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INTERPRETIVE SUMMARY 1 

Efficient and accurate computation of base generation allele frequencies 2 

Aldridge 3 

Several aspects of genomic prediction use allele frequencies. The current method is to calculate 4 

allele frequencies from the current genotyped population, however it is assumed they are equal 5 

to the allele frequencies in the pedigree base generation. We compared the current method, with 6 

best linear unbiased predictions and general least squares methods, to determine if there is a 7 

more accurate and equally efficient method, of calculating allele frequencies, that better 8 

represent the base generation. We concluded that the general least squares method using sparse 9 

relationship matrices should be adopted, as it is efficient, and more accurate than the current 10 

method.   11 
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ABSTRACT 20 

Allele frequencies are used for several aspects of genomic prediction, with the assumption that 21 

these are equal to the allele frequency in the base generation of the pedigree. The current 22 

standard method, however, calculates allele frequencies from the current genotyped population. 23 

We compared the current standard method, with BLUP and general least squares (GLS) 24 

methods explicitly targeting the base population, to determine if there is a more accurate and 25 

still efficient method of calculating allele frequencies, that better represents the base generation. 26 

A dataset based on a typical dairy population was simulated for 325,266 animals, the last 27 

100,078 animals in generations 9 to 12 of the population were genotyped, with 1,670 SNP 28 

markers. For the BLUP method, several SNP genotypes were analyzed with a multi-trait model 29 

by assuming a heritability of 0.99 and no genetic correlation among them. This method was 30 

limited by the time required for each BLUP to converge (approximately 6 minutes, per BLUP 31 

run of 15 SNPs). The GLS method had two implementations. The first implementation, using 32 

imputation on the fly and multiplication of sparse matrices, was very efficient, and required just 33 

49 seconds and 1.3 GB of random access memory. The second implementation, using a dense 34 

full 
1

22


A  matrix, was very inefficient, and required more than one day wall clock time and over 35 

118.2 GB of random access memory. When no selection was considered in the simulations, all 36 

methods predicted equally well. When selection was introduced, higher correlations between 37 

the estimated allele frequency and known base generation allele frequency were observed for 38 

BLUP (0.96 ± 0.01) and GLS (0.97 ± 0.01), compared to the current standard method (0.87 ± 39 

0.01). The GLS method decreased in accuracy when introducing: incomplete pedigree with 40 

25% of sires in the first five generations randomly replaced as unknown to erroneously identify 41 

founder animals (0.93 ± 0.01) and a further decrease for eight generations (0.91 ± 0.01). There 42 

was no change in accuracy when introducing 5% genotyping errors (0.97 ± 0.01), 5% missing 43 

genotypes (0.97 ± 0.01), or both 5% genotyping errors and missing genotypes (0.97 ± 0.01). 44 
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The GLS method provided the most accurate estimates of base generation allele frequency, and 45 

was only slightly slower compared to the current method. The efficient implementation of the 46 

GLS method, therefore, is very well suited for practical application and is recommended for 47 

implementation. 48 

 49 

Key words: General least squares, best linear unbiased prediction, dairy cattle 50 

 51 

INTRODUCTION 52 

Allele frequencies are required for several processes in genomic prediction. The assumption for 53 

these processes is that the allele frequencies used is equal to the allele frequency of the base 54 

generation, commonly defined as the pedigree founders. For multi-step genomic evaluations, 55 

allele frequencies are used for the computation of model-based reliabilities of direct genomic 56 

values (VanRaden, 2008). However, VanRaden (2008) showed that there was limited impact 57 

on reliabilities of genomic predictions when using base generation or estimated allele 58 

frequencies. For single-step GBLUP, allele frequencies are used for the computation of 59 

genomic relationships (Aguilar et al., 2010, Christensen and Lund, 2010). The compatibility 60 

between pedigree and genomic relationships is an important issue in single-step GBLUP, as 61 

differences in the bases of both matrices may lead to bias of the predictions and reduce their 62 

accuracy. This possible bias can be overcome by making adjustments to the genomic 63 

relationships (Vitezica et al., 2011, Christensen, 2012, Gao et al., 2012). Using base generation 64 

