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1.1 Introduction 

Food products are for the larger part composed of multiple ingredients that may be heavily processed. 

As a result, it is generally difficult, or even impossible, to determine the ingredient composition by 

visual inspection. At the same time, consumers demand detailed information on the composition of 

their food products before purchasing [1,2]. In the European Union (EU) food products and their 

ingredients are subjected to law. The basic law in this respect is the General Food Law that states that 

the labelling of food should not mislead consumers (European Commission (EC) regulation, 178/2002). 

More detailed legislation on labelling states that: ‘labelling should allow consumers to make informed 

choices and to make safe use of food, while at the same time ensure the free movement of legally 

produced and marketed foods’ (EC regulation, 1169/2011). Food authenticity studies have proven 

mislabelling for a wide range of food products, such as, meat, milk, honey, rice, edible oils, and spices 

[3-7]. Mislabelling might be caused by ignorance or lack of information regarding regulations, however, 

in many cases fraudulent intentions have shown to be the cause of mislabelling [3]. Fraud with foods 

and food ingredients raises concerns about food quality and safety, potentially poses health risks and, 

in addition, it may raise ethical issues when food products contain illegal ingredients.  

An example of food fraud with illegal ingredients is the use of endangered species as an ingredient. 

Some endangered species may be considered to have medicinal properties, and the addition of such 

species, or parts thereof, increases the value of a product [8]. Multiple studies have shown that 

endangered species are used in a variety of products, including food products [8-10]. Globally an 

increasing number of species are overexploited, which poses the threat of extinction of certain species, 

i.e. elephants, rhino etc., but also many plant species. Around 35,000 species, belonging to various plant 

and animal taxa, are classified as endangered by the Convention on International Trade in Endangered 

Species of Wild Fauna and Flora (CITES) www.cites.org. Worldwide, the legal trade in endangered 

species is regulated by a permit system linked to the CITES convention (1973). In the EU, enforcement 

of the CITES convention is based on EC regulation, 338/97 on the Protection of species of wild fauna 

and flora which are threatened by trade. This regulation defines necessary procedures and documents 

required for import, export and re-export (permits) for the species listed under CITES law. Besides the 

regulated legal trade in endangered species, a significant portion of the trade in endangered plant and 

animals is illegal (www.traffic.org), this involves billions of dollars per year [11,12]. Although 

international trade agreements are being implemented, illegal trading and the use of endangered 

species parts are still common practice, as can be seen from reports from, amongst others, European and 

other customs authorities [8]. 

  In other food fraud categories, food ingredients may also relate to food safety regulations, such 

is the case for genetically modified organisms (GMOs). The use of GMOs in food products has been the 

subject of public debates, since the first GMO entered the world market in 1996 [13]. In the last two 

decades, the development and production of a wide range of different GM plants have been observed 

[14]. GM plants and their derived products have been commercialised for the use in food/feed in many 

countries [15]. The regulations for the use of genetically modified (GM) crops in food and feed products 

vary between countries. The consequence of different regulations may be asynchronous approval. For 

example, 195 GM varieties are allowed in the USA, while in the European Union (EU) 55 GM varieties 

(without stacks) are authorised for use in food or feed products in 2017 

(http://www.isaaa.org/gmapprovaldatabase/). Within the EU the introduction of new GMOs in food 

and feed supply chains is regulated by, primarily, two regulations, EC regulation, 1829/2003 and EC, 

1830/2003. EC regulation, 1829/2003 on genetically modified food and feed states that approved GMOs 

need to be assessed for their food/feed and environmental safety prior to market introduction, and that 

unauthorised GMOs (UGMOs) are not allowed on the European market. It is furthermore stipulated 

http://www.cites.org/
http://www.traffic.org/
http://www.isaaa.org/gmapprovaldatabase/
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM:l21170
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM:l21170


11 
 

that labelling of GMOs is mandatory in the EU for products that contain more than 0.9% of authorised 

GMO per ingredient. EC regulation, 1830/2003 is focused on the traceability and labelling requirement 

for GMOs entering EU market. In recent years, the number of incidents related to the presence of 

unauthorised GMOs (UGMOs) and UGMO-derived products (food and feed) have globally increased 

and this has also affected the EU markets [15].  

 

1.2 Current analytical methods to address authenticity  

In order to assess the authenticity of food/feed products entering the EU market, both traditional and 

modern analytical methods are used. Frequently applied analytical techniques to determine general 

authenticity aspects of food products are thin layer chromatography, gas chromatography, capillary 

electrophoresis, high-performance liquid chromatography and mass spectrometry-based techniques 

[16,17]. In the last three decades, molecular techniques have become more widely applied in routine set-

ups to determine the composition of food products [18,19]. Currently, for the identification of 

endangered species polymerase chain reaction (PCR) with DNA barcode markers is performed and 

followed by Sanger sequencing, which is the most commonly applied molecular biological procedure 

to identify a single product [20,21]. For GMOs, crop-specific and GMO-specific (element, construct and 

event) TaqMan PCRs are usually performed to determine the presence of a GMO in a sample [22]. 

Unexplained targets in GMO screening may indicate the presence of UGMO. Generally for identifying 

the unknown region of a UGMO a genome walking approach, where known GM targets are used to 

‘read’ into the unknown region, is applied in combination with Sanger sequencing [23]. 

In recent years the field of molecular biology is increasingly using Next Generation Sequencing 

(NGS) technologies to address issues in the identification of species, strains, varieties etc [24,25]. NGS 

allows for massive parallel sequencing of targeted DNA, potentially enabling an overview of the genetic 

composition of a product in a single analysis. The application of NGS-based approaches for the 

detection and identification of endangered species as well as of GMOs and UGMOs is currently, 

however, still limited. Nonetheless, the potential of such NGS approaches based on an initial selective 

amplification step is large for these two different areas of application related to food authenticity. In 

order to apply powerful NGS-based approaches in the field of food authenticity, it is necessary to gain 

more knowledge and insight in the available methodologies for initial amplification of sequences and 

the advantages and disadvantages of the different NGS methods, before being able to develop dedicated 

strategies for different food authenticity issues.  

 

1.2.1 Endangered species 

In the EU, enforcement of the CITES convention is mainly focused at the borders, where imported 

products suspected of containing endangered plants and/or animals will be seized by Customs and 

CITES authorities [26]. In cases where the morphological characteristics of the species are still present 

and can be used for visual identification (microscopy etc.), for instance, the coloured feathers of a bird, 

or the flowers of a plant, it is not very difficult to determine the species in a seized sample. However, 

identification becomes considerably more difficult when a product contains only parts of an animal or 

plant and the morphological characteristics are lost. The most difficult category is products with 

processed plant or animal parts that are pulverized and have become an ingredient of, for instance, food 

supplements or traditional medicines (TMs) [8,27]. In those cases, visual identification will no longer be 

feasible and DNA-based methods will be the method of choice to detect and identify species that may 

be present in the sample. DNA barcoding methods are often applied to identify species based on well-

conserved yet variable DNA regions in the genome, so called barcode markers [28]. A DNA full-length 

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM:l21170
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barcode marker is a short gene sequence, >600 bp in length, derived from a standardised part of the 

genome that can be used to identify the species in a particular sample. In addition, mini-barcode 

markers are shorter versions of the full-length barcoding marker, <400 bp, which are developed to 

identified species in processed samples, were the DNA is largely degraded. Many parts of the DNA 

across species are conserved and in specific cases these conserved regions are flanking species-specific 

regions in the DNA [28,29]. This allows the use of universal markers, located in two conserved flanking 

regions to amplify a species specific region in between, which can be used to identify the species. The 

use of universal markers makes it feasible to develop a universal barcode primer set to analyse and 

identify several species in a single PCR analysis.  

For animal species identification, mitochondrial DNA (mtDNA) is an ideal choice to distinguish 

between the species. The copy number of the mtDNA is higher compared to the nuclear DNA (factor 

~1000) per cell and mtDNA evolves in a rapid way, hence more often allowing for distinguishing close 

related species [30]. Predominantly, the mitochondrial Cytochrome c oxidase subunit 1 (CO1), 16S and 

Cytochrome b (cyt b) loci have been used as the DNA barcode locus for animal taxonomy [31-33]. 

Furthermore, several animal mini-barcode primer sets (CO1, 16S and cyt b) have been applied and 

efficient discrimination has been observed in several samples [34].  

For terrestrial plants, the CO1 gene and other mitochondrial regions are a poor choice for species 

identification, because of low substitution rates and intra-molecular recombination of mitochondrial 

DNA in plants [35]. The two “core” DNA barcode markers used to discriminate most plant species are 

a combination of RuBisCO large subunit (rbcL) and maturaseK (matK) [36]. The rbcL is easy to amplify 

in PCR, however, has less discriminatory power compared to matK [35]; vice versa, matK is a rapidly 

evolving coding sequence with a high discrimination power between plants, but with poor PCR 

amplification, specifically in non-angiosperms [35]. In a previous study it was suggested that the 

combination of rbcL+matK provides a better species discrimination compared to any other 2-marker or 

multi-marker plastid barcode markers [37]. Some studies indicate that the plastid intergenic spacer 

trnH-psbA region and the nuclear ribosomal ITS region could have more discrimination power across 

the land plants [36]. Designing universal mini-barcode primer sets for plants has been proven to be 

difficult, especially when DNA is degraded and only shorter DNA fragments are available that give less 

resolution to distinguish and identification is possible only at family level [38].  

Currently, for species identification using a barcoding approach, a PCR amplification of the 

specific target is performed with the barcode marker and related primer sets. Subsequently, the obtained 

amplicon is Sanger sequenced to identify the sequence information. The obtained DNA barcoding 

sequence can be compared with the database to identify the species based on the nucleotides’ variations 

observed between the DNA barcode sequences. The National Centre for Biotechnology Information 

(NCBI) and Barcode of Life Data System (BOLD) databases are collective barcode storage databases 

where sequence information can be derived for species identification and characterization. 

Nevertheless, the use of a DNA barcoding approach on complex samples can lead to several setbacks, 

such as, the use of universal primer sets will amplify all the specific targets in the sample, and Sanger 

sequencing cannot be applied to sequence products containing more than one species, unless additional 

time-consuming work (cloning of PCR products) is performed [18]. Furthermore, as mentioned before, 

the ingredients in the case of, for instance, TMs or food-supplements can be heavily processed. As a 

result, the DNA can be severely damaged and degraded [8].  
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1.2.2 Genetically modified organisms (GMOs)  

In recent decades, the cultivation and production of an increasing range of different GMOs has been 

observed. GM plants and derived products have been commercialised in many countries in the last two 

decades [15]. GM plants that have not received market approval are not allowed on the European 

market. In the last few decades many methods for the detection, identification and quantification of 

individual GMOs have been developed [39]. Applicants that aim to market a new GM plant variety are 

required to provide a GMO-specific method as well as the related reference materials. These methods 

will be assessed and, if the basic requirements are met, further in an international validation study the 

EURL (the European Reference Laboratory) in collaboration with labs from the European Network of 

GMO Laboratories (ENGL). Usually a two-step GMO screening approach is performed to identify the 

presence of GMOs in a sample. Initially, the specific TaqMan PCR assays for GMO-related targets 

(endogenous, elements and constructs) are performed. The positive detection of these targets may 

indicate the presence of one or more GMOs. Secondly, based on the specific GMO elements as detected 

in the first step of the screening, GMO event-specific TaqMan PCRs are performed to verify the presence 

of authorised GMOs or known unauthorised GMOs for which event-specific methods are available 

[19,22]. When identified elements, or combinations of elements cannot be explained by the presence of 

an authorised GMO in the same sample, this may indicate the presence of an unauthorised GMO 

(UGMO) [22]. 

 UGMOs are GMOs that have not yet been assessed for their food, feed and environmental safety 

in the country where these are marketed. In some countries, regulations for the low-level presence (LLP) 

of UGMOs in food or feed products have been established if the UGMO has already been approved in 

another country (EC regulation, 1829/2003). In the EU, only a limited number of UGMOs meet the 

specific set of requirements and these LLP varieties are allowed to be present in feed products up to a 

level of 0.1 % per ingredient (mass-based) (EC regulation, 1829/2003). The main bottleneck in relation 

to the identification of UGMOs is the generally limited available sequence information as a basis for the 

development of adequate methods for analysis [15]. Identification of UGMOs is only possible through 

the identification of the DNA sequence bridging the GMO construct and related endogenous plant 

DNA, as integration of the insert into the host genome has so far been a random process [23]. At the 

same time, most UGMOs will contain known GM elements that can serve as a starting point to ‘read’ 

into unknown regions. 

 

1.3 Limitations of currently available detection methods for endangered species, GMO and UGMO 

identification  

In recent years, a gradual shift can be observed in the field of molecular biology, where increasingly 

NGS strategies have been developed to use in protocols aimed at the identification of species, breeds, 

varieties, strains, etc. This development can be observed in the field of genomics but increasingly also 

in, for instance, the medical area and other areas, such as agricultural and environmental sciences [40-

42]. Often these NGS strategies complement or replace more traditional PCR or Sanger sequencing 

based methods for identification [43]. Recently, studies have applied DNA metabarcoding (combining 

DNA barcoding and NGS) to identify species in complex food samples, such as, traditional medicines 

(TMs), or herbal supplements etc. In some studies the presence of endangered species (Ursus thibetanus, 

Panax ginsenga, etc) in this type of products has been confirmed. These endangered species were either 

declared on the ingredient list or found to be undeclared ingredients [9,18,44]. In these studies either 

barcoding or mini-barcoding have been used to identify either animal or plant species present in a 

simple to complex mixture. However, in the scientific literature so far no methodology has been 
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described combining informative plant and animal barcoding and mini-barcoding in a single analytical 

NGS-based strategy [23].  

  With respect to GMO detection and identification, current approaches focus on sequence 

specific amplification (TaqMan PCR) of GMO-related sequences and subsequent identification of 

specific GMOs present in the sample using event-specific methods. Due to the increased numbers of 

GMOs and its related targets multiple TaqMan PCR assays are necessary to have an informative 

screening. The addition of a new GM element to the screening requires the development and validation 

of a new GMO-specific method, making the screening less flexible and a time and budget -consuming 

process. For UGMO detection, a number of enrichment approaches (LAM PCR, LT-RADE, SiteFinding-

PCR, A-T linker and LF PCR) have been developed to identify the unknown adjacent sequence of known 

GM elements. Using Sanger sequencing, sequence information of the unknown sequence can be 

obtained and this sequence will be analysed to verify whether it belongs to an EU authorised GMO or 

a UGMO [22,40,45,46]. However, none of these strategies have so far shown to be adapted to the specific 

demands of GMO detection, i.e. a 0.1% detection limit and enrichment of UGMO targets in a 

background of GMOs. Furthermore, Sanger sequencing is not compatible with sequencing multiple 

DNA amplicons in a single analysis [18].  

 

1.4 Research aim  

The objective of this thesis was to use detailed genetic differences to identify species/varieties in 

feed/food products based on advanced analytical NGS based strategies. The study focused on the 

identification of two target groups: (a) endangered species and (b) GMOs. Elucidating genetic 

composition was sub-divided into three main topics: 1) the development of efficient enrichment 

strategies, 2) selection of the optimal NGS strategy for the purpose and 3) actual identification of the 

species/GMOs of interest. With respect to endangered species, the aim was to explore whether NGS- 

based strategies allow the simultaneous identification of all species, including endangered species, 

present in a sample, even in complex samples that may be heavily processed (chapter 2, 3 and 4). With 

respect to GMOs, the aim was to reliable identify all GMOs and UGMOs present in a given sample, 

regardless of their relative abundance, based on enrichment of known or, in the case of UGMOs, 

additional adjacent unknown sequences (chapter 5, 6 and 7).  
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Figure 1.1: Schematic overview of the development of adequate enrichment strategies for 1) endangered species 
identification 2) GMOs and UGMOs detection and identification using NGS based approaches. 

1.5 Outline of this thesis 

Chapter 2 reviews existing literature to select the best available universal DNA full-length barcode and 

mini-barcode markers for both plants and animals to enable enrichment of species specific sequences 

and subsequent identification of any species, with an emphasis on the detection and identification of 

endangered species. More specifically, this chapter addresses the current challenges in obtaining good 

quality DNA from wild life forensic samples, gives an overview of the available plant and animal 

barcode and mini-barcode markers and discusses available NGS technologies and their suitability for a 

DNA metabarcoding approach for the screening of wild life forensic samples.  

Chapter 3 addresses the development and validation of a multi-locus DNA metabarcoding approach 

for identification of endangered species in complex samples. The inventory study of the available 

markers (chapter 2) was used to select 12 markers (barcode and mini-barcode primer sets) for a 

metabarcoding platform and a single optimal PCR condition for amplification of these markers was 

defined. The efficiency of the multi-locus DNA metabarcoding approach was evaluated on the basis of 

15 well-defined complex mixtures, including materials of endangered species. The repeatability and 

reproducibility of the approach was evaluated with a validation study across 16 laboratories using 10 

samples, including two wild life forensic samples. The main goal of this chapter was to evaluate a multi-
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locus DNA metabarcoding strategy for species identification in complex mixtures and ensure high 

resolution and quality, even in heavily processed samples. 

 

Figure 1.2 Coherence of the different chapters in this thesis. 

Chapter 4 assesses the applicability of the multi-locus DNA metabarcoding described in chapter 3 on 

real-life samples containing heavily degraded DNA and consisting of different matrices. Furthermore, 

the chapter addresses food authenticity aspects of TMs. An optimal DNA isolation method for highly 

processed DNA from TMs was identified by comparing 8 different DNA isolation methods. Here, 18 

TMs, with varying matrices, were analysed and the identified species were compared with the 

respective ingredient lists. It was assessed whether the metabarcoding strategy could be applied 

effectively in the different types of TMs, and, secondly, whether the TMs might actually contain any 

endangered species.  

Chapter 5 reviews the available enrichment strategies that have been described in the scientific literature 

to identify unknown adjacent sequences to known DNA elements, with a focus on the development of 

more effective methods for UGMO identification. The advantages and disadvantages of the most 

promising enrichment strategies were evaluated and necessary adjustments of current methods to 

comply with the requirements for UGMO detection were determined. The aim of this chapter was to 

obtain an overview of relevant aspects of available genome walking (GW) methods that can be used to 

identify UGMOs. 
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In chapter 6, an NGS-based broad GMO screening approach was developed, and the applicability of 

the developed approach was evaluated by comparing its results with the results of the standard qPCR 

screening approach on the same samples. Five feed products, known to contain multiple GMOs in 

different quantities, were used to perform the comparison, a data analysing pipeline was developed to 

process the NGS data. The main goal of this chapter was to develop a broad NGS-based GMO screening 

approach along with a data analysis pipeline for efficient GMO identification, and to determine the 

practical efficiency of such a NGS screening strategy.  

In chapter 7, the findings of chapter 5 were applied to develop a detection method that can fulfil the 

requirements for UGMO identification. A new GW strategy for UGMO identification was developed by 

combining the advantageous aspects of available GW strategies that were discussed in chapter 6. The 

efficiency of the developed enrichment strategy was evaluated based on available, well-characterised 

reference materials for EU-approved GMOs with known sequences that were used to compose complex 

samples with multiple GMOs present in different percentages.  

In chapter 8, the findings of this thesis are integrated. The impact of the research described in this thesis, 

together with the implications, limitations and recommendations for further research are discussed and 

the final conclusions of the thesis are presented. 
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Chapter 2 

 

Advances in DNA metabarcoding for food and wildlife forensic 

species identification 
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20 
 

Abstract 

Species identification using DNA barcodes has been widely adopted by forensic scientists as an effective 

molecular tool for tracking adulterations in food and for analysing samples from alleged wildlife crime 

incidents. DNA barcoding is an approach that involves sequencing of short DNA sequences from 

standardized regions and comparison to a reference database as a molecular diagnostic tool in species 

identification. In recent years, remarkable progress has been made towards developing DNA 

metabarcoding strategies, which involves Next-Generation Sequencing of DNA barcodes for the 

simultaneous detection of multiple species in complex samples. Metabarcoding strategies can be used 

in processed materials containing highly degraded DNA e.g. for the identification of endangered and 

hazardous species in traditional medicine. This review aims to provide insight into advances of plant 

and animal DNA barcoding and highlights current practices and recent developments for DNA 

metabarcoding of food and wildlife forensic samples from a practical point of view. Special emphasis is 

placed on new developments for identifying species listed in the Convention on International Trade of 

Endangered Species (CITES) appendices for which reliable methods for species identification may 

signal and/or prevent illegal trade. Current technological developments and challenges of DNA 

metabarcoding for forensic scientists will be assessed in the light of stakeholders’ needs. 

 

 

Keywords Endangered species, Next-generation sequencing, Wildlife forensic samples, COI, CITES 
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2.1 Introduction 

Genetic identification of species plays a key role in the investigation of illegal trade of protected or 

endangered wildlife [47] and in the detection of species mislabelling and fraud in the food industry [48]. 

Currently, DNA barcoding is an established molecular technique that is used for differentiating and 

assigning taxonomy to species using standardized short DNA sequences (Box 2.1). Application of DNA 

barcoding for food authentication has gained much attention because of food safety concerns, including 

incorrect food labelling, food substitutions or food contamination [49-51]. DNA barcoding has been 

effective in the traceability of many processed food products in particular seafood and meat products 

[48]. For instance, DNA barcoding has made impact by demonstrating widespread mislabelling or 

substitution of fish and seafood products in markets and restaurants in New York (USA) and Canada 

[50,51]. Proper identification of species present in food and food supplements is of vital importance to 

protect consumers against potential food adulteration, ingredient mislabelling or food poisoning. Given 

its utility, DNA barcoding is being used by the US Food and Drug Administration as a replacement for 

the time-consuming technique of protein isoelectric focusing for fish and fish products [52]. 

Another established application of DNA barcoding to forensic science is in investigations of 

wildlife crimes such as illegal collection and trade of flora and fauna. More than 35,000 species of flora 

and fauna are categorized as endangered by the Convention on International Trade in Endangered 

Species of Wild Fauna and Flora (CITES). Protected species are listed in appendices I, II and III, 

according to how severe a certain population is threatened to extinction [53]. Besides the regulated legal 

trade, a significant portion of the trade in endangered flora and fauna is illegal. In the European Union 

(EU), enforcement is mainly focused at the borders, where illegally imported wildlife products, plants 

or animals will be seized by Customs and CITES Authorities. The mailings on the EU-TWIX (European 

Union Trade in Wildlife Information eXchange; www.eutwix.org) network of wildlife-protecting 

enforcement bodies are very clear; seizures of wildlife and products containing wildlife are everyday 

practice. In some cases, the species identification of seized specimens is not very difficult, because the 

specific morphological characteristics can be readily observed, though often requiring taxonomic 

expertise for decisive identification. Identification will be more difficult when only parts of an animal 

or plant without distinctive morphological characteristics are present, or when plant or animal parts 

have been pulverized and have become ingredients of food supplements (e.g. Traditional Medicines 

(TMs)). Currently, CITES list species encompasses a wide diversity of species of terrestrial plants such 

as cycads, cacti and orchids, in addition to vertebrates such as fish, amphibians, reptiles, birds, and 

mammals, and invertebrates such as lobsters, crabs, and corals [54]. Customs laboratories will obviously 

benefit from applying standardized, fast and reliable methods when dealing with samples of which no 

a priori knowledge on the species composition is known. It is these benefits that have made DNA 

barcoding the method of choice for customs laboratories when trying to establish the presence of 

biological material from endangered species within processed products [20,26,55,56]. 

A complicating aspect for DNA barcoding in the analysis of food supplements such as TMs and 

other mixed products is that they are composed of more than one ingredient. Such samples often contain 

multiple species that can only be efficiently analysed if multiple DNA barcode templates can be 

sequenced in parallel; something that Next-Generation Sequencing (NGS) technologies do effectively 

[42]. Current NGS platforms yield millions of DNA reads in a relatively short period of time, and the 

sequencers’ performance improves every year [57]. NGS combined with DNA barcoding is referred to 

http://www.eutwix.org/
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as metabarcoding [58]. Metabarcoding thus uses universal PCR primers to mass-amplify one or more 

taxonomically informative targets. The prefix ‘meta’ refers to the collection of barcode sequences from 

different species. The general strategy consists of (1) extracting DNA from food or (wildlife) forensic 

samples (2) amplifying a specific DNA barcode or other target region of taxonomic value, (3) sequencing 

the corresponding DNA amplicons using NGS technology, (4) analysing the sequences using 

appropriate bioinformatics pipelines, (5) identifying the species in the sample from which DNA has 

been extracted and (6) screening for CITES species among these [59,60]. Metabarcoding has been applied 

in many diverse environmental samples, such as faeces [58], soil [61], marine water [62] and bulk 

samples of tropical arthropods [63]. However, there are only a few published applications of 

metabarcoding to food and (wildlife) forensic samples. Coghlan et al. [8,44] demonstrated the power of 

metabarcoding in detecting species in complex Traditional Chinese Medicines (TCMs) samples 

presented in the form of powders, crystals, capsules, tablets, and herbal tea. Their screening revealed 

that some of the TCM samples contained CITES-listed species, including the Asiatic black bear (Ursus 

thibetanus) and the Saiga antelope (Saiga tatarica), as well as unlisted ingredients, and potentially toxic 

and allergenic plants. Cheng et al. [64] performed metabarcoding analyses on well-defined TCM 

preparations based on a six-herb formula named Liuwei Dihuang Wan, which is widely used in China. 

They concluded that there are significant differences in quality and safety among commercial TCM 

preparations, as the unlisted species Senna obtusifolia was identified in some preparations that may 

potentially pose safety risks to consumers. Tillmar et al. [65] developed a metabarcoding method for the 

identification of species of mammals in human forensic tissues, with which the presence of low 

quantities of DNA from the genus Canis could be identified.  

Although metabarcoding may seem easy to apply, researchers often face limitations in 

obtaining a representative assessment of species composition. First, different pre-processing conditions 

and production procedures from samples with different composition and matrices (e.g. TMs and other 

processed and complex products) may result in highly variable DNA quality and concentration. DNA 

integrity has shown to have significant influence on the effectiveness of the metabarcoding and other 

molecular methodologies for species identification [34,64,66]. Secondly, while there are many 

bioinformatics methods available for the analysis of metabarcoding data, the discriminating power of 

these methods is directly related to prior choices on barcode marker and reference database composition 

[67,68]. PCR bias caused by variable primer-template mismatches across species may limit the 

quantitative potential of DNA metabarcoding, and may cause species to be missed [69,70]. Furthermore, 

DNA metabarcoding wholly relies on the presence of high-quality barcode sequence reference 

databases that are based on good taxonomy and barcode coverage. The goal of this paper is to review 

the advancements and current practices of plant and animal metabarcoding, with an emphasis on 

complex food and forensic wildlife samples for identifying, in particular, species listed by CITES. This 

effort is complementary to recent work focussing on metabarcoding for biodiversity assessments in 

environmental samples [25,60,71,72] and an extension of the work on DNA barcoding of food and 

forensic samples [47-49,73-76]. This overview will address the opportunities and challenges that must 

be faced to allow the customs laboratories and other routine laboratories to perform efficient and reliable 

metabarcoding analysis that can broadly identify any species present in a sample under investigation.  
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Box 2.1 DNA barcoding and the International Barcode of Life project (iBOL). 

DNA barcoding is a rapid method of differentiating and assigning taxonomy to species using 

standardized short DNA sequences. For animals, the most commonly used sequence is a 658-base 

pair region of the mitochondrial cytochrome c oxidase subunit I gene (COI, COX1, CO1). DNA 

barcoding allows for fast, reliable, automatable, and cost-effective species identification by users with 

little or no taxonomic experience [77]. Identifications are usually made by comparing unknown 

sequences against known species DNA barcodes via alignment searching (BLAST) [78] or distance-

based tree construction [79]. 

A suitable barcode for identification at the species level should be sufficiently variable 

between species (typically ≥ 3% difference between closely related species but this may vary amongst 

taxonomic groups) and display either low or no intraspecific variations. Also, barcodes should be 

widely studied for a large number of species to enable comparison of the nucleotide sequence from 

an unknown sample with reference sequences in a database. Accurate species identification wholly 

relies on the taxonomic coverage of barcodes in a reference database. If the query sequence lacks a 

conspecific (belonging to the same species) target sequence in the database, species-level barcoding-

based identification of the query will fail. Instead, the closest matches in the database may be 

identified and the sample barcode scored as a “new” taxon (operational taxonomic unit; OTU). From 

a practical point of view, therefore, DNA barcoding requires a comprehensive reference database. 

Such reference data sets are being assembled by the barcoding campaigns initiated by the 

International Barcode Of Life project (iBOL; www.ibol.org), resulting in considerably improved 

species coverage for target taxa of such DNA barcoding campaigns (Kwong et al. 2012). Official 

barcode sequences generated by the iBOL initiatives are deposited and organized in the Barcode Of 

Life Data (BOLD) Systems (http://boldsystems.org; [80]). BOLD is a large-scale and rigorously 

curated DNA barcode storage database and most of the sequences information contained within 

BOLD have all been derived from voucher specimens with authoritative taxonomic identifications. 

Barcoding campaigns focussing on fish, birds, mammals, insects and fungi have been initiated e.g. 

the “Fish Barcode of Life” Initiative (FISH-BOL, www.fishbol.org), the “Marine Barcode Of Life” 

Initiative (MarBOL, www.marinebarcoding.org), the “Shark Barcode Of Life” project (SharkBOL; 

www.sharkbol.org), and the “Barcode of Wildlife Project” (BWP; www.barcodeofwildlife.org). For 

plants there are initiatives to barcode e.g. the world’s tree species Barcoding Of Life (TreeBOL), and 

grasses and grass-like plants Barcoding Of Life (GrassBOL).  

Barcodes and a variety of alternative taxonomically informative genes that have been 

generated from general scientific research are deposited in the International Nucleotide Sequence 

Database Collaboration (INSDC), can be used for taxonomic assignment in barcoding studies. The 

iBOL initiative aims to create a database of 5 million standardized DNA sequences, which can be 

used to identify 500,000 species, by 2015. 

Scientific literature on the utility of DNA barcoding in the recognition, discrimination, and discovery 

of plant and animal species has been reviewed extensively by Savolainen et al. [81], Kress and 

Erickson [82], Bucklin et al. [83], Hollingsworth et al. [67], Fazekas et al.[35], Ortea et al. [73], Nicolè et 

al. [74], Bhargava and Sharma [84], Kvist [85] and Sandionigi et al. [86]. 

 

 

 

 

http://www.ibol.org/
http://boldsystems.org/
http://www.fishbol.org/
http://www.marinebarcoding.org/
http://www.sharkbol.org/
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2.2 DNA extraction and DNA integrity  

The initial sample preparation and extraction step in the analysis of DNA from food products is 

probably the most crucial step in the process of species identification in complex forensic samples. This 

step can be very difficult to standardize and optimize due to the complexity and diversity of the matrices 

encountered, each presenting different problems. For instance, it can be difficult to ensure that a 

representative sample is obtained from heterogeneous samples that are composed of many ingredients 

(e.g. TMs), and in such cases sufficient homogenization is particular critical prior to DNA extraction. 

Forensic samples, such as food samples and traditional medicine may contain only very low amounts 

of DNA, or contain ingredients that have been subjected to various treatments during the production 

process (e.g. cooking, high pressure, pH modification, grinding or drying), which may cause the DNA 

to be highly degraded [64,87-89]. Furthermore, failure to eliminate potential inhibitory components and 

interfering substances from the material under investigation (e.g. protein, lipids, polyphenols, 

polysaccharides) may severely influence PCR analysis. Needless to say that any factor that may 

contribute to downstream bias needs to be minimized.  

Different DNA extraction methods, which can be used for analysis of forensic samples are now 

available; extraction is either based on in-house developed protocols or commercially available kits. 

Commercial kits offer a means for standardizing DNA extraction from forensic samples, as the protocol 

can be easily implemented in any laboratory. However, in many laboratories user-specific protocols 

have been developed to improve DNA extraction efficiency on a case-by-case basis. DNA extraction 

using cetyltrimethylammonium bromide (CTAB) extraction buffer combined with additional silica or 

resin-based purification step have found to be efficient for a wide range of plants and plant-derived 

products, in particular for separation of polysaccharides from DNA [66,89,90]. Ivanova et al. [91] 

developed a cost-efficient and automation-friendly DNA extraction protocol for animal tissues that 

consists of a tissue lysis step (SDS and proteinase K) followed by silica-based purification of DNA using 

inexpensive glass fibre filtration plates. The latter method has been used to process thousands of animal 

species at the Canadian Centre for DNA Barcoding (CCDB) as part of the iBOL initiative. Despite these 

efforts in standardizing the DNA extraction method, the most suitable method is generally found to be 

strongly dependent on the matrix, and there is no “universal” method that could be used for all food 

and (wildlife) forensic samples [87].  

As suspect samples may often contain degraded DNA, it is a requirement that metabarcoding 

methods are able to identify species on the basis of short DNA sequences that may still be present in 

highly processed materials [89]. In such forensic samples, DNA degradation often prevents the 

amplification of PCR fragments longer than ~300 base pair (bp) [34,66,92,93]. The use of shorter barcode 

regions, so-called mini-barcodes, may overcome this problem. Due to their reduced size, mini-barcodes 

are often amplified with higher efficiency in degraded samples than standard, full-length barcodes, 

which are typically between 650 – 900 bp in length [38,66]. On the other hand, the rate of taxonomic 

discrimination is generally positively correlated with the length of the mini-barcode. The use of 

universal mini-barcodes that will only allow identification of taxa above the species-level, due to 

saturation of the taxonomic discrimination, should generally be avoided unless identification at the 

genus or family-level is warranted.  
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2.3 Animal DNA barcodes and mini-barcodes 

For animals, the standard barcode is a 658 bp region in the gene encoding mitochondrial cytochrome c 

oxidase I (COI or COX1, CO1) [94]. COI has long been used in animal molecular systematics to study 

relationships of closely related species because of its high level of interspecific variation [95]. Its 

popularity within the barcoding community is clearly reflected in the large public databases such as 

National Centre for Biotechnology Information (NCBI) GenBank (www.ncbi.nlm.nih.gov/genbank) 

and BOLD (Box 2.1). Universal primer sets for amplifying the COI barcode across major taxonomic 

groups have been developed by Ivanova et al. [31] and primer cocktails have been reported that are 

effective in fish, mammals, amphibians and reptiles (Table 2.1). A good discriminatory power in the 

identification of birds (98 to 100% identification success rate [79]), fish (93% to 98% identification success 

rate [96]), spiders (100% identification success rate [97]), butterflies (97.9% identification success rate 

[98]), and reptiles (72.7% to 100% identification success rate [99]) has been shown for the COI barcode.  

Despite its proven effectiveness, COI is not always suitable and effective in identifying all 

animal species. For endangered organisms such as sea snails (the mollusc class Gastropoda) and corals 

the COI barcoding region and other mitochondrial markers were found to offer insufficient resolution 

to allow for reliable discrimination between closely related species [100-103]. Using a DNA 

metabarcoding approach, Elbrecht et al. [70] demonstrated that species may go undetected in complex 

artificial mixtures of freshwater invertebrate taxa because of universal COI primer-template 

mismatches. The use of group-specific primers or alternative degenerate primers may prevent species 

from being missed using COI [69,70]. 

The traceability of mammalian meat including meat of ranched and hunted game species 

heavily relies on the use of the mitochondrial cytochrome b (cytb) region [48,104]. The choice of cytb 

instead of COI is due mainly to practical reasons. The early availability of universal primers for cytb [60-

61], long before the use of COI became popular, lead to the deposition of several thousand cytb 

sequences of a large range of edible mammalian species in public databases. Thus, its use became well 

established. Nonetheless, DNA barcoding based on COI has also proven effective in the identification 

of edible meat, including bush meat species [48,104-107]. The FishTrace consortium (www.fishtrace.org) 

have promoted the use of cytb through the development of universal cytb primers for teleost fish species 

and the release of validated sequence data of many hundreds of European marine fish species [108].  

Additional activities have taken place in finding suitable short DNA regions and related PCR 

primers for barcoding of species in widely diverse food and forensic samples, but so far no truly mini-

barcode standard has been adopted. Efforts in designing short broad coverage COI barcodes (i.e. mini-

barcodes) to accommodate identification of a diversity of animal species in samples with degraded DNA 

has proven to be difficult. The use of the 130-bp COI mini-barcode primers designed by Meusnier et al. 

[34] has been limited [109], because the priming sites in the COI gene to accommodate the mini-barcode 

design have shown not to be conserved enough to cover a broad range of taxa [68,110]. Leray et al. [67] 

have taken a thorough approach and used the COI barcodes provided by the Moorea BIOCODE project, 

an “All Taxa Biotic Inventory” (www.mooreabiocode.org), consisting of > 64,000 sequences across all 

phyla to design conserved universal COI mini-barcoding primers to target a 313 bp region. The newly 

designed primers have been reported to perform well across metazoan diversity, with a higher success 

rate than the versatile primer sets traditionally used for DNA barcoding, i.e. the “Folmer primers” 

HCO2198 and LCO1490 [111] (Table 2.1). 

http://www.ncbi.nlm.nih.gov/genbank
http://www.fishtrace.org/
http://www.mooreabiocode.org/
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Mitochondrial cytb, 12S and 16S rRNA genes are the most commonly used genetic markers for 

species discrimination in degraded samples [112]. Universal primers for the amplification of short 

regions of cytb have been developed for various animal taxa [113,114]. Their use has been demonstrated 

in different problematic forensic samples that may contain degraded DNA including hair shafts, bones, 

feathers, and meat products [104,114].  

Mini-barcodes based on the 12S and 16S rDNA mitochondrial genes have recently been 

demonstrated by several studies to be suited for identifying a wide range of animal species in 

environmental samples [115] and processed food and wildlife forensic products including TMs 

[8,33,65,116]. The 12S and 16S rDNA contain internal regions that are strongly conserved across taxa, 

suitable for designing universal primers, alternated with short hyper-variable regions that are species-

specific. Sarri et al. [33] developed an approximately 250 bp barcode marker (Table 2.1), which allowed 

for the successful amplification of the 16S region across different sample types (e.g. cheese, processed 

meats, frozen fish fillets) and the correct identification of a wide range of animals in food products, 

including fishes, birds, reptiles, crustaceans and European mammals. Kitano et al. [117] developed 12S 

and 16S mini-barcodes for the identification of a large number of vertebrates (mammals, birds, reptiles, 

amphibians, and fish). Similarly, Karlsson and Holmlund [112] used short 12S and 16S regions to 

identify a total of 28 different mammals including domestic and game species.  

2.4 Plant DNA barcodes and mini-barcodes 

In plants, the COI gene and other mitochondrial regions are a poor choice for species identification 

because the mitochondrial genome in plants has evolved too slowly to allow it to be used for DNA 

barcoding [118]. The research for a COI analogue in plants has focused on the plastid genome, but the 

selection of a standard plant barcode marker has been complicated by the trade-off that arises between 

the high requirements of universality and high variability among plants [82]. So far, no single barcode 

marker has been found that is expected to discriminate all of the > 200,000 species of plants. The 

Consortium for the Barcode Of Life (CBOL) plant working group has opted for the use of a core set of 

two (rbcL and matK) coding sequences from plastids as the “core” DNA barcode (Table 2.2) [67]. The 

rbcL barcode consists of a 599 bp region at the 5’ end of the gene. It is easy to amplify, sequence and 

align in most land plants, but it has only modest discriminatory power. Newmaster et al. [119] analysed 

over 10,000 rbcL sequences from GenBank and found that rbcL could discriminate samples in 

approximately 85% of pairwise comparisons of congeneric species. The matK barcode region consists of 

a ca. 841-bp region at the centre of the gene, which is one of the most rapidly evolving regions of the 

plastid genome. The matK is perhaps the closest plant analogue to the COI animal barcode [120]. Ogden 

et al. [121] developed a Single-nucleotide polymorphism (SNP) genotyping approach based on matK 

DNA barcodes to distinguish between traded timber products of Ramin (Gonostylus) species, which are 

all CITES protected. Unfortunately, matK can be difficult to amplify, particularly in non-angiosperms, 

due to the lack of sufficiently universal primers [35,122].  

The two most widely-used supplementary loci are the nuclear ribosomal ITS (nrITS) [123] and 

plastid intergenic spacer psbA-trnH region [124]. The nrITS region had previously been discounted as a 

standard DNA barcode due to concerns over paralogy and the presence of putative pseudogenes which 

led to sequencing difficulties in many plant groups [125]. However, the increased resolution of nrITS 

over plastid DNA barcodes in many studies suggested that it should continue to be explored as part of 

the plant DNA barcode [123,126]. Some authors have noted that just using a subset of the ribosomal 
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cassette (nrITS2) can lead to greater amplification and sequencing success compared to the entire nrITS 

region [123]. By testing the discriminating ability of nrITS2 in more than 6,600 medicinal plants and 

closely related samples, Chen et al. [123] found that the rate of successful identification was 92.7% at the 

species level, and they proposed that the nrITS2 region should be the standard barcode for investigating 

forensic samples containing medicinal plants. Newmaster et al. [119] used rbcL and nrITS2 DNA 

barcodes to highlight species substitution and contamination in herbal products.  

The psbA-trnH region is straightforward to amplify across land plants, and is one of the more 

variable intergenic spacers in plants [127]. It has been used successfully in a range of barcoding studies 

[128,129]. One of the main concerns associated with the use of psbA-trnH as a standard barcode is the 

premature termination of sequence reads by mononucleotide repeats leading to unidirectional reads in 

up to 30% of sequences [130].  

In plants, the design of suitable universal mini-barcode markers has proven difficult. The length 

constraints to allow working with highly degraded DNA severely limit the taxonomic resolution of 

mini-barcodes compared to that of the 500-800 bp long standardized barcodes (rbcL, matK). Primers for 

the amplification of a ~180-bp region of chloroplast rbcL have been used, but this system only allows in 

most cases the identification of families, not genera or species [131]. Little [38] in silico evaluated a variety 

of rbcL primers and found the discriminatory power of the best rbcL mini-barcode to be less than 38.2%. 

Taberlet et al. [132] have used the chloroplast tRNALeu (UAA) intron sequences [trnL (UAA): 254 - 767 

bp] and a shorter fragment of this intron (the P6-loop, 10 - 143 bp) for identifying plant species in 

processed food and ancient permafrost samples. The number of trnL (UAA) intron sequences available 

in databases is high, by far the most numerous among non-coding chloroplast DNA sequences. The trnL 

(UAA) region had overall low resolution. However, Taberlet et al. [132] concluded that only closely 

related species are not resolved and that the region can effectively be used to identify commonly eaten 

plants (e.g. potato, tomato, maize, but not almond). The trnL (UAA) has been extensively used in food 

industry [133], forensic sciences [20] and diet studies based on faeces [134].  
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Table 2.1 Non-exhaustive list of primers for amplifying animal DNA barcodes and mini-barcodes. 

DNA 

marker 

Target taxonomic 

group 

Primer name Primer sequences (5’ - 3’) Amplicon 

length (bp) 

Remark Reference 

COI Various phyla 
LCO1490 GGTCAACAAATCATAAAGATATTGG 

648  Folmer et al. [111] 
HCO2198 TAAACTTCAGGGTGACCAAAAAATCA 

COI Reptiles 
RepCOI-F TNTTMTCAACNAACCACAAAGA 

664  Nagy et al. [99] 
RepCOI-R ACTTCTGGRTGKCCAAARAATCA 

COI-1 Birds 
BirdF1 TTCTCCAACCACAAAGACATTGGCAC 

648 
Forward 

Hebert et al. [79] 
BirdR1 ACGTGGGAGATAATTCCAAATCCTG Reverse 

COI 
Insects and 

amphibians 

LepF1 ATTCAACCAATCATAAAGATATTGG 

648  

Hebert et al. [135] 
LepR1 TAAACTTCTGGATGTCCAAAAAATCA 

MLepF1 GCTTTCCCACGAATAAATAATA (use with LepR1) Hajibabaei et al. 

[98] MLepR1 CCTGTTCCAGCTCCATTTTC (use with LepF1) 

COI-2 

Mammals, fish 

reptiles and 

amphibians 

LepF1_t1 TGTAAAACGACGGCCAGTATTCAACCAATCATAAAGATATTGG 

648 

M13-tailed 

cocktail; 

mix ratio 

1:1:1:3:1:1:1:

3 

Ivanova et al. [31] 

VF1_t1 TGTAAAACGACGGCCAGTTCTCAACCAACCACAAAGACATTGG 

VF1d_t1 TGTAAAACGACGGCCAGTTCTCAACCAACCACAARGAYATYGG 

VF1i_t1 TGTAAAACGACGGCCAGTTCTCAACCAACCAIAAIGAIATIGG 

LepR1_t1 CAGGAAACAGCTATGACTAAACTTCTGGATGTCCAAAAAATCA 

VR1d_t1 CAGGAAACAGCTATGACTAGACTTCTGGGTGGCCRAARAAYCA 

VR1_t1 CAGGAAACAGCTATGACTAGACTTCTGGGTGGCCAAAGAATCA 

VR1i_t1 CAGGAAACAGCTATGACTAGACTTCTGGGTGICCIAAIAAICA 

COI-3 Fish and mammals 

VF2_t1 TGTAAAACGACGGCCAGTCAACCAACCACAAAGACATTGGCAC 

 

M13-tailed 

cocktail; 

mix ratio 

1:1:1:1 

Ivanova et al. [31] 
FishF2_t1 TGTAAAACGACGGCCAGTCGACTAATCATAAAGATATCGGCAC 

FishR2_t1 CAGGAAACAGCTATGACACTTCAGGGTGACCGAAGAATCAGAA 

FR1d_t1 CAGGAAACAGCTATGACACCTCAGGGTGTCCGAARAAYCARAA 

COI Sharks 
FishR2 ACTTCAGGGTGACCGAAGAATCAGAA 

550  Ward et al. [96] 
Shark-int ATCTTTGGTGCATGAGCAGGAATAGT 

COI 
Echinodermata 

phylum 

COIceF ACTGCCCACGCCCTAGTAATGATATTTTTTATGGTNATGCC 
> 550  

Hoareau and 

Boissin [136] COIceR TCGTGTGTCTACGTCCATTCCTACTGTRAACATRTG 

COI 
Universal animal 

mini-barcode 

mlCOIintF GGWACWGGWTGAACWGTWTAYCCYCC 
313  

Leray et al. [110] 

jgHCO2198 TAIACYTCIGGRTGICCRAARAAYCA Geller et al. [137] 
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COI 
Universal animal 

mini-barcode 

Uni-MinibarR1 GAAAATCATAATGAAGGCATGAGC 
130  Meusnier et al. [34] 

Uni-MinibarF1 TCCACTAATCACAARGATATTGGTAC 

cytb Universal mammal 
L14724 CGAAGCTTGATATGAAAAACCATCGTTG 

1140 
Full-length 

cytb 
Irwin et al. [138] 

H15915 AACTGCAGTCATCTCCGGTTTACAAGAC 

cytb Universal fish 
FishcytB-F ACCACCGTTGTTATTCAACTACAAGAAC 

750 
cytb-5’ 

fragment 
Sevilla et al. [108] 

CytB1-5R GGTCTTTGTAGGAGAAGTATGGGTGGAA 

cytb 

Universal 

vertebrate animal 

mini-barcode 

L14816 CCATCCAACATCTCAGCATGATGAAA 

357  Parson et al. [114] 
H15173 CCCCTCGAATGATATTTGTCCTCA 

cytb 
Universal animal 

mini-barcode 

L14841 AAAAAGCTTCCATCCAACATCTCAGCATGATGAAA 
307  Kocher et al. [113] 

H15149 AAACTGCAGCCCCTCAGAATGATATTTGTCCTCA 

16S Universal animal 
16sar-L CGCCTGTTTATCAAAAACAT 

500 - 650 
Forward 

Palumbi [139] 
16sbr-H CCGGTCTGAACTCAGATCACGT Reverse 

16S 
Universal animal 

mini-barcode 

16S-forward AYAAGACGAGAAGACCC 
250  Sarri et al. [33] 

16S-reverse GATTGCGCTGTTATTCC 

16S 
Fish, cephalopods 

and crustaceans 

16S1F GACGAKAAGACCCTA 
250  Deagle et al. [140]  

16S2R CGCTGTTATCCCTADRGTAACT 

16S 
Universal mammal 

mini-barcode 

16S-forward GACGAGAAGACCCTATGGAGC 
100  Tillmar et al. [65] 

16S-reverse TCCGAGGTCACCCCAACCTCCG 

16S 

Universal 

vertebrate mini-

barcode 

L2513 GCCTGTTTACCAAAAACATCAC 

244  Kitano et al. [117] 
H2714 CTCCATAGGGTCTTCTCGTCTT 

16S 
Universal animal 

mini-barcode 

16S-HF ATAACACGAGAAGACCCT 

80 - 125  Horreo et al. [116]  16S-HR1 CCCACGGTCGCCCCAAC 

16S-HR2 CCCGCGGTCGCCCCAAC 

12S 

Universal 

vertebrate mini-

barcode 

L1085 CCCAAACTGGGATTAGATACCC 

215  Kitano et al. [117]  
H1259 GTTTGCTGAAGATGGCGGTA 

12S 

Universal 

vertebrate mini-

barcode 

12SV5-F TTAGATACCCCACTATGC 

98  Riaz et al. [141] 
12SV5B2 TAGAACAGGCTCCTCTAG 
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Table 2.2 Non-exhaustive list of primers for amplifying plant DNA barcodes and mini-barcodes. 

