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Abstract  11 

LiGAPS-Beef (Livestock simulator for Generic analysis of Animal Production Systems 12 

– Beef cattle) is a generic, mechanistic model designed to quantify potential and feed-13 

limited growth, which provides insight in the biophysical scope to increase beef 14 

production (i.e. yield gap). Furthermore, it enables identification of the bio-physical 15 

factors that define and limit growth, which provides insight in management strategies 16 

to mitigate yield gaps. The aim of this paper, third in a series of three, is to evaluate 17 

the performance of LiGAPS-Beef with independent experimental data. After model 18 

calibration, independent data were used from six experiments in Australia, one in 19 

Uruguay, and one in the Netherlands. Experiments represented three cattle breeds, 20 

and a wide range of climates, feeding strategies, and cattle growth rates. The mean 21 

difference between simulated and measured average daily gains (ADGs) was 137 g 22 

day-1 across all experiments, which equals 20.1% of the measured ADGs. The RMSE 23 

was 170 g day-1, which equals 25.0% of the measured ADGs. LiGAPS-Beef 24 

successfully simulated the factors that defined and limited growth during the 25 

experiments on a daily basis (genotype, heat stress, digestion capacity, energy 26 

deficiency, and protein deficiency). The simulated factors complied well to the reported 27 

occurrence of heat stress, energy deficiency, and protein deficiency at specific periods 28 

during the experiments. We conclude that the level of accuracy of LiGAPS-Beef is 29 

acceptable, and provides a good basis for acquiring insight in the potential and feed-30 

limited production of cattle in different beef production systems across the world. 31 

Furthermore, its capacity to identify factors that define or limit growth and production 32 

provides scope to use the model for yield gap analysis. 33 

Keywords: beef cattle, grassland, growth, production ecology, yield gap analysis     34 
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Implications  35 

The livestock model LiGAPS-Beef is designed to estimate potential (i.e. theoretical 36 

maximum) and feed-limited production of beef cattle, and to identify factors that define 37 

and limit cattle growth in different beef production systems across the globe. This paper 38 

evaluates LiGAPS-Beef and demonstrates that its estimates for growth of cattle are 39 

reasonably accurate for beef production systems in Australia, Uruguay, and the 40 

Netherlands. LiGAPS-Beef also identifies when the bio-physical factors, genotype and 41 

climate define growth, and when feed quality and quantity limit growth. Hence, the 42 

model may contribute to insights in how to increase beef production in a sustainable 43 

manner.  44 

Introduction  45 

Population growth and increasing wealth will drive future demand for food products in 46 

general, and for animal-source food in particular. This is likely to put more pressure on 47 

scarce land, water, and energy. Moreover, using land and resources for agriculture 48 

also results in negative impacts on the environment (Godfray et al., 2010). Sustainable 49 

food production, therefore, requires enhanced resource use efficiency and mitigation 50 

of environmental impacts (Herrero and Thornton, 2013). A pathway to supply food to 51 

an increasing world population is sustainable intensification, which is defined as 52 

reducing environmental impacts while simultaneously increasing the production of food 53 

per unit land (Godfray et al., 2010).  54 

Regions with high scope for sustainable intensification are those displaying a large 55 

yield gap. The latter is defined as the difference between the potential (i.e. theoretical 56 

maximum) or limited production and the actual production (Van Ittersum et al., 2013).         57 

Quantification of potential and limited production in crops is generally conducted with 58 
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mechanistic crop growth models (Van Ittersum et al., 2013). These models are based 59 

on concepts of production ecology, and their use is well-established in crop science 60 

(Van Ittersum and Rabbinge, 1997, Jones et al., 2003, Keating et al., 2003). Such 61 

models also identify the factors that define and limit crop growth. This identification 62 

provides insight in the options to mitigate yield gaps and to improve production or 63 

resource use efficiency (Van Ittersum et al., 2013). Still, models based on concepts of 64 

production ecology have not been developed for livestock production, except for 65 

LIVSIM (LIVestock SIMulator; Rufino et al., 2009).  66 

For this reason, we developed a mechanistic livestock model for beef cattle, LiGAPS-67 

Beef (Livestock simulator for Generic analysis of Animal Production Systems – Beef 68 

cattle; Van der Linden et al., 2017a and 2017b). LiGAPS-Beef aims to simulate 69 

potential and feed-limited growth and production of beef cattle in different farming 70 

systems across the world, and to identify the biophysical factors that define and limit 71 

growth. Beef production of a bovine animal is simulated by interconnected sub-models 72 

dealing with thermoregulation, feed intake and digestion, and energy and protein 73 

utilisation. Beef production at the herd level is assessed by upscaling from individual 74 

animals (i.e. the animal level) to a herd.  75 

Model evaluation quantifies the accuracy of model results, and is essential for 76 

credibility and confidence that a model is appropriate for the aim it was designed for. 77 

Model evaluation is conducted by comparing results from model simulations with 78 

independent experimental data that have not been used for model calibration 79 

(Bellocchi et al., 2010). This process is also referred to as validation or model 80 

comparison, but here we adopt the term model evaluation. In a companion paper, 81 

model evaluation was already performed for the thermoregulation and the feed intake 82 

and digestion sub-models separately (Van der Linden et al., 2017a).  83 
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The aim of this paper is to evaluate the complete model LiGAPS-Beef to investigate 84 

whether it simulates beef production in different systems across the world accurately, 85 

and whether it identifies the factors that define and limit growth and production of beef 86 

cattle. LiGAPS-Beef has been designed to simulate beef herds, and includes both 87 

productive animals (calves sold to fatteners or sold directly for slaughter) and 88 

reproductive animals (cows). Although LiGAPS-Beef has been designed to simulate 89 

beef production at the herd level, model evaluation was conducted at the animal level, 90 

because availability of data at the herd level was too limited to conduct a proper and 91 

meaningful evaluation. 92 

Materials and methods  93 

A detailed description of LiGAPS-Beef is provided in a companion paper (Van der 94 

