using forward primer 

357F, and a ‘bifidobacteria-optimised’ reverse primer 926Rb (12). 16S rDNA PCR 

was carried out in quadruplicate and pyrosequenced in three 454 GS FLX (Roche, 

Branford, CT, USA) runs as previously described (12). Raw pyrosequencing data for 

all samples has been deposited in the Sequence Read Archive under accession 

number PRJEB19801. 

The ‘Quantitative Insights Into Microbial Ecology’ (QIIME) v1.5.0 package was 

used to analyse sequence data (13) as previously described (12), except that 

alignments were carried out using the SILVA rRNA database (SSU_REF108) (14). 

Fecal SCFA and lactic acid 

Fecal suspensions were thawed on ice and centrifuged for 10 minutes at 

14.000×g. Then, 350 μl supernatant was inactivated by heating for 10 minutes at 

100°C, followed by centrifugation. A portion of the supernatant was used to 

quantitatively determine the SCFAs: acetic, propionic, n-butyric, iso-butyric, 

iso-valeric and n-valeric acid by gas chromatography, as described previously (15). 

Another portion of the supernatant was used to enzymatically analyze levels of lactate 

using a D-/L-lactic acid assay kit (Megazyme, Wicklow, Ireland). 

Data handling and statistical analyses 

Multivariate statistical analyses of 16S rRNA-gene sequencing data (taxonomic 

dataset) and levels of SCFAs and lactate (metabolite dataset) were performed by a 

combination of constrained ordination methods using the Canoco 5 software (16), and 

differential abundance testing using the R-package MetagenomeSeq (17).  

Counts of Operational Taxonomic Units (OTUs) were aggregated at genus 

level (resulting in 142 genera), normalized by total sum scaling and log2-transformed. 
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Genera present in less than 10 samples were discarded to remove sparse taxa, 

resulting in 58 features that were used as input for statistical analyses.  

Monte Carlo Permutation tests (MCPT) were used to evaluate statistical 

significance (P≤0.05) of explanatory variables (constraints) in the ordination analyses 

performed. Benjamini–Hochberg false-discovery rate was used to account for multiple 

comparisons (18), with significance for adjusted P-values (P-adj) at 0.05, except for 

taxonomic features associated with eczema development, for which significance was 

considered at 0.1.  

Canonical correspondence analysis (CCA) was applied on the taxonomic 

dataset, as the unimodal model was found to best fit the relative abundances of the 

bacterial genera (19). Forward selection was applied to identify sample covariates that 

best explained the variation in microbial taxonomic composition (20), and these were 

subsequently used in all multivariate models and comparisons performed, either as 

explanatory variables or as covariates. Temporal changes of bacterial metabolites 

were assessed using a linear ordination method, known as principal response curves 

(PRC) (21), as the linear model was found to best fit the bacterial metabolite dataset. 

Univariate data analyses were performed using GraphPad Prism version 6.02 

for Windows (GraphPad Software, La Jolla, California, USA), applying Mann-Whitney 

test for two-group comparisons, and one-way ANOVA with Bonferroni’s multiple 

comparisons test for three-group comparisons, with significance at 0.05. 

 

Results 

Effects of pHF-OS on microbial richness and diversity. 

In total, 12 of the 150 selected infants did not have stool specimens available at 

4 and 26 weeks. The characteristics of the remaining 138 participants are 

summarized in Table 1. Pyrosequencing was performed on stool specimens collected 

at 4 and 26 weeks of age, representing the specimens taken after randomization and 

at the end of the intervention period, respectively. Most of the randomized infants 

were already receiving formula before 4 weeks of age (Table 1). A total of 8 

specimens collected at 4 weeks had insufficient amounts for preparation. The 
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remaining 268 samples were successfully sequenced with a mean sequence depth of 

6211 reads and a mean read length of 521 nucleotides (Table S1). 

Microbial richness and diversity of the different feeding groups was assessed 

at a sequence depth of 1636 reads. Richness was expressed as the number of unique 

OTUs (observed species) and diversity was assessed using the shannon index for 

diversity (22). No differences between the randomization groups were observed, but 

the breastfed reference group showed a significantly lower richness at 26 weeks 

when compared to control-fed infants (1-way ANOVA, P<0.05) (Figure 1A) and lower 

diversity at both 4 and 26 weeks (1-way ANOVA, P<0.01 and P<0.05, respectively) 

(Figure 1B). 

 

 

Figure 1: Box-whisker plots (Tukey method) summarizing microbial intestinal richness (Fig. 1A) and shannon 

diversity (Fig. 1B) at 4 and 26 weeks of age in breastfed infants (B) and infants receiving pHF-OS (A) or control 

formula (C). The centre line shows the median, the + denotes the mean, and the boxes cover the 25th and 75th 

percentiles with the whiskers extending to the data points, which are no more than 1.5 times the length away from 

the box. Points outside the whiskers represent outlier samples. Comparisons were done at a sequencing depth of 

1636 reads per sample. Statistics were performed by a one-way ANOVA with Bonferroni’s multiple comparison 

correction (* = P <0.05, ** = P<0.01). 
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Table 1: Characteristics of the study population. 

 Control  

(n=57) 

pHF-OS  

(n=51) 

Breastfed  

(n=30) 

Started formula before 4w 54 (95%) 48 (84%) N/A 

Male Sex 23 (40%) 30 (59%) 18 (60%) 

Birthweight (g) 3317 (502) 3461 (442) 3606 (393) 

Both parents allergic 11 (19%) 6 (12%) 11 (37%) 

Only mother allergic 33 (58%) 29 (57%) 11 (37%) 

Only father allergic 13 (23%) 16 (31%) 8 (27%) 

Pet at home 11 (19%) 22 (43%) 7 (23%) 

At least one sibling 28 (49%) 27 (53%) 22 (73%) 

Vaginal delivery 46 (81%) 41 (80%) 25 (83%) 

Instrumental delivery 11 (19%) 10 (20%) 5 (17%) 

Caucasian ethnicity 16 (28%) 28 (55%) 25 (83%) 

Asian ethnicity 35 (61%) 21 (41%) 2 (7%) 

Other ethnicity 6 (12%) 2 (4%) 3 (10%) 

Australia 13 (23%) 14 (27%) 13 (43%) 

Ireland 4 (7%) 10 (20%) 5 (17%) 

Singapore 35 (61%) 21 (41%) 2 (7%) 

UK 5 (9%) 6 (12%) 10 (33%) 

Eczema by 12 months 15 (26%) 17 (33%) 12 (40%) 

Eczema by 18 months 18 (32%) 20 (39%) 14 (47%) 

Antibiotics by 26 weeks 6 (11%) 12 (24%) 3 (10%) 

Continuous data are presented as mean (standard deviation). N/A: Not Applicable.  

 

pHF-OS modulates the microbial composition closer to breastfed infants. 

The majority of OTUs were assigned to 4 phyla, namely Actinobacteria 

(65.0%), Firmicutes (24.8%), Proteobacteria (8.6%) and Bacteroidetes (1.5%) (Table 

S2). The weighted UniFrac distance metric, which is based on phylogenetic distances 

and relative abundances of bacterial taxa in a pairwise comparison of samples (23), 

was used to assess the overall (dis)similarity in bacterial composition comparing 

pHF-OS with the control group and their respective distances to the breastfed 

reference group. Gut microbial compositions of infants receiving pHF-OS were found 

to be significantly more similar to those of breast-fed infants than the compositions of 

control group to breast-fed infants at 26 weeks (1-way ANOVA, P<0.0001) (Figure 

2A). 
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Figure 2: A, Line plots (mean with 95% confidence interval) summarizing weighted UniFrac distances at 4 and 26 

weeks in infants receiving pHF-OS (A) or control formula (C) relative to breastfed infants (B). Distances are 

measured on a scale from 0-1, with 0 meaning 100% identical and 1 meaning 0% identical gut microbial 

composition. Statistical comparison of weighted UniFrac was performed by a one-way ANOVA with Bonferroni’s 

multiple comparison correction (**** = P-adj<0.0001). B-D, Boxplots summarizing log2-transformed levels of 

differential abundant genera, present in >15% of the samples and a mean relative abundance >0.1%, when 

comparing pHF-OS with control formula at 26 weeks, namely: Bifidobacterium species (Fig. 2B), Clostridium 

species (Fig. 2C) and an unassigned genus of Lachnospiraceae (Fig. 2D). Differential abundances were 

computed with MetagenomeSeq with correction for effects of ethnicity and having siblings and adjustment of 

significance values for multiple comparisons using Benjamini–Hochberg false discovery rate (** = P-adj<0.01, **** 

= P-adj<0.0001). 

 

In order to identify sample covariates that best explained the taxonomic 

composition of the fecal samples, canonical correspondence analysis (CCA) was 

combined with forward selection of variables (20). This analysis identified time (age in 

weeks), ethnicity (Asian, Caucasian, other), feeding group (control, pH-OS, breastfed) 

and having siblings (yes/no) as the factors significantly explaining the taxonomic 

variation (P-adj<0.05, Table S3). MetagenomeSeq (17) was subsequently used to 
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assess which bacterial taxa accounted for the differences observed in weighted 

UniFrac at 26 weeks, while correcting for the covariates identified. Infants receiving 

pHF-OS were discriminated from control by increased levels of Bifidobacterium and 

decreased levels of Clostridium and an unassigned genus of Lachnospiraceae 

(Figure 2B-D). 

pHF-OS modulates the microbial activity closer to breastfed infants. 

Principal response curves (PRC) were used to assess temporal effects of the 

feeding groups on fecal compositions of SCFA and lactate in stool specimens 

collected at 4, 12 and 26 weeks, respectively.  

 

 

Figure 3: A, Principal Response Curves showing changes in bacterial metabolites (levels of SCFA and lactic 

acids) across time and its interaction with the different feeding groups. The horizontal axis represents time and the 

vertical axis the PRC score values. Fecal metabolite composition of infants receiving control formula (C) was used 

as reference level and has zero PRC values and so its curve lays over the horizontal axis. Changes for infants 

being breastfed (B) or receiving pHF-OS (A) are shown as response curves relative to this reference. Metabolite 

response scores are shown on the separate vertical (one-dimensional) plot. The multiple of the PRC score with the 

response score provides a quantitative interpretation as well as the direction of the change at the respective 

timepoints (4, 12 and 26 weeks). Significance of the interaction, corrected for covariates, was tested using MCPT 

(P=0.002, 499 permutations). B, Boxplots summarizing stool pH at 4, 12 and 26 weeks for the different feeding 

groups. Statistical comparison was performed by a one-way ANOVA with Bonferroni’s multiple comparison 

correction comparing pHF-OS to control formula (*= P-adj<0.05, **= P-adj<0.01, ***= P-adj<0.001). 
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The interaction of feeding group with time, corrected for ethnicity and having siblings, 

was significant on the first constrained axis (explained variation = 80.3%, MCPT: 

P=0.002 with 499 permutations). Both the metabolite composition of breastfed infants 

and infants receiving pHF-OS were characterized by increased proportions of D- and 

L-lactate at 4, 12 and 26 weeks and decreased proportions of propionate, butyrate 

and branched-chain SCFA (iso-butyrate and iso-valerate) in contrast to the control 

group (Figure 3A). Moreover, infants receiving pHF-OS were found to have 

significantly decreased stool pH at all timepoints compared to infants receiving control 

formula with ranges similar as observed for breastfed infants (Figure 3B). 

 

Aberrant temporal dynamics in infants developing eczema in the first 18 

months of life. 

In total, 52 of the 138 infants developed eczema in the first 18 months of life 

(Table 1). No differences in bacterial richness or diversity were observed at 4 or 26 

weeks comparing eczematous to non-eczematous infants (Figure S1). PRC were 

used to investigate the fecal metabolite composition over time for infants developing 

eczema as compared to infants that did not, while correcting for the covariates 

identified (ethnicity, feeding group and having siblings). Significant temporal 

differences on the first constrained axis produced (explained variation = 84.4%, 

MCPT: P=0.034 with 499 permutations) were observed for the interaction (Figure 4A). 

Differential dynamics were most pronounced from 12 to 26 weeks of age. Infants 

developing eczema were characterized by decreased levels of both isomers of lactate 

and increased levels of propionate and butyrate at 12 weeks. This pattern was 

reversed at 26 weeks of age, with infants developing eczema showing increased 

levels of lactate and decreased levels of propionate and butyrate. No significant 

differences were observed in stool pH (Figure 4B).  
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Figure 4: A, Principal Response Curves showing changes in bacterial metabolites (levels of SCFA and lactic 

acids) across time and its interaction with developing eczema. The horizontal axis represents time and the vertical 

axis the PRC score values. The fecal metabolite composition of infants not developing eczema (NOECZ) were 

used as reference level and has zero PRC values. The change for infants developing eczema in the first 18 months 

of life (ECZ) is shown as a response curve relative to this reference. Metabolite response scores are shown on the 

separate vertical (one-dimensional) plot. Significance of the interaction, corrected for the effects of feeding group, 

ethnicity and having siblings, was tested using MCPT (P=0.034, 499 permutations). B, Boxplots summarizing stool 

pH at 4, 12 and 26 weeks in infants developing eczema vs. healthy infants. Statistical comparison was performed 

by a one-way ANOVA with Bonferroni’s multiple comparison correction (not significantly different). 

 

Decreased microbial conversion of lactic acid into butyrate in infants 

developing eczema.  

MetagenomeSeq was used to assess differential abundances of bacterial taxa 

over time and which of those were discordant in infants with eczema compared to 

infants without eczema. The comparisons were corrected for the identified covariates 

(Figure 5A). Decreases of Staphylococcus and Streptococcus over time were 

observed in both healthy infants and infants developing eczema. Two genera of 

Lachnospiraceae (Blautia and an unassigned genus designated as “Other”) and 

Erysipelotrichaceae were found to increase over time in both groups. The genus 

Bifidobacterium was found to increase over time in healthy infants and to decrease in 

infants developing eczema, however this pattern was not significantly different 

comparing the two groups (P-adj=0.115). Discordant patterns over time were 
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observed for two genera of Enterobacteriaceae, namely Enterobacter (P-adj<0.001) 

and an unassigned genus of Enterobacteriaceae (P-adj<0.1).  

 

Figure 5: A, Plot with bacterial taxa that change over time (from 4 to 26 weeks of age) in healthy infants (ECZ) and 

in infants developing eczema (NOECZ), as well as taxa that are differential over time in infants developing eczema 

compared to healthy infants. Data are shown as fold changes with standard deviations of log2-transformed data. 

Taxa are detailed at phylum (B=Bacteroidetes, F=Firmicutes, P=Proteobacteria), family and genus level, 

respectively. The contrasts were computed by MetagenomeSeq and corrected for the effects of feeding group, 

ethnicity and having siblings. Adjustment of significance values for multiple comparisons was done using 

Benjamini–Hochberg false discovery rate. Differential taxa with an adjusted P-value (P-adj) <0.05 for all contrasts, 

if present in >15% of the samples and a mean abundance >0.1%, are shown. Taxa plotted in dark grey 

background showed no significant (ns) temporal differences when comparing healthy infants with eczematous 

infants. Taxa plotted in light grey and white background were different with P-adj<0.1 and P-adj<0.05, respectively. 

B, Fecal concentration of D-lactic acid (D-LA) at 26 weeks in healthy infants compared to infants developing 

eczema. C, Fecal concentration of L-lactic acid (L-LA) at 26 weeks in healthy versus eczema. D, Fecal 

concentration of butyrate (BA) at 26 weeks in healthy versus eczema. Significance was tested with a 

Mann-Whitney two-group comparison (* = P-value<0.05, ** = P-value<0.001). 
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These discordances were mostly driven by increased levels of both genera in healthy 

infants at 4 weeks of age, and a subsequent decrease over time (Figure S2A and 

S2B). This pattern was less pronounced in infants developing eczema. Discordant 

development over time was also observed for Parabacteroides (P-adj<0.0001), with 

decreasing relative abundances in healthy infants, and generally increasing relative 

abundances in infants developing eczema (Figure S2C). Furthermore, the increased 

relative abundances over time observed for Eubacterium (P-adj<0.05) and 

Anaerostipes spp. (P-adj<0.1), were more pronounced in healthy infants as compared 

to infants developing eczema (Figure S2D and S2E). Both genera are associated with 

a specialist group of microbes known to convert lactate together with acetate into 

mainly butyrate, hence referred to as lactate-utilizing and butyrate producing bacteria 

(LUB) (24, 25). Interestingly, decreased levels of both D- and L-lactate (Figure 5B and 

5C) and increased levels of butyrate (Figure 5D) were observed at 26 weeks of age in 

healthy infants compared to infants developing eczema. 