 

rbcL Universal plant 

rbcL a-F ATGTCACCACAAACAGAGACTAAAGC 654  Levin et al. [142]  

rbcL a-R GTAAAATCAAGTCCACCRCG   
Kress and 

Erickson, [122] 

matK 
Angiosperms & 

Gymnosperms 

matK-KIM1R ACCCAGTCCATCTGGAAATCTTGGTTC 656 - 889 Forward 
Fazekas et al. [143] 

matK-KIM3F CGTACAGTACTTTTGTGTTTACGAG  Reverse 

matK 
Angiosperms & 

Gymnosperms 

matK-390f CGATCTATTCATTCAATATTTC 656 - 889 Forward Cuenoud et al. 

[144]  matK-1326r TCTAGCACACGAAAGTCGAAGT  Reverse 

matK Gymnosperms 
NY552F CTGGATYCAAGATGCTCCTT 656 - 889 Forward 

Fazekas et al. [143]  
NY1150R GGTCTTTGAGAAGAACGGAGA  Reverse 

matK 
Gymnosperms 

matKpkF4 CCCTATTCTATTCAYCCNGA 656 - 889 Forward 
Fazekas et al. [35] 

 matKpkR1 CGTATCGTGCTTTTRTGYTT  Reverse 

nrITS2 Universal plant 
S2F ATGCGATACTTGGTGTGAAT  Forward Chen et al. [123] 

ITS4 TCCTCCGCTTATTGATATGC   Reverse White et al. [145] 

nrITS2 Universal plant 
S2F ATGCGATACTTGGTGTGAAT 160-320 Forward 

Chen et al. [123] 
S3R GACGCTTCTCCAGACTACAAT  Reverse 

nrITS 
Universal 

angiosperm 

17SE ACGAATTCATGGTCCGGTGAAGTGTTCG 800 Forward 
Sun et al. [146] 

26SE TAGAATTCCCCGGTTCGCTCGCCGTTAC  Reverse 

trnH-

psbA 
Universal plant 

psbAF GTTATGCATGAACGTAATGCTC 264 - 792  Sang et al. [147] 

trnH2 CGCGCATGGTGGATTCACAATCC   
Tate and Simpson 

[148] 

trnL 

(UAA) 

Universal plant 

mini-barcode 

g GGGCAATCCTGAGCCAA 

10 - 143 

p-loop 

region of 

trnL 

Taberlet et al. [132] 
h CCATTGAGTCTCTGCACCTATC 

trnL 

(UAA) 

Universal plant c CGAAATCGGTAGACGCTACG 
767  Taberlet et al. [149]  

 d GGGGATAGAGGGACTTGAAC 

trnL 

(UAA) 

Universal plant 

mini-barcode 

c CGAAATCGGTAGACGCTACG 
250  

Taberlet et al. [149]  

h CCATTGAGTCTCTGCACCTATC Taberlet et al. [132]  
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For some applications, a plant mini-barcode with relatively modest discriminatory power at 

the genus or higher taxonomic level can be useful. For example, it is often an entire genus or family that 

is listed by CITES, rather than individual plant species. For many plant families listed by CITES (e.g. 

Cycadaceae, Orchidaceae, Cactaceae, Euphorbia) identification to a larger group is therefore all that is 

required. This does not apply to all illegally traded plant genera though, such as tree ferns of the genus 

Cibotium, of which only C. regale is legally protected. In such cases, an alternative approach could be to 

design species specific mini-barcodes to distinguish between closely related species from the CITES 

listed species, as was done for instance for Rauvolfia serpentina [20]  

 

 

2.5 Sequencing of DNA barcodes using NGS technology 

There are many excellent reviews on NGS platforms, and also their fundamentals and broad 

characteristics are described elsewhere [42,57,150,151]. We will focus on the important steps in the NGS 

workflow, and only provide a brief overview of NGS technologies relevant for DNA metabarcoding. 

Early DNA metabarcoding studies have employed the 454 pyrosequencing technology of Roche 

because it was the first commercially available NGS system and because of its longer sequence read-

outs allowing for a more informative fraction of DNA barcodes to be sequenced. Pyrosequencing has 

been used for DNA metabarcoding of raw materials of the diet of several animals [110,134], 

environmental monitoring [58,152,153], as well as for analysing ancient DNA extracted from museum 

specimens [109]. The 454 technology is however no longer mainstream and Roche announced that 454 

sequencers will be phased out in mid-2016. 

Box 2.2 Approximate number of sequences of DNA barcodes and other taxonomically informative 

genes available in GenBank (December 2014). 

 GenBank sequences were retrieved with a query of the sequence annotations using the nucleotide 

database, for example ‘COI’ OR ‘cytochrome c oxidase’ AND eukaryote‘. After which the query 

headers were downloaded and additionally filtered using the GNU/Linux command line tools (e.g. 

awk and grep). The number of unique genera and species were estimated from the sequence 

annotations, and should be considered only as an approximation. 

Number of barcoding sequences deposited in GenBank 

 COI 16S  cytb matK rbcL trnL 
psbA-

trnH 
nrITS 

Approx. number of 

accessions 
940,687 264,931 324,769 94,246 134,784 172,493 44,581 378,711 

Approx. number of 

species 
102,919 60,928 34,230 43,039 47,675 63,172 20,891 84,670 

Approx. number of 

genera 
30,923 21,691 10,822 8,759 10,978 10,895 3,836 14,338 
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Recently, benchtop sequencers have emerged that due to their compact format, lower set-up 

and running costs, and faster data turnaround times have made NGS accessible for routine testing 

laboratories. The 454 GS Junior System (Roche), the MiSeq and MiniSeq (Illumina®), the NextSeq 500 

(Illumina®), the Ion Proton™ System (Ion Torrrent™) and Ion PGM™ System (Ion Torrrent™) have 

sequencing capacities large enough for most metabarcoding projects (Box 2.3). Tillmar et al. [65] used 

to Roche 454 GS Junior system for the detection of animal species using the 16S rRNA gene. The same 

benchtop sequencer and the 454 GS-Titanium sequencer were used to identify plant and animal species 

in TMs [8,9,64]. Bertolini et al. [154] used the Ion Torrent PGM™ System for the identification of DNA 

from meat species using 12S and 16S rRNA genes.  

The choice of NGS technology for DNA metabarcoding, may depend on several parameters 

such as the barcode length, the number of barcodes used and the number of samples that need to be 

analysed. An advantage of Illumina® sequencing is that sequencing data with very low error rates (> 

0.1%) are produced, compared to 454 and Ion Torrent™ sequencing [155]. The most common error 

types on the 454 and Ion Torrent™ platforms are insertions and deletions (indels), in particular when 

reading homopolymer regions. This results in an overall error rate of ~1.5% [155,156]. Sequencing errors 

can lead to spurious identification of species. Bertolini et al. [154] reported that when Ion Torrent data 

are quality filtered during downstream bioinformatics processing, the error rates do not introduce any 

bias that could prevent the correct assignment of meat specie.  

Box 2.3 Benchtop next-generation sequencing systems and their characteristics.  

Benchtop instruments are scaled-down, economical NGS platforms driven by the need for cheaper and 
faster sequencing, and which are suited for metabarcoding of typical food and forensic samples. The 
system specificities are listed with expected maximum performance by beginning 2016. 

Instrument Company 
Machine run 

time (h) 
Reads/run 

Read length 

(base) 
Output 

454 GS Junior 

Plus1 
Roche 18 70,000 ~700 70 Mb 

MiniSeq2 Illumina® 24 44 – 50 million 2x150 6.6 – 7.5 Gb 

MiSeq3 Illumina® 56 44 – 50 million 2x300 13.2 – 15 Gb 

NextSeq 5004 Illumina® 29 
Up to 800 

million 
2x150 

100 – 120 

Gb 

Ion PGM™ 

System5 
Ion Torrent™ 7.3 4 – 5.5 million 400 1.2 – 2.0 Gb 

Ion Proton™ 

System6 
Ion Torrent™ 4 60 – 80 million 200 Up to 10 Gb 

1: Adopted from http://454.com/products/gs-junior-plus-system/index.asp. Roche announced that 
454 sequencers will be phased out in mid-2016.  
2: adopted from http://www.illumina.com/systems/miniseq/specifications.html 
3: Adopted from http://www.illumina.com/systems/miseq/performance_specifications.html 
4: Adopted from http://www.illumina.com/systems/nextseq-sequencer/performance-
specifications.html  
5: Adopted from https://tools.lifetechnologies.com/content/sfs/brochures/PGM-Specification-
Sheet.pdf 
6: Adopted from 
https://tools.lifetechnologies.com/content/sfs/brochures/CO06326_Proton_Spec_Sheet_FHR.pdf 
 

http://454.com/products/gs-junior-plus-system/index.asp
http://www.illumina.com/systems/miniseq/specifications.html
http://www.illumina.com/systems/miseq/performance_specifications.html
http://www.illumina.com/systems/nextseq-sequencer/performance-specifications.html
http://www.illumina.com/systems/nextseq-sequencer/performance-specifications.html
https://tools.lifetechnologies.com/content/sfs/brochures/PGM-Specification-Sheet.pdf
https://tools.lifetechnologies.com/content/sfs/brochures/PGM-Specification-Sheet.pdf
https://tools.lifetechnologies.com/content/sfs/brochures/CO06326_Proton_Spec_Sheet_FHR.pdf
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The high output combined with relatively short length have limited the use of Illumina 

sequencing technology mainly to profiling of bacterial communities using short 16S rDNA 

hypervariable regions [157,158]. However, recent developments allowed the MiSeq platform to double 

the amount of output per flow cell by producing read lengths of 300 bp (Box 2.3). Because the Illumina 

platform can generate amplicon sequences in a paired-end format, paired reads can be directly matched 

and assembled into amplicons of up to ~550 bp. 

This development has allowed the MiSeq sequencer to compete with 454 sequencing 

technology as it allows for generating sequence data from barcode regions with sufficient taxonomic 

resolution for animal and plant species identification. 

An important step in the NGS workflow is to generate a library of the amplicons of interest. 

Fundamental for library construction is the modification of the DNA amplicons into a form that is 

compatible with the NGS platform to be used. The library is constructed by enzymatically ligating 

adapter sequences to the DNA amplicons or by adding them by PCR. The adaptors include specific 

sequences that are required for clonal amplification of the library on a solid surface (bead or glass slide). 

The choice of these adapter sequences is dictated by the NGS platform (Box 2.3). The adapter sequences 

may additionally contain a 6 - 10 nucleotide-long multiplex identifier (MID) that is used to pool 

amplicons from several independent samples in one run. MIDs are typically added to make more 

efficient use of the sequencing capacity of the NGS sequencers i.e. the number of reads generated by 

each NGS technology is usually higher than required per sample. Adapter sequences with different 

MIDs need to be used for each sample when multiple samples are sequenced in a single NGS 

experiment. The number of samples that can be pooled depends on (1) the number of available MIDs, 

(2) the sequencing capacity of the NGS platform, (3) the number of amplicons per sample and (4) the 

required sequencing depth [159,160]. After NGS, the resulting combined sequence data from different 

samples are subsequently sorted in silico by MID using bioinformatics tools.  

 

2.6 Bioinformatics tools 

Bioinformatics has played a crucial role in the advancement of metabarcoding. In recent years, many 

bioinformatics tools have been developed and are constantly being improved to efficiently and 

effectively perform various steps involved in the metabarcoding process. After obtaining NGS data, 

quality filtering is the first essential step, because it removes erroneous data that may otherwise 

potentially lead to misidentification of species. Sequencing errors introduced during NGS can be 

recognized because raw reads have predicted error probabilities for each base indicated by Phred 

quality scores. Sequence errors can be removed during quality-filter and –trimming e.g. by truncating 

reads at the position where their quality begins to drop. A Phred score of 20, which corresponds to a 

1% error rate in base calling, is often used as a minimum threshold in quality filtering. Bokulich et al. 

[161] have published guidelines for quality-filtering strategies to enable efficient extracting of high-

quality data from Illumina amplicon sequencing data. In their studies on TMs, Coghlan et al. [9,44] used 

the commercially available software Geneious [162]. Other software tools for quality filtering of reads 

include e.g. PRINSEQ [163] and Trimmomatic [164].  

Following quality control, the sequences can either be directly matched to a reference library 

of DNA barcodes or processed further using clustering analysis. Clustering analysis is often performed 

to improve throughput by removing redundancy in the data such that the input can be used for the 

more computationally intensive analysis of assigning taxonomy. Clustering methods group reads into 

operational taxonomic units (OTUs) based on their similarity to other sequences in the samples, and 
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from which representative or consensus sequences are selected. Commonly-used clustering algorithms 

are CD-HIT [165] , BlastClust [166] and UPARSE [167]. An OTU is commonly defined as a cluster of 

reads with 97% similarity, which would be considered as belonging to a unique species according to 

the DNA barcoding standard [94]. However, the traditionally used 97% similarity threshold is only an 

approximation. Sometimes two closely related species may have identical barcode sequences [168] or 

conversely single species may have two or more copies of a DNA barcode marker that differ by more 

than 3% [169]. 

Next, tree-based methods and similarity-based methods are most commonly used for assigning 

query sequences to taxonomy. Tree-based methods assign query sequences to species based on their 

membership of clusters (or clades) in a barcode tree. This approach is usually based on neighbour 

joining (NJ) developed by Saitou and Nei [170], and is implemented in BOLD by Ratnasingham and 

Hebert [80]. The underlying assumption in NJ barcode matching is that distinct species form discrete 

clusters in a NJ tree [94]. For identification, query sequences are induced in the NJ tree to see in which 

cluster they appear. Similarity-based BLAST (Basic Local Alignment Search Tool [166]) is probably the 

most widely used method for classifying DNA sequences in practice. BLAST aligns the query sequence 

against those present in a selected target database using nearly exact matches of short nucleotide strings 

(e.g. 10 nucleotides). A similarity score is computed from the portion of the query aligned to the 

reference sequence. The reference sequence(s) with the highest similarity score is presented along with 

an indication of the Expect value (E-value), which is the number of hits one can "expect" to see by chance 

when searching a database of a particular size.  

A number of dedicated software pipelines exist that allow processing of metabarcoding 

datasets followed by taxonomic annotation, including jMOTU and Taxonerator [171], CLOTU [172], 

QIIME [173], Mothur [174] and UPARSE [167]. These software tools have been developed for studying 

microbial communities using the 16S rRNA gene fragment, but they can also be used for metabarcoding 

samples containing plants and animals [8,175]. The HTS barcode checker pipeline is an application for 

automated processing of NGS data to determine whether these contain DNA barcodes obtained from 

species listed on the CITES appendices [59]. DNA metabarcodes are automatically converted into 

taxonomic identifications by matching with names on the CITES appendices. By inclusion of a blacklist 

and additional names database, the HTS barcode checker pipeline prevents false positives and resolves 

taxonomic heterogeneity. 

In DNA metabarcoding, the availability of curated reference databases is of major importance 

to the assignment of sequences to species. A prerequisite is that reference database should contain 

accurate sequences that are correctly assigned to taxa with adequate sampling and taxon coverage to 

fully evaluate both the intraspecific and interspecific variations. Unbalanced representation of certain 

species, which is expected when dealing with CITES species may greatly affect the analysis. Currently, 

there are many barcoding campaigns initiated by iBOL to generate DNA barcode data from well-

identified and vouchered samples (Box 2.1). Worldwide sequencing efforts have already resulted in 

more than 2 million COI records from nearly 170,000 species in BOLD. The Barcode Index Number 

System (BINs) introduced by BOLD is an online framework that automatically clusters animal COI 

barcode sequences, generating a wiki web page for each cluster [176]. Since clusters show high 

concordance with species, the framework can be used to verify species identifications as well as 

document potential new animal species without taxonomic information. BOLD has already reached a 

good level of standardization and accuracy in terms of the identification of animals but the situation 

for plants is quite different. The debate about the correct marker(s) to be used as universal barcode has 

led to a delay in the introduction of plant sequences in the BOLD database [67]. There is also valuable 
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sequence data archived by the International Nucleotide Sequence Database Collaboration (INSDC; 

www.insdc.org), which, besides the COI region, is particularly extensive for nrITS and cytb (Box 2.2). 

However, many of the existing INSDC sequences lack validation in the form of voucher information, 

making it difficult to detect and remove misidentified specimens or contaminated sequences. Currently 

the use of local curated reference datasets is often preferred when DNA barcoding is used in plants 

[177]. Luo et al. [178] developed a custom DNA barcoding database for medicinal plant materials, and 

it accepts plastid DNA markers and nuclear nrITS regions as input 

(www.cuhk.edu.hk/icm/mmdbd.htm). Furthermore, an online identification module for herbal plant 

materials has been developed (www.tcmbarcode.cn), which is based around a selection of nrITS2 and 

psbA-trnH barcodes from selected medicinal species and their adulterants, substitutes and closely 

related species. Non-exhaustive list of software available for DNA metabarcoding. 

 

 Description Reference 

Software for quality filtering of reads 

PRINSEQ Application for filtering, 

reformatting and quality trimming 

of metagenomic datasets. The 

software is publicly available 

through a user-friendly web 

interface and as stand-alone version. 

Schmieder and Edwards [163] 

http://edwards.sdsu.edu/cgi-

bin/prinseq/prinseq.cgi  

Geneious  Commercially available suite of 

molecular tools 

Kearse et al. [162] 

www.geneious.com 

Trimmomatic A flexible read trimming tool for 

Illumina NGS data 

Bolger et al. [164] 

http://www.usadellab.org/cms/?page=trimmomatic 

Software for cluster analysis of reads 

CD-HIT A fast program for clustering of next-

generation sequencing data. The 

software is publically available 

through a user-friendly interface and 

as stand-alone version. 

Fu et al. [165] 

http://weizhongli-lab.org/cdhit_suite/cgi-

bin/index.cgi  

BLASTclust A program to make non-redundant 

sequence sets. 

Altschul et al. [166] 

http://toolkit.tuebingen.mpg.de/blastclust 

Software for assigning reads to taxonomy 

BOLD 

identification 

Species identification system of the 

Barcode of Life Data Systems 

(BOLD) 

Ratnasingham and Hebert [80] 

http://www.boldsystems.org/  

BLAST The Basic Local Alignment Search 

Tool (BLAST) finds regions of local 

similarity between sequences. The 

program is publically available 

through a user-friendly web 

interface and as stand-alone version. 

Altschul et al. [166] 

http://blast.ncbi.nlm.nih.gov/Blast.cgi 

 

HTS-

barcode-

checker 

A tool for automated detection of 

illegally traded species from high-

throughput sequencing data 

 

 

Lammers et al. [59] 

https://github.com/naturalis/HTS-barcode-checker 

 

http://www.insdc.org/
http://www.cuhk.edu.hk/icm/mmdbd.htm
http://www.tcmbarcode.cn/
http://edwards.sdsu.edu/cgi-bin/prinseq/prinseq.cgi
http://edwards.sdsu.edu/cgi-bin/prinseq/prinseq.cgi
http://www.geneious.com/
http://www.usadellab.org/cms/?page=trimmomatic
http://weizhongli-lab.org/cdhit_suite/cgi-bin/index.cgi
http://weizhongli-lab.org/cdhit_suite/cgi-bin/index.cgi
http://toolkit.tuebingen.mpg.de/blastclust
http://www.boldsystems.org/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://github.com/naturalis/HTS-barcode-checker
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2.7 Outlook  

Next-Generation Sequencing of DNA barcodes, commonly referred to as DNA metabarcoding, is more 

and more becoming a standard approach for the simultaneous identification and detection of multiple 

species in complex samples. The approach is similar for both species identification to prevent food 

fraud and for tracing possible cases of illegal trade of CITES species. A large variety of informative 

barcodes and mini-barcodes in both the animal and plant area is available, potentially allowing for a 

clear-cut identification of species present in a sample of interest. However, comprehensive 

identification of (endangered and/or protected) species in complex forensic samples is not yet fully 

feasible at this moment. This is due to a number of reasons. In the first place, no truly universal DNA 

isolation method is available for all the different matrixes seized by the customs and CITES authorities. 

In-house developed protocols or commercially available kits or a combination of both are typically 

assessed in an attempt to obtain amplifiable DNA from forensic samples, which will increase time and 

cost. In many cases, the poor success of extraction and PCR amplification of DNA from forensic samples 

hinder effective identification of species. Accordingly, systematic studies are needed to optimise DNA 

isolation methods and efficiency to satisfy the stakeholders needs, which is to obtain a robust and rapid 

DNA isolation method that can be applied across on a wide range of (wildlife) forensic samples, and 

which would maximize DNA purity and yield, whilst reducing any further DNA damage.  

Secondly, forensic samples are often heavily processed and may contain severely fragmented 

DNA, thus hampering the ability to PCR amplify full-length barcodes. In such cases, mini-barcodes are 

often the only alternative, but these do not always provide species level resolution and truly universal 

primers for mini-barcode amplification have been found difficult to design. Universal primers should 

be used that minimize PCR bias caused by variable primer-template mismatches across species to 

ensure that all species can be detected [69,70]. Several mini-barcodes have been proposed, but especially 

for plants no universal mini-barcode standard to provide species-level resolution has so far been 

adopted. The power of DNA metabarcoding is that a panel of different barcodes and mini-barcodes can 

efficiently be analysed in parallel. Such a strategy will provide improved resolution at the species level 

when some barcodes fail to resolve, while verifying species with multiple barcodes contributes to 

enhanced quality assurance.  

Software pipelines for DNA metabarcoding 

jMOTU and 

Taxonerator 

Software for turning DNA barcode 

sequences into annotated OTUs. 

Jones et al. [171] 

QIIME Quantitative Insights Into Microbial 

Ecology: bioinformatics pipeline for 

microbiome analysis from raw DNA 

sequence data. 

Caporaso et al. [173] 

http://qiime.org/ 

 

CLOTU  Software for processing amplicon 

reads followed by taxonomic 

annotation. 

Kumar et al. [172] 

UPARSE Pipeline for clustering NGS 

amplicon reads into OTUs. 

Edgar et al. [167] 

http://drive5.com/uparse/  

Mothur Open-source, platform-

independent, community-supported 

software for describing and 

comparing microbial communities. 

Schloss et al. [174] 

http://www.mothur.org/ 

 

http://qiime.org/
http://drive5.com/uparse/
http://www.mothur.org/
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Thirdly, the current underrepresentation of DNA barcodes from species protected under CITES 

and closely related species critically hamper their identification. This will improve as DNA barcoding 

campaigns continue, in particular through initiative such as the Barcode of Wildlife Project (BWP; 

www.barcodeofwildlife.org). The latter project aims to construct a public DNA barcode reference 

library for 2,000 endangered plant and animal species, thereby paving the way for the use of DNA 

barcodes in a court of law to provide strong evidence against those involved in poaching and trafficking 

of species protected by CITES.  

Finally, it will be necessary to develop and validate bioinformatics pipelines for the detection 

and identification of endangered species using DNA metabarcoding strategies. Several dedicated 

software tools have been developed, but there is a need to validate pipelines for clustering of reads into 

OTUs, using benchmarked algorithms for quality control, de-noising, chimera removal, and OTU 

picking.  

Concluding, the DNA metabarcoding approach holds great promise for detecting and 

identifying endangered plant and animal species in complex forensic samples. However, validation of 

the approach should be performed before DNA metabarcoding can be applied in a routine setup. By 

making use of DNA-barcoded reference species in well-characterized experiment complex products, or 

as internal controls in real-life samples it can be assessed whether the DNA metabarcoding procedure 

is able to accurately and concurrently identify various target plant and animal species. Only when DNA 

metabarcoding has been demonstrated to be robust and transferable across laboratories can the method 

truly be implemented in routine testing. In that sense, we are just at the beginning of exploring the 

broad applications of DNA metabarcoding to reveal the composition of complex products in the light 

of, for instance, food fraud and the illegal trading of endangered plant and animal species. 
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Chapter 3 

 

Development and validation of a multi-locus DNA 
metabarcoding method to identify endangered species in 
complex samples 
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Abstract 
  
Background DNA metabarcoding provides great potential for species identification in complex 

samples such as food supplements and traditional medicines. Such a method would aid CITES (the 

Convention on International Trade in Endangered Species of Wild Fauna and Flora) enforcement 

officers to combat wildlife crime by preventing illegal trade of endangered plant and animal species. 

The objective of this research was to develop a multi-locus DNA metabarcoding method for forensic 

wildlife species identification and to evaluate the applicability and reproducibility of this approach 

across different laboratories. 

Results A DNA metabarcoding method was developed that makes use of 12 DNA barcode markers 

that have demonstrated universal applicability across a wide range of plant and animal taxa, and that 

facilitate the identification of species in samples containing degraded DNA. The DNA metabarcoding 

method was developed based on Illumina MiSeq amplicon sequencing of well-defined experimental 

mixtures, for which a bioinformatics pipeline with user-friendly web interface was developed. The 

performance of the DNA metabarcoding method was assessed in an international validation trial by 16 

laboratories, in which the method was found to be highly reproducible and sensitive enough to identify 

species present in a mixture at 1% dry weight content. 

Conclusion The advanced multi-locus DNA metabarcoding method assessed in this study provides 

reliable and detailed data on the composition of complex food products, including information on the 

presence of CITES-listed species. The method can provide improved resolution for species 

identification, while verifying species with multiple DNA barcodes contributes to an enhanced quality 

assurance.  

 

Keywords Endangered species, CITES, Traditional medicines, DNA metabarcoding, Customs agencies, 

COI, matK, rbcL, cyt b, mini-barcodes. 
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3.1 Background 

The demand for endangered species as ingredients in traditional medicines (TMs) has become one of 

the major threats to the survival of a range of endangered species such as seahorse (Hippocampus sp.), 

agarwood (Aquilaria sp.), and Saiga antelope (Saiga tatarica) [10,179,180]. The Convention on the 

International Trade in Endangered Species of Wild Fauna and Flora (CITES) is one of the best supported 

conservation agreements to regulate trading of animal and plant species (www.cites.org) and thereby 

conserve biodiversity. Currently, ~35,000 species are classified and listed by CITES in three categories 

based on their extinction level (CITES Appendix I, II and III) by which the trade in endangered species 

is regulated. The success of CITES is dependent upon the ability of customs inspectors to recognize and 

identify components and ingredients derived from endangered species, for which a wide range of 

morphological, chromatographic and DNA-based identification techniques can be applied [4,5]. 

Recent studies have shown the potential of DNA metabarcoding for identifying endangered 

species in TMs and other wildlife forensic samples [8,9,64,181]. DNA metabarcoding is an approach 

that combines DNA barcoding with next-generation sequencing (NGS), which enables sensitive high-

throughput multispecies identification on the basis of DNA extracted from complex samples [60]. DNA 

metabarcoding uses more or less universal PCR primers to mass-amplify informative DNA barcode 

sequences [18,182]. Subsequently, the obtained DNA barcodes are sequenced and compared to a DNA 

sequence reference database from well-characterized species for taxonomic assignment [60,182]. The 

main advantage of DNA metabarcoding over other identification techniques is that it permits the 

identification of all animal and plant species within samples that are composed of multiple ingredients, 

which would not be possible through morphological means and time-consuming with traditional DNA 

barcoding [8,9,64]. Furthermore, the use of mini-barcode markers in DNA metabarcoding facilitate the 

identification of species in highly processed samples containing heavily degraded DNA [8,9]. Such a 

molecular approach could aid the Customs Authorities to identify materials derived from endangered 

species in a wide variety of complex samples, such as food supplements and TMs [183].  

 Before routine DNA metabarcoding can be applied, there are some key issues that need to 

be taken into account. First, complex products seized by Customs, such as TM products, may contain 

plant and animal components that are highly processed, and from which the isolation of good quality 

DNA is challenging. Second, the universal DNA barcodes employed may not result in amplification of 

the related barcode for each species contained in a complex sample, due to DNA degradation or the 

lack of PCR primer sequence universality. For plants, for example, different sets of DNA barcodes have 

been suggested for different fields of application (i.e. general taxonomic identification of land plants, 

identification of medicinal plants, etc.), and none of them meet the true requirements of universal 

barcodes [184]. Also, whilst PCR primers can be designed to accommodate shorter DNA barcode 

regions for degraded DNA samples, such mini-barcodes contain less information and their primers are 

more restrictive, often making them unsuitable for universal species barcoding [38,64]. The third 

challenge is the reference sequence database quality and integrity, which is particularly problematic for 

law enforcement issues, where high quality and reliability are essential. The current 

underrepresentation of DNA barcodes from species protected under CITES and closely related species 

critically hampers their identification. The fourth challenge is that a dedicated bioinformatics pipeline 

is necessary to process raw NGS data for accurate and sensitive identification of CITES-listed species 

[18]. Finally, studies using the DNA metabarcoding approach are scarce and none of these methods 

have been truly validated [18,185]. Therefore, before implementing DNA metabarcoding by Customs 

and other enforcement agencies, the above-mentioned challenges need to be thoroughly assessed to 

ensure accurate taxonomic identifications. [18] 

 The objective of this research was to develop a multi-locus DNA metabarcoding method 

for (endangered) species identification and to evaluate the applicability and reproducibility of this 

approach in an international interlaboratory study. The research was part of a larger programme on 

http://www.cites.org/
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the development of advanced DNA-based methods from the DECATHLON project (www.decathlon-

project.eu), within the European Union’s Framework Programme 7. In the process of establishing the 

standard operating procedure (SOP) for multi-locus DNA metabarcoding, all important aspects of the 

procedure (i.e. DNA isolation procedure, DNA barcode marker, barcode primers, NGS strategy and 

bioinformatics) were evaluated. The challenges concerning the quality and integrity of the DNA 

reference database(s) are discussed. The first step was aimed at identifying an ideal DNA isolation 

method to extract DNA from complex mixtures consisting of both animal and plant tissues. Secondly, 

animal and plant DNA barcode markers and corresponding primer sets were identified from literature 

that allowed good resolution for identifying (endangered) species from a wide taxonomic range. 

Thirdly, a panel of universal plant and animal DNA barcodes was selected and a single optimal PCR 

protocol was identified for efficient amplification of a panel of DNA barcode markers. Finally, the 

suitability of the Illumina MiSeq NGS technology was evaluated, and a bioinformatics pipeline with a 

user-friendly web interface was established to allow stakeholders to perform the NGS data analysis 

without expert bioinformatics skills.  

 The DNA metabarcoding method was developed and tested based on data generated for 

15 well-defined complex mixtures. The use of well-characterised mixtures allowed for optimising the 

bioinformatics procedure and subsequent robustness testing of multiple parameter settings and 

thresholds. The practical performance and reproducibility of the DNA metabarcoding strategy was 

assessed in an international validation trial by 16 laboratories from 11 countries, on the basis of eight 

other newly composed complex mixtures and two seized TMs, which were suspected to contain 

ingredients derived from CITES species. In this study, the multi-locus DNA metabarcoding method is 

presented and it is assessed whether the method can improve the compositional analysis of complex 

and real-life samples by enabling the sensitive and reproducible identification of CITES-listed taxa by 

enforcement agencies and other laboratories.  

 

3.2 Data description  

To constitute well-defined complex mixtures, 46 reference specimens were commercially purchased 

from shops or were provided by the Dutch Custom Laboratory. In addition, two TMs that were 

suspected to comprise endangered species material were also obtained from Dutch Customs 

Laboratory. Each reference specimen was identified morphologically. Genomic DNA was extracted 

from 29 animal and 17 plant reference species for DNA barcoding. Standard cytochrome c oxidase I 

(COI) barcodes for all animal specimens were generated and individually sequenced using the Sanger 

method, and compared against the Barcode of Life Data Systems and NCBI database for taxonomic 

confirmation. For plant species, the DNA barcodes rbcL and matK were sequenced to confirm species 

identity. For a number of plant and animal species the generated barcode sequence information was 

deposited in the European Nucleotide Archive (ENA) under accession numbers LT009695 to LT009705, 

and LT718651 (Additional file 3A; Table S1).  

The complex mixtures for the pilot study and interlaboratory validation trial were prepared 

with 2 to 11 taxonomically well-characterised species present in relative concentrations (dry mass: dry 

mass) from 1% to 47%. For all experimental mixtures in the interlaboratory trial, internal control species 

were used to verify the efficiency of homogenization and to check for possible sample cross-

contamination using species specific qPCR assays. DNA was isolated from the complex mixtures and 

the concentration and purity of extracted DNA was determined using spectrophotometer (NanoDrop 

1000, Thermo Fisher Scientific Inc.). Subsequently, PCR amplifications using 12 DNA barcode primer 

sets were performed. The pooled and purified amplicons of each sample were sequenced using an 

Illumina MiSeq paired-end 300 technology, following the manufacturer’s instructions (Illumina, Inc.). 

The NGS datasets were analysed using the CITESspeciesDetect pipeline. All raw NGS datasets from 

both analyses were deposited in ENA under accession numbers ERS1545972 to ERS1545988, 
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ERS1546502 to ERS1546533, ERS1546540 to ERS1546619, ERS1546624 to ERS1546639, ERS1546742 to 

ERS1546757, ERS1546759 to ERS1546774, and study number PRJEB18620 (Additional file 3C; Table S1). 

A web interface was developed for the CITESspeciesDetect pipeline to allow stakeholders to perform 

the NGS data analysis of their own samples. The web interface can be globally accessed via the 

SURFsara high-performance computing and data infrastructure (http://decathlon-fp7.citespipe-

wur.surf-hosted.nl:8080/). 

 

3.3 Analyses 

3.3.1 Establishing a laboratory procedure for multi-locus DNA barcode amplification 

Based on the previous studies on DNA isolation for TMs [44,64] and from the comparison between 

modified Qiagen DNeasy plant mini kit [186] and CTAB isolation [187] (unpublished results), we 

identified that the CTAB isolation method in general yields better DNA purity and provides better PCR 

amplification success. Therefore, the CTAB DNA isolation method was selected for successive 

experiments. 

The DNA barcode markers included in this study were selected based on Staats et al. [18] 

supplemented with additional primers from literature [38] (Table 3.1). DNA barcode markers were 

selected based on the availability of universal primer sets and DNA sequence information in public 

repositories [18]. Important considerations in selecting suitable primer sets were that, preferably, they 

are used in DNA barcoding campaigns and studies, and as such have demonstrated universal 

applicability across a wide range of taxa. Furthermore, primer sets for both the amplification of full-

length barcodes and their respective mini-barcodes (i.e. short barcode regions < 300 nt within existing 

ones) were selected when available. This was done to facilitate PCR amplification from a range of 

wildlife forensic samples containing relatively intact DNA (using full-length barcodes) and/or 

degraded DNA (mini-barcodes). Based on these criteria, PCR primer sets for the following animal DNA 

barcodes were selected: regions of the mitochondrial genes encoding 16S rRNA gene (16S), cytochrome 

c oxidase I (COI) and cytochrome b (cyt b). For plant species identification, primer sets for the following 

DNA barcodes were selected: regions of the plastidial genes encoding maturase K (matK), ribulose-1,5-

bisphosphate carboxylase (rbcL), tRNALeu (UAA) intron sequence (trnL (UAA)), psbA-trnH intergenic 

spacer region (psbA-trnH), and the nuclear internal transcribed spacer 2 (ITS2) region (Table 3.1). The 

selected primers sets were modified to include the Illumina adapter sequence at the 5’ end of the locus-

specific sequence to facilitate efficient NGS library preparation. A gradient PCR experiment was 

performed to identify the optimal PCR annealing temperature. While the selected PCR primer sets had 

previously been published with their own annealing temperatures and conditions, the identification of 

a single optimal annealing temperature for all PCR primer sets would allow for increased efficiency of 

analysis. Initially, a thermal gradient of 49.0 °C to 55.0 °C was tested on the Bos taurus reference material 

with the primer sets for COI, 16S, mini-16S, and cyt b. The amplification efficiency across the PCR 

primers sets was determined by comparing the intensity of the amplicons across the thermal gradient. 

An optimal annealing temperature of 49.5 °C was identified, but additional non-specific amplicons were 

observed with some primers (not shown). To reduce the amounts of non-specific amplification 

products, the PCR program was modified to increase the annealing temperature after five cycles from 

49.5 °C to 54.0 °C [31], and tested on all 15 PCR primer sets (Table 3.1). It was observed that certain PCR 

primer combinations still produced non-specific products (for psbA-trnH gene) or less intense PCR 

products (for rbcL gene with primers rbcLa-F and rbcLajf634R, and matK gene with primers matK-390f 

and matK-1326r). Consequently, these PCR primer sets were excluded from subsequent experiments.  

Next, the selected PCR thermocycling protocol was evaluated with the remaining 12 PCR 

primer sets on a panel of 29 animal and 17 plant species, representing a phylogenetically wide range of 

taxa (Mammalia, Actinopterygii, Malacostraca, Bivalvia, Aves, Reptilia, Amphibia, Insecta, 

http://decathlon-fp7.citespipe-wur.surf-hosted.nl:8080/
http://decathlon-fp7.citespipe-wur.surf-hosted.nl:8080/
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Angiospermae, and Cycadopsida; Additional file 3A; Table S2 and S3). The overall PCR amplification 

success rates varied across reference species and across DNA barcode markers (Additional file 3A; 

Table S2). For instance, no PCR amplification was observed with cyt b for the CITES-listed species 

Balaenoptera physalus, whereas intense amplification was seen for the same species with 16S, COI, mini-

16S and mini-COI (Additional file 3A; Table S2). Overall, at least one DNA barcode marker could 

successfully be amplified for each of the 46 plant and animal species (Additional file 3A; Table S2 and 

S3). For a number of plant and animal species the generated barcode sequence information was 

deposited in the European Nucleotide Archive (ENA) under accession numbers LT009695 to LT009705, 

and LT718651 (Additional file 3A; Table S1). 
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Table 3.1 Overview of the PCR primer sets used in this study for amplifying plant and animal DNA barcodes and mini-barcodes. 

DNA 

Marker 

Primer name Primer sequence 5’-3’ Amplicon 

length (nt) 

Reference 

Universal animal DNA barcodes and mini-barcodes 

16S 16sar-L TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGCCTGTTTATCAAAAACAT 500-600 Palumbi [32]  

16sar-H GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCGGTCTGAACTCAGATCACGT 

mini-16S 16S-forward TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAYAAGACGAGAAGACCC 250 Sarri et al.[33] 

16S-reverse GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGATTGCGCTGTTATTCC 

COI* LepF1_t1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATTCAACCAATCATAAAGATATTGG 648 Modified from 

Ivanova et al. [31] VF1_t1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTCTCAACCAACCACAAAGACATTGG 

VF1d_t1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTCTCAACCAACCACAARGAYATYGG 

VF1i_t1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTCTCAACCAACCAIAAIGAIATIGG 

LepR1_t1 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAAACTTCTGGATGTCCAAAAAATCA 

VR1d_t1 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAGACTTCTGGGTGGCCRAARAAYCA 

VR1_t1 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAGACTTCTGGGTGGCCAAAGAATCA 

VR1i_t1 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAGACTTCTGGGTGICCIAAIAAICA 

mini-COI mlCOIintF TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGWACWGGWTGAACWGTWTAYCCYCC 313 Leray et al. [110]., 

Geller et al.[137] jgHCO2198 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAIACYTCIGGRTGICCRAARAAYCA 

cyt b L14816 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCATCCAACATCTCAGCATGATGAAA 743 Palumbi [32], 

Parson et al.[114]  CB3-H GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGCAAATAGGAARTATCATTC 

mini-cyt 

b 

L14816 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCATCCAACATCTCAGCATGATGAAA 357 Parson et al.[114] 

H15173 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCCTCAGAATGATATTTGTCCTCA 

Universal plant DNA barcodes and mini-barcodes 

matK matK-KIM1R TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACCCAGTCCATCTGGAAATCTTGGTTC 656-889 Fazekas et al.[188] 

matK-KIM3F GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGTACAGTACTTTTGTGTTTACGAG 

matK& matK-390f TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGATCTATTCATTCAATATTTC 656-889 Cuénoud et al.[144] 

matK-1326r GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCTAGCACACGAAAGTCGAAGT 

rbcL rbcLa-F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGTCACCACAAACAGAGACTAAAGC 654 Levin et al. [142] 

rbcLa-R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTAAAATCAAGTCCACCRCG Kress and 

Erickson[122] 
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rbcL& rbcL a-F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGTCACCACAAACAGAGACTAAAGC 607 Levin et al. [142] 

rbcLajf634R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAAACGGTCTCTCCAACGCAT Fazekas et al. [35] 

mini-rbcL F52 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTTGGATTCAAAGCTGGTGTTA 140  Little[38] 

R193 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCVGTCCAMACAGTWGTCCATGT 

trnL 

(UAA) 

c TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGAAATCGGTAGACGCTACG 767 Taberlet et al.[60] 

d GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGGGATAGAGGGACTTGAAC 

trnL (P6 

loop) 

g TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGGCAATCCTGAGCCAA 10-143 Taberlet et al.[60]  

h GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCATTGAGTCTCTGCACCTATC 

ITS2 S2F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGCGATACTTGGTGTGAAT 160-320 Chen et al.[123] 

S3R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACGCTTCTCCAGACTACAAT 

psbA-

trnH& 

psbAf TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTTATGCATGAACGTAATGCTC 264-792 Sang et al. [147], 

Tate and Simpson 

[148] 

trnH2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGCGCATGGTGGATTCACAATCC 

The shaded text represents the sequence of the Illumina overhang adapters. 
*Modified COI cocktail primers without M13-tails were used [31].  
& The primers were not included in the final panel of DNA barcodes.
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3.3.2 Development and pre-validation of the CITESspeciesDetect bioinformatics pipeline 

A dedicated bioinformatics pipeline, named CITESspeciesDetect, was developed for the purpose of 

rapid identification of CITES-listed species using Illumina paired-end sequencing technology. Illumina 

technology was selected because it produces NGS data with very low error rates, compared to other 

technologies [2, 19]. Furthermore, the Illumina MiSeq platform enables paired-end read lengths of up 

to 300 nt, allowing relatively long DNA barcode regions of up to ~550 nt to be assembled. Also, the 

multiplexing capabilities of Illumina technology are well developed, allowing for simultaneous 

sequencing of multiple samples in one run, thereby enabling more cost-efficient NGS. While NGS data 

analysis pipelines exist that allow processing of Illumina DNA metabarcoding datasets (e.g. CLOTU, 

QIIME, Mothur), the majority have been developed for specifically studying microbial communities 

using the 16S rRNA gene region. CITESspeciesDetect, developed in this study, extends on the 

frequently-used software tools developed within the USEARCH [189] and BLAST+ packages [166], and 

additionally includes dedicated steps for quality filtering, sorting of reads per barcode, and CITES 

species identification (Figure 3.1). The CITESspeciesDetect is composed of five linked tools and data 

analysis passes through three phases: 1) pre-processing of paired-end Illumina data involving quality 

trimming and filtering of reads, followed by sorting by DNA barcode, 2) Operational Taxonomic Unit 

(OTU) clustering by barcode, and 3) taxonomy prediction and CITES identification.  

 

Figure 3.1 Schematic representation of the CITESspeciesDetect pipeline. 
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It was found that with the current setup of the pipeline, reads generated for cyt b and mini-cyt 

b could not be separated based on the forward PCR primer, as the forward primers are identical. It was 

therefore decided to combine (pool) the overlapping reads of cyt b and mini-cyt b during pre-processing 

(primer selection) of reads to prevent reads from being double selected. This means that the results of 

cyt b and mini-cyt b are presented by the CITESspeciesDetect pipeline as cyt b. The same issue was 

found for COI barcode and mini-barcode markers, for which the results are presented as COI. 

A parameter scan was performed in order to assess the effect of software settings on the ability 

to identify species. The evaluation allowed for the identification of important parameters and their 

effect on the sensitivity, specificity and robustness of the procedure. Changing the base quality score 

has a major impact on the number of reads per barcode (Additional file 3A; Table S4). Increasing the 

strictness of the base quality score resulted in decreasing numbers of reads per barcode. Quality score 

values other than the default values (Q20 for 95% of bases) did not yield better identifications. When 

applying strict quality filtering settings (Q20 for 100% of bases, or Q30 for 99% of bases) the species 

Pieris brassicae and Anguilla anguilla could not be detected with cyt b and/or mini-COI, indicating these 

settings were too strict (Additional file 3A; Table S5). This is likely due to the resulting overall low read 

numbers for cyt b and mini-COI when applying these strict quality filtering settings (Additional file 3A; 

Table S4). 

An OTU abundance threshold is generally applied to make DNA metabarcoding less sensitive 

to (potential) false-positive identifications. False-positives may occur e.g. as contaminants during pre-

processing of samples (DNA extraction, PCR) or as cross-contamination during Illumina sequencing. 

Applying an OTU abundance threshold higher than zero generally results in loss of sensitivity. We 

have found, however, that applying an OTU abundance threshold of higher than zero may help in 

reducing noisy identifications and potential false-positive identifications (results not shown). It should 

be noted that applying filtering thresholds may always lead to false negative or false positive 

identifications. In this study, an OTU abundance threshold of 0.2% was set as default, however, the 

OTU abundance threshold may need re-evaluation for samples with expected very low species 

abundances (< 1% dry weight). 

The effect of applying a minimum DNA barcode length revealed that allowing DNA barcodes 

of ≥ 10 nt did not lead to additional identification of species, compared with default settings (e.g. ≥ 200 

nt). Increasing the minimal DNA barcode length to 250 nt, however, resulted in a failure to identify 

most plant species with mini-rbcL and rbcL. We implemented a minimum DNA barcode length of 200 

nt, except for DNA barcodes with a basic length shorter than 200 nt, in which case the minimum 

expected DNA barcode length is set to 100 nt for ITS2, 140 nt for mini-rbcL, and 10 nt for the trnL (P6 

loop) marker. 

The results of the parameter scan resulted in specifying recommended parameter values 

(default setting) for analysing DNA metabarcoding datasets using the CITESspeciesDetect pipeline (see 

Methods section “Bioinformatics analysis”). An online version of the CITESspeciesDetect pipeline with 

a user-friendly web-interface was developed for skilled analysts with basic, but no expert level 

knowledge in bioinformatics and is made available via http://decathlon-fp7.citespipe-wur.surf-

hosted.nl:8080/. 