Linden et al., 2017b). Data for calibration and evaluation of LiGAPS-Beef were 95 

obtained from eight experiments in contrasting beef production systems, which have 96 

been reported in the scientific literature (Table 1). Six of the selected experiments were 97 

conducted in Australia (experiments 1-6), one in Uruguay (experiment 7), and one in 98 

the Netherlands (experiment 8). In each of these experiments, drinking water was 99 

assumed to be available ad libitum, and diseases and stress were assumed to be 100 

absent. Weighing occurred once per two weeks (experiment 1, 2, 3, and 7) up to once 101 

per two months (experiment 8). In addition, animals were treated with medicines in 102 

most experiments to prevent prevalent diseases. Mineral deficiencies were assumed 103 

to be absent in the experiments. If cattle were fasted prior to weighing, we assumed 104 

that 10% of total body weight (TBW) was lost during the fasting period, which is equal 105 

to the full rumen content in LiGAPS-Beef.  106 
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The eight experiments contain data on 38 treatments, which were split up in a dataset 107 

for calibration (7 treatments) and a dataset for evaluation (31 treatments). Each of the 108 

three countries and each of the three breeds used in the experiments was represented 109 

in the dataset for calibration. During calibration, unknown and uncertain parameters 110 

were adjusted to equal the simulated and measured average daily gain (ADG). Model 111 

evaluation was conducted by comparing the simulated and measured ADGs. Model 112 

performance is reflected in the mean absolute error (MAE, Eq. 1), the mean square 113 

error (MSE), and the RMSE (Eq. 2) (Bennett et al., 2013). The MSE was decomposed 114 

into the bias, slope, and random components (Bibby and Toutenburg, 1977), 115 

expressed as errors in central tendency, errors due to regression, and errors due to 116 

unexplained variance, respectively.    117 

Eq. 1 MAE = Σ | O – S |  118 

Eq. 2 RMSE =     Σ(O – S)2  119 

Where O is the observed value, S is the simulated value, and n is the number of 120 

observations. Factors that define growth are cattle genotype, or breed, and climate via 121 

heat and cold stress (Van de Ven et al., 2003, Van der Linden et al., 2015). Feed 122 

quality and quantity are factors that can limit growth in LiGAPS-Beef due to a lack of 123 

digestive capacity, energy deficiency, or protein deficiency (Van der Linden et al., 124 

2017b). The defining factors determine the simulated ADGs under potential production 125 

in LiGAPS-Beef, whereas the defining and limiting factors jointly determine the 126 

simulated ADGs under feed-limited production (Van der Linden et al., 2017b). 127 

Identification which of these factors contribute most to yield gaps is key to reveal 128 

options for yield gap mitigation (Van Ittersum et al., 2013). Resemblance of the 129 

reported and the simulated factors that define and limit growth provides evidence that 130 
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LiGAPS-Beef can identify these factors. In the next sections, we describe the 131 

experiments conducted, the input data and model settings used to simulate the 132 

conditions in the experiments, and the calibration procedures for each of the three 133 

countries.                 134 

Beef production in Australia  135 

Experiments 1-3 were conducted at the Frank Wise Institute of Tropical Agricultural 136 

Research (Table 1). The Frank Wise Institute is located in the Ord river irrigation area 137 

in Western Australia (15.65° S, 128.72°E). The cattle breed was crossbred ¾ Brahman 138 

× ¼ Shorthorn (B×S). In experiment 2, steers were implanted with the hormonal growth 139 

promotant Compudose 200, which is known to increase growth by 25% (Frisch and 140 

Hunter, 1990a), whereas in experiment 3 heifers were implanted with the hormonal 141 

growth promotant Synovex-H, which is known to increase growth by 26% (Frisch and 142 

Hunter, 1990b). The climate is characterized by a dry and a wet season, with average 143 

temperatures of 26.2°C and 31.7°C, respectively (Petty et al., 1998). Experiment 2 was 144 

conducted in the dry season. A treatment that mimicked the conditions of the wet 145 

season with irrigation was excluded from experiment 2, as this treatment might have 146 

influenced feed intake (Petty and Poppi, 2008). Cattle grazed irrigated pastures with 147 

leucaena (Leucaena leucocephala cv. Cunningham) and pangola grass (Digitaria 148 

eriantha cv. Steudel) in each of the experiments. Experiments 1 and 3 investigated 149 

effects of feed quality through supplementation of cracked maize, and experiment 3 150 

also investigated supplementation of molasses. Feed was amply available during 151 

experiments 1-3 (Petty et al., 1998, Petty and Poppi, 2012).  152 

Weather data used for model simulations were obtained from the nearby Kimberley 153 

research station (15.65°S, 128.71°E). Maize was assumed to have a DM concentration 154 
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of 85%. The maximum amount of energy for compensatory growth, determined by the 155 

animal genotype, was increased by 25% for steers in experiment 2 and 26% for heifers 156 

in experiment 3 to account for the effect of hormonal growth promotants. LiGAPS-Beef 157 

was calibrated by using all measured ADGs from experiment 1. The maximum adult 158 

weight and birth weight of B×S cattle were estimated during calibration. Since some 159 

pasture characteristics were unknown, the following parameters were calibrated to 160 

minimize the RMSE between simulated and measured ADGs: heat increment of 161 

feeding, fill units, soluble non-structural carbohydrates, and the digestible NDF content. 162 

