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Chapter 1 

General introduction 

  



 

 

1. Biotechnology 

Biotechnology is the exploitation of biological resources for the benefit of 
human society, and has been practiced for thousands of years [3]. The earliest 
forms of biotechnology were the domestication of animals and crops such as 
wheat [4]. Later biotechnology extended to the use of microorganisms such as 
yeast for fermenting beer, wine, and bread [5]. These are examples of using 
organisms in their natural state to benefit human life. Modern biotechnology, 
however, tries to understand an organism and its genetics in order for it to be 
modified and exploited [6]. For example, by manipulating a microorganism its 
growth conditions, removing genes, or introducing new genes. Manipulations 
like this can lead to increased growth [7], increased product formation [8, 9], 
or even the synthesis of a compound the organism was not capable of 
synthesizing before [8, 10, 11]. A big part in understanding the genetics of 
organisms for modern biotechnology is the use of computational biology to 
create in-silico driven hypotheses for a wide range of topics including 
bioprocess optimization for product synthesis, simulating the effects of 
medicine, whole cell analysis of host organisms, and many more. 

1.2 Computational biology for biotechnology 

For computational biology there are two important fields: bioinformatics, and 
systems biology. Bioinformatics is a general term used for many in silico 
methodologies studying for example omics data, protein structures, and 
cellular organization. This is done using computer programming to handle big 
data, statistics, and mathematics. Most interesting for biotechnology is the 
study of omics data, called genomics [12-14]. In genomics, bioinformatics is 
used to characterize the genome, identify the proteins made, the function of 
each protein, when and where they are expressed, how they interact, and what 
biological pathways they are involved in. Systems biology, on the other hand, 
studies the interaction between the components of a system using 
mathematical modeling of these systems ranging from a specific biological 
process of an organism, to a genome scale model, and even how different 
organisms interact as a system in cases such as symbiosis or parasitism. 
Together, these two fields of computational biology are able to in silico predict 
what effects environmental factors and gene editing have on an organism. 
With these predictions obtained through bioinformatics and systems biology 
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research, it is possible to improve the outcome of wet-lab biotechnological 
research.  
1.3 Artemisinin production: an example of design driven 

biotechnology 

An excellent example of design driven biotechnology is the development of a 
Saccharomyces cerevisiae strain able to produce high amounts of artemisinic 
acid, a precursor for artemisinin drugs used in the treatment of malaria [8, 15]. 
In the development of this strain, researchers utilized a wide range of tools to 
successfully introduce a complete biosynthetic pathway. Using bioinformatics 
and systems biology techniques they were one of the first to successfully 
implement a Design-Build-Test-Learn cycle, as described in Figure 1 by Niels 
and Keasling [16]. This cycle consists of four interacting modules: designing a 
biological system, building the biological system, testing the biological system, 
and learning from the biological system. In an ideal case scenario each cycle 
leads to a better design and eventually an engineered strain that is able to 
efficiently perform the desired task, such as more synthesis of a product or 
increased growth. 

 

Figure 1: An example design-build-test-learn cycle as described and 
adapted from Nielsen and Keasling [16]. First a target molecule, 
regulatory circuit, and host are identified. These are used to design the 
system. After, the design is built in the wet-lab, and the resulting strain 
is tested and characterized. Following these tests and characterizations, 
the learned knowledge is used to improve the design of the system for 
the next cycle. 
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The ‘design’ module of the cycle was applied in several forms for engineering 
of the artemisinic acid S. cerevisiae strain. Some of the techniques that were 
used are comparative genomics between different S. cerevisiae strains to 
identify the cause for the differences in their behaviour, and transcriptomic 
analysis to identify rate limiting reactions. After many iterations, these 
researchers managed to make a commercially viable yeast-based artemisinin 
production pipeline [17]. This example of artemisinin production in yeast thus 
utilized computational biology to overcome initial challenges and improve 
their yield. This resulted in dozens of updated yeast strains based on their 
design-driven hypotheses [8, 17]. Computational predictions were done on 
specific components, but also on how these components would fit in the yeast 
its metabolism. With this approach, researchers managed to engineer a yeast 
strain producing the product they want, in commercially viable amounts, and 
minimizing metabolic side effects.  

Other examples of successful design-driven, or computational design-driven, 
metabolic engineering and synthetic biology is the production of 1,3-
propanediol by DuPont using Escherichia coli, isobutanol by Gevo and 
Butamax using yeast, and 1,4-butanediol Genomatica using Escherichia coli 
[18]. 
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2. Untapped potential: microalgae for biotechnology 

2.1 Microalgae and their products 

With the above example in mind it is interesting to apply a similar strategy to 
microalgae. Microalgae have a lot of biotechnological potential, particularly 
those that are informally called green microalgae [19-22], and are often capable 
of producing large amounts of lipids, sugars, or other valuable metabolites [23-
27]. For example, many microalgae are oleaginous, meaning their biomass can 
consist of 40% or more of high-value lipids like triacylglycerol [28, 29]. These 
lipids can be used to produce biodiesel, bioplastics, pharmaceuticals, and 
many more [30-32]. Other biotechnology applications for microalgae focus on 
its value in food, nutrition, and cosmetics [33, 34]. The biomass of many 
microalgae consist of a high amount of proteins and other nutrients, which 
also makes them a cheap addition to food sources [35]. In the case of animal 
feed, microalgae are often used as feedstock for aquatic species. When it comes 
to human consumption, some microalgal species showed to be beneficial to 
human health in a variety of ways, such as a source for omega-3 fatty acids [36], 
anti-allergy benefits [37], and anti-viral benefits [38].  

In recent history research and commercial activities are more focused towards 
their potential for producing high-value compounds such as lipids and sugars 
that can be used in commercial products [39]. However, in this case, 
commercial use of microalgae is only feasible if it outperforms existing sources 
such as fossil fuels, chemical production of compounds, or various higher order 
plants. Production of many interesting compounds often comes at a high 
metabolic cost, resulting in slow growth and other diminishing effects [29]. 
Biotechnological research for microalgae aims to optimize the product 
formation of microalgae while minimizing these diminishing effects.  

2.2 Current constraints for microalgal biotechnology 

Currently, when it comes to finished and commercialized products, microalgal 
biotechnology for the production of high-value compounds is only available 
for a select few companies, often not further developed beyond pilot scales 
[40]. The general state of microalgal genetics is on a proof-of-principle level. 
On one hand the techniques for microalgal genome editing are still in 
development or coming of age [41], and on the other hand there is an inherent 
lack of genetic knowledge of microalgae. A key example is that of biofuels. 
Biofuel has been one of the main selling points for microalgal research over the 
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past decade. However, recent studies suggest that in their current state 
microalgae for biofuels will not be commercially viable [42, 43]. A lot of 
research regarding microalgae and biofuels has been done on the bioprocess 
engineering level, for example optimizing bioreactors and growth conditions 
for microalgae by maximizing their light uptake or nutrient availability [44, 
45]. However, only optimizing microalgae in this manner will not be 
commercially viable for the foreseeable future due to metabolic constraints 
[43]. One of the main metabolic constraints is the photosynthetic limitation of 
microalgae. The most optimistic estimates in which sunlight is converted to 
energy are up to 8% [42]. On top of that, the actual conversion of this 
photosynthetic energy to biomass is as low as 35% [46]. This means that a huge 
amount of photosynthetic energy is used in the intermediate metabolic 
processes of microalgae. These limitations are the main reason why microalgae 
are not economically viable for biofuel in the foreseeable future. Genomics 
research will be needed to study if there are any fixable metabolic constraints, 
and if so, genetic engineering will be needed to make microalgae more efficient 
in their metabolic processes. 

In recent years microalgal research has been moving towards the 
understanding of their genomes and metabolic processes.  For example, many 
efforts are made towards identifying genome-wide differential expression 
during starch and lipid production, and during nitrogen limitation or 
starvation. Another example is the aim to identify molecular switches between 
starch and lipid production, and how these are regulated [47]. In a more 
futuristic approach, some projects are even attempting to engineer a more 
efficient photosynthesis [48, 49]. However, what all these have in common is 
that they are at a fundamental level research that has yet to be implemented 
for production purposes. This is where synthetic biology can play a role. 

2.3 Microalgal genomics and synthetic biology 

Synthetic biology is the systematic characterization and usage of standardized 
genetic parts, and the engineering of these parts into organisms to create new 
or more products. Applying synthetic biology principles to microalgae can 
result in microalgal cell factories, able to synthesize various products at a high 
rate and commercially viable cost. However, synthetic biology is heavily reliant 
on precise functional knowledge, and despite recent efforts a genomic 
understanding of microalgae still lags behind in comparison to that of many 
other species. For example, the genome of Saccharomyces cerevisiae got 
published in 1996 [50], that of Escherichia coli in 1997 [51], and that of 
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Arabidopsis thaliana in 2000 [52]. In comparison, the first published genome 
of green algae is Ostreococcus taurii in 2006 [53], and the model species 
Chlamydomonas reinhardtii in 2007 [54].  If one compares these dates to those 
of the aforementioned species it is extremely late and exemplifies the general 
lack of research on microalgal genomics during the early omics age. Current 
next generation sequencing technologies make up for the late start of genome 
sequencing for microalgae, but due to the late start, so far little efforts have 
been made to experimentally characterize specific algal genomic features. 
Characterizing proteins and other functions coded by the genome is a 
laborious process, and therefore the amount of characterized parts does not 
compare to the amount of genome sequences available. In the case of 
microalgal biotechnology, specifically synthetic biology, one area that we need 
to know more about is the functions of all proteins in a genome and how they 
interact as a system. 

3. Protein functions – why we need them and how we get them 

3.1 Bioinformatics and protein functions 

For computational models to be useful for synthetic biology it is critical to have 
an extensive knowledge on protein functions. As can be seen by the low 
amount of wet-lab characterized proteins in online databases [55], this is still 
a laborious and in many cases difficult task. Therefore, bioinformatics is often 
used to predict protein function [56]. These predicted protein functions are 
directly and indirectly used in systems and synthetic biology, both for the 
insertion and deletion of genes [8, 10], and also for the creation of 
mathematical models used in systems biology research [57].  

3.2 Retrieving protein functions through sequence similarity 

Historically, electronic inference of protein functions is accomplished by 
looking for sequence similarity with proteins that have a known function. This 
has been practiced since 1985 with the FASTA alignment [58], the first 
algorithm that facilitated high-throughput protein sequence similarity 
searches. Similarly, the BLAST sequence alignment tool was published in 1990 
and has been a staple tool in bioinformatics ever since [59, 60]. Most proteins 
annotated using computational methods have been done so using BLAST in 
one way or another. Manually curated annotations are often aided by BLAST 
sequence similarity searches, as are annotations predicted by high-throughput 
methods. Another tool that is ingrained in the world of genomics and protein 
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function is InterProScan [61]. This tools main functionality is the identification 
of protein domains given a protein sequence and a database of Hidden Markov 
Models [62], and meta-data attached to these domains in the InterPro database 
to annotate functions to these proteins using Gene Ontology (GO) terms [63-
65]. The big downside of prediction methods based on sequence similarity, 
however, is the need of homologous proteins with reliable functional 
information. 

3.3 Limitations of sequence similarity-based protein function 

prediction 

Sequence similarity approaches rely on annotated proteins that have a close 
phylogenetic distance to the protein of interest. For example, the GreenCut2 is 
a resource of conserved proteins across photosynthetic plants and microalgae 
[66]. If a microalga has a protein that is present in the GreenCut2, and there is 
functional information on this protein available in another plant or 
microalgae, sequence similarity-based approaches will assume that the 
function can be transferred between these proteins. In the case of such 
conserved protein sequences, this is a reliable way of annotating protein 
functions. However, if a microalga has a protein that has no conserved 
sequence with a protein of known functionality, sequence similarity-based 
approaches will not be able to annotate a function to this protein. As discussed 
earlier, there is little experimental information available on microalgal 
proteins. Therefore, when using sequence similarity-based approaches to 
annotate their proteins, it will mostly return functions only for proteins that 
show sequence conservation with well-studied plant species such as 
Arabidopsis thaliana, as this is the organism that is the most well-annotated 
species in the plant and microalgal lineages according to SwissProt [55]. The 
result is a well-annotated core metabolism of a microalgae, but limited 
annotations for proteins that are unique for microalgae. Therefore, it is needed 
to additionally look at other approaches for annotating a function to 
microalgal proteins. 
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3.4 Multi-feature-based protein function prediction 

Another way of predicting protein functions is by training machine learning 
algorithms on a range of protein features [67]. Many machine learning 
techniques are able to correlate protein features such as amino acid 
composition, secondary structures, and disordered regions to GO terms, given 
a set of proteins with known functions and features [68]. A machine learning 
algorithm builds a statistical model around these features, which gives a 
likelihood that a certain pattern of features is linked to a certain protein 
function. In potential, these techniques are much more flexible than the earlier 
discussed sequence similarity approaches, as in principle they don’t require 
sequentially closely related proteins to have a GO term annotation. These 
feature-based approaches try to understand protein function on a more 
fundamental level than transferring GO terms based on sequence similarity. 
Because of this they are complementary to sequence similarity-based methods.  

3.5 Protein function information hubs 

Currently, the best source for protein function information is SwissProt, part 
of the UniProt Knowledgebase [55]. SwissProt is a database of manually 
curated proteins and their functions, including meta data such as protein 
domains, links to other databases, and evidence codes for all the data 
associated to the protein. Alternatively, there is the TrEMBL database [55]. 
This database is also part of the UniProt Knowledgebase, but only contains 
computer-generated gene translations and protein functional predictions. 
How the data for these databases is derived is described in Figure 2A, and how 
this data can be used is described in Figure 2B.  

The information in the UniProt Knowledgebase database is extremely useful 
for bioinformatics and systems biology research. Figure 2B describes how 
bioinformatics, systems biology, and synthetic biology research are all tied 
together, and data on protein functions plays a crucial role. This interaction is 
further discussed in chapter 2 box 3.  

Additionally, there exist a number of databases that annotate proteins and 
their functional data to biochemical reactions and networks. These data are 
useful for the mathematical modeling of biological systems used in systems 
biology research, but also for the visualization and understanding of an 
organism its biochemistry. Databases such as KEGG [69], Reactome [70], 
WikiPathways [71], and MetaCyc [72] are invaluable to biotechnological 
research, and all of them require data on protein functions. 
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4. Microalgae and protein functions 

4.1 Limited knowledge on microalgal protein functions 

As discussed earlier, to fully utilize microalgae as cell factories we would need 
to identify interesting metabolic proteins and circumvent metabolic 
constraints, which can be efficiently done using state-of-the-art genome 
editing techniques such as CRISPR-CAS9, and by creating new genetic circuits 
using synthetic biology. This requires a good understanding of the proteins 
involved and how they interact in a whole-cell system. However, there are only 
267 experimentally characterized microalgal proteins in SwissProt as of 26-07-
2018. Due to the inability to annotate protein functions due to a lack of 
homologous proteins with a characterized function, and because feature-based 
machine learning approaches are not as sequence similarity-based approaches, 
it is a challenge to generate a good annotation for microalgae on a genome 
scale. Therefore, we need a comprehensive utilization of bioinformatics and 
systems biology methodologies to understand the metabolic capabilities of 
microalgae. In particular, we need a good understanding of microalgal 
enzymatic functions in order to generate hypotheses as to how to circumvent 
metabolic constraints. 

  

Figure 2: A) An overview of how the SwissProt and TrEMBL databases of the UniProt 
KnowledgeBase retrieve their protein information. SwissProt proteins have been 
annotated using a well-defined manual curation pipeline to ensure that all manually 
annotated entries are handled in a consistent manner. Curation is performed by 
expert biologists using a range of tools that have been iteratively developed in close 
collaboration with curators. TrEMBL proteins are automatically annotated and not 
reviewed. B) An overview of the interaction between bioinformatics, systems 
biology, and synthetic biology research. Black arrows indicate predictions and 
literature data, and white arrows indicate experimental data. 
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5. Botryococcus braunii 

5.1 Why study this microalga 

An interesting microalga to study is Botryococcus braunii. This alga is able to 
produce polysaccharides up to 50%, or hydrocarbons up to 40% of its cell dry 
weight depending on the strain. Additionally, it excretes the majority of these 
polysaccharides and hydrocarbons, making the harvesting of these products 
relatively easy. However, the wild-type of this microalga is a slow grower and 
lives in a community with various bacteria. This makes its commercialization 
capabilities limited. Using genomics research, we would be able to understand 
the metabolism of B. braunii, allowing us to potentially identify how this 
microalga makes a large number of polysaccharides and hydrocarbons, how it 
excretes them, and why its growth is limited. Understanding the features of 
this microalgae would allow us to genetically engineer the parts of the genome 
to faster growing and easier to handle organisms and identifying metabolic 
constraints would potentially allow us to circumvent the slow growth of B. 
braunii.  

5.2 Studying Botryococcus braunii: Sustainable Polymers for 

Algae (SPLASH) 

Because of the potential of Botryococcus braunii for biotechnological 
applications, an EU consortium was funded to study this microalga. The aim 
of this 4.5-year EU-project was to develop a microalgal cell factory able to 
sustainably produce hydrocarbons and exopolysaccharides, using 
Botryococcus braunii features and Chlamydomonas reinhardtii as a host 
organism. This project encompasses genomics and systems biology research to 
understand the product formation of two Botryococcus braunii races which 
make hydrocarbons or polysaccharides, the development of in situ extract and 
isolation methods for these hydrocarbons and polysaccharides, their 
conversion to commercial products, and a proof of concept of Botryococcus 
braunii cultivation on a pilot scale. Finally, based on information gained during 
this research, sustainability assessment and market analysis was done to assess 
the viability of Botryococcus braunii as a microalgal cell factory. 

In this thesis research is aimed with Botryococcus braunii genomics in mind. 
In SPLASH, genomics and systems biology were used to understand the 
production of hydrocarbon and polysaccharide production in Botryococcus 
braunii on a fundamental level, with the goal of providing leads for cultivation 
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concepts, improved growth, and enhancement of hydrocarbon and 
polysaccharide production. To reach the objectives two B. braunii strains with 
either a strong affinity towards hydrocarbon or polysaccharide production, 
AC761 and CCALA778 respectively, were to be studied using comparative 
genomics. A comparative genomics study like this requires a thorough 
understand of the functions of metabolic proteins and transporter proteins. As 
discussed earlier, this is particularly challenging for microalgae. Therefore, 
many efforts were made to annotate functions to Botryococcus braunii 
proteins, and once we got those, to view these protein functions in the light of 
biological pathways and gene expression analysis coupled to the production of 
hydrocarbons and polysaccharides. 
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Thesis outline 

The goal of this thesis is to contribute to increase our understanding of 
oleaginous microalgae as cell factories through developing and using 
bioinformatics tools and pipelines. Step by step I arrive at the point where I 
use bioinformatics and systems biology techniques to increase our knowledge 
of the metabolism of Botryococcus braunii. 

In chapter 2, we provide an overview of the state of microalgae as cell factories. 
As we point out, during the time of publication for this review, only a small 
amount of existing genome sequencing was done for microalgae, and even less 
research on their biochemistry. In the meantime, many more genomes have 
become available, but the research on their biochemistry is a laborious process 
that does not increase as fast as current generation genome sequences. This 
means there is a low amount of experimental data on protein functions, and 
although there are a number of microalgal genome-scale metabolic models, 
these are based on homology with enzymes underlying core metabolic 
reactions of Arabidopsis thaliana. Even the microalgal model species 
Chlamydomonas reinhardtii, whose biochemistry is often used as a basis for 
other microalgal research, has a limited amount of experimental data on 
protein functions. In this chapter we suggest how to move forward with 
bioinformatics and systems biology to improve microalgae as cell factories. 

In chapter 3 we focus on a specific aspect of microalgal bioinformatics 
discussed in chapter 2: retrieving protein functions. We show that only about 
half of the microalgal proteins have an annotated function, and most functions 
annotated to microalgal proteins are transferred from Arabidopsis thaliana 
based on sequence similarity. Further, we review several protein function 
prediction methodologies and their pros and cons.  

In chapter 4 we present CrowdGO, a protein function prediction tool based 
on the wisdom-of-the-crowd principle. CrowdGO combines protein function 
predictions of three or more existing methods. We show that it performs 
significantly more accurate in GO term predictions than each method by itself, 
has a net positive effect in correcting existing predictions to its true prediction, 
and is able to annotate more proteins than each individual method. 

In chapter 5 we apply the method developed in chapter 4 to a real biological 
example. For this we use the oleaginous yeast Cutaneotrichosporon curvatus. 
Due to its distance to the model species Saccharomyces cerevisiae and its 
oleaginous nature, this species has two characteristics similar to microalgae: 
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distant phylogeny with well-characterized model species, and the ability to 
produce a lot of lipids. However, nearby species are better characterized than 
microalgae, resulting in a good middle-of-the-road species to test the tool in a 
real case scenario. With CrowdGO we get a stricter annotation of GO terms for 
the protein set. These annotations are used to get a general overview of yeast 
and its metabolism, and to use as a starting point in a biocuration pipeline for 
over a thousand metabolic and transporter reactions of C. curvatus.  

In chapter 6 we use our method developed in chapter 4 to perform a 
comparative genomics study between a mostly-lipid producing Botryococcus 
braunii and a mostly-polysaccharide producing Botryococcus braunii. We use 
quantitative proteomics and functional annotations, both from CrowdGO and 
manually annotated, to characterize several key pathways. Using this 
approach, we found several key enzymes which are related to the difference in 
lipid production and polysaccharide production between the two Botryococcus 
braunii strains. 

Finally, chapter 7 provides a general discussion on the findings of this PhD 
thesis. 
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Abstract 
Many species of microalgae produce hydrocarbons, polysaccharides, and other 
valuable products in significant amounts. However, large-scale production of 
algal products is not yet competitive against non-renewable alternatives from 
fossil fuel. Metabolic engineering approaches will help to improve 
productivity, but the exact metabolic pathways and the identities of the 
majority of the genes involved remain unknown. Recent advances in 
bioinformatics and systems-biology modeling coupled with increasing 
numbers of algal genome-sequencing projects are providing the means to 
address this. A multidisciplinary integration of methods will provide synergy 
for a systems-level understanding of microalgae, and thereby accelerate the 
improvement of industrially valuable strains. In this review we highlight recent 
advances and challenges to microalgal research and discuss future potential. 
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1. Diversity of microalgae and their biotechnological potential 

Microalgae are simple photosynthetic eukaryotes that are among the most 
diverse of all organisms. Microalgae inhabit all aquatic ecosystems, from 
oceans, lakes, and rivers to even snow and glaciers, as well as terrestrial systems 
including rocks and other hard surfaces. Microalgae exhibit significant 
variation in physiology and metabolism, a reflection of the high level of genetic 
diversity that exists between different phyla owing to multiple endosymbiotic 
events, horizontal gene transfer, and subsequent evolutionary processes, 
producing a polyphyletic collection of organisms [54, 73]. Given this diversity, 
mining the genomes of these organisms provides a great opportunity to 
identify novel pathways of biotechnological importance. In particular, 
microalgae are of considerable interest for the synthesis of a range of 
industrially useful products, such as hydrocarbons and polysaccharides [74, 
75], owing to rapid growth rates, amenability to large-scale fermentation, and 
the potential for sustainable process development [76]. 

Algae as a source of biofuel molecules, such as triacylglycerides (TAGs), the 
precursor for biodiesel [77], have been a focus in recent years, with potential 
yields an order of magnitude greater than competing agricultural 
processes [78]. Evaluations of current technologies demonstrate that 
microalgae are commercially feasible for biofuel production, but are not yet 
cost-competitive with petroleum products [79, 80], the metric upon which 
commercial success ultimately lies. For example, the net energy input versus 
output for large-scale algae biodiesel production was estimated to be 1.37, 
compared to 0.18 for conventional/low-sulfur diesel [79]. Currently, for 
microalgae to synthesize TAG it is necessary to expose them to stress 
conditions such as nutrient limitation, which reduces growth and increases 
energy dissipation. The trade-off between biosynthesis of TAG and cell growth 
is therefore a severely limiting factor [81]. If a better understanding of the 
metabolic and regulatory networks were available, they could be rewired for 
increased TAG synthesis, with fewer drawbacks than for existing algal cells. 

