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Preface

It was not hard for me to find an interesting topic which | wanted to write my Master thesis about. | grew up on
the farm of my grandparents, and | look back on many years working on different farms. On the one hand,
farming is essential for everyone’s life. On the other hand, agriculture is often accused of being responsible for
environmental degradation or the violation of human and animal rights. Overfertilisation and its consequences,
deforestation, displacement of indigenous peoples, modern forms of slavery, or mistreatment of animals are
only some of the popular reproaches. Farmers and their families suffer from missing gratitude and understanding
shown by consumers. Expectations, requirements and the administrative burden are increasing, but at the same
time, willingness to pay for sustainable and high-quality food seems to be limited. At least, the producer prices
are often volatile and too low to make this work and loads paying off. Consequently, the number of farms in
Europe is decreasing, while existing farms tend to increase in size to remain competitive. And again, consumers
do not hesitate to show their discontent with such a development.

The image on the cover page of this thesis is based on a photograph that has accompanied me during my studies.
It reminds me of my home and my roots, and it reminds me of my grandfather who concludes every debate
about agriculture and agricultural politics with the same sentence: “Maket es allen recht!”. This is Low German
and basically means that whatever a person (farmer, politician, consumer) does, it is hard to make everyone
happy because there will always be someone complaining. However, it was this recurrent phrase that caught my
attention and aroused my curiosity. Throughout my studies, | was searching for the best way to feed the world,
the most sustainable way of farming, the most sustainable consumer behaviour and the fairest way to trade and
share resources across the globe. | was looking for an answer to the question of what kind of farming is accepted
by consumers and allows farmers to earn a living.

Certification schemes such as Gls offer the opportunity to both lend credence to the quality (and sustainability)
of the product or production process and differentiate from mass production. Thus, it is also meant to increase
farm gate prices. However, | am aware that the jungle of labels and certifications that cover the packing of our
products also leads to confusion, frustration and mistrust among consumers. Conversations | had with farmers
conveyed the impression that they are not fully convinced by the benefits of certification schemes and Gls either.

This thesis was written as part of a joint Double Degree Master programme of the University of Bonn and the
University of Wageningen. At this point, | would like to thank dr. ir. Jack Peerlings for his support, patience, and
for the countless meetings and discussions we had that improved my thesis. | also appreciated the help and
feedback of prof. dr. Thomas Heckelei, dr. Liesbeth Dries and dr. ir. Koos Gardebroek, as well as the inspiring
lectures by dr. ir. Maarten Voors. | am very thankful for having gained experiences in quantitative impact
assessment, although it was not always easy and stretched me to my own limits on some days. Last but not least,
| owe special thanks to my family for all the support they gave and the opportunity to come home and clear my
mind whenever | needed a change of scenery. Finally, after more than five years of studying, | have to admit that
my grandfather was right — There is no perfect way of farming, and agricultural politics always have pros and
cons. Life is a compromise. This also seems to apply to quantitative impact assessment. Throughout the last
months, | found out that it is less perfect and objective than | had expected.






Declaration

| hereby affirm that | have prepared the present paper self-dependently, and without the use of any other tools
than the ones indicated. All parts of the text, having been taken over verbatim or analogously from published or
not published scripts, are indicated as such. The thesis has not yet been submitted in the same or similar form,
or in extracts within the context of another examination.

Place, date of submission ...... (’\‘)di/ ....... muerﬂbe(l1/lm8

Student’s signature K .................... & b

vi



vii



Summary

This Master thesis builds up on a quantitative impact assessment of geographical indications (Gls) for food
products on farm income in the EU. It focusses on four Gl schemes: PDO, PGI, TSG and mountain products. Gls
are intended to benefit disadvantaged farms who are unable to compete on the global market. Further, they are
expected to stimulate rural development by increasing the viability and resilience of farms in disadvantaged and
remote areas. As part of the Strength2Food project, the EU is interested in the effect of Gl adoption on farm
income, which has not been investigated so far.

The analysis is mainly based on data from the Farm Accountancy Data Network. Few regional characteristics from
EUROSTAT were added to the dataset. The impact assessment was done for quality wine specialists and olives
specialists both for the years 2014 and 2015. 2014 data considers PDO and PGl labels, whereas 2015 data also
covers information about the TSG label and mountain products.

First, potential effects of Gls on farm income are outlined to illustrate that Gls do not necessarily increase farm
income. For farmers who produce final PDO or mountain products, income effects are more likely to be positive
due to restricted market entry and limited threats to farmers’ market power from downstream players of the
supply chain. If income effects are negative in the long run, and farmers behave as profit-maximisers, they are
expected to stop using Gls.

After a broad discussion of five popular estimation techniques used for impact analysis, an endogenous switching
regression (ESR) model was chosen to estimate the income effect by full information maximum likelihood (Stata
command movestay). Descriptive statistics illustrate the differences between treated and untreated farms. On
average, Gl olives specialists have a higher farm net income than their non-Gl colleagues, although the difference
is not significant. For wine specialists, non-Gl farms earn significantly more. According to the ESR results, the
estimated effect of GIs on farm net income of wine specialists in 2014 is -21303 EUR for treated farms. Untreated
farms would have earned 33991 EUR more if they had adopted Gls. While the average treatment effect for Gl
olives specialists is estimated to be -43196 EUR, the estimated average treatment effect for untreated farms is
1767 EUR. The results confirm self-selection of farms as well as different responses of treated and untreated
farms to changes in the control variables (heterogeneous impacts). The chosen estimation technique was able
to account for these problems.

The estimates contradict the expectations based on economic theory since adopters are assumed to only adopt
Gls if they do not decrease farm profits. However, it is possible that production costs increase relatively more
than revenues. Further research could investigate the effect on revenues and costs separately. From a theoretical
perspective, it is also not expected that treatment effects for non-adopters are positive and significantly higher
than for adopters. Estimation results were compared to those of other estimation techniques to show that
estimated effects based on the chosen variables and data are sensitive to the choice of the estimation (and
matching) technique. Poor data is seen as one limitation and potential reason for the contradicting and varying
estimates. Many farms had to be excluded from the sample because they did not report information about their
Gl adoption. In addition, the four GI schemes could not be analysed separately. Further, baseline data was not
available, so reported data of Gl adopters might have been influenced by Gl adoption. This compromises the
quality of impact estimates. Nevertheless, the thesis gives insights into mechanisms by which Gls can affect farm
income. It further elaborates on estimation techniques and ways to improve the reliability of estimated effects.

Keywords: Income effects, product differentiation, geographical indications, PDO, PGl
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1. Introduction

Agricultural income is lower than the average income in other sectors (European Commission, 2009). On average,
public support provides 32% of EU farm income (European Commission, 2017a). This share is larger for small
farms and less favoured areas (LFA) (Hill & Brandley, 2015). Geographical indications (Gls) are part of the food
quality schemes that have been supported by the EU since 1992 (European Union, 1992). Their goal is to create
added value by linking food products to unique physical characteristics, the environment, social ties and/or
traditions of their origin (Giovannucci et al., 2009). Gls are part of “the ‘quality turn’ in the economy [towards]
more differentiated, localized and eco-friendly products and forms of economic organization” (Hajdukiewicz,
2014, p. 4). Since it is an alternative to cost-minimizing strategies, it is expected to especially benefit small farms
and those in disadvantaged areas, who have difficulties to compete with larger and more efficient producers
(Hajdukiewicz, 2014). Moreover, Gls offer opportunities for endogenous development in rural areas if more value
added remains at the farm level and, consequently, in rural areas (Gangjee, 2017). Thus, Gls are assumed to
improve the relative income position of farmers.

This thesis will focus on four Gls:

** Protected Designation of Origin (PDO): all ingredients must come from and all
production steps of a food product need to take place at a specified area
(European Commission, 2017b).

** Protected Geographic Indication (PGI): at least one production step
(production, processing or preparation) needs to take place at the specified
area (European Commission, 2017b).

++» Traditional Speciality Guaranteed (TSG): products are produced in a way that
is typical or traditional for the specified area, but the product and its

ingredients can be produced anywhere (European Commission, 2017b).

< Mountain products: Regulation (EU) No. 665/2014 encompasses detailed
descriptions of what kind of products can be called mountain products
(European Commission, 2014).

There is an increasing demand for local, traditional and more extensively produced food (Verbeke et al., 2012).
Products with Gl labels are one answer to these consumption trends. Therefore, Gls present a strategy to
increase the economic viability of farm enterprises. Gl application is linked to product differentiation strategies,
which allow to obtain price premiums (Giovannucci et al., 2009; Van Ittersum, 2002). Product differentiation
leads to imperfect competition, which generates market power (sometimes also referred to as pricing or
bargaining power) and higher profits for producers (Krugman & Wells, 2013). Firms no longer face a perfectly
elastic demand function as with perfect competition of mass-produced goods. Gls allow farmers to produce
products that cannot be perfectly substituted. However, production of Gl products is sometimes linked to higher
production costs, e.g. for registration, application of specifications, marketing and control, which might exceed
extra revenues (Hajdukiewicz, 2014). Another potential threat to income gains is too little market power of
farmers vis-a-vis downstream stakeholders in the supply chain (traders, processors, retailers), who do not pass
on the higher profits that are earned from product differentiation.

This research is part of the 5-year EU-funded project Strength2Food that, amongst other objectives, aims at
evaluating the impact of the EU food quality policy and related schemes (Strength2Food, 2016). So far, no
research has investigated the impact of Gls on farm income. This thesis will focus on the impact of the above-
mentioned Gls on farm income to learn more about their contribution to rural economies in the EU. The
hypothesis is that Gl application leads to higher farm income. Four questions will help getting insights into the
effect of Gls on farm income and rural development:

1 Source pictures PDO, PGl and TSG labels: https://ec.europa.eu/agriculture/quality/schemes_en
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What potential effects can Gls have on farm income?
What estimation techniques can be used to estimate the impact of Gls on farm income?

How do farms producing Gl products differ from other farms with respect to farm characteristics?

H wonNoe

Is there a causal effect of Gl uptake on differences in farm income?

A literature review gave insights into potential impacts of Gls on farm income. Further, it helped understand the
role of market structures, how Gls can influence market power, and which factors determine the adoption of
Gls. Extensive literature review was also conducted to study different estimation techniques that can be applied
to assess the impact of Gls. Based on the gained knowledge, an endogenous switching regression model was
chosen for the impact evaluation of Gls on farm income.

The quantitative analysis is mainly based on data taken from an unbalanced panel from the Farm Accountancy
Data Network (FADN) for the years 2014 and 2015. Three variables about regional characteristics at NUTS2 level
were added to this dataset. The respective data was taken from a dataset generated by Van de Pol (2017), which
was based on EUROSTAT data. An extensive descriptive data analysis was conducted to discover differences
between Gl adopters and non-adopter. Based on the literature review, dependent and explanatory variables
were chosen from the dataset. For the impact evaluation, the endogenous switching regression was estimated
by full information maximum likelihood using the Stata command movestay. The model allowed for endogenous
self-selection on both observed and unobserved characteristics. The results were also compared to estimated
causal effects of other estimation techniques, such as Ordinary Least Squares (OLS) and Propensity Score
Matching (PSM).

The thesis is organised as follows: Chapter 2 discusses determinants of income and uptake of Gls based on a
literature review. Special attention is paid to the mechanism by which Gls are intended to increase farm income.
Chapter 3 briefly introduces to the key problem of impact assessment as well five popular estimation techniques.
It starts with the simplest model and builds up to more complex models with stricter assumptions. Chapter 4
introduces the sources of data and samples used for this research. Further, the final estimation technique is
chosen and the final model for the impact evaluation with all required variables is specified. Finally, chapter 4
also contains the descriptive statistics. Chapter 5 reports the results of the impact assessment. A general
discussion and final conclusions are presented in chapter 6.



2. Theory

The goal of this chapter is to explain how and under what conditions Gls influence farm income. Further, it
presents additional categories of variables that affect farm income and those influencing the uptake of Gls. Such
variables are relevant for estimating causal effects of Gls on farm income. Section 2.1 gives an overview of
determinants of farm income. Section 2.2 discusses the mechanisms by which Gls affect farm income. It also
shows why the degree of market power and, consequently, the extent of potential income effects can vary
among Gl farmers. Section 2.3 elaborates on factors that influence the decision to adopt Gls.

2.1 Determinants of farm income

If you want to estimate the effect of Gls on farm income, you need to know what other factors explain deviation
in farm income. The better you control for other determinants, the better the estimated effect of Gls will be.
Farm income mainly relies on profits generated from producing and selling agricultural output. For simplicity,
taxes and subsidies are ignored for now, so the focus is on revenues and costs linked to agricultural production.
Profits are the difference between total revenue and total cost. Equation (2.1) presents a model for short-term
profit maximization, where 1t equals profit, p is the price received for the yield y that is sold, s represents the cost
(i.e. shadow price) for quasi-fixed labour (L), n is the shadow interest rate or cost for quasi-fixed capital (C), r is
the shadow price for the quasi-fixed land? (A), FC refers to fixed cost, and SPC are specific variable production
costs (e.g. seeds, fertiliser).

n= m?)é(py-(FC+SPC+sL+nC+rA); T(y,L,C,A), p,s, n, r>0) (2.1)
X,y,L

Revenue is determined by production volumes and farm gate prices. Production volumes depend on the amount
of inputs used and the efficiency by which they are used or processed to new products that can be sold on the
market. Efficiency is influenced by natural or geographical constraints like climate, soil fertility or gradient (Van
de Pol, 2017). The amount of inputs used depends on their relative price compared to the expected farm gate
price for the final product. Large farms benefit from economies of scale and potential volume discount when
buying inputs or paying for services. Thus, larger farm size is negatively correlated with input prices. Apart from
real costs, there are also opportunity costs. Farmers are not only profit-maximisers. They also maximise utility,
which can put certain constraints on the amount of labour and capital used for farming. A household model can
help understand why farmers do not necessarily maximise farm profits only. Farming is not necessarily the only
livelihood strategy that contributes to household income. Other productive activities and leisure of household
members require labour and capital, which cannot be used to maximize profits earned on the farm. Opportunity
costs of working on the farm increase if employment opportunities outside the farm business are offering a
higher income or a more attractive work, which is more likely the closer the farm is located to urban areas
(Meraner et al., 2015). Thus, labour and capital used for farming are competing with other productive and non-
productive activities. Access to capital and interest rates affect the use of capital on the farm (Beckmann &
Schimmelpfennig, 2015). A farmer faces price and income volatility, which depends on the (combination of)
products he is producing as well as exposure to risks such as weather extremes (Organisation des Nations Unies
pour l'alimentation et I'agriculture, 2011). The higher the volatility of a farm’s profits are, the more expensive
bank loans become as interest rates increase (Organisation des Nations Unies pour |'alimentation et I'agriculture,
2011). This reduces the likelihood that farmers invest in their business. Consequently, they become relatively
less efficient compared to those who invest in machinery and innovative production techniques. This reduces
their competitiveness and market power. In contrast, farm income is positively affected by the farmers decision
to hedge prices or involve in any other form of risk management like insurances, because it reduces volatility in
farm profits and interest rates. Land prices influence the affordability of and, consequently, the access to land,
which in some cases becomes a limiting factor of production (Beckmann & Schimmelpfennig, 2015). In addition,
institutional and legal constraints might pose limitations to profit maximization. For example, farmers who apply
for farm payments from the EU must fulfil requirements (i.e. Cross-Compliance and Greening), which are often
meant to increase ecological sustainability of farming. These requirements affect farm profits via the amount of

2 Livestock could play a role as well, | will ignore it here for simplicity.
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inputs used for farming. Finally, the quantity of products sold on the market is directly affected by farm
household consumption of own products. It reduces the revenue, although it might be welfare improving if it is
cheaper to consume own products than buying them in the supermarket (European Commission, 2011).

Total cost basically depends on prices for inputs, quantity of inputs and fixed costs. Specific costs also depend on
the amount of inputs used, which is influenced by their price(s) and opportunity costs as outlined above. In
addition, the overall infrastructure like roads, railways, harbours, internet and institutions like cooperatives and
farmers’ associations affect the possible marketing channels and cost of trading both for inputs and outputs,
which influence profit maximization. Better infrastructure is therefore positively correlated with competitiveness
(lower average unit cost). In general, larger farms tend to benefit from economies of scale which reduce marginal
costs of production. The use of machinery affects the efficiency or productivity by which inputs are turned into
outputs. Consequently, they influence the unit cost. Assets such as buildings and machinery, but also costs for
certification or audits belong to fixed costs. Some certification schemes also impose specific requirements for
production processes or inputs used, which are more expensive (Bouamra-Mechemache & Chaaban, 2010). For
example, Bouamra-Mechemache and Chaaban (2010) found variable production costs of PDO Brie to be 40%
above those for non-PDO Brie.

Finally, farm income is affected by the farm gate price. For small farms or producers of mass products, the price
is exogenous. Such farms are price takers. However, there are mechanisms by which farms can increase their
market and bargaining power. Farm size, degree of product differentiation, market share, competition from close
substitutes and market concentration (both within the sector of interest and up- and downstream players of the
supply chain) are relevant factors to think of in relation to market structure and bargaining power, which co-
determine the farm gate price. For example, organic production is also usually linked to higher output prices
(price premiums), although production costs can be higher as well (Shadbolt et al., 2005). Once, the market
structure allows farmers to determine prices, advertising helps convincing people of the special attributes of a
certain product and increasing the willingness to pay (Krugman & Wells, 2013). However, advertising is not useful
for price takers like firms in a perfect competitive market because for them farm gate price equals marginal cost.
However, in a monopolistic competitive market or an oligopoly, producers can additionally benefit from
advertising if they have market power to set prices above their marginal cost (Krugman & Wells, 2013). From a
consumer’s point of view, the affinity to the a specific region, interest in food and quality or origin of food, and
a region’s attractiveness for tourism (as it is linked to memorability and brand awareness) affect the elasticity of
demand and willingness to pay a price premium for products from a specific origin (Van de Pol, 2017). In addition,
exchange rates affect long-run profits as they determine the attractiveness of and demand for the product on
foreign markets (Beckmann & Schimmelpfennig, 2015). The influence of the market structure and a farm’s
bargaining power on farm profits are discussed in more detail in section 2.2.

2.2 Theoretical impact of geographical indications on farm income

Usually, farming is a business meant for earning household income. Consequently, adoption of Gls is higher if
expected profits from producing (ingredients for) Gl products are higher than regular profits. Maximizing
economic profits is equal to maximize the difference between total revenue and total cost (both explicit and
implicit) (Frank & Cartwright, 2016). In general, farmers operate under perfect competition as there are
thousands of farmers in the world who produce the same products. In a perfect competitive market, companies
produce standardized products that are perfect substitutes (Krugman & Wells, 2013). Since most agricultural
goods are traded on the world market, they can easily be replaced by substitutes from all over the world. As a
result, farmers do not have any market power. They are price takers. In the long run, economic profits are zero
because farms produce until marginal cost equals the exogenous price, which is the marginal revenue that firms
can obtain (Krugman & Wells, 2013). Only farms with relatively low average total costs, e.g. by applying modern
technology or benefitting from economies of scale, can make profits in the short run. Small farms and farms in
disadvantaged areas tend to be the least efficient farms with highest average total costs (Meraner et al., 2015).
If the exogenous price is below their marginal cost, they make negative profits. Finding a way out of perfect
competition allows them to stay in the business. With imperfect competition, producers gain market power, so
they are no longer price takers.



Three questions have to be answered: First, how to achieve a market structure with imperfect competition?
Second, why do profits increase with imperfect competition? Third, how and under what conditions can Gls turn
the market structure from perfect to imperfect competition?

How to achieve imperfect competition?

Oligopoly and monopolistic competition are the two important prevalent market structures of imperfect
competition that can result from Gl uptake. The first situation is given when only few firms produce the same
product (Krugman & Wells, 2013). When many competing producers offer a range of similar but differentiated
products, and entry into or exit from that market are free in the long run, one speaks about monopolistic
competition (Krugman & Wells, 2013). In both cases, pricing power allows firms to earn higher profits than with
perfect competition, although it can be limited by competition owing to the existence of imperfect substitutes
(Krugman & Wells, 2013).

Consumers do not have the same tastes and preferences. Hence, producing several varieties of a product with
diverse attributes pays off for producers (Estrin et al., 2008). It reduces competition intensity (Krugman & Wells,
2013). Gls certify a unique quality that is linked to the product’s origin. Gl labels make this differentiation clear
to consumers. Product differentiation allows producers to make profits from selling a specific product, which
other firms are not allowed, willing or able to perfectly copy (Varian, 2014). Product differentiation is the
“attempt bs a firm to convince buyers that its product is different from the products of other firms in the
industry” (Krugman & Wells, 2013). The demand curve is no longer perfectly elastic because people are willing
to pay more for the special attributes of the differentiated product (Varian, 2014). This gives some market power
to producers depending on the competition from rivals who produce imperfect (but maybe close) substitutes
(Krugman & Wells, 2013). If the relative price of a differentiated product is too high (because of higher price
premiums and/or higher production cost) compared to the imperfect substitutes offered on the market,
consumers switch to one of these relatively cheaper products. This depends on the elasticity of demand both
with respect to own prices and prices of (imperfect) substitutes.

What happens to profits when there is imperfect competition?

Whenever there is imperfect competition, demand is no longer perfectly elastic (demand curve is no longer a
horizontal line). The steeper the demand curve, the less elastic is the demand. With monopolistic competition or
an oligopoly, a firm maximizes its profits by producing the quantity at which marginal cost equals marginal
revenue, just like in a monopoly. Figure 1 shows two firms in a monopolistic competitive market. The firm on the
left side earns positive economic profits as its average total costs (ATC) at the profit-maximizing output quantity
Q* are below the price P*, which consumers are willing to pay. The firm produces as much until marginal revenue
(MR) equals marginal cost (MC), which is Q*. For quantity Q*, consumers are willing to pay price P* as shown by
the demand function (D). The firm on the right side earns negative economic profit (losses) as its ATC curve lies
above the demand curve (D’). Again, firms produce the quantity for which MR’ equal MC’, but consumers’
willingness to pay for that quantity Q*’ lies below the ATC’ for that quantity. Consequently, the demand curve
must cross the average total cost curve to allow a firm to make positive economic profits in the short run
(Krugman & Wells, 2013). The long-run equilibrium is characterized by zero profits because more firms will enter
the market as long as firms make positive profits and market entry is free (Krugman & Wells, 2013). However, in
the case of PDO and mountain products, market entry is limited since production and processing are linked to a
certain area, so even ingredients need to have the local origin.

How and under which conditions do Gls lead to higher profits?

For simplification, | assume that each farm produces only one product. In addition, | assume that consumers are
convinced that the product is different, and they are willing to pay more for the special attributes. Further, a
specific Gl product (like the PDO Prosciutto di Parma) can be produced by one or several farms. In the latter case,
farms produce perfect substitutes that are not further differentiated, e.g. by product packaging. If there was only
one producer of that Gl product, he operates under monopolistic competition. This is illustrated in scenario (a)
of Figure 2. If there are many differentiated products and the differentiated Gl product is produced by several
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Figure 1: Profit-maximization and loss-minimization with imperfect competition

firms, such as shown in scenario (b) of Figure 2, the producers of this Gl product operate in a homogenous
oligopoly, with few farms producing perfect substitutes and facing competition from close (non-Gl) substitutes.
A Gl certification that is shared by several producers can function as a collective brand strategy, like Borg and
Gratzer (2013) argue for the case of PDO products. The more producers enter, the closer the market structure
will be to perfect competition as more and more farms produce perfect substitutes.

