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Thesis committee

Promotor

Prof. Dr D. Tuia

Professor of Geo-information Science

Wageningen University & Research

Other members

Prof. Dr E. van Henten, Wageningen University & Research

Prof. Dr R. Jenssen, The Arctic University of Norway (UiT),

Tromsø, Norway

Prof. Dr V. Lepetit, Université de Bordeaux, France
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Thesis

submitted in fulfilment of the requirements for the degree of doctor

at Wageningen University

by the authority of the Rector Magnificus

Prof. Dr A.P.J. Mol,

in the presence of the

Thesis Committee appointed by the Academic Board

to be defended in public

on Monday 11 February 2019

at 4 p.m. in the Aula.



Diego Marcos González
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Summary

Remote Sensing (RS) imagery with submeter resolution, or Very High Resolution (VHR),

is becoming ubiquitous. Be it from satellites, aerial campaigns or Unmanned Aerial Vehi-

cles (UAVs), this spatial resolution allows to recognize individual objects and their parts

from above. This has driven, during the last few years, a big interest in the RS community

on Computer Vision (CV) methods developed for the automated understanding of natural

images. A central element to the success of CV is the use of prior information about the

image generation process and the objects these images contain: neighboring pixels are

likely to belong to the same object; objects of the same nature tend to look similar with

independence of their location in the image; certain objects tend to occur in particular

geometric configurations; etc. When using RS imagery, additional prior knowledge exists

on how the images were formed, since we know roughly the geographical location of the

objects, the geospatial prior, and the direction they were observed from, the overhead-view

prior. This thesis explores ways of encoding these priors in CV models to improve their

performance on RS imagery, with a focus on land-cover and land-use mapping.

Chapter 3 explores the use of the geospatial prior to extract features from RS images

taken with different sensors that make them comparable across modalities, allowing to

perform change aware multi-modal registration and thus transfer land-cover labels from

one image to another. The results show an improvement over baseline invariant features

both in terms of change detection and label transfer.

The overhead-view prior means that images are more isotropic than natural images, re-

sulting in more predictable behavior with respect to rotation and lower variability in terms

of apparent object shapes. These constraints have been used to improve the performance

of Deep Learning (DL)-based segmentation methods for RS land-cover mapping.

Chapter 4 presents a method to allow for more control over the behavior of Convolutional

Neural Networks (CNNs) with respect to rotation, allowing to obtain better results in

problems with a specific expected behavior with respect to a rotation of the input image.

Chapter 5 explores the application of this method to VHR aerial imagery, where it can

exploit its isotropic nature and reduce the number of parameters of the model by an order

of magnitude without any loss of performance.



ii Summary

Chapter 6 focuses on building segmentation, or building footprint extraction, using the

hypothesis that building footprints are often composed of simple polygons made up of

straight lines and corners. A CNN is trained, not to directly generate the segmentation

map, but the energy function terms for an Active Contour Model (ACM). The experiments

show that the CNN learns where in the image the polygon has to be pushed and where

corners should be allowed or prevented, resulting in a substantial improvement over state-

of-the-art models.

This thesis confirms that the use of domain-specific prior knowledge, in this case to Earth

Observation (EO), in data driven methods can result in smaller and better performing

models. In particular in the context of DL, where the complexity and “black-box” nature

of the models often limit the interpretability required for the injection of prior knowledge

and hamper the trustworthiness of the final results, the conclusions of this thesis point at

the design of models that explicitly allow for the injection of priors as a very promising

field.
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Chapter 1

Introduction



2 Introduction

1.1 Introduction

The capacity of monitoring the Earth’s surface through Earth Observation (EO) is of

vital importance to take decisions in a multitude of critical applications, such as disaster

response, conservation or understanding the evolution of agrarian and urban spaces. The

use of aerial imagery for surveying and assisting in the creation of maps predates modern

aviation and was initially based on the manual interpretation of photographs obtained

from kites and balloons. Nowadays the availability of Remote Sensing (RS) imagery has

increased to an extent that it can not all be manually interpreted: satellites provide

a continuous flow of global multi-spectral imagery, often multiple times a month for a

given location, at spatial resolutions down to a few meters per pixels; large scale aerial

campaigns are organized by many governments every few years, providing sub-meter reso-

lution imagery, also known as Very High Resolution (VHR), over whole countries; and the

plummeting costs of Unmanned Aerial Vehicles (UAVs) mean they are being increasingly

deployed, typically providing each time a few square kilometers of imagery at decimeter

resolution. Although advances in photogrammetry and image processing have allowed

to assist the photo-interpreters in coping with this data deluge by providing them with

orthorectified and radiometrically corrected imagery, the semantic interpretation of the

content of the images is still heavily dependent on human expertise to interpret VHR

imagery.

Automatized Machine Learning (ML) methods have been used to scale some manually

interpreted samples up to large regions by interpolating to unobserved areas based on lower

resolution satellite imagery (Hansen et al., 2013; Pengra et al., 2015). This can be done in

cases where the relationship between the input data and the output is not too complex,

such as using multi-spectral Landsat imagery, with 30 meter resolution, to classify pixels

into simple land-cover classes, as can be vegetation, bare soil and water (see Figure 1.1).

At such resolution, one pixel often contains the mixed spectral responses of multiple

objects, with the effects of shadows, occlusions and geometrical configurations averaged

out. This invariance of the data to geometric details is helpful when the aim is to classify

into those simple classes that are highly correlated with the spectral response.

When higher spatial resolution is required, or when dealing with semantically more com-

plex classes, for instance vehicle, road and building, it is often required to use VHR images.

Due to trade-offs in sensor design, this imagery tends to be of lower spectral resolution,

such as Red-Green-Blue (RGB). This simultaneous decrease in spectral information and

increase in the task complexity make it often unfeasible to assign pixels to the correct

class by merely using the color, or spectral, information, as shown in Figure 1.2.

The limited information provided by each individual pixel is compensated by the fact that

we often have multiple pixels from each object. This richness allows to analyze the geom-

etry of the object and how it relates to neighboring objects. Humans can easily perform



1.1 Introduction 3

0.4   0.6   0.8   1.0   1.2   1.4   1.6   1.8   2.0   2.2   2.4  

Wavelength (μm)

R
ef

le
ct

an
ce

 (
%

)

0  

20  

40  

60  

1 2  3    4                           5                   7

Vegetation

Bare soil

Water

Landsat bands

Figure 1.1: Healthy vegetation tends

to have a much higher reflectance in the

Near Infrared (NIR) region of the spec-

trum (Landsat band 4) than in the red

region (band 3). This is often sufficient

to distinguish a forested pixel from a

bare soil one.

Figure 1.2: This VHR aerial image

corresponds to one Landsat pixel, or

30× 30 m. At that resolution, it would

look like a generic built-up or bare soil

pixel. On the other hand, the 5 cm res-

olution of the VHR aerial imagery al-

lows to see the complexity of the scene.

At the same time, the color informa-

tion from the three RGB bands would

be insufficient to distinguish any of the

marked pairs of pixels even though they

belong to different classes of objects.

To solve this, we need to use the ge-

ometry and the context.

this task and understand to which category belong the pixels marked in Figure 1.2. For

instance, we might not be sure whether the blue object is a trash container or not, but

the presence of a yellow object, probably also a container, can help us with that decision.

Depending on our experience, we might go a step further and infer that it is a paper

recycling container. Even though this might seem like an easy task, our brain makes use

of a phenomenal amount of prior knowledge, or priors, about the reality and how images

are captured: nearby pixels are likely to belong to the same object, mostly if they look

similar; a change in the image due to a change in the camera does not mean something

has changed in the scene; objects can cast shadows and occlude other objects; cars tend

to be on roads; buildings tend to have polygonal footprints; etc.

Computer Vision (CV) aims to achieve automatic image understanding and, as in human

vision, the mentioned prior knowledge of how images are generated and how objects relate

to each other is an essential part of the field. There is a variety of tasks studied in this

field, such as object detection and tracking, image classification, pose estimation, 3D



4 Introduction

reconstruction, and many more.

In this thesis the focus is on the task of image semantic segmentation (see Section 2.1),

which consists of assigning a class label to each pixel in the image, producing a class map

as a result. In the EO field of RS this is often referred to as land-cover mapping, when the

classes relate to the materials on the surface, or as land-use mapping, when they relate to

which human activities are associated to that location.

1.2 Objectives

This thesis explores the use of additional EO-specific prior knowledge, tailored for CV

tasks on overhead imagery, that is based on the particular geometric constraints associated

with this kind of data. In particular, the aim is to use these priors to improve the perfor-

mance on semantic segmentation, either by reducing the amount of hand-labeled examples

(or Ground Truth (GT)) required, reducing the computational load of the segmentation

methods or improving the geometry of the resulting maps. Section 1.3.3 presents the

intuitions behind the priors stemming from the nature of RS imagery and Section 1.4

presents the publications that have arisen from studying the injection of these priors in

the context of this thesis.

1.3 Prior knowledge

This section introduces the concept of prior knowledge in the general context of ML and

in the more specific contexts of CV and EO.

1.3.1 Machine Learning: the learned and the given (prior knowledge)

ML refers to a family of algorithms in which the ability to fulfill their task is learned

from data. When enough training data is available, ML methods often obtain substan-

tially better performances than manually coded methods. Nonetheless, ML algorithms

are never fully data driven; instead, a scaffolding needs to be manually designed, a step

usually referred to as model design. This scaffolding contains the learnable parameters,

whose values are determined during the training process using the data, and defines how

they relate to each other. In contrast to the model’s learnable parameters, the elements

involved in the model design consist of imposed constraints to the solution that define

the family of models to use and other model design decisions that are taken before even

looking at the data. For instance, if we want to model the distribution of the size of some

animal population, we might decide to fit a unimodal, bimodal or multi-modal normal
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distribution, depending on our knowledge about sexual dimorphism and age distribution.

The particular values of the mean and standard deviations of the distributions are then

set by using the data. Note that, in the absence of such knowledge, we could still model all

possible hypotheses. Nevertheless, this would come at the cost of requiring more compu-

tational resources, exponentially many with the number of dimensions in the hypothesis

space. Well chosen design decisions based on prior knowledge can substantially improve

the trade-off between performance and cost.

1.3.2 Computer Vision and image-related prior knowledge

The field of CV deals with the automatic high-level understanding of images, videos

and, more in general, spatially arranged data, such as medical scanner data or 3D point

clouds. Many CV approaches can be framed as ML problems in which the use of priors

is particularly important due to the very high dimensionality of each data point, since a

single image can consists of millions of pixels, and the strong assumptions that can be

made on the process of image formation and the observed objects: nearby pixels are more

likely to belong to the same object, inducing spatial autocorrelation and thus allowing

for sparse representations; camera position does not affect the nature of imaged objects,

making most problems invariant or equivariant to translation; as well as other more

specific priors originating from the spatial nature of images, such as expected geometries

and relative positions of objects. The exploitation of the first two of these priors can

be seen in most recent CV models in the form of a convolutional or patch based feature

extraction step.

1.3.3 Prior knowledge in Earth Observation

Recent advances in CV, mostly driven by a series of breakthroughs in Convolutional

Neural Networks (CNNs), have opened up the possibility of automatizing the processes of

interpreting high resolution (sub-meter) EO imagery (Mnih, 2013; Volpi and Tuia, 2017;

Maggiori et al., 2017). These models extract a hierarchy of features (see Section 2.3.3)

using convolution operators, which heavily rely on the priors mentioned in the previous

section. Although exploiting these priors in such way has been indeed very successful in

EO, even stronger assumptions can be made than in the general CV setting. This is due

to the additional knowledge we hold on how the images were acquired:

1. Geospatial prior: knowing the pose of the sensor at the moment of the acquisition

allows to assign a location on the Earth’s surface to each pixel in the image, generally

with a precision of a few meters. This prior, illustrated in Figure 1.3, will be referred

to as geospatial correspondence.
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Figure 1.3: Even before

we perform any analysis

on these two images, ob-

tained over the same area

with different sensors and

years apart, we know that

the locations marked with

crosses on the left cor-

respond to some point

within the circles on the

right.

2. Overhead-view prior: observing the Earth’s surface from a overhead-view per-

spective makes the images much more isotropic than natural images, which often

display different statistics in the vertical and horizontal directions. This naturally

calls for models that are invariant or equivariant (see Section 2.4.4) to changes in

orientation of the input image. In addition to that, objects are often seen in less

diverse poses, since many, such as buildings and vehicles, almost always show the

roof to the sensor, meaning that only rotations around the vertical axis are typically

observed. This is an invitation to inject priors on the expected shapes of the ob-

served objects, eased thanks to the lower shape complexity compared to what can

be expected in natural images (see Figure 1.4).

Figure 1.4: Top row: cars seen from a ground level perspective. There is a large variety in

terms of perceived poses, scales and occlusions. Cars appear to always have the top pointing

upwards and the wheels underneath, resulting in a very clearly dominant absolute orientation.

Bottom row: cars seen from an overhead-view in an aerial image dataset. In this case, the

apparent size and shape of cars is much less diverse, making it easier to use assumptions on

their apparent shape. Their absolute orientation is arbitrary, with no dominant direction,

which means that a CV model should be able interpret these images in the same way with

independence of their absolute orientation.
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1.4 Contributions

The contributions of this thesis are aimed at providing better CV models for the semantic

segmentation of VHR overhead imagery. This is done using prior knowledge on how these

images are generated. Publications produced in the context of this thesis are introduced

in this section according to the nature of the prior knowledge they exploit:

Geospatial correspondence: Geo-referencing allows for time-related priors to be ap-

plied, even across multiple sensors and long time spans. Combining the prior that two

objects that are similar in one domain (certain sensor and acquisition conditions) are also

likely to be similar in another domain, together with the assumption that the relationship

between unchanged areas is more consistent that between changed areas, it is possible to

extract domain invariant features. These features can then be used to register images from

different domains (known as heterogeneous image registration, which consists of finding

which locations in different images correspond to the same objects), detect changes and

transfer class labels from one domain to the other. This is exposed in Chapter 3 and

based on:

(Marcos et al., 2016a) Marcos, D., Hamid, R., and Tuia, D. (2016a). Geospatial

correspondences for multimodal registration. In Proceedings of the CVF/IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR).

Rotation equivariance: The known absence of any dominant absolute orientation in

RS images (see Figure 1.4) makes rotation invariance or equivariance (see Section 2.4.4)

more desirable than in natural images. The injection of translation equivariance by us-

ing convolution operators has been acknowledged as an element of vital importance on

many CV systems and additional advantages can be expected from injecting also rotation

equivariance. The close relationship between the arrangement of pixel data and transla-

tion renders the exploitation of translation equivariance much more straightforward than

in the case of rotation, making it more challenging to obtain models that can profit from

the latter. Chaper 4 explores a method for building deep CNNs based on a novel and

efficient rotation equivariant operator. The chapter in based on:

(Marcos et al., 2017) Marcos, D., Volpi, M., Komodakis, N., and Tuia, D. (2017).

Rotation equivariant vector field networks. In Proceedings of the CVF/IEEE Inter-

national Conference on Computer Vision (ICCV).

A study using only shallow CNN architectures was presented in:

(Marcos et al., 2016c) Marcos, D., Volpi, M., and Tuia, D. (2016c). Learning rota-

tion invariant convolutional filters for texture classification. In Proceedings of the

International Conference on Pattern Recognition (ICPR).

An application of this method to land-cover mapping based on VHR imagery is presented
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in Chapter 5, also to be found in:

(Marcos et al., 2018c) Marcos, D., Volpi, M., Kellenberger, B., and Tuia, D. (2018c).

Land cover mapping at very high resolution with rotation equivariant cnns: Towards

small yet accurate models. ISPRS Journal of Photogrammetry and Remote Sensing.

An additional study applying this concept to scale can be found in:

(Marcos et al., 2018a) Marcos, D., Kellenberger, B., Lobry, S., and Tuia, D. (2018a).

Scale equivariance in cnns with vector fields. In FAIM/ICML Workshop on Towards

learning with limited labels: Equivariance, Invariance, and Beyond.

Simple shape priors: The overhead-view setting reduces the complexity of possible

object appearances, since objects are arranged on a practically two dimensional space

and are less prone to complex occlusions and poses. For instance, building rooftops

are often formed by straight lines and corners, helping in the process of inferring their

footprint, which can be described in terms of closed polygonal shapes. Therefore, when

training a model to perform automatic building footprint extraction, it can be of help to

restrict the solution space to the family of closed polygons and define where there should

be corners and where straight lines. This is explored in Chapter 6 and published in:

(Marcos et al., 2018b) Marcos, D., Tuia, D., Kellenberger, B., Zhang, L., Bai, M.,

Liao, R., and Urtasun, R. (2018b). Learning deep structured active contours end-to-

end. In Proceedings of the CVF/IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

A preliminary study exploiting the relative simplicity of observed geometries from an

overhead-view perspective by using ground truth patches as jigsaw puzzle pieces to per-

form land-cover mapping was presented as:

(Marcos et al., 2016d) Marcos, D., Volpi, M., and Tuia, D. (2016d). Solving struc-

tured segmentation of aerial images as puzzles. In IEEE International Geoscience

and Remote Sensing Symposium (IGARSS).



Chapter 2

Background
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2.1 Semantic segmentation of VHR imagery

The main motivation behind this thesis is the improvement of semantic segmentation

methods using RS images by harnessing constraints that are specific to this kind of im-

agery.

In CV the expression semantic segmentation, also called semantic labeling in the RS

community, refers to the partition of an image x ∈ RM×N×d, with d = 3 in the case of

RGB images, into semantically coherent regions to form a segmentation map y ∈ RM×N ,

meaning that one class label is assigned to each image pixel. In contrast to low-level image

segmentation, which consists of finding visually coherent regions in an unsupervised way,

semantic segmentation aims at grouping the pixels of the image that belong to the same

semantic class, generally in a supervised way by using GT segmentation examples in the

form of image-segmentation pairs (xi,yi) ∈ X, where xi is an image in the GT and yi the

associated segmentation example.

Figure 2.1: The CV task of seman-

tic segmentation consists of obtaining a

function f that, given an image, pro-

duces an output map that assigns a se-

mantic class, among a predifined set of

classes, to each pixel in the image. In

the context of RS this can be used for

tasks such as land-cover and land-use

mapping. Top: In this example, an

aerial image has been segmented into the

following classes: building (blue), road

(white), car (yellow), grass (cyan) and

trees (green). Each pixel in the image

is assigned a class label. Bottom: The

related task of image classification takes

as input an image and produces a single

class label, or class probability, that is

assigned to the image as a whole, forgo-

ing the spatial component in the output.

fsegmentation−−−−−−−→

fclassification−−−−−−−→ “Residential”

When the size of the objects of interest is similar or smaller than the size of the image

pixels, such as when observing cities and forest at a resolution of multiple tens of meters,

it is common to classify each pixel individually. This would remove the spatial component

in the input and make the process of semantic segmentation equivalent to performing pixel

classification (Section 2.3.2) multiple times. In fact, the expressions image classification

and semantic labeling are often used as synonyms of semantic segmentation in RS, while



2.2 Machine Learning for Computer Vision 11

in CV image classification implies a single label per image and segmentation, a label per

pixel (see Figure 2.1).

As introduced in Section 1.1, when the resolution of the imagery increases in such way

that each object encompasses multiple pixels, as is typically the case in VHR imagery, it

becomes important to use the properties of the pixel’s neighborhood to assign it to a se-

mantic class. This has been exploited by using textural descriptors (Regniers et al., 2016),

Bag of Visual Words (BoVW) (Gueguen, 2015), random fields to encourage consistency

in the output map (Moser et al., 2013) or object-based image analysis (Blaschke, 2010),

which consists of presegmenting the image in an unsupervised way into superpixels and

then using the properties of the superpixels, such as shape, texture and other statistics,

for classification. These methods, based on the classical feature extraction and classifica-

tion paradigm mentioned in Sections 2.3.1 and 2.3.2, have been giving way to deep CNN

based methods (Kampffmeyer et al., 2016; Volpi and Tuia, 2017; Maggiori et al., 2017),

in which the feature extractor and classifier are jointly learned (see Section 2.3.3).

2.2 Machine Learning for Computer Vision

ML refers to algorithms in which part of the behavior is determined by a dataset, called

training set. A ML algorithm implements a function y = f(x) that takes an input vector

x to produce an output y. Given some input x ∈ X , where x is some measurement

instance, generally a vector, and X the space of all possible inputs, we want to infer some

aspects of the state of the reality y ∈ Y that generated that data. One way of approaching

this is to design a function f : X → Y that provides the desired output given the input

data.

Since the measurement of x can be noisy and multiple states could, in principle, result

in the same measurement, these methods often aim at obtaining the posterior probability

distribution p(y|x; w) over the possible outputs for the given data, where w are the

parameters that describe the probability function. Because we are often only interested

in the most likely output, or Maximum a Posteriori (MAP) solution, it is often more

tractable to bypass computing the full distribution p(y|x; w) and obtain directly the

MAP solution: ŷ = arg maxy∈Y p(y|x; w).

CV aims at building methods for automatic image understanding, gathering useful infor-

mation about the world from images. Therefore, x is typically an image and y can be,

for instance, the type of objects present in the image, their relative pose or the material

they are made of.

Most recent CV methods are based on ML and the process to obtain the result is often

split in the following steps:
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Figure 2.2: Given some image

x and some output hypothesis y,

many CV problems can be posed

as estimating the probability of all

possible y ∈ Y conditioned on the

input x. The example on the top

corresponds to image classification,

where the possible outputs consist

of a list of considered classes. In the

middle, in a problem called object

detection, the location of the object

is also accounted for. The space of

possible outputs can be more com-

plex than a list of classes. The bot-

tom figure illustrates the example

of pose estimation, where the out-

put is formed by multiple intercon-

nected components, and Figure 2.1

shows how the output can be a map

conditioned on the image.

fx=

p(y=cow|x)   = 0.95
p(y=horse|x) = 0.63
p(y=car|x)    = 0.05...

x=
q1 °q2 °

q3 ° p(y=cow|x,q1)   = 0.03
p(y=cow|x,q2)   = 0.95
p(y=cow|x,q3)   = 0.84...

f

x=
y=

f p(y|x)   = 0.45

� Model design: The selection of the family of possible functions f ∈ F , parametrized

by w ∈ W , from X to Y , allows us to encode our prior knowledge of the problem.

This traditionally includes the choice of a feature representation, discussed in Sec-

tion 2.3.1; a final task model, such as a classifier, a few of which are discussed in

Section 2.3.2; and some information about preferred configurations of the output

ŷ, seen in Section 2.4. Although these three elements are clearly distinct in many

traditional CV pipelines, the boundaries between them tend to be more blurred un-

der the Deep Learning (DL) paradigm, introduced in Section 2.3.3. These elements

may include learnable parameters, which we will group into the parameter vector

w.

� Learning: Also called training. In supervised learning the data consists of in-

put/output pairs, or GT, the parameters w are learned given a training GT dataset

(xi,yi) ∈ X, i = [1, . . . , n] such that f performs the task well. This corresponds

to finding the w that maximizes the probability of the observed output given the

observed data. This step therefore consists of solving the inverse problem:

ŵ = arg max
w

n∑
i

p(yi|xi; w). (2.1)

The definition of what performing the task well means is generally captured in the

form of a loss function, or cost. In a supervised learning setting, the loss function
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l(ŷi,yi) outputs a low value when the ŷi = f(xi) is close to the desired value yi,

and thus the learning step consists of solving the optimization problem:

ŵ = arg min
w

n∑
i

l(ŷi,yi). (2.2)

In the case of unsupervised learning (which is not the focus of this thesis), the loss

function does not depend on a GT output and is typically of the form l(ŷi).

� Inference: Once the model parameters w are chosen it becomes possible to obtain

estimates of the posterior distribution or to draw a MAP sample from Y given a

new input image x, a process called inference or prediction:

ŷ = arg max
y∈Y

p(y|x; w). (2.3)

Ideally, the result of running inference on a new x will provide a useful result ŷ. In

this case, we say the model generalizes well to unseen data. If the model is only

able to predict well the samples in the training set, but does not generalize to new

samples, we say that the model overfits to the training set.

2.3 Classification with Machine Learning

Given some image data and a final ML task (this section focuses on classification, but

could be others, such as object detection or semantic segmentation), many traditional CV

methods use a two-step approach: first, a function f1 is designed (sometimes involving

unsupervised learning), to extract features from the data. Then a second function f2 takes

these features as input and uses them to perform the final task, also called downstream

task (see Figure 2.3). Section 2.3.1 introduces the concept of feature extraction and some

feature descriptors used in this thesis. The classification step is introduced in Section 2.3.2,

and 2.3.3 presents the idea behind DL, in which f1 and f2 are jointly learned as a single

function.