 

3.3.3 Pilot study to assess the performance of the DNA metabarcoding procedure using experimental 
mixtures 

The DNA metabarcoding procedure was assessed in a pilot study, for which 15 complex mixtures (EM1 

to EM15) were prepared containing from 2 to 10 taxonomically well-characterised species with DNA 

barcode reference sequences available in the NCBI reference database (Table 3.2). The experimental 

mixtures 10 and 11 (EM10 and EM11) were independently analysed twice to verify repeatability of the 

http://decathlon-fp7.citespipe-wur.surf-hosted.nl:8080/
http://decathlon-fp7.citespipe-wur.surf-hosted.nl:8080/


49 
 

method (DNA isolation, barcode panel analysis and pooling). Only mixtures were used with well-

characterised species (DNA Sanger barcoded and taxonomically verified) ingredients, at known dry 

weight concentrations, and with high quality DNA that would allow for an assessment of the 

performance of the DNA metabarcoding method under optimal conditions. 

A total of 2.37 Gb of Illumina MiSeq sequencing data was generated for the 17 complex samples 

(15 complex mixtures along with the two replicates). On average, 464,648 raw forward and reverse 

Illumina reads were generated per sample, with minimum and maximum read numbers ranging 

between 273,104 (mixture EM4) and 723,130 (mixture EM10R; Table 3.3). During raw data pre-

processing with the default settings of the CITESspeciesDetect pipeline, the reads were first quality 

filtered and overlapping paired-end Illumina reads were merged into pseudo-reads (Figure 3.1). The 

samples contained on average 269,099 quality controlled (QC) unmerged (forward and reverse) reads 

and merged pseudo-reads, collectively named (pseudo)reads. On average 88.27% (min = 77.38%, max 

= 96.26%) of raw reads passed the quality filtering and pre-processing steps, indicating that the overall 

quality of the Illumina data was high (not shown).  

Next, the (pseudo)reads were assigned to DNA barcodes based on PCR primer sequences. On 

average, 96.44% (min = 88.78%, max = 98.21%) of QC pre-processed reads were assigned to DNA 

barcodes, indicating a high percentage of reads containing the locus-specific DNA barcode primers 

(Table 3.3). After this, the (pseudo)reads were clustered by 98% sequence similarity into OTUs. On 

average, 82.26% (min = 75.11%, max = 90.63%) of the DNA barcodes assigned reads were clustered into 

OTUs (Table 3.3). It was assumed that the small fraction of reads that was not assigned to OTUs 

contained non-informative (e.g. non-specific fragments, chimers) sequences that may have been 

generated during PCR amplification, and were filtered out during clustering.  

For taxonomy prediction, OTUs were assigned to dataset sequences using BLAST when 

aligning with at least 98% sequence identity, a minimum of 90% query coverage, and an E-value of at 

least 0.001. Generally, the best match (“top hit”) is used as best estimate of species identity. However, 

species identification using BLAST requires careful weighting of the evidence. To minimize erroneous 

taxonomic identifications a more conservative guideline was used that allowed a species to be assigned 

only when the best three matches identified the species. If the bit scores do not decrease after the top 

three hits, or if other species have identical bit scores, then identification was considered inconclusive. 

In such cases, OTUs were assigned to higher taxonomic levels (genus, family or order). All animal 

ingredients, except Parapenaeopsis sp. could be identified at the species-level with one or more DNA 

barcode marker using the default settings of the CITESspeciesDetect pipeline (Table 3.4 and 5). For 

plants, Lactuca sativa could be identified at the species-level using the trnL (P6 loop). All other plant 

taxa were identified at the genus or higher level (Table 3.4 and 3.5).  
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Table 3.2 Pilot study: Composition of the experimental mixtures, and taxa identified using the default setting of the CITESspeciesDetect pipeline.  

Experimental mixtures 

Species/Genus  Common 

name 

EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8 EM9 EM10 EM10R EM11 EM11R EM12 EM13 EM14 EM15 

Bos taurus Cattle 
99% 

(S) 

90% 

(S) 
1% (S) 10% (S) 

99% 

(S) 

95% 

(S) 

85% 

(S) 
  10% (S) 10% (S) 46% (S) 46% (S) 95% (S) 85% (S)   

Parapenaeopsis sp. Shrimp      1% 3%   10% 10% 1% 1%   1% 3% 

Anguilla anguilla 

* 
European eel      1% 3%   10% (S) 10% (S) 1% (S) 1% (S)   1% (S) 3% (S) 

Crocodylus 

niloticus * 
Nile crocodile      1% (S) 3% (S)         1% (S) 3% (S) 

Gallus gallus  
Domestic 

chicken 
     1% (S) 3% (S)   10% (S) 10% (S) 1% (S) 1% (S)   1% (S) 3% (S) 

Pieris brassicae  
Large white 

(caterpillar) 
     1% (S) 3% (S)   10% (S) 10% (S) 1% (S) 1% (S)   1% (S) 3% (S) 

Echinocactus sp. * Barrel cactus        
1% (F) 

 

3% (F) 

 

10% (F) 

 

10% (F) 

 

1% (F) 

 

1% (F) 

 

1% (F) 

 

3% (F) 

 
  

Euphorbia sp. *  Spurge        
1% (F) 

 

3% (F) 

 

10% (F) 

 

10% (F) 

 

1% (F) 

 

1% (F) 

 

1% (F) 

 

3% (F) 

 
  

Aloe variegata *,& Tiger aloe     
1% (F) 

 
  

1% (F) 

 

3% (F) 

 

10% (F) 

 

10% (F) 

 

1% (F) 

 

1% (F) 

 

1% (F) 

 

3% (F) 

 
  

Dendrobium sp. * 
Dendrobium 

(orchid) 
       

1% (F) 

 

3% 

(G) 

 

    
1% (G) 

 

3% (G) 

 
  

Cycas revoluta * Sago palm        1% 3% 

10% 

(G) 

 

10% (G) 

 
1% 

1% (G) 

 

1% (G) 

 

3% (G) 

 
  

Lactuca sativa  Lettuce 1% (S) 
10% 

(S) 

99% 

(S) 

90% 

(S) 
   

95% 

(S) 

85% 

(S) 
10% (S) 

10% (G) 

 
46% (S) 46% (S)   95% (S) 85% (S) 

Taxa were identified at the species-level unless otherwise indicated in brackets. Cells highlighted in grey indicate taxa that were not identified. Identified taxa listed by CITES are highlighted in 

bold.  

The symbol next to percentage indicates the taxonomic resolution of the identified taxon: (F) – Family level, (G) – Genus level and (S) – Species level 

* Species listed by CITES. & Aloe variegata (synonym Gonialoe variegata) was recently assigned to the genus Gonialoe [190]. 
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Table 3.3 Pilot study: average number of Illumina MiSeq reads, the average number of (pseudo)reads that passed 
quality control (QC) and the percentage of QC (pseudo)reads that were assigned to DNA barcodes and Operational 
Taxonomic Units (OTUs) generated per sample.  

Experimental 

mixture 

Number of 

raw reads 

Percentage of QC 

(pseudo)reads* 

Percentage DNA barcode 

assigned (pseudo)reads* 

Percentage OTU 

clustered (pseudo)reads* 

EM1 466,108 88.07 95.68 83.86 

EM2 448,428 86.04 97.24 84.04 

EM3 496,328 87.46 96.61 84.34 

EM4 273,104 77.38 95.74 80.54 

EM5 582,254 96.26 97.84 90.63 

EM6 442,574 92.81  97.54 81.48 

EM7 394,354 93.04 97.14 80.70 

EM8 455,172 79.62 95.66 82.35 

EM9 434,326 86.23 97.30 83.60 

EM10 387,816 87.73 97.00 75.11 

EM10R 723,130 95.59 98.02 87.39 

EM11 363,374 84.44 96.74 78.63 

EM11R 635,304 91.11 98.21 87.01 

EM12 355,634 92.55 97.54 76.54 

EM13 405,742 89.46 96.49 77.31 

EM14 480,772 85.74 95.98 81.91 

EM15 554,602 87.05 88.78 82.98 

Average** 464,648 88.27 96.44 82.26 

* (pseudo)reads are the combined quality controlled (QC) pseudo-reads, and the QC processed unmerged forward 

and reverse reads. 

** Averaged across the 17 Illumina MiSeq datasets. 

Table 3.4 Taxonomic resolution provided by each DNA barcode marker for EM10 and EM10R.  

Species/Genus  Species Genus Family 

Anguilla anguilla cyt b mini-16S  

Parapenaeopsis sp.    

Bos taurus 16S, mini-16S, cyt b, COI   

Gallus gallus domesticus mini-16S, cyt b, COI   

Pieris brassicae COI   

Echinocactus sp.   matK, rbcL, mini-rbcL, ITS2 

Euphorbia sp.  rbcL, mini-rbcL ITS2 

Aloe variegata   matK, rbcL, mini-rbcL, trnL (UAA) 

Cycas revoluta  rbcL-mini, trnL (P6 loop)  

Lactuca sativa trnL (P6 loop) matK, trnL (UAA), ITS2 rbcL, mini-rbcL 

Highlighted in bold are DNA barcodes with the same taxonomic resolution in both sample 

Putative contaminating species were observed in most of the experimental mixtures from 

multiple markers, detailed information about the identified cross-contained species in a sample and the 

related markers are specified in the Additional file 3B; Table S1. Even with the default OTU abundance 

threshold in place, the species L. sativa, B. taurus and Gallus gallus were identified in mixtures that were 

not supposed to contain these species. To verify whether these putative contaminations occurred during 

DNA isolation or Illumina sequencing, qPCR assays for the specific detection of B. taurus and G. gallus 

were performed on selected DNA extracts. The high Cq values above 39 indicated the presence of these 
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species, however, in low copy number, which suggests that for some experimental mixtures (EM8, EM9 

and EM14) cross-contamination had occurred during sample preparation or DNA isolation, while for 

other experimental mixtures (EM15) cross-contamination may have occurred during PCR, Illumina 

library preparation or sequencing. In addition to these contaminants, a species of Brassica was identified 

in experimental mixtures containing P. brassica. This result is most likely not a false-positive, because 

the caterpillars used for this study had been fed on cabbage. 

Table 3.5 Taxonomic resolution provided by each DNA barcode marker for EM11 and EM11R.  

Species/Genus  Species Genus Family 

Anguilla anguilla cyt b   

Parapenaeopsis sp.    

Bos taurus 16S, mini-16S, cyt b, COI   

Gallus gallus domesticus cyt b, COI   

Pieris brassicae COI   

Echinocactus sp.   matK, rbcL, ITS2 

Euphorbia sp.  rbcL, mini-rbcL  

Aloe variegata   matK, rbcL, mini-rbcL, trnL (UAA) 

Cycas revoluta  mini-rbcL, trnL (P6 loop)  

Lactuca sativa trnL (P6 loop) matK, rbcL, trnL (UAA), 

ITS2 

rbcL, mini-rbcL 

Highlighted in bold are DNA barcodes with the same taxonomic resolution in both samples  

The DNA metabarcoding method was found to be sensitive enough to identify most plant and 

animal taxa at 1% (dry mass: dry mass) in mixtures of both low (EM1, EM3 and EM5; Table 3.2) and 

relatively high complexity (EM6, EM8, EM11, EM12, and EM14; Table 3.2). The exception being 

Parapenaeopsis sp. (all mixtures), A. anguilla in EM6, and Cycas revoluta in EM8 and EM11. Careful 

inspection of the NGS data revealed that in nearly all cases OTUs related to Parapenaeopsis sp., A. 

anguilla, and C. revoluta were present, but that these sequences had been filtered out by the 

CITESspeciesDetect pipeline because their cluster sizes did not fulfil the 0.2% OTU abundance 

threshold. There appeared to be no trend as to the type and length of DNA barcode marker that had 

been filtered out by the CITESspeciesDetect pipeline. For instance, Parapenaeopsis sp. was detected 

below the OTU threshold with cyt b, mini-16S, COI, and 16S markers (not shown). Lowering the OTU 

abundance threshold, however, would lead to (more) false-positive identifications, and this was 

therefore not implemented. 

The repeatability of the laboratory procedure (excluding NGS) was assessed by analysing the 

experimental mixtures 10 and 11 (EM10R and EM11R; Table 3.2), which was independently performed 

twice, i.e. DNA isolation and PCR barcode amplification, but NGS was performed on the same MiSeq 

flow cell as the other samples of the pilot study. From the comparison, it was observed that the 

percentage of QC reads was nearly twice as high in the replicate analyses (Table 3.3). Also, the 

percentage of QC reads assigned to DNA barcodes varied among replicate analyses (Figure 3.2). Most 

notable were the observed differences among replicate analyses in the percentage reads assigned to 

matK and the trnL (P6 loop). For example, the percentage of QC reads assigned to matK were 6.11% 

(14081 reads) and 0.02% (97 reads) in EM10 and EM10R respectively (Figure 3.2). The low number of 

reads assigned to matK limited its use for taxonomy identification in EM10R (Table 3.4). The multi-locus 

approach, however, allowed for the repeatable identification of taxa in EM10 and EM11, though not in 

all cases with all DNA barcode markers (Table 3.4 and 3.5).  
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Figure 3.2 The percentage of QC reads assigned to DNA barcodes for samples EM10, EM10R, EM11 and EM11R of 

the pilot study. 

Based on the results obtained from the pilot study, precautions were taken when grinding the 

freeze-dried materials and subsequent mixing to avoid cross-contamination during the laboratory 

handling of samples, which were used to improve the SOP for the interlaboratory trial 

(dx.doi.org/10.17504/protocols.io.ixbcfin). Also, control species were added to experimental mixtures 

that were prepared for the inter-laboratory trial to allow better confirmation of sample homogeneity 

and to verify that no cross-contamination had occurred during sample preparation. 

3.3.4 Assessment of interlaboratory reproducibility of the DNA metabarcoding procedure 

Altogether 16 laboratories from 11 countries (all experienced, well-equipped and proficient in advanced 

molecular analysis work), including two of the method developers, participated in the inter-laboratory 

trial (Table 3.6). The laboratories received ten anonymously labelled samples, each consisting of 250 mg 

powdered material. Two of the samples, labelled S3 and S8, were authentic TM products seized by the 

Dutch Customs Laboratory while the other eight samples were well-characterized mixtures of 

specimens from carefully identified taxa in relative dry weight concentrations from 1% to 47% (Table 

3.7). In all experimental mixtures, 1% of Zea mays was added as quality control for homogeneity, which 

was confirmed with maize-specific hmg (high-mobility group gene) qPCR [186]. Also, tests performed 

with species-specific qPCR assays indicated that cross-contamination did not occur during sample 

preparation (Additional file 3A; Table S6). The qPCR assay for the detection of Brassica napus, however, 

also gave a positive signal for other Brassica sp. in the mixtures. 
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Table 3.6 Laboratories participating in the interlaboratory trial.  

Laboratory City and country 

Agenzia delle Dogane E dei Monopoli Genoa, Italy 

AGES Vienna, Austria 

BaseClear BV Leiden, The Netherlands 

Biolytix AG Witterswil, Switzerland 

CREA-SCS sede di Tavazzano - Laboratorio Tavazzano, Italy 

Crop Research Institute  Prague, Czech Republic 

Dutch Customs Laboratory  Amsterdam, The Netherlands 

Eurofins GeneScan GmbH Freiburg, Germany 

Fera Sand Hutton, United Kingdom 

Generalzolldirektion Hamburg, Germany 

Laboratoire de Montpellier Montpellier, France 

Laboratorium Douane Accijnzen Leuven, Belgium 

LGC Middlesex, United Kingdom 

Livsmedelsverket Uppsala, Sweden 

RIKILT Wageningen University & Research Wageningen, The Netherlands 

U.S. Customs and Border Protection Laboratory Newark, USA 

 

Together with the sample materials, reagents for DNA extraction, and the complete set of 

barcode primers, the participants received an obligatory SOP. Any deviations from the SOP had to be 

reported. The participants were instructed to extract DNA, perform PCR using the barcode primers, 

purify the amplified DNA by removal of unincorporated primers and primer dimers, and assess the 

quality and quantity of the amplification products by gel electrophoresis and UV-spectrophotometry. 

The purified PCR products were then collected by the coordinator of the trial (RIKILT Wageningen 

University & Research, the Netherlands) and shipped to a sequencing laboratory (BaseClear, the 

Netherlands) for Illumina sequencing using MiSeq PE300 technology. The sequencing laboratory 

performed Index PCR and Illumina library preparation prior to MiSeq sequencing as specified in the 

Illumina 16S metagenomics sequencing library preparation guide. The altogether 160 PCR samples 

were sequenced using two Illumina flow cells with MiSeq reagent kit v3. 

The interlaboratory trial should ideally have included the use of the online version of the 

pipeline, but unfortunately this was not possible due to shortage of time. Therefore, a single (developer) 

laboratory performed these bioinformatics analyses. The 160 individual samples contained on average 

269,057 raw reads, and more than 150,000 reads per sample in 95% of the samples (Additional file 3A; 

Table S7). One sample contained less than 100,000 reads (51,750), which was considered more than 

sufficient for reliable species identification. After pre-processing, the samples contained on average 

142,938 (pseudo)reads. On average 94.66% of the reads (min = 88.12%, max = 98.02%) passed the quality 

filtering indicating that the overall quality of the sequence data was consistently high across the 160 

datasets. 
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Table 3.7 Interlaboratory trial study: Composition of the complex mixtures, and taxa identified using the default setting of the CITESspeciesDetect pipeline.  

  Homogenized mixtures 

Species/Genus  Common name S1 S2 S4 S5 S6 S7 S9 S10 

Zea mays 
Maize 1% (13) 

Poaceae 

1% (14) 

Poaceae 

1% (14) 

Poaceae 

1% (15) 

Poaceae 

1% (16) 

Poaceae 

1% (15) 

Poaceae 

1% (15) 

Poaceae 

1% (14) 

Poaceae 

Glycine max 
Soy bean 1% (16) 

Glycine sp. 
       

Gossypium 

hirsutum 

Cotton 
 

1% (16) 

Gossypium sp. 
      

Brassica napus 
Canola 

  
1% (16) 

Brassica sp. 
     

Triticum aestivum 
Wheat 

   
1% (15) 

Poaceae 
    

Beta vulgaris 
Sugar beet 

    
1% (4) 

Beta sp. 
   

Meleagris gallopavo Turkey      1% (16)   

Carica papaya Papaya       1% (16)  

Solanum 

lycopersicum 

Tomato 
       1% (16) 

Aloe variegata *,& 
Tiger aloe 1% (16) 

Xanthorrhoeaceae 

2% (16) 

Xanthorrhoeaceae 

3% (16) 

Xanthorrhoeaceae 

4% (16) 

Xanthorrhoeaceae 

1% (16) 

Xanthorrhoeaceae 

2% (16) 

Xanthorrhoeaceae 

3% (16) 

Xanthorrhoeaceae 

4% (16) 

Xanthorrhoeaceae 

Dendrobium sp. * 
Dendrobium 

orchid 

1% (16) 

Dendrobium sp. 

2% (16) 

Dendrobium sp. 

3% (16) 

Dendrobium sp. 

4% (16) 

Dendrobium sp. 

1% (16) 

Dendrobium sp. 

2% (16) 

Dendrobium sp. 

3% (16) 

Dendrobium sp. 

4% (16) 

Dendrobium sp. 

Huso dauricus * Sturgeon/Kaluga 1%(16) 2% (16) 3% (16) 4% (16) 1% (14) 2% (16) 3% (16) 4% (16) 

Crocodylus niloticus 

* 

Nile crocodile 
1% (14) 2% (14) 3% (15) 4% (16) 1% (9) 2% (15) 3% (15) 4% (15) 

Lactuca sativa Lettuce     10% (16) 10% (16) 10% (16) 10% (16) 

Brassica oleracea White cabbage 47% (16) 45% (16) 43% (16) 41% (16) 32% (16) 30% (16) 28% (16) 26% (16) 

Sus scrofa Pig     10% (16) 10% (16) 10% (16) 10% (16) 

Bos taurus Cattle 47% (16) 45% (16) 43% (16) 41% (16) 32% (16) 30% (16) 28% (16) 26% (16) 

Pleuronectes 

platessa 

European plaice 
    10% (16) 10% (16) 10% (16) 10% (16) 

Taxa were identified at the species-level unless otherwise indicated. The number of laboratories that have identified a taxon at the species or higher level is provided in brackets. Identified taxa listed by CITES are 

highlighted in bold. 

* Species listed by CITES 

& Aloe variegata (synonym Gonialoe variegata) was recently assigned to the genus Gonialoe [190]. 



56 
 

OTU-clustering at 98% sequence similarity on average assigned 78.14% of the pre-processed 

and DNA barcode assigned reads into OTUs (Additional file 3A; Table S7). Only two samples, both 

from the same laboratory, had a slightly lower percentage of the (pseudo-)reads assigned to OTUs 

(66.02% and 66.05%). This indicates that the pipeline correctly removed PCR artefacts in the clustering 

phase. 

For taxonomy prediction, an OTU would be assigned to a database hit if they aligned with ≥ 

98% sequence identity and ≥ 90% query coverage, and yielded an expect value (E-value) of at least 

0.001. The BLAST output of the NGS data was interpreted by participants according to the guidelines 

in the SOP. Variation was observed among laboratories in interpreting the BLAST output: some 

laboratories consistently scored the top hits, irrespective of bitscore, while other labs selected all hits 

belonging to the top three bitscores, or interpreted only the first OTU of each DNA barcode, leading to 

large differences in identified taxa. Because of these inconsistencies, the BLAST results were re-

interpreted by RIKILT Wageningen University & Research following the established guideline as 

mentioned in the SOP. These re-interpreted data are the data referred to in the following sections. 

With one exception, all taxa mixed in at ≥ 1% (dry mass: dry mass) were reproducibly identified 

by at least 13 (81%) laboratories (Table 3.7). Beta vulgaris in sample S6 could only be identified by 4 out 

of 16 (25%) laboratories. Beta vulgaris specific sequences were present in all remaining datasets, but at 

very low read counts. So these clusters did not fulfil the 0.2% OTU abundance threshold (Additional 

file 3B; Table S2) . In order to provide insight into what alternative setting of the CITESspeciesDetect 

pipeline may have been better suited for identifying Beta vulgaris, three data sets with relatively low (S6 

– laboratory 13), medium (S6 – laboratory 14) and high (S6 – laboratory 6) data volumes were 

reanalysed using a range of different settings for the OTU minimum cluster size and OTU abundance 

threshold (Additional file 3B; Table S3-S5). Setting the OTU minimum cluster size to 2, 4, or 6 has no 

effect on taxon identification, and Beta vulgaris is not identified at the species or higher taxonomic level 

in the data sets of laboratories 6 and 13. Setting the OTU abundance threshold to zero allows identifying 

Beta vulgaris in all three samples, but at the expense of many false positive identifications. Applying an 

OTU abundance threshold of 0.1% (default is 0.2%) allows identifying Beta vulgaris at the species or 

genus level irrespective of any differences in data volume between the three samples. 

All six animal species could be identified to species level with at least one barcode marker 

(COI), while only four of the 12 plant species (Brassica oleracea, Carica papaya, Gossypium hirsutum, and 

L. sativa) could be identified to species level (Additional file 3B; Table S6). All other plant species were 

identified at the genus or higher level. For plants, no single barcode marker was best, and the most 

reliable data were obtained by combining the plant barcodes. 

Three taxa that were misidentified or not intentionally included in the mixtures were 

reproducibly identified across all laboratories. Acipenser schrenckii co-occurred in all samples containing 

Huso dauricus. We have confirmed with DNA metabarcoding that the caviar used for preparing the 

experimental mixtures contains both H. dauricus and A. schrenckii (results not shown). Furthermore, 

Brassica rapa was identified by ITS2 in sample S4 by all 16 (100%) laboratories, instead of Brassica napus. 

We confirmed by Sanger sequencing rbcL and matK that our reference specimen is indeed Brassica napus, 

but that its ITS2 sequence is identical to Brassica rapa (LT718651). Finally, a taxon of the plant family 

Phellinaceae was reproducibly identified (by all laboratories) using the mini-rbcL marker in all samples 

containing L. sativa (S6, S7, S9, S10). Species of the family Phellinaceae and L. sativa both belong to the 

order Asterales. The evidence for Phellinaceae was not strong, i.e. the family-level identification was 

based on a single NCBI reference sequence only (GenBank: X69748). We therefore suspect a 

misidentification during the interpretation of the BLAST results. 

Taxa that were identified to be the result of possible contaminations were scarcely observed, 

i.e. these were found in isolated cases and could possibly be explained by cross-sample contamination 

that may have occurred during any step of sample processing (DNA isolation, PCR, NGS library 



57 
 

preparation or NGS). For example, a contamination with Gossypium sp. was observed using trnL (P6 

loop) in sample S1 of one of the participating labs. A total of 6 of such suspected cases of incidental 

cross-contaminations were observed (not shown) 

 

Table 3.8 Sample S3 ingredients list and taxa (species, genus, family, order) identified. 

Ingredients label: Common name Species/genus Family (Infra)Order 

Herba Cistanches Cistanche extract Cistanche sp. Orobanchaceae Lamiales 

Cauda cervi Mature deer tail Cervus sp. Cervidae Pecora 

Radix Rehmanniae praeparata Processed Rehmannia root Rehmanniae sp. Rehmanniaceae Lamiales 

Radix Ginseng Dried root of Panax ginseng Panax ginseng Araliaceae Apiales (8) 

Radix morindae Officinalis Morinda root Morinda officinalis Rubiaceae Gentianales 

Semen Cuscutae Chinese dodder seed Cuscuta sp. (14) Convolvulaceae (2) Solanales 

Radix Achyranthis bidentatae 

Dried root of Achyranthis 

bidentatae Achyranthes bidentatae Amaranthaceae Caryophyllales 

Rhizoma Cibotii Root of Cibotium barometz Cibotium barometz Cibotiaceae Cyatheales 

Semen Platycladi 

Dry ripe kernel of Platycladus 

orientalis Platycladus orientalis Cupressaceae Cupressales 

Cortex Eucommiae Bark of Eucommia ulmoides Eucommia ulmoides Eucommiaceae Garryales 

Radix Astragali Astragalus root Astragalus danicus (16) Fabaceae (16) Fabales 

Fructus Schisandrae chinensis Chinese magnolia-vine fruit Schisandra chinensis Schisandraceae Austrobaileyales 

Cortex Cinnamomi 

Dried inner bark of 

Cinnamomum sp. Cinnamomum sp. Lauraceae Laurales 

Cornu Cervi Pantotrichum Antler of Cervus sp. Cervus sp. Cervidae Pecora 

Undeclared identified taxa *  Bos taurus (16) 

Cullen sp. (16) 

Melilotus officinalis (15) 

Medicago sp. (16) 

Bupleurum sp. (15) 

Aspergillus fumigatus (15) 

Rubus sp. (15) 

Fusarium sp. (15) 

  

The number of laboratories that have identified a taxon is provided in brackets. Species marked in grey are listed by CITES. 

* Species identified by at least 14 laboratories that were not mentioned on ingredients list  

 

For the authentic TMs S3 and S8, it was observed that only few labelled ingredients could 

reproducibly be identified (Table 3.8 and 3.9). For sample S3 (Ma pak leung sea-dog), only the listed 

ingredients Cuscuta sp. (Chinese dodder seed), and Astragalus danicus (Astragalus root) could be 

identified. For sample S8 (Cobra performance enhancer), only the listed ingredients Epimedium sp. 

(Horny goat weed; Berberidaceae), Panax ginseng (Korean ginseng; Araliaceae), and species of the plant 

families Arecaceae (Serenoa repens) and Rubiaceae (Pausinystalia johimbe) could be identified. While most 

declared taxa were not identified, many non-declared taxa were identified. For sample S3, the animal 

species B. taurus, and the plants Cullen sp. (Fabaceae), Melilotus officinalis (Fabaceae), Medicago sp. 

(Fabaceae), Bupleurum sp. (Apiaceae), and Rubus sp. (Rosaceae) were identified by at least 14 (88%) 

laboratories (Table 3.8). Furthermore, the fungi Aspergillus fumigatus (Aspergillaceae) and Fusarium sp. 

(Nectriaceae) were reproducibly identified, of which the former is also a known human pathogenic 

fungus. For sample S8, the animal species B. taurus and Homo sapiens, the plant species Sanguisorba 

officinalis and Eleutherococcus sessiliflorus, and members of the plant genera Croton and Erythroxylum, 

and families Meliaceae and Asteraceae, were reproducibly identified (Table 3.9). 

 

 



58 
 

Table 3.9 Sample S8 ingredients list and taxa (species, genus, family, order) identified. 

Ingredients label: Common name Species/genus Family (Infra)Order 

Kola nut  Fruit of kola nut Cola sp. Malvaceae Malvales 

Siberian ginseng Siberian ginseng Eleutherococcus senticosus Araliaceae Apiales 

horny goat weed Horny goat weed Epimedium sp. (16) Berberidaceae (16) Ranunculales 

Catuaba  Catuaba bark Calophyllum antillanum Calophyllaceae Malpighiales 

Muria puama  Marapuama, potency wood Ptychopetalum sp. Olacaceae Santalales 

Korean ginseng Korean ginseng Panax ginseng (16) Araliaceae (16) Apiales 

Damiana  Damiana leaves Turnera diffusa Passifloraceae Malpighiales 

Saw palmetto 

Extract of fruit the of Serenoa 

repens Serenoa repens Arecaceae (16) Arecales 

Yohimbe  

Extract from the bark of 

Pausinystalia johimbe Pausinystalia johimbe Rubiaceae (16) Gentianales 

Magnesium stearate     

  Bos taurus (16) 

Homo sapiens (15) 

Eleutherococcus sessiliflorus (16) 

Croton sp. (16) 

Erythroxylum sp. (15) 

Sanguisorba officinalis (15) 

  

   Asteraceae (16) 

Meliaceae (16) 

 

The number of laboratories that have identified a taxon is provided in brackets. Species marked in grey are listed by CITES.* 

Species identified by at least 14 laboratories that were not mentioned on ingredients list.  

3.4 Discussion 

In this study, a DNA metabarcoding method was developed using a multi-locus panel of DNA 

barcodes for the identification of CITES protected species in highly complex products such as TMs. As 

a first step, a CTAB DNA isolation method was selected for efficiently extracting high quality DNA 

from pure plant and animal reference materials as well as from complex mixtures. DNA isolation can 

be very difficult to standardise and optimise because of the complexity and diversity of wild life 

forensic samples, and a more systematic comparison of different DNA extraction methods is required. 

Secondly, a single PCR protocol, suitable for all the barcodes included, i.e. multiple universal plant and 

animal barcode and mini-barcode markers, was identified. This facilitated the design of a multi-locus 

panel of DNA barcodes. Furthermore, the developed DNA metabarcoding method includes a 

dedicated bioinformatics workflow, named CITESspeciesDetect that was specifically developed for the 

analysis of Illumina paired-end reads. The developed pipeline requires skilled experts in 

bioinformatics, and applies scripts for command-line processing. NGS data analysis pipelines may 

provide a lot of flexibility to the user, as modifications are easily implemented by expert users. The 

design of the pipeline prevented cyt b and COI full-length barcodes to be separated from their 

corresponding mini-barcodes, as they have identical forward primers. Since, the 300 PE reads can read 

through the cyt b and COI mini-barcodes, and therefore contain both 5’primer and 3’primer 

information, separation should be feasible.  

To simplify the inter-laboratory validation of the pipeline, a user-friendly and intuitive web-

interface with associated “Help” functions and “FAQs” was developed for the CITESspeciesDetect 

pipeline. The web interface was, however, not available in the course of the interlaboratory trial. 

Therefore, the sequence data generated in the interlaboratory study could not be analysed by the 

individual laboratories using the CITESspeciesDetect pipeline. A single (developer) laboratory 

therefore performed these analyses. Upon the availability of the online web-interface, individual 

participants were later given the opportunity to reanalyse their DNA metabarcoding data. 
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Observations made in this part demonstrated concordance of results with those obtained by the 

developing laboratory, reinforcing the perception of CITESspeciesDetect as a user-friendly and reliable 

pipeline that may readily be used by enforcement agencies and other laboratories. 

The performance of the DNA metabarcoding method was assessed in an interlaboratory trial 

in which the method was found to be highly reproducible across laboratories, and sensitive enough to 

identify species present at 1% dry weight content in experimental samples containing up to 11 different 

species as ingredients. However, not all laboratories could identify all specified ingredients (species) in 

the analysed experimental samples. From the current study, we demonstrate that diverse animal taxa 

could be identified at the species level, which highlights the object of the method to target a wide range 

of animal species. COI (full-length COI and mini-COI) was found to be the most effective DNA barcode 

marker for animal species identification. This is not surprising considering that COI is the standard 

barcode for almost all animal groups [94]. Nearly all animal species identifications were supported by 

multiple DNA barcodes, thereby giving strong confidence to the correctness of the animal species 

identifications. In contrast, plants could mainly be identified at the family level, and no single DNA 

barcode marker was found to provide best resolution for identifying plant taxa. Ideally, adequate plant 

species discrimination would require the combined use of multiple DNA barcode markers, e.g. rbcL + 

matK [125], but this is technically not possible due to the nature of the target samples (heavily processed) 

and with the current Illumina Miseq technology. For the identification of plant taxa listed by CITES, 

the use of DNA barcodes with relatively modest discriminatory power at the genus or higher taxonomic 

level can still be useful, as it is often an entire plant genus or family that is listed by CITES, rather than 

individual plant species. This was the case for e.g. Orchidaceae and Cactaceae in this study. Yet, for 

some plant species (e.g. Aloe variegata) the resolution provided by the used plant DNA barcodes may 

still be too low for unambiguous CITES identification. It is important to note that the maximum 

achievable Illumina NGS read length limits the taxonomic resolution of DNA barcodes that are longer 

than ~550 nt. This particularly limited the discriminatory power of the full-length plant barcodes matK 

and rbcL. The DNA metabarcoding method may therefore benefit from (currently unavailable) Illumina 

read lengths longer than 300 nt, or other long-read sequencing technologies. Alternatively, full-length 

barcodes may be resolved using an advanced bioinformatics strategy (SOAPBarcode) to assemble 

Illumina shotgun sequences of PCR amplicons [191]. Single barcodes in several cases failed to amplify 

or provide resolution. The latter is likely to be caused mainly by database incompleteness, lack of 

genetic variability within some loci/target sequences, and sample composition. However, combining 

multiple barcodes into a multi-locus metabarcoding method mitigated the problems observed for 

individual barcodes. A high degree of confidence in the taxonomic assignments based on the combined 

barcodes were therefore observed, providing for enhanced quality assurance compared to the use of 

single barcodes.  

While the use of well-characterised experimental mixtures allowed for an assessment of the 

performance of the DNA metabarcoding method under ideal conditions, the amplifiable DNA content 

of real-life samples encountered in routine diagnostic work are often of an unpredictable and variable 

quality. An analysis of two authentic TM products seized by the Dutch Customs Laboratory 

demonstrated that only few ingredients listed on the labels could be reproducibly identified. This does 

not mean that the undetected species were not used as ingredients. Ingredients may have been 

processed in such a way that the DNA is either degraded or effectively removed. This is e.g. the case 

with refined oils or cooked ingredients [89]. A PCR-free targeted DNA capturing approach coupled 

with shotgun sequencing was recently proposed for biodiversity assessments which may potentially 

also be suitable for enhancing species identification in difficult wildlife forensic samples [191,192]. The 

quality of the sequence reference database also strongly affects the ability to correctly identify species. 

Without correct references that also exhibit the necessary intraspecific variation, it is not possible to 

match and discriminate sequence reads correctly. It is well-known that accurate DNA barcoding 
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depends on the use of a reference database that provides good taxonomic coverage [8,18]. The current 

underrepresentation of DNA barcodes from species protected by CITES and closely related species 

critically hampers their identification. We estimate that only 18.8% of species on the CITES list contain 

one or more DNA barcodes (COI for animals, and matK or rbcL for plants). This will improve as DNA 

barcoding campaigns continue, in particular through initiatives such as the Barcode of Wildlife Project 

(BWP; www.barcodeofwildlife.org). Only by expansion of the sequence reference database of 

endangered and illegally-traded species can DNA barcoding provide the definitiveness required in a 

court of law.  

A noteworthy observation was that most species that were reproducibly identified did not 

appear on the ingredients lists on the labels of the analysed TMs. This is possibly due to mislabelling. 

If the identifications are correct this also indicates that consumption may pose health risks. These 

findings corroborate earlier reports that DNA metabarcoding may provide valuable information about 

the quality and safety of TMs [8,9].  

 

3.5 Potential implications 

Overall, our findings demonstrate that the multi-locus DNA metabarcoding method assessed in this 

study can provide reliable and detailed data on the composition of highly complex food products and 

supplements. This study highlights the necessity of a multi-locus DNA metabarcoding strategy for 

species identification in complex samples, since the use of multiple barcode markers can enable an 

increased resolution and quality assurance, even in heavily processed samples. The developed robust 

bioinformatics pipeline for Illumina data analysis with user-friendly web interface allows the method 

to be directly applied in various fields such as: a) food mislabelling and fraud in the food industry [48], 

b) environmental monitoring of species [25], and c) wildlife forensics [47]. Furthermore, the pipeline 

can be readily used to analyse different types of Illumina paired-end datasets, even the future Illumina 

datasets (read length > 300 nt). Additionally, the web interface provides an opportunity for the global 

audience with limited expertise in bioinformatics, to analyse their own data. It also provides the liberty 

to select different primer sets and customise the settings for the selected purposes. As a result, the range 

of potential applications of the method to identify plant and animal species is diverse, the pipeline is 

versatile and adjustable to the user’s needs, thus providing a powerful tool for research as well as 

enforcement purposes.  

3.6 Methods 

3.6.1 Reference materials and preparation of experimental mixtures 

All reference specimens were obtained from a local shop in the Netherlands or provided by the Dutch 

Customs Laboratory (Additional file 3A; Table S2 and Table S3). The reference specimens were 

taxonomically characterised to the finest possible taxonomic level. For each species, it was checked 

whether reference sequences were present in NCBI GenBank. For taxonomic confirmation, standard 

COI barcodes for all animal specimens were generated and individually Sanger sequenced, and 

compared against the NCBI and BOLD nucleotide database. For plant species, the DNA barcodes rbcL 

and matK were Sanger sequenced to confirm species identity. For a number of plant and animal species 

the generated barcode sequence information was deposited in the European Nucleotide Archive (ENA) 

under accession numbers LT009695 to LT009705, and LT718651 (Additional file 3A; Table S1). 

For the initial pilot study, in which the SOP for the DNA metabarcoding approach was 

established and tested, 15 well-defined complex mixtures were artificially prepared (Table 3.2). These 

experimental mixtures were prepared with 2 to 10 taxonomically well-characterised species (Table 3.2). 

The ingredients were mixed based on dry weight ratio, for which individual materials were freeze-

http://www.barcodeofwildlife.org/
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dried for 78 hours. The lyophilized ingredients were ground using an autoclaved mortar and pestle or 

blender in a cleaned fume hood, and subsequently stored at -20 °C °C. The individual ingredients of 

each complex mixture were weighted and mixed thoroughly using a tumbler (Heidolph Reax 2) for 20 

hours and stored at -20 °C until further use. 

For the interlaboratory validation trial, in which the applicability and reproducibility of the 

DNA metabarcoding method was assessed, eight additional well-characterised mixtures were 

artificially prepared using the above procedure. These complex mixtures were prepared with 8 to 11 

taxonomically well-characterised species present at dry weight concentrations from 1% to 47% (Table 

3.7). These complex mixtures were prepared in such a way that the efficiency of homogenization and 

possibility of sample cross-contamination could be verified using species-specific qPCR assays. In all 

samples, 1% of Zea mays was added as quality control for homogeneity. The presence of Z. mays was 

checked after sample mixing using maize-specific hmg qPCR along with a positive and negative control. 

A unique species was added at 1% dry weight to each mixture (S1-Glycine max, S2-Gossypium sp.,S4-

Brassica napus, S5-Triticum aestivum, S6-Beta vulgaris, S7-Meleagris gallopavo, S9-Carica papaya, S10-

Solanum lycopersicum) (Table 3.7). Species-specific qPCR was performed in duplex (together with 

positive and negative controls) in all samples, to check for possible cross-contamination between 

samples after sample preparation. Information about the qPCR primers and probes, and qPCR 

procedure can be found in the Additional file 3A; Table S8-S10. In addition to the eight experimental 

mixtures, two TMs were included that were obtained from the Dutch Customs Laboratory: a) Ma pak 

leung sea-dog hard capsules (MA PAK LEUNG CO, LTD, Hong Kong), was labelled to contain among 

others rhizoma Cibotii (Cibotium barometz, CITES Appendix II), and Herba Cistanches (Cistanche sp., 

CITES Appendix II) and b) Cobra performance enhancer hard capsules (Gold caps, USA), was labelled 

to contain among others Siberian ginseng (Eleutherococcus senticosus) and Korean ginseng (Panax 

ginseng). In both TMs, the medicine powder was encapsulated in a hard-capsule shell. All capsules were 

opened and the powder inside the capsules were stored in air-sealed and sterilized containers. The 

powdered medicines were thoroughly mixed using tumbler (Heidolph Reax 2) for 20 hours and stored 

at -20 °C until further use. 

3.6.2 DNA isolation method 

A cetyltrimethylammonium bromide (CTAB) extraction method [187] was assessed for its ability to 

efficiently extract DNA from a range of plant and animal materials (SOP). In brief, the CTAB method 

consists of an initial step to separate polysaccharides and organic soluble molecules using a CTAB 

extraction buffer (1X CTAB, 1.4M NaCl, 0.1 M Tris-HCl [pH 8.0], and 20mM NA2EDTA) and 

chloroform. Next, the DNA was precipitated with 96% ethanol, purified with 70% ethanol, and the 

obtained DNA was stored at 4 °C until further use. DNA was extracted from 100 mg reference materials 

(plant and animal), artificially made complex mixtures, and real-life samples (TMs) along with an 

extraction control. The concentration and purity (OD260/280 and OD260/230 ratios) of the obtained DNA 

was determined by spectrophotometer (NanoDrop 1000 instrument, Thermo Fisher Scientific Inc.). The 

OD260/280 ratios between 1.7 and 2.0 were considered to indicate purity of the obtained DNA. In case 

the extraction control contained DNA, the DNA isolation procedure was repeated. 

3.6.3 Barcode markers 

Candidate universal DNA barcode and mini-barcode markers and primer sets were identified using 

the information provided in Staats et al. (2016) [18], supplemented with additional primer sets from 

literature (Table 3.1). The PCR primer sets were modified to have an additional Illumina tail sequence 

at 5’ end of the primers (Table 3.1).  
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3.6.4 PCR 

A gradient PCR was performed with all PCR primer combinations using 10 ng of DNA. The tested PCR 

conditions programme were according to the following protocol: 95 °C for 15 min, five cycles of 94 °C 

for 30 s, annealing range (49-55 °C) for 40 s, and 72 °C for 60 s, followed by 35 cycles of 94 °C for 30 s, 54 
°C for 40 s, and 72 °C for 60 s, with a final extension at 72 °C for 10 min. The total volume of the PCR 

mixture was 25 µl, which included 12.5 µl of HotStarTaq Master Mix (Qiagen), 0.5 µl of 10 µM each 

sense and antisense primer, 7 µl of RNase-free water (Qiagen) and 5 µl of 10 ng/µl of represented 

species DNA. PCR was performed in the CFX96 thermal cycler (Bio-Rad) and the amplified products 

from all the analysed reference specimens, artificially made complex mixtures, and real-life samples 

(TMs) together with the positive and negative control reactions were visualised on 1% agarose gels. If 

amplification was observed in the negative control, the PCR analysis was repeated. Prior to NGS library 

preparation, 8 µl of PCR product of each target (12 in total) per sample was pooled and mixed. Next, 

the pooled PCR products were purified using the QIAquick PCR purification kit (Qiagen) according to 

manufacturer’s protocol, and the purified amplicons were visualized on 1% agarose gels for all the 

artificially made complex mixtures, and real-life samples (TMs).  

3.6.5 Next Generation Sequencing 

The pooled and purified PCR amplicons were sequenced using Illumina MiSeq paired-end 300 

technology. Prior to MiSeq sequencing, Index PCR and Illumina library preparation were performed 

as specified in the Illumina 16S metagenomics sequencing library preparation guide (Illumina 

document 15044223). All the DNA barcode amplicons of each sample were treated as one sample 

during library preparation i.e. all DNA barcode amplicons of each sample were tagged with the 

addition of the same, unique identifier, or index sequence, during library preparation. The Index PCR 

was performed to add dual indices (multiplex identifiers) and Illumina sequencing adapters using the 

Nextera XT Index Kit (Illumina, FC-131-1001). The prepared Illumina libraries from each sample were 

quantified using the Quant-iT dsDNA broad range assay (Life Technologies). Furthermore, the 

normalised library pools were prepared and their concentration was quantified using KAPA library 

quantification kit (KAPA Biosystems) and pooled prior to MiSeq sequencing using MiSeq reagent kit 

v3. 

3.6.6 Bioinformatics analysis 

The raw demultiplexed Illumina reads with Illumina 1.8+ encoding were processed using a 

bioinformatics pipeline, called CITESspeciesDetect. The CITESspeciesDetect is composed of five linked 

tools with data analysis passing through three phases: 1) pre-processing of paired-end Illumina data 

involving quality trimming and filtering of reads, followed by sorting by DNA barcode, 2) OTU 

clustering by barcode, and 3) taxonomy prediction and CITES identification (Figure 3.1). 

During preprocessing of reads, the 5’ and 3’ Illumina adapter sequences are trimmed using Cutadapt 

v1.9.1 [193] using the respective substrings TGTGTATAAGAGACAG and CTGTCTCTTATACACA. 

After Illumina adapter trimming, reads ≤ 10 bp are removed using Cutadapt. Then, the forward and 

reverse reads are merged to convert a pair into a single pseudoread containing one sequence and one 

set of quality score using USEARCH v8.1.1861 [189].  

Next, the merged pseudo-reads, unmerged forward reads and unmerged reverse reads are 

processed separately during quality filtering using a sliding window method implemented in 

PRINSEQ [163]. During this procedure, low quality bases with Phred scores lower than 20 are trimmed 

from 3’-end using a window size of 15 nt and a step size of 5 nt. After PRINSEQ, reads with a minimum 

of 95% per base quality ≥ 20 are kept, while the remaining reads are removed using FASTX_Toolkit 
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v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/). Then, reads are successively selected, trimmed 

and sorted per DNA barcode marker using Cutadapt [193]. The following steps are followed for each 

DNA barcode marker separately during this procedure. First, reads containing an anchored 5’ forward 

primer or anchored 5’ reverse primer (or their reverse complement) are selected with a maximum error 

tolerance of 0.2 (=20%) and with the overlap parameter specified to 6 to ensure specific selection of 

reads. Also, reads ≤ 10 nt are removed. The anchored 5’ primer sequences are subsequently trimmed. 

Second, primer sequences that are present at the 3’ end of the selected reads are also removed. For each 

DNA barcode, the primer-selected and unmerged reverse reads are reverse complemented and 

combined with primer-selected merged and unmerged forward reads. 

 The following procedure is used to cluster the quality trimmed reads of each DNA barcode into 

OTUs using the UPARSE pipeline implemented in USEARCH [189] with the following modifications: 

reads are dereplicated using the derep_prefix command. Also, singleton reads and reads with 

minimum cluster size smaller than 4 are discarded. Representative OTUs are generated using an OTU 

radius of 2 (98% identity threshold) and 0.2% OTU abundance threshold with minimum barcode length 

per primer set. Filtering of chimeric reads is performed using the default settings of the UPARSE-REF 

algorithm implemented in the cluster_otus command of USEARCH.  

