Wild lobster (Panulirus ornatus) fry fishery in Balete bay, Davao Oriental: Catch trends and implications to fisheries management

Macusi, E. D., Laya-Og, M. E., \& Abreo, N. A. S.

This is a "Post-Print" accepted manuscript, which has been published in "Ocean and Coastal Management"

This version is distributed under a non-commercial no derivatives Creative Commons (c) (1) $\Theta \in$
(CC-BY-NC-ND) user license, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and not used for commercial purposes. Further, the restriction applies that if you remix, transform, or build upon the material, you may not distribute the modified material.

Please cite this publication as follows:
Macusi, E. D., Laya-Og, M. E., \& Abreo, N. A. S. (2019). Wild Iobster (Panulirus ornatus) fry fishery in Balete bay, Davao Oriental: Catch trends and implications to fisheries management. Ocean and Coastal Management, 168, 340-349. DOI: 10.1016/j.ocecoaman.2018.11.010

You can download the published version at:
https://doi.org/10.1016/j.ocecoaman.2018.11.010

Wild lobster (Panulirus ornatus) fry fishery in Balete Bay, Davao Oriental: catch trends and implications to fisheries management

Edison D. Macusi ${ }^{1,2,3}$, Manilyn Laya-og ${ }^{1,2}$, Neil Angelo S. Abreo ${ }^{1,4}$

Institutional Affiliation:

1= Regional Integrated Coastal Resource Management Center (RIC-XI), Davao Oriental State College of Science and Technology, City of Mati, Davao Oriental, Philippines

2= Institute of Agriculture and Life Sciences (IALS), Davao Oriental State College ©. Science and Technology, City of Mati, Davao Oriental, Philippines

3= Aquaculture and Fisheries Group, Wageningen University-P.E. Box 368 6700 AH Wageningen, The Netherlands

4= Senior High School Department, Malayan Colleges,Mindarac, Davao City, Philippines

Corresponding author:

Edison D. Macusi

Regional Integrated Coastal esource(Management Center (RIC-XI), Davao Oriental State College of Science and Technology, City of Mati, Davao Oriental, Philippines e-mail: edmacusi@gmail.com

Wild lobster (Panulirus sp.) fry fishery in Balete bay, Davao Oriental: catch trends and implications to fisheries management

Edison D. Macusi ${ }^{1,2,3}$, Manilyn Laya-og ${ }^{1,2}$, Neil Angelo S. Abreo ${ }^{1,4}$

Institutional Affiliation:

1= Regional Integrated Coastal Resource Management Center (RIC-XI), Davao Oriental State College of Science and Technology, City of Mati, Davao Oriental, Philippines

2= Institute of Agriculture and Life Sciences (IALS), Davao Oriental State College of SCience and Technology, City of Mati, Davao Oriental, Philippines

3= Aquaculture and Fisheries Group, Wageningen University \& Research P.O.Box 338, 6700 AH, Wageningen, The Netherlands

4= Senior High School Department, Malayan Colleges Mìdanao, Daváo City, Philippines

Corresponding author:

Edison D. Macusi

Regional Integrated Coastal Réspurce Management Center (RIC-XI), Davao Oriental State College of Science and Tecmology, City of Mati, Davao Oriental, Philippines e-mail: edmacusi@graji.com

Abstract

The coastal ecosystem of the Philippines is one of the richest and most diverse on earth. Lobsters are one of the commercially exploited species targeted by small-scale fishers for their livelihood and income. This study aims to determine the catch, and catching pattern of the wild lobster fry fishery, quantify the catch per unit effort (CPUE) and identify issues and challenges present in the lobster fry fishery for improved conservation and management. A combination of semi-structured interviews $(\mathrm{n}=90$), focus group discussion $(\mathrm{n}=35)$ and actual catch monitoring for three months of lobster fry fishers $(\mathrm{n}=20)$ were eonductedito elicit information on lobster catch, composition, fishing practices and issuesard challenges. Results from the interview and focus groups showed that majorithof fishers catch the fries of Panulirus ornatus, Parribacus antarcticus and Pânulitirus tensicolor. They catch most of the lobster fries using bamboo traps and beach ene. The analysis of the CPUE also revealed significant results ($P \leq 0.05$) with the catchthaying the highest CPUE value $(0.30 \mathrm{~g})$ followed by the normal catch $(0.15 \mathrm{~g})$ and Porst catch of $(0.02 \mathrm{~g})$. In terms of weekly field monitoring of the catches 0120 fishers. temporal variation in terms of weeks was highly significant ($P=0.00 \% ; n^{2}=22$). Some management issues mentioned by fishers include effluents from shrimp far^11ng, illegal fishing, chemical residues from mango farms and improper waste disposal. The lack of a management plan, as well as a system to control who has access to the fishing ground of lobster fries, can negatively affect the long-term sustainability of the lobster fry fishery.

Keywords: Davao Oriental, fisheries, fisher's knowledge, fry, growth overfishing, lobster fry, Mati City, puerulus

1.0 INTRODUCTION

The marine ecosystem faces various threats from human exploitation, habitat destruction, marine pollution, coastal degradation, and climate change problems that lead to a decline in biodiversity and ecosystem goods and services (Abreo et al., 2015; Guerrero, 1999; Lugo, 2018; Macusi et al., 2015a; Macusi et al., 2011). The open access nature of the fisheries in many coastal areas of the country contributes to species extinction (Lavides et al., 2010; Turner et al., 2007). In addition, inadequate information on their fishing effort and lack of coherent management plan in the different coastal embayments fan lead to ininimal impact of conservation efforts (Abernethy et al., 2007; Tsehaye et д1., z007; Turrer et al., 2014). The lobster fisheries include collection of both adults and fries that are just part of the ubiquitous pelagic and reef fisheries present all over the Philippines Cabral et al., 2015; Gonzales and Taniguchi, 1995). The adult lobster fishery is consideced to be highly valuable and in high demand (Dao, 2016). The commony, caught spebies include, Panulirus ornatus, Panulirus versicolor, and Panulirus loveipes longipes (Gonzales and Taniguchi, 1995). In 2017, the lobster production of thePhilippines was 12 tons, mainly coming from the CARAGA region, which includes Sarigao del Norte and Surigao del Sur; meanwhile the country's total production for 22 years was just 622 tons (PSA, 2018). Due to a high demand and high price for lobsters, many simall-scale fishers are eager to catch lobsters for economic reasons. Lobsters are a fixturevils seafood restaurants providing a good protein source and enjoyment during a fine dining experience (Fabinyi and Liu 2014). Lobster fishing is highly export led, as fishers harvest lobsters coming from various coastal provinces such as Davao Oriental, Palawan, Surigao, and Zamboanga. This commercial exploitation results to a declining catch of both the adult and the fry stages (Gonzales and Taniguchi, 1995; Hart, 2009). In addition, the global supply of wild caught spiny lobsters are usually in short supply and declining. Because of this, there is intense commercial interest to collect wild lobster fries in enclosed and sheltered bays
in the country. The fries are collected in the wild using rock aggregators that are hanged on bamboo poles or on bamboo rafts anchored to a shallow seabed near the coast. Fishers usually use old nettings, sargassum leaves or old dried banana leaves to lure the lobster pueruli to the hanging aggregators. With the use of sea cages or ponds, the collected fries are grown until adult and ready for export or for the local seafood restaurants. Often, because of lack of stable supply of wild caught fries, the suppliers and operators of lobsters from CARAGA region have ventured to other nearby provinces such as Davao Oriental for their lobster fry collectign. For this reason, lobster fries commanded a hefty price, ranging from two to five dots during the peak season of collection (April and May). As such, aquacaltuis produetion of lobsters has become an important proposition worldwide to increaseits, narket sutainability but only a few countries can supply the fry needed for such aqpacultury ventures (Radhakrisnan, 2013). Moreover, a cost-effective hatchery technoloy'on lobsters is largely lacking, causing lobster aquaculture to depend heavily on wild-caught fries. ©he lobster farming in Vietnam and China, are dependent on natural availabiley of live loester fries which are sourced from Indonesia, the Philippines and other countries (Pereira and Josupeit, 2017). This reliance on wild live seeds for aquaculture may ead to nadral collapse of the species due to growth overfishing (Jeffs, 2010). Growth prerfishing happens when there is over collection of natural seed fries in the wild such that there is less fish stocks reaching their full biological and economic potential. This is differenffom recruitment overfishing where the reproducing part of the fish stocks are removerso that there are far fewer recruitment that can occur in the future (Diekert, 2012; King, 2007). This practice might lead to heavy exploitation of the natural stocks of lobsters, which until now the country does not have much data. To address the lack of data, local ecological knowledge (LEK) can be useful in understanding the fisheries and in determining the behavior of the species as well as their present distribution patterns (Macusi et al., 2017a). This will be done through personal interview of individual fishers as this can elicit large amount
of information pertaining to past and present existence of the lobster fisheries (Johannes et al., 2000; Neis et al., 1999).