The ADGs from experiments 2 and 3 were used as independent datasets for model 163 

evaluation (Table 1). 164 

Experiments 4 and 5 were conducted at the Brian Pastures Research Station, near 165 

Gaynah, Queensland (25.66°S, 151.75°E). Crossbred Bos indicus steers grazed on 166 

pastures with leucaena in experiment 4 (Dixon and Coates, 2008). Steers grazed on 167 

pastures with a mix of grasses, on pastures with grass and legumes, and on pastures 168 

with stylo (Stylosanthes seabrana) in experiment 5 (Hill et al., 2009). Feed availability 169 

was insufficient during some periods in experiment 4, whereas ample feed was 170 

available in experiment 5. The crossbred B. indicus cattle in experiments 4 and 5 were 171 

assumed to correspond to the B×S cattle used in experiments 1-3. Weather data were 172 

obtained from the Brian Pastures Research Station. Estimated intake by Dixon and 173 

Coates (2008) was adopted as maximum feed intake in experiment 4, and feed intake 174 

was assumed to be ad libitum in experiment 5 (Hill et al., 2009). Feed quality over time 175 

(DM digestibility and crude protein) was adopted from Dixon and Coates (2008) for 176 

experiment 4, and from Hill et al. (2009) for experiment 5. Calibration was not 177 

conducted for experiments 4 and 5, so all measured ADGs were used for model 178 

evaluation (Table 1). 179 
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Experiment 6 was conducted at the CSIRO Beerwah Research Station in Queensland 180 

(26.83°S, 153.08°E) (Evans and Hacker, 1992). Hereford cattle grazed on pastures 181 

with six different grasses, including four varieties of Setaria sphacelata (var. splendida, 182 

and cvv. Nandi, Narok, and Kazungula), pangola grass (Digitaria eriantha spp. pentzii), 183 

and kikuyu grass (Pennisetum clandestinum cv. Whittet). Feed availability exceeded 184 

animal requirements (Evans and Hacker, 1992, Hacker and Evans, 1992). Cattle were 185 

weighed after a period of sixteen hours without feed and water. The Hereford cattle in 186 

this experiment were assumed to be genetically the same as the Hereford cattle in 187 

experiment 7 (Uruguay). Weather data were obtained from the Beerwah Forest Station 188 

(26.86°S, 152.98°E). Data on feed quality dynamics (DM digestibility) were complete 189 

for steers grazing from September 1972 up to August 1973 in Evans and Hacker 190 

(1992). Hence, simulations were conducted only for this period. All measured ADGs 191 

from experiment 6 were used for model evaluation (Table 1).               192 

Beef production in Uruguay  193 

Experiment 7 was conducted at the experimental station of the Agronomy Faculty of 194 

the University of Uruguay, which is located in Paysandú (32.33°S, 58.03°W). We used 195 

data for the year 2002. Hereford steers grazed improved pastures with fescue (Festuca 196 

arundinacea) and clover (Trifolium repens and T. pratense). Experiment 7 was 197 

conducted in summer, when ADG is lower than in winter (Beretta et al., 2006). Feed 198 

quality for half of the cattle was improved by supplementing cracked maize at 1% of 199 

the TBW per day, whereas the other half did not receive maize. The amount of pasture 200 

available was 3, 6, and 9 kg DM per 100 kg TBW, which resulted in a 2 × 3  factorial 201 

design with six treatments (Beretta et al., 2006). 202 
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Weather data used for model simulations were recorded at the experimental station. 203 

Estimated pasture intake by Beretta et al. (2006) was adopted as maximum feed intake 204 

for experiment 7. The model was calibrated with the ADG of a single treatment with a 205 

pasture availability of 3 kg DM per 100 kg TBW per day without maize supplementation. 206 

The maximum adult weight and birth weight of Hereford cattle were estimated during 207 

calibration. Since some pasture characteristics were not available, the following 208 

characteristics were calibrated: heat increment of feeding, fill units, soluble non-209 

structural carbohydrates, and the digestible NDF content. The fill unit intake was 210 

multiplied with a factor accounting for the available biomass (Jouven et al., 2008), and 211 

the energy requirement for grazing was calculated from the available biomass (Freer 212 

et al., 1997). The other five treatments in Beretta et al. (2006) were used for model 213 

evaluation. 214 

Beef production in the Netherlands 215 

Experiment 8 was conducted in three nature areas in the Netherlands: the Renkumse 216 

Benedenwaarden, a riverine nature area (51.97°N, 5.72°E); the Doorwerthse Heide, a 217 

heathland area (52.00°N, 5.78°E); and Karshoek, a mixed heathland-riverine nature 218 

area (52.53°N, 6.53°E). Experiment 8 was conducted with steers of the Meuse-Rhine-219 

Yssel breed, and lasted for more than two years (Table 1). Analysis of bone material 220 

indicated that mineral deficiencies (Na and P) limited growth of cattle grazing 221 

permanently on the heathland. These cattle were excluded from the analysis, since 222 

LiGAPS-Beef does not account for mineral deficiencies (Van der Linden et al., 2017b). 223 

The riverine and mixed heathland-riverine areas were each grazed by a group of 224 

steers. Another group of steers was kept in the riverine area during summer, and in 225 

the heathland area during winter (Wallis de Vries, 1996). Vegetation in the riverine area 226 

was dominated by perennial ryegrass (Lolium perenne), creeping bentgrass (Agrostis 227 
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stolonifera), and couch grass (Elymus repens). Vegetation in the heathland area was 228 

dominated by heather (Calluna vulgaris) and wavy hairgrass (Deschampsia flexuosa). 229 