 To assign OTUs to taxonomy, standalone BLASTn megablast searches [166] of representative 

OTUs are performed on the National Centre for Biotechnology Information (NCBI) GenBank nucleotide 

database using an Expectation value (E-value) threshold of 0.001 and a maximum of 20 aligned 

sequences. OTUs are assigned to the database sequence to which they align, based on bit score, and 

having at least 98% sequence identity and minimum of 90% query coverage. To identify putative 

CITES-listed taxa, the taxon ID first was matched against the NCBI taxonomy database using Entrez 

Direct (edirect) functions (available at ftp://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/) to retrieve 

scientific name (species, genus, family, order and synonym name). The scientific, synonym and/or 

family names are then matched against a local CITES database that is retrieved from 

https://speciesplus.net. The final results are presented as a tab-separated values file (TSV) containing 

the BLAST hit metadata (i.e. bit-score, e-value, accession numbers etc.), the scientific name, synonym 

name, and in case a CITES-listed taxon was found, also the CITES Appendix listing and taxonomic 

group (i.e. species, genus, family or order name) under which the taxon is listed by CITES.  

The BLAST output was interpreted by following guidelines: first, to minimize the chance of 

erroneous species identifications, the same species should have at least three top hits, i.e. highest bit 

scores. Secondly, if multiple hits are obtained with identical quality results, but with different assigned 

species, or with less than three top hits with same species designation, the OTU fragment was 

considered to lack the discriminatory power to refer the hit to species level. In such cases, the OTU 

would then be downgraded to a genus-level identification. Thirdly, if multiple hits are obtained with 

identical quality results, but with different assigned genera, the OTU fragment lacks the discriminatory 

power to describe the hit to genus level. In such cases, the OTU would then be downgraded to a family-

level identification. An online web-interface based application for the CITESspeciesDetect pipeline was 

developed which is available from http://decathlon-fp7.citespipe-wur.surf-hosted.nl:8080/. The web-

interface facilitates intuitive BLAST identification of species listed by speciesplus.net by highlighting 

species on CITES Appendix I in red. Species listed on CITES Appendix II and II are highlighted in 

orange and yellow, respectively. 

 

3.6.7 Pre-validation in-house of the CITESspeciesDetect pipeline 

A parameter scan was performed in order to assess the effect of software settings on the ability to 

identify species. This evaluation allowed for identification of important parameters and their effects on 

the sensitivity, specificity and robustness of the procedure. This in turn resulted in specified, 

recommended (default) parameters values for analysing DNA metabarcoding datasets using the 

http://hannonlab.cshl.edu/fastx_toolkit/
ftp://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/
https://speciesplus.net/
http://decathlon-fp7.citespipe-wur.surf-hosted.nl:8080/
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CITESspeciesDetect pipeline. The effects of the following parameters were assessed: base quality 

scores, error tolerance for primer selection, OTU radius, OTU abundance threshold, expect E-value and 

query coverage threshold, percentage identity threshold, minimum DNA barcode length and BLAST 

database. The parameters scan was performed on experimental mixture 11 of the pilot study (Table 

3.2). This mixture was selected because of its (relatively) high sample complexity, making it the most 

challenging complex mixture to analyse. Furthermore, the parameter scan was limited to four barcode 

primer sets: full-length cytochrome-B (cyt b), COI mini barcode (mini-COI), rbcL mini barcode (mini-

rbcL) and the full-length rbcL (rbcL) barcode.  

3.6.8 Inter-laboratory validation trial: participants and method 

To assess the overall performance of the developed DNA metabarcoding approach, 16 laboratories 

from 11 countries participated in an international inter-laboratory validation. Only laboratories that 

regularly perform molecular analyses and have well-equipped laboratory facilities were selected to 

participate (Table 3.6). The majority are governmental or semi-official institutes and are considered 

highly authoritative within each respective country. Participants were requested to follow the SOP 

(dx.doi.org/10.17504/protocols.io.ixbcfin), and were asked to document any deviations that were 

made. The chemicals and reagents that were provided to the laboratories were: 10 samples (eight 

experimental mixtures and two TMs), B. taurus and L. sativa positive control DNA, CTAB extraction 

and precipitation buffer, 1.2 M NaCl solution, 12 universal plant and animal barcode and mini-barcode 

primer sets (Table 3.1), Qiagen HotStarTaq master mix, and Qiagen PCR purification kits. All reagents 

and samples were provided in quantities corresponding to 2.5× the amounts required for the planned 

experiments. After following the SOP from DNA isolation to purification of the amplified products, all 

the purified samples from all the laboratories (n=160) were collected and sequenced using Illumina 

MiSeq paired-end 300 technology (at BaseClear, Leiden, NL). The Index PCR and Illumina library 

preparation was performed according to the guideline and all 160 samples were sequenced on two 

Illumina flow cells. After Illumina MiSeq run, the raw NGS data was processed using the default 

settings of the CITESspeciesDetect pipeline. BLAST outputs for the samples were distributed back to 

the participating laboratories for interpretation of results. The laboratories interpreted the BLAST 

output based on the guideline provided in the SOP.  

3.7 Availability of supporting data 

All the sequence data obtained from the pilot study and the international interlaboratory validation 

trial, the CITESspeciesDetect pipeline and access to web interface are freely available. The generated 

barcode sequence information for some animal and plant species were deposited in GenBank under the 

accession numbers LT009695 to LT009705, and LT718651 (Additional file 3A; Table S1). The Illumina 

PE300 MiSeq data obtained from the pilot study and the international interlaboratory validation trial 

(n=177) were deposited to ENA with study ID PRJEB18620. The script for the CITESspeciesDetect 

pipeline is available at GitHub. The web interface for CITESspeciesDetect pipeline can be accessed via 

the following link: http://decathlon-fp7.citespipe-wur.surf-hosted.nl:8080/. The access to analysis via 

the web interface will be provided on request.  

 

 

 

 

https://dx.doi.org/10.17504/protocols.io.ixbcfin
http://decathlon-fp7.citespipe-wur.surf-hosted.nl:8080/
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3.8 Availability and requirements  

Project name: CITESspeciesDetect 

Project home page: https://github.com/RIKILT/CITESspeciesDetect 

Operating system(s): Linux  

Programming language: Python and Bash 

Other requirements: none 

License: BSD 3-Clause License 

Any restrictions to use by non-academics: none 

3.9 Additional files (available with the publications)  

Additional file 3A: Table S1 Accession numbers of DNA barcode sequences of plant and animal 

species. Table S2 PCR success rate for animal reference species. Table S3 PCR success rate for plant 

reference species. Table S4 Statistics of different quality filtering settings for four DNA barcodes. Table 

S5 BLAST identification of species with different quality filtering settings for four DNA barcodes. Table 

S6 Results of species-specific qPCR performed on the experimental mixtures prepared for the inter-

laboratory validation trial. Table S7 Interlaboratory trial study: average number of Illumina reads per 

sample, the average number of (pseudo)reads that passed quality control (QC) and the percentage of 

QC (pseudo)reads that were assigned to DNA barcodes and Operational Taxonomic Units (OTUs). 

Table S8 qPCR primer and probe information. Table S9 qPCR reagent composition. Table S10 qPCR 

thermocycling program. (*.docx). 

Additional file 3B: Table S1 Pilot study: Composition of the experimental mixtures, and taxa identified 

using the default settings of the CITESspeciesDetect pipeline. Table S2 Interlaboratory trial: Beta 

vulgaris observed in the sample S6 data sets generated by the 16 laboratories. Table S3-S5 

Interlaboratory trial: Assessment of the effect of different settings (OTU clusters size, OTU abundance 

threshold) of the CITESspeciesDetect pipeline on the identification of taxa using different data volume 

(low, medium and high) generated by three laboratory for S6. Table S6 Interlaboratory trial: the 

taxonomic resolution provided by each DNA barcode marker for eight experimental mixtures (*.xlsx). 

Additional file 3C: Table S1 ENA accession numbers of all raw NGS datasets obtained in this study 

(*.xlsx). 
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Chapter 4 

 

The application of multi-locus DNA metabarcoding in 
traditional medicines 
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Abstract  

Traditional medicines (TMs) are globally traded and the consumer market is estimated to be $83 billion 

per annum. The diversity of TM matrices and poor quality of DNA extracted from highly processed 

TMs makes it challenging to apply standardized DNA-based procedures for ingredient analysis. In the 

present study, one standardized strategy was used to successfully obtain DNA from 18 TMs that were 

subsequently analyzed with a multi-locus DNA metabarcoding method to assess the species 

composition. In the analysis mini-barcodes accounted for the identification of most of the taxa in the 

TMs. The plant (ITS2) and animal (mini-16S) mini-barcode markers showed to allow species level 

identification of targets. In a few cases, full-length barcode markers, requiring higher quality DNA, 

proved to be critically informative at this level. The applied strategy resulted in the identification of a 

wide range of declared and undeclared ingredients, including endangered species (Ursus arctos and 

Aloe sp.). In 14 TMs less than 65% of the identified taxa matched the product label, and in two TMs 

none of the identified species matched the ingredients list. The current study shows that a multi-locus 

DNA metabarcoding approach is an informative analytical tool for species identification in TMs, 

including the potential identification of endangered species.  

 

Keywords: Traditional medicines, multi-locus DNA metabarcoding, endangered species, CITES, 

Customs authority, DNA extraction 
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4.1 Introduction  

The use of traditional medicines (TMs) containing naturally derived plant and/or animal compounds 

for therapeutic purposes is common practice in many countries. The global annual market for these 

products is estimated to be $83 billion [181]. TMs are typically plant-based mixtures of multiple species, 

sometimes supplemented with animal ingredients [9,8,18,27]. Some studies have found endangered 

species, such as Ursus thibetanus (Asiatic black bear; CITES Appendix I) and Rauvolfia serpentina (Indian 

snakeroot: CITES Appendix II), as TM ingredients in specific products [8,20]. The trade in endangered 

species, both legal and illegal, involves billions of dollars on a global scale [11,12,194]. To regulate the 

legal trade in endangered species worldwide, the Convention on International Trade in Endangered 

Species of Wild Fauna and Flora (CITES) was established in 1973 (www.cites.org). To implement CITES 

regulation, Custom authorities apply DNA-based or chemical identification methods to determine the 

biological origin of ingredients in cases where morphological identification of species is not possible 

[8,9,26,195-197]. This is particularly true for TMs for which the raw ingredients were highly processed 

and manufactured into powders, tablets or capsules [18]. 

 DNA metabarcoding has been found to be a valuable molecular method for the authentication 

of animal and plant species used in, amongst others, TMs [8,27,9,181,198-200]. These studies have 

reported that TMs often contain undeclared plant and animal species, regularly including endangered 

species, and that mislabeling of ingredients is an issue [8,9,198]. Recently, Arulandhu et al. (2017) 

developed a multi-locus DNA metabarcoding strategy that enables reliable identification of plant and 

animal species in complex samples using a panel of different DNA barcode markers. The approach was 

successfully applied in well-characterized experimental mixtures and real-life TM samples in an inter-

laboratory validation study. The success of a DNA metabarcoding approach depends on the 

amplifiability of the DNA obtained from samples. Previous studies have demonstrated that obtaining 

amplifiable DNA from TMs is a challenging due to the heavy processing of the ingredients (by physical 

and/or chemical treatments) and the presence of PCR inhibitory and interfering substances (e.g. 

protein, lipids, polyphenols, polysaccharides) [8,66,181]. Therefore, before the multi-locus 

metabarcoding method can confidently be applied in a routine set-up for screening, an adequate DNA 

extraction procedure needs to be selected to isolate good quality DNA from a wide range of TM matrices. 

 In this study, a systematic comparison of DNA extraction methods was made to identify an 

efficient procedure that can be applied across a wide range of TM samples. A number of commercially 

available and commonly-used DNA extraction methods (organic extraction, silica-based, and magnetic 

beads based) were compared for their ability to isolate DNA of sufficient quality from these matrices 

to allow subsequent PCR amplification. The best performing DNA extraction method was applied on 

TM samples that had been seized by the Customs authorities and were suspected to contain 

endangered species. All samples were DNA metabarcoded using the PE 300 MiSeq Illumina technology 

and data analysis was performed using CITESspeciesDetect (Arulandhu et al. 2017). Finally, the 

identified species from the DNA metabarcoding analyses were compared with the label information of 

the respective TMs for the identification of undeclared and endangered species.  

 

4.2 Materials and Methods  

4.2.1 Traditional Medicines (TMs) used in this study 

In this study, 18 different TMs were analyzed that were either provided by the Dutch Customs 

laboratory or obtained from a local shop in the Netherlands (Table 2 and Additional file A: Table A.1). 

The TMs provided by the Dutch Customs laboratory were suspected to contain CITES listed species 

either based on labeling information or on other product-related intelligence. The samples were 

classified into 2 categories: plant-based TMs, or plant and animal-based TMs. The following TMs were 

http://www.google.com/url?q=http%3A%2F%2Fwww.cites.org&sa=D&sntz=1&usg=AFQjCNEo-ImD5KtBToDwHLdaF0GfEKGOpQ
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used to systematically compare DNA extraction methods: TMDW, TMGB, TMGW, TMSN, TMWW, 

TMYD and TMDP (Additional file A: Table A.1). 

4.2.2 DNA extraction methods 

The following DNA extraction methods were evaluated: Maxwell® 16 Tissue DNA Purification Kit 

[Promega], DNeasy mericon Food Kit [Qiagen], DNeasy plant mini kit [Qiagen], and the commonly-

used cetyl trimethylammonium bromide (CTAB) DNA isolation method [187]. All commercially-

available kits were used according to the manufacturer’s instructions, except for the DNeasy plant mini 

kit where lysis buffer AP1 was replaced by a CTAB extraction buffer (20 g/L CTAB, 1.4 M NaCl, 0.1 M 

Tris, 20 mM Na2 EDTA). Additionally, all 4 DNA extraction methods were tested in combination with 

an additional DNA purification step using the Promega-wizard® DNA Clean-up system. From each of 

the TMs 100 ± 10 mg was used to perform the DNA extraction, along with a separate plant and animal 

positive (Zea mays, Acipenser schenckii/Huso dauricus) and negative control (water). The yield and purity 

(OD260/280 and OD260/230 ratios) of the DNA was measured using Nanodrop (Nanodrop 1000 

instrument, Thermo Fisher Scientific). The purified DNA was stored at -200 C until further use. The 

efficiency of the DNA extraction was also determined by performing a PCR using the plant mini-

barcode marker (mini-rbcL), for which the following the PCR protocol was used: 95 °C for 15 min, five 

cycles of 94 °C for 30 s, annealing range 49.5 °C for 40 s, and 72 °C for 60 s, followed by 35 cycles of 94 
°C for 30 s, 54 °C for 40 s, and 72 °C for 60 s, with a final extension at 72 °C for 10 min. The PCR was 

performed in an iCycler thermal cycler (Bio-Rad). After the PCR, 5 µl of each amplified DNA solution 

was loaded on a 1% agarose gel using the UV ChemiDoc™ XRS+ system (Bio-Rad). The PCR bands on 

the gel were used to determine the success of the DNA extraction methods.  

4.2.3 Multi-locus DNA barcode panel: PCR and NGS 

PCRs were performed using the DNA barcode markers and amplification conditions described in 

Arulandhu et al. (2017): cytochrome c oxidase I (COI) (648 nt), cytochrome b (cyt b) (743 nt), 16S (500-

600 nt), mini-16S (250 nt), mini-COI (313 nt), mini-cyt b (357 nt), maturase K (matK) (656-889 nt), 

ribulose-1,5-bisphosphate carboxylase (rbcL) (654 nt), tRNALeu (UAA) intron sequence (trnL (UAA)) 

(767 nt), internal transcribed spacer 2 (ITS2) (160-320 nt), mini-rbcL (140 nt) and the trnL(P6-loop) (10-

143 nt). For each TM sample, 8 µl of PCR product of each PCR target (12 in total) was pooled and 

purified using QIAquick PCR purification kit (Qiagen). The pooled and purified PCR amplicons were 

sequenced using Illumina MiSeq paired-end 300 technology as described by Arulandhu et al. (2017). 

 4.2.4 Bioinformatics analysis 

The obtained raw Illumina reads from the TM samples were processed with the CITESspeciesDetect 

pipeline described in Arulandhu et al. (2017). The pipeline consists of the following steps: removal of 

Illumina adapters, merging the forward and reverse reads, quality filtering, segregation of reads based 

on barcodes primers and removal of the primers, the primer trimmed reads are clustered into 

Operational Taxonomic Units (OTUs) with a minimum cluster size of 100 [181]. Standalone megablast 

BLASTn search was performed for all the OTUs using the NCBI nucleotide database (downloaded on 

14 July 2017) for taxonomical classification. Any alignment above 98% sequence identity, with a 

minimum of 90% query coverage and an E-value ≤ 0.001, was considered to be a match. The identified 

species were checked for CITES listing by using a local database extracted from Speciesplus.net and 

final results were interpreted following the guidelines described in Arulandhu et al. (2017). All raw 

NGS datasets were deposited in European nucleotide archive (ENA) under study accession number 

PRJEB25620. 
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4.3 Results 

4.3.1 Comparison of DNA extraction methods  

A comparison of DNA extraction methods was performed with seven TM samples (Additional file A: 

Table A.2). The DNA extraction protocols were assessed for their performance in terms of PCR 

amplification success using the mini-rbcL barcode marker. DNA yields prior to DNA clean-up system 

ranged from 1 to 222 ng/µl with A260/280 measurements between 1 and 1.9 (Additional file A: Table 

A.2). All DNA extracts were turbid. Applying the additional clean-up system resulted in clear DNA 

extracts with generally higher purity (Additional file A: Table A.2). The DNA extraction protocol with 

the best overall PCR success for the mini-rbcL barcode marker i.e. positive amplification for all TM 

samples, was the CTAB method in combination with the Wizard DNA clean-up system (Table 1). Using 

other DNA extraction methods positive amplification was observed, however, not in all the analyzed 

samples e.g. using DNeasy Plant Mini Kit + clean-up system a positive mini-rbcL amplification was 

observed in four out of seven TMs. In an additional experiment the reproducibility of the CTAB + clean-

up system was confirmed by the successful PCR amplification in all samples (Table 1), and therefore 

this procedure was used in subsequent experiments.  

Table 4.1 Effect of different DNA extraction methods on the PCR performance for seven TM samples. 
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CTAB            + + 

CTAB + clean-up +* + * + * + * + * + * + * 

DNeasy Plant Mini         +  + 

DNeasy Plant Mini Kit + clean-up   + +   +   + 

Maxwell             + 

Maxwell + clean-up +       + + + 

Mericon           + + 

Mericon + clean-up       +   + + 

“Clean-up” indicates that the DNA extraction method was coupled to the wizard® DNA Clean-up system. The symbol (+) 

indicates a positive PCR amplification using mini-rbcL and symbol (*) indicates that the results were successfully repeated 

in a second experiment.  

4.3.2 Multi-locus DNA metabarcoding  

DNA metabarcoding was performed on 18 authentic TM samples (Table 2). Twelve out of 18 TM 

samples listed only plant-based ingredients on the label and the remaining six TM samples listed both 

plant and animal-based ingredients (Table 2). Regardless of the TM plant or plant-animal classification, 

all 12 plant and animal DNA barcode markers described in Arulandhu et al. (2017) were used to analyze 

the TM samples. In total, 4.16 Gb of Illumina MiSeq sequencing data was generated for the 18 TM 

samples. On average, 769,985 raw reads were generated per sample (Additional file A: Table A.3). The 

raw datasets were processed using the default settings of the CITESspeciesDetect pipeline [198], except 

that the minimum cluster size after dereplication and Operational Taxonomic Units (OTU) clustering 

was set to 100. This was done to only keep clusters with relatively high support (read numbers), as was 

suggested by Ivanova et al. (2016). On average 95.74 % (min = 89.63%, max = 99.35%) of raw reads 

passed the QC steps, indicating that the overall quality of the Illumina data was high (Additional file 

A: Table A.3).  
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Figure 4.1: Percentage of OTU assigned reads per barcode marker. The Y-axis indicate the reads assigned to OTU 
per barcode marker, which is used for taxonomical identification. The symbol, P and PA indicates the plant and 
plant and animal based TMs analysed in the study.  

 

For the plant-based TM samples, on average 99.3% (min = 94.97%, max = 100%) of reads were assigned 

to plant barcode markers (ITS2, matK, rbcL, mini-rbcL, trnL(P6 loop) and trnL(UAA)) (Additional file A: 

Table A.4 and Figure 1). The highest percentage of reads were assigned to the plant mini-barcode 

markers mini-rbcL and trnL(P6loop) with on average 48.22% and 45.01% of the reads, respectively. The 

remaining plant-based barcode markers (ITS2, matK, rbcL, and trnL(UAA)) contained on average less 

than 5% of the reads. The percentage of reads assigned to animal DNA barcodes was 0.7% across the 

12 plant-based TM samples (Additional file A: Table A.4). For the plant and animal-based TM samples, 

on average 93.68% (min = 78.46%, max = 100%) of reads were assigned to plant DNA barcode markers, 

and on average 6.32% (min = 0.00%, max = 21.54%) of reads were assigned to animal DNA barcode 

markers (Additional file A; Table A.4). The majority of reads in these samples were assigned to mini-

rbcL and/or trnL(P6loop), with on average 49.49% and 37.63% of the reads, respectively. For TM308 

and TMGB, relatively high percentages of reads were assigned to mini-16S, namely 19.9% and 9.68% of 

reads, respectively (Additional file A: Table A.4 and Figure 1). The barcode markers 16S, cyt b and COI 

each contained on average less than 1% of assigned reads in plant- and animal-based TM samples. 

Overall, 70% of taxa were identified with a single DNA barcode (Additional file B: Table B.1-B.18). 

Mini-barcodes accounted for 69% of species-level identifications across the 18 TMs (Additional file B: 

Table B.1-B.18).  
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Table 4.2: Overview of CITES-listed taxa identified, the number of taxa matching the ingredients list, and the number of undeclared taxa identified in 18 TMs by DNA 
metabarcoding. 

Sample name Sample 

ID 

TM classification  Target CITES-listed taxon 

based on labelling 

information. 

Target 

CITES-

listed taxon 

identified 

(yes/no) 

Identified the endangered 

species with corresponding 

barcode markers 

Number 

of species 

on label 

Number of taxa 

identified 

matching the 

label 

Number 

undeclared 

taxa 

identified.  

Nongsuowan Xiangsha 

Liujun* 
TM006 Plant-based Saussurea costus no  9 1 9 

Kani Chitosan-Super Diet* TM104 Plant-based Aloe sp. (excluding Aloe vera) yes Aloe sp. (matK) 4 1 7 

Yaobitong Jiaonang* TM127 Plant-based Cibotium barometz no  6 1 5 

Shujin Huoxue Pian* TM130 Plant-based Cibotium barometz no  8 3 3 

One Night 8 Times* TM150 Plant and animal based Hippocampus sp. no  12 0 15 

Po Chai* TM160 Plant-based Saussurea costus no  14 11 3 

Kuku Bima TL* TM161 Plant and animal based Hippocampus sp. no  5 1 7 

Adutwumwaa* TM180 Plant-based Aloe ferox no  3 2 18 

Bu Shen Qiang TM190 Plant-based Cibotium barometz no  4 1 4 

Adutwumwaa BL* TM203 Plant-based Aloe ferox no  3 2 18 

Bear’s Gall* TM308 Plant and animal based Ursidae yes Ursus arctos (16S and mini-16S) 1 1 7 

Laryngitis Pills* TM313 Plant and animal based Ursidae no  7 1 14 

Du Huo Ji Sheng Wan TMDW Plant-based    14 0 4 

Trassi Oedang TMGB Plant and animal based    2 0 12 

Ge Xian Weng TMGW Plant-based    2 2 5 

Seirogan TMSN Plant-based    6 0 4 

Wu Ji Bai Feng Wan TMWW Plant and animal based    19 2 6 

Yin Qiao Jie Du Pian TMYD Plant-based    9 4 7 

*TMs provided by the Dutch Customs. 
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4.3.3 Labelled and undeclared taxa identified in TMs  

Overall, 31 plants and 17 animals were identified at species level, from those 19 plant and 5 animal 

species were unique. (Table 3). Most of the unique (11 of 19) plant species were identified using ITS2 

and six plant species were identified with mini-rbcL (Additional file B: Table B.1-B.18). Two plant species 

Saccharum hybrid cultivar and Zea mays were identified with the full-length barcode marker rbcL. Three 

animal species were identified with mini-16S (i.e. Homo sapiens, Ursus arctos, Pampus minor), while Sus 

scrofa and Gallus gallus were identified with 16S and cyt b, respectively (Additional file B: Table B.1-

B.18). Homo sapiens was the only species that could be identified with all animal barcode markers (16S, 

mini-16S, COI and cyt b) in all TMs. The identified taxa of a TM were compared to the ingredients list 

of the specific TM. For TM308 and TMGW all ingredients listed on the label could be identified 

(Additional file B: Table B.11 & B.15). For TM160, TM180, and TM203 more than 65% of the taxa on the 

ingredient list could be identified, either at genus or family level. For TM150, TMDW, TMGB, and TMSN 

none of the declared ingredients could be identified. For the remaining nine TMs less than 50% of the 

species listed on the label could be identified. Besides the declared species, many undeclared taxa were 

identified in all TM samples, and these were predominantly plant species (Additional file B: Table B.1-

B.18). From the identified 31 plant and 17 animal species, 30 and 16 species were undeclared across the 

TMs, respectively. Some of the undeclared species were commonly identified, for example sugarcane 

(Saccharum hybrid cultivar) was found in six TMs. Additionally, for TMGB, Manihot sp. and one animal 

taxa (Shrimp) were listed on the label, however, in the analysis four fish related taxa and chicken were 

identified together with several plant taxa. Furthermore, in some TMs undeclared species were 

identified which were most likely the result of unintended contamination occurred during TM 

preparation or sample preparation (DNA isolation, PCR or library preparation), for instance the 

presence of Homo sapiens in plant-based TMs. In TM104 Acipenseridae was identified with cyt b, which 

was considered a cross-contamination during sample preprocessing, as this species was used as a 

positive control in during DNA extraction.  

4.3.4 Endangered species identified  

Of the 18 TMs analyzed in this study, 12 TMs had been seized by the Dutch Customs authority and 

were suspected of containing CITES-listed taxa (Table 2). These were Saussurea costus (CITES Appendix 

I), Aloe ferox (CITES Appendix II), Aloe sp. (CITES Appendix II), Panax ginseng (only the population of 

the Russian Federation in CITES Appendix II) and Hippocampus sp. (CITES Appendix II) and Ursidae sp. 

(CITES Appendix II) (Appendix A: Table A.1). TM127, TM130, and TM190 were suspected of containing 

the endangered species Cibotium barometz instead of Woodwardia (CITES Appendix II) based on 

Customs intelligence, i.e. the species name was not specified on the respective labels of these TM 

samples (Table 2). A survey of NCBI’s nucleotide database learned that sufficient numbers of reference 

sequences for one or more relevant DNA barcode markers were present in the database for each of these 

endangered taxa (Additional file A: Table A.5). In TM308, the presence of Ursus arctos (Brown bear) 

could be confirmed with 16S and mini-16S, all with high read counts (Additional file B: Table B.11 and 

Table 3). TM104 contained a species of Aloe as identified using matK. For TM006, TM150, TM160, TM161, 

TM180, TM203 and TM313 the suspected endangered species (Saussurea costus, Hippocampus sp., Aloe 

ferox and Ursidae) listed on the labels could not be identified (Table 2). Additionally, three TMs (TM127, 

TM130, and TM190) were seized based on the suspicion of containing Cibotium barometz, however, in 

the analysis, no Cibotium barometz or related genus or family could be identified with any of the plant 

barcode markers. 
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Table 4.3: Plant and animal species identified in 18 TMs by twelve universal plant and animal barcode and mini-barcode markers.  

      Plant-based Plant and animal-based 

Family Genus Species TM006 TM104 TM127 TM130 TM160 TM180 TM190 TM203 TMDW TMGW TMSN TMYD TM308 TM150 TM161 TM313 TMGB TMWW 

Acanthaceae              2.72                         
  Hypoestes                 0.39                     
Acipenseridae      0.50                                 
Amaranthaceae                                        
  Chenopodium               2.60                       
   Chenopodium album             0.53                       
Amaryllidaceae                                        
  Allium                               1.21       
Anacardiaceae                  1.15               0.14     
Apiaceae    36.15 0.61 0.10     0.34   0.18       0.48   0.09 11.18     62.54 
   Angelica sinensis                               0.49     
  Ligusticum   0.68                                   
   Ligusticum jeholense 9.38                                   
   Ligusticum acuminatum 0.05                                   
   Sison amomum 0.83                                   
Apocynaceae          15.69                   1.27       11.30 
Asparagaceae                                        
  Asparagus                     2.15                 
Asphodelacaea      89.92       23.54   42.27                     
  Aloe     0.13                                 
Asteraceae    43.71     64.03 8.17 2.93   0.42           1.65   0.57 10.95   
  Atractylodes   0.69       1.12                           
   Atractylodes japonica 1.19                                   
   Xanthium sibiricum                           0.05         
  Lactuca                             0.29     16.96   
Araliaceae        42.01     0.42   0.17       0.17 0.27           
  Eleutherococcus         3.22                             
  Panax     4.12 53.07                   0.46           
   Panax ginseng                                     
Areaceae    1.09                             0.35     
  Corypha   0.52                                   
Arecaceae              0.34   14.53                     
Aristolochiaceae                                        
  Asarum                                 70.77     
Bufonidae                                        
  Bufo                                 2.49     
Burseraceae              8.19   1.61                     
Brassicaceae      0.67   10.29 0.73 0.61   1.60         0.19     0.38     
   Brassica oleraceae                         0.23     0.07     
   Capsella bursa-pastoris                               0.31     
  Isatis                     31.30       0.11         
Campanulaceae                          6.32             
Caprifoliaceae                                        
  Lonicera                         76.40             
Carangidae                                    1.88   
Caricaceae              0.19         29.65               
Convolvulaceae                12.99             0.12         
  Ipomoea       1.94                               
  Cuscuta               63.30             3.16         
Cordiaceae                                        
  Cordia                 1.81                     
Cucurbitaceae            1.36                     0.68     
Cyperus    0.07                                   
Dioscoreaceae                                        
  Dioscorea                         0.41             
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Engraulidae                                        
  Setipinna                                   3.13   
Euphorbiaceae                                23.53       
Fabaceae      0.42 2.02   7.37 4.34   0.77       6.09   36.92 17.06       
  Arachis             0.43   3.02                     
  Astragalus       0.32                       9.54       
   Astragalus danicus   0.77                         3.69       
  Glycine       0.32     0.78 6.65 0.83                 2.22   
  Glycyrrhiza                         0.31   1.99         
  Vachellia                 0.89                     
  Vicia                                 0.16     
   Vicia sativa                               0.37     
Fagaceae                        2.26               
  Fagus                                     9.49 
  Quercus                       44.14             1.35 
Hominidae                            0.08           
   Homo sapiens 0.38 0.28       0.15 13.79 0.41 0.17 5.03 0.18 0.98 5.66 1.07     2.12 0.27 
Hydrangeaceae                                        
  Hydrangea       0.21                               
Lamiaceae            2.08                           
  Pogostemon           23.10                           
Lauraceae                                    1.86   
Linaceae                                        
  Linum                                 0.97     
   Linum bienne                         0.12     1.42 0.47   
Meliaceae                  0.23                     
   Azadirachta indica           0.18                         
Magnoliaceae            1.60                           
Malvaceae                              1.00         
  Gossypium                     0.42               5.22 
Moraceae      2.57           0.32                     
Musaceae                                9.32       
Paeoniaceae                                        
  Paeonia                         0.12   0.60         
Pedaliaceae                  0.18                     
Phasianidae                                        
   Gallus gallus                                 0.18   
Pinaceae                                        
  Larix                   0.64                   
Poaceae    0.24       5.63 23.84 0.13 12.88   54.41 23.78   0.56     12.83 17.72 9.84 
  Cenchrus             0.22                         
  Oryza           5.94                           
  Saccharum  Saccharum hybrid cultivar         35.95 20.51   14.81 41.99 0.09     46.27       16.35   
                                         
  Triticum             0.30                   6.18     
   Sorghum bicolor           0.15                         
   Zea mays                   0.08     30.17       20.95   
Polygonaceae          6.77                             
  Rheum                             0.09         
  Rumex             0.21                         

Rosaceae                          7.89   0.90         
  Rubus                             0.56         
Rubiaceae    3.32       0.19                           
  Gardenia   1.68                                   
  Rubia                         0.23             
Ranunculaceae                                        
  Coptis                                 1.58     
Rutaceae                              0.18         
  Zanthoxylum                             0.43         
Salvadoraceae                                        
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  Salvadora                 0.95                     
   Salvadora persica               0.56                     
Schisandraceae                                        
  Schisandra                             0.14         
Sciaenidae                                    4.70   
Solanaceae              9.55     57.20 6.52     0.19   1.38 0.15     
  Solanum             0.17                         
Stromateidae                                        
    Pampus minor                                 0.56   
Suidae                                        
   Sus scrofa                               0.08     
Ulmaceae                                        
  Ulmus                         0.58             
Ursidae                                        
  Ursus                           7.03           
   Ursus arctos                         8.77           
Zygophyllaceae            2.95                 38.36         
  Tribulus                             0.27         
   Tribulus terrestris         3.73                 10.76         
Zingiberaceae                                22.03       
  Curcuma                               1.06       

Targets highlighted in grey are the animal species and related taxa. The number indicate the percentage of assigned read counts per taxon in a sample and blue colour gradient is applied to show the 

difference.  
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4.4 Discussion 

In this study, the multi-locus DNA metabarcoding approach of Arulandhu et al. (2017) was used to 

assess the species composition of traditional medicines (TMs). The DNA metabarcoding approach 

makes use of twelve DNA barcode markers that have demonstrated universal applicability across a 

wide range of plant and animal taxa, and the use of mini-barcodes facilitates the identification of species 

in samples containing degraded DNA. The study by Arulandhu et al. (2017) showed that the DNA 

metabarcoding approach is a highly reproducible method for the identification of species in highly 

complex samples, with consistent results in a validation study involving 16 laboratories. In the current 

study the aims were to investigate labelling compliance and to assess the potential presence of 

endangered species in different TMs. Extracting good quality DNA from TM products is a crucial first 

step when using DNA-based methods. From previous studies it is known that isolating DNA from TMs 

is challenging and so far no single extraction method has been reported suitable for extracting DNA 

from all TM matrices [18,87]. Also, in cases where DNA can be extracted, it is often of insufficient quality 

for successful PCR [8]. To overcome the above-specified bottleneck, eight DNA extraction procedures 

were evaluated using seven TM samples representing a range of different matrices (sticky paste, crystal 

powders, fine powders, tablets, dry-balls, wet-balls). The performance of the DNA extraction methods 

were evaluated based on DNA purity, DNA yield, and PCR amplification success using the mini-rbcL 

barcode marker. This comparison showed that the CTAB DNA extraction method in combination with 

an additional DNA clean-up system provides the best overall DNA quality. The observed necessity of 

an additional DNA clean-up system is in line with the conclusions of previous studies, where it was 

found that potential inhibitory components and interfering substances derived from the samples (e.g. 

protein, lipids, polyphenols, polysaccharides) may hamper PCR efficiency despite high DNA yields 

[8,66]. 

DNA metabarcoding analyses revealed that the mini-barcode markers (ITS2, mini-rbcL, 

trnL(P6loop) and mini-16S were most informative in identifying plant and animal species in TM 

samples. This bias towards mini-barcode markers is most likely the reflection of the fragmentation of 

the DNA in the TMs due to the various treatments (e.g. cooking, high pressure, pH modification, 

grinding or drying). Here, ITS2 was shown to be the most informative marker to identify plants at 

species level. This is in line with Chen et al. (2010), who proposed that ITS2 can be a universal barcode 

to identify plant at species level, especially for medicinal plants. In a recent study, ITS2 barcode marker 

was efficiently used to identify Veronica officinalis and Hypericum perforatum from closely related species 

in herbal products using metabarcoding approach [199,200]. In animals, mini-16S has been shown to 

identify targets at species level, despite of the shorter barcode length (250 nt). Additional to species 

identification with mini-barcode markers, we found in a few cases full-length barcode (rbcL and 16S) 

providing valuable taxonomic information at species level. Although the full-length barcode markers 

were amplifiable in the TMs, the resolution, in this case, was limited to the maximum read length 

obtained in Illumnia sequencing (~300 bp). Therefore, using PacBio or MinION as an NGS technique, 

the full-length barcode could theoretically be sequenced completely, if the DNA quality permits so, 

which might provide a higher resolution for identification, especially for plants. Although, these 

barcodes could identify the target at species level, other barcodes also provided good resolution at 

genus level and facilitated the identification of additional taxa. The identification of different taxa with 

distinct barcode markers shows the necessity to use a multi-barcodes approach to identify the 

composition of complex samples. 

In the assessment of the authenticity of the TM ingredients in terms of compliance with the 

label, it was confirmed in the present study that mislabeling of ingredients is a basic problem for TMs, 

as has also been reported in other studies [8,9,27,199,200]. In for four TMs ~35% of the identified species 

were undeclared, for another eight TMs, > 50% of the identified species did not match the labelling 
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information, of which five TMs none of the identified species matched the label information. This 

stresses the necessity to harmonize strict enforcement worldwide to correctly label biological 

ingredients of TMs on the label. Based on the World Health Organization TM regulation report, the 

main challenges lies with development and implementation of the regulation in the countries where the 

TMs are manufactured. As consequence, there is lack of safety assessment, quality control and 

knowledge about the TMs [198,201]. For example, in one-third of the analysed TMs contained Saccharum 

hybrid cultivar (sugar cane), which is a commonly used species to achieve a sweet taste in food products. 

However, only in TMGW, this species was listed on the label. Furthermore, in one case the undeclared 

species Sus scrofa (pig) was identified, while the endangered species Ursus sp. was listed on the label 

but not identified. Specifying an endangered species on the label might help to increase the presumed 

value of the product, however, as this example illustrates, the presence of the species in the TMs is not 

guaranteed.  

The DNA metabarcoding analysis also focused on the identification of suspected endangered 

species. However, only in one case could the presence of an endangered species could be confirmed, 

namely Ursus arctos (CITES Appendix I) was positively identified in TM308. In the other TM samples, 

the suspected endangered taxon could not be confirmed. In TM104, the genus Aloe (CITES Appendix II) 

was identified using matK, however Aloe vera is excluded in CITES, and therefore the identification of 

endangered species in this samples was considered inconclusive. It should be noted that from the 

identified endangered it is not possible to distinguish whether the species are obtained and used legally 

or illegally. Therefore, Customs authorities need to further investigate the origin of the identified 

endangered species, by requesting for an import, export or re-export permit for the specific species 

issued by the Management Authority of the State (www.cites.org). Furthermore, it is possible that the 

failure to identify certain species in these TMs might be due to the processing of the ingredients in such 

a way that the DNA was either degraded or effectively removed. Also, PCR amplification bias caused 

by variable primer-template mismatches may cause certain species to be missed [8,69,70]. Additional to 

the presence of endangered species, many studies have shown that TMs may contain fungal species, 

poisonous plants, toxic compounds and heavy metals, which can have adverse effects for human health 

[8,27,181,198]. 

All these factors raise concerns about the authenticity of TMs in general. In certain countries, 

such as United States, Canada, Australia, and European Union (EU) there is a regulatory framework to 

assess the quality and safety of TMs prior to allowing the product to enter the market [8,9,202], but in 

practice enforcement activities to control the authenticity and quality of products on the market seem 

to be limited. In many other countries, there is no established regulatory structure to assess the safety 

of TMs prior to their marketing [202]. However, countries following CITES convention are obliged to 

screen for the presence of endangered species in seized wildlife forensic samples. DNA metabarcoding 

could be an apt analytical tool for Customs authorities to address this issue. 

4.5 Conclusion 

In this study, we showed that the choice of DNA extraction method has a crucial influence on the PCR 

amplification success. The CTAB + clean-up system is the recommended DNA extraction method for 

use in DNA metabarcoding studies on TMs. We found that the DNA metabarcoding approach of 

Arulandhu et al. (2017) is suitable for providing valuable information about the authenticity and quality 

of TMs. Using this approach a wide range of plant and animal species, including endangered species, 

could be identified in different types of TMs. In the analysis, mini-barcodes barcode markers (ITS2, 

mini-rbcL and trnL(P6loop)) were accounted for the identification of most of the species in the TMs, 

reflecting the level of processing of the TM ingredients. Only in one TMs, the presence of endangered 

species could be confirmed, however, multiple undeclared species were identified across the TMs. 

These finding illustrate that the approach could support authorities to check the authenticity and quality 

http://www.google.com/url?q=http%3A%2F%2Fwww.cites.org&sa=D&sntz=1&usg=AFQjCNEo-ImD5KtBToDwHLdaF0GfEKGOpQ
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of TM products on the market, and will aid Customs authorities in the fight against the illegal use of 

endangered species in products such as TMs. 

4.6 Appendices (available with the publication) 

Additional file 4A: Table A1 Traditional Medicines (TMs) used in this study. Table A2 Effect of extraction 

methods on DNA yield and purity. Table A3 Summary of data quality obtained from TMs. Table A4 Percentage 

of reads used to identify species in the TMs. Table A5 Number of NCBI reference sequences available for TM 

ingredients listed by CITES.  

 

Additional file 4B: Table B1 TM006, Nongsuowan Xiangsha Liujun Wan, ingredients and taxa (species, 

genus, family, and order) identified. Table B.2 TM104, Kani Chitosan-Super Diet, ingredients and taxa 

(species, genus, family, and order) identified. Table B.3 TM127, Yaobitong Jiaonang, ingredients and 

taxa (species, genus, family, and order) identified. Table B.4 TM130, Shujin Huoxue Pian, ingredients 

and taxa (species, genus, family, and order) identified. Table B.5 TM150, One Night 8 Times, ingredients 

and taxa (species, genus, family, and order) identified. Table B.6 TM160, Po Chai, ingredients and taxa 

(species, genus, family, and order) identified. Table B.7 TM161, Kuku Bima TL, ingredients and taxa 

(species, genus, family, and order) identified. Table B.8 TM180, Adutwumwaa, ingredients and taxa 

(species, genus, family, and order) identified. Table B.9 TM190, Bu Shen Qiang Shen Pian, ingredients 

and taxa (species, genus, family, and order) identified. Table B.10 TM203, Adutwumwaa BT, 

ingredients and taxa (species, genus, family, and order) identified. Table B.11 TM308, Bear’s Gall, 

ingredients and taxa (species, genus, family, and order) identified. Table B.12 TM313, Laryngitis Pills, 

ingredients and taxa (species, genus, family, and order) identified. Table B.13 TMDW, Du Huo Ji Sheng 

Wan, ingredients and taxa (species, genus, family, and order) identified. Table B.14 TMGB, Geroosterde 

Blachen, ingredients and taxa (species, genus, family, and order) identified. Table B.15 TMGW, Ge Xian 

Weng, ingredients and taxa (species, genus, family, and order) identified. Table B.16 TMSN, Seirogan, 

ingredients and taxa (species, genus, family, and order) identified. Table B.17 TMWW, Wu Ji Bai Feng 

Wan, ingredients and taxa (species, genus, family, and order) identified. Table B.18 TMYD, Yin Qiao 

Jie Du Pian, ingredients and taxa (species, genus, family, and order) identified. 
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Chapter 5 

 

Critical review: DNA enrichment approaches to identify 
unauthorised genetically modified organisms (GMOs) 
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Abstract 

With the increased global production of different genetically modified (GM) plant varieties, chances 

increase that unauthorised GM Organisms (UGMOs) may enter the food chain. At the same time, the 

detection of UGMOs is a challenging task because of the limited sequence information that will 

generally be available. PCR-based methods are available to detect and quantify known UGMOs in 

specific cases. If this approach is not feasible, DNA enrichment of the unknown adjacent sequences of 

known GMO elements is one way to detect the presence of UGMOs in a food or feed product. These 

enrichment approaches are also known as chromosome walking or gene walking (GW). In recent years, 

enrichment approaches have been coupled with Next Generation Sequencing (NGS) analysis and 

implemented in, amongst others, the medical and microbiological field. The present review will provide 

an overview of these approaches and an evaluation of their applicability in the identification of UGMOs 

in complex food or feed samples. 

 

Keywords GMOs, UGMOs, PCR, NGS, Enrichment approaches. 
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5.1 Introduction 

In 2014, over 28 countries were producing different increasing variety of genetically modified (GM) 

plants for commercial production [203]. These and other countries may have additional, large-scale field 

trials to test new GM plant varieties that are moving towards the world market. GM plants and derived 

products (food and feed) have been commercialised in many countries in the last two decades 

[15,39,204-206]. As a result, chances increase that unauthorised genetically modified organisms 

(UGMOs) may enter the market that have not been assessed for their food, feed and environmental 

safety. In some countries, regulations for the low-level presence (LLP) of UGMOs in food or feed 

products have been established in line with the Codex guideline, if the UGMO has already been 

approved in another country [207]. In the European Union (EU), this relates to only a limited group of 

UGMOs that meet a specific set of requirements. These LLP varieties are allowed to be present in feed 

products up to a level of 0.1% per ingredient (mass based) [208,209]. Other UGMOs are not allowed to 

be present in a product. As a result, new GMO identification strategies are required to identify UGMOs, 

and to achieve detection at a concentration of 0.1% (mass) per GMO relative to the ingredient. 

Detection and identification are fundamentally different between UGMOs and authorised 

GMOs, at least in the EU, where producers are required to provide a detection method that fulfils strict 

regulations [210-212]. A validated event-specific quantitative polymerase chain reaction (qPCR) method 

is therefore available for every GMO that has been authorised in the EU (http://gmo-

crl.jrc.ec.europa.eu/gmomethods/). This is not the case for UGMOs. Generally, there is no method 

available to detect UGMOs due to the lack of sequence information for both the genetic construct as 

well as for the flanking regions in the host genome. Moreover, reference materials for these UGMOs 

will not be available. As a result, it is not possible to develop methods to detect and identify UGMOs in 

a similar way as for authorised GMOs. Because of these reasons, there is a need to develop informative 

and cost-efficient approaches to detect and identify UGMOs, especially those UGMOs that have not yet 

been assessed for their safety.  

 

Figure 5.1 A schematic representation of an inserted GM construct in a plant genome and with available PCR-
based assays to screen for GMOs and/or UGMOs. The black line indicates the plant genome and thick coloured 
bars (green, blue and maroon) indicates the parts of the entire GM construct. The primers and amplicons are 
indicated as arrows and solid lines, respectively. The colour of the arrows and solid lines corresponds to the plant 
genome or GM construct. Using four types of PCR-based assays simultaneously, the specificity of GMOs 
identification can be increased. This matrix approach is currently applied to screen for GMOs and/or UGMOs. 

 

Currently, a matrix approach can be used to screen for UGMOs, Figure 5.1 represents the 

different types of PCR targets that can be used in such an approach [19,186,213-217]. By screening for 

the presence or absence of specific GMO elements, the presence of elements incompatible with the 

presence of only authorised GMOs may indicate the presence of one or multiple UGMOs. Subsequent 

sequencing of those unexplained GMO targets and their flanking regions might identify the UGMOs 

http://gmo-crl.jrc.ec.europa.eu/gmomethods/
http://gmo-crl.jrc.ec.europa.eu/gmomethods/
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present in the sample containing the unexplained GMO elements [216,218,219]. The obtained sequence 

information can be compared to the reference GMO sequences for identification [220]. Potential 

drawbacks of the matrix approach are the fact that it will become expensive when many GMO elements 

need to be tested for, and it requires a subsequent sequencing step for confirmation and identification 

in the case of most of the UGMOs. Technological advancements building on the matrix approach 

include applications of multiplexing and multi-target detection using chips [221], microarrays [222] and 

microfluidic arrays [205]. All these assays include a much higher number of targets than those covered 

by the original PCR based matrix assays. This results in a significant increase in the number of GMOs 

that can be detected simultaneously, including the potential to detect several UGMOs. However, none 

of these assays can provide information on the sequences adjacent to the detected elements. To identify 

the source of any unexplained GMO elements in a sample, it will still be necessary to subsequently 

characterise the related plant-GMO construct transition region through sequence analysis to confirm 

the presence of one or more UGMOs. 