This study contributes to the understanding of catch patterns, fishing practices, catch monitoring of lobster fries and its present management status in Balete bay, Davao Oriental. To our knowledge, the biology and ecology of crustaceans particularly lobsters is scarce in the Philippines which precludes the conservation of this species. The results of this study will be useful in developing future policies for the lobster fisheries management.

2.0 MATERIALS AND METHODS

2.1 Description of study area

The study was conducted in Balete bay, Davao- Oriental loقted in southeastern coast of Mindanao. This bay is biologically diverse and a áaven of both reef fisheries and lobster fishing in Mati City because of its cove-like formation and (p)rotected embayment that hosts abundant mangrove forests, seagrass beds and uiverse reet fisheries. The study was conducted in the area because of the present assessment of marine fisheries resources found in Mati City and the fact that buyers from Surigao del Norte and Surigao del Sur are coming in droves to buy lobster fries starting frome February antil June due to scarcity of supply in the two Surigao provinces. Balete bay is part of the Pujada bay protected landscape and seascape area, a declared NIPAS area through PPesidential Proclamation 431 of 1994. The NIPAS or the National Integrated Protection) Act System (Republic Act 7586) of the Philippines is a presidential declaration that an area declared will be administered and managed primarily by the Department of Environment and Natural Resources (DENR). The access to the resource is strictly controlled by the DENR. It lies between 652^{\prime} to $655^{\prime} \mathrm{N}$ latitude and 12609^{\prime} longitude (Figure 1). It has an area of 77 ha which is smaller than Pujada Bay. It is characterized by hilly and mountainous landmasses. The Balete bay mouth faces Pujada Bay waters as it is located at the western
portion of the bay. During low tides, wide sand or sandy muddy and coralline flats are exposed particularly in the northeastern part of the bay. Part of the reason that the bay remains shallow is due to many fallen logs that were dump by loggers in the past. The area is important and known as a nursery and breeding ground for various reef fish species as well as for lobsters.

Figure 1. The stuidy sitesgre located in Balete bay, Mati City, Davao Oriental.

2.2 Fishing locatiorand floating rafts

A grid map betow shows the location of the 140 bamboo rafts established by the 90 fishers within Balete bay that was surveyed. The fishing ground is muddy and shallow, with a depth of 1-6 m . Large lobsters are usually found in deeper areas (11-20 m) and in crevices and near the coral reefs. More than 50% of the traps are located near sitio Logpond, in an area referred to by fishers as "Louk" and known to be the spawning ground of various fishes and lobsters.

Figure 2. Grid map of the location of bâpobo raftsof lobster fry fishers in Balete bay, Davao Oriental.

2.3 Data collection

A) Semi-structured interview

The data was gathered thergh a combination of semi-structured interview, focus groups and actual catch monitefing. During the interview, fishers referred others who are also catching lobster fries inthe area since there was a lack of database of fishers that specifically target lobster ries for commercial use. Pilot test of the interview was conducted on October 21-22, 2017 at the villages of Bigue I and Bigue II with only 10 respondents each, to test the validity and the length of time needed for the respondents to answer the question (Macusi et al., 2017). A semi-structured questionnaire was used to obtain data such as the socio-demographic profile of lobster fishers, the occurrence of lobsters, catch trends, various catching methods, and the usual problems encountered by the fishery ($\mathrm{n}=90$). Table 1 below shows the number of
respondents found in the different survey sites in Balete bay. In addition, the researchers also conducted a grid mapping of the fishing location of the lobster fry fishers by including a map at the back of the semi-structured questionnaire (see Figure 2). The respondents pointed to the map where they established their traps to catch lobsters. This provides an understanding of the level of fishing intensity found in the area. After conducting the semi-structured interview, actual sampling followed by enrolling 20 lobster fry fishers who were willing to be monitored for their weekly catch of fries for three months (February to April 2018).

Table 1. Number of respondents interviewed by study site.

Three focus groun aiscussions (FGD) were conducted from February 24 to 25 at the villages of Bigue I and Bigue II ($n=35$), in order to validate the data taken from the semi-structured interview The participants were sub-samples of the interviewed fishers. The participants provided additional information on species composition, catching methods, and seasonality of the catch. During the FGD, the discussion started by giving a short lecture on the life cycle of the lobster and related factors that influence the motivation of fishers to catch lobsters and on the season of lobster fishing. The second author also participated in catching operation of lobsters for two days to validate the information provided by fishers. This was to observe how
fishers' conduct different methods of catching lobsters and to validate the habitat information taken from the respondents. For the identification of various lobster species, the field guide of Motoh (1980) on the edible crustacean in the Philippines and, Gonzales and Taniguchi (1995) and Hart (2009) was used to identify the lobsters. Furthermore, the researchers used other morphological information such as the size, fishing ground, and the color of individual lobsters to identify the lobsters.

2.3 Data analyses

A) Catch per unit effort (CPUE)

The catch per unit effort (CPUE) in its basic form can bedeined as theta fishing effort in a given period (Van Hoof et al., 2001), since the available fartoased on the semi-structured interview of fishers was based on the numberof pieces caught per week the following formula was modified to calculate the CPUE of individual (16) ster fishers.

Formula:
$\mathrm{U}=\frac{C}{f}$

Where:

U- Catch per unit effort

C- Weight if the species caught
f - Time spend in fishing

The modification consist of taking the weight (g) of three post/ nektonic-larvae lobsters and using the average weight as a multiplier for the normal, good and worst catches. This produced the normal, good, and worst catches in grams and then divided by the haul time of
fishers to get the CPUE. This haul time was based on the average of the haul times mentioned by the respondents during the semi-structured interviews.