allele frequencies to compute the genomic relationships is another possible approach towards 65 

getting pedigree and genomic relationships compatible. For estimating relationships among 66 

metafounders (pseudo-individuals used as founders in the pedigree, with an unknown sire and 67 

dam), the computation is based on the variance of the base generation allele frequencies 68 
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(Legarra et al., 2015), so estimating base generation allele frequencies accurately is essential 69 

for this process. However, it is standard practice to use allele frequencies calculated from the 70 

current genotyped population, because of the ease of computation. 71 

  72 

An accurate and computationally efficient method of estimating base generation allele 73 

frequencies is desirable to replace the current standard method based on the currently genotyped 74 

population. Two methods have been proposed to explicitly estimate the base generation allele 75 

frequencies. The first method was to run, for each SNP, a best linear unbiased prediction 76 

(BLUP), where the heritability was close to 1 (e.g., 0.99 or smaller) (Gengler et al., 2007). The 77 

second method was, for each SNP, a general least squares estimator (GLS) using either sparse 78 

or dense matrices for the computation of the inverse of pedigree relationship sub-matrices 79 

(McPeek et al., 2004, Garcia-Baccino et al., 2017, Strandén et al., 2017). The BLUP and GLS 80 

methods are expected to be very similar because both use pedigree information, but we did not 81 

expect them to be exactly the same, although theoretically equivalent (e.g., Garcia-Baccino et 82 

al. 2017, Mrode 2005, Henderson, 1981), differences between estimates of BLUP and GLS 83 

methods could be due to the heritability different than one and the iterative solver used in the 84 

BLUP method. The objective of this study was to determine the most efficient and accurate 85 

method for estimating base generation allele frequencies when different scenarios likely to 86 

occur in real data are considered, including missing genotypes, genotyping errors and 87 

incomplete pedigree. We explored alternative implementations to improve the computational 88 

efficiency, with a multi-trait model for BLUP rather than the previously proposed single-trait 89 

model, such that these strategies could be applied with currently available and routinely used 90 

software. 91 

 92 
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MATERIALS AND METHOD  93 

To achieve our objective datasets were simulated with a typical Holstein-like dairy population 94 

using QMSim (Sargolzaei and Schenkel, 2009). Each dataset was simulated with a historical 95 

population of 100,000 animals, decreasing to 500 animals over 2000 generations, and then 96 

rapidly increasing to 25,000 animals over 10 generations, this was to establish linkage 97 

disequilibrium in the base generation (average r2 between adjacent markers = 0.41). The 98 

founder population and base generation for which the allele frequencies were to be estimated, 99 

consisted of 24,970 females and 30 sires, selected from the final historical generation. The 100 

population structure of the historical and founder population were selected to achieve an 101 

effective population size of ~100. The following 12 generations had a mutation rate of 52 5 10. *
  102 

(same mutation rate as the historical population), to ensure enough segregating markers in the 103 

final generations (Daetwyler et al., 2013), made random selections, random matings, and the 104 

same sex proportions in the founder population were maintained. The resulting pedigree 105 

included a total of 325,266 animals across 12 generations. This base simulation had no selection 106 

and was used as a control. Generations 9 to 12 were fully genotyped which included 100,078 107 

animals. The genotyping included 1,670 SNPs with 250 QTL affecting the trait, with a uniform 108 

distribution of allele frequencies in the base generation, which were randomly positioned across 109 

10 chromosomes, and each chromosome was 100cM in length. The number of markers was 110 

chosen to be similar to that in the additional simulations more likely to occur in reality. 111 

 112 

Seven additional datasets were simulated using the same historical and founder population 113 

structure as the base simulation but with selection included, and depending on the scenario, 114 

errors or missing data were introduced to mimic reality (Table 1). All additional datasets used 115 

the base simulation, with selection for the last 12 generations based on high EBVs obtained 116 
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with BLUP and considering the true additive genetic variance, rather than randomly, and the 117 