Cattle TBW, pasture intake, and pasture quality were measured every two months 230 

during the experiment (Wallis de Vries, 1996).  231 

Weather data used for model simulations were taken from nearby stations in 232 

Wageningen (51.97°N, 5.67°E) and Enschede (52.27°N, 6.90°E). Measured pasture 233 

quality and intake were used as model inputs. The reported feed intake was set as the 234 

maximum feed intake in LiGAPS-Beef. The maximum adult weight and birth weight of 235 

Meuse-Rhine-Yssel cattle were estimated during calibration. In addition, the energy 236 

requirements for locomotion and grazing in nature areas are expected to be higher 237 

than in the other experiments. LiGAPS-Beef was calibrated, therefore, by adjusting the 238 

parameter for net energy (NE) requirements for physical activity, which includes 239 

locomotion and grazing. Calibration was conducted in such a way that the simulated 240 

and measured TBW of animals in the riverine area were the same in the seventh month 241 

after the start of experiment 8. A period of seven months was considered to be 242 

adequate for calibration of the model. The ADG in the rest of the experiment in the 243 

riverine area and in the two other nature areas were used for model evaluation. 244 

Results  245 

Model calibration 246 

Calibration resulted in an MAE of 85 g live weight (LW) day-1, or 11.3% of the mean 247 

measured ADGs in Australia in the dry and wet season (Fig. 1). The RMSE was 109 g 248 

LW day-1, or 14.4% of measured ADGs. The bias component of the MSE was 0%, the 249 

slope component was 22%, and the random component 78%. The intercept of the 250 

regression line did not differ significantly from zero (P = 0.17) and the slope did not 251 
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differ significantly from one (P = 0.09). The model underestimated ADG for two 252 

treatments with maize supplementation (1.0 and 1.5 kg FM maize head-1 day-1) in the 253 

dry season, but overestimated ADG for the highest level of maize supplementation (2.0 254 

kg FM maize head-1 day-1). Simulated and measured ADGs were equal for both 255 

Uruguay and the Netherlands, because calibration was conducted in such a way that 256 

the simulated ADG matched the measured ADG of a single experimental treatment 257 

(Supplementary Material, Figs S30 and S36). 258 

General model evaluation 259 

Model evaluation based on the independent datasets from Australia, Uruguay, and the 260 

Netherlands resulted in an MAE of 137 g LW day-1, or 20.1% of the mean measured 261 

ADG (Fig. 2, Table 2). The RMSE was 170 g LW day-1, or 25.0% of the mean measured 262 

ADG. The random component of the MSE accounted for 75% of the variation (Table 263 

2). The regression line had an intercept not significantly different from zero (P = 0.077), 264 

but its slope (0.73 kg LW kg-1 LW) was significantly different from one (P = 0.008). So 265 

far, model evaluation was conducted only for ADGs, but it can be extended to feed 266 

intake, if measured in experiments. Evaluation of ad libitum simulated and measured 267 

pasture intake for the dry and wet season in experiment 1 indicated that LiGAPS-Beef 268 

overestimated measured pasture intake, especially at low intake levels (MAE = 1.05 269 

kg DM day-1, or 20.6% of the mean measured intake) (Fig. 3). The bias component 270 

accounted for 71% of the MSE, the slope component for 1%, and the random 271 

component for 28%. The intercept and slope of the regression line between simulated 272 

and measured feed intake were not significantly different from zero (P = 0.37) and one 273 

(P = 0.34). 274 

Country-specific model evaluation 275 
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Australia. The MAE of simulated ADGs for B×S cattle in experiments 1-3 was 154 g 276 

LW day-1, which equals 17.7% of the mean measured ADG (Table 2). Simulated ADGs 277 

were lowest if cattle had access to pasture only, without supplementation of maize or 278 

molasses. Increasing maize supplementation in experiment 1 and 3 resulted in 279 

increasing simulated ADGs (Table 3). Supplementation with 1.25 and 2.50 kg 280 

molasses per head per day in experiment 3 increased both simulated and measured 281 

ADGs compared to no supplementation. Providing more than 2.50 kg molasses did not 282 

increase simulated ADGs much further (Table 3). Heat stress was the factor that 283 

defined growth during large parts of experiment 3 according to LiGAPS-Beef, except if 284 

molasses was fed at 2.50 kg per head per day or more (Table 3). For these amounts 285 

of molasses, the genotype was a factor that defined growth, especially at 286 

supplementation of 3.75 kg molasses head-1 day-1 or higher. Protein deficiency only 287 

occurred in experiment 3 with 5.00 kg molasses (Table 3). 288 

The average MAE for experiments 4 and 5 was 95 g LW day-1, which equals 17.1% of 289 

the mean measured ADG (Table 2). Simulated ADGs were in line with the measured 290 

ADGs in experiment 4 (Table 3, Fig. 2). Measured ADGs were underestimated in four 291 

out of seven treatments in experiment 5, especially in the year 2004-2005 during 292 

summer and early autumn. Heat stress and digestion capacity limitation were the major 293 

factors influencing growth in experiments 4 and 5 (Table 3). Energy deficiency was 294 

also identified as a limiting factor in experiment 4, especially in the year 2002-2003, 295 

while in 2004-2005 protein deficiency was identified as a limiting factor too. The 296 

average MAE for experiment 6 was 238 g LW day-1, which equals 48.9% of the mean 297 

measured ADG (Table 2). The ADGs were overestimated considerably in this 298 

experiment, except for cattle grazing pastures with Kazungula. The factors influencing  299 

growth most in experiment 6 were heat stress and digestion capacity limitation in 300 
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pastures with Nandi and Kazungula, whereas the genotype, heat stress, and digestion 301 

capacity limitation influenced growth most in pastures with other tropical grasses 302 