The production of other interesting algal products will also benefit from a 
better understanding of microalgae at a systems level. For example, 
polysaccharides such as starch and cell wall materials can be used for 
biotechnological applications [82]. These carbohydrates can be degraded to 
fermentable sugars for bioethanol production [83], or serve as chemical 
building blocks for renewable materials, but the composition and proportions 
of the different sugar components require optimization. Similarly, various 
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valuable secondary metabolites produced by microalgae are of interest in the 
food, nutrition, and cosmetics industries [74], but often they are produced in 
trace amounts, or only under conditions that are not amenable to industrial 
cultivation. 

Over 30 microalgal genomes have been sequenced, and numerous 
transcriptomics, proteomics, and other systems-biology studies have been 
performed. Nevertheless, our understanding of metabolic pathways within 
these microalgae remains limited [84]. Significant knowledge gaps need to be 
filled between omics data, the annotation thereof, and our systems-level 
understanding. This will allow the conversion of these resources into usable 
genome-scale models (GSMM) and provide the basis for effective metabolic 
engineering, synthetic biology and biotechnology. We consider here the 
potential application of advanced methods to improve the functional 
annotation of algal omics data, to increase the resolution of GSMM, and ways 
to integrate available computational methods for effective exploitation of 
microalgae in biotechnology. 

2. Annotation challenges for microalgae 

The nuclear genome of the green alga Chlamydomonas reinhardtii, sequenced 
in 2007 [54], is approximately 120 Mb and comprises some 15 000 genes. 
Although C. reinhardtii is commonly used as a reference for the annotation of 
other microalgae, only a subset of ∼50 proteins have an experimentally 
validated function according to the UniProt database 
(http://www.uniprot.org), compared to 6800 proteins for the model 
plant Arabidopsis thaliana. Consequently, most C. reinhardtii genes have been 
computationally annotated by inferred homology with A. thaliana, and other 
plant species and microbes [54], using BLAST (basic local alignment search 
tool) or family-wise alignment methods such as HMMER and InterProScan 
(Table 1). BLAST-based methods often use the principle of one-to-one 
recognition, meaning that annotation of a query gene is based on the 
annotation of a single known gene. This limits the success rate for recognition 
and correct functional annotation of the more distantly related C. 
reinhardtii genes but becomes even more problematic when the in silico-
derived functional annotation of C. reinhardtii is subsequently used for 
annotation of other algal species. This is because, owing to a lack of common 
ancestry, two algal species can be more diverse than, for example, any two 
plant species. Therefore, these methods, which are highly suitable for high-
throughput analysis because of their simplicity, are less appropriate for 
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accurate in-depth annotation of algal genomes. In the CAFA (critical 
assessment of protein function annotation) experiment [56], the accuracy of 
more advanced functional annotation algorithms was assessed. The CAFA 
concluded that 33 of 54 tested functional annotation algorithms outperformed 
the standard BLAST-based method (Table 1). The substantial improvement can 
be explained by the fact that these second-generation methods do not apply 
the one-to-one recognition principle but, to increase their success rate, use 
instead a one-to-many recognition strategy and/or include context-aware 
principles for annotation. An example is Argot2 (Box 1) [2], which applies the 
one-to-many recognition strategy by calculating the statistical significance of 
all candidate homologous genes found by BLAST [85] and HMMER [86], 
combined with an assessment of semantic similarities of associated GO terms. 
In a context-aware multilevel approach, annotation is not merely based on 
sequence similarity, but other factors such as protein–protein 
interactions [87], transcript expression patterns [87], phylogenetic trees [88], 
compartmentalization information [89], and literature [90] are also taken into 
account. FFPred2 from UCL–Jones [91] is the prime example of such a 
homology-independent functional annotation algorithm.
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Box 1. Argot2 
One of the top performers in the CAFA experiment is Argot2 (annotation 
retrieval of gene ontology terms) [2]. It stands out in terms of simplicity, as 
well as by incorporation of BLAST and HMMER. Argot2 combines an easy 
interface with multilayer analysis, making it a perfect starting point for 
biologists wishing to annotate their data. 
 
Argot2 requires a nucleotide or protein sequence as input. It queries the 
UniProt and Pfam databases using BLAST and HMMER respectively, 
providing an initial high-throughput sequence analysis. A weighting 
scheme and clustering algorithm are then applied to the results to select 
the most accurate gene ontology (GO) terms for each query sequence. The 
user can choose to perform this entire process online at the Argot2 
webserver, limited to one hundred sequences per query. Alternatively, if 
the BLAST and HMMER steps are performed locally and provided to the 
webserver, over 1000 sequences can be submitted per query. After the 
analysis is completed, which can take several hours depending on the 
amount of input data, the user is provided with the prediction results as 
well as the intermediate BLAST and HMMER files. These predictions 
include molecular function, biological processes, and cellular component 
GO terms for each query. Predicted GO terms are ranked by a score based 
on statistical significance and specificity. Optionally, the user can choose 
to compute protein clusters based on functional similarity. 
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Advanced multilevel annotation methods effectively increase the recall of 
function prediction while maintaining an acceptable precision. The challenge 
in genomic annotation for microalgae lies in the small number of 
experimentally validated algal genes and the lack of algae-specific contextual 
data such as protein interaction and compartmentalization data. This results 
in a relatively low number of genes that are predicted to have a specific 
biological function. To overcome this, multiple annotation methods and data 
sources should be combined. The combined result increases the number of 
annotated genes, while a consensus prediction among the different methods 
improves the accuracy of the annotation [92]. Owing to their simplicity and 
speed, first-generation methods can be used for initial high-throughput 
analysis of a large set of genes. Second-generation methods can then be used 
for a refined analysis of these genes. However, to utilize these advanced 
methods fully, a significant amount of experimentally determined contextual 
data is required. Although increasing amounts of gene expression data are 
being generated, little structural and protein interaction data are being 
generated for algae. In the absence of such experimental facts it is still possible 
to generate this contextual information by in silico prediction methods [91, 93], 
but whilst studies have shown that this is a feasible option [94], caution is 
necessary because there is a high risk of error propagation. 

Apart from functional annotation it is also important to establish the cellular 
location of a protein. For this there are several tools available, including Argot2 
(Box 1) [2], TargetP [95], SignalP [96], PSORTb [97], and PredAlgo [98]. The 
last is a tailor-made multi-subcellular localization prediction tool dedicated to 
three compartments of green algae: the mitochondrion, the chloroplast, and 
the secretory pathway. However, owing to the limited number of algal proteins 
with a known cellular localization, which can be seen for example from the 
quantitative subcellular localization of roughly 80 proteins [99], or the 
collection of roughly 1000 chloroplast-localized proteins from C. reinhardtii 
[100], the algorithm is trained with a relatively small C. reinhardtii dataset [98]. 
This raises questions regarding reliability for other algal species because the 
polyphyletic nature of different microalgae means some algal species are 
distantly or not related, and this can result in a different subcellular 
localization of homologs. Therefore, it is advisable to use PredAlgo in 
combination with non-algal-specific tools in a similar way as for functional 
annotation. 
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To support large-scale annotation of algal sequence data, up-to-date databases 
and readily available supporting tools are required. Online databases provide 
the means to share data easily such that the scientific community can profit as 
a whole. Supporting tools can assist in annotating genes, pathways, and 
performing statistical analysis. While genomic data for various algae are 
available in NCBI and UniProt, the amount of public data is lagging behind in 
comparison to plant and bacterial species. In addition, tools and databases that 
do more than storing the available sequencing data are needed. A small 
number of tools are available, although these are often limited to C. 
reinhardtii. One such tool is ChlamyCyc [101], a C. reinhardtii-specific 
pathway/genome database of the MetaCyc [72] facility for metabolic pathway 
analysis. A peptide database, ProMEX, is available that contains over 2000 C. 
reinhardtii peptides which are usable for proteomics analysis [102]. In addition, 
the Augustus tool, which is commonly used for prediction of eukaryotic 
genes [103], has a tailor-made section for C. reinhardtii. Finally, the Algal 
Functional Annotation Tool [104] incorporates annotation data for a few 
microalgal species from several pathway databases, ontologies, and protein 
families. Broadening the scope of these annotation tools for a range of 
microalgae would allow comparative analysis, which is useful for easy mapping 
of various differences between microalgae. In this context, a useful tool which 
has been applied to plant research is Phytozome 
(http://www.phytozome.net) [105], a comparative hub for analysis of plant 
genomes and gene families. It acts as a reference for the key data of many plant 
species and provides click-to-go features such as BLAST and summaries key 
data. Phytozome has grown to be a major asset to the plant science 
community. Although it contains data from a few green algae, an expanded 
web-portal focused on algal systems-bioinformatics research could be of 
immense benefit to the field, particularly for those studying the more 
industrially relevant diatoms and heterokont species (Table 2). Such a web-
portal would provide access to new and existing tools specifically useful for 
algal species and facilitate exposure to a broad audience. In addition, it could 
act as a hosting platform for small but useful tools such as a refined algal 
literature research algorithm and tools that suggest genes to fill gaps in 
metabolic or regulatory pathways for microalgae. Adopting an algal web-portal 
would provide a good overview of all available data and tools and help to 
reduce the redundancy that is often seen in biology and bioinformatics.
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Table 2: A  list of selected industrially useful microalgae 

Species Genome size 
(mb) 

Available 
proteins 

Reported industrially relevant 
characteristics 

Refs 

Chlamydomonas 
reinhardtii 

120 15,144 Model system for unicellular 
green algae 

 

Monoraphidium 
neglectum 

68 16,761 Up to 21% dry weight neutral 
lipid under nitrogen starvation 

[106] 

Nannochloropsis 
gaditana 

34 15,361 Can produce high amounts of 
omega-3 long-chain 
polyunsaturated fatty acids 
Up to 50% dry weight oil 
content 

[75] 
[107] 

Nannochloropsis 
oceanica 

28 242 

Phaeodactylum 
tricornotum 

27 10,673 Can produce antibacterial fatty 
acids (9Z)-hexadecenoic acid 
(palmitoleic acid; C16:1 n-7) and 
(6Z, 9Z, 12Z)-hexadecatrienoic 
acid (HTA; C16:3 n-4) 

[107] 

Chlorella 
variabilis 

46 9,831 The first sequence Chlorella 
genome 
A model genome for 
understanding other chlorella 
species 

[108] 

Ostreococcus 
tauri 

12.6 9,050 Smallest sequenced microalgal 
genome with simple cellular 
structure 

 

Chlorella 
protothecoides 

22.9 7,039 Up to 55% dry weight lipid 
content in heterotrophic growth 
Highest published biomass 
yield, average 3.37 g/dw L-1 h-1 in 
heterotrophic growth 

[75, 
109, 
110] 

Chlorella vulgaris N.a. 292 Up to 42% lipid content in 
photobioreactor with artificial 
waste water 
Up to 26% total lipid in dry 
weight in heterotrophic growth 

[108, 
111] 

Dunaliella salina N.a. 238 Up to 10% carotenoids in dry 
weight 
90% beta-carotene in 
carotenoids 

[112] 

Haematococcus 
pluvialis 

N.a. 60 Highest reported yield of 
antioxidant astaxanthin (3.8% 
dry weight) 

[113] 

Botryococcus 
braunii 

~166-211 30 Up to 57% total lipids in dry 
weight 
Contains exopolysaccharides 

[114-
116] 

Neochloris 
oleabundans 

N.a. 0 Up to 56% total fatty acids in dry 
weight under nitrogen-
deprivation 

[81] 
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3. Understanding algal metabolism at a systems level 
The sheer number of genes for metabolic enzymes, combined with the complexity 
of cellular metabolism, means that it is not straightforward to establish metabolic 
capability, even for well-annotated species. This limitation has led to the 
development of metabolic models which represent a snapshot of metabolism of an 
organism in a network format. Once an annotated algal genome or transcriptome is 
available, a corresponding genome-scale metabolic model (GSMM) can be 
reconstructed and the topology of the metabolic network of the algal species can 
be analysed. An initial draft model can be generated directly from the genomic 
annotation and is then adjusted and expanded based on experimental data, 
literature, and gap-filling procedures. The final model then includes all reactions the 
alga is known to perform as well as the associated genes and constraints, for 
example, reaction directionalities and rate limits. Owing to their comprehensive 
representation of metabolism, metabolic models form the basis for a large and 
diverse set of mathematical methods for predicting metabolic behaviour. These 
methods include the widely employed flux balance analysis (FBA) [117] and flux 
variability analysis (FVA) [118], but also methods integrating fluxomic, 
transcriptomic, or proteomic data (Box 2) [119]. For an extensive overview of 
mathematical methods using metabolic models we refer to Zomorrodi et al.[120]. 
We focus here on recent developments in the modeling of microalgae specifically. 
 
Metabolic models of microalgae reflect the modeling counterpart of their current 
annotation; therefore, inconsistencies between model predictions and 
experimental findings indicate missing and/or poor annotations. For example, 
experimentally identified metabolites were compared to metabolites that could be 
produced in metabolic reconstructions of C. reinhardtii [121, 122] (Table 3). 
Metabolites found experimentally but not in the models initiated pathway 
elucidation and identification of the corresponding genes, and thereby led to an 
improved genomic annotation [121]. This procedure was automated by Christian et 
al. who designed a gap-filling method to identify reactions allowing production in a 
model of experimentally detected metabolites [122]. These updated reactions and 
annotations [121, 122] were subsequently stored in ChlamyCyc [101], allowing 
continuous expansion of the database. Concurrently, a separate C. 
reinhardtii metabolic model, iAM303, was created in which the included open 
reading frames were experimentally validated. This led both to improved structural 
genomic annotation and to additional support for the reactions included in the 
model [123]. This model was greatly expanded in iRC1080 in 2011 and additional 
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ORFs were validated [124]. The predictive power of the latter model was tested for 
30 environmental conditions and 14 gene knockouts. In addition, iRC1080 predicted 
essential genes (lethal phenotype upon knockout) under different experimental 
conditions, although these predictions remain to be validated [124]. Recently 
GSMMs for Ostreococcus tauri and Ostreococcus lucimarinus have been 
constructed [125] (Table 3), demonstrating expansion in the field. The initial 
models, based on the available gene annotations, revealed that these could not 
account for the production of many biomass constituents [125]. The gap-filling 
method designed in [122] was subsequently employed to find suitable reactions for 
the production of these metabolites [125]. 
 
It is well recognized that the exact choice of growth conditions is highly important 
in attaining desired metabolic activities. Metabolic models can explore how 
different growth conditions affect metabolism and can identify theoretically 
optimal conditions for a given metabolic objective. For example, multiple metabolic 
models of C. reinhardtii were used to simulate metabolism under autotrophic, 
heterotrophic, and mixotrophic conditions to verify model predictions [46], to 
investigate how metabolite production is influenced 46, [119], and to contrast 
mutant strains [124]. C. reinhardtii metabolic models were also used to determine 
how the quantity of light [124, 126, 127] and its spectral composition [124] affect 
metabolism. Of particular interest is the possibility to predict an optimal light 
spectrum for a given metabolic goal [124]. In contrast to these successful models 
of C. reinhardtii, the metabolism of other algae is only poorly understood. For 
example, some industrially relevant algae can currently not be grown efficiently 
without bacterial presence [128]. Potentially, these algae and associated bacteria 
can be modeled simultaneously to deduce their relationship, as has been done for 
other microbial communities [129, 130]. 
The most comprehensive algal metabolic models to date are iRC1080 [124] and 
AlgaGEM [46], which are GSMMs and account for various cellular compartments. 
However, they vary in degree of compartmentalization (Table 3). In iRC1080, half 
(865/1730) of the non-transport reactions occur in cellular compartments other 
than the cytosol. By contrast, this is only about 12% (201/1617) for AlgaGEM. This 
reflects the fact that independently generated GSMMs for the same organism can 
differ significantly in their representation of metabolism because different sources 
of information are included. By combining the information from all currently 
available C. reinhardtii metabolic models, as well as from improved annotation 
methods, a single and more-comprehensive GSMM may be obtained. This 
consensus C. reinhardtii GSMM would be an important starting point for the 
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generation of GSMMs for other interesting microalgae, with the proviso mentioned 
earlier that it might not be applicable to distantly related microalgae. 
Alternatively, ab initio models can be made using genomic data for the alga in 
question, but employing the strategies and tools developed for C. reinhardtii, as has 
been done for Ostreococcus[45]. Ultimately, GSMMs of various microalgae will be 
valuable for designing strategies that increase the production of compounds of 
interest [120, 131]. This, combined with the design of novel synthetic pathways, 
such as the species-independent prediction demonstrated for novel isobutanol, 3-
hydroxypropionate, and butyryl-CoA biosynthesis [132], will pave the way for 
model-driven engineering of algal species
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Box 2: Flux analysis in microalgae 
Flux balance analysis (FBA) [117] is the most commonly applied method to 
simulate metabolism in genome-scale metabolic models. It identifies as a 
theoretically optimal use of metabolic capabilities for a selected metabolic 
objective in a specific environment. Because some microalgae can grow 
autotrophically in chemically defined medium, the boundary conditions for 
consumption of all medium components are well specified in those cases. This 
is advantageous for in silico metabolic flux analysis using metabolic models to 
address, for example, how a microalga can achieve maximal growth under 
defined illumination. In addition, disabling the metabolic capabilities 
associated with a gene allows simulation of mutant strains. FBA can thus assess 
the potential of different strains and different environmental conditions. To 
run FBA, all reactions are organized in a stoichiometric matrix S. Each column 
in S represents a different reaction, and each row a different metabolite. A 
nonzero value at position [i, j] thus indicates the stoichiometric coefficient of 
metabolite i in reaction j. FBA then employs two different constraints. (i) 
Metabolism is assumed to be in steady-state; production/degradation of 
intermediate compounds is not possible, and (ii) thermodynamics 
(reversibility) and substrate availability both dictate lower and upper flux 
bounds for individual reactions. Finally, one or more reactions are selected to 
represent the metabolic objective, for example, algal biomass production. 
Together, the S matrix, the constraints, and the objective function form a linear 
programming problem: 
max(X*c) 
s.t. S*x = 0 
x >= lb 
x <= ub 
where x is the flux vector, c is the objective vector, 0 is a null vector ensuring 
steady-state, and lb/ub are the lower/upper bounds for each reaction. The 
vector x represents a flux distribution with the theoretically maximal value for 
the metabolic objective. However, because of the presence of alternative/cyclic 
pathways, there are often alternative flux distributions with equally high values 
for the objective function. Flux variability analysis [118] explores for each 
reaction to what extent the flux can vary while permitting only a small 
reduction in the obtained value. In addition, experimental data can be used to 
provide additional constraints. For example, 13C-labeling experiments provide 
experimentally measured fluxes as inputs for the model simulations [133]. 
Several FBA-based methods also facilitate the integration of transcriptomic, 
proteomic, and metabolomics data with metabolic models to constrain 
reactions based on measured RNA or protein levels [86,87[134]. Thereby, flux 
distributions are identified which are most consistent with the expression data 
[135]. Because of the greater number of quantitative genome-wide 
transcriptomic studies compared to those analyzing the proteome, 
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applications using transcriptomic data have been relatively abundant. 
However, the methods generally do not distinguish between these two types 
of data, and metabolic models can therefore be integrated with, and their 
predictions compared to, experimental data yielding new insights into 
metabolic functioning. 
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4. Integrating bioinformatics and modeling for algal 
biotechnology 
The GSMMs provide a basis for both computational and laboratory-driven 
experiments, assisting in the discovery of biotechnology-driven solutions for genetic 
bottlenecks in algae. For example, to enable microalgae to become a viable 
industrial biosynthesis platform, their photosynthetic efficiency, product yield, and 
their growth rates under conditions for product synthesis will need to be addressed. 
Photosynthetic efficiency, with an estimated maximum of 8–9% in wild type 
algae [42, 136], sets a limit to both product synthesis and growth rate. Because of 
efficient light-harvesting antenna, algal cells can absorb much more light than they 
are able to use for photosynthesis [136], with the excess being lost as heat or 
fluorescence. In dense algal cultures, such as might be found in industrial cultivation 
systems, this reduces light penetration, placing a limit on the depth of the culture, 
increasing the surface area to volume ratio required for maximum productivity. 
Truncated light-harvesting chlorophyll antenna size (tla) mutants of C. 
reinhardtii with reduced antenna size have been shown to have improved solar 
energy conversion efficiency and photosynthetic productivity in mass culture and 
bright light [137]. Another study has modeled different pathways for the process of 
carbon fixation [138] as a means to overcome the low oxygenase activity of 
Rubisco [139]. Bar-Even et al.[138] computationally identified alternative carbon 
fixation pathways by using approximately 5000 known metabolic enzymes, hoping 
to find carbon fixation pathways with superior kinetics, energy efficiency, and 
topology. Some of their proposed pathways were estimated to be up to two- to 
threefold more efficient than the conventional Calvin–Benson cycle. Using an algal 
GSMM to study these pathways would help in understanding how these predictions 
may affect biomass and product synthesis in microalgae. 
As explained earlier, nitrogen limitation is a necessary stimulus for TAG 
accumulation by microalgae [81]. This also triggers a reduction in photosynthetic 
membrane lipids and cessation of cell growth. The link between accumulation of 
lipid (including TAG) and macronutrient stress has been investigated using a systems 
approach, such as in a proteomic analysis of C. vulgaris, which led to identification 
of new transcription factors associated with lipid accumulation, offering the 
prospect of TAG overproduction independently of nutrient limitation [140]. In 
another approach, in the diatom, Thalassiosira pseudonana, TAG production was 
increased not by targeting the biosynthesis of lipids, or the production of competing 
energy sinks, but instead by RNAi knockdown of lipases involved in glycerolipid 
catabolism [141]. The integration of knowledge gained from GSMMs and similar 
metabolic engineering offers scope for improved efficiency based on rational 
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design. For example, farnesyl pyrophosphate is a precursor of terpenoids, steroids, 
and carotenoids, and the metabolite itself is also a product of interest in algae. 
Bacterial promoters responsive to the toxic accumulation of farnesyl pyrophosphate 
have been identified and used to regulate the expression of the precursor 
biosynthesis operon. This increased the yield of amorphadiene twofold over 
chemically inducible and constitutive gene expression [142]. Such an approach in 
microalgae would be foreseeable in the future, when promoters in various algal 
species are better understood, through model-driven design that incorporates 
systems data. 
 
Alongside genomic sequence information, a key requirement is the ability to carry 
out genetic transformation, and while this is routine for C. reinhardtii, and a few 
other species such as the diatom P. tricornutum, in the past few years there has 
been a rapid increase in published methods for the transformation of several 
species of industrial interest including Nannochloropsis sp. [143]. Moreover, the 
ability to engineer the chloroplast genome offers considerable opportunities for 
metabolic engineering, given the focus of this organelle on biosynthesis [144]. 
Nevertheless, for predictive metabolic engineering there is an urgent need to 
expand the toolbox, particularly for the regulation of transgene expression. In this 
context, there are several well-established systems for inducible gene expression 
in C. reinhardtii, most notably promoters that are regulated in response to nitrate 
(NIT1 or NIA1) [145] or copper (CYC6) [146]. More recently, vitamin-
responsive cis elements have been identified, namely a cobalamin (vitamin B12)-
responsive promoter [147] as well as a thiamine (vitamin B1)-responsive 
riboswitch [148], and these have been demonstrated to be useful regulatory tools. 
Vitamins have the advantages of being benign, cheap, and effective at low 
concentrations. However, the majority of these elements have been discovered by 
coincidence rather than by design, and a more rational approach will come from use 
of transcriptomic data to provide promoters responsive to particular regulators, for 
example in response to CO2 levels [149]. Further facilitation of transgene expression 
comes from the use of 2A peptides [150] which cause self-cleavage to release 
individual domains from a fusion protein. They thus provide the capacity for operon-
like transgene expression within the nucleus. Marker recycling methods for 
chloroplast engineering have also been developed for C. reinhardtii [144, 151]. 
However, despite these developments, progress remains parallel in nature and 
heavily focused upon the development of C. reinhardtii. Information from algal 
genomes will be key to increasing the molecular tools available. 
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Nonetheless, for microalgae to be developed as a commercially viable 
biotechnology platform, rational design to address the current shortcomings must 
be achieved through the development of fit-for-purpose metabolic engineering or 
synthetic-biology resources. The diversity of algae provides considerable 
biotechnological potential but also presents a serious challenge to establishing 
common tools and approaches. The relative immaturity of the field, combined with 
the enticing potential of integrating predictive design of microalgae with the 
bioinformatics and systems-biology modeling framework (Figure I in Box 3), offers 
new perspectives for future improvements in algal biotechnology. By adapting 
cutting-edge developments in functional annotation for microalgae, and using these 
for the modeling of their metabolic and regulatory pathways, it will be easier to 
establish common features of algal genomes, and at the same time identify novel 
pathways for exploitation. A more accurate and elaborate functional annotation of 
omics data by combining first- and second-generation methods will allow reverse-
engineering based on algal genome-scale metabolic models. These can then be used 
to inform hypothesis-driven metabolic engineering experiments in microalgae. Such 
an integrated approach is currently missing, but will provide the knowledge 
necessary for predictive modifications of algal industrial biotechnology platforms in 
the future. 
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Concluding remarks 
The significant gap of unknown and non-validated gene and protein functions in 
algae remains one of the top challenges faced by scientists wanting to tap further 
into the potential of these organisms for sustainable biosynthesis. Predictive 
design of metabolic engineering strategies for microalgae still has a long journey 
ahead. An improved understanding of the metabolism, regulation, and growth of 
algae, together with their interactions with coexisting bacteria, is a crucial first 
step. Extending bioinformatics approaches for function prediction through 
incorporation of new methodology, integrated and flexible databases, in 
combination with metabolic modeling and model-driven design of experiments at 
the systems-biology level, will underpin this process and enable the future era of 
algal industrial biotechnology. 
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Abstract 
Background: To fully exploit the potential of microalgae as commercial green 
hosts, the scientific community has to improve their understanding of these 
organisms from a systems biology perspective. Compared to other model 
organisms, our genomic knowledge of the microalgae model species 
Chlamydomonas reinhardtii is very limited. Currently, almost 90% of the 
functional annotated proteins of C. reinhardtii and of other microalgal proteins 
are homologs of Arabidopsis thaliana proteins, which suggests that for the 
most part only the metabolic core conserved between these species is properly 
annotated.  