In complex samples the same detected element can be flanked by several adjacent motifs, each 

coming from a separate GMO. With the emergence of Next Generation Sequencing (NGS), it has become 

possible to search for multiple targets in parallel and use bioinformatics to infer and identify the 

adjacent sequence motifs. It is also possible to apply enrichment approaches coupled to NGS analysis 

to detect and identify GMOs in a complex sample, without the need for a prior screening. This review 

will discuss recent advances in DNA target enrichment approaches. Some of these enrichment strategies 

have already been coupled with NGS and applied in the medical and microbiological field [223-225]. 

The present review will provide an overview of such strategies and an evaluation of their applicability 

in the identification of UGMOs in complex food or feed samples. Coupling the most suitable NGS 

approach to the ideal enrichment approach may eventually allow for the identification of all GMOs, and 

UGMOs, in a single analysis.  

5.2 DNA enrichment of the unknown sequence adjacent to a known element 

Enriching the sequence adjacent to a known GMO element may lead to stronger supportive evidence of 

the presence of UGMOs than the re-sequencing of known amplicons. Ultimately, finding the event-

specific genomic integration sites upstream or downstream of a GMO-associated element will provide 

conclusive evidence of the presence and identity of any GMO. The optimal enrichment approach should 

be able to enrich the GMO-related sequences in a complex mixture, even if the targets are present at low 

concentrations. Enrichment for a single element in a complex mixture could already lead to several 

different sequences with the same beginning. Obviously, multiplex target enrichment would even be 

more efficient than enriching for a single GMO element.  

Multiple target enrichment approaches may be coupled to a suitable NGS approach for 

subsequent detection and identification of GMOs and UGMOs. An example is the SiteFinding PCR 

coupled with Sanger sequencing or NGS for GMO detection [219,226,227]. Several other genome 

walking/gene walking (GW) approaches have also been described in combination with NGS [223], 

though not yet adapted to the specific requirements for GMO detection, i.e. a 0.1% detection limit and 

multiple GMO-related targets. In all the GW approaches the enrichment starts using (a) a specific 

primer, e.g. targeting a known GM element, followed by amplification using a universal primer(s), or 

(b) a random or semi-random primer, followed by amplification using a target-specific primer, or (c) a 

specific primer and semi-random or adapter primer simultaneously (Table 5.1). 

The different approaches can be linked to DNA pre-treatments, ranging from no pre-treatment 

to restriction enzyme based digestion to physical or chemical fragmentation of the DNA such as 

sonication or nebulization. Figure 5.2 summarizes the different enrichment approaches grouped based 

on the DNA pre-treatment. 
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Table 5.1 Available enrichment approaches for the detection of unknown sequences adjacent to a known DNA 

element 

DNA enrichment approaches 

a) Use of specific primers followed by universal primers 

Long template-Rapid Amplification of Genomic DNA Ends (LT-RADE) [228]  

Linear amplification-mediated PCR (LAM-PCR) [229]  

Non-restrictive Linear amplification-mediated PCR (nrLAM-PCR) [225]  

b) Use of semi-random primers followed by specific primers 

SiteFinding-PCR [227]  

c) Use of specific primer or semi-random and adapter primer simultaneously 

Locus-finding PCR (LF PCR) [230]  

High-throughput insertion tracking by deep sequencing (HITS) [224]  

Randomly broken fragment PCR (RBF-PCR) [231]  

sA-T linker adapter PCR [232]  

Loop-linker PCR [232]  

 

 

 

Figure 5.2 A schematic overview of different enrichment approaches grouped on the basis of DNA pre-treatment. 
From the left, three different DNA pre-treatments are indicated in three different colours: blue, yellow, and pink. 
Approaches following different DNA pre-treatments are grouped and shaded in colour corresponding to the DNA 
pre-treatment. Shade variation within a specific DNA pre-treatment group indicates the different enrichment 
approaches. To the right all the different enrichment approaches are specified in their corresponding colours.  
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Approaches that do not use DNA pre-treatment, require first the synthesis of a single stranded 

target molecule, and are hence referred to as primer extension based approaches. Primer extension can 

be performed in a target gene specific or semi-random way. In target primer extension based 

approaches, second strand synthesis and subsequent PCR can be achieved by tailing the single strand, 

as in LT-RADE [228], or by using random hexanucleotide as in LAM-PCR [229], or by ligation of a linker 

sequence, as in nrLAM-PCR [225]. In the semi-random primer extension approach, second strand 

synthesis and subsequent PCR make use of a target specific primer, as in SiteFinding-PCR [227], or by 

using specific and semi-random primers simultaneously as in LF PCR [230]. In restriction enzyme 

digestion approaches, the DNA is fragmented using a specific restriction enzyme to cut the DNA in a 

sequence specific manner. In physical or chemical fragmentation approaches, DNA is fragmented in a 

random manner. Both enzyme and physical fragmentation approaches require subsequent end repair 

procedures (tailing or linker or adapter ligation) prior to either specific PCR or direct sequencing. Loop-

linker PCR [233], A-T linker [232], HITS [224], and RBF-PCR [231] come under one of the fragmentation 

approaches. Apart from the described approaches in the present paper, inverse PCR (I-PCR) [234,235], 

thermal asymmetric interlaced-PCR (TAIL-PCR) [236-240], ligation-mediated PCR (LM-PCR) [241], 

randomly primed PCR (RP-PCR) [236,242], vectorette PCR [243], boomerang PCR [244], TOPO vector 

ligation PCR [245], anchored PCR [246], cassette PCR [247] and T-Linker PCR [248] are some of the old 

enrichment approaches that were developed in the last two decades [39]. In fact, most of the described 

DNA enrichment approaches are recently developed by modifying the older enrichment approaches 

[15,16]. The most recent approaches relevant for the purpose of GMO detection/identification will be 

discussed in the following. 

 

5.2.1 Long Template-Rapid Amplification of genomic DNA Ends (LT-RADE)  

LT-RADE is a target primer extension based approach to identify the known and unknown adjacent 

regions of GMO elements (Figure 5.3) [228]. This approach is a modified version of previously described 

approaches [249,250]. In these papers RACE (Rapid Amplification of cDNA Ends) has been described, 

which was developed to amplify the sequences upstream and downstream of RNA transcripts after a 

reverse transcription reaction to convert the RNA into cDNA. RACE PCR has been applied to retrieve 

the sequence adjacent to the cDNA coding region in bacterial and plant RNA transcripts. When 

applying the RACE principle to genomic DNA, it was renamed RADE (Rapid Amplification of genomic 

DNA Ends) [228]. Using the non-proofreading Taq polymerase, RADE was first tested on the GM maize 

and rice events MON810 and LLRICE62 for enrichment of the right and left border of the p35S and 

cry1Ab for maize and p35S and t35S for rice [228]. The RADE procedure was further modified by 

combining the polymerases Taq+Tgo to enrich longer templates and renamed LT-RADE [228]. Single 

primer extension, product purification, homopolymeric tailing and nested PCR 1 and 2 are the five main 

steps in LT-RADE (Figure 5.3). 

In the LT-RADE publication, single primer extension was performed in a PCR with a gene 

specific primer 1 (GSP1) for 35 cycles to obtain ssDNA reads. The reaction mixture was purified using 

a column purification kit and the poly-dC tailing reaction was carried out on the purified ssDNA at the 

3’ end. The reaction was catalysed by template independent polymerase terminal 

deoxynucleotidyltransferase (TdT). The ssDNA was converted into dsDNA in a PCR reaction using the 

nested GSP2 primer and the universal Abridged Anchor Primer (AAP), followed by a nested PCR with 

the GSP3 and the Abridged Universal Amplification Primer (AUAP) to increase the specificity and the 

amount of final product. The obtained fragments were subsequently cloned for Sanger sequencing [228]. 
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Figure 5.3 Overview of LT-RADE approach. For each step, solid lines indicate the molecule present at the start and 
broken lines indicate the newly synthesised molecule. Blue solid and broken lines indicate the known sequence. 
Maroon solid and broken lines indicate the unknown sequence. Green solid lines indicate the poly-dC tailing. 
Enrichment of target sequence was performed using three gene specific primers (GSP1, GPS2, and GPS3), indicated 
in blue arrows, abridged anchor primer (AAP), and abridged universal amplification primer (AUAP), indicated in 
purple-green and purple arrows [228]. 

It was found that in a maize sample, the LT-RADE approach resulted in amplified fragments 

(1,018 bp upstream and 855 bp downstream) that were significantly longer than those obtained with the 

RADE protocol (577 bp and 564 bp, respectively). A rice sample was enriched only with the LT-RADE 

protocol and the amplified fragments were 601 bp (upstream) and 335 bp (downstream) in size [228]. 

The authors concluded that both approaches were simple and timesaving for the characterization of the 

insertion sites of GMOs and had a high specificity due to the nested PCR [228]. The authors did not 

discuss or provide an explanation for the observed differences in the enriched fragment lengths between 

the maize and rice GMOs. In a later study, LT-RADE approach was tested on three other GMOs 

(rapeseed, soybean and cotton) and also here the authors observed differences in the enriched fragment 

lengths between upstream and downstream enrichment and also between the GMOs [251]. LT-RADE 

has an advantage over RADE because of its ability to generate longer fragments. However, optimisation 

is necessary to obtain fragments >1 kb in all cases. Both approaches require large amounts of the 

amplified sequence for long fragment synthesis. Furthermore, a high background was observed due to 

nonspecific amplification. It was also observed that primers targeting GC-rich regions of the template 

amplified better than those targeting AT-rich templates. This is probably because the stability of G:C 

base pairs is higher than A:T base pairs. A limitation of the number of PCR cycles and a different 

template concentration at the start of the protocol was proposed to potentially reduce the competition 

between the abundant and less abundant target sequences and thus increase the sensitivity of the 

approach [228]. The LT-RADE approach has been applied in UGMO identification. The method was 

assessed on 100% GM plant leaf material [228,251], so the applicability of this approach in complex 

mixtures with some low abundance targets is still a matter of investigation. Nested PCR was used to 

increase the amount of targeted product. However, this also leads to a lengthy protocol that may 

increase the risk of contamination. 
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5.2.2 Nonrestrictive Linear Amplification-Mediated PCR (nrLAM-PCR)  

nrLAM-PCR is one of the target primer extension based approaches for enrichment of unknown DNA 

sequences. nrLAM-PCR was derived from the Linear Amplification-Mediated PCR approach (LAM-

PCR) [229]. In LAM-PCR publication (Figure 5.4), a gene specific biotinylated primer was used for 

ssDNA synthesis, followed by purification using streptavidin coated magnetic beads to capture the 

extended primers. Using a random hexanucleotide mixture, dsDNA was synthesised, followed by 

restriction enzyme digestion of the synthesised dsDNA. Fragmented DNA was ligated to linkers and a 

nested PCR was performed using gene specific primers (GSP1 and GSP2) and linker cassette primers 

(LC1 and LC2) to amplify the fragments of interest. The obtained amplicons were cloned for Sanger 

sequencing to identify the insertion region in the genome [229,252]. LAM-PCR was first used to 

characterize the retrovirus integration sites in the peripheral blood cells [229].  

Figure 5.4 Overview of LAM-PCR approach. For each step, solid lines indicate the molecule present at the start 
and broken lines indicate the newly synthesised molecule. Blue solid and broken lines indicate the known sequence. 
Maroon solid and broken lines indicate the unknown sequence. Red circle indicate magnetic beads clean up step, 
black arrows indicate random hexanucleotide, and purple solid lines indicate the linkers. Enrichment of target 
sequence was performed using three gene specific primers (biotinylated-GSP1, GPS2, and GPS3), indicated in green 
circle connected to blue arrow and blue arrows, and two linker cassette primers (LC1 and LC2), indicated in purple 
arrows [229]. 
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nrLAM-PCR (Figure 5.5) is a modified non-restrictive version of the LAM-PCR [225], both 

approaches comprise the same steps: primer extension, magnetic beads clean-up, linked ligation, PCR 

and nested PCR. The nrLAM-PCR approach has been used in combination with NGS. Instead of using 

random hexanucleotide mixture, a ligation step was included to synthesise dsDNA. The 3’end of the 

ssDNA template were ligated with linkers and dsDNA was synthesised in a PCR, using the gene specific 

primers (GSP1, GSP2, and GSP3) and linker cassette primers (LC1 and LC2) (Figure 5.5) [223,225]. 

Adding a barcode to the primers was proposed for the generation of libraries for NGS [225,253]. nrLAM-

PCR was performed to identify the viral vector-genome junction in the mouse SC1 embryonic fibroblast 

cells by coupling the approach with pyrosequencing, and most of the sequence obtained were ~250 bp 

[253]. 

 
Figure 5.5 Overview of nrLAM-PCR approach. For each step, solid lines indicate the molecule present at the start 
and broken lines indicate the newly synthesised molecule. Blue solid and broken lines indicate the known sequence. 
Maroon solid and broken lines indicate the unknown sequence. Red circle indicate magnetic beads clean up step, 
and purple solid lines indicate the linkers. Enrichment of target sequence was performed using three gene specific 
primers (biotinylated-GSP1, GPS2, and barcode-GPS3) indicated in green circle connected to blue arrow, blue 
arrow, and blue-gray-light green arrow. Linker cassette (LC1) and adapter linker cassette (LC2) primers are 
indicated by purple and light green-purple arrow [225]. 

LAM-PCR and nrLAM-PCR have not yet been applied to GMO and UGMO samples. The 

approaches may allow enrichment in a single reaction in both upstream and downstream directions. 

Single-stranded linker ligation to the ssDNA template is not as efficient as dsDNA ligation. This is a 

drawback of the nrLAM-PCR [253]. Both LAM-PCR and nrLAM-PCR products are suited for 

subsequent NGS analysis. Introducing barcode fusion primers would allow multiple products to be 

sequenced in a single NGS run. 
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5.2.3 SiteFinding-PCR  

The SiteFinding-PCR approach (Figure 5.6) is a semi-random primer extension-based approach. This 

approach was used to enrich long DNA fragments [227]. The SiteFinding-PCR approach avoids ligation 

or tailing, restriction cleavage and complex multiple steps that could reduce the recovery. At the 5’ end 

SiteFinding primer 1 (SFP1) and SiteFinding primer 2 (SFP2) primer sites were linked to a random 

hexamer sequence and a 4-nucleotide motif common in the Arabidopsis genome. Three gene-specific 

(GSP) primers were designed from the known element sequence. After the initial denaturation of the 

genomic DNA the 4 nucleotides plus the hexamer hybridise to the genome in a sequence-specific 

manner and extension of ssDNA was initiated by Taq polymerase. A first PCR was performed to 

synthesize the dsDNA using GSP1 and SFP1 primers. Subsequently, two nested PCRs were performed 

using additional SFP2 and (GSP2 and GSP3) primers to gain in specificity and amount of amplified 

targets (Figure 5.6). The amplicons were ligated to a vector for subsequent screening and sequencing. 

The SiteFinding-PCR approach was first implemented to identify the known and unknown sequences 

adjacent to the inserted Agrobacterium derived T-DNA in the Arabidopsis genome and in the Cyanophage 

P4 genome [227]. The presence of the T-DNA insertion site was observed in 14 out of 15 samples of 

Arabidopsis mutants. The longest enriched fragment obtained was ~ 4.5 kb from Cyanophage and ~ 2.2 

kb for Arabidopsis [227]. Only upstream enrichment was performed in both Cyanophage and Arabidopsis. 

The maximum enrichment in Arabidopsis was half of the enrichment observed in the Cyanophage. A 

likely explanation for this difference is a more frequent occurrence of complementary sites of the 

SiteFinder motif on genomic DNA in the Arabidopsis compared to the Cyanophage genome. This would 

lead to a generally shorter distance between the SiteFinder motif and the place of insertion, and hence 

to shorter enrichment lengths in Arabidopsis. As a result of using semi-random primers, multiple 

amplicons of different sizes could be obtained.  

The SiteFinding-PCR approach was recently performed with some modifications of the SFP 

primers, to characterise the GM rice KMD1 and the maximum enrichment length obtained was ~ 300 

bp [226]. To overcome this limitation, the SiteFinding-PCR was repeated several times with new gene-

specific primers to obtain longer fragments, but this goal was not achieved. The purpose was to identify 

the integration site of the genetic construct, and use this information to design and test a successful 

event-specific qPCR assay [226]. The SiteFinding-PCR approach was applied to characterise the flanking 

sequence of the vip3A element in MIR162 maize as a model study for UGMO identification [219]. Sanger, 

Illumina and Pacific Biosciences (PacBio) sequencing approaches were used to analyse the obtained 

sequences. PacBio resulted in longer contigs both upstream and downstream (1326 bp and 1135 bp, 

respectively) when compared with the Illumina data (858 bp and 1038 bp, respectively). Both NGS 

approaches outperformed Sanger sequencing regarding the length of the newly obtained sequence 

information. PacBio showed lower sequence identity, 92-95%, compared to the 99% identity in Illumina 

data. However, the integration site of the genetic construct in MIR162 maize was not reached, due to 

the position of the targeted vip3A element, ~ 2 kb from the left border and ~ 4 kb from the right border. 
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Figure 5.6 Overview of SiteFinding-PCR approach. For each step, solid lines indicate the molecule present at the 
start and broken lines indicate the newly synthesised molecule. Blue solid and broken lines indicate the known 
sequence, Maroon solid and broken lines indicate the unknown sequence. Green solid lines indicate the SiteFinder 
(SF) motif and the purple-green arrow indicates the SiteFinder (SF) molecule. Enrichment of target sequence was 
performed using three gene specific primers (GSP1, GPS2, and GPS3) indicated by blue arrows, and two SiteFinding 
primers (SFP1 and SFP2), indicated by purple arrows [227].  
 

 The SiteFinding-PCR approach can be used in UGMO identification based on the pervious 

results. However, the reported length of the amplified fragments was variable; this could be due to the 

species-specific frequencies of the SiteFinder motif in different genomes. In a situation where one 

SiteFinder motif is very near the gene of interest, it may be difficult to obtain also the sequence from a 

more distant second motif, since a bias for shorter fragments is expected in the subsequent PCR steps. 

In all of the respective studies, pure GM (100%) materials were used. Thus, the applicability of this 

approach in complex mixtures with some low abundance targets is yet to be demonstrated. Coupling 

the SiteFinding-PCR with NGS avoids the time-consuming and contamination-sensitive step of 

restriction digestion and ligation of the amplicons in a vector. However, the use of three PCR steps, 

including two nested PCRs, still leads to a rather lengthy protocol that may be prone to contamination. 

In the APAgene GOLD Genome Walking Kit the first two steps in the SiteFinding-PCR approach have 

been swapped [254]. In this approach, enrichment starts with GSP to obtain the ssDNA of the target 

sequence. The enrichment step was repeated separately four times in a parallel reaction with the same 

GSP. A first PCR reaction was performed to synthesize the dsDNA using GSP and SiteFinding molecule. 

This reaction was also performed four times in parallel in separate reactions with the same GSP and 

different SiteFinding molecules. Subsequently, two nested PCRs were performed for all the four 

reactions to gain in specificity and amount of amplified targets [254]. This approach was evaluated and 

validated on in-house made GM rice food mixtures and processed rice food [254,255].  
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5.2.4 Locus-finding PCR (LF PCR) 

LF PCR (Figure 5.7) uses a genome walker (GWr) molecule, similar to the SiteFinder molecule, for 

primer extension [230]. Primer extension was performed in a PCR, combined with a target specific 

primer, instead of in a separate reaction prior to the PCR as is done in SiteFinding-PCR. LF PCR includes 

an affinity purification step to specifically capture the amplified target molecules. The final step prior 

to sequencing was PCR with a nested target primer and a primer that hybridises to the tail of the GWr 

molecule, again similar to SiteFinding-PCR. Four forward semi-random genome walker primers (GWs 

1–4) were used in parallel with a construct-specific primer (CSP) to improve the chance of amplifying 

the desired location in the primary PCR. All four GWrs have four bases (A, T, G, and C) at their 3’ ends. 

The authors state that they are random but do not show how the randomization was done. In fact, the 

four GWrs described are 4 of the 24 possible combinations of having four consecutive bases without 

repetition. Upstream of these four different four-nucleotide motifs are four degenerate nucleotides, and 

upstream of those are 18 or 19 bases reverse complementary to GW-5. This means that both the 

SiteFinder molecule and the GWr 1 to 4 share a similar structure of (from 5’ to 3’) a primer binding site, 

a stretch of degenerate nucleotides and a 4-nucleotide motif. This approach was successfully applied to 

find the transgene integration loci of 8 Agrobacterium tumefaciens transformed transgenic rice lines 

transformed with glyphosate-resistant genes, mutant epsps (enol pyruvyl shikimate phosphate 

synthase) and gat (glyphosate acetyl transferase [230]. The desired amplification in the rice study was 

obtained with the GWr-1 and CSP-1. The initial PCR was consequently performed using a GWr1 and 

CSP1 for all rice plants. The authors state that plants having more complex genome than rice may 

require optimization with the remaining GWrs. In order to select only the interesting amplicons for 

further processing, a biotinylated capture primer (CP) was designed based on the inserted vector region. 

The CP annealed to the desired amplicons and affinity purification was performed to separate the 

desired product from the rest of the mixture. Subsequent nested PCR was performed using GWr5 and 

CSP2 to increase the specificity. The efficiency of this approach was assessed by subsequent gel 

electrophoresis and Sanger sequencing. It was found that a maximum stretch of ~500 bp was enriched 

towards the left border of the insert as the experiment was performed only in one direction. To improve 

the length of the enrichment, high-fidelity enzymes and increased extension time (2 min) were tried in 

LF PCR, but failed to result in amplicons in the nested PCR. This was perhaps because PCR generally 

favours smaller size amplicons [230].  

This approach seems very useful when the entire construct is known, or at least a considerable 

stretch of sequence close to one of the borders. The sample material used in the paper consisted of 

individual clones from a single transformation experiment. The authors retrieved three different 

insertion sites in chromosomes 1, 6, and 12 in 8 different clones. Seven of the clones showed two 

independent insertion sites per clone. These experiments relate to samples of limited complexity, no 

data was available on the application of LF PCR in complex samples.  
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Figure 5.7 Overview of LF PCR approach. For each step, solid lines indicate the molecule present at the start and 
broken lines indicate the newly synthesised molecule. Blue solid and broken lines indicate the known sequence. 
Maroon solid and broken lines indicate the unknown sequence. Green solid lines indicate the genome walker motif 
and the purple-green arrow indicate the genome walker (GW1) molecule. Red circle with extended green-brown 
part, indicate magnetic beads attached to biotinylated primer. Enrichment of target sequence was performed using 
two construct-specific primer (CSP1, and CSP2), indicated by blue arrows, and genome walker (GW5) primers, 
indicated by purple arrows [230].  
 

5.3 Ultrasonic fragmentation based DNA enrichment 

In ultrasonic fragmentation based DNA enrichment, the genomic DNA is randomly fragmented, 

repaired and ligated to an adapter for a target specific PCR. High-throughput Insertion Tracking by 

deep Sequencing (HITS), Randomly Broken Fragment PCR (RBF-PCR) and probe hybridisation are 

enrichment approaches that apply ultrasonic DNA fragmentation. The length of the fragmentation 

depends on the parameters and the probes used during ultrasonication. 

 

5.3.1 High-throughput Insertion Tracking by deep Sequencing (HITS)  

The HITS approach (Figure 5.8) was performed to identify the DNA junction between the integrated 

transposon of Himar1-mariner and Haemophilus influenzae [224]. The underlying goal was to analyse 

bacterial genes involved in pathogenesis, using a whole-genome transposon mutant bank in 

combination with NGS. DNA containing the randomly inserted transposons was fragmented using 

ultrasonication, and repaired and subsequently Illumina adapters were ligated to the ends. Using a 

biotinylated transposon-specific primer (SP) and adapter primer (LCP), transposon-genome junction 
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enrichment was performed. A magnetic bead-based clean up step was performed to obtain the specific 

sequences, prior to Illumina sequencing. NGS libraries were generated with a high coverage [224]. The 

same approach was applied in Salmonella enterica to enrich for Tn5-derived bacterial transposon 

insertion libraries. By adapting the Illumina approach, piggyBac PB insertion transposon libraries were 

generated in yeast and also Mutator transposon lines were identified in maize [223,256-258]. The HITS 

approach has not yet been applied to GMO and UGMO identification. Sequencing of 

transposon/chromosome junctions revealed independent insertions in nearly 56,000 genomic sites 

[224]. Random fragmentation may also occur in the inserted exogenous sequence, reducing the 

effectiveness to identify the plant-exogenous sequence junction in GMOs. Furthermore, the HITS 

approach combined with Illumina sequencing generated relatively short fragments, in between 200 bp 

– 400 bp.  

 

Figure 5.8 Overview of HITS approach. For each step, solid lines indicate the molecule present at the start and 
broken lines indicate the newly synthesised molecule. Blue solid lines indicate the known sequence. Maroon solid 
and broken lines indicate the unknown sequence. Enrichment of target sequence was performed using biotinylated 
transposon-specific primers (SP; indicated by green circle connected to yellow arrow), and Illumina adapter primer 
(LCP; indicated by purple arrow). Red circle indicate magnetic beads clean up step [224]. 

 

5.3.2 Randomly Broken Fragment PCR (RBF-PCR)  

RBF-PCR approach (Figure 5.9) was successfully performed to identify the unknown sequence adjacent 

to known sequence motifs in the GMO maize LY038 [231]. In this approach, the genomic DNA was 

randomly fragmented by ultrasonication and repaired by addition of adenines to the 3’ end of the DNA-

strands. An adapter with a T-overhang at the 3’ end was ligated to the fragmented sequences. The 

adaptors were designed to be not fully complementary, to avoid PCR amplification of all fragments that 
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contain adaptors by only the adaptor primer. Instead, by adding a primer adapter primer (AP) that has 

the same sequence as one of the non-complementary parts of the adaptor, PCR can only occur when the 

complementary strand is synthesized in the first round of PCR by elongation of the target sequence 

specific primer (SP1). Subsequent nested PCR was performed to increase the specificity (Figure 5.9) 

[231]. The RBF-PCR approach was performed with some modifications compared to HITS: a) the 

specific biotinylated primer was replaced by a specific primer (SP) and b) instead of Illumina NGS 

adapters, specifically designed APs used to avoid self-ligation (Figure 5.9).  

 

Figure 5.9 Overview of RBF-PCR approach. For each step, solid lines indicate the molecule present at the start and 
broken lines indicate the newly synthesised molecule. Blue solid and broken lines indicate the known sequence. 
Maroon solid and broken lines indicate the unknown sequence. The modified adapters are indicated by purple-
yellow and purple-green lines, and are partially complimentary to each other. Enrichment of target sequence is 
performed using specific primers (SP1 and SP2) indicated by blue arrows, and adapter primer (AP) is indicated by 
green arrow [231].  

The fragmentation of the genomic DNA was shown to be a crucial step in this approach: 

changing the duration and frequency of ultrasonication influences the degree of fragmentation. The 

obtained amplicons using the RBF-PCR approach were reported to be between 500 bp and 2000 bp. 

After sequencing, 35 % of the obtained sequences did not match the target sequences. This implies that 

the applicability to mixed GMO samples is likely to be limited. In general, RBF-PCR may not be the 
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ideal approach because random fragmentation can occur in the inserted exogenous sequence or near to 

the event specific genome-insert junctions and thus hamper the identification of UGMOs.  

 

5.3.3 Probe hybridisation approach 

Recently, probe hybridisation combined with NGS was used to characterise GM insertion sites. In the 

probe hybridisation approach, the genomic DNA is randomly fragmented and probes are used to 

capture the target sequence, followed by NGS analysis to characterise the insertion sites. Contrary to all 

other approaches in this review, this approach does not include a PCR step. In a recent study, using this 

approach, three 70 nucleotides long biotinylated probes were designed to target the extremities of T-

DNA sequences to rapidly locate the T-DNA insertion sites in 55 out of 64 mutant Arabidopsis plants 

[259]. A similar approach, called Southern-by-Sequencing (SbS), was used to characterise the insertion 

sites in GM crops [260]. In both the approaches, information of the construct close to the insertion sites 

is necessary for characterisation, which is typically not the case in unknown GMO identification. A 

further drawback is that the enrichment is possible only for a limited flanking region. Due to this, 

limited extra sequence information will be identified, making this approach not applicable for 

identification of long stretches of insert sequence of unknown GMOs.  

 

5.4 Restriction enzyme based DNA enrichment  

Using restriction enzyme, the genomic DNA is digested unevenly in a sequence specific manner. The 

ends of the fragmented DNA are repaired and ligated with the linker or adapter for a target-specific 

PCR. The obtained PCR fragments can then be used for either cloning or direct sequencing. Some of the 

enrichment approaches based on this principle are: (a) Classical restriction enzyme digestion followed 

by NGS approach, (b) A-T linker adapter PCR, (c) TOPO vector ligation PCR, and (d) Loop-linker PCR.  

5.4.1 Classical restriction enzyme digestion followed by NGS approach  

In this approach, after the restriction enzyme digestion linkers were ligated to the fragments, and target-

specific PCR was performed using sequence specific primer (SP) and linker primer (LP). The obtained 

PCR fragments were then directly prepared for pyrosequencing by addition of sequencing adapters, or 

library were prepared by performing a second PCR using a barcode primer and linker primer (Figure 

5.10) [223,261]. The combination of restriction enzyme digestion and NGS was first used to identify the 

insertion site of the HIV in the human genome [223,261]. Barcode primers were introduced in this 

approach to identify Mu transposon elements in different maize Mu-stocks [223,262]. An alternative 

way of restriction was performed by cutting the DNA of the transposon element with a specific enzyme 

that recognises the nucleotide sequence of the transposon [263]. Transposon mutants libraries of 

Pseudomonas aeruginosa have also been generated by adapting the inverse PCR approach in combination 

with NGS-Illumina [223,264]. Observed disadvantages of this approach were the possible amplification 

of non-target sequences, and less flexibility due to the use of specific restriction enzymes [265].  
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Figure 5.10 Overview of classical restriction enzyme digestion followed by NGS. For each step, solid lines indicate 
the molecule present at the start and broken lines indicate the newly synthesised molecule. Blue solid and broken 
lines indicate the known sequence. Maroon solid and broken lines indicate the unknown sequence. Purple solid 
lines indicate the linkers. Initial enrichment of target sequence is performed using gene specific primers (SP) 
indicated by blue arrow and linker primer (LP) indicated by purple arrow. Amplification is either followed by (a) 
pyrosequencing or (b) a second PCR is performed with a barcode specific primer (SP) indicated by green-grey-blue 
arrow and linker primer indicated by green-purple arrow with the aim to generate an amplicon library with 
barcode prior to pyrosequencing [223].  

 

5.4.2 A-T linker adapter PCR  

The A-T linker adapter PCR (Figure 5.11) is a combination of Ligation-mediated (LM-PCR) and T linker 

PCR [232]. The A-T linker adapter was designed in such way that it binds to the A-tailed fragment with 

the NH2 group, blocking elongation from the 3’ end of the short-strand primer to avoid the self-ligation 

of the adapter and nonspecific amplification. A-T linker adapter PCR was performed on 16 different 

Arabidopsis mutants with a T-DNA insert [232]. The template DNA was digested using 15 different 

restriction enzymes, yielding fragments with 5’ overhangs, a 3’ overhangs, or blunt-ends. Taq 

polymerase catalyses the A-tailing of the 5’ overhang and blunt-end DNA fragments. For the 3’ 

overhang fragments, a specific primer 1 (SP1) was used for extension of the target sequence (5’ to 3’ end) 
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followed by dA extension. The initial PCR was performed using adapter primer 1 (AP1) and SP1 primer 

and to increase the specificity and product yield, a nested PCR was performed (Figure 5.11). It was 

found that all the resulting fragments were < 1 kb, with low reproducibility [232].  

 

 

 

Figure 5.11 Overview of A-T linker adapter approach. For each step, solid lines indicate the molecule present at the 
start and broken lines indicate the newly synthesised molecule. Blue solid and broken lines indicate the known 
sequence. Maroon solid and broken lines indicate the unknown sequence. The modified A-T linker adapter is 
indicated by two purple lines, and is partially complementary to each other. Enrichment of the target sequence is 
performed using specific primers (SP1 and SP2), indicated by blue arrows, and adapter primers (AP1 and AP2), 
indicated by purple arrows [232].  

5.4.3 TOPO vector ligation PCR 

The TOPO vector ligation PCR approach is related to the A-T linker adapter PCR [245]. The fragments 

from restriction digestion are ligated into a vector with flanking known adapter primer sequences. By 

combining a vector primer and a primer for the known sequence, the amplified product can include an 
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unknown sequence upstream or downstream of the known primer (depend upon the orientation of the 

cloned fragment in the vector). The selection of the restriction enzyme is critical to obtain fragments of 

amplifiable size suitable for successive sequencing [245]. This approach was adapted to NGS by 

modifying the 5’ tails to include Illumina adaptor sequences (HtStuf) [266]. In this approach, the 

insertion sites of 9 out of 10 transgenic soybean lines, as well as major transgene rearrangements in these 

soybean lines were characterised [266]. 

 

5.4.4 Loop-linker PCR 

Loop-linker PCR (Figure 5.12) is another restriction enzyme based enrichment approach. In Loop-linker 

PCR, DNA was cleaved using multiple restriction enzymes that produce similar overhang sequences in 

the digested DNA [232]. The digested DNA fragments were subsequently ligated to a loop-linker 

adapter that was designed to form a nick site when ligated to the restricted DNA. The initial PCR was 

performed using specific primer 1 (SP1) and loop adapter primer 1 (LAP1), followed by a nested PCR 

using specific primer 2 (SP2) and loop adapter primer 2 (LAP2) to increase the specificity and the 

quantity of the desired amplicon (Figure 5.12). This approach was successfully evaluated in three GM 

maize LY038, DAS-59122-7 and Event 3272 and one GM soybean MON89788 [232].  

 

Figure 5.12 Overview of Loop-linker PCR approach. For each step, solid lines indicate the molecule present at the 
start and broken lines indicate the newly synthesised molecule. Blue solid and broken lines indicate the known 
sequence. Maroon solid and broken lines indicate the unknown sequence. The Loop-linker is indicated in purple. 
Enrichment of target sequence is performed using specific primers (SP1 and SP2), indicated by blue arrows, and 
loop adapter primers (LAP1 and LAP2), indicated by purple arrows [232].  
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It was reported that fragments of different lengths were obtained due to the use of different 

restriction enzymes and the distance between the specific primer and restriction site in the genome. The 

maximum length obtained in the left border adjacent sequence was 442 bp for GM maize LY038, 1830 

bp for DAS-59122-7, 107 bp for Event 3272 and 512 bp for GM Soybean MON89788 [232]. A subsequent 

nested PCR was required in this approach due to the limited amplification of the target sequences and 

also to suppress the nonspecific amplification in the initial PCR [232].  

5.5 Next generation sequencing (NGS) analysis 

The enrichment approaches will always deliberately yield a mixture of sequences because they aim at 

simultaneous identification of several sequences flanking the same known element/sequence motif. 

Applying Sanger sequencing to enrichment products based on the described strategies is therefore not 

directly compatible with the mixtures of sequences obtained with these strategies. Sanger sequencing 

requires a single template per reaction, since mixtures will result in overlapping trace files that cannot 

be related to individual sequences. Therefore, extra steps are needed to separate the mixtures into 

distinct sequences. This can be done by cloning of the sequences and sequencing individual clones. This 

has the benefit of a high chance of obtaining clean, individual sequences. A disadvantage is a likely bias 

for sequences resulting in successful ligation into a cloning vector, severely reducing the diversity of 

the obtained mixture. Separation of the mixture on gel and cutting out distinct bands is less time 

consuming, but may still result in mixtures of sequences of similar length. Both cloning and gel 

separation require extra steps, handling PCR products. They are therefore extremely prone to causing 

contaminations in the lab, picking up contaminations that may be present in the lab, i.e. from a previous 

enrichment experiment, and cross-contaminations when analysing several samples in parallel.  

The use of NGS, or parallel sequencing, may overcome these obstacles to find an a priori 

unknown sequence, as present in most UGMOs. Currently, the probably most cost-effective way of 

employing NGS is by the identification of enriched targets rather than by whole genome sequencing. 

Obviously, this method is limited to UGMOs that contain at least one known GMO element, otherwise 

whole genome sequencing is inevitable. The latter would currently be very costly to reach enough 

sequencing depth to cover all GMO related sequences down to the level of 0.1% for all ingredients in a 

complex mixture [46,267]. On top of that, elaborate analyses would have to be performed to sift the 

UGMO related sequences from the genomic sequences, especially for partially known genomes. Both 

multiplex and parallel sequencing can be achieved in an NGS approach, but so far, NGS has not yet 

been often applied in the field of GMO detection and identification. Selecting the appropriate platform 

for NGS sequencing will be based on the specific requirements and is not part of the current study, but 

in general where amplification-based NGS platforms (Illumina MiSeq and Ion Torrent) are well known 

and have been applied in prokaryotic and eukaryotic genome sequencing studies [14,33]. Single 

molecule based approaches (PacBio) might be advantageous as they do not require initial amplification 

and might be able to generate longer reads for better identification of GMOs and UGMOs, without the 

need of assembling fragmented reads associated with the risk of creating chimeric sequences that mimic 

UGMO sequences. 
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5.6 Discussion and Conclusion 

 

GMO enforcement laboratories may benefit from the recent developments in sequencing technologies 

and bioinformatics. This is especially true as the current standard qPCR is becoming increasingly 

expensive in the light of the growing number of GMO events and elements that need to be included in 

informative screening assays. NGS may prove most effective in identification of UGMOs in food and 

feed products, provided it will be feasible to enrich DNA samples for not only known sequences of 

GMO elements, but also for the adjacent sequences. As these issues are different from those that have 

so far been at the basis of NGS approaches, it is necessary to develop innovative concepts that may serve 

the purpose of identifying GMOs and UGMOs in a single analysis. Alternatively, whole genome 

sequencing may be applied, but in many cases, this is still relatively expensive, and generally not 

applicable in the case of (complex) mixtures.  

This review provides an overview of currently available approaches for the enrichment and 

characterization of sequences adjacent to known sequence motifs, with potential application for 

detection and identification of GMOs. These enrichment approaches have found application in various 

fields, and some have already been applied for detection and identification of, primarily unauthorised, 

GMOs. In the most recent years some have even been coupled with NGS analysis, as reviewed above. 

Coupling enrichment and NGS is a means to improve cost- and time-efficiency for broad-targeted GMO 

analysis of multiple samples.  

It is important to assess whether these enrichment-NGS coupled approaches can meet the 

minimum criteria for the detection of GMOs, including UGMOs. In practice, the choice of DNA pre-

treatment will strongly influence the efficiency of the enrichment approaches. Different DNA pre-

treatments were applied in the described enrichment approaches. The inserted sequence can be known 

fully, partly or not at all. In this perspective, the enrichment approaches that imply restriction enzyme 

based digestion pre-treatment (Classical restriction enzyme digestion, A-T linker [232] and Loop-linker 

PCR [232]) or physical fragmentation pre-treatment (HITS [224] and RBF-PCR [231]) are not ideal 

options. In restriction enzyme based digestion pre-treatment approaches, choosing the restriction 

enzyme may compromise the broad detection and identification of UGMOs in those cases where the 

enzyme happens to digest an unknown genetic construct at crucial positions.  

With physical, ultrasonic, fragmentation pre-treatment (HITS [224] and RBF-PCR [231]), 

similar problems might occur. Too short fragments or fragmentation within the insert hamper the 

enrichment for long and informative fragments. In both these approaches, the length of the enriched 

fragments depends on the parameters involved in the ultrasonication. Controlling for the size of the 

fragmentation was shown to be challenging and failure leads to creation of multiple unevenly sized 

bands [231]. This will compromise the applicability of both HITS [224] and RBF-PCR [231] for both GMO 

and UGMO detection similar to the restriction enzyme approaches.  

The last approach, i.e. no DNA pre-treatment, as applied in LT-RADE [228], LAM-PCR [229], 

nrLAM-PCR [225], SiteFinding-PCR [227] and LF PCR [230] seems the best option, leaving the whole 

genome intact for the initial target specific primer extension. As a result, a maximum enrichment length 

can be obtained starting from the known element of GMOs into the unknown adjacent sequences. This 

is crucial for successful identification of UGMOs.  

The different enrichment approaches reviewed here were compared with relation to different 

aspects that were deemed relevant for their success when applied in routine screening approaches for 

GMO detection and identification (Table 5.2).  

 



102 
 

Table 5.2 Overview on the reported enrichment approaches, based on the length of enrichment, tested on GMOs, number of steps involved, number of PCR steps, estimated time, 

coupled with NGS and DNA pre-treatment [219,223-225,227,228,230-232,253]  

Enrichment approaches 
Length of 

enrichment 

Tested on 

GMOs 

Number of 

steps involved 

No of PCR 

steps involved 
Estimated time 

Coupled 

with NGS 
DNA pre-treatment 

SiteFinding-PCR max ~4.5 kb Yes 5 3 ~11h 30min Yes No pre-treatment 

Locus-finding PCR max ~500 bp Yes 3 2 
~5h  

30min 
No No pre-treatment 

LT-RADE max ~1 kb Yes 5 2 ~7h min No No pre-treatment 

nrLAM-PCR max ~250 bp No 5 2 ~29 h Yes No pre-treatment 

HITS max ~ 350 bp No 4 1 
~3h  

30min 
Yes Ultra-sonication 

RBF-PCR max ~ 2 kb Yes 6 2 ~10 h 30min No Ultra-sonication 

A-T linker max ~1 kb No 6 2 ~36h 30min No 
Restriction 

digestion 

Loop-linker PCR max ~1.8 kb Yes 5 2 ~16h 30min No 
Restriction 

digestion 

Restriction digestion- NGS max ~500 bp No 4 1 ~19h 30min Yes 
Restriction 

digestion 
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In approaches where DNA is not pre-treated, initial single strand elongation can be obtained 

by using either of two types of primers: a) a semi-random primer (SiteFinding PCR [227] and LF PCR 

[230]), or b) a target-specific primer (LT-RADE [228], LAM-PCR [229], and nrLAM-PCR [225]). For the 

detection of GMOs and UGMOs it is important to initiate the enrichment with the target-specific primer 

rather than initiating with semi-random primer. This will ensure that from the initial step onwards, the 

desired fragment is amplified. In the case of SiteFinding-PCR [227] and LF PCR [230], multiple 

amplicons are amplified in the initial step due to the use of semi-random primers largely unrelated to 

the sequence of the GMO element of interest. In these cases, it is essential to include an additional step 

to select for the desired GMO-related amplicons. In SiteFinding-PCR [227] this was achieved by 

performing additional nested PCRs with target specific primer and SiteFinding primer. This, however, 

increases the risk of contamination. In LF PCR [230], a biotinylated capture primer step was included to 

select for the desired amplicons, but a nested PCR was also still performed. Based on these observations, 

SiteFinding PCR [227] and LF PCR [230] do not meet the criteria for the enrichment for UGMO detection 

and identification. 

The target-specific primer approaches either use biotinylated target-specific primers (LAM-

PCR [229] and nrLAM-PCR [225]) or non-biotinylated target-specific primers (LT-RADE) [228] for single 

strand enrichment. To reduce the presence of genomic DNA and non-specific amplicons, a magnetic 

bead clean-up step was introduced in the LAM-PCR [229] and nrLAM-PCR [225] procedures. For that 

purpose biotin was added to the 5’ end of the target-specific primer. The reduction of the background 

genomic DNA will increase the sensitivity and reduce the necessity for subsequent nested PCRs that 

are prone to contamination. In the LT-RADE [228] approach, column purification was introduced to 

remove the shorter fragments (< 100 bp). This purification step is important to facilitate the poly-dC tail 

synthesis in the longer fragments. Subsequently, dsDNA can be obtained in different ways. In LAM-

PCR [229], a mixture of random hexanucleotide hybridises randomly to the ssDNA to allow synthesis 

of dsDNA that will lead to different amplicons. The subsequent restriction digestion followed by 

ligation may be prone to contamination and is time consuming. In nrLAM-PCR [225], single-stranded 

linkers are ligated to the ssDNA and a PCR is performed using the gene-specific primer and a linker 

primer. In nrLAM-PCR [225], single-stranded linker ligation to the ssDNA is not as efficient as dsDNA 

ligation. In the LT-RADE [228] approach, the synthesized ssDNA is poly-dC tailed and dsDNA is 

synthesized by performing a PCR on the basis of the target-specific and AAP primers. It was shown that 

the blend polymerase used in the LT-RADE approach results in longer enrichment DNA stretches when 

compared to the RADE approach, which uses regular Taq polymerase [228]. A further evaluation study 

between the different polymerases is recommended to choose an optimal polymerase (blend) that can 

enrich longer fragments for UGMO identification. From this overview, it seems clear the most suitable 

approaches to synthesize the dsDNA use amplification based on either random hexanucleotide primers 

(LAM-PCR) [229] or primers based on initial poly-dC tailing (LT-RADE) [228]. Additional research is 

necessary to evaluate the efficiency of the dsDNA synthesis in both cases. It is necessary to evaluate the 

quantity of the enriched fragments after the clean-up step in a single PCR. If the resulting amount of 

DNA proves to be sufficient for direct sequencing, this can be both time-efficient, and contribute to 

reducing the contamination risk. To further increase the cost efficiency of such analyses, it would be 

beneficial to perform the amplification steps of target-specific primer approaches in a multiplex fashion. 

With newly emerging techniques, such as droplet digital PCR (ddPCR), this could be done quite 

effectively. As already shown, at least ten different targets can be simultaneously amplified in one 

reaction of ddPCR [268]. Thus the option of fusing the target-specific primer approaches into droplet 

(emulsion) PCR format would be of interest. 
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For UGMO detection and identification, it is necessary that enrichment strategies will 

primarily enrich the longest possible fragments based on selected, targeted elements in GMOs in a 

sensitive way, performing equally well in complex mixtures. None of the discussed enrichment 

approaches have been shown to fully meet these requirements, and none have been tested in more 

processed samples that are commonly encountered in GMO detection in food and feed. Even 

approaches that were designed for obtaining long fragments may fail to yield enough information in 

the case of samples with highly fragmented DNA. The enrichment approaches that hold the best 

perspective for UGMO detection and identification are those that start the initial extension with target-

specific primers, especially nrLAM-PCR and LT-RADE. It can be envisaged that the further comparison 

and development of this class of enrichment approaches can lead to efficient approaches for UGMO 

detection and identification, especially when coupled to NGS, as this will allow for simultaneous 

detection and identification of all GMOs, including UGMOs, in a single analysis. Thus, the present 

review will provide the basis for the development of effective methodologies to screen food and feed 

products for GMOs that have not yet been tested for their safety for the human and animal consumer 

and the environment. 
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Chapter 6 

 

NGS-based amplicon sequencing approach; towards a new era 

in GMO screening and detection 
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Abstract 

The development and commercialization of Genetically Modified Organisms (GMOs) and its related 

products have been increasing in the last two decades. This challenges the currently applied time-

consuming and expensive qPCR screening procedure from a practical perspective, due to the necessity 

to develop and validate additional targets at a regular pace and the increasing number of targets 

included in a single screening. In this study we developed a next generation sequencing (NGS)-based 

GMO screening approach covering 96 GMO targets and compared it to the two-step qPCR GMO 

screening approach; the two approaches were evaluated with five feed samples known to contain 

GMOs. The amplicons obtained from the feed samples were analysed using 150-bp Paired-End 

sequencing, Illumina HiSeq 4000 platform. A dedicated data analysis pipeline was developed, which 

allows automated identification of GMOs and associated genetic elements and constructs. The result of 

the NGS-based screening were compared with the qPCR approach, indicating that 92% of the targets 

were commonly identified between the qPCR and NGS-based screening. The remaining 8% of the 

targets had discrepancies in detection between the two methods, this was mainly observed for targets 

that were detected in qPCR with high Cq values (above 36), which could not be detected in NGS-based 

screening. Additionally, due to the more extensive screening in the NGS-based strategy, in total 43 

additional GMOs and related targets were identified compared to the standard qPCR screening. From 

the commonly identified targets in both approaches, 8 targets could not be associated with the detected 

GMOs. These targets had late Cq values (above 36) and could indicate traces of unknown GMOs in the 

samples. The current study shows the applicability of NGS as a novel, broad and reliable screening 

strategy for GMOs and its potential to improve current screening methods.  

