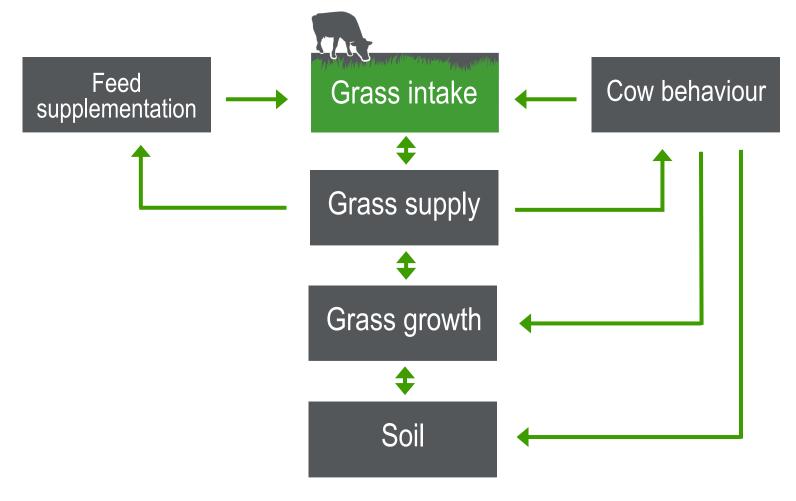
Feed wedge and cutting window for grazing systems with high levels of supplementation

June 20th EGF-2018

Theme 5-Big data and smart technologies in grassland

M.W.J. Stienezen, A.P. Philipsen, R.L.M. Schils en A. van den Pol-van

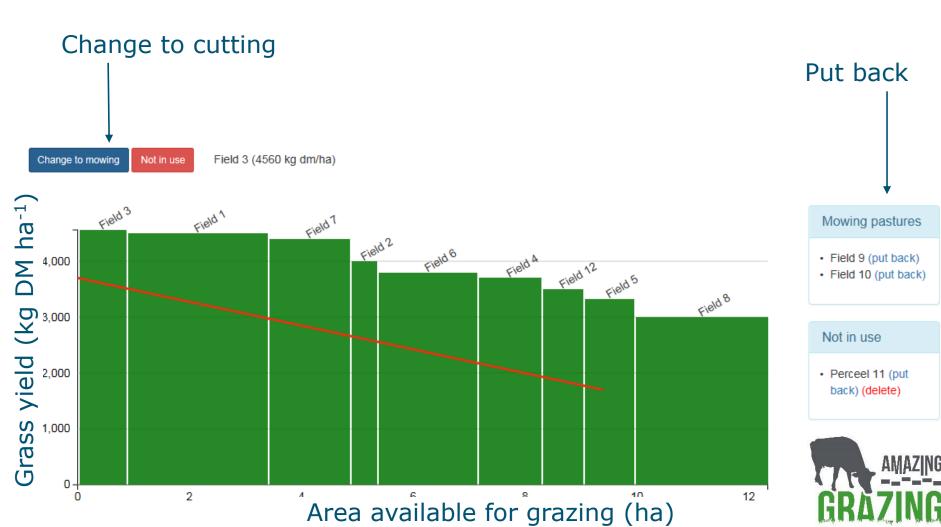
Dasselaar



Components of Amazing Grazing

Amazing Grazing & Grip op Gras

- Optimise on farm fresh grass utilisation for dairy systems with
 - alternating use of grassland
 - by rotational grazing
 - cutting for fodder production
 - high levels of feed supplementation during grazing season
- Grip of Gras combines feed wedge and cutting window
 - Feed wedge to manage grazing platform
 - Cutting window to manage cutting platform