 

Discussion 

In this study, we found that a partially hydrolyzed protein formula, 

supplemented with a specific oligosaccharide mixture (pHF-OS), modulates the 

developing gut microbiota of infants towards a pattern closer to that of breastfed 

infants, both in bacterial taxonomic composition as in metabolite composition. Infants 

receiving pHF-OS from 4 to 26 weeks of age, showed increased relative abundances 

of the genus Bifidobacterium, which was contrasted by decreases of Clostridium and 

an unassigned genus of Lachnospiraceae, when compared to infants receiving 

standard cow’s milk formula. These modulations were reflected in marked differences 

in gut physiology, characterized by lower stool pH, increased proportions of lactate 

and decreased proportions of propionate, butyrate, iso-butyrate and iso-valerate.  

Furthermore, we found that infants developing eczema in the first 18 months of 

life showed aberrant gut microbiota development in the first 26 weeks of life with 

significant temporal differences of the genus Parabacteroides and two genera of 

Enterobacteriaceae. These were found to decrease over time in healthy infants, a 
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pattern which was reversed or less evident in infants with eczema. Additionally, 

infants with eczema showed a lower establishment over time of lactate-utilizing 

bacteria known to produce butyrate (LUBs), namely Eubacterium and Anaerostipes 

spp., supported by significantly increased fecal concentrations of lactate, and 

decreased concentrations of butyrate at 26 weeks of age, a pattern which was 

independent of feeding group, ethnicity or having siblings. 

To assess modulatory effects of nutrition and the role of specific microbes in 

developing eczema, it is of critical importance to consider the dynamic nature of the 

infant gut microbiota, and the environmental factors that influence its assembly (26). 

Hence, we excluded infants born by caesarean section to eliminate its confounding 

effects (27). Moreover, multivariate comparisons were controlled for sample 

covariates that best explained the fecal compositional variation, namely age, feeding 

group, ethnicity and having siblings. 

Other studies investigating the gut microbiota in relation to developing allergy, 

typically reported differences at specific points in time, especially in the first weeks of 

life, with most commonly reduced diversity and richness associated, but often no 

specific microbes being identified (2). We did not observe differences in diversity or 

richness, but rather identified differences in the colonization patterns of infants with 

eczema compared with those without eczema by 18 months of age.  

Some of these patterns were driven by early differences at 4 weeks of age, like 

the increased levels of two genera within the family of Enterobacteriaceae in 

subsequent healthy infants, which was followed by sharp decreases over time. 

Facultative anaerobic bacteria, like the Enterobacteriaceae, are typically high in the 

early colonization process before replacement with anaerobic bacteria. This pattern 

being less pronounced in infants developing eczema may indicate a reduced 

immune-stimulus from species within this family. These include several potential 

pathogens, which may be needed for adequate development of the adaptive immune 

system. A recent study by West, et al. (28) indeed associated low abundance of 

Enterobacteriaceae at 1 month, with an exaggerated immune response at 6 months. 

This deviating pattern was confirmed in infants subsequently developing allergy 

(28-30). 
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It is known, and confirmed in this study, that breastfed infants compared to 

formula fed infants have a lower stool pH, increased amounts of colonic acetate and 

lactate, and decreased amounts of propionate and butyrate. This reflects the 

dominance of Bifidobacterium species that produce acetate and L-lactate (31). This 

specific colonic environment, also observed for infants receiving pHF-OS, is known to 

form an effective chemical barrier against potential pathogens (32, 33), and is thought 

to contribute to the protective effects of breastfeeding against infections (34, 35).  

We hypothesize that this typical infant-type colonic environment may also be 

crucial for the establishment of LUB, like Eubacterium and Anaerostipes spp, which 

were found to be poorly established at 26 weeks of age in infants developing eczema. 

Indeed, these infants showed first decreased levels of lactate at 12 weeks, followed 

by increased levels of lactate and decreased levels of butyrate at 26 weeks of age. 

This may indicate the importance of LUB in guiding the transition around the 

weaning-period (between 4-6 months of age) from a lactate and acetate-rich 

environment, towards a more adult-like butyrogenic milieu (2, 36). Moreover, the 

consumption of lactate may contribute to the development of a stable and healthy 

microbial ecosystem (37). Indeed lactate, although commonly detected in infant’ 

feces, is undetectable in healthy adults (38), while accumulation of colonic lactate in 

adults has been associated with ulcerative colitis (39, 40).  

The weaning-period also exposes the infant to an increasing level of antigens 

from the diet, which requires the immune system to adequately respond to these 

harmless substances. A study investigating the correlation of specific microbial 

signatures with the severity of eczema in 6-month old infants found an inverse 

correlation with the levels of butyrate-producing bacteria and suggested a role in the 

observed alleviation of symptoms (41). The role of SCFA on the host, especially 

butyrate, has received increased interest due to accumulating evidence from murine 

studies showing their regulatory effects on host immunity, including anti-inflammatory 

and anti-allergic effects (42-45). The establishment of butyrate-producing bacteria 

around 26 weeks of age, possibly specifically those cross-feeding on lactate and 

acetate, may therefore prove important for establishing and maintaining homeostasis 

with our immune system during this critical stage of development.  
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In conclusion, this study confirms the impact of early life nutrition on the 

establishment of the infant gut microbiota. Moreover, it indicates a potential link 

between the activity of the microbiota and the expression of eczema in early life. It 

emphasizes the importance of the microbial succession of species and metabolite 

cross-feeding, to develop a gut physiology that supports gut development, and 

supports development of normal immune responses towards environmental triggers. 

These observations could aid the development of optimal nutritional strategies to 

support the timely gut colonization of keystone species in the gradually diversifying 

infant gut. 
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Supporting information 

Table S1: Sample size and sequence details for sequences passing quality filters summarized per feeding group. 

Feeding Group Age 
Count of 

subjects 
Sum of reads 

Average seq. 

depth 
SD of seq. depth 

CONTROL 

4w 55 326 169 5930 3300 

26w 57 345 935 6069 2959 

pHF-OS 

4w 49 305 530 6235 4459 

26w 51 299 308 5869 4113 

BREASTFED 

4w 26 166 838 6417 3950 

26w 30 220 892 7363 4014 

Total 
 

268 1 664 672 6211 3767 

 

Table S2: Summary of gut microbial compositions of breastfed infants (B), pHF-OS (A) and control (C) at 4 and 26 

weeks of age.  

Taxa 4 weeks 26 weeks Total 

Phylum|Family C A B C A B 
 

Total 

Actinobacteria 

55.28 

(32.66)% 

61.83 

(31.56)% 

69.66 

(35.33)% 

63.01 

(28.43)% 

73.25 

(27.08)% 

73.12 

(28.76)% 

64.92 

(31.21)% 

A|Bifidobacteriac

eae 

51.39 

(32.25)% 

60.18 

(31.18)% 

68.95 

(35.13)% 

59.99 

(27.59)% 

71.02 

(26.73)% 

72.38 

(28.52)% 

62.6 

(30.98)% 

A|Coriobacteriace

ae 

3.56 

(9.53)% 

1.19 

(3.14)% 

0.34 

(1.01)% 

2.99 

(6.92)% 

2.2 

(4.13)% 

0.65 

(1.63)% 

2.12 

(6.01)% 

A|Propionibacteri

aceae 

0.28 

(0.86)% 

0.4 

(1.24)% 

0.26 

(1.01)% 

0.01 

(0.04)% 

0.01 

(0.05)% 
0 (0)% 

0.15 

(0.74)% 

A|Other 
0.06 

(0.09)% 

0.06 

(0.27)% 

0.11 

(0.23)% 

0.02 

(0.04)% 

0.02 

(0.05)% 

0.08 

(0.21)% 

0.05 

(0.16)% 

Total 

Bacteroidetes 

1.88 

(8.01)% 

1.15 

(3.65)% 

3.06 

(5.45)% 

0.33 

(1.42)% 

1.53 

(4.49)% 

1.94 

(5.82)% 

1.49 

(5.26)% 

B|Bacteroidaceae 
1.77 

(7.9)% 

1.0 

(3.17)% 

2.45 

(5.21)% 

0.31 

(1.39)% 

1.17 

(3.48)% 

1.44 

(3.5)% 

1.25 

(4.71)% 

B|Porphyromona

daceae 

0.10 

(0.63)% 

0.14 

(0.83)% 

0.22 

(0.73)% 

0.01 

(0.04)% 

0.31 

(1.58)% 

0.48 

(2.45)% 

0.18 

(1.2)% 

B|Other 
0.01 

(0.02)% 

0.01 

(0.03)% 

0.39 

(1.9)% 

0.01 

(0.04)% 

0.05 

(0.24)% 

0.02 

(0.04)% 

0.06 

(0.63)% 

Total Firmicutes 
31.09 

(24.75)% 

23.34 

(21.26)% 

8.63 

(8.59)% 

32.04 

(24.86)% 

21.85 

(22.06)% 

21.16 

(25.58)% 

24.81 

(23.72)% 

F|Staphylococcac

eae 

0.52 

(1.44)% 

0.44 

(1.17)% 

0.72 

(1.57)% 

0.03 

(0.06)% 

0.03 

(0.14)% 

0.02 

(0.06)% 

0.27 

(1.00)% 

F|Enterococcace

ae 

8.69 

(13.3)% 

1.19 

(2.53)% 

0.6 

(2.02)% 

4.84 

(8.26)% 

4.11 

(5.92)% 

2.38 

(4.33)% 

4.18 

(8.36)% 

F|Streptococcace

ae 

12.68 

(16.91)% 

12.42 

(16.31)% 

3.05 

(4.92)% 

8.85 

(16.43)% 

5.34 

(8.99)% 

3.94 

(10.11)% 

8.44 

(14.37)% 

F|Eubacteriaceae 0.06 

(0.25)% 

0.0 

(0.01)% 

0.0 

(0.01)% 

0.34 

(1.38)% 

0.12 

(0.38)% 

0.08 

(0.28)% 

0.12 

(0.69)% 

F|Lachnospiracea

e 

2.74 

(8.59)% 

5.7 

(15.79)% 

2.59 

(5.52)% 

13.56 

(22.46)% 

7.87 

(15.07)% 

8.5 

(20.01)% 

7.17 

(16.55)% 

F|Clostridiaceae 0.29 

(1.21)% 

0.05 

(0.15)% 

0.11 

(0.51)% 

0.17 

(0.46)% 

0.04 

(0.08)% 

0.07 

(0.19)% 

0.13 

(0.64)% 

F|Peptostreptoco

ccaceae 

0.08 

(0.29)% 

0.00 

(0.01)% 

0.00 

(0.00)% 

0.14 

(0.35)% 

0.08 

(0.18)% 

0.20 

(0.66)% 

0.09 

(0.33)% 
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Table S2 (continued) 

Taxa 4 weeks 26 weeks Total 

Phylum|Family C A B C A B  

F|Ruminococcace

ae 

0.01 

(0.05)% 

0.00 

(0.00)% 

0.01 

(0.03)% 

0.15 

(0.96)% 

0.34 

(2.14)% 

0.13 

(0.56)% 

0.11 

(1.05)% 

F|Veillonellaceae 
0.87 

(2.23)% 

0.05 

(0.14)% 

0.11 

(0.29)% 

0.06 

(0.19)% 

0.18 

(0.53)% 

0.41 

(1.33)% 

0.30 

(1.2)% 

F|Erysipelotrichac

eae 

2.51 

(9.88)% 

0.63 

(1.73)% 

0.63 

(2.1)% 

1.83 

(3.63)% 

2.65 

(7.78)% 

4.08 

(10.63)% 

2.06 

(7.07)% 

F|Other 
0.07 

(0.18)% 

0.03 

(0.09)% 

0.04 

(0.05)% 

0.05 

(0.05)% 

0.03 

(0.07)% 

0.05 

(0.12)% 

0.05 

(0.11)% 

Total 

Proteobacteria 

11.72 

(19.76)% 

13.67 

(22)% 

18.64 

(30.75)% 

4.07 

(13.77)% 

3.13 

(8.88)% 

3.78 

(11.22)% 

8.61 

(19.03)% 

P|Enterobacteriac

eae 

11.54 

(19.24)% 

13.61 

(21.96)% 

18.5 

(30.7)% 

4 

(13.74)% 

3.11 

(8.86)% 

3.53 

(11.08)% 

8.5 

(18.87)% 

P|Other 
0.18 

(0.83)% 

0.06 

(0.12)% 

0.14 

(0.32)% 

0.07 

(0.33)% 

0.02 

(0.05)% 

0.25 

(0.83)% 

0.11 

(0.52)% 

V|Verrucomicrob

iaceae 

0.01 

(0.09)% 

0.01 

(0.07)% 

0.00 

(0.00)% 

0.54 

(2.74)% 

0.23 

(0.88)% 

0.00 

(0.00)% 

0.16 

(1.35)% 

Other 
0.02 

(0.06)% 

0.01 

(0.02)% 

0.01 

(0.02)% 

0.01 

(0.02)% 

0.01 

(0.02)% 

0.01 

(0.01)% 

0.01 

(0.03)% 

Relative abundances with SDs in percentages for taxa present in more than 15% of the samples and average 

relative abundances of greater than 0.1% at the bacterial family-level. Taxa of lower abundance are grouped as 

“other.” Phylum-levels are indicated as follows: A, Actinobacteria; B, Bacteroidetes; F, Firmicutes; P, 

Proteobacteria; V, Verrucomicrobia. Boldface text represents subtotals. 

 

Table S3: Results of forward selection based on canonical correspondence analysis (CCA) of fecal taxonomic 

compositions.  

Sample covariates (variables) Explains % P P-adj 

Age (4 weeks, 26 weeks) 5.2 0.002 0.01733 

Ethnicity (asian, caucasian, other) 3.7 0.002 0.0104 

Feedinggroup (control, pHF-OS, breastfed) 2.6 0.002 0.00867 

Siblings (yes, no) 1.6 0.002 0.00867 

Antibiotics before 26 weeks (yes, no) 1.2 0.022 0.08089 

Birth weight (continuous data) 0.6 0.028 0.104 

Gender (male, female) 0.8 0.206 0.44 

Weaning before 18 weeks (yes, no) 0.8 0.226 0.41947 

Parental allergic history (mother, father, both) 1 0.266 0.43225 

The sample covariates shown were included based on the percentage explained of the total taxonomic variation 

(Explains %). Inclusion of sample covariates was stopped to prevent overfitting of the ordination model leading to 

the identification of the 9 factors (and variables) listed in the table. False discovery rate (FDR) method for P-value 

correction was used to identify the major covariates with an adjusted P-value (P-adj) < 0.05 (in bold) and shown 

alongside with the uncorrected P-value (P). 
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Figure S1: Box-whisker plots (Tukey method) summarizing the microbial intestinal richness (Fig. S1A) and 

shannon diversity (Fig. S1B) at 4 and 26 weeks of age in infants developing eczema (ECZ) compared to infants 

not developing eczema (NOECZ). The centre line shows the median, the + denotes the mean, and the boxes cover 

the 25th and 75th percentiles with the whiskers extending to the data points, which are no more than 1.5 times the 

length away from the box. Points outside the whiskers represent outlier samples. Comparisons were done at a 

sequencing depth of 1636 reads per sample. Statistics were performed by a one-way ANOVA with Bonferroni’s 

multiple comparison correction (not significantly different). 
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Figure S2: Taxa identified with MetagenomeSeq that show differential relative abundances over time (P-adj<0.1) 

comparing infants not developing eczema (NO ECZ, n=82 sample-pairs) with infants developing eczema (ECZ, 

n=48 sample-pairs). Before-after plots of relative abundances (%) are shown from 4 to 26 weeks for Enterobacter 

spp. (Fig. S2A), an unknown genus of Enterobacteriaceae (Fig. S2B), Parabacteroides spp. (Fig. S2C), 

Eubacterium spp. (Fig. S2D), and Anaerostipes spp. (Fig. S2E), respectively.  
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Abstract 

Background: Altered gut microbiota is implicated in cow’s milk allergy (CMA) and 

differs markedly from healthy, breastfed infants. Infants who suffer from severe CMA 

often rely on cow's milk protein avoidance and, when breastfeeding is not possible, on 

specialised infant formulas such as amino-acid based formulas (AAF). Herein, we 

report the effects of an AAF including specific synbiotics on oral and gastrointestinal 

microbiota of infants with non-IgE mediated CMA with reference to healthy, breastfed 

infants. 

