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Propositions

1. The interactions between flower-like micelles are not
pairwise additive. [this thesis]

2. Scheutjens-Fleer self-consistent field calculations can
be too quick to be true. [this thesis]

3. Science is like a Monte Carlo simulation: If the suc-
cess rate is high, the steps are too small for optimal
progress.

4. Publishing in open-access journals improves impact.

5. Yesterdays trash heaps will be tomorrows mines.

6. The net output of the meat industry is waste rather
than food.

7. The relative unpopularity of international train tra-
vel is partly due to customer-unfriendly ticket sales.
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CHAPTER 1

Introduction

Today’s society would be unthinkable without polymers. Because of
the wide range of properties they can have, they are used in many
applications such as paint, tires, plastic bags, absorbents and thickeners.
Some are chemically synthesized, for example: Bakelite, polyurethane,
silicones, polystyrene, Teflon, kevlar, and nylon, while others, such as:
DNA, chitin, starch, cellulose and rubber, occur naturally.

The defining property of polymers is that they are built up from
small molecules, called monomers, that are chemically bound to each
other, forming linear, branched or network like structures. Some exam-
ples of the monomers from which these polymers can be made together
with some of their applications are shown in Figure 1.1. In this thesis
we studied two subclasses of these polymers, telechelic polymers and
dendrimers, which are also known as star burst polymers.

Dendrimers

Dendrimers are strongly branched molecules, that are built up from a
central segment/branch point. A number of arms is attached to this
central segment and at the end of these arms there are branch points
from which new arms originate. The dendrimers can be characterized by
the number of generations, i.e. the number of branch points encountered
going from the centre to the outside, the functionality, which is the
number of arms that are connected at a branch point, and the length
of the spacer, which is the piece of the arm between the branch points.
An example of a dendrimer is shown in Figure 1.2.

One of the possible applications of dendrimers is in blood substi-
tutes. Free oxygen carrying heme groups are toxic and are quickly
degraded in the bloodstream. When they are encapsulated inside a
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Figure 1.1: Some examples of polymers. On top: polyisoprene which is
the main component of rubber. In the middle: chitin which is the main
component in the exoskeletons of arthropods. On the bottom Nylon
which is used to make fibres for ropes and clothing.
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Figure 1.2: An example of a dendrimer with 4 arms per branch point, 2
generations, and spacer length (number of segments in between branch
points) of 2. The spacers are cyan (lightest), the branch points are red
and the end-points are black. (darkest)

dendrimer the many branches prevent enzymes from reaching the heme
molecules. This reduces the toxicity compared to free heme and pre-
vents enzymes from degrading the heme groups. The dendrimers are
however sufficiently porous that small molecules like oxygen can still
bind to the heme group.

Another application of dendrimers is in the synthesis of nano par-
ticles. Metal ions can bind to the dendrimers. When a reducing agent
is added the ions are reduced. Due to the locally high concentration of
metal ions in the dendrimer, a metal nano particle is nucleated in each
dendrimer. Most of the metal ions in the dendrimer will end up in this
nano particle and as a result the nano particles are more mono disperse
than with other synthesis techniques.
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Telechelic Polymer Networks

Telechelic polymers are linear polymers that have end groups that can
bind in some fashion. There are numerous ways in which this binding
can take place. The most common way to bind is by hydrophobic
interactions.1,2 Other ways in which these ends can interact are, for
example, by each end having an opposite charge thus forming a so
called complex coacervate3,4, or by binding specifically to each other,
a metal ion5–7, the surface of a particle or a droplet.8 When the ends
of multiple polymers bind together a micelle is formed. The middle
blocks form loops sticking out into the solution. These micelles are
called flower-like micelles because the loops look a bit like petals, while
the ends, in the core of the micelle, form the heart of the flower.

The number of polymers that can bind together in a micelle is lim-
ited. The middle blocks get in each others way and prevent more poly-
mers from binding to the micelle. This layer of middle blocks around
the centre of the micelle is called the ’corona’.

If two micelles are next to each other, each end of the polymer can
be in a different micelle. In that case the polymer forms a ’bridge’
between the two micelles. If the micelles are close to each other both
loops and bridges can thus be formed, while if they are far apart only
loops can be created. When two micelles are close to each other there
are therefore more ways to distribute the polymers over the micelles
and thus more ’states’. Assuming their energy is the same, each state
occurs equally often, the micelles are therefore more likely to be next to
each other than far apart. There is thus an entropic attraction between
the micelles. If the repulsion between the polymers is small enough and
there are enough polymers per micelle, this attraction can become so
strong that phase separation occurs and two phases, one with a high
polymer concentration and one with a low polymer concentration, are
formed.8 In this concentrated phase the number of bridges is so high
that a volume spanning network is formed. This can also occur for
micelles that do not phase separate as long as the concentration is high
enough. In this network the cores of the micelles form the nodes and
the middle blocks connect these nodes.

Forces can be carried through this network of the polymers and
micelles. Most of the volume is still taken up by the solvent and this
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flower-like

 micelle
node bridge loop

Figure 1.3: A schematic representation of a gel made of telechelic poly-
mers. The circles are the nodes, formed by the micellar cores with the
associated end-blocks (indicated by gray lines), connected by the sol-
uble middle blocks (black lines). The telechelics can form loops (both
ends in the same node) or bridges (each end in a different node). An
isolated flower-like micelle is shown in the lower right corner.

kind of material is called a ’gel’, after gelatine, which also forms such
a solvent filled network structure. A schematic representation of this
polymer gel is given in Figure 1.3.

The polymer bridges between these micelles behave like springs. If
the gel is deformed it takes energy to stretch them and similarly it takes
energy to push the loops in the coronas into each other. When the gel is
however deformed too much, the end groups of the polymer are pulled
apart breaking the network structure. If the binding of the end groups
is reversible, i.e. the end groups sometimes spontaneously detach and
reattach, the gel will be able to heal itself and regains its full strength
after a while.

This kind of behaviour makes it interesting to use these polymers
as thickeners in paint.9 At the right concentration a weak network is
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formed. When the paint is then applied with a brush this network is
broken and the paint becomes liquid. This allows the paint to smooth
out and form a flat and shiny surface. On a bit longer time scale the
network restores itself and the paint can no longer flow. This way,
dripping of the paint is prevented.

Another possible application is drug delivery.10 Some drugs are very
hydrophobic and are therefore poorly soluble in water. The cores of the
micelles can however have a hydrophobic environment and the drugs
can be dissolved in these. If a gel with these micelles would be injected
in the body it would slowly release micelles with the drug inside them.
These micelles can then travel throughout the body to release the drug.
An additional advantage is that the micelles are much bigger than the
molecules of the drug and would thus be excreted much slower by the
kidneys.

Another interesting direction to investigate is the combination of
such a telechelic polymer network, whose bonds are reversible, with
a second network, which is more flexible. Gels made of two separate
networks have been reported to be much tougher than gels made of a
single network.11 It is hypothesized that in this case the stiffer network
is broken upon deformation and in the process absorbs a lot of energy,
while the soft network remembers the original shape. This results in a
gel with a high toughness. With the telechelic polymers that can bind
reversibly, as the brittle part, such a gel could heal itself after being de-
formed and would maintain its toughness after repeated deformations.
Such tough self healing gels could be used as a substitute for damaged
tissues, like cartilage, which is also made of a very tough hydrogel.

Project Description

The goal of my PhD project was to investigate how the properties of the
individual polymers, that form these networks, influence the properties
of the gel. Within this project three Phd students worked together. Two
of them, Wolf Rombouts12 and Ma lgorzata Bohdan7, did experiments
in the lab while I worked on computer simulations.

Gosia Bohdan used telechelic polymers with a PEO middle block end
capped by hydrophobic or metal binding end groups. She made micelles
with a varying ratio of mono- to difunctionalized telechelic polymers
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and studied the effect of this ratio on the rheological properties, such
as viscosity and the storage and loss moduli.7

She also worked with coated silica particles with polymers with
metal binding end groups.6 If end groups of polymers from two dif-
ferent particles bind to the same metal ion a bridge is formed just as a
hydrophobically end capped polymer can form a bridge by having each
end in a different micelle. The behaviour of these coated particles will
therefore be similar to micelles of telechelic polymers.

Wolf Rombouts used recombinant proteins, which are genetically
engineered proteins, in which parts of natural proteins are combined to
create new proteins with different structural properties. He made gels
in which a soft flexible network was formed by collagen like proteins,
which had end groups that can bind to each other forming triple helices.
The second component was formed by silk like proteins which can stack
to form long fibres which can form a brittle network. The combined
network fractured at higher stresses and at larger shear than the indi-
vidual components.13 They attributed this change to the bundling of
the silk like fibres due to the depletion interaction caused by the other
network.

He also studied a mixture of two different fibres and made polymers
which combined the silk and collagen block. As the collagen triple helix
unfolds at high temperature this allowed the tuning of the number of
extra crosslinks in the network of the silk like polymers.14

Simulation Methods

The micelles and polymers are too small to be seen with an ordinary
microscope. An electron microscope can visualize objects of the size
of our micelles. The polymers themselves would, however, still be too
small to be seen. It would also be difficult to study the gels while they
are sheared, as the samples would need to be frozen instantaneously
to preserve the detailed structure. Other techniques such as X-ray and
neutron scattering can give information about the structure on such
small length scales but the results can be difficult to interpret. With
computer simulations there is no problem with observing the detailed
structure of the gel.

In computer simulations real objects are represented by properties
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such as their position/orientation, their shape and size, and how they
interact with other objects. In case of molecular systems we often as-
sume that the individual particles are point like so their only relevant
property is how they interact with the other particles. These molec-
ular computer simulations can roughly be divided up in three groups:
molecular dynamics simulations(MD), Monte Carlo simulations (MC)
and mean field models.

Molecular Dynamics

With MD simulations the particles are moved based on Newtons equa-
tions of motion and the forces the particles exert on each other. In this
case the particles follow realistic trajectories which is important for the
study of dynamic properties and systems that are out of equilibrium.
The simulations can be done in an NVE, NVT or NPT ensemble. Here
the letters indicate which quantities are kept constant during the simu-
lation. N is the number of particles, V the volume, E the energy, T the
temperature and P the pressure. The time steps the system takes can-
not be too big as otherwise the trajectory of the particles is no longer
realistic. For the NVE ensemble the steps need to be even shorter to
ensure that energy is conserved. The fact that particles follow a realistic
trajectory can also be a disadvantage. When the system gets stuck in a
local minimum, it may take a long time before it crosses the barrier. If
we are only interested in the equilibrium properties of the system and
not in the dynamics/time evolution it is better to use a Monte Carlo
method.

Monte Carlo

With a Monte Carlo method an estimate of a property is made by
randomly sampling states of the system and averaging of the value of the
property over all states. The Monte Carlo method was first conceived
by Enrico Fermi when he studied neutron diffusion. Later Stanislaw
Ulam had the same idea when he tried to determine the probability
that a particular solitaire game was winnable. He failed to do this with
mathematical methods and wondered whether he should have simply
played many games while keeping track of the percentage of games
he won. He then realized that the problem of how neutrons would
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diffuse and propagate in fission devices could be solved in a similar
fashion. Together with John von Neumann they set up the ENIAC
computer to randomly generate many individual neutron trajectories
using random numbers to determine how far the neutron would travel
before it collided with an atom, whether the collision results in fission,
scattering or absorption, how many neutrons would be produced in case
of fission and what the direction and velocities of the neutrons after the
collision would be. They used the outcomes of many of these trajectories
to predict the explosive behaviour.15

This methodology works if the probability with which each state or
neutron trajectory is generated is equal to the probability with which
it occurs. For many systems we however do not know in advance with
which probability a state occurs until after it has been generated. When
calculating the average properties of such a system one can of course
try to use a weighted average. For many molecular systems the vast
majority of the states however have a very low probability of occurring.
In that case one could do a simulation without ever sampling the most
representable states. To solve this problem Metropolis et al.16 devel-
oped the Metropolis-Hastings algorithm. Metropolis et al. designed it
specifically for molecular systems but Hastings17 showed it could be
applied more broadly.

It starts by choosing a starting state Aold. Subsequently, this state
is changed such that a new but still correlated state Anew is created.
This change or ’move’ is accepted based on the probability with which
these states occur. If the probability with which the new state occurs
Pnew is higher than the probability with which the old state occurs Pold
the move is accepted while if the probability of occurrence is lower, the
move is accepted with a probability Paccept.

Paccept = Pnew/Pold (1.1)

If the move is rejected the old state is counted again. This way the
evolution of the system is biased in the direction of states that have a
high probability of occurring and each state is visited according to it’s
statistical weight so we can simply average over all samples to get an
estimate of a property of the system.

For molecular systems such as those in this thesis the probability
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that a state occurs PA is proportional to the Boltzmann weight.

PA ∝ e
−UA
kbT (1.2)

Here UA is the energy of the system in state A and kBT is the thermal
energy a particle has.

Monte Carlo simulations have the advantage that moves do not need
to be realistic. Instead the moves can be designed to make the system
relax to the ground state quickly and sample as many relevant config-
urations as possible within a limited amount of computation time.

To make sure that such a move samples the states properly it has
to fulfil the balance condition. Frenkel et al.18 clearly explained this
by assuming there are infinitely many Monte Carlo simulations. The
number of Monte Carlo simulations in each state should be proportional
to PA, the probability that the simulated system is in state A. When
we continue these simulations this distribution should not change, hence
the rate with which the simulation leaves state A should be equal to
the rate with which it goes to state A. This is the balance condition.
In practice it is easier to prove a stronger condition, namely detailed
balance. This means that the rate with which the system goes from
state A to state B has to be equal to the rate with which the system
goes from state B to state A.

For molecular systems such moves usually consist of randomly se-
lecting a particle and moving it over a certain distance or doing some
sort of rotation. This distance over which a particle is moved can be
much larger than in a molecular dynamics simulation because energy
does not need to be conserved. During this move energy barriers can
be passed which are normally too high for particles to cross them regu-
larly. A Monte Carlo simulation is thus useful to study the equilibrium
structure and properties of a system but, unlike a MD simulation, it
does not give insight in the dynamics.

Mean Field Models

With mean field models one does not try to determine individual parti-
cle configurations, instead we determine their distribution based on the
average interactions the particles have with their environment. This
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method is even faster because we do not need to sample all the particle
configurations individually but instead sample them all at once.

An example of such a mean field theory is the Scheutjens-Fleer self
consistent field theory, which is used in this thesis. It was developed in
our department at the end of the seventies by Scheutjens and Fleer
to describe adsorption of (homo)polymers.19–21 It is a lattice based
model and it describes polymers as a freely jointed chain of beads with
each bead occupying a lattice site. The SF-SCF model determines the
polymer distribution with the lowest free energy assuming that each
polymer interacts with it’s average surroundings.

Over the years this method was extended in several directions. The
first step was to allow for different segment types in the macromolecules.
This was useful for (surfactant) self-assembly22,23 and copolymer ad-
sorption24. The method was generalised for branched chains and this,
for example, allowed the study of dendrimers and star polymers.25–27

At first molecules at the interface were equilibrated with chains in the
bulk, but restricting segments to specified locations meant that polymer
brushes that do not equilibrate with freely dispersed chains could also
be modelled.28,29

The mean field averaging originally was performed in planar (lattice)
layers. The generalisation to spherical and cylindrical geometries al-
lowed, e.g., for the modelling of the corresponding micelles.22,23,30 Then
the idea developed to pin a single chain with a central segment to the
centre of a lattice with spherical geometry to study the intramolecular
excluded volume effects. This model may be referred to as a cell model
and was used to study polymer stars.31 It was further realised that the
SCF equations could be implemented in two-gradient systems necessary
for considering laterally inhomogeneities in polymer adsorption and self-
assembly.32,33 Finally, Hessian-free optimisation techniques allowed the
development of SCF computations that develop density gradients in all
three directions. In the latter case the mean-field volume fraction should
be seen as the (time) average value of the segment concentration. This
allows for the modelling of, e.g., the gyroid phase in block copolymer
micro-phase segregation.34

The speed gained by using mean field models however comes at a
certain price. Part of the effects of correlations are lost and fluctuations
in the system cannot be observed. This is further discussed in chapter 5.
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Modelling Considerations for Telechelic Polymer Micelles

Not all methods strictly fall in these categories, some are hybrids, such
as Car-Parrinello Molecular Dynamics35, where the atomic nuclei are
moved with molecular dynamics while the electrons are treated in a
mean field way, and the hybrid method described in chapter 3, 4 and 5.

In principle techniques such as Car-Parrinello Molecular Dynam-
ics35, which I used during my internship at the University of Amster-
dam, can simulate the gel in full detail. It would however take a huge
amount of computer time to simulate even a small piece of gel on the
time scale on which the rheologically interesting behaviour takes place.
We therefore need to coarse-graine the gel, which means that multiple
particles are grouped together and simulated as a single particle. There
are various levels to which one could coarse-grain from single atoms,
to monomers, polymer segments, whole polymers and finally entire mi-
celles. Ideally, we would coarse-grain to as high a level as possible as
this allows us to simulate larger volumes of the gel on longer time scales.

In simulations it is usually assumed that all interactions are pair
wise additive, i.e. the interaction between two particles does not de-
pend on the position of other particles around them. For many types
of interaction that occur between coarse-grained particles, such as van
der Waals, DLVO36 and depletion forces37, there are however also con-
tributions from many body terms.

It is therefore far from certain that the micelles can be modelled as a
single particle with pairwise potentials. Especially when one considers
that if two isolated micelles approach each other closely the loops in
between them can move out of the way, while if they are already sur-
rounded by other micelles this is not possible and the loops are pushed
into each other. One would therefore expect that the repulsive force
between them is stronger, when they are surrounded by other particles.

I decided to test this hypothesis by measuring the interaction po-
tential between the micelles with a varying number of neighbouring
micelles using the Scheutjens Fleer self-consistent field model(SF-SCF).
The results of the calculations of the interaction potentials are described
in chapter 2.

We already give away here that we found that this interaction po-
tential is not pair wise additive. This meant that a model in which
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the micelles are coarse-grained as single particles and interact through
pairwise potentials would not give a reliable description of the gel. We
therefore had to look for a different method.

Monte Carlo SF-SCF Hybrid for Gels of Telechelic Polymers

The SF-SCF theory can describe a relatively large piece of gel within
limited computation time. As we have previously stated, the SF-SCF
model however does not show fluctuations and neglects part of the cor-
relations. These fluctuations have an effect on the properties of the
gel. My supervisor Frans Leermakers therefore wondered whether it
was possible to combine the Monte Carlo method with the SCF the-
ory and incorporate the fluctuations in the gel in this way. With this
method the cores of the micelles are moved with a Monte Carlo method,
while the distribution of the polymers which are anchored to the cores
is determined with the SCF theory.

We hoped that this would introduce the needed fluctuation in the
structure of the gel while still keeping the computation limited.

In chapter 3 a quick preliminary study is described, of a gel, made of
charged telechelic polymers adsorbed on a wall. We wrote this chapter
for a festschrift in honour of Herman P. van Leeuwen who worked on
diffusive gradient thin films (DGT) and diffusion equilibrium in thin
films(DET). These techniques are used to measure the concentration
of free metal ions in natural waters. In both cases there is a layer of
polymer gel in which the metal ions can penetrate. In DGT films there
is also a resin underneath which works as a sink for the metal ions.
For both techniques the amount of absorbed metal ions scales with
the average free metal concentration. It was however discovered that
small humic acid particles with bound metal ions could also penetrate
these gels.38,39 This can lead to an over estimation of the metal ion
concentration. It is therefore important to know how porous these gels
are and how particles are absorbed into them. Due to time constraints
we were not able to simulate a large enough part of the gel to answer
these questions, but we do show a proof of principle.

Later we did a more extensive study of a gel of neutral telechelic
polymers. In this study we varied the number of polymers per micelle,
the solvent quality and the polymer concentration and determined the
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structural properties of these gels. The results from these simulations
are described in chapter 4.

Hybrid SF-SCF Monte Carlo Model of Dendrimers

Introducing the Monte Carlo moves successfully introduced fluctuations
into the SF-SCF theory. I wondered whether it would also be possible to
use it to introduce some of the correlations back into the SF-SCF theory.
Because the SF-SCF is a mean field theory it calculates the interactions
based on the average concentration around the segments. Locally the
concentration is however higher because the segment is connected to its
nearby neighbours. The self-consistent field theory thus underestimates
the interactions that polymers have with themselves. It however over-
estimates the excluded volume interactions between separate polymer
chainss. Because the positions of segments in a polymer chain are cor-
related their excluded volumes overlap and their total excluded volume
is thus smaller. This may explain why the average size of a polymer
coil as a function of the number of segments N scales with N0.6 40 for
the meanfield model while for real polymers it scales with N0.588.41,42

By localising some of the segments of the polymer the correlations be-
tween the polymer segments are reintroduced into the self-consistent
field model. This should result in better scaling behaviour and a better
treatment of the excluded volume interactions.

As there are many arms in a dendrimer there will be a lot of excluded
volume interactions between these arms. Therefore the effect of the
introduction of the localized segments should have a stronger effect on
the size of a dendrimer than for a polymer. We therefore chose them
as a model system. For a functionality of 3 there is already quite some
literature but for dendrimers with higher functionalities of 4 and 5 there
is little information and our simulations can still give some useful data
about their size and density distribution.

In contrast to the gels of telechelic polymers the bonds in a den-
drimer are chemical rather than physical, each spacer is therefore con-
nected to two distinct branch points. We therefore have to calculate
the density separately for each spacer. As each spacer can only be in a
small part of the total volume, we have introduced a separate sub box
for each spacer. This way computation time can be saved.

14
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Overview Chapters

Chapter 2: Interactions Between Nodes in a Physical Gel
Network of Telechelic Polymers; Self-Consistent Field Cal-
culations Beyond the Cell Model.

In this chapter we investigated the interaction potentials between mi-
celles/ nodes as a function of the number of polymers per micelle and the
solvent quality. We did this for varying particle configurations, namely:
(i) two isolated nodes, (ii) nodes positioned on a line (iii) a central node
surrounded by its neighbours in simple cubic ordering, and (iv) a cen-
tral node in a face centred cubic configuration of its neighbours. For
the first three we used a simple cubic lattice while for the latter a Face
centred lattice was introduced in the SF-SCF model. We also compared
these results with those from the cell model.

Chapter 3: Hybrid Monte Carlo Self-Consistent Field Ap-
proach to Model a Thin Layer of a Polyelectrolyte Gel near
an Adsorbing Surface

Here we described our first experiments with the hybrid of the SF-
SCF method with a Monte Carlo method. We simulated a small piece
of surface bound polyelectrolyte hydrogel. We determined the density
profile and found that the adsorbed gel was in equilibrium with a dilute
phase.

Chapter 4: A Hybrid Monte Carlo Self-Consistent Field
Model of Physical Gels of Telechelic Polymers.

In this chapter we used the hybrid Monte Carlo SF-SCF method to do
a more extensive study of gels made of telechelic polymers. We varied
the number of polymers per micelle/node, the polymer concentration
and the solvent quality and determined the radial distribution function,
the compressibility and the structure factors. We also compared the
outcomes of this hybrid Monte Carlo SF-SCF method with a simpler
Monte Carlo model where we coarse-grained the micelles as a single
particle and used pair potentials based in the interaction potentials we
determined in chapter 2.

15
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Chapter 5: Coarse-Grained Dendrimers in Good Solvent;
Comparison of Monte Carlo Simulations, Self-Consistent
Field Theory and a Hybrid Modelling Strategy.

Here we investigated whether localizing some of the segments in a
molecule and moving them with a Monte Carlo scheme would improve
the way excluded volume interactions are treated in the self-consistent
field model. Dendrimers were used as a model system, as excluded
volume interactions play an important role in these molecules. We
compared the new hybrid method with the localized segments with the
classical SF-SCF models and a more detailed Monte Carlo model. We
did this for dendrimers with a generation number ranging from 1 to
7, a functionality ranging from 2 to 5 and spacer lengths of 20 and 50
segments.
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CHAPTER 2

Interactions Between Nodes in a Physical Gel

Network of Telechelic Polymers; Self-Consistent

Field Calculations Beyond the Cell Model.

Triblock copolymers, with associative end-groups and a soluble middle block, form

flower-like micelles in dilute solutions and a physical gel at higher concentrations.

In a gel the middle blocks form bridges between domains/nodes that contain the

ends. We combine the self-consistent field theory with a simple molecular model

to evaluate the pair potential between the nodes. In this model the end-groups are

forced to remain in nodes. When the distance between the centres of the nodes is

approximately the coronal diameter, loops can transform into bridges, and the pair

potential is attractive. Due to steric hindrance, the interaction is repulsive at smaller

distances. Till now a cell model has been used wherein a central node interacts

through reflecting boundary conditions with its images in a spherical geometry. This

artificial approach to estimate pair potentials is here complemented by more realistic

three-gradient SCF model. We consider the pair interactions for (i) two isolated

nodes, (ii) nodes positioned on a line, and a central node surrounded by (iii) a simple

cubic ordering or (iv) a face centred cubic ordering of its neighbours. Qualitatively,

the cell model is in line with the more refined models, but quantitative differences

are significant. We also notice qualitative differences for the pair potentials in the

specified geometries, which we interpret as a breakdown of the pairwise additivity

of the pair potential. This implies that for course-grained Monte Carlo or molecular

dynamics simulations the best choice for the pair potentials depends on the node

density.

This chapter was originally published as: ”Interactions Between Nodes in a Phys-
ical Gel Network of Telechelic Polymers; Self-Consistent Field Calculations Beyond
the Cell Model”, J. Bergsma, F. A. M. Leermakers and J. van der Gucht, Physical
Chemistry Chemical Physics, 2015, 17, 9001-9014
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Introduction

Triblock copolymers, with associative end-groups and a soluble mid-
dle block, are often referred to as telechelic polymers as they can con-
nect to two different parts. The end-groups can, for example, associate
by solvophobic interactions1,2, charge interactions3 4 or complexation
with metal ions.5,7 These ends form the cores of what may be called
micelles. The solvophilic polymeric middle blocks form the corona of
these micelles.43 The steric hindrance between the chains in the corona
prevents macroscopic aggregation, and micelles with a limited number
of polymers are formed.44 By mixing the telechelic polymers with a co-
surfactant, hybrid micelles can be formed and the average number of
polymers per micelle can be adjusted.8 45 In dilute solutions both ends
of the polymers have to be in the same core and a loop is thus formed
by the polymer. Because these structures look somewhat like a flower,
with the polymer loops as the petals and the micellar core as the heart,
they are called flower-like micelles.

When the concentration is increased, the distance between the mi-
celles is reduced and the coronas start to overlap. A loop can then
transform into a bridge, thereby connecting two micelles.2 Of course
this can only happen when the anchor energy of the ends is sufficiently
low to be overcome by the thermal energy. The possibility to form
bridges increases the number of polymer conformations and thus the
conformational entropy. This creates an attractive force.44 When the
average number of bridges per micelle is larger than unity, a volume
spanning network can be formed.1 The solution then becomes a gel.
Such behaviour is found for the telechelic polymer systems mentioned
above. Generically the regions in which the chain ends associate may
be referred to as nodes. Similar to chemically crosslinked gels, such
associative networks respond elastically upon deformation, but flow at
larger time scales.8 A schematic representation of this gel is shown in
Figure 2.1a. In such gel it is the osmotic pressure in the coronal region,
i.e. the steric hindrance between solvated corona chains, that keeps
the nodes apart. When the number of bridges per node is sufficiently
high, the bridging attraction becomes so strong that phase separation
occurs.8 In this case the polymer gel coexists with an excess solvent
phase with a relatively low polymer concentration.
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Figure 2.1: a: A micellar network formed by telechelic polymers. The
circles are the micellar core, with the grey lines as the associative end-
groups and the black line as the soluble middle block. The telechelics
can form loops (both ends in the same micelle/node) or bridges (ends
are in different micelles/nodes). An isolated flower-like micelle is shown
in the lower right corner. b: Two polymer configurations, a loop and
a bridge (closed circles), on the simple cubic grid with its ends (open
circles) constrained within nodes of 2 by 2 lattice sites (grey).

Gels made of these telechelics have a wide range of applications.
They are, for example, used to improve the rheological properties of
paints, as a gel material for gel electrophoresis46 and are envisioned
as carrier material for slow drug release.10 As the binding of the end-
groups is reversible the gels have the property to heal themselves when
they are damaged.47,48

As already elaborated above, there have been many experimental
studies on these systems. The number of theoretical counterparts is,
however, limited, basically because the system poses significant theo-
retical challenges. One way to gain additional insights in the physical
properties of such systems is to use computer simulations.

As it is virtually impossible to take all degrees of freedom of the
polymers explicitly into account, it is necessary to use a so-called coarse-
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grained model. For example by coarse- graining the polymer as a chain
of beads, or by modelling a micellar object as a single particle with ap-
propriate pairwise additive interactions between them.49 To implement
the latter method, one needs to determine the free energy of interaction
between the nodes. This quantity is not easily extracted from Monte-
Carlo, or molecular dynamics computer simulations.

A solution to this problem is to calculate the pair potential using
a self-consistent field (SCF) theory, as done by Sprakel and cowork-
ers.49 They used the Scheutjens-Fleer version of the self-consistent field
theory(SF-SCF) and modelled one flower-like micelle, with a core/node
in the centre of a spherically symmetric system with reflecting bound-
ary conditions on the outside; the so-called cell model. Subsequently
they recorded the free energy of the system as a function of the cell
size. There is however an obvious problem with determining the pair
potential from this free energy. The reflecting boundary conditions im-
ply that images of the central node are encountered in all directions
and it is unclear how to calculate a realistic pair potential from this
unrealistic particle ordering. Sprakel and co-workers tried to solve this
by dividing the free energy by twelve. Because a hexagonal ordering
has the greatest number of nearest neighbours, twelve, and is thus most
similar to the cell model. It is thus expected that this gives the best
estimate for the pair potential.

The first goal of this chapter is, therefore, to investigate the suitabil-
ity of the cell model to obtain pair potentials. We do this by comparing
the pair potential calculated with the cell model to that of a pair of
nodes on a 3D grid. The advantage of using a 3D grid is that we can
model realistic particle configurations, although it takes far more com-
putation time than the cell model. The configurations for which the
two pair interactions are compared are: an isolated pair of nodes (IP),
a string of Nodes on a line (NoL), and nodes in a simple cubic (cubic
primitive: cP) or face centred cubic (FCC) arrangement. The pair in-
teractions are further compared for various lengths of the soluble block
N , number of polymers per node f and solvent qualities χ.

The interactions between nodes with triblock copolymers are largely
determined by the entropic effect of loop to bridge transitions and the
steric repulsion due to the compression of coronal chains. How the
associating end-groups are held together is less important. Therefore we
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simply specify nodes with a predefined volume in which the associative
ends of the polymers have to reside. The telechelics thus either form a
loop, starting and ending on the same node, or a bridge, when ending
on a different node than the one they started from. We assume that the
binding of the end-groups is so strong that the number of free ends is
negligible and thus disregard the option that a loose tail is formed, even
though some free ends must exist for the gel to relax. This model can
be implemented in a cell model, but also for the cP and FCC lattice.

The primary result in the SCF calculations is the free energy of in-
teraction per node ∆F (d) as a function of the distance to the nearest
neighbour d. As the number of neighbours is different in each geom-
etry, we need to extract an effective pair potential ∆F12(d) from this
free energy of interaction to be able to compare the different geome-
tries. Assuming that the pair interactions are pair wise additive, we
find ∆F12(d) by fitting a pair potential such that the sum of the pair
interactions of the central node between all contributing node pairs is
the same as the free energy of interaction ∆F (d) for each value of d.

The second goal is to determine whether the assumption that the
pair potential is pairwise additive is correct. From the interaction be-
tween two isolated nodes (IP), we know the classical pair potential and
we can compare this with the pair potential ∆F12(d) found for the other
interaction configurations (NoL, cP, FCC) as well as for the cell model.
When pairwise additivity is applicable, all the pair potentials for the
different interaction geometries should match. For weak interactions
between the nodes (large node distances), the total number of polymer
configurations is changed only by a little. In this limit we expect that
pairwise additivity is strictly obeyed. For strongly interacting nodes,
however, the pairwise additivity will likely break down.

Self-Consistent Field Theory and the Molecular
Model

In this section, a brief introduction is given to the SF-SCF theory of
Scheutjens and Fleer.19,20,24 The theory was originally designed for the
case of polymer adsorption20,21,50–53, but found many applications in
other fields, such as surfactant self-assembly.22,33,53
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The target is to find the volume fraction profiles ϕX(r), for any
segment type X at coordinate r, such that the total free energy is
minimal. To this end, space is divided up in discrete lattice sites. The
lattice sites are organised depending on the symmetry in the system.
For the simple cubic and the FCC lattice, parameters are allowed to
vary in three dimensions. Then all x, y and z coordinates are specified.
One can also recognise lattice layers and average the volume fractions
within each layer. Then density gradients only occur in the remaining
(e.g. radial) direction, as in the cell model.

Hence, for the simple cubic (cP) and face centred cubic lattice
(FCC), the lattice sites are referred to by r = (x, y, z) coordinates,
x = 1, 2, . . .Mx, y = 1, 2, . . .My, z = 1, 2, . . .Mz, with periodic bound-
ary conditions in all directions. This is implemented by equating densi-
ties just outside the box to its periodic neighbour, e.g. ϕ(Mx+1, y, z) =
ϕ(1, y, z).