Objective: This review highlights how proteins outside of this core can be 

annotated by applying�publicly available tools and methods. These include the 

use of novel state-of-the-art prediction tools,�combinations of these tools, and 

the use of metabolic modeling-assisted functional annotation. Furthermore, 
we discuss the need for data on the subcellular location of microalgal proteins. 
Finally, some remaining bottlenecks regarding functional annotation of 
microalgal proteins are discussed.  

Conclusion: We conclude that both large dry-lab and wet-lab efforts are 
required to generate reliable functional annotations of microalgae.  

Keywords: Microalgae, bioinformatics, systems biology, annotation, 
genomics, proteomics, protein function.  
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1. INTRODUCTION  
Microalgae are considered as promising organisms for a bio-based economy 
and unlocking their power potentially holds solutions for achieving global 
sustainability. In order to cope with some of the most demanding nutritional 
and energetic challenges of the future, research has focused on the renewable 
oil that can be extracted in significant amounts from these microalgae to create 
sustainable consumer products. However, compared to the more traditional 
sources, economically interesting molecules, such as triacylglycerides and 
polysaccharides, are currently not produced at a cost competitive rate [42]. To 
increase the yield, it is important to understand the genomic makeup of 
microalgae. More specifically, it is important to understand microalgae as 
biological systems at such a level of detail that mathematical models can be 
developed for these cell factories. These models can then predict the most 
optimal conditions for growth and production of interesting compounds and 
can guide genetic precision engineering of these cell factories [152]. Such 
models, often in the form of genome-scale metabolic models, require a 
thorough functional annotation of the proteins encoded by the genomes.  

In today's age of biology, computational annotation of protein functions is of 
vital importance. Sample throughput of the classical biochemical and genetic 
methods is simply too low to be considered as an alternative. However, there 
is large phylogenetic distance between microalgae and well- characterised 
(model) species [153], and this distance hampers standard computational 
methods for genome annotation. Many of the popular computational methods 
for function prediction try to infer homology by calculating sequence- based 
statistical similarity scores with proteins of known function [61, 154]. This 
works fairly well for a comparison between a well-studied model organism with 
a large set of proteins validated by biochemical and genetic methods, such as 
Arabidopsis thaliana and Escherichia coli, and close by plants and bacteria, but 
the efficiency of a sequence similarity based annotation method decreases 
drastically when it is used between a group of species with little experimentally 
validated proteins, or when it is used for species that have a large phylogenetic 
distance to a well- studied homologous species. The most studied microalgae 
species Chlamydomonas reinhardtii became known early on as an excellent 
model species for microalgae because of its genetic amenability [155], but two 
decades later our genetic knowledge of this species still trails far behind that 
of other model species. Currently only some 150 proteins are characterized by 
direct biochemical methods. Furthermore, due to the large phylogenetic 
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distance to the closest well- studied model organism [153], Arabidopsis 
thaliana, only the most conserved genes are properly computationally 
annotated. Subsequently, only this limited set can be used as a reference set in 
sequence similarity-based methods to annotate other algal species of interest. 
As a result, only the conserved core metabolism of various microalgae is 
functionally annotated with a high level of confidence. Most of these 
microalgae were, however, selected for their ability to produce interesting and 
novel compounds [156]. To truly exploit microalgae for a bio-based economy, 
it is therefore important to know the function of the proteins that are not part 
of this metabolic core. By gaining more detailed genomic knowledge we will 
be able to produce more accurate algae specific genome-scale metabolic 
models. This allows for the prediction of biomass composition and conditions 
for optimal growth rates of microalgae, as well as for diversifying between the 
unique characteristics and capabilities of different microalgae and strains. 
Recently, alternative methods to functionally annotate microalgae have been 
described [157]. In this review we assess the current state of microalgal 
functional annotation, standardly used methods and discuss some alternative 
methods and workflow based on novel annotation tools that are currently 
available to the scientific community. Finally, we address some bottlenecks 
that currently cannot be solved by computational methods.  

2. AVAILABLE DATA  
From early on, Chlamydomonas reinhardtii was the only microalgae species 
that was extensively studied on a molecular scale. This species was first 
proposed a model organism for algal genetics in 2001 [155], and a draft genome 
sequence was available in 2003 [158]. However, due to “unusual challenges” in 
generating a high-quality genome [158], the genome was only published as late 
as 2007 [54]. For C. reinhardtii to serve as a model species to which other algae 
can be compared, it is important that many algal- specific protein functions 
and other key functions are based on experimental evidence, and not only 
inferred from electronic annotations. In the UniProt database 
(http://www.uniprot.org) [159] there are currently 148 proteins from C 
reinhardtii with an experimentally validated function, compared to 5,766 for 
Arabidopsis thaliana, and 3,255 for Escherichia coli.  

The electronic annotation of C. reinhardtii is an ongoing process, and so far out 
of a total of 15,000 proteins there are roughly 7,000 proteins available in the 
UniProt database that are functionally annotated with at least one GO term. 
However, when we take the reviewed proteins of Chlamydomonas into 
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account, there are only 299 proteins with a high-quality annotation available.  

2.2. The state of microalgal annotations  
For microalgae, the inability to obtain a high-quality functional annotation for 
the majority of the proteins seems to be a returning trend. In Table 1 we bring 
some recently annotated microalgae and show how deep they are annotated. 
All of these microalgae were annotated using standard homology-based 
methods [109, 160-166]. For each of these microalgae roughly half of the 
proteins lack any form of functional annotation documented in their UniProt 
database entry [159]. This is likely the direct result of a lack of phylogenetically 
close well-annotated model species. That does not necessarily mean that the 
annotations obtained are unspecific or inaccurate, but it does imply that 
accurate electronic annotations are retrieved only for highly conserved 
proteins common amongst many microalgae.  

2.3. Diversity of Microalgal Annotations  
The diversity of microalgae makes them unique biological reservoirs for 
bioprospecting, and it would be interesting to see how a good quality 
functional annotation can contribute to this process. By taking the Gene 
Ontology (GO) annotations from the microalgae species presented in Table 1 
into account, and by checking the occurrence of these terms in the nearest 
well-studied model species A. thaliana, we can get hints about the diversity 
and origin of microalgal proteins annotations (Fig. 1). The figure shows that 
88% of the GO terms assigned to microalgal proteins also occur in Arabidopsis. 
Overall, 85% of the microalgal GO terms are used in the annotation of C. 
reinhardtii protein, but only 7% of the specific Chlamydomonas GO terms do 
not occur in Arabidopsis.  

For all other species the amount of mapped GO terms is far less than in C. 
reinhardtii, showing an even less diverse annotation. With such little amount 
of microalgal GO terms, that are not also mapped to Arabidopsis, it becomes 
clear that the current annotation of microalgae largely describes the conserved 
core-metabolism shared between eukaryotic photosynthetic organisms, and as 
such will only provide a small contribution to the process of bioprospecting.  

To summarize, microalgal experimental protein data is very limited, and due 
to the large phylogenetic distance to the better-characterized model species 
large amounts of proteins remain unannotated (Table 1). To circumvent these 
bottlenecks, it is necessary to use more advanced annotation methods. 
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Figure 1: Heatmap showing the presence of microalgal GO term 
annotations in microalgae and in model species. Y-axis, species 
presented in Table 1; X-axis, GO terms annotated to microalgae, sorted 
by their assignment to at least one protein in descending order of the 
species list. 

3. IMPROVED FUNCTIONAL ANNOTATION  

3.1. Keeping Up to Date with Annotation Methods - The CAFA 
Experiment  
One way to improve the functional annotation of microalgae, is by applying 
the latest state-of-the-art tools. The classical sequence similarity-based 
annotation methods often remain the first method of choice because of their 
success in the past. However, functional annotation of proteins is a hot topic 
in the bioinformatics community and new tools are published every year. To 
keep track of these tools and how well they perform, the Critical Assessment 
of Protein Function Annotation (CAFA) experiment attempts to rank them 
according to their performance [56]. The first edition showed that as many as 
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33 new methods outperformed the standard BLAST-based method. This can be 
explained by the fact that many of these tools apply sequence similarity-based 
predictions in different ways, for  

example by using one-to-many homology-based annotations, or by using 
context-aware principles, as described by [157]. An example of a new method 
that uses a one-to-many approach is Argot2 [2], which combines BLAST results 
with sequence analysis using profile hidden Markov Models (HMM) and 
subsequently compares predictions using a semantic similarity approach. An 
example of a context- aware approach is FFPred2[167], which attempts to 
transfer functional annotations from known (human) proteins to unknown 
proteins with similar biophysical attributes.  

The CAFA experiment provides a good ranked overview of state-of-the-art 
annotation tools. However, most of these tools in part still rely on primary 
sequence similarity, and the structure and context-based alternatives require 
extensive training sets. Thus, although these tools will most likely produce 
more reliable results than the classical mainstream functional annotation 
tools, they will still be unable to annotate many microalgal proteins.  

3.2. Consensus-Based Annotation  
An alternative way to improve the results of protein functional annotation is 
by using a set of complementary tools and combining individual predictions in 
a statistical solid manner. For example, by combining FFPred2 with Argot2 we 
combine a one-to-many homology-based annotation method with a context-
aware annotation method. This can be further complemented with a protein 
domain homology-based transfer of annotation approach using InterProScan 
[61]. If we would then take the GO term predictions of each of these methods 
and compare predicted GO terms using a semantic similarity approach as 
applied in Argot2, we obtain a comparison between predictions of each of these 
methods, and the specificity for each predicted GO term. By then applying a 
machine-learning algorithm such as Random Forest we are able to reassess the 
validity of each of these predictions.  

As a test-case we applied this method to a test-set of all new microalgal 

SwissProt (http://www.uniprot.org) proteins entries between the 1
st 

of July 

2014 and 1
st 

of July 2015, using the UniProtKB [159], Uniref90 [168], and Pfam 

[169] databases from before the 1
st 

of July 2014 as reference. The experiment 
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was set up with double 10-fold cross validation. Ten data sets were generated 
with 90% of the predicted GO terms assigned to the training set, and 10% as 
test-set. The training set was used to train a Random Forest model on the input 
using 10-fold cross-validation. In this way each final predicted GO term has no 
influence on the model used to predict these GO term, eliminating overfitting. 
The accuracy of this method largely improves over that of FFPred2, Argot2, 
and InterProScan (Fig. 2A). A test-set of non-algal proteins (Fig. 2B) was used 
to compare results with the algal data set. There is a noticeable difference in 
the performance of FFPred2, Argot2 and InterProScan. For microalgae, the 
latter two showed lower prediction accuracy.  

3.3. Functional Annotation with Hidden Markov Models  
Profile Hidden Markov Models (HMM’s) provide a statistical description of a 
sequence family consensus [62]. Effectively a profile HMM turns a multiple 
sequence alignment of a specific protein family into scoring system that takes 
into account position-dependent amino acid distributions and position-
dependent insertion and deletion gap penalties, which makes this technique 
suitable for searching remote homologs. To obtain the best model while 
keeping a high specificity, it is important to build it from experimentally 
validated proteins only. Because there is no database that contains HMM’s 
built from experimentally validated proteins only, for each specific function a 
new HMM has to be built, which makes this method not easily applicable for 
high throughput annotation. Moreover, when selecting only experimentally 
validated proteins of a specific function, the amount of experimentally verified 
sequences available can often be too limited.  
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Figure 2: Receiver Operator Curve of three protein function prediction 
methods, as well as the consensus-based method that combines these. 
The test-sets used consisted of protein entries not present in UniProt 
(http://www.uniprot.org) before the 1st of July 2014. The test-set of (A) 
246 reviewed microalgal proteins comprising 540 assigned GO terms, 
and (B) consisted of 2,429 reviewed proteins comprising 11,701 assigned 
GO terms. Predictions were done using database versions from before 
the 1st of July 2014. 
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3.4. Validation of Matching Proteins via 3D Structure  
An extension to sequence similarity techniques is 3D structure prediction. 
Once the best matching proteins are found, they can be used in homology-
based modeling approaches. Homology-based modeling uses a reference 
protein as a base to predict the 3D structure of the protein of interest. The two 
3D structures can then be scored for overall quality and be compared. Several 
tools are capable to estimate the tertiary and quaternary structure of proteins 
in such a way. One example is SWISS-MODEL 
(http://www.swissmodel.expasy.org), a web-based tool aimed to provide easy 
access to predict protein 3D structure from its amino acid sequence, assisted 
by homology modeling techniques as explained above [170]. Regardless of the 
automated 3D modeling limitations, scores such as QMEAN, coverage, and 
identity, can provide an interesting addition to estimate the similarity between 
the protein of interest and the reference protein.  

3.5. Model-assisted annotation  
A genome scale metabolic reconstruction aims to integrate biochemical 
metabolic pathways in a single network and provides a structured platform to 
correspond metabolic genes with metabolic pathways [171]. As an alternative 
to laborious manual metabolic model construction, tools such as SEED [172] 
and Pathway Tools [173] are capable of automatically generating metabolic 
maps from pathway databases and enzyme annotations. While these tools 
often provide only a basic overview of an organism’s metabolic capabilities, as 
the topology and breadth of the network is largely dependent on available data, 
even for microalgae these models can provide valuable insights. For instance, 
an orphan reaction in metabolic pathways can simply be due to a missed or a 
too broad annotation. With this information in mind it becomes feasible to use 
more elaborate, case-by-case, manual annotation methods to close these gaps. 
A simple first step could be to take the GO term specific for the particular 
protein and link this to similar but more generic parental GO term(s). Proteins 
annotated with these less specific GO term(s) are then considered to be 
promising candidates for the missing GO term and should be re-evaluated. 
One way to do this is by building an HMM based on UniProt proteins that are 
experimentally validated to have the specific GO term. This statistical model 
can then be applied to the candidate protein selection, and in this way, we 
might be able to identify the correct protein.  
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3.6. Subcellular Localization  
Protein localization prediction is an important part of a protein’s functional 
annotation. If two proteins involved in the same reaction are functionally 
assigned to a different subcellular compartment, the reaction cannot occur. 
On the other hand, microalgae are known to possess multiple iso- functional 
proteins that essentially perform the same reaction but in different subcellular 
compartments. This information is crucial for the more elaborate 
compartmentalized genome scale models of microalgae. One robust way of 
figuring out the subcellular location of (isofunctional) proteins is by 
performing subcellular proteomics [174], but this is often technically difficult, 
expensive, and time consuming. The UniProt database currently contains 529 
reviewed microalgal proteins with a subcellular location annotated, of which 
54 are experimentally validated. Therefore, it is necessary to computationally 
predict the subcellular location of proteins. For this purpose, several tools are 
available, such as: Argot2 [2], TargetP [95], SignalP[96], PSORTb [97], and 
PredAlgo [98]. However, with the exception of PredAlgo, most of these tools 
are trained with different types of species in mind, resulting in predictions that 
do not take into account the specific cellular arrangements and compartments 
in microalgal species.  

PredAlgo is a predictor specifically trained for microalgae, using a C. reinhardtii 
based training set of 79 chloroplast, 39 mitochondrial, 39 secretory pathway, 
and 89 cytosol proteins. It shows good prediction results for Chlamydomonas 
proteins and closely related microalgal proteins. However, for other more 
distantly related microalgal species predicting subcellular localization is 
difficult due to their polyphyletic nature. It is believed that different 
endosymbiotic events happened in parallel, forming the first microalgae [175]. 
This caused a difference in the arrangements of cellular compartments, or even 
different types of cellular compartments. Therefore, PredAlgo may not be 
accurate in predicting protein locations for microalgae not related to C. 
reinhardtii. To circumvent this, the PredAlgo algorithm will have to be trained 
with proteins from additional microalgal clades. Alternatively, results from 
multiple predictors possibly can be combined as described above. Finally, it 
should be noted that PredAlgo only predicts to which compartment a protein 
is targeted. If the compartment where translation of the protein takes place is 
unknown it is still not possible to know the final location, or to which 
membrane it is targeted. Therefore, compart- mentalized omics data is needed 
to accurately predict the final subcellular location of a protein. The UniProt 
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database contains 8 chlorophyta proteome sets based on genome sequencing 
data that are fully annotated. Additionally, GenBank 
(http://www.ncbi.nlm.nih.gov/genbank/) harbours many chloroplast and 
mitochondrial datasets that can be used for this purpose [97]. These datasets 
could be compared to assess the potential impact of the parallel endosymbiotic 
events, which in turn can be taken into account in cellular location predictions.  

In conclusion by using consensus-based protein function prediction, and/or 
model-assisted annotations, many improvements can be made in functional 
annotation of microalgal proteins. Nevertheless, there will always be a set of 
species-specific proteins that will remain unannotated using computational 
methods.  

4. REMAINING BOTTLENECKS  

4.1. Unsupervised Computational Annotations Can Lead to Error 
Propagations  
The GO project has become the standard way of annotating proteins [65]. All 
major databases use these terms for the documentation of protein functions 
and cellular locations. GO terms are accompanied with an evidence code, 
stating how a gene was assigned to a GO term [176]. In most cases the evidence 
code is “Inferred from Electronic Annotation”, meaning that an unsupervised 
computational method was used. Such annotations are error-prone. 
Furthermore, with an exponential-increasing amount of sequencing data being 
generated every day, the amount of unsupervised electronically assigned GO 
terms also increases exponentially. To illustrate the problem, Schaid et al. 
showed that already in 2010, 50% of the 200,000 human protein GO term 
assignments were done electronically. Consequently, these gene annotations 
were likely to contain a number of errors [177]. If such an electronic annotation 
is done using, for example, a standard BLAST based transfer of annotation 
method and proteins that also have their GO terms electronically assigned 
were used as a reference, this can easily lead to error propagation of GO term 
assignments. Recording the provenance of unsupervised annotations to GO 
terms is therefore essential. Several annotation tools are scoring GO term 
annotations based on the GO structure and evidence codes [178]. The evidence 
ontology (ECO) [176] provides more descriptive evidence-based annotation to 
proteins in UniProt database by describing, for example, evidence types, 
methods and data curation. A detailed provenance can help to obtain more 
precise evidence scores than is possible with the standard evidence codes.  
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4.2. Orphan Reactions  
One of the direct results of a small amount of experimentally validated proteins 
is a large amount of orphan reactions. These are reactions catalysed by 
enzymes of which it is assumed that they must occur, for instance through 
phenotypic analysis or because they bridge a gap in a metabolic pathway, but 
which do not have an encoding gene assigned. The Orphan Enzymes Project 
(http://www.or phanenzymes.org) is attempting to link sequences to such 
Orphan Enzymes, and a similar effort should be made regarding microalgal 
enzymes.  

4.3. The Lack of Identified Microalgal Specific Protein Domains  
An effective way of assigning GO terms to proteins is by linking GO terms to 
protein domains and searching proteins for the presence of these domains. 
However, as can be seen in Fig. (2B) (InterProScan results) microalgae proteins 
show a low level of sequence similarity to domains available in the PFAM 
database (http://www.pfam.xfam.org), which suggests that microalgae have 
accumulated many novel domains that are not yet identified by the scientific 
community. To start to identify these novel domains it might be useful to 
develop an algae specific domainome by routinely performing large-scale 
comparative genomics between all available microalgal genomics data, as was 
done with bacteria [179]. Recurring patterns can then be assigned to specific 
domains with presently unknown function. If specific domains keep recurring 
in proteins associated with specific traits, these domains can be linked to a 
function.  

CONCLUDING REMARKS  
Systems biology approaches to unlock the potential power of microalgae are 
seriously hampered by lack of genomic knowledge. Genome annotations of 
recently sequenced species still heavily depend on sequence- similarity based 
functional annotation methods, which are less suitable for species that have 
no close by well-studied and annotated homologous species. As a result, 
almost 90% of microalgal functional protein annotations is still for the most 
part describing the metabolic core shared between algae and plant species. The 
application of novel state-of- the-art annotation methods, as well as 
approaches that combine multiple methods, may result in a more accurate and 
more diverse functional annotation. Genome scale modeling approaches could 
additionally help in identifying metabolic gaps, which can then be looked at 
more thoroughly. However, for microalgae to fulfil their promise as a 
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biosynthetic host it is important to overcome at least some of the annotation 
bottlenecks that are not solvable by computational methods. We therefore 
suggest that a large- scale wet lab effort focused on a number of selected 
microalgal reference species is essential. This would provide the computational 
methods with larger, more diverse set of reference genes, and would allow 
computational annotations methods to quickly tap into the promising 
biological reservoirs of industrially interesting algal species [180].  
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Abstract 
Motivation: De novo protein function prediction has been a hot topic in 
bioinformatics since the early days, and even more so since the start of the 
omics era. However, predicting protein functions in high-throughput is 
notoriously challenging. Most prediction methods are based on sequence 
similarity or on machine learning. Sequence similarity-based annotation 
methods often have a high specificity and sensitivity in case of well-
characterized orthologs but are unable to predict any functionality when these 
are absent. Homology-independent machine learning based methods do exist 
but usually have a lower specificity, as other protein features are less 
informative than sequence conservation. In an ideal case scenario specificity 
and sensitivity should be combined. 

Results: To achieve a higher sensitivity and specificity in de novo protein 
function prediction, CrowdGO combines multiple homology-dependent and 
independent protein function prediction methods. It uses Gene Ontology 
semantic similarity to correlate and compare the various functional 
predictions and reassesses the predicted terms using a random forest 
algorithm. Based on a test set, CrowdGO shows a significant area under the 
curve increase when assessing sensitivity and specificity. This is also showcased 
by a net-gain in true positive and true negative predictions. 

Conclusion: Given the significant increase in both sensitivity and specificity, 
CrowdGO would be a good addition to any omics study in need of high-
throughput prediction of the encoded functionome. 

Availability: CrowdGO can be found at 
https://gitlab.com/mreijnders/CrowdGO 
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1. Introduction 
Non-model species are often interesting targets for biotechnological research, 
but our biochemical understanding of their protein functions is limited. For 
example, microalgae are almost exclusively annotated based on computational 
predictions [157]. Standardly used function prediction tools use sequence 
similarity, where in the case of sufficient sequence homology with a protein its 
function is transferred over [2, 63]. These methods work well for proteins that 
show a high level of sequence conservation, by transferring the annotation 
information from closely related well-studied model organisms. However, it 
works less well for non-model species, especially when there is no closely 
related well-studied model organism available. Alternatively, there are 
homology independent machine learning-based methods, which attempt to 
correlate protein features such as hydrophobicity, protein domains, and 
presence of signal peptides, with a protein function [167, 181]. These methods 
have a high recall but lack precision, as correlating generic protein features to 
a protein function leads to more ambiguity than transferring function between 
proteins with a high sequence similarity. Most methods fall under these two 
categories as can be seen in the CAFA challenges for protein function 
prediction [56, 182], a competition between scientists where they attempt to 
predict the function for novel protein sequences as accurate as possible. 
However, most methods suffer from drawbacks, and ideally, we may want to 
combine the advantages of multiple methods while negating their drawbacks. 