Figure 2.3: In traditional CV

pipelines, a function f1 is designed to

extract a feature vector z = f1(x),

where each gray square represents a

scalar, from the input x. A second func-

tion f2 is then designed and trained on

a training dataset to produce the final

output y, which can be, for instance, a

classification score for the class “car”.
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2.3.1 Feature representation

The first step in most pipelines is feature extraction, also called descriptor extraction.

The original feature representation, e.g. pixel values, is often not well suited for the

downstream task. For instance shadows and acquisition conditions can greatly influence

the pixel values of an image, but are often irrelevant for the task. Feature extraction

techniques are reared towards building a function f1: z = f1(x), such that z is more

useful, which could mean being invariant to shadows and other irrelevant variations in the

image x while capturing the factors of variation that are relevant to the final task.

Handcrafted features

The traditional approach to building f1 is to carefully design it to capture our prior

knowledge about the data and the problem. This section presents a few examples of

features mentioned in the thesis.

Local Binary Patterns (LBPs) (Ojala et al., 1996) were developed for texture classification

and exploit the rotation and brightness invariance associated to textures. At a given

location on an image, a LBP is extracted by checking the image intensity at a number of

points arranged in a circle around the location. If the value is higher than at the center,

a one will be written into an intermediate feature vector, and a zero otherwise. The final

feature is usually a histogram of occurrence of each possible LBP in each local image

window.

Histogram of Gradients (HoG) (Dalal and Triggs, 2005), originally designed also for tex-

ture classification, then adapted to object detection, is based on counting local image

gradient directions, therefore being invariant to brightness and small translations.

The Scale Invariant Feature Transform (SIFT) descriptor (Lowe, 2004) is similar in nature

to HoG, but follows a more complex pipeline, including multiscale extraction and orien-

tation estimation, allowing for representations that are rotation and scale invariant.

Another approach for obtaining invariance to appearance while keeping information on

shape and spatial arrangement is the Local Self-Similarity (LSS) descriptor (Shechtman

and Irani, 2007). For each image location this descriptor is built by computing the sim-

ilarity between a patch centered in the location and multiple patches around it. This

provides a local spatial pattern of similarly looking patches which is independent on the

actual appearance of the patch. A descriptor following this logic, but making use of

geospatial correspondences, is presented in Chapter 3.



2.3 Classification with Machine Learning 15

Data-driven features

Unlike handcrafted features, data-driven features undergo a preliminary training step

to learn the parameters that define the way in which the features are extracted. These

features are thus adapted to the data distribution, potentially making them more compact

and useful for the final task.

A simple way of building data driven features is to find representative examples in the

training set and verify whether a similar pattern occurs in a test sample. This is the

idea behind features based on Textons (Cula and Dana, 2001; Leung and Malik, 2001)

and BoVW (Yang et al., 2007), which rely on templates computed as the centroids of a

clustering algorithm partition of image patches. Dictionary learning methods (Kreutz-

Delgado et al., 2003) can be used to learn an overcomplete basis from the data that allows

to represent it as a sparse vector that can approximately reconstruct the original signal

and be useful for other downstream tasks, such as classification (Mairal et al., 2009).

2.3.2 Classification

In traditional CV pipelines, the features obtained in the feature extraction step are used

in a final task such as classification: y = f2(z).

Classification is the problem of assigning a data point xi ∈ X (the input data are often

vectorial, X = Rd) to a class yi ∈ Y = {1, 2, . . . , C} in a predefined set of classes Y , being

the total number of classes C = |Y|. It is a supervised learning task, meaning that we

have access to a training dataset X = {(xi, yi)}ni=1 formed of n pairs of data points xi and

labels yi. The training set X is used to divide the input space X into decision regions,

separated by decision boundaries. These boundaries can then be used during inference to

assign a class label to any newly observed x ∈ X .

In the following, three commonly used classification algorithms, all of them mentioned

throughout this thesis, are presented:

K-Nearest Neighbors

The K-Nearest Neighbors (K-NN) classifier, the epitome of non-parametric models, works

by storing the whole training set X in memory and assigning to a new data point x the

most common class among the k nearest points Nk(x) ∈ X. Section 2.4 explains how

prior knowledge on class abundance can be used by splitting this process in two steps:

1) inference, which consist in obtaining a score vector s ∈ RC by assigning the score

sc =
∑

i∈Nk
(yi = c),∀c ∈ Y and 2) decision, generally selecting the class with the highest

score, y = arg max s.
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Decision Trees and Random Forest

Instead of keeping the whole training set in memory, a decision tree can be used to find

a hierarchical set of rules, similar to the dichotomous keys used in taxonomy. The rules

are built greedily and in a recurrent fashion. Starting with the whole dataset (root),

one or more dimensions are explored in the search for a good split, where goodness is

usually defined as some class purity measure. This divides the dataset in two (leaves) and

the same procedure is applied to each sub-dataset. This is repeated until some stopping

criterion is met, such as the maximum tree height or minimum number of data points

per leaf. Decision trees can approximate any decision boundary, given enough data, and

don’t require the data to be scaled or normalized in any particular way. On the down

side, they easily overfit the data and often do not perform very well in practice. Many

ensemble methods based on decision trees have been proposed. The most popular method

is Random Forest (RF) (Breiman, 2001), which consists of learning multiple decision trees,

each on a different bootstrapped subset of the training set, to make sure that each tree will

learn a different decision boundary, and averaging the results of all the trees together to get

the final result. These methods are still efficient to train and often provide satisfactory

results, making them a popular choice for classification, together with Support Vector

Machines (SVMs), described next.

Support Vector Machine

Linear binary classifiers, with Y = {−1, 1}, are aimed at finding a hyperplane (the gen-

eralization of the line in 2D space and the plane in 3D space to spaces of higher dimen-

sionality) that separates the training samples of both classes, thus restricting the possible

decision boundaries to the family of hyperplanes in the input feature space. The SVM is

aimed at finding the separating hyperplane that provides the largest margin. This means

that it finds the data points that are closest to the decision boundary, also called support

vectors, and then finds the hyperplane that maximizes the distance between the decision

boundary and the support vectors. This has been shown to ensure good generalization to

unseen samples (Cortes and Vapnik, 1995).

A hyperplane in Rd can be parametrized by a vector w orthogonal to the hyperplane and

a bias w0, such that it consists of the points that satisfy w>x + w0 = 0. If the dataset

is separable, the objective of binary classification is to find the hyperplane that perfectly

separates the training set. In addition, we would want to leave a margin between the

positive and the negative samples such that they don’t lie right next to the hyperplane.

This can be translated as finding w and w0 such that, for each training sample (xi, yi),

we observe:

yi =

{
1, if w>xi + w0 ≥ 1

−1, if w>xi + w0 ≤ −1.
(2.4)
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The distance between the two hyperplanes defining the margin in Equation (2.4) can

be shown to be 2
‖w‖ , meaning that finding the max-margin hyperplane consist of solving

ŵ = arg minw ‖w‖2 subject to Equation (2.4).

In order to relax the requirement that the data be linearly separable, the hard constraint

in Equation (2.4) can be relaxed using the hinge loss. This loss is zero if the constraint

is satisfied and proportional to the violation if the constrained is violated. This leaves us

with the problem:

(ŵ, ŵ0) = arg min
ŵ,ŵ0

[
‖w‖2 + C

n∑
i=1

max(0, 1− yi(w>xi + w0))
]
, (2.5)

where C is a constant weighting the two terms.

Research on how to extend this formulation for building footprint extraction is presented

in Chapter 6.

2.3.3 Deep Learning: joint feature extraction and classification

Deep Neural Networks (DNNs) are used to learn the parameters of sets of hierarchical

features together with the final task, something referred to as end-to-end learning. In

contrast to the two step pipeline common to methods reviewed so far in this section,

where the feature representation is designed or learned first and then the final task uses

these features, DNNs use backpropagation (Rumelhart et al., 1986) to optimize the whole

pipeline jointly to solve the final task. Backpropagation allows to learn a deep and complex

hierarchy of features that can solve tasks requiring to fit high-dimensional non-linear

functions. DNNs are built by composing a set of simple functions (Rumelhart et al.,

1986), often linear mappings, with learnable parameters, and simple nonlinearities, such

the sigmoid or the Rectifier Linear Unit (ReLU). A feed forward DNN, with input x and

output y, which can be for instance a classification score or a regression prediction, can be

expressed as a composition of L functions zl = fl(zl−1; θl), l ∈ 1 . . . L, also called layers,

where zl−1 and θl are respectively the input and parameters of the function fl, while zl
is its output. To simplify the notation, this will be written zl = fθl(zl−1). A DNN model

can therefore be expressed as:

y = fθL(fθL−1
(. . . fθ1(x) . . . )) (2.6)

In addition to this, DNNs often enjoy better generalization to unseen samples than other

families of models, even if their capacity would in principle allow them to overfit to very

large training sets (Zhang et al., 2016a).
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Convolutional Neural Networks

Although DNNs enjoyed some success in multiple fields during the 1990s, they did not

become popular methods in Computer Vision until the early 2010s, when a few method-

ological innovations, such as the efficient ReLU non-linearity (Glorot et al., 2011), and

the adaptation of Graphics Processing Units (GPUs) to scientific computing allowed mod-

els based on deep CNNs to substantially improve the state-of-the-art in image classifica-

tion (Krizhevsky et al., 2012) and even surpass human performance (Cireşan et al., 2012).

Nowadays, CNNs are the workhorse of deep learning based CV. They are particularly

suited to image data by making use of the 2D arrangement of image pixels. This in done

by extracting features in a convolutional manner, meaning that the same local feature is

extracted at every location in the image or input feature map to create an output feature

map with the same 2D arrangement. This allows for a major reduction in the number

of required learnable parameters through weight sharing and encodes, to some extent, a

translation equivariant behavior in the model, as will be seen in Section 2.4.4.

For more details on the most common building blocks of CNNs, please refer to Sec-

tion 5.2.1.

2.4 Prior knowledge in Computer Vision

This thesis focuses on the use of prior knowledge that stems from the nature of EO data

in CV models. This section introduces the concepts and methods related to the injection

of priors in CV relevant to this thesis.

Prior knowledge, or just priors, is some information held about the object of a ML problem

in addition to the data itself. Encoding these priors in the models before learning has

been shown to be vital in enabling a good performance in many cases, since many ML

problems would be ill-posed without them. Some examples are the regularization term

used in SVMs or the translation equivariance encoded in CNNs.

2.4.1 Priors in the Bayesian sense

The score vector s = f(x) provided by a classifier gives us some information that can be

thought of as the trustworthiness of the classifier’s outcome; if the scores of more than one

class are similarly high, we might not want to trust the classification decision as much as

when only one class has a non-zero score. In order to quantify this trustworthiness it can

be useful to interpret this scores as probabilities. Depending on how they are normalized

we could interpret them in two ways:
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� The posterior probability p(yc|x), estimated as sc∑
i si

. Since s is non-negative, and

this normalization makes sure that its C components sum to one, this can be inter-

preted as the probability of x belonging to class yc.

� The likelihood p(x|yc), estimated as sc
Z

, with Z =
∫
x∈X fc(x) being the partition

function. This can be interpreted as the probability of observing x given that the

class is yc. Note than computing Z would require to evaluate the classifier in every

point of the input space X , making it unfeasible to compute in many cases. As we

will see in Section 2.4.2, computing Z is not required in the case where we want to

compare the likelihood of two different labelings, since Z depends only on the data

and not on the labeling itself.

Interpreting classification scores directly as a posterior probability makes the classification

decision trivially simple, since arg maxc p(yc|x) = arg maxc sc. However, this does not

allow to inject additional information we might have about the problem, apart from the

scores. Let us use a K-NN classifier as an illustrating example. As we have seen in

Section 2.3.2, K-NN is generally used to build a set of scores that are interpreted as an

estimation of the posterior probability p(yc|x):

p(yc|x) =
Kc

K
, (2.7)

which is the proportion of neighboring training points that belong to class yc.

Instead, we can estimate the class-conditioned likelihood:

p(x|yc) =
Kc

NcV
, (2.8)

where V is the volume of the minimal sphere centered in x and containing all of its K

nearest neighbors and Nc is the total number of training samples with class yc. This is

an estimation of the local class-conditioned density. If we also compute the unconditional

likelihood of x, or local density:

p(x) =
K

NV
, (2.9)

we can use Bayes’ theorem to connect the estimates in Equation (2.7) and Equation (2.8),

and obtain the posterior using the likelihood:

p(yc|x) =
p(x|yc)p(yc)

p(x)
. (2.10)

Note that the same posterior as in Equation (2.7) is obtained when we plug in the class

proportion priors, estimated as the class proportions in the training set:

p(yc) =
Nc

N
. (2.11)
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Now, one may ask what is the interest of estimating likelihoods when we can directly

estimate the posterior, which is the final result we want. Let us imagine that we know

the class proportions to be different in the test set and in the training set, maybe be-

cause we have created a class-balanced training set. By applying Equation (2.7) we are

implicitly assuming the same class proportions in the train and test datasets. If we in-

stead use Equation (2.8), we are then free to use a new class prior by applying Bayes’

theorem (2.10).

In the simple case of K-NN classification the class prior can just convey information

about known class proportions. But if we consider a richer output space, with not just

a single class label but a collection of labels organized in a graph structure, much more

informative class priors can be used. This is explored in the following section and exploited

in Chapters 3 and 6.

2.4.2 Image structure and Graphical models

When the input x ∈ RM×N×d is an image, we consider it to be formed by multiple elements

with predefined neighborhood relationships: the pixels. Each pixel is represented by its

site index i ∈ S = [1, . . . ,MN ], which is associated to its 2D location on the image,

and its pixel value xi ∈ Rd. The output y is accordingly formed by multiple elements

with the same neighborhood structure, such as a label yi for each image pixel xi. That

often means that we can apply some additional prior information on this structure of the

output. We might know that certain classes are more likely to co-occur in the same image

than others, that objects of some class tend to appear together, or that certain shapes are

more likely. These priors can help obtaining better classification performance when the

result of a classifier applied to each pixel contains some level of noise, which in practice

is always the case, since it can help correct classification mistakes when they are unlikely

according to the priors.

The name graphical models stems from being based on data structures called graphs. A

graph G = (V , E) consists of a set of nodes V , also called sites, and a set of edges E that

encode the neighborhood relationship between nodes. Two nodes i, j ∈ V are said to be

connected if the corresponding edge εij exists in E . The neighborhood Ni of node i is the

set of nodes connected to i.

A prior on the output p(y) now provides information about the probability of observing

some particular configuration of y. This is almost always intractable, since the number of

configurations tends to grow exponentially with the number of elements. The complexity

can be reduced to linear with respect to the number of elements by making use of some

locality constraint, which factorizes the probability of the whole output configuration p(y)

to the product of probabilities of parts of the output. The intuition is that only nearby

elements have a direct influence on each other, and thus using the probabilities of many
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Figure 2.4: Graph of a Markov Ran-

dom Field for image segmentation. The

gray nodes represent the data depen-

dent variables, while the white nodes

are the output variables, i.e. the class

labels. The outputs of pixels i and j

are connected by the edge εij .

local cliques, sets of elements fully connected to each other, can be equivalent to using

the full p(y). If a clique is denoted by C ∈ C, then:

p(y|x) =
1

Z

∏
C∈C

ΨC(C), (2.12)

where ΨC(C) is the clique potential. In the case of order 2 cliques, C = (i, j), Ψ2(i, j) ≥ 0

is called pairwise potential and measures the compatibility of yi and yj and, optionally,

xi and xj. For order 1 cliques C = (i) and Ψ1(i) = p(xi|yi). Called unary potential, it is

usually the likelihood predicted by some classifier. Z is the partition function that makes

sure that the result is normalized as a probability distribution. If we separate the unary

and pairwise factors in Equation (2.12), we obtain:

p(y|x) =
1

Z

∏
i∈C1

Ψ1(xi, yi)
∏

(i,j)∈C2

Ψ2(yi, yj,xi,xj), (2.13)

a formulation called Conditional Random Field (CRF), since the output is generally

treated as a field of random variables and all the factors are conditioned on the input. A

simple and commonly used prior is contrast-sensitive label smoothness, meaning that we

believe that similar and neighboring pixels are more likely to belong to the same class than

to different classes. The pairwise potential can be Ψ2(i, j) = 1 if yi = yj and otherwise

Ψ2(i, j) = α(‖xi − xj‖), with 0 ≤ α < 1. Figure 2.4 shows a diagram of the connectivity

of a random field with pairwise connections in a 4-neighborhood and unary potential from

a classifier f(x). Note that the factors in this case coincide with the edges because only

pairwise potentials are considered, but this does not always have to be the case.

If the pairwise potential is not conditioned on the data, for instance if α depends only on

the labeling, then the posterior can easily be factorized such that it corresponds to Bayes’

theorem, Equation (2.10):

p(y|x) =
1

Z

∏
i∈C1

Ψ1(xi, yi)
∏

(i,j)∈C2

Ψ2(yi, yj) =
1

p(x)
p(x|y)p(y) (2.14)
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The per pixel likelihood provided by a classifier can be combined with this prior informa-

tion using Bayes’ theorem (2.10) in the same way that the knowledge of class proportions

can be injected in the K-NN output. This special case of CRF is called a Markov Ran-

dom Field (MRF), and was first introduced to image processing for the task of image

restoration (Geman and Geman, 1984) but has since been used to pose many vision tasks

as graph labeling problems (Li, 1994).

The aim is to find the y that maximizes the expression in Equation 2.13. Since Z does not

depend on y it can conveniently be removed from the expression. In order to make this

optimization problem easier, we can instead minimize the logarithm of the expression,

referred to as energy function:

E(y|x) = −
∑
i∈C1

log(Ψ1(xi, yi))−
∑

(i,j)∈C2

log(Ψ2(yi, yj,xi,xj)). (2.15)

A variety of optimization methods have been proposed to solve the minimization of

Equation (2.13) with respect to y, in general allowing for a trade-off between flexibil-

ity/simplicity and optimality/efficiency. On the latter end of the spectrum the most

popular methods are based on graph-cuts (Boykov et al., 2001; Kolmogorov and Zabih,

2004), which are fast and reliable but are more strict in terms of the required properties of

the pairwise potential. On the former, Iterated Conditional Modes (ICM) is a very simple

algorithm that tends to be more sensitive to the initialization, typically returning results

of lower quality than graph-cut based methods, but poses no additional requirement in

the properties of the energy function. This thesis makes use of this formulation, optimized

with ICM, in Chapters 3 and 6.

2.4.3 Active contours and shape priors

Models of the CRF family, as exposed in Section 2.4.2, are well adapted to encode posi-

tional priors, related to relative positions of output elements. Due to their local nature,

required to allow for efficient inference through factoring, CRFs do not naturally encode

high-level geometric constraints such as closedness, convexity or shape smoothness. Ac-

tive Contour Models (ACMs) were introduced by Kass et al. (1988) for single object

segmentation in images. ACMs naturally constrain the segmentation output to be closed,

compact and smooth. To do this, the output is forced to be a polygon with a fixed number

of edges L and encouraged to be smooth while sitting on the object boundaries found in

the image. An ACM can be represented as a polygon y with L nodes, made up of 2D

Cartesian coordinates ys = (us, vs) ∈ R2, with s ∈ 1 . . . L, where each s represents one

of the nodes that form the discretized contour. The polygon y is deformed such that the

following energy function is minimized (see also Figure 2.5):



2.4 Prior knowledge in Computer Vision 23

Figure 2.5: Explicit ACMs work by

initializing a polygon y on the im-

age, represented by the yellow line with

blue nodes, where the nodes are ex-

plicitly describing the polygon. An en-

ergy function that depends on the im-

age and the curvature and length of y is

manually crafted such that the “forces”

(black arrows) created by the minimiza-

tion of the energy push the polygon to-

wards the desired outline, in green.

E(y,x) =
L∑
s=1

[
D
(
x, (ys)

)
+ α

(
ys
)∣∣∣∂y

∂s

∣∣∣2 + β
(
ys
)∣∣∣∂2y

∂s2

∣∣∣2], (2.16)

where D
(
x
)
∈ RM×N×1 is the data term, with input image x ∈ RM×N×d, evaluated at

position ys, and α, β ∈ R are the penalization terms, encouraging short and smooth

polygons respectively. The notation D
(
x, (ys)

)
means the value in D

(
x
)

indexed by the

position of ys. In the literature, D
(
x
)

is usually some predefined function on the image,

such an edge detector, and α and β are hand tuned constants. Many variants of this

method can be found in the literature which add other terms to Equation (2.16), such

as size (Cohen, 1991) and shape priors (Leventon et al., 2002; Rousson and Paragios,

2008). The latter allow to use a collection of predefined shapes to encourage the result to

converge towards one of them.

Chapter 6 presents a modified ACM that allows, using a deep CNN, to learn from a

training set how much each term of the energy function has to be encouraged in each

location of the image.

2.4.4 Equivariance to transformations

Let us start by explaining a related and more familiar property: invariance. We say that

a function f is invariant to a transformation g if the output of f is not modified when

transforming the input under g. To formalize this, it is often convenient to describe the

set of possible transformations within the framework of Group Theory. A group G is a

set with some operation (◦) such that the identity element exists, every element has an

inverse and associativity and closure are satisfied. Note that no reference has been made

to how this transformation is implemented. To help with this, another useful concept

is the group representation. A mapping T from G to a family of linear operators is a
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representation of G if, for g, h ∈ G:

T (g)T (h) = T (gh). (2.17)

A representation T is then a linear operator that implements the transformation.

Let us take as example the group of 90◦-step rotations G90, as well as three functions with

different behaviors with respect to rotation (see Figure 2.6):

� Invariance: A classifier f1. A rotation by α◦, gα, is represented by the corre-

sponding reshuffling of the image pixels TX (gα). The output, on the other hand, is

expected to stay constant under rotations of the input, making f1 rotation invariant:

f1(TX (g)x) = f1(x). (2.18)

� Covariance: An orientation estimation function f2. The output should behave

predictably with when the input is rotated, although not with a rotation but with

a scalar addition, meaning that the representation of the transformation is different

at input and output but we can find two representations of G, TX and TY , such

that:

f(TX (g)x) = TY(g)f(x). (2.19)

In this case, to apply the rotation transformation to the output of the car an-

gle regression value y2 ∈ R, the transformation gα is represented by the addition

TY2(gα)y = y + α. In this thesis this will be referred to as rotation covariance. In

the literature this more general case is called equivariance.

� Equivariance: A semantic segmentation function f3. The output responds with a

rotation to the rotation of the input, meaning that the representations are equal,

TY = TX . This will be referred to as rotation equivariance in this thesis:

f(TX (g)x) = TX (g)f(x). (2.20)

In Figure 2.6, we can see the four possible states of an image when subject to the different

elements in the group: g0, g90, g180 and g270. We can verify that this set of transformations

form a group: the identity element exists and can be called g0 or g360; associativity applies

under composition, since actually all the elements can be generated by applying g90 zero,

one or multiple times (for instance, g180 = g90 ◦ g90); every element has an inverse, as

shown in the figure; and the group is closed, since the composition of any two 90◦-step

rotations is also a 90◦-step rotation.
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Figure 2.6: All four possible transformed images under the group of 90◦-step rotations

G90 = {g0, g90, g180, g270}. The rotation invariant function f1 is a classifier that outputs

1 in the presence of a car in the image and 0 otherwise. The rotation covariant function f2

estimates the absolute orientation of the car in the image. The semantic segmentation encoded

by f3 is equivariant with respect to rotations of the image.

Translation equivariance in Convolutional Neural Networks

Within DNNs, there is a family of models where hand crafted constraints play a specially

important role: CNNs. These models are adapted to work on images by applying the same

set of locals weights at each location of the image by means of a convolution operation,

what can be thought of as looking for the same local pattern at every location. This

allows to greatly reduce the model size and improve generalization (LeCun et al., 1989) by

encoding a very strong prior in computer vision: translation equivariance. The advantages

of translation equivariance provided by the use of convolutions have played a big role in

the recent dominance of CNN based methods in computer vision.

Equivariance to other tranformations in CNNs

The use of the convolution operator naturally encodes translation equivariance in CNNs

by forcing each convolutional layer to apply the same local feature extraction across all

the translation space. Note that this is made simple by the fact that image data is already

arranged in a way that corresponds to translation space. This means that applying a local

operation at multiple locations of the translation space is done naturally and the output
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can be arranged in the same way as the input, since every location (i.e. pixel) in the input

image corresponds to a single location in translation space and is thus assigned a single

output value. On the other hand, if we want to apply an operation at multiple “locations”

of the rotation space (e.g. apply rotated versions of the same filter) we obtain multiple

output scalars per pixel, corresponding to a new “rotation dimension”. This results in

a 3D tensorial output in roto-translation space, which requires special treatment when

in turn used as the input of the following layer of a CNN. In the last few years there

have been multiple approaches in the literature encoding equivariance or covariance to

different rotation orbits, such as 90° stop rotations (Cohen and Welling, 2016a), arbitrary

discreet rotations (Zhou et al., 2017) or continuous rotations (Worrall et al., 2016). A

new approach for doing this efficiently is presented in Chapers 4 and 5.