The model for GI market structures becomes even more complex when considering that a farmer, who is involved
in a value chain of a specific Gl product, can take up two distinct positions: Either she processes her own raw
products to produce the Gl product herself like in scenarios (a) and (b), or she delivers the ingredients for the Gl
product to a processing company. Scenario (c) shows the case where several farmers are producing ingredients
for a GI product. The production of this specific Gl product does not require ingredients from a specific origin
(e.g. PGl or TSG). Therefore, the output of farmers who are involved in the Gl value chain can be easily substituted
by ingredients offered on the world market. Thus, these farmers do not have any market or pricing power as they
face perfect competition, although they produce ingredients for a Gl product.

In contrast, farmers gain market power if geographic attributes of their raw products such as their origin are
appreciated by consumers and somehow differentiate them from the output of farmers in the rest of the world.
PDO and mountain products usually have strict specifications with respect to their ingredients’ origin, while
ingredients for PGl and TSG products can theoretically be sourced from all over the world. Thus, income effects
might differ depending on which Gl scheme is applied. Scenario (d) shows the case where the output of farmers,
who participate in the Gl value chain, differs from output of other farmers. Ingredients for the dark green
coloured Gl product cannot be sourced from other farmers than the dark green coloured farmers. If there is only
one farmer supplying the necessary ingredient, he is a monopolist. It is more realistic to think of several farmers
who fulfil the Gl specifications. Consequently, Gl farmers operate under a homogenous oligopoly and have some
market power. Since there is a limited number of farms that can offer ingredients with the required origin, it is
unlikely that these differentiated farms end up in perfect competition.

Scenario (e) adds two new components. First, there are both farmers who produce final Gl products and those
who produce ingredients with a specific origin for the Gl product. Second, there is not only one independent
processor of ingredients, but also a cooperative-driven processor (square with orange contour and rounded
edges). For example, Royal Friesland Campina is owned by member farms of the cooperative Zuivelcodperatie
Friesland Campina. The milk price payed to member farmers includes issues of member bonds. Interest on
member bonds additionally affects farm income (Friesland Campina, 2018). If the product differentiation leads
to a high price premium paid by consumers, farmers can either benefit from higher prices paid for their milk or
via their member bonds that become more profitable the more profitable the company is. Independent
processors might not forward the price premium paid by consumers to farmers. If cooperative-driven processors
did the same, farmers could at least benefit from member bonds. Shortcomings of the model are that it assumes
that a processor only produces the Gl product, and that all members of the cooperative deliver ingredients for
6
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Note: Each circle represents a farm. All squares with sharp edges are independent processors. Squares with
rounded edges represent cooperative-driven processors. Arrows signal delivery of ingredients from a farm to a
processor. The size of the geometrical form reflects a firm’s economic size. Green colors represent differentiated
products. Gl products are indicated by the orange contour. The white color is used for ingredients that are not
differentiated and, consequently, can be substituted by any other ingredient from the world market. The dark
green color represents the value chain of a Gl product whose ingredients must originate from a specific area (PDO
or mountain product).

Source: Author’s sketch

Figure 2: Market structures for Gl farmers

this product. In real life, however, the processing company produces several products both with and without Gl
labels. Gains in total profits are shared, although not all members have been involved in the product
differentiation that was responsible for the increase in the processor’s profits (personal communication, June
16, 2018). If the share of the Gl product is relatively low, income effects for farmers are also low and maybe
insignificant.

Figure 2 shows that Gl farmers can face competition from other farmers and/or processors who produce the
same Gl ingredients or the same Gl product. There can be efficiency gaps among producers of the same Gl
ingredient or product. Huang and Zhang (2018) analysed the effect of technological gaps in an oligopoly between
“advanced” and “backward” firms of unequal size and operating costs on their profits given that all firms produce
a similar product. They found that the more efficient firms are likely to determine prices (price leadership), while
the backward firms have less market power and behave as price-takers. Consequently, market power still
depends on farmers’ relative position in the Gl market with respect to efficiency and market share. However,
Huang and Zhang conclude that despite of the efficiency gap, both types of firms earn higher profits because of
imperfect competition. They claim that this may even be the result of collusive behaviour among advanced and
backward firms, which is difficult to uncover. However, it is likely that producers of a certain Gl product feel
connected and collaborate such as in the case of a collective brand strategy (Borg & Gratzer, 2013).

To sum up, market power of Gl farms depends on the price elasticity of demand, competition from imperfect but
close substitutes, the number of farms producing the same Gl product, the market share and competitiveness of
the farm with respect to colleagues/competitors who produce the same Gl product. Further, Figure 2 has shown
that it makes a difference whether a farm produces a final Gl product or ingredients for a Gl product. In the latter
case, ingredients can be easily substituted by agricultural products bought on the world market, if they do not
need to be sourced from a specific origin, which decreases the farms’ market power.

| explained why the type of processor (cooperative-driven or independent) influences a Gl ingredient supplier’s
profits. What has not been considered so far is the market structure and market power of downstream players
in general. In their models, Krugman and Wells ignore the complexity of modern supply chains. Figure 2
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distinguished between farms who produce final products and those who produce ingredients. The latter is linked
to a more complex supply chain as ingredients are processed by another level of the supply chain, whose market
structure affects the market power of the Gl farms. If processing of Gl ingredients is controlled by few firms, they
form an oligopoly that can increase its revenues by limiting the production of Gl products (Krugman & Wells,
2013). This reduces processors’ demand for Gl ingredients. Consequently, producers of Gl ingredients do not
have any market power and in a price-taking position if the demand for their Gl ingredients is (artificially) limited.
Further, downstream players such as processors and retailers often have large market shares because these
levels of the supply chain are highly concentrated. Therefore, even farms producing (ingredients for)
differentiated products can end up without any market power if downstream players are powerful and dictate
prices (personal communication, June 16, 2018).

This section has discussed the market structure that Gl producers are facing. It has shown that Gl uptake can
help maximising profits by gaining (some) market power which allows producers of Gl products to operate under
a higher price. However, it has also highlighted that positive income effects are not guaranteed and depend on
which Gl scheme is applied. Farmers who produce final products with PDO or mountain product certification are
expected to benefit from more market power and gains in profits than TSG or PGI farms, especially if they only
product ingredients for the Gl product.

2.3 Determinants of the decision to adopt geographical indications

In principle, Gl adoption is meant to lead to product differentiation, which again is intended to increase market
power of producers by decreasing the price elasticity of demand for the labelled product. Thus, farm gate prices
and profit margins are expected to be higher, which positively affects farm income. Therefore, farms with little
pricing power (price-takers) and low farm income are assumed to have higher expected benefits from Gl
adoption. Consequently, factors determining market power and farm income (especially those determining
efficiency, competitiveness and farm gate prices) influence a farmer’s decision to adopt Gls. The higher the
expected gains of Gls with respect to efficiency, competitiveness or bargaining power, the higher the probability
of uptake. However, only few studies about specific determinants of Gl adoption have been published. In
contrast, other certification schemes like organic farming and farm diversification in the form of agri-tourism are
studied more often.

According to Bouamra-Mechemache and Chaaban (2010), a larger size of enterprises is negatively correlated
with PDO certification. Farms located in less favoured areas with natural constraints such as high gradients, low
soil fertility, harsh climate or weather extremes tend to be less efficient and more likely to engage in farm
diversification such as Gl production (Van de Pol, 2017). The better the soil fertility, the more efficient is the
production, which allows farmers to earn economic profits in competitive markets. The larger the distance to
urban areas and the larger the role of agriculture in terms of employment and economic activity in a region is,
the less off-farm employment opportunities exist. This increases the probability of farm diversification such as
the uptake of food quality schemes (Meraner et al., 2015). At the same time, proximity to main roads or hubs
has a positive influence on farm diversification as it facilitates marketing and trading (Meraner et al., 2015). Full-
time farmers are more likely to use Gls (Van de Pol, 2017). On the one hand, GDP is expected to be lower in
regions with more registered products, as they are meant to increase farm profits of farmers in remote areas
(Van de Pol, 2017). On the other hand, national or regional GDP per capita influences consumption and
willingness to pay for quality attributes, which is also reflected in the slope of the demand curve. A resulting
hypothesis is that a higher GDP per capita allows for a steeper demand curve for Gl products, which results in
more market power and higher profit margins for farmers. Beckmann and Schimmelpfennig (2015) found a
positive effect of GDP on the uptake of PDO labels.

Giaccio et al. (2018) investigate determinants of agri-tourism income. The authors find that access to subsidies
and advice from external institutions have a positive effect on the uptake. Experiences of “a long history of using
trademarks or other quality assurance schemes” has a positive effect on Gl uptake, too (Van de Pol, 2017, p. 25).
Meraner et al. (2015) found that in the Netherlands, mixed farm types diversify the most. There are more fruits,
vegetables and cereals, cheeses and meat products certified as PDO or PGI product than for example oils and
fats or fish (Van de Pol, 2017). New employment opportunities for family members might play a role, particularly
if farmers are producing final Gl products as PDO production is more labour intensive than conventional
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production (Giaccio et al., 2018; Bouamra-Mechemache & Chaaban, 2010). In the Netherlands, larger families in
general are more likely to engage in farm diversification (Meraner et al., 2015). Gl uptake is less profitable if a
large share of produced goods is consumed by the farm household itself (Van de Pol, 2017).

Further, younger farmers are more likely to diversify (Giaccio et al., 2018; Meraner et al., 2015). Farmers’
attitudes and attachment to the “maintenance of rural lifestyles and the preservation of cultural heritage,
especially as related to local food production” also determines Gl uptake (Giaccio et al., 2018, p. 219). The
involvement in a Gl value chain requires some motivation, engagement and organisation. Therefore, additional
determinants can be farmers’ managerial skills, market orientation and social capital in terms of networks among
farmers within a region (Van de Pol, 2017). This can be linked to farmers’ educational level, but correlation was
found to be insignificant in previous research (Giaccio at al., 2018). Direct sales are another way to increase
added value on the farm. It also indicates market orientation and farmers’ willingness to engage in product
differentiation. Therefore, direct sales are assumed to be positively correlated with Gl uptake.
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3. Estimation techniques

The goal of this chapter is to provide a theoretical background about estimation techniques which are frequently
used for impact assessment. Knowing more about strengths and weaknesses of different estimation techniques
is helpful in selecting a proper method and model for the impact evaluation of Gls for food products on farm
income. Section 3.1 introduces to the general problem of impact assessment: missing data. True counterfactuals
never exist. Section 3.2 deals with estimation techniques for cases where treated sample units (here Gl users)
were chosen randomly, that is treatment is an exogenous variable. In contrast, the estimation techniques
presented in section 3.3 assume treatment to be the outcome of a decision taken by each sample unit, which
leads to endogenous self-selection.

3.1 The problem of impact assessment

The main problem of impact assessment is one of missing data. What would have happened to Gl farms if they
had not used Gls? This is the question we pose when we intend to measure the impact of Gl adoption. Those
farms who are producing only (ingredients for) Gl products are further called Gl farms, (Gl) adopters or treated
farms. Similarly, we could also ask what effect Gls would have had on non-adopters (also called non-Gl farms,
control group or untreated farms) if they had adopted Gls.

If Y} indicates the outcome of person i with adoption of Gls, while Y° represents the outcome of person i without
adoption, the average treatment effect (ATE) is the average change in Y (AY;), so

ATE= E(AY;)=E(Y})-E(Y?). (3.1)

However, both the outcome for Gl farms in case of no Gl adoption and the outcome of

non-Gl farms with adoption are not observed. The goal of impact assessment is, therefore, to estimate a valid
counterfactual that best represents the situation of treated farms if they had not been treated (no Gl uptake)
and vice versa. The average treatment effect on the treated (ATT) can be written as

ATT = E(AY;|T;=1) = E(Y-Y? | Ti=1)

=E(Y}T=1)-E(Y?|T,=1). (3.2)

T;=1 indicates that the farm was indeed treated (Gl adoption), while T;=0 refers to farms that were not treated.
We do not observe E(Y?lTi=1), but we do observe E(Y?lTi=O). Comparing the outcomes of adopters and non-
adopters then leads to

=E(Y}T,=1)- E(Y?|T,=0)
=E(Y}HT=1)-E(Y?|T=1)+E(Y?|T.=1)- E(Y"|T,=0)
= E(Y]-Y? | T,=1)+[E(Y? | T,=1)- E(Y? | T,=0)]

= ATT + Selection Effect.

Bnaive

(3.3)

The selection effect arises if treatment and control group differ even before or without the treatment. In such
cases E(Y?|T,=1) is not equal to E(Y?|T,=0).

3.2 Exogenous programme placement

It is relatively easy to find a valid counterfactual when the treated units are randomly selected into the treated
group, while untreated units are randomly selected into the control group. This can happen purely random by
flipping a coin for each unit. An alternative is that treated units are selected randomly conditional on some
observable characteristics. This is especially common if the treatment or programme is designed to have an
impact on a specific kind or group of units in the sample, e.g. those who are relatively poor or those with less
favourable land (Khandker et al., 2010).
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Pure randomization (PuR)

A counterfactual is easily found when treatment and control group are on average identical except for the
intervention, that means they score similarly with respect to observed and unobserved characteristics and they
are exposed to the same trends. This key assumption is called mean independence (Khandker et al., 2010). With
mean independence, equations (3.4a) and (3.4b) apply:

E(Y}{Ti=1)=E(Y} | T,=0)=E(Y{) (3.4a)
E(Y?|Ti=1)=E(Y?|T,=0)=E(Y?). (3.4b)

Again, the term Y! in equation (3.4a) is the outcome for a farm with treatment and Y} is the outcome for a farm
without treatment. Equations (3.4a) and (3.4b) usually only apply when the impact evaluation is based on an
experimental design. Pure randomization allows to assume that the outcome of Gl adopters would have been
the same as that of non-adopters if both had not received any treatment (no Gl adoption) and vice versa. Then
E(Y}|Ti=1) would be equal to E(Y} |T;=0). Therefore, non-adopters are a valid counterfactual and the selection

effect equals zero, so B equals the ATT.

naive

In such a setting, to estimate B a simple Ordinary Least Squares (OLS) regression can be run. Equation (3.5)

naive
shows such a Random Control Trial (RCT) model for impact evaluation for the case of Gl adoption, where Y, is the
outcome of farm income, a is the mean outcome of farm income for non-adopters (T,=0), a+B is the mean
outcome for Gl adopters (T;=1), and ; is the error term (Khandker et al., 2010). Consequently, B indicates the

treatment effect, which is the difference in mean outcome between adopters and non-adopters.
Yi=a+BT+g; (3.5)

The evaluation of income effects of Gls is, however, based on an observational study instead of an experimental
design. Consequently, pure randomization is not a reasonable assumption in this case. Therefore, model (3.5) is
also called the “naive” impact estimation model. Although the estimated treatment effect is likely to be biased,
this model is useful for testing whether the income of treated and untreated farms differ. However, the potential
difference should not be interpreted as causal effect of Gl adoption.

Partial randomization with common impact (PaRCl)

Next to pure randomization, there are also cases of conditional exogeneity of programme placement. If this
would be true for the case of Gls, farms were randomly assigned to the control or treated group conditional on
some observable characteristics X; (Khandker et al., 2010). Indeed, Gls were introduced to offer an alternative to
cost-minimizing strategies, which was intended to benefit small farms in disadvantaged areas, who have
difficulties to compete with larger and more efficient producers (Hajdukiewicz, 2014). If only those farms adopted
Gls that were intended to use them, it is likely that their average outcome before Gl adoption was not the same
as the average outcome of non-adopters. Rather, E(Y?|Ti=1) < (Y?lTi=O). The average income of the treated
group is expected to be lower than the average income of the control group if none of them adopts Gls.
Controlling for some observables leads to model (3.6), where Y, is the outcome of farm income, aC is the mean
outcome of farm income for non-adopters (T;=0) conditional on the covariates X;, a"-a¢ is the deviation of farm
income for Gl adopters (T;=1) from those of non-adopters conditional on X;, and g; is the error term. This model
assumes that both adopters and non-adopters react similarly with respect to changes in the variables included
in the vector X;. The treatment effect can be estimated by the coefficient of the treatment dummy variable a'-
a® (Khandker et al., 2010).

Yi=at+(a"-0C)T,+BX;+g; (3.6)

Control variables must cover all relevant differences between adopters and non-adopters, so they have the same
potential outcomes conditional on these variables (Duflo et al., 2006). “Controlling for baseline values of
covariates likely to influence or predict the outcome does not affect the expected value of an estimator of [the
treatment effect], but it can reduce its variance” (Duflo et al., 2006, p. 34). In contrast, control variables with
little or any effect on the variation in the outcome reduce degrees of freedom and increase standard errors (Duflo
et al., 2006). Including covariates that are influenced by the treatment leads to biased estimates because part of
the treatment effect is then embraced by the coefficients of these variables. Baseline values ensure that
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covariates are unaffected by treatment (Duflo et al., 2006). Finally, X; can encompass dummies for all categories
that one intends to control for, as well as interactions (Duflo et al., 2006). This estimation technique assumes
that all relevant covariates are observed to solve for selection bias.

Partial randomization with varying impact (PaRVI)

Based on the PaRCl model, we can add another assumption of varying impact of covariates between adopters
and non-adopters. Therefore, another estimation technique is to start with two income equations for the treated
and untreated groups separately. Equation (3.7a) is the model estimated for the sample treated farms (T;=1),
while equation (3.7b) reflects the model used to estimate farm income for the control group (T;=0).
Interpretation is similar to equation (3.5), with uiT and uic being the error terms for the adopters and non-adopters
respectively.

Yi=aT+B X+ if Ti=1,i=1, .., n (3.7a)
YE=aC+BX+uC  if T=0, i=1, ..., n (3.7b)
Multiplying equation (3.7a) by T; and equation (3.7b) by (1-T;) allows to merge both models leading to equation
(3.8):

Yi=aC+(a-a) T+BX+(BT-B) X Ti+e,, (3.8)

where BC refers to the coefficients of non-adopters with respect to the covariates X;, while B'-B represents the
difference between coefficients of adopters and non-adopters (Khandker et al., 2010). The average treatment
effect on the treated (ATT) equals E(Y,|T;=1, Xi)=E[aT-aC+Xi(BT-BC)]. The estimate is consistent if there is no
selection bias apart from the bias corrected for by the covariates, that is if E(uiTIXi, T=t)=E(uiC|Xi,T=t)=O, t={0, 1}
(Khandker et al., 2010; Duflo et al., 2006). While the PaRVI model assumes that coefficients for control variables
vary between the treated and untreated groups of farms, the PaRCl model simply assumes that p'=B°. However,
the more variables one intends to control for and the more continuous variables are intended to be included in
the vector of control variables of the previous models, the more difficult it becomes to form similar treated and
untreated groups that fulfil the assumption of conditional independence (Duflo et al., 2006). Therefore, the PaRClI
and PaRVI models have their limitations when applied to the case of Gls.

3.5 Endogenous self-selection

Estimating a valid counterfactual outcome becomes more difficult when it is not obvious why some units are
treated, and others are not. In the case of Gl adoption, it is not fully clear which factors influence the decision to
adopt or not adopt Gls. It is not exogenously chosen which farms adopt Gls and which farms do not. Therefore,
selection bias is not the result of programme placement. Rather, it is caused by self-selection. It is likely to be
based on individually expected benefits or the expected utility of Gl adoption, which is positive for adopters and
zero or negative for non-adopters. Consequently, application of the previously discussed techniques potentially
leads to biased estimates. What is needed is an estimation technique that corrects for self-selection based on
observed characteristics and/or unobserved characteristics.

Observed self-selection

One possible approach is the use of all observed determinants of treatment to estimate the probability for an
individual to be in the treated group, which is called the propensity score (PS). The impact estimation technique
linked to that is called Propensity Score Matching (PSM). “[O]ne tries to develop a counterfactual or control group
that is as similar to the treatment group as possible in terms of observed characteristics” (Khandker et al., 2010,
p. 54). It has two core assumptions: Conditional independence and common support (Khandker et al., 2010).
Similar to the previous estimation techniques, conditional independence or unconfoundedness assumes that
conditional on the control variables, farms randomly select into the control or treatment group (Verbeek, 2012).
Consequently, the potential outcome of farm income is independent of treatment conditional on the control
variables. For PSM to produce unbiased estimates of treatment effects, the assumption of strongly ignorable
treatment assignment must hold, which means that both Gl application and potential outcomes of farm income
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are independent conditional on the observed variables used as control variables (Shadish & Steiner, 2010). The
control variables need to influence both treatment (Gl adoption) and pre-treatment outcomes (farm income
before/without Gl adoption) (Shadish & Steiner, 2010; Caliendo & Kopeinig, 2008). Variables that only affect the
outcome can be included too, but it is crucial that none of the covariates is affected by treatment (Caliendo &
Kopeinig, 2008). Over-parametrization should be avoided, so adding too many covariates does not improve the
estimation of treatment effects (Caliendo & Kopeinig, 2008). In addition, PSM estimates are only unbiased if
uptake of Gls is solely affected by observed characteristics that can be controlled for. As before, it is a very strong
assumption that no unobservables play a role in Gl adoption.

Propensity scores are estimated by a binary choice (probit) model with adoption (T) as the dependent variables
and several covariates as explanatory variables, which are (theoretically) correlated with adoption and the
outcome. The predicted values of adoption from the selection equation are equal to the propensity score P(x;),
which reflects the probability of Gl uptake conditional on the covariates. These covariates can be summarized in
a vector x;. The PS can be written as

p(x)=Pr{T;=1]x}. (3.9)

McFadden R? and Count R? are indicators for how well the model predicts Gl adoption. The area of common
support is the range of estimated PS of adopters for which non-adopters with same PS exist, so that matches
between adopters and non-adopters can be formed within this range. Balancing tests are used to check whether
treated and untreated groups score similarly with respect to the covariates after matching. There are different
matching techniques to check for the robustness of estimates. For example, given a treated farm with a specific
PS, nearest-neighbour (NN) matching takes the untreated farm with the nearest PS as a match and compares the
expected outcomes for both (Caliendo & Kopeinig, 2008). This can also be done using a specified number of
nearest neighbours, either with or without replacement where non-adopters are (not) allowed to be used several
times for matching. While replacement reduces the bias, but it increases the variance, using more than one
nearest neighbour increases the bias and reduces the variance (Caliendo & Kopeinig, 2008). Next, radius
matching only uses non-adopters for matching that lie within a specified range of PS. This might lead to more
non-adopters not being used for matching, which increases the chance of sampling bias (Khandker et al., 2010).
The variance of estimates also goes up with fewer matches that can be made (Caliendo & Kopeinig, 2008). It is
difficult to define a reasonable tolerance (Caliendo & Kopeinig, 2008). Again, this method can be used with or
without replacement. The advantage of radius matching over caliper matching is that all comparison group
members within the defined tolerance level can be used as match, which “allows for usage of extra (fewer) units
when good matches are (not) available” (Caliendo & Kopeinig, 2008, p. 42). Compared with NN matching,
variance tends to be lower (Caliendo & Kopeinig, 2008). The last example is kernel matching, which uses all non-
adopters as matches for each of the treated farms. Each non-participant is weighted depending on the distance
of its PS compared to the Gl adopter with whom he/she is matched. Since more information is used by this
matching algorithm, the variance of estimates tends to be lower than with NN (Caliendo & Kopeinig, 2008).
However, bias increases when rather bad matches are made.

With PSM, the average treatment effect (ATE) is the “mean difference in outcomes across these two groups”
(Khandker et al., 2010, p. 53). Sampling bias can be a probem if a nonrandom subset of the Gl farms has to be
excluded from the analysis because no matches can be found. According to Khandker et al. (2010), the ATE for
cross-section data within the common support can be written as

1
ATEps= - [Z Y- Z w(i,j)Yicl (3.10)
T

ieT jec
where Ny represents the number of Gl farms i, Y] is the outcome of farm income for Gl farms, Y¢ is the outcome

of farm income for non-GlI farms, and w(i,j) is the weight assigned to the matched non-Gl farms j (Khandker et
al., 2010).