 

Keywords: Genetically modified products, qPCR, NGS, amplicon sequencing, Illumina HiSeq, 

bioinformatics, Unauthorised GMOs. 
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6.1 Introduction 

Genetically modified organisms (GMOs) are nowadays produced and marketed globally [269]. The 

regulations for the use of genetically modified (GM) crops in food and feed samples vary among 

countries, but in most countries GMOs need a pre-market authorization, and unauthorised GMOs 

(UGMOs) are not allowed to be present in food and feed products. For enforcement of GMO regulations, 

a two-step quantitative real-time PCR (qPCR) screening approach is the most commonly used strategy 

to detect and identify approved GMOs as well as potential UGMOs in food/feed samples [2-8]. In the 

qPCR screening approach, samples are analysed for common crop species (endogenous genes) as well 

as GMO targets (GMO-related elements and genetic constructs). Depending on the outcome of this 

initial screening step, additional event-specific qPCRs may be performed to confirm the presence of 

specific GMO events. In some cases, the detected elements, or combinations of elements, cannot be 

explained by the presence of an authorised GMO in the same sample, which may indicate the presence 

of a UGMO [22]. UGMOs are GMOs that have not yet been assessed for their food, feed and 

environmental safety in the country where these are marketed. Currently, the growing number and 

increasingly diverse characteristics of GMOs and UGMOs on the global market urge enforcement 

laboratories to screen for a growing number of GMO related targets. Moreover, new GMOs will 

continue to enter the market, requiring regularly expanding of the number of targets in the initial 

screening step. Incorporating this broad screening into the current qPCR strategy makes the procedure 

increasingly time-consuming. Furthermore, the addition of every new target to the screening requires 

the development and validation of a new method, a time and budget consuming process. In recent 

years, a number of multiplexing detection approaches have been developed to facilitate the broad 

screening of targets in a cost-efficient way. Generally, these approaches are probe and hybridization-

based, such as microchip-PCR [221], microarrays [222], 384 well-plate qPCR, microfluidics dynamic 

array [205] and droplet digital PCR (ddPCR) [270]. Except for ddPCR, all of these newly developed 

assays were designed to facilitate simultaneous screening of a high number of targets, allowing the 

detection of GMOs and UGMOs in complex samples. While these screening methods allow for a high 

number of targets, they still require development and validation of GMO specific probes, similar as in 

qPCR analysis. In recent years, next generation sequencing (NGS) has been applied in the field of GMO 

detection and identification, focusing on the identification of UGMOs by using genome walking 

approaches [219,271,272] and whole genome sequencing (WGS) of GMOs crops [40,45,46]. However, 

NGS-based detection has not yet been developed and applied in protocols for routine GMO analysis. 

An NGS-based screening approach would have the following advantages over a qPCR-based approach: 

a) the reported amplicon sequence will be a direct proof of detection of the target, which circumvents 

the process of developing and validating target-specific probe methods and the need for the appropriate 

reference materials. b) Reference sequence information of amplicons can be generated and any variation 

from previously published sequences can be identified and may be used in future studies, thus 

increasing the knowledge basis.  

Here as a comparative study, an NGS-based GMO screening approach was developed, and the 

applicability of the approach was evaluated by comparing it with the standard qPCR screening 

approach. To this end, five complex feed products were selected from a routine GMO feed monitoring 

programme. The feed products were all known to contain multiple GMOs in different quantities, as had 

been determined in the routine two-step GMO qPCR screening. The developed NGS-based GMO 

screening approach was based on 96 targets PCR assay [22] combined with Illumina paired-end (PE) 

technology. The Illumina technology was preferred over other NGS sequencing technologies based on 

its performance characteristics, such as the output read length, number of output reads, read quality, 

runtime, type of reads and lowest cost per sequenced base pair [23]. The obtained amplicon NGS 

datasets were analysed using a bioinformatics pipeline, amplicon-sequencing (AM-SEQ), developed for 
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this purpose. The results of the developed NGS based screening and qPCR screening were compared 

and the applicability of the NGS-based approach for routine GMO screening was evaluated.  

 

6.2. Materials and methods 

6.2.1 GMO feed samples  

Five feed samples from GMO feed monitoring programme were used for analysis with both the NGS 

and the qPCR-based approach (Table 1). Based on the product description sample 1 (S1) and sample 3 

(S3) contained maize GMOs and sample 4 (S4) contained soy GMOs. The label description for sample 2 

(S2) was supplementary feeding for chickens and for sample (S5) calves growing mix, in both cases no 

specific GMO-related information was provided. These samples originated from Brazil, Canada and 

The Netherlands. 

Table 6.1 GMO feed samples used for analysis. 

Sample name Product description Sample origin 

Sample 1 (S1) Maize GMO Brazil 

Sample 2 (S2) Supplementary feeding, chickens Netherlands 

Sample 3 (S3) Maize GMO Canada 

Sample 4 (S4) Soybean scrap GMO Brazil 

Sample 5 (S5) Calves growing mix Netherlands 

 

6.2.2 DNA isolation from feed samples 

Per sample, 100 mg of ground, homogenised dry weight material was used. DNA was isolated using 

the following procedures; the Maxwell 16 Tissue DNA purification kit was used in combination with 

the Maxwell 16 Instrument (Promega, USA) to isolate DNA from samples 1,4 and 5, whereas the 

modified Qiagen DNeasy Plant mini kit (Qiagen) with CTAB extraction [186] was used for samples 2 

and 3. DNA for the 96 GMO targets of the positive control sample was obtained from several certified 

reference materials (Additional file 6A: Table A.1) by following either Maxwell 16 Tissue DNA 

purification kit for soybean, rice and sugar beet materials or a modified Qiagen DNeasy Plant mini kit 

(Qiagen) with CTAB extraction for maize, potato, cotton, canola and wheat materials. The purity and 

quantity of the extracted DNA was assessed using Nanodrop absorbance measurements (Nanodrop 

1000 instrument, Thermo Fisher Scientific). 

 

6.2.3 GMO qPCR screening and detection  

The DNA from the samples was diluted to ~10 ng/μl prior to qPCR amplification. Routine two-step 

GMO qPCR screening was performed for the five feed samples. Initially, qPCR for endogenous 

reference genes, GMO specific elements, constructs (Table 2) were performed, and based on the outcome 

additional event-specific qPCR were performed to confirm the presence of the GMOs in the samples. 

All qPCRs for each target were performed in two replicates including the positive (reference material 

for each target) and negative control (reaction without DNA, DNA volume was replaced by PCR grade 
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water). The total volume per reaction was 25 μl, which contains 12.5 μl of the Diagenode master mix 

(DMMM2XA300), 50 ng of DNA, the used concentration of forward and reverse primers, and the probe 

for each target are specified in Appendix A: Table A.1. All qPCRs were performed using the following 

protocol: decontamination UNG (uracil-DNA glycosylase) 120 s at 50 °C, initial denaturation 600 s at 95 

°C, amplification 45 cycles of 15 s at 95 °C and 60 s at 60 °C using a BioRad CFX96 thermocycler. The 

obtained qPCR data were analysed using the Bio-Rad CFX Manager 3.0 software. 

 

Table 6.2 GMO specific targets (endogenous, elements, constructs and events) analyzed in the qPCR and NGS-

based approach.  

Endogenous PCR 
(n=9) 

Element PCR 
(n=31) 

Construct PCR 
(n=9) 

Event PCR (n=47)  

Actin-Plant DNA 1 2 

3 4 5 
P-35S 1 2 3 4 5 Adh1-cry1Ab  A2704-12 (Soybean) 2 3 5 MS8 (Canola)  

Potato  P-FMV 3 Cry1Ab-intron  A5547-127 (Soybean) 2 3 5 RF3 (Canola)  
Cotton  P-FMV2 1 2 4 5 Ctp2-cp4epsps 1 2 3 4 5 CV127 (Soybean) 2 3 GT73 (Canola) 5  
Canola 1 2 3 4 5 P-NOS 1 2 3 4 5 Ctp4-cp4epsps 1 2 3 4 5 DAS44406 (Soybean)  T45 (Canola)  
Maize 1 2 3 4 5 P-Riceactin 1 Hsp70-cry1Ab  DAS68416 (Soybean) 2  281-24-236 (Cotton)  
Rice 1 2 3 4 5 P-SSuAra 1 2 4 5 OTP-mepsps  DP305423 (Soybean) 2 3 4 5 3006-210-23 (Cotton)  
Soybean 1 2 3 4 5 P-TA29  P-35S-bar  DP356043 (Soybean) 2 3 5 GHB119 (Cotton)  
Sugar beet 1 2 3 4 5 P-ubi 3 Pat-T-35S  FG72 (Soybean) 5 GHB614 (Cotton)  
Wheat 1 2 3 4 5 T-35S 1 2 3 4 5 P-ubi-cry MON87701 (Soybean) 2 4 5 LL25 (Cotton)  
 T-E9 1 2 3 4 5  MON87705 (Soybean) 3 4 MON1445 (Cotton)  
 T-G7 1 2 4 5  MON87708 (Soybean) 3  MON15985 (Cotton)  
 T-nos 1 2 3 4 5  DAS81419 (Soybean)  MON531 (Cotton)  
 T-OCS   GTS 40-3-2 (Soybean)   
 cp4-epsps(1) 1 2 3 4 5  MON87769 (Soybean)   
 cp4-epsps(2)   MON89788 (Soybean) 2 3 4 5  
 Cry1Ab 1 2 3 4 5  Event 3272 (Maize) 3   
 Cry1A.105 1 2 3 4 5  BT11 (Maize) 1 2 3  
 Cry1Ab/Ac 1 2 3 4 5  DAS40278 (Maize) 2 3  
 Cry1Ac 3  DAS59122 (Maize) 3   
 Cry1F 1 2 3 4 5  DP98140 (Maize) 2 3  
 Cry2Ab2 1 2 3 4 5   GA21 (Maize) 3   
 Cry3A   MIR162 (Maize) 1 2 3  
 Cry3Bb1 1 2 3 4 5  MIR604 (Maize) 3   
 Vip3a 1 2 3 4 5  MON810 (Maize) 3   
 Bar 1 2 3 4 5  MON863 (Maize) 3   
 Pat 1 2 3 4 5  MON87460 (Maize) 3   
 nptII 1 2 3 4 5  MON88017 (Maize) 1 2 3   
 I-rActin1 1 2 3 4 5  MON89034 (Maize) 1 3   
 barnase   NK603 (Maize)   
 barstar 1 2 3 4 5  T25 (Maize)   
 CaMV 1 2 3 4 5  DAS1507 (Maize) 1 2  
   5307 (Maize)   
   MON87427 (Maize)   
   DP073496 (Canola)   
   MON88302 (Canola)   

The numbers in superscript indicate the sample (name) analyzed for the specified qPCR target (e.g. 1 refers to qPCR targets 

in S1). 
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6.2.4 Comparison of master mixes for NGS-based GMO detection  
 
The comparison was performed on four GMO related targets in three different samples; hmg, P35S, T-

nos and Cry1Ab/Ac. The reactions were carried out in 25 μl volumes containing 12.5 μl of PCR master 

mix (Diagenode master mix (DMMM2XA300) or HotStar Taq master mix kit (Qiagen; 203443)), sense 

and antisense primers (Appendix A: Table A.1), RNase-Free water, and 5 μl of template DNA (~10 

ng/µl). The following PCR protocol was used: 95° C for 10 min, 45 cycles of 95° C for 15 sec, 60° C for 1 

min using a BioRad CFX96 thermocycler. The 5 μl of the PCR products and 3 μl of 10 bp DNA ladder 

were loaded on 1% agarose gel containing ethidium bromide, Gel Doc XR+ System (BIO-RAD) was 

used to visualize the amplified product.  

 

6.2.5 PCR and Illumina sequencing  

The positive control DNA (~10 ng/μl) and primer concentration used for each PCR target is specified 

in Additional file 6A: Table A.1. Using HotStar Taq master mix kit, the PCRs were performed in a 96-

well plate (Bio-Rad; 1 plate per sample), with each reaction well containing the primers of a different 

PCR target. After PCR amplification, 5 µl of the amplified product from the positive control plate (96 

targets) was visualised on 1% agarose gel. The 96-well plates were sent for sequencing to the BGI 

genome sequencing centre (Shenzhen, China), where the 96 PCR targets per plate were pooled, and 

purified using the QIAquick PCR purification kit (Qiagen). Next, 3 µl of each DNA sample was 

quantified using the Qubit dsDNA BR Assay Kit (ThermoFisher Scientific). Indexed paired-end 

adapters were then ligated to 1 ug of DNA per sample using the TruSeq DNA Sample Preparation kit 

(Illumina Inc.) according to manufacturers’ protocol. The index barcodes in the adapters, used to label 

different libraries in a HiSeq lane, were generated by the sequencing provider. The six DNA libraries 

used in this study were pooled with other libraries that were not part of this study and sequenced 

together on a HiSeq 4000 lane using paired-end 150-bp mode. 

 

6.2.6 Bioinformatics analysis  

Identification of GMO related reference sequences with the AM-SEQ pipeline involved the following 

steps: 1) Illumina adapters were removed from reads with a 10% error tolerance using Cutadapt v1.8.1 

[273]. 2) The forward and reverse reads were merged to create a pseudo-read using PEAR [274]. 3) A 

quality filtering step was performed with the criteria of a base quality ≥ 20, using the FASTX-toolkit 

v0.014 (http://hannonlab.cshi.edu/fastx_toolkit). 4) The pseudo-reads that contained both assay-

specific primer sequences were selected and sorted using Cutadapt v1.8.1, in sequential order. The reads 

that did not contain the first assay-specific primer sequences on the list (eg. Actin) were searched and 

sorted for the next target assay-specific primer sequences, this process was performed for all the 96 

targets included in this study. 5) All primer selected reads of the positive control were aligned against 

the local database, which contained 17 reference sequences obtained from NCBI database. 6) Unmapped 

reads were clustered using USEARCH v8.0.1632 [189] with a minimum cluster size of 50. The 

representative read of each cluster was manually verified for the presence of a target-related probe 

sequence and, if positive, the representative read was added to the local database as a new reference 

sequence. After the local database of GMO related reference sequences was established, the NGS 

datasets generated for the positive control and five feed samples were analyzed. Amplicon targets that 

were supported by at least 0.01% of the total mapped reads were considered to be detected. As a final 

step in the data analysis, detected targets (endogenous, elements and constructs) were associated with 

the detected GMOs in the sample and presented in a graphical overview. 

 

http://hannonlab.cshi.edu/fastx_toolkit
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6.3 Results 

6.3.1 NGS-based GMO screening  

The applicability and performance of an NGS-based GMO screening approach was determined by 

evaluating five feed samples (S1-S5), confirmed to contain GMOs. Furthermore, a positive control 

sample was included in the analysis containing DNA of all relevant GMO targets, obtained from several 

certified reference materials (Additional file 6A: Table A.1). As an initial step to optimize the NGS-based 

GMO screening procedure, the Diagenode master mix and HotStar Taq master mix kit (Qiagen) were 

tested for their ability to amplify four GMO related targets in three different samples; hmg, P35S, T-nos 

and Cry1Ab/Ac in two GMO feed samples and a positive control. The comparison results indicated that 

the amplification efficiency of HotStar Taq master mix was consistently high for all four amplicons under 

the selected PCR thermocycling conditions, whereas fainter PCR bands were observed for hmg and 

Cry1Ab/Ac using the Diagenode master mix (Additional file 6A: Figure A.1). In addition, no primer 

dimers or non-specific amplification products were observed with HotStar Taq master mix. For these 

reasons, the HotStar Taq master mix was selected for further PCR analyses using the DNA from the five 

feed samples and the positive control to amplify 96 targets per sample: 9 crop-specific, 31 elements, 9 

constructs and 47 events (Table 2). The 96 positive control reactions were visualized on gel, confirming 

that all PCR targets were successfully amplified, except for the event-specific sequences of DP073496, 

DAS59122-7 and 3006-210-23 (Additional file 6A: Figure A.2). The pooled 96 reactions per sample were 

purified and sequenced using paired-end (PE) 150 HiSeq Illumina technology. In total, 51.6 Gb of NGS 

data was yielded form the five feed and positive control samples  

 

6.3.2 Creating a local database and processing the NGS data with AM-SEQ 

A dedicated bioinformatics pipeline named AM-SEQ was developed and used to process the raw 

Illumina data in 1.8+ FASTQ format (Figure 6.1). For the correct identification of GMOs and related 

targets a local reference sequence database for all 96 GMO targets was built using the following two 

approaches; a) mining the published literature and in-house or public databases (EUginius, NCBI 

nucleotide) for reference sequences and b) identifying reference sequences from the positive control 

NGS dataset. With approach “a”, 17 of the 96 reference sequences could be identified and were added 

to the local database; Actin, SPS, P35S, PFMV, cp4-epsps(1), cry1A(b), Cry1A.105, Cry1F, Cry2Ab2, Cry3A, 

Bar, nptII, I-rActin1, Barnase, CaMV, DAS59122-7 and 3006-210-23 (Additional file 6A: Table A.3). To 

identify the reference sequences of the remaining 79 targets the NGS dataset of the positive control was 

processed with the AM-SEQ pipeline (Figure 6.1). During the initial quality filtering, the 5’ and 3’ 

Illumina adapter sequences were removed, and reads shorter than 50 nucleotides were discarded. Reads 

with a minimum base quality of 20 were selected for further analysis. The base quality selected forward 

and reverse reads were merged into pseudo-reads, a primer selection based on presence of both the 

assay-specific forward and reverse primers was performed on these base quality selected pseudo-reads. 

Furthermore, during the selection procedure pseudo-reads were sorted according to their PCR assay. 

The remaining unmapped pseudo-reads were clustered with a minimum cluster size of 50. 

Subsequently, the representative pseudo-reads of a cluster were manually analyzed for the presence of 

assay-specific probe sequences to verify the biological relevance, if the probe sequence was present, 

then the representative pseudo-read was added to the local database. The representative pseudo-reads 

of the unmapped clusters that did not contain a probe sequence were not added to the local database.  
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 The positive control contained reads for 93 targets based on the assay-specific primer selection. 

For three targets no reads were found (DP073496, DAS59122-7 and 3006-210-23), as specified in 

Additional file 6C: Table C.6. This was due to no amplification of the target during PCR, as observed on 

gel (Additional file 6A: Figure A.2), however, the reference sequences for DAS59122-7 and 3006-210-23 

were already available, only for DP073496 the reference sequence could not be obtained. For the 17 

targets with sequence information previously added to the local database, reads were mapped using 

Bowtie v2.2.6 with default setting to their respective reference sequences. For the remaining 79 GMO 

targets, reference sequences were selected based on the assay-specific primer and were manually 

verified for the presence of the specific probe sequence and added to the local database and EUginius 

(http://www.euginius.eu). For Actin, two sequence variants were included in the local database; one 

from Zea mays, and one from Brassica napus. (Additional file B: Table B.1).  

 

 

Figure 6.1 Schematic representation of the amplicon resequencing pipeline (AM-SEQ) to process the Illumina 

data. The dotted boxes indicate the steps in obtaining the reference sequences from the NGS data for the local 

database. 

With the complete local database in place, the NGS data yielded from the five feed and the 

positive control samples were analysed using the AM-SEQ pipeline. On average, 24 million raw forward 

and reverse reads per sample were obtained (Additional file 6A: Table A.2). On average 93.84% (min = 

91.28%; max = 96.83%) of the reads passed base quality filtering, indicating a high overall quality of the 

NGS datasets (Additional file 6A: Table A.2). During primer selection, on average 91.83% of the reads 

(min = 90.18%; max = 92.91%) were selected based on the presence of both the assay-specific forward 

and reverse primers. Next, the pseudo-reads were sorted according to their PCR assay and aligned using 

Bowtie v2.2.6 with default setting to their respective reference sequences, on average 87.61% (min = 

71.10%; max = 98.71%) of pseudo-reads were mapped (Additional file 6A: Table A.2). None of the 

representative pseudo-reads of the unmapped clusters from the feed sample contained a probe 

sequence, and hence these reads were discarded. An overview of the number of primer-selected pseudo-

http://www.euginius.eu/
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reads, the number of mapped and unmapped pseudo-reads, and the number of clusters for unmapped 

pseudo-reads are presented in Additional file 6C: Table C.1-C.6.  

6.3.3 Setting the threshold of detection by comparing qPCR and NGS datasets  

A threshold was established to distinguish between amplified targets (targets with high read counts) 

and background noise (targets with low read counts) in the data. Reads were observed for nearly all 

PCR targets in the feed samples. On average 59 PCR targets were observed with a relatively low 

(<0.01%) percentage of mapped reads (Additional file 6C: Table C.1-C.6). To determine a threshold for 

detection and to avoid false positive results, the percentage of mapped reads per target of the positive 

control and S4 were plotted in ascending order (Figure 6.2). Additionally, the qPCR results of S4 were 

compared to the percentage of mapped reads per target, showing that nearly all GMO targets with a 

low amount of mapped reads (<0.01%) were not detected in the qPCR analysis, while GMO targets with 

high read counts (>1%) generally had low Cq values (≤ 35). Hence, to avoid the false positive 

identification in the samples, targets with less than 0.01% mapped reads were considered background 

noise and were scored as not detected.  

Figure 6.2 Positive control (P) and sample 4 (S4) were plotted to determine the background noise in the data. The 
points in the lines represent the percentage of mapped reads per target in a sample relative to the total number of 
mapped reads in a sample (y-axis). Per sample the targets were sorted in ascending order of assigned mapped reads 
(x-axis). 

6.3.4 Data interpretation of the feed samples  

The NGS data obtained from the feed samples were reanalysed with the established threshold. The 

detected targets of each feed sample were analysed using an event-related element matrix, which is 

based on available elements, construct and event data for 47 GMOs [186]. The graphical output, in 

HTML format, displaying the GMOs and related targets identified in each feed sample can be found in 

Additional file 6A: Figure A.3. As an example, the visual output for S2 is presented (Figure 6.3), which 

summarizes the identified GMOs and related targets in the sample, for the other four samples visual 

outputs are presented in the Appendices A: Figure A.3. In each feed sample, crop-specific targets (FatA, 

UGP, Wx-1 etc.) were detected that could not be linked to GMOs indicating the presence of non-GMO 

crops.  

 Between 17 and 42 targets (endogenous, elements, construct and GMO events) were detected 

per sample (Table 6.3). Maize GMOs were detected in S1 and S3, whereas S4 contained only soy GMOs, 

and S2 and S5 contained both maize and soy GMOs. A total of 12 GMO targets were unexplained in S2 

to S5 meaning that these GMO targets could not be associated to any of the GMOs identified in these 

samples (Table 6.3). To determine whether these unexplained targets are present in EU authorised and 

known unauthorised GMOs that were also present in the samples, but may have been masked by the 
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events found in the initial analysis, a further analysis was performed through www.euginius.eu (Figure 

6.4). Based on the outcome, additional GMO specific qPCR experiments were performed.  

 

Table 6.3 Targets identified in the five real-life feed samples using NGS-based GMO screening approach. 

Sample 
no  

Detected GMOs 
Detected 
endogens 

Detected elements 
Detected 

constructs 
Unexplained 

targets 

S1 (33) GA21, MIR162, 
MON810, 
MON88017, 
MON89034, NK603, 
DAS1507, BT11 (8) 

Actin, hmg and 
Le1(3) 

P35S, PFMV, PFMV2, P-
Riceactin, P-ubi, T-35S, T-
nos, cp4-epsps1, Cry1Ab, 
Cry1A.105, Cry1Ab-Ac, 
Cry1F, Cry2Ab2, Cry3Bb1, 
Pat and I-rActin1(16) 

Adh1_cry1Ab, 
ctp2-cp4epsps, 
hsp70-cry1Ab, 
OTP-mepsps, 
Pat-T-35, P-
ubi-cry (6) 

 

S2 (36) A2704-12, 
MON87701, GTS40-

3-2, MON89788, 
GA21, MON88017, 
NK603, DAS1507 
(8) 

Actin, UGP, 
FatA, hmg, 
Le1,Wx-1 (6) 

P35S, PFMV, PFMV2, P-
Riceactin, P-SSuAra, P-ubi, 
T-35S, T-E9, T-nos, cp4-
epsps1, cp4-epsps2, Cry1Ab, 
Cry1Ab-Ac, Cry1Ac, 
Cry2Ab2, Cry3Bb1, Pat, I-
rActin1,barstar (19) 

ctp2-cp4epsps, 
ctp4-cp4epsps, 
Pat-T-35S (3) 

Cry1Ab, 
Cry2Ab2, 
barstar 

S3 (42) GA21, MIR162, 
MON810, MIR604, 
MON863, 
MON88017, 
MON89034, NK603, 
T25, DAS1507, BT11 
(11) 

Actin, hmg, 
Le1,Wx-1 (4) 

P35S, PFMV, PFMV2, P-
Riceactin, P-SSuAra, P-ubi, 
T-35S, T-nos, cp4-epsps1, 
cp4-epsps2, Cry1Ab, 
Cry1A.105, Cry1Ab-Ac, 
Cry1F, Cry2Ab2, Cry3A, 
Cry3Bb1, Pat, nptII, I-
rActin1(20) 

Adh1_cry1Ab, 
ctp2-cp4epsps, 
ctp4-cp4epsps, 
hsp70-cry1Ab, 
OTP-mepsps, 
Pat-T-35S, P-
ubi-cry (7) 

Ctp4_cp4epsps 
and P-SSuAra 

S4 (17) MON87701, GTS40-
3-2 MON89788 (3) 

Actin, Le1(2) P35S, PFMV2, P-SSuAra, 
P-ubi, T-E9, T-nos, cp4-
epsps1, cp4-epsps2, Cry1Ab-
Ac, Cry1Ac (10) 

ctp2-
cp4epsps,ctp4-
cp4epsps(2) 

P-ubi 

S5 (34) A2704-12, 
MON87701, GTS40-
3-2, MON89788, 
MON810, NK603 
(6) 

Actin, UGP, 
FatA, hmg, 
Le1,Wx-1(4) 

P35S, PFMV, PFMV2, P-
Riceactin, P-SSuAra, P-
TA29, P-ubi, T-E9, T-g7, T-
nos, cp4-epsps1, cp4-epsps2, 
Cry1A.105, Cry1Ab-Ac, 
Cry1Ac, Cry2Ab2, Bar, Pat, 
I-rActin1, barstar (20) 

ctp2-cp4epsp, 
ctp4-cp4epsps, 
hsp70-cry1Ab, 
Pat-T-35S (4) 

Tg7, bar, 
Cry1A.105, 
Cry2Ab2, P-
TA29,barstar 

Targets that were additionally detected in NGS-based screening compared to the qPCR screening are highlighted in bold. (n) 
Indicates the total number of targets identified.  

 

http://www.euginius.eu/
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Figure 6.3 Visual output of S2 generated using the AM-SEQ pipeline. Column one and two indicate the identified 

GMOs and its unique GMO name. The detected targets (endogenous, elements and constructs) are marked in green 

and are associated with detected GMOs, targets in red represent not detected targets. Unexplained targets are 

presented in the remarks.  

In S1, all the detected elements were explained by the identified GMOs. In S2, Cry1Ab, Cry2Ab2, 

barstar were unexplained with 1.55%, 1.27% and 0.29% of total mapped reads, respectively, which was 

above the established threshold. These targets were detected in qPCR with average Cq values of 39, 37 

and 40. As a follow-up, methods for the EU authorised GMOs knowing to contain Cry1Ab and available 

in our laboratory were applied, i.e. methods for MON810, MON89034, BT176, T304, BT63, and BT11. 

None of these GMOs were detected in the sample. Similarly, Cry2Ab2 containing GMOs were tested 

with qPCR and not detected, i.e. MON89034, MON15985, and MON7751. For barstar, RF1, RF2, and RF3 

were tested negative in the additional qPCR screening.  
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Figure 6.4 Schematic representation of the EUginius database (step 1 to 4) analysis process to identify all EU 
authorised and known unauthorised GMOs that contain the unexplained targets, which are found in the samples. 
The summary of EUginius output for GMOs containing Barstar is used as an example.  

 

In S3, Ctp4_cp4epsps and P-SSuAra elements could not be associated to any of the detected GMOs 

in the sample and remains unexplained. The presence of the construct ctp4-cp4epsps was confirmed with 

qPCR. The associated GMO, GTS 40-3-2, for this construct was detected with an event specific qPCR 

with a Cq value of 35. However, event GTS 40-3-2 was not detected with NGS (0.0035% mapped reads, 

below the established threshold). The unexplained element P-SSuAra was detected above the 

established threshold, 0.065% of total mapped reads, and in the conformational qPCR analysis it was 

identified in one out of three separate reactions with a late Cq value of 38. The GMOs known to contain 

P-SSuAra were tested negative in the additional qPCR screening, i.e. MON87701, MON87751, MS1, 

MS8, RF1, RF2, and RF3.  

In S4, P-ubi was the only unexplained element, which was detected in one out of two qPCR 

reactions with a high Cq value of 38. The element P-ubi is derived from Zea mays, and low-level presence 

of Zea mays in this sample was confirmed with hmg qPCR, while it was not detected with NGS.  

In S5, six unexplained elements were identified, Tg7, Bar, Cry1A.105, Cry2Ab2, P-TA29, and 

barstar. The qPCR analysis of Tg7, Bar, P-TA29 and barstar showed that these were detected in one out 

of two reactions with late Cq values, i.e. 37, 41, 36, and 39, respectively. As a follow-up, the in-house 

available event methods for GMOs containing these four targets were tested with the event qPCR 

method but none of these GMOs were detected in the sample, i.e. MS1, MS8, RF1, RF2, RF3, MON87460, 

DAS44406-6, and BT176. The elements Cry2Ab2 and Cry1A.105 had 1.7% and 2.8% of the total mapped 

reads with late Cq values of above 37 in qPCR. These two elements are present in MON89034, which 

was detected in the qPCR analysis with a high Cq value of 36 while it was not detected in NGS.  
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6.3.5 Comparison of the NGS-based GMO screening results with qPCR approach  

The standard two-step qPCR screening results for the five feed samples showed that 16 to 34 targets out 

of 36 to 52 targets were detected across the feed samples (Additional file 6A: Table A.4). In general, most 

of the detected targets could be associated with identified GMOs. However, 6 elements and 1 construct 

could not be associated with any of the identified GMOs. These targets were identified with either a Cq 

value above 37 or were detected in only one of the replications of the qPCR assays (Additional file 6A: 

Table A.4). All these targets were considered to be low copy number targets from traces and no follow 

up was performed.  

 

Figure 6.5 Comparing the number of targets identified in the two-step qPCR approach and wider screening as 
applied in the NGS-based screening approach. The number in the circles indicates the total number of targets 
detected in the samples for the respective screening strategies. The light green circle     indicates step one in the 
qPCR approach (endogenous, elements and construct) and the light grey circle    indicates step two in qPCR 
approach (events). The light purple circle      indicates the one step wider screening approach.  

 

 The two-step qPCR screening approach could be considered as a less broad screening, with 

fewer GMO-related targets included compared to the NGS based screening. The qPCR screening results 

from the five feed samples were compared to the wider screening strategy used in the NGS-based 

approach (52 vs 96 targets). (Additional file 6D: Table D.1). This comparison showed that the same 

GMOs and related targets were identified to a large extent, however, in total 43 targets (endogenous, 

elements, construct and events) were additionally identified across the five feed samples in NGS due to 

broader screening strategy (Table 3). In all samples, a larger number of targets and GMOs were 

identified using wider screening approach in NGS compared to qPCR, except for S4 (Figure 6.5). To 

confirm the presence of the additional identified targets in the NGS-based screening, target-specific 

qPCRs were performed. All the additionally detected elements and constructs in the NGS-based 

screening, over all the samples, could be confirmed with qPCR assay. In total 10 GMOs were 

additionally detected across the samples between the qPCR screening strategy and the wider NGS 

screening strategy. In conformational experiments MON810 and NK603 were detected with qPCR in 

S1, GT3 40-3-2 in S2, NK603, and T25 in S3, all with a Cq value < 35 (Additional file 6C: Table C.1-C.3). 

The total mapped reads for these GMOs varied from 0.68 to 3.6%. (Additional file 6C: Table C.1-C.3). 

The other additionally detected GMOs, had Cq values > 38 or were not detected in all the reactions, i.e. 

GA21 in S1, GA21 and NK603 in S2 and MON810 and NK603 in S5. The total mapped reads for these 

low abundance GMOs varied between 0.02 to 0.07 %, except for MON810 in S5, which corresponded to 

1.2 % of the mapped reads (Additional file 6C: Table C.1-C.5).  
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Figure 6.6 Discrepancies occurred between qPCR and NGS screening results. The number indicate the obtained Cq 

value 

Reverse discrepancies were also observed between NGS-based and qPCR screening. In total 17 

targets were detected in qPCR, but not in NGS (Figure 6.6). From these, 13 targets had Cq values above 

36 and were not detected in all the qPCR reactions. The other four targets (S1:Vip3a, S2:GTS40-3-2 and 

DAS59122-7 and S5: MON89034) had low Cq values (≤ 36) in all four qPCR reactions, but were not 

detected in NGS. In NGS, no reads were identified for Vip3a and DAS59122-7. GTS40-3-2 and 

MON89034 had low numbers of mapped reads (220 and 407). DAS59122-7 event failed to amplify in the 

positive control and the five feed samples. However, in an independent experiment, the amplification 

of DAS59122-7 with HotStar Taq master mix was confirmed in the positive control and in S2.  

6.4 Discussion 

In the current study we present an NGS-based method for GMO detection and identification and 

compared the newly developed NGS approach with the two-step qPCR GMO screening method. To 

facilitate the NGS-based amplicon approach, an optimized NGS-based amplicon sequencing protocol 

was developed, as well as a bioinformatics pipeline (AM-SEQ) to analyse paired-end Illumina data. This 

comparison showed that the NGS-based screening approach has a similar sensitivity level as the qPCR 

screening. Additionally, the wider screening strategy applied in the NGS-based screening provided a 

complete overview of the content of the samples in a single analysis. The amount of additional targets 

identified in the NGS screening compared to the qPCR screening, indicates the advantage of a wider 

screening strategy in a situation where the variety in GMOs is increasing. 

 In the initial PCR master mix comparison, Qiagen HotStar Taq (PCR) master mix outperformed 

the routinely applied Diagenode (qPCR) master mix in efficient amplification of the target. Using 
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Qiagen Hotstar Taq master mix almost all targets of the positive control sample were successfully 

amplified, as was visualized by gel-electrophoresis. Subsequently, Qiagen Hotstar Taq master mix was 

used to amplify all 96 targets with DNA obtained from the five feed samples. The obtained amplicons 

from positive control and feed samples were successfully sequenced with PE HiSeq 150 Illumina 

technology. In the present study, PE 150 HiSeq Illumina technology was the preferred NGS platform of 

choice, because of very low error rates (< 0.1%). Alternatively the currently available Illumina MiSeq 

technology could also be applied, which can cover amplicon lengths > 250 bp [275]. The AM-SEQ 

pipeline for the NGS data analysis as presented in this paper will be applicable for MiSeq NGS data as 

well.  

The obtained NGS data from the positive control was used as input for the AM-SEQ pipeline to 

generate reference sequences. In total, 79 new reference sequences for targets (endogenous, elements, 

construct and events) were generated and made publicly available in the EUginius database 

(www.euginius.eu). For the feed samples, on average, more than 80% of the obtained data were of good 

quality and matched with a reference sequence in the local database. In the NGS data from the samples 

we also identified primer selected reads that did not map against the reference sequence containing the 

probe sequence. These unmapped reads clusters have been manually checked, but biological relevance 

could not be verified due to the lack of probe sequences. It is possible, however, that these unmapped 

clusters indicate genuine variations in the genetic constructs of the different varieties that have not been 

reported as yet, or indeed may represent sequences of unknown GMOs that have not yet been 

documented. However, the results may also be explained by non-specific amplification in the PCR.  

To avoid false positive results, a threshold for detection (0.01% of mapped reads) was 

established for the NGS datasets based on a comparison of qPCR and NGS results. As a consequence, 

two GMO targets (cp4-epsps(2) and MON89788) from the positive control with a low percentage of 

mapped reads (0.002 %) were scored as negative. For these two targets, a faint band was observed in 

the gel image of the positive control PCR (Appendices A: Figure. A.2) and only 281 (cp4-epsps(2) and 

261 (MON89788) pseudo-reads were primer selected (Appendices C: Table A.6). When comparing 

mapped read counts in the NGS data from 0.01% to 1% of reads, as depicted in figure 6.2, suggested a 

different nature of amplification for targets with these read counts, i.e. noise vs true amplification. The 

high occurrence of low assigned read counts to targets in the NGS data indicates that this may result 

from either neighbouring cluster overlapping or cross-contamination of the indexed libraries. The latter 

kind of cross-contamination may be overcome by using double indexing on the Illumina platform [276]. 

However, with the currently widely applied single indexing in Illumina, these contaminations cannot 

be prevented and may result in false-positive identification. By establishing a cut-off for the NGS dataset 

like reported in other studies [181,198], true amplification (targets with high reads counts) and cross-

contamination (targets with low reads counts) can be distinguished. Application of the threshold may 

lead to false negatives, but in these cases it seems likely that the amounts will be below values that 

would have been identified by current qPCR strategies, and would therefore not lead to decreased 

sensitivity in the screening as such.  

An alternative screening approach should at least perform as well as established methods. For 

that reason, the results of the NGS-based strategy were compared with the qPCR method, which is the 

current golden standard for GMO screening and identification. This comparison showed that 92% of 

the targets were commonly identified in the qPCR and NGS-based screening. For 17 targets a 

discrepancy was observed in that these targets were detected in qPCR but not in NGS. Of these, 13 cases 

may likely be explained by subsampling effects i.e. the weak signal in the qPCR strategy (Cq value 

above 36 and not detected in all the replication reactions) suggests that the levels were low and therefore 

a chance effect may determine a positive signal. Correspondingly, the number of mapped reads for 

these 13 targets were in the range of 0-450, which is below the threshold for detection (< 0.01%). Of the 

17 targets not detected in NGS, four targets had a Cq value of ≤ 36 and were not detected in the NGS 

http://www.euginius.eu/
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analysis. The event DAS59122-7 was one of the targets that was not detected in NGS and also failed to 

amplify in the positive control PCR. However, to confirm that amplification of DAS59122-7 event is 

possible, the PCR was repeated with HotStar Taq master mix for the positive control and S2, which 

resulted in a clear amplification in both cases. These observations indicate that in the initial experiment 

probably the master mix preparation was not according to protocol. Another target that was not 

detected in the NGS data in case of S1 was the GMO element Vip3a. This was the only target for which 

failure could not be explained, a problem may have occurred during the library preparation The last 

two targets (GTS40-3-2 and MON89034) had a low number of mapped reads (407 and 220) and a Cq 

value of 34 and 36 respectively, which is considered to be at the border of detection. The 0.1% positive 

control of these GMOs had a Cq value of 34 and 35, respectively. EU GMO regulations stipulate that 

food/feed products containing > 0.9%, per ingredient, need to be labelled as such 

(https://ec.europa.eu/food/plant/gmo/traceability_labelling_en). Moreover, a limited set of GMO 

events that are in the approval pipeline, but not yet authorised are allowed in feed products up to the 

level of 0.1% [277]. Considering these GMO labelling stipulations, the high Cq value combined with the 

low read count in the NGS analysis indicated that these targets were most likely below the given 

percentages. While in some cases NGS thus failed to detect low abundant targets, on the other hand, 

across the samples 23 targets were detected in NGS-based screening (above 0.01% threshold), but all 

these targets had a high Cq value above 36, or were not detected in all of the reactions in the qPCR 

analysis. These results highlight that a target with a low copy number can be either detected or not-

detected in the NGS-based screening, as in the qPCR screening strategy, which fits the occurrence of a 

subsampling effect. To reduce a subsampling effect in NGS-based screening it is therefore advocated to 

perform at least two NGS screenings on an individual sample as is the standard procedure in the qPCR 

approach.  

In the NGS-based screening, 12 unexplained targets were identified. Three targets were 

explained by the presence of GTS 40-3-2 and MON89034 in samples S3 and S5. These two GMOs targets 

were not detected in the NGS-based screening; in qPCR these two GMOs were detected with a Cq value 

above 35, which is at the border of detection. Another unexplained element P-ubi in S4 could be 

explained by the presence of Zea mays in this sample, which was confirmed in an additional hmg qPCR, 

also here, the HMG target was a false negative in the NGS screening. The remaining eight unexplained 

targets (S2: Cry1A(b), Cry2Ab2 and barstar, S3: P-SSuAra, S5: Tg7, Bar, P-TA29, and barstar) had read 

counts above the threshold. However, the corresponding Cq value for these targets in the qPCR 

screening was above 36 and the targets were not detected in all qPCR assays. This indicates a low 

presence of these targets in the samples and a related reduced chance of identification. This illustrates 

that NGS is not a quantitative method and while a positive identification in NGS is a reflection of the 

presence of a target, the read counts are probably not a reliable reflection of the abundance level of this 

target. An explanation for the presence of these unexplained targets could be traces of GMOs, or perhaps 

more likely, these targets may indicate the presence of the donor organism in trace amounts, below the 

limit of detection. For example, P-SSuAra, P-TA29, and barstar are targets obtained from the donor 

organism Arabidopsis thaliana, tobacco, and Bacillus amyloliquefaciens respectively. Any detected 

unexplained GMO-related target with an Cq value ≤ 35 may indicate the presence of an unknown or 

unauthorised GMO that was not included in the analysis, or for which no method is available yet. In 

cases were the Cq value ≤ 35, further analysis needs to be performed to explain the respective targets. 

Genome walking approaches coupled to NGS can be applied to identify the adjacent sequences in these 

cases [271,272]. The genome walking approach could help to determine the flanking region of the 

identified unexplained targets, which could eventually lead to identification of the UGMOs or donor 

https://ec.europa.eu/food/plant/gmo/traceability_labelling_en)
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organism. In this study, the wider screening including 96 targets, which was applied in the NGS 

approach, and basic screening, applied in two-step qPCR approach, were compared side by side in 

figure 6.5. Applying the wider screening strategy, 43 GMO related targets and GMOs (2 endogenous, 

19 elements 12 constructs and 10 GMOs) were additionally identified compared to the qPCR screening 

as highlighted in table 3. Especially, the identification of additional GMOs indicates the necessity of a 

more extensive screening in an NGS-based approach or in qPCR screening, as it is clear that the presence 

of some GMOs may mask the presence of others, and this may include also UGMOs.  

Currently, 411 GM crops from 28 plant species are authorised for their use as either food/feed 

or for cultivation (http://www.isaaa.org/gmapprovaldatabase/), which is a fourfold increase in the 

last decade [278] and more GMOs are in the pipeline for approval [45]. The steady increase in GMOs 

entering the consumer market raises traceability issues, as it will be necessary to continuously increase 

the number of screening elements, otherwise, the presence of (some) authorised GMOs may 

increasingly mask the presence of additional GMOs, that may include UGMOs. The present study 

underlined this effect as the basic screening resulted in the identification of numerous GMOs, yet the 

broader NGS screening showed that others were present as well, which had not been identified based 

on the current qPCR strategy. The NGS based screening approach has the potential to be more versatile 

and flexible: as the sequence information of amplicons will be the direct proof for the detection, there is 

no need for the validation of target-specific methods, and thus not for the related reference materials, 

as the respective amplicons can be confirmed by subsequent DNA sequence analysis. This is a major 

asset in the case of the detection of UGMOs, where generally no reference material will be available. 

Furthermore, the identified UGMO-related sequences can be used as starting point in a genome walking 

approach to obtain the adjacent sequence information necessary to identify the UGMO. The present 

study focused on the application in the field of the enforcement of current GMO legislation, but it is 

clear that the strategy may find wider application to screening complex products for the presence of 

ingredients or elements that may not be regarded as safe for human or animal consumers or the 

environment.  

6.5 Conclusions 

In this research, we developed a next generation sequencing (NGS)-based GMO screening approach, 

covering 96 GMO targets, and a data analysis pipeline to detect and identify GMOs in complex food or 

feed samples. Initially, we were able to generate 79 new GMO related amplicon reference sequences 

and added these to the public database EUginius. Then we compared the developed NGS-based GMO 

screening approach with the qPCR-based GMO screening, currently the golden standard in the area of 

GMO analysis. The comparison indicated that for highly abundant GMOs and targets both approaches 

had a similar level of sensitivity. However, for GMOs and targets present in low concentrations, the 

detection between the NGS-based screening and qPCR approach showed discrepancies. Furthermore, 

due to the extensive screening in the NGS-based strategy, more GMOs and related targets were 

identified compared to the standard qPCR screening. Additional targets identified urges for the 

importance of a wider screening strategy for GMO identification and detection. The current study 

proves the applicability of NGS as an accurate and reliable screening method for GMOs and its potential 

to improve current screening methods for, especially, the presence of unauthorised new plant varieties 

in complex food or feed samples.  

 

 

http://www.isaaa.org/gmapprovaldatabase/
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6.6 Additional files (available with the publication)  

Additional file 6A: Table A.1 GMO specific targets (endogenous, elements, constructs and events) that 

are analysed in the current approach. A detail information about the source of the reference material, 

primer name, sequence information of the forward and reverse primer and concentration of the primer 

and references are specified. Table A2 Individual and average number of Illumina Hiseq reads, Number 

and percentage of QC pseudo-reads, primer selected pseudo-reads and mapped pseudo-reads to 

references are generated per sample. Table A3 Reference sequences obtained from public databases. 

Table A4 Targets tested and identified in the two-step qPCR GMO screening. Figure A1 Comparison 

of amplification efficiency between two different master mixes. PCR amplicons that were generated 

from 3 samples (2 feed samples and positive control) with four targets (hmg, p35S, tNOS and Cry1AB/Ac) 

using two different master mix (Diagenode and HotStar Taq). The feed sample and positive control is 

represented by lane 1 2 and 3. Lane 4 and M represent the negative control and 10 bp DNA ladder. 

Figure A2 Image of the PCR amplicons that were generated from positive control with 96 targets. P-

MFV(2) amplicon was not loaded in the gel. Lane 1-96 represent an unique target and name of the targets 

are presented in the table below, 10 bp and 100 bp DNA ladder are represented as M1 and M. Figure 

A3 The identified targets (endogenous, constructs and elements) in a samples that are associated with 

detected GMOs. The targets in green are the identified targets that can be associated with detected 

GMOs, the target in red represent that the target is not detected. The target detected in NGS and cannot 

be associated with the detected GMOs are presented in the remarks.  

Additional file 6B: Table B1 Analysed GMO endogenous, GMO source, method name and reference 

sequence. Table B2 Analysed GMO elements, GMO source, and method name and reference 

sequence. Table B3 Analysed GMO constructs, GMO source, method name and reference sequence. 

Table B4 Analysed GMO events, GMO source, and method name and reference sequence. 

Additional file 6C: Table C1 Targets identified in sample 1 with qPCR and NGS analysis. Table C2 

Targets identified in sample 2 with qPCR and NGS analysis. Table C3 Targets identified in sample 3 

with qPCR and NGS analysis. Table C4 Targets identified in sample 4 with qPCR and NGS analysis. 

Table C5 Targets identified in sample 5 with qPCR and NGS analysis. Table C6 Targets identified in 

positive control with NGS analysis.  