1,670 SNPs were positioned on a single chromosome of 100cM. The number of markers was 118 

selected for scaling to 1,670 SNPs on each of 30 chromosomes, to be representative of a 119 

commercial 50K chipset. In the datasets with selection, only a single chromosome was 120 

simulated to achieve a strong impact of selection on the change in allele frequency within a 121 

limited number of generations, illustrated by the allele frequency change between the base and 122 

the last genotyped generation (Figure 1). In the first dataset with selection it was assumed that 123 

the pedigree and all genotypes were known without error. The second dataset had an incomplete 124 

pedigree, created by randomly replacing 25% of sires in generations 1 to 5 as unknown parents, 125 

this was to replicate a situation in which pedigree records are lost and unknown sires are 126 

erroneously identified as base animals. The third dataset included extending the number of 127 

generations which randomly replaced 25% of sires as unknown parents up to generation 8. In 128 

the fourth dataset, genotyping errors were simulated, where a genotype is replaced by two 129 

randomly sampled alleles, at a rate of 5%. The fifth data simulation randomly introduced 130 

missing genotypes, at a rate of 5%. The sixth dataset included both the 5% erroneous genotypes 131 

and 5% missing genotypes. Finally a 50K SNP dataset was simulated with 30 chromosomes 132 

each with 1,670 SNPs randomly positioned.  133 

 134 

In all scenarios a single dataset was simulated, where the results were evaluated across the 1,670 135 

SNPs. So, the 1,670 SNPs served as replicates across which the results were evaluated. To 136 

evaluate if the dependency between SNPs may have affected the averaged results, we also 137 

selected a subset of SNPs including every 50th SNP and evaluated results for those separately. 138 

The average correlation between these 33 SNPs was 0.03 and were considered to be 139 

independent. 140 

 141 
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[INSERT TABLE 1 NEAR HERE] 142 

[INSERT FIGURE 1 NEAR HERE] 143 

However, it is standard practice to use allele frequencies calculated from the current genotyped 144 

population, because of the ease of computation. 145 

 146 

The current standard method to calculate the allele frequencies of the genotyped population to 147 

be used as base generation allele frequencies was implemented with a Fortran program we 148 

developed, hereafter referred as “current method”.  The frequency of allele 1 of the i-th SNP, 149 

ip , was computed as follows: 150 

1

2
i

n
p

n
 151 

Where 1n  is the number of occurrences for allele 1, and n  is the total number of alleles. 152 

Another implementation was made where instead of using all genotyped animals, only the 153 

oldest genotyped generation was used, assuming they are a better representation of the base 154 

generation because they are closer connected to it.  155 

 156 

The BLUP method involved evaluating the genotypes of each of the SNPs as a phenotype in a 157 

BLUP model, with the software MiXBLUP (Ten Napel et al., 2017). For each SNP the 158 

heritability was set to 0.99 following Gengler et al. (2007). To speed up the analyses, multiple 159 

SNPs were analyzed simultaneously by the means of a multi-trait model with zero genetic 160 

correlations among SNPs. To determine the optimum number of SNPs to be included in each 161 

run, a series of analyses were run with the number increasing from 1 to 60, in increments of 5. 162 

Based on the results of these analyses (Figure 2), the final BLUP analysis consisted of 111 163 
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BLUP runs of 15 SNPs, and one run of 5 SNPs, all performed in parallel. The MiXBLUP 164 

convergence criteria for the preconditioned conjugate gradient method was 121 0 10. *  . The 165 

base generation allele frequency was estimated for each SNP as ˆ / 2 , where ̂  was the estimate 166 

of the general mean of the model. Simulated missing genotypes were considered as missing 167 

phenotypes in the analysis. 168 

 169 

The GLS equivalent uses the method proposed by McPeek et al. (2004) and implemented by 170 