Modified formula

Average weight of three nektonic/post puerulus x number of nektonic/ post puerulus in normal, good, worst catch in a week = grams per fishers on its normal, good and worst catch.

$$
U=\frac{\text { grams per fishers }(\text { weekly })}{\text { Haul time }(\text { weekly })}
$$

B) Statistical analysis

The normal, good and worst catches in grams as well as the CPUE were tested for normality test using Ryan-Joiner tests as well as homogeneily of variance using Levene's test and evaluating their graphs using a QQ and PP plots before ANOVA was used. (The normal, good and worst catches represent theusual, maximum and minimum catches of fishers in their daily experience. Getting this dais essenthan when you want to be confident about the range of the daily catch of fishers). When the data was not normally distributed, this was $\log _{10}$ transformed and then tested ag(ii) for normality and homogeneity of variance. After which, a one-way ANOVA was useto check differences in catch and cpue between normal, good and worst catches from the interview data. To investigate the relationship between normal, good catches and fettors that influences these catches, we tested their relationship with haul time, months andration, depth of fishing ground, number of traps deployed, age of fisher, number of years, experience of fisher and the following interaction terms haul time*months operating, haul time*traps, months operating*traps, haul time*months operating*traps. The $\log _{10}$ transformed values of catches were used since these were the response values while the factors were untransformed in the regression analysis. The ANOVA table of the regression was checked for its significance at $P<0.05$ value and the fitted line at R^{2} and P values of factors
were checked including their VIF (Variance inflation factors, where the smaller value is more significant) values. In the case of actual field data taken from the notebooks given to 20 fishers, the catch data were also $\log _{10}$ transformed after first multiplying with the average weight of the lobster fry. All statistical analyses were done using the software Minitab version 17, Minitab Inc., State College, Pennsylvania, USA.

3.0 RESULTS

Sociodemographic profile

The interview included socio-demographic profile of the respondentonwich included their age, years of residency, years of fishing, number of housthold mem,bers, and alternative sources of income that may motivate the eagerness of individuats to catch lobster fries. The youngest respondent interviewed was 19 years of age while the oldest respondent was 74 years and the mean age was 44 . In terms of efteation, most of the fishers had basic elementary education (6 years), some were higns school (10 years), and college graduates (14 years). The mean number of years of schopling was 8 yars and the most frequent number of years was 6 years of basic education $(N-48)$, folowed by high school $(N=36)$ and then college $(N=6)$. In terms of fishing experience, the ongest and most experienced fisher was 57 years while the shortest fishing experiencewas 2 years; the mean number of years of fishing experience was 21.

Motivations ofishers for lobster fry fishing

To catchebsters, there are also some costs involved but because of the higher demand and the availability of natural lobster fry in the area, fishers are motivated to catch this marine resource in their area. A major motivation mentioned by fishers ($\mathrm{n}=35$) during the FGD include daily allowance (26%) and payment for school fees (22%) followed by motivation to help build their houses (19\%) and to pay for their credits (17\%) and to buy grocery supplies
(16\%). These are all intrinsic motivations for survival, food (daily allowance and grocery), shelter and education.

Catching methods

Majority of the fishers used bamboo raft (72\%) as an associated gear similar to a payao or fish aggregating device in the tuna fisheries. Some of the fishers used beach seine to catch lobster puerulus (7\%), while the rest used both beach seine and bamboo floaters with traps (21\%). The standing or anchored bamboo rafts were established in the shallow areas ($1-5 \mathrm{~m}$). Whaile the floating bamboo rafts were deployed in the deeper portion of the bay ($6-10 \mathrm{~m}$) (see Figure 3). Lobster fishers mostly operate the beach seine in a shallow àrea at a deniff 1-1.5 m as they walk in the sediments; fishers used the beach seine during the peak \&eăson (March, April and May) of nektonic puerulus as well as on their regulâcatch offichés. Moreover, instead of meat for bait in the traps, fishers used any black orbrown solored materials for luring the fries such as nets, dried leaves of banana and the thalli of the brown seaweed Sargassum. These are materials usually used by the posthe with various holes aided with dry banànaleaves are used to lure nektonic puerulus to shelter in the collecting rock.

Figure 3. Accessory gears used to catch lobstêflies: fleating bamboo rafts (A); fisherman tying nylon ropes to a rock that is used to aggregaee iobster peurulus (B); bamboo poles (C) and stakes where rock aggregators are left and hunged (D) in Balete bay, Davao Oriental.

As for the average worst, normal, and good catehes of the various fishing gears used to collect lobster fries, traps can collect 2,12 , and 23 pieces of fries per week. While the use of beach seine yields an average $6 / 2,20$ and 28 pieces of fries per week. Whereas the combination of both traps and heaek seine eanyyield an average of 2, 25 and 43 lobster fries per week (Table 3).

Table 3. Mean catches of the different types of gears used to catch lobster fries in Balete bay, Dąazo Oriental

Gears	Worst	Normal	Good
Traps $(\mathrm{n}=65)$	2	12	23
Beach Seine $(\mathrm{n}=6)$	2	20	28
Traps and Beach seine $(\mathrm{n}=19)$	2	25	43

In the FGD fishers have also mentioned that the number of lobster fries caught per month varies depending on the phases of the moon. They could catch more pueruli when it is new moon as
the larvae congregate into their traps under the lighted floating rafts. According to the fishers, there are also more lobsters captured in the night from 19:00 to 24:00 $\mathrm{H}(33 \%)$ as well as during daytime from 07:00 to 12:00 $\mathrm{H}(31 \%)$ compared to catching them at other times of the day.

Common species of lobsters caught

The three most common species caught are Panulirus ornatus (the fries are called 'wak-wak' and 'tiger-tiger'; 82\%), Parribacus antarcticus (locally called 'kupa'; 12\%) and Panulirus versicolor (locally called 'bamboo'; 6\%) species. Based on the results of the survey and the FGD, the adults of these are caught year round as a fish by-catch butthe fries arelclught mostly during March, April, and May (see Figures 4 and 5).

Catch pattern, operation and CPUE

The fishers catch the larval stage of the lobster throughout the sear starting from February until November (Figure 4). The most abundat catches of lobster fries occur during the months of March $(2,430)$, April $(7,958)$ arid May $(4,292)$. The value of lobster fries dramatically increases during thesemonths frem the base price of $\$ 1.81(\$ 1.00=\mathrm{Php} 55.00)$ to as high as $\$ 4.54$ per piese. In the nortus of March, April, and May, the income of fishers also increased from the stated total catch above, having a value of $\$ 8,659.64$ followed by $\$ 28,359.42$ and $\$ 15,295.12$ or an average of $\$ 167.00, \$ 366.00$, and $\$ 223.00$ per individual fishers in the monthsof March, April and May.

Figure 4. Number of lobster fries caught every month ror one year and its catch value based on semi-structured interview of fishers from Balete gay, Davao Oriental ($\mathrm{N}=90$).

B

Figure 5. Number of months that fishers operate per year ($\mathrm{N}=90$; Survey) (A); Mean number of days of operation and months that lobsters are caught ($\mathrm{N}=35$; FGD) (B).