For the simple cubic lattice, which was used for the isolated pair
(IP), nodes on a line (NoL), and the simple cubic (cP) configurations,
a lattice site at coordinate (x, y, z) has neighbours at (x+ 1, y, z), (x−
1, y, z), (x, y − 1, z), (x, y + 1, z),(x, y, z + 1), (x, y, z − 1) and the faces
on the lattice sites are at 90◦ angles.

An FCC lattice was used for the face centred cubic (FCC) configu-
ration of nodes. In the FCC lattice, a lattice site has 12 nearest neigh-
bours. A lattice site at coordinate (x, y, z) has neighbours at (x+1, y, z),
(x− 1, y, z), (x, y + 1, z), (x, y − 1, z), (x− 1, y + 1, z),(x+ 1, y − 1, z),
(x, y, z+1), (x, y−1, z+1), (x−1, y, z+1), (x, y, z−1), (x, y+1, z−1),
(x + 1, y, z − 1). The x, y and z axis are now at an angle of 60◦ to
each other. The simulation box is thus a parallelepiped with periodic
boundary conditions.

The cell model has a spherically symmetric geometry with lattice
sites arranged in concentric layers numbered r = 1, 2, · · · ,Mr, with
layer r = 1 at the centre. The number of lattice sites in each layer grows
with the layer number as L(r) ∼ r2. The mean field approximation
is applied within each lattice layer, which means that the content of
all lattice sites in a given layer is identical. We have used reflecting
boundary conditions by setting all quantities at r = Mr + 1 equal to
that in layer r = Mr. The reflecting boundary condition implies that the
distance between two nodes is d = 2×Mr. It must be stressed that the
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reflecting boundary conditions are an artificial means to implement the
surrounding nodes around a central one and the number of neighbouring
nodes varies with the size of the cell model. For the cell model it is
also not defined how many neighbouring lattice sites each lattice site
has. With the simple cubic lattice in mind we have chosen to have six
neighbours for each lattice site, one in the layer above, one in the layer
below and four in the same layer. In practice one also needs to take
the curvature into account such that the ratio between the number of
neighbours in the layer above and below is the same as the ratio of the
surface areas of these layers.54 Below we will focus on the three-gradient
SCF approach because this information is not readily available in the
literature. The one-gradient equations can be derived from the three-
gradient ones and therefore we have reduced the amount of detail for
the cell model.

Within the SCF theory molecules consist of a number of segments
and each segment has the volume of one lattice site. These segments
can be of different types and thus have different properties reflected
in the interaction parameters. The polymer molecules are represented
by a chain of freely jointed segments numbered s = 0, 1, 2, · · · , N + 1.
Segments s = 0 and s = N + 1 are the associative end-groups. The
middle N segments form the water-soluble middle block. Subsequent
segments, along the chain, have to be on neighbouring lattice sites, but
can go in any direction that is consistent with the lattice geometry. The
freely jointed chain can therefore cross itself or fold back on itself. This
is partially corrected for by imposing an incompressibility constraint,
which means that the sum of the volume fractions, of the polymer and
the solvent, in each lattice site is exactly one. The segments have to be
about a Kuhn length in size for the polymer to be able to fold back.
For flexible polymers, like PEO, the length of a segment should thus
corresponds to roughly 0.5 to 1 nm.

We want to simulate networks of polymers with associative end-
groups. To do this in a computationally inexpensive way, we have
simply defined small volumes, called nodes, in which the two termi-
nal segments of all polymers s = 0 and s = N + 1 are constrained to
be. This is depicted schematically in fig. 2.1b. For the cP and the FCC
lattice the nodes are small cubes of 3× 3× 3 lattice sites. A chain can
choose to put the terminal segments in the same node forming a loop,
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or place the terminal segments in two different nodes forming a bridge.
An illustration of two polymer configurations on the simple cubic lattice
is shown in Figure 2.1b.

In the cell model the terminal segments are confined to a sphere
with a radius of two layers at the centre of the coordinate system. As
long as the polymer does not cross the reflecting boundary, a loop is
formed. If the polymer crosses the boundary once, a bridge is formed.
If the polymer crosses the reflecting boundary more than once, it is
unclear whether a loop or bridge is formed (there is a superposition of
the two cases).

The micelles that are formed by the nodes and polymers can be char-
acterized by the length of the soluble middle block N , the number of
polymers per node f and the solvent quality for the polymer segments.
This solvent quality is specified by the χ parameter which is defined as
the energy required to exchange a solvent and a polymer segment from
the pure phases in units kBT , just as in the Flory-Huggins solution the-
ory.55 The interactions are accounted for by the usual Bragg-Williams
approximation.

We investigated the effect of these characteristic properties of the
nodes on the interaction energy between an isolated pair of nodes and
for a single node with its mirror images in the cell model. The solvent
quality was varied from theta conditions χ = 0.5 to a good solvent
χ = 0. The number of chains per node ranged from f = 1, · · · , 10. The
polymer length was varied from N = 12 to N = 500 for the cell model
and from N = 12 to N = 100 for the isolated pair. Each segment is
roughly a Kuhn segment long. For a flexible polymer like PEO a Kuhn
segment is roughly two monomers.56 N = 50 thus coincides with 100
PEO monomers and a middle block weight of 4400 u. This falls within
the range of middle block weights that are studied experimentally which
ranges from about 2000 to 35000u.1,2,4,8,46,48

To determine whether the interactions are pairwise additive we have
calculated an effective pair potential for different node configurations:
An isolated pair of nodes (IP), a string of nodes on a line (NoL), a simple
cubic configuration (cP) and a face centred configuration (FCC)d.
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Figure 2.2: Overview of how the distance between the nodes was var-
ied for the different node geometries. The grey (dashed) lines indicate
smaller box sizes. The grey regions in the middle represent the node
with the polymers around it. a) the cell model b) the FCC configura-
tion c) an isolated pair (IP) d) a string of nodes on a line configuration
(NoL) e) a cubic (cP) configuration. Periodic boundary conditions are
used except for the cell model where a reflecting boundary is used.

As illustrated in Figure 2.2c the isolated pair was modelled by plac-
ing two nodes in a rectangular box far enough apart to not interact. By
reducing the number of layers in the appropriate direction, the distance
through the periodic boundary between the nodes is reduced until both
nodes touch each other. For the other configurations (fig. 2.2a,b,d,e),
we used a single node inside the box. For the chain configuration the
size of the box was decreased in one dimension only, whereas for the
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cell model, the simple cubic and the FCC configuration the box was
decreased in all three dimensions simultaneously. We calculate a free
energy F (d) of the node with the polymers, as a function of the distance
d between the nodes through the periodic boundary. The distance d be-
tween the centres of the nodes (given in the number of lattice sites) is
indicated in Figure 2.2. The free energy of interaction ∆F (d) is then
specified by

∆F (d) = F (d)− F (∞) (2.1)

The reference value for the free energy of interaction F (∞) is the free
energy when the nodes are so far apart that the polymers can only form
loops.

The calculations are done in a canonical ensemble(n,V ,T ), and thus
with a fixed amount of polymers. Although we change the volume of
the box one can imagine that there is an additional volume such that
the total volume remains constant. As this volume only contains pure
solvent for which the chemical potential is defined as 0, it does not
contribute to the free energy. The appropriate characteristic function
is thus the Helmholtz energy. Here our interest is in the free energy for
the system wherein the ends of all polymer chains are constrained to
be on the node positions which are conveniently collected in the set of
n coordinates, {rn}, exactly specified by the input of the calculations.

Central in the SCF theory is a mean field free energy which is a func-
tional of two complementary distributions, the volume fraction profile
of the segments and a segment potential profile. This mean field free
energy can be written in the generic form24:

F = U([ϕ])−
∑
r

∑
X

ϕX(r)uX(r)+
∑
r

α(r)

(∑
X

ϕX(r)− 1

)
−lnQ([u])

(2.2)
In which ϕX(r) is the volume fraction and uX(r) is the segment po-
tential of segments type X at position r. We use the the Lagrange
multiplier method, in the third term,

∑
r α(r) (

∑
X ϕX(r)− 1), to en-

sure that the sum of the volume fractions is one in every lattice site.
The interaction energy U([ϕ]) between the segments depends on the
volume fraction distribution. It is, for the Flory-Huggins equation of
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state, given by:

U([ϕ]) =
1

2

∑
r

∑
X

∑
Y

χXY ϕX(r)〈ϕY (r)〉 (2.3)

Here χXY is the (Flory-Huggins) interaction energy between segments
X and Y and 〈ϕY (r)〉 is the average volume fraction of segment type
Y in the sites around r:

〈ϕY (r)〉 =
1

Z

∑
r′

ϕY (r)δ|r′−r|−1 (2.4)

where the Kronecker δ|r′−r|−1 = 1 when |r′ − r| − 1 = 0 and zero
otherwise. Z is the number of neighbours of the lattice site at r. The
factor 1

2 is introduced because each contact is counted double. Finally,
Q([u]) is the partition function which depends on the segment potentials
uX(r).

In the mean field Ansatz the partition function of the system can
be rewritten in terms of single molecule partition functions qi

Q =
∏
i

qni
i

ni!
(2.5)

Wherein ni is the number of molecules of type i. The partition function
can be evaluated efficiently by using the freely jointed chain model.
Within this model qi is found by qi =

∑
rn

Gi(rn, N + 1|{rn}, 0). In this

case the summation can be limited to the sum over the set of coordinates
r that lie within the nodes. Here Gi(rn, N + 1|{rn}, 0) is called the end
point distribution function and is effectively the sum of the statistical
weights of all chain conformations ending at the node position rn with
segment s = N + 1 while segment s = 0 can be located within any node
in the system.

All conformations that contribute to the end point distribution func-
tion at a location r will have the same Boltzmann weight for the last
segment s = N+1. This term Gi(r, N+1), which is equal to e−u(r,N+1)

when r ∈ {rn} and zero otherwise, can thus be moved outside the sum-
mation. Since the chain must have come from one of Z adjacent lattice
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sites, the remainder of the summation can be written as a summation
of the end-point distribution function, of the chain without the last seg-
ment, on adjacent sites multiplied with the fraction of the paths 1

Z from
adjacent site r′ that go from r′ to site r.

Gi(r, N + 1|{rn}, 0) = Gi(rn, N + 1)
1

Z

∑
r′

Gi(r
′, N |{rn}, 0)δr′−r (2.6)

This equation is known as the propagator, because it relates walks that
are N + 1 steps long to one that is N segments long. This process can
be repeated, that is we can relate Gi(r, N |{rn}, 0) to a summation over
Gi(r

′, N − 1|{rn}, 0), etcetera, until Gi(r, 0|{rn}, 0) is reached. For this
last one, we have Gi(r, 0|{rn}, 0) = Gi(rn, 0) ≡ e−u(rn,0) for all node-
positions (r ∈ rn), while the end-point distribution Gi(r, 0|{rn}, 0) = 0
for all remaining lattice sites r /∈ {rn}.

Hence, the partition function qi can be obtained by starting the
calculation at G(rn, 0|{rn}, 0) and from these calculate Gi(r, 1|{rn}, 0)
and further on, via Gi(rn, s|{rn}, 0), till Gi(rn, N+1|{rn}, 0) is reached,
that is the propagators are executed in the reverse order as introduced
above.

The end point distribution functions can further be used to de-
termine the local volume fractions of the segments ϕi(r, s

′). More
specifically, ϕi(r, s

′) is proportional to the end-point distribution func-
tions that collect all statistical weight of those conformations that pass
through coordinate r with segment s = s′. It is the product of the
two complementary propagators of the chain fragments, one leading
from segment s = 0 to segment s = s′ and another one from segment
s = N + 1 to segment s = s′.

ϕi(r, s
′) = Ci

Gi(r, s
′|{rn}, 0)Gi(r, s

′|{rn}, N + 1)

Gi(r, s′)

= Ci
Gi(r, s

′|{rn}, 0)Gi(r, N − s′ + 1|{rn}, 0)

Gi(r, s′)
(2.7)

Because the Boltzmann weight of segment s = s′ is in both end point
distribution functions we need to correct by division with Gi(r, s

′). In
the second line we have rewritten the partition function. Because the
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polymer is symmetrical we only need to evaluate the propagator in
one direction and can thus save computation time. The normalization
constant Ci is easily found as the ratio between the number of chains
ni and the single chain partition function qi.

Ci =
ni
qi

(2.8)

The overall volume fraction distribution of polymers is found by a sum-
mation over the segments

ϕi(r) =
s=N+1∑
s=0

ϕi(r, s) (2.9)

The distribution of the monomeric solvent simply follows from the
Boltzmann weight

ϕS(r) = CSGS(r) = CSe
−uS(r) (2.10)

When the segment potentials are normalized to zero in the bulk, it is
easily shown that CS = 1.

Now we still need a method to determine the segment potentials
uX(r). Because the self-consistent solution we are looking for is the one
with the lowest free energy. We need to optimize the free energy to
the parameters uX(r), ϕX(r) and α(r). This optimization then directly
leads to the methods for determining the segment potentials from the
segment volume fractions and vice versa. The optimization with respect
to the volume fractions gives

∂F

∂ϕX(r)
= −uX(r) +

∑
Y

χXY 〈ϕY (r)〉+ α(r) = 0 (2.11)

which specifies how to compute the segment potentials in the SCF ma-
chinery.

uX(r) =
∑
Y

χXY 〈ϕY (r)〉+ α(r) (2.12)

The optimization of the free energy with respect to the Lagrange pa-
rameter α(r) leads to the rule that we need to obey to the constraint
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∑
X ϕX(r) = 1. The optimization of the free energy with respect to the

segment potentials gives the rule how to compute the volume fraction
distribution from the potentials:

∂F

∂uX(r)
= − ∂ lnQ

∂uX(r)
− ϕX(r) = 0 (2.13)

ϕX(r) = − ∂ lnQ

∂uX(r)
(2.14)

This method for determining the volume fractions is however compu-
tationally less efficient than the previously described method. We have
thus used eqn. 2.9 to calculate the volume fractions.

Now only the parameter α(r) remains to be defined. There is no
clear way how to choose this alpha, but all possibilities should have
in common that the value of α should increase when

∑
X

ϕX(r) > 1

and decrease when
∑
X

ϕX(r) < 1. We choose to update alpha at each

iteration step as:

αnew(r) = αold(r) + η(1− 1∑
X

ϕX(r)
) (2.15)

where η is a regularisation parameter which is taken small enough so
that the equations do not diverge (typically η = 0.3 gives a stable
scheme. In any case, we do not terminate the iterations until a fixed
point is reached for all α(r) values.

The above set of equations fully specifies how to compute the poten-
tials from the volume fractions and vice versa. The numerical solution
is routinely calculated with a Hessian-free minimization method. For
the calculations in this chapter the L-BFGS method57 was used. We
obtained at least 7 significant digits for the potentials and for the vol-
ume fraction distributions. Using these we can evaluate the free energy
we need in Equation 2.1, which is at the basis of the evaluation of the
pair potentials.

Now that the free energy of the system is known we can determine
an effective pair potential ∆F12(d) for the different geometries. The
effective pair potential is the pair potential that will reproduce the free
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energy of interaction ∆F (d) when all the interactions between pairs of
nodes are summed together. We thus assume that the interactions are
pair wise additive to determine ∆F12(d). If this is indeed the case we
should find the same ∆F12(d) for all configurations. There are however
many reasons why the interaction may not be pair wise additive. E.g.
one node may be in between two other nodes blocking some of the
bridging conformations between them. Therefore one of our targets is
to quantify this loss in pair wise additivity.

∆F12(d) has been calculated for the four different particle config-
urations. The idea to find the pair potential for a given interaction
geometry is the following; In a given interaction geometry it is trivial
to find the number of neighbours at a given distance from the central
node. Let us label these neighbours by k1 = 1, · · ·K1, where K1 is the
number of nearest neighbours. Similarly we number the next nearest
neighbours as k2 = 1, · · · ,K2, etcetera. The distance to the central
node for these neighbours is given by dk1 for the nearest neighbours
and dk2 for the next nearest neighbour, etcetera. Then assuming that
for this effective pair potential the pairwise additivity holds, we should
recover the total interaction energy by summing the pair interaction
over all the contributions of the neighbours:

∆F (d) =

K1∑
k1=1

[∆F12(dk1)] +

K2∑
k2=1

[∆F12(dk2)] + · · · (2.16)

We continue to account for the neighbours further away until they no
longer contribute to the summation. The effective pair potential was
calculated iteratively from the known ∆F (d) for a given interaction
geometry. An initial guess for the effective pair potential ∆F12(d) is
made by dividing the total interaction potential by the number of near-
est neighbours. Subsequently, the contribution from the neighbours
further away is calculated based on this potential. These contributions
are then subtracted from the total interaction potential. The remain-
der of the potential is then again divided by the number of nearest
neighbours to get a new estimate of ∆F12(d). This is repeated until
∆F12(d) remains constant. Because the next nearest neighbours may
lie at non-integer distances a cubic spline function was used to interpo-
late between the data points of ∆F12(d). Obviously, for the IP geometry
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we find ∆F12(d) = ∆F (d) because there is just one neighbour involved.

For the cell model the effective pair potential cannot be calculated
in this manner and we have simply divided ∆F (d) by twelve, because
this is the number of nearest neighbours in an FCC lattice which is the
most similar to the cell model.

Results and Discussion

We subdivide the results section into two parts. First we present the
results for the one-gradient calculations, that is for the classical cell
model. These calculations are inexpensive as they typically take less
than a tenth of a second of CPU time for each distance. Most of these
results are at least qualitatively known in the literature and are repro-
duced here for comparison. In the second part we will present results of
the three-gradient calculations with a focus on the results for the iso-
lated pair. These calculations take on the order of one minute of CPU
time for each distance and determine the free energy with an error less
than 0.01 kBT within the assumptions of the model used here. At the
end of this section we will focus on the pairwise additivity of the pair
potential and show the results for the NoL, cP and FCC configurations.

Cell Model Results

In Figure 2.3 results for the radial density profiles, calculated with the
cell model are presented in double logarithmic coordinates for the case
N = 500, f = 10 and, χ = 0.5 and χ = 0.0. In the central region
2 < r < 10 where the curvature is important, the polymer density
decays like a power law. The exponents are very close to those for star
polymers which are −4/3 in a good solvent and −1 in a theta solvent.58

The profiles found here therefore look very similar to those reported by
Wijmans et al.59 for star polymers. The region for which the power law
behaviour is observed is small as the polymers are relatively short. For
χ = 0.5 the edge of the polymer brush is reached at r ≈ 15 where the
polymer density starts to decrease exponentially. As the thickness of
the corona layer in good solvent is larger than that of the theta solvent,
the profiles cross each other around r = 20. The profile for the good
solvent hits the upper boundary at r = 30 and crosses this boundary
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Figure 2.3: Radial polymer volume fraction profile around a node in the
cell model. N = 500, f = 10. The continuous line is for theta solvent
χ = 0.5 whereas the dotted line is for good solvent, χ = 0. The slope
of the power-law region of the profile is indicated, which is −1 for theta
solvent and −4

3 for good solvent.

with zero slope (this is imposed by the boundary condition). The finite
concentration at the boundary implies that bridges are formed. In the
theta-solvent χ = 0.5 the reflecting boundary is still far from the edge
of the polymer brush and a negligible number of bridges is present. For
χ = 0 and r > 15 the polymer density is higher than expected from
the power law behaviour. This is due to polymer loop conformations
that in a free micelle would extend beyond the edge of the cell are now
folded back into the cell.

The dimensionless free energy of interaction ∆F (d) is computed in
the cell model for different values of the cell size Mr. In Figure 2.4 we
give a summary of the interaction free energy curves for the cell model.
The default system has chains with a length of 50 segments, N = 50,
five chains per node, f = 5, and a good solvent, χ = 0.

In Figure 2.4a the effect of the variation in the number of polymers
per node is presented, in Figure 2.4b we show the result for the vari-
ation of the chain length and finally in Figure 2.4c the solvent quality
was varied. At large distances, d → ∞, the free energy of interaction
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Figure 2.4: Free energy of interaction ∆F for the cell model as a function
of the distance d = 2 ∗Mr between the node and its mirror image. a)
N = 50, χ = 0 and the number of polymers per node ranging from left
to right : f = 1 ( ), 1.5, 2, 3, 5, 10 ( ) b) χ = 0, f = 5, and
the chain length varied from left to right: N = 12 ( ), 25, 50, 100,
200, 500 ( ). c) N = 50, f = 5, and varied solvent quality: from
left to right: χ = 0.5 (theta solvent, ), 0.4, 0.3, 0.2, 0.1, 0 (good
solvent, ).

is zero. As soon as the coronas ’touch’ each other, bridges form and an
attraction is found. Hence, ∆F becomes negative. At small values of d
the corona layers are strongly compressed and steric repulsion is found.
The interaction curve can be characterized by, the depth, width and
position of the attractive well. Although the steepness of the repulsion
also varies, it is usually so steep that the range over which the micelle
behaves as a soft particle rather than a hard sphere is small and the
excluded volume thus does not change much due to the varying steep-

34



Results and Discussion

ness of the repulsion. Because there can only be an integer number of
layers in the cell model, the free energy of interaction is only available
at even values of d. This is why the curves appear somewhat kinky. In
reality the interaction curves should of course be smooth.

In Figure 2.4a the dependence of the free energy of interaction on the
number of chains per node, f , is presented. The depth of the attractive
well increases and both the minimum and the onset of the steric repul-
sion occur at greater distances d with an increasing f . Both trends are
easily explained. The attraction is due to the transformation of loops
into bridges and the more bridges can form the deeper the minimum.
The depth of the minimum however does not scale linearly with the
number of arms but roughly with ∆Fmin ∼ f0.65. Due to the limited
number of points, the depth of the well is not determined accurately
enough to conclude that there is power law behaviour.

A larger number of chains on a node also increases the height of the
corona and the micelles will thus attract each other at greater distances.
An increase in the number of polymers per node however also leads to
an increased polymer density in the corona and thus an earlier onset of
the steric repulsion. Therefore the minimum shifts to larger separations
d. Fitting of the position of the minimum as a function of the number
of arms gives to a good approximation dmin ∝ f0.2, which is expected
from the Daoud Cotton model.58 Below in Figure 2.9 we elaborate more
on the depth of the interaction curve as a function of f .

The chain length dependence for the free energy of interaction is
presented in Figure 2.4b. The position of the minimum is found to
scale with the corona thickness which in turn depends on the length of
the polymers. In the limit of large N values dmin ∝ N3/5 is found to
a good approximation, which is in accordance with the Daoud Cotton
model.58 The depth of the interaction minimum is, on the other hand, a
weak function of the chain length and it decreases with increasing chain
length. We further observe a broadening of the well. We will return to
this point in Figure 2.10.

The third variable that is relevant to investigate is the solvent qual-
ity. As can be seen in Figure 2.4c the relevant features of the free energy
of interaction systematically shifts to larger d values when the solvent
quality improves. As mentioned before, the minimum is generated by
steric repulsion at short distances and attraction at larger distances due
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to the loop to bridge transitions. At large distances the attraction is
not much affected by the solvent quality. The main effect is the on-
set of the repulsion which occurs at larger distances when the solvent
quality is better. As illustrated by the radial volume fraction profiles
in fig. 2.3, the corona is more swollen in a good solvent. This swelling
of the corona is due to the increased value of the segment virial coeffi-
cient v = 1 − 2χ, which specifies the repulsion between segments that
encounter each other in the corona. The overlap between the coronas is
more repulsive the larger the virial coefficient is. The position at which
the repulsion is larger than the attraction will thus shift to greater dis-
tances d. The width and depth of the well will thus decrease and the
minimum of the interaction curve shifts outward.

Three-Gradient Models

a b c

Figure 2.5: A cross section through a three-gradient density profile of
the polymer segments. a) an isolated pair (IP), b) a line of nodes (NoL),
c) a simple cubic (cP) arrangement of nodes. The cross section is taken
through the centres of the nodes. N = 50 χ = 0.5, f = 5. The dark
areas indicate a high polymer density.

It is illustrative to first discuss some typical examples of the polymer
density as found in the three-gradient calculations. Figure 2.5 shows a
polymer density plot for a cross section taken such that the plane crosses
the nodes through their centres, for a) the isolated pair (IP), b) a series
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of nodes on a line and c) the cP arrangement of nodes. In the cross
sections the square lattice is clearly visible. A higher polymer density
is indicated by a darker colour. The polymer density for the IP (Figure
2.5a) shows that the polymer is arranged slightly asymmetrically around
the two nodes. Because bridges can be formed, there are more polymer
conformations possible between the nodes and the polymer density is
thus higher. Similar effects are seen for the string of nodes on a line
(Figure 2.5b). Halfway in between the nodes, the polymer density is a
bit higher than on comparable distances in the other directions. Also
in the simple cubic arrangements (Figure 2.5c) we see an inhomoge-
neous distribution around the node. In the contact regions the polymer
density is a bit higher due to the bridging that takes place.
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Figure 2.6: The volume fraction of the polymer as a function the dis-
tance r in lattice sites from the centre of the node for χ = 0 (a) and
χ = 0.5 (b). f = 10, N = 50. FCC lattice (—), cell model (- - -),
simple cubic(· · · ).

Just as in the cell model, we can determine the volume fraction,
as a function of the distance from the centre of an isolated node, for
the three-gradient calculations. In Figure 2.6 radial profiles are shown
for micelles, with N = 50 and f = 10, in the cell model, on a cubic
lattice and on an FCC lattice, for both good χ = 0 (panel a) and theta
χ = 0.5 (panel b) solvents. The curve for the cP and the FCC lattice was
taken through the centre of one of the faces of the cube/parallelepiped.
Because the density at the corners of the cube shaped node was higher
than in the middle of the faces, the amount of polymer that would be
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found if one integrated over the polymer density is a bit lower for the
cP lattice than for the cell model. Because the distance between the
centres of the nodes was kept the same for the cP and FCC lattice, the
volume of a lattice site in the FCC lattice is smaller than in the cubic
lattice. As a consequence there are more lattice sites within a certain
radius of the centre of the node in the FCC lattice than in the cP lattice
and the polymer density for the FCC lattice will thus be lower than that
of the cP lattice.

As the middle blocks try to move outward, to reduce the steric
repulsion between them, the end-groups are pulled to the surface of
the node. This increases the polymer concentration at the surface and
lowers the polymer concentration in the centre of the node, as seen in
Figure 2.6. As expected, the profiles in Figure 2.6 are very similar. This
indicates that the cell model is giving a reasonable prediction for the
typical distribution of segments around a node. As the details of the
radial profiles were already discussed for the cell model, see fig. 2.3, we
will not repeat them here. The polymers are too short to be able to
clearly see power law behaviour in fig. 2.6.

When two nodes are sufficiently close to each other, bridges may
form. It is of interest to quantify the number of bridges, which can be
computed similarly as for the evaluation of bridges between two sur-
faces.50 The number of bridges is given by the total number of chains
minus the number of loops. The latter can simply be computed from
evaluating the number of chains that start and end at the same node.
This is done by recalculating the single chain partition function qi, with
just one of the nodes present and without adjusting the segment poten-
tials. With ni = Ciqi and the Ci from the calculation with all nodes
present, the number of polymers in a loop configuration on that node
is determined.

The evaluation of the number of bridges in the cell model is prob-
lematic as it is not clear whether a loop or bridge is formed when the
polymer crosses the periodic boundary more than once. For a pair of
isolated nodes the mentioned procedure is easily implemented which
leads to the number of bridges for a given position of the two nodes.
Throughout this chapter the nodes are oriented along either the x or y
or z-direction in the lattice, so that the distance between the nodes is
an integer number of lattice sites. However, the nodes may also be ori-
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Figure 2.7: The number of bridges nbr between a pair of isolated nodes,
on a cubic lattice for χ = 0 to χ = 0.5, as a function of the distance
between the centres of the nodes d. The black dots belong to χ = 0 and
the grey dots belong to χ = 0.5; f = 5 and N = 50.

ented differently with respect to the lattice directions. Information on
the number of bridges as a function of the distance between the nodes
for arbitrary orientation of the nodes in the lattice can give information
on the presence or absence of a lattice artefact in our calculations. In
short, we have generated a large number of random positions for the
pair of nodes in our system and for each of these positions we have eval-
uated the number of bridges nbr. In Figure 2.7 the number of bridges
between an isolated pair of nodes nbr is shown for the default conditions
for both χ = 0 and χ = 0.5. The number of bridges scales with the
amount of the polymer loops at the mirror plane between the micelles
(not shown). For each point where a polymer in a loop conformation
crosses this mirror plane, the mirror image of the second part of the
conformation forms a new bridging conformation. As the number of
polymers that cross the mirror plane decreases almost linearly with
increasing distance between the nodes, the number of bridges also de-
creases linearly with increasing distance d. This is especially clear for
χ = 0.5. Even though the points in Figure 2.7 do not lie perfectly on a
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line the deviations are small, proving that the orientation of the nodes
relative to the grid has little influence on the number of bridges.

We can evaluate the number of bridges also in more complicated
configurations of the nodes, however, these calculations may become
involved as soon as more particles are involved (NoL, cP or FCC), be-
cause we should distinguish bridges between nearest neighbours from
those between next nearest neighbour and so forth. As the comparison
with the cell model is not straightforward, we will not further analyse
the number of bridges and rather focus on the free energy of interaction,
which is the result of the bridging attraction and steric repulsion.
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Figure 2.8: The interaction free energy per node ∆F between a pair of
isolated nodes on a cubic lattice for χ ranging from 0 to 0.5 in steps of
0.1. The blue continuous line belongs to χ = 0 and the red dotted line
to χ = 0.5; f = 5 and N = 50.

We have used the simplest particle configuration for which bridge
formation occurs, the isolated pair(IP) on a cubic lattice, to study how
the free energy of interaction depends on the length of the polymers N ,
the number of polymers per node f and the Flory interaction parameter
χ. The interaction curves, for different values of the solvent quality χ,
are shown in Figure 2.8. In this case there were 10 polymer chains,
5 per node (f = 5) and each polymer had N = 50 segments. With
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decreasing distance, the loop to bridge attraction is expected to increase
as there are more bridging conformations (see fig. 2.7). The steric
repulsion however also increases with decreasing distance because the
corona layers are compressed. The resulting well depth is therefore an
interplay with the strengths and the ranges of these two contributions.
For a good solvent the corona layer is more extended and the repulsive
contribution becomes longer ranged which causes the depth of the well
to become less deep with increasing solvent quality.

Qualitatively the interaction curves are similar to those of the cell
model. With increasing values of χ, the trend of increasing well depth
and a decreasing distance at which the minimum of the interaction is
observed, is clearly visible and the results qualitatively compare well to
the result of the cell model discussed above in fig. 2.4c. Quantitative
differences are obvious. Most importantly the absolute value for the
free energy of interaction ∆F is much smaller for the IP case. This is
easily explained, for the IP there is just one direction in which a bridge
can be formed whereas for the cell model a bridge can be formed in all
directions. As shown in fig 2.5a the chains remain roughly isotropically
distributed around the node when the other node is in its vicinity. As a
result only a few chains can form bridges and the free energy of interac-
tion remains modest. Another quantitative difference is the observation
that the interaction curves are shifted to shorter distances for the IP as
compared to the cell model and the steric repulsion is less steep. This is
due to the fact that for the IP the chains have room to move out of the
gap between the nodes when the nodes are forced towards each other.
This is not possible in the cell model, the cP and the FCC cases.

Next, we choose to focus on the depth of the minimum in the free
energy of interaction curve. We use the notation ∆Fmin and note that
the negative value of this quantity is kept to remind ourselves that there
is an attractive well.

For the IP interaction geometry we collected −∆Fmin as a function
of the number of chains per node f . In Figure 2.9 this dependence is
shown in double logarithmic coordinates. Even though the range over
which we can change f is limited, it is found that the depth of the
attractive well increases with f as a power law. The exponents found
range from 0.44 for χ = 0 to 0.51 for χ = 0.5. Semenov et al. did predict
power law behaviour for this dependence, but the expected coefficients
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Figure 2.9: The depth of the attractive well ∆Fmin, as a function of the
number of chains per node f , on a double logarithmic scale, for the cell
model (· · · ) and the isolated pair(—) for χ = 0 (Spheres) and χ = 0.5
(Squares). For the the cell model 1

12∆Fmin is plotted. The lines are the
power law fits. N = 50

ranged from 0.3 to 0.33 for χ = 0 to 0.5.43 Possibly, the relatively short
chain length, N = 50, has influenced the coefficients. These results can
be compared to the cell model results presented in fig. 2.4a. Also for the
cell model power law dependence is found and the results are presented
in fig. 2.9’s dotted lines. In this case the free energy of interaction was
divided by the expected surrounding of 12, which corresponds to a FCC
surrounding. For the cell model the power law coefficients ranged from
0.65 for χ = 0 to 0.76 for χ = 0.5 which is significantly larger than for
the IP geometry. The larger coefficient for the cell model is probably
due to the reduced steric hindrance between the bridge forming chains
compared to the IP geometry. For the IP geometry there is only one
way to form bridges and if multiple bridges are formed there will be
steric hindrance between them. In the cell model bridges can however
be formed in any direction and there is thus no strong steric repulsion
between bridge forming chains.