Strandén et al. (2017) and Garcia-Baccino et al. (2017). Whereby for the i-th SNP: 171 

  i
ˆ

1
1 1

i 22 22
1 A 1 1 A z


    ,  172 

where 1  is a vector of ones, 
1

22


A  is the inverse pedigree relationship matrix of genotyped 173 

animals and 
i

z is a vector of genotypes coded as 0, 1, and 2. Two implementations of this 174 

method were made. Our first implementation referred to as “GLS_Sparse”, was similar to that 175 

of Strandén et al. (2017), in the sense that the vector 
 1

22
t A 1  was first computed as a 176 

multiplication of sparse matrices by the vector 1 , followed by the trivial computation of the 177 

scalar ( ) ( )1 1 1

22
1 A 1 1 t

      , and by the multiplication of a matrix and vector, that is ˆ t Z  178 

. The vector t  can be efficiently computed as follows Strandén et al. (2017):  179 

 
1

1 22 21 11 12

22
t A 1 A 1 A A A 1


                  

  180 

where, A
ij  are submatrices of 1

A
 , a value for i and j of 1 denotes non-genotyped animals while 181 

a value of 2 denotes genotyped animals, and the brackets [… ] indicate the order of the matrix-182 

vector operations. 183 

 184 
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In our implementation, MKL subroutines were used for the matrix-vector multiplications, and  185 

Intel MKL-PARDISO (Schenk et al., 2001) was used to compute ( ) ( )11 1 12 11 1
x A A 1 A v

       186 

by solving 11
A x v . In GLS_Sparse, missing genotypes were replaced with the current 187 

genotype mean, computed across all animals with observed genotype for this locus. The second 188 

implementation of the GLS method, instead calculates the full 
1

22


A  directly using Calc_grm 189 

(Calus and Vandenplas, 2016), hereto referred as “GLS_Full”.  This approach may mimic an 190 

approach where a user would use available software. 191 

 192 

All computations were run on a high performance cluster (HPC). The HPC was designed  with 193 

48 nodes: 16 cores, 64 GB memory, Intel Xeon, and  2.2 GHz. A single thread was used for the 194 

current, BLUP, and GLS_Sparse methods. For the computation of
1

22


A  with Calc_grm, one 195 

node with 64 cores, 1 TB memory, AMD Opteron, and 2.3 GHz was used. A total of 16 threads 196 

were used for Calc_grm, but the implementation of the full 
1

22


A  in   i

ˆ
1

1 1

i 22 22
1 A 1 1 A z


     was 197 

done with a single thread on the same nodes as the other methods.  198 

 199 

To determine if one of the methods of estimating base generation allele frequency should be 200 

used to replace the current method, it needs to be efficient and at least as accurate. To determine 201 

efficiency, both the wall clock time and total processing time were compared between methods. 202 

Wall clock time varied depending on the number of CPUs used, if parallel processing is used, 203 

and if the process had been optimized. That is why it was also important to consider the 204 

processing time, which accounts for the total time used across all CPUs and processes. Similarly 205 

for computational efficiency, the total Random Access Memory (RAM) used was also reported 206 

to compare memory requirements. Wall clock time, total processing time, and total RAM were 207 
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recorded as the maximum job requirements, as reported by the HPC. Accuracy was determined 208 

by the correlation of the known base generation allele frequency from QMSim, and the 209 

estimated allele frequency. 210 

 211 

RESULTS  212 

The results for efficiency are only presented for the base simulation without selection as the 213 

results were similar for the other simulations (Table 2). We observed the current method of 214 

estimating base generation allele frequency using all genotyped animals is fast (3 seconds). 215 

Using the same method but with only animals from the oldest genotyped generation was even 216 

faster (1 second). Using the GLS method with GLS_Sparse required more time but we still 217 

considered it to be efficient (49 seconds). Using methods BLUP (35 minutes), or the full 
1

22


A  218 

with GLS_Full (over 1 day), were not efficient compared to the current method. Finally, the 219 

GLS_Sparse method was also tested with the 50K SNP dataset which required 6 minutes of 220 

processing time. 221 

 222 

[INSERT TABLE 2 NEAR HERE] 223 

 224 

The processing time for the current method, and only the oldest genotyped generation, had no 225 

additional time requirements compared to the wall clock time. The GLS_Sparse method was 226 

the fastest alternative method (49 seconds). The total processing time for the BLUP analysis 227 