Chapter 3

Geospatial Correspondences for

Multimodal Registration

This chapter is based on:

Marcos, D., Hamid, R., and Tuia, D. (2016a). Geospatial correspondences for

multimodal registration. In Proceedings of the CVF/IEEE Conference on Computer

Vision and Pattern Recognition (CVPR)
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Abstract

The growing availability of very high resolution (<1 m/pixel) satellite and aerial images

has opened up unprecedented opportunities to monitor and analyze the evolution of land-

cover and land-use across the world. To do so, images of the same geographical areas

acquired at different times and, potentially, with different sensors must be efficiently

parsed to update maps and detect land-cover changes. However, a näıve transfer of ground

truth labels from one location in the source image to the corresponding location in the

target image is generally not feasible, as these images are often only loosely registered

(with up to± 50m of non-uniform errors). Furthermore, land-cover changes in an area over

time must be taken into account for an accurate ground truth transfer. To tackle these

challenges, we propose a mid-level sensor-invariant representation that encodes image

regions in terms of the spatial distribution of their spectral neighbors. We incorporate

this representation in a MRF to simultaneously account for nonlinear mis-registrations

and enforce locality priors to find matches between multi-sensor images. We show how

our approach can be used to assist in several multimodal land-cover update and change

detection problems.
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Figure 3.1: Illustration of Spatial Distribution of Spectral Neighbors (SDSN). (a): Remotely

sensed image IA in domain A. (b): Superpixels computed for IA. (c): Downsampled version

of IA. (d): The SDSN features are computed as similarities of a superpixel in (b) with every

value in (c). The same procedure is applied to the image in domain B. Superpixels belonging

to the same land-cover class tend have similar SDSN values across domains.

3.1 Introduction

In recent years, there has been a tremendous increase in the amount and resolution of

commercially available satellite imagery (Doe, 2014). This growth has opened numerous

avenues to monitor and analyze the land-cover and land-use around the world, resulting

in many novel applications including precision agriculture (Yang et al., 2013), population

density estimation (Harvey, 2002), and location based services (Schiller and Voisard,

2004).

A key challenge common to these applications is the efficient generation of land-cover

maps, i.e. segmenting remotely sensed images into semantic classes such as forests, roads,

buildings etc. This problem is exacerbated by the need to frequently update these maps

by accounting for the constant natural and man-made changes on the Earth’s surface.

The growing number of available air and space-borne sensors, together with their short

revisit time makes the automatic updating of such maps with remote sensing data an

important and challenging research direction (Lu et al., 2014).

Traditional mapping approaches cannot be directly applied to solve this problem, as the

appearance-consistency assumption they make does not generally hold true for multi-

sensor multi-temporal (heterogeneous) images. This is due to the large variation in acqui-

sition conditions e.g. frequency bands, resolution, acquisition times and geometry. It is

therefore common to view multi-sensor land-cover update from the perspective of domain

adaptation (Ben-David et al., 2010) where correspondences between the source and target

domains are defined using a shared feature-space.

In this work, we propose a novel mid-level representation that assists in performing domain
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Figure 3.2: (a): Remotely sensed images. (b): Superpixel segmentation of the images. (c):

Stack of domain invariant features computed for each superpixel maintaining the neighbor-

hoods. (d): Graphical model used to match superpixels from both domains. (e): Contribution

of each match to MRF cost function is used as confidence map of the matching, enabling the

detection of areas with higher probability of having undergone a land cover change.

adaptation by extracting a domain-invariant feature for every image region (a super-pixel,

Figure 3.1b) in each image in terms of the spatial distribution of its spectral neighbors

(SDSN). Our representation is particularly geared towards image series acquired over the

same geographical area at different times and using different sensors. In order to obtain

domain invariance we exploit the fact that satellite images are loosely geo-registered, usu-

ally up to a non-uniform registration error of ±50 m. We can therefore divide the images

into a relatively coarse set of patches (Figure 3.1c) in order to obtain an approximately

registered shared coordinate system. By encoding image regions in terms of their spectral

distances from the mean value of each patch in their respective domains (Figure 3.1d),

SDSN is able to provide a simple yet effective way to map information across different

satellite sensors. This sensor invariance allows to use these features for multimodal image

registration. We incorporate our SDSN representation in a MRF (Figure 3.2) where intra-

domain edges are used to encourage smoothness and favor matches over short distances,

while inter-domain edges encourage matching superpixels with similar domain-invariant

features (Figure 3.2d). We show how this can be used for domain adaptation using two

different strategies: direct transfer of land-cover ground truth (GT) (Section 3.4.1) and

finding super-pixel pairs for unsupervised manifold alignment (Section 3.4.2). We also

show how this approach can be used effectively for detecting land-cover changes in an

unsupervised manner (Section 3.4.3).

3.2 Related Work

The problem of land-cover segmentation in multi-sensor and multi-temporal scenarios can

be formulated as an instance of the more general problem of domain adaptation, which

addresses the transfer of available domain-specific knowledge to a different but related
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domain. Both semi-supervised (Daume III and Marcu, 2006; Wang and Mahadevan,

2011) and unsupervised (Gong et al., 2012; Gopalan et al., 2011) approaches have been

proposed to perform domain adaptation.

For semi-supervised approaches, techniques involving co-training (Tur, 2009), label prop-

agation (Xing et al., 2007), variants of expectation maximization (Dai et al., 2007) and

SVM (Duan et al., 2009) have been successfully proposed. More recently, approaches

involving co-regularization (Kumar et al., 2010) and data rotation (Pan et al., 2011)

have also been put forth. These approaches still require some labeled examples in the

target domain, which prevents their application to problems where such labels are not

available.

Unsupervised domain adaptation is generally considered a harder problem since we do

not have any labeled correspondence between the domains. In this regard, approaches

relying on source-target partial distribution similarity (Gong et al., 2013), clustering (Shi-

modaira, 2000; Japkowicz and Stephen, 2002; Bruzzone and Marconcini, 2010), structural

correspondence learning (Blitzer et al., 2007), domain divergence minimization (Blitzer

et al., 2008), manifold alignment (Wang and Mahadevan, 2009) and deep learning (Ganin

and Lempitsky, 2014) have been proposed. However, these methods require a certain level

of correlation between the distributions of both domains. In this work, we put forth a

strategy that is able to deal with distributions from different domains without requiring

them to be correlated by exploiting the fact that for our setting the images are loosely

spatially geo-registered.

A third approach, not always explicitly referred to as domain adaptation, consists of using

engineered domain invariant features. It has been successfully applied in both remotely

sensed (Vakalopoulou et al., 2015; Gueguen and Hamid, 2015) and natural images (Liu

et al., 2011). Some of these features (e.g. SIFT (Liu et al., 2011) or shape descrip-

tors (Gueguen and Hamid, 2015)) achieve domain-invariance at the cost of discarding

relevant information, e.g. color in RGB imagery, while focusing only on geometrical in-

formation. In contrast, we propose to take into account spectral information while also of-

fering the possibility to include task-specific appearance descriptors in the process. SDSN

is related to the local self-similarity (LSS) (Shechtman and Irani, 2007) and global self-

similarity (GSS) (Deselaers and Ferrari, 2010) features. However, unlike these approaches,

SDSN uses approximate geographical correspondences to allow for cross-domain compar-

isons, hence offering both the expressiveness of GSS and the simplicity of LSS.

In remote sensing, domain adaptation has been traditionally used for land-cover map up-

date tasks (Bruzzone and Serpico, 1997; Benedek and Szirányi, 2009). Most of these

pipelines assume a perfect pixel-to-pixel registration between multi-temporal images,

which is a serious limiting factor for high resolution and multi-sensor data. An object-

based variant resides in the semantic tie points strategy proposed in (Montoya-Zegarra

et al., 2013) and used in (Marcos-Gonzalez et al., 2015) for remote sensing domain adapta-
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tion. An MRF-based approach (Liu et al., 2011) significantly relaxing the co-registration

constraint is presented in (Vakalopoulou et al., 2015), where registration and change de-

tection are simultaneously performed. They use several correlation similarity measures

that imply using the same number of spectral bands in both domains. Our approach

extends this work to the multi-sensor setting where feature spaces are usually composed

by different types and number of spectral channels, making it more general.

3.3 Proposed Method

We use super-pixels as our basic computational unit since they reduce the size of the

problem while offering a meaningful spatial support. In this work we use the Simple

Linear Iterative Clustering (SLIC) segmentation method presented in (Achanta et al.,

2012). Given an image ID of size m×n in domain D, and a SLIC segment size parameter

s, we build a super-pixel image HD of size roughly (m/s× n/s).

We formulate our problem as an object matching problem by using a MRF, similar

to (Vakalopoulou et al., 2015; Liu et al., 2011). An important feature of this model

is that the contribution to the MRF energy associated to each matched pair can be used

as an estimate of matching confidence. Every super-pixel Hj
B ∈ HB in domain B (target)

is matched to super-pixel H i
A ∈ HA in the domain A (source) with a certain confidence

relative to rest of the matches.

3.3.1 Spatial Distribution of Spectral Neighbors

Our main hypothesis is that objects that are spectrally similar in one domain tend to

be spectrally similar in other domains, except when they have undergone a land cover

change. For instance, a patch of vegetation in an RGB image is likely to have a similar

color to other areas of vegetation in that image. At the same time, a patch of vegetation

in a near infrared (NIR) image is likely to look very similar to other vegetated areas

in the same NIR image. This within-image similarity is independent to how similar or

dissimilar a particular patch of vegetation might look across the two images. We use this

observation to encode each super-pixel H i
D in domain D in terms of its similarity to other

regions of the image (see Figure 3.1).

To do so, we start by computing a downscaled version JD of the original image ID as the

average spectral signature of every non-overlaping d × d patch in ID. Here JD is of size

(m/d × n/d) and contains Q = (mn)/d2 elements. We then compute the SDSN feature

ziSDSN for H i
D as:

ziSDSN = [zi1SDSN · · · z
iq
SDSN · · · z

iQ
SDSN], (3.1)
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where

ziqSDSN = e−σ‖S(Jq
D)−S(Hi

D)‖2 . (3.2)

Here, S(JqD) and S(H i
D) are the spectrum (e.g. RGB color) associated to JqD and the

mean spectrum of H i
D respectively. Note that ziSDSN has Q dimensions. Each element

ziqSDSN of ziSDSN encodes the similarity of the spectrum of H i
D to the average spectrum of a

particular patch of the image, JqD. Downscaling allows for robustness against registration

noise between the images in the different domains. For example, a 15 pixel shift in

the original image becomes a sub-pixel shift of 0.15 pixels using downscaling factor of

100.

3.3.2 Matching Formulation

We build on previous matching approaches relying on MRF such as (Shekhovtsov et al.,

2008; Liu et al., 2011; Dragomir Anguelov et al., 2005; Vakalopoulou et al., 2015). We

define a graph G = (V , E) where every edge εij ∈ E connects two nodes i, j ∈ V with

a weight c(εij). Every node i corresponds to a super-pixel H i
B in the target domain.

Since we expect the misregistration shifts to be consistent within a region of the image,

possibly with shift larger than the superpixel size, we consider mid-range connections for

node i, Ni, beyond first order neighborhoods. In our experiments (Section 3.4) we use a

25× 25 super-pixel neighborhood. We make use of the SLIC grid initialization to define

the neighborhood systems efficiently. We set weights c(εij) inversely proportional to the

geographical distance between node i and its neighbors and we normalize them such that∑
εij∈Ni

c(εij) = 1. Each node is defined by its geographical coordinates pi = (pi, qi) and

is assigned to a matching vector ui = (ui, vi) towards a super-pixel Mi = Hk
A in the source

domain, defined by its coordinates pk = pi+ui. M is a look-up table storing the currently

selected matches. The matching process is formulated as an energy minimization over the

graph G as:

E(M) =
∑
i

Θdata(H i
B, H

k
A) + λsmall

∑
i

Φsmall(ui) + λsmooth

∑
i

Φsmooth(Ni). (3.3)

The data term Θdata measures the dissimilarity between H i
B and its match Hk

A, defined

by:

Θdata =
∑
z∈Z

αzΘz (3.4)

where αz is the weight given to each dissimilarity measure Θz, computed using the feature

z, e.g. SDSN, SIFT, color, etc. Here Z defines the set of all features considered.

The dissimilarity between a pair of superpixels Hk
A and Hj

B in feature z ∈ Z is computed

as:

Θz(H
k
A, H

i
B) = −log

(
z(Hk

A)> · z(H i
B)
)

(3.5)
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We normalize each feature to have unit `2-norm. To further spread the samples over

the unit ball, we center every vector to zero mean. Note that the matrix version of this

formulation can use optimized BLAS Level-3 (Golub and Van Loan, 2012) and therefore

can be computed efficiently by optimally using all the resources of modern computing

architecture.

In Equation (3.3), the term Φsmall penalizes big matching displacements and depends only

on the matching vector:

Φsmall(i) = ‖ui‖2 (3.6)

Similarly, Φsmooth penalizes matching vectors deviating too much from the average match-

ing vector in a neighborhood:

Φsmooth(Ni) = ‖ui −
∑
j∈Ni

c(εij)uj‖2 (3.7)

where all j ∈ Ni are the neighbors of i and each εij the corresponding edge, with c(εij)

being the edge weight.

The confidence of the match of node i in the target domain B is then defined as

−E(Mi).

3.3.3 Optimization

Since satellite images are loosely pre-aligned, the optimal solution does not have large

u. Therefore, we limit the search for a match for i ∈ B to a window of size w × w

around the initial match. In practice, we initialize the system on the geographically

nearest super-pixel in A. Note that we can see the matching problem as a classification

problem with w2 classes, corresponding to every possible match for each super-pixel in

B(Dragomir Anguelov et al., 2005). To find a set of matches M that minimize Equa-

tion (3.3), we employ the ICM algorithm (Besag, 1986). Thanks to the grid structure of

the graph we can use Fast Fourier Transform (FFT) to compute the energy in the form

of a convolution, which significantly improves the efficiency of the algorithm. The fact

that the initialization is never very far from the solution (Szeliski et al., 2006), the use of

super-pixels and the FFT means that, for image pairs used in this work, the presented

method typically converges in less than 10 seconds using ICM on a standard personal

computer.

3.4 Experiments and Results

We apply our proposed representation to three different problems within the context

of multimodal registration. In all the experiments the SDSN feature is compared to a



3.4 Experiments and Results 35

multi-scale SIFT feature over the average color channel with patch sizes of 9, 17 and

33 pixels (Vedaldi and Fulkerson, 2008) and a feature consisting of the common spectral

bands, thereafter referred to as “color”. In all the experiments using a set of two features,

the values of αz have been set to 0.5.

3.4.1 Ground Truth Transfer

We aim to transfer the available ground truth (GT) from the source image to the target

image, while simultaneously avoiding the regions that have likely undergone some land

cover change. This transferred GT is then used to train a K-NN classifier in the target

domain to generate an updated land cover map. The choice of K-NN classifier is due to

its simplicity and distribution independence. We use a hand labeled GT of the target

domain to validate the map obtained.

Dataset and Setup

The source domain consists of five QuickBird (DigitalGlobe, 2000a) satellite images of

Zurich Switzerland taken in August 2002. They have four channels: near infrared, red,

green and blue (NIR-R-G-B), and a resolution of about 0.62 cm/pixel. These image are a

subset of the Zurich Summer dataset presented in (Volpi and Ferrari, 2015a). The target

domain is a corresponding set of five NIR-R-G aerial images of the same area, with nearly

the same footprint, captured during the campaign of summer 2013 and provided by the

Swiss Federal Office of Topography (Swisstopo, 2018). We refer to this dataset as NIR-

R-G Orthophoto data. The resolution of the target images is 25 cm/pixel. To test our

approach in the case where source and target only share the R and G bands, we discard

the NIR band of the QuickBird images and use exclusively the R-G-B bands throughout

the experiments. Figure 3.3 shows an example image pair and the corresponding GT

maps. In this dataset, the geo-registration error of the image pairs ranges from 5 m to

15 m. Each image in the source domain has a quite dense GT land-cover map consisting

of between four and six classes among Roads, Buildings, Trees, Grass, Bare Soil, Water,

Railways and Swimming Pools.

We treat each of the five image pairs as an independent GT transfer problem. For each

image pair, we first re-scale them to the size of the smaller image in the pair. Note that

this step is not required but it results in obtaining a similar number of superpixels, which

helps getting a good matching. The images are then segmented with SLIC (Achanta

et al., 2012), with the superpixel size of 10 pixels and the regularization parameter values

set to 10. The SDSN features are computed using a downsampling factor d of 20 and a σ

of 0.5. For the MRF matching we used λsmooth = 0.05 and λsmall = 0.05.

After matching, 90% most confident matches are used for transferring the GT to the target
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(a) (b)

Figure 3.3: One of the 5 image pairs from the Zurich dataset. (a): Quickbird (DigitalGlobe,

2000a) image, the source domain, and the corresponding GT. (b): False color Representation of

the 3 band NIR-R-G Orthophoto data (Swisstopo, 2018) (2013) and its GT: Roads, buildings,

trees, grass, water and bare soil. Best viewed in color.

image. We then used all the transferred GT to train a pixel-wise K-NN classifier with k =

5. The classified land cover map is compared to the hand labeled target GT for validation.

We report results from QuickBird (DigitalGlobe, 2000a) to Orthophoto (Swisstopo, 2018)

and vice versa.

Results

The classification results are shown in in Table 3.1. Using SIFT or color features alone

produces results that are significantly worse than the results obtained using the proposed

SDSN features. Using SDSN in conjunction with SIFT produces the best results on aver-

age. This is because SDSN and SIFT encode very different properties of the super-pixels,

i.e. the former encodes spectral information in terms of global interactions across the

whole image, while the latter encodes the local geometry. These two forms of infor-

mation complement each other in describing land-cover changes, resulting in better GT

transfer. We also compare our results with those obtained using a multi-modal mutual

information-based registration method (Kroon and Slump, 2009) (Table 3.2).
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Table 3.1: Average classification accuracy for ground truth transfer. The first column

correspond to image pairs. A and B correspond to QuickBird (DigitalGlobe, 2000a) Or-

thophoto (Swisstopo, 2018) domains.

#
Transfer

Dir.
Color SIFT

Color

+SIFT
SDSN

SDSN

+SIFT

SDSN

+Color

1
A → B 0.652 0.551 0.579 0.694 0.716 0.678

B → A 0.281 0.438 0.371 0.548 0.572 0.414

2
A → B 0.665 0.629 0.678 0.684 0.690 0.681

B → A 0.396 0.510 0.475 0.536 0.541 0.466

3
A → B 0.711 0.714 0.705 0.731 0.749 0.733

B → A 0.538 0.582 0.561 0.561 0.584 0.563

4
A → B 0.585 0.644 0.551 0.730 0.694 0.597

B → A 0.453 0.548 0.484 0.498 0.557 0.480

5
A → B 0.559 0.766 0.756 0.782 0.790 0.786

B → A 0.599 0.690 0.705 0.723 0.711 0.720

Mean 0.544 0.607 0.586 0.649 0.660 0.612

Table 3.2: Numerical comparison with (Kroon and Slump, 2009), Average Accuracy.

Method SDSN+SIFT
Affine

(Kroon and Slump, 2009)

Non-rigid

(Kroon and Slump, 2009)

AA 66.0% 63.7% 64.0%

Parameter Sensitivity and Circular Validation

We now focus on the sensitivity of our method to the choice of parameter values used

when transferring the GT from source to target A→ B. In the left column of Figure 3.4

we see the result of applying this concept to the values of λsmall and λsmooth, the SDSN’s

σ, and the down-scaling factor d. It can be observed that most image-pairs are not very

sensitive to variations in the tested parameters showing the robustness of our framework

to its various parameters.

We also study how a circular validation strategy (Bruzzone and Marconcini, 2010) can

help with estimating a good set of parameters for our framework. In the case of GT

transfer, this can be done by transferring the GT from source to target A→ B, and then

from target back to source A → B → A, where it is compared to the original GT for

evaluation. This setting corresponds to the right column of Figure 3.4. It can be observed

that the optimal values obtained during validation A→ B→ A are similar to the optimal

values required for our original problem A → B. This result shows that we can employ

this circular validation strategy (Bruzzone and Marconcini, 2010) in practice to select the
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Figure 3.4: Classification accuracy in the five Zurich image pairs for different values of (a):

λsmall and λsmooth (both take the same value in this experiment), (b): σ value for the SDSN

feature, (c): the downscaling parameter d for the SDSN feature. On the left, we transfer the

GT from source to target. On the right is from source to target and back to source.

optimal parameter values required by our framework. Note that the downsampling factor

d determines the number of operations required to compute the SDSN feature and affects

the computation time in a quadratic manner (see Table 3.3). However, the results in

Figure 3.4 suggest that this time can be greatly reduced at a small cost in accuracy.

Sensitivity to Perturbations in the Input

We use the image shown in Figure 3.3a in order to explore how sensitive our method is

to three types of perturbations: 1) amount of change, 2) displacement and 3) rotation

between the images. To do so, we match the image in Figure 3.3a with a perturbed ver-

sion of itself. The land-cover changes were added by substituting vegetation superpixels
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Table 3.3: Time (images 700× 1000 pixels on a single CPU) to compute SDSN features wrt.

downsampling, d.

d 2 5 10 20 50 100

time (s) 4.71 0.75 0.255 0.073 0.04 0.04

Figure 3.5: Layout of the used images in

the area of Lausanne, Switzerland. Figure

best viewed in color.

with bare soil ones. Performance was measured as the percentage of changed superpix-

els recalled, assuming that the amount of change had been correctly estimated. When

considering displacement and rotation, the amount of change is fixed at 20%. Results in

Table 3.4 show high robustness even for the most extreme amounts of change and dis-

placement, which are the main sources of perturbation to be expected in remotely sensed

images.

Table 3.4: Sensitivity to changes, displacements and rotations in the target (B). Domains

A and B consist of the RBG and NIR-R-G bands of Figure 3a respectively.

Change amount (%) 6 12 30 42

Recall (%) 96 97 96 84

Displacement (m) 10 20 30 50

Recall (%) 92 86 85 82

Angle (◦) 1 3 6 10

Recall (%) 89 78 62 57

3.4.2 Unsupervised Manifold Alignment

We now explore the problem where the source and target images have a partial overlap,

but there is no GT available in the overlap area. To perform domain adaptation, we
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(a) (b)

Figure 3.6: (a): Representation of the 2 images used (left) and the respective GTs (right).

From top to bottom: Prilly 2011 (WorldView 2 (DigitalGlobe, 2000b)) and Renens 2012

(NIR-R-G Orthophoto). Color legend: buildings, roads, grass, trees and shadows. (b2): Hand

labeled super-pixel pairs (in yellow). Figure best viewed in color.

cannot simply register the labeled super-pixels directly. However, we can project both

domains in a common latent space where both domains are similarly distributed. We

use the same settings presented in (Marcos-Gonzalez et al., 2015), where a hand-labeled

set of super-pixel pairs in the overlapping area are used to perform manifold alignment

between the two domains. Instead of manual selection, we use the proposed method to

automatically find a set of these super-pixel pairs.

We use the manifold alignment algorithm in (Wang and Mahadevan, 2011), where the local

geometrical structure of the domain is preserved while enforcing weak class consistency

using the matched super-pixel pairs. Once the domains are aligned, one can then directly

train and test in the aligned domain.

To find a set of confident super-pixel matches that are also representative of the different

land covers in the image, we partition the super-pixel spectra in the target domain using

k-means clustering and select the most confident matches in each cluster.

Dataset and Setup

For these experiments, we use the dataset presented in (Marcos-Gonzalez et al., 2015).

The images cover an area of Lausanne, Switzerland. The source domain is a World-

View 2 (DigitalGlobe, 2000b) image, with 8 spectral bands in the visible and infrared
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(a) (b)

Figure 3.7: Automatically generated super-pixel pair map using the proposed SDSN fea-

tures. (a): Grayscale version of the World-View 2 (DigitalGlobe, 2000b) image used as source.

(b): Grayscale version of the NIR-R-G Orthophoto (Swisstopo, 2018) image used as target.

Matched segment pairs are within the neighborhood of each other and are marked with same

color in order to imply correspondence. Best viewed in color.

region, taken in 2011 and the target domain is a 25 cm/pixel resolution NIR-R-G Or-

thophoto (Swisstopo, 2018). Figure 3.6a shows the areas of interest, with their cor-

responding GT, and Figure 3.6b the area common to both domains. The land-cover

classification includes 5 classes, as shown in Figure 3.6a.