Two main problems can arise when using PSM. First, PSM only corrects for self-selection based on observable
characteristics. In the case of Gl adoption, it is likely that there are selectivity effects due to unobserved
differences between adopters and non-adopters. Second, PSM requires valid matches to exist.
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Unobserved self-selection and heterogenous effects

An alternative technique is the Endogenous Switching Regression (ESR) model. It solves for selectivity effects
caused by observed and unobserved differences between the control and treated group (Di Falco et al., 2011). It
also allows for heterogeneity, that is different impacts of Gl adoption on treated and control group. Like PSM,
the ESR model assumes the adoption decision to be endogenous (Di Falc et al., 2011). For this model, a two-stage
framework is applied. First, a selection equation estimated by a probit model is needed with a dependent variable
that reflects whether the expected benefits of Gl adoption for a farmer are positive or not, and with determinants
of adoption as explanatory variables (Khonje et al., 2015):

T =Z,a+¢; with Ti={ 1if T7>0 (3.11)
0 otherwise

T; is 1 for all farms who expect that they gain from Gl adoption, while it is zero for all other farms. Z; is a vector

which covers variables that influence the adoption decision (Di Falco et al., 2011). It should include a selection

instrument that affects the adoption decision but not farm income (Khonje et al., 2015). A simple falsification

test helps identifying valid instruments. They must be jointly statistically significant in the selection equation, but

jointly statistically insignificant in the outcome equation.

The second stage of this model consists of two outcome regression equations which are estimated by an OLS
regression with selectivity correction (Khonje et al., 2015). Model 3.12a is used for all adopters, while model
3.12b is used for non-adopters, where X;; and Xy are vectors of exogenous covariates, B, and B, are the
respective vectors of parameters, and w;; and wg, are random disturbance terms.

Yi=B, X +wy; if Ti=1 (3.12a)
Yi0=BoXOi+WOi if ;=0 (3.12b)

The error term of equation 3.11 is correlated with the error terms of equations (3.12a) and (3.12b), so the
expected values of wy; and wg; conditional on g; are nonzero. ESR models have been applied in several other
impact assessments in previous research where the mathematical background of the model specification has
been discussed in detail (Di Falco et al., 2011; Khonje et al., 2015; Lokshin & Sajaia, 2004). Full information
maximum likelihood estiamtion is said to be an efficient method to estimate the ESR model, which can be done
by the Stata command movestay. This estimation technique provides four relevant estimates: the expected
outcome of Gl farms with Gl adoption (eq. 3.13a), the expected outcome of non-Gl farms without Gl adoption
(eq. 3.13b), and both counterfactuals, so the expected outcome of Gl farms without Gl adoption (eq. 3.13c) and
the expected outcome of non-Gl farms with Gl adoption (eq. 3.13d). These four cases are summarized in Table
1, with

E(Y}H{Ti=1)= B, Xy+01cAy, (3.13a)
E(Y?|T=0)= B Xoi+OocAq; (3.13b)
E(Y?|Ti=1)= ByXoi+Ooehs, (3.13¢)
E(Y![T=0)= B,X +01cha, (3.13d)

where o,, and oy, denote the covariances of wy; and g and wg; and g;, respectively. If their estimates are
statistically significant, the decision of Gl adoption and farm income are correlated, so the hypothesis of no

sample selectivity bias is rejected. Further, Ay= 242 o= )
oZ) 1-0(Z0)

probability density function and @(.) being the standard normal cumulative density function. The average
treatment effect of Gl adoption for Gl farms is then

with ¢(.) being the standard normal

ATT= E(Y}|T:=1)- E(Y?|T;=1)

(3.14)
= (Bl'BO)X1i+(01£'GOs))\1]-
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Table 1: Conditional expectations and treatment effects ESR model

Decision stage
Adoption No adoption Treatment effects
Gl farms (@) E(Y}|T=1) (© E(Y?|T=1) ATT
Non-Gl farms (d) E(Y}|T;=0) (b) E(Y?|T;=0) ATU
Heterogeneity effects BH1 BHo TH

Source: Di Falco, Veronesi, & Yesuf (2011), p. 837

Note: (a) and (b) are observed, while (c) and (d) are counterfactuals

T;=1 if the farm produces (ingredients for) Gl products, T;=0 if the farm does not use any Gl label

Yi: farm income if farm adopted Gls

Y?2: farm income if farm did not adopt Gls

ATT: treatment effect on the treated (Gl farms)

ATU: treatment effect on the untreated (non-Gl farms)

BH.: effect of base heterogeneity for farms that adopted Gls (T=1), and those who did not adopt Gls (T=0)
TH = (ATT-ATU), i.e. transitional heterogeneity

For non-adopters, the expected average treatment effect is
ATU=E(Y}|T;=0)- E(Y?|T;=0) (3.15)
=(Bl-|30)xm+(015‘005)7\01-

In both equations 3.14 and 3.15, the second term ((.)A) “is the selection term that captures all potential effects
of the differences in unobserved variables” (Khonje et al., 2015).

In addition, effects of base heterogeneity (BH) can be measured. For example, the food quality schemes policy is
intended to help farms with difficulties to compete on the global market, so it is assumed that Gl farms have had
a lower farm income than non-adopters before they started using Gls (BH<0). For adoption, BH is

BH,=E(Y{|T;=1)- E(Y}|T;=0)

(3.16)
=B, (Xgi-X01)+01 (Agi-Agi)-
For non-adoption, BH is equal to
BHo= E(Y?|T;=1)- E(Y?|T;=0) (3.17)

=By (X1i-X01)+00e (A1i-Agy)-

Finally, the transitional heterogeneity (TH) indicates whether the effect of Gl adoption is the same for both
adopters and non-adopters (if they would adopt Gls).

TH = ATT-ATU (3.18)

If it is positive, non-adopters would not gain as much from adoption as the actual adopters do.
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4. Empirical model

This chapter specifies the model that is used to estimate the impact of Gls on farm income. Section 4.1 introduces
to the data that is used for the impact assessment. Section 4.2 deals with the choice of a proper estimation
technique. Further, it includes the selection of variables. Therefore, the theoretical background on determinants
of farm income and Gl adoption as discussed in chapter 2 is linked with the information provided by the data
sources. Section 4.3 presents the descriptive statistics which show how Gl adopters and non-adopters differ with
respect to the variables of interest.

4.1 Data source

According to the DOOR database of the European Commission (2018), there are 635 registered PDO products
(including those in non-EU countries), 737 registered PGl products and 58 TSG products. Within the EU, Italy has
the most registered PDO, PGl or TSG products with a total of 296 registrations, followed by France with 247
registrations and Spain with 195 registrations. An overview of all registrations for all 28 EU member states of the
EU is provided in appendix I.

For this research, the EU provided data from the Farm Accountancy Data Network (FADN) containing information
about individual farms across the 28 member states of the European Union in the years 2014 and 2015. In
addition, a dataset that was prepared by van de Pol (2017) and which is mainly based on EUROSTAT data adds
some characteristics at NUTS2 and national level (EU27, excluding Croatia). The FADN sample is taken as a basis
for this research. FADN uses three criteria for stratification to ensure that specific categories of farms are
sufficiently represented in the sample: region, economic size and type of farming (European Commission, 2016).
This ensures that the FADN sample covers the heterogeneity of farms in the European Union (EU28). Since the
dataset of van de Pol does not contain information about Croatia, | excluded Croatia from the sample for this
impact evaluation. The relevant question about Gl application was not asked in France, Germany, Lithuania,
Luxembourg, Latvia, and Slovakia. These countries are excluded from the impact evaluation too. In Ireland the
guestion was only asked in 2015. Therefore, it cannot be considered in the impact evaluation for 2014. There are
also some NUTS2 regions within the remaining EU member states where none of the farms has responded to the
Gl question. Consequently, impact evaluation can also not be representative for these regions: BE21, BE22, BE23,
BE24, BE25, AT32, AT33, AT34, and all NUTS2 regions in the UK except for Northern Ireland.

Overall, this leads to the exclusion of about 30% of all farms from the sample, both for 2014 and 2015. The main
reason for that is missing data with respect to the Gl question. Croatia would have added 13 Gl farms in both
2014 and 2015. 1% of the farms that are left in the dataset (called sample set 2 in appendix 1) are Gl farms, 90%
are non-Gl farms, and 4% produce some Gl ingredients or products both in 2014 and 2015. The remaining 5% of
the farms left in the dataset have missing data (code number 0), but different from the above-mentioned
countries and NUTS2 regions, the data for these farms seems to be missing randomly. As | only want to compare
Gl farms with non-Gl farms, the remaining farms with missing data on Gl uptake and those with some Gl
production (code number 3) are excluded. This leads to 52133 farms left in the 2014 sample and 52606 farms
left in the 2015 sample, with 1% GI farms and 99% non-Gl farms respectively. | refer to this sample as sample set
3. Appendix Il shows how the FADN dataset is modified step by step to end up with the samples used for the
impact assessment.

The last step is categorising farms into different farm types and comparing only farms of similar farm type. It
prevents comparing farms that are exposed to totally different value chains, production processes (and related
use of inputs and costs) and average output prices. Finding a reasonable counterfactual for GI farms requires
comparing them with farms of a similar farm type. Figure 3 shows all Gl farms within the EU categorized by farm
type in 2014 and 2015. It is based on the sample excluding Croatia and the countries and NUTS2 regions listed
above, with Ireland being part of the reduced dataset in 2015, but not in 2014. The statistical power of impact
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Gl farms in 2014

= Specialist quality wine

= Specialist olives
Specialist sheep

m Specialist cattle - rearing and fattening
Various permanent crops combined

m Specialist fruits (not citrus, tropical and

subtropical fruits and nuts)
m Specialist cereals (other than rice), oilseed, protein

crops
other

Gl farmsin 2015

= Specialist quality wine

= Specialist olives

12 73
17 -
™ Specialist sheep
L m Specialist cattle - rearing and fattening
V m Specialist fruits (not citrus, tropical and subtropical
fruits and nuts)
39 Various permanent crops combined

m Specialist cereals (other than rice), oilseed, protein

crops
other

Source: Author’s sketch based on FADN sample set 33

Figure 3: Prominent farm types among Gl farms

assessment decreases with smaller sample size (Nuzzo, 2016). A smaller sample makes it harder to measure
significant impacts and not making a type Il error (not rejecting the hypothesis of no impact, although there is
one), especially if the effect is very small. Consequently, conducting an impact evaluation only makes sense for
farm types with a reasonable number of Gl farms. Figure 3 makes clear that quality wine specialists are most
useful for the impact evaluation. In 2014, there were 300 Gl and 937 non-Gl quality wine specialists. In 2015,
there were 308 Gl and 912 non-Gl quality wine specialists. The second largest Gl farm group is found among
olives specialists. In 2014, there were 55 Gl and 981 non-Gl olives specialists. One year later, 58 olives specialists
were Gl farms, while 934 did not use any Gl labels.

4.2 Model specification

Chapter 3 presented different popular estimation techniques for impact assessment. In the case of Gl adoption,
we can neither speak of pure randomization nor about partial randomization. Gl adoption is endogenous as farms

3 See appendix IIl. SET 3 = all Gl farms and non-Gl farms from the FADN dataset, excluding HRV, FRA, DEU, LTU, LUX, LVA, SVK, IRE in
2014 (IRE isincluded in 2015), NUTS2 regions BE21, BE22, BE23, BE24, BE25, AT32, AT33, AT34, and all NUTS2 regions of the UK except
for UKNO.
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select themselves into the group of treated farms. Therefore, PSM or ESR techniques are expected to be
appropriate estimation techniques. As the two datasets do not provide any information about personal
characteristics of the farmer or the workers on the farms, it is likely that self-selection occurs not only based on
observables, but also based on unobserved characteristics such as age, education and attitudes (e.g. towards
own efforts to create a marketing strategy via product differentiation). Consequently, PSM is expected to give
biased estimates, while an ESR model can account for selectivity based on both observed and unobserved
characteristics. Hence, the impact of Gls for food products on farm income is estimated by an ESR model using
the movestay command with Stata.

For the specification of the ESR model there are four categories of variables needed. First, the outcome variable
has to be specified, which indicates the farm income. Next, a variable is needed that indicates whether a farm is
only producing (ingredients for) Gl products. Third, exogenous control variables that affect the outcome variable
and the adoption decision must be chosen. Finally, instrumental variables must be found that affect the decision
to adopt Gls, but not farm income itself. The following paragraphs will specify the variables chosen from the two
datasets. A list of all selected variables including their abbreviations and descriptions is provided in appendix III.

Income variable

| chose farm net income (FNI) to be the indictor of farm income for which treatment effects are measured. It
reflects the renumeration to fixed factors of production and the farmer’s risks in the accounting year (loss/profit)
in Euro. In the FADN dataset, FNI is calculated as indicated by equation (4.1), where total intermediate
consumption equals the sum of specific costs and farming overheads, while external factors cover wages, rent
and interest paid.

FNI = Total output® — Total intermediate consumption + Balance current subsidies and taxes — (4.1)
Depreciation + Balance subsidies and taxes on investments — Total external factors '

Treatment variable

The FADN dataset included a variable of Gl uptake. However, it was different for both years. In 2014, farmers
were asked whether they are involved in the production of (ingredients for) PDO and/or PGI products. This
question was answered by “no PDO/PGI production” (code number 1), “only PDI/PGI production” (code number
2) or “some PDO/PGI production” (code number 3). In 2015, TSG and mountain products were added to the list.
Therefore, the results of the impact assessment of both years cannot be compared as it measures the impact of
different Gls. | conducted the impact evaluation for both years separately. Atreatment variable T was generated
with T=1 for Gl adopters (code number 2) and T=0 for the remaining farms. | only compare farms that only use
Gls (code number 2) with farms that do not use any Gls at all (code number 1). The category “some Gl products”
is too imprecise to guarantee that the impact estimates are unbiased. The given dataset only allowed estimating
joint effects. It was not possible to estimate treatment effects for each Gl scheme separately as the Gl variable
in both 2014 and 2015 encompasses several Gls. This poses a possible risk of downward biased estimates in case
that positive income effects for one Gl label are cancelled out by negative (or less positive) impacts of other Gl
labels.

Control variables

The following variables were used as covariates: total output (OUT), specific costs (SPC), overheads (OVER), total
utilised agricultural area (UAA), paid labour in annual working units (PL) and unpaid labour in annual working
units (UL), liabilities (LIA), external factors (EXT), machinery (MACH), the Gross Domestic Product per capita in
the NUTS2 region (GDPC), farm household consumption (FHC), as well as dummies for organic production
(ORG=1 if the holding applies only organic farming), less favoured area (LFA=1 if the majority of the holding is
situated in LFA) and mountain area (MA=1 if the majority of the holding is situated in MA).

As discussed in chapter 2, profits (farm net income) can be said to mainly depend on revenues and costs. Farm
revenues are equal to production volumes times the farm gate price. In the FADN dataset, revenues are called
total output, reflected by the variable OUT. Production costs are affected by specific costs for the production of

4 According to FADN, total output is equal to the production volume times farm gate prices, which is the same as revenues. In this
thesis, | will stick to the FADN wording.
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crops or animal products (SPC), overhead costs (OVER), as well as costs for labour, land and capital (summarized
by the variable EXT). The latter is also affected by the amount of labour, land® and capital that is used. Therefore,
UL, PL, UAA and LIA are added. The Gross Domestic Product per capita (GDPC) is an indicator for the elasticity of
demand. Consumers with higher income are able to spend more money on luxury products and added value such
as a specific origin of a product. In contrast, farmers who sell their products in an environment with relatively
poor households are expected to have less market power or opportunities to increase their profit margins.
Output prices for organic products are usually higher (Nieberg & Offerman, 2003). Hence, ORG is added as control
variable to the outcome equation. Finally, less favoured or mountain area and the amount of machinery used on
the farm are indicators for the competitiveness and production efficiency of a farm. Consequently, LFA, MA and
MACH are added to the list of control variables. FHC is added because households with relatively high
consumption of own products can sell less products on the market. Expected benefits of Gl adoption also
decrease with lower production volumes sold on the market.

Selection instruments

Selection instruments affect the decision to adopt Gls, but they do not have any effect on the outcome variable
FNI of non-adopters (Di Falco et al., 2011). Since Gls are intended to increase profit margins and farm income, it
is likely that determinants of farm income influence the decision to adopt Gls. For example, if UAA had a positive
impact on FNI, farms with less UAA would have less FNI. Consequently, they need to seek higher profit margins,
e.g. by producing (ingredients for) Gl products, which increases their probability to adopt Gls. However, UAA
would not be a valid instrument in this case as it affects both FNI and the adoption decision.

Information about the farms’ FNI in the past would not affect current FNI, but it would affect the decision to
adopt Gls. However, such a lagged variable is not part of the dataset. According to the European Commission
(2011), the economic size of the farm is the best indicator for “small” or disadvantaged farms that are intended
to benefit from Gls. However, economic size turned out to be no valid instrument, also when using it in
combination with other variables. Several combinations of potential instruments have been tested to find
variables that are not jointly significant in the outcome equation of non-adopters but jointly significant in the
selection equation.

Transportation costs are often neglected in economic theories (like trade theory), so differences in the number
of kilometres of motorway per 1000 km? (MKM) and its square (MKMZ2) are expected to have no or a minor effect
on FNI. However, according to Van de Pol (2017), a certain minimum of MKM is required for farms to be
interested in adopting Gls, whereas too much MKM (high MKM2) reduces the probability of uptake. The reason
for this is that farms with excellent access to markets and relatively cheap transport costs have a competitive
advantage and can better compete on the bulk market (without product differentiation via Gls or other means).
Indeed, MKM and MKM2 fulfil the requirements for valid instruments for the sub-samples of quality wine
specialists (both 2014 and 2015) and olives specialists in 2014 (see appendix IV for the test of joint significance).
The expected correlations between all the above-mentioned variables of interest and both FNI and Gl adoption
are summarised in Table 2. Based on equations 3.11, 3.12a and 3.12b, the following models are specified for the
impact assessment:

Outcome equation for Gl farms:
FNI'=B+B] OUT+B]SPC+BIOVER+B, UL+B.PL+B; UAA+B] LIA+BLEXT+B]LFA+B] MA+

B1,ORG +B],MACH+B],GDPC+B], FHC+w/, (4.22)
Outcome equation for non-Gl farms:

FNI°=B[+B] OUT+B]SPC+BLOVER+B, UL+BLPL+B] UAA+B] LIA+BIEXT+B] LFA+B] MA+ (4.2b)
B1,ORG+B;, MACH+B],GDPC+P],FHC+wy, '
Selection equation:

T=ag+a, OUT+a,SPC+a3OVER+a, UL+asPL+agUAA+a LIA+0G EXT+agLFA+01o MA+ 4.3)

a3,0RG+ay, MACH+a;3GDPC+B], FHC + ays MKM+a,sMKM2+g;

5 Since the impact assessment is only done for quality wine specialists and olives specialists, livestock does not play any role.

20



Table 2: Expected correlation of control variables and FNI and Gl adoption respectively

Relation to Gl adoption

Relation to FNI

Total output (OUT)

Total specific cost
(SPC)

Overheads (OVER)

Total utilised
agricultural area per
holding (UAA)

Paid labour input (PL)
in annual working
units (AWU)

Unpaid labour input
(UL) in AWU

Liabilities incl. long-,
medium- and short-
term loans (LIA)

External factors (EXT)

Dummy for mainly
less favoured area
(LFA)

Dummy for mainly
mountain area (MA)

Dummy for applying
only organic
production (ORG)

Machinery (MACH)

Gross Domestic
Product per
inhabitant in the
region of the holding
(GDPC)

Farm household
consumption (FHC)

Km of motorway per
1000 km? (MKM)

Square of MKM
(MKM2)

Higher output, higher productivity (volumes)
and/or more bargaining power (prices), so less
need to adopt Gls

Higher specific costs, more Gl adoption (farm
needs to generate higher output prices)

Higher overheads, more Gl adoption (farm needs
to generate higher output prices)

less UAA, more Gl adoption (Hajdukiewicz, 2014)

More PL, higher Gl adoption if labour costs
increase relatively more than productivity;
otherwise more PL leads to less Gl adoption

More UL, more Gl adoption (Meraner et al., 2015)

Higher LIA, more Gl adoption (farm needs to
generate higher output prices)

Higher cost for labour, capital and land, more Gl
adoption (farm needs to generate higher output
prices)

LFA increases attractiveness of Gls as a mean to
increase FNI by product differentiation (Van de Pol,
2017)

Mountain area increases the attractiveness of Gls
to differentiate products (Van de Pol, 2017)

Less Gl adoption among organic farms; relatively
low marginal benefit; or more Gl application
among organic farms because these farms have
difficulties to compete with large, conventional
farms and/or because these farms are more open-
minded towards product differentiation and farm
diversification

Less MACH, higher Gl adoption (product
differentiation to be competitive)

Higher GDPC, more Gl adoption (Van de Pol, 2017);
according to Beckmann and Schimmelpfennig
(2015) more uptake in poorer regions (farms need
to generate higher output prices)

Higher FHC of own products, less Gl application
(Van de Pol, 2017)

The more MKM, the more Gl application; Some
basic access to infrastructure is required for farms
to apply Gls (Van de Pol, 2017)

The larger MKM2, the less Gl application (more Gl
application in relatively remote areas) (Meraner et
al., 2015; van de Pol, 2017)
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Higher output, higher FNI

Higher specific costs, lower
FNI

Higher overheads, lower FNI

More UAA, higher FNI

More PL, lower FNI

More UL, higher FNI

Higher LIA, lower income

Higher EXT, lower FNI

LFA, lower FNI for non-Gl
farms, but higher FNI for Gl
farms

Mountain area, lower FNI
(higher production cost)

Organic production, higher

FNI (Crowder & Reganold,
2015)

More MACH, higher FNI

Higher GDPC, higher FNI
(willingness and ability to pay
for high quality food is
expected to be higher)

Higher FHC, lower FNI
(European Commission, 2011)

More MKM, higher FNI; but
expected to be insignificant
(used as instrument)

More MKM2, higher FNI; but
expected to be insignificant
(used as instrument)



4.3 Descriptive statistics

Appendix V presents four tables, which show the mean of quality wine specialists and olives specialists for both
2014 and 2015 with respect to the variables of interest. LFA and MA were not considered in 2015 as the question
about LFA and MA has not been answered by any farm in 2015.

What is most interesting with respect to the assessment of income effects of Gl labels is to what extent adopters
and non-adopters differ. Therefore, Table 3 summarizes these differences, which are calculated by taking the
mean of non-adopters less the mean of adopters. Among olives specialists, adopters have a higher average FNI
than non-adopters. If adoption would be purely random, the differences of 4187 EUR in 2014 and 827 EUR in
2015 could be interpreted as effect of Gl adoption. However, as outlined in chapter 3, farmers select themselves
into the schemes. In addition, the differences are not significant. For quality wine specialists, the differences are
positive and significant, which means that non-adopters earn higher FNI than Gl adopters. Again, it would be
naive to immediately conclude that Gl farms would be better off if they stopped using Gl labels.