Methods: In this prospective, randomized, double-blind controlled study, infants 

with suspected non-IgE mediated CMA received test or control formula. Test formula 

was AAF with synbiotics (prebiotic fructo-oligosaccharides and probiotic 

Bifidobacterium breve M-16V). Control formula was AAF without synbiotics. Healthy, 

breastfed infants were used as a separate reference group (HBR). Bacterial 

compositions of faecal and salivary samples were analysed by 16S rRNA-gene 

sequencing. Faecal analysis was complemented with the analysis of pH, short-chain 

fatty acids (SCFAs) and lactic acids. 

Results: The trial included 35 test subjects, 36 controls, and 51 HBR. The 16S 

rRNA-gene sequencing revealed moderate effects of test formula on oral microbiota. 

In contrast, the gut microbiota was substantially affected across time comparing test 

with control. In both groups bacterial diversity increased over time but was 

characterised by a more gradual increment in test compared to control. 

Compositionally this reflected an enhancement of Bifidobacterium spp. and Veillonella 

sp. in the test group. In contrast, the control-fed infants showed increased abundance 

of adult-like species, mainly within the Lachnospiraceae family, as well as within the 

Ruminococcus and Alistipes genus. The effects on Bifidobacterium spp. and 

Lachnospiraceae spp. were previously confirmed through enumeration by fluorescent 

in situ hybridization and were shown for test to approximate the proportions observed 

in the HBR. Additionally, microbial activity was affected as evidenced by an increase 

of L-lactate, a decrease of valerate, and reduced concentrations of branched-chain 

SCFAs in test vs control. 
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Conclusions: The AAF including specific synbiotics effectively modulates the gut 

microbiota and its metabolic activity in non-IgE mediated CMA infants bringing it close 

to a healthy breastfed profile. 

 

Introduction 

The prevalence of food allergy in infancy and childhood is increasing in many 

countries worldwide. Cow’s milk allergy (CMA) is among the most common food 

allergies in early life and is associated with growth retardation throughout childhood, 

particularly in children suffering from persistent milk allergy (1). Comorbidity is 

common, and many children develop other allergic conditions over time, also referred 

to as the allergic march (2). The microbes that colonize the mucosal tissues after birth 

have a pivotal role in both innate and adaptive immune development (3) and may 

have long-term effects both on the susceptibility and the persistence of allergic 

disease (4, 5).  

Breastfeeding provides the infant gastrointestinal (GI) tract with a plethora of 

bioactive factors and has profound effects on gut microbiota composition and 

functions (6-8) and, as more recently reported, on oral microbiota development (9, 

10). Infants who suffer from severe CMA rely on cow's milk protein avoidance and, 

when breastfeeding is not possible, require specialised infant formulas such as 

extensively hydrolysed formula (eHF) or amino acid-based formula (AAF)(11). 

Incorporation of prebiotics, probiotics, or their combination (synbiotics) in these 

formulas offers a safe, suitable and effective strategy for both the dietary 

management and for potentially optimizing microbiota development in both IgE- and 

non-IgE-mediated CMA infants (12, 13).  

In a randomized controlled trial with non-IgE-mediated CMA infants (ASSIGN 

study), an improvement of gut microbiota was observed in infants receiving an AAF 

with specific synbiotics (test) compared to infants receiving the same AAF without 

synbiotics (control). This improvement was based on an enhancement of 

bifidobacteria and a decrease of the Eubacterium rectale/Clostridium coccoides 

(ER/CC) group; in both test levels were close to the levels observed for a separate 
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healthy, breastfed reference (HBR) group (14). The fluorescence in situ hybridization 

(FISH) method used is an effective approach to quantify specific bacterial groups, but 

it does not provide information on the full bacterial composition and diversity of the 

community. For this, application of next-generation sequencing technologies is 

typically needed (15, 16). We hypothesized that synbiotics would have a more 

comprehensive effect on the microbiota composition and activity. Therefore, we 

performed an in-depth characterisation of the microbial compositions of both faecal 

and saliva specimens collected in the ASSIGN study through 16S ribosomal 

RNA-gene sequencing, and in addition investigated the effects on gut physiology and 

bacterial metabolic activity by analysis of faecal pH, short-chain fatty acids (SCFA) 

and lactate. 

 

Materials and methods 

Study design 

ASSIGN was a prospective, randomized, double-blind controlled study 

(Netherlands Trial Register NTR3979) including infants with suspected non-IgE 

mediated CMA and a separate non-randomized healthy, breastfed reference group 

(HBR). Detailed methods on how the trial was conducted, and the primary and 

secondary outcome measures, have been published previously (14). 

In brief, subjects <13 months of age with non-IgE mediated CMA were stratified 

based on predominant, investigator-assessed symptoms (skin or gastrointestinal) and 

randomly allocated to receive test (n=35) or control formula (n=36). Study duration 

was 26 weeks with allocation to study product for at least 8 weeks. After 8 weeks, 

randomized subjects continued to use the allocated study product or switched to 

commercially available eHF, or other milk substitute as per clinical practice guidelines 

of each medical centre. Subjects in the HBR group were age-matched to week 8 of 

the randomized groups (n=51). Infants in the test group received an AAF (Neocate 

LCP; Nutricia Advanced Medical Nutrition, Liverpool, UK) including a prebiotic blend 

of chicory-derived neutral oligofructose and long-chain inulin (BENEO-Orafti SA, 

Oreye, Belgium) (9:1 ratio at a total concentration of 0.63g/100ml) and a probiotic 



Synbiotics in CMA 

103 

strain Bifidobacterium breve M-16V (Morinaga Milk, Tokyo, Japan) at a concentration 

of 1.47 x 10
9
 colony-forming units (CFU)/100 mL formula. The control formula was a 

commercially available AAF (Neocate LCP; Nutricia Advanced Medical Nutrition, 

Liverpool, UK).  

Collection of saliva and stool samples 

Saliva samples were collected from randomized infants at baseline and 8 weeks 

by a healthcare professional using the SalivaBio Children’s Swab method 

(Salimetrics, Carlsbad, USA) at least 1 hour after feeding. Stool samples from 

randomized infants were collected, as reported previously (14), by parents/guardians 

at baseline, 8, 12 and 26 weeks. Parents/guardians of the age-matched 

non-randomized infants in the HBR group were asked to collect stool samples only. 

Saliva and stool specimens collected in the clinic were immediately frozen at −80°C. 

Stool specimens collected at home were immediately frozen in home-freezers and 

transported with ice-packs to the clinic by parents/guardians or by courier for storage 

at −80°C. Thereafter, both saliva and stools were transported on dry-ice (solid CO2) 

to Nutricia Research and stored at −80°C until analysis. 

DNA extraction 

DNA extraction from saliva samples was performed with DNeasy Blood & Tissue 

Kits (Qiagen, Venlo, the Netherlands) according to the manufacturer’s protocol, 

except for an adaptation in the enzymatic lysis step and the addition of a mechanical 

lysis step as pre-treatment before the DNA isolation procedure. In brief, 150 µl of 

saliva sample was diluted up to 350 µl in PBS buffer (150 mM NaCl, 10 mM 

Na2HPO4, 20 mM NaH2PO4, pH 7.4) to which 50 µl of lytic enzymatic cocktail was 

added (50 mg/mL lysozyme, Sigma-Aldrich, St. Louis, Missouri, United States, USA 

and 20 µl proteinase K from Qiagen kit) and 300 mg of 0.1 mm glass beads (Biospec, 

Bartlesville, Oklahoma, USA). This suspension was incubated at 37ºC for 30 minutes, 

followed by one round of bead-beating for 10 minutes at 25 Hz (Tissuelyser I, Qiagen, 

Venlo, the Netherlands) and followed by the QIAcube isolation procedure (Qiagen). 

DNA extraction from stools samples was performed with QIAmp DNA Stool Mini 

Kit (Qiagen, Venlo, the Netherlands) according to the manufacturer’s protocol except 
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for the addition of two bead-beating steps as described before (17). Extracted DNA 

from stools were purified from extraction impurities using spin columns (DCC
TM
, Zymo 

research, Irvine, California, USA). 

Microbiota profiling 

Faecal and salivary microbiota compositions were profiled by sequencing the 

hypervariable V3-V4 regions of the 16S rRNA gene. Sequencing was performed by 

LifeSequencing S.L. (Valencia, Spain) on an Illumina MiSeq instrument (San Diego, 

California, USA). The V3-V4 region was PCR-amplified with universal primers 

S-D-Bact-0341-b-S-17 primer (forward 5’-CCTACGGGNGGCWGCAG-3’) and 

S-D-Bact-0785-a-A-21 primer (reverse 5’-GACTACHVGGGTATCTAATCC-3’)(18) 

designed for dual indexing following the Illumina 16S Metagenomic Sequencing 

Library Preparation protocol (Part # 15044223 Rev. B). In brief, PCR amplification was 

performed in two steps: i) In a first step, the V3-V4 region was amplified with the 

addition of universal adaptors to the amplification products. All amplicons were 

purified (AMPure XP, Beckman, Danvers, MA) to remove short amplification products 

and quantified using the Quant-iT PicoGreen dsDNA kit (Invitrogen, Carlsbad, 

California, USA). ii) In the second PCR step, the amplicons from the first step were 

amplified by targeting the universal adapters and with the addition of sample specific 

indexes and sequencing adaptors. The final amplicons were purified (AMPure XP) 

and quantified using the Quant-iT PicoGreen ds DNA kit (Invitrogen). All samples 

were pooled in equal amounts and sequenced in a 300bp paired-end mode.  

Bioinformatic analysis of sequence data 

Illumina reads were trimmed (removal of primers) and quality filtered by removing 

all reads with a mean q-score lower than 20 with 'cutadapt v1.4.1' (19). Paired-end 

reads were merged using the program 'PEAR v0.9.6' (20). Merged reads with q>15 

over a window of 5 bases, no ambiguous bases and a minimal length of 300 were 

retained and analysed with the ‘Quantitative Insights Into Microbial Ecology’ (QIIME) 

v1.9.0 package (21). Sequences were clustered into Operational Taxonomic Units 

(OTUs) based on 97% sequence identity as proxy for bacterial species using 

VSEARCH v2.03 with exclusion of chimeric sequences identified against the RDP 
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gold database (22, 23). Taxonomic assignment was performed using the RDP 

classifier (24) against the SILVA119 database (25). Singleton OTUs, and OTUs with 

eukaryotic assignments, as well as OTUs with a low relative abundance (counts of an 

OTU as proportion of total reads of a sample) up to 0.005% were excluded from 

further downstream analysis. Representative sequences of OTUs were aligned using 

PyNAST (26) and used to build a phylogenetic tree with FastTree (27). Rarefaction of 

the OTU tables was applied to account for the differences in sequencing depths 

(number of reads per sample) between the samples with default settings (10 equal 

depths from 10 sequences/sample up to the median number of sequences/sample 

with 10 iterations at each sequencing depth). The tree and rarefied OTU tables were 

used to calculate the species diversity (α-diversity) of the samples using Faith’s 

phylogenetic diversity (PD)(28) and the Shannon index for diversity (29).  

The sequences within an OTU of interest (i.e. identified as differentially abundant 

from the statistical comparisons performed) were further partitioned into homogenous 

nodes with high sequence identity using the MED v2.1 algorithm (30). Taxonomic 

assignment of the MED nodes were performed using the RDP classifier (24) against 

the SILVA119 database (25). The assignment of the node with the largest number of 

reads and highest sequence identity was subsequently used as a more accurate 

proxy to the taxonomy of that OTU. 

Additional faecal sample parameters 

To assess overall bacterial metabolic activity, the following faecal sample 

parameters were measured as described previously (31): pH, concentrations of 

short-chain fatty acids (SCFA) (i.e., acetate, propionate, butyrate, iso-butyrate, 

valerate, and iso-valerate), and D- and L-lactate.  

FISH was applied to quantify the Bifidobacterium genus and Eubacterium 

rectale/Clostridium coccoides group (ER/CC) as described previously (16) using the 

16S rRNA-targeted oligonucleotide probes S-G-Bif-0164m-a-A-18 

(5′-CATCCGGYATTACCACCC-3′) (32, 33) and S-*-Erec-0482-a-A-19 

(5'-GCTTCTTAGTCARGTACCG-3') (15), respectively. 
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Data handling and statistical analyses 

All analyses were performed on intention-to-treat data set (ITT), defined as all 

randomized subjects. Overall, the statistical analyses were performed comparing test 

with the control group per specimen analysed (saliva or faecal). The HBR group data 

was used as reference only and not as an intervention group. Statistical analyses 

were performed by using SAS® (SAS Enterprise Guide version 4.3 or higher) for 

Windows (SAS Institute Inc., Cary, NC) unless indicated otherwise. Results are 

expressed and presented as mean values and standard deviations unless stated 

otherwise. 

16S rRNA-gene sequencing data: 

The species diversity (α-diversity) indexes calculated in QIIME from the 16S 

rRNA-gene sequencing data were analysed at one single rarefied sequencing depth. 

The sequence depth which was selected for comparison was based on the maximum 

rarefaction depth where all or most of the samples were still included. Differences 

between treatment groups across time were tested using a random intercept mixed 

model including baseline in the outcome vector, adjustment for stratification factor 

(skin or gastrointestinal symptoms), treatment, time and treatment by time interaction 

as fixed factors. For assessing the treatment effect over time, significance of the 

treatment by time interaction was used. 

The non-rarefied OTU tables obtained from QIIME were trimmed, removing sparse 

OTUs with at most 10 non-zero observations. Statistical analysis of the bacterial 

compositions was performed by applying a combination of multivariate analysis with 

Canoco 5 software (34), followed by differential abundance testing using the two-part 

statistics method (35). Firstly, the constrained ordination method, known as 

redundancy analysis (RDA), was used to test time-dependent treatment effects with 

adjustment for stratification factor. The Monte Carlo Permutation test (MCPT) with 

1000 permutations was used to evaluate statistically significant differences (P≤0.05) 

of the resulting model. If found significant, the top-15 responding OTUs identified from 

the RDA model were subsequently tested for differential abundance at the different 

timepoints using the two-part statistics method (35). If the two-part statistics method 
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could not be applied due to a small number of non-zero observations, then only 

presence-absence was considered by applying the Chi-square test (if ≥5, but <10 

non-zeros in both groups) or Barnard test (if <5 non-zeros in one group). The 

Benjamini–Hochberg false-discovery rate (FDR) was used to correct for multiple 

comparisons in the differential abundance tests (36) and significance was considered 

when FDR≤0.1 at week 8 or when FDR≤0.1 for at least two visits (i.e. 12 and 26 

weeks). 

Other faecal parameters (pH, FISH outcomes, SCFAs, lactic acids): 

The following rule was applied to faecal parameters that were subject to limit of 

detection (LOD): If a value was below detection limit and the percentage of values 

below detection limit was at most 30%, then the value was replaced with LOD/2. For 

parameters with more than 30% of the values below LOD only presence-absence was 

considered, and P-values were based on a logistic regression model. The P-values 

for continuous data were based on the analysis of covariance (ANCOVA) or Van 

Elteren test depending on normality of the residuals. All statistical models were 

corrected for baseline levels (if applicable) and stratification factor, and for statistical 

significance P≤0.05 was considered.  