The parameters for SLIC were set to segment size of 20 pixels and regularization parameter

of 10. The σ value for the SDSN was set to 0.5 and the downsampling factor for the

low resolution image was set to 100. For the MRF matching, we used λsmooth = 10−2

and λsmall = 10−2. We then partitioned the superpixels in the target domain into 26

clusters and randomly took 10 confident matches from each of the 20 most populated

clusters.

For manifold alignment, we used the same settings as in (Marcos-Gonzalez et al., 2015).

After projecting the data onto the latent feature space, we tested the performance of the

alignment by classifying in the test image using only the labeled pixels from the source

image. We report results using K-NN with k = 5 training with 400 labeled pixels per

class. We also tried other classifiers, such as Random Forest and SVM (not shown in this

paper), obtaining comparable trends. For each type of feature (color, SIFT, SDSN and

SDSN+SIFT) we generated 5 instances of the super-pixel pair set. For each instance, as

well as for the hand labeled super-pixel pairs, we computed 10 realizations of the manifold

alignment and classification training set.
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Results

An example of an automatically generated super-pixel pair set with SDNS feature match-

ing is shown in Figure 3.7. Notice how the high-confidence super-pixels pairs are dis-

tributed across the whole image evenly.

In Figure 3.8 we see the average classification results. We see how the automatically

generated super-pixel pair sets using SDSN, SIFT or SDSN+SIFT perform substantially

better than the hand labeled map in the vast majority of cases. Moreover, in this exper-

iment, using SDSN+SIFT does not seem to have an advantage over SDSN alone. This

is possibly due to the presence of higher rise buildings, compared to the Zurich dataset,

and the acquisition angle difference between domains. This has a big impact on the local

geometry, to which SIFT is highly sensitive.

3.4.3 Change Detection

The main assumption underlying the SDSN feature is that spectral neighborhood relations

are domain invariant and can be used to match with high confidence the areas that remain

unchanged between domains. Considering the other end of the confidence spectrum, we

can build a map of low confidence areas that can be used for change detection.

Datasets and Setup

To test our framework on change detection, we use an image-pair from the dataset in

Section 3.4.1, shown in Figure 3.9a and 3.9b, with change GT in green. We also apply our
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method to an RGB image-pair from Google Earth of an agricultural area near Melbourne,

Australia taken on 10/17/2014 and 01/03/2015, Figure 3.11a-b. We chose this location

as it represents a case where the three similarity measures, using SDSN, SIFT and color,

provide different notions of change. Our pre-processing for this experiment is the same

as in Section 3.4.1. The MRF parameters λsmooth and λsmall are set to 0.2. We set them

higher in this case compared to the GT transfer setting because here we want to penalize

non-smooth high-confidence matches more. The matching is done in both directions, i.e.,

A → B and B → A. The two resulting confidence maps are then combined by taking,

for each location, the minimum value among the two maps.

Results

Figures 3.9c-f show as heat-maps the low confidence matches, in yellow. We calculated the

confidence using 4 different invariant features within our MRF framework: the common

bands (color), SIFT, SDSN and SDSN+SIFT. In the case of SIFT, Figure 3.9e, the

algorithm detects the illumination changes in the forest (lower right corner of the image)

as the dominant changes. Using the common bands R and B, Figure 3.9c, highlights

mostly illumination changes on the roads and rooftops, with only changes #3, 6, 12 and

14 being clearly detected. SDSN, Figure 3.9d, shows a better correlation with the labeled

changes, while detecting also changes in building’s shadows. This undesired effect is

reduced by using SDSN+SIFT. SDSN clearly detects changes #2, 3, 4, 5, 6, 8, 9, 10, 11,

12 and 14 while maintaining a false positive ratio comparable to or even lower than the

color feature. We present the ROC curves for change detection in Figure 3.10. It can be

observed that results incorporating the SDSN feature are significantly better than those

obtained using either color or SIFT features. Once more, using SDSN+SIFT results in a

slightly better performance than SDSN alone.

Figure 3.11c-e show the non confident areas on the Google Earth image pair using the

common bands, SIFT and SDSN features respectively. We can clearly see how each map

corresponds to a different notion of change. Using the common bands, in this case all R,

G and B, highlights the areas in which the color change is stronger, such as the dark green

vegetation turning into bright bare soil. SIFT is correlated with geometrical changes in

the image, such as the cloud shadow in the center top of Figure 3.11a. On the other hand,

SDSN highlights the the areas that undergo an uncommon transformation compared to

the predominant set of transformations. Given that most areas have either changed from

vegetation to bare-soil or vice versa, these uncommon transformations include vegetation

that continues to be vegetation (e.g. the field near top left corner) and bare soil that stays

bare soil (e.g. roads). While the former transformation is an anomaly we would like to

detect, the latter is an artifact due to the spectral similarity between roads and bare-soil

classes.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: (a) Image in domain A and (b) B. Change GT marked in green. (c-f) The

low confidence areas, those contributing the most to the MRF energy, are shown in yellow.

The matching has been performed with the same parameters using the following features: (c)

common spectral bands, (e) SIFT , (d) SDSN and (f) SDSN+SIFT. Best viwed in color.
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Figure 3.10: Correctly detected change pixels versus false positives for all different values of

the detection threshold.

(a) (b)

(c) (d) (e)

Figure 3.11: (a, b): Google Earth images taken in 10/2014 and 01/2015 respectively. (c-e):

Low matching confidence areas are shown in yellow, (c) using color, (d) SIFT, (e) SDSN.
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3.5 Conclusion

We proposed the spatial distributions of spectral neighbors (SDSN) as a cross-domain

feature for multi-sensor, multi-temporal image pairs of sub-meter resolution. We showed

that SDSN can help to match the super-pixels between two images from overlapping

areas while distinguishing between the spectral changes that are the artifacts of different

acquisition conditions from those due to real land-cover changes. We showed the usefulness

of SDSN for land-cover map update and for change detection. We incorporate the SDSN

representation into a Markov Random Field to account for nonlinear misregistrations and

to enforce a locality prior in order to find matches between multi-sensor, multi-temporal

images. Furthermore, we compare SDSN with other features commonly used in remote

sensing image registration. Our results demonstrate that SDSN performs significantly

better than the alternatives considered, maximizing domain invariance and resulting in

better classification and change detection.



Chapter 4

Rotation equivariant vector field

networks

This chapter is based on:

Marcos, D., Volpi, M., Komodakis, N., and Tuia, D. (2017). Rotation equivariant

vector field networks. In Proceedings of the CVF/IEEE International Conference on

Computer Vision (ICCV)
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Abstract

In many computer vision tasks, we expect a particular behavior of the output with respect

to rotations of the input image. If this relationship is explicitly encoded, instead of treated

as any other variation, the complexity of the problem is decreased, leading to a reduction

in the size of the required model.

In this paper, we propose Rotation Equivariant Vector Field Networks (RotEqNet), a

CNN architecture encoding rotation equivariance, invariance and covariance. Each con-

volutional filter is applied at multiple orientations and returns a vector field representing

magnitude and angle of the highest scoring orientation at every spatial location. We

develop a modified convolution operator relying on this representation to obtain deep

architectures. We test RotEqNet on several problems requiring different responses with

respect to the inputs’ rotation: image classification, biomedical image segmentation, ori-

entation estimation and patch matching. In all cases, we show that RotEqNet offers

extremely compact models in terms of number of parameters and provides results in line

to those of networks orders of magnitude larger.
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Figure 4.1: Desirable behaviors with respect to rotation of the inputs: (left) equivariance in

segmentation; (center) invariance in classification; (right) covariance in absolute orientation

estimation. g45 is an operator that rotates the input image by 45◦.

4.1 Introduction

In many real life problems, such as overhead (aerial or satellite) or biomedical image

analysis, there are no dominant up-down or left-right relationships. For example, when

detecting cars in aerial images, the object’s absolute orientation is not a discriminant

feature. If the absolute orientation of the image is changed, e.g. by following a different

flightpath, we would expect the car detector to score the exact same values over the

same cars, just in their new position on the rotated image, independently from their

new orientation along the image axes. In this case, we say that the problem is rotation

equivariant : rotating the input is expected to result in the same rotation in the output.

On the other hand, if we were confronted with a classification setting in which we are

only interested in the presence or absence of cars in the whole scene, the classification

score should remain the same, no matter the absolute orientation of the input scene. In

this case the problem is rotation invariant. The more general case would be rotation

covariance, in which the output changes as a function of the rotation of the input, with

some predefined behavior. Taking again the cars example, a rotation covariant problem

would be to retrieve the absolute orientation of cars with respect to longitude and latitude:

in this case, a rotation of the image should produce a change of the predicted angle.

Throughout this article we will make use of the terms equivariance, invariance and covari-

ance of a function f(·) with respect to a transformation g(·) in the following sense:

- equivariance: f(g(·)) = g(f(·)),
- invariance: f(g(·)) = f(·),
- covariance: f(g(·)) = g′(f(·)),

where g′(·) is a second transformation, which is itself a function of g(·). With the above

definitions, equivariance and invariance are special cases of covariance. We illustrate these

properties in Figure 4.1. Refer to Section 2.4.4 for more details.



50 Rotation equivariant vector field networks

FiltersInput Activations Vector fields Filters (vector fields) Activations Vector fields

OP

SP

SP

SP

SP

N
EX

T 
LA

YE
R

OP

OP

OP

OP

OP

Block 1

Block 2

Block 3

Block 1

Block 2

Block 3

Rotate

Rotate

Rotate

Rotate

Rotate

Rotate

Figure 4.2: Example of the first two layers of RotEqNet. Each layer learns only three

canonical filters (red squares) and replicates them across six orientations. The output of the

first block are three vector field maps, which are further convolved by vector field filters in

the second block (OP: orientation pooling; SP: spatial pooling).

In this paper, we propose a CNN architecture that naturally encodes these three proper-

ties: RotEqNet. In the following, we will recall how CNNs achieve translation invariance,

before discussing our own proposition.

4.1.1 Dealing with translations in CNNs

The success of CNNs is partly due to the translation equivariant nature of the convolution

operation. The convolution of an image x ∈ RM×N×d with a filter w ∈ Rm×n×d, written

y = w ∗x, is obtained by applying the same scalar product operation over all overlapping

m× n windows (unit stride) on x. If x undergoes an integer translation in the horizontal

and vertical directions by (p, q) pixels, the same pixel neighborhoods in x will exist in

the translated x, but again translated by (p, q) pixels. Therefore, any operation involving

fixed neighborhoods such as the convolution is translation equivariant.

A crucial consequence of learning convolution weights is a drastic reduction in the number

of parameters. Without the translation equivariance assumption, each local window would

have a different set of weights. Forcing weights to be shared across locations, known as

weight tying, reduces the number of learnable parameters proportionally to the number of

pixels in the image and hardcodes translation equivariance within the model. This fact is

vital for the applicability of deep neural networks to images (Le Cun et al., 1990).

4.1.2 Incorporating rotation equivariance in CNNs

RotEqNet shows similar advantageous characteristics when dealing with rotations: by

encoding equivariance, we are able to strongly reduce the number of parameters while
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keeping similar or better accuracy across different tasks.

However, applying the exact same reasoning of weight tying for rotations is not straightfor-

ward. To follow the same logic, one should apply R rotated versions of each convolutional

filter, resulting in R feature maps per filter. The dimensionality of subsequent filters would

therefore increase with R, strongly increasing model size and requirements for runtime

memory usage.

One way of reducing the size of the model while keeping rotation equivariance would

be to propagate only the maximum value occurring across R feature maps. However,

deeper layers would have no information about the orientation of features at previous

layers.

We propose a trade-off between these two approaches by keeping the maximum value

across the R feature maps, but in the form of a 2D vector field that captures its magnitude

and orientation and propagates it through all the layers of the network.

4.2 Related work

Two families of approaches explicitly account for rotation invariance or equivariance: 1)

those that transform the representation (image or feature maps) and 2) those that rotate

the filters. RotEqNet belongs to the latter.

1) Rotating the inputs: Jaderberg et al. (2015) propose the Spatial Transformer

layer, which learns how to crop and transform a region of the image (or a feature map)

before passing it to the next layer. This transforms relevant regions into a canonical

form, improving the learning process by reducing geometrical appearance variations in

subsequent layers. TI-pooling (Laptev et al., 2016) inputs several rotated versions of

a same image to the same CNN and then performs pooling across the different feature

vectors at the first fully connected layer. Such scheme allows another subsequent fully

connected layer to choose among rotated inputs to perform classification. Cheng et al.

(2016b) employ in every minibatch several rotated versions of the input images. Their

representations after the first fully connected layer are then encouraged to be similar,

forcing the CNN to learn rotation invariance. Henriques and Vedaldi (2016) warp the

images such that the translation equivariance inherent to convolutions is transformed

into rotation and scale equivariance.

On the one hand, these methods have the advantage of exploiting conventional CNN

implementations, since they only act on data representations. On the other hand, they

can only consider global transformations of the input images. While this is well suited

for tasks such as image classification, it limits their applicability to other problems (e.g.

semantic segmentation), where the local relative orientation of certain objects with respect
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to surroundings is what matters. Instead, RotEqNet is based on specific CNN building

blocks designed to deal with local orientation information. Therefore, RotEqNet can

approach diverse tasks such as classification, fully convolutional semantic segmentation,

detection and regression.

It is worth mentioning that standard data augmentation strategies belong to this first

family. They rely on random rotations and flips of the training samples (Simard et al.,

2003): given abundant training samples and enough model capacity, a CNN might learn

that different orientations should score the same by learning equivalent filters at different

orientations (Lenc and Vedaldi, 2015). Unlike this, RotEqNet is well suited for problems

with limited training samples that can profit from reduced model sizes, since the behavior

with respect to rotations is hardcoded and it does not need to be learned.

2) Rotating the filters: Gens and Domingos (2014) tackle the problem of the explod-

ing dimensionality (discussed in Section 4.1.2) by applying learnable pooling operations

and sampling the symmetry space at each layer. This way, they avoid applying the filters

exhaustively across the (high dimensional) feature maps by selectively sampling few rota-

tions. By doing so, only the least important information is lost from layer to layer. Cohen

and Welling (2016a,b) use a smaller symmetry group, composed of a flipping and four 90◦

rotations and perform pooling within the group. They apply it only in deeper layers, since

they found that pooling in the early layers discards important information and harms the

performance. Instead of explicitly defining a symmetry group, Ngiam et al. (2010) pool

across several untied filters, thus letting the network learn the type of invariance. Sifre

and Mallat (2013) use hand crafted wavelets that are separable in the roto-translational

space, allowing for more efficient computations. Another approach to avoid the dimen-

sionality explosion is to limit the depth of the network: Sohn and Lee (2012) and Kivinen

and Williams (2011) propose such a scheme with Restricted Boltzmann Machines (RBM),

while Marcos et al. (2016c) consider supervised CNNs consisting of a single convolutional

layer.

These works find a compromise between the computational resources required and the

amount of orientation information kept throughout the layers, by either keeping the model

shallow or accounting for a limited amount of orientations. With RotEqNet, we avoid

such compromise by pooling multiple orientations and passing forward both the maximum

magnitude and the orientation at which it occurred. This modification allows to build

deep rotation equivariant architectures, in which deeper layers are aware of the dominant

orientations. At the same time, the dimensionality of feature maps and filters is kept

low by discarding information about non-maximum orientations, thus reducing memory

requirements.

The most similar approaches to RotEqNet are the recently proposed Harmonic Networks

(H-Nets) (Worrall et al., 2016) and Oriented Response Networks (ORN) (Zhou et al.,

2017), both of which use an enriched feature map explicitly capturing the underlying
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orientations. They do so by using either complex circular harmonics (H-Nets) or the

full vector of oriented responses (ORN). H-Nets offer a very compact feature map, but

are limited to learning filters that are a combination of circular harmonic wavelets. On

the other hand, ORN allows to learn arbitrary filters, but relies on a much less compact

representation of the feature maps, leading to heavier models both in terms of size and

memory requirements. RotEqNet provides the best of both worlds: the compactness

of the former with the flexibility of the latter. These properties make it particularly

suitable to address problems characterized by limited training samples, as we will see in

the experiments.

4.3 Rotation equivariant vector field networks

We focus on achieving rotation equivariance by performing convolutions with several

rotated instances of the same canonical filter (see Figure 4.2). The canonical filter w is

rotated at R different evenly spaced orientations.In the experiments (Section 4.4) we deal

with problems requiring either full invariance, equivariance or covariance, so we use the

interval α = [0◦, 360◦]. However, this interval can be adapted to a known range of tilts.

The output of the filter w at a specific location consists of the magnitude of the maximal

activation across the orientations and the corresponding angle. If we convert this polar

representation into Cartesian coordinates, each filter w produces a vector field feature

map z ∈ RM×N×2, where the output of each location consists of two values [u, v] ∈ R2

implicitly encoding the maximal activation in both magnitude and direction. Since the

feature maps have become vector fields, from this moment on the filters must also be

vector fields, as seen in the right part of Figure 4.2.

The advantage of representing z in Cartesian coordinates is that the horizontal and vertical

components [u, v] are orthogonal, and thus a convolution of the two vector fields can

be computed on each component independently using standard convolutions (see Eq.

(4.5)).

4.3.1 RotEqNet building blocks

RotEqNet requires specific building blocks to handle vectors fields as inputs and/or out-

puts (Figure 4.2). In the following, we present our reformulation of traditional CNN

blocks to account for both vector field activations and filters. The implementation1 is

based on the MatConvNet (Vedaldi and Lenc, 2015) toolbox2.

1Will be made available at http://github.com/di-marcos/RotEqNet
2http://www.vlfeat.org/matconvnet
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Rotating convolution (RotConv)

Given an input image with m/2 zero-padding x ∈ RM+m/2×N+m/2×d, we apply the filter

w ∈ Rm×m×d at R orientations, corresponding to the angles:

αr =
360

R
r ∀r = 1, 2 . . . R. (4.1)

Each one of these rotated versions of the canonical filters (highlighted by red squares in

Figure 4.2) is computed by resampling w with bilinear interpolation after rotation of αr
degrees around the filter’s center.

wr = T (gαr)(w), (4.2)

where gα is the α degrees rotation operator. Interpolation is always required unless only

rotations of multiples of 90◦ are considered. In practice, this means that the rotation

equivariance will only be approximate.

Since the rotation can force weights near the corners of the filter to be relocated outside

of its spatial support, only the weights within a circle of diameter m pixels are used to

compute the convolutions. The output tensor y ∈ RM×N×R consists of R feature maps

computed as:

y(r) = (x ∗wr) ∀r = 1, 2 . . . R, (4.3)

where (∗) is the convolution operator. The tensor y encodes the roto-translation output

space such that rotation in the input corresponds to a translation across the feature

maps. Note that only the canonical filter w is actually stored in the model. During

backpropagation, gradients corresponding to each rotated filter ∇wr are aligned back to

the canonical form and added:

∇w =
∑
r

T (g−αr)(∇wr). (4.4)

This block can be applied on conventional CNN feature maps (left side of Figure 4.2) or

on vector field feature maps (right side of Figure 4.2). In the second case it is computed

on each component independently and the resulting 3D tensors added:

(z ∗w) = (zu ∗wu) + (zv ∗wv), (4.5)

where subscripts u and v denote the horizontal and vertical components.

It is important to note that the image rotation operator T (gα) requires an additional step

when w ∈ Rm×m×2 is a 2D vector field. The components of wr = T (gαr)(w) have to be

computed as:

wr
u = cos(αr)gαr(wu)− sin(αr)gαr(wv) (4.6)

wr
v = cos(αr)gαr(wv) + sin(αr)gαr(wu) (4.7)
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Orientation pooling (OP):

Given the output 3D tensor y, the role of the orientation pooling is to convert it to a

2D vector field z ∈ RM×N×2. This avoids the exploding dimensionality problem by only

keeping information about the maximally activating orientation of w. First, we extract

a 2D map of the largest activation magnitudes, ρ ∈ RM×N , and their corresponding

orientations, θ ∈ RM×N . Specifically, for activations located at [i, j]:

ρ[i, j] = max
r

y[i, j, r], (4.8)

θ[i, j] =
360

R
arg maxr y[i, j, r]. (4.9)

This can be treated as a polar representation of a 2D vector field as long as ρ[i, j] ≥
0 ∀i, j, a condition that is met when using any function on y that returns non-

negative values prior to the OP. We employ the common ReLU operation, defined as

ReLu(x) = max(x, 0), to ρ, as it provides non-saturating, sparse nonlinear activations

offering stable training. Then, this representation can be transformed into Cartesian

coordinates as:

u = ReLu(ρ) cos(θ) (4.10)

v = ReLu(ρ) sin(θ) (4.11)

with u,v ∈ RM×N . The 2D vector field z is then built as:

z =

[
1

0

]
u +

[
0

1

]
v (4.12)

Spatial pooling (SP) for vector fields

Max-pooling is commonly used in CNNs to obtain some invariance to small deformations

and reducing the size of the feature maps. This is done by downsampling the input feature

map x ∈ RM×N×d to xp ∈ R
M
p
×N

p
×d. This operation is performed by taking the maximum

value contained in each one of the C non-overlapping p× p regions of x, indexed by c. It

is computed as xp[c] = maxi∈c x[i], which can be expressed as:

yp[c] = y[j], where j = arg maxi∈c y[i]. (4.13)

This allows us to define a max-pooling for vector fields as:

zp[c] = z[j], where j = arg maxi∈c ρ[i], (4.14)

where ρ is a standard scalar map containing the magnitudes of the vectors in z.
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Batch normalization (BN) for vector fields

BN (Ioffe and Szegedy, 2015) normalizes every feature map in a mini-batch to zero mean

and unit standard deviation. It improves convergence by training with stochastic gradient

descent.

In our case, since working with vector fields of magnitude and orientation of activa-

tions, BN should only normalize magnitudes of the vectors to unit standard deviation. It

would not make sense to normalize the angles, since their values are already bounded and

changing their distribution would alter important information about relative and global

orientations. Given a vector field feature map z and its map of magnitudes ρ, we compute

batch normalization as:

ẑ =
z√

var(ρ)
. (4.15)

4.3.2 Computational considerations

Although RotEqNet allows for smaller models, they might require a higher count of con-

volutions than a comparable standard CNN. For instance, with the architecture used for

MNIST-rot in Section 4.4, a standard CNN requires 4× more filters per layer to saturate

performance, compared to RotEqNet. At the same time, RotEqNet requires R/4 = 4.25×
(for R = 17) more convolutions. This results in RotEqNet saving 10× in model mem-

ory, 2× in data memory at a price of requiring just 1.5× more computing time. This is

because, although the convolution count is higher, the number of feature maps per con-

volution is smaller. Less feature maps mean smaller convolution filters and the possibility

to use larger mini batches, both factors contributing to a faster training.

4.4 Experiments

We explore the performance of RotEqNet on datasets where the orientation of the pat-

terns of interest is arbitrary. This is very often the case in biomedical and overhead

imaging, since the orientation of the camera is usually not correlated with the patterns

of interest. We apply RotEqNet to problems from these two fields, as well to MNIST-rot,

a randomly rotated handwritten digit recognition benchmark. We also perform a study

on the trade-off between invariance and accuracy in a synthetic patch matching problem.

These case studies allow us to analyze the performance of RotEqNet in problems requiring

equivariance, covariance and invariance to rotations and to analyze the effectiveness of

RotEqNet to perform accurately with very small model architectures and limited training

samples.
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Table 4.1: Network architecture used on the MNIST-rot dataset. Layer parameters are in

white and variables are shaded in gray.

Type Size

Input 28× 28

RotConv, 9× 9, 6 filt.

2× 2 SP 14× 14× 6

RotConv, 9× 9× 6, 16 filt.

2× 2 SP 7× 7× 16

RotConv 9× 9× 16, 32 filt.

2× 2 SP 1× 1× 32

Fully 1× 1× 32, 128 filt.

connected 1× 1× 128

FC, Softmax 1× 1× 128, 10 filt.

Output 1× 1× 10

4.4.1 Invariance: MNIST-rot

MNIST-rot (Larochelle et al., 2007) is a variant of the original MNIST digit recognition

dataset, where a random rotation between 0◦ and 360◦ is applied to each 28 × 28 digit

image. The training set is also considerably smaller than the standard MNIST, with

12k samples, from which 10k are used for training and 2k for validation. The test set

consists of 50k samples. Since we aim at predicting the correct label independently from

the rotation, this problem requires rotation invariance.