Combining different methodologies to achieve better prediction results is not 
a new idea. In 2009, Rentzsch and Orengo discussed the new era of genomics, 
and the advantages that come with it [92]. In their review, they provide a 
comprehensive overview of function prediction methods, and which biological 
aspects they use to predict protein functions based on Gene Ontology (GO) 
terms, a framework of notations used to describe a proteins function. They 
argued that in the ‘age of multiplicity’, only the use of multiple tools, multiple 
evidence, and the multiple aspects of function, can give us a good insight into 
protein functions. Since then, many tools have been designed that combine 
multiple biological features to make a function prediction. However, while 
they argued that multiple tools need to be used to provide a comprehensive 
insight into protein function, there is currently no standard method to merge 
predictions of orthogonal different tools. 

For this purpose we have designed CrowdGO: a wisdom of crowd based 
annotation tool that uses GO term semantic similarity and a random forest 
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algorithm [183] to combine the predictions of multiple methods. CrowdGO is 
able to use the results of any GO term prediction method that provides 
confidence intervals. In this paper we use an example based on FFPred2 [167] 
and Argot2 [2], which were the top performers in the CAFA2 challenge [56], 
and InterProScan [63]. These three methods were chosen because of their 
prediction performance, and because they use complementary approaches. 
FFPred2 is a machine learning based prediction method that uses support 
vector machines [184] on a set of 13 protein features such as amino acid 
composition, low complexity regions, and secondary structures. Argot2 is 
based on both sequence similarity and machine learning, using BLAST [154] 
and HMMER [185] to calculate similarity to existing protein sequences, and a 
similarity calculation between the BLAST and HMMER retrieved GO terms. 
Finally, InterProScan uses machine learning by training profile Hidden Markov 
Models [62] to predict protein domains, and transfers any GO terms associated 
to these domains to the protein. 
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2. Methods  

The CrowdGO annotation pipeline consists of two parts: correlation of gene 
ontology (GO) terms [64, 186] generated by the different prediction tools, 
followed by a random forest algorithm [183] to distinguish between true 
positive and false positive predictions. 

2.1 CrowdGO workflow 
Figure 1 visualizes a simplified workflow of the CrowdGO annotation process: 

1. The user selects their proteins for analysis, and a training set consisting of 
proteins with a known function. 

2. All proteins are initially assigned GO terms by two or more prediction 
methods. In our test case we used FFPred2 [167], InterProScan [63], and a 
reversed engineered local implementation of Argot2 [2]. 

3. GO-term assignments from each method are compared. Protein-GO term 
predictions that are in the same GO hierarchy get clustered with given 
similarity scores. The GO term with the highest IC score (Equation 1) is 
chosen as representative term. 

4. All scores from step two and three are entered in a random forest model 
[183] (Table 1). The random forest is trained on the training set using 10-
fold cross-validation and is used to predict whether a previously predicted 
GO term is a true or false positive. 

5. The output of the pipeline is a list of protein-GO term pairs with a 
confidence interval between zero and one. 
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Figure 1: Simplified workflow of the CrowdGO annotation process. 1) A 
protein with an unknown function is 2) annotated by two or more 
existing methods. 3) The similarities for the predicted GO terms 
between each method are calculated (Equation 1,2). 4) All the scores 
produced by step 2 and 3 are used as an input for a random forest 
algorithm. 5) The outcome of the random forest algorithm gives 
confidence intervals between zero and one for each previously 
predicted GO term.  
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2.2 Methods used for GO term prediction in step two 
For our testing of CrowdGO we used three different predictors for step two: a 
reversed engineered local version of Argot2 based on [2], FFPred2 [167], and 
InterProScan [63]. For training purposes of these tools, we only used databases 
and other prior information from before 01-07-2015, to avoid biased predictions 
and over fitting. The versions can be found in table 1. 

2.3 Usage of Argot2, FFPred2, and InterProScan 
Our implementation of Argot2 (ArgotToo) is made using the published 
methods [2], as there was no local implementation publicly available. 
ArgotToo uses BLAST [60] and HMMScan [185] results as an input. BLAST 
input was generated by a BLASTP on the UniProt Knowledgebase database 
from 24-06-2015 (Table 1) [55]. The HMMScan input was generated on PFAM 
version 27 (Table 1) [169]. 

For FFPred2 we downloaded the available local version 
(http://bioinfadmin.cs.ucl.ac.uk/downloads/ffpred/) and used its default 
settings. After calculating the optimal cut-off for precision and recall using 
pROC [187], the true positive threshold was adjusted to 0.7 instead of the 
default 0.5. This threshold was used in evaluating FFPred2 in Table 2.  

We used InterProScan version 5.13-52 and disabled its pre-calculated lookup 
service. Since InterProScan provides no unified scoring system for each of its 
sub-programs, we used the amount of times a GO term was predicted to a 
protein independently. This score ranges from 1 to 26, which was the maximum 
amount of times one GO term got predicted to a protein. However, we chose 
to only use this number as an input for the random forest model and used a 
prediction threshold of 1 for evaluating InterProScan in table 3.  
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    Table 1: Database versions used in the prediction of GO terms 

 

 

 

 

 

 

 

 

2.4 Calculating the semantic similarity between GO terms  
The gene ontology comparison algorithm is an implementation of Lin’s 
algorithm [188], as similarly used by Argot2 [2]. For each GO term pair between 
two prediction methods we compute the similarity score and their information 
content (IC) score. The IC score is used to assess how common the GO term is 
in the UniProt Knowledgebase. A GO term its IC score is calculated as follows: 

        (1) 

Where GO:GOi is the total number of times GO term i is represented in the 
UniProt database, and GO:GO  is the total number of GO terms assigned to all 
proteins in the UniProt database. 

The similarity score is then calculated as follows: 

        (2) 

Where icParent(GOi,GOj) is the parent term shared between GOi and GOj with 
the highest IC score, or the highest IC score between GOi and GOj if one is a 
parent term of the other.  

2.5 Labelling the predictions for training the model in step four 
In step 4 of Figure 1, CrowdGO trains a random forest model that requires a set 
of proteins with known GO terms. Predictions for these proteins are compared 
to these known GO terms, and subsequently labelled true or false positive 
based on the Gene Ontology (GOA) hierarchy [65]. If the predicted GO term 
is the same as the real term, or in the same GOA hierarchical structure 

Database Version Date 

UniProt SwissProt 2015_06 24-06-2015 

UniProt TrEMBL 2015_06 24-06-2015 

UniProt Uniref90 2015_06 24-06-2015 

Pfam A 27 22-05-2013 

InterPro 52 22-05-2015 

Gene Ontology Annotation 144 23-06-2015 
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excluding its root term, it is labelled as a true positive. Otherwise it is labelled 
as a false positive. The same labelling is used to evaluate the test set 
predictions, in addition to true negatives and false negatives. A true negative 
is a GO term that is correctly not annotated to a protein by being below the 
methods confidence threshold, and a false negative is a GO term that is 
incorrectly not annotated by being below the methods confidence threshold. 

2.6 ROC plot calculations.  
The calculations and drawing of figure 2 were done using the R package pROC 
[187], and the calculations and drawing of figure 3 were produced using the R 
package PRROC [189].  
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Table 2: All the data we have of the predicted GO terms, using all input 
prediction tools. The data used for the Random Forest algorithm is 
indicated in the 'RF' input column. * The classifier is only given in case 
of training the model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data RF Input 

Protein identifier No 

GO term No 

GO term IC score Yes 

Number of predictions in cluster Yes 

Argot2 GO term No 

Argot2 score Yes 

Argot2 GO IC score Yes 

FFPred2 GO term No 

FFPred2 score Yes 

FFPred2 GO IC score Yes 

IPRScan GO term No 

IPRScan GO term score Yes 

IPRScan GO term IC score Yes 

Argot2 - FFPred2 GO similarity Yes 

Agrot2 - IPRScan GO similarity Yes 

FFPred2 - IPRScan GO similarity Yes 

GO root term (BP/MF/CC) Yes  

Classifier (True/False) Yes* 
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3. Results 

3.1 Local implementation of Argot2 
We wanted to use Argot2 as one of the three methods in this paper to evaluate 
CrowdGO. However, there is no local version available for Argot2, which we 
need for the blind predictions for the training and evaluation of our proteins. 
Therefore, we recreated a local version of Argot2 based on the paper, called 
ArgotToo. We took 250 random SwissProt entries created in 2017 to evaluate 
their performance. For this evaluation we used the same databases for 
ArgotToo as for Argot2, which are all from before 2017. The result is shown in 
Figure 2. Small deviations are likely caused due to differences in database 
handling, but in general the predictions are the same. 

ArgotToo can be found at: https://gitlab.com/mreijnders/ArgotToo. 

Figure 2: Area under the roc curves for Argot2 and ArgotToo. On the x- 
axis the false positive rate, and on the y-axis the true positive rate. 
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3.2 Training and evaluating the random forest model  
The random forest model is trained on GO term predictions of 3398 proteins. 
Here we selected all new SwissProt [55] proteins between 01-07-2015 and 01-07-
2017 for which there is one or more experimentally validated GO term 
available. A thousand proteins were randomly selected for a test set, and the 
remaining 2398 proteins were selected for the training set. Before training the 
random forest, the input GO term predictions were reduced and equalized 
between true and false positives to remove any potential bias. The exact input 
used for our test case can be found in Table 2.  

3.3 Assessing sensitivity and specificity 
In Figure 3 the sensitivity and specificity of each method is compared. The ROC 
curve shows predictions made by CrowdGO, ArgotToo [2], FFPred2 [167], and 
InterProScan [63]. The CrowdGO cut-off score to achieve the maximum 
combined precision and recall is marked at 0.6. Further, we compare methods 
for only biological processes, molecular functions, and cellular components 
type of functions (Figure 3 B, C, D). Notable is the lack of all methods to predict 
cellular components (Figure 3 D), and a slight increase in prediction power for 
ArgotToo for molecular functions (Figure 3 C). Figure 4 shows the comparison 
for each method its precision-recall curve. 
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Figure 3: A) Receiver Operator Curve for the various methods, with 
specificity on the X-axis and sensitivity on the Y-axis. The most optimal 
sensitivity and specificity combination is calculated to be at the 0.6 
threshold, with 84% specificity and 71% sensitivity. All curves compared 
to CrowdGO have a p-value of < 2.22e-16. B) The same ROC curve for only 
biological processes, C) for only molecular functions, and D) for only 
cellular components. Note that FFPred2 is omitted from the cellular 
components because it does not predict these. 
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3.4 Observing how CrowdGO re-classifies existing input 
predictions 
CrowdGO is specifically designed to reclassify the predictions based on 
integration between methods. With that in mind we want to observe the effect 
CrowdGO has on the original GO term annotations. In table 3 we set out the 
predictions of CrowdGO compared to its original GO term input. E.g., we 
observe how many true positive predictions became a false negative, and how 
many false negatives became a true positive.  

 

Figure 4: Precision - recall ROC curve comparing CrowdGO to 
Argot2, FFPred2, and InterProScan. 
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4. Discussion 
In the paper we introduced CrowdGO, a protein function prediction tool which 

utilizes existing predictions and reassesses them using GO term semantic 

similarity and machine learning. One major selling point for CrowdGO is its 

ability to handle all types of input data. In the case of FFPred2, for which the 

raw results seem to include a lot of false positives, CrowdGO is able to reclassify 

a lot of these false positives to true negatives while only a few true positives are 

reclassified to false negatives. 

InterProScan does not give us any meaningful confidence scores for its 

predictions, which means their sensitivity-specificity curve (Figure 3) and 

precision-recall curve (Figure 4) are meaningless. Also, the lack of meaningful 

confidence intervals means we were unable to classify predictions as negatives 

(Table 3). With CrowdGO we are able to combine the InterProScan predictions 

with other predictions to not only improve the results (Table 3), but also attach 

meaningful confidence intervals to the predicted GO terms. 

When evaluating the isolated ArgotToo results in table 3, we notice its results 

are the least affected by CrowdGO. This is likely due to Argot2 having relatively 

reliable predictions. However, Argot2 provides a lower amount of total 

predictions compared to FFPred2 and InterProScan (Table 3), with the 

exception of the GO category Cellular Component. In combination with tools 

that predict more GO terms but are arguably more prone to false positive 

predictions, CrowdGO is able to reliably predict more GO terms than 

ArgotToo could do by itself (Table 3). 

Both the biggest upside and downside of CrowdGO is its heavy reliance on the 

input predictions. If these are of low quality, the CrowdGO results will not be 

much better; if these are of high quality, the CrowdGO results will be of even 

higher quality. Additionally, combining input predictions from 

complementary techniques such as sequence similarity and machine learning 

would potentially enhance the performance of CrowdGO. Certain proteins 

might be hard to annotate by one technique, but easier to annotate by a 

different technique. Given a proper training set for CrowdGO, the random 

forest model would be able to recognize patterns where the predictions of one 

technique would be of more value than that of another technique. All of this 

requires a good understanding of protein function prediction techniques, 

resulting in a good input prediction set. Therefore, while CrowdGO shows a 

significant improvement in predicting protein functions, it takes a basic 
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knowledge of protein function prediction to be used effectively. One way of 

making CrowdGO widely usable by the community, is by incorporating it in 

existing protein function annotation pipelines. It would be wise to test 

multiple existing prediction methods combinations together with CrowdGO, 

to see which tools and combinations deliver the best results. This way 

CrowdGO can be distributed as part of a protein function prediction suite, with 

easy-to-use instructions usable by everyone. 

5. Conclusion 
We have successfully improved GO term predictions of existing methods by 

combining their results using CrowdGO. In particular, CrowdGO shows 

significant improvement in sorting high-confidence predictions from low-

confidence predictions, resulting significantly higher area under the curves 

(Figure 3), and a better precision-recall curve (Figure 4). Furthermore, 

CrowdGO is able to reassess false positives and false negatives to true negatives 

and true positives respectively (Table 3). 
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Abstract 
Motivation: Yeasts are frequently used for biotechnological applications, 

however predominantly from the ascomycota subdivision. Yeasts from the 

basiomyceta subdivision are underrepresented despite their interesting 

characteristics such as producing high amounts of triterpenoids, carotenoids, 

and complex carbohydrates. Because these species are underrepresented, we 

know relatively little about their genome organization. In this study we aim to 

functionally annotate the genome of the basiomyceta Cutaneotrichosporon 
curvatus using CrowdGO from chapter 4 and compare the results with manual 

functional annotation of metabolic proteins to assess CrowdGO in a real-case 

scenario. 

Results: We compared the CrowdGO annotations of Cutaneotrichosporon 
curvatus against the existing annotations of the related Cutaneotrichosporon 
oleaginosum and show a vast increase in amount of proteins retrieving GO 

term annotations. GO enrichment analysis using differential expression 

analysis of nitrogen and non-nitrogen growth conditions showed an 

enrichment of GO terms that would be expected from an oleaginous species. 

To increase the resolution of functional descriptions CrowdGO was 

implemented in a manual annotation pipeline to manually curate 700 

metabolic proteins. Together with a differential expression analysis, these 

functional annotations were used to characterize triacylglycerol synthesis of 

Cutaneotrichosporon curvatus. Both the CrowdGO high-throughput 

annotations, and its utilization in a manual annotation pipeline, show promise 

towards the improvement of annotations for oleaginous yeasts. 
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1. Introduction 

1.1 Basidiomycota yeasts and biotechnology 
Yeasts are the species with the most biotechnological applications, in 

particular the model species Saccharomyces cerevisiae of the ascomycota 

subdivision [190]. The ascomycota yeasts are known for applications in 

fermenting food and drinks, heterologous protein production, probiotics, and 

many more. These yeasts are well studied because of their applicability, and 

because of their potential in biotechnology, they are studied in even more 

detail. The subdivision basidiomycota, however, is not widely used in 

biotechnological applications, despite some interesting characteristics 

amongst which the most promising is their potential to produce large amounts 

of secondary metabolites such as terpenoids, carotenoids, and complex 

carbohydrates. To try and break this circle, it is interesting to study functional 

genomics of basidiomycota species. 

1.2 The oleaginous basidiomycota yeast Cutaneotrichosporon 
curvatus 
Cutaneotrichosporon curvatus is a non-model oleaginous yeast of the 

subdivision basidiomycota, able to produce up to 60% triacylglycerol (TAG) of 

its dry weight [191]. It is able to grow on low-cost carbon sources such as whey 

permeate, molasses, and other sugar wastes [192, 193]. These characteristics 

made C. curvatus an interesting organism to study since the 80’s [192]. 

Studying its TAG production is mostly focused on the dynamics of nitrogen 

starvation: an insufficient amount of nitrogen leads to an increase in TAG 

synthesis, and lowers the cells growth rate [191]. While the general TAG 

synthesis pathway in yeast is well understood, predicting which proteins are 

involved in each step is challenging [56]. Furthermore, given the challenges in 

protein function prediction, automated annotations are often incomplete 

(chapter 3)[194], potentially leaving out key enzymes and transporters. 

Accurately annotating the metabolism of Cutaneotrichosporon curvatus, and 

in particular its TAG production in relation to nitrogen levels, would give 

valuable insights for any potential biotechnological applications for this yeast 

and can act as a reference for other basidiomycetes. 
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1.3 Functional genomics of Cutaneotrichosporon curvatus 
While model species generally have a large amount of their protein functions 

assessed in wet-lab experiments, non-model species such as C. curvatus do not. 

As a result, large-scale computational predictions need to be done to retrieve 

their protein functions. Cutaneotrichosporon oleaginosum is a species closely 

related to Cutaneotrichosporon curvatus, with over 8,500 proteins in the 

TrEMBL UniProt database, and for which a bit more than half have one or more 

GO terms assigned to it using UniProt’s UniRule and SAAS annotation 

pipelines [159]. These pipelines attempt to find protein domains and other 

functional regions and annotate Gene Ontology (GO) terms to proteins using 

a manually (UniRule) or computationally (SAAS) generated set of rules, based 

on for example domain presence - absence, or taxonomic evidence.  

However, as discussed in chapter 3 and 4, annotating non-model species in 

high-throughput can be particularly challenging. The estimate for the age of 

the Ascomycota and basidiomycota split was between 1 and 2 GA ago [195]. 

Annotating GO terms of non-model species using only sequence similarity to 

reference proteins or domains will likely be incomplete at such a large 

phylogenetic distance.  

Chapter 4 addresses this issue with the introduction of CrowdGO, a protein 

function prediction tool that merges and improves Gene Ontology (GO) term 

annotations from other high-throughput prediction tools. In this study, we use 

CrowdGO GO term annotations to study the metabolism of C. curvatus. 

However, CrowdGO is tested on an artificial data set that does not represent a 

real functional genomics study. Therefore, the functional genomics study of C. 
curvatus can act as a hands-on scenario to assess the performance of 

CrowdGO. 

1.4 Manual curation of Cutaneotrichosporon curvatus 
metabolism 
For the further assessment of CrowdGO, and to gain high-resolution GO terms 

in C. curvatus, we use CrowdGO as part of a biocuration pipeline of the C. 
curvatus metabolic proteins. This was done using CrowdGO annotations as a 

starting point, and comparative genomics with the manually curated 

metabolic proteins of the ascomycota yeast Yarrowia lipolytica. By comparing 

the electronically inferred CrowdGO predictions to those of the biocurated 

proteins we can assess the performance of CrowdGO. 
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1.5 Differential expression of Cutaneotrichosporon curvatus to 
study triacylglycerol synthesis 
Finally, we performed differential expression analysis using our transcriptomes 

of nitrogen replete and nitrogen deplete growth conditions and used this to 

further characterize the TAG metabolism of C. curvatus. This detailed 

metabolic map allows us to generate hypotheses regarding the genetics of TAG 

synthesis during nitrogen starvation, and to assess the accuracy of the manual 

annotation. 

1.6 Aim 
The main aim of this chapter is to assess the performance of CrowdGO in a 

real-case scenario, while a sub-aim is to perform a functional genomics study 

on Cutaneotrichosporon curvatus to improve our knowledge of basidiomycetes 

metabolism, with a special interest for its triacylglycerol synthesis. CrowdGO 

is assessed throughout each step of the functional genomics study, either by 

comparing it to the annotations of an existing basidiomycota, assessing GO 

enrichment analysis, or by comparing it to the biocurated proteins.
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2. Methods 

2.1 Culturing of Cutaneotrichosporon curvatus  
Cutaneotrichosporon curvatus ATCC 20509 was selected for culturing. Two 

growth media were used based on Meesters et al 1996 [191]. The glycerol and 

NH4Cl concentrations were adapted to generate our desired carbon and 

nitrogen ratio’s (table 1). The carbon nitrogen ratios are taken from Ykema et 
al [196], which shows a C. curvatus growth for a ratio of less than 5, and lipid 

production for a ratio between 20 and 40 carbon / nitrogen.  

 

Table 1: Glycerol and NH4Cl levels for the different media, as well as the 
carbon and nitrogen ratios. 

 
Glycerol NH4Cl Carbon / nitrogen ratio (mol) 

Medium A 16  1 28 

Medium B 8 5 2.8 

 

C. curvatus was inoculated from a freshly prepared YPD-agar plate in 50 ml of 

YPD medium and grown O/N in a 100 ml Erlemeyer flask at 30 °C and 225 rpm. 

The culture was divided in two 25 ml portions and centrifuged (10 min. 300 

rpm) to collect the cells. The cell pellets were resuspended in 30 ml medium A 

or medium B. 4 ml of the resuspended cells was used to start duplicate cultures 

in medium A and B which were incubated for 18 hours at 30 °C and 225 rpm. 

Each culture was divided in two equal portions and the cells were harvested by 

centrifugation and the wet pellet frozen in liquid and used for RNA extraction, 

fatty acid analysis and dry weight determination. Medium samples were taken 

for glycerol and nitrogen analysis. 

2.2 RNA extraction procedure 
RNA was extracted using an acidic hot phenol extraction procedure. Briefly, 

the cell pellet was ground in liquid nitrogen and mixed with 4 volumes of pre-

warmed (60°C) phenol + extraction buffer (1% SDS, 10 mM EDTA, 0,2 M NaAC 

(pH 5) after these 2 volumes of chloroform were added and mixed thoroughly. 

After centrifugation the buffer layer was washed once with chloroform. RNA 

was precipitated from the buffer layer by adding 8 M LiCL to and end 
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concentration of 2M. After centrifugation the pellet was washed once with 2M 

LiCl and twice with 70% ethanol. The remaining pellet was resuspended in 

RNase free water. 

Total RNA extract, RNA sequencing, and RNAseq data processing were 

performed as described in [197]. Samples were sequenced by NovoGene using 

Total RNA. 

2.3 Proteome comparison to Cutaneotrichosporon oleaginous 
We compared our predicted proteins to the existing C. oleaginosum proteins 
in UniProt. All C. oleaginous proteins were extracted from SwissProt and 

Trembl version 2017_12 [55], and used as a BLAST [60] database for our C. 
curvatus proteins. The BLAST hits for each C. curvatus protein against a C. 
oleaginous protein were concatenated. If the concatenated BLAST hit length 

was 99% or more than that of the C. oleaginosum protein its length and vice 

versa, and the concatenated BLAST hit shared 99% or more amino acid 

identity, we considered it the same protein. If those numbers were 30% or 

higher but lower than 99%, we considered it an incomplete protein match. In 

any other case, we considered it a dissimilar protein. All matches were 

categorized in the following groups: proteins that have a match in both species, 

proteins that have an incomplete match in one of the species, and proteins that 

are unique to either one of the species. 

2.4 Protein function prediction 
Protein function prediction was done using CrowdGO described in Chapter 4. 

Instead of the training set used in Chapter 4, we created a training set 

consisting of only fungal proteins created between 01-01-2015 and 01-01-2017. 