For the other variables, no clear patterns can be observed. SPC, UAA, LFA and GDPC are the only variables where
differences in all four samples have the same sign, although not all of them are significant. In other cases, signs
change either between years (such as with UL, PL or FHC) or between farm types (such as in the case of LIA, EXT,
ORG, MA, MACH, MKM and MKM2). On average, Gl adopters in these four samples tend to have lower SPC, less
UAA and more LFA than non-adopters, and they live in regions which tend to have lower GDPC. While Gl wine
farms are located in areas with significantly higher MKM and MKM2 than their non-Gl colleagues, Gl olives
specialists live in NUTS2 regions with less MKM and MKM2 than their non-Gl colleagues, although the coefficient
for MKM2 is not significant. In 2015, an average Gl wine farm had one paid AWU more and about five unpaid
AWU less than a non-Gl wine farm, whereas it has had nearly one paid AWU more than non-adopters in 2014.
MA was lower for Gl olive farms than for non-Gl olive farms. The monetary value of machinery was significantly
higher for Gl wine farms and significantly lower for Gl olive farms in contrast to their non-Gl colleagues.

Table 3: Differences between non-adopters and adopters

S;?e‘::?:g t\sNZIr(]Ji 4 Quality Wzlgiss pecialists Olives specialists 2014  Olives specialists 2015

FNI 28314.93*** 23437.85** -4186.59 -827.17
ouT 36717.01* 20296.75 -668.96 9415.79
SPC 11247.83 3332.08 1755.08 4435.97**
OVER 219.01 -421.95 1511.12 3458.24
UAA 4.84** 0.03 1.31 7.13
UL 0.06* -1.08*** -0.09* -0.01

PL -0.85*** 5.01%* 0.09 0.37*

LIA -25111.22%** -11346.12 3279.99 4959.28
EXT -1948.93 -3955.00 2845.52 6491.52*
ORG -0.02** -0.01 0.02 0.08**
LFA -0.003 - -0.17*** -
MA -0.01 - 0.10* -
GDPC 3.14%** 2.95%** 0.55 0.36
MACH -17683.87*** -16756.01*** 7109.89%* 8602.09**
FHC 32.21 -17.14 262.61%* -61.07
MKM -4, 79*** -3.77%** 3.16** 6.21***
MKM2 -444 87*** -362.51%** 87.01 138.70

Note: Difference = mean(non-adopters) - mean(adopters); *Significant at 10% level; **Significant at 5% level; ***Significant at

1% level.
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5. Results

This chapter reports the estimated results for the chosen model. Further, it discusses the reliability and
robustness of estimated income effects. For this purpose, it also compares results of the endogenous switching
regression model to those of other estimation techniques that were outlined in chapter 3.

Results of the endogenous switching regression estimated by full information maximum likelihood are
summarised in Table 4. The Stata command movestay was used to estimate the ESR model. The first column
presents the estimates of the selection equation (4.3). It is estimated by a probit function with Gl adoption (T)
being the dependent variable and all the other variables discussed in chapter 4 (including instruments) being
explanatory variables. The second and third column report the estimates of the outcome equations for adopters
(4.2a) and non-adopters (4.2b) respectively. These models are estimated by an OLS regression with farm net
income (FNI) being the dependent variable. Here, explanatory variables do not encompass the chosen
instruments. No results were found for wine specialists and olives specialists in the year 2015°. The original Stata
output of the ESR is shown in appendix VI.

First, | will look at the estimated selection equation. According to the reported estimates for wine specialists in
2014, farms are more likely to use Gls the more overheads, paid labour and liabilities, and the less output, land
and farm household consumption they have. This is in line with my initial expectations. For mountain area, the
estimated coefficient is positive as expected, but not significant. | expected MACH to have a positive influence
on the efficiency and competitiveness of a farm, which | assumed to be negatively correlated with Gl adoption.
However, the probability to adopt Gls also seems to be higher for farms with more machinery. The coefficients
for specific and external costs are negative (although not significant), whereas they were expected to be positive.
Organic production seems to positively affect Gl adoption, while welfare in the NUTS2 region (indicated by GDPC)
decreases the probability of Gl uptake. The latter is in line with what Beckmann and Schimmelpfennig (2015)
argue. MKM and MKM?2 are jointly significant as shown in appendix IV. Both coefficients are positive, although
higher MKM2 was expected to decrease the probability of adoption.

Olives specialists in 2014 were more likely to use Gls the more paid labour and LFA they declared to have. The
same seems to apply to land and output, which is counterintuitive, as farms with higher output theoretically face
less pressure to increase their revenue. However, farms with larger output (e.g. due to higher input of land) also
benefit more from gains in farm gate prices than farms with small production volumes. Gl adoption and
certification might also be relatively expensive and riskier for smaller farms with less output. Specific costs,
overheads and costs for labour, land and capital (EXT) seem to have a negative effect on Gl adoption, which is
also not in line with what | expected. The more machinery a farm used and the more of its own products it
consumed, the less likely Gl adoption. As expected, the coefficient for the organic production dummy is negative
and the coefficients for unpaid labour, liabilities and mountain area are positive, although none of them is
significant. Again, MKM and MKM2 are jointly significant, although their coefficients have opposite signs than
expected (negative for MKM and positive for MKM2). This is not in line with findings of Van de Pol (2017) who
concluded that some basic level of infrastructure is needed to ensure access to the market, while too much
infrastructure tends to decreases expected benefits from Gl adoption.

The next step is to look at estimated income effects of Gl adoption. Column (2) and (3) report the estimates of
the outcome equations (4.2a) and (4.2b) with FNI being the dependent variable. Given the result of the
likelihood-ratio test for joint independence of the three equations, the outcome equations of adopters and non-
adopters are significantly different. Heterogenous effects occur when treated and control group are differently
affected by control variables. For example, for both samples, paid labour had a significantly negative effect on
FNI for adopters and a significantly positive effect on FNI for non-adopters (see Table 4). Consequently, any kind

6 | stopped Stata from running the movestay command when no results were found after 3000 iterations. The movestay command
was very sensitive to the choice of variables. Adding more or dropping specific explanatory variables as well as changing the
instruments (although they were not valid) enabled Stata to report estimates. However, | stuck to the theoretical model presented in
chapter 4.
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Table 4: Endogenous switching regression results

Quality wine specialists 2014

(1) (2) 3)

T=1 T=0
Dep. Variable T FNI FNI
OUT | -2.4e-06*** (5.5e-07) 1.031*** (0.014) 0.976*** (0.005)
SPC -3.7e-06  (2.4e-06) -0.670*** (0.094) -0.931*** (0.006)
OVER 8.9e-06***  (3.1e-06) -1.662%** (0.091) -0.903*** (0.030)
uL -0.016 (0.073) -868.921 (2248.921) -677.855 (901.398)
PL 0.084%** (0.021) -3775.723%**  (495.182) 1549.671***  (274.235)
UAA -0.015%** (0.002) 337.328%** (58.481) 3.523 (25.512)
LIA 1.4e-06***  (5.0e-07) -0.048*** (0.013) 0.002 (0.008)
EXT -3.4e-06  (2.7e-06) -0.887*** (0.059) -1.320%*** (0.029)
LFA -0.019 (0.103) -606.249  (3058.379) 654.874 (1496.878)
MA 0.125 (0.102) 1173.752 (3312.389) 2168.352  (1328.234)
ORG 0.591** (0.239) 49.598 (6372.195) 2877.903 (3661.693)
MACH 4.5e-06***  (1.1e-06) -0.082%*** (0.018) -0.107*** (0.014)
GDPC -0.058*** (0.009) -364.639 (251.417) -600.935%** (107.381)
FHC -1.8e-04**  (7.9e-05) 5.119** (2.211) -0.714 (1.028)
MKM 0.003 (0.007)
MKM2 2.0e-04**  (8.9e-05)
const. 0.669*** (0.216) 24539.970***  (5994.594) 20010.59***  (2873.082)
o; 23269.65*%*  (1529.517) 16722.97** (465.848)
p; -0.7083713** (0.065) 0.8210964** (0.027)
N 1237 300 937
Olives specialists 2014
(1) (2) (3)
T=1 T=0
Dep. var. T FNI FNI
ouT 8.9e-06***  (2.3e-06) 1.156*** (0.040) 1.061*** (0.021)
SPC -6.3e-05**  (2.9e-05) -0.639* (0.332) -0.727%*** (0.106)
OVER -2.2e-05* (1.2e-05) -0.744%*** (0.255) -1.672%** (0.082)
UL 0.084 (0.139) 1646.588 (1985.197) 3816.295**  (1582.966)
PL 1.916*** (0.371) -18537.020***  (7135.293) 12587.280***  (1568.462)
UAA 0.004 (0.004) -13.599 (41.860) 326.040*** (37.387)
LIA 2.8e-06 (2.1e-06) -0.149 (0.095) -0.027** (0.013)
EXT | -2.0e-04***  (3.0e-05) 0.025 (0.627) -1.166*** (0.077)
LFA 0.306* (0.166) -693.197 (2307.963) 93.734  (1950.510)
MA 0.169 (0.189) 1834.965 (2441.849) 2177.679 (1809.565)
ORG -0.094 (0.186) 4328.610* (2510.138) 927.272 (2124.726)
MACH -7.5e-06**  (3.5e-06) -0.142%** (0.055) -0.070*** (0.026)
GDPC -0.011 (0.022) 426.178 (372.9314) -455.142** (187.062)
FHC | -3.9e-04*** (1.2e-04) -2.637 (1.966) -2.121%** (0.832)
MKM -0.016* (0.009)
MKM2 1.4e-04 (1.0e-04)
const. -0.250 (0.216) -6551.09 (7139.163) 6985.474*  (4048.694)
o; 5113.386** (598.425) 22406.59** (643.143)
P, -0.1308662 (0.618) 0.949151%** (0.047)
N 1036 55 981

Note: Stata command movestay FNI OUT SPC OVER UL PL UAA LIA EXT LFA MA ORG MACH GDPC FHC, select(T=MKM MKM2) was
used. Standard errors in parentheses. o; denotes the square root of the variance of the error terms wy; and wg; in the outcome
equation (4.2a) and (4.2b), respectively; p, indicates the correlation coefficient between the error term of the selection equation
(4.41) and the error term of the outcome equations (4.2a) and (4.2b), respectively. *Significant at 10% level; **Significant at 5%
level; ***Significant at 1% level.
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of model that assumes common impacts (such as the PaRCl model described in chapter 3) is likely to give biased
estimates because there is heterogeneity in the sample.

Again, | first look at wine specialists in 2014. FNI tends to be higher the more output and land the farm has. In
contrast, it decreases with increasing specific costs, overheads and costs for labour, land and capital (EXT). This
is in line with initial predictions from economic theory. Overheads seem to play a more important (negative) role
for Gl farms, whereas the coefficient of external costs is larger for non-adopters. Paid labour has a significantly
negative marginal effect of -3776 EUR on FNI of Gl farms. For non-adopters, it has a significant marginal effect of
+1550 EUR. It seems that paid labour is less productive on Gl farms. The coefficients of unpaid labour are nearly
the same for treated and untreated farms, although they are not significant. Interestingly, their sign is also
negative, which means that the use of unpaid inputs tends to decrease FNI. Land does not have a significant
impact on farm income of non-adopters. Even the coefficient is very low. For Gl farms, however, each hectare of
land increases farm income by about 337 EUR. In contradiction to its expected effect, machinery turns out to
negatively influence FNI. Further, liabilities decrease FNI of adopters, whereas GDP per inhabitant in the NUTS2
region decreases FNI of non-adopters. Further, consumption of own products by Gl farms is said to have a
positive impact, which is not in line with initial predictions based on economic theory. T-statistics for LFA, MA
and ORG are too low to show significant estimates. However, it is interesting that LFA is estimated to be negative
for Gl adopters and positive for non-adopters.

The latter also applies to olives specialists in 2014. Like in the case of wine specialists, and in accordance with my
expectations, higher output increases FNI, whereas an increase in specific costs and/or overheads decreases FNI
of both treated and untreated farms. The coefficient of unpaid labour is only significantly positive for untreated
farms. Same applies to land, where FNI of Gl farms tends to be even lower, the more land is cultivated. However,
this negative coefficient is not significant. Liabilities, external costs and farm household consumption are
negatively correlated with FNI, but only significant for non-adopters. Machinery has a negative impact for both
treated and control group, although | predicted it to be positively correlated with FNI. Higher GDP per inhabitant
seems to significantly decrease farm net income of non-adopters, while the coefficient for adopters is nearly of
the same magnitude but positive (although not significant). This could be linked to the willingness (and ability)
to pay for quality products with Gl labels (Van de Pol, 2017). LFA and MA do not have any significant effect. One
last and very striking point to mention is the effect of paid labour. For treated farms, adding one paid AWU
decreases farm net income by -18537 EUR. For untreated farms, the effect is +12587 EUR. Both coefficients are
significant at 1% level. A similar pattern can be observed for wine specialists, but the difference in magnitude is
much larger in the case of olives specialists.

Table 4 also reports estimates for rho1 (p, for GI farms) and rhoz (p, for non-GlI farms), which are correlation
coefficients between the error term of the selection equation (4.3) and the error terms of the outcome equations
(4.2a) and (4.2b) respectively. If they are significant, there is a problem of unobserved self-selection that would
cause other estimation techniques to generate biased estimates. Indeed, rho: is significantly positive for wine
specialists and olives specialists in 2014. This suggests that non-adopters earn less than a random farm would
have earned when not applying Gls (Lokshin & Sajaia, 2004). Rho1 is only significantly negative for wine
specialists. According to Lokshin and Sajaia (2004), it indicates that Gl wine specialists earn higher FNI than a
random farm from the wine sample would earn when adopting Gls. An insignificant rho means that the respective
group (treated or untreated) does not earn more or less than a random farm would earn with the adoption
status.

Finally, Table 5 presents the estimated treatment effects for treated (ATT) and untreated farms (ATU). The
estimated sample means of treated (E(Yi1|Ti=1)) and untreated farms (E(Y?|Ti=0)) are close to the true sample
means. For quality wine specialists in 2014, farm net income was 20774 EUR (ESR estimate is 20375 EUR) for
treated farms and 49089 EUR (ESR estimate is 48201 EUR) for untreated farms. Counterfactuals were estimated
to be 41678 EUR for treated farms if they had not used Gls, and 82192 for untreated farms if they had used Gls.
This leads to an estimated treatment effect for treated farms of -21303 EUR. Such a significantly negative ATT is
counterintuitive. It is rather unlikely that farms adopt food quality schemes such as Gls if they lead to such a
decrease in farm net income. A slightly negative effect might be expected for the first year(s) after the adoption
of Gls if investments have to be made. However, a 50% decrease in farm income due to Gl adoption is unlikely
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Table 5: Income effects of Gls based on the ESR’

Quality wine specialists 2014

Decision stage

Adoption No adoption Treatment effects
T 0|71 =
6l farms (a) E(Y}|T=1) (©) E(Y?|Ti=1) ATT
=20374.75 =41677.94 =-21303.19
1T = 0|7 -
I — (d) E(Y}|T,=0) (b) E(Y?|T;=0) ATU
=82192.13 =48201.48 =33990.65
Heterogeneity effects BH1=-61817.38 BHo=-6523.54 TH =-55293.84

Olives specialists 2014

Decision stage

Adoption No adoption Treatment effects
T 0|71 -
Gl farms (a) E(Y}|Ti=1) (©) E(Y?|Ti=1) ATT
=27563.52 =70759.95 =-43196.43
1T 0|7 =
I — (d) E(Y}|T,=0) (b) E(Y?|T;=0) ATU
=22453.74 =20686.36 =1767.38
Heterogeneity effects BH1=5109.78 BHo=50073.59 TH =-44963.81

Format based on: Di Falco et al. (2011), p. 837

Note: (a) and (b) are observed, while (c) and (d) are counterfactuals

T;=1if the farm produces (ingredients for) Gl products, T;=0 if the farm does not use any Gl label

Y!: farm income if farm adopted Gls

Y2: farm income if farm did not adopt Gls

TT: treatment effect on the treated (Gl farms)

TU: treatment effect on the untreated (non-Gl farms)

BH;: effect of base heterogeneity for farms that adopted Gls (T=1), and those who did not adopt Gls (T=0)
TH = (TT-TU), i.e. transitional heterogeneity

and would stop farms from producing (ingredients for) Gl products. In contrast, the ATU is estimated to be
positive. According to the results, non-adopters would earn about 34000 EUR more if they would use Gls. This
would be a significant increase in farm net income, which would convince non-adopters to start using Gls unless
market entry is not restricted, or additional Gl products would not lead to an overall decrease in price premiumes.
According to the authors of the movestay Stata command (Lokshin & Sajaia, 2004), the significant rho1 and rho2
for the sample of quality wine specialists indicate, the average income of non-adopters is lower compared to a
random farm given that it does not apply Gls, whereas adopters earn more than a random farm would earn if it
applied Gls. The estimates, however, suggest that non-adopters always earn more than adopters.

For olives specialists in 2014, the true sample mean of FNI was 27564 EUR for adopters and 23377 EUR for non-
adopters. The ESR model estimated these parameters to be 27564 EUR and 20686 EUR respectively. According
to the ESR results, Gl olives specialists would have earned 70760 EUR if they had not used Gls, which is 43196
EUR more than they effectively earned and 50074 EUR more than FNI of true non-adopters. Here, the
interpretation of rhos is in line with the estimated figures. In contrast, untreated olives specialists would have
earned 22454 EUR if they had adopted Gls, which is 1767 EUR more than they in fact earned. If all olives
specialists would use Gls, initial adopters would earn about 5110 EUR more than the initial control group.

To sum up, the results indicate that both unobserved self-selection and heterogeneous effects between treated
and control group do play a role. Both can be accounted for by the ESR model. Therefore, ESR seems to be the
most promising estimation technique compared to the other techniques presented in chapter 3. However, it is
not realistic that Gl adopters accept such a decline in income caused by the adoption of Gls, while non-adopters
do not immediately start using Gls if their income is estimated to increase (especially for wine farms). To get at
least few significant coefficients and income effects, | did not use robust standard errors, although this would
give more reliable results in terms of the significance of estimates. Itis also important to realise that the estimates

7 Stata command movestay FNI OUT SPC OVER UL PL UAA LIA EXT LFA MA ORG MACH GDPC FHC, select(T=MKM MKM2) was used. For
2015, LFA and MA had to be excluded because of missing data. No results were found for 2015. | stopped when no results were found
after 3000 iterations. The complete Stata output is presented in appendix VI.
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for 2014 refer to the joint effect of PDO and PGl labels. The reported ESR results do not provide any information
about the effect of TSG and mountain product labels. The next paragraph will discuss several results of impact
assessments based on alternative estimation techniques to show how sensitive estimates are to the chosen
model and estimation technique.

Robustness of the impact estimates

As outlined in chapter 3, different estimation techniques can be used to estimate effects of specific programmes
or policies. Appendix VIl contains the Stata output for these alternative estimations. To put the ESR results into
perspective, | will briefly present these results. First, the PuR model is a simple t-test for farm net income (see
descriptive statistics). It suggests that Gl wine specialists in 2014 and 2015 earn significantly less than their non-
Gl colleagues, whereas Gl olives specialists on average earned more than their non-Gl colleagues. However, the
differences between Gl and non-Gl olives specialists in 2014 and 2015 are not significant. Because Gl adoption is
not randomly assigned to farms, the naive t-test is not a reliable estimate of the income effects of Gls. The next
simplest way to estimate income effects is to run a simple OLS model with common impacts, so same coefficients
for adopters and non-adopters (PaRCl model). Using the same variables as in the ESR model (not including the
instruments used for the selection equation) results in an estimated average treatment effect of 810 EUR for
wine specialists in 2014 and -2774 EUR for olives specialists in 2014. However, both estimates are not significant.
The ESR model has shown that there are heterogenous impacts of explanatory variables between treated and
untreated farms. The PaRVI model also allows treated and untreated farms to be affected differently by the
explanatory variables. Indeed, coefficients of many interaction terms between explanatory variables and the
treatment variable turn out to be significant in the PaRVI model, especially for the sample of quality wine
producers. The estimated income effect is 687 EUR for wine specialists in 2014 and -2753 EUR for olives
specialists in 2014. As outlined in chapter 3, PSM accounts for self-selection based on observables. For PSM to
produce unbiased results, Gl adoption must not be affected by unobserved characteristics. Further, explanatory
variables must not be affected by Gl adoption. In addition, good matches must be available. For the PSM model,
| used the same variables as for the selection equation of the ESR model. For wine specialists in 2014, PSM
estimates the ATT to be -9907 EUR when using the nearest neighbour matching method. There are treated and
untreated farms with similar propensity scores. Most differences between the two groups are no longer
significant after matching. The hypotheses of differences being equal to zero is only rejected for less favoured
area and mountain area, although differences were not significant before matching. Using the 5-nearest-
neighbours matching and kernel matching technique results in estimated ATTs of -1534 EUR and 1421 EUR
respectively. This shows how sensitive impact estimations are to the choice of the matching technique. For olives
specialists, PSM estimates the ATT to be 12170 EUR with nearest neighbour matching, 2304 EUR with 5-nearest-
neighbours matching, and 4896 EUR with kernel matching. Overall, propensity scores are estimated to be rather
low for treated and untreated farms. A reason why ESR was finally preferred over PSM was that ESR accounts for
unobserved heterogeneity, which PSM does not. Unknown attitudes, age and education of farmers likely affect
the decision to adopt Gls. Interestingly, the estimated treatment effects for wine specialists in 2015 only range
between 1238 EUR (PaRCl model) and 3878 EUR (PSM, NN(1) matching), except for the naive ATT
(t-test) of -23438 EUR. The estimates for olive specialists in 2015 are as diverse as those of 2014 and vary between
-5500 EUR (PSM, kernel matching) and 10811 EUR (PSM, NN(1) matching). Although the ESR model with full
information maximum likelihood estimation seems to be the most appropriate estimation technique, the results
differ enormously from initial expectations and intuition. They are also far more negative than the PSM
estimates. In addition, the suggested interpretation of rhol and rho2 was not in line with estimated figures of
the same Stata output. Apart from potential errors with respect to the application of the movestay Stata
command, there are also shortcomings with respect to the available data which might explain some of the
variation in estimates and the unexpected magnitudes and signs. They are discussed in more detail in the last
chapter to give some recommendations for further research.
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6. Conclusion and discussion

This thesis aimed at investigating the effect of geographical indications (Gls) for food products on farm income
within the EU. Four sub-questions were asked, which were answered step by step throughout the thesis. This
chapter summarizes the findings to give some concluding and questioning remarks on the research, including a
general discussion about potential pitfalls and shortcomings of the impact assessment.

Firstly, potential effects of GIs on farm income were discussed in chapter 2. Adoption of Gls is linked to product
differentiation, which is intended to increase farm gate prices. Market power of Gl farms depends on the price
elasticity of demand, competition from imperfect but close substitutes, the number of farms producing the same
Gl product, and the market share and competitiveness of the farm with respect to colleagues/competitors who
produce the same Gl product. Farmers who produce final products within the schemes of Protected Designation
of Origin (PDO) or mountain products are expected to benefit the most from higher market power and gains in
profits. Market entry for farms producing products within the schemes for Traditional Speciality Guaranteed
(TSG) or Protected Geographic Indication (PGl) is less restricted, which reduces market power. In addition, farms
that only produce ingredients for the products are expected to face market power from downstream players of
the supply chain (e.g. processors or retailers), which decreases their market power. To conclude, Gl adoption
does not necessarily lead to higher farm profits. However, if farmers behave as profit-maximisers, they only
adopt Gls if adoption does not decrease their profits in the long run.