Model: We test four CNN models with the same architecture, but different number

of filters per layer. The largest model we used is shown in Table 4.1 and involves 100k

parameters. The models are trained for 90 epochs, starting with a learning rate of 0.1

and reducing it gradually to 0.001. The weight decay is kept constant at 0.01. We use

a dropout rate of 0.7 in the fully connected layer and batch normalization before every

convolutional layer. The number of orientations is set to R = 17.

Table 4.2: Error rate on the MNIST-rot dataset trained on the train-val subset.

Method Error rate (in %)

SVM (Larochelle et al., 2007) 10.38±0.27

TIRBM (Sohn and Lee, 2012) 4.2

H-Net (Worrall et al., 2016) 1.69

ORN (Zhou et al., 2017) 1.54

TI-pooling (Laptev et al., 2016) 1.2

RotEqNet (Ours) 1.09

RotEqNet, only scalar field 2.01

RotEqNet, test-time augmentation 1.01
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Test time data augmentation: We observe an important contribution of data aug-

mentation at test time, a technique often used with approximately invariant or equivariant

CNNs (Fakhry et al., 2016; Hu et al., 2015). In particular, we input to the network several

rotated versions of the same image using fixed angles between 0◦ and 90◦. Rotation-based

data augmentation at test time might seem counter-intuitive in a rotation invariant model,

but the different rotations coupled to resampling of images and filters (cf. Section 4.3.1)

will produce slightly different activations. The final prediction is given by the average

of such scores. We report results obtained with and without this type of augmentation.

Comparison to data augmented training: In order to disentangle the contributions

of data augmentation and RotEqNet, we trained the RotEqNet model and a standard

CNN with the same architecture and 10× more parameters. In Tab. 4.3, we show the

results for these models trained on both MNIST-rot and 10k digits from the original

MNIST, with and without data augmentation. We observe how both methods complement

each other.

Table 4.3: Results on MNIST and MNIST-rot using a standard CNN or RotEqNet, with

and without data augmentation.

Train on MNIST Train on MNIST-rot

No augm. Augm. No augm. Augm.

CNN 57% 2.3% 4.9% 2.2%

RotEqNet 20% 1.1% 1.4% 1.1%

Results: We first studied the behavior of RotEqNet with respect to the total number

of parameters and compared it to the state-of-the-art TI-pooling (Laptev et al., 2016).

Figure 4.3 shows the results for both methods trained on the training set with different

model sizes. The latter was achieved by varying the number of filters per layer, keeping

the same architecture. RotEqNet requires approximately two orders of magnitude less

parameters to obtain the same accuracy as TI-Pooling.

We report the test error in Table 4.2. RotEqNet obtains an error of 1.09%, a small

improvement with respect to the state-of-the-art TI-pooling (Laptev et al., 2016), but

with almost 100× less parameters. Test-time data augmentation further reduces the

error to 1.01%, thus improving significantly over TI-Pooling and over the more recent

H-Net (Worrall et al., 2016) and ORN (Zhou et al., 2017).
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Figure 4.3: Performance of RotEqNet and TI-Pooling on MNIST-rot with respect to the

number of parameters.

4.4.2 Equivariance: ISBI 2012 Challenge

This benchmark (Arganda-Carreras et al., 2015) involves segmentation of neuronal struc-

tures in electron microscope (EM) stacks (Cardona et al., 2010). In this problem we need

to precisely locate the neuron membrane boundaries. Therefore, a rotation of the inputs

should lead to the same rotation in the output, making the ISBI 2012 problem a good

candidate to study rotation equivariance.

The data consist of two EM stacks of drosophila neurons, each composed of 30 images

of size 512 × 512 pixels (Figure 4.4a). One stack is used for training and the other for

testing. The ground truth for the training stack consists of densely annotated binary

images (Figure 4.4b). The ground truth for the test stack is private and the results are

to be submitted to an evaluation server 3.

(a) (b) (c) (d)

Figure 4.4: Example validation image (#30) of the ISBI 2012 challenge. (a) Image (190×130

pixels). (b) Membrane ground truth. (c) The pre-processed 3-class ground truth: black is

non-membrane, yellow is membrane center, red is membrane border and blue is non-class. (d)

Probability map produced by RotEqNet.

3http://brainiac2.mit.edu/isbi challenge/
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Table 4.4: Network architecture used with ISBI 2012 challenge data. Layer parameters are

in white and variables are shaded in gray.

Type Size

Input 512× 512

RotConv, 9× 9, N filt.

OP, 2× 2 SP 256× 256×N × 2

RotConv, 9× 9, 2N filt.

OP, 2× 2 SP 128× 128×2N×2

RotConv 9× 9×2N×2, 3N filt.

OP, 2× 2 SP 64× 64×3N×2

RotConv, OP 9× 9×3N×2, 4N filt.

Upsample and stack 512× 512× 10N

RotConv fully 1× 1× 10N × 2, 5N filt.

connected 512× 512× 5N

RotConv 9× 9×5N×2, 4N filt.

OP 512× 512× 4N

Fully 1× 1×4N×2, 8N filt.

connected 512× 512× 8N

FC, Normalize 1× 1× 8N , 3 filt.

Output 512× 512× 3

Model: We transform the original binary problem into a three class segmentation prob-

lem: 1) non-membrane, 2) central membrane pixels and 3) external membrane pixels.

Pixels in the membrane but not belonging to either 2) or 3) are considered to be unla-

beled (Figure 4.4c). This way, we can assign a higher penalization to the non-membrane

pixels next to the membrane and a lower one to those in the middle of the cells. The

central membrane scores are used as the final binary prediction (Figure 4.4d).

Since we are dealing with a dense prediction problem with spatial autocorrelation at

different resolution levels, we apply three RotConv blocks with spatial pooling. We then

upsample the output of each block to the size of the original image, before concatenating

them and applying two more RotConv blocks. Table 4.4 shows the architecture. The

parameter N is used to change the size of the model. We evaluated the results with

N = 2 and with an ensemble of three models, with N = [1, 2, 3].

Comparison to data augmented training: we evaluated the RotEqNet model (N =

2) and an equivalent standard CNN with 10× more parameters on 5 held out validation

images. RotEqNet seems not to profit as much from data augmentation as its standard

CNN counterpart, but improves the CNN solution in all the cases considered, as illustrated

in Table 4.5.

Results: A detailed explanation on the evaluation metrics used in the challenge can be

found on the ISBI 2012 challenge website3, as well as in Arganda-Carreras et al. (2015).
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Table 4.5: ISBI results on the validations set using a standard CNN or RotEqNet, with and

without data augmentation.

No augm. Augm.

CNN 0.9232 0.9572

RotEqNet 0.9726 0.9790

Table 4.6: Scores on the held out test set of the ISBI 2012 Challenge.

Method Rand. Thin Inf. Thin # params.

CUMedVision (Chen et al., 2016a) 0.9768 0.9886 -

IAL MC/LMC (Beier et al., 2016) 0.9826 0.9894 -

DIVE (Fakhry et al., 2016) 0.9685 0.9858 5.7M

PolyMtl (Drozdzal et al., 2016) 0.9689 0.9861 11M

U-Net (Ronneberger et al., 2015) 0.9728 0.9866 33M

RotEqNet (N = 2) 0.9599 0.9806 30k

RotEqNet, 3 models 0.9712 0.9865 100k

The winners of the challenge were Chen et al. (2016a), although Beier et al. (2016) have

the highest scores at the time of writing. These two works rely on complex post-processing

pipeline. Our rotation equivariant prediction provides results comparable to other state-

of-the-art methods only relying on the raw CNN softmax output (Drozdzal et al., 2016;

Fakhry et al., 2016; Ronneberger et al., 2015) (see Table 4.6).

4.4.3 Covariance: car orientation estimation

Estimating car orientations from above-head imagery requires rotation covariant models.

We use the dataset provided by the authors of Henriques and Vedaldi (2016), which is

based on Google Map images. It is composed by 15 tiles, where cars’ bounding boxes and

corresponding orientations come from manual annotation. We implement our approach in

similarly to Henriques and Vedaldi (2016). We crop a 48×48 square patch around every

car, based on the bounding box center point. We then use these crops for both training

and testing of the model. As in Henriques and Vedaldi (2016), we use the cars in the first

10 images (409 cars) for training and those in the last 5 images (209 cars) for testing. We

did not use the cars whose center was nearer than 38 pixels from the image border, in

order to avoid artifacts.

Model: We want to learn a covariant function with respect to rotations, since a rotation

by ∆α◦ in the input image results in a change by ∆α◦ in the predicted angle. In particular,

we train on sine and cosine of α◦, since they are continuous with respect to ∆α◦. The

network’s architecture is illustrated in Table 4.7. For the output we use a tanh non-

linearity, followed by a normalization of the output vector to unit-norm. The first fully

connected layer (FC1) is a RotConv block with a single filter (R = 21) not followed by
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Table 4.7: Architecture of the car orientation estimation network.Parameters are in white

and variables are shaded in gray.

Type Size

Input 48× 48

RotConv 11× 11, 3 filt.

OP 38× 38× 4× 2

RotConv 11× 11× 3× 2, 6 filt.

OP 28× 28× 6× 2

RotConv 11× 11× 6× 2, 3 filt.

OP, 2× 2 SP 9× 9× 3× 2

RotConv fully 9× 9× 3× 2, 1 filt.

connected (FC1) 1× 1× 21

FC2, Hardcoded 1× 1× 21, 2 filt.

Output 1× 1× 2

by an Orientation Pooling, meaning that the subsequent feature vector has 21 dimensions

instead of just one. We can expect this vector to undergo a circular shift when the input

image is subject to a rotation. We hardcode the two mappings of the following layer (FC2)

to [sin(360/R), sin(2 ·360/R), . . . sin(R ·360/R)] and [cos(360/R), cos(2 ·360/R), . . . cos(R ·
360/R)]. This ensures that there will be no preferred orientations inherited from a biased

training set. The weight decay and learning rate are 10−2 and 5 · 10−3 respectively, for

the 80 epochs. All the filters were initialized from a normal distribution with zero mean

and σ = 10−3. The final models correspond to the average of the weights of the last 30

epochs.

Results: Table 4.8 reports the average test error. The use of RotEqNet substan-

tially improves the results, outperforming by more than 20% the previous state-of-the-art

method (Henriques and Vedaldi, 2016). In Figure 4.5, we show the error distribution in

the test set for the hybrid model. Note how most samples, 82.7%, are predicted with less

than 15◦ of orientation error, while most of the contribution to the total error comes from

the 6.7% of samples with errors larger than 150◦, in which the front of the car has been

mistaken with the rear.

Table 4.8: Mean error in the prediction of car orientations.

Method Avg. error (◦) # params

CNN Henriques and Vedaldi (2016) 28.87 27k

Warped-CNN Henriques and Vedaldi (2016) 26.44 27k

RotEqNet (Ours) 24.07 5k

RotEqNet (Ours) 20.46 9k

Sensitivity to R: In order to study the sensitivity of RotEqNet to the number of angles

R, we trained the model using R = 21 and tested it for different values (see Figure 4.6).
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Figure 4.6: Error (left y-axis, blue) vs computational time (right y-axis, red) for the number

of filters considered. The vertical dashed line denotes R = 17.

4.4.4 Invariance 2: robustness in patch matching

Patch matching is widely used in many image processing and computer vision problems,

such as registration, 3D reconstruction and inpainting. The aim is to find matching pairs

of patches (e.g. the same features in the two different images of the same object). In

this setting, the differences in orientation are often considered to be a nuisance. Although

handcrafted features such as SIFT are still widely used as baselines to measure similarity,



64 Rotation equivariant vector field networks

recent works have shown that learning ad-hoc features with siamese CNNs (Simo-Serra

et al., 2015; Zagoruyko and Komodakis, 2015) can perform substantially better.In the

following, we apply RotEqNet to analyze how this problem can benefit from a tunable

amount of rotation invariance.

Depending on the problem at hand, one might have a prior on how much rotation invari-

ance is required. Although CNN-based descriptors are more robust to relative rotations

between matching pairs than SIFT, they still tend to perform poorly for large angular dif-

ferences (Simo-Serra et al., 2015). To showcase how RotEqNet allows to tune the amount

of rotation invariance, we trained a siamese network with three RotConv blocks, with 3, 6

and 32 filters of size 9× 9 respectively, totaling 40k parameters. The last fully connected

block provides 32 scalar features. We trained it on 20k samples from the Notredame

dataset (Winder and Brown, 2007) with a distance-based objective function (Simo-Serra

et al., 2015; Zagoruyko and Komodakis, 2015).

After training, the number of bins in the last Orientation Pooling layer can be modified,

thus yielding multiple descriptors per sample. For instance, if the number of bins is set

to 4, one 32-dimensional descriptor will be produced for each quadrant, thus resulting in

a 128-dimensional descriptor for the patch. We analyze robustness in patch matching by

increasing the rotation of the patches and the number of bins, and compare our results to

those obtained by SIFT and the features from a pre-trained VGG network (Simo-Serra

et al., 2015). We use patches extracted from an urban photograph that are then paired to a

shifted (by one pixel) and rotated version of itself. Results in Fig.4.7 show that RotEqNet

with a single bin is much more robust to rotations than VGG and SIFT descriptors, even

when the main orientation assignment is used. As a trade-off, it performs slightly worse for

small rotations. However, by increasing the number of bins we can invert this tendency

and improve the matching accuracy for small angles (and trade off accuracy on large

rotations): using two bins (i.e. a 64-dimensional descriptor), we clearly outperform the

baselines on small angles and still have 60% of correct matches for rotations around 45◦

(compared to less than 10% for SIFT and VGG).

4.5 Limitations and future work

Forcing the Orientation Pooling block to choose the most activating orientation could

result in exacerbating noise when there is no main orientation on either the input or the

filter. This is because the arbitrarily chosen orientation can have a big impact on the

output, and how it will interact with filters in the following layer, but no meaning. This

problem is amplified by the use of scalar products between the vector elements of the filter

and its input, which assumes that the orientation of these vectors is relevant. This issue

could be improved by using a custom similarity metric between vector elements such that

symmetries in the filters or the input are taken into account.
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Figure 4.7: Matching accuracy vs. rotation applied to one of the elements in each matching

pair in a synthetic dataset. RotEqNet allows to trade-off some accuracy at small rotations for

more robustness by changing the number of bins in the last Orientation Pooling layer.

4.6 Conclusion

We have presented a new way of hard-coding into CNNs predefined behaviors with respect

to rotations. This is achieved by applying each filter at different orientations and extract-

ing a vector field feature map, encoding the maximum activation in terms of magnitude

and angle.

Experiments on classification, segmentation, orientation estimation and matching show

the suitability of this approach for solving a wide variety of problems that are inherently

rotation equivariant, invariant or covariant. These results suggest that taking into account

only the dominant orientations is sufficient to tackle successfully a range of problems.
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Abstract

In remote sensing images, the absolute orientation of objects is arbitrary. Depending on

an object’s orientation and on a sensor’s flight path, objects of the same semantic class

can be observed in different orientations in the same image. Equivariance to rotation, in

this context understood as responding with a rotated semantic label map when subject

to a rotation of the input image, is therefore a very desirable feature, in particular for

high capacity models, such as CNNs. If rotation equivariance is encoded in the network,

the model is confronted with a simpler task and does not need to learn specific (and

redundant) weights to address rotated versions of the same object class. In this work

we propose a CNN architecture called Rotation Equivariant Vector Field Network (RotE-

qNet) to encode rotation equivariance in the network itself. By using rotating convolutions

as building blocks and passing only the the values corresponding to the maximally ac-

tivating orientation throughout the network in the form of orientation encoding vector

fields, RotEqNet treats rotated versions of the same object with the same filter bank and

therefore achieves state-of-the-art performances even when using very small architectures

trained from scratch. We test RotEqNet in two challenging sub-decimeter resolution se-

mantic labeling problems, and show that we can perform better than a standard CNN

while requiring one order of magnitude less parameters.
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5.1 Introduction

In this paper we consider the task of semantic labeling, which corresponds to the automatic

assignment of each pixel to a set of predefined land-cover or land-use classes. The classes

are selected specifically for the task to be solved and define the learning problem for the

model.

When using low- to mid-resolution multispectral imagery (e.g. Landsat), it is customary

to assume that the spectral information carried by a pixel is sufficient to classify it into

one of the semantic classes, thus reducing the need for modeling spatial dependencies.

However, when dealing with VHR imagery, i.e. imagery in the meter to sub-decimeter

resolution range, the sensor trades off spectral resolution to gain spatial details. Such data

is commonly composed of RGB color channels, occasionally with an extra NIR band. Due

to this trade-off, single pixels tend not to contain sufficient information to be assigned

with high confidence to the correct semantic class, when relying on spectral characteristics

only. Moreover, depending on the task, some classes can be semantically ambiguous: a

typical example is land use mapping, where objects belonging to different classes can be

composed of the same material (e.g. road and parking lots), thus making analysis based

on spectra of single pixels not suitable. To resolve both problems, spatial context needs to

be taken into account, for example via the extraction and use of textural (Regniers et al.,

2016), morphological (Dalla Mura et al., 2010; Tuia et al., 2015), tree-based (Gueguen

and Hamid, 2015) or other types (Malek et al., 2014) of spatial features. These features

consider the neighborhood around a pixel as part of its own characteristics, and allow to

place spectral signatures in context and solve ambiguities at the pixel level (Fauvel et al.,

2013). The diverse and extensive pool of possible features led to a surge in works focusing

on the automatic generation and selection of discriminant features (Harvey et al., 2002;

Glocer et al., 2005; Tuia et al., 2015), aimed at preventing to compute and store features

that are redundant or not suited for a particular task.

Another common approach to reduce the computational burden while enforcing spatial

reasoning is to extract local features from a support defined by unsupervised segmentation.

Also, spatial rules can be encoded by Markov random fields, where spatial consistency is

usually enforced by minimizing a neighborhood-aware energy function (Moser et al., 2013)

or specific spatial relationships between the classes (Volpi and Ferrari, 2015b).

In the situations described above, a successful solution comes at the cost of having to

manually engineer a high-dimensional set of features potentially covering all the local

variations of the data in order to encode robust and discriminative information. In this

setting, there is no guarantee that the features employed are optimal for a given seman-

tic labeling problem. These problems raised the interest of the community in solutions

avoiding to manually engineer the feature space, solutions that are extensively studied

under the deep learning paradigm. The aim of deep learning is to train a parametric
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system learning feature extraction jointly with a classifier (Goodfellow et al., 2016), in

an end-to-end manner. When focusing on image data, Convolutional Neural Networks

(CNNs, (LeCun et al., 1998)) are state-of-the-art. Their recognized success follows from

new ground-breaking results in many computer vision problems. CNNs stand out thanks

to their ability to learn complex problem-specific features, while jointly optimizing a loss

(e.g. a classifier, a regressor, etc.). Thanks to recent hardware advances accelerating CNN

training consistently, as well as the existence of pre-trained models to get started, CNNs

have become one of the most studied models in recent remote sensing research dealing

with VHR imagery, as we briefly review below.

The first models proposed studied the effectiveness of translating computer vision archi-

tectures directly to aerial data for tile classification. In that sense, a single label was

retrieved per image tile, thus tackling what in computer vision is called the image classi-

fication problem1: authors in Castelluccio et al. (2015) and Penatti et al. (2015) studied

the effect of fine-tuning models trained on natural image classification problems, in order

to adapt them quickly to above-head image classification. Their results suggested that

such a strategy is relevant for image classification and can be used to reuse models trained

on a different modality. Transposing these model in the semantic labeling problem is also

possible, typically applying the models using a sliding window centered at each location

of the image, as tested in Campos-Taberner et al. (2016). However, the authors also

came to three important conclusions: i) models trained from scratch (in opposition to

fine-tuned models from vision) tend to provide better results on specific labeling tasks;

ii) by predicting a single label per patch, the one corresponding to the pixel on which

the patch is centered, these models are not able to encode explicit label dependencies in

the output space and iii) the computational overhead of the sliding window approach is

extremely large. Such conclusions support the use of network architectures that have been

developed specifically for semantic labeling problems: recent efforts tend to consider fully

convolutional approaches (Long et al., 2015), where the CNN does not only predict a single

label per patch, but actually provides directly the label map for all the pixels that com-

pose the input tile. The approaches proposed vary from spatial interpolation (Maggiori

et al., 2017), fully convolutional models (Audebert et al., 2016), deconvolutions (Volpi

and Tuia, 2017), stacking activations (Maggiori et al., 2016) to hybridization with other

classifiers (Liu et al., 2017), but they all are consistent in one observation: fully con-

volutional architectures drastically reduce the inference time and naturally encode some

aspect of output dependencies, in particular learning dependent filters at different scales,

thus reducing the need of cumbersome postprocessing of the prediction map.

While these works open endless opportunities for remote sensing image processing with

CNNs, they also showed one of the biggest downsides of these models: CNNs tend to need

large amounts of ground truth to be trained, and setting up the architecture, as well as

1This is not to be confused with the semantic labeling problem we address in this paper, which is the

task of attributing a label to every pixel in the tile.
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selecting hyperparameters, can be troublesome, since cross-validation is often prohibitive

in terms of processing time. Note that it is often that case when the number of parameters

is larger than the number of training samples, which makes regularization techniques and

data augmentation a must-do, at the cost of significantly slowing model training. Our

contribution aims at addressing this drawback of CNNs, i.e. the large model sizes and

need for labels when there is a limited availability of ground truth. In this paper, we

propose to tackle the problem by exploiting a property of objects and features in remote

sensing images: their orientation is arbitrary.

Overhead imagery differs from natural images in that the absolute orientation of objects

and features within the images tends to be irrelevant for most tasks, including semantic

labeling. This is because the orientation of the camera in nadir-looking imagery is most

often arbitrary. As a consequence, the label assigned to an element in the image should

not change if the image is taken with a different camera orientation. We call this prop-

erty equivariance, and it is a property that recently attracted a lot of interest in image

analysis (Lei et al., 2012; Cheng et al., 2016a).

Given a rotation operator, gα(·), we say that a function f(·) is equivariant to rotations if

f(gα(·)) = gα(f(·)), invariant to rotations if f(gα(·)) = f(·) and, more generally, covariant

to rotations if f(gα(·)) = h(f(·)), with h(·) being some function other than gα(·). Note

that, in the case of semantic labeling, the property we are interested in is equivariance,

although it becomes invariance if we consider a single pixel at a time. We will therefore

use the terms equivariance and invariance interchangeably in this paper.

With CNNs, equivariance to the rotation of inputs can be approximated by randomly

rotating the input images during training, a technique known as data augmentation or

jittering (Leen, 1995). If the CNN has enough capacity and has seen the training samples

in sufficient number of orientations, it will learn to be invariant to rotations (Lenc and

Vedaldi, 2015). While this kind of data augmentation greatly increases the generalization

accuracy, it does not offer any advantage in terms of model compactness, since similar

filters, but with different orientations, need to be learned independently. A different

approach, hard coding such invariances within the model, has the two main beneficial

effects: first, the model becomes robust to variations which are not discriminative, as

a standard CNN with enough filters would learn; and second, model-based invariance

can be interpreted as some form of regularization (Leen, 1995). This added robustness

ultimately lead to models which have high capacity (as high as a standard CNN) but with

lower sample complexity.

There has been a recent surge in works that explore ways of encoding model-based rotation

invariance in CNNs. (Laptev et al., 2016) perform a rotation of the input image in order

to reduce the sample complexity of the problem and (Jaderberg et al., 2015) extend this

to affine transformations. These approaches provide invariance to a global rotation of the

input image and not to local relative rotations, and are therefore not very well suited
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for segmentation tasks. (Cohen and Welling, 2016a) encode equivariance to shifts and to

rotations by multiples of 90o by tying filter weights, while (Zhou et al., 2017) use linearly

interpolated filters. These two methods are in principle suited for segmentation tasks.

The former is limited to invariance to 90o rotations and the latter, although offering more

flexibility, has the drawback of requiring a trade-off between the number of rotations

and the memory requirements, bringing the authors to use 8 orientations, at multiples

of 45o. (Worrall et al., 2016) reduce the space of possible filters to combinations of

complex harmonic wavelets, thusachieving perfect equivariance to rotations. By doing

so, they obtain a more compact internal representation by encoding oriented activations

as complex valued feature maps, but at the cost of reducing the expressiveness of each

filter.

In this paper, we consider a solution that combines the advantages of these two last meth-

ods. Our model applies an arbitrary number of rotated instances of each filter at every

location, in a way that each filter activation is composed by a vector of activations (as

opposed to a scalar in standard CNN), thus representing the activation of each rotated

filter. We then propose to max-pool these activations, compressing the information in a

simple 2D vector that represents the magnitude and orientation of the maximally acti-

vating filter. This allows us to encode fine-grained rotation invariance (i.e. very small

angles) and, at the same time, to avoid constraining the filters to any particular class,

thus enabling more expressive filters. The proposed Rotation Equivariant Vector Field

Network (RotEqNet, 4) achieves model-based invariance while reducing the number of

required parameters by around one order of magnitude. This is done by sharing the same

convolutional filter wights across all angles, thus providing regularization to irrelevant

modes of variations (Leen, 1995).