Additional file 6D: Table D1 Targets identified in the NGS and qPCR across the samples 
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Chapter 7 

 

 
ALF: a strategy for identification of unauthorised GMOs in 
complex mixtures by a GW-NGS method and dedicated 
bioinformatics analysis 
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Costessi A, Žel J, Kok EJ, van Dijk JP. “ALF: a strategy for identification of unauthorised GMOs in complex 

mixtures by a GW-NGS method and dedicated bioinformatics analysis”. Scientific Report 2017; 7(1): 14155.  
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Abstract 

 

The majority of feed products in industrialised countries contains materials derived from genetically 

modified organisms (GMOs). In parallel, the number of reports of unauthorised GMOs (UGMOs) is 

gradually increasing. There is a lack of specific detection methods for UGMOs, due to the absence of 

detailed sequence information and reference materials. In this research, an adapted genome walking 

approach was developed, called ALF: Amplification of Linearly-enriched Fragments. Coupling of ALF 

to NGS aims for simultaneous detection and identification of all GMOs, including UGMOs, in one 

sample, in a single analysis. The ALF approach was assessed on a mixture made of DNA extracts from 

four reference materials, in an uneven distribution, mimicking a real life situation. The complete insert 

and genomic flanking regions were known for three of the included GMO events, while for MON15985 

only partial sequence information was available. Combined with a known organisation of elements, this 

GMO served as a model for a UGMO. We successfully identified sequences matching with this 

organisation of elements serving as proof of principle for ALF as new UGMO detection strategy. 

Additionally, this study provides a first outline of an automated, web-based analysis pipeline for 

identification of UGMOs containing known GM elements. 

 

 

Keywords: GMOs, UGMOs, genome walking approach, NGS  
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7.1 Introduction  

 

Nowadays, the vast majority of feed products in industrialised countries contain materials that are 

derived from genetically modified organisms (GMOs). For food products the situation is still very 

different, primarily due to the lack of public acceptance in some countries and amongst specific groups 

of consumers, but here also a slow trend can be observed of increased use of products derived from 

GMOs. From the Food and Agriculture Organization of the United Nations (FAO) report of 2014 [279], 

it can furthermore be seen that the number of incidents with unauthorised GMOs (UGMOs) is gradually 

increasing. The reported incidents related primarily to identified UGMOs, that had received market 

approval in other countries. However, in a growing number of cases the incidents related to unknown 

UGMOs where the mere combination of the crop at hand and the detected GMO elements were deemed 

sufficient to take action. It should be stressed that so far no genetically modified (GM) crops have been 

identified to have adverse effects on humans, animals or the environment [280,281]. Nevertheless, in 

the light of the rapidly expanding diversity of GMOs in experimental settings, it seems prudent to have 

the methodologies in place to detect and identify UGMOs, including the as yet unknown ones. There is 

a general lack of specific detection methods for UGMOs, usually due to the absence of detailed sequence 

information and reference materials. 

 In recent years, a number of strategies have been developed that focus on the detection of 

UGMOs. The strategy generally used is based on the screening of samples for a range of GMO elements. 

Subsequently, the presence of the observed elements is compared with the confirmed presence of 

authorised GMOs or known UGMOs in the same sample. A mismatch between observed elements and 

observed GMOs indicates the potential presence of a UGMO. Clearly, only GMOs for which adequate 

methods for identification are available [19,186,217,233,282-289] can be taken into account here. 

Additional analyses are necessary to determine whether the identified GMO element is indeed linked 

to an unknown, unauthorised GMO, or rather to, for instance, the native organism of the element. 

Therefore, in these cases, additional experiments will be required, that are currently usually based on 

variants of gene walking (GW) strategies where the unexplained elements can be used as a starting 

point for GW to obtain adjacent sequence information. This sequence information could lead to the 

identification of a specific UGMO, especially when the sequence information stretches into the flanking 

genomic region of the GMO insert. This information can ultimately, if deemed necessary, be used to 

develop a specific method for the identified UGMO. 

 In the last two decades several GW approaches have been developed and modified for 

application in the GMO field. Examples are Long template-Rapid Amplification of Genomic DNA Ends 

(LT-RADE) [228,251], SiteFinding-PCR [219,290], APAgene GOLD Genome Walking Kit [254,271,291], 

A-T linker adapter PCR [232], Randomly broken fragment PCR (RBF-PCR) [231], Locus-finding PCR 

(LF PCR) [230] and Loop-linker PCR [292] recently reviewed in Arulandhu et al. [23]. Most of the 

approaches have been initially evaluated in a pure GMO sample. The APAgene GOLD Genome 

Walking Kit [254,271,291] was also tested in low GM percentages in combination with fragment cloning 

and Sanger sequencing [254,291]. Only very recently this method was also succesfully applied in 

combination with NGS and more complex GMO mixtures [271].  

 Any enrichment approach applied to a mixed sample may yield a mixture of sequences, because 

even a single common element may have several adjacent sequences, from different GMOs in the 

mixture. Next Generation Sequencing (NGS) is ideally suited for sequencing all amplified fragments in 

a mixture. In the development of a new GW approach we chose the PacBio RSII as NGS platform, as 

long reads of single molecules minimize the chance of artefacts, frequently referred to as chimeric 
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sequences, due to incorrect assembly of short sequence reads [219]. Target molecules can be sequenced 

multiple times or ‘passes’, as hairpin adaptors are ligated to both ends, creating a circular DNA 

molecule, serving as a polymerase template without an end. The initial output is a polymerase read 

with multiple copies of the target sequence interspaced by adaptor sequences. When such a subread is 

present at least four times, a consensus sequence is made after removing the adaptor sequences. This is 

the circular consensus sequence (CCS) output of the PacBio RS II [293] (Additional file 7A; Figure S1). 

With 80-85% accuracy [294], subreads have a relatively high error rate[294-297]. As the errors are 

random, with the error pattern of 10% insertions and 5% deletions[296], the accuracy of the CCS read is 

higher than that of the subread, and it increases with the number of subreads. SiteFinding-PCR 

[219,290], and APAgene GOLD Genome Walking Kit [271], are the only enrichment approaches that 

have been published in combination with NGS analysis to detect and identify GMOs/UGMOs. 

However, given the random start and two nested PCRs of SiteFinding-PCR, and two semi nested PCRs 

and the use of DRT primers in APAgene GOLD Genome Walking Kit, these approaches might be 

sensitive to contamination. Therefore, we adapted the LT-RADE method with a biotinylation primer 

mediated clean-up prior to PCR and only one round of PCR. Coupling this approach to NGS should 

allow for simultaneous detection and identification of all GMOs in a sample, including UGMOs, in a 

single analysis.  

 In this research, an adapted GW approach was developed, hence referred to as Amplification 

of Linearly-enriched Fragments (ALF), encompassing the advantages of the available methods, 

particularly the rapid amplification of cDNA ends (RACE)[298] approach and the use of biotinylated 

primers. The efficacy of the ALF approach was assessed on a complex mixture consisting of four GMOs: 

maize MON810, MON89034, MON88017 and cotton MON15985, using the GMO elements p35S 

promoter and tNOS terminator as starting-points for the elongation. After amplification of the elongated 

fragments, all obtained fragments were sequenced using the PacBio RSII platform. The complete insert 

and genomic flanking regions were known for the first three GM maize events, while for the MON15985 

only partial sequence information was available; combined with a known organisation of elements, this 

GMO served as a model for a UGMO in this set-up. In the present study, the ALF approach is presented 

and applied on the mixture of all four GMOs. The first outline of an automated, web-based analysis 

pipeline for identification of UGMOs containing known GM elements was set, and the results of the 

new strategy are evaluated in the light of the necessity to have adequate methodology in place to 

identify GMOs for which limited information is available. 

 

7.2 Results  

 

7.2.1 Amplification of Linearly-enriched Fragments (ALF) 

A protocol was developed for the identification of unknown GMO-related sequences starting from 

known GMO elements, called ALF: Amplification of Linearly-enriched Fragments (Figure 7.1).The 

success of the ALF protocol was determined both in terms of quantity and length of the molecules of 

interest. In the reference materials used, upstream and downstream GMO elements were known. By 

performing qPCR analysis prior to, and at different steps of the procedure, relative increase in target 

fragments was estimated. 
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Figure 7.1 Schematic overview of the ALF procedure. The procedure yields dsDNA molecules after initial primer 
elongation, of various length, the longest of which will pass a construct-genome boundary (star), leading to GMO 
identification. 

 

Targets for the qPCR analysis were chosen at various distances from the start of the LE (Figure 

7.2). To increase the reliability of the quantification outcomes, Joint Research Centre (JRC)-validated 

qPCR methods were used in combination with certified reference material for >99.05% MON88107. 

qPCRs were performed before the procedure in the starting material (SM), after LE, and after snPCR. 

Apart from the qPCRs targeting the GM elements of interest, also the abundance of the maize 

endogenous high mobility group (hmg) gene was evaluated with qPCR, to monitor the removal of 

genomic DNA (Figure 7.3). After the LE step, a slight increase was observed for targets of interest, more 

prominently for targets closer to the starting point of LE. As expected, the genomic DNA amount was 

very similar before and after LE. After snPCR, a large increase in targets of interest was observed, again 

more prominent for target sequences close to the LE start, indicating a size-dependent enrichment. Loss 

of gDNA beyond detection was observed for all targets after the snPCR step (Figure 7.3). 

 

 

 

Figure 7.2 Distances of several qPCR targets from the enrichment starting points in the MON88107 GMO, used for 
evaluation of the ALF protocol. The light grey boxes indicate the different elements in the GMO. The upper and 
lower line indicate the enrichment for tNOS (upper) and p35S (lower), 0 indicates the starting points of enrichment 
and arrows indicate the direction of enrichment (upstream or downstream). The dark grey boxes indicate qPCR 
targets used for evaluation of the ALF protocol and distance of the qPCR targets from the starting points.  

 

The relative amount of the different targets was expressed as the relative Cq value and 

calculated by subtracting the Cq after LE or snPCR from the Cq of the starting material. The largest 

increase in relative Cq was observed for GW starting from tNOS in the upstream direction, for the 

element closest to the LE start, Cp4-epsps (Figure 7.3, panel B). The fold change for the different targets 
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upstream of tNOS was estimated using a ΔCq approach, assuming a qPCR efficiency of 2. The Cq for 

the Cp4-epsps element, 303 nt upstream of the tNOS LE primer, was 30.3 in the starting material. During 

development of the method, we found it to be necessary to dilute the snPCR material 100-fold prior to 

qPCR evaluation, in order to obtain Cq values higher than five. Even in the diluted snPCR material the 

Cq value for the Cp4-epsps element was as low as 9.6. This was converted to the theoretical value of 

2.96, by subtracting the 6.64 cycles from this Cq value, corresponding to a 100-fold dilution. The ALF 

related ΔCq for the Cp4-epsps element was therefore calculated to be 27.3 cycles, indicating an estimated 

increase of 165 million-fold of fragments at least 303 nt long. A fraction of these molecules was at least 

1609 nt long, evidenced by the increase in relative Cq value for the Ctp2-cp4epsps element, located 1609 

nt upstream of the tNOS LE primer. This fraction was estimated to be enriched 30 thousand fold. 

Likewise, a subfraction of these fragments was at least 1922 nt long, based on relative rAct1 Cq increase. 

This fraction was estimated to be enriched 3.5 thousand fold. 

 

 
Figure 7.3 Length-dependent increase of specific targets and loss of genomic background shown with qPCR. In all 
cases the amplicon closest to the element targeted for linear enrichment showed the highest increase in signal, 
expressed as the relative Cq value and calculated by subtracting the Cq after LE (dark bars) or snPCR (light bars) 
from the Cq of the starting material. This means the relative Cq value for each starting point is zero. Panel A: 
Enrichment for tNOS downstream. B. Enrichment for tNOS upstream. C. Enrichment for p35S downstream. D. 
Enrichment for p35S upstream. In all panels, the dashed bars for HMG indicate a reduction beyond detection. 

 

7.2.2 PacBio sequencing of a GMO mixture after ALF 

A DNA-based mixture was made using DNA extracts from four reference materials, in an uneven 

distribution, mimicking a real life situation, where one or several GMOs may be present in a much lower 

concentration than others in the same mixed sample. DNA of MON810 from a co-existence field trial 

[299] was used as the most abundant GMO and was present in 97%. Of the other three GMO DNA 

isolations, 1% relative weight was added for each (Table 7.1). Two maize lines were used, MON89034 

and MON88017, and one cotton line, MON15985. This mixture was subjected to the ALF protocol in 

four separate reactions for the different elements and directions: the p35S promoter and the tNOS 

terminator, both in upstream and downstream direction. The reactions were pooled and sequenced on 

the PacBio RSII platform. The results of sequencing were 411 CCS reads (length distribution is shown 

in Additional file 7A; Figure S2). 
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Table 7.1 Details of reference materials [300]. 

GMO Content 

in 

mixture 

(%) 

Estimated 

copy 

number 

 Supplier Code Description Element 

order* 

Donor organism 

MON810 97 ~40.000  Field trial 

[299] 

In-house 50% 

MON810, 

 ground 

corn 

P-e35S Cauliflower mosaic virus 

  I-hsp70 Zea mays 

  CS-cry1Ab Bacillus thuringiensis 

MON89034 1 ~400  AOCS 0906-E >99.42% 

MON89034, 

ground corn 

V-LB Agrobacterium tumefaciens 

  P-e35S Cauliflower mosaic virus 

  L-cab Triticum aestivum 

  I-1_act1 Oryza sativa 

  CS-cry1A_105 Synthetic 

  T-hsp17_3 Triticum aestivum 

  P-FMV Figwort mosaic virus 

  I-hsp70 Zea mays 

  I-1_rbcS Zea mays 

  CS-cry2Ab2 Bacillus thuringiensis ssp. Kurstaki 

  T-nos Agrobacterium tumefaciens 

  V-RB Agrobacterium tumefaciens 

MON88017 1 ~400  AOCS 0406-D >99.05% 

MON88017, 

ground corn 

P-act1 Oryza sativa 

  I-1_act1 Oryza sativa 

  TP-ctp Arabidopsis thaliana 

  CS-CP4epsps Agrobacterium tumefaciens ssp. CP4 

  T-nos Agrobacterium tumefaciens 

  P-e35S Cauliflower mosaic virus 

  L-cab Triticum aestivum 

  I-1_act1 Oryza sativa 

  CS-cry3Bb1 Bacillus thuringiensis ssp. Kumamotoensis 

  T-hsp17_3 Triticum aestivum 

MON15985 1 ~400  AOCS 0804-D >98.45 % 

Bollgard II 

cotton, 

ground 

cotton seed 

P-e35S Cauliflower mosaic virus 

  L-hsp70 Petunia hybrida 

  TP-ctp Arabidopsis thaliana 

  CS-cry2Ab2 Bacillus thuringiensis ssp. Kurstaki 

  T-nos Agrobacterium tumefaciens 

  P-e35S Cauliflower mosaic virus 

  CS-cry1Ac Bacillus thuringiensis ssp. Kurstaki 

  T-7Salpha Glycine max 

  P-35S Cauliflower mosaic virus 

  CS-nptII Escherichia coli 

  T-nos Agrobacterium tumefaciens 

  P-e35S Cauliflower mosaic virus 

  CS-uidA Escherichia coli 

  T-nos Agrobacterium tumefaciens 

  CS-aadA Escherichia coli 

*Initial capital characters: P = promoter, I = intron, CS =coding sequence, V = vector, LB = left border, L = leader, T = 

terminator, RB = right border, TP = transit peptide. 

 

7.2.3 Sequence analysis: database construction  

To analyse the CCS reads gained after PacBio RSII sequencing three databases were constructed: an 

event, a Constructs-And-Flanks (CAF) and an element database. The event database (Additional file 7A; 

Data S1) consisted of the most likely amplicon sequences of the event specific qPCR methods used for 
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quantification of events (MON810, MON88017, MON89034 and MON15985) in the sample. Sequences 

of primers and probes, together with the number of unknown nucleotides between them, were taken 

from the EU Database of Reference Methods for GMO Analysis (GMOMETHOD) (http://gmo-

crl.jrc.ec.europa.eu/gmomethods/) and from the method validation reports [301-304]. These sequences were 

queried against the NCBI patent database (Table 7.2). After inspection, the top hit for each of them was 

added to the event database.  

 

Table 7.2 Event database sequences and corresponding NCBI accession numbers. 

GM event Event sequences 

Best hit 

accession 

number 

MON810 
TCGAAGGACGAAGGACTCTAACGTTTAACATCCTTTGCCATTGCCCA

GCTATCTGTCACTTTATTGTGAAGATAGTGGAAAAGGAAGGTGGC* 
AR490568 

MON89034 
TTCTCCATATTGACCATCATACTCATTGCATCCCCGGAAATTATGTTT

TTTTAAAAACCACGGTATTATAGATACCG 
FV532179 

MON88017 

GAGCAGGACCTGCAGAAGCTAGCTTGATGGGGATCAGATTGTCGTTT

CCCGCCTTCAGTTTAAACAGAGTCGGGTTTGGATGGTCAACTCCGGC

A 

DJ058152 / 

DJ058151  

MON15985 
GTTACTAGATCGGGGATATCCCCGGGGCGGCCGCTCTAGAACTAGT

GGATCTGCACTGAAATCCCATCCATTTAGCAACCTT 
EA135634 

* nucleotides in italics denote the string of unknown nucleotides between primer and probe sequences in the search template. 

 

The CAF database consisted of the available construct sequences and flanking plant genomic 

regions of individual events in the sample (Additional file 7A; Data S2). In case of MON15985 only 

partial 3’ and 5’ insert sequences with corresponding flanking genomic sequences were available. For 

MON810 two reference sequences were available: sequence JQ406879, covering the 5’ flank and the p35S 

promoter, and AY326434, covering the insert from the p35S promoter onwards to the 3’ flank. These 

sequences showed a 75-nucleotide overlap. In the initial workflow both sequences were in the CAF 

database, but the merged MON810 sequence of JQ406879 and AY326434, named RIKILT20151130, was 

used in the final workflow (Additional file 7A; Data S2).  

 The third, element database, consisted of element sequences present in the experimental 

mixture. All element sequences from individual lines were gathered. For MON810, MON89034 and 

MON88017 complete reference sequences were already known and annotated. These reference 

sequences were divided in elements based on their annotation, for which a General Feature Format 

(GFF) file was constructed (Additional file 7A; Data S3). For MON15985, for which only the order of 

elements was known, generic sequences for these elements were taken from the NCBI patent database. 

Initially, this database contained all element sequences (Additional file 7A; Data S4). To reduce 

redundancy, the final version contained only the longest sequence of elements with several entries in 

the first version (Additional file 7A; Data S5). All designed databases were transformed into BLAST+ 

databases [305] and imported into the open, web-based analysis platform Galaxy [167]. 

 

7.2.4 Building the workflow for GMO sequence identification 

The workflow for GMO sequence identification in the samples was constructed in Galaxy to answer the 

following questions: (1) is there any potential evidence for UGMOs, (2) can known GMOs be identified 

and (3) can a list of potential GMOs be prepared. Considering these questions, a workflow with six main 

steps was constructed (Figure 7.4 and Additional file 7A; Figure S3).  

http://gmo-crl.jrc.ec.europa.eu/gmomethods/
http://gmo-crl.jrc.ec.europa.eu/gmomethods/


131 
 

 

 

 

 

 

Figure 7.4 Schematic overview of the data analysis workflow. CCS reads are first processed to reduce noise and 
redundancy. Representative reads are then grouped in relevant bins based on homology with sequences in different 
databases, using blast. In the results, reads likely to be related to MON15985 are marked in red as this authorised 
GMO with incomplete sequence information served as a model UGMO in this study. 
 

Step 1 consisted of a trimming and length selection; removing artificial sequences from the CCS 

reads and subsequently discarding short reads. The poly-dC tail and AAP adaptor sequences were 

removed and a length filtering was applied at >50 nt. All 411 CCS reads were used as the workflow 

input, a total of 401 reads proceeded to step 2. 

 Step 2 was selection of reads containing an enrichment primer, i.e. the nested tNOS and p35S 

LE primers, to make sure only specific sequences were kept. A total of 383 sequences passed the LE 

primer filtering; 368 were enriched for the p35S and 15 for the tNOS.  

 Step 3 was a clustering, using UPARSE [306], of CCS reads to further reduce the number of 

sequences. A three-step clustering approach was used. In this approach, sequences were dereplicated, 

sorted by abundance and clustered. Due to the nature of PacBio sequencing a CCS read either starts or 

ends with the enrichment target element, in this case the tNOS or p35S. An additional step of reverse 

complementing was applied to all the reads containing the enrichment target element on the 3’ end 

before dereplication, since the clustering algorithm aligned sequences only in plus/plus manner. With 

a minimum cluster identity, also termed cluster radius, of 0.97, 383 CCS reads were clustered in 16 

clusters. For each cluster, the longest CCS read was used as the representative sequence, and termed 

cluster representative CCS read (crCCS read).  

 Step 4 was a Megablast of the crCCS read against the event database. Seven of the 16 crCCS 

reads showed a match to a sequence in the database with an identity of 95% or higher and a minimum 
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coverage of 97%. The main characteristic of these reads was that they included a confirmed event, and 

were not analysed further. The nine remaining crCCS reads were further processed in step 5.  

 Step 5 was a Megablast of the remaining crCCS reads against the CAF database. Two out of 

nine crCCS reads aligned completely to a CAF database sequence, i.e. full query coverage, and were 

annotated using the intersect interval tool (part of BEDtools [307]). The main characteristic of these 

annotated crCCS reads was the establishment that they contained only known information.  

 Step 6 was a Megablast of the remaining seven crCCS reads against the element database, 

aiming at identification of reads that contain both known and unknown sequence, as is expected for 

UGMOs. The crCCS reads were divided into two bins, also based on their main characteristic, either 

containing unknown parts, or containing only unknown information. The reads containing unknown parts 

also contained homologies to known elements, by the definition of this workflow. The Blast output of 

these reads against the element database was sorted in a way that the top hit was the one with the 

longest sequence alignment. The alignments with different elements were ordered according to their 

position in the CCS read, from 5’ to 3’. All four output bins, confirmed events, only known information, 

unknown parts, and only unknown information were imported in an excel template, constructed to give a 

user-friendly output (Additional file 7B; spreadsheet 1). 

 

7.2.5 Connecting sequences with the experimental set-up 

Relating to the three main questions (1) is there any potential evidence for UGMOs, (2) can known 

GMOs be identified and (3) can a list of potential GMOs be prepared, the crCCS reads in the unknown 

parts bin were the most informative for the first question (Figure 7.4 and Additional file 7A; Figure S3). 

The four crCCS reads in that bin showed three different element orders. One was tNOS – nnn - NPT II 

– nnn - p35S, present in two crCCS reads in both orientations, where nnn denotes an unknown sequence. 

This element order was consistent with that of the MON15985 parental line MON531. The second order 

was p35S – nnn – tNOS – nnn – UidA, consistent with the order in the retransformation construct of 

MON15985 (Figure 7.5 and Additional file 7A; Data S6). Sequences with these two element orders were 

previously not linked to any MON15985 designated sequence in a public database. The third element 

order was p35S – nnn - hsp70 - cry1ab, corresponding to MON810. The gap between the p35S and HSP70 

was 16 nucleotides, and was the result of an incomplete alignment with the p35S element reference 

sequence.  

 

 
Figure 7.5 Two partial sequences of the MON531 and MON15985 inserts. Panel A shows the alignment of crCCS 
reads 133951 and 45207 to the insert and flanking region of MON531, with the position of enrichment primer 
(downstream NOS terminator). Panel B shows the alignment of and crCCS read 156962 to the insert and flanking 
region of MON15985, and the enrichment primer (upstream 35S promotor). Both sequences cover a previously 
unknown insert sequence. 
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 In addition to the four crCCS reads in the unknown parts bin, three crCCS reads (120091, 43434, 

and 106520) ended up in the only unknown information bin (Figure 7.4). To find the origin of these reads 

an NCBI Blastn, against nucleotide database, and a Megablast and a Blastn against NCBI patent 

database were run. For read 120091 a 99% identity and a 98% CCS read coverage against maize genotype 

CMS-S mitochondrion (DQ490951) was observed. For read 106520 top hits were nucleotide sequences and 

polypeptides encoded thereby useful for modifying plant characteristics (GP689587) and long intergenic 

noncoding RNAs in maize (JC761506). A total of 76% of the read was covered. For read 43434 the top hits 

were described as a composition and method for therapy and diagnosis of ovarian cancer (DL059073), with 

90% identity and query coverage of 60% (Additional file 7A; Table S4).  

 The confirmed events bin, as the result of step 4, provided the answer to question (2) on 

identification of known GMOs. In order for a crCCS read to be acknowledged as containing a confirmed 

event, a 97% minimal coverage of the event sequence in the database was required, with at least 95% 

identity (Table 7.3). All seven reads that fulfilled the criteria of step 4 originated from MON810 (Figure 

7.4). In one of these, the read aligned to the same database event sequence twice, both with a 100% 

identity match. After closer investigation, the CCS read turned out to contain a complete repetition of 

one sequence; an AAP primer with a poly G tail prior to a 5’ MON810 flanking region followed by a 

p35S promoter sequence. The sequence was kept in the identified GMOs.  

 In step 5, a bin was made for the fully annotated CCS reads, containing only known information. 

In this step the answers to the question (3) on the list of potential GMOs were found. An indication of 

MON88017 and MON810 was observed (Figure 7.4). Two crCCS reads completely aligned with a 

database sequence, the first CCS read had the element order of p35S - hsp70 - cry1ab, present only in 

MON88017 and the second cp4epsps – tNOS – 35S present only in MON810, considering the GMOs used 

in this experiment.  

 

Table 7.3 Results of NCBI BLAST+ against the event database.  

crCCS 

read 

Identified 

GMO 

% of 

identical 

match 

Alignment 

length 

Length of 

db 

sequence 

Alignment 

length in 

% 

33879 MON810 100.00 92 92 100 

40876 MON810 95.65 92 92 100 

78816 MON810 98.92 93 92 101 

119658 MON810 96.81 94 92 102 

128024 MON810 100.00 92 92 100 

132414 MON810 96.74 92 92 100 

158734* MON810 100.00 92 92 100 

158734* MON810 100.00 92 92 100 

*CCS read 158734 showed two perfect alignments with the database sequence. 

 

7.2.6 The merged MON810 reference sequence  

The merged MON810 read RIKILT20151130 (deposited at The European GMO reference database - 

Euginious http://www.euginius.eu/euginius/pages/sequence_string.jsf?sequence=4165286415439512999) that 

comprised of sequences JQ406879 and AY326434 was compared to the CCS reads. Bowtie2 [308] 

mapping with default settings of the CCS reads was performed using very sensitive local alignment 

(Additional file 7A; Figure S4). The CCS reads were first filtered by quality, only those that had a quality 

score of 33 or more over at least 90% of the sequence were accepted. Out of the initial 411 CCS reads, 

http://www.euginius.eu/euginius/pages/sequence_string.jsf?sequence=4165286415439512999
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165 filtered sequences aligned to this reference. A total of 133 CCS reads covered the overlap between 

sequences JQ406879 and AY326434, confirming the trueness of the new, merged MON810 reference 

sequence. 

7.3 Discussion 

The main goal of this study was to develop a protocol for identification of UGMOs in a complex mixture. 

The new approach was successful in its aim, and a proof of principle was found by identifying 

previously unknown sequences corresponding to the element order in a GMO. 

 The adapted GW approach, ALF, aimed to enrich the adjacent regions of the target prior to 

sequencing. Enrichment decreased the required sequencing depth and cost, as well as the data analysis 

time and cost. A new combination of GW steps was conceived and tested. Two common approaches 

were combined: gDNA reduction and the RACE/LT-RADE principle of tailing and semi-universal PCR. 

Biotinylation of the enrichment primer was used for background reduction. Since genomic DNA 

background was already reduced beyond detection, we decided against the use of a nested PCR 

approach. The semi-nested PCR in this paper is actually a first round of PCR. It is called semi-nested 

because one of the primers is nested, i.e. slightly downstream of the primer used in the LE step. PCR in 

general, and nested PCR in particular, is prone to contamination. For most diagnostic laboratories, the 

use of nested PCR is something to be avoided, especially in case of many repetitive tests. A 

contamination of a GMO testing laboratory with especially common GM elements would severely 

compromise an efficient GMO screening using the matrix approach. Target-specific LE primes as well 

as the nested primers of the snPCR were designed on the basis of the available qPCR primer-probe 

sequences for the targeted GMO elements, in our case p35S promoter and tNOS terminator. Primer and 

probe sequences of an unexplained GMO element test might be the only basis for finding related 

sequences, in case of looking for unknown GMOs as the result of a GMO matrix approach outcome. 

Therefore, the primer and probe sequences are a logical starting point for enrichment. 

 The high quality of the CCS reads warranted the omission of an extra quality check at the 

beginning of the analysis pipeline. This is important, as the library preparation requires a high amount 

of DNA, with low CCS read counts resulting from a lower DNA input. In this experiment, 411 CCS 

reads were generated despite a high amplification of relevant molecules in the ALF protocol. A 

clustering step was added to the workflow to further reduce the number of redundant CCS reads. To 

make sure no information is lost during clustering, a workflow omitting this step was tested, and it 

showed no extra information. The largest decrease in redundancy was observed in the confirmed event 

bin, where the decrease of sequences was more than 97% (295 vs 7 sequences). However, the main 

difference influencing the time of further analysis was observed in the only known information and 

unknown parts bins, where the number of sequences was decreased more than 92%; 28 vs 2 sequences 

after clustering in the only known information bin and 53 vs 3 sequences in the unknown parts bin. To 

reduce the time for clustering, a length filtering set at 50 nucleotides was applied in the very first step 

of the workflow. Reads of this length are not informative, as the shortest transgenic element in our 

element database is 60 base pairs.  

 The experimental sample was composed of known GMOs in different quantities: MON810 

maize– 97%, MON89034 maize– 1%, MON88017 maize– 1%, and MON15985 cotton– 1%, or expressed 

in estimated copy numbers: the MON810: ~40.000 estimated copies, and the other three: ~400 copy 

numbers. This approach is somewhat different from the approach taken by Fraiture et al 2017 [21]. They 

used lower copy numbers (20 in their lowest mixtures), but in equal amounts, for three GMOs. Both 

situations may actually occur in real samples that may be contaminated by UGMOs. For three GMOs 
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the complete insertion sequence including the corresponding flanking genomic sequence was known. 

For one GMO, MON15985 cotton, only the element order and partial 5’ and 3’ insert sequences with 

corresponding flanking genomic sequence were available. Furthermore, MON15985 is a 

retransformation of another GMO cotton, MON531. The MON531 sequence was also unknown, with 

the exception of the element order. Therefore, MON15895 mimicked a UGMO in this experimental set-

up. 

 The results can be looked at from two different perspectives. The first is whether or not the 

workflow enabled identification of UGMOs. The second is whether or not all the input sequences were 

detected. The transgenic cotton mimicked a UGMO, as explained above. Element orders corresponding 

to MON15985, to both constructs, were found in the unknown parts bin. By finding these two sequences, 

it was shown that a UGMO containing a known element can be identified. The sequences as such were 

not before specifically annotated to be part of the MON19585 and MON531 constructs. Event-specific 

sequences for either event were not found. The MON15985 event-specific test is at 3’ end of the insert. 

We therefore expected MON15985 in the confirmed events bin, through reads starting from tNOS in 

downstream direction. However, the tNOS enrichment was less successful than p35S enrichment. Out 

of 383 sequences, 368 were enriched starting from p35S and only 15 from tNOS, and upstream 

enrichment was in both cases seven times more successful than downstream. This is indeed a striking 

difference, and seemingly in conflict with the observation in the qPCR evaluation. Potential 

explanations would be variability in the procedure and or the samples, as the NGS sample (mixture of 

GMOs) was different from the qPCR evaluated sample (single GMO), or, some kind of bias in the library 

preparation/sequencing run. Noteworthy, Fraiture et al also found a large variation in numbers of reads 

related to the different starting points and directions they used for GW[21].Of the 16 CCS reads, two 

were tNOS enriched, one upstream and one downstream. The one downstream was indicative of the 

MON15985 GMO, via the tNOS-nnn-NTPII-p35S sequence present in the MON531 construct of 

MON15985 (Figure 7.5). 

 From the other perspective, finding back the input transgenes was partially successful. Out of 

the 16 crCCS reads, 13 could be unequivocally linked to one of the four input sequences, MON810, 

through reads starting from p35S in upstream direction (Figure 7.4). We could not find back event-

specific sequences for MON89034 and MON19585 since the event-specific tests are at 3’ end of insert, 

and tNOS reads were much less abundant than p35S ones. Still, there was sequence evidence linked to 

the presence of MON88017 and MON15985, the latter one is discussed above. For MON88017, a partial 

insert sequence covering cp4epsps, the tNOS and the p35S was found. This clearly indicated the 

presence of MON88017, as no other transgenic line contained this sequence in this experiment. The 

MON88017 event-specific sequence was actually not expected to be found in the dataset, as both p35S 

and tNOS are present in the middle of the inserted sequence and in order to reach the point of insertion 

the upstream or downstream enrichments should cover ~3.5 kb. The longest CCS read was 

approximately 2.5 kb. Without detection of the point of insertion, the presence of MON88017 and 

MON15985 cannot be asserted with the same certainty as the presence of MON810. Some other 

transgenic lines containing the same element order could have been present in the reference material 

used for sample preparation. As a matter of fact, the nptII cassette with the CDS flanked by a p35S and 

tNOS is found in several GMOs, e.g. MON87460 and MON863 maize, and MON757 and MON1698 

cotton.  

 Finding back specific sequences depends on the databases used. Elements are the building 

blocks of a transgenic sequences. Elements with the same function, the p35S for instance, do not always 

have the same sequence length in all transgenic lines. This makes building of an element database more 
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difficult and the database larger than desired. For this reason, a local database was built containing only 

the longest sequence for each element. The drawback of such a database is that although element 

sequences are very similar they are not identical. This needs to be considered when interpreting the 

results. A 75% coverage of a p35S does not necessarily mean that there is an incompletely explained 

read with a gap between elements: it could be that this certain promoter sequence is not completely 

identical to the one in the transgenic line. Such was the case for the crCCS read with the event sequence 

p35S – nnn - hsp70 - cry1ab, where a 16 nucleotide gap was found between 35S promoter and HSP70. 

This sequence was placed in the unknown parts bin, where potential UGMOs are expected, although 

further investigation of this read showed that it belonged to MON810. Such a bias might be resolved by 

addition of all versions of a particular sequence to the database and considering the bit score of the hits 

after BLAST analysis. Implementing the ‘filter and sort’ tool in Galaxy would allow this, and this 

addition is recommended for future use of this pipeline. Another database challenge lies in element 

sequences not always being annotated in the same manner in all database entries. For instance, there is 

a possibility that a part of a plasmid used in the process of transformation can be included into the 

element annotation in some database entries and not in others.  

 The identification of three crCCS reads without any known GMO homology was not expected. 

All three reads contained at least partial enrichment primer sequences at 5’ or 3’ end, and therefore 

passed through the enrichment primer filter, pointing to an unspecific binding of enrichment primers 

to a sequence other than p35S or tNOS. In case of crCCS reads 120091 and 43434 the sequences can be 

explained as maize mitochondrion and a non-plant sequence, respectively. For crCCS read 106520, 

however, NCBI patent database Blast identified this sequence as part of patents US756989 and 

WO2014036048A1, sequences accession number GP69587 and JC61506, respectively, with the field of 

invention for both patents described as related to methods altering gene expression (Additional file 7A; 

Table S4). While the crCCS read contained only the p35S enrichment primer and not the p35S promoter 

sequence, there is still a possibility that this sequences could be left over from the genomic 

transformation. In the current version of the element database we only included the known elements of 

the GMOs in the study, and actually left out the elements known to be present in the mimic-UGMO, 

such as nptII. Obviously, nptII should be added to the database in a real life situation. Likewise, any 

homology leading to identification of previously unknown elements should be added to this database, 

when verified. Within the current three hits, besides the titles, there were no real solid clues for a GMO 

related sequence. In Table S4, the query and subject starts and ends are given, plus the description of 

this region in the subject. None of the three reads showed any known GMO related sequence besides 

the presence of the primer. Therefore, the identification of a previously unknown GMO element, 

harbouring the 35S primer sequence, is a possible explanation. Another, perhaps more likely 

explanation would be off-target hybridisation of the 35S primer. In either case, if proven repeatable, this 

sequence might perhaps be added to one of the dedicated databases in the pipeline, probably the 

element database, with an annotation such as: previously found potential GMO-related sequence. 

 A new MON810 reference sequence was combined from previously known sequences JQ406879 

and AY326434. There is overlap between sequences JQ406879 and AY326434 in the p35S promoter 

region. With 133 CCS reads mapping to this overlap, sufficient evidence was given for merging these 

two reference sequences in one reference sequence named RIKILT20151130. RIKILT20151130 replaced 

the JQ406879 and AY326434 sequence in the final workflow (Additional file 7A; Data S2). 

 The main objective of the analysis pipeline was to guide the end-user as quickly as possible to 

those sequences that require further investigation. For identification of UGMOs, known authorised 

GMO events are merely nice to know, and reads completely covered by a known construct sequence 
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are of even lower priority. Artefacts should be recognized and filtered, independent of where in the 

procedure they might occur. For this reason, the reads were set apart that contained only known primer 

sequences and not any further GM element homology. The placement of reads in separate bins instead 

of removing reads from the output, enables the end-user to further detail the analysis at any point in 

the procedure. The 18 CCS reads without a primer were not investigated further. The reasoning behind 

this was that all sequences should be related to the experiment that was performed. If none of the 

primers used in the experiment could be found, the link of such a sequence to the experiment itself is 

weaker. On top of that, if some of these did actually contain a primer, but with too many errors, the 

quality of the rest of the sequence would also be less reliable, increasing the risk of having to manually 

explore false positives. The contents of all other bins were analysed and a likely artefact was found in 

the confirmed events bin. One read showed homology to two event sequences instead of one. The raw 

CCS read, before trimming and primer filtering, turned out to consist of an AAP primer with a poly G 

tail, 5’ MON810 flanking region followed by p35S sequence, with this motive being repeated. The 

repetition in itself is already rather strange, and less likely to be a true molecule because of the simple 

reason that if so, chances are that it was published already, given the well sequenced nature of the 

MON810 GMO. The presence of primers used in the experiment at the very borders of the repeated 

sequence makes it near impossible that this sequence is not an experimental artefact. A very likely 

explanation is a ligation artefact, i.e. the same molecule was ligated twice in a row between smartbell 

adapters. In the potential UGMO output, an element order consistent with MON810 was identified, 

besides the relevant sequences for the partially unknown GMO. This read should have been placed in 

the only known information bin, but was not, due to threshold settings. We did choose to keep the 

threshold as it was. A lowering might easily solve the problem in this dataset, yet it might cause false 

negative discoveries in others. In this setting, it serves to illustrate the point that UGMO discovery may 

never be free of false positives. Therefore, all these potential discoveries should be confirmed 

independently, preferably by design of a novel PCR, based on the newly found sequence. Within the 

current dataset 2372 polymerase reads containing 11.538 subreads were present. Of those, 411 

polymerase reads contained more than four subreads of high enough quality to be merged into a CCS 

read. Those 411 could be further clustered, based on sequence homology, into 16 distinct sequences. 

Only four of those needed hands-on evaluation, of which three proved 'unknown'. All this was 

automated, meaning that out of a potential 11.538 reads, only 4 had to be manually checked, and three 

of those rightly so. In case this is a true new, potential UGMO sequence, this sequence should then be 

confirmed through Sanger sequencing of the PCR amplicon, from an independent DNA isolation of the 

suspect sample.  

 In summary, we conceived and tested an integral approach for a lab-based target enrichment 

based on a suspect GM element, followed by NGS and data analysis by design. We successfully showed 

the identification of partial sequences of a model UGMO. Future experiments will be aimed at further 

testing the approach in more complex mixtures, and the current settings of the pipeline design. This 

study provides a first outline of an automated, web-based analysis pipeline for identification of UGMOs 

containing known GM elements. 
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7.4 Methods 

 

7.4.1 Description of certified reference materials  

Certified reference materials (CRMs) of MON89034, MON88017, and MON15985 and the well-

characterized reference material MON810 from a field trial [299] were used for the preparation of 

complex mixtures. For detailed information on the reference materials see Table 7.1. 

7.4.2 DNA isolation and preparation of the mixture 

Per CRM DNA was isolated using a CTAB extraction followed by the Qiagen DNeasy plant mini kit 

(Qiagen) according to Scholtens et al.[5]. 100 ± 10 mg of dry material was weighed and extraction was 

performed by adding 700 µl of CTAB buffer (20 g/L CTAB, 1.4 M NaCl, 0.1 M Tris, 20 mM Na2EDTA), 

200 µl of nuclease-free water (Life Technologies) and 5 µl of Rnase A (Qiagen, 100 mg/µl) and incubated 

for 15 min at 65 ˚C in a thermo shaker at 250 rpm. Subsequently, 20 µl of proteinase K solution 

(Fermentas; 20 ng/µl) was added and the mixture was incubated in the thermo shaker for another 30 

min at 65 ˚C, 250 rpm. To precipitate detergent, proteins, and polysaccharides 200 µl of Buffer P3 

(Qiagen, DNeasy plant mini kit) was added to the lysate, the mixture was mixed and cooled on ice for 

5 min. After cooling on ice, the manufacturer’s protocol (Qiagen, DNeasy Plant Handbook 10/2012) was 

followed starting from step 10. The quantity and purity of the isolated DNA was assessed from 

Nanodrop absorbance measurements (Nanodrop 1000 instrument, Thermo Fisher Scientific). The 

mixture was prepared by combining 2.68 µl of MON15985 (18.68 ng/µl), 0.91 µl of MON88017 (54.92 

ng/µl), 1.09 µl of MON89034 (45.79 ng/µl), 38.4 µl of MON810 (126.4 ng/µl) and 57 µl of nuclease-free 

water (Life Technologies). 

7.4.3 Linear enrichment 

Linear enrichment (LE) was performed in four separate reactions: p35S up, p35S down, tNOS up and 

tNOS down. Each 20 µl reaction contained: 1× Buffer 1 (17.5 mM MgCl2, Expand Long Template PCR 

System, Roche), 200 µM dNTPs (10 mM dNTP mix each, Invitrogen), 3.75 U polymerase blend Taq + 

Tgo (Expand Long Template PCR System, Roche), 125 nM biotinylated enrichment primer and 200 ng 

genomic DNA. Copy numbers were estimated to be the ~40.000 for MON810 and ~400 for the other 

three GMOs. A 1 C value was used of 2.725 for maize and 2.33 for cotton [309] and a convension factor 

for 50% for hetero/hemizygous GMOs as recommended by the JRC [310] to calculate in the 200 ng 

mixture: 35596 MON810 copies, 367 MON88017 and 367 MON89034 copies, and 429 MON15985 copies, 

which we rounded to 1 significant number. The following program was performed in a thermal cycler 

(iCycler, Bio-Rad): 2 min at 95 °C, 20 cycles of 1 min at 95 °C, 5 sec at 60 °C, ramp to 72 °C, over 1 min 

and 5 min at 72 °C. 

7.4.3.1 Column & bead purification 

Column purification was performed (Qiaquick PCR Purification Kit, Qiagen) according to the 

manufacturer’s instructions, for removal of surplus primers and primer dimers. The linearly enriched 

fragments were eluted using 30 µl elution buffer provided with the kit. Streptavidin coated magnetic 

beads were used to select for the biotinylated enriched fragments from the genomic background. 15 µl 

Dynabeads MyOne Streptavidin C1 (Invitrogen) per sample were washed according to the 

manufacturer’s instructions and resuspended in 30 µl 2× B&W buffer (10 mM Tris-HCl (pH 7.5), 1 mM 
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EDTA, 2 M NaCl). To immobilize the fragments, 30 µl column purified biotinylated enriched fragments 

were added to 30 µl washed beads and incubated for 30 min at 20 °C using a thermoshaker at 600 rpm. 

After immobilization, the DNA-bead complexes were washed for three times with 1× B&W buffer. 

Finally, samples were resuspended in 10 µl 10 mM Tris.  

7.4.3.2 Tailing 

The tailing reaction consisted of 5× tailing buffer (5' RACE System for Rapid Amplification of cDNA 

Ends, Invitrogen), 200 µM dCTPs and 10 µl purified sample. Water was added to a final volume of 24 

µl. After mixing well, the mixture was incubated for 3 min at 94 °C and chilled for 1 min on ice. 1 μl of 

TdT (15 U/µl, Life Technologies) was added to each sample and incubated at 37 °C for 10 min. To heat 

inactivate the enzyme a last step of 10 min at 65 °C was performed then the samples were put on ice. 

7.4.3.3 Semi nested PCR 

Expand Long Template PCR Buffer 1 (1×), dNTPs (200 µM; each, Invitrogen), semi-nested primer (0.4 

µM) and Abridged Anchor Primer (0.4 µM, 5' RACE System for Rapid Amplification of cDNA Ends, 

Invitrogen) (Additional file 7A; Table S1) and Taq+Tgo polymerase blend (2.5 U, Expand Long Template 

PCR System, Roche) were combined with 10 µl of tailed product in a total volume of 50 µl. Amplification 

was achieved using the following cycling program: 94 °C for 2 min, 45 cycles of 95 °C for 10 sec and 59 

°C for 6 min and a final extension of 72 °C for 5 min.  

7.4.4 Real-time polymerase chain reaction (qPCR) 

Prior to q-PCR, reactions were diluted based on the amount of DNA put in the LE reaction. The 

following concentrations were used: 0.8 ng/µl for starting material (SM) and, 0.008 ng/µl for LE. qPCR 

reactions consisted of Diagenode (GMO-MM2X-A300), primers and probe (Additional file 7A; Table S2) 

and 5 µl template in a total volume of 50 µl. Amplification was performed as follows: 2 min at 50 °C for 

Uracil N-Glycosylase (UNG) decontamination, denaturation for 10 min at 95 °C, 45 cycles of 15 s at 95 

°C and 1 min at 60 °C using a MyiQ or CFX real-time PCR machine (Bio-Rad). Data-analysis was 

performed using CFX Manager Software Version 3.1 (Bio-Rad).  

7.4.5 PacBio analysis 

A sequencing library for the PacBio platform was generated and sequenced at BaseClear BV (Leiden, 

The Netherlands). The ALF reactions were pooled, concentrated using 1.8 volume AMPureXP beads 

(Beckman Coulter Life Sciences) and subject to size-selection on agarose gel. The DNA fraction larger 

than 1 kb was isolated from gel, with a yield of 9.3 ng according to a measurement with the dsDNA 

high sensitivity Qubit assay (Life Technologies). The standard library preparation kits and protocols of 

the manufacturer (Pacific Biosciences) were used for library preparation, without DNA fragmentation, 

and despite the low input. The final library had a very low concentration of 0.1 ng/µl and was 

sequenced on one PacBio RSII SMRT cell. The run generated 2372 polymerase reads with an average 

subread length of 1031 bp. PacBio SMRT Portal’s CCS workflow was used to generate 411 CCS reads 

(deposited at NCBI’s Biosample database; accession number SAMN06461360). 
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7.4.6 NGS data processing  

CCS reads gained by PacBio RS II NGS sequencing were processed with Galaxy platform [311-313]. A 

pipeline, i.e. workflow (Additional file 7C; pipeline, https://github.com/RIKILT/ALF), was built using 

tools available in Galaxy (Additional file 7A; Table S3). Three databases were built: event, CAF 

(Construct and Flanks) and element database (Additional file 7A; Data S1, S2, S4 and S5). CAF database 

comprises of annotated reference sequences of MON810 (RIKILT20151130 joined JQ406879 and 

AY326434), MON89034 (DI362404), MON88017 (HV702026) and two partial MON15985 (EA135634 3' 

flank, EA135633 5'flank). Annotations were written in a General Feature Format (GFF) file (Additional 

file 7A; Data S3). 