Results of the FGD have shown that operation on floating rafts starts around January and increases by February and March. The number of hours that fishers operated have two peaks during April and then during May which also mirrors the result of the survey where there were higher peaks found in April and May for most number of lobsters caught in Figure 4. The number of days of operation per fisher also increased during these months of March (18 days), April (26 days) and May (22 days) (Figure 5B). There was no mention about having a fishing operation around November and December. Based on the interviews, the weekly catch of lobster fries ranged from 0.9 g (worst catch) to 10.42 g (gogd catch). The siormal catch reported by fishers was 5.25 g . The result of the ANOVA comparing the reported weekly catches per week showed highly significant differences between good, normal, and worst catches $(7.92 \mathrm{~g}>4.08 \mathrm{~g}>0.63 \mathrm{~g} ; \mathrm{Df}=2, \mathrm{MS}=29.11, F=84621, P=0.000$; Figure 6).

Figure 6. The worst, normal and good catches reported by lobster fry fishers from Balete Bay, Davao Oriental which are significantly different from each other ($\mathrm{N}=90$; error bars are pooled stdev).

The analysis of the CPUE also revealed highly significant results between the three types of CPUE based on the catches. The highest mean CPUE value was $(0.30 \mathrm{~g} / \mathrm{hr})$ followed by the normal CPUE ($0.16 / \mathrm{hr} \mathrm{g}$) and worst CPUE ($0.02 \mathrm{~g} / \mathrm{hr}$) ($\mathrm{Df}=2, \mathrm{MS}=29.11, F=228.99, P=0.000$). Meanwhile, the result of the regression involving the different factors of haul time, months operation, depths, number of traps, age, and experience, showed highly significant results for the normal ($P=0.003$) and good catches $(P=0.000)$. For the normal catch, the significant factor predicting a normal catch was haul time $\left(R^{2}=15.54 ; P=0.011\right.$; Table 4$)$ while for the good catch the significant factor that could influence a good catch was months of operatiol $\left(R^{2}=19.71\right.$; $P=0.057$; Table 4).

Table 4. Regression analysis to determine which factors intlyence normal and good catches

These shows that @ul time and months of operation influences the amount of normal and good catches. This also means that haul time, which predicts normal catches, shows that normal catches ake taken within 0-24 hours. While in the case of good catches, what was more important is the months of operation, which shows that more catches are taken within the months where there was higher operation e.g. March, April and May.

The result of the actual catch monitoring of 20 fishers for three months (starting from February to April) showed two peaks during weeks 7 and 11. During the first peak, the mean weekly catch was 41 pieces with a minimum of 2 and maximum of 259 in the third week of March while in the second peak, the mean weekly catch was 52 pieces while the minimum was 24 and the maximum was 93 . A monthly comparison of the catches for three months using

ANOVA showed no significant differences ($P=0.073$), the same was true for a comparison of catches using the location of the two different villages (Bigue I vs Bigue II; $P=0.419$). But comparison of catches in a week for all the 13 weeks showed highly significant differences ($\mathrm{Df}=12, \mathrm{MS}=0.767, F=4.47, P=0.000 ; R^{2}=22 \%$). It also showed that week 11 has the highest mean $(1.38 \mathrm{~g})$ followed by weeks $12(1.056 \mathrm{~g}), 13(0.780 \mathrm{~g})$, and $10(0.603 \mathrm{~g})$ while the lowest means were week $4(0.306 \mathrm{~g})$, week $9(0.277 \mathrm{~g})$, and week $3(0.252 \mathrm{~g})$.

Challenges affecting the sustainable management of the lobster fry fishery

Among the surveyed fishers, about fifty-eight percent (58\%) did ngt belong to ans fishing organization and there was a general impression among fishès that both irinal and informal organizations did not offer them any benefit. Results bated on the discussion with the respondents identified the most common problems that fishefs bâve encountered: chemical residues from shrimp farming (36\%); unmanaged floating marine debris and plastic garbage (28%); presence of illegal fishing (compressor fishing and beach seine; 27\%) and others (residues from pesticides of man®ffarms, andinadequate livelihood; 9\%; see Figure 7). These are the key challenges hat arffecting the lobster fry fishery in Balete bay.

Figure 7. Challenges that are affecting the sustainable management of the lobster fry fishery in Balete Bay, Davao Oriental (N=35; FGD).

4.0 DISCUSSION

Motivations to fish

Most of the lobster fishers are engaged in fishing activities primarily to satisfy the needs of their families. As Abraham Maslow (1943) mentioned in his theory of human motivation, until the primary needs of human beings are provided, their self-actualization are not a priority but their daily survival. Fishers are marginally poor, live with less dignity and often less empowered in many development programs because of their economic conditionsand social status in the society. Their condition could be the result of lack of formaleducation, formal training, failed government policies and lack of emponerment suchas capital for alternative livelihoods away from the fisheries (Macusiet al., 2017b, Macusi et al., 2011). The lack of empowerment is obvious in the area where ther ace no cooperatives or active fisherfolk association that would be marketing their products.

In Belize, the fisher cooperatives that are iormed help in the proper distribution of benefits that would derived from the lobs@tproduction in their city (Huitric, 2005). The same can be said about the tuna fishers Gf Generais antos City who have various active fisher cooperatives and organizations that can lobby for their rights and interests to fish in certain areas in the Pacific (Macusietral., 2015b). The seasonality of the lobster fry fishery in Balete bay necessitates that the fishers in the area have to find an alternative livelihood to supplement their incomes, Cspecially during the lean months (July to December). This is a characteristic commoty some of the small-scale fisheries in the Philippines (Garces et al., 2010; Macusi et al., 2011; Pomeroy et al., 2007). In addition, the decline of productivity in the fisheries through the years have led to lesser income for fishers and compelled them to find other alternative livelihood (Muallil et al., 2011; Muallil et al., 2014). This low productivity in the fisheries have been associated to the effects of chronic overfishing. It is therefore not surprising that most small-scale fishers in Southeast Asia are impoverished, faces the threat
of overexploitation, habitat loss and declining productivity since coastal resources in the region have been considered overfished (Cabanban et al., 2014; Chuenpagdee and Pauly, 2004; Pomeroy et al., 2007; Pomeroy, 2012). In Balete bay, most of the lobster fry fishers are also engaged in other farming activities such as coconut plantations as an alternative livelihood. To the fishers, farming is a productive alternative activity especially during bad weather conditions and during times when their target catch are seasonally, usually from July to December. Fishers who are engaged in other income generating activities are betterable to meet the needs of their families.

Fishing location and practices
Several factors can influence the decision of fishers on where to deply their fishing efforts (Abernethy et al., 2007). Previous experiences on fighing cofld significantly affect the decision of fishers on where to fish, and one factor that fishers consider in site selection is the profitability of the fishing site to offset their fishing Cóst (Daw, 2008; Macusi et al., 2015b). The current distribution pattern fly floating hamboo rafts and stakes with hanging traps and other fishing materials utiled in the Iobster fry collection can reflect the abundance and distribution of lobster fry in the area. Fishing in areas where there is aggregation of target species also incteases the F PVE (Daw, 2008; Rijnsdorp et al., 1998). The common practice of fishers in bringingmore than one gear to fish could mean to secure an alternative target species or to maxinize the opportunity to catch a fish. Although the majority of the fishers utilize taps only in the case of the lobster fry fishers. Nevertheless, the fact that fishers will also use nettings and rocks with holes or sargassum leaves as lures show their keen knowledge about the behavior of their target species.