 

Results 

Subject characteristics were well balanced between groups as reported previously 

(14). In total, 378 (125 saliva and 253 faecal) samples were successfully sequenced 

with a sequencing depth ranging from 15265 to 129780, and a median depth of 39761 

sequences per sample (Table S1). Principal component analysis (PCA), which is an 

unconstrained ordination method (34), was used to explore the taxonomic 

compositions of saliva and faecal samples. A clear clustering by sample origin was 

observed (Figure 1A), which confirms that community composition is primarily 

determined by body habitat (37). A summary of the most dominant taxa identified at 

the bacterial family level showed that saliva compared to faecal samples were 

typically characterized by increased relative abundance of Streptococcaceae 

(53.3±17.8%), Microcrococcaceae (9.7±6.4%) and Actinomycetaceae (5.2±5.8%). 
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Faecal samples were typically characterized by Bacteroidaceae (20.9±18.7%), 

Lachnospiraceae (15.4±12.8%), Enterobacteriaceae (14.2±14.2%), 

Bifidobacteriaceae (7.6±9.2%), Ruminococcaceae (6.7±8.2%) and 

Verrucomicrobiaceae (5.3±10.7%) (Figure 1B).  

 

 

Figure 1: Principal Component Analysis (PCA) of faecal and salivary microbiota composition (A) and summary of 

major bacterial families identified (B). The PCA sample scatterplot is displayed on the first two axes summarizing 

most of the species variation, which is based on the OTU count data for each sample. The distance between the 

sample symbols (rounds for saliva and squares for faecal) approximates the dissimilarity of their species 

composition as measured by their Euclidean distance. Mean relative abundances (± SD) are summarized at the 

family level (“_f_”) for taxa > 1% and summarized in the heat map (Red-Yellow-Green color scheme indicating high 

to low relative abundance). Abbreviations used for bacterial phylum levels: Acti = Actinobacteria, Bact = 

Bacteroidetes, Firm = Firmicutes, Prot = Proteobacteria, Verr = Verrucomicrobia. 

 

Bacterial diversity 

The species diversity indexes (PD and Shannon) were analysed at a rarefaction 

depth of 16114 sequences per sample, which omitted one saliva sample (control, 

week 8) from comparison. Control and test group did not differ in salivary species 
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diversity based on PD (Figure 2A) or Shannon index (Figure 2C). A treatment effect 

over time was observed for faecal species diversity, which was characterized by a 

more gradual increment (from baseline until 26w) in test compared to control for both 

PD (Figure 2B, estimated difference per week =-0.022, P=0.069) and Shannon index 

(Figure 2D, estimated difference per week =-0.026, P=0.005). The estimated average 

difference between test vs control was significantly different at week 12 (PD=-0.349, 

P=0.031 and Shannon=-0.236, P=0.049) and week 26 (PD=-0.653, P=0.012 and 

Shannon=-0.596, P=0.002). The HBR group showed the lowest average diversity 

(PD=4.37±1.14 and Shannon=3.63±0.80) compared to both test (PD=4.89±1.05 and 

Shannon=3.75±0.67) and control (PD=5.17±0.88 and Shannon=4.01±0.71) at week 

8.  

 

Figure 2: Least square (LS) means with 95%CI of phylogenetic diversity in saliva (A) and faecal samples (B), and 

Shannon diversity in saliva (C) and faecal samples (D) for treatment by time. The HBR reference values 

(age-matched to week 8) are plotted as well. P-values are based on a random intercept mixed model with Week 

8/12/26 values as outcome, stratification factor and baseline values as covariate and treatment as fixed effect: 

*P≤0.05 and **P≤0.01. 



Chapter 5 

110 

Time-dependent treatment effects on oral microbiota 

Redundancy analyses (RDA) were carried out to test the effect of treatment 

(test/control) across time on the salivary community composition. We fitted both an 

RDA with and without correction for timepoint (baseline and week 8) and compared 

the results of the MCPT on the first axis of the model. The P-value for the RDA with 

correction for timepoint (0.3816) was larger than our pre-set threshold of 0.05, so we 

used the simpler model (with P=0.003) as a basis for interpreting the time-dependent 

treatment effects.  

 

 

Figure 3: Redundancy Analysis (RDA) plot of salivary microbiota composition based on treatment by time (week 

0/8) interaction with adjustment for stratification factor (A). The top 15 OTUs are plotted based on best fit with the 

first two RDA axes. In bold the OTUs that were significantly different at week 8 between test vs control as 

confirmed with the two-part statistics. The two-part statistics combines a test to compare the proportion of zeros 

(plotted as bars) and one to compare the median of the non-zero values (plotted as points) and are displayed for 

the two taxa (B and C) identified as differentially abundant. False Discovery Rate (FDR) was used to correct the 

raw P-values for multiple testing with significance at 0.1. 
b

: only the Barnard test was performed (if <5 non-zeros in 

one group) to compare the proportion of zeros. Taxa are summarized at the OTU level with unique (but arbitrary) 

numbers as identifiers, genus level (”_g_”) and phylum level: Acti = Actinobacteria, Bact = Bacteroidetes, Firm = 

Firmicutes, Fuso = Fusobacteria, Prot = Proteobacteria, Sacc = Saccharibacteria.   
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The top 15 OTUs with the best fit on the first two axes (explaining most of the 

variation) were plotted in the RDA (Figure 3A) and further evaluated for differential 

abundances between test and control using the two-part statistics method (35). No 

differences were observed at baseline (based on FDR≤0.1), but two OTUs out of this 

top 15 were found differentially abundant between test and control at week 8. This 

included a decreased relative abundance of Peptostreptococcus sp. (Figure 3B, 

FDR=0.0525) and an increased presence of Parabacteroides sp. (Figure 3C, 

FDR=0.0525). 

Time-dependent treatment effects on gut microbiota 

In order to assess the time-dependent treatment effects for the faecal community 

composition we used the Principal Response Curves (PRC) method (38). The PRC is 

based on the RDA method, in which the principal component is plotted against time 

(baseline, week 8, 12 and 26) to enable the assessment and visualization of 

time-dependent treatment effects. The MCPT applied to test the significance of the 

resulting PRC model was significant for the first axis (P=0.001). The top 15 OTUs with 

the best fit on the first axis were plotted (Figure 4A) and further evaluated with the 

two-part statistics method (35). No differences were observed at baseline, but a total 

of 13 OTUs out of the top 15 were confirmed to be differentially abundant between 

test and control at week 8 or at 2 or more timepoints. This included increased relative 

abundances in test vs control of 6 OTUs, of which 5 were assigned to Bifidobacterium 

and 1 was assigned to the Veillonella genus. The other 7 OTUs showed decreased 

relative abundances, of which 5 were assigned to 3 genera within the 

Lachnospiraceae family (Tyzzerella, Blautia and Lachnoclostridium) and 2 were 

assigned to the genera Ruminococcus and Alistipes, respectively.  

FISH quantification of faecal bacterial groups 

The treatment effects on gut microbiota, as revealed by 16S rRNA-gene 

sequencing, were mostly associated with a relative increase of several species of the 

genus Bifidobacterium and a decrease of several species of the family 

Lachnospiraceae. FISH enumeration of these two bacterial groups was used to verify 

the absolute differences in abundance between treatments, of which results have 
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been reported before (14). In summary, FISH analysis confirmed a significant 

enrichment of bifidobacteria in test vs control across time (Figure 4B). Moreover, the 

proportions for test (36.0±22.4%) as compared to that of the control group at week 8 

(14.5±16.4%) were close to the levels observed for the HBR group (48.1±26.5%). The 

FISH probe used to quantify the ER/CC group targets the majority of 

Lachnospiraceae spp. including the differentially abundant OTUs associated with the 

genera Tyzzerella, Blautia and Lachnoclostridium as identified with 16S rRNA-gene 

sequencing.  

 

 

Figure 4: Principal Response Curves (PRC) of faecal microbiota composition testing the treatment by time 

interaction with adjustment for stratification factor and time (A). The treatments are presented as a single response 

curves across time (on the horizontal axis) with Control as reference with zero PRC values (on the vertical axis) 

and so its curve lays over the horizontal axis. The top 15 OTUs are plotted on the separate vertical 

(one-dimensional) plot based on best fit with the first PRC axis. In bold the OTUs that were significantly increased 

(>0) or decreased (<0) in Test vs Control at week 8 or at two or more timepoints (week 8/12/26) as confirmed by 

the two-part statistics (FDR≤0.1). Percentages (means with 95%CI) of bifidobacteria (B), and ER/CC group (C) 

quantified by FISH at week 0/8/12/26. The HBR reference values (age-matched to week 8) are plotted as well. 

P-values are based on ANCOVA comparing Test vs Control with Week 8/12/26 values as outcome, stratification 

factor and baseline values as covariate and treatment as fixed effect: **P≤0.01; ***P≤0.001. Taxa names are given 

at the OTU level with unique (but arbitrary) numbers as identifiers, genus level (”_g_”), family level (“_f_”): Bact = 

Bacteroidaceae, Bifi = Bifidobacteriaceae, Lach = Lachnospiraceae, Rumi = Ruminococcaceae, Veil = 

Veillonellaceae; and phylum level: Acti = Actinobacteria, Bact = Bacteroidetes, Firm = Firmicutes. 



Synbiotics in CMA 

113 

A decreased abundance of the ER/CC group in test vs control across time confirm 

these findings (Figure 4C). Additionally, the levels for test (11.8±10.9%) as compared 

to that of the control group at week 8 (25.2±16.9%) were close to the levels observed 

for the HBR group (10.4±10.6%). 

Faecal pH, SCFA and lactate 

 

Figure 5: Mean with 95%CI of stool pH (A) for treatment by time. The box-plots summarize the amounts (in 

mmol/kg) of acetate (B), propionate (C), butyrate (D), iso-valerate (E), iso-butyrate (F) for treatment by time, 

respectively. Percentage of faecal samples (plotted as bars) with detectable levels of valerate (G), L-lactate (H), 

and D-lactate (I) for treatment by time, respectively. The HBR reference values (age-matched to week 8) are 

plotted as well. P-values for stool pH and acetate are based on ANCOVA comparing Test vs Control with Week 

8/12/26 values as outcome, stratification factor and baseline values as covariate and treatment as fixed effect. 

P-values for the variables summarized in Figure C-E are based on Van Elteren test comparing test vs control with 

respect to change from baseline at Week 8/12/26, taken the stratification factor into account. P-values for the 

variables summarized in Figure G-I are obtained from a logistic regression model comparing test vs control at 

Week 8/12/26 with adjustment for baseline values. *P≤0.05.  
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To assess whether the observed changes in gut microbiota composition also led to 

changes in gut physiology and microbial metabolites produced, the faecal pH and 

levels of SCFA and lactate were determined. No statistically significant differences 

were observed for faecal pH, acetate, propionate, butyrate, iso-valerate (Figure 5A-E) 

and D-lactate (Figure 5I) at the different timepoints. L-lactate was detected in a 

greater number of samples in test vs control at week 26 (38 vs 4%, P=0.020) (Figure 

5H). In contrast, valerate was detected in a smaller number of samples in test vs 

control at week 8 (44 vs 12%, P=0.036) and week 26 (67 vs 29%, P=0.021) (Figure 

5G). Moreover, the concentration of iso-butyrate was lower in test vs control at 26 

weeks (P=0.050) (Figure 5F). 

Correlations of faecal microbiota composition and metabolic activity across 

time 

A redundancy analysis was used to summarize the faecal microbiota composition 

over time as explained by treatment (Test or Control) and the HBR group (Figure 6A). 

The RDA recapitulates the results of the PRC analysis, but in addition confirmed the 

proximity in community composition of the test group at week 8 with the HBR. The 

additional faecal parameters measured (FISH, pH, SCFAs and lactic acids) were 

supplemented to this RDA in a separate biplot (Figure 6B). An inverse correlation was 

observed for the FISH quantified levels of Bifidobacterium spp. with the ER/CC group, 

which reflects the major differences observed for test (and HBR) with the control 

group. Moreover, the increase of Bifidobacterium spp. in test was positively correlated 

with increased levels of L-lactate. In contrast, the more abundant levels of the ER/CC 

group across time in control was associated with increased levels of butyrate, 

valerate, iso-butyrate and iso-valerate. In test, the ER/CC group gradually increased 

from 12 to 26 weeks, which was associated (similarly as for control) with an increment 

of butyrate, valerate, iso-butyrate and iso-valerate at 26 weeks. 
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Figure 6: RDA plot of faecal microbiota composition based on treatment by time interaction and the HBR 

reference group (age-matched to week 8) as explanatory variables (A). OTUs that were identified as differentially 

abundant between test and control are plotted as biplot arrows in the RDA plot on the left. The same RDA plot is 

shown on the right (B), but then supplemented with faecal pH, FISH counts and levels of SCFA and lactic acids as 

correlation biplot. Variables that were significantly different between test and control are shown in bold. Taxa 

names are given at the OTU level with unique (but arbitrary) numbers as identifiers and the family level (“_f_”): 

Bact = Bacteroidaceae, Bifi = Bifidobacteriaceae, Lach = Lachnospiraceae, Rumi = Ruminococcaceae, Veil = 

Veillonellaceae 

 

Discussion 

We previously reported the specific enhancement of bifidobacteria and decrement 

of the ER/CC group in the faeces of infants receiving the AAF with synbiotics 

consisting of a prebiotic blend of oligofructose and long-chain inulin and the probiotic 

strain Bifidobacterium breve M-16V (14). In this study, we applied a 16S rRNA-gene 

sequencing approach on both faecal and saliva specimens to elucidate more 

specifically which taxa responded to the intervention within the respective bacterial 

communities and what the effect was on their diversity and functionality.  

We demonstrated that the effect of the synbiotic-containing AAF on infant 

microbiota was most pronounced for the gastro-intestinal tract and only minimally 

affected the oral microbiota. The AAF including synbiotics compared to the AAF 
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without synbiotics showed a more gradual increment over time of bacterial diversity, 

which is also typically observed in longitudinal studies investigating early life gut 

microbiota development of breastfed infants as compared to formula-fed infants (6, 7, 

39, 40). These studies showed that the lower diversity of gut microbiota in breastfed 

infants is not only observed during the exclusive human milk-feeding period, but also 

during the complementary feeding-period until full transition to family foods, which 

reflects the sustained effects of human milk oligosaccharides on the bifidobacterial 

species that effectively thrive on these compounds (6, 7). The AAF including 

synbiotics was found to enhance the bifidobacterial community, as several 

bifidobacterial species had increased, which was also reflected by an increase of the 

fermentation end-product L-lactate in the faeces of these infants. Interestingly, the 

concordant increase observed in this study for Veillonella sp. is most likely explained 

by the ability of this species to utilize and convert lactate into propionate (41). In 

contrast, the infants receiving the control formula showed an early adoption of 

adult-like bacterial taxa belonging to the ER/CC group (resembling Lachnospiraceae 

spp.), namely Tyzzerella, Blautia and Lachnoclostridium spp., as well as species of 

Ruminococcus and Alistipes. This increase of adult-like taxa was associated with an 

increase of valerate and the branched-chain SCFA iso-butyrate, which are 

fermentation products that result from the degradation of proteins and amino acids 

(42, 43). Overall, these results indicate that the synbiotic-supplemented AAF induced 

a saccharolytic fermentation profile, while infants receiving the AAF without synbiotics 

showed a more proteolytic fermentation activity, which is generally associated with 

metabolite profiles that may be less beneficial for colonic health (44, 45). 