(12 hours, 42 minutes), was an accumulative amount of time, caused by the total number of 228 

individual runs required in MiXBLUP of 15 correlated SNPs (minimum time per run <5 229 

minutes). Less than 10 seconds per SNP was required for MiXBLUP runs with between 5 and 230 
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20 SNPs. For a run with 60 SNPs, approximately 15 seconds per SNP was required during 231 

solving (Figure 2). The total processing time was increased for 60 SNPs (13 hours, 42 minutes) 232 

due to the minimum time per run (approximately 30 minutes), but there was no significant 233 

difference in memory requirements. The total processing time for the GLS method using the 234 

full 
1

22


A  was exceptionally demanding (over 19 days), the majority of which was used to invert 235 

the 22A  matrix using Calc_grm.  236 

 237 

[INSERT FIGURE 2 NEAR HERE] 238 

 239 

The total RAM required for each method was closely related to the total processing time (Table 240 

2). The current method required very little memory (<0.1 GB), and only using the oldest 241 

genotyped generation, even less (<0.1 GB). GLS_Sparse required more RAM (1.3 GB) but was 242 

still computationally efficient. When the 50K SNP dataset was used, GLS_Sparse required up 243 

to 37.6 GB. The RAM requirements for the BLUP analysis with 1,670 SNPs was large (49.0 244 

GB) due to the individual BLUP runs of 15 SNPs which required 0.4 GB each. Using the full 245 

1

22


A  for the GLS validation was the most demanding (118.2 GB), again primarily due to storing 246 

the full
1

22
A


 matrix and its inverse with Calc_grm (78.4 GB). 247 

 248 

For all datasets and methods, there was no significant difference in accuracy between the full 249 

1,670 SNPs and the subsets of 33 independent SNPs, therefore, only the results for the full 250 

datasets are presented. When using the base simulation with no selection, the accuracies, 251 

computed as correlations between the estimated allele frequency and the known simulated 252 

frequency, were not different to one (0.99 ± 0.01), for all methods (Table 3). Significant 253 
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differences in accuracy between methods were observed for simulations that included selection. 254 

When using the current method with all genotyped animals the accuracy decreased to 0.87 ± 255 

0.01, by only using the oldest genotyped generation, the accuracy was slightly increased but 256 

was not significantly different (0.88 ± 0.01). We observed that both the BLUP (0.94 to 0.97) 257 

and GLS (0.93 to 0.97) methods significantly increased the accuracy for all data simulations 258 

under selection. There was no significant difference between the BLUP and GLS methods with 259 

a correlation of 0.99 ± 0.01 observed with the base simulation under selection (Figure 3). For 260 

both the BLUP and GLS method, the estimated allele frequencies were more similar to the true 261 

base generation allele frequency for allele frequencies <0.10 and >0.90, while larger differences 262 

were observed where the true allele frequency was closer to 0.50 (Figure 4). 263 

 264 

[INSERT TABLE 3 NEAR HERE] 265 

[INSERT FIGURE 3 NEAR HERE] 266 

[INSERT FIGURE 4 NEAR HERE] 267 

 268 

When founders are erroneously identified in the pedigree between generations 1 and 5 the 269 

accuracy is still improved with both BLUP (0.94 ± 0.01) and GLS (0.93 ± 0.01) compared to 270 

the current method (0.87 ± 0.01). When the incomplete pedigree is continued up to generation 271 

8, the accuracy was decreased for the BLUP and GLS methods (0.91 ± 0.01). The accuracy 272 

with the incomplete pedigree was lower compared to the other data simulations. Introducing 273 

5% missing genotypes or 5% genotyping errors did not affect the accuracy (0.97 ± 0.01). When 274 

both the 5% missing and 5% genotyping errors were included none of the methods were 275 

affected. The missing genotype rate was reanalyzed for the GLS_Sparse method to see what 276 

effect different missing genotype rates (between 1 to 10%) had on the accuracy of estimation 277 
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(Figure 5). The GLS_Sparse method was very robust, even up to 10% missing genotypes the 278 

accuracy was not significantly different to 0.97, although the accuracy did start to decrease after 279 