Secondly, five popular estimation techniques used for impact analysis were outlined in chapter 3. The simplest
model is that of pure randomisation (PuR), which assumes treatment (Gl adoption) to be purely random. It is
equal to a t-test for the difference in farm income between treated and untreated farms. | expected the results
to be biased as Gl adoption is not randomly assigned. With partial randomisation models estimated by Ordinary
Least Squares (OLS) regressions, Gl adoption is assumed to be exogenously assigned conditional on some
observable characteristics. One OLS model was introduced that assumes the same impacts of covariates for
treated and untreated farms (PaRCl model with common impact). Another model allows for varying impacts of
covariates between treated and control group (PaRVI model for heterogeneous effects). Propensity Score
Matching (PSM) assumes treatment (Gl adoption) to be endogenous. However, it can only account for observed
differences between treated and untreated farms. Finally, the endogenous switching regression (ESR) model was
introduced, which also allows for unobserved heterogeneity. Indeed, farms are not exogenously assigned to the
group of Gl adopters or the control group. Therefore, PSM and ESR models were preferred. Since the given
datasets did not contain any information about the farmer, his/her attitude towards and experiences with Gls,
farm diversification or product differentiation, and his/her age or education, some potential determinants of Gl
adoption where unobserved. Therefore, the impact assessment was chosen to be based on an ESR model. Other
estimation techniques were used to illustrate the variation in estimated income effects.

Thirdly, | was interested in differences between Gl adopters and non-adopters. For the analysis, data from the
Farm Accountancy Data Network and EUROSTAT was combined. To reduce the risk of estimation bias, income
effects were only measured comparing farms of a specialised farm type that only produce (ingredients) for Gl
products to farms of the same specialised farm type who do not use any Gls. Quality wine specialists and olives
specialists were the specialised farm types with the largest numbers of Gl adopters. On average, Gl olives
specialists had a higher farm netincome than their non-Gl colleagues, although the difference was not significant.
For wine specialists, non-Gl farms earned significantly more. For the other variables, no clear patterns were
found. Gl adopters tended to have lower specific costs, be more exposed to less favoured area, have less land
input, and live in regions with less gross domestic product per inhabitant (not all differences being significant).
While Gl wine farms were located in areas with significantly more kilometres of motorway than their non-Gl
colleagues, Gl olives specialists lived in NUTS2 regions with significantly less kilometres of motorway than their
non-Gl colleagues. Mixed evidence was also found for less favoured area, farm household consumption of own
products, labour input and use of machinery. Since no baseline data was available and it is unknown for how
many years adopters are already applying Gls, it is not clear to what extent non-adopters and adopters differed
before the latter start using Gls.
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Finally, the impact of Gls on farm income was assessed by using an endogenous switching regression model.
Results were estimated by full information maximum likelihood (Stata command movestay). For both farm types,
the impact assessment was done for 2014 and 2015. Given the chosen model, Stata did not provide results for
the samples of 2015. 2014 data only considered PDO and PGl labels, so the estimated effects do not provide
information about the impact of TSG and mountain product labels. For wine specialists in 2014, the effect of Gls
on farm net income was estimated to be -21303 EUR for treated farms. Untreated farms would have earned
33991 EUR more if they had adopted Gls. While the average treatment effect for Gl olives specialists was
estimated to be -43196 EUR, the average treatment effect for untreated farms was estimated to be 1767 EUR.
These estimates contradict the theory since adopters are assumed to only adopt Gls if they do not decrease their
farm profits. From a theoretical perspective, it is also not expected that treatment effects for untreated farms
are significantly higher than for treated farms. The results were also compared to those of other estimation
techniques. PSM estimates of the income effect for olives specialists tended to be positive for both years. The
same applies to the joint effect of PDO, PGI, TSG and mountain product labels for wine specialists, whereas the
PSM results suggested a negative joint effect of PDO and PGl labels on farm income of Gl wine farms. In contrast,
Ordinary Least Squares regression estimated positive income effects for wine specialists, and negative income
effects for olives specialists.

General discussion

There are some general shortcomings with respect to the chosen model and data, which might have caused
estimates to be biased or Stata having problems to estimate any effects for 2015 when using the movestay
command. First, it is not possible to distinguish between farms who produce final Gl products and those who
only produce ingredients for Gl products. Chapter 2 has shown that expected gains in market power are higher
if the GI farmer produces final products instead of ingredients for Gl products. Further, it is unknown whether
those farms who only produce ingredients for Gl products are always aware that their raw products are finally
sold as Gl product. If they are not aware that their raw products are later turned into a Gl product (reporting to
be non-adopters), they end up in the control group instead of the treated group. In 2014, the question about Gls
explicitly asked for PDO and PGl labels. In 2015, also TSG and mountain products were encompassed. It is
unknown, which Gl scheme was exactly applied by adopters. The results for 2014 can only be interpreted as joint
effect of PDO and PGl labels. As outlined in chapter 3, the PDO scheme is expected to increase market power of
farmers more than PGl labels because market entry is more restricted, and ingredients cannot be substituted
from all over the world. Therefore, the income effect of PDOs alone might be higher than the estimates of the
ESR model that are reported in chapter 5. Interpretation of the results for 2015 is even harder as they refer to
the joint effect of four Gl schemes.

The FADN data also contained farmers with missing data, e.g. with respect to the GI question or the question
about LFA and MA. The latter was not answered by any farmer in 2015. This might have caused Stata not being
able to estimate the ESR model for 2015 since results were very sensitive to adding or dropping variables. In
addition, there some wine specialists reported to produce only (ingredients for) Gl products, but a further
question about whether the majority of his/her vineyards were used to produce Gl products was answered by
no. The same applies to olives specialists. Such errors or inconsistencies in the data likely produce biased and
inconsistent estimates. | considered all farms to be Gl farms who indicated to only produce (ingredients for) Gl
products, independent of their answer to the specific Gl questions about vineyards or olives. Follow-up research
could even exclude farms with inconsistent data. 2330 and 2555 farms who reported to produce some
(ingredients for) Gl products in 2014 and 2015 respectively were excluded from the analysis because it was
unknown how much of the production was affected by the GI scheme. For the same reason | also preferred
analysing income effects for specialists only. Otherwise, the farm income would depend on different branches
of farming industry. Since | only compared Gl wine specialists with non-Gl wine specialists and Gl olives specialist
with non-Gl specialists, | ensured that | do not compare farms that are not able to produce the same product due
to different climatic or geographic characteristics. Follow-up research could control for NUTS2 regions to account
for the different numbers of Gls that are already published and used in the different NUTS2 regions. However,
this would not allow to control for MKM, MKM2 and GDPC because these variables are measured at NUTS2 level.
Adding control variables for NUTS2 regions to the applied model might lead to multicollinearity.
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The given data did not allow to differentiate between quantity and prices both of input and output. A high output
could result from high production volumes or high farm gate prices. This makes it even harder to observe (the
reason of) differences between adopters and non-adopters. Even more problematic, it is to what extent control
variables of Gl farms are affected by Gl adoption. All the discussed estimation techniques require control
variables to be independent of treatment (Khandker et al., 2010). For example, assume that small farms with
much unpaid labour adopted Gls before 2014 to gain market power. Due to adoption, farm gate prices, output
and income increased over time. Such farms invested in both land and (paid) labour to increase their production
and earn even higher profits. Assume that these farms end up with the same or higher average amount of land
and paid labour as non-adopters, who tended to be larger and using more paid labour anyway. Looking at 2014
data only, land and paid labour would be either estimated to have no effect on Gl uptake (because averages of
these variables are nearly the same for treated and untreated farms in 2014), or the effect would be estimated
to be positive. Consequently, the model would estimate higher probabilities of Gl adoption for farms with more
land and paid labour, although it is a small farm with less paid labour (and more unpaid labour) that is more likely
to adopt Gls. The estimated causal effects would be biased.

To prevent such misinterpretation, it is best to use baseline data (Yao et al., 2017). Baseline data reflects the
conditions under which some farms decided to use Gls in the future, so determinants of uptake can clearly be
identified. Consequently, the impact assessment based on non-baseline data must be treated with caution as it
cannot be guaranteed that farm specific characteristics are independent of treatment. Descriptive statistics for
baseline data would give reliable information about differences between treated and control group before Gls
are adopted by the treated group. The cheapest and fastest way to get baseline data would be to collect
retrospective data for those farms who are part of the treated and control groups of the sub-samples used for
the impact assessment conducted in chapter 5. Such baseline data helps investigating the relevance of the
different variables for the Gl adoption. Further, questions about why farms decided (not) to use Gls could add
information about determinants of Gl adoption. Instead of collecting data from a representative sample for the
EU, case studies could be an alternative and relatively quick and cheap way to assess the impact of Gls on farm
income, such as Bouamra-Mechemache and Chaaban (2010) have shown for the case of PDO Brie. Case studies
could investigate whether changes in farm gate prices and production costs of adopters are caused by Gl
adoption or general trends/changes in farm gate prices, or input prices and quantities (e.g. higher cost for
irrigation in years with low precipitation). It could also focus on farms who are producing (ingredients for) the
same Gl product to determine whether there are differences in income effects.

Finally, it is debateable whether | selected all (and only) relevant variables from the dataset to assess the income
effect. For example, land could also be separated into leased land and land that is owned by the farm. Van de
Pol (2017) also added determinants such as food culture or population density at NUTS2 level. Instead of farm
income, research could also deal with effects on revenues and costs separately. The estimated effect on farm
income could be negative (or neutral) because production costs increase relatively more than (or as much as)
revenues. If this was true, policy makers could think about subsidising certification or investments for Gl adopters
to allow their gains in revenues to exceed the increase in their production costs. Information about the pre-
treatment characteristics of adopters could also answer the question whether Gls are adopted by those farms
who are intended to benefit (less competitive farms).

In conclusion, this research on the impact of geographic indications on farm income does not provide reliable
figures about the monetary effect. However, | elaborated on the theoretical background and potential
mechanisms by which Gls can influence farm income, as well as different estimation techniques and their pros
and cons with respect to the impact assessment of Gls. The broad discussion of shortcomings and potential
pitfalls can help to better prepare and/or improve future research. Previous research mainly focussed on
consumer behaviour and the impact of Gls on the willingness to pay for food products with Gl labels. According
to Skuras and Vakrou (2002), Greek consumers are willing to pay more for Gl wine. However, attitudes and claims
are often not in line with behaviour. Even if consumers are found to (be willing to) pay more for Gl products, it
does not provide information about whether and what kind of farms benefit from these price premiums. This
information is needed to assess the effectiveness of the food quality policies of the EU. | did not find impact
assessments based on farm accountancy data. Therefore, the idea to use farm accountancy data to investigate
effects of Gls on farm income (or revenues and costs separately) is worth to be pursued.
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Appendix I: Gl registrations EU28

Table 6: Registered PDO, PGl and TSG products per EU member state; Source: DOOR database (July, 2018)

Country .PDO. . PGl . . TSG. Total
registrations registrations registrations

ITA 167 127 2 296
FRA 104 124 1 247
ESP 103 89 4 195
POR 64 74 1 139
ELL 76 30 0 106
DEU 12 78 0 90
UKI 26 41 4 71
POL 8 22 9 39
CZE 6 23 5 34
SVN 8 13 3 24
HRV 10 9 0 19
BEL 3 11 5 19
SVK 2 10 7 19
OST 10 6 1 17
HUN 6 8 1 15
NED 6 5 4 15
SUO 5 2 3 10
SVE 3 3 2 8
IRE 3 4 0 7
LTU 1 4 2 7
DAN 0 7 0 7
BGR 0 2 5 7
CYP 1 4 0 5
LVA 1 1 3 5
LUX 2 2 0 4
ROU 1 3 0 4
EST 0 0 0 0
MLT 0 0 0 0
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Appendix Il: Sample selection

Sample Set 1 = full FADN dataset with 28 member states of the EU

Sample Set 2 = FADN dataset excluding Croatia and those NUTS2 regions where all farms have missing data, so
excluding DEU, FRA, LTU, LUX, LVA, SVK, BE21, BE22, BE23, BE24, BE25, AT32, AT33, AT34, and all of UKI except
for UKNO for 2014 and 2015, and IRE for 2014 only

Sample Set 3 = based on SET 2, but excluding all farms with code number 3 (some Gl) or 0 (missing data) for the
Gl variable; the sample of quality wine specialists and those of olives specialists are used for the impact
assessment; they are sub-samples taken from sample set 3

Table 7: From raw data to the final sample

2014 2015

Gl 546 1% 592 1%

_, | nonGl 52795  64% 53285  65%
E | someGil 2344 3% 2566 3%
160 26762 32% 25780  31%
82447  100% 82223  100%

Gl 533 1% 579 1%

~ | non-al 51600  90% 52027  90%
E | someGil 2332 4% 2555 4%
a0 2980 5% 2847 5%
57445  100% 58008  100%

® lal 533 1% 579 1%
@ | non-GlI 51600  99% 52027  99%
52133 100% 52606  100%
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Appendix Ill: List of variables

Table 8: List of variables, abbreviations and descriptions

Vacrlzt:e O(r;lgg\eal Source Description Scale Level
T A CL 150 C FADN 2014: indication for whether the holding produces agricultural products and/or foodstuffs protected by a PDO or Dichotomous Farm
PGI or whether it produces agricultural products which are known to be used to produce foodstuffs protected by (yes/no)
PDO/PGI within the meaning of Council Regulation (EC) No 510/2006
2015: indication for whether the holding produces agricultural products and/or foodstuffs protected by a
PDO/PGI/TSG/mountain product or whether it produces agricultural products which are known to be used to
produce foodstuffs protected by PDO/PGI/TSG/mountain product within the meaning of Council Regulation (EC) No
1151/2012
Code numbers: 1) no 2)only  3)some
First, all farms with A_CL_150_C=3 were excluded from the sample (those with missing data as well).
Next, a dummy variable was generated with T=1 if A_ CL_150 C=2 and T=0if A_CL 150 C=1.
FNI SE420 FADN Farm net income in EUR; remuneration to fixed factors of production (work, land, capital) and remuneration to the Continuous Farm
entrepreneurs’ risk (loss/profit) in the accounting year; = Total output (SE131) — Total intermediate consumption
(=Total specific costs + Total farming overheads; SE275) + Balance current subsidies and taxes (SE600) —
Depreciation (SE360) + Balance subsidies and taxes on investments (SE405) — Total external factors (= Wages paid +
Interest paid + Rent paid, SE365);
If unpaid (family) labour > 0, FNI = Family Farm Income (FFl)
ouT SE131 FADN Total output in EUR Continuous Farm
SPC SE281 FADN Total specific costs in EUR Continuous Farm
OVER SE336 FADN Total farming overheads in EUR; supply costs linked to production activity but not linked to specific lines of Continuous Farm
production
PL SE020 FADN Paid labour input in annual working units (AWU) Continuous Farm
uL SE015 FADN Unpaid labour input in AWU Continuous Farm
LIA SE485 FADN
UAA SE025 FADN Total utilised agricultural area in ha; does not include areas used for mushrooms, land rented or less than one year Continuous Farm
on an occasional basis, woodland and other farm areas (roads, ponds, non-farmed areas, etc.); it consists of land in
owner occupation, rented land and land in share-cropping; it includes agricultural land temporarily not under
cultivation for agricultural reasons or being withdrawn from production as part of agricultural policy measures
EXT SE365 FADN Total external factors in EUR; remuneration of inputs (labour, land, capital) which are not the property of the Continuous Farm
holder; includes wages, rent and interest paid
LFA Based on FADN Less favoured area; Dichotomous Farm
A _CL 160 _C A_CL_160_C has the following code numbers: (yes/no)

In 2014: 1) majority of the UAA of the holding is not situated in a less favoured area, 2) majority of the UAA of the
holding is situated in a LFA, 3) majority of the UAA of the holding is situated in a mountainous area, 4) the areas are
so small and numerous in these member states that the information is not significant
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MA

ORG

MACH
FHC
GDPC

MKM

MKM2

Based on
A CL 160 _C
Based on
A _CL 140 C

SE455
SE260
GDP_inh

Mw_km2

Based on
MW_km2

FADN

FADN

FADN
FADN
Van de Pol
(2017)
Van de Pol
(2017)

Van de Pol
(2017)

A dummy variable was generated with LFA=1 if A_CL_160_C=2 and LFA=0 for the rest.

Mountainous area;

See LFA; A dummy variable was generated with MA=1 if A_CL_160_C=3 and MA=0 for the rest.

Organic production;

A_CL_140_C has the following code numbers: 1) holding does not apply organic production methods, 2) holding
applies only organic production methods, 2) holding applies both organic and other production methods, 4) holding

is converting to organic production methods

A dummy variable was generated with ORG=1 if A_CL_140_C=2 (only organic)

Value of machinery in EUR
Farm household consumption in EUR

GDP per inhabitant in EUR in a specific NUTS2 region in 2013

Km of motorway per 1000km? in a specific NUTS2 region in 2013

Square of MKM
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Dichotomous
(yes/no)
Dichotomous
(yes/no)

Continuous
Continuous
Continuous

Continuous

Continuous

Farm

Farm

Farm
Farm
NUTS2

NUTS2

NUTS2



Appendix IV: Specification tests for instrumental variables

Table 9: Specification tests to find valid instruments

Quality Wine Specialists 2014

Dependent variable: Gl adoption 1/0

FNI for non-adopters

MKM 0.003 (0.008)
MKM?2 0.0003 (0.0001)
Wald test on MKM and MKM?2 X2=97.55%**
Pseudo R? 0.161
Adj. R?
Sample size 1237

127.054 (108.247)
-1.411 (1.698)
F-stat.=0.95

0.993
937

Quality Wine Specialists 2015

Dependent variable: Gl adoption 1/0

FNI for non-adopters

MKM 0.003 (0.008)
MKM?2 0.0003 (0.0001)
Wald test on MKM and MKM?2 X?=66.53***
Pseudo R? 0.1362
Adj. R2
Sample size 1220

143.165 (197.416)
-2.245 (3.123)
F-stat.=0.27

0.9802
912

Olives specialists 2014

Dependent variable: Gl adoption 1/0

FNI for non-adopters

MKM -0.038 (0.012)
MKM2 0.0003 (0.0001)
Wald test on MKM and MKM?2 x?=10.88***
Pseudo R? 0.092
Adj. R?
Sample size 1036

-70.364 (145.068)
0.956 (1.611)
F-stat.=0.18

0.856
981

Olives specialists 2015

Dependent variable: Gl adoption 1/0

FNI for non-adopters

MKM -0.058 (0.012)
MKM2 0.0005 (0.0001)
Wald test on MKM and MKM?2 X?=23.15%**
Pseudo R? 0.1304
Adj. R?
Sample size 992

78.755 (163.621)
1.635 (1.954)
F-stat.=3.22**

0.902
934

Note: Gl adoption 1/0 is the dependent variable of a probit model (Stata command: probit T OUT SPC OVER UL PL
UAA LIA EXT LFA MA ORG MACH GDPC FHC MKM MKM?2). FNI for non-adopters is the dependent variable of an
OLS regression among non-adopters only (Stata command: reg FNI OUT SPC OVER UL PL UAA LIA EXT LFA MA ORG
MACH GDPC FHC MKM MKM?2). For the samples from the year 2015, LFA and MA were excluded. Standard errors
in parentheses. Parameters for the other variables are not reported for simplicity. **Significant at 5% level;

***Significant at 1% level.

Table 9 presents the results of the specification tests which were conducted to test whether the chosen
instruments are valid instruments. To be valid instruments, variables must jointly influence the decision to adopt
Gls, but they must not jointly affect the outcome (FNI) of non-adopters (Di Falco et al., 2011). Khonje et al. (2015)
even test for joint effects on the outcome variable (FNI) for the whole sample. In this case, the impact of MKM
and MKM2 was not jointly significant for wine specialists in 2014 and 2015, and for olives specialists in 2014
(results are not reported here). According to the results, MKM and MKM2 are valid instruments for all samples

except for olives specialists in 2015.
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As mentioned earlier, Gls were introduced to offer opportunities to generate price premiums (higher farm gate
prices that allow farmers to earn higher profit margins via product differentiation strategies). From a theoretical
point of view, a variable for previous FNI (lagged FNI) might be a valid instrument as it does not affect current
FNI, but it affects the decision to adopt Gls as farms with relatively low FNI might be interested in generating
higher farm gate prices. Similarly, farms with smaller economic size (indication for what farms potentially could
earn; potential production volumes minus variable costs based on averages of the previous years) or farms with
less favoured area and mountain area might face a higher probability to adopt Gls. However, these variables also
affect FNI and respective specification tests revealed them as no valid instruments for the samples for which the
impact assessment was done.
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Appendix V: Descriptive statistics tables

Table 10: Descriptive statistics quality wine specialists 2014

Total mean Mean adopters Mean non-adopters .
Difference
(std. dev.) (std. dev.) (std. dev.) (T Statistic; P Value)
n=1237 =300 =937 ’

N 42222.21 20774.28 49089.21 28314.93%**
(164766.8) (116755.4) (176918.4) (2.5966; 0.0048)
ouT 97812.4 70000.09 106717.1 36717.01*
(418577.4) (135028.7) (474564.5) (1.3227; 0.0931)
SPEC 19981.49 11461.51 22709.34 11247.83
(220840.2) (29938.44) (253150) (0.7677; 0.2214)
OVER 13765.22 13599.32 13818.34 219.0144
(36593.87) (37588) (36290.11) (0.0902; 0.4641)
UAA 21.64592 17.97913 22.81991 4.840781**
(33.12625) (34.00895) (32.77043) (2.2063; 0.0138)
UL 1.079487 1.033601 1.094178 0.0605772*
(0.635126) (0.5985943) (0.646005) (1.4384; 0.0753)
oL 1.024277 1.667182 0.8184369 -0.8487455***
(4.035492) (6.171711) (3.026925) (-3.1822; 0.0007)
15018.05 34039.23 8928.019 -25111.22%*x

LIA
(87481.29) (128047.6) (68666.52) (-4.3585; 0.0000)
ExT 16762.1 18238.37 16289.44 -1948.926
(63523.11) (51280.96) (66989.08) (-0.4624; 0.3220)
ORG 0.0242522 0.04 0.0192102 -0.0207898**
(0.1538935) (0.1962866) (0.1373366) (-2.0391; 0.0208)
LA 0.2643492 0.2666667 0.2636073 -0.0030594
(0.4411644) (0.4429555) (0.4408241) (-0.1045; 0.4584)
MA 0.2530315 0.2633333 0.2497332 -0.0136001
(0.4349247) (0.4411776) (0.4330897) (-0.4712; 0.3188)
GDPC 23.390222 21.00867 24.15272 3.144054***
(6.121261) (6.297804) (5.865967) (7.9344; 0.0000)
MACH 25309.56 38704.7 21020.83 -17683.87***
(72912.16) (113578) (53135.18) (-3.6746; 0.0001)
FHC 180.3728 155.9709 188.1855 32.2146
(558.403) (624.2835) (535.7288) (0.8696; 0.1924)
MKM 27.37914 31.00667 26.21772 -4.788951***
(15.02412) (18.75899) (13.41982) (-4.8486; 0.0000)
975.1593 1312.14 867.2679 444, 8721%**
MKM2 (1084.254) (1609.139) (822.9254) (-6.2806; 0.0000)

Note: Difference = mean(non-adopters) - mean(adopters); *Significant at 10% level; **Significant at 5% level;

***Significant at 1% level.
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Table 11: Descriptive statistics quality wine specialists 2015

Total mean Mean adopters Mean non-adopters

(std. dev.) (std. dev.) (std. dev.) . Stft'izfgfgc\‘falue)
n=1220 n=308 n=912 ’

N 42269.61 24748.86 48186.71 23437.85%*
(183665.9) (39683.37) (210875.5) (1.9385; 0.0264)
ouT 91368.65 76196 96492.75 20296.75
(258088) (133915.6) (288065.8) (1.1935; 0.1165)
SPEC 15426.39 12935.52 16267.6 3332.077
(82779.37) (34808.17) (93584.46) (0.6106; 0.2708)
OVER 12936.33 13251.76 12829.81 -421.9527
(36855.33) (29413.94) (39063.34) (-0.1737; 0.4311)
m 1.075437 1.056446 1.08185 0.0254041
(0.6514622) (0.6852196) (0.6399217) (0.5916; 0.2771)
oL 1.14044 1.947362 0.8679265 -1.079436***
(4.529599) (6.731757) (3.447918) (-3.6341; 0.0001)
UAA 22.10208 18.35666 23.36698 5.010329**
(37.47015) (34.44832) (38.37247) (2.0316; 0.0212)
LA 22655.66 31137.35 19791.23 -11346.12
(151120.5) (131799.4) (157073.4) (-1.1394; 0.1274)
ExT 16431.02 19387.55 15432.54 -3955.003
(59871.29) (54347.21) (61621.25) (-1.0024; 0.1582)
ORG 0.0204918 0.025974 0.0186404 -0.0073337
(0.1417334) (0.1593166) (0.1353254) (-0.7850; 0.2163)
e 23.04238 20.83766 23.78695 2.949289** *
(6.196475) (6.195823) (6.0202) (7.3788; 0.0000)
MACH 24976.13 37501.93 20745.92 -16756.01%**
(74034.24) (109256) (56926.01) (-3.4496; 0.0003)
e 217.6369 230.4515 213.3091 -17.14238
(606.8585) (642.2087) (594.7499) (-0.4285; 0.3342)
VKM 27.37705 30.19481 26.42544 -3.769367***
(15.28812) (18.53163) (13.90776) (-3.7613; 0.0001)
NTOVE 983.0377 1254.032 891.5175 -362.5149***
(1108.04) (1591.317) (869.637) (-5.0133; 0.0000)

Note: Difference = mean(non-adopters) - mean(adopters); *Significant at 10% level; **Significant at 5% level;
***Significant at 1% level.