To date, several case-control studies have specifically investigated the 

gastrointestinal microbiota of infants and children with confirmed CMA compared to 

age-matched healthy controls (46-50). All of them reported altered gut microbiota in 

infants and children with CMA, although with mixed findings. However, the common 

characteristics that were identified in these studies included lower levels of 

bifidobacteria (47-50) and increased levels of members of the heterogenous ER/CC 

group (46-48). In analogy with our study, the case-control study of 

Thompson-Chagoyan et al. (46) in addition observed increased fecal butyrate and 
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branched-chain SCFA (iso-butyrate, iso-valerate) concentrations in CMA infants 

compared to healthy infants. Interestingly, our study demonstrated that 8-weeks use 

of the synbiotic-supplemented AAF approximated the composition and activity of the 

gut microbiota of the age-matched healthy, breastfed reference group.  

Our study has several limitations as addressed before (14), which includes the 

challenges in making and confirming a specific and accurate diagnosis of non-IgE 

mediated allergy. The chance of including infants with other (food) allergy 

presentations were mitigated by applying a robust diagnostic work-up (14). For a 

number of subjects, no specimens were available due to insufficient material or not 

completing the study until 26 weeks (Table S1), which limited the number of evaluable 

samples at week 12 and 26. This limitation was however similar in test and control 

groups and would, therefore, not have affected the observed differences between 

groups. Moreover, the identified microbial signatures showed very consistent patterns 

across time and were, regarding the relative abundances of bifidobacteria and the 

ER/CC group, independently confirmed by 16S rRNA-gene sequencing and FISH. 

Although, we specifically studied subjects with non-IgE-mediated CMA, Burks et al. 

(13) showed that an AAF, including ingredients from the current synbiotic blend, was 

safe in patients with IgE and non-IgE-mediated CMA, and affected the microbial 

signatures in an equal manner. Importantly, this study was primarily designed to 

investigate the effects of the synbiotic-containing AAF on gut microbiota and the 

suitability for the use in dietary management of CMA. As reported previously (13, 14), 

the AAF including synbiotics showed reduction of allergic symptoms as seen for the 

control AAF, and in addition showed potential beneficial systemic effects based on the 

adverse events, which reported fewer subjects in test with infections and need for 

anti-infective medication, including antibiotics (13, 14). Currently investigations are 

ongoing to assess whether the AAF including synbiotics influences cow’s milk 

tolerance acquisition in a clinical trial conducted in infants with confirmed 

IgE-mediated CMA (Netherlands Trial Register NTR3725). 

Based on the data showing pronounced effects on gut microbiota composition, 

diversity and metabolic activity, we conclude that the AAF including the specific 
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synbiotics offers an effective nutritional strategy to modulate the gut microbiota of 

infants with suspected non-IgE-mediated CMA closer to a healthy breastfed profile. 
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Supporting Information 

 

Table S1: Summary of saliva and faecal samples of subjects with CMA (ITT) and the healthy reference group 

(age-matched to week 8). Sequence depth, after filtering for low quality reads, is given as mean (±SD). 

 

  

 SALIVA SAMPLES FAECAL SAMPLES Grand total 

 Test  

(N=35) 

Control  

(N=36) 

Test  

(N=35) 

Control  

(N=36) 

Healthy 

subjects 

(N=51) 

 

week 0 
      

n subjects 35 (100%) 36 (100%) 29 (83%) 33 (92%) 
  

mean (SD) 30258 (14753) 28802 (6845) 47476 (14165) 47269 (22263) 
  

week 8 
      

n subjects 24 (69%) 30 (83%) 24 (69%) 31 (86%) 48 (94%) 
 

mean (SD) 27387 (6555) 29724 (15773) 47037 (13765) 47909 (16532) 51871 (19134) 
 

week 12 
      

n subjects 
  

18 (51%) 26 (72%) 
  

mean (SD) 
  

52921 (13491) 51391 (19953) 
  

week 26 
      

n subjects 
  

21 (60%) 23 (64%) 
  

mean (SD) 
  

51706 (22464) 55888 (17966) 
  

Grand total SALIVA SAMPLES FAECAL SAMPLES ALL SAMPLES 

n samples 125 253 378 

mean (SD) 29160 (11837) 50200 (18201) 43242 (19124) 
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Abstract 

Background: Cow’s milk allergy (CMA) is a significant health burden affecting up 

to 5% of children. Emerging data raises the hypothesis that an altered gut microbiota 

in infants with CMA contributes to disease onset and persistence. Herein, we report 

the effects of fecal microbiota transplantation (FMT) of a healthy control (HC) and 

CMA infant into germ-free mice using a murine model of sensitization and challenge.  

Methods: Infants (5-16 months of age) were recruited and their stools extensively 

characterized prior to selection of a representative for FMT in germ-free mice. Using 

an established murine model of CMA; we investigated the establishment of the gut 

microbiota and its effect on clinical features, sensitization markers, humoral and T-cell 

immunity in response to antigenic challenge. 

 Results: Decreased levels of Bifidobacterium and increased levels of 

Lachnospiraceae spp. characterized the CMA microbiota, which was maintained upon 

transplantation. In the murine model, clinical scores (scratching, puffiness, loss of 

mobility) were significantly higher in CMA sensitized group (S) versus non-sensitized 

group (NS) and HC-S group. Interestingly, minimal differences in mMCP-1 and 

allergen-specific sensitization markers were observed between the groups suggesting 

a non-IgE mediated pathway in CMA-S group was involved. Additionally, CMA-S and 

CMA-NS groups showed increased total IgE-levels and IgG1/IgG2a ratio when 

compared to the HC-S and HC-NS groups, respectively. Further, the CMA microbiota 

induced significant increases in colonic gata3 and foxp3 mRNA expression. 

Conclusion: The presence of a CMA-associated infant gut microbiota promoted 

clinical and immune parameters of an atopic orientation in a murine model of CMA. 
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Graphical Abstract 

 

Introduction 

Cow’s milk allergy (CMA) is a significant health burden estimated to affect up to 

5% of the population during the first years of life (1). CMA can be classified as 

IgE-mediated (immediate), non-IgE-mediated (delayed) or a less prevalent dual form 

(2, 3). Although most infants and children outgrow CMA before the age of 5 years, an 

increasing number suffer from persistent symptoms or develop other related 

conditions, known as the allergic march (4). 

Clinical and epidemiological studies suggest an association between abnormal 

development of the gut microbiota in early life to clinical manifestations of allergy (5, 

6). At present however, there is no consensus on a clear signature of a 

CMA-microbiota and, whether the observed microbial alterations are a cause or 

consequence of allergy (6). In case-control studies of infants with CMA, a decrease in 

bifidobacteria and an increase in Eubacterium rectale-Clostridium coccoides (ER/CC) 

group was reported (7-10). Moreover, a fecal transplant of healthy infant microbiota 

dominated by Bifidobacterium and Bacteroides spp. showed a protective effect on 

sensitization and food allergy in a murine model of CMA (11, 12). However, none of 

the studies investigated the impact of a CMA-associated infant gut microbiota 
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compared to a healthy infant gut microbiota in triggering sensitization and 

development of allergic responses. 

In this study, we recruited infants who were either healthy or with 

paediatrician-diagnosed CMA. After detailed analyses of their fecal microbiota, 

samples from a representative CMA-donor and HC-donor were transferred into 

germ-free mice to assess the role of microbiota in the development of CMA. 

 

Methods 

Subjects, allergic workup  

Allergic infants under the care of Great Ormond Street Hospital, London, UK, were 

recruited alongside healthy infants from the community (REC No 14/LO/0364). The 

CMA was diagnosed based on clinical presentation (immediate reaction with urticaria) 

and this was confirmed subsequently following oral challenge. Only term, healthy 

infants who were fully or partially breastfed, with no family history of atopy, no 

exposure to antibiotics (in the antenatal or postnatal period), nor any other 

medications were recruited for comparison with the allergic cohort. Stool from 1 nappy 

were separated into three containers (1 container with 5 ml 10% glycerol in 0.9% 

NaCl), then stored and transported at 4
o
C until storage at -80

o
C within 24 hours.  

Colonization of germ-free mice 

The protocol was approved by the Regional Council of Ethics for animal 

experimentation (Île-de-France, Paris Descartes, CEEA34.AJWD.062.12). 

Germ-free C3H/HeN mice (Anaxem, INRA, Jouy-en-Josas, France) were housed 

in sterile isolators in the animal care facilities of CRP2-UMS 3612 CNRS-US25 

INSERM-IRD at the Faculté de Pharmacie de Paris, Université Paris Descartes, 

France. Mice were allowed ad libitum intake of autoclaved water and pellet AIN93G 

based chow sterilized by γ-irradiation at 50 kGy (ssnifspezialdiäten, Soest, Germany). 

They received the two selected fecal microbiotas by oral gavage at weaning age 

(21±3 days of life) producing 2 groups, i.e. healthy infant microbiota-associated mice 

(HC group) and CMA infant microbiota-associated mice (CMA group). This transfer 
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was performed on 3 consecutive days. Stool was cultured in 

Tryptone-Glucose-Yeast-Hemin medium at 37°C for 24h under aerobic conditions or 

48h under anaerobic conditions (MACS anaerobic cabinet; AES-Chemunex, Bruz, 

France; N2/H2/CO2; 80:10:10). On day 3 (D3), 100µl of the aerobic culture was 

administered to mice; on D4, 100µl mix of anaerobic/aerobic culture (2:1, v/v) was 

administered and on D5, the mice received 100µl of stool diluted in PBS at 1:10 

(Figure 1). In total, 2 independent mice experiments were performed. 

Oral sensitization and immune challenge 

Each FMT group was divided into 2 subgroups of 6 to 12 mice each: the 

non-sensitized group included 5 to 6 mice and sensitized groups included 12 to 15 

mice. The first subgroup (S group) was sensitized with whey proteins (WP, lacprodan 

80, Arla, Lyon, France; 15mg per mouse) and adjuvant cholera toxin (CT) (List 

Biological Laboratories, Campbell, CA; 10µg mouse
-1
) in PBS. The second subgroup 

received only CT in PBS as a control (non-sensitized group, NS). Sensitizations were 

performed by oral gavage once a week for 5 weeks (Figure 1). One week after the last 

sensitization (D50), all mice received an oral challenge with 60mg of β-lactoglobulin 

(BLG, Sigma Aldrich, Saint-Quentin-Fallavier, France). 

Evaluation of allergic response 

Clinical scoring was performed on D50, 30min after the BLG challenge, by two 

investigators blinded to the sensitization protocol and the mouse groups for 15 min. 

As previously described (11), allergic symptoms were evaluated based on three 

criteria: scratching behavior, loss of mobility, and puffiness (details in Supporting 

Information). Rectal temperature was taken before the challenge and after the 

observation period. 

Sampling 

Fecal pellets were collected after the 1
st
, 3

rd
 and 5

th
 sensitization and the day after 

(Figure 1) and scored as follows: normal=0, wet=1, glairy and very soft=2, diarrhea=3, 

no feces or anal inflammation = 1. The fecal score was defined as the sum of the two 

scores (consistency and inflammation) and therefore, ranged from 0 to 4. 
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On day 50, blood was recovered in K3-EDTA tubes, centrifuged immediately, and 

plasma was stored at -80°C for immunoglobulin and mast cell protease-1 (mMCP-1) 

measurements. Spleens and mesenteric lymph nodes (MLN) were used for 

lymphocyte cultures followed by cytokine dosages. Two-cm of duodenum, jejunum, 

ileum and colon were collected and stored in RNA-later (Sigma-Aldrich, France) for 

relative expression gene measurements. Cecum contents were stored in microtubes. 

Samples were stored at -80°C until analysis. All methods are further detailed in 

Supporting Information. 

 

 

Figure 1: Experimental design. Three-week old mice were orally inoculated with selected healthy infant 

microbiota (HC group) or CMA infant microbiota (CMA group) cultured aerobic and anaerobic at D3, D4 and with 

fresh diluted stool at D5. From days 15 to 43, mice were orally sensitized with whey protein and cholera toxin once 

a week (S group). Control mice were treated with cholera toxin alone (C group). At D15, 16, D29, 30, D43 and 44, 

feces were collected and scored (4h and 24H after the sensitization). All mice were orally challenged with BLG one 

week after the last sensitization, followed by an allergic response score and sacrifice. 

 

Gut microbiota and other parameters in infant and mice samples 

The gut microbiota composition and diversity were determined by 16S rRNA-gene 

sequencing and, in the case of infant stools, complemented by fecal pH-analysis plus 

the quantification of Bifidobacterium spp. and Eubacterium rectale/Clostridium 

coccoides group (ER/CC) by fluorescent in situ hybridization (FISH) (13), as well as 

the analysis of the immune markers eosinophil-derived neurotoxin (EDN) (14), 

calprotectin (15), and secretory IgA (16) as previously described. Bacterial metabolic 
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activity in both infant and mice samples was assessed through the analysis of 

short-chain fatty acids (SCFA) (i.e., acetate, propionate, butyrate, iso-butyrate, 

valerate, and iso-valerate) and lactic acids (D- and L-lactate) as described previously 

(17). 

Detailed information on the extraction of fecal and cecal DNA, and the 16S 

rRNA-gene sequencing analysis are available in the Supporting Information. 

Statistical analysis 

For statistical analysis and visualization of microbiota community data, Graphpad 

Prism software version 7.00 for Windows (La Jolla California USA) was adopted for 

comparisons of species diversity and Canoco 5 software was used for Principal 

Component Analysis (PCA) (18) with Aitchison log-ratio transformation of bacterial 

genus compositional data (19). Differential abundance analysis was performed at the 

bacterial family and genus level using the R-package ANCOM (20) and the iTOL 

version 4 for visualization of the discriminant taxa (21). Corrections for multiple 

comparisons were controlled using the Benjamini-Hochberg false discovery rate 

(FDR) method with significance below 0.05 (22). Other fecal and cecal parameters, 

mice clinical response data and immune data were analyzed with Graphpad Prism 

software applying Mann-Whitney test for two-group comparisons and Kruskal-Wallis 

to compare more groups, with Dunn's correction for multiple testing. A P value of less 

than 0.05 was considered significant. 

Results 

Infant characteristics 

Infants were recruited over a period of 4 months. All CMA infants (n=5, 7-16 

months of age, all girls) had a family history of atopy and had previous exposure to 

medications with 2 infants having regular medications during sample collection (Table 

S1 and S2). Two CMA infants were born by vaginal delivery and all were initially 

breastfed. All CMA-infants were on amino acid-based formula (4 on Neocate and 1 on 

Nutramigen AA) and 3 infants were diagnosed with multiple food allergies. Six healthy 

infants (5.5-9 months of age, 3 girls) were recruited with 4 infants born by vaginal 
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delivery. All healthy infants were breastfed with 2 infants also receiving standard 

infant formula (Aptamil). All infants were weaned onto solids when fecal samples were 

collected. 

Gut microbiota from CMA infants showed increased diversity and decreased 

Bifidobacterium /Lachnospiraceae ratio 

All samples were successfully sequenced with a median sequencing depth of 

61282(41953-76653) reads per sample (Table S3), except one sample with 

insufficient fecal material available for DNA extraction (nr. 10, Table S1). Microbial 

richness (P<0.05, Figure 2A) and Shannon diversity (P=0.067, Figure 2B) were both 

higher in CMA infants compared to HC. Bifidobacteriacea spp. and its genus 

Bifidobacterium were less abundant in CMA-infants than in HC-infants, while 

Lachnospiraceae spp. and one of its genera, i.e. Eisenbergiella (FDR<0.05, Figure 

2C) were observed to be more abundant in CMA-infants. FISH quantification of 

Bifidobacterium spp. and the ER/CC group (which includes most of the 

Lachnospiraceae family) confirmed the patterns observed by 16S rRNA-gene 

sequencing (P<0.05, Figure S1A and S1B). Significant increases of bacterial SCFAs - 

butyrate, iso-valerate and iso-butyrate - were observed in CMA-infants compared to 

healthy controls (P<0.05, Figure S1F-H). No significant differences were observed in 

stool pH, levels of acetate, D-lactate, L-lactate, sIgA, calprotectin and EDN (Figure 

S1B, S1D, S1I-M, respectively). 

