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Abstract 
Polyketide synthases (PKSs) are multienzymes arranged in 

assembly lines that generate diverse polyketides of great 

pharmaceutical importance. The unique modular 

structure and catalyzing mechanism of these assembly 

lines makes their products predictable and also triggered 

the combinatorial biosynthesis study on producing novel 

polyketide drugs. These studies rely on the prediction of 

PKS protein-protein interaction (PPI) and the knowledge 

of residues that contribute to the interaction specificity. 

Most of the previous studies use only the docking 

domains to predict PKS PPI, without involving other 

domains. Here we adapt Ouroboros, an algorithm based 

on correlated mutation analysis, to predict PPI by 

analyzing both docking domains and KS-ACP domains 

interactions and identify the specificity determinant 

residues on the interaction surfaces. We also present an 

example of predicting PKS protein order in an assembly 

line. 

 

Introduction 
The synthesis of polyketides has always been of great 

interest given the pharmaceutical importance of 

polyketides (PK), which are used in clinic as antibiotics, 

antihyperlipidaemics, immunosuppressants and 

anticancer agents [1]. Many polyketides are synthesized 

by enzyme complexes of type I polyketide synthases 

organized in assembly lines. A module in an assembly line 

introduces one monomer unit to the polyketide chain, 

modifies its structure, and translocates the chain to the 

next module [2][3]. Each catalytic activity is discretely 

conducted by a domain in the module. A polyketide 

synthase (PKS) protein consists of one or more modules, 

and therefore, the order of proteins in an assembly line 

determines the structure of the final molecule product. 

Predicting PKS protein-protein interactions (PPI) in 

assembly lines can discover the order of proteins. 

Meanwhile, the monomer introduced by each module can 

be predicted by the sequence of AT domain [4]. Therefore, 

the chemical structure of polyketides can be predicted 

base on sequence information. Prediction of residues that 

define the interaction specificity also helps for creating 

novel PKS assembly lines using combinatorial biosynthesis 

strategies, which enables the design of novel polyketide 

drugs [5][35]. 

There are two short polypeptides at the C and N terminal 

of each PKS protein holding the assembly line together, 

referred to as docking domains. The C-terminal domain of 

the upstream protein binds to the N-terminal domain of 

the downstream protein. A previous study clustered C-

terminal and N-terminal docking domains respectively 

into three phylogenetic clusters according to sequence 

similarity [6]. They found that a cluster of C-terminal 

domains generally only interacts with a corresponding 

cluster of N-terminal domains. There were still some 

interacting domain pairs from different compatibility 

classes and many non-interacting pairs from the same 

class. Another study extracted two crucial interacting 

residue pairs by structural alignment of various docking 

domains. The two pairs of residues were ranked as 

favorable, neutral, and unfavorable by residue charge and 

hydrophobicity. The predicted order of proteins in one 

assembly line should be the one that have the highest 

number of favorable residue pairs in the interfaces of 

adjacent proteins. The correct prediction rate of this 

simple approach was about 80%, which suggested that 

the two contact residue pairs can be used to predict the 

PPI. However, as there were many orders having the same 

high score, especially in multi-protein assembly lines, the 

correct prediction referred to eliminating a large 

proportion of low-score orders and narrowing down the 

correct order to a small number of combinatorial 

possibilities [7]. 

 

The KS-ACP interaction plays a vital role in both PK chain 

translocation and elongation. A study attempted to insert 

a RAPS (rapamycin synthases) module into DEBS 

(erythromycin synthases) 1, between module 1 and 2. The 

product of this hybrid protein showed that the RAPS 

module was skipped during the chain extension [8]. A 

separate study further showed that the intermediate was 

transferred from ACP(DEBS) to ACP(RAPS) instead of from 

ACP(DEBS) to KS(RAPS) [9]. The skipping might due to the 

weak interaction between hybrid ACP and KS domain. 
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Another study created a series of di-modular assembly 