8% missing genotypes (0.96). 280 

 281 

 [INSERT FIGURE 5 NEAR HERE] 282 

 283 

DISCUSSION  284 

The objective of this study was to compare methods for estimating base generation allele 285 

frequencies in terms of efficiency and accuracy. The only method both efficient and accurate 286 

was the GLS method using GLS_Sparse. With wall-clock and processing times less than one 287 

minute, it can be implemented in routine genomic evaluations without jeopardizing overall 288 

efficiency. The RAM requirements for the GLS_Sparse are linearly related to the number of 289 

SNPs, as shown by the results obtained with the 50K SNP dataset. While the time requirement 290 

is already limited (<10 minutes for the 50K dataset), it could be even further improved by using 291 

parallel processing, since the MKL library and PARDISO are multi-threaded. For example, the 292 

wall clock time was reduced to <5 minutes when using 4 threads. The 50K SNP was not 293 

analyzed with the BLUP method but would require 3,340 runs of 15 SNPs each. Assuming each 294 

run was equal to the mean time required (0-00:06:20), the required processing time would be 295 

over 14 days, and the observed wall clock time would be limited by the number of parallel 296 

MiXBLUP runs that can be run at the same time. As already demonstrated the GLS_Full was 297 

already inefficient for 1,670 SNPs and no attempt to analyze the 50K SNP dataset with 298 

GLS_Full was made nor is it recommended. It is worth noting that computing explicitly 
1

22


A  299 

is not strictly necessary for GLS_Full, because we need the product 
 1

22
t A 1 , which can be 300 
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more time-efficiently computed as [ ]1 1
t L L 1

  , with the matrix L  being the Cholesky factor 301 

of 22A . This strategy would request the same amount of memory as GLS_Full, and will be 302 

considerably faster than GLS_Full. Even then it would still be computationally much less 303 

efficient than GLS_Sparse. 304 

 305 

Importantly, GLS_Sparse is more accurate than the current method that simply computes the 306 

allele frequency in the current genotype data. It is recommended that the GLS_Sparse method 307 

is implemented, when using allele frequencies for genomic prediction processes, where the 308 

assumption requires base generation frequencies. Arguably, with increasing amounts of 309 

genotype data available, the estimated base generation allele frequencies will not change as 310 

much over time as the allele frequencies in the genotype data. In practical implementations, one 311 

could consider not to re-estimate base generation allele frequencies for every run of the genetic 312 

evaluation. Instead, they could be re-estimated for instance every time that the variance 313 

components of the model are re-estimated. Any possible fluctuations in results (as an example, 314 

genomic estimated breeding values), caused by changing allele frequencies when new 315 

genotyped animals are added and when using the current method, would therefore only occur 316 

when the frequencies are re-estimated and not for every evaluation. 317 

 318 

There was no significant difference in accuracy between the GLS and BLUP methods, as both 319 

use the pedigree information. GLS and BLUP had high correlations with the known base 320 

generation allele frequencies, estimates are virtually the same with incomplete pedigree, but the 321 

estimates from the two methods were different with both genotyping errors and missing 322 

genotype datasets. Additional analyses with BLUP (results not shown), mimicking the GLS 323 

implementation by using a heritability of 0.99999 and replacing missing genotypes by the 324 
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average genotype in the data, confirmed that the difference between GLS and BLUP is due to 325 

using a non-unity heritability in BLUP, and by replacing genotypes in GLS with the average 326 

(which is probably worse than putting it to missing in BLUP). However in many practical 327 

applications replacing missing values in the GLS method will probably be unnecessary as 328 

imputation is common practice. When a considerable number of genotyping errors is present, 329 

the BLUP method may be better able to deal with this, as it has been suggested to be robust 330 

against genotyping errors (Gengler et al., 2007). In such cases the heritability used should 331 

probably reflect the proportion of genotyping errors, and a value lower than our value of 0.99 332 

may be more appropriate. In fact, the heritability of the genotypes of each SNP could be 333 

estimated to assess its quality in the first place (Forneris et al., 2015). 334 

 335 

Results for the simulated scenario with selection did indicate that estimated allele frequencies 336 

deviated considerably, up to 0.25 units, from the actual values. Observed deviations were larger 337 