Principal component analysis (PCA) revealed distinct microbial compositions for 

CMA versus HC (Figure 2D). The other fecal parameters analyzed were incorporated 

into this PCA and projected as biplot (Figure 2D), which clearly visualizes the 

aberrances observed in microbiota composition (driven by differential abundances of 

Bifidobacterium and Lachnospiraceae spp.) and associated bacterial metabolites 

(SCFAs and lactic acid) and immune parameters (SIgA, calprotectin and EDN). 
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Figure 2: Donor screening and selection for FMT. Box-whisker plots of richness (A) and shannon diversity (B) 

of fecal samples collected from infants with cow’s milk allergy (CMA) or without (HC). Samples selected for FMT 

indicated as grey symbols. Cladogram with discriminant taxa identified when comparing CMA-infants with HC 

using the ANCOM method (C). The cladogram visualizes the phylogenetic relatedness at the different taxonomic 

levels with from the outside to the inside: genus, family, order, class and phylum level, respectively. Discriminant 

taxa identified at the genus level (darkest colour) and/or at the family level (lighter colour) are highlighted. Green 

colours indicate increased relative abundances in HC, and red colours indicate increased relative abundances in 

CMA (FDR at 0.05). PCA of gut microbiota compositions of CMA and HC-infants at the taxonomic genus level (D) 

supplemented all fecal parameters measured. Donor samples selected for fecal transfer to germ-free mice are 

shown in bold (F03 and F04). AA=acetic acid, BA=butyric acid, PA=propionic acid, VA=valeric acid, 

iso-BA=iso-butyric acid, iso-VA=iso-valeric acid, DLA=D-lactic acid, LLA=L-lactic acid, ER/CC=Eubacterium 

rectale-Clostridium coccoides group, EDN=Eosinophil-derived neurotoxin.  
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Selection for FMT 

We selected representative infant fecal microbiota for transplantation to obtain 

healthy infant microbiota-associated mice (HC group) and cow’s milk allergic infant 

microbiota-associated mice (CMA group). The selected infants were matched for age, 

gender and delivery-mode. Based on these criteria and the results of the fecal 

workup, we selected a healthy infant of 9 months old (Infant 3, Table S1) and a 

10-month-old CMA-infant (Infant 4, Table S1), both female and born by caesarean 

section. 

Sustained microbial signatures of CMA and HC upon establishment in mice 

To determine if the microbiota patterns were replicated in the recipient gnotobiotic 

mice, we sequenced the fecal microbiota at the start of the 5-week sensitization 

period (D15), and the cecum microbiota at the end of the experiment (D50). 

 

Figure 3: Microbiota diversity in murine model of CMA. Box-whisker plots of richness and shannon diversity 

analysed in fecal pellets collected at D15 (A and B) and in cecum content collected at D50 (C and D). Comparisons 

were performed by Kruskal-Wallis test with Dunn's correction for multiple testing. **P≤0.01; ***P≤0.001, 

****P≤0.0001.  
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The increased richness and diversity in CMA vs HC was preserved in the recipient 

mice at D15 (Figure 3A and 3B) and sustained to the end of the experiment (Figure 

3C and 3D). No differences were observed between sensitized and non-sensitized 

mice receiving the same fecal transfer. 

 

 

Figure 4: Establishment of donor microbiota in mouse recipients. PCA of gut microbiota compositions of 

selected donors with mice fecal pellets collected at D15 (A), and with mice cecal samples at D50 (B) at the 

taxonomic genus level. Cladogram with discriminant taxa identified in mice at D15 (C) and at D50 (D) using the 

ANCOM method. Taxa that were differentially abundant when comparing HC-mice with CMA-mice are highlighted 

at the genus (darkest colour) and family level (lighter colour). Green colours indicate an increase of relative 

abundances in HC, and red colours indicate increased relative abundances in CMA (FDR at 0.05). 
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PCA showed distinct profiles for the CMA-transfer compared to the HC-transfer at 

D15 and D50, which closely resembled the two donor compositions (Figure 4A and 

4B). Moreover, the differential abundance of families and genera between the two 

transfers included the taxa associated with the recruited infants and replicated the 

decreased levels of Bifidobacteriaceae spp. (and Bifidobacterium) and increased 

levels of Lachnospiraceae spp. (and Eisenbergiella) in CMA vs HC at both time points 

(FDR<0.05, Figure 4C and 4D). Additionally, differential abundances observed at both 

time points were consistent for other genera within the family of Lachnospiraceae, 

most of which were higher in CMA (Eubacterium oxidoreducens group, Robinsoniella 

and an unknown genus), with the exception of Anaerostipes and Lachnoclostridium 5, 

which were higher in HC. Other bacterial families that were consistently increased in 

CMA were Porphyromonadaceae (associated with Dysgonomonas spp.) and 

Peptostreptococcaceae (associated with increases of Intestinibacter and 

Peptoclostridium), while an unknown family of Clostridiales was consistently higher in 

HC-mice (FDR<0.05, Figure 4C and 4D). 

Cecal levels of SCFAs and lactic acids revealed significantly increased 

concentrations of acetate, butyrate and iso-valerate in CMA-S compared to HC-S 

(Figure S2A, S2C and S2D), as well as increased prevalence of valerate and 

iso-butyrate, with the latter also more prevalent in CMA-NS vs HC-NS (Figure S2G 

and S2H). No differences were observed for propionate, D-lactate and L-lactate 

(Figure S2B, S2E and S2F). 

CMA microbiota, but not HC microbiota, was associated with diarrhea-related 

symptoms following the oral administration of allergen 

The fecal scoring, recording consistency and anal inflammation, showed different 

responses between the two fecal transfers during the five-week period of oral 

sensitization. After the first sensitization, with presentation of antigen, no significant 

differences in fecal scores between allergen-exposed (S) and non-sensitized (NS) 

mice were observed; however, the CMA-groups showed higher fecal scores 

(reflecting softer stools and signs of inflammation) compared to the HC-groups. Four 

hours after the third and the fifth sensitization, the fecal scores were higher in CMA-S 

group compared to CMA-NS group (p<0.001). Approximately 24h after the third but 
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not after the fifth sensitization, the enhanced fecal scores normalized (P<0.05 at day 

44, comparison CMA-S vs CMA-NS). In contrast, no significant differences were 

noticed between HC-S as compared to HC-NS at the third and the fifth sensitization, 

which may indicate a protective effect of healthy microbiota upon allergen exposure 

(Figure 5A). 

 

Figure 5: (A) Fecal scores on a scale from 0-4, with 0 indicating normal pellets and increased scores indicating 

softer to diarrheic pellets and/or anal inflammation. Fecal pellets were scored after the first sensitization at D15 

then D16, after the third sensitization at D29 then D30 and after the fifth sensitization at D43 then D44. (B) Clinical 

score on a scale from 0 to 6 with line at median. Increased scores indicate increased allergic symptoms based on 

monitoring (i) scratching behavior, (ii) loss of mobility, and (iii) puffiness scored during a 15 min interval (30 min 

after BLG-challenge). (C) Concentrations of mMCP-1, (D) BLG specific IgE, (E) total IgE, (F) BLG-specific 

IgG1/IgG2a ratio and (G) total IgG1/IgG2a ratio are shown in dot plots with line at median. P-values were 

calculated using Mann-Whitney test (*P≤0.05, **P≤0.001 ,***P≤0.0001).  
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CMA-associated microbiota induces increased susceptibility to develop an 

allergic reaction, without allergen-specific sensitization  

The clinical scores were significantly higher in the CMA-S group compared to 

non-sensitized CMA-mice (p<0.001). Additionally, the clinical score of the CMA-S 

group was significantly higher than that of the HC-S group (p<0.05) (Figure 5B). The 

rectal temperature was also measured but only two mice (one in both sensitized 

groups) developed an anaphylactic reaction (data not shown). The increased clinical 

score in CMA-S versus HC-S was not correlated with differences in mast cell 

degranulation (Figure 5C), or specific markers of sensitization (IgE and IgG1/IgG2a 

ratio, Figure 5D and 5F, respectively). Independent of FMT, mMCP-1 levels were 

higher in sensitized mice compared to non-sensitized controls (Figure 5C). However, 

levels of total IgE in CMA-mice, independent of sensitization status, were increased in 

comparison with HC-mice (p<0.001) (Figure 5E). Similarly, the ratio of total 

IgG1/IgG2a representing the Th2/Th1 balance was increased in CMA-mice compared 

to HC-mice (Figure 5G). The ratio of total IgG1/IgG2a in HC-S group was also 

increased compared to the HC-NS group (p<0.001). 

 

Colonic gata3 and foxp3 gene expression are impacted by the CMA-microbiota 

The mRNA gene expression of tbet, gata3, roryt and Foxp3 were measured in 

duodenum, jejunum, ileum and colon tissue and relative expression levels of the 

CMA-S groups were compared to HC-S group (Figure 6). In small intestinal tissue 

only roryt expression was decreased in CMA-S group compared to HC-S group 

(p=0.05, Figure 6D). In contrast, colonic tissue showed significantly increased 

expression of gata3 and foxp3 in CMA-S group compared to HC-S (p<0.05 and 

p<0.001, Figure 6B and 6C, respectively) and non-significant increased expression of 

fcγRIII (p=0.07, Figure 6H). No differential expressions were observed for tbet, fcer2a, 

tgfβ and il17. 
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Figure 6: Gene mRNA expression in the small intestine (duodenum, jejunum, ileum) and colon of HC and CMA 

sensitized groups. The mRNA gene expression was normalized against the reference gene of HC sensitized 

(HC-S) mice. The relative gene expression of (A) tbet, (B) gata3, (C) foxp3, (D) rorγt, (E) IL17, (F) tgf-β, (G) fcer2a 

and (H) fcγrIII genes are shown as bar plots (mean with SEM) . P-values were calculated using Mann-Whitney test 

(*P≤0.05, **P≤0.001).  
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CMA-microbiota and its activity induce an enhanced atopic orientation 

We evaluated the systemic response 

with the concentration of cytokine 

produced by splenocytes and MLN cells 

following in vitro BLG stimulation. No 

differences between CMA-S group and 

HC-S group in cytokine levels were 

observed (Figure S3). We performed a 

PCA analysis of mice microbiota 

compositions at D50 incorporating 

immune (serum and cytokine data) and 

bacterial metabolites (SCFAs and 

lactate) for samples with data available 

(Figure 7). CMA-associated microbiota 

was associated with increased levels of 

SCFAs, which was most pronounced for 

iso-butyric acid and iso-valeric acid, 

which corroborates with the differences 

observed in infant stool samples. The 

CMA-associated microbiota composition 

and activity positively correlated with 

increased serum IgE, IgG1, and IL-5 

levels in the MLN (Figure 7). 

 

Discussion  

Herein, we investigated whether an altered gut microbiota in CMA-infants as 

compared to healthy infants may contribute to allergic disease. Fecal microbiota 

signatures associated with CMA, which were characterised by decreased levels of 

bifidobacteria and increased levels of the ER/CC-group (resembling Lachnospiraceae 

spp.), were associated with enhanced allergic response in a gnotobiotic murine model 

Figure 7: Microbiota compositions associated with 

bacterial metabolites and immune responses. PCA 

based on genus composition of mice for the different 

groups at D50 supplemented with immune data 

(cytokines and serum markers), SCFAs and lactate data 

when available. In total the data of 38 mice was used 

with inclusion of variables with less than 10% of missing 

values. Supplemental variables were plotted as biplot if 

the absolute correlation coefficient with one of the 

ordination axes ≥ 0.25. BLG=β-lactoglobulin, MLN= 

mesenteric lymph nodes, spl=splenocytes, AA=acetic 

acid, BA=butyric acid, VA=valeric acid, iso-BA= 

iso-butyric acid, iso-VA=iso-valeric acid. 
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of CMA. Importantly, these specific microbiota signatures corroborate findings of 

paediatric studies comparing CMA-infants with healthy breastfed infants (7-10, 13). 

These data strengthen the importance of the early life acquisition and establishment 

of bifidobacteria for healthy development (23, 24), and builds upon our previous 

findings with the same model, in which we demonstrated protective effects against 

CMA-development upon colonization of germ-free with healthy breastfed infant gut 

microbiota (12). 

The enhanced allergic responses observed in the CMA-colonized mice compared 

to HC-colonized mice were associated with diarrhea-like symptoms and signs of 

colonic inflammation following sensitization and challenge with the allergen. 

Moreover, we observed increased total IgE and increased total IgG1/IgG2a ratio, 

which reflects an enhanced Th2/Th1 status. These observations were consistent with 

increased gata3 mRNA expression in the colon, which is a marker of Th2 

lymphocytes. In addition, IL-5 production by mesenteric lymph nodes was correlated 

with the microbiota of allergic children (Figure 7). Interestingly, the expression of 

fcγRIII gene was increased in CMA-S group in the colon. FCγRIII is an activating 

receptor binding mouse IgG1 (25), which is expressed on mastocytes and basophils. 

These results suggest a pathway linked to IgG1 and basophils, which has been 

implicated in anaphylaxis (26, 27). In our model, BLG-IgG1 levels were not increased 

in CMA-S group, showing the complexity of allergic mechanisms. All these elements 

confirm a Th2 orientation of the immune system following transplantation of the 

CMA-associated microbiota. However, this Th2 profile was not associated with 

differences in mMCP-1 levels or allergen-specific immunoglobulin levels between the 

CMA-S and HC-S groups, which possibly points to a non-IgE mediated immune 

response in mice transplanted with CMA-microbiota. Moreover, human patients with 

non-IgE dependent allergy pre-dominantly present gastro-intestinal tract symptoms 

(2). The diarrhoea-like symptoms and signs of colonic inflammation in mice 

transplanted with the CMA-associated microbiota support this hypothesis.  

Several studies showed that germ-free mice have increased total IgE levels 

compared to conventional mice, and that levels can be normalized when germ-free 

mice are colonized with commensal microbiota until 8 weeks of age (28). It has been 
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argued that high total IgE is a poor predictor for food allergy (29), while other studies 

linked increased IgE levels to poor long-term outcome in atopic dermatitis (30) or an 

increased risk of developing other allergic manifestations (31). We show that 

colonization with a HC-microbiota but not colonization with a CMA-microbiota 

maintains low total IgE levels like the non-sensitized control mice. This may be due to 

the observed enrichment of bifidobacteria and Anaerostipes spp. in HC-associated 

mice (Figure 4). We previously showed that Anaerostipes spp. can form a trophic 

chain in the developing infant gut by converting the bifidobacterial breakdown 

products of complex carbohydrate degradation and the resulting fermentation 

products lactate and acetate into butyrate, which was associated with protection from 

eczema in infants at increased risk for allergy (17, 32). Interestingly, Feehley et al. 

recently also identified Anaerostipes spp. as having a key role in allergy protection 

using a similar murine model for CMA (33). 

Unexpectedly, we observed in the colon an increase in foxp3 mRNA gene 

expression in CMA-S group compared to HC-S group. Foxp3 has been associated 

with the production of Th2 cytokines in several cell lines, including Foxp3
+
Gata3

+
 cells 

(34-36), as well as with regulatory T-cells (Treg) (37). If associated with Treg cells, this 

increase could be the hallmark of the immune response towards Th2 induction. 

Another explanation of the increased foxp3 expression could be linked to the 

increased ER/CC bacterial group and the associated increase of cecal butyrate, which 

have been implicated in the induction of foxp3 Treg cells (38, 39). In our study, 

CMA-infants as well as the recipient mice showed increased levels of butyrate, but 

also increased levels of the branched-chain SCFAs iso-butyrate and iso-valerate, 

which corroborate the observations of Thompson-Chagoyan et al. in paediatric 

patients (7). The increase of branched-chain SCFAs suggest an increased proteolytic 

activity in CMA-infants versus healthy infants, while these can only be derived from 

branched-chain amino acids and therefore provide an indicator of protein fermentation 

(40). Butyrate, which can be derived both from carbohydrates and protein 

fermentation (40), may therefore have partly resulted from the increased proteolytic 

activity of the CMA-associated versus HC-associated gut microbiota. Several 

Clostridia and members of Peptostreptococcaceae spp. are involved in protein and 
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amino acid fermentation (41) and were consistently increased in mice receiving the 

CMA-FMT. Protein degradation and its associated metabolites, as well as specific 

members of Peptostreptococcaceae, most notably Peptoclostridium (Clostridium) 

difficile, are generally associated with compromised health and may be implicated in 

the increased severity of allergic responses and symptoms observed in CMA-mice 

(42). In contrast, the increased saccharolytic activity as suggested by the increased 

abundances of bifidobacteria and Anaerostipes spp. in the HC-mice may form a more 

beneficial supply of butyrate to the host (40). 