Catch composition, seasonal patterns and CPUE

The most common species caught by the lobster fishers include the fries of Panulirus ornatus and sometimes the adult forms of Panulirus ornatus, Parribacus antarcticus and Panulirus
versicolor. These are all tropical species with wide distribution in the Philippines (Gonzales and Taniguchi, 1995). Caraga region has the highest and most consistent lobster production among all the regions. However, the production never increased beyond 53 tons and because of inadequate supply of fries, fishers and suppliers of the seafood business ventured to neighboring Davao Oriental for their needed supply of wild sourced fries.

The peak of lobster fry production in Balete bay coincided with the inter-monsoonal period in the Philippines but generally during the Amihan period (northeast monsoon from Novermber to end of June). Seasonality in marine fisheries production is often observed which coincides with the reproductive timing of marine species (Erisman et à 2\% 2; Villens et al., 2011). However, other factors (e.g. temperature, food availability) may inf(uefice the reproductive timing of marine species, therefore affecting seasonality of fistery production (Jones, 2010; Ratunil, 2017; Villanoy et al., 2011). In prerinuis studies, the abundance and distribution of lobster fries and juveniles were shown to be affectee by wind patterns, and current circulation (Villanoy, 2004). Other species (4t10bster (f)Sasus edwardsii) have been shown to have puerulus settlement peaks round Jufy and August and less prominent settlement peaks in February and March while in SARar, Philippines, the peak lobster season is from May to August (Junio, 1986). Meanwhile, lobster fishery in Mindanao, Philippines was recorded to have two peak seasgas; (1) October to March in western Mindanao and (2) March to August in Southern Mindanao (Juinio-Menez and Gotanco, 2004). The present study corroborates the finding: Of. Sininio-Menez and Gotanco (2004), with peak in lobster fry harvest from March to May, with highest production stated around April. Reports on CPUE for adult lobster fishery showed that the highest daily catches per fisher per day is 50 kg in different areas of the Philippines (Juinio-Menez and Gotanco, 2004). However, no data is currently available on CPUE of lobster fry in the country, which make this valuable fishery susceptible to illegal,
unreported and unregulated (IUU) fishing. According to Petrossian et al., (2015), several species of crustaceans, including crabs and lobsters, are prone to IUU fishing.

Present challenges and sustainable management

Unregulated and unmonitored fishery ends up in overexploitation of marine resources and destruction of habitats that often leads to negative socioeconomic impacts (Lavides et al., 2016; Tsehaye et al., 2007). Having a proper understanding and monitoring of both the resource and its ecosystem dynamics is a prerequisite for better response and conservation efforts/to the resource (Berkes and Folke, 1998). Unmonitored fisheries often lead to collapse extirpation due to unregulated extraction of marine resources (Lavides êt al.,2016; ar arides et al., 2010). Balete bay is part of the larger protected area of PujadaBay, which is under the NIPAS act as a protected landscape and seascape by virtue of Reppublic Ag 7586. However, implementation of the law in the area is lacking. As a NIPAS, area, the government, particularly the DENR should protect the area from incursions and its biodiversity from commercial extraction. In the case of Balete bay, this means in㢄lementation of yearly registration of fishers, to record their names, boats, gears and tomonitor what fish they catch and how much they catch in the area to avoid over-exploitation of the marine resources in the area. The NIPAS act recognized the role of biodiversity in providing ecological services to the communities adjacent to the protected sites and jaitially there were 290 protected areas included in the NIPAS act (Lasco et al., 2008). M (1)st of the protection accorded to these areas were merely on paper due to lack of resolrces and externalities. These externalities include patterns of resource use, societal values, political patronage, poverty, and insurgency (Van Der Ploeg and Mesipiqueña, 2005). Due to the lucrative nature of the lobster fry fishery, more fishers have been attracted in recent years to collect lobster fries and to fish in Balete bay. A number of these fishers however do not understand the benefits of fishing regulations especially in controlling their number and access to the area. A common example is the use of illegal fishing gears such as compressor
fishing and beach seines with tiny mesh sizes. Most of the fishers interviewed believe that they have the freedom to operate as long as they want and they point instead to the wrongdoings of some law enforcers who were corrupt. For instance, the local fisheries council under the village level called BFARMC (short for Barangay Fisheries Aquatic Resources Management Council), has the tasked to prevent illegal fishing but seldom prevents or deters the users of compressor in fishing.

Illegal fishing

The gears used such as compressor, beach seine and triple gillnetrare three 退egal fishing methods that were identified by the respondents. Beach seine and triplegilnets can catch smaller sized fish in which some fishers throw it back into the sealready injured or weakened by the struggle. Whereas the use of con̂pressorstor diving together with cyanide are used to catch big fishes, open the trapg (other fishers or to stun them. Illegal fishing is a recurrent problem in the Philippines from dynainite fishing in the past to the use of small mesh sizes for various net gears (Alcala, 188; Macusi et al., 2017b; Muallil et al., 2013). Currently, illegal, unrepsotet and unregulated fishery production is unknown and catch reconstructions are being done to augment our understanding on this unknown production (Cabanban et al.2014; Z@ller et al., 2006). In Balete bay, several fishers admitted that they engage in the use of fine mesh beach seine to collect lobster peurulus as this is more efficient. However, the Odiscriminate nature of the fine mesh size beach seine also collects both target and non target species. The fishery by-catch resulting from indiscriminate fishing is a threat to sustainable management of the fishery and have ecological repercussions (Forget et al., 2015; Gilman et al., 2005).

Marine Pollution

Fishers perceived that the effluents from shrimp farms and fruit farms surrounding the bay was becoming a major problem for the lobster fry fishery. They have observed that chemicals dumped into the bay, resulted to lower fry catch, affecting their income. In the past, large mangrove areas in the country have been converted to shrimp farms, mainly extensive aquaculture and then later into intensive farming of the tiger shrimp (Penaeus monodon) (Primavera, 1995, 1997). In the process water pollution from farm effluents lead trincreased incidence of diseases becoming a serious problem that lead to the eventual coltapse of the shrimp farming industry (Dierberg and Kiattisimkul, 1996). Elvironmertal pollutants, such as heavy metals, pesticides and other chemicals used infarms are Keown to affect marine organisms physiologically (Abreo et al., 2015). Effle ients fremfish farms are detrimental to marine organisms (Holmer et al., 2002; Son Díego-McGlone et al., 2008). These effects perhaps warrant the observation of the lobster fty fishers. Fishers are worried that if this will continue, it will also lessen the number of thathes that they are catching, affecting almost all of the stakeholders who relyon marine resources.