The effect of the polymer chain length on the depth of the attractive
well, for the IP and the cell model, is shown in Figure 2.10. (For the
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Figure 2.10: The depth of the attractive well ∆Fmin as a function of
the chain length for a good solvent χ = 0 (spheres), and a theta solvent
χ = 0.5 (squares) both for the cell model (· · · ) for which 1

12∆Fmin is
given as well as for the IP geometry(—) ; f = 5.

cell model the free energy of interaction was again divided by 12). For
the IP there is hardly a chain length dependence at χ = 0.5, for χ = 0.3
(not shown) and χ = 0 there is a weak decrease of the well depth with
N , which seems to level off at large values of N . The weak chain length
dependence is unexpected as the total number of bridges that can form
is given by f and this quantity is fixed. For the cell model the distance
to a mirror image of the node could only be changed by 2 lattice sites
at a time. This reduces the accuracy with which the minimum can be
determined, especially for the chains of 12 and 25 segments. It is thus
not clear whether the decrease of the well depth with increasing length
in a theta solvent is significant for the cell model, although the well
depth seems to decrease by about 10% going from N = 50 to N = 500.
For a good solvent the cell model shows the same trend as the IP, as
can be seen in Figure 2.4b.

Let us now compare the results for the free energy of interaction
between the nodes, for the cell model, the IP, the NoL, the cP and
the FCC configurations. In Figure 2.11 the interaction energy per node
is presented for these interaction geometries with f = 5 and N = 50,
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Figure 2.11: The free energy of interaction per node as a function of
the distance d between nodes measured in lattice sites, for f = 5 and
N = 50. a) χ = 0 (b) χ = 0.5. Results are collected for different
interaction modes. From the red dotted line to the continuous blue
line: IP, NoL, cP, FCC and the cell model.

for a good solvent (panel a) and a theta solvent (panel b). In these
calculations we made no corrections for the number of neighbours per
node. Therefore the absolute value of the free energy of interaction
differs a lot between the configurations. Below we will present the
corresponding ’effective pair potentials’ which correct for the number of
neighbours. For the cell model the attractive well is shifted to greater
distances. This is because the number of neighbouring nodes increases
with the square of the distance, whereas the number of nodes remains
constant for all other particle configurations. This gives an extra log d2

term to the attraction, resulting in an increased long range attraction
for the cell model.

At a smaller cell size a neighbouring node is seen in all directions
through the reflecting boundary conditions, there is thus a strong steric
repulsion between the node and its mirror images when the cell size
is reduced. Hence, the onset of the repulsive part of the interaction
occurs at greater distances as well. The minima are at a shorter range
for χ = 0.5 than for χ = 0.0, which is expected from the reduced
swelling at χ = 0.5.

For the IP, the NoL and cP interaction geometries, the depth of
the attractive well is proportional to the number of nearest neighbours.
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Figure 2.12: The effective pair potentials ∆F12 in units of kBT as a
function of the distance d in lattice sites, as explained in the text, for
χ = 0 (a) and χ = 0.5 (b). The free energies of interactions as presented
in fig. 2.11 have been used for the evaluation of the pair potentials.
Again f = 5 and N = 50. From the red dotted line to the continuous
blue line: IP, NoL, cP, FCC and the cell model.

For the FCC configuration the depth of the attractive well is less than
the depth expected from the number of nearest neighbours. About 5

6
of the expected value for χ = 0 and 2

3 for χ = 0.5. For the simple
cubic configuration a deeper attractive well would be expected as well,
because there are still twelve next nearest neighbours which are near
enough to form a bridge. Assuming the interactions are the same as
for an isolated pair, the sum of all these interactions should give a
potential well deeper than the one found here for the cubic and the
FCC configuration.

In Figure 2.12 we show the effective pair potentials ∆F12(d) for
the different interaction geometries, again for the two solvent qualities:
good solvent, panel (a) and theta solvent panel (b). These pair poten-
tials were extracted from the interaction free energy curves presented
in Figure 2.11. To compare these effective pair potentials with the free
energy per node from the cell model, the free energy in the cell model
was divided by 12 assuming that there are twelve nearest neighbours as
in an FCC or a hexagonal configuration. The same approach to obtain
a pair potential from the cell model was used by Sprakel et al.44

As can be seen in Figure 2.12, the attractive part of the effective pair
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interaction is practically the same for the IP and the NoL configurations,
especially for the good solvent case for which the curves overlap. The
repulsion between the nodes in the NoL configuration increases more
rapidly for χ = 0.5, compared to the IP, because there is less space
for the chains to escape to in the NoL configuration. There is a large
difference between the IP and the configurations where the node is
surrounded by other nodes in all directions, the cell model, the cP, and
the FCC configuration, especially for χ = 0.5. The repulsion occurs
at larger distances and the potential well is less deep than for the IP.
This increase of the distance at which the repulsion occurs could be
expected. As the nodes come closer to each other the volume per node
becomes smaller until there is not enough space left to fit the polymers.
At short distances the interaction potential should thus go to infinity
for the cell model, the cP and the FCC configuration. For the NoL and
the IP there is still space for the polymers to escape to when the nodes
touch each other and the interaction potential grows only modestly.

The well depth for the cell model, cP, and FCC configurations is
smaller than for the IP. This is at least partially caused by the delayed
onset of the repulsion in the IP. An additional reason is that one node
can block bridge conformations between two adjacent nodes reducing
the strength of the attraction between those nodes, which is important
for bridges made with next nearest neighbours. One would also expect
that each additional neighbouring node will decrease the free energy
less than the previous one, because fewer chains are remaining for the
bridges to form (some are already engaged in bridging). A different
way to view this is by considering the entropy due to the number of
polymer conformations. With each additional neighbour the number
of possible polymer conformations is increased by some amount. Be-
cause the free energy scales with the natural logarithm of the number of
conformations, the free energy is expected to decrease less with each ad-
ditional neighbouring node. The average attraction between the nodes
will therefore be lower than for an isolated pair.

The difference between the cell model, cP and FCC configurations
is smaller. The depth of the attractive well is almost the same for these
three configurations. The curve for the FCC configuration is shifted
to a bit smaller distances than that of the cP configuration. This may
be because the number of lattice sites that can be reached in a certain
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number of steps from the node is bigger for the FCC lattice than for
a cubic lattice. The volume can thus be used more efficiently with an
FCC lattice.

The pair potential obtained from the cell model is thus not such a
bad approximation as long as one node is surrounded by many neigh-
bours, that is when the overall node concentration is relatively high. At
lower node concentrations, the micelles in the gel will likely form a more
porous, open structure wherein each node is no longer surrounded by
other nodes on all sides. In this case the cell model will underestimate
the attraction and will thus not be able to predict the properties of the
gel, such as the critical point for phase separation, correctly.

Based on the interaction free energy given in Figure 2.12 the second
virial coefficient, B2, can be calculated with Equation 2.17. With these
B2 values it is possible to estimate whether the flower-like micelles can
phase separate into a dilute and a concentrated gel phase. Vliegenthart
et al. reported the critical B2 values for several forms of the potential.
The critical B2 values ranged from −8.9 to −5.5 times the volume of
the repulsive core of the particles.60 In the same way as Vliegenthart
et al., we define a distance d′ at which ∆F (d) = 0 for the first time.
Based on this distance we calculate the volume of the repulsive core
Vcore of the micelles with Equation 2.18. Subsequently we can calculate
a normalised B2N by dividing B2 by Vcore as in Equation 2.19.

B2 =
1

2

∫
4πd2

(
1− e−∆F (d)12

)
dd (2.17)

Vcore =
π

6
d′3 (2.18)

B2N =
B2

Vcore
(2.19)

Using this B2N we find that for the IP, the boundary for phase sepa-
ration is the line from χ = 0.2 and f = 1 to χ = 0.5 and f = 10. For
combinations with a lower χ and a larger f the steric repulsion is strong
enough to prevent phase separation. This dependence on the number
of polymers per node is opposite to what would be expected and what
is found experimentally.45 As f increases one would expect the number
of bridges to increase and thus an increased attraction. This illustrates
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that the pair potential as found from the IP is not suitable to describe
the aggregation of more than two micelles. Alternatively, when the ef-
fective pair potential from the cP or FCC configuration is used, no phase
coexistence is predicted, even for χ = 0.5 and f = 10. These results
are also in disagreement with the findings of Filali et. al. who observed
phase separation for f > 6 for PEO polymers with hydrophobic ends
in micelles swollen with oil, although their core was larger relative to
the size of the corona.45 The pair potentials found from the cP or FCC
configurations thus underestimate the average attraction between the
nodes near the critical point.

The SF-SCF calculations show that the interactions between the
nodes are not pairwise additive, clearly exemplified by the large differ-
ence between the effective pair potentials of the IP or NoL interaction
geometries and the more isotropic interaction geometries. When the
pair potentials are used in coarse-grained computer simulations, one
should take this into account. Especially when the density around the
node is not radially isotropic, as expected near a critical point, where
fluctuations in density are large, or near an interface between the gel
and a dilute solution, artefacts can be expected from having just one
pair potential (e.g. tuned for the homogeneous surroundings). Because
the attraction is weaker when a node is surrounded by more neighbours,
it should be relatively easy to remove some of the neighbouring nodes.
The surface tension of such a gel will therefore be relatively low and
pores can easily be created. This allows particles and perhaps even
other polymer networks to penetrate the gel.

Conclusion

We have performed one- and three-gradient SF-SCF calculations to de-
termine the pair potential between nodes in a network of telechelics for
different configurations of the nodes. We used a simple model wherein
the two ends of the chain are constrained in predefined nodes and the
intermediate segments of the chain are in good or theta solvent.

At small distances between the nodes, the coronas of the flower-like
micelles overlap resulting in steric repulsion. At larger distances the
increased entropy due to bridge formation gives attraction. Hence a
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curve with a local minimum was observed.

With the cell model we found that the position of the minimum
scales with the length of the chain N roughly as N

3
5 and as f

1
5 with

the number of chains per node, as expected from the Daoud-Cotton
model.58 With increasing χ the position of the minimum moved closer
to the node and the attraction became 2 to 3 times stronger. The
depth of the attractive well also increased with an increasing number
of polymers per node. This increase decreased with each additional
polymer chain. Roughly scaling as f0.65 for χ = 0 and f0.75 for χ = 0.5.

For the isolated pair on a simple cubic lattice the same trends were
found as for the cell model. Except that the depth of the well scaled
with the number of polymers per node as f0.44 for χ = 0 and f0.51 for
χ = 0.5. For both the cell model and the isolated pair there was also a
weak trend of decreasing well depth with increasing polymer length at
χ = 0.

For the cP and FCC configuration and the cell model, the depth of
the attractive well in the effective pair potential was about 60% of that
for the isolated pair(IP) and the nodes on a line (NoL) at χ = 0.5. For
the FCC and cP configuration the attractive well was shifted outward
compared to the IP and NoL configuration, due to the increased steric
repulsion. The well of the cell model lies even further out because the
volume per node, for a given inter node distance, is the smallest in the
cell model and the steric repulsion is thus the strongest. At the same
time the attraction has a longer range, as the number of possible end
points increases as the cell model becomes bigger. For χ = 0 the depth
of the attractive well for the cP and FCC configuration and cell model
is about 85% of that of the isolated pair.

In most experimental systems χ is close to 0.5. The strength of the
interaction than varies considerably with the number of neighbours the
interacting nodes have. This is nicely illustrated when one tries to pre-
dict the phase behaviour based on the different pair potentials. Based
on the pair potential of the isolated Pair, phase separation should occur
over a wide range of f and χ values, whereas based on the potential from
the cP or FCC configuration no phase separation will occur within the
range of f studied here. Although, following the trend, phase separa-
tion is expected to occur at f ≈ 13.5, which is in turn higher than the
experimentally observed critical f ≈ 6.45 It is thus important to adjust
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the interaction potentials based on the average number of neighbours
the nodes are expected to have. Ideally, one would use a non-pairwise
additive potential to calculate these interactions.

Overall the pattern of interaction is the same for the cell model
and the other 3D configurations. The interaction however does occur
at greater distances for the cell model because the number of nodes
seems to increase as the distance between them becomes bigger. The
depth of the attractive well is the roughly the same for the cell model
and the other densely packed configurations but considerably less deep
than that of the isolated pair and chain configurations. Using the cell
model to determine the pair interactions for a course-grained model will
therefore lead to an overestimate of the repulsion at high concentrations
and underestimate the attraction at lower concentrations. We can thus
conclude that using the potentials of the cell model will underestimate
the net attraction between the nodes.

To further study gels with telechelic polymers we did hybrid Monte
Carlo SF-SCF simulations, in which the nodes are moved by a Monte
Carlo scheme and the SCF equations are solved for each snapshot. In
such a simulation the pair potential does not need to be imposed as
in particle based MC simulations. These simulations are described in
chapter 3 and 4

Another avenue of future research is the study of micelles made of
ABC polymers. As all the polymers need to form bridges it is expected
that the two types of ABC micelles will attract each other much stronger
than ABA micelles. Such networks would be stiffer and stronger than
ABA networks while retaining their self healing properties.
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Hybrid Monte Carlo Self-Consistent Field

Approach to Model a Thin Layer of a

Polyelectrolyte Gel near an Adsorbing Surface

Thin layers of surface bound (polyelectrolyte) hydrogels are used for measuring the

concentration of metal ions in electrolyte solutions. The gels are composed of poly-

mers with conformational degrees of freedom on the nanometer scale. The polymer

conformations are affected by the presence of physical crosslinks in the gel on a five to

ten times larger length scale, and the repulsive interactions generated by the charges

along the chains. Here we present a hybrid Monte Carlo self-consistent field (MC-

SCF) approach to model such hydrogels. The SCF formalism is used to evaluate the

conformational properties of the chains, implementing a freely-jointed chain model,

in between the crosslinks. The Monte Carlo simulation method is used to sample the

(restricted) translational degrees of freedom of the crosslinks in the gel. We consider

the case that the polymers in the gel have an affinity for a surface positioned at

the edge of the simulation volume. From the surface, the polymer density decays as

a power-law, with an exponent close to −4/3, to the gel-density. The gel features

relatively large density fluctuations, which is natural for a gel with a low density

(ϕ ≈ 0.035), a low degree of crosslinking (average of three chain parts per crosslink)

and relatively long chains (N = 50) in between the crosslinks. Some parts of the gel

can break loose from the gel and sample the adjoining volume. Representative snap-

shots show large density fluctuations, which explains the large pore size distribution

observed in experimental counterparts.

This chapter was originally published as: ”Hybrid Monte Carlo Self-Consistent
Field Approach to Model a Thin Layer of a Polyelectrolyte Gel near an Adsorbing
Surface”,F. A. M. Leermakers, J. Bergsma and J. van der Gucht , The Journal of
Physical Chemistry A, 2012, 116, 6574-6581
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Introduction

This chapter was written in honour of the scientific career of Herman
van Leeuwen for the occasion of his 65th birthday. Herman van Leeuwen
dedicated a large part of his time to find ways to measure metal ions
in solution and to model the fate of these systems in real life applica-
tions.61,62 Considering the adverse effects on the environment of some
of these ions, insight in the speciation and availability in natural en-
vironments is now recognized as an essential ingredient to evolve to a
sustainable future.63

DET (Diffusion Equilibrium in Thin films) and DGT (Diffusive Gra-
dients in Thin films) are analytical techniques to measure the metal
ion concentration in, e.g., natural environments.64–67 Both techniques
make use of a thin hydrogel layer, e.g. composed of crosslinked poly-
acrylamide. In DET one measures the equilibrium uptake of metals in
such a gel. In DGT the gel layer is in contact with a sample solution
and placed on top of a perfect sink (a strongly complexing resin). Clas-
sically, one expects that the metal ions partition into the gel and that
complexing species, such as particles and humic acids can not. When
the dimension of the gel (which must be larger than the diffusion dis-
tance of the metal species) and the diffusion constants of the metals
in the gel are known, one can deduce the metal concentration in the
sample solution from the time dependent accumulation of metals in the
sink. Despite its wide application, the DGT method has several prob-
lems. More specifically, Herman van Leeuwen et al. showed that large
particles, much larger than anticipated, can penetrate into the gel and,
e.g., humic acids particles could be found in the gel in practical situa-
tions.38,39 The binding of metals to these internalized particles compli-
cates the interpretation of DGT significantly. It is argued that a better
understanding of hydrogels is necessary to optimize these techniques.

In this chapter we show a modelling approach which enables us
to study physically crosslinked polyelectrolyte gels next to an adsorb-
ing interface. From a modelling perspective physical gels, which allow
redistribution of the chains over the crosslinks, are preferred over chem-
ically crosslinked gels, wherefore redistribution is not possible. Hetero-
geneities in chemically cross-linked gels may be attributed to non-ideal
conditions in the production phase and this invariably masks any in-
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trinsic inhomogeneities. Physical gels can equilibrate their structure
and therefore inhomogeneities and other physical properties are more
unambiguously interpreted. One of the aims of this work is to unravel
relevant information about gels, which may be used to better under-
stand the mentioned pitfalls of DGT. We further justify our work by
pointing to the significant scientific challenges to model polymer gels
and interfacially bound gels in particular.

Polymers tend to occupy the total volume of the system (dissolve) if
the solvent quality is good.68 Polymers that have chargeable monomers,
polyelectrolytes, are an example of polymers that dissolve in water.
When polyelectrolytes are crosslinked, as occurs in polyelectrolyte gels,
the translational mobility is restricted and then these gels will occupy
just a part of the available volume. Such a gel will still solvate itself with
water, e.g., when the monomers dissociate. Most of the counterions,
however, have to remain in the gel to ensure the local electroneutrality.
The osmotic pressure of these ions decreases when the gel takes up more
volume. Hence there is a driving force for the gel to increase its size.
With an increasing amount of solvent in the gel, the distance between
crosslinks increases. The chain parts between crosslinks eventually be-
come stretched compared to their unperturbed radius of gyration. Such
a stretched state is characterized by a relatively low value for the con-
formational entropy.68 This counteracts the swelling. As a result there
is an optimal amount of water in such a gel.

A gel with an optimal amount of solvent has a given charge density
and as a result develops a so-called Donnan potential.69 The Donnan
potential ∆Ψ is related to the concentration of ions in the gel ci com-
pared to that in the outer solution cbi , where we use the super index b
to refer to the bulk (outer solution next to the gel):

ci

cbi
= exp

(
−vie∆Ψ

kBT

)
(3.1)

where it is understood that the internal concentration of counterions ci
equals the charge density of the gel and the co-ions (local electroneu-
trality condition). Eqn 3.1 is only reasonable when there are no further
specific interactions of the ions that disturb this ideal Boltzmann equi-
librium. A Donnan potential is well defined, obviously, when the gel is
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large compared to the electrostatic length scale set by the Debye length
κ−1 ∝ (

∑
i c
b
iv

2
i )
−1/2. For negatively charged polyelectrolyte gels, the

Donnan potential ∆Ψ < 0 and thus the positive ions, such as metal
ions with a charge vi > 0 accumulate in the gel. Here we focus on such
negatively charged gels.

In DGT one uses a semi-macroscopic layer of water-soluble poly-
mers next to a surface.64–67 This layer is thick, compared to the radius
of gyration of the chains that are used, but still thin from a macro-
scopic perspective. A popular way to form significant polymer layers
next to a surface is to make use of a polymer brush.70 In a polymer
brush the chains are grafted by one of the chain ends to the surface,
and the thickness of the brush becomes of order of the length of the
chains. Such a brush layer however, rarely becomes thick enough for
DGT applications. When the chains are crosslinked to each other, as in
a gel, one does not need to covalently bind the chains to the surface to
have a polymer layer that exceeds the radius of gyration of its chains
as the thickness of this layer is an adjustable parameter. Some phys-
ical adsorption onto an underlaying surface is sufficient to effectively
immobilize the gel. In this work we consider the case that the polymers
that form the gel have an affinity for the surface so that the gel remains
physically attached to it.

Because of the significant computational challenges there are rela-
tively few molecularly realistic modelling attempts to describe polymer
gels in the literature. We know several molecular simulation results rel-
evant for polymer gels including polyelectrolyte gels.71–74 For a given
model, such simulations give accurate information. Unfortunately it
is not easy to consider large systems. Typically one considers a set
of crosslinked chains forming an ideal diamond-like network (mimick-
ing chemically crosslinked gels) in a computational box with periodic
boundary conditions, implemented by a primitive model (no explicit
solvent). The target of such simulations is to unravel some bulk prop-
erties of a gel. The relatively small size of the simulation box imposes
significant limitations as, e.g., density fluctuations can only occur on
length scales smaller than the box size. Moreover the chains must re-
main connected to the crosslinks by their pre-set functionality. One of
the reasons to introduce a new method in this field is to reach larger
length scales, and thus to probe gel properties on the mesoscale. On
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top of this, our method is designed to deal with physical crosslinks.

On the other side of the modelling spectrum there are analytical ap-
proaches to polymer gels, dating back to Flory68, wherein the density
of the gel and some of its elastic properties are predicted using polymer
statistics. Without doubt these analytical approaches contributed most
to our current understanding of polymer gels. Anticipating the discus-
sion below, we may argue that the analytical approaches did not reveal
the importance of fluctuations in these systems. Here our interest is in
a relatively thin layer of a gel next to an adsorbing surface. To the best
of our knowledge, the modelling of this type of systems has not been
attempted before in the literature.

The Self-Consistent Field (SCF) method and in particular the ap-
proach of Scheutjens and Fleer (SF-SCF), has a strong tradition in
describing adsorbing polymers and polyelectrolyte chains from dilute
solutions.19,24,75 Motivated by the obvious analogy of a polymer gel
and a polymer brush, it is natural to take the SF-SCF theory as the
starting point to model polyelectrolyte gels next to an adsorbing inter-
face. The crosslinks, that are present inside the gel, present a special
challenge to such an approach especially when these crosslinks have a
physical rather than a chemical nature. Here we pick up this challenge
by generalizing the SF-SCF formalism to account for the crosslinking
inside gels using a Monte Carlo (MC) Ansatz.76 More specifically, we
are going to generate relevant coordinates for the crosslinks with a MC
protocol. These coordinates serve as boundary conditions for the chain
parts whose conformational degrees of freedom are evaluated using the
SF-SCF formalism. This MC-SCF hybrid is applied to a model system
wherein a thin layer of a polyelectrolyte hydrogel is placed next to an
adsorbing interface.

The remainder of this chapter is as follows. We start with a very
brief description of the SCF model and the MC protocol to explain the
relevant features of the MC-SCF hybrid. This is followed by specifying
the model that has been implemented. In the results section we present
the very first results from the MC-SCF method that prove its applica-
bility for interfacially bound polyelectrolyte gels. The gels show large
density fluctuations and as such support the results reported earlier by
Herman van Leeuwen et al. in the context of DGT.38,39
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Modelling Considerations

The two ingredients on which the MC-SCF hybrid is based are both
well-known and well-documented. However the current hybrid method
has not been reported before. Recently, this option was suggested in
the context of polymer adsorption, as an improved way to account for
inter- and intramolecular excluded-volume effects.52 On the one hand
there is the MC method, which uses the Metropolis algorithm to gen-
erate relevant snapshots of the crosslink positions. On the other hand
we follow the method of Scheutjens and Fleer19 which, on a mean-field
level, considers inhomogeneous polymer systems. In the latter a specific
discretization scheme is implemented, wherein space is subdivided into
lattice sites and the chains are modelled as strings of segments that are
placed in these lattice sites. Classically, the mean-field approximation
is applied to layers of lattice sites. This results in systems wherein just
one gradient direction remains (e.g. the case of polymer adsorption),
or, in the case of a surface that is inhomogeneous in one direction, two
gradient directions. The crosslinks in a gel, however have well defined
coordinates. To determine the polymer distribution we therefore need
a three-gradient SCF approach. The mean-field approximation, with
three gradient directions, can now be considered as an average over
time instead of over layers. The strategy to solve the SCF equations
is well documented.24 This strategy can also be used for 3D gradients
by using Hessian free (low memory) iteration schemes, such as conju-
gated gradients77, limited memory BFGS57, or Truncated Newton78

minimization strategies.

Both, MC and SCF operate on exactly the same volume. Here we
consider a computation box with V = LxLyLz lattice sites. Introducing
x = 1, · · · , Lx, y = 1, · · · , Ly and z = 1, · · · , Lz to specify the coordi-
nates in this system, we take Lx = Ly and assume periodic boundary
conditions in both these directions. At z = 1 an adsorbing boundary is
placed, whereas at z = Lz an inert boundary is present. Hence, we an-
ticipate that the gel is next to the z = 1 boundary and that the solution
wherein the polymer density is low is close to the z = Lz boundary.
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Monte Carlo Aspects

As in classical MC simulations, we introduce trial moves to change
internal degrees of freedom of the system and apply acceptance rules
such that the Boltzmann equilibrium is generated.76 We discuss these
aspects in order.

Let us first focus on the crosslink points. There are j = 1, · · · , J
such points, each specifying a cube with a volume of 8 sites (that is
two lattice sites in each direction) with corners rj1 = (xj , yj , zj) and
rj2 = (xj+1, yj+1, zj+1). This encompasses a total of 8J lattice sites.
From the MC perspective we can identify J ’particles’. The positions
of these J MC-particles are generated using so-called trial moves. We
have implemented translational moves of the crosslink points over a
discrete number of lattice sites in either the x, y or z direction. Hence
a trial move is split up into (i) the random selection of one or more
MC-particles (crosslink points). (ii) The translation of this MC particle
in the random direction over (iii) a restricted distance (typically just
a few lattice sites). If the trial move positions the ’particle’ partly or
completely out of the ’box’ in the x or y direction, the ’particle’ is
inserted at the opposite end of the box (periodic boundary conditions).
As only translational moves are implemented, the MC trajectory may
look like that of a diffusing particle. We haste to mention that this is
only pseudo-dynamic as the proper friction, the topological restrictions
(entanglements) and the correct hydrodynamics are not accounted for.

If a part of the crosslink overlaps with the solid boundaries at z = 1
or z = Lz the trial move is rejected. Also, when two crosslink sites
overlap, the trial move is rejected. For the acceptance of a trial move in
all other cases, one should know the change in the (free) energy, which is
typically based on the pair interactions between all particle pairs. The
unusual aspect of the current MC simulation is that the pair interaction
is not a priori given.

At each step along the MC train we know the old coordinates, i.e.,
the positions of the MC particles before the trials are generated, and
the corresponding old free energy Fold. The new coordinates, are passed
on to the SCF module. On the SCF-level there are I chains, each
having s = 1, · · · , N segments. These chain fragments can assume a
large set of conformations, and the combined statistical weight of all
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possible and allowed conformations is collected in the so-called chain
partition function. From this partition function it is possible to eval-
uate the free energy of the chains Fnew. The link between the SCF
and the MC part is that the first s = 1 and last s = N segment of
each chain are constrained to be within the specified coordinates given
by the J crosslinks. As usual, the trial step is accepted if the free en-
ergy of the system decreases, that is when the free energy of the old
configuration of crosslink points Fold is higher than that of the new con-
figuration Fnew. The new configuration is accepted with a probability
0 < P = exp−(∆F/kBT ) < 1 when ∆F = Fnew − Fold > 0 (impor-
tance sampling). Below we will mention in more detail the characteristic
function and the governing free energy in the system.

The number of these trial steps as well as the distance over which the
MC particles are moved is adjusted so that the acceptance probability
is about 1/e.

Self-Consistent Field Aspects

From the above it is clear that the target of the SCF equations is to
solve for the partition function of I chains with the constraint that
both chain ends occupy one of the coordinates specified by the J sets
of 8 coordinates. While doing so, the method gives detailed structural
information on the system. Let us now assume that rk,j crosslink sites
are specified at the kth step in the MC-SCF procedure.

Within the SCF framework we can compute the volume fraction of
segments ϕp using the composition law, featuring two complementary
end-point distribution functions. Because the polymers are symmetric
we can write:

ϕp(r) =
I

qp

G(r; s)G(r;N − s+ 1)

G(r)
(3.2)

wherein the end-point distributions are found by a propagator formal-
ism19

G(r; s) = G(r)
∑
r′

1

6
G(r′; s− 1) (3.3)

which implements a freely-jointed chain model for the chain conforma-
tions. The summation runs over all neighbouring sites of coordinate
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r = (x, y, z) assuming simple cubic ordering of the lattice sites: r′ =
(x−1, y, z), (x+1, y, z), (x, y−1, z), (x, y+1, z), (x, y, z−1), (x, y, z+1).
In Eqn. 3.3 one can recognize a discrete version of a diffusion equa-
tion79, wherein s is the equivalent of time and r the spatial coordinate.
When x−1 or x+1 or y−1 or y+1 refer to coordinates outside the sim-
ulation volume, we implement periodic boundary conditions by adding
or subtracting Lx, or adding or subtracting Ly, respectively, so that the
new coordinate is within the box. In Eqn 3.2 the division by the free
segment distribution function G(r) = exp−up(r) is needed because the
weight of the segment at r is counted double, once in each endpoint
distribution function. The normalization of Eqn 3.2 guarantees that
there are exactly I chains in the system. Here the single-chain partition
function q is evaluated as:

qp =
∑

r=rk,j

G(r;N) (3.4)

Finally, the propagators are initiated by

G(r; 1) = G(r)δr,rk,j (3.5)

with δr,rk,j = 1 when r = rk,j and zero otherwise. These starting
conditions guarantee that all chains have s = 1 at one of the coordinates
specified by the set of crosslinking coordinates. The use of the symmetry
in the composition law (cf. Eqn 3.2) makes sure that also the other chain
ends (s = N) are at one of the crosslinking sites.

The above shows that the volume fractions of the polymer chains
can be computed once the segment potentials for the polymer segments
up(r) are known. In addition we have segment potentials for the solvent
us(r) and segment potentials for the two ions uNa(r) and uCl(r). In
general we write for the (dimensionless) segment potential ut(r) with t
= p, s, Na, or Cl:

ut(r) = α(r) +
vteψ(r)

kBT
+ δt,pz,2

χS
6

(3.6)

where kBT is the thermal energy. This equation contains three terms.
The last one specifies the adsorption energy of the polymer segments
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(t = p) sitting next to the adsorbing surface (at z = 1) (δt,pz,2 = 1 when
t = p and z = 2 and zero otherwise). The interaction parameter is
specified by the Flory-Huggings χS parameter. The factor 1/6 imple-
ments that in a simple cubic lattice only 1/6 of the possible bonds is
in the z − 1 direction. The second term in Eqn 3.6 is discussed below.
The term α(r) is used to implement the incompressibility of the sytem.
This means that the sum of all volume fractions has to be unity:

ϕp(r) + ϕs(r) + ϕNa(r) + ϕCl(r) = 1 (3.7)

The value of α(r) is determined iteratively. When the sum of the volume
fractions is larger than unity, α(r) is increased and if the sum is smaller
α(r) is decreased. The volume fractions for the mobile monomeric com-
ponents t′= s, Na, Cl, are found by the Boltzmann equation:

ϕt′(r) = ϕrt′ exp−ut′(r) (3.8)

The summations over all segment weights give the respective parti-
tion functions qt′ =

∑
r exp−ut′(r). The number of molecules for the

monomeric species are computed by nt′ =
∑

r ϕt′(r). It is understood
that in the reference phase the volume fraction of the solvent and both
ions are known (ϕrt ). The reference phase, that does not contain any
polymer, is in a (membrane) equilibrium with the gel and surrounding
liquid.

The second term in Eqn 3.6 is the usual contribution due to the
electrostatics where the reference for the electrostatic potential is also
positioned in the mentioned reference phase. The charge vt is spec-
ified in the parameter section. The average charge at each specified
coordinate is given by the mean-field Ansatz

ρ(r) =
∑
t

ϕt(r)vte (3.9)

This charge density is used to evaluate the electrostatic potential by
solving the Poisson equation(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ(r) = −ρ(r)

ε
(3.10)
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wherein it is assumed that the dielectric permittivity ε is constant
throughout the system and equal to that of the reference system. This
differential equation is mapped onto the lattice and implemented using
the periodic boundary conditions in x and y directions, similarly as has
been outlined above for the chain statistics.

The above shows that it is possible to compute the segment po-
tentials ut(r) when the segment volume fractions ϕt(r) are known and
similarly, that the volume fractions can be computed once the segment
potentials are known. The fixed point of these equations is known as
the self-consistent solution. For this situation the volume fractions both
follow from and specify the potentials and vice versa the potentials both
follow from and specify the volume fractions. A numerical procedure
searches iteratively for this situation. When this SCF solution is avail-
able one can compute the free energy from

F = − logQ−
∑
r

α(r)− 1

2

∑
r

ρ(r)
ψ(r)

kBT
(3.11)

where Q = Πtq
nt
t /nt! As the chemical potentials of the monomeric

species can be evaluated from the composition of the reference phase,
one can compute the so-called partial open free energy from

F po = F −
∑
t′

nt′µt′ (3.12)

Where the chemical potentials follow from the composition in the ref-
erence phase:

µt′ ≡
µt′

kBT
= lnϕrt′ (3.13)

The F po is used to evaluate the MC acceptance rule, because we do not
fix the number of small ions in the solution, but rather fix the chemical
potential of the salt ions.

Measurables of the MC-SCF Hybrid

Before a new configuration of the crosslink points is generated we have
saved the relevant system characteristics that are needed to compute
the averages of measurable quantities in the system, so that k = 1, · · ·K
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snapshot results are available. At the end of the MC train, one can then
flat average over the stored results, because each state of the system
occurs with its proper frequency (Boltzmann weight) in these results.
Here we focus on the volume fraction distribution ϕ(z) averaged over
the K snapshots and averaged over the x-y plane and the corresponding
electrostatic potential profile ψ(z). The free energy of the system F po(k)
gives information on the equilibration of the system in terms of the MC
trajectory. On top of this we have snapshots of the system, from which
we judge the polymer density fluctuations in the gel. Alternatively
one can measure the distance between crosslinks and find a structure
factor or radial distribution function. In the present system wherein the
gel is surface bound and in which there exists a gel-solvent interface,
the radial distribution function is not isotropic and the analysis of this
function is left for a future publication.