(Table 3).             303 

Uruguay. The MAE of simulated ADGs in experiment 7 was 92 g LW day-1, which 304 

equals 9.8% of the mean measured ADG (Table 2). The simulated ADG was lowest 305 

with a pasture availability of 3% of the TBW without maize supplementation. The 306 

simulated ADGs with a pasture availability of 6% and 9% of the TBW were similar 307 

(Table 3). Maize supplementation increased the simulated ADGs compared to ADGs 308 

without supplementation, irrespective of the amount of pasture available. The genotype 309 

and heat stress defined growth with maize supplementation, whereas heat stress and 310 

either digestion capacity limitation or energy deficiency also influenced growth without 311 

maize supplementation (Table 3). 312 

The Netherlands. The MAE of simulated ADGs in experiment 8 was 19.4% of the mean 313 

measured ADGs (Table 2). Both simulated and measured ADGs were low or negative 314 

during winter, and high during spring and summer (Fig. 4). The maximum ADG 315 

between two measurements was 2.30 kg LW day-1 for cattle grazing in the riverine 316 

area during summer and in the heathland area in winter. Simulations indicated that the 317 

genotype generally defined growth from late spring until late summer or early autumn. 318 

Heat stress occurred during summer, whereas digestive capacity limitation and energy 319 

deficiency generally occurred during winter (Fig. 4). Cold stress was not a defining 320 

factor for growth during winter. 321 

Discussion 322 

General model evaluation 323 
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Evaluation of LiGAPS-Beef with independent data indicates that the MAE was 20.1% 324 

of the measured ADGs (Table 2). Fixed and universal criteria to judge the MAE are 325 

rarely found in literature, since the question whether a models’ accuracy is good 326 

enough depends on its aim. We deem the current accuracy of LiGAPS-Beef as 327 

acceptable, especially because the evaluation dataset contained very contrasting beef 328 

production systems from three countries. The cattle model LIVSIM is based on 329 

concepts of production ecology also (Rufino et al., 2009). To our knowledge, MAEs of 330 

LIVSIM are not available, so the MAEs of LiGAPS-Beef and LIVSIM cannot be 331 

compared. Because ADGs are estimated fairly well with LiGAPS-Beef in different beef 332 

production systems, it seems plausible that the factors that define and limit growth are 333 

captured reasonably to good as well. The models’ ability to identify those factors will 334 

be discussed further in the section on country-specific model evaluation.  335 

The error due to random variation was 75% of the MSE (Table 2). Hence, a large 336 

percentage of the MSE cannot be explained by improving the fit between measured 337 

and simulated ADGs. This result could be caused by natural variation among animals 338 

and measurement errors. For example, feeding cattle 2.0 kg FM maize per day in 339 

experiment 1 resulted in a lower measured ADG than feeding 1.0 or 1.5 kg FM maize 340 

(Table 3). This result seems to be conflicting with our knowledge of animal nutrition. 341 

The three highest simulated ADGs overestimated growth for cattle fed molasses in 342 

experiment 3, and contribute to the low slope (Table 3). In addition, the lowest two 343 

simulated ADGs underestimated growth for experiment 5 (Table 3, Fig. 2). The 344 

reasons for the overestimation and underestimation are not clear, as will be discussed 345 

in the section on country-specific model evaluation. 346 

LiGAPS-Beef was calibrated for ADGs in experiment 1, but not for feed intake, since 347 

ADGs are generally measured more precisely than feed intake. Although the simulated 348 
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and measured intake did not differ significantly from each other, the relative MAE of 349 

feed intake was 20.6%. Measurements of feed intake in grazing animals often lack 350 

precision, which may explain part of the MAE. Using different measurement techniques 351 

for feed intake can result in different estimates of pasture intake, even in the same 352 

experiment (Undi et al., 2008). Furthermore, we assumed that ADG in experiments 353 

was not affected by growth limiting factors, such as drinking water, vitamins and 354 

minerals, and by growth reducing factors (diseases and stress). Chemical analysis of 355 

bones indicated that mineral deficiencies limited growth of cattle in the heathland area 356 

in experiment 8 (Wallis de Vries, 1996). Although this treatment was excluded from the 357 

analysis, mineral deficiencies might have played a role in other treatments and 358 

experiments, albeit at a lesser extent. The same holds for vitamins, drinking water, 359 

diseases, and stress, but the extent to which they might have affected ADG seems 360 

fairly limited, given the fit between simulated and measured ADGs (Table 2, Fig. 2). 361 

Country-specific model evaluation 362 

Australia. LiGAPS-Beef estimated ADGs reasonably well for most treatments in 363 

experiments 2-6. Nevertheless, simulated ADGs of cattle fed with high levels of 364 

molasses were higher than measured ADGs in experiment 3. Increasing 365 

supplementation of molasses resulted in a decrease in measured ADGs (1.12 kg to 366 

0.86 kg LW day-1) in experiment 3 (Petty and Poppi, 2012), but simulated ADGs 367 

showed an inverse trend (0.93 kg to 1.21 kg LW day-1) (Table 3). Acidosis might not 368 

explain the negative relation between molasses supply and ADG, as Brahman 369 

crossbred steers fed with high proportions of molasses (50% and 75%) showed no 370 

severe decrease in rumen pH (Tuyen et al., 2015). Causes for decreasing ADGs under 371 

high molasses supply are not yet fully understood, and model users should thus be 372 

careful when simulating high molasses supplementation with LiGAPS-Beef. Model 373 
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simulations indicated that heat stress was the major factor defining growth in 374 

experiments 1-3, except at high levels of molasses supplementation in experiment 3 375 