Another source of pollution identified by the lobster fry fishers is the presence of anthropogenic marine debirs (AMD). They have identified fishing related materials, such as discarded nets and nylon strings as common anthropogenic marine debris in the area where they collect(10bster fries. The fishers have also identified household wastes such as plastic packaging materials, food wrappers, and cellophane as components of floating marine debris within Balete bay. These findings reflect the fact that there are two input sources of AMD in the area, the fishing activities of the community and the households surrounding the bay. Land-based input of anthropogenic debris, on the other hand, is said to contribute most AMD in the Philippines since Filipinos are fond of using single-dose sachets (e.g., shampoo sachet, toothpaste sachet) and excessive packing of goods from local sari-sari stores (Abreo, 2016;

Abreo et al., 2018). Although there is a law prohibiting dumping such as RA 9003 or the solid waste management act 2000, the barangays surrounding the bay did not implement the law religiously. A recent study in the area have found out that there were more green wastes or floating coconut husks, detached mangrove leaves and twigs, seagrass leaves, and seaweeds in the area than plastic packaging materials (Mapaa, 2018). Although this is the case, the plastics, would have come from the domestic solid wastes carried away by rains before getting into the bay. There were no actual sightings and reports of entanglement of wildlife during this study and in the study of Mapaa (2018) on the perceived bie10gical impacts of floating marine debris in the area.

Implications of lobster fry fishery in Balete bay

The lobster fry fishery in Balete bay is a lucrative activity for the fishing communities in the villages surrounding the bay. Fishing for lobster fry is a great supplemental livelihood as lobster fries command high prices in the market during the peak season from March, April, and May. Although there is minimal information available on the current status of other fisheries present in Balete bey and the adult lobster fishery, the conflict between fishers using different fishing gears points to anigh fishing pressure in the area. Given that the area is small at 77 ha, the distrib@on of fishing rafts for lobsters as well as bamboo stakes in the shallow portions of the bay implies overcrowding because of the open-access nature of the fishery at present. This is a recipe for over-exploitation and this might lead to overcapacity of fishers in the area. Moreover, since the conflict arose from the overlap of fishing areas between fishers with different fishing gears, this points to a high number of tenants utilizing the same area. The lack of management regime leads to a "race for fish", increasing fishing power that would also lead to overcapacity (Mora et al., 2009). Since there is no clear regulation in the area, such as the lack of lobster management plan, fishers have taken for granted that they are not registered. Consequently, there is eagerness among the fishers to use
beach seine in the collection of lobster fries, which will pose a problem on the biodiversity of Balete bay. Beach seine is a fishing gear that harvests fish larva, various fish species as well as the pueruli of lobsters. Moreover, beach seining in such area can disturb the breeding activities of marine species in the area and lead frequently to the capture of juveniles affecting the stock abundance. Considering that it takes years for a lobster to be fecund and dependent on the size of the geographic area as well as the temperature for it to spawn, conservation efforts to protect the juveniles will be essential for its sustainability. Since the area is not clearly managed, a declaration of the 77 ha area to be included as a matine protected area (MPA) with managed access together with thèlocal governient and the communities surrounding the bay should be part of the sustainability vhanagement plan of the bay. The establishment of an MPA, although it is not a cure-allfor the poverty of fishers would in the long-term help in preventing stock'collapses. Although this goal will be challenging to both scientists, resource users, and decision makers, their consensus could lead to a well-managed ecosystem where their liveinood will persist without endangering the stocks present in the bay (Salayo et ati., 2008). Restrictions or zoning of the different areas of the bay should be a consensual decision among the local government, the resource users, and the community as whole leading to longterm co-management of the bay. Fishers will be more conscious on their role, particularly in conserving the fish species and the lobsters found in the area that their attitudes will change and the stock abundance are not depleted. Financitand food insecurity may remain but a partnership together with the local government will be an avenue towards providing a better livelihood for the fishers. During the FGD and the survey, there was a repeated mention about the lack of organization among the fishers of Balete bay and their wrong perception on the law enforcers in the area, which hinders their cooperation with authorities. By organizing a bonafide fisherfolk association in the area, the registered fishers would become recipients to various donors and organizations
that are into conservation of lobsters and reef fishes. Through organizing the fisherfolk association they could broker collective arrangement with the buyer, develop market outlet and increase their capacity building through offered helps and dole-outs (Jimenez-Badillo, 2008). Two factors could benefit fishers with an organized fisherfolk association: 1) since they have specific target species and small in number, they can be more organized; and 2) they could gain attention and support from government agencies as they could deal with them as an entity instead of individuals. Predominantly, the fishers of Balete bay have an atitiude of working hard for their families and do not wait for government iole-outs. Nevertheless, they are more than willing to cooperate in fisheries resource management if their livelihood would be improved. The essential idea in fisheries co-management is the sharing of decisionmaking, management among stakeholders, resource users and the local government. Comanagement have various aspects, which wæla include the integration of the local government and national management strategies of the national government agencies like BFAR and DENR (Pomeroy, 2012). In order to win back the confidence of fishers in the authorities, projects should have wotishop components that addresses the role of fishers, authorities, local government, and scientists, which will make the management inclusive in its stewardship (Rice, 2011). Moreover, fishers, or resource users, together with the local government and the national government agencies should be able to come up with a management plan, specifying zones where they can fish and their fishing gears for such zones. The ciosure of areas should also have a consultation with the local government as well as the resource users in the area to avoid resource user conflicts and lastly, they should be involved in the protection of their own resource in the area (Pomeroy et al., 2007).

Conclusion

This study have found out about the catch, catching methods, seasonality, fishing practices and the lack of proper management of the lobster fry fishery in Balete bay. The high
value of lobster fry encouraged the fishers to engage in catching lobsters to gain higher income other than their current livelihoods in coconut plantations. This also drove some fishers to use an illegal fishing gear such as a beach seine to collect great number of fries at a lesser time compared to using other gears such as traps and rock collectors of lobster pueruli. The use of this gear, which catches juveniles of fish other than lobster fries, can cost the future stock and biodiversity of Balete bay. The lack of lobster management plan for the fisheries resources of the bay can be addressed through developing a marine protected area or a fish sanctuary in the area that will be co-managed by the community and the local governmen with regular monitoring from BFAR and DENR. This would help address its long-terd productivity and sustainability. In the past, most of the government projects and dole-outs ignore fishers' participation, co-management allows resource users togefher with the local government, authorities and other stakeholders the frectom to influence and make decisions together. Together, the authorities and the resource users cowid develop ordinances, and management plans that will enhance the living Ronditions of fishers.

ACKNOWLEDGEMENT

This paper would have been possible without the help of the following people during the conduct of the field sampling and the writing of the manuscript, Dr. Lea A. Jimenez, France Guillian B. Rapizarid Ms. Chella Sison. The maps were made possible through the efforts of Mr. Remie Âurelio Jr. of UP Mindanao.

LITERATURE CITED

[^0]Abreo, N.A., Macusi, E.D., Blatchley, D.D., Cuenca, G.C., 2016. Ingestion of marine plastic debris by Green Turtle (Chelonia mydas) in Davao Gulf, Mindanao, Philippines. Philippine Journal of Science 145, 17-23.

Abreo, N.A.S., Macusi, E.D., Cuenca, G.C., Ranara, C.T.B., Andam, M.B., Cardona, L.T., Arabejo, G.F.P., 2015. Nutrient Enrichment, Sedimentation, Heavy Metals and Plastic Pollution in the Marine Environment and its Implications on Philippine Marine Biodiversity: A Review. IAMURE International Journal of Ecology and Conservation 15, 111-168.