The Model and Model Parameters

The target of this chapter is to present a typical result of an interfacially
bound polyelectrolyte gel subject to physical crosslinks. The system
volume Lx = Ly = 17 and Lz = 100, mimicking a thin slab of gel. The
periodic boundaries in x-y directions mimic the remainder of the gel.
As mentioned already a crosslink point is defined by a sub-volume of
two lattice sites in each direction (in total 8 sites). We have chosen for
12 crosslink points. In between the crosslinks there are monodisperse
chains with N − 2 = 50 segments (exclusive the two points that occupy
crosslink sites; total length N = 52). The size of a lattice site is set to
the Bjerrum length, b = 0.6 nm. On both sides of the system in the z-
direction there exists an impenetrable and uncharged surfaces, namely
at z = 1 and z = 100.

As each chain has two segments that have to sit on the specified
crosslink sites, the ratio I/J can not exceed the value of 4, because
2I can not exceed 8J . Values of I/J < 1 (less than two chain-parts
per crosslink) will not keep the chains immobilized in a gel, and then
the chains are expected to sample the total volume of the system. We
have chosen I/J = 3/2 and thus we have I = 18 chains in the system.
Such relatively low value of the functionality typifies many experimental
systems. (At each crosslink site, on average three chains come together).
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In many hydrogels there exists some charge along the chains.80 For
this reason we have implemented the situation that a small fraction
1/20 segments has a negative charge. For computational reasons we
have distributed the charge over all segments. This means that the
valency of a segment is set to vp = −0.05.

Op top of this there exits a 1:1 electrolyte solution composed of some
ideal salt which is completely inert with respect to the surface and the
polymer chains (no specific adsorption effects). For ease of reference
we refer to these ions as Na and Cl. The concentration of these ions
in the reference phase, that is in a system that is in equilibrium with
the current system but which does not contain any polymer is set to
ϕrNa = ϕrCl = 0.01 (≈ 0.1 M).

The only non-zero interaction parameter in the system accounts for
the affinity of the polymer segments for the surface at the lower bound in
the z-direction. Here we have implemented χS = −6, which effectively
results in an adsorption energy of 1 kBT per surface contact.

Typically we have implemented 10000 MC steps, and by doing so
have generated on the order of 4000 new configurations, wherein on
average all crosslink points have been displaced somehow.

Results and Discussion

The MC-SCF hybrid brings together two computational disciplines. For
this reason the discussion of what exactly the model intends to describe
is necessary.

In the SCF part of the calculations, the full partition function of
the 18 chains in the presence of the 1:1 electrolyte solution is evaluated.
Hence, the volume fraction distributions are the result of the proper
statistical weight of all possible and allowed freely-jointed chain con-
formations (time averaging). As all chains have two end segments that
must be positioned onto one of the 8J crosslink lattice sites, the chains
cannot distribute randomly in the solution. On top of the crosslink con-
straints the chains have an affinity for the surface at the lower bound.
However, only a fraction of the segments can find a place on this sur-
face. It is expected that the polymers near the surface develop a layer
composed of trains, loops and tails. The latter ones of course link to
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crosslink points in the neighbourhood of the surface. This mechanism
is used to bind the gel to the surface.

In the MC part of the calculations, the focus is on the actual co-
ordinates of 12 crosslink points in the system. Hence, at each instance
just one set of coordinates is relevant. The averaging over many snap-
shots therefore is needed to find some ensemble average of the system
of interest. On top of this, the MC-trajectory k, · · · ,K, gives detailed
information on density fluctuations that exist in an adsorbed gel layer.

In the system there are I chains (and thus 2I segments that have to
be on crosslink coordinates) and J = 12 crosslink points (each contain-
ing 8 sites). As I = 18 we have 36 segments on crosslinks. On average
there are thus three chain parts that come together in a crosslink. We
do not enforce that each crosslink has exactly 3 occupants. Fluctua-
tions around this average are allowed. Of course it is also not forbidden
that a chain forms a loop configuration and puts both of its ends on
the same crosslink. Thus, there should be a finite probability that dur-
ing the simulation a crosslink point will ’diffuse’ out of the gel into the
solution carrying one or more chains with it. This process is facilitated
because we do not guarantee that on each crosslink site the number of
chains that connect to it is an integer. Indeed, the ensemble average as
searched for in the SCF calculations typically gives average numbers for
these quantities, even for the crosslink points that ’float’ in the solution.

There are various reasons for crosslink points to diffuse out of the
gel. By doing so, the system can gain more translational degrees of
freedom and this increases the entropy in the system. It also gives
more space to the charged segments, resulting in a lower electrostatic
repulsion between segments. However, chains that are partitioned onto
detached crosslink points have to be in the ’loop’ configuration. Inside
the gel the chains can develop a multitude of bridge conformations. The
latter is therefore favoured from a conformational entropy point of view.

One may expect that there exists a threshold ratio I/J below which
the chains sample the whole volume and the gel disintegrates, and above
which the majority of chains is kept at all times in the gel. This thresh-
old value may be referred to as a critical point. We do not know exactly
what the critical value for I/J is, although we may a posteriori conclude
whether the system was apparently above or below this critical point.

In terms of volume, we consider a small system. Using the MC
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Figure 3.1: The free energy of the system in units of kBT as a function
of the sequence k (Monte Carlo Steps, MCS) generated by the MC
trajectory.

protocol we generate a series of snapshots for the system. Each new set
of crosslink coordinates gives a new distribution of chains in between
the crosslinks. This is consistent with a physical gel, because in such
a gel the crosslinks are not permanent. Again, we stress that it is not
accurate to interpret this series of MC snapshots in a dynamical fashion.
More accurately, one should have an ensemble in mind, which implies
that each new configuration of the crosslinks, represents another part
of the gel that sits on top of an infinitely large surface (ensemble). In
this respect one may also interpret the model in terms of a chemically
crosslinked gel. The fact that during the MC trajectory fragments of
the gel detach from it means that due to some imperfect crosslinking of
the gel, some (loose) fragments can diffuse out and sample the adjoining
volume. Of course, a chemically crosslinked gel can be treated such that
the loose parts are removed. In a physical gel it is impossible to remove
all loose parts, because of the reversibility of the crosslinks. Hence, the
current calculations resemble more naturally a physically crosslinked
gel, but may also capture some aspects of chemically crosslinked gels.

In Figure 3.1 we present the free energy F po of the system as function
of the number of Monte Carlo steps k. After a short equilibration,
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Figure 3.2: a) The volume fraction profile averaged over the x-y plane
as a function of the z-coordinate ϕp(z). In the inset the same profile
is given in double logarithmic coordinates (in the latter the z-direction
was shift by 1.5 sites so that the z coordinate represents the distance to
the adsorbing wall in lattice units). b) The corresponding electrostatic
potential [V] profile. In both graphs we present two data-sets. The
data with the closed symbols are averaged over the last 5000 snapshots.
The lines with the open symbols are averaged over all 10000 snapshots.
From the difference between the curves one can estimate the accuracy.

the free energy fluctuates around a well-defined average value and the
fluctuations are characterized by a standard deviation of 2.3 (in units
of kBT ).

An averaging over the last 5000 (closed symbols) or over the full
10000 (open symbols) snapshots of the system, gives estimates for the
volume fraction distribution of polymer segments in the z-direction,
ϕp(z). These volume fraction distributions are shown in fig. 3.2a. The
noise in the profiles is not extremely large proving the effectiveness of
the averaging process.

As anticipated, there exists a high polymer density near the surface.
This is due to adsorption of the polymer segments that take advantage
of an adsorption energy of −1 kBT per surface contact. The width of
the adsorption layer is exceptionally large. The volume fraction pro-
file drops off to the gel-density in a power-law fashion (see inset). The
power-law exponent of −1 fits the profile rather well. In the close prox-
imity of the surface, the so-called proximal region, the decay is affected
by the structure of the chains on the segment length scale. In this case
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there are crosslinks on the surface from which several chains originate.
This gives a locally high polymer density and a non-trivial polymer den-
sity decay may have resulted from this. Somewhat further away from
the surface 5 < z < 10, that is in the central region of the adsorp-
tion layer, the profile falls off somewhat steeper hinting to the expected
value of −4/3. Indeed this exponent is consistent with the radial poly-
mer density decay in (polyelectrolyte) stars in good solvent31,58,81 and
it is also the value predicted by de Gennes for polymer adsorption lay-
ers in good solvent.82 The polymer chains are too short to justify a
further analysis of the slope, but it is clear that the decay is well above
the mean-field value of −2 for homopolymer adsorption from a good sol-
vent. The fact that the apparent slope is significantly less negative than
the mean-field value proves that in the current SCF method the intra-
and intermolecular excluded-volume effects are accounted for relatively
accurately.52

Within the gel-layer the polymer density does not significantly de-
pend on the z-coordinate. This is expected because the gel-phase co-
exists with the dilute phase and therefore should exist at a well-defined
’binodal’ composition. The average density in the gel is estimated by
averaging the volume fraction in the range 10 < z < 50 which gives
ϕg ≈ 0.035. This is close to, but slightly below the overlap concentra-
tion ϕov = N−0.8 ≈ 0.044 for N = 50. Apparently, the chains in the
gel are stretched due to the osmotic pressure of the counterions in the
gel and/or by the excluded-volume interactions of segments around the
crosslink points. An estimated average distance d between crosslinks
follows from ϕg = N/d3, which leads to d ≈ 11. This is a large value
compared to the Gaussian dimensions

√
N/6 ≈ 3 and more compatible

with N0.6 ≈ 10.5 the scaling of a chain size in good solvent. The width
of the gel-solvent and gel-surface interface is of order d, as expected.
Above we argued that it is necessary that there exists a finite polymer
concentration in the bulk phase. In the range 80 < z < 90 a bulk
polymer concentration of ϕbp ≈ 0.012 is found, whereas for 60 < z < 70
the density dropped to ≈ 0.005. The lower the density in the system,
the harder it is to find a properly averaged value for it with MC. Av-
eraging over the entire dilute phase gives ϕbp ≈ 0.0085 which is about 4
times lower than the polymer density in the gel. This difference is large
enough to conclude that the gel coexists with the dilute phase.
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In Figure 3.2b the average electrostatic potential ψ(z) in the sys-
tem is presented. As the chains are negatively charged the potential is
negative throughout the system. Next to the surface, the potential is
most negative because of the accumulation of charged segments at the
boundary. In the bulk the potential also deviates from zero, because of
the freely dispersed chain fragments that carry an electric double layer
around them. (Note that the reference of the electrostatic potential
is the reference phase, which contains only water and small ions at the
specified volume fractions). In DET measurements, one uses a relatively
thick layer of a hydrogel and in this case one only needs to focus on the
(bulk) value of the Donnan potential inside the gel to account for an ex-
tra accumulation of metal ions in the gel. The surface potential effects
can usually be ignored.83 In DGT measurements, one assumes that the
gel is connected to a perfect sink. A large negative surface potential
can be accounted for as part of the sink. Even though in this example
the Donnan potential in the gel is very low, when it comes to evaluate
the potential impact of it for practical situations we may not always
ignore it. For example, when it comes to understand the incorporation
of particles or humic acids in these gels the partition coefficient may be
affected to a large extent because of the many charges per particle.84

From the above it may be concluded that our system is not far
from its critical value. In other words, the value of I/J = 3/2 (the
functionality) is just high enough to keep most of the chains in the gel.
A slightly lower value is likely followed by the dispersion of the chains
throughout the volume. From this point of view one should anticipate
large density fluctuations in the system.

In Figure 3.3 we present 10 snapshots of the system, evenly sampled
along the MC trajectory. In line with the observation that the system
is not far from the critical point, we indeed observe large variations
in crosslink configurations. Apparently, the crosslink points sample
a relatively large part of the volume. From ”time” to ”time” a low
polymer density also appears inside the gel phase. Such polymer voids
translate in large pores. Indeed from the snapshots a rather dynamic
picture emerges. This suggests that a rather disordered picture of a gel
is often more realistic than an averaged one, as is shown by the ϕp(z)
profile, especially for polymer gels with a relatively low polymer density.

Returning to the context of DGT, one would like to characterize a gel

68



Results and Discussion

Figure 3.3: Ten snapshots of the system along the MC trajectory. The
z-direction goes from bottom to top, and the x-y directions point 45◦

”left” and ”right”-directions, respectively. The high polymer density is
red, the lowest polymer density is blue.

by a pore size distribution and one would like this pore size distribution
to be narrow. Motivated by the snapshots of fig. 3.3 which advocates a
fluctuating point of view, it appears that the pore size distribution sig-
nificantly exceeds the average distance between the crosslink points d.
The limited size of our simulation volume however makes it impossible
to determine a pore size distribution. On the one hand the maximum
size of a pore is limited by the size of our system in the x-y direction,
while on the other hand the limited size of our system in the x-y di-
rection makes it easier for the gel to split as is shown in snapshot 6 of
fig3.3. Being close to the critical point, the fluctuations in density can
become very large. A systematic analysis of the pore sizes as well as the
influence of the finite size of the system on the pore size distribution, is
directed to a future publication.

Complementary simulations/calculations, in which we varied the
chain length, the functionality I/J and the ionic strength, proved that
the fluctuation picture is not an isolated result albeit that with an in-
crease in I/J the fluctuations diminished. With decreasing length of
the chain parts the density in the gel increases, as expected from the gel
theory.68 It is important to mention, however, that our conclusions are
possibly affected by imperfections of the model and the use of a mean-
field approximation in the SCF part of the calculations. Therefore firm
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conclusions on the structure of physical gels can only be drawn when
these are backed up with experimental evidence. Of course, it is pos-
sible to use scattering techniques to get more informations on the type
of density fluctuations in physically crosslinked gels. With reflectome-
try, it is possible to obtain similar data for interfacially bound gels. It
would be interesting to correlate the current predictions with available
scattering results in the literature.

Conclusions

We have introduced a Monte Carlo Self-Consistent Field (MC-SCF)
theory to model a polyelectrolyte gel next to an adsorbing surface and
discussed the preliminary results. The key idea of MC-SCF is that po-
sitional degrees of freedom of the crosslinks are generated using a MC
procedure and the conformational degrees of freedom of the polymers
in between crosslinks are accounted for by a freely-jointed chain model
and optimized using the self-consistent field theory. As such, the pair
interactions between the crosslinks are not a priori defined, but are
computed using the SCF formalism. In this sense the MC-SCF hybrid
can be seen as the polymer equivalent of ab initio Car-Parrinello simu-
lations in quantum mechanics.35 We selected a system with a relatively
low number of chains per crosslink. Such a gel is not far from the critical
point and thus features large density fluctuations. We have predicted
the structure of a small part of such a gel next to an adsorbing surface.
The results point to a gel with a large pore size distribution exceeding
by far the average distance between crosslinks. As such the calculations
support recent findings that gels used in DGT measurements accommo-
date much larger particles than anticipated.
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A Hybrid Monte Carlo Self-Consistent Field

Model of Physical gels of Telechelic Polymers.

We developed a hybrid Monte Carlo self-consistent field technique to model physical

gels composed of ABA triblock copolymers and gain insight into the structure of such

gels. The associative A blocks of the polymers are confined to small volumes called

nodes, while the B block can move freely as long as it is connected to the A blocks.

A Monte Carlo algorithm is used to sample the node configurations on a lattice and

Scheutjens-Fleer self-consistent field (SF-SCF) equations are used to determine the

change in free energy. The advantage of this approach over more coarse-grained

methods is that we do not need to predefine an interaction potential between the

nodes. Using this MC-SCF hybrid simulation, we determined the radial distribution

functions of the nodes, the structure factors and the osmotic compressibilities of

the gels. For a high number of polymers per node and a solvent-B Flory-Huggins

interaction parameter of 0.5, phase separation is predicted. Because of the limited

simulation volume, we could not establish a full phase diagram. For comparison, we

performed coarse-grained MC simulations in which the nodes are modelled as single

particles with pair potentials extracted from SF-SCF calculations. At intermediate

concentrations, these simulations gave qualitatively similar results as the MC-SCF

hybrid. However, at relatively low and high polymer volume fractions, the structure

of the coarse-grained gels is significantly different because higher-order interactions

between the nodes are not accounted for. Finally, we compare the predictions of the

MC-SCF simulations with experimental and modelling data on telechelic polymer

networks from literature.

This chapter has been published as: ”A Hybrid Monte Carlo self-consistent field
model of physical gels of telechelic polymers”, J. Bergsma, F. A. M. Leermakers, J.
M. Kleijn and J. van der Gucht, Journal of Chemical Theory and Computation, 14,
6532-6543, 2018
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Introduction

Here we describe a combination of the Scheutjens-Fleer self-consistent
field theory with a Monte Carlo algorithm, which is used to simulate
a gel network of symmetric telechelic polymers. These polymers have
associative end-blocks, while the middle block is soluble. This combina-
tion leads to the formation of micelles in which the end-blocks associate
in the core and the middle blocks form the corona. Such micelles are
called flower-like micelles, with the core as the heart and the polymer
loops as petals. At a sufficiently high concentration of micelles, the mi-
cellar cores are so close to each other that the ends of the polymers can
be in different micelles, thus forming a bridge. Because the polymers
can now form both loops and bridges, the number of possible confor-
mations and thus the entropy increases. This increase in entropy gives
an attractive contribution to the interaction between the micelles. If
there are enough bridges to form a percolating network, a gel network
is formed with the micellar cores as the nodes, as shown in Figure 1.3.

Some researchers have reported that the attraction can become so
strong that phase separation occurs8,45,85; others however did not ob-
serve phase separation.86 One reason why these experiments show dif-
ferent outcomes is that it is difficult to synthesize these polymers. Often
the middle blocks show considerable polydispersity and not all polymer
ends are functionalized. The latter will increase steric repulsion be-
tween the micelles and thus prevent phase separation. In computer
simulations these problems can be avoided.

We assume that the binding energy of end-blocks to the micellar
cores is so high that the concentration of free ends is negligible but
still low enough that the ends can exchange between the cores. This
allows the polymers to redistribute themselves over the micelles and
form new bridges. This enables these gel networks to heal themselves
when damaged.47,48

Because of these properties, telechelic polymers are applied in the
paint industry to improve the rheological behaviour of paints. They
can also be used as a gel material for gel electrophoresis. Furthermore,
they are studied as a drug carrier for slow drug release. A hydrophobic
drug can be dissolved in the core of the micelles. When a gel made of
telechelic polymers is placed in the body, it will slowly release individ-
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ual micelles and thus the drug over time. An additional advantage in
chemotherapy is that, due to the increased permeability of blood vessels
in tumours, the micelles can accumulate in tumour tissue, which then
receives a higher dose of the drug.10

There have been many experimental studies on gels made of tele-
chelic polymers.8,45,47,48,85,86 The number of theoretical studies and sim-
ulations is, however, limited.49,87,88 The length of the polymers makes
it time-consuming to study these networks with molecular dynamics
simulations even when coarse-grained bead and spring models are used
for the chains. This is because a representative fraction of all the pos-
sible states of the system has to be sampled. As the polymers are large
and can easily entangle, they diffuse slowly and it therefore takes a long
time to reach and sample the equilibrium structure. One could choose
to use even more coarse-grained models, for example, by simulating an
entire micelle as a single particle.49 It is, however, difficult to describe
the interaction potentials between the micelles properly, as the interac-
tions are not necessarily pairwise additive. That is, the strength of the
interaction between two micelles depends on the surroundings of the
micelles, as shown in chapter 2.

A solution to this problem is to employ a hybrid simulation tech-
nique which combines the benefits of particle simulations with the com-
putational efficiency of self-consistent field calculations. Here, we com-
bine the SF-SCF (Scheutjens-Fleer self-consistent field) method with a
Monte Carlo algorithm. With the SF-SCF model, the free energy of a
particular configuration of the nodes is calculated based on an average
over all possible freely jointed chain conformations. This reduces the
simulation time because the polymer configurations no longer need to
be sampled individually. The positions of the nodes are sampled using
a Monte Carlo algorithm that uses the free energy determined by the
SF-SCF model to accept or reject the moves of the cores. In our model,
we focus on the interactions between the nodes caused by polymers.
The binding of the polymers to the nodes is done in a simplistic man-
ner, since the interactions between the nodes are not influenced by the
specific mechanism through which the polymer ends bind. Hence the
results can be applied to a variety of gels of polymers with associative
end groups, regardless of the exact binding mechanism.

The goals of this chapter are to demonstrate this hybrid Monte Carlo
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SF-SCF approach and to apply it to a system of polymer micelles in so-
lution to gain insight in the structure of such systems. We compare the
results with Monte Carlo simulations where the nodes, with polymers,
have been coarse-grained to particles, with effective pair potentials as
calculated in chapter 2. To further validate the method, the structure
factors of the systems simulated by the Monte Carlo SF-SCF method
are compared with experimental data found in literature.

It should be noted that this is not the first time that the SF-SCF the-
ory is combined with a Monte Carlo algorithm. Previously, we showed
some preliminary results for a charged polymer gel adsorbed on a wall,
obtained with a model very similar to the one described in chapter 3
Furthermore, Charlaganov et al.52 used a combination of SF-SCF with
Monte Carlo to study the depletion interaction of polymers near walls.
They used approximate pair potentials to do a Monte Carlo simula-
tion and subsequently used the self-consistent field theory to calculate
a more accurate free energy and correct for the wrong weighing of the
states. Potentially their method is more efficient, as the SF-SCF equa-
tions do not need to be solved for the rejected states. The rate at which
the states of the system are visited is, however, determined by the free
energy of the Monte Carlo simulation. If this free energy is not accu-
rate, more steps are needed to reduce the noise level. This method is
therefore only effective if a good approximation for the free energy can
be determined. The more particles are present, the more accurate the
interaction potential needs to be as the error would scale with the root
of the number of particles. With our method, we do not need approx-
imate potentials and the number of particles we could simulate is thus
not limited in this way.

Method

First, we will explain the SF-SCF theory, specifically for the 3D simple
cubic lattice that was used in the present study. It is similar to the
method used in chapter 2, and some more details can be found there.
Descriptions of the SF-SCF theory for other types of lattices can be
found in chapter 2 and in the literature.20,54,59,89 Next, we will show how
we modelled the physical gel with the SF-SCF theory. Subsequently,
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the details of the Monte Carlo method will be described, and finally the
methods for analysing the data will be discussed.

SF-SCF Theory

With the SF-SCF method, space is divided into lattice sites, which
in the present study have a simple cubic ordering. Small molecules,
such as solvent molecules, are represented by a single segment that has
the size of one lattice site. Larger molecules, such as the polymers
considered here, are represented by multiple segments. We assume that
the segments of a polymer are connected like a freely jointed chain.
Because we use a simple cubic lattice, the angle between subsequent
segments can only be 180°, 90° or 0°. For 0°, the polymer is thus allowed
to fold back onto itself. Segments adjacent to each other in the molecule
of course still have to be next to each other on the lattice. The short-
range part of the interaction between different types of segments is
quantified by the Flory-Huggins parameter χ, which is half of the change
in free energy when two segments are exchanged between homogeneous
phases of each segment type.

It would be far too much work to generate all the ways in which
the polymers can distribute themselves over the system one by one.
So instead we determine the average distribution of the polymers over
the system, i.e. we try to find the volume fractions for each segment
type at each lattice site. These volume fractions can also be regarded
as an average over time. This is done by generating all the possible
polymer conformations, which are all the possible paths of the polymer
chain on the lattice. Subsequently, the polymers are distributed over
these conformations according to their Boltzmann weights. Because
many of the conformations are nearly identical, this saves computation
time. A disadvantage is that the interactions between the segments are
calculated based on the average surroundings rather than on a specific
configuration of the polymers, where with a configuration we mean a
particular distribution of the polymers over the conformations.

The polymers will distribute themselves over the polymer conforma-
tions according to the Boltzmann weight e−Uc of these conformations.
Uc is the energy in units kBT of a particular polymer conformation c,
given the average surroundings of this conformation. Uc is the sum
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of the energy contributions of each segment. We call these contribu-
tions the segment potentials uX(r) , where X is the segment type and
r is its location. These segment potentials u are calculated from the
volume fractions ϕ of the various segment types in the neighbouring
lattice sites, which in turn are calculated from the segment potentials.
We repeat this iterative process until we find a self-consistent solution,
in other words, until the segment potentials derived from the volume
fractions are the same as those that were used to calculate these volume
fractions. The segment potential of a segment of type X is given by:

uX(r) =
∑
Y

χXY 〈ϕY (r)〉+ α(r) (4.1)

Here, the first term
∑

Y χXY 〈ϕY (r)〉 describes the average interaction
energy of a segment of type X, at position r, with segments of types Y
in sites adjacent to position r, χXY is the Flory-Huggins parameter for
the interaction between segments of type X and Y , and 〈ϕY (r)〉 is the
average volume fraction of segment type Y in all neighbouring lattice
sites r′. The latter is given by:

〈ϕY (r)〉 =
1

Z

∑
r′

ϕY (r′) (4.2)

where Z is the number of neighbouring lattice sites. In our case, we
have a simple cubic lattice and Z = 6. We do not need to consider
the interaction energy between segments of the same type as the Flory-
Huggins parameter χXX = 0 by definition.

The second term in Equation 4.1, α(r), is used to ensure that the
sum of the volume fractions at each lattice site is unity. It has to
increase when the sum of the volume fractions is larger than one and
decrease when the sum is less than one. We chose to update α(r) with
each iteration step as :

αnew(r) = αold(r) + η(1− 1∑
X

ϕX(r)
) (4.3)

The factor η = 0.3, which is small enough to prevent divergence. For
the first iteration αold(r) = 0.
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The volume fraction of a segment s of the polymer chain at lat-
tice site r is given by the sum of the Boltzmann weights of all chain
conformations c that pass through r with segment s, multiplied with a
normalization constant C:

ϕs(r) = C
∑
c

e−Uc(s,r) (4.4)

The normalization constant C is the number of polymers n divided by
the partition function q, which is the sum of the Boltzmann weights of
all polymer conformations of the polymer:

C =
n

q
(4.5)

An efficient way to calculate q and ϕs is to use the propagator formalism.

The endpoint distribution function G(r, N+1) is the average Boltz-
mann weight of all chain conformations ending with segment s = N + 1
on lattice site r. In this study, we only allowed the polymers to start
at coordinates that lie within the nodes. We therefore write the end-
point distribution function as G(r, N + 1|{rn}, 0) indicating that only
the conformations starting with segment 0 within {rn} contribute to the
endpoint distribution function, as we have set the Boltzmann weight of
all other polymer conformations to zero. Since the position of the last
segment is the same for all conformations, we can move the contribution
of the last segment e−uX(r) outside this summation:

G(r, N + 1|{rn}, 0) = e−uX(r)
∑
r′

1

Z
G(r′, N |{rn}, 0) (4.6)

where X is the segment type of segment N + 1. The second part is the
summation of the endpoint distribution functions of the chain without
the last segment over all sites r′ that are adjacent to r. Because only
a fraction 1

Z of the conformations goes from site r′ to r, we have to
multiply the propagator in r′ with 1

Z . We can repeat this process until
the first segment is reached. For this (starting) segment, the endpoint
distribution function is simply e−uX(r). In this way, we can calculate
the entire endpoint distribution function.

With these endpoint distribution functions, we can calculate the
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volume fraction of each segment s of the polymer according to:

ϕs(r) = C
G(r, s|{rn}, 0)G(r, s|{rn}, N + 1)

e−uX(r)

= C
G(r, s|{rn}, 0)G(r, N − s+ 1|{rn}, 0)

e−uX(r)

(4.7)

As the Boltzmann weight of segment s is in both propagators, we need to
divide by e−uX(r). Because the polymers in our system are symmetric,
we can save computation time by rewriting the first line of Equation 4.7
as the second line, so that only the propagators starting with segment
0 have to be calculated.

The overall volume fraction distribution of polymers is found by
summing over all the polymer segments:

ϕ(r) =
s=N+1∑
s=0

ϕs(r) (4.8)

The distribution of the monomeric solvent S simply follows from the
Boltzmann weight:

ϕS(r) = CSe
−uS(r) (4.9)

When the segment potentials are normalized to zero in the pure solvent
phase, which is in equilibrium with our system, CS = 1.

The Helmholtz energy, which is needed for the Monte Carlo moves,is
given by:

F = − lnQ(u)−
∑
r

α(r) (4.10)

where Q is the partition function of the system. We calculate Q using
the ideal gas approximation:

Q =

(
qnP
n!

)(
qnS
S

nS !

)
(4.11)

The first term is the contribution from the polymers while the sec-
ond term comes from the solvent. Here nS is the number of solvent
molecules. The single molecule partition function of the polymers qP
is calculated by summing the endpoint distribution function, over all
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positions r.

qP =
∑
r

G(r, N + 1|{rn}, 0) (4.12)

The single molecule partition function of the solvent is given by qS =∑
r e
−uS(r).

In the second term of Equation 4.10, we correct for the use of the
Lagrange parameter. We have previously made two potentially conflict-
ing assumptions. We have assumed that the system is incompressible
and by defining CS = 1 we assume that the system is in equilibrium
with a pure solvent phase. If, for example, we would place a solvophobic
wall in our system, the volume fraction of the solvent would be lower
near the wall than in the pure solvent. To make sure that the volume
fraction next to the wall is the same as that in the pure solvent, which
is required for an incompressible system, we introduced the extra po-
tential α(r). There is of course no physical origin for this potential, and
to get the correct Helmholtz energy for the given volume fractions, α(r)
has to be subtracted from the Helmholtz energy.

Gel Description within SF-SCF Theory

Here and below we will express the Helmholtz energy in units kBT and
measure the distances in lattice units. The polymers are represented by
a chain of N = 50 segments B, which represents the middle block, and
one segment A at each end, representing the end groups. We forced the
end groups of these polymers to stay together, like in the micelles, by
defining small volumes, called nodes, with a size of 3 by 3 by 3 lattice
sites. By setting the Boltzmann weights for segments A to zero outside
the nodes, the end groups are forced to stay within the nodes. The
set {rn} thus encompasses all lattice sites that lie within the nodes.
These nodes will be moved using a Monte Carlo scheme. Because the
number of nodes that we can model is limited, we use periodic boundary
conditions, so there is no interface in the system.

The following values for the various parameters were used as de-
faults in these experiments. The Flory-Huggins parameter χ was 0.4
and the polymer volume fraction ϕ was 0.25. The number of nodes M
was 125 with f = 5 polymers per node, thus 625 polymers in total. We
investigated the effect of changing several of these parameters on the
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structure of the gel. The volume fraction of the polymer ϕ was var-
ied from 0.5 to 0.031. The effect of the Flory-Huggins parameter was
studied by doing additional calculations for χ = 0.0 and χ = 0.5. Cal-
culations were also done for 2.5 and 10 polymers per node. The number
of polymer ends in each node is not fixed but can fluctuate around the
average value depending on the statistical weights of the conformations
starting and ending at this node. In practice, these fluctuations in the
number of polymer ends in each node are limited due to the steric hin-
drance between the polymers. This is similar to real systems in which
the number of polymers per node can also fluctuate. It also allows for
slightly different compositions of the dilute and concentrated phases
when phase separation occurs. In Figure 4.1 we show a few examples of
the probability density function f(Ne) of the number of end groups per
node Ne. This distribution clearly becomes wider as the concentration
increases. At high density, the steric hindrance between the polymers
is less because the density around the nodes quickly drops to the bulk
density and the polymers from the same node repel each other only over
a short distance. It is therefore not so disadvantageous to put more than
the average number of polymers on a node.

8 10 12
Ne

0

1

2

f(Ne)

Figure 4.1: The probability density function f(Ne) of the number of
end groups per node Ne for N = 125, χ = 0.4 and f = 5. φ = 0.25 (
), φ = 0.125 ( ), φ = 0.063 ( ).
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To see to which extent the outcome of the simulation was affected by
the limited number of nodes, we also did some simulations with 8, 27 and
64 nodes. For some systems the radial distribution function had not flat-
tened out at a distance of half the box size. We therefore also did sim-
ulations with 512 nodes. A more detailed overview of the calculations
performed as well as the code used for the GPU can be found online:
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.7b01264

Monte Carlo Protocol

A basic Monte Carlo simulation consists of doing a Monte Carlo step,
which is a trial move in the parameter space, and an acceptance rule
which determines whether or not to accept the move based on the
change in (free) energy. In our case, the trial moves consisted of picking
a number of nodes at random and moving them by one lattice site in
a random direction. A node could be selected multiple times during
a single Monte Carlo step and can thus also move multiple sites. The
number of nodes that are moved is adjusted during the equilibration
part of the simulation, such that the acceptance ratio is about 25%.
After the nodes have been moved, the distribution of the polymers is
calculated again and the new Helmholtz energy Fnew is compared to
the old Helmholtz energy Fold. The reason for using the Helmholtz free
energy is that when a node is moved, not only the interaction energy
changes, but the conformational entropy of the polymers is changed as
well. If the new Helmholtz energy Fnew is lower than the old Helmholtz
energy Fold, the move is accepted. If it is higher, it is accepted with the
probability:

paccept = e−∆F ∆F = Fnew − Fold (4.13)

At the start of the simulation, the nodes were ordered in a sim-
ple cubic ordering filling the the whole cubic simulation volume. We
aimed to do m = 40.000 Monte Carlo steps in each simulation. This
is long enough for the system to equilibrate provided that the density
remains homogeneous. To demonstrate that the system is equilibrated
well within 40.000 steps, we show the SF-SCF Helmholtz energy as a
function of the number of Monte Carlo steps in Figure 4.2.