line with a loading didomain (LDD), a DEBS module 1 

(DEBS M1) and a variable module, and also created tri-

modular assembly lines with a LDD, a DEBS M1, a variable 

module and a DEBS M3. The variable modules were 

derived from heterologous PKS. There were low or no 

yields of the hybrid lines and the yields of tri-module were 

lower than the di-module. This result was likely due to the 

poor substrate recognition of KS and weak interaction of 

ACPn-KSn+1. It has been shown in many studies that 

keeping ACPn-KSn+1 interface intact can lead to higher 

yields. This suggested that ACPn-KSn+1 interaction is 

crucial to chain translocation, and therefore responsible 

for the productivity of a hybrid line [36]. The region on 

ACP involved in intermodular recognition by KS has been 

studied through mutagenesis. Kapur S et al. created 

chimeric ACP domains from ACP2 and ACP4, and the chain 

transfer rates of the chimeras to KS3, which interact with 

ACP2 in natural assembly line, were compared [10]. They 

found that the transfer rates were higher when the helix I 

region was from ACP2, which means that the chain 

transfer could be controlled by ACP helix I. Then, they 

identified the residues that control chain transfer by 

mutating residues of ACP4 helix I to ACP2 residues one by 

one. As a result, residue 23 was found to contribute to the 

chain translocation, and another 3 putative contacting 

residues were found on computational structure [11]. 

Although the ACP interface involved in ACPn-KSn+1 

interaction has been studied, the contacting residues on 

KS domains has not been found [12][32]. Also, previous 

studies applied PPI prediction algorithm only on the 

docking domains to predict PKS PPI, without involving KS-

ACP [33][34]. 

 

Here we predict the PKS PPI by combining the interaction 

status of docking domains and KS-ACP with the hypothesis 

that the functional interaction of two PKS proteins should 

result from interactions of both docking domains and KS-

ACP domains. The interaction of the two domain pairs are 

analyzed by Ouroboros, an algorithm predicting PPI by 

correlated mutation analysis [13].  

 

Methods 
Dataset 

The data of interacting domain pairs comes from The 

Minimum Information about a Biosynthetic Gene cluster 

(MIBiG) [14]. 372 interacting docking domain pairs were 

extracted from 139 type 1 PKS assembly lines in the MIBiG. 

There are also 15 interacting pairs from 13 assembly lines 

in the antiSMASH database, which stores the biosynthetic 

gene clusters detected and annotated by antiSMASH 

[15][16]. The docking domains of unknown interaction 

status were also extracted, as they can increase the 

coevolution signal in the multiple sequence alignment. 

Compared to the ACP physical structure [17], the ACP 

domains in the MIBiG and antiSMASH database did not 

cover the whole ACP sequences. Thus, the sequences 

detected by antiSMASH plus 20 residues ahead were 

extracted as ACP domains. Except for the interprotein 

KS/ACP pairs, the intraprotein pairs were also extracted 

to increase sequence variation. Sequences of extreme 

length were trimmed and the datasets were filtered by 

removing the redundant sequences of 100% identity 

identified by CD-HIT [18]. 

 

Clustering and multiple sequence alignment 

Profile HMM analysis [19] was employed to align the 

docking domains. Sequences of different compatibility 

classes published by Thattai et al [6] were aligned 

separately by MUSCLE [20] with gap open penalty 11.0. 

hmmbuild from HMMER package was used to build HMM 

profiles for each class with the alignment. hmmscan was 

used to assign class membership to sequences by finding 

each sequence its best match among 3 HMM profiles. 

Then, the sequences belong to different classes were 

aligned against their profile by hmmalign. The conserved 

region of 26 residues on N-terminal docking domain and 

16 residues at the end of C-terminal docking domains, 

where the protein-protein interaction happens 

[21][27][28], were obtained from the MSAs (Supplement 

figure 1). The short regions were then analyzed to predict 

PPI.  

The collinearity of the order of PKS proteins and the order 

of encoding genes were found in many PKS biosynthesis 
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assembly lines [22]. Therefore, two extra datasets were 

generated by pairing the docking domains from the 

adjacent genes (301 class 1 docking domain pairs in a 

dataset, 189 class 2 docking domain pairs in the other 

dataset). The datasets are likely to have high percentage 

of interacting pairs and can be used to increase the 

sequence variation to the query sequences without 

introducing too much noise. 