Alcala, A.C., 1988. Effects of marine reserves on coral fish abundance and yields of Philippines coral reefs. Ambio 17, 194-199.

Berkes, F., Folke, C., 1998. Linking social and ecological systems: Management practices,and social mechanisms for building resilience. Cambridge University Press, Cambridge, UK.

Cabanban, A.S., Teves-Maturan, D.M., Parducho, V.A., Palomares, M.L.D., 2014 Pisilippine Marine Fisheries Catches: A Bottom-up Reconstruction, 1950 to 2010, in: Parnares, NTR.D., Pauly, D. (Eds.), Marine artisanal fisheries of the Philippines, Subzone C - Visayas (Regions VIVIII). Fisheries Centre, University of British Columbia, British Columbia Vancouver, Canada, pp. 6276.

Cabral, R.B., Mamauag, S.S., Aliño, P.M., 2015. Designing 2 narine protected areas network in a datalimited situation. Marine Policy 59, 64-76.

Chuenpagdee, R., Pauly, D., 2004. Improving thestate of ceastal areas in the Asia-Pacific region. Coast Manage 32, 3-15.

Daw, T.M., 2008. Spatial distribution offort by atisanal fishers: exploring economic factors affecting the lobster fisheries of the Corn Islend's, Nicaragual. Fisheries Research 90, 17-25.

Diekert, F.K., 2012. Growth Overfishin§: The Race to Fish Extends to the Dimension of Size. Environ Resource Econ 52, 549-5,(2.)

Dierberg, F.E., Kiattisinkul, W., 1996. Issues, impacts, and implications of shrimp aquaculture in Thailand. Environriental Mariagement 20, 649-666.

Erisman, B., Aburto-Miopeza, O., Gonzalez-Abraham, C., Mascarenas-Osorio, I., Moreno-Baez, M., Hastings, P.A., 2012 spatio-temporal dynamics of a fish spawning aggregation and its fishery in the Gulf of Californiā Sel Rep-Uk 2.

Forget, F.G, Capello, M., Filmalter, J.D., Govinden, R., Soria, M., Cowley, P.D., Dagorn, L., 2015. Behaviour and vulnerability of target and non-target species at drifting fish aggregating devices (FADs) in the tropical tuna purse seine fishery determined by acoustic telemetry. Can J Fish Aquat Sci 72, 1398-1405.

Garces, L.R., Pido, M.D., Pomeroy, R.S., Koeshendrajana, S., Prisantoso, B.I., Fatan, N.A., Adhuri, D., Raiful, T., Tewfik, A., Madan, D., Rizal, S., 2010. Rapid assessment of community needs and fisheries status in tsunami-affected communities in Aceh Province, Indonesia. Ocean \& Coastal Management 53, 69-79.

Gilman, E., Brothers, N., Kobayashi, D.R., 2005. Principles and approaches to abate seabird by-catch in longline fisheries. Fish Fish 6, 35-49.

Gonzales, B.J., Taniguchi, N., 1995. Spiny lobster (Panulirus ornatus, P. versicolor and P. longipes longipes) fishery in Palawan, Philippines: With considerations on its conservation and management. Bulletin of Marine Science and Fisheries-Kochi University 15, 121-130.

Guerrero, R.D., 1999. The impacts of El Niño on Philippine fisheries. Naga: the ICLARM Quarterly 22, 14-15.

Hart, G., 2009. Assessing the South-East Asian tropical lobster supply and major market demands. Australian Center for International Agricultural Research (ACIAR), Canberra, Australia, p. 55.

Holmer, M., Marba, N., Terrados, J., Duarte, C.M., Fortes, M.D., 2002. Impacts of milkfish (Chanos chanos) aquaculture on carbon and nutrient fluxes in the Bolinao area, Philippines. Mar Poll Bull 44, 685-696.

Huitric, M., 2005. Lobster and conch fisheries of Belize: a history of sequential exploitatión. Ecol Soc 10, 21.

Jeffs, A., 2010. Status and challenges for advancing lobster aquacultare. Marine Biological Association of India 52, 320-326.

Jimenez-Badillo, L., 2008. Management challenges of small-scale fishing communities in a protected reef system of Veracruz, Gulf of Mexico. Fisheries Management and Ecology 15, 19-26.

Johannes, R.E., Freeman, M.M.R., Hamilton, R.J000. Ighore fisher's knowledge and miss the boat. Fish Fish 1, 257-271.

Jones, C.M., 2010. Tropical spiny Iobster aquatulture development in Vietnam, Indonesia and Australia. Journal of the Marine Biolosical Assoriacion of India 52.

Juinio-Menez, M.A., Gotanco R.R., 2004. Status of spiny lobster resources of the Philippines. Spiny lobster ecology and exploifation in the South China Sea region, in: Williams, K.C. (Ed.). ACIAR, Vietnam, pp. 3-6.

Junio, A.R., 1986. Spiny lobster fishery in eastern Samar, Philippines, Asian Fisheries Forum, Manila, Philippines.

King, M., 2007. Fisharies biology assessment and management. Blackwell Publishing, Oxford, UK.

Lasco, R.D., Pumin, F.B., Sanchez, P.A.J., Villamor, G.B., Villegas, K.A.L., 2008. Climate Change and Forest Ecosystems in the Philippines: Vulnerability, Adaptation and Mitigation Journal of Environmental Science and Management 11, 1-14.

Lavides, M.N., Molina, E.P.V., de la Rosa, G.E., Jr., Mill, A.C., Rushton, S.P., Stead, S.M., Polunin, N.V.C., 2016. Patterns of Coral-Reef Finfish Species Disappearances Inferred from Fishers' Knowledge in Global Epicentre of Marine Shorefish Diversity. Plos One 11, e0155752.

Lavides, M.N., Polunin, N.V.C., Stead, S.M., Tabaranza, D.G., Comeros, M.T., Dongallo, J.R., 2010. Finfish disappearances around Bohol, Philippines inferred from traditional ecological knowledge. Environmental Conservation 36, 235-244.

Lugo, J.P., 2018. Payment for ecosystem services of Guang-guang mangrove forest, Brgy. Dahican, City of Mati, Davao Oriental, College of Governance and Business University of Southeastern Philippines (USeP), Davao City, p. 175.

Macusi, E.D., Abreo, N.A.S., Babaran, R.P., 2017a. Local Ecological Knowledge (LEK) on Fish Behavior Around Anchored FADs: the Case of Tuna Purse Seinand Ringnet Fishers from Southern Philippines. Frontiers in Marine Science 4, 1-13.

Macusi, E.D., Abreo, N.A.S., Cuenca, G.C., Ranara, C.T.B., Cardona, L.T., Andam, M.B., Guanzon, G.C., Katikiro, R.E., Deepananda, K.H.M.A., 2015a. The potential impacts of climate change on freshwater fish, fish culture and fishing communities Journal of Nature Studies 14, 14-31.

Macusi, E.D., Babaran, R.P., van Zwieten, P.A.M., 2015b. Strategies and tactics of tuna fis'ers in the payao (anchored FAD) fishery from general Santos city, Philippines. Marine Policy 62, 63./3.