At first sight it may seem puzzling that the Helmholtz energy in-
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Figure 4.2: Helmholtz energy per polymer as a function of the number
of Monte Carlo steps m. χ = 0.4, φ = 0.25, f = 5 and M = 125

creases as the system relaxes. The entropy of the nodes is, however, not
included in the Helmholtz energy presented in Figure 4.2. At the start,
the nodes are in a highly ordered state. By distributing themselves
more randomly over the volume, the entropy of the nodes is increased.
This results in a lower Helmholtz energy for the system as a whole even
though the Helmholtz energy of the polymer chains has increased. In
principle, the entropy of the nodes can be calculated from the radial dis-
tribution function and higher-order particle correlation functions using
Green’s entropy expansion.90 In our case, the three-particle correlation
function was still rather noisy and it was therefore not possible to ac-
curately determine the entropy of the nodes.

Coarse-Grained Simulation

To show that the hybrid Monte Carlo SF-SCF method describes the
system better than Monte Carlo simulations with coarse-grained nodes,
we performed Monte Carlo simulations with M = 125, f = 5 and
χ = 0.4. In these simulations the nodes with their polymers have been
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coarse-grained to a single particle. We used an effective interaction po-
tential, calculated as described in chapter 2, as the interaction potential
between these particles. To determine this effective pair potential, we
first calculated the free energy per node for a simple cubic arrangement
for different distances between the nodes. Subsequently, we calculated
the effective pair potential so that it gives the correct free energy for all
distances. The resulting potential is shown in Figure 4.3. The depth of
the well is 0.33kBT .
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Figure 4.3: The effective pair potential used in the Monte Carlo simu-
lations. The distance r is measured in lattice sites.

Data Analysis

We calculated the radial distribution function of the nodes to see how
much ordering there is in the system. This was done by splitting the
range of possible interparticle distances in a number of subranges called
bins. The width of these bins is dr. Next, we loop over all particle
pairs and Monte Carlo steps m and count how many particle pairs have
an interparticle distance that would fall in each bin b. ”nint” indicates
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that number is rounded to the nearest integer.

b(r) =
∑
m

∑
n1

∑
n2>n1

δ δ =

{
1 r = nint( |rn1−rn2|

dr )

0 r 6= nint( |rn1−rn2|
dr )

(4.14)

g(r) =
2V

mM(M − 1)

b(r)

Vr
(4.15)

In this equation, V is the volume in the number of lattice sites, Vr is the
number of lattice sites that fall within the bin b(r) at radius r and m
is the number of Monte Carlo steps over which the radial distribution
function is averaged. M is the number of nodes an rn is the position of
the node.

To be able to compare the results of these simulations to experi-
ments, we also calculated a structure factor S(ξ) based on the radial
distribution function using:

S(ξ) = 1 +
4πρ

ξ

∫
r(g(r)− 1) sin(ξr)dr (4.16)

In this equation, g(r) is the radial distribution function, r the dis-
tance, ρ the number density of the nodes and ξ the spatial frequency.

Due to the finite size of our system the radial distribution function
does not go to exactly unity for large distances. This can, for example,
be seen in Figure 4.4 where the dotted curve for M = 125 stays just
above unity. The explanation is that if a particle has an excluded vol-
ume, the volume remaining for the other M−1 particles is a bit smaller
and the radial distribution function will be a little bit higher than unity
far away from the particle. Similarly, if the interaction between the
nodes is attractive, the concentration close to the node will be higher
and far away it will be a bit lower. In that case the radial distribution
far away will be a bit less than unity. As a result, a peak shows up
around ξ = 0 in the structure factor. As the osmotic compressibility is
effectively determined by extrapolating the structure factor to zero, we
need a way to suppress this peak at ξ = 0.

Recently, Dawass et. al91 wrote an article comparing several meth-
ods for correcting some of these finite size effects. The best method
according to them was the method of Ganguly and van der Veght.92
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Figure 4.4: The effect of the number of nodes used in the simulation on
the radial distribution function. The numbers of nodes in the system
are: 8 ( ), 27 ( ), 64 ( ) and 125 ( ). χ = 0.4, φ = 0.25 and
f = 5.

They adjusted the radial distribution function at distance r based on
the excess amount within distance r. To us this did not seem opti-
mal, as the excess amount fluctuates considerably as a function of the
distance. As a first-order approximation, the value of the entire radial
distribution function will be increased due to the local excluded vol-
ume of a particle. We therefore think that a correction that is more
uniform would be better at approximating the real radial distribution
function. The most logical thing to do would thus be to multiply the
radial distribution with a small factor such that the radial distribution
function goes to exactly 1 at long distances. For small simulation vol-
umes, the radial distribution function is however not yet entirely flat
at a distance of half the box size. It is thus not so easy to determine
what the right correction factor is. Ideally, we get a smooth curve near
a spatial frequency ξ = 0. If we however get it wrong there, is a signif-
icant spike in the structure factor close to ξ = 0. It therefore seemed
reasonable to choose this correction factor such that the magnitude of
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the second derivative near ξ = 0 is minimal, although a different deriva-
tive may work as well. To determine whether our method works, we
simulated two systems, one with hard spheres and one with the effective
interactions we use in the coarse-grained simulation. We compared the
corrected radial distribution function and compressibility of boxes with
512 particles to those of a simulation box with 13824 particles to see
if our method would give a useful correction of the radial distribution
function. The corrected radial distribution functions for the systems
with 512 particles give Kirkwood-Buff integrals that deviate less than
15% from the value of the large system, while the uncorrected values
deviated as much as 60%. For the hard sphere system with 512 parti-
cles, the value differs by about 5% from the theoretical value obtained
with the K-equation of state93 and for the system with 13824 particles
our correction reduced the deviation from 5% to 1.5%. To our knowl-
edge, this method has not been described in the literature and we hope
to soon write a short communication in which we compare this method
to other methods for correcting finite size effects. The values of the
correction factors ranged from 0.987 to 1.008. With this corrected ra-
dial distribution function, we calculated the osmotic compressibility κ
according to:

κ =
1 + ρ

∫
4πr2(g(r)− 1)dr

ρkBT
(4.17)

Results and Discussion

In Figure 4.5 an example of the simulation volume is shown. The nodes
are clearly visible as red cubes with a slightly lighter core. Due to the
steric repulsion between them, the polymers push each other away from
the node and so drag their anchoring groups to the outside of the node.
This results in a relatively low density within the core of the node.

In Figure 4.4, we show the radial distribution function for systems
with different numbers of nodes M and thus also different volumes. All
other parameters have their default values. For M = 8 and M = 27,
the radial distribution functions deviate significantly from the ones for
M = 64 and M = 125, which are very similar. It thus seems that our
default conditions using 125 nodes gives results that do not deviate too
much from an infinite system, although there is still some effect of the
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Figure 4.5: A 3D view of the default system. The nodes are coloured
red. The polymer concentration decreases as the colour goes from red
via white to blue.

limited size of the simulation volume. The system should not be much
smaller, as the peak of the second coordination shell has barely ended
at a distance equal to half the box size. With φ = 0.5 and f = 10, the
radial distribution function shows peaks well beyond half the box size
and for this system as well as several others, we performed simulations
with M = 512 nodes. This still is not optimal, but the computational
costs were too high to simulate even larger systems.

The dependence of the radial distribution function on the overall
polymer volume fraction is shown in Figure 4.6. As the polymer vol-
ume fraction is increased from φ = 0.125 to φ = 0.5, the peak of the
radial distribution function shifts inwards. Hence, at high concentra-
tions the polymers are pressed into each other as there is not enough
space to place all nodes at their optimal distances. As the volume
fraction is reduced the distances between the nodes increase until the
optimal distance is reached at a volume fraction of about φ = 0.125.
There is no strong ordering in the sample, and only two relatively weak
coordination shells are visible in the radial distribution function. The
system is thus expected to behave like a liquid on time scales that are
long compared to the relaxation time of an individual bridge.

At first sight, it may be surprising that the level of ordering of the
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Figure 4.6: Effect of the polymer volume fraction on the radial dis-
tribution function. The tested volume fractions are: φ = 0.50( ),
φ = 0.25( ), φ = 0.125( ), φ = 0.063( ), φ = 0.031 ( ) and
φ = 0.0078 ( ). χ = 0.4, M = 125, f = 5.

nodes does not increase with increasing node concentration. One would
expect that due to the strong steric repulsion the nodes would order
themselves. Similar to polymeric solutions, however, the environment
starts to look more like a polymer melt, as the polymer concentration is
increased. The polymers are therefore distributed more homogeneously
over the volume. As a result, the steric hindrance experienced by the
nodes will depend less on their position and the system can thus remain
unordered.

As the polymer volume fraction is decreased from φ = 0.125, the
peak of the first coordination shell rises, suggesting that the strength of
the attraction increases. This is in line with chapter 2 where we found
that the interaction between two nodes depends on their surroundings.
As the system is diluted, the number of neighbouring nodes decreases
and the attraction with the remaining neighbours increases. For dilute
systems, the binding energy can be estimated by taking the logarithm
of the peak height of the radial distribution function. In this case, the
height is about 2.7 for φ = 0.0078, which corresponds to a binding
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energy of roughly 1 kBT . This binding energy and the position of the
peak are the same as we found in chapter 2.
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Figure 4.7: Effect of the solvent quality χ on the radial distribution
function for different volume fractions: a) φ = 0.50, b) φ = 0.25, c)
φ = 0.125 and d) φ = 0.0625. χ = 0.5 ( ), χ = 0.4 ( ) and
χ = 0.0 ( ). M = 125, f = 5. In sub-figures c and d, part of the
radial distribution lies beyond half the box size. The values in this range
are displayed to show that phase separation occurs, although they are
probably still be affected by the limited box size.

Let us next consider the effect of solvent quality. In Figure 4.7
radial distribution functions are shown for different values of χ. At a
volume fraction of φ = 0.50, shown in Figure 4.7a, there is practically
no difference between the different solvent qualities. At such a high
polymer volume fraction, the swelling of the polymer corona does not
significantly decrease the number of unfavourable interactions between
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the polymer segments because they would swell into the corona of the
next micelle. The size of the micelles in a good solvent is therefore the
same as that in a theta solvent and the radial distribution function is
therefore also practically the same.
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Figure 4.8: The effect of background polymers on the interaction po-
tential between two nodes. χ = 0.0 black, χ = 0.5 grey. φb = 0 ( ) ,
φb = 0.1( ) and φb = 0.5 ( ). f = 5.

This is illustrated in Figure 4.8 where the interaction potential ∆F
between two isolated nodes is plotted for different background polymer
concentrations. At a background polymer volume fraction of φb = 0.5
the curves for χ = 0.0 and χ = 0.5 are practically the same.

As the polymer volume fraction is decreased to φ = 0.25, the ra-
dial distribution functions for the different solvent qualities start to
differ. The peaks of the radial distribution functions shift outward,
most strongly for the good solvent. For the theta solvent, the radial
distribution function is otherwise similar to that at φ = 0.50. For a
good solvent, the height of the peaks increases, as the steric repulsion is
strongest in a good solvent and it thus gives the most ordered structure.

When the volume fraction is lowered further to φ = 0.125, we ob-
serve that for χ = 0.5 the radial distribution function no longer goes to
unity at large distances. This is most likely because phase separation
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occurs: the cross section of the gel in Figure 4.9 clearly shows a dilute
and a concentrated region.

In addition, the first peak for χ = 0.5 is higher than the peak for
χ = 0.0. For χ = 0.5, the interactions are now attractive and they
become stronger as the gel becomes more dilute, while for χ = 0.0 there
is still a net repulsion between the nodes which decreases as the gel
becomes more dilute.

Figure 4.9: A cross section of the gel at χ = 0.5, φ = 0.125, f = 5.
The darker the colour the higher the polymer density. The maximum
polymer volume fraction is about 0.75. The nodes have clearly clumped
together forming a dense region, which coexists with a dilute region with
just a few micelles.

Finally, in Figure 4.7d, the polymer concentration has been lowered
to φ = 0.0625. Now, the radial distribution function does go to 1 for
χ = 0.5. This, however, does not mean that the system is already
below the lower binodal. At the start of the simulation, the nodes are
distributed homogeneously over the volume. They will initially clump
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together in small clusters. These clusters, however, diffuse much slower
than individual nodes. It will thus take a long time before all the
clusters and nodes have aggregated by diffusion and Ostwald ripening
to form a dense phase. The simulation was therefore too short to fully
equilibrate the system. The radial distribution function does show a
slight dip at a distance of about 45 lattice sites, which is also visible for
χ = 0.4. As the individual nodes and clusters diffuse around, they stick
to other clusters. The concentration of micelles and other clusters near
this cluster therefore decreases, leading to a zone with a relatively low
concentration. This process may not only happen for complete phase
separation but also in the case that the clusters have not yet reached
their equilibrium size distribution. This is illustrated by the change in
the radial distribution functions as the number of Monte Carlo steps
is increased. The more Monte Carlo steps have been taken the further
out the dip lies and the deeper it becomes. The system is thus not
equilibrated within the simulated number of Monte Carlo steps. At the
end of the simulation, there is also a clear void visible within the gel.

It is possible to improve the rate at which the system equilibrates by
occasionally making Monte Carlo moves that displace micelles over large
distances. We, however, intended to study the homogeneous phases of
these micellar solutions and therefore did not implement such large
Monte Carlo moves.

At a volume fraction of φ = 0.0625, the distance between the nodes
is so large that, for all χ, the interactions are no longer repulsive at the
average intermicelle distance. The peak for χ = 0.4 is therefore higher
than that at χ = 0.0 because the height of the peaks is now determined
by the strength of the attraction between the micelles.

Now we turn to the effect of the number of polymers per node f , as
shown in Figure 4.10. For f = 2.5, the radial distribution function has
just one peak just like a gas. In contrast, there are many peaks visible
for f = 10. For the highest concentration φ = 0.5, these peaks occur
beyond half the box size. It is therefore likely that in this case the ra-
dial distribution function is still influenced by the size of the simulation
volume. A striking difference between f = 10 and the lower function-
alities is that the height of the peaks increases as the concentration is
increased from φ = 0.25 to φ = 0.50. This suggests that as the number
of polymers increases, the micelles will behave more like hard particles
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Figure 4.10: Effect of the number of polymers per node f on the radial
distribution function for different volume fractions: a) φ = 0.50, b)
φ = 0.25, c) φ = 0.125 and d) φ = 0.0625. f = 2.5 ( ), f = 5 (
) and f = 10 ( ). χ = 0.4, M = 125, except for f = 5 with φ = 0.5

and f = 10 with φ = 0.5 or φ = 0.25 where M = 512.

and crystallization may be possible for nodes with even more polymers.
Figure 4.10d shows that, for f = 10, the radial distribution function
drops a bit below unity at large distances, although the deviation is
not as large as in Figure 4.7c. There are some interconnected cavities
visible within the gel. It is therefore possible that this gel will also un-
dergo phase separation even though this is not yet clearly visible. The
number of Monte Carlo steps taken is relatively small and the gel may
not have had enough ”time” to phase separate.

Now that we have discussed the radial distribution functions for dif-
ferent parameters, we can compare them with the radial distribution
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functions calculated with Monte Carlo simulations in which we coarse-
grained the nodes as single particles. In Figure 4.11, radial distribution
functions from the MC-SCF simulations and the Monte Carlo simula-
tions with effective pair potentials are shown.
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Figure 4.11: Comparison of the radial distribution functions for the MC-
SCF ( ) and the normal MC simulation with effective pair potentials
( ). The different volume fractions of the polymer are: a) φ = 0.50,
b) φ = 0.125 and c) φ = 0.031. In all simulations f = 5; in subfigure a,
512 particles were used and in subfigure b and c, 125.

At high densities (see Figure 4.11a), the MC simulation with effec-
tive pair potential gives much sharper peaks than the MC-SCF model.
This is probably caused by an overestimation of the repulsive force be-
tween the particles. When two nodes approach each other closely, the
polymers can move out of the way if there are no other particles nearby.
However, if the nodes have many close-by neighbours the polymers can
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not move out of the way and the repulsion is thus stronger. The MC-
SCF model can distinguish between these cases. A pairwise interaction,
however, cannot, and instead an assumption has to be made about the
surroundings of the nodes. In the way we determined the effective pair
potential, it is assumed that the other nodes are at the same distance
from the interacting nodes as the interacting nodes are from each other.
When a particle is closer than the typical distance between a particle
and its nearest neighbours, the average distance to the other nodes is
underestimated and the repulsive force is too strong. Because of this,
the nodes cannot approach each other as closely as in the MC-SCF
model and therefore appear as harder particles, resulting in the sharper
peaks.

At low concentrations, as seen in Figure 4.11c, the opposite prob-
lem arises. Here the peak of the first coordination shell is much higher
for the MC-SCF model. Not only does the effective pair model overes-
timate the repulsion between the particles, it also underestimates the
attraction. When a node already has many neighbours adding another
one increases the number of polymer conformations relatively little com-
pared to the total number of potential conformations. If instead a node
has no neighbours, the relative increase in the number of polymer con-
formations is much larger. The change in free energy when a neighbour
is added will therefore be larger when a node has fewer neighbours.
The attraction at low concentration will therefore be stronger. With
the effective pair potential it is assumed that there are neighbouring
nodes at the same distance as the interacting nodes. This results in an
underestimation of the attraction at low concentration.

At intermediate concentrations (Figure 4.11b) the effective pair in-
teraction gives roughly the same radial distribution function as the
MC-SCF model, although the repulsion between the micelles is still
overestimated at short ranges.

Based on these calculations, it is clear that a Monte Carlo simulation
with a single pair potential does not correctly describe the behaviour
of the nodes at a wide range of concentrations, although some improve-
ment should be possible as the short-range repulsion appears too strong
at all concentrations. An option would be to use a custom potential for
each density. For systems in which the density remains homogeneous
this would be an improvement. If the density is, however, not homo-
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geneous the result would be even worse than with the effective pair
potential we have used here.

To validate our MC-SCF simulations, we need to make predictions
that can be compared to experimentally obtained results. We there-
fore determined the structure factor and the osmotic compressibility κ
according to Equations 4.16 and 4.17.

Figure 4.12: The structure factors calculated from the radial distribu-
tion functions for: a) χ = 0 f = 5, b) χ = 0.4, f = 5, c) χ = 0.5,
f = 5 and d) χ = 0.4, f = 10. φ = 0.50( ), φ = 0.25 ( ),
φ = 0.125 ( ), φ = 0.06 ( ) and φ = 0.03 ( ).The
grey areas under the graphs indicate the 99% confidence interval.

The structure factors are shown in Figure 4.12 and the compress-
ibility is plotted in Figure 4.13. Close to spatial frequency ξ = 0, the
uncertainty in the structure factor is relatively large. As the structure
factor near ξ = 0 is closely related to the compressibility, the accuracy
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with which the compressibility can be calculated is also limited.

In two of the presented cases, the structure factors are negative at
ξ = 0. For systems in equilibrium, this is physically unrealistic and it
most likely results from the limited size of our simulation volume. In
several other cases, increasing the number of nodes from 125 to 512
caused the structure factor to become positive. This would probably
also be the case for these two systems if we could run the simulations
with more Monte Carlo steps and nodes.

Figure 4.13: The osmotic compressibility relative to that of an ideal
gas. a) For different numbers of polymers per node: f = 2.5 ( ),
f = 5 ( ), f = 10 ( ). b) As a function of χ: χ = 0 ( ),
χ = 0.4 ( ). The error bars indicate the 99% confidence interval.)

The effect of the number of polymers per node f on the osmotic
compressibility (Equation 4.17) is shown in Figure 4.13a. The values
shown are relative to the compressibility of an ideal gas with a particle
concentration that is the same as the concentration of nodes in our
simulations. At high polymer volume fractions, the steric repulsion of
the polymer coronas prevents the nodes from coming close to each other
and the osmotic compressibility is therefore much smaller than that of
an ideal gas. At low concentrations, the attraction causes the nodes to
form clusters and the osmotic compressibility is therefore higher than
that of an ideal gas, because the number of freely moving particles is
reduced. The relative compressibility gives a lower limit for the number
of nodes that form a cluster. For χ = 0.4, f = 5 and φ = 0.03, the
average cluster size should be, for example, at least 3.
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For φ = 0.5, the nodes with the fewest polymers per node seem
to have the highest relative compressibility. The confidence intervals,
however, still overlap so the difference is not significant. If we had
instead looked at the real compressibility, the order would probably
be reversed. The higher the number of polymers per node, the higher
the concentration of polymers close to the nodes, while the polymer
concentration halfway between the micelles is lower and thus the steric
repulsion will be lower as well.

As the concentration is lowered, the order quickly changes. Because
the nodes with more polymers have more attraction between them and
thus form larger clusters, these systems are more compressible at low
volume fractions.

In Figure 4.13b, the compressibility as a function of the Flory-
Huggins parameter χ is shown. As expected, the system with χ = 0
is the least compressible; as the corona swells the most, the steric re-
pulsion is the strongest for this case. Above, we concluded, based on
the radial distribution function, that phase separation occurs for the
combination of f = 5 and χ = 0.5. According to theory, the com-
pressibility should therefore go to infinity. Our system, however, has a
limited number of particles and therefore the value the compressibility
can reach is limited. Furthermore, we used the entire radial distribution
function to calculate the compressibilities. This, however, includes the
part of the radial distribution function far away from the particle where
it is below unity. This lowers the calculated value of the compressibility
even further. The values obtained for χ = 0.5 and φ = 0.13-0.03 are
thus incorrect and therefore not shown in Figure 4.13b.

One of the experimental studies in literature to which we can com-
pare our results is by Filali et al.45 They investigated a system of swollen
surfactant micelles to which they added PEO polymers with hydropho-
bic end groups. Under the conditions used, the Flory-Huggins parame-
ter for PEO is between χ = 0.4 and χ = 0.5.94,95 Although the polymers
had about 120 Kuhn segments and were thus longer than the polymers
we simulated, our results should show a fairly good match, as we found
in chapter 2 that the effective pair potential is almost identical for 50
and 100 segments when the distance from the core is rescaled. In addi-
tion, the core of the micelles is larger than our nodes. However, com-
pared to the volume of the coronas, the cores are still relatively small.
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The experimental results should therefore be in between our results for
χ = 0.4 and χ = 0.5.

Filali et al.45 observed phase separation for f > 6, which is not
much higher than the f = 5 for which we observed phase separation
with χ = 0.5. In this respect, their results fit nicely with our findings.

The authors did not report the structure factor separately but did
show the total scattering intensity. As the form factor goes to unity for
small ξ, we should be able to make a qualitative comparison between
our structure factor and their scattering intensities at small ξ. To get
realistic values for our spatial frequency, we need to choose a value for
the lattice size. We chose a value of 7.4 rA, because this coincides with
the Kuhn length of PEG.56

Based on the Daoud Cotton model58, the system of Filali et al. with
an oil droplet volume fraction of 7% should best match our simulations
with a polymer volume fraction of φ = 0.03. When going from large ξ
to small ξ, there is a dip after the peak indicating the average distance
between the nearest neighbours followed by a steep increase in both
cases. These features are less pronounced than in our simulations. This
is probaly because we used f = 5, while the experimental system had
on average four polymers per micelle. For higher concentrations, the
structure factors do not match because the surfactant micelles in the
experimental system are charged and repel each other at these concen-
trations.

François et al. published several experimental articles on telechelic
polymers with PEO middle blocks.1,96 In contrast to us, they found
cubic phases at high concentrations using X-ray scattering.1 Since the
number of polymers per micelle was not reported, a one-on-one compar-
ison with our simulations is difficult. Probably the number of polymers
per micelle is higher than in our simulations. This may explain why
they observed a cubic phase and is corroborated by the fact that for
longer middle blocks, for which the number of polymers per micelle is
lower, crystallization was not found.

Another factor that may have contributed is that at least 10% of
their polymers had only one functionalized end, which increases the
repulsion between the micelles. They also observed phase separation for
systems with relatively short middle blocks (PEO Mw 6 6000 g/mol)
but not for polymers with long middle blocks (Mw > 10000 g/mol). As
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explained before, systems with longer polymers have fewer polymers per
micelle and therefore less entropic attraction due to bridge formation.

Sprakel et al. studied the rheological and phase behaviour of solu-
tions of the same type of telechelic polymers, both experimentally86 and
with computer simulations.44,49 In contrast to our simulation, they did
not observe phase separation in their experimental study.86 Although
the number of polymers per micelle was not reported, it was probably
larger than 6, which was estimated by Filali et al. to be the lower
boundary for phase separation. A possible explanation for not observ-
ing phase separation is that about 10% of the polymers had only one
associative end group. This increases the steric repulsion between the
micelles and the net attraction, which causes the phase separation, is
thus reduced.

In a second paper Sprakel et al.44 addressed the phase behaviour of
the system with a SF-SCF model in which the micelle is modelled in a
1D spherically symmetric system with a reflecting boundary condition.
The number of polymers per micelle was not fixed, but instead the
grand potential was optimized to determine f . Phase separation was
predicted for all the combinations of middle block and end-block lengths
they used in their study. The minimum number of polymers per micelle
they found was about eight, but their polymers were much longer than
those in our study. As they used χ = 0.5, all their systems lie above the
line from f = 10 with χ = 0.4 to f = 5 with χ = 0.5. Their predictions
are thus in line with what we found here.

In a third study49, they coarse-grained the micelles to single parti-
cles. In this case, no phase separation was found. They do not mention
the Flory-Huggins parameter, but they wanted to reproduce the exper-
imental system described above86 and the value of χ should thus be
between 0.4 and 0.5. Given that the simulated micelles have f = 25
polymers each, phase separation would be expected based on our re-
sults. However, the interaction potentials in the coarse-grained model
do not take into account that the attraction will increase with a de-
creasing number of neighbours. Moreover, a relatively small well depth
of 0.38 kBT was used, comparable to the well depth we found for f = 5
and χ = 0.4 (about 0.34 kBT ). Considering that in chapter 2 the well
depth for an isolated pair of micelles roughly scales with f0.5, the well
depth expected for this system with f = 25 would be about twice as

100



Conclusion and Outlook

large. These combined factors explain why they did not find phase
separation from the coarse-grained modelling.

Conclusion and Outlook

We successfully combined a Monte Carlo algorithm with the Scheutjens-
Fleer self-consistent field theory. With it, we were able to calculate the
radial distribution function, structure factor and compressibilities for
solutions and gels of ABA triblock copolymers with varying properties
over a range of densities. For f ≤ 5 polymers per node, we found,
somewhat counterintuitively, that as the polymer volume fraction φ in-
creases from φ = 0.25 to φ = 0.5 the amount of ordering in the system
is decreased. We argue that this is because at high volume fractions the
background concentration of the polymers of the other nodes becomes
more homogeneous. The amount of steric repulsion therefore depends
less on the position of the node. We further discovered that for χ = 0.5
and f ≥ 5, phase separation occurs. We were, however, not able to
determine the compositions of the coexisting phases as the number of
simulated particles was small and there should thus be a considerable
effect due to the interface. Simulating such a large volume that the
effects of an interface would be negligible would take far too much com-
putation time. To avoid the effect of the interface, the Gibbs ensemble97

can be used. Because we use a lattice, we can, however, not change the
volume by arbitrary small steps but only by one lattice layer at a time.
The larger the simulation volume, the larger the change in volume and
thus in free energy will be. The chance that an exchange in volume
would be accepted would therefore become smaller for larger and larger
systems. This limits the system size we can use in combination with
the Gibbs ensemble. Instead, it may be possible to ”simulate” a Gibbs
ensemble by simulating two volumes which would be representative for
larger volumes of the simulated Gibbs ensemble. By moving particles in
and out of the simulated volumes, the density could be adjusted to that
of the simulated volumes of the Gibbs ensemble. To our knowledge,
such an approach has not been described in literature yet. Another
approach would be to coarse-grain the micelles while maintaining the
dependence of the interacting potential on the surroundings of the in-
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teracting micelles. This method would also enable us to study dynamic
properties of the system.

The limited system size may have affected some of our simulations
at high polymer volume fractions where the radial distribution func-
tion had not completely flattened out by half the box size. The next
generation of GPUs, however, promises to have 10 times more compu-
tation power as those we used. This allows larger simulation volumes
and more Monte Carlo steps, making the Monte Carlo SCF hybrid
model a feasible tool for future studies. By comparing the results of
coarse-grained Monte Carlo simulations with those of the hybrid MC-
SCF model, we have shown the shortcomings of using only one pair
potential to describe the interactions between the nodes. The MC-SCF
hybrid method is therefore a useful tool to model systems of flower-like
micelles and telechelic networks over a wide range of concentrations.
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Coarse-Grained Dendrimers in Good Solvent;

Comparison of Monte Carlo Simulations,

Self-Consistent Field Theory and a Hybrid

Modelling Strategy

The structural properties of dendrimers, with g = 1 · · · 7 generations, f = 2 · · · 5
spacers per branch point and spacer lengths S = 20 and 50, are analysed with

three methods that account differently for excluded volume correlations. (i) The

cell model, where a dendrimer is anchored with the root segment in a spherically

symmetric lattice and the dendrimer density is determined with the Scheutjens-Fleer

self-consistent field (SF-SCF) approach. (ii) A hard sphere Monte Carlo (MC-FJC)

model wherein all segments are connected by fixed length bonds and in between

them (iii) the Monte Carlo self-consistent field (MC-SCF) hybrid, wherein the branch

points are moved using MC and the polymer distribution is determined with SF-SCF.

Comparing these gives information on the gain in accuracy when the intramolecular

excluded-volume effects are gradually introduced. The focus is on the radius of

gyration, the asphericity, the end and branch point distribution, and the overall

radial density profiles. The cell model gave a slightly different scaling exponent for

the radius of gyration (as expected for a mean field theory), but for large f and g

values, it also wrongly predicts a bimodal distribution of the branch points closest

to the centre. We ascribe these shortcomings of the cell model to the systematic

overestimation of the long-range and underestimation of the short-range excluded

volume effects within the SF-SCF theory. The qualitative differences between the

MC-SCF and the MC-FJC model are much smaller. Localizing just a few of the

segments thus largely compensates the shortcomings in the SF-SCF theory.

We submitted this chapter as: ”Coarse-Grained Dendrimers in a Good Solvent;
Comparison of Monte Carlo Simulations, Self-Consistent Field Theory and a Hybrid
Modelling Strategy”, J. Bergsma, F. A. M. Leermakers and J. van der Gucht, 2018
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Introduction

Inhomogeneous polymeric materials are of significant technological in-
terest. These materials range from simple polymeric solutions to poly-
meric micelles and (double) gel networks. They can be used as ab-
sorbents, drug carriers in nanomedicine or to modify rheological be-
haviour, to name a just a few of their applications. To be able to design
the polymers with which these materials can be created, it is important
to understand how the properties of the polymers affect the behaviour
of these materials. Mean field theory, is a popular way to study these
systems as it is computationally very efficient. The accuracy of the the-
ory is good for melts where excluded volume correlations are screened,
but not so good in dilute cases where these correlations are important
and we therefore do not know for sure which results of SCF theory
can be trusted. More detailed methods such as Molecular dynamics
and Monte Carlo simulations do take these correlations into account
but sample only one configuration at a time and therefore take more
computation time. There are relatively few strategies in between these
limits.

In chapter 3 and 4 we have introduced a computational strategy to
study spatially inhomogeneous polymeric systems wherein we combine
the mean field Scheutjens Fleer self-consistent field theory with a Monte
Carlo algorithm (MC-SCF). We used this method to simulate a physi-
cal gel of telechelic polymers. The polymer distributions were computed
with the SF-SCF method, with the constraint that the polymer ends lie
within so-called nodes (which are micellar-like cores that have specified
locations). In turn, the nodes were moved with a Monte Carlo algo-
rithm, which uses the SCF free energy of the system in the ’acceptance’
step. Compared to classical SCF, calculations of this type are computa-
tionally expensive, as for each set of node positions the distribution of
the telechelic polymers has to be recalculated. The computation time
of the SCF-part of the simulation scales with the volume of the system,
but not with the number of chains in it. This possibly counterintuitive
feature makes the model relatively efficient for systems with a high poly-
mer density such as the physical gels of telechelic polymers we studied
previously.

The corresponding computations for a chemically cross-linked gel,
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however, require the strict coupling of chain ends to specified nodes
(cross-links) and this makes the hybrid SCF method computationally
even more challenging. In this case the computation time scales with
the number of chains (or chain fragments) in the system. We show that,
by using sub boxes and implementing the computations on a GPU, it
is still feasible to develop and execute a hybrid MC-SCF method with
explicit chemical cross-links. Here we implement this method not for a
chemically cross-linked gel, but for dendrimer molecules, which may be
seen as micro-gels.

One of the main reasons for developing hybrid MC-SCF methods is
to investigate the shortcomings of the computationally extremely inex-
pensive SF-SCF method. With SF-SCF theory one uses a one-gradient
spherical coordinate system (cell model) and the averaged properties
of a system are predicted. In reality deviations from spherical sym-
metry exist, especially for molecules with few internal branches, most
notably linear chains. The SF-SCF model cannot describe the shape of
individual macromolecule conformations and properties that depend on
these.

Other limitations of SCF exist. One issue is that every segment
in SCF ’feels’ an averaged local density instead of the real segment
positions. A segment therefore does not feel that locally the density is
higher due to segments that are close to it in the molecule, and whose
positions are correlated. This allows conformations that fold back onto
themselves. As a result the local excluded volume and thus the local
stretching is underestimated.

At the same time the long range steric repulsion is overestimated
within SCF, as it is assumed that all the segments are distributed ho-
mogeneously within each lattice layer. In reality the excluded volumes
of segments that are close to each other in the molecule will overlap
and the total excluded volume of the chain is thus smaller. The num-
ber of possible chain conformations is therefore higher as fewer chain
conformations overlap.