This study has several limitations. The CMA-infant selected was on concomitant 

medication and had clinically improved on an elimination diet, which are both factors 

known to influence the gut microbiota (43), but are also inherent to the medical 

condition. Moreover, only two representative microbiotas were chosen to avoid 

antagonistic effects that might arise by mixing different microbiota. Additionally, the 

FMT to germ-free mice results in adaptation to the new host (44). In our study 

however, despite this adaptation, the microbiota preserved its characteristic 

signatures. Therefore, we consider that our transfer led to a valid model to study the 

impact of microbiota on allergy development. 

In conclusion, we demonstrated that infant microbiota with a low bifidobacteria: 

Lachnospiraceae ratio oriented the mice immune system towards a Th2 atopic profile 

resulting in enhanced allergic symptoms. Although the exact mechanism warrants 

further research, our data suggests that strategies to enrich the gut microbiota of 

infants with bifidobacteria may aid in the prevention and treatment of food allergy. 
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Supporting Information 

Supplementary Materials and methods 

DNA extraction, 16S rRNA-gene sequencing and bioinformatics 

DNA was extracted from fecal and cecal samples using a phenol-chloroform 

based method combined with bead-beating as described previously (17). Infant and 

mice microbiota compositions were determined by sequencing and bioinformatic 

analysis as described in detail before (13). Briefly, extracted DNA samples were 

profiled by sequencing the PCR-amplified V3-V4 regions of the 16S rRNA gene on an 

Illumina MiSeq instrument (San Diego, USA). Illumina reads were preprocessed, 

quality filtered, merged and analyzed with an adapted version of the ‘Quantitative 

Insights Into Microbial Ecology’ (QIIME) v1.9.0 pipeline (45). Sequences were 

clustered into Operational Taxonomic Units (OTUs) based on 97% sequence identity 

using VSEARCHv2.4.1 with exclusion of chimeric sequences identified against the 

RDP gold database (46, 47). Taxonomic assignment was performed using the RDP 

classifier (48) against the SILVA123 database (49). Singleton OTUs, OTUs with 

eukaryotic assignments, and OTUs with a low relative abundance up to 0.005% were 

excluded from further downstream analysis (50). The species diversity (α-diversity) 

metrics for richness (observed OTUs) and the Shannon index for diversity (51) were 

calculated using the R-package phyloseq with correction for the differences in 

sequencing depths by rarefaction (52). 

Clinical Scoring 

Scoring was adapted from Perrier et al (53). Allergic symptoms were evaluated 

based on three criteria: scratching behavior, loss of mobility, and puffiness (including 

bristled fur, oedema around nose and eyes, laborious breathing). Scratching was 

defined as the number of scratching episodes per 15-min interval as follows: 1-3 

episodes=0, 4-5 episodes=1, and >6 episodes =2. Loss of mobility was graded in 

terms of the duration of absence of any movement as follows: <10 min=0; >10 min = 

1, during the 15 min =2. Puffiness was graded as none=0 and puffiness=2. The 
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clinical score was defined as the sum of the three individual scores, and therefore, 

ranged from 0 to 6. 

Measurement of plasma mouse mast cell protease-1 and sensitization markers 

Plasma mMCP-1, total IgE, IgG1 and IgG2a were measured by ELISA according 

to manufacturer’s recommendation (Ready-SET-Go!, Ebioscience, San Diego, USA). 

Measurements of BLG-specific IgE levels were performed by capturing with rat 

anti-mouse IgE (Pharmingen, BD Biosciences, Le Pont-de-Claix, France) antibody 

and by detecting with biotinylated BLG (Pierce, Rockford, USA) and 

streptavidin-horseradish peroxidase (HRP) (Clinisciences, Nanterre, France) as 

previously described (11). Data were expressed in terms of OD at 450nm. Levels of 

anti-BLG IgG1 and IgG2a were determined using BLG as the capture antigen, and 

goat anti-mouse IgG1 and IgG2a-HRP (Southern Biotech, Birmingham, USA) were 

labeled as detection antibodies as previously described (54).  

Cytokine production by BLG-stimulated splenocytes and MLN lymphocytes 

Spleens and MLN were crushed, filtered and treated to obtain 2x10
6
 cells per well 

(54). Cells were cultured in 24-well plates with and without 2.5mg/ml BLG at 37°C in a 

5% CO2, 95% air atmosphere for 48h. Culture supernatant levels of tumor necrosis 

factor-α (TNF-α), interferon-γ (IFN-γ) interleukin-4 (IL-4), IL-5, IL10, IL13, IL17, IL22 

and IL33 were quantified using a ProcartaPlex (Fisher, Hampton, USA), according to 

the manufacturer’s instruction. 

Relative expression of T-helper cytokines and immunoglobulin receptor genes in the 

gut 

Total RNA was isolated from 2-cm segment of duodenum, jejunum, ileum and 

colon, devoid of Peyer’s patches, using a RNeasy Plus universal kit (Qiagen, 

Courtaboeuf, France). Extracted RNA was treated with DNase I and first-strand cDNA 

was synthesized using Invitrogen reagents (Thermo Scientific, Illkirch, France) (54). 

Quantitative real-time PCR (qRT-PCR) was performed on an ABI Prism 7900HT 

sequence detection system (Applied Biosystems, Thermo Scientific, Illkirch, France). 

QuantiTect SYBR green and QuantiTect primer assays (Qiagen) were used to 
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quantify Transforming Growth Factor β (TGF-β), FcγR3 and Fcer2a. TaqMan gene 

expression assays with TaqMan universal master mix II (Applied Biosystems) were 

used to quantify IL17-A, Foxp3, T-bet, Gata3 and RorγT. Measurement were 

performed in duplicate, and gene expression levels were calculated using the 2
-ΔΔCT

 

method (55), where CT is the threshold cycle, with the TATA box (TaqMan) assay as 

reference gene. 
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Supplementary Tables 

 

Table S1: Subject characteristics. 
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No No No No BF BF NA NA 6m 

4 F 10m All LSCS Yes No 
Ranitidine,  

Lansoprazole 

Montelukast, 

Atrovent,  

Salbutamol, 

Abidec,  

Sytron 

BF FF AAF 4.5m 4.5m 

7 F 16m All 
El 

LSCS 
Yes No 

Infacol, Colic 

ease 
No BF FF AAF 5w 6m 

9 F 16m All 
El 

LSCS 
Yes No Paracetamol No BF FF AAF 5m 6m 

10 F 7m All NVD Yes No Paracetamol No BF FF AAF 6m 6m 

11 F 12m All NVD Yes No 

Gaviscon, 

Ranitidine,  

Omeprazole 

Ketotifen BF FF AAF 4m 6m 

Sex: M=Male, F=Female; Status: HC=healthy control, All =allergic; Delivery: NVD = normal vaginal delivery, LSCS 

= lower segment caesarean section, El= Elective; *Previous medicine including antibiotics. Previous/Current 

milk-feeding: BF=breastfed, FF=formula-fed or receiving both breast- and formula-feeding (mixed), SF=standard 

cow’s milk-based formula, AAF=Amino acid-based formula. Ages are indicated in months (m) or in weeks (w). In 

bold the infants selected for fecal microbiota transfer to murine model. 
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Table S2: Characteristics of CMA patients. 

 
Patient 4* Patient 7 Patient 9 Patient 10 Patient 11 

Age (months) 10 16 16 7 12 

Sex Female Female Female Female Female 

Clinical 

manifestations 

Urticarial rash, 

vomiting/GOR 

Immediate 

vomiting, rash, 

abdominal 

pain, blood per 

rectum 

Urticarial rash, 

vomiting, 

faltering 

growth, loose 

stools (with 

blood and 

mucus), 

episodes of 

chestiness 

Urticarial rash, 

vomiting 

Immediate 

swelling and 

rash, 

vomiting/GOR, 

faltering growth, 

constipation 

Personal atopic past 

history 

CMPA, 

allergies to 

wheat, egg and 

soya; Reactive 

airway disease 

CMPA, 

allergies to 

egg, wheat, 

soya, seafood 

and beef; 

Eczema 

CMPA, 

allergies to 

egg, wheat, 

soya, shellfish 

and nut; 

Eczema 

CMPA 

CMPA, allergies 

to egg, wheat, 

soya and rice; 

Eczema 

Familial atopic past 

history 
Yes Yes Yes Yes Yes 

Final diagnosis 

Multiple Food 

Protein 

Allergies 

Food 

protein-induced 

enteropathy 

syndrome 

Multiple Food 

Protein 

Allergies 

CMPA 
Multiple Food 

Protein Allergies 

Amino acid-based 

formula 

Nutramigen 

AA® 
Neocate® Neocate® Neocate® Neocate® 

*Post-exclusive breast feeding, infant #4 developed urticarial rash and classic CMA symptoms when challenged 

with dairy on repeat occasions; with symptom resolution on exclusion. Infant 4 was stable (amino acid-based 

formula with dairy/egg/wheat/soya exclusion) when FMT sample was obtained. CMPA=cow’s milk protein allergy. 

GOR=gastroesophageal reflux   

 

Table S3: Summary of sequence depths obtained with 16S rRNA-gene sequencing across the different samples. 

Sample description n samples Average sequence depth StdDev 

Donor samples (fecal samples) 10 60285 10743 

Mice D15 (fecal pellets) 84 47865 12625 

Mice D50 (cecal content) 89 57996 11587 

Grand Total 183 53471 13053 
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Supplementary Figures 

 

Figure S1: Fecal markers analyzed in infant donor samples. Box-whisker plots with FISH quantified levels of 

Bifidobacterium spp. (A), and Eubacterium rectale – Clostridum coccoides (ER/CC) group (B), and stool pH (C). 

Concentrations of fecal SCFAs (not valeric acid, due to majority of samples with undetectable levels) and lactic 

acids are summarized (D-J), as well as the Log-10 concentrations of secretory IgA (sIgA) (K), Calprotectin (L) and 

eosinophil-derived neurotoxin (EDN). Final selected donors for fecal transfer to mice model are shown as grey 

symbols. Statistics comparing healthy control (HC) with cow’s milk allergic (CMA) infants were performed using 

Mann-Whitney test. *P≤0.05, **P≤0.001.  
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Figure S2: Levels of SCFAs and lactic acids in cecal content mice (D50). Box-whisker plots (Tukey method) 

with the concentrations of acetate (A), propionate (B), butyrate (C), iso-valeric acid (D), D-lactic acid (E) and 

L-lactic acid (F). The detection of iso-butyrate (G) and valerate (H) are presented as percentage of samples with 

detectable levels (P) and undetectable levels (A). Statistics comparing the HC-groups with the CMA-groups were 

performed using Kruskal-Wallis test with Dunn’s correction for multiple comparisons and applying fisher’s exact 

test for presence (P) -absence (A) data. *P≤0.05, **P≤0.001 ,*** P≤0.0001, **** P≤0.00001.  
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Figure S3: Cytokines produced after BLG stimulation. (A) Splenocytes, (B) MLN lymphocytes shown as bar 

plots (mean with SEM). Statistics comparing HC-S with CMA-S were performed using Mann-Whitney test.  
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General discussion 

The aim of this thesis was to investigate normal gut microbial trajectories in 

early life and to identify deviating patterns that are associated with allergic 

manifestations, such as atopic dermatitis and food allergy. Generally, it is estimated 

that the gut microbiota reaches its adult-like configuration around 3 years of age 

(Chapter 2), although some taxa are even not yet fully established before 5 years of 

age (1). We hypothesized that a suboptimal implementation of the gut microbiome 

may contribute to the onset of allergy and/or enhancement of allergic symptoms. 

Perturbation of gut microbiome at critical time windows during early life development 

may be particularly important, because that is when the immune system, with most of 

its cells residing in the gut, matures (2). Modern lifestyle and associated factors, such 

as antibiotic-exposure, caesarean-section delivery and low breastfeeding rates, that 

are associated with depletion of key gut microbial taxa, may have disrupted the 

mechanisms of mucosal immunologic tolerance against innocuous antigens, such as 

food proteins. These factors in addition to genetic risk factors have been implicated in 

the rising trend of allergies observed in affluent countries (Chapter 2). 

 

The sequencing era 

The number of observational paediatric studies, both prospective and 

case-controlled, that report on the association between altered gut microbiota and 

allergic disease have rapidly increased since our 2014 review of existing literature 

(Chapter 2). The decline in costs for DNA sequencing technologies that allow for 

rapid and accurate characterization of microbial communities greatly contributed to 

the expansion of this field of research. The plethora of 16S and metagenomic surveys 

of human samples have vastly improved our understanding of the microbiota 

composition and functional potential in both healthy and diseased states. However, 

the accurate description of these surveys critically depends on sample collection, 

storage, processing, and on the downstream bioinformatic and statistical analyses 

applied (3-7). In this thesis the importance of PCR primer choice in 16S rRNA-gene 

sequencing was shown by curating one of the recommended primer-pairs from the 
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NIH Human Microbiome Project (8). The primer-set was found to contain a one-base 

mismatch in the reverse primer for bifidobacteria, which may explain the relatively low 

abundance of this genus reported in several US birth cohorts (9). We showed that 

application of the ‘bifido-optimised’ primer-pair successfully detected and quantified 

bifidobacteria without distorting proportions of other taxa (Chapter 3). 

 

The development of gut microbiota 

Early life nutrition 

We applied the 16S rRNA-gene sequencing technology to investigate the gut 

microbiota development and the pivotal role of early life nutrition in two clinical trials, 

which included infants with a family history of allergic disease (and therefore deemed 

‘high-risk for allergy’) (Chapter 4), as well as infants with cow’s milk allergy (CMA) 

(Chapter 5). Since more than 100 years it has been known that breastfed babies 

have a different gut microbiota compared to infants receiving a formula based on 

cow’s milk (10-13), which is explained by a wide array of non-digestible 

oligosaccharides present in human milk, known as human-milk oligosaccharides 

(HMO) (14). A growing number of studies indicate that the addition of specific 

prebiotic or synbiotic ingredients to infant formula can have similar functionalities as 

HMOs on gut microbiota composition and activity (15). Hence, such microbiota 

modulators are of interest in nutritional strategies for allergy prevention and treatment 

in infants for whom breastfeeding is not possible or insufficient. Based on 

HMO-research a specific mixture of short-chain galacto-oligosaccharides and 

long-chain fructo-oligosaccharides (scGOS/lcFOS) (9:1) was developed to mimic the 

molecular weight profile and partly building blocks of HMOs in breast milk (15), and its 

supplementation to infant formula has been shown to reduce the risk of allergy in 

not-exclusively breastfed infants, both at high- (16, 17) and at low-risk for developing 

allergy (18), which contributed to new guidelines from the World Allergy Organization 

that recommend prebiotics for allergy prevention under certain conditions (19). 

Current international guidelines for the dietary management of allergic diseases for 

not exclusively breastfed infants also include the recommendation of partially 
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hydrolysed cow’s milk protein-based formulas (pHP) for high-risk infants (20).  