44



Table 12: Descriptive statistics olives specialists 2014

Total mean

Mean adopters

Mean non-adopters

(std. dev.) (std. dev.) (std. dev.) " St:t';i‘?:_egc\falue)
n=1036 n=55 n=981 ’

N 23599.35 27563.68 23377.09 -4186.589
(54197.15) (45832.61) (54639.74) (-0.5573; 0.2887)
ouT 39116.47 39749.92 39080.96 -668.9584
(89784.33) (49751.8) (91527.19) (-0.0537; 0.4786)
SPEC 6914.125 5252.218 7007.301 1755.082
(19117.73) (5028.691) (19607.21) (0.6623; 0.2540)
OVER 7861.482 6430.582 7941.705 1511.124
(20967.46) (6290.878) (21494.32) (0.5199; 0.3016)
UAA 22.28405 21.03964 22.35382 1.314186
(31.05598) (21.94421) (31.49566) (0.3053; 0.3801)
UL 0.8771098 0.959076 0.8725144 -0.0865617*
(0.4575304) (0.4383051) (0.458365) (-1.3659; 0.0861)
oL 0.5762083 4865304 0.5812361 0.0947057
(1.226083) (0.5181691) (1.253944) (0.5572; 0.2887)
A 5478.731 2372.873 5652.861 3279.989
(127990.3) (9992.474) (131509.8) (0.1849; 0.4267)
ExT 10211 7516.545 10362.06 2845.517
(27273.26) (7268.374) (27968.46) (0.7528; 0.2259)
ORG 0.1611969 0.1454545 0.1620795 0.016625
(0.3678901) (0.355808) (0.3687117) (0.3260; 0.3723)
LA 0.3474903 .5090909 .3384302 -0.1706607***
(0.4764031) (.504525) (.473417) (-2.5923; 0.0048)
VA 0.3880309 2909091 393476 0.102567*
(0.487537) (.4583678) (.4887701) (1.5192; 0.0645)
cDPC 18.43571 17.91455 18.46493 0.5503882
(3.866037) (3.081271) (3.904588) (1.0274; 0.1522)
MACH 21044.76 14312.33 2142221 7109.885%*
(29349.15) (16855.82) (29855.87) (1.7500; 0.0402)
FhC 644.7432 396.0727 658.685 262.6123**
(888.6621) (449.1598) (905.1297) (2.1363; 0.0164)
MKM 22.25097 19.25455 22.41896 3.164415%*
(12.2354) (13.96718) (12.11715) (1.8687; 0.0310)
o 644.666 562.2727 649.2854 87.0127
(1053.375) (509.843) (1075.708) (0.5959; 0.2757)

Note: Difference = mean(non-adopters) - mean(adopters); *Significant at 10% level; **Significant at 5% level;
***Significant at 1% level.
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Table 13: Descriptive statistics olives specialists 2015

Total mean

Mean adopters

Mean non-adopters

(std. dev.) (std. dev.) (std. dev.) . Stelljtlifsfgfgc\(/ealue)

n=992 n=58 n=934 ’
N 34476.52 35255.33 34428.16 -827.1716
(67723.68) (65228.99) (67909.02)  (-827.1716; 0.4641)
ouT 55147.5 46282.23 55698.02 9415.794
(123882.3) (66540.74) (126590.5) (0.5615; 0.2873)
SPEC 7479.388 3302.776 7738.749 4435.974**
(19182.46) (3131.15) (19725.39) (1.7106; 0.0437)
OVER 10626.1 7370.052 10828.29 3458.239
(38370.56) (7127.457) (39497.12) (0.6658; 0.2528)
UAA 25.48302 18.77379 25.89966 7.125864
(49.07708) (17.63368) (50.36188) (1.0731; 0.1418)
UL 0.9120108 0.9257095 0.9111601 -0.0145494
(0.4675665) (0.3562048) (0.4737561) (-0.2298; 0.4091)
oL 0.7515294 0.4052727 0.7730314 0.3677588*
(1.934834) (0.5887318) (1.986759) (1.4053; 0.0801)
LA 6080.475 1411.155 6370.433 4959.277
(131465.9) (7874.361) (135471.3) (0.2786; 0.3903)
ExT 12843.46 6731.483 13223 6491.519*
(36241.08) (9509.492) (37243.44) (1.3242; 0.0929)
ORG 0.1280242 0.0517241 0.1327623 0.0810382**
(0.3342853) (0.2234038) (0.3394995) (1.7934; 0.0366)
e 17.93135 17.58966 17.95257 0.3629144
(3.280677) (3.110068) (3.291395) (0.8173; 0.2070)
MACH 24101.23 16002.09 24604.18 8602.092**
(32570.45) (20563.82) (33115.19) (1.9545; 0.0255)
e 455.0847 512.5862 451.5139 -61.07229
(720.0238) (734.0791) (719.3908) (-0.6266; 0.2655)
VKM 21.72581 15.87931 22.08887 6.209555***
(11.33801) (14.88326) (10.98872) (4.0790; 0.0000)
NTOVE 600.4315 469.8448 608.5407 138.6959
(888.5078) (527.8681) (905.7443) (1.1537; 0.1244)

Note: Difference = mean(non-adopters) - mean(adopters); *Significant at 10% level; **Significant at 5% level;
***Significant at 1%.
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Appendix VI: Stata output ESR model

Quality wine specialists 2014
movestay FNI OUT SPC OVER UL PL UAA LIA EXT LFA MA ORG MACH GDPC FHC, select (T=MRM MRM2)

Iteration 4035:log likelihood = -14238.075

Endogenous switching regression model Humkber of obs = 1237
Wald chiz (14) = 8120.72
Log likelihood = -14238.075 Prob > chi2 = 0.0000
Coef. S5td. Err. z Bx|z| [95% Conf. Interval]
FNI 1
ouT 1.031206 .0143083 72.07 0.000 1.003162 1.05925
SPC -.67035817 .0939664 -7.13 0.000 -.8545524 -.4862109
CVER -1.662055 .0913058 -18.20 0.000 -1.841011 -1.48309%9
UL -868.9204 2248.921 -0.39 0.699 -5276.725 3538.884
PL -3775.723 495.1816 -T7.62 0.000 -4746.261 -2805.185
TRR 337.3281 58.48145 5.77 0.000 222.7066 451.9497
LIA -.0481939 .0132621 -3.63 0.000 -.0741871 -.0222008
EXT -.BB869956 .0593553 -14.94 0.000 -1.00333 -. 7706614
LF& -606.2494 3058.379 -0.20 0.5843 -6600.562 5388.064
MR 1173.752 3312.389 0.35 0.723 -5318.412 T665.916
CRG 49,.59818 6372.196 0.01 0.994 -12439.68 12538.87
MACH -.082116 .0183013 -4.49 0.000 -.1179858 -.0462462
GDPC -364.6386 251.4165 -1.45 0.147 -557.405%9 128.1286
FHC 5.119466 2.210877 2.32 0.021 . 7862264 9.452705
_cons 24539.97 5994.594 4.09 0.000 12750.78 36289.16
FHNI O
oUT . 9764058 . 0047262 206.59 0.000 .9671426 . 985669
SFC -.9313877 .0058614 -158.90 0.000 —. 9428558 -.9198797
CVER -.9033217 .0302375 -25.87 0.000 -. 9625861 -.8440573
UL -677.8546 901.3977 -0.75 0.452 -2444.562 1088.852
FL 1549.671 274.235 5.65 0.000 1012.18 2087.162
TR 3.5227393 25.51176 0.14 0.830 -46.47933 53.52492
LIn .0019755 .0077426 0.26 0.799 -.0131996 .D171506
EXT -1.319538 .0291799 -45.22 0.000 -1.376729 -1.262347
LFL 654.874 1496.878 0.44 0.662 -2278.954 3588.702
ME 2168.352 1328.234 1.63 0.103 -434.9389 4771.643
CRG 2877.903 3661.693 0.7%9 0.432 —-4298.883 10054.69
MACH -.1070556 .0137869 -7.77 0.000 -.1340773 -.0800338
GDEC —-600.93439 107.3806 -5.60 0.000 -811.397 -390.4728
FHC —-.T7143821 1.0281 -0.69 0.487 —-2.729421 1.300657
_cons 20010.59 2873.082 6.96 0.000 14379.45 25641.73
T
oUT -2.43e-06 5.47e-07 -4.45 0.000 -3.51e-06 -1.36e-06
SFC -3.71e-06 2.40e-06 -1.55 0.122 -6.41e-06 9.87e-07
CVER 8.85e-06 3.08e-06 2.88 0.004 2.82e-06 .0000149
UL -.0157281 .072543 -0.22 0.828 -.1579099 1264536
FL .0838817 .0211709 3.96 0.000 . 0423874 .1253759
TR -.0151526 .002008 -7.55 0.000 —.01%0882 -.0112171
LIn 1.38e-06 4.97e-07 2.78 0.005 4.07e-07 2.36e-06
EXT -3.40e-06 2.72e-06 -1.25 0.211 -8.73e-06 1.93e-06
LFL —.0194534 .1028373 -0.13 0.850 -.2210107 .1821039
CRG .5908514 . 2392038 2.47 0.014 .1220207 1.059682
MACH 4.53e-06 1.05e-06 4,33 0.000 2.48e-06 6.58e-06
GDEC -.0581644 . 0085488 -6.80 0.000 -.0749198 -.0414091
FHC -.000181 . 0000786 -2.30 0.021 -.0003351 -.0000269
MR .1245336 .1022065 1.22 0.223 —-.0757874 3248546
MEM .0025266 . 0068702 0.37 0.713 —-.0109388 .0159921
MEM2 .0001554 . 0000887 2.20 0.027 . 0000217 .D003692
_cons .B691T77 2156592 3.10 0.002 2464926 1.091861

8 The first time | ran this command, the results were already found after iteration 2626. The output looked the same except for few
minor differences (e.g. d was estimated to be 82192.08 instead of 82192.13). Descriptive statistics did not change, so | could not find
the root of the problem.
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f1lnsl 10.05491 0657302 152.97 0.000 9.926076 10.18373
f1lns2 9.724539 .0278568 349.09 0.000 9.66994 9.779137
Srl -.8839072 1306466 -6.76 0.000 -1.140362 -.6274526
Jxr2 1.160174 .0833625 13.92 0.000 . 996786 1.323561
sigma_1 23269.65 1529.517 20456.92 26469.11
sigma_2 16722.97 465.5454 15854.41 17661.4
rho 1 -. 7083713 .0651891 -.B8145359 -.5562957
rho 2 .8210964 .0271596 .T760241 .B676668
LR test of indep. egns. chiz (1) 94.88 Prob > chiz = 0.0000
mspredict a, yel 1
mspredict b, yeo2_ 2
mspredict ¢, ye2 1
mspredict d, yel 2
Sum &
Variable ‘ Cbs Mean 5td. Dev. Min Max
a ‘ 300 20374.75 113950.8 -10449%98 1429689
sum b
Variable Chbs Mean 5td. Dew. Min Max
b 937 48201.48 176775.5 -184470.1 3446531
sum o
Variable Ckbs Mean S5td. Dev. Min Max
c 300 41677.94 106654.2 -907355.3 1451897
sum d
Variable ‘ Obs Mean 5td. Dev. Min Max
d ‘ 937 §2192.13 246214.2 -146834.9 5424111

48



Olives specialists 2014

. movestay FNI OUT SPC OVER UL PL UAA LIA EXT LFA MA ORG MACH GDPC FHC, select (T=MEM MEM2)

Iteration 7: log likelihood = -11861.272
Iteration 8: log likelihood = -11861.272
Endogenous switching regression model Humber of obs = 1036
Wald chiZ2 (14) = 4320.68
Log likelihood = -11861.272 Prob > chiZ2 = 0.0000
Coef. S5td. Err. z Bx|z| [95% Conf. Interwval]
FNI 1
CUT 1.156258 .D403245 28.67 o.000 1.077223 1.235292
5EC -.639275  .3321135 -1.82 0.054 -1.290205 .0116555
OVER -.7440233  .2545217 -2.82 0.003 -1.242877 -.2451699
UL 1646.588 1985.197 0.83 0.407 -2244,327 5537.504
PL -18537.02 T7138.293 -2.60 0.009 -32527.81 -4546.219
N -13.59926 41.8599 -0.32 0.745 -95.643146 68.44464
LIz -.1452194 .0945123 -1.58 0.114 -.3344601 .0360213
EXT .0249483 .6267364 0.04 0.968 -1.203432 1.253329
LFA -693.1973  2307.963 -0.30 0.764 -5216.721 3830.327
MAE 1834.965  2441.849 0.75 0.452 -2950.972 6620.902
ORG 4328.61  2510.138 1.72 0.085 -591.1692 9248.39
MACH -.1419131 .0550029 -2.56 0.010 -.2497168  -.0341093
GDPC 426.1775 372.9314 1.14 0.253 -304.7547 1157.11
FHC -2.636877 1.966058 -1.34 0.180 -6.490279 1.216525
_cons -6551.09  7139.163 -0.92 0.359 -20543.59 7441.412
FNI_O
oUT 1.060528 .0209255 50.68 0.000 1.018515 1.101541
SEC —-.727107 1062012 -6.85 0.000 -.9352576 —-.5189565
CVER -1.672482 .0816809 —-20.48 0.000 -1.832574 -1.51239
UL 3616.2595 1582.966 2,41 0.016 T13.7385 6918.851
PL 12587.28 1568.462 §.03 0.000 5513.153 15661.41
TRR 326.0396 37.38703 §.72 0.000 252.7624 399.3169
LIA —-.0265521 L0127917 -2.08 0.038 -.0516233 —-.0014809
EXT -1.166228 076514 -15.24 0.000 -1.316152 -1.016263
LFR 93.7341 1%50.51 0.05 0.962 -37259.1594 3916.662
MR 2177.675 1609.565 1.20 0.229 -1369.003 5724.3561
CRG 927.2721 2124.726 0.44 0.663 -3237.113 5091.658
MRECH -.0704451 0260325 -2.71 0.007 -.1214719 -.0194263
GDEC -455.1417 167.0621 -2.43 0.015 -821.7767 -G88.50666
FHC -2.120604 .B320186 -2.55 0.011 -3.75133 -.4898776
_cons 6985.474 4048.694 1.73 0.084 -945.8198 145%20.77
t
cuUT 8.85e-06 2.71e-06 3.27 0.001 3.54e-06 .0000142
SFC —. 0000629 .000D2%6 -2.12 0.034 -.000120% -4.84e-06
OVER —.0o00221 0000128 -1.73 0.084 -.0000471 2.93e-06
UL 083541 13583262 0.60 0.54% -.1895333 3566154
PL 1.5915923 . 3714704 5.16 0.000 1.187654 2.643992
TRR 0036618 0044427 0.82 0.410 -.0050457 01253694
LIA 2.82e-06 2.10e-06 1.34 0.17%9 -1.2%e-06 6.93e-06
EXT -.00015% .D00D302 -6.58 0.000 -.0002583 -.0001397
MR 16590114 1894556 0.89 0.372 -.2023146 . 5403375
CRG —. 05940468 1861373 -0.51 0.613 -.4588692 2707757
MACH -7.45e-06 3.54e-06 -2.11 0.035 -.0000144 -5.15e-07
GDEC —-.0105596 0216437 -0.45 0.626 -.0525804 0318612
FHC -.000385 . 0001287 -2.95 0.003 -.0006373 -.D001328
LFR . 3061579 .165578 1.85 0.064 -.0183691 63068486
MEM —.0160503 .00%1151 -1.76 0.078 -.0339155 . 001815
MEM2Z 0001422 0001066 1.33 0.182 -.0000D668 0003511
_cons —-.2504508 .4155524 -0.60 0.551 -1.072877 . 5718952
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/1lnsl §.539617 117031 72.97 0.000 6.31024 &.768994
/1ns2 10.01711 0287033 348.99 0.000 9.960853 10.07337
frl -.1316211 . 6289207 -0.21 0.834 -1.364283 1.101041
fx2 1.823144 4792419 3.80 0.000 .B638472 2.762441
=sigma 1 5113.386 5598.4249 4065.29 6431.697
sigma_Q 22406.59 643.1427 21180.86 23T703.26
rho_l -.1308662 6181498 -.8773827 . BO08726
rho:Q . 9459151 .04749886 .7083414 . 9592059
LE test of indep. eqnsa. chizZ (1) = 31.24 Probk > chiZ2 = 0.0000
. mspredict a, yel 1
. mspredict b, ye2 2
. mspredict o, ye2 1
. mspredict d, yel 2
sum a
Variable | Cbs= Mean 5td. Dev. Min Max
a | 55 27563.52 45544.74 -2216.811 302582.1
sum b
Variable Cbs= Mean 5td. Dev. Min Max
b 981 20686.36 51525.34 -69071.98 816400.6
sum o
Variable Cbs= Mean 5td. Dev. Min Max
c 55 T0759.95 46726.53 24033.89 323252.3
sum d
Variable Cbs Mean 5td. Dev. Min Max
d 981 22453.74 56526.64 -158330 912268.9

Quality wine and olives specialists 2015

| used the same command as for the 2014 samples. LFA and MA were excluded because FADN data for the year
2015 does not provide information about these variables. For both samples, no results were found after 3000

iterations.
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Appendix VII: Impact estimation with other estimation techniques

Quality wine specialists 2014

(1) PaRCI model for wine 2014: ATE= 810

reg FNI T OUT SPC OVER UL PL UAA LTA EXT LFA MA ORG MACH GDPC FHC

Source 53 df M5 Humber of obs = 1237
F( 15, 1221) = 7031.62

Model 3.3171e+13 15 2.2114e+l12 Prob > F = 0.0000
Residual 3.8400e+11 1221 314493963 R-sguared = 0.9886
Adj R-sguared = 0.9884

Total 3.3555e+13 1236 2.7148e+10 Root MSE = 17734
FNI Coef. 5td. Err. T B>t [95% Conf. Interwval]

T 810.3933 1236.4 0.66 0.512 -1615.311 3236.098

CuT 9970615 0041668 239.29 0.000 . 9888866 1.005236
SEC -.9603345 0056022 -171.42 0.000 -.9713255 -.9493436
CVER -1.122263 .0259663 -43.22 0.000 -1.173207 -1.07132
UL -827.5774 875.199 -0.95 0.345 -2544.638 889.4832

PL -1370.219 195.6651 -7.00 0.000 -1754.096 -986.3418
Uza 35.97933 22,45731 1.60 0.109 -8.079865 80.03852
LIa -.0007135 0063453 -0.11 0.910 -.0131623 .0117354
EXT -1.224921 .0231569 -52.50 0.000 -1.270353 -1.17949%
LFR -417.2486 1366.657 -0.31 0.7a0 -3098.506 2264.009
Mz 1426.128 1253.324 1.14 0.255 -1032.779 3885.035
CRG 2696.911 3307.518 0.82 0.415 -3792.136 5185.959
MACH -.0730134 .0093859 -7.78 0.000 -.0914276 -.05455992
GDEC -439.3163 96.08136 -4.57 0.000 -627.8152 -250.8135
FHC 1.105544 . 59409462 1.18 0.239 -.T36507 2.855594
_cons 12806.35 2600. 662 4.92 0.000 TT704.092 17906.62

(2) PaRVI model for wine 2014: ATT= 8968.73-8281.43°= 687.30

reg FNI T OUT OUT T SPC SPC T OVER OVER T UL UL T PL PL T UAA UAA T LIA LIA T EXT EXT

> T LFA LFA T MA MA T ORG ORG T MACH MACH T GDPC GDPC T FHC FHC T

Source 35 df M5 Number of obs = 1237
F({ 23, 1207) = 4378.21

Model 3.323%=+13 29 1.1462&+12 Prob > F = 0.0000
Residual 3.1598e+11 1207 261790876 R-squared = 0.9906
Adj R-zguared = 0.99504

Total 3.3555e+13 1236 2.7148e+10 Root MSE = 16180
FNI Coef. 5td. Err. T B>t [85% Conf. Interwval]

T 8968.729 5526.285 1.62 0.105 -1873.464 19810.92

ouT .598363594 0047012 209.23 0.000 .9744161 .9928628
oUT_T 0223582 0115235 1.594 0.053 -.00025 .0449665
SEC -.9331262 0057891 -161.19 0.000 -.944484 -.9217683
SPC_T .2838926 0736996 3.85 0.000 .1392991 . 4284861
CVER -.B8845044 .030519 -28.98 0.000 -.9443807 -.B246282
OVER_T -.6817011 0782794 -8.71 0.000 -.83528 -.5281223
UL -1185.053 §912.4953 -1.30 0D.194 -2975.306 605.2

UL T 357.1744 2009.011 0.18 0.859 -3584.367 4298.716
PL 1412.953 275.6893 5.13 0.000 §72.0699 1555.837

PL T -4386.041 468.0977 -9.37 0.000 -5304.416 -3467.665
UAR 38.62449 26.32147 1.47 0.143 -13.01642 S0.2654
Unn T 113.7571 48.37162 2.35 0.019 18.85526 208.6589
LI& -.0067718 0080944 -0.84 0.403 -.0226525 .0091089
LIA T -.0109162 0123757 -0.88 0.378 -.0351965 .013364
EXT -1.368245 .0291823 -46.89 0.000 -1.425498 -1.310991
EXT T .3681526 0522045 T7.05 0.000 .2657309 . 4705742

9 ATT=E(Y,|T;=1, Xi):E[aT—aC+X<‘(BT—BC)]; a’-aC is the coefficient of T; to calculate X,(BT—BC), I multiplied the mean of each variable with
the coefficient of the respective interaction term (such as: mean of OUT for adopters* coefficient of OUT_T)
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LFA 1137.273 1556.948 0.73 0.465 -15917.353 4151.8598
LFA T —-37959.335 2872.272 -1.32 0.186 -9434.535 1835.866
MR 1761.407 1362.08 1.25 0.1596 -510.8991 4453.714