Macusi, E.D., Katikiro, R.E., Babaran, R.P., 2017b. The influence of econemic factorsin the change of fishing strategies of anchored FAD fishers in the face of decliring catch, Qerieral Santos City, Philippines. Marine Policy 78, 98-106.

Macusi, E.D., Katikiro, R.E., Deepananda, K.H.M.A., Jimenez, 1.A., Conte, A.R., Fadli, N., 2011. Human induced degradation of coastal resources in Asia-Pacific ard implications on management and food resources. Journal of Nature Studies 9/10, 13-28.

Mapaa, K., 2018. Assessment of floating maripe debris (firid) in the inner part of Balete bay, barangay Dawan, Mati City, Davao Oriental, Institute of Agricultaye and Life Science (IALS) Davao Oriental State College of Science and Technology, Mati City, Davao Oriental, p. 59.

Mora, C., Myers, R.A., Coll, M., Libreto, S., Pither, T.J., Sumaila, R.U., Zeller, D., Watson, R., Gaston, K.J., Worm, B., 2009. Management effectiveness of the world's marine fisheries. Plos Biol 7, e1000131.

Motoh, H., 1980. Field guide for the eaible crustacea of the Philippines. Aquaculture Department, Southeast Asian Fisheries/Development Center (SEAFDEC), lloilo Philippines.

Muallil, R.N., Clêpna, D., Alino, P.M., 2013. Socioeconomic factors associated with fishing pressure in small-scale fisheries along the West Philippine Sea biogeographic region. Ocean \& Coastal Management 82, 27-32

Muallil, R.N., Geronimo, R.C., Cleland, D., Cabral, R.B., Doctor, M.V., Cruz-Trinidad, A., Aliño, P.M., 2011. Willingness to exit the artisanal fishery as a response to scenarios of declining catch or increasing monetary incentives. Fisheries Research 111, 74-81.

Muallil, R.N., Mamauag, S.S., Cababaro, J.T., Arceo, H.O., Aliño, P.M., 2014. Catch trends in Philippine small-scale fisheries over the last five decades: The fishers' perspectives. Marine Policy 47, 110-117.

Neis, B., Schneider, D.C., Felt, L., Haedrich, R.L., Fischer, J., Hutchings, J.A., 1999. Fisheries assessment: what can be learned from interviewing resource users? Can J Fish Aquat Sci 56, 1949-1963.

Pereira, G., Josupeit, H., 2017. The world lobster market, Globefish Research Programme Food and Agriculture Organization (FAO), Rome, Italy, p. 41.

Pomeroy, R., Parks, J., Pollnac, R., Campson, T., Genio, E., Marlessy, C., Holle, E., Pido, M., Nissapa, A., Boromthanarat, S., Thu Hue, N., 2007. Fish wars: Conflict and collaboration in fisheries management in Southeast Asia. Marine Policy 31, 645-656.

Pomeroy, R.S., 2012. Managing overcapacity in small-scale fisheries in Southeast Asia. Marine Policy 36, 520-527.

Primavera, J.H., 1995. Mangroves and brackishwater pond culture in the Philippines, Hydrobiologia, pp. 303-309.

Primavera, J.H., 1997. Socioeconomic impacts of shrimp culture. Aquaculture Research 28, 815-827.
PSA, 2018. Aquaculture: volume of production by species, by region and by province (1996 2018), in: Adriano, R.P. (Ed.). Philippine Statistics Authority, Quezon City, Philippines.

Ratunil, J., Virgilio B. , 2017. Growth and Survival of Ornate Spiny Lobster PD-inulirus, ornatus) in Nursery under Laboratory Condition. Philippine Journal of Agricultural Ecenornics 1, 1-10

Rice, J., 2011. Managing fisheries well: delivering the promises pof an ecooystem approach. Fish Fish 12, 209-231.

Rijnsdorp, A.D., Buys, A.M., Storbeck, F., Visser, E.G. 1998 . Mirroscale distribution of beam trawl effort in the southern North Sea between 1993 and 1996 in relation to the trawling frequency of the sea bed and the impact on benthic organisms res J Mar'Si 55, 403-419.

Salayo, N., Garces, L., Pido, M., Viswanathan, K., Poneroy, R., Ahmed, M., Siason, I., Seng, K., Masae, A., 2008. Managing excess capacity ir Srnall-scale fisheries: Perspectives from stakeholders in three Southeast Asian countries. Marine 601cy 32, 692-700.

San Diego-McGlone, M.L., A.anza, R.V., Уmanoy, C.L., Jacinto, G.S., 2008. Eutrophic waters, algal bloom and fish kill in fish Farming areas in Bolinao, Pangasinan, Philippines. Marine Pollution Bulletin 57, 295-301.

Tsehaye, I., Machieís, M.A.M. Nagelkerke, L.A.J., 2007. Rapid shifts in catch composition in the artisanal Red Sea reef fisheries of Eritrea. Fisheries Research 86, 58-68.

Turner, R.A., Cakafaka, A., Graham, N.A.J., Polunin, N.V.C., Pratchett, M.S., Stead, S.M., Wilson, S.K., 2007. Declining reliance on marine resources in remote South Pacific societies: ecological versus socioeconomic drivers. Coral Reefs 26, 997-1008.

Turner, R.A., Polunin, N.V.C., Stead, S.M., 2014. Social networks and fishers' behavior: exploring the links between information flow and fishing success in the Northumberland lobster fishery. Ecol Soc 19, 38.

Van Der Ploeg, J., Mesipiqueña, A.B., 2005. The future of the Sierra Madre: responding to social and ecological changes, 5th International Conference on Environment and Development. CVPED, Golden Press Tuguegarao, Cagayan.

Van Hoof, L., Salz, P., Patijnlaan, B., 2001. Applying CPUE as management tool, XIII Conference of the EAFE, pp. 18-20.

Villanoy, C.L., 2004. Larval dispersal simulation of the spiny lobsters, Panulirus ornatus, in the Philippines using merged altimeter-derived absolute dynamic topographies, in: Williams, K.C. (Ed.), Proceedings of a Workshop on Spiny Lobster Ecology and Exploitation in the South China Sea Region. Australian Centre for International Agricultural Research (ACIAR), pp. 49-54.

Villanoy, C.L., Cabrera, O.C., Yñiguez, A., Camoying, M., de Guzman, A., David, L.T., Flament, P., 2011. Monsoon-driven coastal upwelling off Zamboanga Peninsula, Philippines. Oceanography 24, 156-165.

Zeller, D., Booth, S., Craig, P., Pauly, D., 2006. Reconstruction of coral reef fisheries catches in American Samoa, 1950-2002. Coral Reefs 25, 144-152.

[^0]: Abernethy, K.E., Allison, E.H., Molloy, P.P., Cote, I.M., 2007. Why do fishers fish where they fish? Using the ideal free distribution to understand the behaviour of artisanal reef fishers. Can J Fish Aquat Sci 64, 1595-1604.

 Abreo, N.A., Macusi, E.D., Jimenez, L.A., 2018. A Survey of Subtidal Anthropogenic Marine Debris (AMD) in Mayo Bay, Mati City, Davao Oriental, Philippines. Philippine Journal of Science 147.