(Table 3). This result is in agreement with notions of Petty et al. (1998) that a restricted 376 

heat release under hot conditions might have limited feed intake and ADG.  377 

Simulated ADGs corresponded fairly well with measured ADGs in experiments 4 and 378 

5 (Table 3). After winter and spring, compensatory growth was observed during 379 

summer and early autumn (Hill et al., 2009). Compensatory growth was simulated fairly 380 

well for the year 2003-2004 in experiment 5. The simulated energy deficiency in 381 

experiment 4 is explained by low feed availability. A low feed availability was reported 382 

to be a limiting factor in experiment 4 as well (Dixon and Coates, 2008). Protein 383 

deficiency was simulated to occur only from August to October 2004. Dixon and Coates 384 

(2008) also indicated that the CP content of pasture was likely to be limiting growth in 385 

September and October 2004, due to a small proportion of leucaena in the diet. Heat 386 

stress and feed quality (digestion capacity limitation) were identified as the factors 387 

influencing growth most in experiment 5, which is in line with expectations. 388 

Model simulations mostly overestimated the measured ADGs in experiment 6 (Table 389 

3). Evans and Hacker (1992) found that ADGs were higher in 1971-1972 than in 1972-390 

1973, and that ADGs were higher in 1972-1973 than in 1973-1974. This could not be 391 

explained by feed availability, mineral deficiencies, or unusual climate conditions, and 392 

neither by feed digestibility. Since ample feed was available, cattle production was 393 

assumed to be directly related to feed quality, provided growth rates were below the 394 

potential growth rates (Evans and Hacker, 1992). Simulations indeed identified the 395 

genotype as the most defining factor in experiment 6 during 2-56% of the experimental 396 

period, and feed quality during 11-68%, but heat stress also covered 29-41% of the 397 

experimental period (Table 3).          398 
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Uruguay. Simulated ADGs were 0.76 and 0.77 kg LW day-1 for cattle without maize 399 

supplementation and a pasture availability of 6 and 9% of TBW in experiment 7 (Table 400 

3). Measured ADGs (0.65 and 0.96 kg LW day-1) differed considerably. An explanation 401 

for this difference is that the quality of pasture actually consumed increases with 402 

increasing pasture availability, as this offers more opportunities for diet selection 403 

(Zemmelink, 1980, Beretta et al., 2006). In our simulations, however, pasture quality 404 

was assumed to be the same for all simulations in Uruguay, because it was not 405 

measured for the individual treatments in Beretta et al. (2006). Simulated and 406 

measured ADGs were similar with maize supplementation, irrespective of pasture 407 

availability (Table 3). This result is in line with the expectation that maize 408 

supplementation reduces the dependency of cattle on pasture (Beretta et al., 2006). 409 

The Netherlands. In experiment 8, TBW dynamics were generally within the confidence 410 

intervals in the riverine area and with grazing in the riverine area during summer and 411 

in the heathland during winter (Fig. 4). For the latter area, the ADG between the third 412 

and second last measurement was 2.3 kg LW day-1, which seems exceptionally high. 413 

To our knowledge, such ADGs are not likely. Cattle were not fasted prior to weighing 414 

in experiment 8 (Wallis de Vries, 1996). Large changes in TBW may be explained, 415 

therefore, by varying rumen contents of cattle during weighing. Model simulations did 416 

not identify cold stress as a defining factor for growth during winter in experiment 8. 417 

This result may be explained by the relatively high TBWs of cattle and consequently 418 

the relatively high body weight to body surface ratio, which allows animals to resist cold 419 

periods better. Digestive capacity and energy deficiency were limiting cattle growth in 420 

winter (Fig. 4). This result is not surprising, as feed quality and available feed quantity 421 

are expected to be low in nature areas during winter.  422 

Validity domain of LiGAPS-Beef and its future applications 423 
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While the overall model performance was acceptable, performance in the three 424 

countries resulted in mixed outcomes. For example, the relative MAE was largest for 425 

cattle in the CSIRO Beerwah Research Station, Australia, but the relative MAEs for 426 

cattle in other experimental stations in Australia were below the MAE across all 427 

experiments (Table 2). These mixed outcomes suggest that further model evaluation 428 

is required to delineate the validity domain of LiGAPS-Beef. The current model 429 

provides an appropriate basis for further model evaluation. Further model evaluation 430 

with different breeds, climates, and feeding strategies than used in this research will 431 

yield insights in the model performance under a variety of conditions. These insights 432 

can be used subsequently to further delineate the validity domain of LiGAPS-Beef and 433 

to identify required model improvements.  434 

Whether the performance of a model is sufficient depends on the research aim and 435 

context. Our results suggest that LiGAPS-Beef meets the aim it was developed for, 436 

and that its performance is acceptable. First, LiGAPS-Beef assessed feed-limited 437 

production in different systems reasonably well (MAE = 137 g LW day-1, or 20.1% of 438 

mean measured ADG). Second, the defining and limiting factors for growth simulated 439 

by the model complied with the defining and limiting factors reported from experiments 440 

on several occasions. This holds promise for LiGAPS-Beef to be of generic value to 441 

identify the bio-physical factors that define and limit growth most. Based on these 442 

factors, one can subsequently identify promising options to narrow yield gaps. A next 443 

step would be to explore the effect of bio-physical improvement options on yield gaps. 444 