for allele frequencies closer to 0.50 and limited at <0.10 or >0.90. This is because the estimates 338 

of allele frequencies closer to 0 or 1 were on one side bounded to stay within the parameter 339 

space. The simulations employed were rather extreme in the sense that changes in allele 340 

frequencies up to 0.7 units were observed across 12 generations of selection. In real-life 341 

breeding programs it is unlikely to see so many loci with such big changes in allele frequencies 342 

in such a short time frame, so the expected deviations of the estimated from the true base allele 343 

frequencies are expected to be smaller.  344 

 345 

The only partial limitation observed with GLS_Sparse method, was that SNPs that had a minor 346 

allele frequency below 0.001 in both the base generation and current population, would 347 

sometimes result in an estimate outside of the parameter space. This was also observed with the 348 
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BLUP method. There were three SNPs in the base simulation without selection, that were 349 

outside of the parameter space (outside parameter space by <0.001). Similar numbers of SNPs 350 

were observed outside the parameter space for the other data simulations. These SNPs also had 351 

known minor allele frequencies in the base generation of <0.001 and known minor allele 352 

frequencies in the generation 12 of <0.001. Such estimates have been observed by VanRaden 353 

(2008) and Makgahlela et al. (2013), which suggested that these outliers are due to the use of 354 

linear algebra, instead of nonlinear probabilities.  355 

 356 

Alternatively the current method was used to filter SNPs with a minor allele frequency (<0.01) 357 

before running GLS_Sparse. The only benefit was it did remove the SNPs with estimates that 358 

previously were outside the parameter space (results not shown). Realistically those SNPs 359 

would be removed during standard processing practices before being used in GLS_Sparse, and 360 

estimates outside the parameter space are not expected to occur. If the base allele frequency is 361 

needed for all markers, it may be necessary to assume they are fixed by assigning missing or 362 

zero to markers outside the parameter space. We conclude that the GLS_Sparse method is 363 

efficient, robust and accurate within the range of allele frequencies 0.01 to 0.99.  364 

 365 

When animals were erroneously identified as founders due to incomplete pedigree we observed 366 

a significant decrease in accuracy for the BLUP and GLS methods. The accuracy was decreased 367 

further when removing the pedigree for 25% of the animals up until generation 8, which was 368 

the last non-genotyped generation. This effectively meant that animals from later generations 369 

were added to the base, and because allele frequencies changed across generations, the 370 

estimates represented some sort of average across generations instead of those in the base 371 

generation. It is important to note that the accuracy for the BLUP and GLS methods were still 372 
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greater compared to the current method. The accuracy for such cases could be improved by 373 

taking into account the different base populations, by implementing the GLS_Sparse method 374 

with genetic groups. This could be done by replacing the vector 1 in the different formula by a 375 

matrix Q that contains the expected fraction of each genetic group for each genotyped 376 

individual, that is  ˆ
1

1 1

22 22
μ QA Q QA z


  i i

with μ̂i
 being a vector of estimates of base allele 377 

frequencies for all genetic groups (Gengler et al., 2007, VanRaden, 2008, Makgahlela et al., 378 

2013, Garcia-Baccino et al., 2017). The strategies used for GLS_Sparse are readily extendable 379 

for the computation of 
1

22
Q A

  and  
1

1

22
Q A Q


 . 380 

 381 

Allele frequencies are required for several processes in genomic prediction. This includes 382 

computation of model-based reliabilities of direct genomic values in the context of multi-step 383 

genomic evaluations, computation of genomic relationships to be used in single-step GBLUP, 384 

computation of relationships among metafounders, and compatibility between the pedigree and 385 

genomic relationship matrices. The bias due to compatibility between the relationship matrices 386 

can be overcome by adjusting the genomic relationship by blending with the pedigree matrix 387 

(Gao et al., 2012), or shifting the genomic relationships by an analytically derived constant 388 