In the newly formulated hybrid method, some of the segments are
localized on a specific lattice site and moved with a Monte Carlo al-
gorithm. The other segments are still treated with the SF-SCF ma-
chinery. This way the correlation in position between segments close
to each other in the molecule is increased. This should cause segments
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close to each other in the molecule to feel their excluded volume better,
and at the same time reduce the excluded volume effect between seg-
ments far away from each other in the molecule. This should alleviate
the problems of the SF-SCF cell model, while still keeping the number
of degrees of freedom that need to be sampled with the Monte Carlo
algorithm limited.

In contrast to chapter 3 and 4 we now need to specify at which
point a chain-fragment starts and ends, as the spacers in a dendrimer
are attached to each other with chemical bonds. As a result, each
spacer needs its own propagator. Because this propagator can only have
non zero values in a small region near the branch points we introduce
small sub boxes, so we only need to calculate the propagator in areas
where it can have a non-negligible value. In the current implementation
on a GPU, it is convenient to make all sub boxes the same size and
shape. The size of the sub boxes is chosen in such a way that for all
combinations of start and end-points the probability of the chain going
out of the box is negligible. The efficiency can probably be improved
by modifying the size of the box as a function of the positions of the
start and end-points, and the propagator step.

We used dendrimers as a model system, to determine how effective
this new model is with respect to accounting for excluded volume cor-
relations. The reason for choosing dendrimers is that excluded volume
interactions play an important role in them and there is already some
literature to compare our findings with.26,98–101 We compared three dif-
ferent methods: (i) The cell model, that employs the classical SF-SCF
equations (ii) the newly developed MC-SCF model, and (iii) as a ref-
erence, the hard sphere freely jointed chain model (MC-FJC) whose
equilibrium conformations are generated by a Monte Carlo algorithm.
We modelled systems with f = 2 up to f = 5 branches per node and
up to g = 7 generations. Results for a large number of generations and
high degree of branching are rare in the literature. We include these be-
cause the MC-SCF method and especially the classical SF-SCF results
are expected to improve for these molecules. Due to the many internal
branches the molecules can not deviate much from the overall spherical
geometry. The cell model, which assumes spherical symmetry, should
thus be able to describe such a molecule well.
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Dendrimer Definition

Dendrimers have a hierarchical structure and an illustration of such a
molecule is presented in Figure 1.2. They ’start’ with a central (root)
segment. To this central segment f spacers are connected each having
S segments. At the end of all these spacers there is a next segment that
functions as a branch point. From this and each subsequent branch
point there are f−1 new spacers of length S. The number of generations
g is defined as the number of branch points that are encountered starting
from the centre and taking any path to the free ends of the molecule.
In this process the central segment is also counted. At the end of the
spacers of the final generation there is an extra terminal segment. This
means that the length of the path from the centre to any of the free ends
is N = g(S + 1) + 1 segments long. The number of end-points is given
by ne = f(f−1)g−1. The number of spacers (arms) (including the outer
ones) in the dendrimer equal nspacer =

∑g
j=1 f(f−1)j−1 and the number

of branch points is nbranch = 1 +
∑g−1

j=1 f(f − 1)j−1. The total number
of segments in the dendrimer is given by N = nbranch + nspacerS + ne.

We have varied the functionality f from 2 to 5 and used two values
for the spacer length S = 20 and S = 50. For f > 2 the number of
generations we could model with the MC-SCF method was limited by
the 3 GB of memory available on the GPU. It ranged from g = 7 for
f = 3 and n = 20 to g = 2 for f = 5 with S = 50. This limitation
could be lifted by implementing memory efficient algorithms. As this
would have increased the computational cost even more we restricted
the parameter space to the limiting values that could be treated by
MC-SCF.

Freely Jointed Chain Model with Excluded Volume (MC-
FJC)

As a reference model we use a dendrimer composed of hard sphere
segments, each with diameter d, connect by bonds of length l that can
freely rotate. In the simulations the bond length is taken as the unit for
distance, i.e., l = 1 by definition. For ease of comparison with the SCF
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models we choose the diameter of the beads such that the maximum
packing density of the beads is the same as in the SCF model. The
diameter of the beads is therefore chosen as:

d =

(
1

4
√

2

) 1
3

= 0.561 (5.1)

We realise that when l = 1, the beads overlap a bit and the real packing
fraction is slightly higher. This is not a real issue because it is expected
that a pre-factor is needed to match the outcomes of the SCF models
with those of the MC-FJC model anyway.

We follow Chen et al.100 who used a Monte Carlo protocol with
pivot trial moves to generate new dendrimer configurations. In a pivot
move a segment of the dendrimer is randomly selected. This segment
and the outward part of the dendrimer attached to this segment are
rotated around the segment one step closer to the centre along the
contour of the dendrimer. The axis around which the rotation takes
place is chosen randomly from the three perpendicular axis. The angle
of rotation is randomly chosen from the range of 0 to 2π. If there is no
overlap between the segments, after the rotation, the move is accepted.
When the move is rejected the original conformation is counted again
in the statistical averaging.

For dendrimers with a large number of segments the probability that
pivot moves of segments close to the centre are accepted becomes very
small. To improve the equilibration we therefore introduced an extra
move for the segments between the centre of the dendrimer and the
first branch points. This move consisted of rotating the segment by a
random angle around the axis through the two segments to which it is
attached. Whether this move or a pivot move is done, is determined
randomly with each having a 50% chance. The probability that these
segments were chosen was also doubled.

Due to the accumulation of rounding errors the bond lengths would
over time start to deviate from unity. At regular intervals we therefore
readjusted the bond lengths to unity. Occasionally this causes two
segments to overlap. In that case the particle closest to the centre
along the contour was moved away from the other particle until the
distance between them was 1.00001. After this the bond lengths were
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again readjusted to length unity. The whole process was repeated till
all bonds had length one and there was no overlap.

The procedure was tested with an ideal dendrimer (without excluded
volume) and we found the correct average end-point distance and bond
angle distribution indicating that the method was implemented cor-
rectly and that all configurations are visited with the correct a priori
probability.

The simulations were started by generating a dendrimer with seg-
ments with zero radius. Starting from the previous segment we ran-
domly generated a number of new positions at distance l. Subsequently,
we chose the position that was most distant from the s− 1 beads that
were already in place. We defined an ”inverse distance” D(rs) as:

D(rs) =

s−1∑
i=1

1

‖ ri − rs ‖
(5.2)

and chose the position with the smallest D(rs) value. Here rs is the
position of the bead s.

Once the dendrimer structure was generated, the Monte Carlo ma-
chinery was started. In addition to the standard Monte Carlo moves
explained above, we increased the radius to 0.561 if this would not re-
sult in overlap with other beads. Once all the beads had the correct
volume we did an equilibration run with a tenth of the number of steps
used for data collection. The number of Monte Carlo steps taken varied
between the different simulation runs.

SF-SCF Theory

The classical SF-SCF theory19–25,30,34,102,103 has been described in the
literature in detail. Here we will only focus on the main issues and ideas
that are relevant for the modelling of dendrimers in the MC-SCF and
cell model implementations.

Just as in the freely jointed chain model, macromolecules are de-
scribed as a string of segments connected by bonds of fixed length,
equal to the segment diameter. The chains ’live’ in a discretised world,
also known as a lattice. The size of the lattice sites is equal to the bond
length, the segments thus fit exactly in the lattice sites. Segments that

109



Chapter 5

are connected in the molecule will be in neighbouring lattice sites. The
longer ranged correlations between segment positions are ignored, this
is also known as the Markov chain approximation. In contrast to the
MC-FJC model, chain backfolding is thus allowed.

In this lattice a mean field approximation is applied. This means
that the average volume fractions in a lattice site ϕ(r) are determined
based on the interactions with the average environment. Next to the
volume fractions ϕ(r) each lattice site also has a segment potential u(r)
for each segment type. The segment potential at coordinate r represents
the energy needed to bring a segment from the bulk to coordinate r,
when this segment is not (yet) connected to other segments in a chain.
For convenience the potentials are expressed in units kBT .

The segment potentials implement the interactions between the seg-
ments. The segment-interactions are accounted for with the Bragg-
Williams mean field approximation and described by the Flory-Huggins
χ interaction parameter. As we focus on good solvent conditions, χ = 0.
In this case the only remaining contribution to the segment poten-
tial comes from the incompressibility condition. This means that the
segment potentials are chosen such that the sum of the volume frac-
tions of the solvent, ϕO(r) and the dendrimer ϕD(r) add up to unity,
ϕD(r) + ϕO(r) = 1 at each coordinate r. To determine the values for
the segment potentials we need to know the volume fractions. As the
volume fractions in turn depend on the segment potentials we have a
chicken and egg problem. To circumvent this we start with an initial
guess for the segment potentials, usually u(r) = 0. With this guess we
can start to compute the volume fractions. This begins with the evalu-
ation of so-called segment statistical weights G(r), which are given by:

G(r) = e−u(r) (5.3)

The segment statistical weight is the contribution a segment at the
specified coordinate would make to the statistical weight of polymer
conformations that pass through this lattice site. The solvent consists
of freely dispersed monomers and therefore their volume fractions are
proportional to the segment statistical weights and are determined with:

ϕO(r) = G(r) (5.4)
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This is equivalent to ϕO(r) = NO
qO
G(r). The latter equation is nu-

merically more stable. Here NO is the number of solvent molecules in
the system and qO =

∑
rG(r).

Determining the polymer segment distribution is more complicated.
For this we have to combine statistical weights of sets of conformations
of parts of the polymer. We use so-called end-point distribution func-
tions G(rt, t|rb, b) to do this. These contain the combined statistical
weight of all possible and allowed conformations of a chain fragment
beginning with segment number b at coordinate rb and terminating
with segment t at coordinate rt. These end-point distributions are
generated using a propagator formalism which employs segment statis-
tical weights as a key ingredient. The segment density , ϕ(r, s), for
segment s at coordinate r is found by combining all end-point distribu-
tions that can reach segment s. The details of this formalism depend
on the molecular topology of the chains and on the constraints that are
imposed. This information differs between the MC-SCF hybrid and the
cell model. Therefore we give the details below in separate subsections.

Once we have determined the volume fractions, we can in turn calcu-
late the segment potentials. If the sum of the volume fractions is larger
than unity, we need to suppress the densities. This is implemented by
increasing the potentials. The inverse should happen when the volume
fractions are below unity. Hence, we can update the segment potential
at each iteration k + 1 from values found at iteration k:

uk+1(r) = uk(r) + η(1− 1

ϕk0(r) + ϕkD(r)
) (5.5)

where η lies in the range 0 < η < 1 and is chosen such that convergence
is achieved. We can iterate over these equations until the sum of the
volume fractions in each lattice site has converged to one.

In practice we use a target function that combines the incompress-
ibility relation with a self-consistency of the potentials24 and more so-
phisticated algorithms which converge faster than a simple steepest de-
scent algorithm. An example is the DIIS algorithm104 which converges
routinely and efficiently in 10 to 100 iteration steps to the SCF solution
to a precision of 7 significant digits.
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MC-SCF

In the MC-SCF model we use a 3D simple cubic lattice where the co-
ordinates are given by r. The total number of lattice sites in each
simulation is given by m3, where m is the total number of sites in each
of the three directions x, y, z. The idea is that we split up the den-
drimer in spacers, which lie in between the branch points and between
branch and end-points. For each dendrimer there are nspacer spacers
for which at each point during the simulation the start and end seg-
ments have to lie next to the appropriate branch and end-points. To
generate the initial positions of these branch and end-points we use a
random walk on the lattice, which could be biased to move away from
its starting position. We started from the root segment and did S + 1
steps in a random direction to reach the position of the first generation
of branch points. This process is repeated until finally the positions of
the end-points have been determined. Obviously it is checked that the
branch and end-points are not placed on top of each other. In a few
cases this did not work and instead we remapped the positions of the
branch and end-points from the MC-FJC model onto the lattice.

For each spacer i we need to perform a separate propagator to gen-
erate the densities of this fragment ϕi(r) from the segment potentials
u(r). There exists an excellent opportunity to do this in parallel be-
cause the calculation of the propagator of one spacer is independent
of those of other spacers. It is also clear that we do not need to de-
velop the propagator in the entire volume, as spacers can only con-
tribute to the density in the vicinity of the branch and end-points they
are connected to. Therefore we specify for each spacer i a sub-volume
vi = M3, called sub box, with sub-coordinates Ri = (Xi, Yi, Zi) each
running from Xi, Yi, Zi = 1, · · · , M . The position of this sub box is
chosen such that the center of this sub-volume lies exactly between the
branch/end-points.

It is clear that the sub boxM can be much smaller than the main box
m. For S = 20 the sub box size is M = 20, for S = 50 we used a sub box
size ofM = 37. The latter is smaller than the maximum extension of the
polymer. The required entropy-loss to stretch the polymer to this size is
however very high and we did not observe stretching beyond 25 lattice
sites. The small boxes have reflecting boundary conditions even though
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these conditions will not significantly influence the results because the
sub box size M is so large that conformations rarely ’hit’ the sub box
boundaries. For each sub box i, the sub box coordinates are filled with
the segment potentials from the main volume: ui(Ri) = u(ri+Ri) ∀Ri.
Here ri is the position of the origin of the sub box i on the main lattice.

Also the position ri0 of the first segment s = 0 and the position riS+1

of the last segment s = S+1 are transferred to the appropriate sub box.
When a sub box crosses the periodic boundaries in the main system,
we use the periodic image to transfer the information to the sub box.
The full set of branch and end-points is indicated by {r0, rS+1}.

The first step is to compute the segment statistical weights G(r).
All branch and end-points, however, already occupy their lattice site
and hence no other segment can go there. Therefore we will impose
that the segment statistical weight is zero at these sites:

G(r) =

{
e−u(r), r /∈ {r0, rS+1}
0 r ∈ {r0, rS+1}

(5.6)

With these segment statistical weights we can now calculate the
end-point distribution functions. Two complementary end-point distri-
butions are found recursively, one by a so-called forward and the other
by a backward propagator. The forward procedure is initialized by
setting Gi(r, 0|ri0, 0) = 1 when r = ri0 for spacer i and 0 otherwise.

Gi(r, s|ri0, 0) = G(r)〈Gi(r, s− 1|ri0, 0)〉 (5.7)

In Eqn 5.7 the angular brackets implement the averaged value over
the neighbouring lattice sites. For a simple cubic lattice this gives:

〈G(r)〉 = 〈G(X,Y, Z)〉

=
1

6

(
(G(X + 1, Y, Z) +G(X − 1, Y, Z) +G(X,Y + 1, Z)+

G(X,Y − 1, Z) +G(X,Y, Z + 1) +G(X,Y, Z − 1)
)

(5.8)

where it is understood that we kept in the notation only the spatial
coordinate, that is, G(r) is a shorthand for G(r, s|r0, 0). The ’jump’ to

113



Chapter 5

the last segment s = S + 1 is given by

Gi(r, S + 1|ri0, 0) =

{
〈Gi(r, S|ri0, 0)〉, r = riS+1

0 r 6= riS+1

(5.9)

The backward propagator starts from the other end of the spacer
and hence is started with Gi(r, S + 1|riS+1, S + 1) = 1 when r = riS+1

and zero otherwise. The calculation of the backwards propagator is
continued with:

Gi(r, s|riS+1, S + 1) = G(r)〈Gi(r, s+ 1|riS+1, S + 1)〉 (5.10)

until at s = 0

Gi(r, 0|riS+1, S + 1) =

{
〈Gi(r, 0|riS+1, S + 1)〉, r = ri0
0 r 6= ri0

(5.11)

The volume fraction ϕ(r, s) of segment s in lattice site r is propor-
tional to the sum of the statistical weights of all the chain conformations
that pass through lattice site r with segment s. Each chain conforma-
tion going from segment 0 to segment s can be combined with any of the
chain conformations going from S + 1 to s. The volume fraction distri-
bution of segments s = 0, · · · , S+1 for the fragment i is therefore given
by the product of two end-point distribution functions, one computed
starting from segment s = 0 and the other by starting with segment
number S + 1, both ending with segment s at the same coordinate r,

ϕi(r, s) =

{
1
qi

Gi(r,s|ri0,0)Gi(r,s|riS+1,S+1)

G(r) , r /∈ {r0, rS+1}
0 r ∈ {r0, rS+1}

(5.12)

where ri0 and riS+1 are the locations of the two ends of spacer i. In Eqn
5.12 the division by G(r) is necessary because the weight for segment
s is accounted for in both end-point distribution functions that are in
the numerator. Obviously, there can not be any other segment in the
specified branch points, therefore ϕi(r, s) = 0 when r ∈ {r0, rS+1}.
The normalisation by 1

qi
ensures that there is exactly one segment s

of molecule fragment i in the sub box. Here qi is the chain partition
function, which is the combined statistical weight of all possible and
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allowed conformations of the chain fragment. It is given by:

qi = G(riS+1, S + 1|ri0, 0) (5.13)

The partition function for the solvent is:

qO =
∑
r

G(r) (5.14)

The overall volume fraction distribution of the dendrimer is found by
adding up the segment distributions of all the spacers:

ϕ(r) =
∑
i

S∑
s=1

ϕi(s, r) (5.15)

when r /∈ {r0, rS+1} and ϕ(r) = 1 otherwise. Again, the segment po-
tentials are adjusted iteratively until the volume fractions of the solvent
and the dendrimer add up to unity at each coordinate in the main box.
This SCF solution is obtained with at least 5 significant digits.

At this point we have all the information we need to determine the
free energy F .

F = − ln qO −
∑
i

ln qi −
∑

r/∈{r0,rS+1}

u(r) (5.16)

This free energy is then used as the classical ’energy’ in the MC for-
malism. This means that the Metropolis acceptance is taken with
the probability p = e−∆F when ∆F > 0 and p = 1 otherwise. Here
∆F = Fnew−Fold. For the Monte Carlo trial step a translational move
is implemented. A known feature of the simple cubic lattice is that for a
specified start and stop site, one either needs an odd or an even number
of steps. This implies that if the starting coordinate is shifted by one
site, the walks that connect these points go from having an even to an
odd number of steps or vice versa. As all spacers have a fixed length S,
the one-step trials are forbidden. Therefore it is necessary to move any
point an even number of steps. In the translational trial step a branch
point or an end-point is selected randomly and its position is changed,
by one lattice site in a random direction, twice.
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The number of branch/end-points that were moved within one trial
step was optimized during the equilibration run, such that the accep-
tance probability times the number of branch/end-points moved was
maximum. During data gathering the number of branch/end-points
that were moved was fixed. We first did an equilibration run of 10000
Monte Carlo steps, which was followed by data gathering for 90000
steps. Such simulations ran many days and therefore longer simula-
tions were not feasible for the largest dendrimers. Optimisation of the
calculation efficiency may improve the speed significantly and in that
case better averages can be obtained.

Cell Model

In the cell model54,59 we assume that the system is spherically symmet-
ric. This is implemented by using a one-gradient spherical coordinate
system. In such a coordinate system lattice sites lie in concentric layers
of thickness l which are numbered r = 1, · · · , m. There is just one
value of the segment potential and the volume fractions per layer. This
greatly reduces the computational cost.

In the spherical geometry the number of lattice sites in each layer
grows roughly quadratically: L(r) = V (r) − V (r − 1) ∝ r2, with the
dimensionless volume V (r) = 4

3πr
3. The root segment of the dendrimer

is pinned to r = 1. The upper limit r = m is larger than the longest
path in the dendrimer g(S + 1), so the polymer density at the upper
bound is zero. Just as for the simple cubic lattice we assume that each
lattice site has Z = 6 nearest neighbours. One in the layer above, one
in the layer below and four in the same layer. Because the outer surface
area is larger than the inner surface area the a priori probability to go
outward is larger than the probability to go inward. We therefore use :

λ+(r) =
4πr2

6L(r)

λ−(r) =
4π(r − 1)2

6L(r)

λ 0 (r) = 1− λ+(r)− λ−(r)

(5.17)

Here, λ+(r) is the a priori probability to go from r to r + 1, λ−(r) the
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probability to go from r to r − 1 and λ 0 (r) the probability to go to a
lattice site in the same layer r.

These probabilities are used in the propagators. In the spherical
coordinate system the side fraction is given by:

〈G(r)〉 = λ−(r)G(r − 1) + λ 0 (r)G(r) + λ+(r)G(r + 1) (5.18)

wherein G(r) is a shorthand for the appropriate end-point distribution
functions. Symmetric dendrimers have the property that all paths from
the root segment to any of its ends are equally long. Let’s number the
segments of one such path. From the zeroth segment (s = 0) pinned
at (r = 1) to segments in the first j = 1 generation, s = 1, · · · , S + 1,
for the j = 2 generation we have numbers s = S + 2, · · · , 2(S + 1),
etcetera, until at the end of generation j = g we find ranking numbers
s = (g−1)(S+1)+1, · · · , g(S+1). The free ends thus have the ranking
number s = g(S + 1).

Typically the volume fraction distribution is computed starting with
the backward propagators at one of the free ends of the dendrimer.
As this end is not restricted in space, the end-point distribution func-
tion is integrated over all possible starting positions G(r, s|g(S + 1)) =∑

rg(S+1)
G(r, s|rg(S+1), g(S + 1)). The backwards propagator is initi-

ated by G(r, g(S+ 1)|g(S+ 1)) = G(r) for all r, and we then propagate
towards the root segment. For segments of generation j = g

Gg(r, s|g(S + 1)) = G(r)〈Gg(r, s+ 1|g(S + 1))〉 (5.19)

that is, for s = g(S+1)−1, · · · , (g−1)(S+1)+1. Here, we have added
a sub-index to G to point to the generation the end-point distribution
’belongs’ to. Going inward f − 1 chains will merge at the branch point
and we re-initiate:

Gg−1(r, (g − 1)(S + 1)|g(S + 1)) =

G(r) 〈Gg(r, (g − 1)(S + 1) + 1|g(S + 1))〉f−1
(5.20)

With this we proceed to generation j = g − 1

Gg−1(r, s|g(S + 1)) = G(r)〈Gg−1(r, s+ 1|g(S + 1))〉 (5.21)
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for s = (g−1)(S+1)−1, · · · , (g−2)(S+1)+1. Then again we need to
re-initiate, as other (equivalent) chain fragments join the walk and we
proceed with j = g− 2, etcetera, until we finished generation j = 1 and
finally reach s = 0. For this segment we need to use G0(r, 0|g(S+ 1)) =
G(r)〈G1(r, 1|g(S + 1))〉f . As we have pinned the root segment in the
origin (r = 1), G0(r, 0|g(S + 1)) is set to zero for r 6= 1. At this point
we can evaluate the partition function qD = G0(1, 0|g(S + 1))L(1). For
the solvent the partition function is qO =

∑
r L(r)G(r).

When r = 1, the forward propagator starts with: G1(r, 0|1, 0) =
G(r)〈G1(r, 1|g(S + 1))〉f−1, otherwise it is initialized with zero. Next,
we propagate through the first generation j = 1:

G1(r, s|1, 0) = G(r)〈G1(r, s− 1|1, 0)〉 (5.22)

For s = 1, · · · , S + 1. Before we can continue with j = 2 we have to
’add-on’ the f−2 branches of G2(r, S+2|g(S+1)). Hence, the end-point
distributions are re-initiated:

G2(r, S + 1|1, 0) = G1(r, S + 1|1, 0) 〈G2(r, S + 2)|g(S + 1))〉f−2

and we can continue towards the next branch point:

G2(r, s|1, 0) = G(r)〈G2(r, s− 1|1, 0)〉 (5.23)

for s = S + 2, · · · , 2(S + 1) and we repeat this procedure for each
generation until we arrive at the last generation j = g at the free end
with Gg(r, g(S + 1)|1, 0).

Combining the forward and backward end-point distribution func-
tions gives the volume fraction profiles:

ϕj(r, s) =
f(f − 1)j−1

qD

Gj(r, s|1, 0)Gj(r, s|g(S + 1))

G(r)
(5.24)

The distribution of segment s = 0 is zero everywhere except in layer
r = 1 where it has the value ϕ(1, 0) = 1/L(1). The overall volume
fraction distribution for the dendrimer in the cell model is found by
summing over all segment ranks s from the root to the ends. The index
j can then be dropped. We can also collect the segments that belong
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to a part of the molecule, e.g, for a particular sub-generation j or a
branch point (the last segment of a sub-generation). We refer to the
literature26,105 for more details about dendrimers in the SF-SCF cell
model.

Data Analysis

We determined the overall density distribution relative to both the root
segment and the centre of mass, and the distribution of the branch and
end-points relative to the root segment. For the FJC model we could
also evaluate the distribution of the branch- and end-points relative
to the centre of mass. The classical way to compare different models
is to compute the radius of Rg which is a measure for the size of the
dendrimers. This quantity is defined as

Rg =

〈(
1

N

N∑
h=1

(rh− < r >)2

) 1
2
〉

(5.25)

Here N is the total number of monomers/particles in the system, < r >
the average position/centre of mass and rh is the coordinate of the
particle h.

In the cell model the dendrimers are by definition radially symmet-
ric. In practice it is known that deviations from the spherical shape are
important. Following the definition of Rudnick et. al.106 we computed
the asphericity for the MC-FJC and MC-SCF methods. This measure
indicates how different the size of the object is in the three perpendic-
ular directions. One of the axis points in the direction in which the
object is the largest and one in the direction in which the object is
smallest. The third axis is perpendicular to these two. The first step
to determine the asphericity is to calculate the gyration tensor T .

Tij =
1

N

N∑
h=1

(rhi− < ri >)(rhj− < rj >) (5.26)

Here i and j are the spatial directions and rhi thus indicates the posi-
tion of particle h on the i axis. Subsequently, the eigenvalues λ of the
matrix T are determined. The magnitude of the eigenvalues is a mea-
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a b c

Figure 5.1: Snapshots of a dendrimer with f = 5, g = 4, S = 20:
(a) the MC-FJC model. The branch points are coloured red and the
end-points white, (b) the MC-SCF model and (c) the cell model. For
(b) and (c) the segment density decreases going from orange, through
white to blue and black. (The scale differs between the images)

sure for how extended the object is in each extremal direction. Next,
the asphericity A is calculated as:

A =

∑d−1
i=1

∑d
j>i(λi − λj)2

(d− 1)(
∑d

i=1 λi)
2

(5.27)

Here d is the number of spatial dimensions.

Results and Discussion

In Figure 5.1 we show results for a dendrimer with f = 5, g = 4, S =
20. The first image (a) is a snapshot of the MC-FJC model. For the
MC-FJC model the branch points including the root segment, which is
just visible in the centre, are coloured red. The second image (b) is a
snapshot of the MC-SCF model. The branch and end-points are visible
as orange crosses and white dots with an orange centre, respectively.
They are easily found as the segment density around these points is
high. For illustrative purposes we present the cell model (c), in an
unusual way, as a density plot. The density drops from high density
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Figure 5.2: Radius of gyration in units l as a function of: a) the overall
degree of polymerisation N for linear chains (f = 2) and b) f = 3,
c) f = 4, d) f = 5 as a function of the generation number g. Cell
model ( ), MC-SCF S = 20 ( ), MC-SCF S = 50 ( ) and the
MC-FJC ( ). The lighter areas indicate the 99% confidence interval.

in the core to low density in the corona. There are many similarities
between the first two images. Both dendrimers are roughly spherical,
but show significant density fluctuations in azimuthal direction. Such
fluctuations are not present in cell model (image c) due to the mean
field approximation. The spacers are distributed over all the possible
conformations and are visible as the bluish aura around the branch
and end-points. Only image (a) is a true single conformation snapshot
because all segments have a specific position.

In Figure 5.2a the radius of gyration Rg of linear chains is shown for
the different models. The linear chain is a special dendrimer, namely
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with f = 2 and it is interesting to consider this case first. The result for
a linear chain is the well known Rg ∝ Nα, with α going towards 0.588
in the high chain length limit.41,42 The MC-FJC approaches this value
from above, as in the short chain limit of just two beads it behaves
as a rigid rod. The cell model on the other hand approaches from
below. Because it allows backfolding, the cell model can behave as a
Gaussian coil for small chain lengths and it therefore approaches from
0.5. For the MC-SCF model α is about 0.59 and numerical inaccuracies
do not allow us to pinpoint whether it approaches from above or below.
No significant difference between middle block lengths of S = 20 and
S = 50 was observed, although the large confidence intervals could still
hide small differences between the two.

It is interesting to point out that the value for the radius of gyration
Rg for the MC-SCF model is the smallest of the three models and that
MC-FJC gives the largest value. Due to the fact that for the spacers
backfolding is allowed, in both the cell model and the MC-SCF model,
they give a smaller Rg than the MC-FJC model. The cell model also
overestimates the long range steric hindrance and therefore the chain is
bigger than in the MC-SCF model.

In Figures 5.2b-d the radius of gyration Rg is shown for dendrimers
with f = 3, f = 4 and f = 5, respectively, as a function of the gen-
eration number g. Let’s focus first on the difference between the least
accurate (cell model) and the most accurate (MC-FJC) model. For
low generation numbers g the cell model (solid line) underestimates
the size significantly. As the number of generations increases the cell
model catches up with the MC-FJC model and for f = 4, g = 5 and
f = 5, g = 4 the radius of gyration exceeds that of the MC-FJC model.
As we mentioned before this more rapid growth of the radius of gyration
is likely caused by the overestimation of the steric repulsion between the
branches of the dendrimer. In a real polymer the segments are next to
each other and their excluded volumes will overlap. In the cell model
the segments are distributed homogeneously within the lattice layers
and there is little overlap of the excluded volumes, hence the stronger
stretching. For a small number of generations the underestimation of
the short-range excluded volume causes the too small size.

At first sight it may seem that the hybrid MC-SCF model is even
worse, as it consistently gives a too small size for the dendrimer. The
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shapes of the curves are however very similar to that of the MC-FJC
model. If the radius of gyration of the MC-SCF model is multiplied
with about 1.31 for S = 20 and 1.37 for S = 50 the curves overlap. The
scaling behaviour of the MC-SCF model should therefore be very similar
to the FJC model although the relatively large confidence interval of
the MC-SCF model leaves some room for deviations.

In the literature98,99 there exists a prediction for the power-law de-
pendence of the size of dendrimers, Rg ∝ (Sg)

2
5N

1
5 . This equation gives

a fairly good fit, although we typically find that it slightly underesti-
mates how much the dendrimers swell as the number of generations is
increased. Using slightly larger exponents of 0.41 instead of 0.40 and
0.22 instead of 0.20 gives a better fit for f > 2. For the limiting case of
linear chains these exponents are however not a good fit. We found an
alternative equation:

Rg ≈ 0.72(gS)0.608(1 + 0.123(f − 2)0.70)g (5.28)

which is a bit better at describing the Rg as a function of f , g and S
when linear chains are also considered. The numbers with digits behind
the comma were determined by fitting the equation to the data. We
started with a power law (gS)α as is usual for linear polymers and sub-
sequently added a correction factor to account for the extra swelling due
to the other dendrimer arms. There is no further theoretical basis for
this equation. As we did not vary the interaction parameters between
the beads we did not incorporate these effects.

Let us next focus on the average distance of the end segments from
the central segment. Even though it is expected that this quantity has
similar information as the radius of gyration, we present a selection for
these distributions in Figure 5.3. As in the previous Figure we focus in
panel a) on the N -dependence for f = 2 (linear chains) and in b) on
the dependence on the generation number g, for f = 3 and note that
for f = 4, 5 similar trends were obtained.

For the end-point distance one would again expect a power-law de-
pendence. To a reasonable approximation this indeed happens, albeit
that in all cases we see a somewhat larger deviation from the expected
limiting power law value of 0.588 than for the radius of gyration (cf fig.
5.2a), especially for the MC-SCF model for which the exponent is about
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Figure 5.3: The average end segment distance relative to the central
segment Rend in units l for: a) linear chains (f = 2) as a function of N .
b) for f = 3 as a function of the generation number g. Cell model ( ),
MC-SCF S = 20 ( ), MC-SCF S = 50 ( ) and the MC-FJC (
). The lighter areas indicate the 99% confidence interval.

0.65. These deviations are again attributed to the finite chain lengths.
Apparently we should view the MC-SCF chain as a bead spring model,
with each branch and end-point as a bead. These beads would inter-
act through soft potentials generated by the spacers. As the number of
beads in MC-SCF is very small we see large deviations from the limiting
values. We also see such large deviations for the end-point distances of
the MC-FJC model when very short spacers are used. Just as for the
MC-SCF model, these differences are larger for the end-point distances
than for the radius of gyration.

In Figure 5.3a we show results for both S = 20 and S = 50 for the
MC-SCF model. The larger the value of S, the fewer MC-beads (N/S)
we have in the simulation. We noticed that the average position of the
end-points differs between S = 20 and S = 50. The curve for S = 50
starts below the curve of S = 20 and this difference diminishes with
increasing N . This implies that the corresponding power-law coefficient
is larger for S = 50, which is expected if the MC-SCF chains are viewed
as a bead spring model. Recalling that the radius of gyration was the
same for these two cases, it implies that the radial density distribution
should be different.

In Figure 5.4 we present the radial density profile for two linear
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Figure 5.4: The average radial density profile relative to the central
segment as found by the MC-SCF model for f = 2. The two cases have
the same value of N : S = 62, g = 1 ( ), S = 20, g = 3 ( ).

chains with the same number of segments N = 63 modelled by the
MC-SCF hybrid. The two results differ with respect to the number
of MC-beads that were implemented. Close inspection of Figure 5.4
shows that the curves for S = 20, g = 3 and S = 62, g = 1 cross
each other twice. At very short and large distances r from the central
segment the volume fraction ϕ for S = 20, g = 3 is higher than for
S = 62, g = 1. At intermediate distances the opposite is true. These
two trends have the effect that Rg is approximately the same for both,
but as the end-segments are further away from the center, the largest
end-point position is found for S = 20, g = 3.