In addition, the decrease in sample complexity allows models to be trained more efficiently.

In this paper, we also analyze the effect that the amount of available ground truth has

on the performance of CNNs learning for semantic labeling of overhead imagery based on

two public datasets at submetric resolution: the Vaihingen and the Zeebruges benchmarks

(see Section 5.3).

In Section 5.2 we briefly present the intuition behind RotEqNet, as well as its main

components. In Section 5.3 we present the data and the setup of the experiments presented

and discussed in Section 5.4.

5.2 Rotation Equivariant Vector Field Networks

(RotEqNet)

In this paper, we propose to make a CNN equivariant to rotations by rotating filters and

considering only the maximal activation across rotations. This section first recalls basics
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about CNNs and then presents the RotEqNet modules as a way of extending any CNN

architecture into a rotation equivariant one. For more details about RotEqNet, the reader

can refer to chapter 4.

5.2.1 Convolutional neural networks for semantic labeling

In this section we briefly present the building blocks of CNNs, as well as an example of a

fully convolutional architecture to perform semantic labeling.

CNN building blocks

CNNs consist of a cascade of operations applied to an input image x ∈ RM×N×d such that

it can be nonlinearly transformed in the desired output. The number of such operations

defines the depth of the network. CNNs are often organized in convolutional blocks as the

one depicted in Figure 5.1.

The convolution operator

y = x ∗w + b, (5.1)

between x and a filter w ∈ Rm×m×d, where b ∈ R is the bias, produces a feature map

y ∈ RM−m+1×N−m+1 by applying locally a scalar product operation between w and every

patch in x of size m × m in a sliding window manner. A convolution block in a CNN

corresponds to the convolution of the image with a series of filters, which are represented

in different colors in Figure 5.1.

The dimensionality of the activations equals the number of filters in the layer. To control

the spatial extent of the activations after convolutions, it is common to apply zero-padding,

which does not influence the value of the activations, but does compensate for the amount

of pixels lost at the borders of the image. In order to obtain an advantage from the depth of

the model, in terms of expressive power, it is necessary to apply some non-linear operation

to the output of each convolution. The most common is the rectified linear unit (ReLU),

which clips the negative values to zero, as y = max(0, x).

Once the activations are obtained, they are often pooled in the spatial domain, for example

by taking the maximum value occurring in a very small (usually 2× 2) local window. This

operation, called max-pooling is represented in Figure 5.1 by the red squares and, besides

the obvious effect of reducing the amount of data, also allows the filters in the next layer

to ‘see’ more context of the original image: looking again at the schematic in Figure 5.1,

if the first filters see a 3× 3 region, those of the second layer (orange cube on the right)

will see a 3× 3 region in the reduced activations map, which coresponds to a 7× 7 region

in the original image. By cascading several convolutional and max-pooling blocks, the

network actually becomes aware of a wide context around the pixel being considered,
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Figure 5.1: Schematic of the first convolutional layer of a CNN. This layer learns Nf = 5

filters of size 3 × 3 × 3 and applies a spatial pooling halving the size of the activation map

(only two out of the five activation maps are shown for clarity). In the activation maps, the

colored pixels (in green or blue) correspond to those receiving information from the receptive

field marked in orange in the input image (left).

while reducing the number of required learnable parameters, and provides invariance to

local (at each layer) and global (at the network level) translations. The latter is evident

in image classification problems: an image contains a cat independently of where it is

located. For semantic labeling tasks, max-poolings have the effect of learning locally

consistent and multi-scale filters.

Two other operators are often used to improve the learning process: batch normalization

and dropout. The former normalizes each feature map within a batch to have zero mean

and unit standard deviation. The latter sets a certain proportion of randomly selected

feature maps to zero during training, thus preventing the filters from depending too much

on one another.

From patch classification to (dense) semantic labeling

Early CNN models in vision were designed for tile (or image) classification, i.e. to provide

a single label for an image. In semantic labeling, we are interested in obtaining a dense

prediction, i.e. a map where each pixel is assigned to the most likely label. As stated in

the introduction, this can be achieved in a number of ways, including fully convolutional

models (Long et al., 2015). A very simple way to perform dense predictions is to use the

activation maps themselves as features to train a classifier predicting the label of every

pixel. If max-pooling operations have been performed, spatial upsampling, e.g. by inter-

polation, is required to bring all activations to the same spatial resolution. One of these

approaches, known as “hypercolumns” (Hariharan et al., 2015), using fixed upsamplings,

is represented in Figure 5.2. It follows the intuition that the different activation maps con-



5.2 Rotation Equivariant Vector Field Networks (RotEqNet) 75

Stack of activations (5 maps) Stack of activations (10 maps)Image (3 bands)

UPSAMPLING 1x UPSAMPLING 2x

Concatenate
as extra features

Train a
classifier

Figure 5.2: Schematic of the model considered for dense semantic labeling. Each activation

map in the CNN (top part) is upsampled at the original image resolution (blue arrows),

concatenated to the original image (red arrow) and fed to a local fully connected layer (1× 1

convolutions), in this example using 18 features.

tain information about specific features extracted at different scales, from low-level ones

(first layers react to corners, gradients, etc.) to more semantic and contextual ones (last

layers activate to class-specific features). Therefore, a stack of such features can be used

to learn an effective classifier for dense semantic labeling tasks, where spatial informa-

tion is crucial. In remote sensing, the idea of hypercolumns was used in the architecture

proposed by (Maggiori et al., 2016). In the experiments, we will use this architecture for

dense semantic labeling, using two fully connected layers as classifier (see Section 5.3.2

for details), and train the model end-to-end.

5.2.2 From translation to rotation invariance

As mentioned above, CNNs are translation equivariant by design (see Section 2.4.4).

To understand why it is more complex to achieve natural equivariance to rotations by

means of convolutions, we will briefly summarize how translation equivariance is obtained

by standard CNNs before moving to rotation equivariance and our proposed solution,

RotEqNet.
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Translation equivariance in CNNs

The convolution of an image x with a filter w (Eq. (5.1)) is computed by applying the

same dot product operation over all overlapping m×m windows on x. If x is shifted by

an integer translation in the horizontal and vertical directions, given a reference location,

the same neighborhoods in x will exist in the translated x. The corresponding convo-

lution output, except for some possible border effects, are exactly the same up to some

global translation constant. For this reason, neighborhood-based operations are transla-

tion equivariant when applied to images. The fact that the operation is local and produces

a single scalar per neighborhood has another advantageous effect: the output can be ef-

fortlessly re-arranged in useful ways. Typically, the spatial structure of the activations is

set to match the one of the input (as in CNNs, see Figure 5.1).

Rotation equivariance in RotEqNet

If we want the operator to be equivariant to rotation, the structure of the layer activations

becomes more complex. One possibility would be to return a series of values corresponding

to the convolution of x with rotated versions of the canonical filter w. In this case, the

activations y would be a 3D tensor where a translation in the 3rd dimension corresponds

to a rotation of w. The covariance achieved in this way could easily be transformed into

equivariance by means of pooling across orientations, since the value returned at each

image location will remain constant when the image is rotated and thus a rotation of the

input image will result in the same rotation of the output feature map.

In particular, we propose to perform a single-binned max-pooling operation across the

newly added orientation dimension. At each location, it fires on the largest activation

across orientations, returning its value (magnitude) and the angle at which it occurred.

This way, we are able to keep the 2D arrangement of the image and activations through-

out the CNN layers, while achieving rotation equivariance as provided by this pooling

strategy. Furthermore, this strategy allows the network to make use of the information

about the orientation of feature activations observed in previous layers. Similar to spatial

max-pooling, this orientation pooling propagates only information about the maximal

activation, discarding all information about non-maximal activations. This has the draw-

back of potentially loosing useful information (e.g. when two orientations are equally

discriminant), but offers the advantage of reducing the memory requirements of both the

model and the feature maps along the network, making them independent of the number

of rotations used. Since the result of such pooling is no longer a scalar as in conventional

CNNs, but a 2D vector (magnitude and angle), each activation map can now be treated as

a vector field. Figure 5.3 schematizes this intuition and shows a RotEqNet convolutional

block in comparison to the standard CNN convolutional block of Figure 5.1.
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Figure 5.3: Schematic of the first convolutional layer of RotEqNet. This layer learns Nf

= 5 filters of size 3 × 3 × 3. Each filter is rotated to a pre-defined range of angles and the

activation at each orientation is computed. Then an orientation pooling retains only the

maximal activation and the angle that generated it, thus providing a vector activation per

pixel (represented by colored arrows). This vector map is pooled spatially as for conventional

CNNs. The output is a stack of vector activations. In the activation maps, the colored pixels

(in green or blue) correspond to those receiving information form the receptive field marked

in orange in the input image (left). For clarity, only two out of the five activation maps are

shown.

5.2.3 RotEqNet modules

RotEqNet essentially involves rotating CNN filters and pooling across the orientation

space to retrieve the maximal activations and their angle observed at each location and per

filter. To achieve such behavior, several building blocks of CNNs must be re-designed in

order to accommodate vector field inputs / outputs. In this section, we briefly summarize

how the convolution and pooling operators have been modified. Modifications of spatial

pooling and batch normalization are straightforward and we invite the reader to consult

Chapter 4 for more details.

Rotating convolution

As introduced above, rotation equivariance can be achieved by computing the activations

on a series of rotated versions of the filters being learned. This boils down to calculate

rotated versions of each main (or canonical) filter at R orientations α = [α1, . . . , αR]. In

case of remote sensing images, for which the orientation might be completely arbitrary, α

can span the entire 360◦ rotation space, while in other applications with a clear top-down

relations, one could limit the angles to a smaller range (e.g. it is unlikely that a tree

depicted in a ground level image is oriented in the left-right direction, but some tilts due

to camera shake could be present).
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The rotation of the filter is obtained by resampling w with bilinear interpolation, after

rotation of αr degrees around the filter center. The position [i′, j′] after rotation of a

specific filter weight, originally located at [i, j] in the canonical form, is

[i′, j′] = [i, j]

[
cos(αr) sin(αr)

− sin(αr) cos(αr)

]
. (5.2)

Coordinates are relative to the center of the filter. Since the rotation can force weights

near the corners of the filter to be relocated outside of its spatial support, only the weights

within a circle of diameter m pixels, the filter size, are used to compute the convolutions.

The output tensor for filter w, of size y ∈ RM×N×R, consists of R feature maps (see the

center part of Figure 5.3), each one computed as

y(r) = x ∗wr + b ∀r = 1, 2 . . . R, (5.3)

where (∗) is a standard convolution operator, and b is a shared bias across all rotations.

The tensor y encodes the roto-translation output space such that rotation of the input

corresponds to a translation across the feature maps. Only the canonical, non rotated,

version of w is actually stored in the model. During backpropagation, gradients flow

through the filter with maximal activation, very similarly to the max-pooling case. Con-

sequently, the gradients have to be aligned to the rotation of the canonical filter, which

is recovered thanks to the angle as given by the orientation pooling. Thus, filters are

updated as:

∇w =
∑
r

rotate(∇wr,−αr), (5.4)

Orientation pooling

The rotating convolution above outputs a set of R activations per canonical filter, each

one corresponding to one rotated version of w. To avoid the explosion of dimensionality

related to the propagation of all these activations to the next layer, we perform a pooling

across the space of orientation aiming as pushing forward only the information relative to

the direction of maximal activation. In order to preserve as much information as possible,

we keep two kinds of information: the magnitude of activation and the orientation that

generated it.

To do so, we extract a 2D map of the largest activations ρ ∈ RM×N and their correspond-

ing orientations θ ∈ RM×N . Specifically, for activations located at [i, j] we get:

ρ[i, j] = max
r
y[i, j, r], (5.5)

θ[i, j] =
360

R
arg max

r
y[i, j, r]. (5.6)
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This can be treated as a polar representation of a 2D vector field as long as ρ[i, j] ≥
0 ∀i, j. This condition is met when using a function on y that returns non-negative

values: we therefore employ the ReLU operation, defined as ReLU(ρ) = max(ρ, 0). In

the backward pass the magnitude of the incoming 2D vector gradient is passed to the

corresponding maximally activated position, y[i, j, rmax], as is done with standard max-

pooling.

Dealing with vector inputs

Note that the orientation pooling block outputs vector fields, where each location in

the activation carries both the maximal magnitude and its orientation observed in polar

representation (see the rightmost matrix in Figure 5.3). This means that the output of

such pooling is vectorial and cannot be used anymore in a traditional convolutional layer.

However, if we convert this polar representation into Cartesian coordinates, each filter

w produces a vector field feature map z ∈ RM×N×2, where the output of each location

consists of two values [u, v] ∈ R2 encoding the same information.

u = ReLU(ρ) cos(θ) (5.7)

v = ReLU(ρ) sin(θ) (5.8)

Since the horizontal and vertical components [u, v] are orthogonal, the convolution of two

vector fields can be computed summing standard convolutions calculated separately in

each component:

(z ∗w) = (zu ∗wu) + (zv ∗wv), (5.9)

By using this trick, we can now calculate convolutions between vector fields and design

deep architectures which are rotation equivariant.

5.3 Data and setup

5.3.1 Datasets

We test the proposed system on two recent benchmarks that raised significant interest

thanks to the dense ground truth provided over a set of sub-decimeter resolution image

tiles: the Vaihingen and Zeebruges data, which are briefly described below. Both datasets

consist of three optical bands and a Digital Surface Model (Digital Surface Model (DSM)).
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Since since using the DSM has been shown to improve the segmentation results ((Aude-

bert et al., 2017; Marmanis et al., 2016; Volpi and Tuia, 2017)) we use it in all of our

experiments. We do this by stacking the DSM with the optical data and treating it as

an additional band, as in (Volpi and Tuia, 2017), since this has almost no impact in the

total number of model parameters.

Vaihingen benchmark

The Vaihingen benchmark dataset has been provided to the community as a challenge

organized by the International Society for Photogrammetry and Remote Sensing (ISPRS)

Commission III.4, the “2D semantic labeling contest”2. The dataset is composed of 33

orthorectified image tiles acquired over the town of Vaihingen (Germany), with an average

size of 2494 × 2064 and a spatial resolution of 9 cm. Among the 33 frames, 16 are fully

annotated and distributed to participants, while the remaining ones compose the test

set and their ground truth is not distributed. Images are composed by 3 channels: near

infrared (NIR), red (R) and green (G). The challenge also provides a DSM coregistered

to the image tiles. We use a normalized version of the DSM (Normalized Digital Surface

Model (nDSM)), where the heights are relative to the nearest ground pixel, redistributed

by (Gerke, 2015). One of the training tiles is illustrated in Figure 5.4.

The task involves 6 land-cover / land-use classification classes: “impervious surfaces”

(roads, concrete flat surfaces), “buildings”, “low vegetation”, “trees”, “cars” and a class

of “clutter” to group uncategorized surfaces and noisy structures. Classes are highly

imbalanced, with the classes “buildings” and “impervious surfaces” accounting for roughly

50% of the data, while classes such as “car” and “clutter” account only for 2% of the total

labels.

In our setup, 11 of the 16 fully annotated image tiles are used for training, and the

remaining ones (tile ID 11, 15, 28, 30, 34) for testing, as in (Sherrah, 2016; Volpi and

Tuia, 2017; Maggiori et al., 2017).

Zeebruges benchmark

This benchmark has been acquired in 2011 over the city of Zeebruges (Belgium) and it

is has been provided as part of the IEEE GRSS Data Fusion Contest in 2015 Campos-

Taberner et al. (2016)3. It is composed by seven tiles of 10000 × 10000 pixels. The tiles

have a spatial-resolution of 5 cm and represent RGB channels only. Five of the seven

images are released with labels Lagrange et al. (2015) and used for training, while the

2http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
3http://www.grss-ieee.org/community/technical-committees/data-fusion/

2015-ieee-grss-data-fusion-contest/

http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://www.grss-ieee.org/community/technical-committees/data-fusion/2015-ieee-grss-data-fusion-contest/
http://www.grss-ieee.org/community/technical-committees/data-fusion/2015-ieee-grss-data-fusion-contest/
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Image tile #1 nDSM ground truth

Figure 5.4: one of the training tiles of the Vaihingen dataset: left: image; center: nDSM;

right: ground truth.

remaining two are kept for testing the generalization accuracy, accordingly to the challenge

guidelines. This dataset also comes with a Lidar point cloud, that we processed into a

DSM by averaging point clouds locally and interpolating where necessary. One of the

training tiles is illustrated in Figure 5.5.

The semantic labeling problem involves 8 classes, as proposed in Lagrange et al. (2015):

the same six as in the Vaihingen benchmark, plus a “water” and “boats” class. It is

worth mentioning that, since a large portion of the are is covered by a harbour, most of

the structures and cargo containers are labeled as “clutter”. Another major difference

to the Vaihingen dataset is that the “Water” class is predominant, as it represents 30%

of the training data, while cars and boats together count just a mere 1%. Also, 1% of

the data belongs to an “uncategorized” class, which is not accounted for in the labeling

problem. The lack of a NIR channel and a higher sample diversity make this benchmark

more challenging than the previous one, as we will see in Section 5.4.

5.3.2 Experimental setup

CNN architecture

We use a RotEqNet architecture based on hypercolumns (Hariharan et al., 2015), in which

every convolutional layer before the concatenation is a rotating convolution. After the

concatenation, only standard fully connected layers are used, since 1× 1 convolutions are

inherently rotation equivariant. See Figure 5.6 for a schematic of the full architecture

used. In both experiments we build the baseline CNN with the exact same architecture
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Image tile RGB nDSM ground truth

Figure 5.5: one of the training tiles of the Zeebruges dataset: left: image; center: nDSM;

right: ground truth.
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Figure 5.6: Hypercolumn based architecture used in all our experiments. Note that all the

layers are rotation equivariant, since all the convolutional layers are either RotEqNet convo-

lutions or fully connected (1 × 1) standard convolutions, which are also rotation equivariant

by construction.

as its RotEqNet counterpart, but with four fold more filters in each layer, resulting in

approximately 10 fold more parameters. At this model size the performance started to

saturate.

We use an architecture with six convolutional layers, each with downsampling by a factor

of 2 using max-pooling. The number of filters per layer in each of the convolutional layers

is set as [2, 2, 3, 4, 4, 4] · Nf, where the ith element of the vector represents the number of

filters in the ith layer, such that Nf is the only parameter used to change the size of the

models. All the convolutional layers use 7× 7 filters. This size allows to capture oriented
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patterns in the corresponding image or feature map, as seen in Figure 5.7. After applying

ReLU and batch normalization, each activation map is then upsampled to the size of

the original image using bilinear interpolation and concatenated, together with the raw

image (see bottom part of Figure 5.2), and processed with three layers of 1×1 convolutions

with [50 · Nf, 50 · Nf, C] filters, where C is the number of classes. This is followed by a

softmax normalization. The 1×1 convolutions implement a local fully connected layer, or,

in other terms, performs local classification by a Multi-Layer Perceptron (MLP). These

1× 1 convolutions are inherently rotation equivariant, so we use standard convolutions as

in Long et al. (2015). The whole pipeline is learned jointly end-to-end.

Our model performs arbitrarily dense prediction, i.e. given an arbitrarily sized input

patch the output will always be a prediction map with the same size. As a result, the

CNN architecture is fixed and the dataset reshaped to a series of fixed-sized patches. For

the Vaihingen dataset, the spatial extent of the inputs is 512 × 512, while for Zeebruges

is 500× 500. Note that the input size does not influence the results.

All models are trained with stochastic gradient descent with momentum (fixed to 0.9),

while other hyperparameters are tuned by minimizing validation errors on 30 samples

randomly selected from the training set. The batch size is 4 in RotEqNet and 2 in the

standard CNN, because of the latter’s higher memory requirements. In both benchmarks,

we perform data augmentation consisting of random rotations, uniformly sampled between

0o and 360o, and randomly flipping the tiles in the vertical or horizontal dimension. Note

that performing full 360o rotations for data augmentation is not strictly necessary when

using RotEqNet, but it has been shown to be additionally improve the performance (see

results in ) and doing so makes a comparison with standard CNNs easier, since they are

trained under more similar conditions. As will be discussed below, data augmentation is

required by standard CNNs in order to be able learn rotation invariance from examples,

given that enough filters can be learned. Regarding RotEqNet, rotating inputs does not

have a direct effect on learning diverse filters, but rather on data interpolation making a

same input tile looking different numerically (an effect also improving training for standard

CNNs).

All models are trained from scratch and filters are initialized using the improved Xavier

method.

The hardware used in all experiments consists of a single desktop with 32 GB of RAM

and a 12 GB Nvidia Titan X GPU.
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5.3.3 Experimental Setup

5.3.4 Vaihingen

In the case of Vaihingen, we report a comparison between RotEqNet and standard CNNs

trained without rotating convolutions. In order to test the sensitivity to the amount of

ground truth, we train three models per architecture, using respectively 4%, 12% and

100% of the available training set. We compare architectures with the same structure

and number of layers, only varying the number of filters. We compare a small RotEqNet

model with a CNN of larger capacity (but no built-in rotation equivariance). The size of

both models was chosen to be the smallest that would obtain over 87% overall accuracy

on the validation set, which is in line with the results published in (Volpi and Tuia, 2017).

The final number of filters defined in this way was found to be Nf= 3 for RotEqNet (≈ 105

parameters) and Nf= 12 for the standard CNN (≈ 106 parameters). The models using

the full dataset were trained for 22 epochs. In the RotEqNet models the learning rate

was 2 · 10−2 in the first 11 epochs, followed by six epochs at 4 · 10−3 and five at 8 · 10−4,

while the weight decay was 4 · 10−2, 4 · 10−3 and 8 · 10−4 respectively. In the standard

models those values were halved. This difference is due to a larger number of gradient

update iterations in the standard CNN caused by the need to use a smaller mini-batch

due to the larger memory requirements. For the experiments with a reduced training set

the number of epochs was increased such that all the models would see the same number

of iterations (i.e. mini-batches).

5.3.5 Zeebruges

In the case of Zeebruges, we compare RotEqNet with results from the literature Campos-

Taberner et al. (2016), as they report results obtained with much larger architectures, both

pre-trained or learned from scratch. Since this dataset is more complex than the previous

one, we increased the model size and trained three RotEqNet models with Nf= [4, 5, 7].

The training schedule consisted of 34 epochs, with the first 12 epochs using a learning

rate of 1 · 10−2, 12 more with 2 · 10−3 and 10 at 4 · 10−4. The weight decay for the same

segments was set to 6 · 10−2, 1.2 · 10−2 and 2.4 · 10−3 respectively.

5.4 Results and discussion

5.4.1 Vaihingen

Table 5.1 shows the results in terms of the per class F1 scores, the overall accuracy

(OA) and average accuracy (AA) for the experiments on the Vaihingen dataset. We
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observe that both models reach over 87% OA when using the whole dataset, in line with

recent publications and with the accuracy obtained by RotEqNet in the withhold test set,

evaluated as 87.6% by the benchmark server. This only drops to around 84.7% when just

4% of the training set is used, suggesting that this dataset is highly redundant.

Table 5.1: Results on the Vaihingen validation set. F1 scores per class and global average

(AA) and overall accuracies (OA). Best result per row is in dark gray, second in light gray.

Model RotEqNet CNN CNN-FPL∗ ORN

# params. 105 106 107 105

% train set 4% 12% 100% 4% 12% 100% 100% 100%

Impervious 88.0 88.7 89.5 86.9 88.8 89.8 - 88.1

Buildings 94.1 94.6 94.8 92.5 92.9 94.6 - 95.4

Low veg. 71.6 75.6 77.5 74.5 74.5 76.8 - 70.9

Trees 82.3 85.6 86.5 83.3 84.4 86.0 - 92.1

Cars 62.7 62.5 72.6 52.7 54.4 54.5 - 59.7

OA 84.6 86.6 87.5 84.8 85.5 87.4 87.8 87.0

AA 78.4 80.5 83.9 76.1 77.1 78.2 81.4 81.2
∗ = from (Volpi and Tuia, 2017)

The advantage of using RotEqNet becomes more apparent when measuring the AA,

mostly because of an improved accuracy detecting the car class. We hypothesize that

RotEqNet might be better suited to detect objects with clear and consistent boundaries,

such as cars, because it is being forced to learn oriented filters, better adapted to detect

edge-like features. Surprisingly, RotEqNet improves its performance gap with respect to

the standard CNN when the amount of available ground truth increases. This suggests

that encoding rotation invariance allows the model to concentrate more on solving the

semantic labeling task, rather than having to learn to be invariant to rotations.