ML T -1199.352 2977.237 -0.40 0.687 -7040. 487 4641.7862
CRG -247.598 3871.468 -D.06 0.9459 -7843.535 T347.573
CRG_T 7259.4 6212.426 .17 0.243 -4928.953 19447.75
MACH —-.1346861 .0141833 -5.50 0.000 -.1625127 -.1068595
MACH T .0612511 .0156961 -11 0.002 .0226487 .0555335
GDFC -286.0508 111.3203 -2.57 0.010 -504.4537 -67.64799
GDPC_T -363.1549 223.3422 -1.63 0.104 -801.3369 75.0271
FHC .092265 1.05699 .08 0.%31 -1.985402 2.1659932
FHC T 4.241008 2.016772 .10 0.036 -2842406 &.197777
_cons §126.21 2954.543 .75 0.006 2329.59% 13522.82

(3) PSM (NN(1) matching)® for wine 2014; ATT= -9906.52

psmatch2 T OUT SPC OVER UL PL UAA LIA EXT LFA MA ORG MACH GDFC FHC MEM MEM2, outcome(FNI) neighbor (1) ate common

Probit regression Humber of obs = 1237
LR chiZ2(16) = 220.45
Prob > chiZz = 0.0000
Log likelihood = -575.03544 Pseudo R2 = 0.1609
T Coef. S5td. Err. z Bx|z| [95% Conf. Interwval]
CuT -8.82e-07 6.11e-07 -1.45 0.148 -2.08e-06 3.14e-07
SPC -3.25e-06 2.94e-06 -1.10 0.269 -9.01e-06 2.51e-06
CVER 3.68e-06 2.82e-06 1.30 0.192 -1.85e-06 9.20e-06
UL .041287 .0777283 0.53 0.595 -.1110577 .1936316
PL .0046113 .0160152 0.29 0.773 -.026778 .0360006
URR -.0087602 .0020432 -4,29 0.000 -.0127649 -.0047555
LIz 1.07e-06 5.59e-07 1.91 0.056 -2.87e-08 2.16e-06
EXT 4.18e-06 2.61le-06 1.60 0.10%9 -9.37e-07 9.29e-06
LF& -.0758189 106861 -0.71 0.478 -.2852626 .1336248
MR . 264883 .1093354 2.42 0.015 .0505895 4791765
CRG .57445954 .2490573 2.31 0.021 0863522 1.062639
MACH 3.09e-06 1.09%e-06 2.84 0.005 9.55e-07 5.23e-06
GDEC -.0874042 .0090332 -9.68 0.000 -.1051089 -.0696995
FHC —.0001463 .0000838 -1.75 0.081 -.0003104 0000179
MEM . 0034152 .008249 0.41 0.679 -.0127487 .019587
MEM2 0003487 0001065 3.27 0.001 0001399 0005575
_cons .8093245 . 2247686 3.60 0.000 .368786 1.249863
Hote: 1 failure and 0 successes completely determined.
Variable Sample Treated Controls Difference 5.E. T-stat
FNI TUnmatched 20774.2774 49089.2052 -28314.9279 10904.7962 -2.60
RIT 26572.8364 36479.3603 -9906.52391 23808.0567 -0.42
BATUT 44876.0791 60245.8908 35369.8116
AIE 24474.0431
Note: 53.E. does not take into account that the propensity score is estimated.
pEmatcha: pEmatchz: Common
Treatment support
assignment Cff suppo On suppor Total
Untreated 3 534 937
Treated 4 296 o0 ° : Propensity Score. 8 !
I Untreated: Offsupport [ Untreated: On support
Total 7 1,230 1,237 I Treated: On support I Treated: Off support

10 1-nearest-neighbour matching
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pstest OUT SPC OVER UL PL UAA LIA EXT LFA MA ORG MACH GDPC FHC MEM MEM2, both treatment (T)
Unmatched Mean freduct t-test VI(T)/S
Variable Matched Treated Control ikias Ibias| t prlt] V(C
ouT o TO00D 1.1e+05 -10.5 -1.32 0.1866 0.08%
M 67766 T4613 -2.0 61.4 -0.40 0.691 0.25%
SFC o 11462 22709 -6.2 -0.77 0.443 O.01%
M 10580 9768 5 G92.8 0.43 0.665 2.21%
OVER o 13598 13818 -0. -0.09 0.928 1.07
M 12153 10096 5 -839.1 1.00 0.316 3.93%
UL o 1.0336 1.0942 -9.7 -1.44 0.151 0.86
M 1.0463 9775 11.0 -12.5 1.40 0.161 0.5%%9
FL o 1.6672 51644 17.5 3.16 0.001 4.16%
M 1.3707 1.5219% -3.1 §2.2 -0.30 0.766 0.59%
TAR o 17.597%9 22.82 -14.5 -2.21 0.028 1.08
M 17.117 19.153 -6.1 57.9 -0.%0 0.367 2.54%
LIn o 34038 8928 24.4 4.36 0.000 3.48%
M 27143 25056 2.0 91.7 0.22 0.825 0.47%
EXT o 18238 16289 3.3 0.46 0.644 0.59%
M 14807 14730 0.1 96.0 0.02 0.9%80 0.74%
LFA o 26667 26361 0.7 0.10 0.917
M 27027 .34459 -16.8 -2320.4 -1.%6 0.050
MR U L26333 .24573 3.1 0.47 0.638
M . 26689 199332 15.5 -396.8 1.%5 0.052
CRG u .04 .015%21 12.3 2.04 0.042
M .04054 .05405 -G.0 35.0 -0.77 0.440
MRCH u 36705 21021 19.9 3.7 0.000 4,57*
M 26269 24900 3.8 1.0 0.66 0.507 1.00
GDFEC u 21.009 24.153 -51. -7.93 0.000 1.15
M 21.133 21.097 0.6 98.8 0.08 0.940 1.25
FHC u 155.97 188.19 -5.5 -0.87 0O.385 1.36%
M 158.08 159.45 -7.1 -28.4 -0.%0 0.370 1.68%
MEM 1" 31.007 26.218 29.4 4.85 0.000 1.95%
M 31.334 33.1589 -11.2 61.9 -1.15 0.249 0.89
MEM2 U 1312.1 867.27 34.8 6.28 0.000 3.82%
M 1326.9 1489 -12.5 64.0 -1.25 0.213 1.14
* if wariance ratio outside [0.80; 1.25] for U and [0.80; 1.26] for M
Sample B=s R2 LR chiz p>chil MeanBias MedBias B R iVar
Unmatched | 0.161 220,45 0.000 15.3 11.4 T2.1%  D.46% 69
Matched 0.021 17.16 0.376 6.6 5.8 34.2% 0.82 62
* if B»25%, R outside [0.5:; 2]

Differences between the treated group and the control group with respect to PL, UAA, LIA ORG, MACH, GDPC,
MKM and MKM?2 are no longer significant after matching. Therefore, also the matched pseudo R?is lower (0.021
instead of 0.161). However, treated and control group differ with respect to LFA and MA after matching.
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(5) PSM (NN(5) matching)! for wine 2014; ATT=-1533.85

. psmatch2 T OUT SPC OVER UL FL UAA LIA EXT LFA MA ORG MACH GDPC FHC MEM MEM2, ountcome (FNI) neighbor (5) ate common

Note: 1 failure and 0 successes completely determined.
Variable Bample Treated Controls Difference 5.E. T-=tat
FHNI Unmatched 20774.2774 4908%.2052 -28314.59279 10904.7962 -2.60
ATT 26572.8364 28106.6848 -1533.84837 12138.5546 -0.13
ATO 44876.0791 58B49.3395 13973.2603
ATE 10241.4683
Note: 5.E. does not take into account that the propensity score is estimated.
Sample E= RZ LR chiZz p>chiz MeanBias MedBias B E IVar
Tnmatched 0.161 220.45 0O.000 15.3 11.4 72.1% O.46% 69
Matched 0.011 8.79 0.922 5.5 6.6 24.6 0.61 69

# if B»25%, R outside [0.5: 2]

Results of the probit model and the number of untreated and treated farms off/on support are the same as for
NN(1). Differences between treated and control group are no longer significant after matching (results of the
balancing test/pstest command are not fully reported here). Pseudo R? has decreased to 0.011.

(6) PSM (kernel matching) for wine 2014; ATT=1421.45

. psmatch2 T OUT SPC OVER UL PL UAA LIA EXT LFA MA ORG MACH GDPC FHC MEM MRM2, outcome(FNI) kernel ate common

Variable Sample Treated Controls Difference 5.E. T-stat
FNI Unmatched 20774.2774 49089.2052 -28314.9279 10504.7962 -2.60
RTT 27119.0637 25697.6142 1421.44948 9317.18466 0.15
RTU 44876.0791 56640.146 11764.0668
ATE 9300.73545
Note: 5.E. does not take into account that the propensity score is estimated.

pamatch: pesmatch?: Common

Treatment support
assignment COff suppo On suppor Total

Untreated 3 5934 937

Treated 8 232 300 ° z P opensity Scos £ !
I Untreated: Off support I Untreated: On support
Total 11 1,226 1,237 I Treated: On support [ Treated: Off support

Sample Ps R2 LR chiZ2 prchi2 MeanBias MedBias= B B FVar
Unmatched 0.161 220.45 0.000 15.3 11.4 T2.1% 0.46% 69
Matched 0.010 8.32 0.939 4.3 2.9 24.1 0.72 62

* if B»25%, R outside [0.5; 2]
Results of the probit model are the same as for NN(1). Again, differences between treated and control group are
no longer significant after matching (results of the pstest command are not fully reported here). Pseudo R? has

decreased to 0.010.

11 5-nearest-neighbours matching
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Olives specialists 2014

(1) PaRCI model for olives 2014; ATE=-2773.72

reg FNI T OUT SPC OVER UL FPL UAA LIA EXT LFA MA ORG MACH GDFC FHC

Source 55 df M3 Humber of obs = 1036
F{ 15, 1020) = 420.78

Model 2.6172=+12 15 1.7448e+11 Frob > F = 0.0000
Residual 4,2295e+11 1020 414654127 RE-squared = 0D.8605
BLdj B-=quared = 0.8588

Total 3.0401e+12 1035 2.9373e+09 Root MSE = 20363
FNI Coef. 5td. Err. T Bx|t| [85% Conf. Interwval]

T -2773.724 2853.444 -0.97 0.331 -8373.016 2825.569

cuT 1.053151 .018745%9 56.17 0.000 1.01636 1.089942
SBC -. 705009 0960284 -7.38 0.000 -.8974449 -.5205731
CVER -1.626404 0740353 -21.97 0.000 -1.7716591 -1.481117
UL 2888.91 1421.737 2,03 0.042 99.04616 5678.774

PL 12813.36 1420.667 9.02 0.000 10025.59 15601.12
UAn 299.7262 33.43773 8.96 0.000 234.1116 365.3408
LIA -.0267325 .0115895 -2.,31 0.021 —-.04594745 -.0039%05
EXT -1.177048 06920459 -17.01 0.000 -1.312848 -1.041248
LFR -1366.502 1744.575 -0.78 0.434 -47859.868 2056.863
MR 2619.655 1628.21 1.61 0.108 -575.3254 5814.719%
CRE 913.402 1894.057 0.48 0.630 -2803.291 4630.095
MACH -.0530447 0235605 -2.,25 0.025 -.0992772 -.0068122
GDEC -385.6279 169.0751 -2.28 0.023 -717.4028 -53.85305
FHC -1.52988 . 7542044 -2.,03 0.043 -3.009845% -.045%9104
_cons 4331.405 3664.313 1.18 0.237 —-2859.048 11521.86

(2) PaRVI model for olives 2014; ATT=-11899.45 + 9146.39=-2753.06

reg FNI T OUT OUT T SPC SPC T OVER OVER T UL UL T PL PL T UAA UAA T LIA LIA T EXT EXT T LFA LFA T MA

> MA T ORG ORG T MACH MACH T GDPC GDPC T FHC FHC T

Source 55 df M35 HNumber of obs = 1036
F{ 29, 100&6) = 218.84

Model 2.6242e+12 29 9.0488e+10 Prob > F = 0.0000
Residual 4.1598e+11 1006 413494265 R-squared = 0.8632
Adj R-sguared = 0.8592

Total 3.0401e+12 1035 2.9373e+09 Root MSE = 20335
FNI Coef. S5td. Err. t Prx|t] [95% Conf. Interwval]

T -11895.45 27172.24 -0.44 0.662 -65220.21 41421.31

cuT 1.047319 0193439 54.14 0.000 1.00936 1.085278
OUT_T .1138724 1321325 0.86 0.389 -.1454145 .3731593
SEC -.6977267 09659915 -7.19 0.000 -.B88B0556 -.5073978
SPC_T .017%402 1.08143 0.02 0.987 -2.104177 2.140057
OVER -1.646305 074332 -22.15 0.000 -1.752368 -1.500641
OVER_T .B926233 1.003665 0.89 0.374 -1.076894 2.862141
UL 2990.05 1463.166 2.04 0.041 118.8431 5861.257

UL T -1292.967 8020.323 -0.16 0.872 -17031.45 14445.51
PL 12769.08 1430.045 8.93 0.000 9962.865 15575.29

FL T -30161.04 18196.85 -1.66 0.058 -65869.17 5547.086
TAR 319.4817 34.31024 9.31 0.000 252.1539 386.8096
URR T -331.6224 168.6757 -1.97 0.050 -662.619 -.6258239
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LIA -.0255729 -011651 -2.19 0.028 -.0484359 -.0027089
LIA T -.1209253 .37459353 -0.32 0.747 —-.B566T02 .61481897
EXT -1.1659413 .0698148 -16.75 0.000 -1.306412 -1.032413
EXT T 1.076367 1.0814 1.00 0.320 -1.045651 3.158425
LFA -1361.971 1814.59 -0.75 0.453 -4923.571 2159.63
LFA T 878.0346 §495.1089 0.10 0.918 -15752.13 17548.2
M 2710.451 1658.6 1.63 0.103 -544,222 5965.203

ME T -720.1669 9441.353 -0.08 0.53% -15247.17 17806.83
CRG 896.5287 1973.387 0.45 0.650 —-2975.698 4768.955
ORG T 3387.879 10215.54 0.33 0.740 -166459.12 23444 .88
MACH -.055251 .0237655 -2.33 0.020 -.1015344 -.0086475
MACH T -.0914524 201172 -0.45 0.645 -. 4862572 . 3032725
GDFC —-431.0066 171.4976 -2.51 0.012 -767.5405 -54.47264
GDEC_T 836.T625 1445.278 0.58 0.564 -2007.151 3680.716
FHC -1.448104 . 7586245 -1.51 0.057 -2.936772 . 0405638
FHC T -1.360658 T7.188048 -0.19 0.850 -15.46594 12.74463
_cons 4847.735 3718.054 1.30 0.153 —-2448.373 12143.84

(3) PSM (NN(1) matching) for olives 2014; ATT=12169.77

. psmatch2 T OUT SPC OVER UL PL UAA LIA EXT LFA MA ORG MACH GDFC FHC MEM MEM2, outcome (FNI) neighbor (1) ate common

Probit regression Nunber of obs 1036
LR chiz2(16) = 39.34
Prob > chiz = 0.0010
Log likelihood = -195.31057 Pseudo R2 = 0.0915
T Coef. S5td. Err. z BPx|z| [95% Conf. Interwval]
ouT 5.48e-06 2,30e-06 2.38 0.017 9.71e-07 5.98e-06
5FC -.D000176 . 0000142 -1.24 0.217 -.0000454 .0000103
OVER -6.93e-06 . 0000126 -0.71 0.480 —-.0000337 .0000158
UL 2008846 .1467503 1.37 0.171 —-.0867407 . 4885099
PL .0322036 L 2281213 0.14 0.888 —.414906 4793132
TAn .0026774 .00412 0.65 0.516 -.0053976 .0107524
LIa T7.41e-07 1.86e-06 0.40 0.651 -2.91e-06 4.35%e-086
EXT -9.52e-06 . 000013 -0.73 0.463 —.0000349 .000015%
LFn . 3489431 .1806091 1.93 0.053 —.0050443 . 7029305
Mn -.1374657 .1975047 -0.70 0.486 -.5245678 24596364
CRG -.0300747 .15956781 -0.15 0.880 —-.4214366 .3612872
MECH -4.6%9=-06 3.47e-06 -1.35 0.176 —-.0000115 2.10e-06
GDFC -.0072222 . 0259543 -0.28 0.781 -.0580918 .0436473
FHC -.D003%953 . 0001443 -2.74 0.006 -.0006781 -.0001124
MEM -.03814687 .0117806 -3.24 0.001 —-.0612362 -.0150573
MEM2 .0003162 . 0001418 2.23 0.026 . 0000383 .0005594
_cons -.5976359 . 5045608 -1.78 0.075 -1.886557 .0912852
Variable Sample Ireated Controls Difference S5.E. I-stat
FNI Unmatched 27563.6773 23377.0882 4186.58909 7512.51231 0.56
AIT 28302.8576 16133.0897 12169.7678 T161.49988 1.70
RTU 22400.4457 19497.7119 -2902.73375
RTE -1978.14743
Note: 5.E. does not take into account that the propensity score is estimated.
psmatch2: pamatch2: Common
Treatment support
assignment Cff suppo On suppor Total
Untreated 170 811 s81 p 3 A
Treated 2 53 55 Propensity Scare
I Untreated: Off suppert [ Untreated: On support
Total 172 564 1,036 I Treated: On support I Treated: Off support
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. pstest OUT SPC OVER UL PL UAA LIA EXT LFA MA ORG MACH GDPFC FHC MKM MEMZ, both treatment (T)

Unmatched Mean ZFreduct t-test VI(T)/S
Variable Matched Treated Control %bias |bia=| T p>|t] Vi(C)
oUT u 39750 39081 0.9 0.05 0.957 0.30%
M 40590 23176 24.2 -2563.0 2.31 0.023 4.12%
SEC u 5252.2 T007.3 -12.3 -0.66 0.508 0.07+*
M 5437.4 3027 16.8 -37.3 2.79 0.006 1.76*
CGVER u 6430.6 7941.7 -9.5 -0.52 0.603 0.09%
M 6609.2 4936.6 10.6 -10.7 1.59 0.114 2.21%
UL U .95908 57251 1.3 1.37 0.172 0.951
M .95206 .93481 3.8 80.1 0.20 0.845 0.92
PL U .4B8653 .58124 -5.9 -0D.56 0.577 0.17*
M .50489 .271597 24.3 -145.9 2.68 0.009% 2.06%
ur:y u 21.04 22.354 -4.8 -0.31 0.760 0.49%
M 21.566 16.128 20.0 -313.7 1.26 0.212 0.98
LIA u 2372.9 5652.9 -3.5 -0.18 0.853 0.01+
M 2142.4 169.98 2.1 35.9 1.44 ©0.153 |(436.98%
EXT u 7516.5 10362 -13.9 -0.75 0.452 0.07+*
M 7784.3 4355 16.8 -20.5 2.64 0.010 1.45
LFA u . 50909 .33843 34.9 2.59 0.010
M . 49057 .5283 -7.7 77.9 -0.3% 0.701
MR u .29091 .39348 -21.6 -1.52 0.128
M . 30189 .28302 4.0 81.6 0.21 0.833
ORG o .14545 16208 -4.6 -0.33 0.745
M .13208 .13208 0.0 100.0 -0.00 1.000
MACH o 14312 214232 -29.3 -1.75 0.080 0.32%
M 14852 11211 15.0 48.8 1.0 0.278 0.85
GDEC o 17.915 18.465 -15.6 -1.03 0.304 0.62
M 15.006 18.966 -27.3 -74.5 -1.32 0.1%0 0.52%
FHC u 396.07 658.69 -36.8 -2.14 0.033 0.25+%
M 399.89 302.74 13.6 63.0 1.13 0.261 1.15
MEM u 19.255 22.415 -24.2 -1.87 0.062 1.33
M 19.981 21.698 -13.1 45.7 -0.61 0.542 0.82
MEM2 u 562.27 64%9.29 -10.3 -0.60 0.551 0.22+%
M 583.49 696.42 -13.4 -29.8 -0.57 0.569 0.14+

# if wariance ratio outside [D.58; 1.71] for U and [0.58; 1.73] for M

Sample E= RZ LR chiz prchiz MeanBias MedBias B E iVar
Unmatched 0.092 39.34 0.001 15.7 13.1 86.3% 0.57 77
Matched 0.148 21.75 0.152 13.3 13.5 48.6% 25, 35+ 54

* if B>25%, R outside [0.5; 2]

Many farms are excluded from the estimation because no matches were found. Even the estimated propensity
scores of adopters are rather low. The pseudo R? is low and even decreased after matching, which indicates that
differences between treated and control farms are even larger after matching. The balancing test also reports
that the two groups significantly differ with respect to OUT, SPC, PL and EXT, although the differences were not
significant before matching. The results suggest that PSM is not a good choice to estimate income effects of Gls
for olives specialists.
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(4) PSM (NN(5) matching) for olives 2014; ATT=2304.47

. psmatch2 T OUT SPC OVER UL PL UAA LIA EXT LFA MA ORG MACH GDPC FHC MFM MEM2, ountcome (FNI) neighbor (5) ate common

Variable Sample Treated Controls Difference 5.E. IT-=statc
FNI TUnmatched 27563.6773 23377.0882 4186.56909 7512.51231 0.56
LTT 28302.8576 25998.3859 2304.47163 7322.05672 0.31

LTO 22400.4457 20844.3037 -1556.14198

LTE -1319,32194
Sample P= ERZ LR chi2 prchil MeanBias MedBias B B FVar
Unmatched 0.0%2 39.34 0.001 15.7 13.1 86.3% 0.57 77
Matched 0.043 6.32 0.984 8.3 6.3 46,2% 1.32 46

* if B>25%, R outside [0.5; 2]

Results of the probit model and the numbers of treated and untreated farms off/on support is the same as for
PSM NN(1). However, the balancing test indicates that matches are better in terms of reduced differences
between treated and control group. There are no significant differences with respect to the observed variables
after matching (results of the balancing test/pstest command are not fully reported here). The pseudo R? has
also decreased from 0.092 to 0.043. However, the estimated propensity scores are very low for both adopters

and non-adopters.