Such options must then also be assessed in the context of economics (e.g. input and 445 

output prices), social considerations (e.g. labour requirements, education), 446 

environmental legislation, and animal welfare. Subsequently, the most promising and 447 
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feasible improvement options could contribute to sustainable intensification of beef 448 

production systems. 449 

Conclusions 450 

LiGAPS-Beef has been designed to assess potential and feed-limited growth and 451 

production of cattle in different beef production systems across the world, and to 452 

identify the biophysical factors that define or limit growth. This paper evaluated the 453 

performance of LiGAPS-Beef for beef production systems in Australia, Uruguay, and 454 

the Netherlands. These systems were characterized by different cattle breeds, 455 

climates, and feeding strategies. Simulated ADGs matched measured ADGs from 456 

independent experimental datasets at the animal level reasonably well to good (MAE 457 

= 137 g LW day-1, or 20.1% of mean measured ADG; RMSE = 170 g LW day-1, or 458 

25.0% of mean measured ADG). Results of LiGAPS-Beef indicate that the factors heat 459 

stress, energy deficiency, and protein deficiency influenced growth most, which 460 

complied well to those reported from experiments. In conclusion, LiGAPS-Beef 461 

provides an appropriate basis for assessing potential and feed-limited production, and 462 

for identifying the factors that define and limit growth and production. This opens 463 

opportunities to use LiGAPS-Beef as a tool for yield gap analysis and simulation of 464 

improved practices to mitigate yield gaps.  465 
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Table 1 Model input used for calibration and evaluation of LiGAPS-Beef (Livestock simulator for Generic analysis of Animal Production Systems 580 

– Beef cattle). Experiments are numbered for reference in the text.   581 

 

Australia Uruguay 

The 

Netherlands1 

 

Frank Wise Institute of Tropical 

Agricultural Research Brian Pastures Research Station 

CSIRO 

Beerwah 

Research 

Station 

Experimental 

station of the 

University of 

Uruguay  

Reference 

Petty et al. 

(1998) 

Petty and 

Poppi (2008) 

Petty and 

Poppi (2012) 

Dixon and 

Coates (2008) Hill et al. (2009) 

Evans and 

Hacker (1992) 

Beretta et al. 

(2006) 

Wallis de 

Vries (1996) 

Number experiment 1 2 3 4 5 6 7 8 

Experimental data used for:  Calibration Evaluation Evaluation Evaluation Evaluation Evaluation Partly 

calibration, 

partly evaluation 

Partly 

calibration, 

partly 

evaluation 

Timeline         

    Age at start experiment (days)2 349 (44) 335 (30) 424 (58) 472, 275, 275 244, 335 426 488 367, 356 
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    Duration experiment (days) 168 81 92 247, 290, 286 337, 323 365 71 784, 795 

Genotype and climate         

    Genotype B×S B×S B×S Bos indicus 

crossbred 

Brahman 

crossbred 

Hereford Hereford Meuse-

Rhine-Yssel 

    Animal Steer Steer Heifer Steer Steer Steer Steer Steer 

    Estimated maximum adult weight 

    (kg TBW)  

775 775 675 775 775 850 850 1050 

    Initial weight (kg TBW) 213 179 252 216, 197, 178 173, 249 211 282 315 

    Season(s) Dry and 

wet 

Dry Dry Winter-autumn Almost year-

round 

Year-round Summer Year-round 

    Average daily temperature (°C)3 30.6 28.3 28.7 21.9, 22.9, 23.2   21.9, 22.2  20.9 23.7 10.2, 10.0 

    Average max. daily temperature (°C)3 38.0 37.2 37.5 29.5, 30.5, 30.7  29.2, 29.9 25.7 29.4 14.6, 14.4 

    Average rainfall (mm day-1)3 1.49 0.23 0.15 1.50, 2.34, 2.00  2.13, 1.78 6.09 5.35 1.98, 1.80 

Feed types and quantity         

    Pasture quantity (kg DM 100 kg-1 TBW) Ad libitum Ad libitum Ad libitum Variable Ad libitum Ad libitum 1.6 – 4.3 Variable 
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    Maize quantity (kg FW day-1) 0.5, 1.0, 

1.5, 2.0 

NA 0.75 or 1.50 NA NA NA 1% of TBW NA 

    Molasses quantity (kg FW day-1) NA NA 1.25, 2.50, 

3.75, 5.00 

NA NA NA NA NA 

B×S = ¾ Brahman × ¼ Shorthorn; FW = fresh weight; NA = not applicable; TBW = total body weight 582 

1  The experiment in the Netherlands is not conducted at a research station. The second value in this column indicates data for Karshoek, if deviating from the 583 

other two nature areas. 584 

2 Values between brackets indicate the duration of the adaptation phase (days) before the start of the experiment. 585 

3 Only for the experimental period; the adaptation period is not included.  586 
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Table 2 Statistical evaluation of LiGAPS-Beef simulating the average daily gain (ADG) 587 

of cattle in Australia, Uruguay, and the Netherlands. Values between brackets refer to 588 

the numbers of the experiments (Table 1).   589 

Item 

All 
experiments 
(2-8) Australia (2-6) Uruguay (7) 

The 
Netherlands 
(8) 

 

 

Frank 
Wise 
Institute 

Brian 
Pastures 
Research 
Station 

CSIRO 
Beerwah 
Research 
Station 

Experimental 
station of the 
University of 
Uruguay 

 

n 32 8 10 6 5 3 

ADG measured (kg LW 
day-1) 

0.68 0.88 0.55 0.49 0.89 0.55 

ADG simulated (kg LW 
day-1) 

0.73 0.92 0.53 0.72 0.94 0.65 

Mean bias (g LW day-1) 49 49 -3 234 -49 106 

MAE (g LW day-1) 137 154 95 238 92 106 

MAE  (% measured 
ADG) 