As a comparison, we show the results recently published by (Volpi and Tuia, 2017) using

a much larger model and those obtained by applying the method by (Zhou et al., 2017)

(ORN) with a model of the same architecture and size as ours.

In order to glimpse at what is being learned by both models, in Figure 5.7 we show all the

7×7 filters learned in the first convolutional layer in each model. Note that the values near

the corner of the filters in the RotEqNet model are zero because the support of the filter

is a disk circumscribed in the 7×7 grid. Out of the six filters learned by RotEqNet in the

first layer, three seem to have specialized in learning corner features involving vegetation

(the reddish tones means high response to the near infrared channel), one on low lying

impervious surfaces and two in high impervious surfaces, which could be interpreted as

rooftops. On the other hand, a majority of the standard filters seem to be relatively less

structured and respond to some combination of color and height. We can also see a few

instances of edge detectors that have been learned in different orientations. Note that the
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a b

c d

Figure 5.7: Visualization of all the filters learned on the first layer of the RotEqNet model

on Vaihingen, a) on the optical channels, b) on the nDSM, and of the Standard CNN model,

c) on the optical channels, d) on the nDSM. The filters are not normalized to appreciate the

relative importance of each channel.

particular orientation of the RotEqNet filters is arbitrary and any other rotated version

could have been learned as the canonical filter.

RotEqNet does not need to learn filters that are rotated versions of each other because

all of these versions are explored by applying each filter at many different orientations.

This means that, while standard CNNs require data augmentation to perform well in a

rotation equivariant setting, RotEqNet extracts features at different orientations and keeps

the largest activations, effectively analyzing the input at different orientations without

rotating it explicitly.

Fig. 5.8 shows a few examples of the obtained classification maps. We see how RotEqNet

performs better on smaller objects, such as cars or the grass path in the second image,

but generates less smooth edges. The latter is possibly due to different orientation for

certain features being chosen in contiguous pixels.

5.4.2 Zeebruges

The results in Table 5.2 show the performance of the proposed method on the Zee-

bruges dataset compared to the last published results in (Campos-Taberner et al., 2016).

Although the authors of (Campos-Taberner et al., 2016) were not aiming at obtaining

lightweight models, the two best results they report are obtained by CNNs containing of

the order of 107 parameters, while RotEqNet achieves comparable results with a mere 105

parameters, two orders of magnitude less. In particular, out the models used by (Campos-

Taberner et al., 2016), the VGG/SVM model consists of a linear SVM classifier trained on

features extracted by a VGG network with 2.5 · 107 parameters, while the AlexNet model
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Optical image nDSM GT CNN RotEqNet

Figure 5.8: Examples of classification maps obtained in the Vaihingen validation images

with the RotEqNet and the standard CNN models.

is a pretrained CNN that has been fine tuned end-to-end on the benchmark’s training

set. It has around 6 · 107 parameters. A RotEqNet network with 1.4 · 105 parameters,

with Nf=4, was enough to obtain better results than the VGG/SVM model, and one with

4.3 · 105 parameters, Nf=7, was enough to close the accuracy gap with the fine tuned

AlexNet. These results highlight the advantage in terms of model size reduction that can

be obtained by sparing the model from having to learn to be equivariant to rotations.

In this dataset we see again that RotEqNet performs particularly well on the car and

the building classes, both associated with strong edge features, while it lags behind with

respect to both competing models in the tree class, which contains rather anisotropic

features.

5.4.3 Computational time

On the one hand, due to the additional burden of requiring to interpolate the rotated

filters and the linear dependency between the number of orientations R and the number

of convolutions to compute, RotEqNet can potentially increase the computational time

required with respect to a standard CNN. On the other hand, the reduction in the number

of feature maps, which is independent of R, can compensate for this if R is small enough.

As we can see in Table 5.3, the RotEqNet model tested on the Vaihingen validation set and

trained with R = 16 outperforms the standard CNN in terms of speed up to R = 64. Note

that all tests are performed on a single CPU to make the results more comparable.
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Table 5.2: Results on Zeebruges. F1 scores per class and global average (AA) and overall

accuracies (OA) and Cohen’s Kappa. Best result per row is in dark gray, second in light gray.

Model RotEqNet VGG/SVM∗ AlexNet∗

# parameters 1.4 · 105 2.2 · 105 4.3 · 105 2.5 · 107 6 · 107

Impervious 74.75 74.98 77.41 67.66 79.10

Water 98.46 98.56 98.69 96.50 98.20

Clutter 31.19 36.27 48.99 45.60 63.40

Low Vegetation 76.58 77.89 78.73 68.38 78.00

Building 69.26 75.11 79.07 72.70 75.60

Tree 59.35 68.95 71.30 78.77 79.50

Boat 39.13 43.59 44.55 56.10 44.80

Car 56.26 56.61 52.54 33.90 50.80

OA 79.2 80.8 82.6 76.6 83.32

AA 69.2 73.2 75.3 - -

Kappa 0.73 0.75 0.77 0.70 0.78
∗ = from (Campos-Taberner et al., 2016)

Table 5.3: Computational time of the forward pass in a single CPU and accuracy on the

validation set of the Vaihingen dataset. The RotEqNet models are tested with different values

of the number of orientations, R.

Model RotEqNet CNN

R 8 16 32 64 128 -

OA 86.90 87.89 87.81 87.71 87.65 87.47

AA 80.69 84.34 85.18 85.33 85.51 78.18

Kappa 0.82 0.84 0.84 0.83 0.83 0.83

Time per tile (s) 1.4 1.7 2.3 3.1 5.0 4.2

5.5 Conclusion

Deep learning models, and in particular convolutional neural networks, have shown their

potential for remote sensing image analysis. By learning filters directly from data, they

allow to learn and encode spatial information without engineering the feature space in a

problem-dependent way. But if these models have potential, they still suffer from the need

for an extensive (and comprehensive) training set, cumbersome hyperparameter tunning

and considerable computing resources, both in terms of memory and operations. In this

paper, we have explored the possibility of reducing such requirements by encoding one

prior information about the images: the fact that their orientation, as well as that of

objects it contains, is often arbitrary. Such prior can be exploited by making the CNN



5.5 Conclusion 89

model rotation equivariant, i.e. by forcing the network to react in the same way each time

it encountered the same semantic class, independently from the spatial orientation of the

features. We achieved this behavior by applying rotating convolutions, where a canonical

filter is applied at many orientations and the maximal activation is propagated through

the CNN. The proposed RotEqNet therefore has minimal memory and storage require-

ments, since it does not need to learn filters which respond to each specific orientation

and thus generates less intermediate feature maps at runtime. Rotation equivariance is

encoded within the model itself (similarly to how CNNs achieve translation equivariance)

and propagating only maximal activations reduces the model size and runtime memory

requirements while keeping most of the orientation information.

We applied the proposed framework to two subdecimeter land cover semantic labeling

benchmarks. The results show two main tendencies: on one hand, that explicitly en-

coding rotation equivariance in deep learning dense semantic labeling models allows for

much smaller models, between one and two orders of magnitude compared to traditional

CNNs. On the other hand, they also show that a CNN encoding equivariance in its

structure – rather than through data augmentation – also provides robustness against

varying amounts of training data, allowing to train efficiently and perform well in modern

remote sensing tasks. This last point is of particular importance when considering that

the amount of available labels can vary enormously in remote sensing depending on the

mode of acquisition and the problem at hand.

RotEqNet is not limited to semantic labeling tasks. Its logic can be applied to any

deep model involving convolutions where a predefined behavior with respect to rotations

is expected. As shown in chapter 4, it can be applied to various applications requiring

rotation invariance, equivariance or even covariance, which opens doors for the application

of RotEqNet to tackle problems of detection (cars, airplanes, trees) or regression (super-

resolution, biophysical parameters) when only limited labeled instances are at hand.





Chapter 6

Learning deep structured active

contours end-to-end

This chapter is based on:

Marcos, D., Tuia, D., Kellenberger, B., Zhang, L., Bai, M., Liao, R., and Urtasun,

R. (2018b). Learning deep structured active contours end-to-end. In Proceedings of the

CVF/IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
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Abstract

The world is covered with millions of buildings, and precisely knowing each instance’s

position and extents is vital to a multitude of applications. Recently, automated build-

ing footprint segmentation models have shown superior detection accuracy thanks to

the usage of Convolutional Neural Networks (CNN). However, even the latest evolutions

struggle to precisely delineating borders, which often leads to geometric distortions and

inadvertent fusion of adjacent building instances. We propose to overcome this issue

by exploiting the distinct geometric properties of buildings. To this end, we present

Deep Structured Active Contours (Deep Structured Active Contour (DSAC)), a novel

framework that integrates priors and constraints into the segmentation process, such as

continuous boundaries, smooth edges, and sharp corners. To do so, DSAC employs Active

Contour Models (ACM), a family of constraint- and prior-based polygonal models. We

learn ACM parameterizations per instance using a CNN, and show how to incorporate

all components in a structured output model, making DSAC trainable end-to-end. We

evaluate DSAC on three challenging building instance segmentation datasets, where it

compares favorably against state-of-the-art.
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GT Init. Result

Figure 6.1: DSAC uses a CNN to predict the energy function used by an Active Contour

Model (ACM) to modify an initial instance polygon using learned geometric priors. Left:

image from the TorontoCity validation dataset with ground truth polygons, center: initial

polygons provided by (Bai and Urtasun, 2017), right: results of DSAC.

6.1 Introduction

Accurate footprints of individual buildings are of paramount importance for a wide range

of applications, such as census studies (Xie et al., 2015), disaster response after earth-

quakes (Sahar et al., 2010) and developmental assistances like malaria control (Franke

et al., 2015). Automating large-scale building footprint segmentation has thus been an

active research field, and the emergence of high-capacity models like fully convolutional

networks (Fully Convolutional Network (FCN)s) (Gupta et al., 2014), together with vast

training data (Wang et al., 2016), has led to promising improvements in this field.

Most studies address semantic segmentation of buildings, which consists of inferring a class

label (e.g. “building”) densely for each pixel over the overhead image of interest (Kaiser

et al., 2017; Maggiori et al., 2017; Montoya-Zegarra et al., 2015; Volpi and Tuia, 2017).

While this approach may provide global statistics such as building area coverage estima-

tion, it comes short at yielding estimations at the instance level. In computer vision, this
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problem is known as instance segmentation, where models provide a segmentation mask

on a per-object instance basis. Solving this task is far more challenging than semantic

segmentation, since the model has to understand whether any two building pixels belong

to the same building or not. Precise delineation of object borders, with sharp corners

and straight walls in the case of buildings, is a task that CNNs generally perform poorly

at (Dai et al., 2016b): as a result, building segmentations from CNNs commonly have a

high detection rate, but fail in terms of spatial coverage and geometric correctness.

Active Contour Models (ACM (Kass et al., 1988)), also called snakes, may be considered

to address this issue. ACMs augment bottom-up boundary detectors with high-level

geometric constraints and priors. They work by constraining the possible outputs to a

family of curves (e.g. closed polygons with a fixed number of vertices), and optimizing

them by means of energy minimization based on both the image features and a set of

shape priors such as boundary continuity and smoothness. Additional terms have been

proposed, among which the balloon term (Cohen, 1991) is of particular interest: it mimics

the inflation of a balloon by continuously pushing the snakes’ vertices outwards, thus

preventing it to collapse to a single point. By expressing object detection as a polygon

fitting problem with prior knowledge, ACMs have the potential of approaching object

edges precisely and without the need for additional post-processing. However, the original

formulation lacked flexibility, since it relied on low-level image features and a global

parameterization of priors, when a more useful approach would be to penalize strongly

the curvature in the regions of the boundary known to be straight or smooth and reduce

the penalization in the regions that are more likely to form a corner. Moreover, the

balloon term has so far only been included as a post-energy global minimization force and

does not take part in the energy minimization defining the snake.

In this paper, we propose to combine the expressiveness of deep CNNs with the versa-

tility of ACMs in a unified framework, which we term Deep Structured Active Contours

(DSAC). In essence, we employ a CNN to learn the energy function that would allow an

ACM to generate polygons close to a set of ground truth instances. To do so, DSAC

leverages the original ACM formulation by learning high-level features and prior parame-

terizations, including the balloon term, in one model and on a local basis, i.e. penalizing

each term differently at each image location. We cast the optimization of the ACM as a

structured prediction problem and find suitable features and parameters using a Struc-

tured Support Vector Machine (Structured Support Vector Machine (SSVM) (Altun et al.,

2007; Tsochantaridis et al., 2005)) loss. As a consequence, DSAC is trainable end-to-end

and able to learn and adapt to a particular family of object instances. We test DSAC

in three building instance segmentation datasets, where it outperforms state-of-the-art

models.

Contributions This work’s contributions are as follows:
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� We formulate the learning of the energy function of an ACM as a structured pre-

diction problem;

� We include the balloon term of the ACM into the energy formulation;

� We propose an end-to-end framework to learn the guiding features and local priors

with a CNN.

6.2 Related work

Building footprint extraction Most current automated approaches make use of 3D

information extracted from ground or aerial LIDAR (Wang et al., 2006), or employ humans

in the loop (Brooks et al., 2015). The use of a polygonal shape prior has been shown to

substantially improve the results (Sun et al., 2014) of systems based on color imagery

and low level features. Recent efforts employ deep CNNs for semantic segmentation and

allowed a great leap towards full automation of building segmentation (Kaiser et al.,

2017). Works considering building instance segmentation are scarcer and the task has

been recently defined as far-from-being solved (Wang et al., 2016), despite the interest

shown by the participation to numerous contests aiming at automatic vectorization of

building footprints from overhead imagery: SpaceNet1, DSTL2 or OpenAI Challenge3.

Our proposed DSAC aims at making high-level geometric information available to CNN

based methods as a step towards bridging this gap.

Instance segmentation in Computer Vision Since instance segmentation combines

object detection and dense segmentation, many proposed pipelines attempt at fusing both

tasks in either separate or end-to-end trainable models. For example, (Dai et al., 2016a)

employ a multi-task CNN to detect candidate objects and infer segmentation masks and

class labels per detection. (Fathi et al., 2017) train a CNN on pairs of locations and

predicts the likelihood for the pair to belong to the same object. (Romera-Paredes and

Torr, 2016) apply an attention-based RNN sequentially on deep image features to trace

object instances in propagation order. (Bai and Urtasun, 2017) refine an existing semantic

segmentation map by predicting a distance transform to the nearest boundary. High level

relationships are accounted for in (Royer et al., 2016; Zhang et al., 2016b) by means of

an instance MRF applied to the CNN’s output.

All these methods employ pixel-wise CNNs and are thus not apt to integrating output

shape priors directly, as polygonal output models would be. Only a few works deal

with CNNs that explicitly produce a polygonal output. In (Castrejon et al., 2017), a

1https://wwwtc.wpengine.com/spacenet
2https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
3https://werobotics.org/blog/2018/01/10/open-ai-challenge/
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recursive neural network is used to generate a segmentation polygon node by node, while

in (Rupprecht et al., 2016) a CNN predicts the direction of the nearest object boundary

for each node in a polygon and uses it as a data term in an ACM. However, the first

model is tailored towards a different problem (interactive segmentation and correction)

and does not allow the inclusion of strong priors, and the second decouples the CNN

training from ACM inference, thus lacking the end-to-end training capabilities of the

proposed DSAC.

Active contours The first ACMs were introduced by Kass et al. in 1988 under the

name of snakes (Kass et al., 1988). Variants of this original try to overcome some of

its limitations, such as the need for precise initializations, or the dependence on user

interaction. In (Gunn and Nixon, 1997) the authors propose to use two coupled snakes

that better capture the information in the image. The above mentioned balloon force was

introduced by (Cohen, 1991).

Although some modifications (Kichenassamy et al., 1995) have been proposed to improve

the data term of the original paper, they rely on simple assumptions about the appearance

of the objects and on global parameters for weighting the different terms in the energy

function. The proposed DSAC leverages the original formulation by including local prior

information, i.e. values weighting the snakes’ energy function terms on a per-pixel basis,

and learns them using a CNN. Although this work focuses on curvature priors useful for

segmenting objects of polygonal shape, other priors can be enforced with ACMs, such as

convexity for biomedical imaging (Royer et al., 2016).

Structured learning with CNNs Structured prediction (Taskar et al., 2005) allows

to model dependencies between multiple output variables and hence offers an elegant

way to incorporate prior rule sets on output configurations. End-to-end trainable struc-

tured models exceed traditional two-step solutions by enriching the learning signal with

relations at the output level. Although these models have been applied to a variety of

problems (Belanger and McCallum, 2016; Chen et al., 2015; Schwing and Urtasun, 2015),

we are not aware of any work dealing with instance level segmentation.

We use a structured loss as a learning signal to a CNN such that it learns to coordinate

the different ACM energy terms, which are heavily interdependent.

6.3 Method

We present the details of a modified ACM inference algorithm with image-dependent

and local penalization terms as well as the structured loss that is used to train a CNN
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Figure 6.2: DSAC idea. The CNN predicts the values of the energy terms to be used by

the active contour model (ACM): a global α for the length penalization and maps for local D,

the data term, β, the curvature penalization and κ, the balloon term. After ACM inference,

a structured loss is computed and given to the CNN, whose parameters can then be updated

using backpropagation.

to generate these penalization maps. A diagram of the proposed method is shown in

Figure 6.2. The proposed training algorithm proceeds as exposed in Algorithm 1.

Note that i) DSAC does not depend on any particular ACM inference algorithm, and ii)

the chosen ACM algorithm does not need to be differentiable.

6.3.1 Locally penalized active contours

An active contour (Kass et al., 1988) can be represented as a polygon y = (u,v) with L

nodes ys = (us, vs) ∈ R2, with s ∈ {1, . . . , L}, where each s represents one of the nodes of

the discretized contour. The polygon y is then deformed such that the following energy

function is minimized:
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Data: X ,Y : image/polygon pairs in the training set.

Y0: corresponding polygon initializations.

for xi,yi ∈ X ,Y do
CNN inference: D, α, β, κ← CNNω(xi)

ACM inference: ŷi ← ACM(D,α, β, κ,y0
i )

∂L
∂D

, ∂L
∂α

, ∂L
∂β

, ∂L
∂κ
← ŷi,yi and Eqs. 6.18-6.19

Compute ∂L
∂ω

using backpropagation

Update CNN: ω ← ω − η ∂L
∂ω

end
Algorithm 1: The DSAC training algorithm. At every iteration, the CNN forward pass is

followed by ACM inference, which yields a contour that is used to compute the structured

loss.

E(y,x) =
L∑
s=1

[
D
(
x, (ys)

)
+α
(
x, (ys)

)∣∣∣∂y

∂s

∣∣∣2+β
(
x, (ys)

)∣∣∣∂2y

∂s2

∣∣∣2]+
∑

u,v∈Ω(y)

κ(x, (u, v)),

(6.1)

where D
(
x
)
∈ RM×N is the data term, depending on input image, of size M × N ,

x ∈ RM×N×d, α
(
x
)
, β
(
x
)
∈ RM×N are the terms encouraging short and smooth polygons

respectively, κ(x) is the balloon term and Ω(y) is the region enclosed by y. The notation

D
(
x, (ys)

)
means the value in D

(
x
)

indexed by the position ys = (us, vs).

Due to their local nature, D,β and κ are M × N maps in our experiments while α is

treated as a single scalar.

Data term

This term identifies areas of the image where the nodes of the polygon should lie. In the

literature, D
(
x
)

is usually some predefined function on the image, typically related to the

image gradients. D(x) should learn to provide relatively low values along the boundary

of the object of interest and high values elsewhere. During ACM inference, the direction

of steepest descent −∇D(x) = −
[∂D(x)

∂u
, ∂D(x)

∂v
] is used as the data force term, moving the

contour towards regions where D is low.

Internal terms

In the literature, the values of α and β are generally a single scalar, meaning that the

penalization has the same strength in all parts of the object. This leads to a trade-off
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between over-smoothing corner regions and under-smoothing others. We avoid this trade-

off by assigning different β penalizations to each pixel, depending on which part of the

object lies underneath.

The internal energy Eint = α
(
x, (ys)

)
|y′|2 + β

(
x, (ys)

)
|y′′|2 penalizes the length (mem-

brane term) and curvature (thin plate term) of the polygon. In order to obtain the

direction of steepest descent, we can express the internal energy as a function of finite

differences:

Eint =

L∑
s=0

α(ys)
∣∣ys+1 − ys

∆s

∣∣2 + β(ys)
∣∣ys+1 − 2ys + ys−1

∆s2

∣∣2, (6.2)

and compute the derivative of Eint w.r.t. the coordinates of node s, ys, expressed as a

sum of scalar products:

∂Eint
∂ys

=
2

∆s
[−αs−1, αs−1 + αs,−αs] · [ys−1,ys,ys+1]>+

2

∆s2
[βs−1,−2βs−2βs−1, βs−1+4βs+βs+1,−2βs+1−2βs, βs+1]·[ys−2,ys−1,ys,ys+1,ys+2]>.

(6.3)

The Jacobian matrix (in this case with two column vectors) can then be expressed as a

matrix multiplication:

∂Eint
∂y

= (A+B)y (6.4)

where A(α) is a tri-diagonal matrix and B(β) is a penta-diagonal matrix.

Balloon term

The original balloon term (Cohen, 1991) consists of adding an outwards force of constant

magnitude in the normal direction of each node, thus inflating the contour. As with the

β term, we propose to increase its flexibility by allowing it to take a different value at

each image location.

In (Cohen, 1991), the balloon term is only considered as a force added after the direction

of steepest descent for the other energy terms has been computed. In DSAC, the SSVM

formulation requires to express it in the form an energy.

The normal direction to the contour at ys follows the vector:

ns =
[
ys+1 − ys−1

]
+90o

=
[
vn+1 − vn−1, un−1 − un+1

]
. (6.5)

This can be rewritten such that the whole set of L normal vectors is expressed as:

n =
[
Cv,u>C

]
(6.6)
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where C is a tri-diagonal matrix with 0 in the main diagonal, 1 in the upper diagonal and

−1 in the lower diagonal.

Integrating this expression with respect to u and v, we obtain the scalar Eb, corresponding

to the polygon’s area (by the shoelace formula to compute the area of a polygon):

Eb = κ[u>Cv] =
∑

u,v∈Ω(y)

κ (6.7)

Instead of maximizing the area of the polygon, which would be the result of pushing

nodes in the normal direction, we propose to use a more flexible term that maximizes the

integral of the values of a map κ(x) ∈ RM×N over the area enclosed by the contour, Ω(y).

If we discretize the integral to the pixel values that conform κ, we obtain:

Ek =
∑

u,v∈Ω(y)

κ(u, v) (6.8)

After this modification we need to recompute the force form of this term by finding the

L× 2 Jacobian matrix [∂Ek

∂us
, ∂Ek

∂vs
], s ∈ [1, L].

This corresponds to how a perturbation in us and vs would affect Ek. Since the perturba-

tions are considered to be very small, we assume that the distribution of the κ(u, v) values

along the segments [ys,ys+1] and [ys−1,ys] will be identical to the one in [ys + ∆y,ys+1]

and [ys−1,ys + ∆y], respectively. As shown in Figure 6.3, this boils down to summing

a series of trapezoid areas, forming the two depicted triangles, each one weighted by its

assigned κ value.

ys+1 ys

ys

ys-1

+Δus
ys+1

ys

ys-1

ys+Δvs

a) b)

Figure 6.3: A perturbation of ys in either the u or v direction would result in a change in

area highlighted as two shaded triangles sharing the same base.

In Figure 6.3a, both triangles have bases of length ∆us and heights vs−1−vs and vs+1−vs,
while in Figure 6.3b the bases are ∆vs and the heights us−1 − us and us+1 − us.

To obtain the κ weighted areas in Figure 6.3a, we compute:

∆Ek =
∆us

vs−1 − vs

vs−1−vs∑
h=0

hκ(h)∆h+
∆us

vs+1 − vs

vs+1−vs∑
h=0

hκ(h)∆h, (6.9)
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and therefore the force term we need for inference is:

∂Ek
∂us

=
1

vs−1 − vs

vs−1−vs∑
h=0

hκ(h)∆h+
1

vs+1 − vs

vs+1−vs∑
h=0

hκ(h)∆h (6.10)

The same for Figure 6.3b can be obtained by swapping u and v.

These derivatives point in the normal direction when the values of κ are equal in all

locations.