All predictions for the training set were done on database and program 

versions before 01-01-2015. In the final annotation, all GO terms that were not 

annotated to any existing fungal protein in UniProt version 2017_01 were 

removed. We used a cut-off score of 0.6 to differentiate between true and false 

predictions. 
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2.5 Biocuration of C. curvatus protein functions 
We used CrowdGO annotations in conjunction with other methods and visual 

inspection to manually annotate the metabolic proteins of 

Cutaneotrichosporon curvatus. A simplified overview of the biocuration 

approach is given in Figure 1.  

1) We extracted single proteins from the manually curated Yarrowia 
lipolytica genome-scale model iNL850 [198]. The protein sequence, 

UniProt identifier, and any enzyme annotations were retrieved from 

KEGG [69]. GO term annotations were retrieved from UniProt [55]. If 

KEGG does not contain an enzyme annotation for the protein, we 

check if any of the GO terms correlate to an enzyme. 

2) If the protein is not annotated with an enzyme, we assumed it to be a 

transporter. Otherwise, we assumed it to be an enzyme. 

3) For every enzyme with sequence information in UniProt we created a 

Hidden Markov Model [185]. If three or more sequences of the enzyme 

were present in SwissProt, we based the model solely off of these 

proteins. In other cases, we based the model both off of SwissProt and 

Trembl proteins. All C. curvatus proteins were subject to a HMMScan 

[185] against any enzyme annotated to the Y. lipolytica protein.  

4) For every C. curvatus protein we did a global alignment against the Y. 
lipolytica protein using NEEDLE [199].  

5) We only took the top three C. curvatus candidates, starting with the 

most likely candidate until we found a match to the Y. lipolytica 

protein and its function. For enzymes the top candidates are selected 

using the HMMScan results; for transporters the top candidates are 

selected using the NEEDLE results.  

6) The C. curvatus protein its GO term predictions were compared to the 

Y. lipolytica protein its GO terms. Information was returned on 

whether each C. curvatus GO term was identical or similar to a Y. 
lipolytica GO term, or not related to the Y. lipolytica protein at all. 

7) We performed a web-BLAST for the C. curvatus protein on the 

SwissProt database to visually inspect if it has any significant 

homology, and if any of the homologous proteins have relevant 

functional information. 

8) We performed a web-PFAM HMMScan for the C. curvatus protein to 

see if there are any known domains in the sequence, and if these 

domains have any function related to the Y. lipolytica protein. 
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9) To summarize, we have: a HMMScan on any enzyme of interest, a 

global alignment to the Y. lipolytica protein, comparison of GO terms 

between the proteins, homology information, and domain 

information. Using this information, we assess if the C. curvatus 

protein performs the same function as the Y. lipolytica protein. If not 

the case, we repeat the assessment steps with the next C. curvatus top 

hit. 

 

For all C. curvatus and Y. lipolytica matches, we transferred the enzymatic or 

transporter function with its accompanying reaction to the C. curvatus protein.  

 

 

Figure 1: Workflow of the biocuration process. Numbered steps are 
further explained in the main text. 
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2.6 Differential expression analysis 
We performed differential expression using the nitrogen rich and nitrogen 

starved RNA-Seq sets. This was done using the EDGE R package [200], with 

the replete set as a reference. Anything up-regulated with less than 0.05 p-

value was taken as a protein up-regulated during nitrogen starved conditions; 

everything down-regulated with less than 0.05 p-value was taken as a protein 

down-regulated during nitrogen starved conditions. Triacylglycerol (TAG) 

metabolism analysis was done by taking all manually annotated proteins, 

color-coding the proteins based on their differential expression, and overlaying 

the proteins on KEGG maps [69]. 

2.7 GO enrichment analysis 
Using the gene expression data, we performed a GO-enrichment analysis. This 

analysis was only done using predictions from CrowdGO, as the manually 

annotated GO terms are a specific subset of proteins. Initial GO enrichment 

was done using GOSEQ from the Bioconductor R package [201]. The resulting 

GO enrichments with their p-values were entered into REVIGO to produce 

more general GO term enrichments [202]. For this we used REVIGO’s Lin’s 

algorithm [188] and a similarity score of 0.4. The tables were taken directly 

from REVIGO, as were the figures apart from some minor human readability 

edits. 

8892



 

3 - Results and discussion 

3.1 Gene prediction 
We performed a de novo gene prediction on the genome of 

Cutaneotrichosporon curvatus ATC20509 [203] using BRAKER1.0. Translation 

of these genes results in some 7,600 proteins, of which around 7,400 are larger 

than 100 amino acids in length (Table 2). 

Table 2: Protein summary of 
Cutaneotrichosporon curvatus 

 Total 

Proteins 7,597 

Proteins larger 

than 33 AA 

7,596 

Proteins larger 

than 50 AA 

7,593 

Proteins larger 

than 100 AA 

7,376 

Average protein 

length 

493 

Largest protein 5.051 

3.2.1 Cutaneotrichosporon curvatus annotation summary 
All C. curvatus proteins were annotated using CrowdGO (Chapter 4). We 

found 168 proteins that did not have a BLAST hit to any protein in UniProt and 

treated these hypothetical proteins as false positive proteins. The CrowdGO 

annotations showed that a select amount of generic GO terms is annotated to 

these proteins (Supplementary table 1), and as such we assume these GO terms 

are prone to overfitting by CrowdGO. The full annotations are summarized in 

table 3 A without filtering for overfitted terms, and table 3 B with filtering for 

overfitted terms. A term was deemed overfitted if it appeared more than 40 

times in the annotations for the hypothetical proteins in Supplementary table 

1, and all the GO term annotations for any overfitted GO term were removed 

from the list.  
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3.2.2 Cutaneotrichosporon curvatus annotation summary - 
discussion 
What can be observed in the annotation summary is that merging the Argot2, 

FFPred2, and InterProScan predictions with CrowdGO results in lower amount 

of GO terms than the sum of the three tools after filtering for overfitted terms. 

This is contradictory with the results from chapter 4 table 3 where it shows 

that CrowdGO re-annotates a sizeable amount of GO terms initially labelled 

as false negative to a true positive, and true negative to a false positive. 

However, the test set proteins of chapter 4 did not contain hypothetical 

proteins, which affects the results.  

The decrease of total annotated GO terms, and average GO terms per protein, 

is a clear indicator CrowdGO performs strict filtering of the input GO terms. 

A noticeable result is the difference in the prediction of Cellular Component 

GO terms before and after filtering out of overfitted terms. This is due to two 

factors: only two of the input tools are able to predict Cellular Component 

terms, and because many Cellular Component GO terms are relatively non-

specific compared to Biological Process or Molecular Function terms but still 

technically correct predictions for many terms, CrowdGO is prone to 

overfitting on the data with respect to these terms. This was noticeable in the 

annotation of the presumed false positive proteins, where over half of the over-

fitted terms were Cellular Components explaining the dramatic reduction in 

proteins annotated with a Cellular Component term by CrowdGO (table 3). 
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Table 3: Annotation numbers for CrowdGO and the three methods 
utilized in the CrowdGO. Displayed are the amount of proteins having 
one or more GO terms annotated to it, the range of GO terms used to 
annotate these proteins, the total amount of GO terms annotated to 
proteins, and the average amount of GO terms annotated to a protein. 
MF: Molecular Function. BP: Biological Process. CC: Cellular 
Component. 

A: without filtering out overfitted terms. 

Method Annotated 
proteins 

MF 

Annotated 
proteins 

BP 

Annotated 
proteins 

CC 

Unique 
GO’s 

Total 
GO’s 

GO’s 
per 

protein 
CrowdGO 5,809 6,621 7,566 988 21,566 3 

Argot2 2,962 3,032 1,441 878 4,742 2 

FFPred2 4,462 5,076 0 175 11,887 2 

InterProScan 3,086 2,655 1,293 574 4,104 1 

 

B: After filtering out overfitted terms 

Method Annotated 
proteins 

MF 

Annotated 
Proteins 

BP 

Annotated 
Proteins CC 

Unique 
GO’s 

Total 
GO’s 

GO’s 
per 

protein 
CrowdGO 3,091 2,764 473 988 21,566 3 

Argot2 2,962 3,032 1,441 878 4,742 2 

FFPred2 4,405 5,076 0 175 11,887 2 

InterProScan 3,064 2,655 998 574 4,104 1 

3.3.1 Annotation comparison to Cutaneotrichosporon 
oleaginosum 
We compared the C. curvatus predictions to the existing UniProt annotations 

of Cutaneotrichosporon oleaginosum, both after filtering for over-fitted terms, 
to provide a reference on the quantitative performance of CrowdGO (Table 

4A). Additionally, we compared the annotations between the species for the 

5,000 cross-species orthologs found (Table 4B). 
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3.3.2 Annotation comparison to Cutaneotrichosporon 
oleaginosum discussion 
The comparison between the CrowdGO annotations of C. curvatus and the 

UniRule annotations of C. oleaginosum shows that they annotate roughly the 

same amount of proteins. Importantly, the range of GO terms used by 

CrowdGO and UniRule is vastly different. In C. curvatus the 5,000 orthologs 

are annotated with only 839 GO terms, compared to 1,898 for UniRule (Table 

4 B). It is certainly possible that UniRule is able to correctly annotate a wider 

range of GO terms to proteins, however over 1,800 compared to less than 850 

for CrowdGO indicates that at least a fraction of these GO terms are false 

positives. Additionally, using the predictions of more than three tools as an 

input for CrowdGO will likely increase the range of GO terms it uses to 

annotate proteins, but this will likely also increase the number of false 

positives.  

Finally, table 4 B shows that approximately two thirds of orthologs between 

the two species have one or more GO terms in common. This implies that both 

the CrowdGO and UniRule annotations are able to represent these proteins, 

and that the range of GO terms assigned by CrowdGO to C. curvatus is large 

enough to represent the putative function of its proteins. 

 
  

9296



 

Table 4: Comparison of the Cutaneotrichosporon curvatus  
annotations with the Cutaneotrichosporon oleaginosum protein  
annotations. 

 
A: Comparison of all proteins 

 

 Cutaneotrichosporon 
curvatus (CrowdGO) 

Cutaneotrichosporon 
oleaginosum (UniRule) 

Total proteins 7,597 8,317 

Proteins annotated 4,332 4,223 

Total GO terms 8,123 9,569 

Unique GO terms 952 2,261 

GO’s per protein 1,9 2,3 

 

B: Comparison of orthologs 

 

 Cutaneotrichosporon 
curvatus (CrowdGO) 

Cutaneotrichosporon 
oleaginosum (UniRule) 

Total proteins 5,110 5,110 

Proteins annotated 2,946 2,914 

Total GO terms 5,344 6,828 

Unique GO terms 839 1,898 

GO’s per protein 1,8 3,6 

Matching ortholog 

annotations 

2,342 2,342 
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3.4 Manual annotation of the Cutaneotrichosporon curvatus 
metabolic proteins 
We manually curated the metabolic proteins of C. curvatus using the 

CrowdGO annotations and comparative genomics with proteins from the 

Yarrowia lipolytica model iNL895[198] (Methods section 2.5). This resulted in 

710 manually annotated proteins, involved in over a thousand reactions (Table 

5).  Additionally, we compared the CrowdGO annotations to the manual 

curations of C. curvatus in table 6. In this table, closely related annotations are 

proteins that have one or more GO parent and child terms of each other. 

During the manual annotation process the CrowdGO annotations of 553 

proteins were in line with the final manual annotation, according to the 

biocurator. 

Table 5: Summary of the manual annotations 

 Tot

al 

Proteins 710 

Enzyme proteins 540 

Transporter 

proteins 

170 

Enzyme 

annotations 

930 

Unique enzyme 

annotations 

461 

Reactions 1155 
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Table 6: Annotation comparison between the high-throughput and the 
manually annotated proteins. Only enzymatic proteins were chosen for 
analysis. 

Type Amount 

Exact annotation 110 

Closely related annotation 293 

False positive annotation 74 

Annotation used in man annotation  553 

3.5 Manual annotation of the Cutaneotrichosporon curvatus 
metabolic proteins discussion 
In our process of manually annotating the C. curvatus proteins we used our 

CrowdGO annotations as part of the curation pipeline. Comparing the 

CrowdGO numbers to the manual annotations provide valuable insight in the 

usefulness of the predictions for biological interpretation (Table 6). With a 

0.6 cut-off for the predicted annotations, a minority fraction of the proteins 

has an exact match with its manual annotated enzymatic function. When 

looking at GO terms that are related by either being a direct or indirect term, 

a majority fraction of the predictions match with the manual annotations. 

Only 74 proteins are annotated without an exact or closely related annotation 

to the proteins biocurated function, which we deemed false positives. This is 

after removing the term GO:0016887 ATPase activity from all our predicted 

annotations, CrowdGO annotated it 44 times above and never below the 0.6 

confidence interval, indicating over-fitting by CrowdGO. Not removing 

ATPase activity from the set of annotations would increase the amount of 

false positive annotations to over a hundred. 
3.6 GO Enrichment analysis 
We use the CrowdGO annotations and differential expression analysis as proxy 

for protein activity to obtain an overview of C. curvatus triacylglycerol (TAG) 

synthesis in nitrogen replete and deplete conditions. GO enrichment analyses 

for these conditions are summarized for replete conditions (Figure 2,3) and 

nitrogen deplete conditions (Figure 4,5). Replete conditions show more 

expression for cell maintenance and growth-related proteins, while nitrogen 

starved conditions show more expression for proteins related to catabolism 

and usage of stored energy.  
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3.6.1 GO Enrichment analysis discussion 
The GO enrichment analysis does not provide much more information than 

what is already known for oleaginous eukaryotes in relation to nitrogen stress 

conditions. However, because the general processes that are differentially 

regulated are so well known, for example cell growth during normal conditions 

and catabolism during nitrogen stress conditions, we can use this as a 

validation of the high-throughput CrowdGO annotations on a general level. 

Considering the GO enrichment shows us what we would expect, we assume 

that the CrowdGO annotations are accurate on a general-level basis.
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3.8 Differential expression analysis of triacylglycerol synthesis 
We use our manual annotations and differential expression to characterize 

TAG synthesis in C. curvatus (Figure 6). Several key enzymes show a significant 

(p<0.05) up-or-down-regulation during nitrogen starved conditions. These 

enzymes are down-regulating sugar metabolism, differentially expressing the 

TCA cycle, and differentially expressing various steps between glycerol and 

triacylglycerol conversion. EC 3.1.1.23 acyl glycerol lipase, which is present for 

Y. lipolytica in the KEGG database [69], was missing in the Y. lipolytica 
genome-scale model. A candidate for the enzyme was found in C. curvatus and 

was manually annotated without comparative genomics. The fold changes for 

the enzymes can be found in Table 7.  

3.8.1 Differential expression analysis of triacylglycerol synthesis 
- discussion 
The differential expression analysis shows us a complete picture of C. curvatus 

TAG synthesis, with only one key enzyme missing in the entire set of 33 

enzymes used to annotate the differential expression of TAG metabolism. 

Differential expression reveals up-and-down regulation of key processes, such 

as down-regulation of glucose and fructose metabolism related enzymes 

during nitrogen depleted conditions, confirm our annotations. Additionally, 

we see other interesting enzymes in response to nitrogen-depleted conditions, 

such as an up-regulation of enzyme 2.3.1.158 phospholipid diacylglycerol 

acyltransferase (PDAT) compared to enzyme 2.3.1.20 diglyceride 

acyltransferase (DGAT). PDAT is shown in literature to be a big contributing 

enzyme for oleaginous yeasts and adding additional copies of this enzyme 

leads to increased TAG synthesis. Another interesting finding is the down-

regulation of enzyme 2.7.1.30, which is responsible for the direct conversion of 

glycerol to glycerol-3P. The fact that during nitrogen starved conditions C. 
curvatus is suggested to create glycerol-3P through glycerone-phosphate 

might be interesting for any follow up studies regarding TAG synthesis in this 

organism. 
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Figure 6: Summary of TAG synthesis and key differentially regulated 

enzymes in Cutaneotrichosporon curvatus during nitrogen deplete 

conditions. 
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Table 7: LOG2 fold changes of the differentially expressed enzymes 

related to triacylglycerol synthesis, as displayed in figure 6 

Enzyme Fold change Adjusted P-value 

2.3.3.8 -0.32 0.46 

2.7.1.1 -0.21 0.006 

5.4.2.2 -0.20 0.01 

3.1.1.23 -0.33 0.16 

2.7.1.30 -0.56 1.58e-10 

2.3.1.20 -0.31 0.003 

1.3.5.1 0.28 0.01 

1.1.1.37 0.43 0.04 

4.1.1.49 0.48 5.6e-5 

1.1.5.3 0.26 0.004 

2.3.1.158 0.24 0.005 

Conclusion 
We were able to thoroughly functionally annotate C. curvatus proteins using 

the CrowdGO method as described in chapter 4, as shown by comparisons with 

C. oleaginosum existing annotations, GO enrichment analysis, and its role in 

manually annotating the proteins. However, the comparison to the manual 

annotations show that while the CrowdGO method is a clear improvement 

over existing methods, it is not able to consistently predict full enzyme 

annotations. That said, any analysis of specific metabolic processes should be 

done by manual annotation. The CrowdGO annotations have been specifically 

useful in speeding up this process.   

103107



 

  



 

Chapter 6 

Comparing the same reveals the difference: systems 
biology of Botryococcus braunii Races A and B 

 

SPLASH WP2 Consortium: Douwe van der Veen
1*
, Eugen Urzica

2*
, Maarten 

Reijnders
3*

, Carolyn M.C. Lam
4
, Sven Warris

5
, Olga Blifernez-Klassen

6
, Joao D. 

Gouveia
1
, Swapnil Sudhakar Chaudhari

6
, Johannes Leufken

2
, Doris Gangl

7
, 

Mark A. Scaife
7
, Henri van de Geest

5
, Linda Bakker

5
, Jörn Kalinowski

6
, Jan 

Springer
1
, Olaf Kruse

6
, Vitor Martins Dos Santos

3,4
, Peter Schaap

3
, Sander A. 

Peters
5
, Alison G. Smith

7
, Michael Hippler

2 

1. Bioprocess Engineering Group and AlgaePARC, Wageningen University 

and Research, P.O.Box 16, 6700 AA Wageningen, The Netherlands 

2. Institute of Plant Biology and Biotechnology, University of Münster, 

Münster 48143, Germany  

3. Laboratory of Systems and Synthetic Biology, Wageningen University, 

Stippeneng 4, Building 124 (Helix), 6708 WE Wageningen, The 

Netherlands. 

4. LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany. 

5. Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen 

University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, 

The Netherlands. 

6. Bielefeld University, Faculty of Biology, Center for Biotechnology 

(CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany 

7. Department of Plant Sciences, University of Cambridge, Downing Street, 

Cambridge CB2 3EA, UK 

 

*These authors contributed equally 

Manuscript in preparation 



 

Abstract 
Motivation: Botryococcus braunii is a biotechnologically interesting 

microalgae to study due to its ability to synthesize and excrete high amounts 

of hydrocarbons or polysaccharides, depending on the strain. In this chapter 

we perform a comparative genomics study to find differences between these 

two strains, which we can correlate to the production of hydrocarbons or 

exopolysaccharides. However, Botryococcus braunii is a non-axenic microalga, 

which is challenging to perform a genomics study on. Therefore, we also set 

out to create a workflow for future microalgal research, able to study non-

axenic microalgae both on a genome-scale and a pathway scale.  

Results: We developed a proteomics-based workflow, which with the help of 

CrowdGO (chapter 4) and manual annotations provided insights in the 

comparative genomics of Botryococcus braunii. Using this workflow, we 

identified several key enzymes involved in hydrocarbon synthesis and 

exopolysaccharide synthesis. In the non-mevalonate pathway, we identified 4 

enzymes that are significantly more expressed in the hydrocarbon producing 

strain, and in the GDP-L-Fucose biosynthesis pathway we identified 3 enzymes 

that are significantly more expressed in the polysaccharide producing strain. 

We also found significant differences in expression levels of key enzymes 

involved in the core metabolism of Botryococcus braunii, showing that 

hydrocarbon and exopolysaccharide production have a metabolism-wide 

effect on the species, and indicating the two strains might not be as closely 

related as their shared name suggests. 

1. Introduction 
Botryococcus braunii, a member of the class Chlorophyceae, is a prime example 

of a photosynthetic microalgae exploitable for commercial interest, due to its 

unique ability to produce and excrete vast quantities of large chain 

hydrocarbons and exopolysaccharides during nitrogen limiting conditions 

[204]. The hydrocarbons form a lipid biofilm matrix holding together 

Botryococcus braunii cells in colonies, and the exopolysaccharides are believed 

to serve as carbon reserves and perhaps as a protective layer against harmful 

environmental conditions and pathogens. These features attract attention as a 

potential resource of natural biopolymers, aromatic bulk chemicals, and fine 

chemicals.  

The Botryococcus braunii species are classified into three chemical races: A, B, 

and L, depending on the chemical nature of the large chain hydrocarbons they 
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synthesize [205, 206]. Race A primarily synthesizes odd-numbered n-alkadiene 

and n-alkatrienes (C23-C33); race B primarily synthesizes triterpenoid 

botryococcenes (C30-C37) and methylated squalenes (C31-C34); race L 

primarily synthesizes the tetraterpenoid hydrocarbon lycopadiene, via an 

alternative pathway using a squalene synthase-like enzyme [207]. The 

predominant metabolic pathway for the biosynthesis of isoprenoids is the non-

mevalonate (MEP) pathway [208]. In this pathway, 1-deoxy-D-xylulose-5-

phosphate (DOXP) is converted into 2-C-methyl-D-erythritol-4-phosphate 

and MEP intermediate, which in turn is converted into isopentenyl 

diphosphate (IPP) and dimethylallyl (DMAPP), which are used as precursors 

for the biosynthesis of farnesyl pyrophosphate (FPP). FPP is subsequently used 

via a series of intermediates for the synthesis of botryococcenes and 

methylated squalenes. Carotenoid biosynthesis follows the same pathway as 

botryococcenes, but starting from the higher carbon number geranyl-geranyl 

pyrophosphate [204]. However, more evidence is necessary to fully understand 

the characteristic metabolic pathways underlying large chain hydrocarbon and 

carbohydrate biosynthesis in Botryococcus braunii.  

Botryococcus braunii is, however, a challenging species to study. The genus has 

an unclear taxonomy, and its species boundaries are not well defined. 

Phenotypic characteristics such as colony forms, colour, cell shape, and cell 

size, have been reported to depend on environmental growth conditions 

hampering its diagnostic use [209-211]. In addition to morphological data, 

molecular data have been used to increase the phylogenetic resolution. 

Kawachi et al defined relationships based on nuclear 19S rDNA and categorized 

31 isolates into three major phylogenetic clades correlating to a high degree 

with the chemical races A, B, and L [212]. Recently, Hegedüs et al used 18S 

rDNA and ITS2 molecular markers to classify Botryococcus race A strains and 

defined two distinct phylogenetic subclades: A1 and A2 [213]. The phylogenetic 

relationship of Botryococcus strains appeared to correlate with the typical 

hydrocarbon profile of race A, B, and L. However, the high genetic divergence 

of Botryococcus braunii does not support their classification into one single 

species. This high genetic divergence is reflected in the transcriptome, which 

hints at substantial differences in the biosynthetic pathways that Botryococcus 
strains have adopted for the synthesis of hydrocarbons, ether-lipids, and 

polysaccharides. In addition, several studies have indicated Botryococcus is 

difficult to maintain and grow as an axenic culture, complicating 

transcriptome profiling [116]. Specifically, Rhizobium species have been 
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reported to encourage the growth of Botryococcus, while Acinetobacter species 

have been reported to have a negative interaction [128], further complicating 

the metabolic profiling Botryococcus . 

We have undertaken a multi-disciplinary approach to identify common 

features in non-axenic Botryococcus braunii CCALA778 and AC761 strains, 

which previously have been classified as race A and race B strains respectively 

[214, 215]. We provide a comparative overview that links changes in algal 

transcripts and proteins to the abundance of characteristic metabolites in race 

A and B non-axenic cultures, and have identified candidate targets that play 

an essential role in the characteristic metabolism of Botryococcus.  