20.1% 17.7% 17.1% 48.9% 9.8% 19.4% 

MSE1 (1000 g2 LW day-

2) 
29 32 14 72 12 13 

  Root-MSE (g LW day-1) 170 178 119 269 109 114 

  Bias (%)1 8.3% 7.6% 6.4% 75.4% 19.8% 87.0% 

  Slope (%)1 16.5% 35.9% 46.6% 24.2% 0.4% 7.8% 

  Random (%)1 75.2% 56.5% 47.0% 0.5% 79.8% 5.3% 

LW = live weight; MAE = mean absolute error. 590 

1 MSE = mean square error; Bias = MSE decomposed into error due to overall bias of prediction; Slope 591 

= MSE decomposed into error due to deviation of the regression slope from unity; Random = MSE 592 

decomposed into error due to the random variation. 593 
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Table 3 Defining and limiting factors for growth and beef production of cattle during the experiments in Australia, Uruguay, and the Netherlands, 594 

expressed as a percentage of the experimental period. Digestion capacity limitation and protein deficiency can occur simultaneously. Numbers 595 

of experiments refer to those presented in Table 1.    596 

Number  
Experiment  Treatment 

Simulated 
ADG (kg 
LW day-1) 

Measured 
ADG (kg 
LW day-1) Defining factors Limiting factors 

    
Genotype 

Heat 
stress 

Digestion 
capacity 
limitation 

Energy 
deficiency 

Protein 
deficiency 

1 No supplementation 0.68 0.65 - 99% 1% - - 

 0.5 kg FM maize 0.71 0.68 - 100% - - - 

 1.0 kg FM maize 0.75 0.77 - 100% - - - 

 1.5 kg FM maize 0.79 0.81 - 100% - - - 

 2.0 kg FM maize 0.83 0.76 - 100% - - - 

2 No supplementation 0.74 0.57 - 80% 20% - - 

3 No supplementation 0.66 0.71 - 100% - - - 

 1.25 kg molasses 0.93 1.12 - 100% - - - 

 2.50 kg molasses 1.19 1.09 52% 48% - - - 

 3.75 kg molasses 1.19 0.99 100% - - - - 

 5.00 kg molasses 1.21 0.86 96% - - - 4% 

 0.75 kg FM maize 0.71 0.77 - 100% - - - 

 1.50 kg FM maize 0.77 0.89 - 100% - - - 

4 2002-2003 0.74 0.76 - 15% 17% 67% - 

 2003-2004 0.81 0.83 1% 40% 41% 18% - 
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 2004-2005 0.77 0.59 9% 40% 25% 26% 22% 

5 Grass 2003-2004 0.50 0.48 - 7% 92% - 9% 

 Moderate legumes 2003-2004 0.74 0.64 5% 30% 65% - - 

 Stylo 2003-2004 0.66 0.72 0.3% 27% 72% - - 

 Grass 2004-2005 -0.01 0.16 - - 100% - - 

 Low legumes 2004-2005 0.40 0.39 2% 20% 78% - - 

 Moderate legumes 2004-2005 0.26 0.43 - 13% 87% - - 

 Stylo 2004-2005 0.40 0.59 - 13% 87% - - 

6 Splendida 0.68 0.46 24% 38% 37% - - 

 Nandi 0.72 0.52 7% 39% 55% - - 

 Kazungula 0.45 0.46 2% 29% 68% - - 

 Narok 0.73 0.50 26% 41% 32% - - 

 Kikuyu 0.87 0.48 49% 35% 15% - - 

 Pangola 0.87 0.50 56% 33% 11% - - 

71 3% pasture 0.52 0.52 - 11% - 89% - 

 6% pasture 0.76 0.65 - 54% 46% - - 

 9% pasture 0.77 0.96 - 55% 45% - - 

 3% pasture + 1% maize 0.96 1.05 65% 35% - - - 

 6% pasture + 1% maize 0.98 1.04 69% 31% - - - 

 9% pasture + 1% maize 0.98 1.00 70% 30% - - - 

8 Riverine  0.64 0.55 50% 18% 9% 24% - 

 Riverine summer/ heathland winter 0.65 0.59 45% 20% 17% 18% - 

 Riverine and heathland year-round 0.67 0.50 29% 11% 20% 40% - 

ADG = average daily gain; FM = fresh weight; LW = live weight. 597 

1 Pasture (dry matter) and maize (fresh matter) availability is expressed as a percentage of the total body weight per day.  598 
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Figures 599 

 600 

Figure 1 Simulated and measured average daily gain (ADG) of beef cattle for the 601 

calibration dataset in Australia (experiment 1). Measured data are from Petty et al. 602 

(1998). Bars indicate standard errors. LW = live weight.  603 
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 604 

Figure 2 Simulated and measured average daily gain (ADG) of beef cattle in Australia, 605 

Uruguay, and the Netherlands. Only independent experimental datasets for model 606 

evaluation are included. Bars indicate standard errors. LW = live weight. 607 
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 608 

Figure 3 Simulated and measured feed intake of beef cattle for the experiment of Petty 609 

et al. (1998), which is conducted in Australia (experiment 1). LiGAPS-Beef was 610 

calibrated with data on average daily gain from this experiment (Table 1). Bars indicate 611 

standard errors. 612 
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 613 

Figure 4 Simulated (lines) and measured (dots) total body weights (TBWs) and the 614 

factors defining and limiting growth of Meuse-Rhine-Yssel cattle grazing in a riverine 615 

area (A), a riverine area during summer and a heathland area during winter (B), and a 616 

connected riverine / heathland area (C). Bars indicate confidence intervals. Measured 617 

data are from Wallis de Vries (1996). 618 