The type 1 PKS KS domains are different in modular PKS, 

hybrid PKS and trans-AT PKS [23][24][25]. As the hybrid KS 

were not included in the initial dataset, the modular KS 

were selected by matching KS domains to the modular-KS 

and cis-KS HMM profiles from antiSMASH 

(https://bitbucket.org/antismash/antismash/src/f32e280

78b4a2c98a71453b6d9fed74707ccdb88/antismash/spec

ific_modules/nrpspks/ksdomains.hmm?at=master&filevi

ewer=file-view-default). The ACPs paired with the 

modular KS were then selected. 

 

Analysis of domain pairs by Ouroboros 

Datasets of docking domains with different percentage of 

interacting pairs and different number of effective 

sequences were performed by Ouroboros. Since 

Ouroboros employs Expectation-Maximization (EM), each 

analysis was repeated three times using different random 

seeds for different values of the int_frac parameter to 

address the problem that EM will find a local optimum. 

The results presented are from the analysis that has the 

largest log likelihood. Each dataset could consist of 

interacting pairs, non-interacting pairs and pairs without 

interaction information; the assessment of performance 

of PPI prediction was always based on the known 

interacting and non-interacting pairs. 

 

Logistic regression model 

The docking domain pairs and KS-ACP pairs from the 

query protein pairs were analyzed by Ouroboros 

separately. Then, logistic regression model was 

performed to predict PKS PPI. One of the predictors is the 

interaction probability of docking domain pairs predicted 

by Ouroboros. The other predictor is the interaction 

probability of the corresponding KS-ACP pairs. The 

dataset contained 80% interactions and 20% 

noninteractions. The datasets were then split to 5 training 

sets and 5 testing sets to build and test the model by 5-

fold cross validation. Here we used logistic regression 

model to predict the interaction of proteins that harbor 

class 1 docking domain. 

 

Predicting residue contact 

In the PDB structure of interacting class 1 docking domain 

pair (PDB: 1PZR), there are 31 physical contact residue 

pairs under the threshold of 5 Angstrom [6]. Ouroboros 

predicts contacts by assigning each residue pair a contact 

score and there is no threshold to define contact. 

Therefore, the residue pairs of top 31 contact scores were 

considered as the Ouroboros-predicted contacts and the 

correct prediction was defined as the intersection 

between Ouroboros prediction and physical contacts. 

 

Selecting interaction specificity determinant residues 

To find the set of residues that define the specificity of PKS 

PPI, we checked the predictive performance with the 

absence of each residues pair separately and removed 

one pair that has the least impact on PPI prediction from 

the MSA. With the remaining residues, again removed the 

one pair that has the least impact. This procedure was 

repeated until all residue pairs were removed.  

 

Result & Discussion 
HMM profiles of three docking domain compatibility 

classes were built from sequences published by Thattai et 

al [6]. Then, C-terminal and N-terminal docking domains 

were clustered respectively by finding for each domain its 

best match among the 3 HMM profiles. As a result, less 

than 5% of class 1 docking domains have a compatible 

domain that belong to other class, and that figure of class 

2 is 8%. However, for almost half of the class 3 docking 

domains the compatible domains were not assigned to 

any class. One possible reason is that the number of 

sequences used to build class 3 HMM profiles was only 14, 

which might be too little to reflect on the characteristic of 

class 3. If this is the real case, the problem could be 

addressed after more class 3 docking domain are 
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sequenced and clustered. The other possible reason 

might be that the “class 3” was not correctly defined. In 

Thattai’s result [6], most of pairs mismatched in different 

classes have a sequence clustered into class 3. Also, the 

docking domains clustered in class 3 by the article do not 

have the similar physical structure, such as, the CurK/CurL 

(PDB: 4MYY) and CurG/CurH (PDB: 4MYZ) [26], which 

makes the class 3 difficult to be aligned. 

 

According to their structural information [21][27], 

docking domain pairs from different compatibility classes 

are likely to have different interaction pattern. Thus, class 

1 and class 2 docking domains were analyzed separately. 

 

Ouroboros results on KS-ACP pairs does not contribute 

to predicting PPI 

Logistic regression model was built to predict the 

interaction of PKS proteins that contain class 1 docking 

domain. One of the predictors is the interaction 

probability of docking domain pairs predicted by 

Ouroboros. The other predictor is the interaction 

probability of the corresponding KS-ACP pairs. Different 

training and testing sets were created by 5-fold cross-

validation, and the ROC curve was plotted on each testing 

set (Figure 1). With average AUC equals to 0.83 and ±1 

standard deviation area does not overlap with the 

random guess line, the figure suggests that the model is 

predictive to the PPI of PKSs. 