However, the preventive effects of reduced allergen exposure by such formulas is 

currently being debated and challenged (21). Infants suffering from cow’s milk allergy 

(CMA) rely on the dietary avoidance of cow’s milk to resolve symptoms, which include 

specialized infant formula for those who cannot be breastfed (22). While most infants 

respond to extensively hydrolysed cow’s milk-based formulas (eHP), some require 

amino acid-based formulas (AAF) due to an increased risk to an anaphylactic 

reaction, or more complex symptoms, or when symptoms do not resolve on eHP 

(22-24). In the cohort with infants that were high-risk for developing allergy (Chapter 

4), we investigated the modulatory effects of a partially-hydrolyzed cow’s milk protein 

formula (pHP) including the scGOS/lcFOS (9:1) mixture on gut microbiota in the first 6 

months of life. In chapter 5 the modulatory effects of an amino acid-based formula 

(AAF) with short-chain and long-chain fructo-oligosaccharides (scFOS/lcFOS) (9:1) 

and the probiotic strain Bifidobacterium breve M-16V was investigated in infants 

suffering from cow’s milk allergy (CMA). This synbiotic concept was based on the 

scGOS/lcFOS-mixture, however in which scGOS was replaced by scFOS, since the 

former is produced from cow’s milk-derived lactose, which may pose risks in infants 

with severe CMA that rely on an elimination diet for the resolution of allergic 

symptoms (25). Importantly, the combination of the prebiotic with the probiotic 

Bifidobacterium breve M-16V provided preclinical proof to be more effective in treating 

the allergic response in a murine model of food allergy than the sole administration of 

the scFOS/lcFOS-mixture (26). 

The healthy reference in gut microbiota development 

In both trials, we reaffirmed that the microbiota of breastfed infants was 

characterized by a low diversity and Bifidobacterium domination. Moreover, we 

showed that the addition of prebiotics to pHP (Chapter 4) and the addition of 

synbiotics to AAF (Chapter 5) led to a taxonomic profile and diversity closer to that of 

the breastfed reference. Infants who received infant formula without prebiotics or 

synbiotics, however, adopted a more diverse adult-type of microbiota, which was 

characterized by an increase of microbes belonging to the order of clostridia and its 

main bacterial family of Lachnospiraceae. Importantly, we observed these 
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closer-to-breastfed effects during the exclusive milk-feeding period (typically before 4 

months of age), but also during the complementary feeding period, namely at 6 

months of age (Chapter 4) and 8 months of age (Chapter 5), respectively. This 

period, when the first solid foods are introduced and gradually replace the milk-based 

diet (i.e. human milk and/or infant formula when breastfeeding is not possible), marks 

an important shift of the microbial ecosystem to the diversifying infant diet (27). The 

WHO guidelines recommend to phase in solids at six months of age with continued 

breastfeeding up to 24 months of age (28, 29). European guidelines recommend to 

phase in complementary feeding between 4-6 months of age with continued 

breastfeeding (30). The increased Bifidobacterium/Lachnospiraceae ratio (B/L-ratio) 

indicate that the addition of these specific prebiotic or synbiotic ingredients may also 

normalise the rate of gut microbiota establishment during weaning towards that 

observed in breastfed infants. The establishment of gut microbiota in breastfed infants 

is namely characterized by a more gradual transition from infant- to adult-like 

composition compared to non-breastfed infants, which was confirmed in several 

recent longitudinal 16S and metagenomic surveys of infant samples (31-33), as well 

as in a number of meta-analyses performed on publicly available data (9, 34-36). The 

timely establishment of gut microbiota as observed in breastfed infants may therefore 

be essential in forming a stable ecosystem (34-36), and may contribute to the 

association of breastfeeding with several health benefits, such as a lower risk of 

diarrhoeal diseases and infections in early childhood (37), a lower risk of metabolic 

diseases later in life (38), and possibly also a lower risk of developing allergy and 

asthma (20, 39-41).  

Diversity and ecosystem development 

The decreased microbial diversity observed in breastfed infants, but also 

observed in infants receiving prebiotic- and synbiotic-supplemented formula, may 

seem counterintuitive. Especially since low gut microbiome diversity in early infancy 

has been reported to precede allergic manifestations, such as eczema (42-44), which 

we however did not confirm in our study with high-risk infants (Chapter 4). Arguably, 

an increased diversity does not necessarily reflect improved ecosystem function, 

stability or resilience to perturbation, but should be viewed in its ecological context 
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(45, 46). In that respect, the lower diversity of breastfed versus formula-fed infants 

versus the lower diversity associated with later-life allergic manifestations likely 

reflects different underlying ecologic causes and consequences. For instance, 

Abrahamsson et al. (43) linked the lower diversity at 1 month of age in infants 

developing atopic eczema by 2 years of age to a decreased diversity of the bacterial 

phylum/genus Bacteroidetes / Bacteroides, also when limiting their analysis to 

exclusively breastfed infants (47). This may indicate decreased maternal transmission 

of these pioneering infant gut colonizers upon birth (48), which seemed unrelated to 

delivery by caesarean section or exposure to perinatal antibiotics, both well-known 

risk-factors for decreased vertical transmission and allergic disease (49). In contrast, 

the lower microbial diversity that we observed in breastfed, prebiotic-fed and 

synbiotic-fed infants as compared to control-fed infants, reflected the increased 

Bifidobacterium/Lachnospiraceae ratio (B/L-ratio). These compositional differences 

resulted in specific changes in gut eco-physiology with a slightly acidic pH, increased 

concentrations of lactate, and a specific short-chain fatty acid (SCFA)-profile, which 

was high in acetate and low in butyrate, propionate and branched-SCFAs 

(iso-valerate and iso-butyrate) (Chapter 4 and Chapter 5). The enhanced levels of 

colonic lactate and acetate, both fermentation end-products of bifidobacteria, are 

typically associated with increased colonization resistance to potential pathogens 

(50-52) and may contribute to the protection against infections associated with 

breastfeeding (37). Interestingly, lower incidence of infections was also reported for 

infants receiving a formula with scGOS/lcFOS (16, 53), as well as for infants receiving 

the AAF formulation with synbiotics (54, 55) that was reported on in this thesis 

(Chapter 5). The increased levels of branched-SCFAs observed in the guts of 

control-fed infants possibly reflect an increased proteolytic microbial metabolism (56, 

57), due to the deprivation of fermentable carbohydrates (HMOs or prebiotics) that 

may lead to a shift from saccharolytic processes to lower yield proteolytic processes 

(46). It was recently observed in adult populations that a firm stool consistency, which 

is a proxy for long colonic transit time, correlates with high gut microbial diversity and 

increased proteolytic activity (58, 59). These observations in adults show interesting 

parallels to observations in infants, in which lower stool consistency and increased 
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stool frequency are observed for infants being breastfed or receiving formula 

supplemented with scGOS/lcFOS when compared to formula without prebiotics (60, 

61). The softer stools and increased stool frequency were also confirmed for the 

prebiotic and synbiotic formulations investigated in this thesis (62, 63). Together, this 

suggests that a high gut microbial diversity does not per se imply a healthy gut 

microbial ecosystem and points at the sachharolytic/proteolytic ratio as an important 

factor to consider in microbiome and metabolomics studies, since several 

end-products of microbial proteolysis are considered detrimental to host health (46, 

58, 64). 

Gut microbiota and allergic disease 

In the cohort of infants that were high-risk for developing allergy (Chapter 4), 

we found that infants who went on to develop atopic dermatitis (AD) showed 

discordant temporal development of bacterial taxa and the metabolites lactate, 

propionate and butyrate around the time that complementary feeding started. This 

nested case-control comparison was controlled for the factors that were identified as 

influencing the microbiota of these infants including feeding group, ethnicity and 

household exposure to siblings. At first, infants developing AD showed decreased 

levels of lactate and increased levels of propionate and butyrate at 12 weeks of age 

(before weaning); in contrast, they showed increased levels of lactate and decreased 

levels of propionate and butyrate at 26 weeks of age (during weaning). Microbially 

produced lactate is only intermediately present in the healthy adult, as it is converted 

into propionate or butyrate by a subset of lactate-utilizing bacteria (65). Indeed, we 

found that both Eubacterium and Anaerostipes spp., which are known to utilize lactate 

and acetate to produce butyrate, were enhanced in healthy infants compared to 

infants with AD. Importantly, we also found that infants developing AD showed 

decreasing levels of bifidobacteria over the first 6 months of life, which was in contrast 

with the increasing levels observed for healthy infants. This possibly indicates that the 

bifidogenic environment with high levels of lactate and acetate and their consumption 

by such specialist microbes may have a key role in establishing a stable community in 

the gradually diversifying infant gut and may protect from developing allergy. The start 

of weaning may form a critical step in the development of oral tolerance, while 
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experiments with germ-free mice have shown that the presence of both diet- and 

microbe-induced populations of regulatory T-cells (Treg) were required for induction of 

complete tolerance to food antigens (66, 67). Moreover, there is accumulating 

evidence that many of the microbially-derived colonic Tregs are induced via SCFAs 

that act as histone-deacetylase (HDAC) inhibitors and ligands for G-protein cell 

surface receptors (GPRs) (68-70). Indeed, several murine studies have shown that 

high-fiber diets effectively modulate gut microbiota and increase SCFAs, particularly 

acetate and butyrate, which exert regulatory effects on host immunity, including 

anti-inflammatory and anti-allergic effects (71-74). Interestingly, infants receiving the 

pHP-prebiotics demonstrated increased systemic Treg-numbers compared to 

control-formula at 6 months of age, although no reduction of AD incidence was 

observed at 12 or 18 months (75). However, the incidence of AD seemed to be 

affected by the age the infant was introduced to solid foods, which deviated in most 

infants (55%) from the standard recommendation to start after 18 weeks of age (71). 

In infants who were fed according to this recommendation lower levels of total-IgE and 

hen's-egg IgE were observed at 6 months, and a reduction of allergic manifestations 

was observed in the follow-up study at 3-5 years comparing the pHP-prebiotics group 

with the control-group (76). This indicates that exposure to food allergens during the 

weaning-period may be critical for the induction of oral tolerance. 

In Chapter 6 we investigated whether the increased B/L-ratio that 

differentiated healthy breastfed infants from CMA-infants (Chapter 5) impacted 

immune and allergic response in a murine model of sensitization and challenge with 

cow’s milk protein. In a small case-control study with infants with suspected CMA and 

healthy breastfed infants, we could confirm the shift in B/L-ratio. Faecal microbiota 

transplantation (FMT) into germ-free mice from representative infants (matched for 

age, gender and birth-mode) largely replicated the characteristic compositional 

differences in microbiota, including the decreased diversity and proteolytic activity of 

the healthy breastfed infant (9 months of age) compared to the CMA-infant (10 

months of age). Interestingly, the CMA-associated infant gut microbiota induced 

systemic Th-2 immunity with increased total IgE-levels and showed more severe 

clinical symptoms upon sensitization with cow’s milk allergen and cholera toxin as 
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adjuvant. Whether similar results would have been obtained with microbiota showing 

a decreased B/L-ratio but obtained from an otherwise healthy infant or when treated 

with prebiotics or synbiotics warrant further investigation. However, these results do 

suggest that perturbation of gut microbiome in infants with CMA contributes, at least in 

part, to disease onset and severity of symptoms. 

Overall conclusion and future perspectives 

Clearly the development of the gut microbiome from birth through to childhood 

is critical to establish a healthy symbiosis, since this is the period in which infants 

encounter external stimuli for the first time and the body is trained to respond to these 

stimuli. Human milk is the reference, effectively shaping the infant microbiome, which 

is associated with optimal immune maturation and protection against infections and 

potentially also allergy. Specific prebiotic and synbiotic ingredients can modulate the 

microbiota closer to that of breastfed infants leading to clinical benefits related to 

infection and allergy. However, much is yet to be learnt about how and when microbes 

or their functional triggers optimally impact the host and protect from allergic disease. 

Moreover, it is crucial to understand how the many covariates, such as birth mode, 

antibiotics and household exposures, interfere with the colonisation pattern. Future 

studies in allergy need to carefully consider the effect of complementary feeding (type 

and timing) and treat it as an integral part of the dietary strategy for prevention and 

treatment. Longitudinal studies are needed to better comprehend the timely 

establishment of key species to develop a gut eco-physiology to form a stable 

ecosystem, which supports optimal gut and immune development. The omics tools 

currently available to perform characterization of microbiome functionality and 

bioactive compounds like proteomics or metabolomics integrated with 16S surveys or 

metagenomics will certainly bring our understanding to the next level. These tools and 

the identification of different endotypes of allergic disease based on clinical symptoms 

and immunomes, will improve our understanding of the structure and function of the 

microbiome in both diseased and healthy states. This integrated approach may lead 

to novel personalized preventive and therapeutic nutritional strategies in allergic 

disease.  
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Summary 

The development of the gut microbiome from birth through to childhood is thought 

to be important for establishing a healthy symbiosis, but much is yet to be learnt about 

this phase of microbiome development. Perturbations of gut microbiome during this 

development have been associated with the pathology of diseases, such as allergy. In 

Chapter 2, we describe this dynamic period of gut microbiome development, the 

various factors involved in shaping its composition and the importance for the 

concurrent maturation of the immune system. Environmental factors including birth 

mode, exposure to antibiotics and household exposures (such as siblings and furry 

pets) represent important factors impacting its development, and which also have 

been epidemiologically implicated in the risk to develop allergic disease. Several 

paediatric studies indeed associated altered gut microbiota with development of 

allergic disease. Breastfeeding represents the most significant factor in shaping early 

life microbiome and is associated with several short-term and long-term health 

benefits, including a lower risk of developing allergic disease. Specific prebiotic or 

synbiotic (when combined with probiotics) ingredients added to infant formula may 

exert similar effects on gut microbiota composition and activity, which may benefit 

infants for whom breastfeeding is not possible. 

Bifidobacteria are the most abundant bacteria in breastfed infants, but often 

under-represented in 16S rRNA surveys of diversity, due to poor DNA extraction 

techniques, poor PCR primer choice or a combination of both. In Chapter 3, we 

optimized a commonly used “universal” PCR primer set and demonstrated the 

effective recovery of this genus without compromising the detection of other genera. 

In Chapter 4 we applied the optimized pyrosequencing method described in Chapter 

3 to analyse the gut microbiota of infants at high-risk of developing allergy, who 

participated in a clinical trial that investigated the effects of a partially hydrolysed 

protein formula supplemented with prebiotics on the prevention of eczema. We 

showed that the taxonomic composition of infants receiving the 

prebiotic-supplemented formula was closer to that of breastfed infants when 

compared to infants receiving an infant formula based on intact protein without 

prebiotics, which was driven by increased abundance of Bifidobacterium spp. and 
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decreased abundances of Clostridium spp. and Lachnospiraceae spp. Importantly this 

also led to specific changes in gut eco-physiology characterized by a more acidic pH 

and increased levels of lactate and acetate as also characteristic for breastfed infants. 

In a nested case-control, we found that infants who developed eczema by 18 months 

of age showed an altered development of bacterial taxa and metabolites around the 

time that complementary feeding was started. The patterns identified suggested that 

the establishment of specific bacteria that utilize lactate and acetate to produce 

butyrate may have a role in protecting from the development of eczema. 

Infants who suffer from severe CMA often rely on cow's milk protein avoidance 

and, when breastfeeding is not possible, on specialised infant formulas such as 

amino-acid based formulas (AAF) to meet their nutritional needs and in order to 

resolve the allergic symptoms they suffer from. In Chapter 5, we investigated the 

modulatory effects of an AAF supplemented with synbiotics on the gut microbiota and 

showed that both composition and activity approximated that of an age-matched 

breastfed reference group as opposed to infants receiving the AAF without synbiotics. 

Similar as observed in Chapter 4 this was driven by an increase of the 

Bifidobacterium spp./ Lachnospiraceae spp. ratio (B/L-ratio).  

In Chapter 6 we screened the intestinal microbiota of a small set CMA-infants and 

healthy controls to select donor samples for faecal microbiota transplantation into 

germ-free mice. We confirmed the decreased B/L-ratio in CMA versus healthy infants 

as observed in Chapter 5, which was maintained upon transplantation into the 

germ-free mice. Herein, we showed that CMA-associated infant microbiota resulted in 

an atopic orientation, with increased immunoglobulin E levels and an enhanced 

responsiveness to cow’s milk allergen upon sensitization, which suggested that the 

pathobiology of allergic disease is mediated at least in part by gut microbiome 

perturbation.  
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