(Vitezica et al., 2011). Alternatively the pedigree relationship matrix can be adjusted by scaling 389 

it to the genomic relationship matrix (Christensen, 2012). While these adjustments for the 390 

relationship matrices could be more efficient than the computation of base allele frequencies 391 

when performing a genomic evaluation, it can be assumed that the computation of base allele 392 

frequencies could be performed only once for multiple successive genomic evaluations (e.g., at 393 

the same rate as variance components estimation), which would reduce its costs even further.  394 

 395 

CONCLUSIONS 396 
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There are a number of benefits for calculating base generation allele frequencies using the 397 

general least squares method, with a pedigree relationship matrix computed using sparse 398 

matrices. It is fast, so that practical application is appropriate and would not delay other 399 

processes. It is accurate in estimating base generation allele frequencies under a number of 400 

different scenarios, thereby better fulfilling the assumptions of genomic prediction processes 401 

than the current method. We recommend base generation allele frequencies be estimated using 402 

a GLS method implemented with sparse matrices for 
1

22


A , and replacing any missing genotypes 403 

with the mean allele frequency calculated from the genotyped population, or with imputed 404 

values.  405 

 406 
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TABLES 474 

Table 1: Summary of the structure and errors for the different data simulations. 475 

Dataset Chromosomes Selection Data error 

Base simulation 10 No selection No errors 

Base simulation 1 High EBVs No errors 

Incomplete pedigree 1 High EBVs 

25% of sires in generation 1 to 5 

are randomly replaced as 

unknown 

Incomplete pedigree 1 High EBVs 

25% of sires in generation 1 to 8 

are randomly replaced as 

unknown 

Genotyping errors 1 High EBVs 
5% of genotypes are replaced by 

randomly sampled alleles 

Missing genotypes 1 High EBVs 
5% of genotypes are randomly 

replaced as missing 

Errors and missing 1 High EBVs 
Both 5% genotyping errors and 

missing genotypes 

50K SNPs 30 No selection No errors 

  476 
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Table 2: Computational time (day-hour:minute:second) and memory requirements to complete 477 

the full process of each method for the base simulation without selection. 478 

Method Process time Wall clock time Random Access Memory 

Current method 0-00:00:03 0-00:00:03 <0.1 GB 

Oldest genotyped animals 0-00:00:01 0-00:00:01 <0.1 GB 

    

111 MiXBLUPs1 0-12:42:47 0-00:10:50 48.9 GB 

1 MiXBLUP of 15 SNPs2 0-00:06:20 0-00:06:20 0.4 GB 

    

GLS_Sparse 0-00:00:49 0-00:00:49 1.3 GB 

GLS_Full 19-23:05:09 1-08:25:24 118.2 GB 

1Requirements for 111 BLUP runs including 15 SNPs and 1 run including 5 SNPs. 479 

2Average requirements for 111 BLUP runs, including 15 SNPs. 480 

 481 

  482 
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Table 3: Correlation between the known base generation allele frequency and estimated allele 483 

frequency, all standard errors were < 0.01. 484 
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FIGURES  486 

Aldridge Figure 1 487 

  488 

  489 
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Aldridge Figure 2 490 

 491 

  492 
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Aldridge Figure 3 493 

 494 

  495 
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Aldridge Figure 4 496 

 497 

  498 
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Aldridge Figure 5 499 

  500 
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Figure 1: Change in allele frequency between generation 9 and 12 for the base simulation 501 

without selection (top left) and the base simulation with selection (top right). Change in allele 502 

frequency between generation 0 and 12 for the base simulation without selection (bottom left) 503 

and the base simulation with selection (bottom right). 504 

 505 

Figure 2: Mean time per SNP for MiXBLUP to start and end, solving mixed model equations, 506 

with the base simulation dataset. 507 

 508 

Figure 3: The allele frequency estimated with BLUP versus GLS_Sparse, for the base 509 

simulation with selection. 510 

 511 

Figure 4: The relationship between the base generation allele frequency, and the difference 512 

between the estimated allele frequency with GLS_Sparse compared to the base generation 513 

allele frequency, with a linear regression, for the base simulation with selection.  514 

 515 

Figure 5: The relationship between increasing the missing genotype rate and the correlation 516 

between estimated frequency with GLS_Sparse and the known base allele frequency. 517 