A possible reason for this difference between S = 20 and S = 62 is
that for S = 62 it costs less entropy to go a few steps in the ’wrong’
direction. The blobs of density around the branch points are therefore
larger for S = 62 than for S = 20. In the centre of the blob the
behaviour will be similar to the cell model. i.e. the density of the
polymer chain is still smeared around the branch point, because there
are still a fair number of conformations who move away from the next
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branch point in the first few steps on the lattice. Similar to the cell
model the repulsion between different branches around the branch point
is therefore over estimated. The area for which this effect takes places
is larger for S = 62 and therefore the spacers are stretched more near
the central branch point which results in a faster decrease in density
near the central segment. Near the end-point there is only one chain
and this effect is much weaker. The longer spacer 62 can spread itself
over a larger area and therefore the repulsion between segments next
to each other in the spacer is less. The result is that the chain is less
stretched near the ends and the average end-point distance is therefore
smaller.

The average end-point distance for f = 3 is shown in Figure 5.3b.
In general the trend for the end-point distance is the same as for the
radius of gyration. Again we see that the full excluded volume MC-
FJC result gives the largest dendrimer size. For low values of g the
cell model and the MC-SCF do not differ much. For large g the cell
model goes towards the MC-FJC result and it is expected that it will
overtake this for sufficiently large g. The size of the dendrimer in the
MC-SCF model stays more systematically below that of the MC-FJC
model, suggesting once again that there is just a different prefactor.
Close inspection reveals that a similar shift as reported above for the
Rg results does not give the same quality of overlap of curves in this
case.

In Figure 5.5 the radial density profiles, relative to the central seg-
ment, are shown for a functionality f = 2, 3, 4, 5 with S = 50 for
f = 2 and S = 20 for f > 2, and respective generations g = 9, 7, 4, 4.
For the linear polymers (panel a) the density drops monotonically and
the inner region can be approximated by a power law ϕ(r) ∝ rβ. For
all three models β ≈ −4

3 , with a slightly larger value for the MC-FJC
model and a slightly smaller value for the cell model. This is consistent
with the work of de Gennes40, who also predicted a value of −4

3 . For
the MC-SCF model there seems to be a slight kink in the early part of
the curve which may be related to a change in behaviour going from
length scales less than the inter node distance to length scales larger
than the inter node distance. We should be careful not to over inter-
pret these numbers because we definitely need better statistics to find
accurate values for the density in and around the center. For MC-FJC
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Figure 5.5: Radial density profiles relative to the central segment for a)
f = 2, g = 9, S = 50, b) f = 3, g = 7, S = 20, c) f = 4, g = 4, S = 20,
d) f = 5, g = 4, S = 20. The cell model ( ), MC-SCF ( ), and
the MC-FJC ( ).

an irregular distribution is found in the very center. Near the centre
the branches are strongly stretched, the second segment from the centre
therefore is mostly in the positions furthest from the centre. This re-
sults in a peak at r = 2. These effects are frequently seen in simulations
when excluded volume effects are truly accounted for and local densities
are high.

Inspection of Figure 5.5b-d, shows that for both the MC-SCF and
the MC-FJC model there exists a clear dip in the density profile of
the dendrimers. There is only a marginal dip of approximately 3%
for the cell model. This is in line with the results of Klein Wolterink
et al.105, who did not observe a dip for neutral dendrimers in a cell
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model. According to our simulations and in line with other dendrimer
simulations101,107,108, a true dip in the radial density only occurs for
systems with strong steric hindrance between the spacers, i.e. for f =
3, g > 5, f = 4, g > 3 and f = 5, g > 2. The relative depth of
this dip increases as the number of spacers per branch point f or the
number of generations g is increased. The largest dip depth, for the
MC-FJC model, is for f = 5 and g = 4 where the density is only 65% of
the maximum further out. As mentioned, the results for the MC-SCF
model are also consistent with a non-monotonic density profile, but
numerical uncertainties in the local density prevent us from quoting a
numerical value for the depth. Computer simulations by Chen et al.100

who used a similar MC-FJC model with similar trial moves did not
report a dip in the radial density profiles. Because these authors used
slightly smaller beads than our FJC model and their results were noisier
than our curves, they may have missed the dip in density.

Let us next consider a pair of key structural features inside the den-
drimer. The first of these is the end-point distribution. Näıvely one
could expect that the end-points are solely distributed at the outside
of the dendrimer, but this view has been rejected and it is commonly
understood that the ends are distributed throughout the dendrimers.
Nevertheless it is interesting to see which distribution our models pre-
dict for the dendrimer. The other quantity is the distribution of the first
branch points. These distributions are shown in Figure 5.6. Going from
panel a) to d) the number of spacers per branch point f = 2, 3, 4, 5
increases, while the number of generations g = 9, 7, 4, 4 decreases,
and all spacer lengths S = 20. Going from a to d the amount of crowd-
ing of segments inside the dendrimers increases, with roughly the same
amount of crowding for b and c.

In Figure 5.6 the end-point distributions are plotted in light colours.
Obviously, the end-points can reach higher r values than the first branch
point (whose distribution is given in the darker curves). Just like Rud
et al.26, we find that all end-point distributions show a broad maximum
and also give a finite value inside the central region of the dendrimer.

In comparison going from the linear chain (panel a) to the den-
drimers with increasing crowding b) to d) we notice that the end distri-
butions become more alike between the models. From the perspective
of the chain ends there is no indication that the SCF method is failing
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Figure 5.6: The volume fractions of the first branch point(dark) and
end-points(lighter), relative to the position of the central segment, for a)
f = 2, g = 9, S = 20, b) f = 3, g = 7, S = 20, c) f = 4, g = 4, S = 20,
d) f = 5, g = 4, S = 20. cell model ( ), MC-SCF ( ), and the
MC-FJC ( ).

in any way in the high crowding limit. The only difference between the
cell model and the MC-FJC simulations is the depression of the end-
point distribution at the very centre of the chain. One possible cause is
that in the Monte Carlo models the central segment is placed exactly
in the origin. In the cell model the central segment is however placed in
the first layer around the origin. The central segment is therefore half
a lattice site away from the origin and the density in the centre is thus
lower. Another explanation is that the last generation of branch points
is on average further from the centre for the Monte Carlo models than
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for the cell model. The chains thus have to stretch more to reach the
centre for the Monte Carlo models.

The results for the distribution of the first off-center branch point
are much more interesting. Inspection of the darkly coloured curves
in Figure 5.6 shows that the profiles resemble each other reasonably
well for the linear chain, but deviate progressively more as the molecu-
lar crowding increases. There is just one trend that is the same for al
models, namely, the outward shift of the branch points with increasing
crowding. With the cell model (solid blue lines), we notice an initial
increase in the width of the profiles and for stronger crowding (large f
and g-values) the distribution becomes clearly bimodal. A similar bi-
modal branch distribution has been observed previously by both Polot-
sky et al.109 with a SF-SCF model of brushes of dendrimer arms with
g = 2, 3, 4, S = 100 and f = 2, 3, 4, 5, 8 and Rud et al.26 who did
a study on dendrimer arms attached to surfaces of various curvature,
again using the cell model. The results of Klein Wolterink et al.105

also show a peak near maximum extension for the distribution of the
first branch points. Due to the way they plotted the data it is however
not clear whether a second peak is also present. Merlitz et al.110 used
a Langevin dynamics simulation to study brushes made of dendrimer
arms of a dendrimer with S = 50, f = 4 and g = 2. They observed two
peaks in the density distribution of the end-points and from this they
also concluded there were two populations.

The common interpretation of this bimodal distribution for brushes
is that there are two conformation populations for the dendrimers. The
first population has a weakly stretched first spacer, and its segments
fill up the density near the surface. The second population has a fully
stretched first spacer and these conformations provide the segment den-
sity at the outside of the brush. In our case we see similar effects inside
one dendrimer. The interpretation therefore is that the different arms
connected to the central branch point have different conformations. The
arms with weakly stretched first spacer are mostly in the interior of the
dendrimer, the arms with a fully stretched first spacer make up most of
the outside of the dendrimer.

This cell model result should be compared to predictions of the
MC-FJC model. With increasing crowding (higher f and g values,
i.e. going in Figure 5.6 from panels b to d) the profile of the first
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branch point sharpens while it shifts outwards. Unlike the cell model
the position of the maximum does not reach the fully extended value. At
very large crowding (panel d) the maximum is positioned in between the
two maxima found by the cell model, not far from the local minimum.
In stark contrast to the cell model, there is thus no tendency to go to a
bimodal distribution with increased crowding.

The MC-SCF hybrid follows the result of the MC-FJC model. Also
with this method it is found that the distribution of the first generation
of branch points sharpens and moves to higher r values upon an increase
of f and g. Inspection of panel d shows that MC-SCF and the full MC
model give virtually the same profile for the branch points. While at
intermediate crowding (panels b and c) the distribution of the branch
points for the MC-SCF has a similar shape as the MC-FJC model, al-
though the spacers are less stretched. Within the MC-SCF model there
is also no trend towards bimodality of the branch point distribution.

Interestingly, at intermediate crowding, both MC-models gradually
develop a so-called dead zone, i.e. a region near the centre where no
branch points are found. Such a dead zone is not present in the cell
model. In MC-FJC and MC-SCF the dead zone widens with increasing
crowding. We can only conclude that in neither there are indications
for two populations of dendritic arms in a given dendrimer.

There are several effects that together may have caused the devi-
ating behaviour for the SCF cell model. As we have stated before the
steric repulsion with other branches is overestimated in the cell model.
The force to stretch the spacers will therefore be a bit stronger in the
cell model. This may have triggered the ’transition’ towards two popu-
lations. As the short-range excluded volume is underestimated by SCF,
the fragment that is ’retracted’ can do so more easily than in reality
and this might have stabilized the two-population state.

Yet another reason is that in the cell model it is possible to retract,
for example, 0.5 dendrimer arms, while in the more realistic MC-FJC
and MC-SCF models only whole arms can be retracted. Of course, we
cannot exclude the possibility that for higher functionalities and/or a
larger number of generations, one of the arms folds inwards completely
and effectively fills the dip in density as we have seen in Figure 5.5. In
that case the MC-SCF and MC-FJC models may thus also develop two
populations.
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Figure 5.7: The asphericity for a) f = 2, S = 20, b) f = 3, S = 20, c)
f = 4, S = 20, d) f = 5, S = 20. MC-SCF ( ), and the MC-FJC
( ) The lighter areas indicate the 99% confidence interval.

Interestingly, for weakly dissociating polyelectrolyte stars Uhlik et
al.111 have also observed a wide and bimodal distribution of end-points
for the SF-SCF model. Monte Carlo simulations however showed a
much narrower unimodal distribution.111 For a poor solvent they how-
ever did find a bimodal distribution.112 They ascribed this difference to
the inaccurate way in which the SCF method accounts for intramolec-
ular excluded volume, but did not go into detail. Arguably, the conser-
vative advise therefore is to approach bimodal distributions found by
SCF theory with caution, especially when there is not a clear mech-
anism that can support bimodality (e.g. in ’gas’-’liquid’ equilibria in
microphase segregation).

Above we have been referring several times to the (a)sphericity of
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the dendrimers. With increasing f and g one would expect that the as-
phericity, which is a measure for the deviation from a spherical shape,
would decrease. We therefore end our analysis by considering this prop-
erty for linear chains and dendrimers. In Figure 5.7 we present for
f = 2, 3, 4 and 5 the asphericity A as a function of the generation
number g, for spacer length S = 20. Again, for f = 2 (linear chains)
this means that there are 2g + 1 MC-beads in the MC-SCF model and
the degree of polymerisation is N = 2g(S + 1) + 1. In the cell model
the spherical symmetry is imposed and therefore the cell model always
has an asphericity of zero. As a result we can only discuss the per-
formance of the MC-SCF hybrid (dashed lines) in relation to the FJC
result (dotted lines).

Inspection of Figure 5.7 shows that the MC-SCF hybrid performs
very well with respect to fluctuations in shape. For the dendrimers
(f > 2) in Figure 5.7b,c and d, two generations are enough to let the
difference in asphericity with the MC-FJC model, become less than the
uncertainty margin. For linear polymers a few more branch points are
needed before the asphericities are the same, within the uncertainty
margins, as those of the FJC model. Although the confidence interval
is still quite large, the MC-SCF model thus seems to capture the as-
phericity of the dendrimers well. In both models we see that for linear
chains the asphericity goes to roughly a value of 0.4 and as expected the
values for A tend to be a strongly decreasing function of the number of
generations in the dendrimer g. The absolute values of A decrease with
increasing f .

Conclusion and Outlook

With the SF-SCF theory properties of complex polymeric systems can
be obtained in seconds of CPU time. The SF-SCF theory however does
not treat the correlations between the polymer segments correctly. This
may in turn have consequences for interactions which strongly depend
on such correlations, such as excluded volume interactions. To asses
how big the errors due to neglecting part of the correlations are, we
used dendrimers as a model system, because excluded volume interac-
tions played an important role in them. In an attempt to bring back
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some of the correlations in the SF-SCF theory, we created the MC-SCF
model. In this model the positions of some of the segments are specified
while the remaining segments are treated with the SF-SCF theory. Sub-
sequently, the segments were moved with a Monte Carlo algorithm. As
a reference system we used a freely jointed chain model (MC-FJC) with
hard beads. Both the cell model and the MC-SCF model show quan-
titative differences with the MC-FJC model. More importantly though
the cell model also shows qualitative differences such as a different scal-
ing for the radius of gyration of the dendrimers. We also found that
the cell model predicts a bimodal distribution for the first branch point
from the center for large f and g. This suggests that there are two pop-
ulations of conformations inside the dendrimer. These were, however,
not found by the other two fundamentally more correct approaches.
We attribute the differences between the results of the MC-SCF and
the MC-FJC model and those of the cell model, to an overestimation
of the long range- and underestimation the short-range excluded vol-
ume interactions in the cell model. Together with the property that in
SCF the bimodality can erroneously be created by ’fractional’ branch-
point redistributions, this can explain why a two sub-population status
is found for the cell model when both f and g are large. This flaw of
SCF in the high crowding limit came as a surprise, because in the high
crowding limit (large f and g values) one usually finds that the flaws
of the mean field approximation are relatively small. In general one
should thus be careful when interpreting results from the cell model.
The MC-SCF model is fundamentally better at describing dendrimers
than the cell model, as it gives the correct qualitative behaviour. It is
however computationally far more costly than the cell model. In an at-
tempt to keep the CPU time within bounds we introduce the concept of
’sub boxes’. These sub boxes are significantly smaller than the overall
volume and this allows to compute the segment densities of fragments
of the molecule on a ’local’ level. Even with this implementation trick,
the MC-SCF method was computationally expensive. In the current
implementation the MC-FJC model was still faster than the MC-SCF
model. The type of Monte Carlo moves we used however differed be-
tween the models and a fair comparison is therefore not possible. We
expect that the difference in CPU time between MC-SCF and the MC-
FJC method will be less for denser systems, thus for short spacers and
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sufficiently large values of the number of generations g, and number of
spacers per branch, f . Together with possible extra optimisation steps
in computing the volume fractions per spacer (better implementation
of sub boxes) and smarter Monte Carlo moves we may find a MC-SCF
hybrid that can outperform simulations that take all excluded volume
interactions explicitly into account.
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General Discussion

Now that I have reached the end of my PhD it is time to look back
at what we have learned, what could have been done better, which
questions remain and how these can be answered in the future.

Interactions between Telechelic Polymer Micelles

In chapter 2 we determined how micelles with telechelic polymers in-
teract as a function of the number of telechelic polymers f per micelle,
the solvent quality χ, and the length of the polymers N . At short inter
micelle distances there is repulsion due to the overlap of the coronas.
At longer inter micelle distances there is a weak attraction, because the
number of possible polymer conformations and therefore the entropy
increases if the polymers can also form bridges.

We found that the strength of the interactions between the micelles
depends on their surroundings. The depth of the attractive well de-
creased by almost a factor 2 and the range over which the interactions
are repulsive also increased when going from two isolated micelles to
two micelles in a FCC packing. The reason for this behaviour is that
when two isolated micelles are pushed into each other, the coronas can
move out of the way while if they are already surrounded by others this
is not possible. This means that the interaction potential is not pairwise
additive. We could thus not simulate the micelles as a single particle
with pair wise potentials. Therefore we had to look for a different way
to simulate a gel made of these micelles.

Determining the correct non pair wise potentials to simulate the
system will be a difficult and time consuming enterprise, although with
the reward of being able to describe a large piece of telechelic polymer
gel.
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For the self consistent field theory we do not have to specify the
interaction potentials between the micelles, they emerge from the in-
teraction between the monomers. SCF, however, typically finds the
polymer distribution with the lowest free energy, this would most likely
result in the micelles being ordered in a crystalline way. A real system
however fluctuates around the state with minimal free energy. A plain
SCF model would not incorporate these fluctuations and would thus
not give a good picture of such a gel. We therefore decided to introduce
these fluctuations into the SCF model by constraining the end groups
of the telechelic polymers in nodes, and move these nodes with a Monte
Carlo method. We show some preliminary results of this hybrid model
in chapter 3 and give a more extensive discription in chapter 4.

MC-SCF Hybrid for Networks of Telechelic Micelles

In chapter 3 we show the results of a simulation of a gel made of tele-
chelic polymers with a weakly charged middle block adsorbed onto a
wall. We originally wrote it for a festschrift in honour of our colleague
Herman van Leeuwen.113 Herman van Leeuwen is an electrochemist who
worked, amongst other things, on methods to measure the concentra-
tion of metal ions in (natural) water. Two techniques that are used for
this are DGT(diffusive gradient in thin films) and DET(Diffusion Equi-
librium in Thin films). In DET a thin layer of gel, which has chemical
groups that can reversibly bind with metal ions is placed in the water.
After a certain time an equilibrium is established between the water
and the gel and the gel is enriched in metal ions. From the metal con-
centration in the gel one can then derive the concentration in the water.
In DGT a metal ion binding resin is covered by a thin layer of gel. This
layer of gel limits the rate at which the metal ions can reach the resin
and the quantity of metal ions in the resin thus corresponds to a time
averaged concentration.

For the impact of these metal ions on organisms and the environment
it is not so important what the quantity of these metal ions is but how
bioavailable they are. The concentration of free metal ions in the water
is a good measure for this.

It was assumed that the maximum size of the pores in these gels
was very small < 10 nm and that thus no particles could penetrate
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the gel. Around the time I started my PhD it was however discovered
that much larger particles, 10 nm < r < 130nm, could penetrate these
gels.114,115 Natural water often contains organic particles made of fulvic
and humic acids that can bind metal ions. If they diffuse into films used
in DET, a much higher metal ion concentration may be measured than
the concentration of the free ions in solution.

From this perspective it is understandable that the structure of gels
is important for the topics Herman van Leeuwen studied. We therefore
simulated a small piece of a physical gel, made of telechelic polymers
with negative charges, bound to a surface. Usually, chemically bound
rather than physically bound gels are used in DET and DGT applica-
tions. Each individual snap shot of a physical gel should however be
an example of a structure that a chemically crosslinked gel can take
and our physical gel should therefore be representative of chemically
crosslinked gels.

As the time before the submission deadline was rather short, we
could only simulate a relatively small piece of gel for a limited amount
of time. In this small simulation we however saw that there were large
fluctuations in the gel in agreement with the observation that large
particles could penetrate in these gels.

In hind sight it is surprising that the gel stayed intact during the
simulation. First of all, we used a Flory-Huggins parameter of χ = 0
which means there is no attraction between the polymer segments to
compensate for the steric hindrance between them. Second, the system
we simulated was very small in the x and y direction. As hydrogels have
low surface tensions this should make it relatively easy for the gel to
break into two pieces. Also based on the interaction potentials we found
in chapter 2 we did not predict phase separation for this system. And
finally, we did not observe phase separation for our system in chapter 4
with on average f = 2.5 polymers per node and χ = 0 or even for
f = 2.5 and χ = 0.5. Although this may have had other reasons; the
polymer concentration may not have been low enough as the lowest
concentration we modelled was 3.1% and the number of Monte Carlo
steps may also have been to short for nucleation of the phases to occur.

In theory the charges on the polymers can help to stabilize the
gel phase a bit. The electrostatic repulsion between the segments of
a polymer increases the persistence length of the polymers. As the
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polymers become stiffer they prefer to form bridges instead of loops
as they have to bend less to form a bridge.116 This can increase the
bridging attraction between the micelles. The SCF model however does
not really captures this effect, because in the SCF model the polymer
density is smeared out around the node. A polymer will thus feel its
own electrostatic repulsion much less.

Most likely the system has not been sufficiently equilibrated. The
nodes have to distribute themselves over the volume by diffusion. This
diffusion is however counteracted by the weak attractive forces between
the nodes. The nodes will thus spread even slower than ideal particles.

Another imperfection in this chapter is the way in which the elec-
trostatic interactions are treated. These interactions were calculated
using the Poisson equation. For our mean field model this however
means that we implicitly also calculate the interaction of charged par-
ticles with themselves. This prevents the SCF model from simulating
systems like complex coacervates, which consists of oppositely charged
polymers that can phase separate due to their mutual attraction. Be-
cause we use a 3D lattice, each lattice site contains only one segment.
It is therefore possible to subtract the self interaction of the segments.
This correction probably is sufficient to cause attraction between oppo-
sitely charged polymers, it however does not give an accurate descrip-
tion of this attraction. A more thorough description would have to take
correlations between the position of the segments into account. One
way to do this would be to pinpoint the charges to specific lattice sites
and move them with a Monte Carlo algorithm, although this may not
be feasible for systems with high charge densities.

In chapter 4 we model homogeneous gels made of telechelic poly-
mers, with a number of polymers ranging from f = 2.5 · · · 10 and a
Flory-Huggins solvent quality parameter varying from χ = 0 · · · 0.5,
over a range of volume fractions ϕ = 0.03 · · · 0.5. We determined the
distribution of the telechelic polymers with SF-SCF theory, while the
ends are constrained in nodes which are moved with a Monte Carlo
method. With this hybrid method, we are able to determine the radial
distribution functions for these gels. To determine the structure fac-
tor and the osmotic compressibilities of these gels we developed a new
method to correct the radial distribution function for the small size of
our simulation volume.
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For some of the combinations of f and χ we observed phase sep-
aration. Our simulation volumes were however to small to determine
the phase diagram accurately. Because of the small volume there will
be significant Laplace pressures in the system from the strongly curved
interfaces. This suppresses phase separation and a macroscopic system
may thus phase separate for lower values of f and χ. Furthermore it
can take a significant amount of computation time before nucleation
of the phases takes place. Instead, it would be better to implement a
Gibbs ensemble97 to study the phase behaviour of micelles with tele-
chelic polymers. Our findings agree with some of the experimental lit-
erature, where phase separation is observed for roughly the same values
of f and χ.45,117 After correcting for the difference in polymer length
using the Daoud Cotton model58, the shape of the structure factors is
also similar to those found by Bagger-Jörgensen et al.117

Dendrimer Models

In chapter 5 we compared how well three different methods describe
dendrimers, the classical SF-SCF cell model, the new Monte Carlo SCF
hybrid and a freely jointed chain model which functions as the reference
model. Because we have chemical bonds rather than physical ones, each
chain has to start and end at a specific branch point. Therefore a sep-
arate propagator is needed for each chain. Because the propagators for
each chain will be zero in most of the simulation volume, we introduced
sub boxes so we only need to calculate them in small sub volumes.

These sub boxes can also save computation time when studying the
phase behaviour of the gels from chapter 4. If the phase, with which the
gel is in equilibrium, has a low density of micelles, most of the volume
will be free of polymers. Computation time can then be saved by only
calculating the propagator in the volume around the micelles.

We found that both the cell model and the hybrid underestimated
the radius of gyration(Rg) of small dendrimers because they locally
underestimate the excluded volume interactions. The hybrid model
shows roughly the same scaling for Rg as the freely jointed chain model,
when the number of generations of the dendrimers is increased. The cell
model, however, shows a more rapid increase of Rg and even over takes
the freely jointed chain model. This happens because the cell model over
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estimates the steric repulsion between segments that are distant from
each other in the molecule. The excluded volume of chain fragments
that are connected to each other will overlap. In the cell model these
chain fragments are however smeared out over a large volume and there
is thus little overlap between their excluded volumes. In the hybrid
model some of the segments are located in a specific lattice site. This
reintroduces the correlations of the positions on the larger length scales
and therefore also a large part of the overlap of the excluded volumes.

The cell model also wrongly predicts a bimodal distribution of the
first branch points for dendrimers with a high number of generations and
a large number of branches per branch point. This may be because the
cell model allows a fractional amount of a branch to stay in the centre
and not swell. For the other models only an entire branch can not swell
and stay in the centre. There is however not enough room in the centre
for an entire branch. Therefore the hybrid model and the freely jointed
chain model do not show a bimodal branch point distribution.

In hind sight it may have been better to use a hexagonal grid instead
of a simple cubic grid for the hybrid model. For the largest dendrimers
the acceptance rate of the moves of the first branch points was very low.
The spacers near the centre are already quite stretched and moving the
branch point by two lattice sites causes quite a large change in the free
energy. With a hexagonal grid the branch points only needs to move
one lattice site. A disadvantage of using a hexagonal grid is however
that each lattice site has twice as many neighbours and calculating the
propagator therefore takes longer.

It is also striking that the calculations for the more detailed reference
system were faster than those of the hybrid model. The advantage of
the self-consistent field method is that it averages over all configurations
of the system and thus gives an ensemble average in a single step. In
the hybrid method, most of the degrees of freedom are still treated
with the self-consistent field approximation. One thus still averages
over a substantial part of the configurational space with each Monte
Carlo step. One would therefore expect that it would still have a speed
advantage over the more detailed freely jointed chain model. For the
hybrid method we however used a rather simple translational Monte
Carlo move, while the freely jointed chain model used a pivot move
which results in bigger displacements of the segments. Using such pivot
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moves in our hybrid simulation may thus also improve the efficiency of
that method.

One way to do this would be to keep track of the positions of the
branch points with a much higher resolution than that of the lattice.
This is required because rounding off the coordinates will result in a
different distance relative to the segment to which the branch point was
pivoted. Due to this change in distance the reverse move may no longer
be possible, i.e. the distance would be too small or too big to reach the
lattice site the Monte Carlo move started from. This would mean that
detailed balance would be violated and that the move probably will not
sample the states according to their Boltzmann weights. Besides the
Pivot move translational moves should be done to change the distances
between the branch points. For calculating the SCF free energy the
branch point positions are rounded to the nearest lattice site.

The usefulness of these pivot moves is however also limited. When
I tried to simulate even larger dendrimers with the freely jointed chain
model, the acceptance rate of the pivot moves rapidly dropped. As the
number of generations increases the concentration within the dendrimer
also increases and the number of beads moved per pivot move increases
as well. The chance that no overlap occurs after a pivot move therefore
rapidly decreases. A move in which a smaller part of the dendrimer is
moved may be better in this case.

For f = 3 branches per branch point, the branch points can be
displaced with a mirror move. A mirror move can be done by randomly
selecting three beads in the arms connected to the branch point and
subsequently mirroring the positions of all segments closer to the branch
point along the chain in the plane going through these beads.

For f > 3 this is not possible, as one of the bound chains would be
broken. Instead a multiply concerted rotation move could be used to
displace the branch points.118,119 In such a move the branch point is
displaced by changing the dihedral angle between the branch point and
three of the segments in one of the branches connected to the branch
point. Subsequently, three segments in the other chains connected to the
branch point are moved by calculating all possible sets of dihedral angles
that would connect these three segments to the rest of the molecule
while maintaining the same bond distances and bond angles. There is
a limited number of ways to do this, although it is also possible there
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is no solution in which case the move is rejected. One of these sets of
dihedral angles is chosen as the new state.

To be sure that this type of move is a valid Monte Carlo move, the
acceptance rule has to be defined such that detailed balance is main-
tained. Therefore the acceptance rule has to be expanded because the
probability with which a move from A to B is attempted when the sys-
tem is in state A can be different from the probability with which a
move from B to A is attempted when in state B. A further correction
is needed because in the process of generating the new configuration a
switch between two different coordinate systems takes place.119

With these multiply concerted rotation moves and wheel moves for
the stretches without branch points, it should be possible to simulate
freely jointed chain dendrimers of hard spheres with a higher number of
generations/density. It will be interesting to see how well the different
simulation and analytical methods predict the size of the dendrimers as
the number of generations and thus the amount of crowding increases.

The Future

The simulations of the telechelic polymer gels and dendrimers took a
long time, sometimes even months on a single CPU core. Using a GPU
helped to speed up these calculations but also placed constraints on the
size of the system as the amount of memory available on the GPU was
limited. This was one of the reasons why even larger dendrimers were
not simulated with the hybrid model. During my PhD the computa-
tional throughput however has increased by a factor 6 to 14 and it is
expected that it will keep increasing in the near future.

The efficiency of our simulation could be further improved by mak-
ing smarter Monte Carlo moves, for example by moving the particles in
clusters. Larger systems could then be modelled and artefacts due to
the limited number of nodes will be reduced. The hybrid method thus
seems a useful tool to determine the static properties of these gels at
high polymer volume fractions. For systems with low polymer volume
fractions the SCF model may be less suitable because the computa-
tion time scales with the volume rather than the number of particles
although this can partially be alleviated by using sub boxes.
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Models for studying Dynamics of telechelic polymer networks.

The model, as presented in chapter 4, is not suitable to determine
the dynamic properties of telechelic polymer gels. First of all the hy-
brid model allows for half a bridge to exist, while in a real system there
can only be an integer number of bridges between two nodes. In chap-
ter 5 we have already seen a way to solve this, although we would still
need a method for breaking and reforming the bridges and loops in the
system.

Another challenge is determining a way to move the nodes. It is
in principle possible to use Monte Carlo moves to determine the time
evolution of a system, for example by using the kinetic Monte Carlo
method. This however requires that the transition probabilities between
different states are known. For our hybrid method we do not know
exactly what these transition probabilities are. We could determine
them by calculating how the free energy would change if a node is
moved in each direction. This would however take a lot of computation
time.

An alternative would be to move the nodes with a molecular dynam-
ics algorithm. For this we need to determine the forces on the nodes.
With the given segment potentials we can determine the change in free
energy if we would move the node a little bit into a neighbouring lattice
site. Given the coarseness of our lattice, this force can probably not
be extrapolated to the determine the free energy in the neighbouring
lattice sites sufficiently accurate to determine the transition rates for
the dynamic Monte Carlo moves. Smaller lattice sites could be used,
but this will drastically increase the computation time.

We could however use these forces if our moves are over considerably
shorter distances than the size of our lattice sites. In that case only a
small part of a node would move into the neighbouring lattice site. The
lattice sites would then have to be split in two, one part containing the
node and one part containing the solvent and the corona. Spreading the
node over more lattice sites will increase the entropy and the nodes will
therefore preferably be on the corners of the lattice sites. An additional
potential field will therefore be needed to spread the node positions
homogeneously over the lattice sites.

Because the nodes are moved only a small distance, the density dis-
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tribution will not change much. An interesting option would therefore
be to calculate the polymer distribution using a mesoscale dynamics
method.120,121 With this method the polymer distribution is updated
using Ficks diffusion laws and a random contribution due to thermal
noise. This method will require fewer iteration steps and will therefore
compensate for the smaller step sizes of the nodes. This has the addi-
tional advantage that we no longer have to assume that the time scale
on which the polymers relax is much shorter than the time scale on
which the node positions relax.

All these methods however still have the disadvantage that entan-
glements are not taken into account. This may not be vital for a homo-
geneous network but in a mixture of two networks these entanglements
carry the forces between the networks. Without entanglements the dy-
namics of such double networks can thus not be modelled. At present
there is no method to capture these entanglements in the SCF model.
To model double networks a different approach is thus needed. It is
therefore interesting to look at what has already been done in literature
to simulate networks of these telechelic polymers.

P.G. Khalatur and A.R. Khokhlov wrote several articles on the sim-
ulation of solutions of telechelic polymers. In one of these studies they
used a bond fluctuation model to study the assembly of the telechelic
polymers in 2D and 3D.122 Later they made an MD model in which
the telechelic polymers are modelled as a short chain of 8 or 16 parti-
cles which interact via a repulsive Lennard-Jones potential.87 The bond
lengths were kept constant and the end groups attracted each other at
short ranges. They induced shear by applying a force, to the particles,
with a size that depends as a sinus on the height of the simulation box.
With this method to apply shear there are however two regions in which
the shear is in opposite direction. The simulation volume was however
very small so each of the sheared layers was only about two micelles
thick. This is far to thin to observe bulk behaviour. It would have been
better if they had applied Lees-Edwards boundary conditions, although
the system would still be to small to describe the rheological behaviour.

They also used this model to study the effect of the stiffness of
the polymers and found that increasing the stiffness of the polymers
gave bigger micelles which had more bridges.116 Their model can be
improved further by using softer potentials between the beads which are
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more realistic for interacting polymer coils and using a more spring like
potential between the beads. By using the Twentanglement algorithm
chain crossings could be prevented.123

Their system was roughly half the size of the box used for the gel
simulation in chapter 4. They do have more noise on their data, but
considering that they did their simulations more than a decade before
the start of my Phd, their model can not be much slower than the hybrid
method we used for our gels. It should thus be possible to scale up their
model to a similar size as our gel simulation. This may be big enough to
simulate the behaviour of the gel under shear when the system remains
homogeneous. If phenomena like shear banding and fracture occur the
simulation volume will, however, not be big enough.