6.3.2 Active contour inference and implementation

When solving the ACM inference, Eq. (6.1), the four energy terms can be split into

external terms Eext: the data (D) and balloon energies (Ek); and internal terms Eint: the

energies penalizing length (α) and curvature (β). Since Eint depends only on the contour

y, we can use the implicit Euler method, with yt+1 in both sides of the expression, to get

an improved stability and better convergence:

yt+1 = yt − dEext
dyt

− (A+B)yt+1. (6.11)

This comes at the price of having to compute a matrix inversion when solving for

yt+1:

yt+1 = (I + A+B)−1
(
yt − dEext

dyt

)
, (6.12)

where I is the identity matrix. An efficient implementation of the ACM inference is

critical for the usability of the method, since thousands of iterations are typically required

by CNNs to be trained, and the ACM inference has to be performed at each iteration.

We have implemented the described locally penalized ACM using a Tensorflow graph.

The typical inference time is under 50 ms on a single CPU for the settings used in this

paper.

6.3.3 Structured SVM loss

Since no ground truth is available for the penalization terms, we frame the problem

as structured prediction, in which loss augmented inference is used to generate negative

examples to complement the positive examples of the ground truth polygons. The weights

of the energy terms can then be modified such that the energy corresponding to the ground

truth is lowered, while the one of the loss augmented results, which are presumed to be

wrong, is increased.
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Given a collection of ground truth pairs (yi,xi) ∈ Y × X , i = 1 . . . N , and a task loss

function ∆(y, ŷ), we would like to find the CNN parameters ω such that, by optimizing

Eq. (6.1) and thus obtaining the inference result:

ŷi = arg min
y∈Y

E(y,xi, ω) (6.13)

one could expect a small ∆(yi, ŷi). The problem becomes:

ω̂ = arg min
ω

∑
i

∆(yi, arg min
y∈Y

E(y,xi, ω)) (6.14)

Since ∆(yi, ŷi) could be a discontinuous function, we can substitute it by a continuous

and convex upper bound, such as the hinge loss. By adding an `2 regularization and

summing for all training samples, this becomes the max-margin formulation:

L(Y ,X , ω) =
1

2
‖ω‖2+ C

∑
i

(
max
y∈Y

[
0,∆(y,yi)− E(y,xi;ω) + E(yi,xi;ω)

])
. (6.15)

Since L(Y ,X , ω) is convex but not differentiable, we compute the subgradient, which

requires to find the most penalized constraint with the current ω:

ŷi = arg max
y∈Y

[
∆(y,yi)− E(y,xi;ω)

]
(6.16)

This means to first run the ACM, by iterating over Eq. (6.12), using the current ω and

an extra term corresponding to the task loss ∆(y,yi). Once we obtain ŷi, we can then

compute the subgradient as:

∂L(Y ,X , ω)

∂ω
= ω + C

∑
i

(∂E(yi,xi;ω)

∂ω
− ∂E(ŷi,xi;ω)

∂ω

)
(6.17)

We compute the subgradients of the loss with respect to each of the four outputs as

∂L(yi,xi, ω)

∂Dω(xi)
= [(u, v) ∈ yi]− [(u, v) ∈ ŷi] (6.18)

∂L(yi,xi, ω)

∂αω(xi)
=
∣∣∣∂yi(u, v)

∂s

∣∣∣2[(u, v) ∈ yi]−
∣∣∣∂ŷi(u, v)

∂s

∣∣∣2[(u, v) ∈ ŷi]

∂L(yi,xi, ω)

∂βω(xi)
=
∣∣∣∂2yi(u, v)

∂s2

∣∣∣2[(u, v) ∈ yi]−
∣∣∣∂2ŷi(u, v)

∂s2

∣∣∣2[(u, v) ∈ ŷi]
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∂L(yi,xi, ω)

∂κω(xi)
= [(u, v) ∈ Ω(yi)]− [(u, v) ∈ Ω(ŷi)]. (6.19)

In the above equations, [·] represents the Iverson bracket. Finally, we can get ∂L(Y,X ,ω)
∂ω

using the chain rule and modifying each CNN parameter ω applying:

ωt+1 = ωt − η
∂L(Y ,X , ω)

∂ω
, (6.20)

which will simultaneously decrease E(yi,xi;ω) and increase E(ŷi,xi;ω), thus making a

better solution more likely when performing inference anew.

Task loss The task loss ∆(y,yi) defines the actual objective we want to solve with the

SSVM loss. Since it’s the most common metric in instance segmentation, we employ the

Intersection over Union (IoU) between the prediction y and the ground truth yi. Note

that optimizing for IoU can be split into maximizing the intersection while minimizing

the union. During training, this allows us to simply add a negative value during training

to the κ map at the locations within the ground truth and a positive outside to obtain a

loss-augmented inference (see Fig. 6.4).

yi

y

Figure 6.4: When training we encourage a high task loss (low IoU) by modifying the balloon

term Eκ, adding a negative constant to κ at the nodes of the prediction y inside the ground

truth yi (light gray), and a positive constant to those outside (dark gray).

6.4 Experiments

We test the proposed DSAC method for building footprint extraction from overhead im-

ages. We consider two settings: manual initialization, where the user provides a single

click near the center of the building and automatic initialization, where an instance seg-

mentation algorithm is used to generate the initial polygons. The first setting is tested



104 Learning deep structured active contours end-to-end

in two datasets, Vaihingen and Bing Huts, while the second is tested in the TorontoC-

ity dataset (Wang et al., 2016). The three datasets are detailed in the respective sec-

tions.

6.4.1 CNN architecture and general setup

To learn the ACM energy terms, we use a CNN architecture similar to the Hypercolumn

model in (Hariharan et al., 2015). The input consists of a patch cropped around each

initialization polygon and resized an image of fixed size for each dataset. The first layer

consists of 7 × 7 convolutions, the second of 5 × 5 and all subsequent layers are of size

3× 3. All the convolutional layers are followed by ReLU, batch normalization and 2× 2

max-pooling. The number of filters is increased with the depth: 32, 64, 128 ,128, 256

and 256 for the six blocks. The output tensors of all the layers are then upsampled to

the output size and concatenated. After this, a two-layer MLP with 256 and 64 hidden

units is used to predict the four output maps: D(x), α(x), β(x) and κ(x). We use this

architecture for all datasets, with the exception of the Bing huts dataset, for which we

skip the last two convolutional layers. In all cases, we use the Adam optimizer with a

learning rate of 10−4. We augment the data with random rotations. The number of ACM

iterations is set to 50 in all the experiments, and the number of nodes is set to L = 60 in

Vaihingen and TorontoCity and L = 20 in Bing huts.

6.4.2 Manual initialization

In this setting, the detection step is done manually by visual inspection. The only input

required from the user is a single click to indicate the approximate center of the building.

Two datasets are considered:

Vaihingen buildings The dataset consists of 168 buildings extracted from the training

set of the ISPRS “2D semantic labeling contest”4. The images have three bands, corre-

sponding to near infrared, red and green wavelengths, and a resolution of 9 cm. We used

100 buildings to train the models and the remaining 68 as a test set.

Bing huts The dataset consists of 605 individual huts visible on Bing maps aerial

imagery at a resolution of 30 cm, over a rural area in Tanzania. See Figure 6.5 for an

overview of the study area and Figure 6.7 for a full resolution subset. The ground truth

building footprints have been obtained from OpenStreetMap5. A total of 335 images of

size 80× 80 pixels are used to train the models and the remaining 270 to test. The lower

4http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
5http://www.openstreetmap.org

http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://www.openstreetmap.org
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spatial resolution, low contrast between the buildings and the surrounding soil, as well as

the high level of label noise make Bing huts a very challenging dataset.

We compare DSAC against a baseline where we train a CNN with the same architecture

used by DSAC, but with a 3-class cross entropy loss with classes: building, building

boundary, background. The boundary class is added to help the model focus on learning

the shapes of the buildings. In this case, the click from the user is used to select the

nearest connected region that has been labeled as building and treat it as the instance

prediction.

Figure 6.5: Left: Overview of the 4 km2 area covered by the Bing huts dataset. The training

instances are highlighted in red and the test ones in yellow. Right: detail of the test set.

6.4.3 Automatic initialization

Although the manual initialization only requires a single click from the user, it can still

be a tedious task for large scale datasets. Existing instance segmentation algorithms,

such as the recently proposed Deep Watershed Transform (Deep Watershed Transform

(DWT)) (Bai and Urtasun, 2017), can be used instead to initialize the active contours.

These methods have a good recall, but tend to undersegment the objects and to lose

detail near to the boundaries. To compensate for this effect, the authors of (Bai and

Urtasun, 2017) apply a morphology-based post-processing step. We test the possibility

of initializing the ACM within DSAC with the results obtained by (Bai and Urtasun,

2017) on the TorontoCity building instance segmentation dataset (Wang et al., 2016),

with around 28000 instances for training and 12000 for testing. The ACM contours are

initialized with the output of the DWT (Bai and Urtasun, 2017), the current state-of-

the-art in terms of IoU. Two initialization polygon types are considered: the raw DWT

output and the post-processed versions used in (Wang et al., 2016). We also consider a
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third variant, where the raw DWT is used at train time and the post-processed one for

inference at test time: this variant is based on the intuition that making the problem

harder at train time, in addition to using the loss augmentation, helps learning a better

energy function.

a) image x b) data term D(x) c) balloon term (x) d) thin plate term (x)
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Figure 6.6: a) Image from the Vaihingen test set. The initial contour is in blue and the result

in yellow, with the ground truth in green. b) Data term D(x), where we can observe regions

of lower energy along the boundary of the building. c) The balloon term κ(x) has learned

to produce positive values only inside the building, especially next to corners. d) In the thin

plate term β(x), we see that the curvature tends to be less penalized close to the building’s

corners. The membrane term provided by the model in this example was α(x) = 0.74

Figure 6.7: Examples of test set buildings in the Vaihingen (top row), Bing huts (middle

row) and TorontoCity (bottom row) datasets. Ground truth in solid green line, baseline result

in dash-dot blue and our active contour result in dashed yellow. Note that some of the ground

truth polygons in the TorontoCity dataset are shifted (red arrows).
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6.5 Results and discussion

6.5.1 Manual initialization

Table 6.1 reports the average IoU for the two datasets. Since the ground truth shift noise

in the Bing huts dataset makes the IoU assessment untrustworthy, the root mean square

error (Root Mean Square Error (RMSE) in m2) committed when estimating the area of

the building footprints is also reported. DSAC significantly improves the baseline in terms

of IoU for both datasets. This ablation study confirms the need to allow κ and β to vary

locally (as opposed to having a single value for the whole image), while α can be treated

as a single value without loss of performance. It also highlights the importance of the

balloon term for the convergence of the contour.

Table 6.1: Results on the test set for the manual initialization experiments, reported as

average intersection over union (IoU, left) and area estimation (Bing huts only), with RMSE

in m2 (right).

Average IoU RMSE

Vaihingen Bing huts Bing huts

CNN Baseline 0.78 0.56 23.9

DSAC (ours) 0.84 0.65 13.4

DSAC (scalar κ, β) 0.64 0.60 19.1

DSAC (no κ) 0.63 0.42 31.2

DSAC (local α) 0.83 0.65 13.4

Examples of segmentation results for the Vaihingen dataset (Figure 6.7, top row) show

that the learned priors do indeed promote smooth, straight edges while often allowing for

sharp corners. By looking at the predicted energy terms in Figure 6.6 we observe that

the model focuses on the corners by producing very low D values close to them, while

predicting high κ inside the building next to the corners and a sharp drop to 0 on the

outside. Moreover, the smoothness term β is close to 0 at the corners and high along the

edges.

In the Bing huts dataset results (Figure 6.7, bottom row), the biggest jump in performance

can be seen in the area estimation metric. DSAC still tends to oversmooth the shapes,

probably since it is unable to learn the location of corners due to the ground truth shift

noise inherent to OpenStreetMap data, but manages to converge to polygons of the correct

size, most probably because it learns to balance the balloon (κ, promoting large areas)

and the membrane (α, promoting short contours) terms.
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6.5.2 Automatic initialization

Table 6.2 reports the results obtained on the TorontoCity dataset using two metrics:

the IoU-based weighted coverage (“WeighCov”) and the shape similarity PolySim (Wang

et al., 2016). Besides DWT, we also compare DSAC against the results of building foot-

print segmentation with FCN and ResNet, as reported by Wang et al. (2016). We observe

an improvement with respect to DWT of both metrics. DSAC obtains the best weighted

coverage scores irrespectively of the initialization strategy. Interestingly, the best results

are obtained by the hybrid initialization using raw DWT at training time and post-

processed DWT polygons at test time. This suggests that our intuition about making

the model work harder at train time is correct and seems to complement the use of a

task loss in the SSVM loss. Finally, segmentation examples are shown in the last row

of Figure 6.7: DSAC (in yellow) consistently returns a more desirable segmentation with

respect to DWT (in blue), closer to the ground truth polygon (in green). Although we

can still see oversmoothing in our results, note how an important amount of shift noise is

also present in some instances, making the DSAC result more plausible than the ground

truth in a few cases (red arrows).

Table 6.2: Results of the proposed DSAC and the methods reported in (Wang et al., 2016)

on the validation set of the TorontoCity dataset, containing over 12000 detected building

instances. Two ACM initializations, RW ((Bai and Urtasun, 2017)) and PP ((Bai and Urtasun,

2017) post-processed), are compared.

WeighCov PolySim

FCN (Long et al., 2015) 0.46 0.32

ResNet (He et al., 2016) 0.40 0.29

DWT, raw (Bai and Urtasun, 2017) (RW) 0.42 0.20

DWT, postproc. (PP) 0.52 0.24

DSAC (init.: train RW / test RW) 0.55 0.26

DSAC (init.: train PP / test PP) 0.57 0.26

DSAC (init.: train RW / test PP) 0.58 0.27

6.6 Conclusion

We have shown the potential of embedding high-level geometric processes into a deep

learning framework for the segmentation of object instances with strong shape priors, such

as buildings in overhead images. The proposed Deep Structured Active Contours (DSAC)

uses a CNN to predict the energy function parameters for an Active Contour Model (ACM)

such as to make its output close to a ground truth set of polygonal footprints. The model

is trained end-to-end by bringing the ACM inference into the CNN training schedule and

using the ACM’s output and the ground truth polygon to assess a structured loss that
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can be used to update the CNN’s parameters using back-propagation. DSAC opens up

the possibility of using a large collection of energy terms encoding for different priors,

since an adequate balance between them is learned automatically. The main limitation of

our model is that the initialization is assumed to be given by some external method and

is therefore not included in the learning process.

Results in three different datasets, which include a 10% relative improvement over the

state-of-the-art on the TorontoCity dataset, show that combining the bottom-up feature

extraction capabilities of CNNs with the high-level constraints provided by ACMs is a

promising path for instance segmentation when strong geometric priors exist.





Chapter 7

Synthesis
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7.1 Conclusions and outlook

This thesis has explored the use of domain specific prior knowledge in EO together with

data driven methods. Focusing on overhead imagery, these priors are: 1) the geospatial

prior, related to the knowledge about the approximate location on the Earth’s surface of

the observed objects and to 2) the overhead-view prior, the fact that we can assume to

be viewing these objects from the top, which means that stronger geometric constraints

can be applied than in the general imaging case. In all the study cases, the performances

of the methods that make use of this prior knowledge is substantially improved. This

highlights the importance of understanding which constraints naturally arise from the

problem we are tackling and how to encode them, instead of directly applying methods

developed for less or differently constrained settings.

7.1.1 The geospatial prior

The first explored constraint, presented in Chapter 3, is based on the geospatial nature

of overhead images, which links observed pixels to approximate locations on the Earth’s

surface. Since certain temporal autocorrelation can be expected in the nature of objects

at a given geographic location, this prior generates the assumption that images taken

over the same area must be related, even if they are taken with different sensors and

years apart. This was shown to be useful for change-aware, multi-modal registration,

which in turn can be applied to transferring land-cover maps across images while tak-

ing into account the possibility of land-cover changes. In particular, pixels in different

images of the same area are considered to be similar if they relate similarly to coarse

regions within their image. Since these coarse regions have dimensions of the order of a

hundred meters, they correspond to the same approximate geographical location in all

the images of the same area, even in cases where registration errors of several meters

exist. Therefore, the coarseness of the regions used for the similarity operation allows for

robustness against the typical positioning errors of a few meters. The results in terms

of multi-modal registration, change detection and multi-modal land-cover class transfer

are substantially improved with respect to using other domain invariant features (such as

SIFT, see Section 2.3.1).

The question that opens up after this work is whether a less constrained version of this

prior, dropping the requirement of the images to be taken over the same geographical area,

would also help understanding correspondences between image regions. The hypothesis is

that the spatial arrangement of similar pixels can be specific to the class of the underlying

objects. Therefore, if in two different images we observe similar patterns in terms of self-

similarity, that may be a clue to be used to transfer knowledge such as class labels from

one image to the other. This would indeed move from exploiting the geospatial prior to
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the overhead-view prior, since the hard assumption about geographical location, where

the same objects are observed in different images, is changed to the softer assumption that

similar objects tend to organize spatially in comparable ways when seen from above.

7.1.2 The overhead-view prior

The rest of the thesis turned its attention towards the second prior, based on the knowledge

that images are obtained from a overhead-view perspective. This constrained viewpoint

results in the appearance of simpler symmetries than in other image domains, such as

natural images. This overhead-view over the Earth’s surface results in RS images being

considered isotropic, with no dominant direction, for most purposes. On the one hand,

this means that the absolute orientation of the image should not affect its interpretation,

making the injection of rotation equivariance particularly suitable. On the other hand,

we can expect a smaller variety of perceived shapes in the objects, since their orientation

is typically constrained to a rotation around their vertical axis, reducing the diversity

of possible appearances. This allows to represent object outlines as functions of simpler

shapes.

Rotation equivariance

Inspired from the fact that absolute orientation in overhead imagery is arbitrary, Chap-

ter 4 focused on the injection of rotation equivariance into CNN models, proposing a

method named RotEqNet, allowing to control what kind of behavior is expected from the

model output when the input image is subject to a change in orientation. This chapter

showed that it is advantageous to use a convolution operator modified to provide equiv-

ariance to both translation and rotation when the task at hand has a known expected

behavior with respect to a rotation of the input. Although other domains, including that

of natural images, can also benefit from this constraints, Chapter 5 showed the advantages

of injecting rotation equivariance into a CNN applied to land-cover mapping of aerial im-

agery. In particular, it resulted in a much more compact model, requiring one order of

magnitude less parameters, without a drop in performance.

The main limitation of the RotEqNet method exposed in Chapter 4 is the assumption

that activations that have angular responses differing by more than 90° have zero similar-

ity. This might not be true when there are symmetries either in the filter or in the input’s

pattern. For instance, if the input is an almost perfectly homogeneous image, the maxi-

mally activated orientations are going to pick up on spurious signals and take arbitrary

directions, exacerbating this noise. Therefore, an extension that takes such symmetries

into account when computing the similarity between activations and filter vectors would

be a natural next step.
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Additionally, the encouraging results obtained in Marcos et al. (2018a) suggest that a

simultaneous encoding of rotation and scale equivariance, in addition to translation, could

be beneficial. In the case of RS imagery, this would allow to share the same features

across modalities with different resolutions, potentially helping the performance in those

modalities with the least training samples.

Shape priors

The overhead view reduces the diversity of viewpoints from which objects can be observed

and the complexity of the occlusions that occur. Chapter 6 explored how these priors can

be leveraged in the case of building footprint extraction by constraining the output to be

a polygon and using a CNN to learn where to allow the formation of corners and where

to prevent it. This resulted in a substantial improvement in the results on three building

footprint extraction datasets of very different characteristics.

The results obtained in Chapter 6 show that restricting the feasible space of the output

segmentation masks for building footprint extraction helps obtaining a substantially better

performance. It would therefore be interesting to extend this concept to the multi-class

segmentation case. One possible approach would be to combine the jigsaw puzzle solving

proposed in Marcos et al. (2016d) with the structured learning approach of Chapter 6.

Instead of keeping a large collection of pieces as in Marcos et al. (2016d), a more compact

representation could be learned in a sparsifying CNN, which could simultaneously learn

the pieces themselves and the compatibility between them.

7.2 Reflection

Prior knowledge on the problem at hand was the main resource for building traditional

CV models before the popularization of DL. Although other data driven approaches had

been widely used before, such as SVM, RF or boosting, part of the pipeline of CV models

using them, such as feature extraction, was generally handcrafted. SIFT, for instance,

was designed to be invariant to scale, rotation and absolute intensity while keeping infor-

mation about shape based on relative intensity. In the case of complex objects, part-based

models can look for part templates in an image, based on the similarity of their SIFT

features, and check whether they relate to each other in a way that is compatible with

our prior knowledge about the complex object. If we are instead looking for known simple

geometries in an image, the approach could include edge detection, in case we know that

there is often a strong gradient along the object boundaries, and some form of Hough

transform, because we have an idea of the shape we are looking for but not a very precise

one about its location or size. The use of MRFs, ACMs and other energy minimization
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methods requires the careful design of an energy function that will provide satisfactory

results when minimized.

In order to take the right design decisions it is important to understand not just the natural

constraints of the problem and how to express them, but also the relationship between

input and output at each step, since this allows the expert to plug prior knowledge into this

relationship and make use of it. For instance, we might have a hypothesis on how a certain

operator, such an edge detector, might react to the presence of the object’s boundaries

and base on that the design of the following step, which might use this information to

improve the detection of objects. If the operator’s nature is not easily interpretable, it will

be more difficult for the expert to inject this prior knowledge about the problem.

With the adoption of the DL paradigm, there has been a trend of using the same models

across a myriad of applications: the same architectures, the scaffoldings that contain

the learnable parameters, and the same cost functions that measure the goodness of the

current solution and drive the learning process that tries to improve them. It seemed like

a GPU and some knowledge in DL is all that is required to surpass the field experts in

public competitions, from galaxy identification to skin cancer detection. However, this

paradigm has two important drawbacks: 1) it is limited by the data: without enough and

good data, an off-the-shelf DL model will probably fail to generalize well to new data and

2) it is hard to understand how the intermediate feature representations, and therefore

the output, react to a modification in the input (which is why DL models are often called

“back boxes”). This hampers our ability to interpret the features and output of a DL

model, preventing us from establishing the trustworthiness of the output and injecting

prior knowledge.

Chapters 4 to 6 of this thesis deal with methods that make certain aspects of deep CNNs

more interpretable and thus suitable to the injection of prior knowledge: Chapter 4 is

about making the intermediate features react in a predictable way to rotations in the

input image and Chapter 6 uses a CNN to generate an intermediate output that can be

interpreted and thereafter used by another algorithm to produce the final result. This is

part of a growing trend in the direction of DL models in which it is possible to disentangle

the factors of variation in the input images (such as into number of objects, size, color,

pose, etc.) (Chen et al., 2016b; Mathieu et al., 2016; Narayanaswamy et al., 2017), rather

than simply providing a final result. Making the dimensions of some intermediate feature

spaces interpretable by humans opens up the possibility of injecting prior knowledge into

the problem. Hinton et al. (2000) proposed a framework for representing individual objects

in an image as multidimensional vectors, or capsules, that are hierarchically related to

each other forming a tree structure. Capsules in one layer follow a voting scheme in

order to associate and build a higher level capsule in the next layer. The values in the

capsules have been shown to become easily interpretable, with the addition that they can

be analyzed at different levels of the object hierarchy (Sabour et al., 2017). The concept
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of disentanglement has also been applied to the output space. For a user of a fine-grained

classification model, with hundreds of very similar classes such as bird species, it might

be easier to asses the trustworthiness of the model if the output consists, not just of the

species’ name, but also a list of easily identifiable attributes, such as beak shape, color,

tail characteristics, etc., that corresponds to that species (Lampert et al., 2014). Not

only does this help judging the validity of the result, but also allows to make use of prior

knowledge for tasks such as zero-shot learning (Akata et al., 2013), in which a never seen

class can be identified if we hold some information about its attributes.

Another concept, closely linked to interpretability, is explainability. Sometimes used as

a synonym of interpretability (Zhang et al., 2018), some authors (Miller, 2017; Samek

et al., 2017) consider a ML model to be explainable if it can offer the user, along with

the prediction, answers about why that prediction has been produced. For instance, it

could generate a textual explanation describing the image features that are relevant to

the decision (Hendricks et al., 2016) or allow to visualize what regions of an image trigger

certain output. This lets the user judge whether the model is “looking” at the expected

place or has only found some artifact in the data. If both the where and the why became

simultaneously interpretable, this would also open the door for the users to learn how to

solve the visual problem themselves (Mac Aodha et al., 2018).

Having a DL model fully built of interpretable elements and able to point at the location

on the image causing each element to activate would not only make it more trustworthy

and easy to debug, but also more adequate to the injection of prior knowledge at every

level: at the geometrical composition level thanks to the localization; at the feature level;

and at the output level. I believe that the CV community should strive for such DL

models that 1) allow the experts to make use their knowledge and 2) inspire trust, even

teach new things, to the final users.
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