(5) PSM (kernel matching) for olives 2014; ATT= 4895.76

. psmatch2 T OUT SPC OVER UL PL UAA LIA EXT LFA MA ORG MACH GDPFC FHC MEM MEM2, outcome (FNI) kernel ate common

Variable Sanple Treated Controls Difference 5.E. T-stat
FNI Unmatched 27563.6773 23377.0882 4186.58909 7512.51231 0.56
ATT 28302.8576 23407.099 4895.75853 6672,.12745 0.73
ATO 22400. 4457 24422.1285 2021.68284 . .
ATE 2157.9861
Sanple P= R2 LR chiz p»chiz MeanBias MedBias B R FVar
Unmatched 0.052 39.34 0.001 15.7 13.1 B6.3% 0.57 77
Matched 0.017 2.44 1.000 4.3 3.5 30.9% 0.60 31

* if B>25%, R outside [0.5; 2]

Results of the probit model and the numbers of treated and untreated farms off/on support is the same as for
PSM NN(1). Similar to the NN(5) matching techniques, differences between treated and control group are no
longer significant after matching (results of the balancing test/pstest command are not fully reported here). The
pseudo R? decreased to 0.017. Again, many farms are excluded from the estimation because of missing matches.
Propensity scores remain low for adopters and non-adopters.
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Quality wine specialists 2015

(1) PaRCI model for wine 2015; ATE= 1238.21

reg FNI T OUT SPC OVER UL PL UAA LIA EXT ORG MACH GDPC FHC

Source 55 df M5 HNumber of obs = 1220
F{ 13, 1208) = 3933.09

Model 4.0173e+13 13 3.0502e+12 Prob > F = 0.00D00
Residual 9.4756e+11 1206 785704078 B-squared = 0.9770
hdj R-=zguared = 0.9787

Total 4.1121e+13 1219 3.3733e+10 Root MSE = 28030
FNI Coef., Std. Err. T EBx|t| [95% Conf. Interwval]

T 1238.205 1932.453 0.64 0.522 -2553.137 5029.548

cuT 1.027491 0057665 178.18 0.000 1.016177 1.038804
SPC -1.126902 .0155851 -72.31 0.000 -1.157479 -1.096325
OVER -1.210258 .057918 -20.590 0.000 -1.32389 -1.096627
UL -2435.633 1345.827 -1.81 0.071 -5076.055 204.7886

EL -625,6613 301.4285 -2.08 0.038 -1217.044 -34.27878
TR 97.6B873 30.82022 3.17 0.002 37.22152 158.15589
LIn -.0145225 .0062091 -2.34 0.020 -.0267043 -.0023406
EXT -1.221819 .0354512 -30.97 0.000 -1.29322 -1.144418
CRG 2593.802 5678.72 0.46 0.648 -8547.465 13735.07
MRCH —.095028 .0151352 -6.54 0.000 -.1287222 -.06893337
GDEC -202.7701 142.5251 -1.42 0.155 -452.39486 T6.854589
FHC 4.473843 1.337263 3.35 0.001 1.850223 7.097463
_cons 8814,238 3699,404 2.38 0.017 1556,255 16072.22

(2) PaRVI model for wine 2015; ATT=2612.15 + 425.90= 3038.05

reg FNI T OUT OUT_T SPC SPC_T OVER OVER T UL UL T PL PL_T UAA UAA T LIA LIA T EXT EXT_T ORG ORG_T

> MACH MACH T GDPC GDPC T FHC FHC T

Source 55 df M5 Number of obs = 1220
F{ 25, 11%4) = 2166.20

Model 4.0234e+13 25 1.6093e+12 Prob » F = 0.0000
Re=zidual §.8707e+11 1194 742936453 RE-=guared = 0.97684
ndj B-=sguared = 0.59780

Total 4.1121e+13 1219 3.3733e+10 Root MSE = 27257
FNI Coef. 5td. Err. T Bx|t| [95% Conf. Interwval]

T 2612.147 T7594.778 0.34 0.731 -12288.45 17512.74

ouT 1.032977 .0062373 165.61 0.000 1.02074 1.045214
CUr_T -.1631748 .0451866 -3.61 0.000 —-.25182867 -.0745209
SEC -1.135552 0164311 -69.11 0.000 -1.167769 -1.103315
SPC_T .2307152 0757271 3.05 0.002 .0821421 . 3792882
CVER -1.054928 .0638422 -16.52 0.000 -1.180183 -.9296723
OVEER_T -.3623273 .1703611 -2.13 0.034 -.6965678 -.0280869
UL -2524.582 1544.633 -1.83 0.068 -5855.08 205.9152

UL T 2860.857 2978.874 0.96 0.337 -2983.552 BT705.267
PL 569.8623 453.8097 1.26 0.209 -320.4509 1460.216

FL T -2238.341 652.4124 -3.43 0.001 -3518.343 -958.3385
UAR 203.0452 36.65867 5.54 0.000 131.1227 274.9678
URR T -231.7278 77.20827 -3.00 0.003 -383.2068 -60.24883
LIn -.0079871 0066792 -1.20 0.232 -.0210913 0051172
LTA T —.024307 0172734 -1.41 0.160 -.0581966 .D0S5826
EXT -1.389794 .0452481 -30.71 0.000 -1.478568 -1.301019
EXT T .5722483 .0925851 6.15 0.000 .3898159 . 7546806
CRG 1743.402 6712.772 0.26 0.795 -11426.74 14913.54
CRG_T 694, 6263 11557.34 0.06 0.954 -22765.12 24154.37
MACH -.1818059 .0207539 -8.76 0.000 -.2225241 -.1410878
MACH T .1912218 .0325552 5.87 0.000 12735 . 2550936
GDEC 3.061913 166.6112 0.02 0.985 -323.8213 329.9451
GDEC_T 210.5009 342.705%9 0.61 0.53%9 -461.8719 B62.8736
FHC 6.524794 1.541948 4.23 0.000 3.499565 5.550023
FHC T -7.14564 3.013481 -2.37 0.018 -13.05795 -1.233333
2216.496 4413.539 0.50 0.6146 -6442.659 10875.65
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(3) PSM (NN(1) matching) for wine 2015; ATT=3878.33

- psmatch2 T OUT SPC OVER UL PL UAA LIA EXT ORG MACH GDPC FHC MEM MEM2,

> COomMmon

ontcome (FNI) neighbor

Probit regression HNumker of obs = 1220
LE chiZ(14) = 187.71
Prob > chi2 = 0.0000
Log likelihood = -595.47214 Pseudo R2 0.1362
T Coef. S5td. Err. z B>|z]| [95% Conf. Interwall]
cuT -3.09e-06 8.97e-07 -3.44 0.001 -4.85e-06 -1.33e-06
SEC -1.87e-06 9.15e-07 -2.04 0.041 -3.67e-06 -7.66e-08
CVER 2.36e-06 3.29e-06 0.72 0.473 -4.0%=-06 6.81e-06
TL 1709615 .0739547 2.31 0.021 .0260128 .3159101
EL .0353836 .0164037 2.16 0.031 .0032329 0675342
URR -.0114719 .0019316 -5.94 0.000 -.0152578 -.0076859
LIn 2.23e-07 3.50e-07 0.64 0.525 -4.64e-07 9.10e-07
EXT .0000112 3.06e-06 3.67 0.000 5.24e-06 .0000172
CRG 0647144 2760306 0.23 0.815 -.4T62956 .6057243
MACH 1.72e-06 8.80e-07 1.85 0.051 -4.37e-09 3.45e-06
GDEC -.072334 .0086337 -8.38 0.000 -.0892558 -.0554122
FHC —.0000347 .0000726 -0.48 0.633 -.000177 .0001077
MEM .0034435 .0080909 0.43 0.670 -.0124145 .0153014
MEMZ .0002709 .0001038 2.61 0.009 .0000674 .0004743
_cons .5974977 .2073066 2.88 0.004 .1911842 1.003811
Hote: 2 failures and 0 successes completely determined.
Variable Sample Treated Controls Difference 5.E. T-stat
FNI TUnmatched 24748.8613 48186.7093 -23437.848 12090.5161 -1.94
RTT 25769.3661 21891.0385 3878.32761 6450.27239 0.60
ATO 37923.8256 47363.8095 9439.98396 .
LTE 8043.8291 .

Hote: 5.E. does mot take into account that

psmatch : psmatchz: Common
Treatment support
azzignment Off suppo On suppor Total
Untreated 5 507 912
Treated 4 304 308
Total ] 1,211 1,220

the propensity score is estimated.

2z

4 6
Propensity Score

& 1

I Untreated: Off support
I Treated: On support

N Untreated:
N Treated: Off support

On support

. pstest OUT SPC OVER UL PL UAA LIA EXT ORG MACH GDPC FHC MEM MEM2, both treatment (t)

Unmatched Mean freduct t-test VI(T)/

Variable Matched Treated Control %bias |Ibias| t p>lt] wicC
ouT u 76196 96493 -9.0 -1.1% 0.233 0.22%
M 68080 68224 -0.1 99.3 -0.02 0.987 0.66%
5FC T 12936 16268 -4.7 -0.61 0.542 0.14x*
H 11265 11138 0.2 96.2 0.06 0.954 1.05
CVER u 13252 12830 1.2 0.17 0.862 0.57%
M 11351 8707 4 -289.7 1.12 0.261 1.45%

UL u 1.0564 1.0819 -3.8 -0.59 0.554 1.15
M 1.0681 1.0181 7.6 -97.1 0.93 0.353 1.11
FL U 1.9474 86793 20.2 3.63 0.000 3.81*
H 1.4808 1.5377 -1.1 94.7 -0.13 0.500 0.75%
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TRR u 18.357 23.367 -13.7 -2.03 0.042 0.81
M 17.397 23.962 -18.0 -31.0 -2.38 0.018 0.96
LIA u 31137 19791 7.8 1.14 0.255 0.70+
M 28981 26983 1.4 82.4 0.16 0.874 0.54+
EXT u 15388 15433 6.8 1.00 0.316 0.78+
M 14979 14504 0.1 98.1 0.03 0.979 0.6T*
CRG u 02597 01864 5.0 0.79 0.433
M 02632 04934 -15.6 -214.0 -1.4% 0.137
MACH u 37502 20746 19.2 3.45 0.001 3.68+%
M 31289 40627 -10.7 44.3 -1.08 0.280 0.44+
GDEC u 20.838 23.787 -45.3 -7.38 0.000 1.06
M 20.946 20.426 8.5 82.3 1.13 0.259 1.42+
FHC u 230.45 213.31 2.8 0.43 0.668 1.17
M 233.48 179.51 8.7 -214.8 1.12 0.263 1.45%
MEM u 30.195 26.425 23.0 3.76 0.000 1.78%
M 30.474 32.569 -12.8 44 .4 -1.44 0.151 1.12
MEM2 u 1254 891.52 28.3 5.01 0.000 3.35%
M 1269.1 1363.9 -7.4 73.9 -0.83 0.404 1.86%
*# if variance ratio outside [0.80; 1.25] for U and [0.80; 1.25] for M
Sample P= R2 LR chiz2 pr»chi2 MeanBias MedBias B R FVar
Unmatched 0.136 187.71 0.000 13.8 5.4 T9.4% 0.72 69
Matched 0.042 35.35 0.001 7.5 48.6% 0.63 69

% if B>25%,

R outside [0.5;

2]

Differences between the treated and the control group with respect to PL, MACH, GDPC, MKM and MKM?2 are
no longer significant after matching. The difference in UAA remains significant. The pseudo R? decreased from
0.136 to 0.042.

(4) PSM (NN(5) matching) for wine 2015; ATT=1293.24

psmatch2 T OUT SPC OVER UL PL UAA LIA EXT ORG MACH GDPC FHC MEM MEM2,
> COmMmMOn

ontcome (FHNI) neighbor (5) ate

Variable Sample Treated Controls Difference 5.E. T-=tcatc
FNI Unmatched 24748.8613 48186.7093 -23437.848 12090.5161 -1.94
ATT 25769.3661 24476.1311 1293.235 8552.42454 0.15

ATU 37923.8256 44170.2264 6246.40081

ATE 5002.99668

Results of the probit model and the number of untreated and treated farms off/on support are the same as for
NN(1). All differences between treated and control group are no longer significant after matching (results of the
balancing test/pstest command are not fully reported here). Pseudo R? has decreased to 0.026.

(5) PSM (kernel matching) for wine 2015; ATT= 2702.60

. psmatch2 T OUT SPC OVER UL PL UAA LIA EXT ORG MACH GDPC FHC MEM MEM2, ontcome (FNI) kernel ate common

Variable Sample Treated Controls Difference 5.E. T-stat
FNI Unmatched 24748.8613 48186.7093 -23437.848 12090.5161 -1.94
ATT 25769.3661 23066.7676 2702.59857 6415.21555 0.42

ATU 37923.8256 40852.T162 2928.89065

ATE 2872.08405

Note: 5.E. does not take into account that the propensity score is estimated.

Results of the probit model and the number of untreated and treated farms off/on support are the same as for
NN(1). Again, all differences between treated and control group are no longer significant after matching (results
of the pstest command are not fully reported here). Pseudo R? has decreased to 0.019.
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Olives specialists 2015

(1) PaRCI model for olives 2015; ATE= -3495.41

reg FNI T OUT SPC OVER UL FPL UAA LIA EXT ORG MACH GDFC FHC

Source 55 df M5 Humber of obs = 992
F( 13, 378) = T2B.87

Model 4.1200e+12 13 3.1692e+11 Brobk > F = 0.0000
Residual 4.2524e+11 978 434809100 R-sguared = 0.9064
Adj R-sguared = 0.9052

Total 4.5452e+12 991 4.5865e+09% Root MSE = 20852
FNI Coef. 5td. Err. t P>|t]| [95% Conf. Interval]

T -3495.41 2844.116 -1.23 0.219 -9076.682 2085.862

ouT 1.055251 .0162711 64.85 0.000 1.023321 1.087181
S5EC -1.656224 .0951296 -17.41 0.000 -1.6842906 -1.469543
CVER -.892892 .0401095 -22.26 0.000 -.9716026 -.8141814
UL 1700.08%9 1471.897 1.16 0.248 -1188.35 4588.528

FL 1967.948 1506.177 1.03 0.302 -1772.72 5708.616
TR 284.2531 31.45237 5.03 0.000 222.4527 346.0535
LIa -.0590768 .0093667 -6.31 0.000 -.0774579 -.0406957
EXT —-.8200054 .1038258 -7.50 0.000 -1.023756 -.6162625
CRG -1662.42 2156.554 -0.77 0.441 -5894.426 2569.585
MACH -.064152 .0249788 -2.57 0.010 -.1131701 -.0151338
GDEC -878.3093 214.9697 -4.0% 0.000 -1300.164 -456.4544
FHC -1.196096 .543502 -1.27 0.205 -3.048402 .6562102
_cons 17032.38 4077 .543 4.18 0.000 S030.636 25034.12

(2) PaRVI model for olives 2015; ATT=-42172.75 + 38696.07= -3476.68

reg FNI T OUT QUT_T SPC SPC T OVER OVER T UL UL T PL PL T UAA UAA T LIA LIA T EXT EXT T ORG ORG T
> MACH MACH T GDPC GDPC T FHC FHC T

Source 55 df M5 HNumber of obs = 552
F{ 25, 966) = 378.43

Model 4.1241=+12 25 1.6496e=+11 Brob > F = 0.0000
Residual 4.2110e+11 966 435919214 E-=guared = 0.9074
4dj B-sguared = 0.9050

Total 4.5452e+12 991 4.5865e+09 Root MSE = 20879
FNI Coef. 5td. Err. T B>|t]| [95% Conf. Interwval]

T -42172.75 27692.01 -1.52 0.128 -96516.19 12170.68

ouT 1.048948 0171992 60.99 0.000 1.015194 1.0827
OUT_T .1051681 .0840659 1.25 0.211 -.0598048 270141
SPC -1.657474 0960712 -17.25 0.000 -1.846007 -1.468942
SEC T .B569209 1.648373 0.52 0.603 -2.377883 4.091725
COVER -.B906705 .0406944 -21.89 0.000 -.9705302 -.B810810%
OVER T —-. 4000975 .97598 -0.41 0.682 -2.315383 1.515188
UL 1544.888 1502.147 1.29 0.196 -1002.961 4892.736

UL T 1731.897 9295.198 0.19 0.852 -16509.21 19973.01
PL 2196.178 1923.203 1.14 0.254 -1577.958 5970.315

FL T -20978.13 21356.78 -0.98 0.326 -626689.16 20932.89
TRR 286.6127 31.85041 S5.01 0.000 224.19596 349.0258
URR T -214.0309 2593.1412 -0.73 0.465 -789.2975 361.2362
LIn -.0570866 0054392 -6.05 0.000 —-.0756122 -.038565
LIA T -.0747457 4658658 -0.16 0.873 -.9889715 .83948
EXT -.8176852 1048039 -7.80 0.000 -1.023355 -.6120156
EXT T . 9202236 1.433244 0.64 0.521 -1.892406 3.732853
CRG -1738.626 21%4.131 -0.79 0.428 -6044.438 2567.185
CRG T 166.8369 17279.5 0.01 0.992 -33742.84 34076.51
HMACH -.0645329 .0254756 -2.53 0.011 -.1145268 -.01453%
MACH T -.1440318 .1616848 -0.89 0.373 —-.4613258 1732622
GDEC -963.1028 221.0075 -4.36 0.000 -1396.813 -529,3927
GDPC_T 22895.524 1566.8596 1.46 0.144 -T781.3889 5368.437
FHC -1.098043 .9T742487 -1.13 0.260 -3.009%31 .8138451
FHC T 1.421922 4.578089 0.31 0.756 -7.562224 10.40607
_cons 18362.55 4175.365 4.40 0.000 10168.72 26556.38
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(3) PSM (NN(1) matching) for olives 2015; ATT= 10810.92

psmatch2 T OUT SPC OVER UL PL UAA LIA EXT ORG MACH GDPC FHC MEM MEM2,
> te common

ontcome (FNI) neighbor (1) a

Prokit regression Number of obs = G992
LR chiZ(14) = 57.63
Brok > chiZz = 0.000D
Log likelihood = -192.13375 P=zeudo R2 = 0.1304
T Coef. 5td. Err. z B=lz| [95% Conf. Intervall]
ouT 6.24e-06 1.69=-06 3.70 0.000 2.94e-06 9.54e-06
SEC -.0000716 .0000244 -2.94 0.003 -.0001194 -.0000238
CVER -3.61e-06 4,.T4e-06 -0.76 0.446 -.000012% 5.68e-06
UL .0287842 1625054 0.18 0.859 -.2897206 . 347289
PL .0023529 .2894692 0.01 0.994 -.5649964 .5697022
TRn .0062824 0039503 1.53% 0.112 -.001459% .0140248
LIz 3.67e-06 3.56e-06 1.03 0.302 -3.30e-06 0000106
EXT —-.0000153 .0000D156 -0.98 0.326 —-.000D458 .0000152
CRG —-.3287756 .2746688 -1.20 0.231 -.85671207 2055611
MACH -3.00e-06 3.30e-06 -0.91 0.362 -9.46e-06 3.46e-06
GDEC .0240674 .D276315 0.87 0.364 -.0300893 075224
FHC —-.00021%9 .D0D1218 -1.80 0.072 —.0004576 .D00D157
MEM —-.0561447 .D123217 -4.72 0.000 —-.0622947 —-.03359947
MEMZ .00D4922 .D0D1458 3.28 0o.001 .DoD1985 .DOD785%9
_caons -.BB27109 512222 -1.72 0.085 -1.6686648 .1212258
Note: 9 failures and 0 successes completely determined.
Variable Sample Treated Controls Difference 5.E. T-=tat
FNI TUnmatched 35255.3268 34428.1552 B27.1715583 9169.09278 0.09
LTT 35255.3268 24444.4111 10810.9157 10294, 981 1.05
ATT 28021.7255 34621.002 6599.27654
LTE 6B55.868
pematchl @ pematchs : Common
Treatment support
izzignment Off suppo On suppor Total
Untreated 40 8694 934
Treated a8 58
£ L 2 Propensity Sacnre Z
I Untreated: Off support I Untreated: On support,
Total 40 8952 8992 I Treated

pstest OUT SPC OVER UL FL UAA LIA EXT ORG MACH GDPC FHC MEM MEM2, both treatment (T)
Unmatched Mean freduct t-test VIT)/S
Variable Matched Treated Control %bias Ibias| T p>lt] V{C)
ouT U 46282 55698 -9.3 -0.56 0.575 0.28%
M 46282 38870 7.3 21.3 0.65 0.518 1.40
SFC U 3302.8 77386.7 -31.4 -1.71 0.087 0.03%
M 3302.8 3670.7 -2.6 91.7 -0.53 0.5985 0.55%
OVER U 7370.1 10828 -12.2 -0.67 0.506 0.03%
M 7370.1 B8786.3 -5.0 59.0 -0.35 0.728 O.06%
UL U .92571 .91116 3.5 0.23 0.818 0.57*
M .92571 .94587 -4.8 -38.6 -0.31 0.757 1.08
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FL U . 40527 .T7303 -25.1 -1.41 0.160 0.09%
M 40527 .34759 3.9 64.3 0.55 0.580 1.23
TAR U 18.774 25.9 -18.9 -1.07 0.284 0.12%
M 185.774 18.58 0.5 97.3 0.06 D.956 0.76
LIA U 1411.2 6370.4 -5.2 -0.28 0.781 0.00%
M 1411.2 658.29 0.8 B4.8 0.66 0.513 4.32%
EXT U 6731.5 13223 -23.9 -1.32 0.186 0.07*
M 6731.5 5244.9 5.5 77.1 0.%92 0.357 1.52
ORG U .05172 13276 -28.2 -1.7% 0.073
M .05172 .03448 6.0 78.7 0.45 0.651
MACH U 16002 24604 -31.2 -1.%5 0.051 0.39%
M 16002 15699 1.1 96.5 0.0% 0D.928 1.81*
GDEC U 17.59 17.953 -11.3 -0.82 0.414 0.89
M 17.5% 15.64 -39.0 -244.4 -1.88 0.063 0.61
FHC o 512.58 451.51 8. 0.632 0.531 1.04
M 512.5%9 597.02 -11.6 -38.2 -0.65 0.515 1.26
MEM o 15.879 22.089 -47.5 -4.08 0.000 1.83%
M 15.8759 16.638 -5.8 87.8 -0.24 0.811 0.62
MEM2 u 469,84 608.54 -18.7 -1.15 0.249 0.34%
M 469.84 627.16 -21.2 -13.4 -0.66 0.514 0.09%
* if wvariance ratio outside [0.59; 1.69] for U and [0.5%; 1.69] for M
Sample P= RZ2 LR chiZ2 prchi2 MeanBias MedBias B R FVar
Unmatched 0.130 57.63 0.000 19.6 i8.8 T4.7% 0.33% 85
Matched 0.078 12.48 0.567 8.2 5.2 67.0% 0.72 3B

* if B»25%,

R outside [0.5; 2]

Similar to the sample of olives specialists in 2014, the estimated propensity scores are very low, even for
adopters. 40 untreated farms are off support. The pseudo R? decreased from 0.130 to 0.078 after matching.
Before, differences between treated and control group were significant (at 10% level or lower) for SPC, ORG,
MACH and MKM. The balancing test shows that the differences are no longer significant after matching.

(4) PSM (NN(5) matching) for olives 2015; ATT=8723.52

Variable Sample Treated Controls Difference 5.E. T-=stat
FNI Unmatched 35255.3268 34428.1552 827.171593 9169.09278 0.09
ATT 35255.3268 26531.8064 8723.52042 11591.4079 0.75
ATO 28021.7255 36286.7641 8265.03862
LTE §292,97133
Sample P=s RZ LR chiz p>chiz MeanBias MedBias B B TVar
Unmatched 0.130 57.63 0.000 19.6 18.8 T4, 7% 0,33% 85
Matched 0.041 6.62 0.948 4.1 2.2 45.0% 0.59 54

Results of the probit estimation and the numbers of treated and untreated farms off/on support is the same as
before. Again, differences between treated and control group are no longer significant after matching. The
pseudo R? has further decreased to 0.041. Overall, the estimated propensity scores stay low.
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(6) PSM (kernel matching) for olives 2015; ATT=-5499.85

Variable Sample Treated Controls Difference 5.E. T-stat
FNI TUnmatched 35255.3268 34428.1552 827.171593 9169.039278 0.09
ATT 28494.7212 33994.5703 -5499.84906 6640.48911 -0.83
LT 28021.7255 32397.4247 4375.6592
ATE 3783.78936
Note: 5.E. does not take into account that the propensity score is estimated.

pematchs @ pematchs : Common
Treatment support
assignment COff suppo On suppor Total
Untreated 40 694 534
Treated 1 57 58 0 4 2 Propensity Score 5
I Untreated: Off support [ Untreated: On support
Total 41 951 592 I Treated: On support [ Treated: Off support
Sample P= R2 LR chiZz prchil MeanBias MedBias B R FVar
Unmatched 0.130 57.63 0.000 19.6 18.8 T4.7* 0.33= 85
Matched 0.034 5.41 0.979 7.1 6.4 43.6% 0.49% 62
¥ if B»25%, R outside [0.5; 2]

One adopter is excluded from the estimation when using the kernel matching technique. The propensity scores
remain low for both treated and untreated farms. However, the pseudo R? further decreased to 0.034, which
indicates that matching successfully reduced differences between the control group and the treated group.
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