 

In the logistic model, the coefficient of the KS-ACP 

interaction probability is around -0.29, much lower than 

that of docking domain, 2.98, which indicates that the 

Ouroboros result on KS-ACP does not contribute to the 

prediction. To evaluate this result, interaction 

probabilities of each domain pair obtained from 

Ouroboros were used separately to predict the PPI, 

showed in Figure 2. The ROC curves of docking domains 

have similar shape and AUCs with that of logistic 

regression model, while that of KS-ACP are not better 

than random guess. 

 
Figure 1. Performance of logistic regression model built on 

Ouroboros results of class 1 docking domain pairs and the 

corresponding KS-ACP pairs. The light curves show 

performances of model on 5 testing sets; the bold blue curve 

presents the averaged performance; the grey area is the 

estimated ROC ±1 standard deviation. 

 
Figure 2. Performance of using only Ouroboros result on A) class 

1 docking domains and B) KS-ACP to predict PPI. The domain 

pairs that plotted by each light curve are one of the two 

predictors behind the same line in the Figure 1. 

 

The poor predictive ability of Ouroboros result on KS-ACP 

pairs might result from that 1) Ouroboros is not suitable 

to predict KS-ACP interaction, or 2) KS-ACP interaction is 

not involved in the PPI as assumed. According to previous 

studies [10][11], KS mainly interacts with the inter-protein 

ACP helix I region in substrate chain translocation and 

interacts with the intra-protein ACP loop I in chain 

A 

B 
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elongation. To not confuse the Ouroboros, the ACP 

regions other than helix I were trimmed in the MSA. It is 

possible that there are other crucial residues located on 

the trimmed region. But the prediction was still not better 

than random guess when using ACP whole sequence in 

Ouroboros. R23 on DEBS2 ACP helix I was found to be the 

determinant of inter-protein KS-ACP interaction by 

mutagenesis [10], but the contact score of this residue to 

any other KS residues are relatively low in Ouroboros 

result. The low contact score could be explained by that 

the contact residue in KS domains did not mutate in the 

evolution. It is also possible that KS-ACP interaction does 

not determine the PPI, as there is case in DEBS that the 

protein interaction only needs compatible docking 

domain pairs [29][30]. 

 

Higher proportion of interacting protein pairs in dataset 

leads to better performance of Ouroboros 

Since Ouroboros-predicted interaction probability of KS-

ACP is not predictive, docking domains were analyzed as 

the only predictor of PPI. The noise level can greatly 

influence the Ouroboros performance [13]. 5 datasets 

with 80% interacting class 1 docking domains and 3 

datasets with 60% interacting domains were generated. 

All the datasets comprised the same interacting domains 

set and a number of different non-interacting domain 

pairs. Figure 3A and 3B compares the performance of 

predicting PPI on datasets with different percentage of 

interacting docking domains. It clearly shows that with 

more interacting domain pairs in the dataset, Ouroboros 

tends to be more predictive. 

 

Increasing the effective sequences improves the PPI 

prediction 

The sequence variation in MSA, which is measured by the 

number of effective sequences (Neff), also influence the 

Ouroboros performance. The influence is determined by 

the core of the algorithm, correlated mutation analysis 

[13][31]. To increase the Neff, extra docking domain pairs 

were extracted from the antiSMASH database and added 

to the datasets of 80% and 60% interacting docking 

domain pairs. The interaction information of these extra 

pairs is unknown, so the performance assessment was still 

based on the interacting and non-interacting pairs (Figure 

3C, 3D). Comparing to figure 3A and 3B, the performance 

was greatly improved. From the figures and Table 1, It 

seems that the performance on 60% interaction datasets 

improved more than that on 80% interaction datasets, 

with AUC increased 21% versus 13% and MCC increased 

105% versus 70%. It could be explained by that there are 

more than 60% interacting pairs after adding extra pairs 

to the datasets. 

 

Table 1. Predictive performance on datasets with 

different percent of interacting pairs and different 

effective sequences. The Neff and Matthew correlation 

coefficient (MCC) are the mean values of 3 (with 60% 

interacting pairs) or 5 (with 80% interacting pairs) 

datasets. The last column refers to the MCC values when 

setting the threshold of interaction probability to 0.5. 

Dataset composition: % of 

interacting pairs (+ extra pairs) 

Neff MCC 

60% 274 0.22 

60% + extra pairs 473 0.45 

80% 202 0.33 

80% + extra pairs 404 0.56 
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Figure 3. Predictive performance in dataset with different Neff and different percentage of interacting docking domain pairs. Top two 

figures: ROC curves of Ouroboros-predicted interaction probability on datasets with A) 60% of interacting docking domains and B) 80% 

of interacting docking domains. Bottom two figures: ROC curves of Ouroboros results on C) 60% interacting pairs plus extra pairs 

datasets and D) 80% interacting pairs plus the same extra pairs datasets. In each figure, the datasets that each thin line plots consist 

of the same interacting docking domain pairs but different noninteracting pairs. Each light curve plots the Ouroboros result with the 

best LLH over different settings and repeats to one specific dataset. The bold blue curve presents the average performance and the 

grey area is the estimated ROC ±1 standard deviation. 

 

Since Ouroboros is able to infer interaction of proteins 

that contain class 1 docking domains with reasonable 

accuracy, it was then applied to class 2 docking domains. 

Lacking equal amounts of sequence data, an MSA of only 

168 Neff was created, which comprised a set of 80% 

interacting pairs and a set of extra pairs without 

interaction information. The result shows that Ouroboros 

failed on the class 2 docking domains with this amount of 

effective sequences (Figure 4A). To analyze whether the 

poor performance is caused by the lack of sequence 

variation, datasets of class 1 docking domain with similar 

Neff were created and input into Ouroboros. Figure 4 

shows that the performance on class 1 domains is indeed 

better, but the standard deviation is relatively high 

compared to that in Figure 3. It suggests that Ouroboros 

is unstable on such small dataset. As there are only one 

dataset of class 2 domains, it is possible that the 

prediction would be better on different dataset. With 

more PKS biosynthetic gene clusters being sequenced in 

the future, there will be more class 2 docking domains 

available, which can increase the sequence variation in 

MSA and may help the prediction. 

 

Increasing the proportion of interacting docking domain 

pairs and the Neff can improve the prediction. Therefore, 

when predicting PKS PPI in practical, it would be better to 

combine the query sequences pairs with all the 

interacting docking domain pairs in MiBIG and the pairs 

from adjacent genes in antiSMASH.  

A 

C 

B 

D 
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Figure 4. Predictive performance on one dataset of A) class 2 

docking domains and five datasets on B) class 1 docking domains 

with similar Neff. 

 

Residue pairs that are crucial to the PPI specificity 

Ouroboros contact prediction is also influenced by the 

noise level and sequence variation. Datasets of different 

percent of interacting pairs and Neff were fed to 

Ouroboros to compare contact prediction performance. 

The prediction results are showed in table 2. There are at 

least 13 correctly predicted contact pairs out of 31 pairs 

of highest contact scores (p-value 7.97e-7, Fisher exact 

test), which means the contact prediction for all datasets 

is not by chance. 

 

Table 2. Summary of the number of correctly predicted 

contacts using different input datasets. 

Dataset composition: % of 

interacting pairs (+ extra pairs) 

Nr. correctly 

predicted contacts 

100% 13 

100% + extra pairs 13 

80% 21 

80% + extra pairs 15 

60% + extra pairs 14 

 

To study whether the residue pairs predicted by 

Ouroboros have impact on PPI specificity, MSAs without 

all predicted residues were generated and input into 

Ouroboros. The prediction result shows that the 

prediction failed without these residues (Figure 5A), 

which indicates that the determinant residue pairs lies in 

these pairs. The predictive performance decreased 

drastically when pair {4,3} was removed, with AUC 

dropped from 0.81 (Figure 3D) to 0.69 (Figure 5B), which 

suggest that {4,3} contributes to the PPI specificity. {4,3} 

was also identified by a previous study as the specificity 

determinant residue pair [21]. To find other residues that 

contribute to the interaction specificity, contact pairs that 

predicted by Ourorboros were removed one by one from 

the MSA (the last section in Method). The performance 

decreased after {11,9}, {12,5} and {4,3} were removed 

from the MSA (Supplement figure 2R, 2T, 2U). But 

removing {11.9} alone seems not influence the prediction 

and removing {12,5} alone has some influence 

(Supplement figure 3A, 3B), which suggest that the 

contact residues might have a combinatorial influence on 

the interaction. In other words, using all relevant residues 

is much more predictive than using only the specificity 

determinant residues. {5,1} and {14,14} were identified as 

“specificity code” by Yadav G et al [7]. But when they were 

removed from the MSA, the prediction performance did 

not decrease (Supplementary Figure 3C, 3D). This might 

result from that, in Yadav’s work, they aligned different 

classes of docking domains together, ignoring the 

different positions of contacting residues in each class. 

 

 

A 

B 

A 

B 
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Figure 5. Predictive performance with A) the absence of all the 

residue pairs predicted to contact by Ouroboros and B) the 

absence of residue pair {4,3}. 

 

Example of predicting the protein order in an assembly 

line 

To show how Ouroboros can be used to predict the 

protein order in a PKS assembly line, a type 1 PKS 

biosynthetic gene cluster in antiSMASH database was 

analyzed (Genome Streptomyces sp. 769, NZ_CP003987, 

Gene Cluster 17, Figure 6). In this cluster, there is a TE 

domain in the GZL_RS16750 and no N-terminal docking 

domain in GZL_RS16785, which indicates that they are the 

last and the first PKS in the assembly line. The docking 

domains on each terminal of the protein sequences were 

aligned to the HMM profile of 3 compatibility classes. The 

C-terminal docking domain of GZL_RS16765 and N-

terminal docking domain of GZL_RS16760 were aligned to 

the class 2 while others were all aligned to class 1. Since 

Ouroboros is not predictive on class 2 now, only class 1 

docking domains were analyzed. In the input MSA file, 

each C-terminal domain were paired with all the other N-

terminal domains in the gene cluster, also integrated with 

the interacting dataset and the extra dataset. The results 

are showed in Table 3. There are three C-terminal 

domains were predicted to not interact with any other N-

terminal domains, such as GZL_RS16785-C (C-terminal 

docking domain on protein GZL_RS16785), using 0.5 as 

the threshold. But it has the highest interaction 

probability with GZL_RS16780-N, which also most likely to 

interact with GZL_RS16785-C among all the C-terminal 

domains. This also happens on GZL_RS16730-

C/GZL_RS16765-N and GZL_RS16760-C/GZL_RS16755-N. 

GZL_RS16780-C was predicted to interact with two N-

terminal domains, but if it interacts with GZL_RS16750-N, 

there will only be three proteins in the assembly 

(GZL_RS16785F > GZL_RS16780 > GZL_RS16750). 

Considering all the possible order, if the assembly line 

comprises all the proteins in the gene cluster, the 

predicted order of protein would be GZL_RS16785F > 

GZL_RS16780 > GZL_RS16775 > GZL_RS16730 > 

GZL_RS16765 > GZL_RS16760 > GZL_RS16755 > 

GZL_RS16750, which is same as the order of the 

corresponding genes in the genome. The prediction is 

likely to reflect on the truth according the collinearity 

rules [22].  

 
Figure 6. Gene cluster 17 in genome Streptomyces sp. 769 

(NZ_CP003987) in antiSMASH database. Each line represents a 

PKS protein, and the domains on them were marked in rounded 

rectangles.  
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Table 3. Interaction probabilities of PKSs in NZ_CP003987 gene cluster 17 predicted by Ouroboros. C-terminal docking 
domains are in lines and N-terminals are in columns. The floats in red and orange indicates the interaction of a docking 
domain pair; the floats in blue indicates the highest probability of interaction of that C and N terminal docking domain. 

C         N GZL_RS16780 GZL_RS16775 GZL_RS16730 GZL_RS16765 GZL_RS16760 GZL_RS16755 GZL_RS16750L 

GZL_RS16785F 0.0813 1.3e-07 1.8e-05 3.2e-10 - 8.4e-08 5.5e-10 

GZL_RS16780  0.9983 1.3e-06 3.2e-09 - 3.5e-06 0.9180 

GZL_RS16775 3.5e-05  0.9742 6.2e-09 - 2.3e-07 9.6e-10 

GZL_RS16730 9.5e-09 9.5e-09  1.6e-05 - 3.7e-07 9.7e-08 

GZL_RS16765 - - - - - - - 

GZL_RS16760 1.4e-08 6.4e-10 4.2e-06 1.4e-07 - 0.1012 4.8e-11 

GZL_RS16755 2.5e-08 0.9954 8.4e-08 1.7e-07 -  0.9995 

Conclusion 
We aimed to adapt Ouroboros to predict PKS PPI in this 
study with the assumption that docking domain and KS-
ACP together determine the protein interaction. Although 
KS-ACP pairs could not be used to predict PPI, Ouroboros 
showed reasonable performance on PPI prediction only 
based on the class 1 docking domains. We also found a 
residue pair that contributes to the PPI interaction 
specificity. Lacking class 2 docking domain sequences, the 
algorithm for now could only work on PKS with class 1 
docking domains. We showed that the performance can 
be remarkably improved by integrating more sequences. 
Therefore, more genomes sequenced and PKS gene 
clusters annotated in the future could enable the 
prediction on other classes. When clustering the docking 
domains, the class 3 seemed mixed with domains belong 
to neither class. It is still an open question whether this is 
a problem of the clustering method or whether there is a 

“class 3”. If the sequences of “class 3” cannot be properly 
aligned, their interaction would not likely to be predicted 
by Ouroboros or other correlated mutation analysis 
algorithm. Considering that there are still interactions 
between different compatibility classes of docking 
domains and the interacting docking domain pairs not 
always lead to the functional PKS PPI, it is worthwhile to 
investigate whether there are other domain pairs 
contributing to the PPI in future’s study.  
 

Acknowledgement 
I would like to thank my supervisors Marnix Medema and 
Aalt-Jan van Dijk for their patience, insightful guidance 
throughout this project, and valuable feedback. It is their 
support that makes me more enjoy this period. I would 
also like to thank Miguel Correa Marrero for the useful 
tools and helpful advices he provided.  

  



 10 

References 
[1] McCullagh, M. (2008). Natural product 
pharmaceuticals-the third generation. Drug Disc. World. 
[2] Fischbach, M. A., & Walsh, C. T. (2006). Assembly-
line enzymology for polyketide and nonribosomal 
peptide antibiotics: logic, machinery, and mechanisms. 
Chemical reviews, 106(8), 3468-3496. 
[3] Weissman, K. J. (2016). Genetic engineering of 
modular PKSs: from combinatorial biosynthesis to 
synthetic biology. Natural product reports, 33(2), 203-
230.  
[4] Yadav, G., Gokhale, R. S., & Mohanty, D. (2003). 
Computational approach for prediction of domain 
organization and substrate specificity of modular 
polyketide synthases. Journal of molecular biology, 
328(2), 335-363.  
[5] Menzella, H. G., & Reeves, C. D. (2007). 
Combinatorial biosynthesis for drug development. 
Current opinion in microbiology, 10(3), 238-245. 
[6] Thattai, M., Burak, Y., & Shraiman, B. I. (2007). The 
origins of specificity in polyketide synthase protein 
interactions. PLoS computational biology, 3(9), e186.  
[7] Yadav, G., Gokhale, R. S., & Mohanty, D. (2009). 
Towards prediction of metabolic products of polyketide 
synthases: an in silico analysis. PLoS computational 
biology, 5(4), e1000351.  
[8] Rowe, C. J., Böhm, I. U., Thomas, I. P., Wilkinson, B., 
Rudd, B. A., Foster, G., ... & Staunton, J. (2001). 
Engineering a polyketide with a longer chain by insertion 
of an extra module into the erythromycin-producing 
polyketide synthase. Chemistry & biology, 8(5), 475-485.  
[9] Thomas, I., Martin, C. J., Wilkinson, C. J., Staunton, 
J., & Leadlay, P. F. (2002). Skipping in a hybrid polyketide 
synthase: evidence for ACP-to-ACP chain transfer. 
Chemistry & biology, 9(7), 781-787.  
[10] Kapur, S., Chen, A. Y., Cane, D. E., & Khosla, C. 
(2010). Molecular recognition between ketosynthase 
and acyl carrier protein domains of the 6-
deoxyerythronolide B synthase. Proceedings of the 
National Academy of Sciences, 107(51), 22066-22071. 
[11] Kapur, S., Lowry, B., Yuzawa, S., Kenthirapalan, S., 
Chen, A. Y., Cane, D. E., & Khosla, C. (2012). 
Reprogramming a module of the 6-deoxyerythronolide B 

synthase for iterative chain elongation. Proceedings of 
the National Academy of Sciences, 109(11), 4110-4115.  
[12] Robbins, T., Liu, Y. C., Cane, D. E., & Khosla, C. 
(2016). Structure and mechanism of assembly line 
polyketide synthases. Current opinion in structural 
biology, 41, 10-18.  
[13] Marrero, M. C., Immink, R. G., de Ridder, D., & van 
Dijk, A. D. (2018). Improving intermolecular contact 
prediction through protein-protein interaction prediction 
using coevolutionary analysis with expectation-
maximization. bioRxiv, 254789.  
[14] Medema, M. H., Kottmann, R., Yilmaz, P., 
Cummings, M., Biggins, J. B., Blin, K., ... & Cruz-Morales, 
P. (2015). Minimum information about a biosynthetic 
gene cluster. Nature chemical biology, 11(9), 625.  
[15] Blin, K., Medema, M. H., Kottmann, R., Lee, S. Y., & 
Weber, T. (2016). The antiSMASH database, a 
comprehensive database of microbial secondary 
metabolite biosynthetic gene clusters. Nucleic acids 
research, 2016: doi: 10.1093/nar/gkw960.  
[16] Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H. U., 
Bruccoleri, R., ... & Breitling, R. (2015). antiSMASH 3.0—a 
comprehensive resource for the genome mining of 
biosynthetic gene clusters. Nucleic acids research, 
43(W1), W237-W243. 
[17] Alekseyev, V. Y., Liu, C. W., Cane, D. E., Puglisi, J. D., 
& Khosla, C. (2007). Solution structure and proposed 
domain–domain recognition interface of an acyl carrier 
protein domain from a modular polyketide synthase. 
Protein Science, 16(10), 2093-2107. 
[18] Li, W., & Godzik, A. (2006). Cd-hit: a fast program 
for clustering and comparing large sets of protein or 
nucleotide sequences. Bioinformatics, 22(13), 1658-
1659.  
[19] Eddy, S. R. (1998). Profile hidden Markov models. 
Bioinformatics (Oxford, England), 14(9), 755-763. 
[20] Edgar, R.C. (2004) MUSCLE: multiple sequence 
alignment with high accuracy and high throughput 
Nucleic Acids Res. 32(5):1792-1797.  
[21] Broadhurst, R. W., Nietlispach, D., Wheatcroft, M. 
P., Leadlay, P. F., & Weissman, K. J. (2003). The structure 
of docking domains in modular polyketide synthases. 
Chemistry & biology, 10(8), 723-731.  



 11 

[22] Aparicio, J. F., Fouces, R., Mendes, M. V., Olivera, 
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Supplements 

      

      

      

Figure 1. Example of multiple sequence alignment of docking domains. Left: 16-residue C-terminal docking domains from 3 different 

compatible classes (C1, C2, C3). Right: 26-residue N-terminal docking domains from 3 different compatible classes (N1, N2, N3). Each 

line represents an interacting docking domain pair. The labels consist of the synthetic assembly lines and the PPI interface index. For 

example, Abyssomicin_1 refers to the first PPI interface of Abyssomicin synthetic assembly line. 
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Figure 2. Predictive performance with the absence of different contact pairs on docking domains. From A to U, one more residue pair 

was removed from the MSA each prediction. The order of residue pairs removed was {14,14}, {1,7}, {14,18}, {14,21}, {5,1}, {8,2}, {8,1}, 

{8,5}, {8,6}, {14,13}, {10,14}, {7,11}, {15,12}, {7,7}, {15,13}, {10,10}, {15,4}, {11,9}, {11,13}, {12,5}, {4,3}. For example, A is the 

performance with the absence of {14,14}, B is the performance with the absence of {14,14} and {1,7}, and C is the performance with 

the absence of {14,14}, {1,7}, and {14,18}. The last figure U shows performance with the absence of all the residue pairs mentioned 

above. 
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Figure 3. Predictive performance of PPI with the absence of residue pair A) {11,9}, B) {12,5}, C) {5,1}, D) {14,14} on docking domains. 
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