2. Materials and Methods 

2.1 Organisms and their cultivation 
Botryococcus braunii strains CCALA778 and AC761 were obtained from the 

Culture Collection of Autotrophic Organisms (Trebon, Czech Republic) and 

Algobank Caen (Caen, France), respectively. Both strains were maintained in 

250 mL Erlenmeyer flasks in an Infors HT Multitron incubator with the 

following environment parameters: illumination: Philips FL-Tube L 36W/77 

lamps with intensity set at 150 umol photon m-2 sec-1; light:dark photoperiod 

18:6 h; 2.5 % percent CO2; temperature 25°C; mechanical shaking at 90 rpm. 

Culture media consisted of modified Chu 13 medium [216] without citric acid, 

with the following composition: 1200 mg L-1 KNO3, 200 mg L-1 MgSO4.2H20, 

108 mg L-1 CaCl2.2H2O, 104.8 mg L-1 K2HPO4, 20 mg L-1 Fe-Na2EDTA, 9.4 μg 

L-1 Na2O4Se,  2.86 mg L-1 H3BO3, 1.8 mg L-1 MnSO4.4H2O, 220 μg L-1 

ZnSO4.7H2O, 90 μg L-1 CoSo4.7H2O, 80 μg L-1 CuSO4.5H2O, 60 μg L-1 

Na2MoO4.2H2O, 10 μl L-1 H2SO4. Final pH was adjusted to pH 7.2 with NaOH. 

2.2 Photobioreactor cultivation 
For experiments, the strains were cultivated in flat-panel airlift 

photobioreactors (Algaemist, Technical Development Studio, Wageningen 

University and Research, The Netherlands) with a working volume of 0.4 L, 

and optical depth of 14 mm, and an illuminated area of 0.028 m2. All runs were 

operated in batch mode. Light was provided by LED lamps (BXRA W1200, 

Bridgelux, USA) with a warm-white spectrum. The photon flux density was 

measured with a LI-COR 190-SA 2pi PAR (400-700 nm) quantum sensor (LI-

COR, USA). Incident light intensity was measured at 28 points evenly 
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distributed over the light-exposed surface of the front glass panel of the culture 

chamber, and light measurement was repeated for every experiment. The 

applied light regime was a block 18h:6h day:night light:dark cycle, and the 

incident light intensity set at averaging 150 �mol photon m
-2

 sec
-1
.   

Aeration and mixing were done by sparging a gas stream of filtered air at a rate 

of 200 mL min
-1
 (0.5 vvm). pH was maintained at 7.2 (PLUS MINUS 0.1) by on-

demand addition of CO2 to the airflow. To ensure sufficient CO2 in the medium 

NaHCO3 was added to the medium to a final concentration of 5mM. 

Temperature was set to 25°C. The bioreactors were inoculated with shakeflask-

derived biomass so that the initial OD 680nm = 0.2; addition of biomass was 

considered the start of the experiment and is referred to as t = 0. 

2.3 Experimental design 
Earlier bioreactor tests with both strains indicated that, with using an initial 

KNO3 concentration of 1200 mg L
-1
 and using the initial inoculation density, a 

window of non nutrient-limited growth of between 8 to 12 days was achievable, 

counted from the first day where biomass concentration reached 1 g L
-1
. The 

end of this period was marked by the lack of detecting nitrate in the medium 

and the reporting of the steady low signal reported by the bioreactor's light-

out sensor.  

Per strain, at minimum 5 bioreactor runs, using inoculum obtained from 

independent shake-flask cultures, were operated. Two of these runs were 

sacrificed when nitrate was depleted; three runs continued for 7 days after 

nitrate was depleted. To facilitate quantitative proteomics analysis, per run 

either 
15

N-labeled KNO3 or 
14

N KNO3 (Sigma-Aldrich) were used. 

Prior to every sampling time point, 3 mL culture broth was removed from the 

bioreactor to clear the sampling port. Samples to determine cell dry weight (5 

mL), optical density (1 mL). chlorophyll content (1 mL), and nitrate content (1 

mL) were taken daily; samples for carbohydrate or hydrocarbon analysis (1 mL) 

or elemental analysis (10 mL) were taken intermittently, as omics sampling had 

precedence.  

To acquire sufficient biomass for the various omics technologies, sampling 

took place on alternating days to limit large disturbances in the cultivation 

environment because of the large sampling volumes; total sampling volume 

was kept as low as possible and did not surpassed 15% of bioreactor working 

volume.  
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For metabolite analysis and transcript expression analysis, 10 mL of culture 

broth were removed, while for proteomics analysis, 20 mL culture broth was 

removed. Samples were added to prepared tubes containing equal volume of 

ice-cold (-20 °C) methanol, spun for 2 min at 4,000 x g in a bench-top 

centrifuge, and supernatant was decanted while taking care to not disturb the 

pellet. Samples were snap-frozen in liquid nitrogen and stored at -80 °C until 

analysis. All omics samples were snap-frozen within 4 minutes after reactor 

sampling. 

After sampling, medium without nitrate was added to the reactor vessel up to 

the working volume. When nitrate was present in the medium, nitrate was 

added to the bioreactor to the initial KNO3 concentration, thus ensuring that 

removal of large sampling volumes did not remove nitrate dissolved in the 

medium.  

2.4 Cell Dry Weight 
Five mL aliquots of culture broth were filtered onto pre-weighed GF/D glass-

fibre membranes (Whatman) and washed with 5 mL demineralized water. The 

filters were dried at 100°C for 24 hours and weighted, after which the biomass 

amount was determined by subtraction. For biomass concentrations over 3 g 

L
-1
, filters became clogged and 2 mL aliquots of culture broth were filtered 

instead. 

2.5 Hydrocarbon extraction and analysis 
One mL of culture broth was combined in a glass vial with 2.5 mL methanol 

and 1.25 mL dichloromethane and mixed on a rotary shaker at 30 rpm for 6 

hours. After mixing, 1.25 mL dichloromethane was added and mixed for one 

minute, after which 1.25 mL 0.9 % (w/v) NaCl solution was added and mixed 

for another minute. Hereafter, samples were centrifuged for 5 minutes at 1,500 

x g. The bottom phase was removed to a new glass vial using a glass Pasteur 

pipette and dried under nitrogen gas. The residue was resuspended in 1.0 mL 

hexane and stored at -20°C. 

Hydrocarbon analysis was carried out using gas chromatography (GC-FID). 

The instrument used was an Agilent Technologies HP6890 series equipped 

with auto sampler, a using Restek Rxi-5ms (30 m x 0.25 mm x 0.25 µm) column. 

Helium was used as the carrier gas, and a hydrogen/air moisture detection, gas 

splitless injectors at 350°C oven temperature and injection volume of 1 µL. The 

oven program was 50°C for 1 minute, then 15°C per minute to 180°C, then 7°C 
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per minute to 230°C, then 30°C per minute to 350°C and hold for 15 minutes 

with a total running time of 35 minutes. Samples were diluted in hexane, and 

several dilutions of standards using squalene were used.  

2.6 Total Carbohydrate extraction and analysis 
Total carbohydrate contents were determined using the method first reported 

by Dubois [217]. In brief, 500 �uL -20 °C methanol was added 500 �uL culture 

broth, centrifuged for 3 minutes at 3,000 x g to pellet cells, and supernatant 

was carefully discarded. The pellet was hydrolysed by adding 500 �uL of 2.5M 

HCl and incubation for 3 h while vortexing hourly and neutralized thereafter 

by adding 500 �uL of 2.5M NaOH solution. Samples which 450 �uL 

demineralized water was added. Gently, 500�uL 5% phenol in water solution 

was pipetted into the tube. 2.5 mL concentrated sulphuric acid was added 

directly onto the liquid surface, and incubator at room temperature for 10 

minutes. Hereafter, tubes were placed in a 35 °C waterbath for 30 minutes, 

while vortexing every 5 minutes. Absorbance was read at 483 nm. A D-glucose 

solution was used as standard. 

2.7 Nitrate content 
Measurements were performed with 110020 MQuant Nitrate Test according to 

manufactures protocol. The nitrate concentration is measured semi-

quantitatively by visual comparison of the reaction zone of the test strip with 

the fields of a colour scale. 

2.8 Phylogeny 
All chlorophyta chloroplast sequences and an Arabidopsis thaliana chloroplast 

sequence were retrieved using the sequences from Lemieux et al [218]. We 

performed gene prediction on these chloroplasts using Prodigal [219]. For all 

these genes we did a Needle [199] search against 45 Chlamydomonas reinhardtii 
chloroplast proteins from the SwissProt database [55]. All the best Needle hits 

for each chloroplast sequence were extracted. The best Needle hits for each 

chloroplast protein were aligned using Muscle [220], and poorly aligned 

regions were removed using trimAl [221]. Finally, the alignments for all the 

chloroplast proteins were concatenated using PhyUtility [222]. The resulting 

concatenated alignment file was used as an input to PhyML to calculate the 

phylogenetic distances [223], and the final tree was drawn with TreeDyn [224]. 
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2.9 Functional protein annotation 
We assigned Gene Ontology (GO) terms using a combination of protein 

function classification methods: Argot2 [2], FFPred2 [167], and InterProScan 

[61].  

Only annotations with a confidence of 0.7 or higher were annotated to the 

proteins. 

For the pre-trained random-forest model we used the sequences of all proteins 

created between 01-11-2013 and 9-11-2015 with one or more experimentally 

validated GO terms. The number of true positives and false positives in the 

random-forest training was reduced to equal size in order to avoid bias in the 

dataset. 
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3. Results 

3.1 Strain selection and cultivation 
We selected two out of 16 Botryococcus braunii strains based on their race type 

and distinct product profile [215] as we aimed to contrast their underlying 

physiologies. Under our growth conditions the race A strain CCALA778 

produces polysaccharides up to 2 g/L, while hydrocarbons could not be 

detected (Figure 1A). In contrast, the race B strain AC761 produces both 

polysaccharides and hydrocarbons although the former to a much lower extent 

(0.6 g/L) compared to CCALA778 (data not shown). Hydrocarbon levels in 

AC761 reached up to 0.4 g/L (Figure 1C). Colonial morphology differed between 

the strains (Figure 1B and D). CCALA778 cells appear round and assemble into 

compact colonies while AC761 cells tend to be droplet-shaped within a more 

dispersed colony. 

Both races reached similar dry weights of 4.6g/L for CCALA778 and 5.2 g/L for 

AC761 (Figure 1A and C). Nitrogen levels were monitored in the bioreactors 

over the entire growth period. Increased product accumulation correlated with 

nitrogen-limited conditions in both races. 
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Figure 1: A) Hydrocarbon and polysaccharide production for the race A 

strain CCALA778, and B) its morphology. C) Hydrocarbon and 

polysaccharide production for the race B strain AC761 and D) its 

morphology. 
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3.2 Phylogenetic placement of Botryococcus braunii 
The heterogeneity of chemical and morphological features has been 

recognized and it has been suggested that the name B. braunii in fact covers 

multiple distinct species [209], but the community has not widely embraced 

this nomenclature. Kawachi et al constructed a relationship between 

hydrocarbons produced and molecular phylogeny by 18S rRNA mapping 

between strains and showed that the chemical races map to distinct 

phylogenetic clades [212]. However, the relative positioning of B. braunii 
strains relative to other algae has not been carried out, in part due to the lack 

of sequencing information. Using our sequence information (see below), we 

constructed a phylogenetic distance tree of algal chloroplast proteins (Figure 

2). Our analysis indicates that our two strains used lie too far away to be 

considered near-identical species, even though AC761 and CCALA778 are 

closer related to each other than to other microalgae. Reassuringly, CCALA778 

is more closely related to the race A SHOWA strain, than it is to the race B 

AC761. 

Following these results, we performed extensive comparative omics analysis 

between Botryococcus braunii CCALA778 and AC761. This workflow is 

visualized in figure 3. 
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Figure 2: Phylogenetic placement of CCALA778 and AC761 relative to other microalgal 
species, based on chloroplast proteins. 
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Figure 3: Using Iso-Seq sequencing we identified 33,000 protein models 

for CCALA778 and 16,000 protein models for AC761. B) The protein 

models were used to create hypothetical peptides for an LC-MS/MS 

database. Consecutive proteomics analysis on various conditions 

validated the protein models. These protein models were assigned a 

biological function using CrowdGO (chapter 4). C) Using 14N and 15N 

labelling of the peptides, we distinguished the CCALA778-based and 

AC761-based peptides. This allowed us to compare the rations between 

the different races for the various sampled conditions. A thousand 

proteins were identified to have peptides occurring in both CCALA778 

and AC761. These were functionally analyzed using manual curation. 

Together with the peptide ratios from the quantitative proteomics 

analysis the thousand proteins were used to analyze several key 

pathways between the two races to identify key differences and link 

protein expression to hydrocarbon or exopolysaccharide production. 
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3.3 Creating the initial protein models 
We used Iso-Seq RNA sequencing to identify Botryococcus braunii transcripts 

for both strains, and predicted protein models using MAKER. This resulted in 

33,000 protein models for CCALA778 and 16,000 protein models for AC761 

(Figure 3). All protein models were assigned Gene Ontology (GO) term 

annotations using CrowdGO (chapter 4), summarized in table 1. To aid further 

analysis of the protein models, they were clustered based on 50% or more 

sequence similarity. These clusters are considered similar enough to present 

the same protein model with a defined functional entity for further biological 

analysis. 

Table 1: A summary of the Iso-Seq protein functional annotations. A full 

code enzyme is an enzyme with four codes in the enzyme code 

nomenclature 

 Total 

Annotations 391,464 

Proteins with a GO term annotation 50,330 

Unique GO terms 1,480 

Unique enzymes 462 

Unique full code enzymes 363 

Proteins with full code enzyme 5,553 

3.4 Quantitative proteomics analysis 
We then performed quantitative proteomics analysis to compare the two 

Botryococcus braunii strains. Races A and B were grown in bioreactors at 

different conditions and isotopically labeled with either 
14

N or 
15

N KNO3. For 

comparison, differentially 
14

N /
15

N labeled races A and B stemming from the 

same growth condition were mixed. The rationale for mixing was to 

quantitatively compare peptides that are identical between race A and race B, 

in order to measure and relate expression of conserved key metabolic 

pathways. For proteome analysis the 
14

N and 
15

N labelled samples were mixed 

on equal chlorophyll content and fractionated via SDS-PAGE. From each lane 

36 bands were excised and digested tryptically as previously described [225]. In 

total, 689 samples were analysed by liquid coupled mass spectrometry (LC-
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MS). Using the 50,000 IsoSeq-based proteins for the peptide database, a total 

of 70,081 unique peptides were identified. 35,375 and 34,056 peptides mapped 

to the race A and race B databases, respectively. 6,284 peptides mapped to the 

bacterial database derived from metagenomics. For peptide quantification 

pyQms was used [226]. Retention-time (RT) alignment between all LC-MS/MS 

runs and enhancement defining RT windows was performed using piqDB 

earlier [227, 228]. Peptide ratios were calculated for 12,239 peptides. These 

peptides mapped to 2,407 protein groups in race A, 2,708 protein groups in 

race B and 575 protein groups in the bacterial database. 1567 peptides were 

identified and quantified in both races A and B. Due to enhancement via piqDB 

it was possible to gather quantitative information for some peptides identified 

in both race A and B, providing ratios and increasing the number of peptides 

usable for quantitative comparison. In total, 3,025 peptides with a ratio 

between race A and B were identified. Those mapped on 1,832 protein groups 

in race A, 1641 protein groups in race B and 322 protein groups in the bacterial 

database. The quantitative data are displayed as ratios of the absolute number 

of peptides measured in race A over absolute number of peptides measured in 

race B, absolute amount in light divided by absolute amount in dark, and 

absolute amount of nitrate deficient divided by absolute amount in nitrogen 

presence. 

The 3,025 peptides shared between race A and race B belonged to 972 protein 

clusters as identified earlier based on the IsoSeq-based proteins, and these 

were used for further comparative analysis. To get a higher resolution of their 

protein functions we manually annotated these proteins with one defined 

function, using CrowdGO annotation, BLAST hits, and PFAM hits as a starting 

point. The manual annotation results are summarized in table 2. 
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Table 2: A summary of the manual annotations for the orthologs 

between CCALA778 and AC761. Displayed are the total proteins with an 

annotation, the amount of unique functions used to describe the 

proteins, and the top 10 categories of these functions. 

 Total 

Total proteins 972 

Unique functions 841 

Protein metabolism 79 

Ribosome 68 

Translation 55 

Lipid and fatty acid 48 

Amino acid metabolism 45 

Stress response and redox reactions 43 

Endomembranes and vesicular trafficking 41 

Photosynthesis  41 

General metabolism 38 

Carbohydrate and sugar metabolism 38 

 

We linked these proteins to eight peptide ratios: light against dark and nitrate 

against no nitrate for both strains, and early log phase, mid-late log phase, 

stationary phase I, and stationary phase II between both races. As depicted in 

figure 5, many enzymes of the respective key metabolic pathways, namely the 

GDP-L-fucose biosynthesis pathway and methylerythritol 4-phosphate (MEP) 

pathway could be comparatively quantified. Additionally, we further analysed 

the core metabolism of Botryococcus braunii (Figure 6).  

3.5 Fucose synthesis 
As described in Figure 1, race A (CCALA778) produces more polysaccharides 

than race B (AC761). With our proteome data we were able to identify members 

of the GDP-L-fucose biosynthesis from GDP-L-mannose pathway. In the first 
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step of this pathway, phosphomannomutase (PMM) converts D-mannose-6P 

to D-mannose-1P. Then a mannose-1-phosphate guanylyltransferase (GMMP) 

combines the D-mannose-1P with GTP to produce GDP-D mannose. After that, 

GDP-D-mannose is converted into GDP-4-keto-6-deoxy-D-mannose by GDP-

D-mannose 4,6-dehydratase (GMD), which is then used by GDP-L-fucose 

synthase to produce GDP-L-fucose.  

The peptide ratios show a differential expression of these enzymes between 

race A and race B (Figure 4). PMM was about 1.5-1.8-fold more abundant in the 

early logarithmic phase in race A compared to race B but is diminished in 

abundance as the cell grows. GMMP and GMD were much more abundant in 

race A when the cells were in the early (4 fold) and mid (4 to 8-fold) 

logarithmic phase, and the stationary phase (4 fold). Similar abundance 

changes for GMPP and GMD were found when we compared light and dark 

grown cells. Moreover, higher protein amounts of GMPP and GMD were 

detected in race A than in race B when comparing the non-nitrogen. GDP-L-

fucose synthase showed varying protein abundances, overall being slightly 

more abundant in CCALA778 compared to AC761 during the early and mid-

logarithmic phases, and 8-fold more abundant in race A when the cells were 

grown in dark conditions. These data clearly indicate that in the B. braunii race 

A (CCALA778) the enzymes involved in GDP-L-Fucose biosynthesis were 

significantly more abundant than in race B (AC761), correlating with the 

increased polysaccharide production in race A (Figure 1). 

3.6 MEP pathway 
Previous work on B. braunii showed that the specific hydrocarbons synthesized 

by the race B (Showa) are the botryococcenes, which are triterpenoids derived 

from the MEP pathway [214, 229]. Biosynthesis of linear triterpenoid 

hydrocarbons occurs via the farnesyl-diphosphate, which occurs as an 

intermediate in the MEP pathway. First, two molecules of farnesyl-

diphosphate are condensed by squalene synthase to form prequalene-

diphosphate. Then, in the presence of NADPH, squalene-synthase like 2 (SSL-

2) forms squalene, and squalene-synthase like 3 (SSL-3) synthesizes 

botryococcenes. The extracellular liquid hydrocarbons in race B are usually 

methylated botryococcenes. Its methylation steps are performed by S-

adenosylmethionine (SAM)-dependent methyltransferases (TMT1/2 for 

squalene, and TMT3 for botryococcenes). 

We were able to identify members of above pathway for both race A 
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(CCALA778) and race B (CCALA778) and observed several key differences in 

their proteomics ratios (Figure 4). DXR (1-deoxy-D-xylulose-5-phosphate 

reductoisomerase) and ISPG (4-hydroxy-3-methylbut-2-enyl-diphosphate 

synthase) were highly expressed in race B compared to race A during early 

logarithmic growth phase (16-fold). Two other components of the MEP 

pathway, 2-C-methyld-D-erythritol 2,4-cyclodiphosphate synthase (ISPF) and 

4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase (SIPH), were 3-3-fold 

more abundant in race B compared to race A during the mid-logarithmic and 

stationary phase. 

These data indicated that in race B (AC761) the gene products of the MEP 

pathway were overall more abundant, likely to provide precursors for 

botryococcenes.
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3.7 Proteomics analysis of core metabolism 

We identified many proteins in the core metabolism of B. braunii for both race 

A (CCALA778) and race B (AC761). These are summarized in Figure 5. 

In the Calvin-Benson cycle, carbon dioxide converts to glucose and other 

compounds. We were able to detect a number of enzymes involved in the cycle, 

including RuBisCO, phosphoglycerate kinase, fructose-bisphosphate aldolase, 

transketolase, ribose-5-phosphate isomerase and phosphoribulokinase. The 

chloroplast encoded large subunit of Rubisco was more than 2-fold increased 

from early, mid-log and stationary phase in race B (Figure 6). Transketolase 

peptide levels were found to be 2-fold more abundant in race A compare to 

race B in the stationary phase. Fructose-bisphosphate aldolase displayed a 

more than 2-fold down regulation in race A in the stationary phase but was 

over 2-fold up regulated in the stationary phase II.  

For glycolysis we found proteins corresponding to hexokinase, glucose-6-

phosphate isomerase, fructose-bisphosphate aldolase, phosphoglycerate 

kinase, triose-phosphate isomerase, phosphoglycerate kinase, enolase, 

pyruvate kinase and phosphopyruvate carboxylase. Triose-phosphate 

isomerase was upregulated in race A compared to race B in most of conditions 

tested, with the most prominent increase of over 2-fold seen in the early log 

phase. Enolase was 3-fold up regulated in race A compared to race B during 

light conditions, and a little over 3-fold down regulated in the early log phase. 

In the citric acid cycle, we identified citrate synthase, aconitate hydratase, 

isocitrate dehydrogenase, malate dehydrogenase and ATP citrate lyase. The 

latter was over 2-fold down regulated in race A in the light, dark and the 

different growth stages. 

For the fatty acid biosynthesis pathway we identified acetyl-CoA carboxylase, 

3-oxoacyl-ACP synthase, 3-oxoacyl-ACP reductase, enoyl-ACP reductase and 

acyl-ACP desaturase. Acetyl-CoA carboxylase was 3-fold down in race A 

compared to race B in dark conditions. 3-oxoacyl-ACP synthase showed a 2-

fold down regulation in the light as well as in the early log phase, while 3-

oxoacyl-ACP reductase displayed a 3-fold down regulation in the early log 

phase.  
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Figure 5: An overview of the protein ratios between the race A 
(CCALA778) and race B (AC761) strains. The same growth conditions are 
analyzed as in figure 4. Red indicates more abundance for AC761 
orthologs, and blue indicates more abundance for CCALA778 orthologs. 
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Discussion 

This paper aimed to unravel why different botryococcus braunii races produce 

different products in large quantities, namely exopolysaccharides or 

hydrocarbons. We used a proteomics-based workflow to overcome the 

challenges of genome assembly, gene prediction, and differential expression 

(Figure 2). Using the workflow, we were able to compare the two different 

strains CCALA778 (race A) and AC761 (race B) by looking at commonly shared 

peptides. Based on peptide ratios between the orthologs of the two races 

performed a differential expression analysis. This was enhanced by the use of 

functional information from CrowdGO, and the manual curation of 972 

protein clusters which contain orthologs in both CCALA778 and AC761. With 

this approach we were able to study key differences in the metabolism of the 

two strains. We found that the race A CCALA778 has several key enzymes 

overexpressed in the GDP-L-fucose biosynthesis pathway (Figure 5), 

correlating to its abundant production of exopolysaccharides (Figure 1). In 

contrast, we found that race B AC761 has several key enzymes overexpressed 

in the MEP pathway (Figure 5), correlating with its abundant hydrocarbon 

synthesis (Figure 1). Additionally, we saw differences in protein expression 

between the two races in the Calvin Benson cycle, glycolysis, citric acid cycle, 

and fatty acid biosynthesis pathway.  

These differences in expression indicate that while both are B. braunii strains, 

and share a high amount of orthologs, there are numerous key differences in 

their metabolic behaviour.  While their product formation suggests enzymes 

related to hydrocarbon and exopolysaccharide production should be affected, 

as validated by our proteomics results, there are also vast differences on a core 

metabolism level. More extensive research on the metabolism of Botryococcus 
braunii should be done to unravel more of its metabolic differences. While in 

this study we only looked at differential expression in orthologues, follow-up 

studies could look at differences in the qualitative proteome. 

Finally, this paper is a successful demonstration of proteomics and high 

resolution of protein function information to perform a comparative genomics 

study of non-axenic microalgal strains, allowing us to go from metagenomic 

sequences to the identification and comparison of microalgal orthologs and 

their functions. In the future, similar approaches should be used for likewise 

large-scale studies of non-axenic microalgae. 
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Chapter 7 

General discussion 

  



 

1.1 - The SPLASH project  

The study of this thesis was done in light of the Sustainable Polymers for Algae 

(SPLASH) project [230]. This EU consortium was funded to study the 

oleaginous microalgae Botryococcus braunii because of its potential for 

producing large amounts of hydrocarbons and polysaccharides, which are 

excreted in large quantities out of the cell [204, 216]. A large part of the SPLASH 

project was the genomics study, where we aimed to characterize the genome 

of Botryococcus braunii using omics data, specifically for the identification of 

key proteins involved in hydrocarbon and polysaccharide production. For this, 

the aim was to apply comparative genomics between the hydrocarbon 

producing B. braunii race AC761, and the polysaccharide producing race 

CCALA778. With the comparative genomics study, we were able to find key 

differentially expressed proteins in the non-mevalonate pathway and the L-

GDP-Fucose biosynthesis pathway, related to hydrocarbon and polysaccharide 

production respectively. These findings provided us testable hypotheses for 

the engineering of these proteins in other, faster growing microalgae such as 

Chlamydomonas reinhardtii.  

Genomics, however, was only one part of the SPLASH project. The multi-

disciplinary consortium was set up to investigate many aspects of Botryococcus 
braunii, with the main studies being: 

1. Development of innovative cultivation and downstream concepts for 

improved growth, product enhancement, and integrated recovery of 

polysaccharides and hydrocarbons. 

2. Product development and testing 

3. Process demonstration at pilot scale 

4. Process integration, sustainability assessment, and market analysis 

Each of these studies is important in their own right, and a few can utilize any 

results from genomics studies.  

1.2 Genomics for the development of cultivation and 

downstream concepts for improved growth and product 

enhancement 

An important part within the SPLASH project, and a widely studied factor in 

microalgal research, was trying to find innovative ways of cultivating and 

growing B. braunii and extract its hydrocarbons and polysaccharides. For the 

first goal, growth media, day and night cycles, and growth temperatures, 
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amongst others were optimized. This resulted in 3-fold increased 

polysaccharide and 2-fold increased biomass production. These numbers can 

be increased in two ways: first, by analysing genetic effects on specific growth 

media and environmental conditions and attempting to optimize these further 

based on the genetic responses.  And second, as discussed in the introduction, 

there are metabolic constraints that limit the potential growth, hydrocarbon, 

and polysaccharide production of microalgae. Finding these constraints and 

possibly circumventing these by the use of metabolic engineering or synthetic 

biology will provide a boost to the growth and production capabilities of B. 
braunii.  

1.3 Genomics to aid in process demonstration at pilot scale 

An important question for microalgae, is how they can be cultivated in large 

open pond algae farms for commercial purposes. As part of SPLASH, several 

‘hotspots’ were found that increase the cost for commercializing microalgae, 

including the need to increase the amounts of hydrocarbons and 

polysaccharides being made in a pilot scale setup. This subtask did not succeed 

in developing a pilot scale setup able to produce large amounts of 

hydrocarbons or polysaccharides. While no definitive reasons are given, one of 

several reasons might be that B. braunii lives in communities with a high 

number of bacteria. It is hypothesized these consist of symbiotic, parasitic, and 

mutualistic relationships, and that some bacteria enable B. braunii to produce 

large quantities of hydrocarbons and polysaccharides. For these questions, 

genomics can be used to identify key proteins that might interact with proteins 

or compounds coming from or going to bacterial sources. One such technique 

that can be used is that of mathematical modeling, based on the metabolic 

capabilities of the microalgae and those of the bacteria. 

1.4 Genomics to aid process integration, sustainability 

assessment, and market analysis 

Part of any big project like SPLASH is a market analysis, to assess if the 

commercialization of a product is viable, and if not, how it is to be made viable. 

It was concluded that, as was predicted, hydrocarbon and polysaccharide 

production with B. braunii is the most viable. While currently not ready to put 

on the market, the main conclusion of the final report was: 

“It can be concluded that the in SPLASH developed cultivation and milking 

technologies have the potential to operate economically, in particular for EHC, 
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provided that all the involved processes will be optimized and the targeted 

products are of higher than commodities value.” [230] 

For this purpose, genomics is able to aid in product synthesis optimization. In 

particular, metabolic engineering of B. braunii can lead to a higher production 

of specific hydrocarbons and polysaccharides, or increased growth of the algae. 

This would lead to a more favourable market analysis for B. braunii by 

decreasing the cost for cultivation relative to hydrocarbons and 

polysaccharides produced. 

All three topics can potentially use predictions based on genomics studies to 

create testable hypotheses. These can be gained through the identification of 

key enzymes, the study of pathways, or by utilizing mathematical models. 

What they have in common, is that at their core they require a good functional 

annotation of their proteins. As discussed in the introduction, improvements 

need to be made in the prediction of microalgal protein functions. The study 

of microalgal protein functions in this thesis is therefore not only for the 

benefit of the genomics study in SPLASH, but also in a broader sense for other 

algae projects.  

2 - Goal of the thesis 

With the SPLASH project in mind, the goal of this thesis was to develop and 

use bioinformatics tools and pipelines to increase our understanding of 

oleaginous microalgal cell factories. During my thesis I mainly worked on the 

improvement of protein function annotations. Genome annotation of the 

basidiomycota yeast Cutaneotrichosporon curvatus was used as a proof of 

concept for my developed function prediction tool and manual curation 

pipeline (chapter 5), and in chapter 6 I apply these for the comparative 

genomics of two races of the Botryococcus braunii microalgae. Here I will 

mainly focus on protein function annotation, how these annotations are 

connected to microalgal cell factories, and how they can be further improved. 

Finally, I discuss how comparative genomics can be used for protein farming 

in microalgae.  

 

Knowing the functions of all proteins of an organism, its functionome, is a core 

requirement to understand the capabilities of the metabolism of an organism 

at a genetic level. There are several ways of retrieving protein functions: 

through wet-lab experiments, manual curation of protein features, or by 
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computationally predicting them. Figure 1 visualizes a workflow on how an 

ideal case scenario of a microalgal cell factory functional genomics study, such 

as that for the SPLASH genomics, is connected to these various stages of 

annotation and what each step provides towards more knowledge of cell 

factories. 

Step 1: High-throughput annotations 

Normally the first step in functional genomics for the study of microalgal cell 

factories is high-throughput predictions. This forms the basis for further 

research, and a high accuracy and coverage of annotations allows for easier 

follow-up studies and a better understanding of the metabolism of an 

organism. As explained in the introduction, there is a wide array of methods 

that are able to predict in high-throughput which Gene Ontology (GO) terms 

belong to a protein [64], most of them falling in the sequence similarity and 

machine learning categories. Many of these methods participated in the 

Critical Assessment of protein Function Annotation (CAFA) competition [56, 

182], where they aim to correctly predict the GO terms belonging to proteins 

with an unknown function. The most recent finished CAFA competition 

compared 126 prediction methods from 56 research groups, which are assessed 

on 3,681 proteins from 18 species. Because of its scale and competitiveness, any 

functional genomics research should be utilizing one or more of the well-

performing methods participating in CAFA. 

The Critical Assessment of protein Function Annotation 

Because predicting protein functions is an important subfield in 

bioinformatics, there is a wide array of ever improving prediction methods 

available. These are hard to compare, because they all use different data sets 

and different evaluation metrics to benchmark their performance on. The 

CAFA competition aims to find the top performing protein function prediction 

methods by benchmarking them using the same evaluation metrics. The first 

CAFA results got published in 2013 and evaluated the performance of 54 

methods based on 866 proteins from 11 species [56]. Predictions were initially 

done on 48,298 proteins, but only the proteins that were experimentally 

validated over the course of 15 months after the submission deadline were used 

for the evaluation of the methods. For this edition of CAFA, only biological 

process and molecular function GO terms were considered. BLAST [60] and 

Naïve predictions were used as a baseline, where BLAST predictions used the 

top sequence similarity hit to transfer GO terms to the target protein and its 
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sequence similarity as a confidence score, and Naïve predictions assigned a 

confidence score to each GO term based on their relative abundance in the 

SwissProt database. The results of the first CAFA showed Jones-UCL and 

Argot2 [2] as the winner and runner up for both biological process and 

molecular function predictions. As a result, I used FFPred2 [167] from UCL-

Jones and Argot2 for the duration of this thesis.  

However, apart from showing the top performers, there were multiple notable 

results to be observed in the study. BLAST was outperformed by 33 methods in 

the molecular function category, and 26 methods in the biological process 

category. Also, for all methods including BLAST, biological processes were 

harder to predict than molecular functions. The authors hypothesize that this 

is likely due to biological processes being more abstract in their function 

compared to molecular functions, making them harder to predict by looking 

at straightforward amino acid conservation [56].  

Furthermore, the authors looked at performance differences between ‘easy’ 

and ‘hard’ to predict proteins. Proteins with 60% or more sequence similarity 

to an experimentally validated protein were classified as easy, and others as 

hard. Unsurprisingly, BLAST had a tougher time predicting hard proteins than 

easy proteins. However, the top performers of CAFA showed no significant 

difference in predicting easy or hard proteins. This hints that the state-of-the-

art prediction methods are good at utilizing multiple sources of data and were 

able to compensate for a low sequence similarity to proteins with a known 

function. 

The second edition of CAFA was published in 2016. 126 methods participated 

and were benchmarked on 3,681 proteins from 18 species. Most of the general 

results were similar to those of the first edition, however the top performers of 

the second edition outperformed the top performers of the first edition. This 

indicates an improvement over time for protein function prediction methods. 

However, it has to be taken into consideration that the increase of available 

data in databases such as SwissProt [55] leads to better training of prediction 

methods, and more information to be used for predicting protein sequences.  
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The first edition of CAFA contained detailed information on the techniques 

used for predictions by each team. Looking at the top five competitors in this 

edition, we get a varied list of techniques used: 

1. Jones-UCL: profile-profile alignments, sequence properties, 

protein interactions, gene expression, literature, machine 

learning, orthology  

2. Argot2: sequence alignments, sequence-profile alignments 

3. Pannzer: Sequence alignments, profile alignments, orthology, 

paralogy [231] 

4. ESG: sequence alignments [232] 

5. PDCN: profile-profile alignments, sequence-profile alignments 

[233] 

In conclusion, BLAST-based protein annotation, which is still considered an 

acceptable method of GO term annotation by many, is shown to be vastly 

outperformed by state-of-the-art prediction methods and should not be used 

directly for these kinds of purposes. Because of its scale and competitiveness 

any functional genomics research should be utilizing one or more of the top-

performing methods in CAFA. 
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Figure 1: A workflow of different steps in omics research for cell factories, and 

how they are interconnected by protein function annotations. 1) High-

throughput annotations form the core for any further research, but is limited 

in its usage. 2) Manual curations improve upon these high-throughput 

annotations, providing the first detailed metabolic map. These curated 

proteins can be used as a template for future high-throughput annotations of 

other species. 3) The manual curations are used to create a genome-scale 

metabolic model of the organism, describing the metabolic reactions using 

mathematical equations. These can be used to form in silico driven hypotheses 

for metabolic engineering experiments. Removing, introducing, or over 

expressing genes in the model gives more information on the protein 

functions, which can be used to update the manually curated proteins. 4) 

Metabolic engineering experiments are done to test the hypotheses. These lead 

to new strains of the organism. Characterization of the changes introduced by 

removing, introducing, or over expressing genes validates its function. These 

validated functions can be used to improve the genome-scale metabolic model, 

and as a template for future high-throughput predictions. 
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Merging high-throughput annotations with CrowdGO 

As discussed in the introduction, in an ideal case scenario the GO terms of 

several prediction tools are combined to form a more accurate and complete 

representation of protein functions. The CAFA results show that from the top 

five performers, none of them use the same combination of techniques. This 

implies that there are vast improvements to be gained from combining the 

predictions of different methodologies, as they might be complementary to 

each other. For this purpose, chapter 4 describes CrowdGO: a tool able to 

merge the predicted GO terms from different prediction tools, resulting in 

significantly improved GO annotations. In chapter 5 and 6 we used two of the 

top performing methods of the most recent CAFA: FFPred2 from the Jones-

UCL team, and Argot2. To supplement them, we used the widely used 

prediction tool InterProScan, which works with sequence-profile alignments, 

shown to be a top performing technique in CAFA. The predictions of these 

methods were merged with CrowdGO. This has led to significantly more 

accurate predictions (chapter 4, figure 3), and we further used this way of 

protein function annotation in both chapter 5 and 6 for functional genomics. 

Shortcomings of high-throughput annotations 

However, high-throughput prediction methods are limited. These GO term 

predictions are often very general, or in low amounts. Their predicted GO 

terms are either shallow or have a low coverage. For example, GO:0016298 

represents any lipase activity, and has ten directly related child terms, such as 

triglyceride lipase activity and phospholipase activity. In most cases, the GO 

term for lipase activity will be predicted instead of one of the more downstream 

terms. As a result, most high-throughput annotations can only be used as a 

general guideline for the function of a protein. Because CrowdGO merges GO 

terms from other prediction methods, it has the same limitation. 

A straightforward solution for getting more specific GO terms is by improving 

the input predictions for CrowdGO. New CAFA2 predictors outperformed the 

top predictors of CAFA1, and during the end of my thesis improved versions of 

Argot(2.5) and FFPred(3) became publicly available. The first improvement to 

be made is to use the top-performers of the second CAFA edition and see if 

with this input CrowdGO is able to predict more specific GO terms. Also, the 

enzyme prediction tool EnzDP became available. This is a prediction method 

specifically for predicting enzymes, resulting in highly specific enzyme 

annotations. Applying EnzDP on the oleaginous yeast Cutaneotrichosporon 
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curvatus from chapter 5 resulted in an overlapping prediction of 75% with the 

enzymes involved in the manually curated triacylglycerol synthesis pathway 

(Supplementary Table 1), which is a high recall for high-through methods. 

Because we are mainly interested in enzymes for our metabolic research, 

EnzDP is an interesting option.  

Another thing to take into account is that most high-throughput methods use 

SwissProt proteins as a reference for their predictions. For example, CrowdGO 

uses a training and test set derived from SwissProt proteins to train its 

parameters on. Because SwissProt is exclusively manually curated it contains a 

relatively low amount of proteins compared to for example the high-

throughput annotated TrEMBL database. This means that a training and test 

set for CrowdGO contains a limited amount of proteins, consisting of 

predominantly a select few species: humans and other mammals, 

Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, 

Oriza sativa, and various bacteria. These lead to a biased set of proteins used 

for the testing of CrowdGO and other protein function prediction methods. As 

such, while CrowdGO performs well given the circumstances of chapter 4, it is 

not a given that it will perform as well on the proteins of non-model species 

such as microalgae, which are not represented in the top 50 SwissProt species. 

Additionally, because CrowdGO works largely based on pattern recognition of 

training data derived from SwissProt, there could be a chance that it has a hard 

time correlating patterns of non-model species to highly specific GO term 

predictions. 

Hopefully in the future predicting highly specific GO terms will become more 

consistent. However, high-throughput predictions currently are only 

applicable for a general overview of an organism’s metabolism and function 

enrichment analysis, if expression data is available. For any further analysis, 

the high-throughput annotations will most likely be too shallow, inaccurate, 

and incomplete. 

Step 2: Biocuration of protein annotations 

The next step in the research for microalgal cell factories is functional 

genomics through manual curation of proteins involved in a microalgae’s 

metabolism. Using high-throughput predictions we are able to get most of the 

conserved metabolism of microalgae, due to sequence similarity with 

experimentally characterized proteins of Arabidopsis thaliana. However, most 

microalgal metabolic proteins do not have well-characterized homologous 
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proteins. This subset of proteins should be manually curated. For this step, the 

high-throughput annotations are an excellent starting point, especially if they 

are relatively accurate to begin with. 

Step 2.2: Using CrowdGO in a biocuration pipeline 

The most well-known database of manually curated proteins is SwissProt, part 

of the UniProt database. As discussed in the introduction, SwissProt uses an 

extensive pipeline for the manual curation of its proteins (chapter 1, figure 2). 

This database is regarded as the gold standard for protein functions and is used 

by most prediction methods including CrowdGO. However, its protein 

curation is a slow and laborious process, as is reflected by comparing the 

number of proteins to those of the non-curated UniProt TrEMBL database: 550 

thousand proteins in SwissProt against 115 million in TrEMBL. Because of this 

reason, we implemented CrowdGO in a manual curation pipeline, in addition 

to BLAST, PFAM, and HMMER searchers for the curation of 1,700 proteins in 

chapter 5 and 6. The annotation process of the 700 proteins in chapter 5 took 

the equivalent of two weeks for one person. Additionally, the manually curated 

proteins were used to fully characterize triacylglycerol (TAG) synthesis of 

Cutaneotrichosporon curvatus, with only one enzyme initially missing. This 

reflects a high and accurate coverage of manually curation using this pipeline. 

In chapter 6 we biocurated a 1000 proteins of Botryococcus braunii in a similar 

manner. However, microalgae have a complex genomic architecture, and 

complicated sequencing efforts are required to assemble their genomes with 

high quality. Part of the genomics study of SPLASH was to create a high-quality 

genome and gene set of B. braunii. This wasn’t possible before a large amount 

of long read sequencing was done, using PacBio and HiSeq sequencing. 

Furthermore, gene curation was done using the widely used MAKER tool but 

required extensive biocuration by overlaying RNA IsoSeq sequences on the 

genome, and visually inspecting and correcting these genes in CLC workbench. 

The process of attaining a high-quality genome for Botryococcus braunii 
CCALA78 and AC761 and their respective gene sets took place over the entire 

duration of the SPLASH project. While we managed to achieve a high-quality 

genome for B. braunii, the majority of other microalgae have lower quality 

genomes. Additionally, the phylogenetic tree we constructed in chapter 6 
figure 2 shows B. braunii species are not closely related to extensively studied 

microalgal model species such as Chlamydomonas reinhardtii, Volvox carteri, 
or Ostreococcus taurii. This means we did not have a well-curated genome to 

use as a reference for the manual curation of proteins. Due to the lack of 
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comparative genomics this manual curation process was slower than that of C. 
curvatus, resulting in two people curating the protein functions for a month to 

achieve the same accuracy as for those of C. curvatus.  

Incorporating CrowdGO in biocuration 

For the foreseeable future the SwissProt database will likely be the gold 

standard [55], and it is unlikely they will adopt our manual curation pipeline. 

However, UniProt has eight on-going biocuration projects for specific 

organisms [234]. Cooperation with the UniProt consortium to start a 

microalgal biocuration project would be a tremendous boost to the study of 

microalgae, and efforts should be made from the microalgal community to 

start such a project. In this case, the manual pipeline used for the curation of 

Botryococcus braunii metabolic proteins can be used as a starting point for 

such a project. Botryococcus braunii might not be the ideal representative for 

microalgae as a UniProt biocuration project, however their proteins can be 

incorporated for other oleaginous microalgae. For example, the manually 

curated B. braunii proteins for the non-menavolate and GDP-L-Fucose 

synthesis can serve as a conserved reference to other oleaginous microalgae. A 

more feasible species to adopt for a microalgal biocuration project should be 

easier to manipulate in the wet-lab for the purpose of any required validation 

experiments. One species that comes to mind is Chlamydomonas reinhardtii 
[156], and another one is the oleaginous Nannochloropsis gaditana [235] which 

due to its properties might reflect the interest in microalgae better. 

One way SwissProt can benefit from the work in this thesis is by the annotation 

of TrEMBL proteins [55] using CrowdGO. The SwissProt curation pipeline uses 

TrEMBL proteins as a starting point, and therefore more and better 

information on their function will improve the accuracy and speed of curation. 

TrEMBL proteins with existing GO term annotations can be updated by 

merging them with CrowdGO, or the entire database can be revamped de novo 

using a standard set of prediction tools such as InterProScan [61] and selected 

CAFA methods, and merged using CrowdGO as described in this thesis. Given 

the significant increase in accuracy, there is no downside to applying the tool. 

In conclusion, CrowdGO can play a positive role in the biocuration of yeast 

and microalgae, as shown in chapter 5 and 6. Biocuration of these proteins 

has led to an increased resolution of metabolic information on these species. 

Finally, if third party manual annotations are fed back into protein databases 

such as SwissProt, they can serve as reliable blueprints for the high-throughput 
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annotation of other proteins. Currently, all high-throughput annotations are 

based off of SwissProt proteins so any extensions to this database will increase 

the usability of high-throughput prediction methods.  

Step 3: Constructing a genome-scale, constraint-based 

metabolic model 

 

There are several 

types of models used 

to describe microalgal 

metabolism. Lenka et 

al describes the major 

types used so far in 

the metabolic 

modeling of 

microalgae [1]. These 

can be described 

using qualitative 

modeling: a 

representation of 

metabolism mostly by visualization and concepts using little to no 

mathematics, and quantitative modeling: a representation of metabolism 

using one or more equations. Figure 2 shows how these different types of 

models fall on the qualitative to quantitative scale. 

 

Network modeling can be done using topological network or graph analysis. 

These forms of modeling describe the interaction between proteins in the 

network, and their place in the network. While these models are relatively easy 

to interpret, they provide little prediction power as to metabolic flows of the 

organism. For splash we use topological network modeling to describe 

hydrocarbon and polysaccharide production of Botryococcus braunii (chapter 
6).  

Constraint-based models are representations of a biological system in a 

stoichiometric matrix, with each row representing a metabolite and each 

column a reaction (chapter 2, box 2). Such a model, as mentioned in the 

introduction, consists of a set of algebraic equations describing the 

Figure 2: Network analysis, flux balance analysis, and kinetic 
modeling in a schematic overview from qualitative modeling 
to quantitative modeling. Adapted from [1]. 
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stoichiometry of the metabolic reactions of an organism, up to genome-scale. 

A detailed metabolic map of an organism provides a blueprint for creating a 

genome-scale metabolic model (GSMM) [109, 124, 236]. This is useful for 

predicting metabolic fluxes under given specific operating conditions and can 

be used to propose gene knock-outs, knock-ins, and over-expressions. 

One technique to analyse constraint-based models is flux balance analysis. 

Flux balance employs two constraints: the metabolism is assumed to be steady 

state, meaning no production or degradation of intermediate compounds is 

possible, and each reaction’s flux is given an upper and lower bound depending 

on thermodynamics and substrate availability. One or more reactions are then 

set as the objective function, such as triacylglycerol production. With the 

matrix, the constraints, and the objective function, we now have a linear 

programming problem, for which the optimal solution is found. Flux balance 

analysis is the most widely used modeling approach in microalgae, mostly in 

the form of genome-scale metabolic models. Several of such models exist, 

mostly for Chlamydomonas reinhardtii as described in chapter 2. 

Finally, dynamic models describe the metabolism of an organism using rate 

equations and are generally represented in the form of an Ordinary Differential 

Equation (ODE), or a series of ODE’s in the case of multiple reactions. These 

dynamic models are able to describe the metabolism in much more detail than 

with network or constraint-based models, however they are highly dependent 

on accurate knowledge of the reaction order and rate constants. Due to their 

mathematical complexity and necessary input data, dynamic models are 

generally used to describe small biological networks in high detail. One 

example is Tevatia et al who describes the relation between growth, nitrogen 

levels, and lipid accumulation in Chlamydomonas reinhardtii using a dynamic 

model [237]. 

Because of the widespread availability of stoichiometric data, the direct 

relationship between protein functions and their metabolic reactions, and the 

questions that flux balance analysis can answer, genome-scale, constraint-

based metabolic models are effective to broadly describe the metabolism of a 

microalgae. 

Step 3.2: Improving protein annotations by using Genome-Scale 

Metabolic Models 

In the genomics research of chapter 5 and 6 we don’t create a GSMM to 

further study the species. However, it would be the logical next step for both 
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studies. There are a few automatic GSMM generators, which provide models 

are relatively correct in a general sense but require manual curation to provide 

more detail. Even so, these automated GSMM’s act as a good starting point for 

further research. Importantly, these automatic GSMM generators can aid in 

the annotation of an organism’s functionome by identifying which enzymes 

and transporters are missing. If flux balance analysis can’t solve the model it 

means there are enzymatic or transporter reactions missing, indicating there 

is a gap in the metabolic map. Additionally, if the in-silico phenotype does not 

match that of the wet-lab, it might also be due to a missing protein or pathway. 

But in this case, it could also be due to other factors such as wrong equations 

in the model. In the case of a gap in the model all proteins should be checked 

for hints of any protein able to fill this gap.  

Step 4: Creating new strains 

A thorough high-quality genome analysis can lead to actionable knowledge to 

improve product formation. Given the hypotheses generated by the use of the 

GSMM, genome engineering techniques such as CRISPR-CAS9 can be used to 

replace, over express, or introduce new genes in an organism to create strains 

with better industrophilic properties. These strains are hopefully commercially 

viable for the production of interesting compounds. Even if not, characterizing 

the new strains and the effect of the engineered genes provides valuable 

information on protein function and any metabolic changes. Iteratively, these 

engineering experiments can be used to further inform the GSMM, resulting 

in an iterative Design-Build-Test-Learn cycle as discussed in the introduction. 

Furthermore, any highly reliable information gained on protein function 

should be documented in a FAIR manner (section 4). By documenting the 

information on protein function, metabolic engineering experiments improve 

the performance and usability of high-throughput predictions (step 1) for other 

species by acting as a reference, completing the circle of protein function 

annotations. 

4 - Microalgae as protein farms 

4.1 The potential of microalgal protein farms 

Microalgae are not the only oleaginous eukaryotes with a lot of potential, and 

we are not sure if them being a host organism for commercial purposes is 

optimal due to their metabolic constraints [42]. To make microalgae viable as 

cell factories, many metabolic constraints need to be circumvented by 
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metabolic engineering, including potentially its photosynthesis mechanics. 

Using other organisms as cell factories are possibly more straight forward, 

however, these often don’t have the interesting characteristics of microalgae. 

One example is the possibility of Botryococcus braunii to synthesize large 

amounts of triacylglycerols and to excrete them, which would mean an easier 

extraction process of these lipids compared to organisms that don’t, potentially 

reducing the cost of triacylglycerol synthesis. However, Botryococcus braunii 
has slow growth and is difficult to maintain in a steady-state condition due to 

it living in a community with a vast amount of bacteria [238]. In this case it 

would make sense to genetically engineer the genes responsible for B. braunii 
triacylglycerol synthesis and excretion to an organism that grows faster and is 

easier to main, for example the microalgal model species Chlamydomonas 
reinhardthii or a yeast. With an estimated amount of 500,000 to a million 

microalgae in the wild [239], they would provide excellent sources as gene 

farms. 
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4.2 A workflow for mining microalgal proteins 

This means that large-scale comparative genomics would be an excellent way 

to study microalgae, but also other oleaginous organisms such as fungi or 

cyanobacteria as they could potentially be hosts for microalgal genes. This 

would allow for the identification of key proteins in both interesting metabolic 

and non-metabolic proteins, and the cross-linking between microalgae and 

other organisms. Figure 3 summarizes a mock up pipeline for this approach: 

1) Select an oleaginous organism of interest. 

2) Retrieve the proteome of the organism. 

3) Use CrowdGO to high-throughput annotate the proteome. 

4) Manually annotated the proteome of the species. 

5) Perform differential expression analysis on as many growth conditions 

as possible. 

6) Gather phenotypic data. 

7) Use point 3, 4, and 5 to summarize everything in biological pathways.  

8) Store everything in a database for oleaginous organisms. This database 

is the starting point for hypothesis creation for new strain 

development using synthetic biology. 

9) Retrieve and compare the phenotypic traits of the oleaginous 

organisms. 

10) For the phenotypic traits of interest, select the related proteins and 

their differential expression analysis. 

11) With this information, there is now a selected subset of proteins and 

their meta data related to a phenotypic trait. 

12) Use this subset of proteins to create new strains using CRISPR-CAS9 

[41, 240]. Feed its phenotypic data back into the database, and in the 

optimal case, use the newly developed strain to commercialize a 

product such as hydrocarbons or polysaccharides. 

A comparative genomics pipeline like this is ambitious and poses a few 

challenges. Different data is handled by different people at different times. This 

means that there are a multitude of different assembly, gene prediction, 

protein function prediction, and other analysis strategies used. Furthermore, 

existing and future data for different species and projects use different 

environmental conditions and differ in quality. Finally, analysing vast amounts 

of big data requires computational methods that are able to handle and store 

this data in an efficient manner.  
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Figure 3: An overview of a mock-up comparative genomics pipeline used to harness 
comparative genomics for new oleaginous strain development. A) Input data 
required for the oleaginous organism database, B) utilizing the oleaginous organism 
database. 
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4.3.1 Standardization for comparative genomics 

One challenge of large-scale comparative genomics research, as described in 

Figure 3, is the different ways data sets are generated, and the different ways 

these data sets are analysed. Differences in data generation and analysis 

produce small to large differences in the results, and most importantly, 

introduce different errors. These differences make it hard to distinguish 

between actual biological differences and those introduced by different tools 

and methodologies. In order to facilitate comparisons between data sets it is 

necessary to standardize the procedures for data acquisition and analysis as 

much as possible and be transparent about these procedures. For transparency, 

the FAIR (Findable Accessible Interoperable Reusable) data principles should 

be followed [241]. The FAIR principles are guidelines on how to store all 

generated biological data. This means the data should be stored together with 

its metadata such as where the samples are from, how the sequences were 

sequenced, and what data analysis tools were used. Following these principles, 

analysis and microalgal projects in the future will be a lot easier to perform, 

and unnecessary research or data generation can be avoided. An example of a 

pipeline using standardization and FAIR principals is SAPP, a Semantic 

Annotation Platform with Provenance. This pipeline provides automated 

structural and functional annotations given a genome, and stores these in a 

FAIR manner. It is built on the GBOL ontology, a standardized RDF data 

structure built specifically to make big data interoperable. This has made it 

possible to, for example, perform comparative genomics on 432 Pseudomonas 
strains [242],  and to use protein domains as a fast alternative for sequence-

based similarity approaches on functional genomics [243]. 

The case of the workflow described in Figure 3 requires standardization in the 

following aspects: genome assembly and error correction, gene prediction, 

protein function prediction, differential expression analysis, and databases 

from which to retrieve metabolic information.  

4.3.2 Assembly 

Assembling a genome is the first aspect of any genomics research, and the 

hardest to standardize. Due to the differences in next generation sequencing 

technologies used [244], for example Illumina , PacBio, or 10x sequencing, or 

due to differences in cultivation and growth of the to-be-sequenced organism, 

there is no one-rules-all assembly tool out there. There are short read 

assemblers, long read assemblers, and hybrid assembler that combines long 
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reads with short reads. Additionally, there are de novo assemblers and 

reference-based assemblers. On top of that, some assemblers might work 

better depending on the organism or the quality of the sequencing data. 

Therefore, it is almost impossible to standardize genome assembly. 

What can be done, however, is standardize the quality of a genome or 

transcriptome assembly to be used in a comparative genomics analysis. 

BUSCO (Benchmarking Universal Single-Copy Orthologs) is a tool developed 

to assess the quality of a genome or transcriptome assembly based on its ability 

to find single-copy orthologous genes that are present in all of a certain 

taxonomic class [245]. It de novo predicts genes based on the given genome or 

transcriptome assembly, and returns a percentage of completeness, which is 

the amount of single-copy orthologs genes it was able to predict given the 

assembly. In the case for green algae, the orthologous genes are based on the 

embryophyta, a clade of green plants. In the nearby future it would be useful 

to create an orthologous group of BUSCO proteins for green microalgae. All 

genome and transcriptome assemblies to be included in a large-scale 

comparative genomics study should pass a certain threshold of BUSCO 

completeness, for example 90% or 95%. A lower amount of completeness 

means an inability to predict a large amount of proteins correctly. 

4.3.3 Gene prediction 

The next step is gene prediction. When comparing the metabolism of species 

on a genetic level we are comparing their proteins and their functions, and how 

these interact with other proteins and compounds. Therefore, gene prediction 

is essential. However, even the best gene prediction tools make many errors 

that can alter the length, reading frame, and hypothetical function drastically. 

Luckily, unlike with genome assemblies, gene prediction can mostly be done 

using the same tool. There are only two exceptions: prokaryotic genes are 

predicted differently than eukaryotic genes, and fungal genes use different 

parameters for gene prediction than other eukaryotes. For the case of this 

pipeline, where we are primarily interested in the gene prediction for 

microalgae and some fungi, it is possible to predict all genes using either 

BRAKER [246] or MAKER [247], which are shown to be state-of-the-art gene 

prediction methods. It is even possible to take the combined prediction of 

genes to get a more complete gene set, but which might introduce a few more 

false positive predictions. 
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4.3.4 Function prediction 

After gene prediction and translation to proteins, the next step is protein 

function prediction. It is important that the best function prediction methods 

are used and that these are standardized cross-species, as these predictions are 

highly differential between methods as shown in chapter 4 and 5.  

4.3.5 Differential expression analysis 

Apart from using the same differential expression tool and settings for every 

to-be-compared gene set, it is also important to use the same pre-processing 

tool to generate the input data. In the case of differential expression analysis 

this concerns aligning reads to the genes. This can be done with TopHat2 [248], 

Bowtie2 [249], or STAR [250]. Two standardly used differential expression 

analysis packages are EdgeR [200] and DEseq2 [251]. 

4.3.6 Databases from which to retrieve metabolic reactions 

The final step of the workflow described in Figure 3 is overlaying the 

differential expression on pathways. These pathways and other metabolic 

information can be retrieved from reaction and pathway databases, such as 

KEGG [69], WikiPathways [71], MetaCyc [72], and more. However, due to the 

differences in these databases, which are often contradictory, and missing data 

in some of them, it might be better to include a few databases in order to 

include as much data as possible. Because the step of analysing differential 

expression data overlaid on pathways is mostly done without the aid of any 

further tools, the user can make a well-informed decision on which reactions 

and pathways to include from which databases.  

Concluding remarks 

This thesis shows some of the challenges facing microalgal cell factories, 

especially those of functionally annotating proteins. While I have made steps 

on this topic, there are still many improvements required to be made on a wide 

array of challenges if microalgal biotechnology research is to come of age. 
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Summary 
Chapter 1 provides the background for the thesis. In it, I provide a short 

overview of what biotechnology is and how it has been utilized it for thousands 

of years. I then address how modern biotechnology has evolved over the past 

few decades. Its progress has been triggered by the discovery of nucleic acids 

and marked by a focus on genetic understanding of cell and organism function 

and on the subsequent manipulation to ultimately benefit society in one way 

or another. Furthermore, computational biology has been increasingly 

important to determine the success of biotechnological research, in for 

example an anti-malarial drug- producing yeast. However, for microalgae, 

which are very promising organisms for biotechnological applications, there 

are essentially no successful commercialized examples of modern 

biotechnology. The chapter further discusses the importance of 

computationally predicting protein functions and its role in bioinformatics 

and systems biology research, concluding that this is one of the challenges for 

microalgal biotechnology. This topic is discussed in all chapters of this thesis, 

as its overarching goal is to develop and deploy tools and methodologies that 

lead to increase our understanding of microalgae as cell factories. 

Chapter 2 is a review on the state of microalgal biotechnology in 2014, of which 

the major discussion points are still valid, and how bioinformatics and systems 

biology should be used to further microalgal research. It describes the 

challenges of microalgal genomics, bioinformatics, and systems biology 

research. The chapter addresses a few challenges for microalgae in particular: 

a lack of genomic data, a low amount of validated protein functions, and 

genome-scale metabolic models largely based off of Arabidopsis thaliana. 

Suggestions are made on how to overcome these challenges, by for example 

better utilizing bioinformatics methods and databases. Chapter 3 addresses a 

specific challenge: the need for accurate annotation of the functions of 

microalgal proteins. It exposes the lack of understanding we have of their 

protein functions, with a staggering 90% of their annotations also present in 

the distantly related plant Arabidopsis thaliana. Finally, this chapter outlines 

areas in which microalgal protein function prediction can be improved. In 

Chapter 4, I present CrowdGO, a prediction tool based on the “wisdom of the 

crowd” principle for protein function prediction that aims to overcome the 

major problem highlighted in Chapter 3. It operates by taking and merging the 

existing predictions made by other methods. These merged predictions are 

then put through a machine learning algorithm which is trained to recognize 
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patterns in these predictions and correlate them to true or false positives. 

CrowdGO shows significantly higher accuracy, with a p-value < 2.22e-16, over 

existing prediction methods, as well as an improved precision and recall 

optimum.  

In Chapter 5 deploy CrowdGO to the genomics of the oleaginous yeast 

Cutaneotrichosporon curvatus, which thus serves as a real biological test case 

for the method. Comparisons between the CrowdGO annotated C. curvatus 

proteins to the existing ones of a related yeast showcases the potential of 

CrowdGO. GO enrichment analysis of C. curvatus between transcriptomes of 

normal growth conditions and nitrogen starved conditions shows cell 

maintenance functions enriched during the first, and stress functions enriched 

during the latter. This is in line with what one would expect for an oleaginous 

eukaryote and reassures us that the CrowdGO annotations are reliable. The 

CrowdGO annotations are further used in a manual annotation pipeline, which 

we used to manually curate over 700 metabolic C. curvatus proteins. These are 

used together with differential expression analysis to characterize 

triacylglycerol synthesis during nitrogen starvation conditions. Only one 

enzyme was missing after the first round of annotations, displaying a high 

recall for enzymes when using the manual annotation pipeline. 

In chapter 6 we study the comparative genomics between different 

Botryococcus braunii strains, an oleaginous eukaryote that either makes large 

number of polysaccharides or hydrocarbons based on the strain. In this 

chapter, all methodologies discussed or developed in the previous chapters are 

used to try and identify the key genetic differences between the two strains 

that lead to polysaccharide or hydrocarbon synthesis. We use CrowdGO to 

annotate all the proteins and perform manual annotation on a thousand 

metabolic proteins. These are used in conjunction with quantitative 

proteomics analysis of several conditions including light and dark, different 

nitrogen levels, and different cell phases. By combining the manual 

annotations and the proteomics analysis, we were able to characterize several 

key pathways including the non-mevalonate pathway, fucose synthesis 

pathway, and the TCA cycle. Analysis of these pathways reveals key differences 

in the expression of enzymes that are likely to correspond to polysaccharide or 

hydrocarbon synthesis. Apart from revealing some key features about 

Botryococcus braunii, this chapter serves as a template for future large-scale 

microalgal research.  
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Chapter 7 is a general discussion on the thesis. In it, I discuss how the work in 

this thesis relates to the SPLASH project for microalgae. Furthermore, I discuss 

how microalgal annotations can still be improved through the use of various 

stages of bioinformatics, systems biology, and synthetic / metabolic 

engineering research. Finally, I discuss how microalgae have potential as 

protein farms, and how it might be possible to unlock this potential. 
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earlier, but for the two years that we were at SSB together, you were 
definitely one of the best party-goers and funnier people there! 
Don’t drink too much though, you have a PhD to finish… 
 
Linde, you have the ability to make me really, really, really 
uncomfortable. But even then, you are still a fun and nice person to 
hang out with! You’re a very hard-working and pro-active woman so 
I’m sure you will have success in your career. You actually have a life, 
unlike most people in SSB, so I can count the times you had a drink 
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with us on my hands. But those were good times regardless! Keep on 
doing what you do, darlie.  
 
Nikolas! We had really good times together, especially outside of 
work playing HotS! I haven’t been that active with games lately, but 
I’m sure we will pick it up sometime in the future. I pity the girls at 
your new job. They have to work together with such a charmer, 
knowing that they can’t all have you… But that is life. Good luck with 
your defense coming up soon, and if you’re ever in Switzerland let 
me know! 
 
Javi, bastardo. You already left a long time ago and we didn’t really 
work together, but we always had good times together outside of 
work! Although, I have to confess, the first year or so I had a really 
hard time understanding you… I hope you and Cata are enjoying 
Luxembourg and wherever you are going next! 
 
Maria, you were always there when I needed help or advise in 
science! It is a pity we never worked together, because I think I could 
have learned a lot from you, as can be seen from everyone in SSB 
that did work together with you! I am glad you got a tenure track 
position, and wish you all the luck in your career. 
 
Edoardo, like Maria you were always there when I needed 
(statistical) advise, and it is a pity we never worked together. I also 
wish you all the best in your career. 
 
Niels, you are definitely a weird guy too. And you are not even 
trying! Vegetarian, yoga, meditation… I just don’t get it man! I do get 
that you are a genuinely nice guy, though! Because you are more 
settled than most of us, we never hang out too much outside of 
work. We still got invited to your place every now and then, and of 
course I can’t forget your wedding. I wish you, your wife, and your 
kids all the best in life, wherever that may take you. 
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Stamatios, I tried play fighting you a few times during the start of 
our PhD’s… I learned to not do that. Thanks for being an excellent 
iGEM supervisor with us, I had a great time. All the best in your 
scientific career, the ambition is definitely there! 
 
Rik, aka Jesus. You are more of a quiet type in a group, but we had 
some fun coffee breaks together regardless! A very funny, but at the 
same time hard-working guy, I’m sure you will have a successful 
career. 
 
Anna, I can basically just type: “same as Rick”, because it is true. 
More quiet in bigger groups, but very fun in smaller ones. Once 
Nikolas and I will pick up our gaming rhythm again, you have to join 
us. We won’t give you a choice. 
 
Melanie, you were already a presence when you were a student, I 
am sure you are even more now! I trust on you to lead all new SSB 
employees to party greatness… 
 
Nong, the selfie queen! Always in for lunch with us. A bit hard to talk 
over some of the loud people in SSB, but always a nice person! 
 
Rita, sadly we never worked together. Mostly, of course, because I 
am a computational biologist and you’re in the wet lab. All the best 
during the rest of your career! 
 
Marta, like with Rita and Nong, you were in the wet lab and I wasn’t. 
But, we supervised iGEM together! Thanks for that experience, I will 
remember it for a long time! 
 
Tom, like with the others above, wet lab, dry lab… But the few times 
I needed you, you helped me out. So thank you for that! 
 
Carolien, the secretary for most of my PhD. Everything went very 
smoothly while you were there. I don’t think your influence can be 
overestimated! 
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Kal, always a myth to me. I never know what you’re thinking, doing, 
or what you’re going to do. I have no clue where you are right now, 
and I have no clue where you will be in the future. I never had a clue 
if your stories during coffee breaks were going to be funny, or if I 
would roll my eyes. But you were always present when drinks were 
to be had, and you were definitely one of the fun guys! Good luck 
at… wherever you are. 
 
Apart from the people at SSB, I want to thank many others. First, I 
have been party of two amazing projects. The PhD trip to California 
was one of the best experiences in my life so far, and organizing it 
has given me a lot of valuable experience (and a better c.v.)! I want 
to thank Alex K., Ana, Yue, Ruben, Jasper S., Kees, and Nico for 
having a flawless PhD trip and a flawless organization. Did I mention 
it was flawless? I am not even exaggerating. Thanks guys! 
 
I already mentioned iGEM a few times, but I will do it here 
specifically. I want to thank all the students and supervisors for the 
amazing 2016 iGEM team! We had ups and downs, like every iGEM 
team, but the result was one we could not have dreamed of! 
Furthermore, I feel privileged to have been allowed to go to Boston 
with you guys. It has been one of the best experiences in my life! 
Thank you, Thomas, Bel, Carina, Lisa, Mark, Ronald, Angelina, 
Marijn, Jaccoline, Remco, Mario, Linea, Emma, Rob, Alex K., 
Franklin, Kees, Marta, and Stamatios. 
 
On the topic of students, I want to thank my three bachelor and 
masters students during my PhD: Floris, Tohm, and Ronald. My 
development as a scientists would not have been the same without 
having you guys to help me along the way. 
 
And last, but definitely not least, I want to thank the ‘SHOOOOTS’ 
group and everyone else I haven’t mentioned before that I spent 
time having drinks with. I wrote a list of names, but considering I saw 

189



 

most of you only when absolutely drunk, I will probably forget a lot 
of people. Sorry for that! 
 
Irene, I wrote you down first on my list. And there is probably a 
reason for that. You are the most annoying person I met in 
Wageningen. But also one of the most fun. I always had great times 
drinking with you, and I know you did with me too, don’t deny it. See 
you soon! 
 
Peer, second on my list granted mostly because I thought of Irene 
first. But as one of the few other Dutch guys in the crew, and even 
one from Brabant that studied in Nijmegen, you were one of the 
chosen ones to actually get most of my jokes. For that I am eternally 
grateful. 
 
Monika, the craziest girl from Wageningen. I heard from everyone 
that Wageningen got super boring after we left, and I am sure you 
are a big reason for that. I lost all my hair because of alcohol 
poisoning due to all the SHOOOOTS you fed us. Thanks for that… 
 
Jeroen, you appear quiet, but are extrovert at the same time. Calm, 
but fun at the same time. We didn’t share as many drinks with each 
other as some others on this list, but more than enough to have 
some great memories! 
 
Rebecca, of course you are high on my list. Wageningen lost a gem 
after you left for Delft. Humour is often a language thing, and 
because of that it was easy to laugh with you in English. It is a pity I 
am so horrible at keeping connections with people the moment they 
move more than 5km away from me, but I hope we will share a drink 
sometime in the future! 
 
CataLINA. Mamita rica! It took me a long time to start saying Cata 
instead of Catalina even after you insisting on being called Cata 
every single time. What can I say, another crazy girl which I drank 
way too many shots with. You and Javi were the first to visit me in 
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Lausanne, I really appreciate that. I am sure we will see each other 
often enough in the future! 
 
Lara, sometimes we had clashing personalities, but we definitely had 
good times together! I hope you are having a great time in Ireland. A 
great place to drink alcohol. Maybe not shoooots, but beer and 
whiskey surely. 
 
Jueeli, not super crazy, never super drunk, but definitely never quiet. 
Always fun to hang out with you whenever you joined us for drinks! 
 
Sven, what can I say. First of all, we have so many great memories 
thanks to you always having a camera with you. Some things which 
I’d rather don’t remember! Probably the craziest drinker of us all. It’s 
a good thing you got a job that sometimes accommodates that! See 
you soon! 
 
Cristina. Always in for social events! I hope you are not rotting away 
in the boring northern part of my country… 
 
Alex U., hit and miss. Sometimes you can drink with us and be O.K. 
And sometimes you drink one beer and you’re completely wasted! 
We’re always in for a surprise when you’re with us, that’s for sure. 
 
Juanan, no clue why you are so low on my list, you should a 100% be 
somewhere at the top! So many good memories with you, papito 
rico! You are one of the reasons why I have such a good image of the 
Spanish, even with people like Irene! I am proud of my Spanish 
heritage! 
 
Yuan, did I ever see you drunk? Settled down once you got a cat. 
You’re a real mom now, so you are forgiven. Still very fun to hang 
around with whenever we get the chance! See you soon. Or I guess, 
actually on the way to my defense. Since I’m driving with you. Let’s 
not get drunk in the car… 
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To anyone that I missed: sorry! In true style, I wrote this at the last 
possible moment. I will apologize to you in person if you come to my 
PhD defense party. You can even have some drinks for free ;). 
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 Overview of completed training activities 

 
Discipline specific 

Linear and integer programming 2013 

Training workshop interdisciplinary 

life sciences 

2013 

SB@NL 2014 2014 

NBIC 2014 2014 

SPLASH 4
th

 general assembly 2015 

Data integration in the life sciences 2015 

BioSB 2016 2016 

ECCB 2016 2016 

SPLASH 5
th

 general assembly 2016 

iGEM 2016 world jamboree supervisor 2016 

BioSB 2017 

  

General courses 

VLAG PhD week 2013 

Scientific writing 2014 

Presentation skills 2014 

Teaching and supervising thesis 

students 

2015 

Writing grant proposals 2017 

  

Optionals 

Preparation of research proposal  

Weekly group meetings  

Seminar series  

PhD trip 2015 2015 

PhD trip 2015 organization 2015 
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