Due to the relatively detailed nature of this model the time steps
should be relatively small. The binding energy of the anchors therefore
needs to be low, so the system can relax within the simulation time.
This leads to less well defined micelles as the system is close to the
critical point. The shear rates required to observe interesting behaviour
in the simulation will therefore also be much higher than experimentally
accessible. Rheological behaviour like strain stiffening also depends on
the strength of these anchors. To some extent the results from these
simulations can be extrapolated to experimentally accessible systems. It
would however be nice if we could simulate systems with more micelles
on longer time scales. This can be achieved by further coarse-graining.

Cass et al.88 did this by modelling a telechelic polymer as two par-
ticles connected by a harmonic spring. These particles repel each other
with a repulsive Gaussian interaction. These particles are attracted by
nodes which are placed in the centre of mass of the particles they are
attracted to. The particles were moved with Brownian dynamics. They
compared their data with experiments of end-capped PEO. Compared
to experiments their simulations underestimated the increase in zero
shear viscosity with increasing polymer concentration. It thus seems
that their model did not capture all essential aspects of the telechelic
polymers. Their system was also relatively small with 500 polymers,
only twice the number Khalatur used.

Sprakel et al.49 were more ambitious and coarse-grained entire mi-
celles using the RAPID method.124 This allowed them to model 6750
micelles, enough to observe phenomena like shear banding and fracture.
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They used transient potentials, which means that the strength of the
interactions between two micelles depends on their history. The longer
two micelles have been next to each other the more likely it is that a
bridge has been formed. They therefore kept track of the amount of
bridges nij that would on average be formed between two micelles with
these trajectories.

The micelles repelled each other via a harmonic potential with a
sufficiently large prefactor that the particles cannot overlap and weakly
attracted each other up to slightly longer ranges. There was an ad-
ditional contribution of a harmonic potential based on the difference
between the equilibrium amount of bridges ne(rij) at inter particle dis-
tance rij and nij the amount of bridges between the particles based on
their history. This potential effectively reduces the rate at which the
distance between the particles can change. The idea behind this is that
when the two micelles approach each other quickly the corona’s have
not had time yet to inter penetrate and the repulsion is thus stronger,
while if the particles are pulled apart the stretched bridges pull the
particles back together.

With this model they observed shear banding and fracture for con-
centrated solutions of telechelic micelles. They also determined proper-
ties like zero shear viscosity and fracture stress.

Coarse-graining to the level of single micelles thus seems a promising
approach. The model of Sprakel et al. however still has some flawed
assumptions. In a real gel there is either a bridge or no bridge instead of
a fraction of a bridge. This will result in a less homogeneous distribution
of the forces between the micelles and a stronger attraction between
micelles connected by a bridge. The force they used for the stretching
of the bridges is also not correct. At large extensions the potential
levels off and the attractive force between the particles goes to zero.
The equilibrium number of bridges at this distance is indeed practically
zero. There is however an energy barrier for detachment of the chains.
In a sheared sample there will therefore still be chains that are strongly
stretched and these chains will carry considerable forces.

As Sprakel et al. already mentioned49 and I showed in chapter 2
the interaction potentials are not pair wise additive, but also depend
on the surroundings of the micelles. At a locally low concentration the
net attraction will be stronger than at a locally high concentration.
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This effect was not incorporated in their model. This may explain why
Sprakel et al.49 did not observe phase separation for these gels, while
we did see this in chapter 4.

Due to these shortcomings their model will not describe telechelic
polymer gels very accurately. Its speed however makes it alluring to
try to find potentials that describe the system better while still coarse-
graining at the whole micelle level. There are several modifications
which could make the model more accurate:

• One could use a crowding parameter based on the number of sur-
rounding micelles and the distance to these micelles. Based on
this crowding parameter the strength of the repulsion between
the micelles could then be adjusted.

• Another improvement would be to keep track of where the poly-
mers are. For each micelle one could keep track of the number of
loops, to which other micelles it is connected, and with how many
bridges they are connected.

• Based on the forces on the polymers the dissociation rate of the
end groups can be adjusted. Once an end group has dissociated it
will start to sample the volume surrounding its other end until it
encounters another node. If the time scale at which this happens
is longer than the typical time step we will also need to keep
track of how many dangling end each node has. Other wise we
can immediately assign a new node to the end group.

• Instead of Brownian Dynamics we could also use Dissipative par-
ticle dynamics which gives more realistic hydrodynamic behaviour
and could for example also account for the friction between the
coronas.

• A more realistic potential should be used for the force required to
extend the polymers. For the freely jointed chain and worm like
chain numerical approximations are given by Petrosyan.125

• Just as in more detailed models we should also account for en-
tanglements. Although the pairs of micelles connected to the en-
tangling bridges need to be pulled apart before an entanglement
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can form, the energy barrier for this will not be high enough to
prevent their formation.

To determine the exact values for the parameters needed in the above
mentioned modifications we could use the SCF model or a model similar
to the one used by Khalatur.116 With these modifications sufficiently
large volumes of telechelic polymers networks can be modelled to study
their rheological behaviour, assuming that the relaxation time of the
polymer coils is short relative to the time scale at which the nodes
move. If this is not the case, such as for example for collagen, a less
course-grained model may be needed.

Conclusion

In chapter 2 we showed that the interactions between the micelles of
telechelic polymers are not pairwise additive. We therefore chose to
use the Scheutjens Fleer self-consistent field method to model these
telechelic polymer micelles, because this method does not require pre-
defined interaction potentials for the micelles. The SF-SCF method
however does not take fluctuations into account. Therefore the SF-SCF
method was combined with a Monte Carlo method which moved the
micelles and in this way introduced fluctuations in the model. We sim-
ulated small pieces of telechelic polymer gels, with a varying number
of polymers per micelle, solvent quality and concentration. Structural
properties like the radial distribution functions and the compressibility
were successfully determined. By pinpointing some of the segments of
a polymer on specific lattice sites we also introduce more correlations
between the different parts of a polymer. This gave an improved de-
scription of dendrimers compared to the classical SF-SCF model. The
hybrid model we introduced is therefore a suitable method to study the
equilibrium properties of dendrimers and telechelic polymers gels. For
the description of the dynamics of these systems the SF-SCF model is
less suited, as the lattice is rather coarse and the SF-SCF model does
not take entanglements into account.
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Polymers are very important in today’s society. They are used in many
everyday objects such as bags, paint, tires, soft contact lenses and dia-
pers. In the latter two applications the polymers form hydrogels, which
are water filled polymer networks. The goal of the PhD project, which
I worked on together with two other PhD students, was to get a better
insight in how the properties of the polymers affect the properties of
these hydrogels. I developed computer simulation methods to study
two classes of polymers, telechelic polymers and dendrimers.

A telechlic polymer is a polymer whose end groups bind to each
other, for example by hydrophobic interactions or specific hydrogen
bonds. If many of these polymers bind together a flower-like micelle is
formed, with the end groups forming the heart and the loop-forming
middle blocks as the petals of the flower. The steric hindrance between
these ’petals’ limits the number of polymers in a micelle. If two micelles
are adjacent, a polymer can also form a bridge between them. This
results in an entropic attraction because the polymers can now form
both loops and bridges and thus have more possible conformations.
This attraction can become so strong that phase separation occurs.

If the concentration of the polymers is high, there can be enough
bridges between the micelles to form a percolating network and in that
case a gel is formed. The micellar cores form the nodes in this network.
A schematic representation is given in Figure 1.3. If the binding energy
of the end groups is low enough that they can sometimes spontaneously
detach, such a gel can heal damage to its network structure.

Micelles and polymer are difficult to observe experimentally espe-
cially during rheological measurements. In computer simulations there
is no observational limitation. The amount of detail is however limited
by the available computation time.

To save time, multiple particles are treated as one particle. As
more particles are grouped together, bigger systems can be simulated
on longer time scales. Ideally, entire micelles are thus simulated as
single particles.
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Usually it is assumed that the forces between two of these composite
particles are pair wise additive, i.e. the force between them does not
depend on the positions of other particles. To test whether this assump-
tion holds for telechelic polymer micelles, I calculated the interaction
energy between two micelles, for different 3D particle geometries: an
isolated pair, a chain, a simple cubic ordering and a face centred cubic
ordering. The number of polymers per micelle, the solvent quality, and
the length of the polymers were also varied.

These calculations were done with the Scheutjens Fleer self con-
sistent field (SF-SCF) theory, which is a lattice based model that de-
termines the polymer distribution with the lowest free energy. The
interaction energy of the polymer segments is based on their average
environment. SF-SCF is a relatively fast technique because it samples
all degrees of freedom in one go.

In chapter 2 we show that the micelles repel each other at short
distances but weakly attract each other at a bit longer range. The
position of the minimum scales roughly as N3/5 and f1/5 in accordance
with the Daoud Cotton model. At χ = 0.5 the depth of the minimum
for the FCC packing is only 60 % of that of the isolated micelles. This
makes a big difference for the behaviour of such gels. For example, if the
pair potential for the FCC structure is used to estimate the minimal
number of polymers per micelle required to cause phase separation,
the required number is more than twice the experimentally observed
minimum. With the pair potential of the isolated pair even one polymer
per micelle would however be enough.

The interactions are thus not pair wise additive and we can there-
fore not use a method based on pair wise potentials. The SF-SCF
method does not make assumptions about the pair potentials, instead
the micelle-micelle interaction potential emerges from the interactions
between the individual polymer segments. The SF-SCF method finds
the state in which the polymers have the minimal free energy. It however
does not take the free energy of the nodes into account. We therefore
introduced a Monte Carlo algorithm (MC) to move the nodes. This
introduces fluctuations in the positions of the nodes and thus gives a
more realistic structure.

In chapter 3 we describe a preliminary study of a charged gel bound
to a wall. This gel represents the gel layer found in DGT and DET
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devices, which are used to measure metal ion concentrations in water.
It was recently discovered that particles can penetrate these gels and it
is therefore interesting to study the structure of these gels. We found
big structural fluctuations in the gel. The simulation was however too
small and too short to draw final conclusions.

Chapter 4 describes a more extensive study of gels using the new
SF-SCF MC hybrid. We determine the radial distribution functions as
a function of the number of polymers per micelle f , the solvent quality
χ and the polymer concentration ϕ. From these radial distribution
functions we in turn calculate the structure factors and the osmotic
compressibilities.

It was striking that, for f = 5, the height of the first peak in the
radial distribution function decreased as the concentration increased.
As described in chapter 2, this is initially caused by a decrease in at-
traction between the micelles as the number of neighbouring micelles is
increased. As the concentration increases beyond ϕ ≈ 0.125, the entire
volume is filled. The repulsion now becomes weaker because the differ-
ence between the osmotic pressure at the overlapping coronas and the
average osmotic pressure becomes smaller. The height of the first peak
therefore does not increase. For f = 10 the height of the first peak did
not decrease at high concentrations.

In agreement with some of the literature, we found phase separation
for f = 5 and χ = 0.5. Phase separation probably also occurs for
f = 10, but this was not as clear in our simulations. To study the
phase behaviour of these gels thoroughly they should be modelled using
the Gibbs ensemble. The shape of the structure factors we calculated
matched with those in the literature for the same f .

We also compared the radial distribution function for f = 5 and χ =
0.5 with a radial distribution function of particles with pair wise additive
forces with potentials based on those in chapter 2. For ϕ = 0.125 this
gave a good match but not for lower and higher concentrations.

With this new hybrid method we not only introduce fluctuations,
but we also pinpoint the positions of some of the segments and thus
introduce positional correlations in the SF-SCF model. We therefore
wondered whether pinpointing the segments would improve the treat-
ment of excluded volume interactions within the SF-SCF theory.

In chapter 5 we test this by comparing how well the new hybrid
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method describes dendrimers compared with the classical SF-SCF the-
ory and a more detailed freely jointed chain (FJC) model with excluded
volume. In the classical SF-SCF theory we used the cell model, which
assumes that the polymer density profile is spherically symmetric. With
the hybrid method we specify the position of the branch points and move
these with a Monte Carlo algorithm. Because each spacer starts and
ends at different branch points a separate propagator is needed for each
spacer. To save computation time we therefore introduced sub volumes,
so we only needed to calculate the propagator for the spacers in those
parts of the volume where the probability to find the spacer is not neg-
ligible. We simulated dendrimers with 3, 4 or 5 polymers per branch
point up to 7, 4 and 4 generations respectively. The middle blocks had
a length of 20 or 50 segments.

Both the cell model and the hybrid method underestimate the ra-
dius of gyration of the dendrimer. In contrast to the cell model, for
which the radius of gyration increased too fast with an increasing num-
ber of generations, the hybrid did give the same scaling as the more
detailed FJC model. This flaw in the cell model is attributed to an
overestimation of the excluded volume interactions between different
branches. The cell model also wrongly predicts the distribution of the
first branch points for dendrimers with strong crowding. In the hybrid
and the FJC models the spacers connected to the central segment of the
dendrimer are strongly stretched. With the cell model a fraction of the
spacers is however unstretched. This is probably because for the cell
model a fraction of an arm, for example 0.4 arms, can stay in the centre,
while the other models only allow an integer number of arms. There is
however not enough room in the centre for an entire arm and therefore
all the first generation spacers are stretched for the FJC and the cell
model. Although much slower than the classical SF-SCF method the
hybrid method thus gives a better description of the dendrimers and
the excluded volume interactions.

This newly developed hybrid method extends the range of problems
which can be studied with SF-SCF theory. The model is however not
suitable for studying dynamic properties of such systems because of
the coarseness of the lattice and the lack of a way to prevent polymers
chains from crossing. To study dynamic properties a Brownian dynam-
ics or dissipative particle dynamics simulation, in which the polymers
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segments or even entire micelles have been coarse-grained to single par-
ticles will be needed. The development of the correct interaction poten-
tials between these particles is however challenging, especially if whole
micelles are coarse-grained.
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Polymeren zijn moleculen die bestaan uit een keten van aan elkaar ge-
bonden kleinere moleculen. Elk van die kleine moleculen wordt een
monomeer genoemd. Polymeren lijken in dat opzicht wel op een ketting
van klik-kralen. Een aantal voorbeelden van polymeren wordt gegeven
in Figuur 1.1. Polymeren zijn erg belangrijk in de huidige maatschap-
pij. Ze worden in allerlei alledaagse toepassingen gebruikt, zoals plastic
tasjes, verf, banden, zachte contactlenzen en luiers. In de laatste twee
toepassingen vormen de polymeren hydrogelen. Dit zijn met water ge-
vulde polymeernetwerken. Het doel van het project was om een beter
inzicht te krijgen in hoe de eigenschappen van deze polymeren, zoals
hun lengte en hydrophobiciteit, de macroscopische eigenschappen, zo-
als hoeveel kracht het kost om de gel te vervormen of de gel te breken,
bëınvloeden. Ik werkte hierbij samen met twee andere PhD studenten.
Zij deden experimenteel werk terwijl ik computersimulaties ontwikkelde.
Ik heb hierbij twee groepen polymeren bestudeerd, dendrimeren en as-
sociërende polymeren.

Een associërende polymeer is een polymeer waarvan de uiteindes op
een of andere manier ergens aan kunnen binden. In deze thesis gaat
het specifiek over uiteindes die bij elkaar binden. Deze binding kan
bijvoorbeeld komen doordat allebei de uiteindes hydrofoob zijn, dat wil
zeggen dat ze slecht oplosbaar zijn in het oplosmiddel, of doordat ze
specifiek aan het oppervlak van een heel klein deeltje binden. Als beide
uiteindes op dezelfde plek binden wordt een lus gevormd. Het aantal
polymeren dat zo aan elkaar kan binden is beperkt. Op een gegeven
moment gaan de lussen, die door de middenblokken gevormd worden,
elkaar in de weg zitten. Zo’n groepje van een beperkt aantal moleculen
wordt ook wel een micel genoemd. Als twee van zulke micellen naast
elkaar liggen kunnen er ook bruggen gevormd worden, waarbij het ene
uiteinde van de polymeer in de ene micel zit en het andere uiteinde in
de andere micel.

Aangezien er nu ook bruggen gevormd kunnen worden neemt het
aantal manieren waarop de polymeren over de micellen verdeeld kunnen

157



Samenvatting

worden toe. Omdat elke combinatie, van de posities van de micellen en
de verdeling van de polymeren over die micellen, even veel kans heeft
om voor te komen, zullen de micellen vaker naast elkaar liggen. Effectief
trekken de micellen elkaar dus aan, en deze attractie wordt entropische
attractie genoemd. Deze attractie kan zo sterk zijn dat fasescheiding
optreed en het ene deel van de oplossing dus een hogere concentratie
micellen heeft dan het andere deel.

Als de polymeerconcentratie hoog genoeg is kunnen er zoveel brug-
gen worden gevormd dat er een aaneengesloten netwerk ontstaat. De
kernen van de micellen, waar alle polymeer uiteindes bij elkaar komen,
vormen de knooppunten in dit netwerk. In Figuur 1.3 is zo’n netwerk
schematisch weergegeven.

Als de gel beschadigd wordt zullen de bruggen tussen de knooppun-
ten verbroken worden. Wanneer de bindingsenergie van de uiteindes
echter niet al te hoog is zullen ze af en toe ook spontaan loskomen en
kunnen er weer nieuwe bruggen gevormd worden. In dat geval kan de
gelstructuur zich dus herstellen. Op tijdschalen korter dan de tijd die
gemiddeld verstrijkt tussen het binden en weer loslaten van de uiteindes
zal de gel zich als een vaste stof gedragen. Op langere tijdschalen zal
de gel zich meer als een vloeistof gedragen.

Het is moeilijk om met experimenten te zien wat er in polymeergelen
gebeurt. De polymeren zijn veel te klein om onder een microscoop te
zien. Computersimulaties hebben deze beperking niet, maar de grootte
van de gel die gesimuleerd kan worden is wel beperkt door de reken-
kracht die een computer heeft.

Om rekentijd te besparen kunnen meerdere deeltjes samen als één
deeltje gesimuleerd worden. Naarmate er meer deeltjes samengevoegd
worden, kunnen er grotere systemen over langere tijdschalen gesimu-
leerd worden. Idealiter zou een hele micel dus gesimuleerd worden als
een enkel deeltje.

Meestal wordt aangenomen dat de interacties tussen deze deeltjes
paarsgewijs zijn. Dit betekent dat de grootte van de kracht die twee
deeltjes op elkaar uitoefenen niet afhangt van de posities van de andere
deeltjes. Om te testen of deze aanname klopt voor deze micellen van
associërende polymeren, heb ik, in Hoofdstuk 2, de interactie-energie
tussen twee van deze micellen berekend, terwijl ze op verschillende ma-
nieren omringd waren door andere micellen. Hierbij heb ik ook het
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aantal polymeren per micel, de lengte van de polymeren en de sterkte
van de interactie tussen de middenblokken gevarieerd.

Deze berekeningen heb ik gedaan met de Scheutjens-Fleer zelfcon-
sistent veld methode(SF-ZCV). Hierbij wordt de ruimte opgedeeld in
vakjes. Elk van de monomeren past precies in zo’n vakje. Monome-
ren die in de polymeren aan elkaar vastzitten moeten naast elkaar in
de vakjes zitten. Er zijn heel veel manieren om een polymeer in deze
vakjes te stoppen. Een voorbeeld wordt gegeven in Figuur 2.1b. Zo’n
manier om een polymeer in de vakjes te stoppen wordt een conformatie
genoemd. Als er meerdere polymeren gesimuleerd worden kunnen de
polymeren elk vele conformaties aannemen. Zo’n set van conformaties
noemen we voor nu een configuratie.

Er zijn echter veel te veel configuraties om ze elk afzonderlijk te
simuleren. Met een Monte Carlo simulatie probeer je daarom op een
slimme manier een aantal onafhankelijke configuraties te genereren om
vervolgens, door over deze configuraties te middelen, een schatting te
maken van de eigenschappen.

Met de Scheutjens-Fleer zelfconsistent veld methode pakken we het
echter anders aan. In plaats van alle configuraties te genereren, gene-
reren we alleen de polymeerconformaties. De polymeren verdelen zich
over deze conformaties volgens de Boltzmannverdelingsfunctie, d.w.z.
dat de kans dat een polymeer in die conformatie zit omgekeerd even-
redig is met de exponent van de interactie-energie. Voor elk van deze
conformaties berekenen we de interactie-energie op basis van een ge-
middelde omringing. In eerste instantie weten we nog niet hoe ze om-
ringd zijn door andere polymeren en moeten we een begin schatting
maken. Als we de interactie-energie voor elke polymeerconformatie be-
paald hebben kunnen we uitrekenen hoeveel polymeer er gemiddeld in
elke conformatie zit. Op basis hiervan kunnen we dan weer de lokale
polymeerconcentratie uitreken. Hiermee kunnen we een nieuwe schat-
ting maken van de interactie-energie van de conformaties. Dit proces
herhalen we totdat de verdeling van de polymeren over de conformaties
niet meer veranderd en we dus een zelfconsistente oplossing gevonden
hebben.

Om de interactie-energie tussen de micellen te bepalen moet de af-
stand tussen de micellen kunnen variëren. Daarvoor is het noodzakelijk
dat de micellen ”vast gehouden”kunnen worden. We hebben dit gedaan
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door kleine volumes te maken waar binnen de uiteindes van de micel
moeten zitten.

Met deze methode vonden we dat de micellen elkaar als ze dicht
bij elkaar zitten afstoten, maar op een iets grotere afstand elkaar juist
aantrekken. Hoe sterk ze aan elkaar binden hing af van hoe ze door
andere micellen omringd werden. Voor een kubisch vlakgecentreerde
omringing(FCC) was de bindingsenergie maar 60% van die voor een
gëısoleerd paar micellen. Als we op basis van deze bindingsenergie het
fasegedrag proberen te voorspellen vinden we grote verschillen. Als
we uitgaan van de bindingsenergie bij de FCC-omringing, zijn er om
fasescheiding te veroorzaken twee keer zo veel polymeren per micel nodig
dan experimenteel is waargenomen. Als we echter de paar-potentialen
van een gëısoleerd paar zouden nemen zou één polymeer per micel al
genoeg zijn.

Om goede voorspellingen te kunnen doen over de eigenschappen
van oplossingen van dit soort micellen moet er bij het bepalen van
de krachten tussen de micellen dus rekening gehouden worden met de
omringing. Dit is bij normale paar-potentialen niet mogelijk en daarom
moesten we een andere methode bedenken om dit soort micellen te
simuleren.

De SF-ZCV methode was al gebruikt om de paar-potentialen uit te
rekenen. Het lag daarom voor de hand om te kijken of deze methode ook
gebruikt kon worden voor de gelen van associërende polymeren. Met de
SF-ZCF methode kan wel bepaald worden hoe de polymeren over de mi-
cellen verdeeld zijn, maar niet hoe de micellen over de ruimte verdeeld
zijn. Daarom hebben we de Monte Carlo simulatietechniek gecombi-
neerd met de SF-ZCV methode. Hierbij worden de micellen telkens in
een willekeurige richting verplaatst. Leidt dit tot een verlaging van de
potentiële energie dan wordt deze verplaatsing geaccepteerd. Als de
potentiële energie echter toeneemt dan wordt de verplaatsing geaccep-
teerd met een kans die exponentieel afneemt met de toename van de
potentiële energie. Op deze manier kunnen we ook het effect van de
fluctuaties van de micel posities meenemen.

In Hoofdstuk 3 hebben we deze methode gebruikt om een geladen
gel geadsorbeerd aan een wand te modelleren. Dit soort gelen wordt
gebruikt bij het meten van de gemiddelde concentratie opgeloste zware
metalen in water. De ionen van de zware metalen kunnen doordringen in
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de gel en worden in de gel of een onderliggende hars laag geabsorbeerd.
Het idee is dat de metaalionen wel door het polymeernetwerk kunnen
diffunderen maar dat grotere deeltjes dit niet kunnen. Onderzoekers
van onze groep hebben echter ontdekt dat ook grotere humusdeeltjes,
waar de metaalionen aan kunnen binden, in de gel konden doordringen.
Hierdoor kan de concentratie van vrije metaalionen overschat worden.

In de simulaties zagen we grote poriën in de gel. Deeltjes zouden de
gel door deze poriën binnen kunnen dringen, wat in overeenstemming
is met experimenten. De grootte van deze simulatie was echter beperkt
en dit heeft invloed gehad op de uitkomsten van het model. Er moeten
dus geen al te harde conclusies aan verbonden worden. Het ging er meer
om, om te laten zien dat de methode in principe werkt.

In Hoofdstuk 4 hebben we een uitgebreidere studie gedaan van gelen
gemaakt van associërende polymeren. Hierbij hebben we gekeken naar
het effect van het aantal polymeren per micel, de polymeerconcentra-
tie en de interactie-energie tussen het midden blok en het oplosmiddel.
Met deze simulaties hebben we structurele eigenschappen van deze ge-
len bepaald, zoals de radiale distributiefunctie, structuurfactoren en de
osmotische compressibiliteit. De structuurfactoren uit onze simulatie
waren kwalitatief vergelijkbaar met die uit experimenten en het lijkt
er dus op dat deze methode een goede manier is om dit soort gelen te
simuleren.

Het was opvallend dat voor vijf polymeren per micel de hoogte van
de eerste piek in de radiale distributiefunctie afnam naarmate de con-
centratie toenam. Voor lage concentraties komt dit doordat de attractie
tussen een paar micellen afneemt naarmate ze door meer andere micel-
len omringd worden. Bij hoge concentraties zijn er geen ”gaten”meer in
de gel waar de lokale polymeerconcentratie praktisch nul is. De lokale
verschillen in de polymeerconcentratie zijn hierdoor kleiner. Hierdoor
maakt het voor de sterische hinder, tussen de lussen die uit de micellen
steken, minder uit waar de kern van de micel zich precies bevind. Dit
leidt er toe dat de oplossing minder geordend is en daardoor neemt de
hoogte van piek in de radiale distributie af. Dit is zichtbaar in Figuur
4.6.

Bij een interactie-energie van 0.5 kT tussen de monomeren en het
oplosmiddel, en vijf polymeren per micel, vonden we dat er fasescheiding
optreedt. Dit is in overeenstemming met de literatuur waarin andere
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onderzoekers ook een grens vonden van ongeveer vijf polymeren per
knooppunt voordat fasescheiding optrad. De opzet van de simulaties
was vooral gericht op het bepalen van de structuur van de homogene
gelen en we hebben daarom geen fasediagram kunnen maken. We heb-
ben de uitkomsten van deze simulaties ook vergeleken met een simulatie
waarbij de hele micel als een enkel deeltje gesimuleerd werd. Hierbij heb-
ben we paar-potentialen gebruikt die gebaseerd waren op de potentialen
die we in Hoofdstuk 2 gevonden hebben. Voor een volumefractie van
12,5% kwam de radiale distributiefunctie redelijk overeen, maar voor
hogere en lagere volumefracties waren er grote verschillen. Dit laat zien
dat simpele paar-potentialen niet voldoende zijn om deze systemen te
beschrijven.

Zoals we eerder vermeld hebben, verdelen we de polymeren over alle
conformaties al naar gelang het Boltzmanngewicht van die conformaties.
Sommige van die polymeerconformaties overlappen echter met zichzelf.
In het echt zou een polymeer nooit in zo’n conformatie kunnen zitten.
Met de SF-ZCV methode controleren we echter niet of conformaties
overlappen. Aangezien in een compacte conformatie er vaker overlap
is, worden deze conformaties daarom te zwaar meegeteld binnen de SF-
ZCV theorie. Daardoor is een polymeerkluwen in het SF-ZCV model
minder gezwollen dan in het echt.

Er is echter ook een tegenovergesteld effect. Elke monomeer heeft
een uitgesloten volume. Dat is het volume rond een monomeer waarbin-
nen zich geen andere monomeren kunnen bevinden. In echte polymeren
overlappen de uitgesloten volumes van de aan elkaar gebonden mono-
meren elkaar. In het SF-ZCV model zijn de polymeren echter verspreid
over vele conformaties. Hierdoor zullen de uitgesloten volumes van de
segmenten elkaar veel minder overlappen en is er meer sterische hinder
tussen verschillende polymeerketens.

Ik vroeg me af of we door de positie van een aantal segmenten vast te
leggen deze fouten in het SF-ZCV model voor een deel zouden kunnen
verhelpen.

Hoewel de kans dat de segmenten, waarvan de positie is vastge-
legd, elkaar zouden overlappen klein is, moeten alle conformaties langs
deze segmenten. Hierdoor is de dichtheid van de polymeren rond deze
segmenten hoog en zorgt de osmotische druk ervoor dat de segmenten
elkaar dus effectief afstoten. Hierdoor zal de grootte van de kluwen po-
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lymeer dus toe moeten nemen. Tegelijkertijd neemt de repulsie tussen
verschillende polymeerketens juist af. Doordat de dichtheid rond de
segmenten waarvan de positie is vastgelegd hoger is dan de gemiddelde
dichtheid moet de dichtheid verder weg lager zijn en is er dus netto
minder repulsie tussen de ketens.

Om te testen of dit inderdaad zo was heb ik dendrimeren gesimu-
leerd. Dit zijn sterk vertakte polymeren waarin de uitgesloten volume
interacties een groot effect hebben op de structuur. Een voorbeeld van
zo’n dendrimeer is weergegeven in Figuur 1.2. Om te kijken of de com-
binatie van de Monte Carlo en de zelfconsistent veld methode inderdaad
een verbetering is ten opzichte van de klassieke SF-ZCV methode, moe-
ten we natuurlijk een referentiesysteem hebben waarmee we kunnen
vergelijken. Ik heb hiervoor een model gebruikt waarbij de polymeer-
segmenten als harde bolletjes voorgesteld worden en met bindingen van
een vaste lengte aan elkaar vastzitten. De hoeken tussen deze bindingen
kunnen elke waarde aannemen zolang de bolletjes maar niet overlappen.

De dendrimeren hadden drie tot vijf polymeren per vertakkings-
punt en maximaal 7 generaties(het aantal vertakkingspunten dat je te-
genkomt vanuit het midden van het polymeer.) De blokken tussen de
vertakkingspunten waren 20 of 50 segmenten lang. Om rekentijd te
besparen kwam mijn begeleider met het idee om voor elk blok, tussen
de knooppunten, een apart simulatievolume te gebruiken, zodat we de
dichtheid van dit blok niet in het hele volume uit hoefden te rekenen.

De uitkomst van de simulaties was dat beide SF-ZCV modellen de
grootte van de dendrimeren onderschatten. In tegenstelling tot het klas-
sieke model, dat de grootte van de dendrimeren te snel toe liet nemen
met een toenemend aantal generaties, gaf de nieuwe hybride wel de
juiste schaling van de grootte van de dendrimeer. De klassieke SF-ZCV
theorie gaf ook een verkeerde ruimtelijke verdeling van de eerste gene-
ratie knooppunten. Bij de andere modellen waren de polymeerblokken
tussen het midden van de dendrimeer en de eerste knooppunten sterk
gestrekt. De klassieke ZCV theorie voorspelde echter dat een deel van
de polymeerblokken tussen het centrum en de eerste generatie knoop-
punten niet gestrekt zou zijn terwijl de rest juist maximaal gestrekt is.
Dit is te zien in Figuur 5.6. Mogelijk komt dit doordat in het klassieke
ZCV model het ook mogelijk is om een fractie van een dendrimeerarm
te strekken. Er is in het centrum niet genoeg ruimte voor een hele
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dendrimeerarm maar waarschijnlijk wel genoeg voor een fractie van een
arm. De nieuw ontwikkelde hybride gaf dus een betere beschrijving van
de dendrimeren.

Met deze nieuwe methode kan de SF-ZCV theorie toegepast worden
op nieuwe vraagstukken. Het model is echter niet geschikt voor het
bestuderen van dynamica omdat de polymeren door elkaar heen kun-
nen gaan en de vakjes nog relatief groot zijn. Om de dynamica van
dit soort systemen te kunnen bestuderen zijn simulatie technieken zo-
als Brownse dynamica en dissipatieve deeltjes dynamica nodig. Hierbij
moeten polymeer segmenten of zelfs hele micellen als een deeltje gesi-
muleerd worden. Het ontwikkelen van de correcte interactie potentialen
vormt echter nog een grote uitdaging voor de toekomst.

164



List of Publications

This Thesis

Coarse-Grained Dendrimers in a Good Solvent; Comparison of Monte
Carlo Simulations, Self-Consistent Field Theory and a Hybrid Mod-
elling Strategy
J. Bergsma, F. A. M. Leermakers and J. van der Gucht
Submitted, 2018

A Hybrid Monte Carlo Self-Consistent Field Model of Physical Gels of
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The image on the front cover shows a stereoscopic image of a polymer gel
simulated with the Monte Carlo SCF hybrid model as described in chapter 4.
The simulation parameters were: 5 polymers per node, a χ interaction param-
eter of 0.5, a middle block length of 50 segments and polymer volume fraction
of 0.125. The polymer density goes from orange (high density) to translucent
blue(low density). The nodes are coloured orange as the polymer density is
highest in this region.

On the rear cover stereoscopic images of three different models, of a den-
drimer with 5 chains per branch point, 3 generations and a spacer length of
20 segments, are shown. On top is the spherically symmetric cell model, cal-
culated with the SF-SCF theory. In the middle is the new hybrid model. The
branch points are clearly visible as orange crosses. On the bottom is a freely
jointed bead chain model. The end-groups are coloured white, the branch
points are red and the spacers are blue. These different models are discussed
in detail in chapter 5.
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