 

7.5 Additional files (available with the publication)  

Additional file 7A: Table S1 Function and sequence of the primers used. Table S2 Primer sequences 

and final concentrations used in the qPCR reaction used to determine size-dependent increase of specific 

target and loss of genomic background. Table S3 Tools used in building of the Galaxy workflow for 

UGMO detection. Table S4 BLAST output (first 5 hits) of the crCCS reads in the ‘only unknown 

information bin’. Data S1 Event database sequences. Data S2 Reference sequences, CAF database. Data 

S3 Annotations for reference sequences in CAF database. Data S4 Element database - redundant, 

containing element sequences from all input GMOs. Data S5 Element database , an un-redundant 

element database, containing only the longest of the element sequences. Data S6 CCS reads with 

element orders tNOS – gap- Npt II – gap- p35S (133951, 45207), and p35S – gap– tNOS – gap– uidA 

(156962). p35S promoter is coloured yellow, tNOS terminator green Npt II gene red and uidA gene 

purple. Figure S1 Formation of the circular consensus sequence (CCS) read. Figure S2 Length 

distribution of the 411 CCS reads as generated by FastQC. Figure S3 Building the workflow: in depth 

description. Figure S4. Bowtie2 mapping of CCS reads to RIKILT20151130 sequence. 

 

Additional file 7B: Table S1 Element order list 1_raw. Table S2 Element order list 2_raw. Table S3 

Identified GMO. Table S4 Element order list 1. Table S5 Element order list 2. Table S6 Artefacts 

sequences.  
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Chapter 8 

 

General discussion 
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8. 1 Introduction 

The genetic code of every living organism on this planet is written in deoxyribonucleic acids (DNA). 

Every species, as well as varieties within a species, has a unique combination of conserved and variable, 

unique DNA regions. These species/varieties -specific variable regions can form the basis for DNA- 

based identification methods. For species identification DNA barcoding is an often applied approach to 

identify species based on variable regions in the mitochondrial DNA. For GMO varieties, identification 

is based on specific junctions between the GM construct and plant genome. Traditionally, a specific PCR 

followed by Sanger sequencing or a specific TaqMan PCR are the frequently applied molecular 

biological techniques to identify species or GMOs, respectively. However, in the last two decades, 

sequencing technologies aiming at determining multiple DNA sequences have evolved to achieve 

simultaneous sequencing of different DNA strands from one to many species in a single analysis. These 

new sequencing techniques are often called next generation sequencing (NGS). Examples of such NGS 

technologies and platforms are HiSeq and MiSeq (Illumina), PacBio RSII (Pacific Bioscience), Ion Torrent 

(ThermoFisher) and MinION (Oxford Nanopore). Each of these technologies has its own advantages 

and disadvantages. Unravelling the genetic composition of a complex product may identify the 

presence of specific ingredients, such as endangered species or authorised or unauthorised GMOs, in 

this way evaluating the authenticity of food/feed products of interest. 

The objective of this thesis was to use detailed genetic differences to identify species/varieties 

in complex products based on the application of advanced analytical NGS based strategies, with a 

specific focus on the identification of two target groups: endangered species and GMOs. An initial 

enrichment step, coupled to an apt NGS-based strategy, were applied to detect and identify endangered 

species or GMOs, including UGMOs, in a product of interest. Two identification strategies were 

considered that were either based on known sequences (endangered species and GMO), as available in 

dedicated databases, or on the elucidation of unknown sequences, adjacent to identified known GMO-

related sequences (in the case of UGMOs).  

The current chapter discusses the research findings of this thesis and the interconnection 

between the research objectives as proposed in chapter 1 for endangered species and the broader GMO 

detection. With respect to endangered species, the aim was to explore whether NGS- based strategies 

allow the simultaneous identification of all species, including endangered species, present in a sample, 

even in complex samples that may be heavily processed (chapter 2, 3 and 4). With respect to GMOs, the 

aim was to reliable identify all GMOs and UGMOs present in a given sample, regardless of their relative 

abundance, based on enrichment of known or, in the case of UGMOs, additional adjacent unknown 

sequences (chapter 5, 6 and 7). Additionally, the implications of applying the newly developed NGS 

based methods for food authenticity are discussed and the main conclusions are presented. 

8. 2 Overall discussion of the findings 

8.2.1. Endangered species  

Around 35,000 species worldwide, belonging to a wide range of plant and animal taxa, are classified as 

endangered by CITES [53]. These endangered species are sometimes used as illegal ingredients in food 

samples. Customs authorities enforcing the CITES convention screen food products for the illegal 

presence of endangered species. However, identifying the genetic composition of food samples, in terms 

of species present in the sample, can be a challenging task due to the complexity of some of the samples 

of interest. Seized food samples might consist of difficult matrices, such as, powders, tablets, wet-balls 

etc [8,9,27]. Additionally, these food samples often contain many different species, belonging to both 

the plant and animal kingdom [8]. Therefore, the identification of all species present in a product using 

a single analysis is a challenge [9], due to the lack of adequate DNA extraction protocols, the 

fragmentation of the DNA, and the complexity of the species composition. In chapter 2, 3 and 4 these 
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issues have been addressed, with the aim to develop improved strategies to identify (endangered) 

species in a multiplex setting on the basis of NGS-based strategies, that make use of enrichment of well-

established species-specific sequences.  

8.2.1.1 Enrichment strategy 

For successful enrichment of species-specific sequences in complex samples, several preconditions need 

to be met. First of all, the DNA extraction needs to be adequate to obtain sufficient quality DNA to allow 

efficient amplification. Secondly, the complexity of the sample composition, in terms of numbers and 

variety of species, requires a broad range of markers yet with enough resolution to enable species level 

identification. Additionally, high resolution for identification should be obtained both in cases were 

non-degraded, high quality DNA is available as well as in cases were the DNA is degraded and only 

fragments are available for enrichment.  

With respect to the DNA extraction, DNA isolation methods for the different types of products 

of interest can be very difficult to standardise and optimise because of the complexity and diversity of 

samples that may contain wild life forensic materials [8]. Traditional medicines (TMs), one group of 

products that is of interest with relation to the potential presence of endangered species ingredients, 

often consist of difficult matrices making it challenging to extract good quality DNA. These difficulties 

in DNA extraction arise from the significant processing of the raw materials present in the products 

[8,9,27] As a consequences the DNA of the ingredients may be heavily fragmented, or there may be 

multiple (polymerase) inhibiting factors present that will affect the quality of the resulting DNA. 

Currently, no universal DNA isolation method is available for the various TMs matrices. Studies have 

shown that CTAB extraction buffer combined with an additional silica or resin-based DNA purification 

step is most efficient for a wide range of plants and plant-derived products, in particular for the 

separation of polysaccharides from the DNA [66,89,90]. In line with these results, in chapter 3 it was 

shown that the CTAB isolation method was the optimal method to extract good quality, amplifiable 

DNA from both plant and animal reference materials, multiple non-processed complex experimental 

mixtures and from a limited number of TMs. Nonetheless, in chapter 4 when multiple TMs from various 

matrices were analysed, CTAB failed to obtain amplifiable DNA from all TMs included in the 

assessment. This was likely due to the presence of potential inhibitory components and interfering 

substances derived from the samples (e.g. protein, lipids, polyphenols, polysaccharides). To address 

this issue, eight commercially available and commonly-used DNA extraction methods (organic 

extraction, silica-based, and magnetic beads based) were compared for their ability to obtain sufficient 

DNA of good quality from TMs to allow adequate PCR amplification. This comparison showed that 

CTAB in combination with the Wizard DNA clean-up system was the most effective strategy, since it 

gave a positive amplification for all the analysed TM samples. DNA isolation is a very crucial step in a 

metabarcoding analysis, the combination of CTAB and clean-up system efficiently removed potential 

inhibitory components and interfering substances. These results are in accordance with another study, 

that showed that the combination of CTAB and clean-up system aid to achieve good quality DNA from 

herbarium specimens [66]. 

With respect to the choice of markers, in order to be able to identify a wide range of both plant 

and animal species in a single analysis, universal markers are needed, yet these markers should provide 

enough resolution to distinguish between species. In chapter 2, we explored the scientific literature with 

the aim to select the most informative universal DNA barcode and mini-barcode markers and their 

related primer sets. In general, the conclusion from the literature review was that all universal barcode 

and mini-barcode markers and related primer sets had been shown to amplify the target region 

efficiently in single species analyses. However, their performance in a meta-barcoding study had yet to 

be evaluated. In chapter 3, the selected universal DNA barcode and mini-barcode markers and their 

related primer sets from chapter 2 were used to develop a metabarcoding panel that potentially would 
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be able to identify both plant and animal species in complex matrices. However, all selected universal 

barcode and mini-barcode primer sets had been optimised to amplify targets under different PCR 

conditions. Therefore, as a first step a single optimal PCR condition was determined for twelve plant 

and animal barcode and mini-barcodes, based on the amplification of the barcode region in 19 plant and 

29 animal species, belonging to different families. The results of chapter 3 and 4 showed that no single 

barcode marker (plant or animal) used in the developed barcode panel could amplify all the species-

specific sequences present in the experimental mixtures. This was especially the case for species present 

in low percentages, where multiple markers were necessary to identify the presence of the species. With 

a combination of multiple barcode markers nearly all of the species in the experimental mixtures could 

be identified, including the endangered species.  

 

8.2.1.2 Next generation sequencing 

Current approaches for DNA-based species identification include PCR amplification of the specific 

target, followed by Sanger sequencing [18]. A main problem in Sanger sequencing is that it is not 

applicable to products containing more than one species, unless additional time-consuming work 

(cloning of PCR products) is performed [198]. Although barcoding and mini-barcoding have been used 

to identify animal and plant species separately in a simple to complex mixture [198], so far no 

methodology had been described combining informative plant and animal barcodes and mini-barcodes 

in a single analytical strategy. In this thesis the use of metabarcoding, a rapid method that combines 

two technologies: DNA based identification and high-throughput DNA sequencing, was studied to 

identify a mixture of species in one analysis. The obtained DNA barcoding sequences can be compared 

with the database to pinpoint the species based on the nucleotides’ variations observed between the 

DNA barcode sequences. 

To allow high confidence in identification, here Illumina sequencing was selected over 454 and 

Ion torrent sequencing because of its low error rates (< 0.1%) in the generated data [18]. An high error 

rate in sequences could lead to misidentification of a species, as a comparison showed in the chapter 2. 

Additionally, for species identification in TMs, DNA might be severely damaged and a major advantage 

of using Illumina Miseq PE300 is that the generated paired-end reads can be merged to obtain pseudo 

reads with lengths of ~550 bp, which could provide a relatively high discrimination power even from 

fragmented DNA.  

The amount of data generated by Illumina Miseq PE300 (2-5 Gb per sample) requires an 

adequate bioinformatics workflow to process these DNA metabarcoding data. To facilitate this 

requirement, CITESdetectpipeline was developed in chapter 3. The pipeline processes the NGS data by 

trimming the Illumina adapters from the reads, and merging the reads, subsequently performing a 

quality trimming, primer selection and trimming. In the next step the resulting reads are clustered and 

chimeras are filter out. Finally, a BLAST analysis is performed on the consensus sequences from the 

clusters to identify the species, including potential endangered species [198]. The robustness of the 

pipeline was assessed by varying multiple parameters, such as base quality, error tolerance for primer 

selection, Operational Taxonomic Units (OTU) radius, query coverage, E-value, OTU abundance and 

identity threshold. From this parameter evaluation optimal settings for the samples were determined, 

and a 98% identity threshold was found to give the best cluster separation between closely related 

species and also result in low false-positive identification. Subsequently this 98% identity threshold was 

used in the analysis of the experimental mixtures and the TMs (chapter 3 and 4). An OTU abundance 

threshold of 0.2% of the mapped reads was found to be most optimal in reducing background noise and 

potential false-positive. However, in chapter 4 it was determined that the applied OTU abundance of 

0.2% was not stringent enough to separate the low abundant species from background noise and that 
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this applied threshold may actually lead to false-positive identification. Therefore, to reduce the false 

positive identification, in chapter 4 a static OTU threshold of 100 on top of the threshold of 0.2% of the 

mapped reads was implemented, similar to the threshold settings applied in another recent 

metabarcoding study with TMs[181].  

A metabarcoding approach results in large NGS datasets, the analysis of these data in practice 

requires bioinformatics knowledge. However, end users, in the case of endangered species these are 

often customs authorities enforcing the law at the borders, might not be skilled in bioinformatics. 

Therefore, the web-based CITESdetectpipeline was developed and made freely available. The 

interpretation of the results was done in a conservative approach to avoid any false identification of the 

species. Generally, the top hit in the BLAST analysis is considered to be the identified species [198] 

However, to avoid any false-positive identification resulting from low quality sequence data in the 

database, a conservative approach was used requiring at least three similar top hits in the BLAST output 

for a positive identification. The down side of such an approach is that species with relatively few entries 

in databases are less likely to be positively identified at species level, especially considering the fact that 

endangered species are still underrepresented in public databases [18,198].  

 

8.2.1.3 Identification of endangered species 

In chapter 3 and 4 the objective was to study whether the use of an informative set of barcoding and 

mini-barcoding markers combined with an NGS approach will allow the identification of multiple 

species in individual complex samples. With the final aim to setup a method that will allow the 

identification of multiple CITES species in a single analysis of real-life samples as provided by European 

customs laboratories. An important aspect of the study was the resolution at which the species could be 

identified. The results of this thesis show that the developed multi-locus barcode approach could 

achieve a high resolution of identification compared to other studies [35,143]. In general, we observed 

that with respect to animal identification, species level resolution could generally be achieved with a 

combination of barcodes. For plants, however, this was not always possible. In 50% of the cases a 

maximum resolution at family level could be achieved. The ITS2 barcode accounted for most species 

level identifications in plants, followed by mini-rbcL and trnL (P6-loop). Achieving species level 

resolution to identify plants with a single barcode marker is generally not feasible, especially in case of 

the mini-barcodes that have an inherent lower resolution compared to the full-length barcodes. Here 

and in other studies, ITS2 barcode showed to be a reliable barcode for the identification of taxa at species 

level in complex samples (herbal products) [199,200]. This barcode has been proposed as a universal 

barcode for plant species identification, especially for the medicinal plants [123] and endangered plant 

species [197]. In animal identification, mini-16S mainly accounted for the cases of species level 

identification, followed by 16S and cyt b barcode markers.  

The emphasis in the first part of the thesis was on the identification of multiple species, 

including endangered species, in a single analysis. Therefore, in chapter 3 also endangered species were 

used in composing the experimental mixtures. The results showed that all endangered species in the 

experimental mixtures could be successfully identified with the newly developed multi-locus 

metabarcoding method. Nonetheless, when analysing real-life TMs, only in two cases the presence of 

endangered species (Ursus arctos and Cibotium barometz), declared on the label, could be confirmed with 

the barcode panel (chapter 3 and 4). It could be that the barcode panel failed to identify all the species. 

This could be due to multiple reasons, such as, processing of the ingredients in such a way that the DNA 

was either degraded or effectively removed [183,198], or primer-template mismatches. Alternatively, it 

is possible that the claimed endangered species were not identified because the label information was 
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not correct, for example due to a lack of proper taxonomical knowledge with the producers, or because 

of deliberately but unjustly specifying a rare species on the label to increase the value [8]. Incorrect label 

information was commonly observed when the positively identified species in a TM sample were 

compared to the respective label information. It was found that only in two TMs all ingredients could 

be confirmed. Many undeclared taxa, however, were identified across the TMs, which were even higher 

in number compared to the confirmed taxa. One undeclared species Saccharum hybrid cultivar (sugar 

cane) was found in one-third of the analysed TMs, and is a commonly used species to achieve a sweet 

taste in food products or supplements. The presence of undeclared species is a common result in studies 

analysing TMs. In line with the results of chapter 7, recent studies found in the analysis of TMs that up 

to 98% of the species identified in TMs were not declared on the label [200,314-316]. 

 

8.2.2 GMOs  

The second part of the thesis addresses the general aim to determine the presence of GMOs using 

advanced analytical NGS based strategies. In the EU, GMOs that have received market approval, are 

allowed to be present in food and feed products. It is furthermore stipulated that labelling of GMOs is 

mandatory in the EU for products that contain more than 0.9% of authorised GMO per ingredient. Initial 

detection of GMO varieties is usually based on the finding of GMO-specific elements and constructs in 

the DNA. In case of UGMOs, that are not allowed on the European market, generally limited sequence 

information will be available, and genome walking strategies are used to identify the unknown adjacent 

sequences of the known GMO element.  

Currently, GMO-specific (elements, constructs and events) TaqMan PCRs have been developed 

to screen for the presence of GMOs in a sample) [19,22]. In a TaqMan PCR, target-specific primer 

sequences are used to amplify the target DNA of interest, in the presence of a probe sequence that will 

allow relative quantification of the generated amplicons. In recent years, an increasing number of GMOs 

with new GMO elements have been approved for use in food/feed products [23]. In order to have an 

informative GMO screening, an increasing number of new GMOs and related targets should be part of 

the analysis, requiring the development and validation of the related single methods [317]. As a 

consequence, the current GMO screening approach becomes increasingly more time-consuming and 

costly. To overcome these issues, in the second part of this thesis the aim was develop an efficient NGS 

based GMO screening approach, which can circumvent the elaborate validation of each new GMO 

specific assay.  

Additional to the increase in authorised GMOs, an increasing number of UGMOs have been 

entering the world market. Since generally limited sequence information is available for UGMOs, GMO 

screening approaches can usually only lead to indications for , but not confirmation of, the presence of 

a UGMO [23]. To confirm the presence of a UGMO, generally a genome walking approach combined 

with Sanger sequencing or NGS is applied. To this end, a number of genome walking strategies were 

reported to identify the adjacent sequence of an identified GMO element in reference materials (LAM 

PCR, LT-RADE, SiteFinding-PCR, A-T linker and LF PCR) [227-230,232]. However, those enrichment 

approaches have their setbacks. Bottlenecks are, for instance, the sensitivity, or the limited level of 

multiplexing that is allowed, or the flexibility of the system regarding the targets to be detected. 

Currently there is no single system that can meet the criteria for detection of low abundant UGMOs in 

complex samples consisting of a mixture of GMOs. Therefore, for UGMO identification the aim was to 

develop an adequate genome walking approach combined with an NGS strategy that will not be 

influenced by the relative abundance of the UGMO.   
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8.2.2.1 Enrichment strategies 

With respect to enrichment of GMO related targets, the aim was to set up a methodology on the basis 

of informative combinations of well-characterised GMOs reference materials and investigate the 

applicability of such methodology in real-life samples. In chapter 6, such a GMO screening method 

coupled to NGS was presented. For this method it was shown that the Qiagen HotStar Taq (PCR) master 

mix was more efficient in amplification of the DNA targets compared to the routinely applied Diagnode 

TaqMan (TaqMan PCR) master mix. Furthermore, it was shown that the developed broad NGS-based 

screening (96 GMO-related targets) could identify the authorised GMOs present in the sample. This 

identification was achieved by screening for the presence or absence of candidate GMO elements 

common to multiple GMOs, as well as for the presence of GMO event-specific sequences. Some of the 

GMO elements present in the sample could not be explained by authorised GMOs and may be indicative 

for the presence of UGMOs. However, to confirm the presence of a UGMO, an additional genome 

walking strategy will be required, provided no known UGMO event-specific sequences match, to 

identify the unknown adjacent sequences of the detected GMO element. For this, the identified 

unexplained targets in the broader screening can serve as a starting point to ‘read’ into unknown regions 

using a genome walking approach.  

In chapter 5 a literature review on available genome walking approaches was presented in 

relation to possible UGMO detection. The available GW approaches were reviewed and evaluated with 

respect to their advantages and disadvantages for UGMO identification. The conclusion of the review 

was that in order to meet the specific demands of UGMO detection, it is necessary to develop a new 

gene/genome walking approach by combining the advantages of available approaches to have an 

optimised enrichment strategy. Subsequently, the approach can be coupled with NGS for sensitive 

UGMO detection in complex samples where the UGMOs may be present at low percentages. In chapter 

7 the development of such gene/genome walking approach, the Amplification of Linearly-enriched 

Fragments (ALF) approach was presented. Because the ALF approach aimed to elucidate unknown 

regions in the DNA, the length of the enriched product was of crucial importance, since enriching longer 

fragments will make the procedure less dependent on correct assembly of shorter sequences, will 

therefore provide more direct information about the adjacent elements and may include the event-

specific region bridging the inserted construct and the endogenous plant genome. Previous approaches 

were found to enrich long DNA fragments, for example, LT-RADE [228] is a non-restrictive enrichment 

method, starting with gene specific primers for initial single strand enrichment, followed by tailing and 

nested PCR to synthesise double stranded DNA (dsDNA) of the desired amplicons [228,318]. 

Additionally, Locus-finding PCR (LF PCR) is a combination of random-priming PCR and nested PCR 

along with affinity-based purification to obtain the unknown sequence [230]. The ALF approach 

combines the advantages of the LT-RADE and LF PCR by using blend polymers to enrich longer DNA 

fragments, starting from the identified element in the GMO screening, using a linear enrichment step 

followed by a magnetic bead clean-up system to select only the desired linear fragments for further 

enrichment in semi nested PCRs [230].  

Initially the efficiency of the ALF approach was evaluated on the basis of >99.05% MON88107 

maize reference material. The efficiency was evaluated based on qPCR results performed on the starting 

material (SM), after the linear enrichment, and finally after the semi-nested PCR. The qPCR results after 

each step in the procedure were compared to determine the size of the obtained (amplified) fragments. 

The results of this analysis showed that the longest fragment in the ALF approach was at least ~2 kb, 

and a 3.5 thousand fold enrichment compared to the initial quantification of the basic template DNA 

was observed. Additionally, the genomic DNA quantity was compared before the enrichment and after 

the column and magnetic beads clean-up steps, and results show that the genomic DNA (gDNA) was 

reduced to beyond the detection level. The reduction of gDNA offers the opportunity to circumvent the 

use of a nested PCR to amplify the selected sequences, since nested PCRs require the re-opening of the 
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initially enriched DNA fractions, thus considerably increasing the chances of contaminations in the 

laboratory [272].  

In general, the findings showed that the ALF approach is a more efficient method for enriching 

long, informative fragments compared to LT-RADE and LF-PCR GW approaches [228,230], and will 

allow easier identification of potential present UGMOs in samples of interest. 

 

8.2.2.2 Next generation sequencing 

As mentioned, one of the bottlenecks with relation to the identification of UGMOs is that, contrary to 

approved GMOs, for UGMOs there will usually be only limited sequence information available as a 

basis for the development of methods for detection and identification [15]. A matrix approach, such as 

presented in chapter 6, can be used to detect UGMOs that contain identical or allelic variants of elements 

present in authorised GMOs. Subsequent further elucidation of those unexplained GMO targets and 

their flanking regions by sequencing can be used to experimentally identify UGMOs in the sample as 

was shown in chapter 7. Both issues require different sequencing strategies. For sequencing of known, 

short length sequences from the GMOs (elements, construct and events), Illumina Miseq PE150 was 

found to be an apt technology due to the large amount of output reads, read quality, short runtime, 

paired-end reads and lowest cost per sequenced base pair (chapter 6). For the sequencing of long 

enriched DNA fragments, as generated in the ALF approach, the PacBio technology was chosen as the 

preferred NGS strategy, since this sequencing technology has the ability to sequence longer fragments.  

 Additional to an apt NGS technology, reliable identification of GMOs and UGMOs present in a 

sample can only be achieved when the obtained data can be efficiently analysed. In chapter 6, to analysis 

the generated NGS data, a bioinformatics pipeline was developed. This pipeline aimed to analyse the 

generated GMO related sequences, or amplicons, and was named amplicon sequencing pipeline (AM-

SEQ). The developed pipeline consists of eight steps: removal of Illumina adapter, merging reads, 

quality selection, selection of primer containing reads, aligning against a local database, verification of 

new refence sequence and visualise of the output to efficiently process NGS data. Since the developed 

GMO screening method aimed to identify both GMOs and UGMOs even at low abundant levels, it was 

of crucial importance that background noise or cross contamination (targets with low reads counts) 

could be distinguished from true amplification (targets with high reads counts). Therefore, a threshold 

for detection (0.01% of mapped reads) was established for the NGS datasets of the real-life feed samples, 

this was based on a comparison of TaqMan PCR results to the analysed NGS data of a sample. 

Application of a threshold could potentially lead to false negative identification of GMO, nonetheless, 

it seems likely that targets that will not pass the threshold are present at such low abundance that they 

would not have been identified by the current TaqMan PCR strategies, and therefore the application of 

a threshold will not lead to decreased sensitivity of the screening.  

 Data analysis of UGMO-related sequences is rather difficult due to the same fact that in many 

cases only partial sequence information is available. To overcome this problem a step-by-step data 

process approach was followed in chapter 7, were only good quality reads were selected and the 

obtained reads were mapped to different databases with known GMO sequences (event- , construct- 

and element-specific databases) in a sequential order, in order to segregate the known sequences from 

the (partially) unknown sequences and to determine the GMO element order in unknown sequences of 

interest. The elements of the unknown sequence can be mapped against a public GMO database to 

retrieve the order of the elements and subsequently to determine whether it belongs to a known GMO. 

In this way, by using the element order of the unknown sequence of interest, in chapter 7 the GMO 

MON15985 could be identified. Since in chapter 7 a GMO served as a model for a UGMO, as a proof of 

principle of the ALF-approach, the analysis ended with the successful identification of an unknown 

sequence of an authorised GMO (MON15985). Nonetheless, in cases were the element order of the 

identified unknown sequence does not belong to a known GMO the event sequence (junction between 
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the GMO construct and plant) need to be identified to show the presence of a UGMO. In all cases where 

a putative UGMO has been identified, this will require confirmation by a dedicated PCR assay. 

8.2.2.3 Identification of GMO and UGMO  

For correct interpretation of sequence information it is important to have dedicated databases with high 

quality data at hand. In the field of GMOs, the EUginius database is a database that combines 

information on both authorised GMOs as well as on UGMOs (www.euginius.eu). It was shown in 

chapter 6, in preparation of the AM-SEQ approach, 79 new reference sequences for GMO-related element 

targets were obtained from analysing the positive control sample. Along with the positive control, 5 

feed samples knowing to contain GMOs were analysed. The identified GMO-related targets from the 

feed samples were associated to the GMOs as identified in the same sample, and the results were 

compared with the two-step TaqMan GMO screening approach to understand the strengths and 

limitations of an NGS based approach. In this comparison, it was found that with the use of a wider 

NGS-based screening strategy 10 low abundant GMOs could be additionally identified in the same 

samples, which were not tested in the initial, routine GMO screening. It is clear that the presence of 

some GMOs in a sample may mask the presence of other, perhaps low abundant GMOs, and this may 

include also UGMOs. The results from the data analysis of the five feed samples showed that 9 of the 

identified targets were unexplained, these were all observed with a late Cq value of ≥ 37 and were not 

detected in all 3 replicates of the GMO screening. This confirms that identification of targets present at 

a low level is subject to stochasticity and that an NGS-based approach should preferably be performed 

in replicates. The stochasticity is also a reflection of the non-quantitative nature of NGS and the read 

counts are probably not a reliable reflection of the abundance level of the target due to exponential 

processes. The samples that contained the 9 unexplained targets were additionally tested in a TaqMan 

PCR analysis for known and in-house available GMOs containing these targets and were found 

negative, possibly indicating the presence of UGMOs at low levels. Alternatively, the presence of these 

unexplained targets could be traces of authorised GMOs, or in specific cases, donor organisms below 

the limit of detection by PCR [319]. We suggested that any detected unexplained GMO-related target 

with a Cq value ≤35 may indicate the presence of an unknown or unauthorised GMO that was not 

included in the analysis, or for which no method is available yet. In these cases, the NGS-based screening 

method may be followed by a genome walking strategy to identify the flanking region of the identified 

unexplained targets. Eventually this may lead to the identification of the UGMOs and thus provide 

sequence information for new methods for detection and identification [271,272]. 

 In chapter 7 such a genome walking approach, the ALF approach, was successfully developed 

and evaluated on the in-house made complex mixtures containing four GMO crops in which MON810 

maize was present at 97% and three other GMO crops (MON88017 maize , MON15985 cotton and 

MON89034 maize) were present at 1% each. For the GM cotton (MON15985) only partial sequence 

information was available, essentially mimicking a UGMO from which limited sequence information is 

available. It was found that only the high abundant GMO (MON810) could be confirmed with event-

specific sequence information. The lower abundant (1%) GMOs (MON88017 and MON15985) could 

only be partially confirmed using the construct and flanks and element databases, while MON89034 

sequences could not be retrieved. After mapping to the databases some unmapped sequences having 

the partial element order of MON15985 were found. To find the origin of these unmapped reads, a 

manual BLAST analysis was performed, identifying the nature of the unknown sequence. This 

illustrates that the ALF approach may be used to identify UGMOs in a similar process.  
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8.3 Implications, limitations of the findings and recommendations for future research.  
 

8.3.1 Endangered species  

8.3.1.1 Enrichment strategies 

Identification of a species in a product of interest is initially dependent on the availability of amplifiable 

DNA, and therefore the selection of an adequate DNA isolation methods is a vital step. In chapter 3 and 

4, it was determined that standard CTAB isolation is sufficient to obtained amplifiable DNA from non-

processed samples containing both plant and animal materials. However, the samples seized by custom 

laboratories are most often highly processed samples (TMs). It was shown that for such products a 

combination of CTAB with a clean-up system was necessary to extract amplifiable DNA for the DNA 

barcode panel analysis. Although amplifiable DNA of sufficient quality was obtained from these 

difficult samples, many species listed on the ingredient list could not be identified. It might be the case 

that the non-identified species were not present in the sample, alternatively, the clean-up process might 

have caused loss of DNA of low abundant species, as was shown by another study [66] leading to the 

false-negative identification of low abundant species. In future studies, it should be determined what 

the effect of the clean-up methods is in practice for the identification of low abundant species in 

metabarcoding approaches. Alternatively, matrix-dependent solutions may be considered, similar to 

what is currently done for complex GMO samples [320,321]. Ideally, the quality of the DNA should be 

adequately determined after the DNA extraction, to estimate chances for efficient subsequent 

amplification and related species identification. In chapter 3 and 4 it was, however, found that it was not 

possible to determine the quality of the obtained DNA from the real-life samples in an adequate way 

using standard DNA assessment and quantification methods (e.g. NanoDrop or Fluorometer). 

Alternatively, a DNA fragmentation analyser could be used, but this is relatively expensive and customs 

laboratories are generally not equipped with these more advanced methods for DNA quality 

assessment.  

Secondly, the identification of a species is based on the enrichment of the DNA sample for the 

target region. Amplification can be hampered by the complexity of a sample, for example, when DNA 

is heavily degraded and only short regions are available for enrichment or when multiple species are 

present in one sample and high abundant species may mask the presence of low abundant species. In 

chapter 3 and 4 it was shown that with a combination of barcode and mini-barcode markers species 

identification can be achieved even when DNA integrity is low and species composition is complex. 

Based on the sample type, or with advance knowledge of the DNA integrity, the current barcode panel 

could be used in a more flexible manner, by using only full-length or mini barcode markers depending 

on the fragmentation of the DNA and only plant or animal markers depending on the sample type. In 

this thesis the aim was to cover a wide range of species and types of samples with the 12 selected barcode 

markers. It is, however, not certain that all the endangered species can be covered with these primer 

sets, and in the future newly developed universal primer sets could be added to the panel .  

 

8.3.1.2 Next generation sequencing  

Regarding the choice of the NGS technology to be used for metabarcoding, for species identification the 

Illumina technology was used to allow sequencing of full-length barcodes. However, the recently 

developed MinION system from Oxford Nanopore Technologies is able to sequence a range of barcode 

lengths with a good resolution. Also, the technology is portable and can theoretically be used on-site to 

determine the composition of samples. Before applying this new technology in a routine setup, 

however, a full validation study will need be performed.  
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The use of an alternative sequencing technology, such as PacBio or MinION, that is able to 

sequence longer DNA fragments may provide a higher resolution, especially for plant species 

identification. For example , it was found in chapter 5 that the full-length barcode markers matk and rbcL 

were amplified in the case of highly processed TM samples, probably primarily containing fragmented 

DNA. Plant full-length barcode markers can provide species or genus resolution [122,188]. However, in 

the study we used paired-end (PE) 300 Illumina technology where the maximum read length is limited 

to ~300 bp, which is often shorter than a full-length barcode. Therefore, the resolution to identify species 

in practice depended on the forward or reverse reads of the full-length barcode (i.e. matK, rbcL).  

8.3.1.3 Identification of endangered species 

In chapter 3 and 4 is was underlined that the identification of endangered species is limited by sequence 

information available in databases. Currently, CITES-listed species are underrepresented in public 

databases [183] and future studies should address the availability of these sequences in order to make 

identification possible of all endangered species. Another disadvantage of a species identification 

method based on sequence information is the requirement that samples actually contain DNA, it will 

not work in samples where no DNA is present, or if it is too heavily degraded. In such samples, 

identification of species might require additional steps in the analysis and studies have shown that a 

more holistic approach, including proteomics and metabolomics, in specific cases can be of help in 

efficient species identification [322,323]. Nonetheless, adding additional steps to the analysis will 

considerably increase the cost and time of the analysis. 

Nonetheless, a major advantage of an NGS based detection method is the possibility for the 

simultaneous, broad screening for many targets. Raclariu et al, (2017) showed that a metabarcoding 

method was more suitable to determine the composition of complex products and yielded better 

identification compared to TLC and HPCL-MS [324,323]. The metabarcoding panel may aid the customs 

authorities to identify the illegal use of endangered species in products such as TMs. The high resolution 

achieved with the metabarcoding panel may be applied in future studies in other, related fields, such 

as food fraud issues [48] or the environmental monitoring of species [25]. 

 

8.3.2 GMOs and UGMOs  

8.3.2.1 Enrichment strategies 

In chapter 6, broad enrichment using the master mix HotStar Taq was more efficient in amplifying all 

targets included in the screening compared to the routinely used TaqMan Diagenode master mix. 

Although HotStar Taq outperformed TaqMan Diagenode in the positive control, still three out of 96 

could not be amplified using HotStar Taq. This indicates failure of HotStar Taq to amplify these targets 

and requires an optimisation of the protocol before HotStar Taq can be applied in the further study of 

NGS-based GMO screening approach. In chapter 7, it was shown that the ALF approach, coupled to 

NGS and data analysis could identify UGMOs with partial unknown sequences in a sample. In the ALF 

approach, the longest enriched sequence was ~ 2kbp, but Fraiture et al. (2017) showed that with the 

APAgene GOLD Genome walking approach kit enriched sequences of ~15 kbp could be obtained [271]. 

However, the approach described by Fraiture et al. (2017) requires a more elaborate protocol with a 

higher number of semi-nested PCRs, increasing the risk of cross contamination in the laboratory. Future 

research could explore the enhanced enrichment of different polymerases to obtain longer fragments as 

was shown by Fraiture et al. (2017), but with a reduced risk of cross-contamination. However, in another 

study by Fraiture et al. (2018) the maximum enrichment was also around 2 kbp, implying that the longer 

enrichment may not always be possible on the basis of the APAgene genome walking kit [325]. 

Furthermore, for UGMO identification, it will be interesting to know whether long enriched fragments 
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can be obtained from real-life GMOs samples (food or feed products), which undergo varies treatments 

in the preparation of the product, where the DNA is fragmented. Such a method, aiming at elucidating 

unknown sequences from degraded DNA, could combine insights from chapter 3 and 4, for 

identification of sequences in samples from various matrices containing degraded DNA, and chapter 6 

and 7 on GM detection and identification.  

8.3.2.2 Next generation sequencing  

The developed AM-SEQ approach in chapter 6 was found to be efficient in identifying multiple GMOs 

in a sample, as well as obtaining indication for the presence of UMGOs. Nonetheless, NGS-based 

approaches for GMO detection are a relatively new concept and an alternative screening approach 

needs to be sufficiently sensitive to allow effective enforcement of GMO regulatory requirements. 

Therefore, before application in a real-life set up can be considered, future studies need to address the 

sensitivity, repeatability and reproducibility of the NGS-based method by screening well-characterised 

samples that consist of a mixture of high and low abundant targets. An important issue in the 

application of an NGS based screening procedure is the data-analysis. To reliable identify GMO 

sequences targets at low abundance, it is important that background noise can be separated from true 

amplification. Background noise can potentially cause false-positive identification, and may be the 

result of either neighbouring cluster overlapping or cross-contamination of the indexed libraries. The 

latter kind of cross-contamination may be overcome by using double indexing on the Illumina platform 

[276] , instead of the single indexing used in chapter 6. However, single indexing in Illumina is widely 

applied and cut-offs are commonly applied in other studies to avoid false-positive identification 

[181,198].  

In the ALF approach, long sequences were generated and PacBio is an apt technology to 

sequence these long reads. In a recent study, a new NGS platform from Oxford Nanopore Technologies, 

the MinION, was coupled to an enrichment approach for UGMO detection [326]. The time required to 

sequence the enriched products and data process was 2 hours, which is very fast. In the experiment 99% 

of the obtained reads could be mapped to the reference sequence [326]. In future studies the ALF 

approach could also be coupled to the MinION, for more rapid identification of UGMOs. Theoretically, 

the MioION technology may be applied on-site as the sequence device is portable and the run time is 

limited. An additional automated and web-based NGS data analysis workflow will further improve the 

approach and will aid laboratories to enforce GMO regulations. 

 

8.3.2.3 Identification of GMOs and UGMOs 

For identification of GMOs and UGMOs using NGS strategies, it is also of high importance that an 

adequate NGS data-analysis workflow is available, especially in case of UGMO identification were 

annotating an unknown sequence is part of the data analysis. In chapter 6 and 7, automated data analysis 

pipelines were presented for GMO and UGMO detection, respectively. However, using these pipelines 

requires basic bioinformatic knowledge, and not all the end users might have this expertise. 

Alternatively, a web based data analysing module could be developed for GMO and UGMO 

identification, similar to the CITESdetectionpipeline that was developed in chapter 3 for endangered 

species identification.  

Furthermore, using the data analysis pipeline for GMO detection in chapter 6 all the high 

abundant targets could be identified. However, not all of the low abundant GMOs could be identified. 

Future studies have to further assess the sensitivity of the NGS-based GMO screening for the detection 

of low abundant GMOs in reference and real-life materials. In the present studies, the wider NGS-based 

GMO screening approach was shown to be as sensitive as the standard TaqMan PCR assay for GMO 

screening. Based on these results, the application of the NGS=based screening is not expected to result 

in a loss of sensitivity compared to the current routine screening strategy. Additionally, it was shown 
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that with the wider NGS-screening additional GMOs could be identified. It can be recommended to 

already implement the wider screening strategy instead of the two-step TaqMan for GMO screening to 

improve the resolution of the screening. In chapter 7, for UGMO detection it was also found that the 

detection and identification of target may be compromised when targets are present at low abundance; 

the ALF approach was sensitive enough to identify the GMOs at 1%, but at the same time it was shown 

that not all low abundant GMOs could be identified. Future studies may address the efficiency of the 

ALF-approach for the detection of low abundant targets (~0.1-1%) in known complex reference samples 

to allow optimal results in the different types of samples. 

8.4 Conclusion  

 

8.4.1 Endangered species 

For the first part of the thesis the aim was to explore whether NGS-based strategies allow the 

simultaneous identification of all species, including endangered species, present in a sample, even in 

complex samples that may be heavily processed. In chapter 3 and 4 it was shown that the developed 

multi-locus metabarcoding method provides detailed information on the composition of highly 

complex experimental mixtures and different types of complex products.  

➢ It can be concluded that a combination of universal plant and animal barcode and mini-

barcode markers can provide high resolution for species detection, including endangered 

species, without being necessarily limited by matrix, DNA integrity or species richness of a 

sample.  

8.4.2 GMOs and UGMOs  

In the second part of the thesis the aim was to develop a reliable NGS-based method for the detection 

and identification of GMOs and UGMOs present in a given sample, regardless of their relative 

abundance. The strategy should be, on the one hand, based on enrichment of known sequence for 

GMOs, and on the other hand based on the elucidation of unknown sequences adjacent to identified 

known sequences in the case of UGMOs. In chapter 6 it was shown that the developed NGS-based broad 

GMO screening approach screening has a similar level of sensitivity compared to the currently routinely 

applied TaqMan PCR screening. Additionally, the more-targets NGS-based approach identified more 

GMOs and GMO-related sequences compared to the standard screening strategy.  

➢ It can be concluded that NGS-based screening for known GMO targets can provide reliable 

identification of GMOs in feed samples. The broader NGS-based screening facilitated the 

identification of more GM elements with a similar sensitivity compared to the currently 

applied routine two-step TaqMan PCR strategy.  

In chapter 7 it was shown that by using the ALF-NGS-based genome walking approach the partially 

known sequences of a model UGMO could be further elucidated. The method was shown to be 

effective in enriching for long fragments and in removing the genomic DNA. Furthermore, the 

strategy was found to be sensitive enough to identify some of the GMOs present at 1%.  

➢ It can be concluded that the ALF NGS-based genome walking approach can more effectively 

identify previously unknown sequences adjacent to an identified but not explained GMO-

related element. 
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8.4.3 Final conclusion 

The overall objective of this thesis was to use detailed genetic differences to identify species/varieties 

in complex products based on the application of advanced analytical NGS-based strategies, with a 

specific focus on the identification of two target groups: endangered species and GMOs. Currently 

applied screening methods provide limited resolution and flexibility in case of complex samples and 

are often limited by the coupling to Sanger sequencing that can only sequence single sequences [18]. In 

recent years the field of molecular biology is increasingly using NGS technologies to identify species, 

strains, varieties etc [24,25]. The application of NGS-based approaches in food authenticity for the 

detection and identification of endangered species as well as of GMOs and UGMOs is currently, 

however, still limited. In this thesis it was shown that NGS-based screening can contribute to an 

enhanced resolution and quality assurance, even in heavily processed samples, in case of the potential 

presence of endangered species in products of interest. Additionally, due to the more extensive 

screening in the NGS-based strategy, more GMOs and related targets could be identified compared to 

the standard TaqMan PCR screening. In case of the NGS-based genome walking approach, the 

advantage of using an NGS-based strategy was shown in the simultaneous amplification of multiple 

amplicons and the enrichment of long sequences, providing better data to also identify UGMOs in 

specific samples. 

 

➢ It can be concluded that the use of NGS-based methods for screening and identification can 

provide accurate and reliable information on specific genetic differences related to 

species/varieties present in complex food or feed products. The screening methods for both 

endangered species as well as GMOs as have been developed within the frame of the present 

thesis, have improved the analytical repertoire in both fields of application. 

 

The results of this thesis highlight the potential of NGS-based strategies in species and GMO 

identification and show that NGS-based approaches have the potential to be effectively used for food 

compositional screening. The methods as have been developed in this thesis study will aid customs and 

regulatory agencies in monitoring food and feed samples for enforcement purposes.  
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Food products are often composed of multiple ingredients that are in addition generally heavily 

processed, this makes it very challenging to determine the ingredient composition. Traditional 

molecular biological techniques, such as, specific PCR followed by Sanger sequencing or TaqMan PCR 

are most frequently applied to identify species/varieties in food/feed products. In the last decade, next 

generation sequencing (NGS) technologies have been developed and have been widely applied in 

medical science and other areas, such as agricultural and environmental sciences. The aim of this thesis 

was to use detailed genetic differences to identify species/varieties in feed/food products based on 

advanced analytical NGS based strategies. The study focused on the identification of two target groups: 

(a) endangered species and (b) GMOs. Elucidating genetic composition was subdivided in three main 

topics: enrichment, NGS based strategy and identification. For both applications novel molecular assays 

were developed and coupled to an apt NGS technology, data analysis was performed with a dedicated 

bioinformatics pipelines that were developed for the specific needs per application.  

With respect to endangered species identification, in chapter 2 it was shown that no dedicated 

method was available to identify endangered plant and animal species in real-life samples. To address 

this issue, in chapter 3, a multi-locus DNA metabarcoding approach was developed comparing 12 plant 

and animal barcode and mini-barcode markers, and the method was validated across 16 laboratories. 

The results showed that the approach was sensitive enough to identify species present at 1% and 

consistent and reproducible results were observed across the laboratories for all the analysed 

experimental mixtures and real-life samples. The combination of multiple barcodes enabled the 

identification of all the species used in the experimental mixtures, and additionally increased the quality 

assurance for detection. Furthermore, in chapter 4 the applicability of the multi-locus DNA 

metabarcoding approach was evaluated on 18 traditional medicines (TMs) belonging to different 

matrices. It was shown that an adequate DNA clean-up system is necessary to remove impurity from 

real-life samples, in the metabarcoding analysis of the TMs mainly mini-barcode accounted for the 

identification of the taxa. Regarding to the identified species in the TMs, only a few declared species on 

the label could be identified across the TMs, however, many undeclared species were identified in the 

TMs including the endangered species (Ursus arctos). The conclusion for the first part of the thesis was 

that a combination of universal plant and animal barcode and mini-barcode markers can provide high 

resolution for species detection, without being limited by matrix, DNA integrity or species composition 

of a sample.  

With respect to the identification of GMOs, the AM-SEQ NGS-based GMOs screening approach 

was developed and evaluated (chapter 6). The obtained results from the NGS based screening were 

compared to the currently applied two-step TaqMan PCR based GMO screening. This comparison 

showed that high abundant targets could be detected similarly, however, low abundant targets could 

not always detected in one of the two methods. With the use of a broader NGS-based screening strategy 

more GMOs and related targets could be identified compared to the more limited two-step TaqMan 

PCR based GMO screening. Additionally, some identified low abundant targets could not be explained, 

which might indicate the presence of Unknown GMOs (UMGOs) or, alternatively, the donor organism. 

To identify the unknown sequence of a UGMO a genome walking (GW) approach is necessary, and in 

chapter 5 the available GW approaches were summarised and from this literature review it was 

concluded that at that moment no GW method was available to full fill the requirements of UGMOs 

identification, such as, 0.1% detection limit and enrichment of UGMOs target in a background of GMOs. 

To address these issues, in chapter 7, Amplification of Linearly-enriched Fragments (ALF) approach was 

developed and combined with PacBio SMRT NGS technology. The ALF approach was subsequently 

evaluated on real-life mimicking samples, where sequences related to GMOs present at 1% could be 
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identified. The longest enriched fragment was around 2.5 kbp and a data analysis model was used to 

distinguish the sequences belonging to known GMOs from the unknown sequences by a sequence of 

data mapping. With the data analysis model, previous unknown sequence information of a GMO was 

obtained, showing that the ALF approach can be used to identify the unknown sequence of a UGMO in 

real-life samples. For the second part of the thesis it was concluded that NGS based GMO screening is 

an accurate and reliable screening method for GMOs, additionally, the combination of a genome 

walking approach and NGS is sensitive enough to identify previously unknown sequences for GMO 

present at low abundance.  

In general, it can be concluded that the use of NGS-based screening methods can provide 

accurate and reliable information on the detailed genetic differences of species/varieties present in 

complex food/feed products. Using enrichment of known targets both well-known species as well as 

known and unknown GM sequences could be identified, not limited by the complexity of a sample. The 

results of this thesis show that NGS-based approaches have the potential to be effectively used for food 

composition screening, and the developed methods can aid Customs, regulatory agencies, and food 

industries in monitoring food and feed samples.  
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Propositions 

1. The evolution of food authenticity methods will drive the evolution of food fraud. 

(this thesis) 

2. Identification of species and GM variants is unlimited when affordable NGS methods 

are available. 

(this thesis)  

3. Viruses are harmful, but the use of viruses for gene therapy will reverse this 

perception.  

4. As evolution drives diversity, conservation efforts to maintain diversity is hindering 

evolution.    

5. A species is more than its ATGC content. 

6. In the scientific community knowledge should be valued over money. 
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