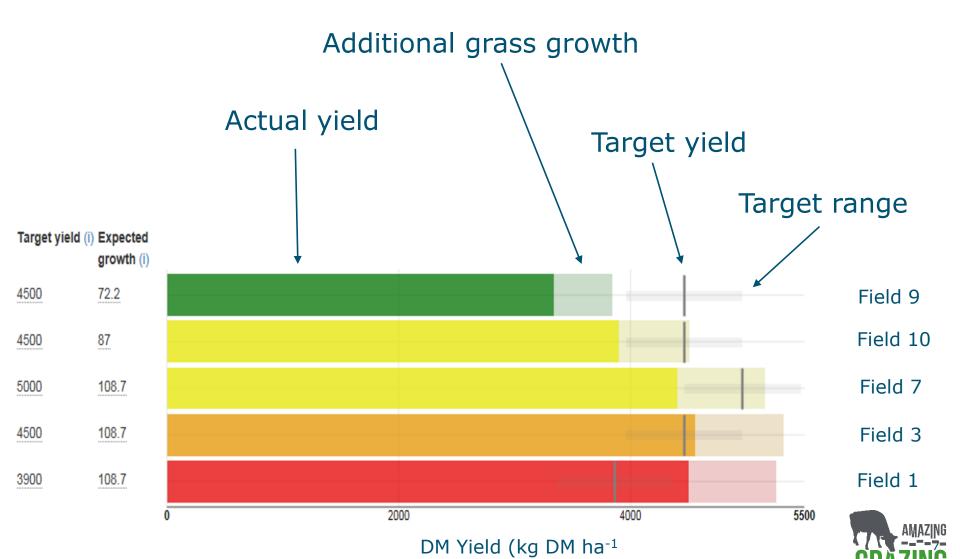
DM Yield kg dm ha ⁻¹												_			ء اہ										Feed wedge & Grip op Gras														
4500									- 1	-е	e		W	reuge & Grip op Gras																									
4400																				•		•																	
4300																																							
4200						_								 Fixed target yield and 																									
4100				V -0																																			
4000				X _A =0										target residual																									
3900				Y _A =Target yield																																			
3800				IA-Idiget yield										 Size grazing platform 																									
3700																																							
3600					varies depending on																																		
3500					grass growth																																		
3400					grass grower																																		
3300																																							
3200																																							
3100																																							
3000																		•																					
2900															~																								
2800															XE	₃ =G	ira	SS (der	na	n _{4/}	/Gi	ras	s gi	rov	vth	1												
2700															Y _B =Target residual																								
2600															I _B -TaigetTesiuuai																								
2500																							1																
2400																								7															
2300																									1														
2200																																							
2100																																							
2000																																							
1900														+																									
1800																																							
1700																											AMAZ	ING -											
1600																										17.													
1500																									- G	RA	ZIN	G_											
Field	3	11	10	12	1	13	5	4	16	2	チ	15	8	6	18	17	9	14	19	20	21	23	24	25	Million di		11/20 May	- Secure &											

Grazing platform & cutting window

Move paddocks from grazing platform to cutting platform and vice versa

Feed wedge & expected grass growth

- Feed wedge is calculated with expected grass growth
- Expected grass growth is
 - reference for farmers
 - the average grass growth on a certain date during the growing season depending on actual yield
 - grass growth model in Dairy Wise
 - adjustable to simulate the effect on grass supply



Cutting window

To optimise moment of cutting

Development & testing

- Prototype
- Developed with advisors, farmers and researchers
- Tested between April and July 2017 by 10 dairy farmers and advisors
- Half of them was familiar with estimating DM yield and the use of a feed wedge, the others were not
- Participants provided feedback weekly
- Free to use at www.akkerweb.eu

Results & discussion

- Difficult to identify farmers and advisors for test
- Experienced farmers used Grip op Gras in management
- Highly appreciated
 - Combination feed wedge and cutting window
 - Adjustable expected grass growth
- User-friendliness has to be improved
 - Input of data
- Utility and user-friendliness associated with level of experience in measuring DM yield and use feed wedge
 - More experienced farmers had fewer problems

Conclusion

- Concept of feed wedge and the cutting window was appropriate and satisfactory
- User-friendliness has to be improved
- To support the needs of a wide range of farmers with varying experience in grassland management with data, the several functionalities of Grip op Gras should become available separately

Amazing Grazing!!!

Amazing Grazing is funded by:

Duurzame Zuivelketen is gezamenlijk initiatief van:

nederlandse zuivel organisatie

Partners in Amazing Grazing:

Amazing Grazing is realised in cooperation with:

