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Chapter 1

General introduction



1. Biotechnology

Biotechnology is the exploitation of biological resources for the benefit of
human society, and has been practiced for thousands of years [3]. The earliest
forms of biotechnology were the domestication of animals and crops such as
wheat [4]. Later biotechnology extended to the use of microorganisms such as
yeast for fermenting beer, wine, and bread [5]. These are examples of using
organisms in their natural state to benefit human life. Modern biotechnology,
however, tries to understand an organism and its genetics in order for it to be
modified and exploited [6]. For example, by manipulating a microorganism its
growth conditions, removing genes, or introducing new genes. Manipulations
like this can lead to increased growth [7], increased product formation [8, 9],
or even the synthesis of a compound the organism was not capable of
synthesizing before [8, 10, 1]. A big part in understanding the genetics of
organisms for modern biotechnology is the use of computational biology to
create in-silico driven hypotheses for a wide range of topics including
bioprocess optimization for product synthesis, simulating the effects of
medicine, whole cell analysis of host organisms, and many more.

1.2 Computational biology for biotechnology

For computational biology there are two important fields: bioinformatics, and
systems biology. Bioinformatics is a general term used for many in silico
methodologies studying for example omics data, protein structures, and
cellular organization. This is done using computer programming to handle big
data, statistics, and mathematics. Most interesting for biotechnology is the
study of omics data, called genomics [12-14]. In genomics, bioinformatics is
used to characterize the genome, identify the proteins made, the function of
each protein, when and where they are expressed, how they interact, and what
biological pathways they are involved in. Systems biology, on the other hand,
studies the interaction between the components of a system using
mathematical modeling of these systems ranging from a specific biological
process of an organism, to a genome scale model, and even how different
organisms interact as a system in cases such as symbiosis or parasitism.
Together, these two fields of computational biology are able to in silico predict
what effects environmental factors and gene editing have on an organism.
With these predictions obtained through bioinformatics and systems biology



research, it is possible to improve the outcome of wet-lab biotechnological
research.

1.3 Artemisinin production: an example of design driven
biotechnology

An excellent example of design driven biotechnology is the development of a
Saccharomyces cerevisiae strain able to produce high amounts of artemisinic
acid, a precursor for artemisinin drugs used in the treatment of malaria [8, 15].
In the development of this strain, researchers utilized a wide range of tools to
successfully introduce a complete biosynthetic pathway. Using bioinformatics
and systems biology techniques they were one of the first to successfully
implement a Design-Build-Test-Learn cycle, as described in Figure 1 by Niels
and Keasling [16]. This cycle consists of four interacting modules: designing a
biological system, building the biological system, testing the biological system,
and learning from the biological system. In an ideal case scenario each cycle
leads to a better design and eventually an engineered strain that is able to
efficiently perform the desired task, such as more synthesis of a product or
increased growth.

Figure 1: An example design-build-test-learn cycle as described and
adapted from Nielsen and Keasling [16]. First a target molecule,
regulatory circuit, and host are identified. These are used to design the
system. After, the design is built in the wet-lab, and the resulting strain
is tested and characterized. Following these tests and characterizations,
the learned knowledge is used to improve the design of the system for
the next cycle.



The ‘design’ module of the cycle was applied in several forms for engineering
of the artemisinic acid S. cerevisiae strain. Some of the techniques that were
used are comparative genomics between different S. cerevisiae strains to
identify the cause for the differences in their behaviour, and transcriptomic
analysis to identify rate limiting reactions. After many iterations, these
researchers managed to make a commercially viable yeast-based artemisinin
production pipeline [17]. This example of artemisinin production in yeast thus
utilized computational biology to overcome initial challenges and improve
their yield. This resulted in dozens of updated yeast strains based on their
design-driven hypotheses [8, 17]. Computational predictions were done on
specific components, but also on how these components would fit in the yeast
its metabolism. With this approach, researchers managed to engineer a yeast
strain producing the product they want, in commercially viable amounts, and
minimizing metabolic side effects.

Other examples of successful design-driven, or computational design-driven,
metabolic engineering and synthetic biology is the production of 1,3-
propanediol by DuPont using Escherichia coli, isobutanol by Gevo and
Butamax using yeast, and 1,4-butanediol Genomatica using Escherichia coli
[18].
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2. Untapped potential: microalgae for biotechnology
2.1 Microalgae and their products

With the above example in mind it is interesting to apply a similar strategy to
microalgae. Microalgae have a lot of biotechnological potential, particularly
those that are informally called green microalgae [19-22], and are often capable
of producing large amounts of lipids, sugars, or other valuable metabolites [23-
27]. For example, many microalgae are oleaginous, meaning their biomass can
consist of 40% or more of high-value lipids like triacylglycerol [28, 29]. These
lipids can be used to produce biodiesel, bioplastics, pharmaceuticals, and
many more [30-32]. Other biotechnology applications for microalgae focus on
its value in food, nutrition, and cosmetics [33, 34]. The biomass of many
microalgae consist of a high amount of proteins and other nutrients, which
also makes them a cheap addition to food sources [35]. In the case of animal
feed, microalgae are often used as feedstock for aquatic species. When it comes
to human consumption, some microalgal species showed to be beneficial to
human health in a variety of ways, such as a source for omega-3 fatty acids [36],
anti-allergy benefits [37], and anti-viral benefits [38].

In recent history research and commercial activities are more focused towards
their potential for producing high-value compounds such as lipids and sugars
that can be used in commercial products [39]. However, in this case,
commercial use of microalgae is only feasible if it outperforms existing sources
such as fossil fuels, chemical production of compounds, or various higher order
plants. Production of many interesting compounds often comes at a high
metabolic cost, resulting in slow growth and other diminishing effects [29].
Biotechnological research for microalgae aims to optimize the product
formation of microalgae while minimizing these diminishing effects.

2.2 Current constraints for microalgal biotechnology

Currently, when it comes to finished and commercialized products, microalgal
biotechnology for the production of high-value compounds is only available
for a select few companies, often not further developed beyond pilot scales
[40]. The general state of microalgal genetics is on a proof-of-principle level.
On one hand the techniques for microalgal genome editing are still in
development or coming of age [41], and on the other hand there is an inherent
lack of genetic knowledge of microalgae. A key example is that of biofuels.
Biofuel has been one of the main selling points for microalgal research over the
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past decade. However, recent studies suggest that in their current state
microalgae for biofuels will not be commercially viable [42, 43]. A lot of
research regarding microalgae and biofuels has been done on the bioprocess
engineering level, for example optimizing bioreactors and growth conditions
for microalgae by maximizing their light uptake or nutrient availability [44,
45]. However, only optimizing microalgae in this manner will not be
commercially viable for the foreseeable future due to metabolic constraints
[43]. One of the main metabolic constraints is the photosynthetic limitation of
microalgae. The most optimistic estimates in which sunlight is converted to
energy are up to 8% [42]. On top of that, the actual conversion of this
photosynthetic energy to biomass is as low as 35% [46]. This means that a huge
amount of photosynthetic energy is used in the intermediate metabolic
processes of microalgae. These limitations are the main reason why microalgae
are not economically viable for biofuel in the foreseeable future. Genomics
research will be needed to study if there are any fixable metabolic constraints,
and if so, genetic engineering will be needed to make microalgae more efficient
in their metabolic processes.

In recent years microalgal research has been moving towards the
understanding of their genomes and metabolic processes. For example, many
efforts are made towards identifying genome-wide differential expression
during starch and lipid production, and during nitrogen limitation or
starvation. Another example is the aim to identify molecular switches between
starch and lipid production, and how these are regulated [47]. In a more
futuristic approach, some projects are even attempting to engineer a more
efficient photosynthesis [48, 49]. However, what all these have in common is
that they are at a fundamental level research that has yet to be implemented
for production purposes. This is where synthetic biology can play a role.

2.3 Microalgal genomics and synthetic biology

Synthetic biology is the systematic characterization and usage of standardized
genetic parts, and the engineering of these parts into organisms to create new
or more products. Applying synthetic biology principles to microalgae can
result in microalgal cell factories, able to synthesize various products at a high
rate and commercially viable cost. However, synthetic biology is heavily reliant
on precise functional knowledge, and despite recent efforts a genomic
understanding of microalgae still lags behind in comparison to that of many
other species. For example, the genome of Saccharomyces cerevisiae got
published in 1996 [50], that of Escherichia coli in 1997 [51], and that of
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Arabidopsis thaliana in 2000 [52]. In comparison, the first published genome
of green algae is Ostreococcus taurii in 2006 [53], and the model species
Chlamydomonas reinhardtii in 2007 [54]. If one compares these dates to those
of the aforementioned species it is extremely late and exemplifies the general
lack of research on microalgal genomics during the early omics age. Current
next generation sequencing technologies make up for the late start of genome
sequencing for microalgae, but due to the late start, so far little efforts have
been made to experimentally characterize specific algal genomic features.
Characterizing proteins and other functions coded by the genome is a
laborious process, and therefore the amount of characterized parts does not
compare to the amount of genome sequences available. In the case of
microalgal biotechnology, specifically synthetic biology, one area that we need
to know more about is the functions of all proteins in a genome and how they
interact as a system.

3. Protein functions — why we need them and how we get them

3.1 Bioinformatics and protein functions

For computational models to be useful for synthetic biology it is critical to have
an extensive knowledge on protein functions. As can be seen by the low
amount of wet-lab characterized proteins in online databases [55], this is still
a laborious and in many cases difficult task. Therefore, bioinformatics is often
used to predict protein function [56]. These predicted protein functions are
directly and indirectly used in systems and synthetic biology, both for the
insertion and deletion of genes [8, 10], and also for the creation of
mathematical models used in systems biology research [57].

3.2 Retrieving protein functions through sequence similarity

Historically, electronic inference of protein functions is accomplished by
looking for sequence similarity with proteins that have a known function. This
has been practiced since 1985 with the FASTA alignment [58], the first
algorithm that facilitated high-throughput protein sequence similarity
searches. Similarly, the BLAST sequence alignment tool was published in 1990
and has been a staple tool in bioinformatics ever since [59, 60]. Most proteins
annotated using computational methods have been done so using BLAST in
one way or another. Manually curated annotations are often aided by BLAST
sequence similarity searches, as are annotations predicted by high-throughput
methods. Another tool that is ingrained in the world of genomics and protein
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function is InterProScan [61]. This tools main functionality is the identification
of protein domains given a protein sequence and a database of Hidden Markov
Models [62], and meta-data attached to these domains in the InterPro database
to annotate functions to these proteins using Gene Ontology (GO) terms [63-
65]. The big downside of prediction methods based on sequence similarity,
however, is the need of homologous proteins with reliable functional

information.

3.3 Limitations of sequence similarity-based protein function
prediction

Sequence similarity approaches rely on annotated proteins that have a close
phylogenetic distance to the protein of interest. For example, the GreenCutz2 is
a resource of conserved proteins across photosynthetic plants and microalgae
[66]. If a microalga has a protein that is present in the GreenCut2, and there is
functional information on this protein available in another plant or
microalgae, sequence similarity-based approaches will assume that the
function can be transferred between these proteins. In the case of such
conserved protein sequences, this is a reliable way of annotating protein
functions. However, if a microalga has a protein that has no conserved
sequence with a protein of known functionality, sequence similarity-based
approaches will not be able to annotate a function to this protein. As discussed
earlier, there is little experimental information available on microalgal
proteins. Therefore, when using sequence similarity-based approaches to
annotate their proteins, it will mostly return functions only for proteins that
show sequence conservation with well-studied plant species such as
Arabidopsis thaliana, as this is the organism that is the most well-annotated
species in the plant and microalgal lineages according to SwissProt [55]. The
result is a well-annotated core metabolism of a microalgae, but limited
annotations for proteins that are unique for microalgae. Therefore, it is needed
to additionally look at other approaches for annotating a function to
microalgal proteins.
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3.4 Multi-feature-based protein function prediction

Another way of predicting protein functions is by training machine learning
algorithms on a range of protein features [67]. Many machine learning
techniques are able to correlate protein features such as amino acid
composition, secondary structures, and disordered regions to GO terms, given
a set of proteins with known functions and features [68]. A machine learning
algorithm builds a statistical model around these features, which gives a
likelihood that a certain pattern of features is linked to a certain protein
function. In potential, these techniques are much more flexible than the earlier
discussed sequence similarity approaches, as in principle they don’t require
sequentially closely related proteins to have a GO term annotation. These
feature-based approaches try to understand protein function on a more
fundamental level than transferring GO terms based on sequence similarity.
Because of this they are complementary to sequence similarity-based methods.

3.5 Protein function information hubs

Currently, the best source for protein function information is SwissProt, part
of the UniProt Knowledgebase [55]. SwissProt is a database of manually
curated proteins and their functions, including meta data such as protein
domains, links to other databases, and evidence codes for all the data
associated to the protein. Alternatively, there is the TrEMBL database [55].
This database is also part of the UniProt Knowledgebase, but only contains
computer-generated gene translations and protein functional predictions.
How the data for these databases is derived is described in Figure 2A, and how
this data can be used is described in Figure 2B.

The information in the UniProt Knowledgebase database is extremely useful
for bioinformatics and systems biology research. Figure 2B describes how
bioinformatics, systems biology, and synthetic biology research are all tied
together, and data on protein functions plays a crucial role. This interaction is
further discussed in chapter 2 box 3.

Additionally, there exist a number of databases that annotate proteins and
their functional data to biochemical reactions and networks. These data are
useful for the mathematical modeling of biological systems used in systems
biology research, but also for the visualization and understanding of an
organism its biochemistry. Databases such as KEGG [69], Reactome [70],
WikiPathways [71], and MetaCyc [72] are invaluable to biotechnological
research, and all of them require data on protein functions.
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Figure 2: A) An overview of how the SwissProt and TrEMBL databases of the UniProt
KnowledgeBase retrieve their protein information. SwissProt proteins have been
annotated using a well-defined manual curation pipeline to ensure that all manually
annotated entries are handled in a consistent manner. Curation is performed by
expert biologists using a range of tools that have been iteratively developed in close
collaboration with curators. TrEMBL proteins are automatically annotated and not
reviewed. B) An overview of the interaction between bioinformatics, systems
biology, and synthetic biology research. Black arrows indicate predictions and
literature data, and white arrows indicate experimental data.

4. Microalgae and protein functions

4.1 Limited knowledge on microalgal protein functions

As discussed earlier, to fully utilize microalgae as cell factories we would need
to identify interesting metabolic proteins and circumvent metabolic
constraints, which can be efficiently done using state-of-the-art genome
editing techniques such as CRISPR-CASg, and by creating new genetic circuits
using synthetic biology. This requires a good understanding of the proteins
involved and how they interact in a whole-cell system. However, there are only
267 experimentally characterized microalgal proteins in SwissProt as of 26-07-
2018. Due to the inability to annotate protein functions due to a lack of
homologous proteins with a characterized function, and because feature-based
machine learning approaches are not as sequence similarity-based approaches,
it is a challenge to generate a good annotation for microalgae on a genome
scale. Therefore, we need a comprehensive utilization of bioinformatics and
systems biology methodologies to understand the metabolic capabilities of
microalgae. In particular, we need a good understanding of microalgal
enzymatic functions in order to generate hypotheses as to how to circumvent
metabolic constraints.
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5. Botryococcus braunii

5.1 Why study this microalga

An interesting microalga to study is Botryococcus braunii. This alga is able to
produce polysaccharides up to 50%, or hydrocarbons up to 40% of its cell dry
weight depending on the strain. Additionally, it excretes the majority of these
polysaccharides and hydrocarbons, making the harvesting of these products
relatively easy. However, the wild-type of this microalga is a slow grower and
lives in a community with various bacteria. This makes its commercialization
capabilities limited. Using genomics research, we would be able to understand
the metabolism of B. braunii, allowing us to potentially identify how this
microalga makes a large number of polysaccharides and hydrocarbons, how it
excretes them, and why its growth is limited. Understanding the features of
this microalgae would allow us to genetically engineer the parts of the genome
to faster growing and easier to handle organisms and identifying metabolic
constraints would potentially allow us to circumvent the slow growth of B.
braunii.

5.2 Studying Botryococcus braunii: Sustainable Polymers for
Algae (SPLASH)

Because of the potential of Botryococcus braunii for biotechnological
applications, an EU consortium was funded to study this microalga. The aim
of this 4.5-year EU-project was to develop a microalgal cell factory able to
sustainably produce hydrocarbons and exopolysaccharides, using
Botryococcus braunii features and Chlamydomonas reinhardtii as a host
organism. This project encompasses genomics and systems biology research to
understand the product formation of two Botryococcus braunii races which
make hydrocarbons or polysaccharides, the development of in situ extract and
isolation methods for these hydrocarbons and polysaccharides, their
conversion to commercial products, and a proof of concept of Botryococcus
braunii cultivation on a pilot scale. Finally, based on information gained during
this research, sustainability assessment and market analysis was done to assess
the viability of Botryococcus braunii as a microalgal cell factory.

In this thesis research is aimed with Botryococcus braunii genomics in mind.
In SPLASH, genomics and systems biology were used to understand the
production of hydrocarbon and polysaccharide production in Botryococcus
braunii on a fundamental level, with the goal of providing leads for cultivation
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concepts, improved growth, and enhancement of hydrocarbon and
polysaccharide production. To reach the objectives two B. braunii strains with
either a strong affinity towards hydrocarbon or polysaccharide production,
AC761 and CCALA778 respectively, were to be studied using comparative
genomics. A comparative genomics study like this requires a thorough
understand of the functions of metabolic proteins and transporter proteins. As
discussed earlier, this is particularly challenging for microalgae. Therefore,
many efforts were made to annotate functions to Botryococcus braunii
proteins, and once we got those, to view these protein functions in the light of
biological pathways and gene expression analysis coupled to the production of
hydrocarbons and polysaccharides.

19



Thesis outline

The goal of this thesis is to contribute to increase our understanding of
oleaginous microalgae as cell factories through developing and using
bioinformatics tools and pipelines. Step by step I arrive at the point where I
use bioinformatics and systems biology techniques to increase our knowledge
of the metabolism of Botryococcus braunii.

In chapter 2, we provide an overview of the state of microalgae as cell factories.
As we point out, during the time of publication for this review, only a small
amount of existing genome sequencing was done for microalgae, and even less
research on their biochemistry. In the meantime, many more genomes have
become available, but the research on their biochemistry is a laborious process
that does not increase as fast as current generation genome sequences. This
means there is a low amount of experimental data on protein functions, and
although there are a number of microalgal genome-scale metabolic models,
these are based on homology with enzymes underlying core metabolic
reactions of Arabidopsis thaliana. Even the microalgal model species
Chlamydomonas reinhardtii, whose biochemistry is often used as a basis for
other microalgal research, has a limited amount of experimental data on
protein functions. In this chapter we suggest how to move forward with
bioinformatics and systems biology to improve microalgae as cell factories.

In chapter 3 we focus on a specific aspect of microalgal bioinformatics
discussed in chapter 2: retrieving protein functions. We show that only about
half of the microalgal proteins have an annotated function, and most functions
annotated to microalgal proteins are transferred from Arabidopsis thaliana
based on sequence similarity. Further, we review several protein function
prediction methodologies and their pros and cons.

In chapter 4 we present CrowdGO, a protein function prediction tool based
on the wisdom-of-the-crowd principle. CrowdGO combines protein function
predictions of three or more existing methods. We show that it performs
significantly more accurate in GO term predictions than each method by itself,
has a net positive effect in correcting existing predictions to its true prediction,
and is able to annotate more proteins than each individual method.

In chapter 5 we apply the method developed in chapter 4 to a real biological
example. For this we use the oleaginous yeast Cutaneotrichosporon curvatus.
Due to its distance to the model species Saccharomyces cerevisiae and its
oleaginous nature, this species has two characteristics similar to microalgae:
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distant phylogeny with well-characterized model species, and the ability to
produce a lot of lipids. However, nearby species are better characterized than
microalgae, resulting in a good middle-of-the-road species to test the tool in a
real case scenario. With CrowdGO we get a stricter annotation of GO terms for
the protein set. These annotations are used to get a general overview of yeast
and its metabolism, and to use as a starting point in a biocuration pipeline for
over a thousand metabolic and transporter reactions of C. curvatus.

In chapter 6 we use our method developed in chapter 4 to perform a
comparative genomics study between a mostly-lipid producing Botryococcus
braunii and a mostly-polysaccharide producing Botryococcus braunii. We use
quantitative proteomics and functional annotations, both from CrowdGO and
manually annotated, to characterize several key pathways. Using this
approach, we found several key enzymes which are related to the difference in
lipid production and polysaccharide production between the two Botryococcus
braunii strains.

Finally, chapter 7 provides a general discussion on the findings of this PhD
thesis.
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Abstract

Many species of microalgae produce hydrocarbons, polysaccharides, and other
valuable products in significant amounts. However, large-scale production of
algal products is not yet competitive against non-renewable alternatives from
fossil fuel. Metabolic engineering approaches will help to improve
productivity, but the exact metabolic pathways and the identities of the
majority of the genes involved remain unknown. Recent advances in
bioinformatics and systems-biology modeling coupled with increasing
numbers of algal genome-sequencing projects are providing the means to
address this. A multidisciplinary integration of methods will provide synergy
for a systems-level understanding of microalgae, and thereby accelerate the
improvement of industrially valuable strains. In this review we highlight recent
advances and challenges to microalgal research and discuss future potential.
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1. Diversity of microalgae and their biotechnological potential
Microalgae are simple photosynthetic eukaryotes that are among the most
diverse of all organisms. Microalgae inhabit all aquatic ecosystems, from
oceans, lakes, and rivers to even snow and glaciers, as well as terrestrial systems
including rocks and other hard surfaces. Microalgae exhibit significant
variation in physiology and metabolism, a reflection of the high level of genetic
diversity that exists between different phyla owing to multiple endosymbiotic
events, horizontal gene transfer, and subsequent evolutionary processes,
producing a polyphyletic collection of organisms [54, 73]. Given this diversity,
mining the genomes of these organisms provides a great opportunity to
identify novel pathways of biotechnological importance. In particular,
microalgae are of considerable interest for the synthesis of a range of
industrially useful products, such as hydrocarbons and polysaccharides [74,
75], owing to rapid growth rates, amenability to large-scale fermentation, and
the potential for sustainable process development [76].

Algae as a source of biofuel molecules, such as triacylglycerides (TAGs), the
precursor for biodiesel [77], have been a focus in recent years, with potential
yields an order of magnitude greater than competing agricultural
processes [78]. Evaluations of current technologies demonstrate that
microalgae are commercially feasible for biofuel production, but are not yet
cost-competitive with petroleum products [79, 80], the metric upon which
commercial success ultimately lies. For example, the net energy input versus
output for large-scale algae biodiesel production was estimated to be 1.37,
compared to 0.8 for conventional/low-sulfur diesel [79]. Currently, for
microalgae to synthesize TAG it is necessary to expose them to stress
conditions such as nutrient limitation, which reduces growth and increases
energy dissipation. The trade-off between biosynthesis of TAG and cell growth
is therefore a severely limiting factor [81]. If a better understanding of the
metabolic and regulatory networks were available, they could be rewired for
increased TAG synthesis, with fewer drawbacks than for existing algal cells.

The production of other interesting algal products will also benefit from a
better understanding of microalgae at a systems level. For example,
polysaccharides such as starch and cell wall materials can be used for
biotechnological applications [82]. These carbohydrates can be degraded to
fermentable sugars for bioethanol production [83], or serve as chemical
building blocks for renewable materials, but the composition and proportions
of the different sugar components require optimization. Similarly, various
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valuable secondary metabolites produced by microalgae are of interest in the
food, nutrition, and cosmetics industries [74], but often they are produced in
trace amounts, or only under conditions that are not amenable to industrial
cultivation.

Over 30 microalgal genomes have been sequenced, and numerous
transcriptomics, proteomics, and other systems-biology studies have been
performed. Nevertheless, our understanding of metabolic pathways within
these microalgae remains limited [84]. Significant knowledge gaps need to be
filled between omics data, the annotation thereof, and our systems-level
understanding. This will allow the conversion of these resources into usable
genome-scale models (GSMM) and provide the basis for effective metabolic
engineering, synthetic biology and biotechnology. We consider here the
potential application of advanced methods to improve the functional
annotation of algal omics data, to increase the resolution of GSMM, and ways
to integrate available computational methods for effective exploitation of
microalgae in biotechnology.

2. Annotation challenges for microalgae

The nuclear genome of the green alga Chlamydomonas reinhardtii, sequenced
in 2007 [54], is approximately 120 Mb and comprises some 15 000 genes.
Although C. reinhardtii is commonly used as a reference for the annotation of
other microalgae, only a subset of ~50 proteins have an experimentally
validated function according to the UniProt database
(http://www.uniprot.org), compared to 6800 proteins for the model
plant Arabidopsis thaliana. Consequently, most C. reinhardtii genes have been
computationally annotated by inferred homology with A. thaliana, and other
plant species and microbes [54], using BLAST (basic local alignment search
tool) or family-wise alignment methods such as HMMER and InterProScan
(Table 1). BLAST-based methods often use the principle of one-to-one
recognition, meaning that annotation of a query gene is based on the
annotation of a single known gene. This limits the success rate for recognition
and correct functional annotation of the more distantly related C.
reinhardtii genes but becomes even more problematic when the in silico-
derived functional annotation of C. reinhardtiiis subsequently used for
annotation of other algal species. This is because, owing to a lack of common
ancestry, two algal species can be more diverse than, for example, any two
plant species. Therefore, these methods, which are highly suitable for high-
throughput analysis because of their simplicity, are less appropriate for
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accurate in-depth annotation of algal genomes. In the CAFA (critical
assessment of protein function annotation) experiment [56], the accuracy of
more advanced functional annotation algorithms was assessed. The CAFA
concluded that 33 of 54 tested functional annotation algorithms outperformed
the standard BLAST-based method (Table 1). The substantial improvement can
be explained by the fact that these second-generation methods do not apply
the one-to-one recognition principle but, to increase their success rate, use
instead a one-to-many recognition strategy and/or include context-aware
principles for annotation. An example is Argot2 (Box 1) [2], which applies the
one-to-many recognition strategy by calculating the statistical significance of
all candidate homologous genes found by BLAST [85] and HMMER [86],
combined with an assessment of semantic similarities of associated GO terms.
In a context-aware multilevel approach, annotation is not merely based on
sequence similarity, but other factors such as protein—-protein
interactions [87], transcript expression patterns [87], phylogenetic trees [88],
compartmentalization information [89], and literature [9o] are also taken into
account. FFPred2 from UCL-Jones [91] is the prime example of such a
homology-independent functional annotation algorithm.
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Box 1. Argot2

One of the top performers in the CAFA experiment is Argot2 (annotation
retrieval of gene ontology terms) [2]. It stands out in terms of simplicity, as
well as by incorporation of BLAST and HMMER. Argot2 combines an easy
interface with multilayer analysis, making it a perfect starting point for
biologists wishing to annotate their data.

Argot2 requires a nucleotide or protein sequence as input. It queries the
UniProt and Pfam databases using BLAST and HMMER respectively,
providing an initial high-throughput sequence analysis. A weighting
scheme and clustering algorithm are then applied to the results to select
the most accurate gene ontology (GO) terms for each query sequence. The
user can choose to perform this entire process online at the Argot2
webserver, limited to one hundred sequences per query. Alternatively, if
the BLAST and HMMER steps are performed locally and provided to the
webserver, over 1000 sequences can be submitted per query. After the
analysis is completed, which can take several hours depending on the
amount of input data, the user is provided with the prediction results as
well as the intermediate BLAST and HMMER files. These predictions
include molecular function, biological processes, and cellular component
GO terms for each query. Predicted GO terms are ranked by a score based
on statistical significance and specificity. Optionally, the user can choose
to compute protein clusters based on functional similarity.
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Advanced multilevel annotation methods effectively increase the recall of
function prediction while maintaining an acceptable precision. The challenge
in genomic annotation for microalgae lies in the small number of
experimentally validated algal genes and the lack of algae-specific contextual
data such as protein interaction and compartmentalization data. This results
in a relatively low number of genes that are predicted to have a specific
biological function. To overcome this, multiple annotation methods and data
sources should be combined. The combined result increases the number of
annotated genes, while a consensus prediction among the different methods
improves the accuracy of the annotation [92]. Owing to their simplicity and
speed, first-generation methods can be used for initial high-throughput
analysis of a large set of genes. Second-generation methods can then be used
for a refined analysis of these genes. However, to utilize these advanced
methods fully, a significant amount of experimentally determined contextual
data is required. Although increasing amounts of gene expression data are
being generated, little structural and protein interaction data are being
generated for algae. In the absence of such experimental facts it is still possible
to generate this contextual information by in silico prediction methods [91, 93],
but whilst studies have shown that this is a feasible option [94], caution is
necessary because there is a high risk of error propagation.

Apart from functional annotation it is also important to establish the cellular
location of a protein. For this there are several tools available, including Argot2
(Box 1) [2], TargetP [95], SignalP [96], PSORTbD [97], and PredAlgo [98]. The
last is a tailor-made multi-subcellular localization prediction tool dedicated to
three compartments of green algae: the mitochondrion, the chloroplast, and
the secretory pathway. However, owing to the limited number of algal proteins
with a known cellular localization, which can be seen for example from the
quantitative subcellular localization of roughly 8o proteins[99], or the
collection of roughly 1000 chloroplast-localized proteins from C. reinhardtii
[100], the algorithm is trained with a relatively small C. reinhardtii dataset [98].
This raises questions regarding reliability for other algal species because the
polyphyletic nature of different microalgae means some algal species are
distantly or not related, and this can result in a different subcellular
localization of homologs. Therefore, it is advisable to use PredAlgo in
combination with non-algal-specific tools in a similar way as for functional
annotation.
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To support large-scale annotation of algal sequence data, up-to-date databases
and readily available supporting tools are required. Online databases provide
the means to share data easily such that the scientific community can profit as
a whole. Supporting tools can assist in annotating genes, pathways, and
performing statistical analysis. While genomic data for various algae are
available in NCBI and UniProt, the amount of public data is lagging behind in
comparison to plant and bacterial species. In addition, tools and databases that
do more than storing the available sequencing data are needed. A small
number of tools are available, although these are often limited to C.
reinhardtii. One such tool is ChlamyCyc [101], a C. reinhardtii-specific
pathway/genome database of the MetaCyc [72] facility for metabolic pathway
analysis. A peptide database, ProMEX, is available that contains over 2000 C.
reinhardtii peptides which are usable for proteomics analysis [102]. In addition,
the Augustus tool, which is commonly used for prediction of eukaryotic
genes [103], has a tailor-made section for C. reinhardtii. Finally, the Algal
Functional Annotation Tool [104] incorporates annotation data for a few
microalgal species from several pathway databases, ontologies, and protein
families. Broadening the scope of these annotation tools for a range of
microalgae would allow comparative analysis, which is useful for easy mapping
of various differences between microalgae. In this context, a useful tool which
has been applied to plant research is Phytozome
(http://www.phytozome.net) [105], a comparative hub for analysis of plant
genomes and gene families. It acts as a reference for the key data of many plant
species and provides click-to-go features such as BLAST and summaries key
data. Phytozome has grown to be a major asset to the plant science
community. Although it contains data from a few green algae, an expanded
web-portal focused on algal systems-bioinformatics research could be of
immense benefit to the field, particularly for those studying the more
industrially relevant diatoms and heterokont species (Table 2). Such a web-
portal would provide access to new and existing tools specifically useful for
algal species and facilitate exposure to a broad audience. In addition, it could
act as a hosting platform for small but useful tools such as a refined algal
literature research algorithm and tools that suggest genes to fill gaps in
metabolic or regulatory pathways for microalgae. Adopting an algal web-portal
would provide a good overview of all available data and tools and help to
reduce the redundancy that is often seen in biology and bioinformatics.
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Table 2: A list of selected industrially useful microalgae

Chlamydomonas
reinhardtii
Monoraphidium
neglectum
Nannochloropsis
gaditana
Nannochloropsis
oceanica

Phaeodactylum
tricornotum

Chlorella
variabilis

Ostreococcus
tauri

Chlorella
protothecoides

Chlorella vulgaris

Dunaliella salina

Haematococcus
pluvialis

Botryococcus
braunii

Neochloris
oleabundans

32

68

34

28

27

46

12.6

22.9

N.a.

N.a.

~166-211

N.a.

15,144
16,761
15,361

242

10,673

9,831

9,050

7,039

202

238

60

30

Model system for unicellular
green algae

Up to 21% dry weight neutral
lipid under nitrogen starvation
Can produce high amounts of
omega-3 long-chain
polyunsaturated fatty acids

Up to 50% dry weight oil
content

Can produce antibacterial fatty
acids (9Z)-hexadecenoic acid
(palmitoleic acid; C16:1 n-7) and
(6Z, 9Z, 12Z)-hexadecatrienoic
acid (HTA; C16:3 n-4)

The first sequence Chlorella
genome

A model genome for
understanding other chlorella
species

Smallest sequenced microalgal
genome with simple cellular
structure

Up to 55% dry weight lipid
content in heterotrophic growth
Highest published biomass
yield, average 3.37 g/dw L' h™in
heterotrophic growth

Up to 42% lipid content in
photobioreactor with artificial
waste water

Up to 26% total lipid in dry
weight in heterotrophic growth
Up to 10% carotenoids in dry
weight

90% beta-carotene in
carotenoids
Highest reported yield of

antioxidant astaxanthin (3.8%
dry weight)

Up to 57% total lipids in dry
weight

Contains exopolysaccharides
Up to 56% total fatty acids in dry
weight under nitrogen-
deprivation

[106]

[75]
[107]

[107]

[108]

[75,
109,
110]

[108,
111]

[112]

[113]

[114-
116]

[81]



3. Understanding algal metabolism at a systems level

The sheer number of genes for metabolic enzymes, combined with the complexity
of cellular metabolism, means that it is not straightforward to establish metabolic
capability, even for well-annotated species. This limitation has led to the
development of metabolic models which represent a snapshot of metabolism of an
organism in a network format. Once an annotated algal genome or transcriptome is
available, a corresponding genome-scale metabolic model (GSMM) can be
reconstructed and the topology of the metabolic network of the algal species can
be analysed. An initial draft model can be generated directly from the genomic
annotation and is then adjusted and expanded based on experimental data,
literature, and gap-filling procedures. The final model then includes all reactions the
alga is known to perform as well as the associated genes and constraints, for
example, reaction directionalities and rate limits. Owing to their comprehensive
representation of metabolism, metabolic models form the basis for a large and
diverse set of mathematical methods for predicting metabolic behaviour. These
methods include the widely employed flux balance analysis (FBA) [117] and flux
variability analysis (FVA)[118], but also methods integrating fluxomic,
transcriptomic, or proteomic data (Box 2)[119]. For an extensive overview of
mathematical methods using metabolic models we refer to Zomorrodi et al.[120].
We focus here on recent developments in the modeling of microalgae specifically.

Metabolic models of microalgae reflect the modeling counterpart of their current
annotation; therefore, inconsistencies between model predictions and
experimental findings indicate missing and/or poor annotations. For example,
experimentally identified metabolites were compared to metabolites that could be
produced in metabolic reconstructions of C. reinhardtii [121, 122] (Table 3).
Metabolites found experimentally but not in the models initiated pathway
elucidation and identification of the corresponding genes, and thereby led to an
improved genomic annotation [121]. This procedure was automated by Christian et
al. who designed a gap-filling method to identify reactions allowing production in a
model of experimentally detected metabolites [122]. These updated reactions and
annotations [121, 122] were subsequently stored in ChlamyCyc [101], allowing
continuous expansion of the database. Concurrently, a separateC.
reinhardtii metabolic model, iAM303, was created in which the included open
reading frames were experimentally validated. This led both to improved structural
genomic annotation and to additional support for the reactions included in the
model [123]. This model was greatly expanded in iRC1080 in 2011 and additional
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ORFs were validated [124]. The predictive power of the latter model was tested for
30 environmental conditions and 14 gene knockouts. In addition, iRC1080 predicted
essential genes (lethal phenotype upon knockout) under different experimental
conditions, although these predictions remain to be validated [124]. Recently
GSMMs  for Ostreococcus  tauriand Ostreococcus  lucimarinus have  been
constructed [125] (Table 3), demonstrating expansion in the field. The initial
models, based on the available gene annotations, revealed that these could not
account for the production of many biomass constituents [125]. The gap-filling
method designed in [122] was subsequently employed to find suitable reactions for
the production of these metabolites [125].

It is well recognized that the exact choice of growth conditions is highly important
in attaining desired metabolic activities. Metabolic models can explore how
different growth conditions affect metabolism and can identify theoretically
optimal conditions for a given metabolic objective. For example, multiple metabolic
models of C. reinhardtii were used to simulate metabolism under autotrophic,
heterotrophic, and mixotrophic conditions to verify model predictions [46], to
investigate how metabolite production is influenced 46, [119], and to contrast
mutant strains [124]. C. reinhardtii metabolic models were also used to determine
how the quantity of light [124, 126, 127] and its spectral composition [124] affect
metabolism. Of particular interest is the possibility to predict an optimal light
spectrum for a given metabolic goal [124]. In contrast to these successful models
of C. reinhardtii, the metabolism of other algae is only poorly understood. For
example, some industrially relevant algae can currently not be grown efficiently
without bacterial presence [128]. Potentially, these algae and associated bacteria
can be modeled simultaneously to deduce their relationship, as has been done for
other microbial communities [129, 130].

The most comprehensive algal metabolic models to date are iRC1080 [124] and
AlgaGEM [46], which are GSMMs and account for various cellular compartments.
However, they vary in degree of compartmentalization (Table 3). In iRC1080, half
(865/1730) of the non-transport reactions occur in cellular compartments other
than the cytosol. By contrast, this is only about 12% (201/1617) for AlgaGEM. This
reflects the fact that independently generated GSMMs for the same organism can
differ significantly in their representation of metabolism because different sources
of information are included. By combining the information from all currently
available C. reinhardtii metabolic models, as well as from improved annotation
methods, a single and more-comprehensive GSMM may be obtained. This
consensus C. reinhardtii GSMM would be an important starting point for the
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generation of GSMM s for other interesting microalgae, with the proviso mentioned
earlier that it might not be applicable to distantly related microalgae.
Alternatively, ab initio models can be made using genomic data for the alga in
question, but employing the strategies and tools developed for C. reinhardtii, as has
been done for Ostreococcus[45]. Ultimately, GSMMs of various microalgae will be
valuable for designing strategies that increase the production of compounds of
interest [120, 131]. This, combined with the design of novel synthetic pathways,
such as the species-independent prediction demonstrated for novel isobutanol, 3-
hydroxypropionate, and butyryl-CoA biosynthesis [132], will pave the way for
model-driven engineering of algal species
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Box 2: Flux analysis in microalgae

Flux balance analysis (FBA) [117] is the most commonly applied method to
simulate metabolism in genome-scale metabolic models. It identifies as a
theoretically optimal use of metabolic capabilities for a selected metabolic
objective in a specific environment. Because some microalgae can grow
autotrophically in chemically defined medium, the boundary conditions for
consumption of all medium components are well specified in those cases. This
is advantageous for in silico metabolic flux analysis using metabolic models to
address, for example, how a microalga can achieve maximal growth under
defined illumination. In addition, disabling the metabolic capabilities
associated with a gene allows simulation of mutant strains. FBA can thus assess
the potential of different strains and different environmental conditions. To
run FBA, all reactions are organized in a stoichiometric matrix S. Each column
in S represents a different reaction, and each row a different metabolite. A
nonzero value at position [i, j] thus indicates the stoichiometric coefficient of
metabolite i in reaction j. FBA then employs two different constraints. (i)
Metabolism is assumed to be in steady-state; production/degradation of
intermediate compounds is not possible, and (ii) thermodynamics
(reversibility) and substrate availability both dictate lower and upper flux
bounds for individual reactions. Finally, one or more reactions are selected to
represent the metabolic objective, for example, algal biomass production.
Together, the S matrix, the constraints, and the objective function form a linear
programming problem:

max(X*c)

st.S*x=o0

x>=1b

x <=ub

where x is the flux vector, c is the objective vector, o is a null vector ensuring
steady-state, and Ib/ub are the lower/upper bounds for each reaction. The
vector x represents a flux distribution with the theoretically maximal value for
the metabolic objective. However, because of the presence of alternative/cyclic
pathways, there are often alternative flux distributions with equally high values
for the objective function. Flux variability analysis [118] explores for each
reaction to what extent the flux can vary while permitting only a small
reduction in the obtained value. In addition, experimental data can be used to
provide additional constraints. For example, "C-labeling experiments provide
experimentally measured fluxes as inputs for the model simulations [133].
Several FBA-based methods also facilitate the integration of transcriptomic,
proteomic, and metabolomics data with metabolic models to constrain
reactions based on measured RNA or protein levels [86,87[134]. Thereby, flux
distributions are identified which are most consistent with the expression data
[135]. Because of the greater number of quantitative genome-wide
transcriptomic studies compared to those analyzing the proteome,
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applications using transcriptomic data have been relatively abundant.
However, the methods generally do not distinguish between these two types
of data, and metabolic models can therefore be integrated with, and their
predictions compared to, experimental data yielding new insights into
metabolic functioning.

38



4. Integrating bioinformatics and modeling for algal
biotechnology

The GSMMs provide a basis for both computational and laboratory-driven
experiments, assisting in the discovery of biotechnology-driven solutions for genetic
bottlenecks in algae. For example, to enable microalgae to become a viable
industrial biosynthesis platform, their photosynthetic efficiency, product yield, and
their growth rates under conditions for product synthesis will need to be addressed.
Photosynthetic efficiency, with an estimated maximum of 8-9% in wild type
algae [42, 136], sets a limit to both product synthesis and growth rate. Because of
efficient light-harvesting antenna, algal cells can absorb much more light than they
are able to use for photosynthesis [136], with the excess being lost as heat or
fluorescence. In dense algal cultures, such as might be found in industrial cultivation
systems, this reduces light penetration, placing a limit on the depth of the culture,
increasing the surface area to volume ratio required for maximum productivity.
Truncated light-harvesting chlorophyll antenna size (tla) mutants of C.
reinhardtii with reduced antenna size have been shown to have improved solar
energy conversion efficiency and photosynthetic productivity in mass culture and
bright light [137]. Another study has modeled different pathways for the process of
carbon fixation [138] as a means to overcome the low oxygenase activity of
Rubisco [139]. Bar-Even et al.[138] computationally identified alternative carbon
fixation pathways by using approximately 5000 known metabolic enzymes, hoping
to find carbon fixation pathways with superior kinetics, energy efficiency, and
topology. Some of their proposed pathways were estimated to be up to two- to
threefold more efficient than the conventional Calvin—Benson cycle. Using an algal
GSMM to study these pathways would help in understanding how these predictions
may affect biomass and product synthesis in microalgae.

As explained earlier, nitrogen limitation is a necessary stimulus for TAG
accumulation by microalgae [81]. This also triggers a reduction in photosynthetic
membrane lipids and cessation of cell growth. The link between accumulation of
lipid (including TAG) and macronutrient stress has been investigated using a systems
approach, such as in a proteomic analysis of C. vulgaris, which led to identification
of new transcription factors associated with lipid accumulation, offering the
prospect of TAG overproduction independently of nutrient limitation [140]. In
another approach, in the diatom, Thalassiosira pseudonana, TAG production was
increased not by targeting the biosynthesis of lipids, or the production of competing
energy sinks, but instead by RNAi knockdown of lipases involved in glycerolipid
catabolism [141]. The integration of knowledge gained from GSMMs and similar
metabolic engineering offers scope for improved efficiency based on rational
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design. For example, farnesyl pyrophosphate is a precursor of terpenoids, steroids,
and carotenoids, and the metabolite itself is also a product of interest in algae.
Bacterial promoters responsive to the toxic accumulation of farnesyl pyrophosphate
have been identified and used to regulate the expression of the precursor
biosynthesis operon. This increased the yield of amorphadiene twofold over
chemically inducible and constitutive gene expression [142]. Such an approach in
microalgae would be foreseeable in the future, when promoters in various algal
species are better understood, through model-driven design that incorporates
systems data.

Alongside genomic sequence information, a key requirement is the ability to carry
out genetic transformation, and while this is routine for C. reinhardtii, and a few
other species such as the diatom P. tricornutum, in the past few years there has
been a rapid increase in published methods for the transformation of several
species of industrial interest including Nannochloropsis sp. [143]. Moreover, the
ability to engineer the chloroplast genome offers considerable opportunities for
metabolic engineering, given the focus of this organelle on biosynthesis [144].
Nevertheless, for predictive metabolic engineering there is an urgent need to
expand the toolbox, particularly for the regulation of transgene expression. In this
context, there are several well-established systems for inducible gene expression
in C. reinhardtii, most notably promoters that are regulated in response to nitrate
(NIT1 or NIA1) [145] or  copper  (CYC6) [146]. More recently, vitamin-
responsive cis elements have been identified, namely a cobalamin (vitamin Bi3)-
responsive promoter [147]as well as a thiamine (vitamin B;)-responsive
riboswitch [148], and these have been demonstrated to be useful regulatory tools.
Vitamins have the advantages of being benign, cheap, and effective at low
concentrations. However, the majority of these elements have been discovered by
coincidence rather than by design, and a more rational approach will come from use
of transcriptomic data to provide promoters responsive to particular regulators, for
example in response to CO; levels [149]. Further facilitation of transgene expression
comes from the use of 2A peptides [150] which cause self-cleavage to release
individual domains from a fusion protein. They thus provide the capacity for operon-
like transgene expression within the nucleus. Marker recycling methods for
chloroplast engineering have also been developed for C. reinhardtii [144, 151].
However, despite these developments, progress remains parallel in nature and
heavily focused upon the development of C. reinhardtii. Information from algal
genomes will be key to increasing the molecular tools available.
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Nonetheless, for microalgae to be developed as a commercially viable
biotechnology platform, rational design to address the current shortcomings must
be achieved through the development of fit-for-purpose metabolic engineering or
synthetic-biology resources. The diversity of algae provides considerable
biotechnological potential but also presents a serious challenge to establishing
common tools and approaches. The relative immaturity of the field, combined with
the enticing potential of integrating predictive design of microalgae with the
bioinformatics and systems-biology modeling framework (Figure | in Box 3), offers
new perspectives for future improvements in algal biotechnology. By adapting
cutting-edge developments in functional annotation for microalgae, and using these
for the modeling of their metabolic and regulatory pathways, it will be easier to
establish common features of algal genomes, and at the same time identify novel
pathways for exploitation. A more accurate and elaborate functional annotation of
omics data by combining first- and second-generation methods will allow reverse-
engineering based on algal genome-scale metabolic models. These can then be used
to inform hypothesis-driven metabolic engineering experiments in microalgae. Such
an integrated approach is currently missing, but will provide the knowledge
necessary for predictive modifications of algal industrial biotechnology platforms in
the future.
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Concluding remarks

The significant gap of unknown and non-validated gene and protein functions in
algae remains one of the top challenges faced by scientists wanting to tap further
into the potential of these organisms for sustainable biosynthesis. Predictive
design of metabolic engineering strategies for microalgae still has a long journey
ahead. An improved understanding of the metabolism, regulation, and growth of
algae, together with their interactions with coexisting bacteria, is a crucial first
step. Extending bioinformatics approaches for function prediction through
incorporation of new methodology, integrated and flexible databases, in
combination with metabolic modeling and model-driven design of experiments at
the systems-biology level, will underpin this process and enable the future era of
algal industrial biotechnology.
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Abstract

Background: To fully exploit the potential of microalgae as commercial green
hosts, the scientific community has to improve their understanding of these
organisms from a systems biology perspective. Compared to other model
organisms, our genomic knowledge of the microalgae model species
Chlamydomonas reinhardtii is very limited. Currently, almost 90% of the
functional annotated proteins of C. reinhardtii and of other microalgal proteins
are homologs of Arabidopsis thaliana proteins, which suggests that for the
most part only the metabolic core conserved between these species is properly
annotated.

Objective: This review highlights how proteins outside of this core can be
annotated by applying publicly available tools and methods. These include the
use of novel state-of-the-art prediction tools, combinations of these tools, and
the use of metabolic modeling-assisted functional annotation. Furthermore,
we discuss the need for data on the subcellular location of microalgal proteins.
Finally, some remaining bottlenecks regarding functional annotation of
microalgal proteins are discussed.

Conclusion: We conclude that both large dry-lab and wet-lab efforts are
required to generate reliable functional annotations of microalgae.

Keywords: Microalgae, bioinformatics, systems biology, annotation,
genomics, proteomics, protein function.
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1. INTRODUCTION

Microalgae are considered as promising organisms for a bio-based economy
and unlocking their power potentially holds solutions for achieving global
sustainability. In order to cope with some of the most demanding nutritional
and energetic challenges of the future, research has focused on the renewable
oil that can be extracted in significant amounts from these microalgae to create
sustainable consumer products. However, compared to the more traditional
sources, economically interesting molecules, such as triacylglycerides and
polysaccharides, are currently not produced at a cost competitive rate [42]. To
increase the yield, it is important to understand the genomic makeup of
microalgae. More specifically, it is important to understand microalgae as
biological systems at such a level of detail that mathematical models can be
developed for these cell factories. These models can then predict the most
optimal conditions for growth and production of interesting compounds and
can guide genetic precision engineering of these cell factories [152]. Such
models, often in the form of genome-scale metabolic models, require a
thorough functional annotation of the proteins encoded by the genomes.

In today's age of biology, computational annotation of protein functions is of
vital importance. Sample throughput of the classical biochemical and genetic
methods is simply too low to be considered as an alternative. However, there
is large phylogenetic distance between microalgae and well- characterised
(model) species [153], and this distance hampers standard computational
methods for genome annotation. Many of the popular computational methods
for function prediction try to infer homology by calculating sequence- based
statistical similarity scores with proteins of known function [61, 154]. This
works fairly well for a comparison between a well-studied model organism with
a large set of proteins validated by biochemical and genetic methods, such as
Arabidopsis thaliana and Escherichia coli, and close by plants and bacteria, but
the efficiency of a sequence similarity based annotation method decreases
drastically when it is used between a group of species with little experimentally
validated proteins, or when it is used for species that have a large phylogenetic
distance to a well- studied homologous species. The most studied microalgae
species Chlamydomonas reinhardtii became known early on as an excellent
model species for microalgae because of its genetic amenability [155], but two
decades later our genetic knowledge of this species still trails far behind that
of other model species. Currently only some 150 proteins are characterized by
direct biochemical methods. Furthermore, due to the large phylogenetic
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distance to the closest well- studied model organism [153], Arabidopsis
thaliana, only the most conserved genes are properly computationally
annotated. Subsequently, only this limited set can be used as a reference set in
sequence similarity-based methods to annotate other algal species of interest.
As a result, only the conserved core metabolism of various microalgae is
functionally annotated with a high level of confidence. Most of these
microalgae were, however, selected for their ability to produce interesting and
novel compounds [156]. To truly exploit microalgae for a bio-based economy,
it is therefore important to know the function of the proteins that are not part
of this metabolic core. By gaining more detailed genomic knowledge we will
be able to produce more accurate algae specific genome-scale metabolic
models. This allows for the prediction of biomass composition and conditions
for optimal growth rates of microalgae, as well as for diversifying between the
unique characteristics and capabilities of different microalgae and strains.
Recently, alternative methods to functionally annotate microalgae have been
described [157]. In this review we assess the current state of microalgal
functional annotation, standardly used methods and discuss some alternative
methods and workflow based on novel annotation tools that are currently
available to the scientific community. Finally, we address some bottlenecks
that currently cannot be solved by computational methods.

2. AVAILABLE DATA

From early on, Chlamydomonas reinhardtii was the only microalgae species
that was extensively studied on a molecular scale. This species was first
proposed a model organism for algal genetics in 2001 [155], and a draft genome
sequence was available in 2003 [158]. However, due to “unusual challenges” in
generating a high-quality genome [158], the genome was only published as late
as 2007 [54]. For C. reinhardtii to serve as a model species to which other algae
can be compared, it is important that many algal- specific protein functions
and other key functions are based on experimental evidence, and not only
inferred from electronic annotations. In the UniProt database
(http://www.uniprot.org) [159] there are currently 148 proteins from C
reinhardtii with an experimentally validated function, compared to 5,766 for
Arabidopsis thaliana, and 3,255 for Escherichia coli.

The electronic annotation of C. reinhardtii is an ongoing process, and so far out
of a total of 15,000 proteins there are roughly 7,000 proteins available in the
UniProt database that are functionally annotated with at least one GO term.
However, when we take the reviewed proteins of Chlamydomonas into
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account, there are only 299 proteins with a high-quality annotation available.

2.2. The state of microalgal annotations

For microalgae, the inability to obtain a high-quality functional annotation for
the majority of the proteins seems to be a returning trend. In Table 1 we bring
some recently annotated microalgae and show how deep they are annotated.
All of these microalgae were annotated using standard homology-based
methods [109, 160-166]. For each of these microalgae roughly half of the
proteins lack any form of functional annotation documented in their UniProt
database entry [159]. This is likely the direct result of a lack of phylogenetically
close well-annotated model species. That does not necessarily mean that the
annotations obtained are unspecific or inaccurate, but it does imply that
accurate electronic annotations are retrieved only for highly conserved
proteins common amongst many microalgae.

2.3. Diversity of Microalgal Annotations

The diversity of microalgae makes them unique biological reservoirs for
bioprospecting, and it would be interesting to see how a good quality
functional annotation can contribute to this process. By taking the Gene
Ontology (GO) annotations from the microalgae species presented in Table 1
into account, and by checking the occurrence of these terms in the nearest
well-studied model species A. thaliana, we can get hints about the diversity
and origin of microalgal proteins annotations (Fig. 1). The figure shows that
88% of the GO terms assigned to microalgal proteins also occur in Arabidopsis.
Overall, 85% of the microalgal GO terms are used in the annotation of C.
reinhardtii protein, but only 7% of the specific Chlamydomonas GO terms do
not occur in Arabidopsis.

For all other species the amount of mapped GO terms is far less than in C.
reinhardtii, showing an even less diverse annotation. With such little amount
of microalgal GO terms, that are not also mapped to Arabidopsis, it becomes
clear that the current annotation of microalgae largely describes the conserved
core-metabolism shared between eukaryotic photosynthetic organisms, and as
such will only provide a small contribution to the process of bioprospecting.

To summarize, microalgal experimental protein data is very limited, and due
to the large phylogenetic distance to the better-characterized model species
large amounts of proteins remain unannotated (Table 1). To circumvent these
bottlenecks, it is necessary to use more advanced annotation methods.
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All Gene Ontology terms assigned to microalgal proteins

Arabidopsis thaliana
Escherichia coli
Saccharmoyces cerevisiea
Synechocystis sp
Chlamydomonas reinhardtii
Bathycoccus sp

Chlorella prothotecoides

Coccomyxa sp

\] |

H N ‘I

Volvox sp ||

Micromonas sp

Nannochloropsis sp
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I Gene Ontology term is present

Gene Ontology term is not present

Figure 1: Heatmap showing the presence of microalgal GO term
annotations in microalgae and in model species. Y-axis, species
presented in Table 1; X-axis, GO terms annotated to microalgae, sorted
by their assignment to at least one protein in descending order of the
species list.

3. IMPROVED FUNCTIONAL ANNOTATION

3.1. Keeping Up to Date with Annotation Methods - The CAFA

Experiment

One way to improve the functional annotation of microalgae, is by applying
the latest state-of-the-art tools. The classical sequence similarity-based
annotation methods often remain the first method of choice because of their
success in the past. However, functional annotation of proteins is a hot topic
in the bioinformatics community and new tools are published every year. To
keep track of these tools and how well they perform, the Critical Assessment
of Protein Function Annotation (CAFA) experiment attempts to rank them
according to their performance [56]. The first edition showed that as many as
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33 new methods outperformed the standard BLAST-based method. This can be
explained by the fact that many of these tools apply sequence similarity-based
predictions in different ways, for

example by using one-to-many homology-based annotations, or by using
context-aware principles, as described by [157]. An example of a new method
that uses a one-to-many approach is Argotz [2], which combines BLAST results
with sequence analysis using profile hidden Markov Models (HMM) and
subsequently compares predictions using a semantic similarity approach. An
example of a context- aware approach is FFPred2[167], which attempts to
transfer functional annotations from known (human) proteins to unknown
proteins with similar biophysical attributes.

The CAFA experiment provides a good ranked overview of state-of-the-art
annotation tools. However, most of these tools in part still rely on primary
sequence similarity, and the structure and context-based alternatives require
extensive training sets. Thus, although these tools will most likely produce
more reliable results than the classical mainstream functional annotation
tools, they will still be unable to annotate many microalgal proteins.

3.2. Consensus-Based Annotation

An alternative way to improve the results of protein functional annotation is
by using a set of complementary tools and combining individual predictions in
a statistical solid manner. For example, by combining FFPred2 with Argot2 we
combine a one-to-many homology-based annotation method with a context-
aware annotation method. This can be further complemented with a protein
domain homology-based transfer of annotation approach using InterProScan
[61]. If we would then take the GO term predictions of each of these methods
and compare predicted GO terms using a semantic similarity approach as
applied in Argot2, we obtain a comparison between predictions of each of these
methods, and the specificity for each predicted GO term. By then applying a
machine-learning algorithm such as Random Forest we are able to reassess the
validity of each of these predictions.

As a test-case we applied this method to a test-set of all new microalgal
SwissProt (http://www.uniprot.org) proteins entries between the St of July
2014 and 1St of July 2015, using the UniProtKB [159], Unirefgo [168], and Pfam

[169] databases from before the ot of July 2014 as reference. The experiment
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was set up with double 10-fold cross validation. Ten data sets were generated
with 90% of the predicted GO terms assigned to the training set, and 10% as
test-set. The training set was used to train a Random Forest model on the input
using 10-fold cross-validation. In this way each final predicted GO term has no
influence on the model used to predict these GO term, eliminating overfitting.
The accuracy of this method largely improves over that of FFPredz2, Argotz,
and InterProScan (Fig. 2A). A test-set of non-algal proteins (Fig. 2B) was used
to compare results with the algal data set. There is a noticeable difference in
the performance of FFPred2, Argot2 and InterProScan. For microalgae, the
latter two showed lower prediction accuracy.

3.3. Functional Annotation with Hidden Markov Models

Profile Hidden Markov Models (HMM'’s) provide a statistical description of a
sequence family consensus [62]. Effectively a profile HMM turns a multiple
sequence alignment of a specific protein family into scoring system that takes
into account position-dependent amino acid distributions and position-
dependent insertion and deletion gap penalties, which makes this technique
suitable for searching remote homologs. To obtain the best model while
keeping a high specificity, it is important to build it from experimentally
validated proteins only. Because there is no database that contains HMM’s
built from experimentally validated proteins only, for each specific function a
new HMM has to be built, which makes this method not easily applicable for
high throughput annotation. Moreover, when selecting only experimentally
validated proteins of a specific function, the amount of experimentally verified
sequences available can often be too limited.
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Figure 2: Receiver Operator Curve of three protein function prediction
methods, as well as the consensus-based method that combines these.
The test-sets used consisted of protein entries not present in UniProt
(http://www.uniprot.org) before the 1 of July 2014. The test-set of (A)
246 reviewed microalgal proteins comprising 540 assigned GO terms,
and (B) consisted of 2,429 reviewed proteins comprising 11,701 assigned
GO terms. Predictions were done using database versions from before
the 1* of July 2014.
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3.4. Validation of Matching Proteins via 3D Structure

An extension to sequence similarity techniques is 3D structure prediction.
Once the best matching proteins are found, they can be used in homology-
based modeling approaches. Homology-based modeling uses a reference
protein as a base to predict the 3D structure of the protein of interest. The two
3D structures can then be scored for overall quality and be compared. Several
tools are capable to estimate the tertiary and quaternary structure of proteins
in such a way. One example is SWISS-MODEL
(http://www.swissmodel.expasy.org), a web-based tool aimed to provide easy
access to predict protein 3D structure from its amino acid sequence, assisted
by homology modeling techniques as explained above [170]. Regardless of the
automated 3D modeling limitations, scores such as QMEAN, coverage, and
identity, can provide an interesting addition to estimate the similarity between
the protein of interest and the reference protein.

3.5. Model-assisted annotation

A genome scale metabolic reconstruction aims to integrate biochemical
metabolic pathways in a single network and provides a structured platform to
correspond metabolic genes with metabolic pathways [171]. As an alternative
to laborious manual metabolic model construction, tools such as SEED [172]
and Pathway Tools [173] are capable of automatically generating metabolic
maps from pathway databases and enzyme annotations. While these tools
often provide only a basic overview of an organism’s metabolic capabilities, as
the topology and breadth of the network is largely dependent on available data,
even for microalgae these models can provide valuable insights. For instance,
an orphan reaction in metabolic pathways can simply be due to a missed or a
too broad annotation. With this information in mind it becomes feasible to use
more elaborate, case-by-case, manual annotation methods to close these gaps.
A simple first step could be to take the GO term specific for the particular
protein and link this to similar but more generic parental GO term(s). Proteins
annotated with these less specific GO term(s) are then considered to be
promising candidates for the missing GO term and should be re-evaluated.
One way to do this is by building an HMM based on UniProt proteins that are
experimentally validated to have the specific GO term. This statistical model
can then be applied to the candidate protein selection, and in this way, we
might be able to identify the correct protein.
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3.6. Subcellular Localization

Protein localization prediction is an important part of a protein’s functional
annotation. If two proteins involved in the same reaction are functionally
assigned to a different subcellular compartment, the reaction cannot occur.
On the other hand, microalgae are known to possess multiple iso- functional
proteins that essentially perform the same reaction but in different subcellular
compartments. This information is crucial for the more elaborate
compartmentalized genome scale models of microalgae. One robust way of
figuring out the subcellular location of (isofunctional) proteins is by
performing subcellular proteomics [174], but this is often technically difficult,
expensive, and time consuming. The UniProt database currently contains 529
reviewed microalgal proteins with a subcellular location annotated, of which
54 are experimentally validated. Therefore, it is necessary to computationally
predict the subcellular location of proteins. For this purpose, several tools are
available, such as: Argot2 [2], TargetP [95], SignalP[96], PSORTD [97], and
PredAlgo [98]. However, with the exception of PredAlgo, most of these tools
are trained with different types of species in mind, resulting in predictions that
do not take into account the specific cellular arrangements and compartments
in microalgal species.

PredAlgo is a predictor specifically trained for microalgae, using a C. reinhardtii
based training set of 79 chloroplast, 39 mitochondrial, 39 secretory pathway,
and 89 cytosol proteins. It shows good prediction results for Chlamydomonas
proteins and closely related microalgal proteins. However, for other more
distantly related microalgal species predicting subcellular localization is
difficult due to their polyphyletic nature. It is believed that different
endosymbiotic events happened in parallel, forming the first microalgae [175].
This caused a difference in the arrangements of cellular compartments, or even
different types of cellular compartments. Therefore, PredAlgo may not be
accurate in predicting protein locations for microalgae not related to C.
reinhardtii. To circumvent this, the PredAlgo algorithm will have to be trained
with proteins from additional microalgal clades. Alternatively, results from
multiple predictors possibly can be combined as described above. Finally, it
should be noted that PredAlgo only predicts to which compartment a protein
is targeted. If the compartment where translation of the protein takes place is
unknown it is still not possible to know the final location, or to which
membrane it is targeted. Therefore, compart- mentalized omics data is needed
to accurately predict the final subcellular location of a protein. The UniProt
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database contains 8 chlorophyta proteome sets based on genome sequencing
data that are fully annotated. Additionally, GenBank
(http://www.ncbi.nlm.nih.gov/genbank/) harbours many chloroplast and
mitochondrial datasets that can be used for this purpose [97]. These datasets
could be compared to assess the potential impact of the parallel endosymbiotic
events, which in turn can be taken into account in cellular location predictions.

In conclusion by using consensus-based protein function prediction, and/or
model-assisted annotations, many improvements can be made in functional
annotation of microalgal proteins. Nevertheless, there will always be a set of
species-specific proteins that will remain unannotated using computational
methods.

4. REMAINING BOTTLENECKS

4.1. Unsupervised Computational Annotations Can Lead to Error
Propagations

The GO project has become the standard way of annotating proteins [65]. All
major databases use these terms for the documentation of protein functions
and cellular locations. GO terms are accompanied with an evidence code,
stating how a gene was assigned to a GO term [176]. In most cases the evidence
code is “Inferred from Electronic Annotation”, meaning that an unsupervised
computational method was used. Such annotations are error-prone.
Furthermore, with an exponential-increasing amount of sequencing data being
generated every day, the amount of unsupervised electronically assigned GO
terms also increases exponentially. To illustrate the problem, Schaid et al.
showed that already in 2010, 50% of the 200,000 human protein GO term
assignments were done electronically. Consequently, these gene annotations
were likely to contain a number of errors [177]. If such an electronic annotation
is done using, for example, a standard BLAST based transfer of annotation
method and proteins that also have their GO terms electronically assigned
were used as a reference, this can easily lead to error propagation of GO term
assignments. Recording the provenance of unsupervised annotations to GO
terms is therefore essential. Several annotation tools are scoring GO term
annotations based on the GO structure and evidence codes [178]. The evidence
ontology (ECO) [176] provides more descriptive evidence-based annotation to
proteins in UniProt database by describing, for example, evidence types,
methods and data curation. A detailed provenance can help to obtain more
precise evidence scores than is possible with the standard evidence codes.
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4.2. Orphan Reactions

One of the direct results of a small amount of experimentally validated proteins
is a large amount of orphan reactions. These are reactions catalysed by
enzymes of which it is assumed that they must occur, for instance through
phenotypic analysis or because they bridge a gap in a metabolic pathway, but
which do not have an encoding gene assigned. The Orphan Enzymes Project
(http://www.or phanenzymes.org) is attempting to link sequences to such
Orphan Enzymes, and a similar effort should be made regarding microalgal
enzymes.

4.3. The Lack of Identified Microalgal Specific Protein Domains
An effective way of assigning GO terms to proteins is by linking GO terms to
protein domains and searching proteins for the presence of these domains.
However, as can be seen in Fig. (2B) (InterProScan results) microalgae proteins
show a low level of sequence similarity to domains available in the PFAM
database (http://www.pfam.xfam.org), which suggests that microalgae have
accumulated many novel domains that are not yet identified by the scientific
community. To start to identify these novel domains it might be useful to
develop an algae specific domainome by routinely performing large-scale
comparative genomics between all available microalgal genomics data, as was
done with bacteria [179]. Recurring patterns can then be assigned to specific
domains with presently unknown function. If specific domains keep recurring
in proteins associated with specific traits, these domains can be linked to a
function.

CONCLUDING REMARKS

Systems biology approaches to unlock the potential power of microalgae are
seriously hampered by lack of genomic knowledge. Genome annotations of
recently sequenced species still heavily depend on sequence- similarity based
functional annotation methods, which are less suitable for species that have
no close by well-studied and annotated homologous species. As a result,
almost 90% of microalgal functional protein annotations is still for the most
part describing the metabolic core shared between algae and plant species. The
application of novel state-of- the-art annotation methods, as well as
approaches that combine multiple methods, may result in a more accurate and
more diverse functional annotation. Genome scale modeling approaches could
additionally help in identifying metabolic gaps, which can then be looked at
more thoroughly. However, for microalgae to fulfil their promise as a
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biosynthetic host it is important to overcome at least some of the annotation
bottlenecks that are not solvable by computational methods. We therefore
suggest that a large- scale wet lab effort focused on a number of selected
microalgal reference species is essential. This would provide the computational
methods with larger, more diverse set of reference genes, and would allow
computational annotations methods to quickly tap into the promising
biological reservoirs of industrially interesting algal species [180].
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Abstract

Motivation: De novo protein function prediction has been a hot topic in
bioinformatics since the early days, and even more so since the start of the
omics era. However, predicting protein functions in high-throughput is
notoriously challenging. Most prediction methods are based on sequence
similarity or on machine learning. Sequence similarity-based annotation
methods often have a high specificity and sensitivity in case of well-
characterized orthologs but are unable to predict any functionality when these
are absent. Homology-independent machine learning based methods do exist
but usually have a lower specificity, as other protein features are less
informative than sequence conservation. In an ideal case scenario specificity
and sensitivity should be combined.

Results: To achieve a higher sensitivity and specificity in de novo protein
function prediction, CrowdGO combines multiple homology-dependent and
independent protein function prediction methods. It uses Gene Ontology
semantic similarity to correlate and compare the various functional
predictions and reassesses the predicted terms using a random forest
algorithm. Based on a test set, CrowdGO shows a significant area under the
curve increase when assessing sensitivity and specificity. This is also showcased
by a net-gain in true positive and true negative predictions.

Conclusion: Given the significant increase in both sensitivity and specificity,
CrowdGO would be a good addition to any omics study in need of high-
throughput prediction of the encoded functionome.

Availability: CrowdGO can be found at
https://gitlab.com/mreijnders/CrowdGO
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1. Introduction

Non-model species are often interesting targets for biotechnological research,
but our biochemical understanding of their protein functions is limited. For
example, microalgae are almost exclusively annotated based on computational
predictions [157]. Standardly used function prediction tools use sequence
similarity, where in the case of sufficient sequence homology with a protein its
function is transferred over [2, 63]. These methods work well for proteins that
show a high level of sequence conservation, by transferring the annotation
information from closely related well-studied model organisms. However, it
works less well for non-model species, especially when there is no closely
related well-studied model organism available. Alternatively, there are
homology independent machine learning-based methods, which attempt to
correlate protein features such as hydrophobicity, protein domains, and
presence of signal peptides, with a protein function [167, 181]. These methods
have a high recall but lack precision, as correlating generic protein features to
a protein function leads to more ambiguity than transferring function between
proteins with a high sequence similarity. Most methods fall under these two
categories as can be seen in the CAFA challenges for protein function
prediction [56, 182], a competition between scientists where they attempt to
predict the function for novel protein sequences as accurate as possible.
However, most methods suffer from drawbacks, and ideally, we may want to
combine the advantages of multiple methods while negating their drawbacks.

Combining different methodologies to achieve better prediction results is not
a new idea. In 2009, Rentzsch and Orengo discussed the new era of genomics,
and the advantages that come with it [92]. In their review, they provide a
comprehensive overview of function prediction methods, and which biological
aspects they use to predict protein functions based on Gene Ontology (GO)
terms, a framework of notations used to describe a proteins function. They
argued that in the ‘age of multiplicity’, only the use of multiple tools, multiple
evidence, and the multiple aspects of function, can give us a good insight into
protein functions. Since then, many tools have been designed that combine
multiple biological features to make a function prediction. However, while
they argued that multiple tools need to be used to provide a comprehensive
insight into protein function, there is currently no standard method to merge
predictions of orthogonal different tools.

For this purpose we have designed CrowdGO: a wisdom of crowd based
annotation tool that uses GO term semantic similarity and a random forest
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algorithm [183] to combine the predictions of multiple methods. CrowdGO is
able to use the results of any GO term prediction method that provides
confidence intervals. In this paper we use an example based on FFPred2 [167]
and Argot2 [2], which were the top performers in the CAFA2 challenge [56],
and InterProScan [63]. These three methods were chosen because of their
prediction performance, and because they use complementary approaches.
FFPredz is a machine learning based prediction method that uses support
vector machines [184] on a set of 13 protein features such as amino acid
composition, low complexity regions, and secondary structures. Argot2 is
based on both sequence similarity and machine learning, using BLAST [154]
and HMMER [185] to calculate similarity to existing protein sequences, and a
similarity calculation between the BLAST and HMMER retrieved GO terms.
Finally, InterProScan uses machine learning by training profile Hidden Markov
Models [62] to predict protein domains, and transfers any GO terms associated
to these domains to the protein.
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2. Methods

The CrowdGO annotation pipeline consists of two parts: correlation of gene

ontology (GO) terms [64, 186] generated by the different prediction tools,

followed by a random forest algorithm [183] to distinguish between true

positive and false positive predictions.

2.1 CrowdGO workflow

Figure 1 visualizes a simplified workflow of the CrowdGO annotation process:

1.

The user selects their proteins for analysis, and a training set consisting of
proteins with a known function.

All proteins are initially assigned GO terms by two or more prediction
methods. In our test case we used FFPred2 [167], InterProScan [63], and a
reversed engineered local implementation of Argot2 [2].

GO-term assignments from each method are compared. Protein-GO term
predictions that are in the same GO hierarchy get clustered with given
similarity scores. The GO term with the highest IC score (Equation 1) is
chosen as representative term.

All scores from step two and three are entered in a random forest model
[183] (Table 1). The random forest is trained on the training set using 10-
fold cross-validation and is used to predict whether a previously predicted
GO term is a true or false positive.

The output of the pipeline is a list of protein-GO term pairs with a
confidence interval between zero and one.
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Figure 1: Simplified workflow of the CrowdGO annotation process. 1) A
protein with an unknown function is 2) annotated by two or more
existing methods. 3) The similarities for the predicted GO terms
between each method are calculated (Equation 1,2). 4) All the scores
produced by step 2 and 3 are used as an input for a random forest
algorithm. 5) The outcome of the random forest algorithm gives
confidence intervals between zero and one for each previously
predicted GO term.
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2.2 Methods used for GO term prediction in step two

For our testing of CrowdGO we used three different predictors for step two: a
reversed engineered local version of Argot2 based on [2], FFPred2 [167], and
InterProScan [63]. For training purposes of these tools, we only used databases
and other prior information from before 01-07-2015, to avoid biased predictions
and over fitting. The versions can be found in table 1.

2.3 Usage of Argot2, FFPred2, and InterProScan

Our implementation of Argot2 (ArgotToo) is made using the published
methods [2], as there was no local implementation publicly available.
ArgotToo uses BLAST [60] and HMMScan [185] results as an input. BLAST
input was generated by a BLASTP on the UniProt Knowledgebase database
from 24-06-2015 (Table 1) [55]. The HMMScan input was generated on PFAM
version 27 (Table 1) [169].

For FFPred2 we downloaded the available local version
(http://bioinfadmin.cs.ucl.ac.uk/downloads/ffpred/) and used its default
settings. After calculating the optimal cut-off for precision and recall using
pROC [187], the true positive threshold was adjusted to o.7 instead of the
default o.5. This threshold was used in evaluating FFPred2 in Table 2.

We used InterProScan version 5.13-52 and disabled its pre-calculated lookup
service. Since InterProScan provides no unified scoring system for each of its
sub-programs, we used the amount of times a GO term was predicted to a
protein independently. This score ranges from 1 to 26, which was the maximum
amount of times one GO term got predicted to a protein. However, we chose
to only use this number as an input for the random forest model and used a
prediction threshold of 1 for evaluating InterProScan in table 3.
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Table 1: Database versions used in the prediction of GO terms

UniProt SwissProt 2015 06 24-06-2015
UniProt TTEMBL 2015_06 24-06-2015
UniProt Unirefgo 2015_06  24-06-2015
Pfam A 27  22-05-2013
InterPro 52  22-05-2015
Gene Ontology Annotation 144  23-06-2015

2.4 Calculating the semantic similarity between GO terms

The gene ontology comparison algorithm is an implementation of Lin’s
algorithm [188], as similarly used by Argot2 [2]. For each GO term pair between
two prediction methods we compute the similarity score and their information
content (IC) score. The IC score is used to assess how common the GO term is
in the UniProt Knowledgebase. A GO term its IC score is calculated as follows:

@
Where GO:GO; is the total number of times GO term ; is represented in the

UniProt database, and GO:GO is the total number of GO terms assigned to all
proteins in the UniProt database.

The similarity score is then calculated as follows:
)
Where icParent(GO;,GOj) is the parent term shared between GO; and GO; with

the highest IC score, or the highest IC score between GO; and GOj if one is a
parent term of the other.

2.5 Labelling the predictions for training the model in step four

In step 4 of Figure 1, CrowdGO trains a random forest model that requires a set
of proteins with known GO terms. Predictions for these proteins are compared
to these known GO terms, and subsequently labelled true or false positive
based on the Gene Ontology (GOA) hierarchy [65]. If the predicted GO term
is the same as the real term, or in the same GOA hierarchical structure
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excluding its root term, it is labelled as a true positive. Otherwise it is labelled
as a false positive. The same labelling is used to evaluate the test set
predictions, in addition to true negatives and false negatives. A true negative
is a GO term that is correctly not annotated to a protein by being below the
methods confidence threshold, and a false negative is a GO term that is
incorrectly not annotated by being below the methods confidence threshold.

2.6 ROC plot calculations.

The calculations and drawing of figure 2 were done using the R package pROC
[187], and the calculations and drawing of figure 3 were produced using the R
package PRROC [189].
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Table 2: All the data we have of the predicted GO terms, using all input
prediction tools. The data used for the Random Forest algorithm is
indicated in the 'RF input column. * The classifier is only given in case
of training the model

Protein identifier No
GO term No
GO term IC score Yes
Number of predictions in cluster Yes
Argot2 GO term No
Argot2 score Yes
Argot2 GO IC score Yes
FFPred2 GO term No
FFPred2 score Yes
FFPred2 GO IC score Yes
IPRScan GO term No
[PRScan GO term score Yes
IPRScan GO term IC score Yes
Argot2 - FFPred2 GO similarity Yes
Agrot2 - IPRScan GO similarity Yes
FFPred2 - [PRScan GO similarity Yes
GO root term (BP/MF/CC) Yes
Classifier (True/False) Yes*

74



3. Results

3.1 Local implementation of Argot2

We wanted to use Argotz as one of the three methods in this paper to evaluate
CrowdGO. However, there is no local version available for Argot2, which we
need for the blind predictions for the training and evaluation of our proteins.
Therefore, we recreated a local version of Argot2 based on the paper, called
ArgotToo. We took 250 random SwissProt entries created in 2017 to evaluate
their performance. For this evaluation we used the same databases for
ArgotToo as for Argot2, which are all from before 2017. The result is shown in
Figure 2. Small deviations are likely caused due to differences in database
handling, but in general the predictions are the same.

ArgotToo can be found at: https://gitlab.com/mreijnders/ArgotToo.
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Figure 2: Area under the roc curves for Argot2 and ArgotToo. On the x-
axis the false positive rate, and on the y-axis the true positive rate.
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3.2 Training and evaluating the random forest model

The random forest model is trained on GO term predictions of 3398 proteins.
Here we selected all new SwissProt [55] proteins between 01-07-2015 and o01-07-
2017 for which there is one or more experimentally validated GO term
available. A thousand proteins were randomly selected for a test set, and the
remaining 2398 proteins were selected for the training set. Before training the
random forest, the input GO term predictions were reduced and equalized
between true and false positives to remove any potential bias. The exact input
used for our test case can be found in Table 2.

3.3 Assessing sensitivity and specificity

In Figure 3 the sensitivity and specificity of each method is compared. The ROC
curve shows predictions made by CrowdGO, ArgotToo [2], FFPred2 [167], and
InterProScan [63]. The CrowdGO cut-off score to achieve the maximum
combined precision and recall is marked at 0.6. Further, we compare methods
for only biological processes, molecular functions, and cellular components
type of functions (Figure 3 B, C, D). Notable is the lack of all methods to predict
cellular components (Figure 3 D), and a slight increase in prediction power for
ArgotToo for molecular functions (Figure 3 C). Figure 4 shows the comparison
for each method its precision-recall curve.
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Figure 3: A) Receiver Operator Curve for the various methods, with
specificity on the X-axis and sensitivity on the Y-axis. The most optimal
sensitivity and specificity combination is calculated to be at the 0.6
threshold, with 84% specificity and 71% sensitivity. All curves compared
to CrowdGO have a p-value of < 2.22e-16. B) The same ROC curve for only
biological processes, C) for only molecular functions, and D) for only
cellular components. Note that FFPred2 is omitted from the cellular
components because it does not predict these.
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Figure 4: Precision - recall ROC curve comparing CrowdGO to
Argot2, FFPredz, and InterProScan.

3.4 Observing how CrowdGO re-classifies existing input
predictions

CrowdGO is specifically designed to reclassify the predictions based on
integration between methods. With that in mind we want to observe the effect
CrowdGO has on the original GO term annotations. In table 3 we set out the
predictions of CrowdGO compared to its original GO term input. E.g., we
observe how many true positive predictions became a false negative, and how
many false negatives became a true positive.
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4. Discussion

In the paper we introduced CrowdGO, a protein function prediction tool which
utilizes existing predictions and reassesses them using GO term semantic
similarity and machine learning. One major selling point for CrowdGO is its
ability to handle all types of input data. In the case of FFPredz, for which the
raw results seem to include a lot of false positives, CrowdGO is able to reclassify
a lot of these false positives to true negatives while only a few true positives are
reclassified to false negatives.

InterProScan does not give us any meaningful confidence scores for its
predictions, which means their sensitivity-specificity curve (Figure 3) and
precision-recall curve (Figure 4) are meaningless. Also, the lack of meaningful
confidence intervals means we were unable to classify predictions as negatives
(Table 3). With CrowdGO we are able to combine the InterProScan predictions
with other predictions to not only improve the results (Table 3), but also attach
meaningful confidence intervals to the predicted GO terms.

When evaluating the isolated ArgotToo results in table 3, we notice its results
are the least affected by CrowdGO. This is likely due to Argot2 having relatively
reliable predictions. However, Argotz provides a lower amount of total
predictions compared to FFPred2 and InterProScan (Table 3), with the
exception of the GO category Cellular Component. In combination with tools
that predict more GO terms but are arguably more prone to false positive
predictions, CrowdGO is able to reliably predict more GO terms than
ArgotToo could do by itself (Table 3).

Both the biggest upside and downside of CrowdGO is its heavy reliance on the
input predictions. If these are of low quality, the CrowdGO results will not be
much better; if these are of high quality, the CrowdGO results will be of even
higher quality. Additionally, combining input predictions from
complementary techniques such as sequence similarity and machine learning
would potentially enhance the performance of CrowdGO. Certain proteins
might be hard to annotate by one technique, but easier to annotate by a
different technique. Given a proper training set for CrowdGO, the random
forest model would be able to recognize patterns where the predictions of one
technique would be of more value than that of another technique. All of this
requires a good understanding of protein function prediction techniques,
resulting in a good input prediction set. Therefore, while CrowdGO shows a
significant improvement in predicting protein functions, it takes a basic
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knowledge of protein function prediction to be used effectively. One way of
making CrowdGO widely usable by the community, is by incorporating it in
existing protein function annotation pipelines. It would be wise to test
multiple existing prediction methods combinations together with CrowdGO,
to see which tools and combinations deliver the best results. This way
CrowdGO can be distributed as part of a protein function prediction suite, with
easy-to-use instructions usable by everyone.

5. Conclusion

We have successfully improved GO term predictions of existing methods by
combining their results using CrowdGO. In particular, CrowdGO shows
significant improvement in sorting high-confidence predictions from low-
confidence predictions, resulting significantly higher area under the curves
(Figure 3), and a better precision-recall curve (Figure 4). Furthermore,
CrowdGO is able to reassess false positives and false negatives to true negatives
and true positives respectively (Table 3).
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Abstract

Motivation: Yeasts are frequently used for biotechnological applications,
however predominantly from the ascomycota subdivision. Yeasts from the
basiomyceta subdivision are underrepresented despite their interesting
characteristics such as producing high amounts of triterpenoids, carotenoids,
and complex carbohydrates. Because these species are underrepresented, we
know relatively little about their genome organization. In this study we aim to
functionally annotate the genome of the basiomyceta Cutaneotrichosporon
curvatus using CrowdGO from chapter 4 and compare the results with manual
functional annotation of metabolic proteins to assess CrowdGO in a real-case

scenario.

Results: We compared the CrowdGO annotations of Cutaneotrichosporon
curvatus against the existing annotations of the related Cutaneotrichosporon
oleaginosum and show a vast increase in amount of proteins retrieving GO
term annotations. GO enrichment analysis using differential expression
analysis of nitrogen and non-nitrogen growth conditions showed an
enrichment of GO terms that would be expected from an oleaginous species.
To increase the resolution of functional descriptions CrowdGO was
implemented in a manual annotation pipeline to manually curate 700
metabolic proteins. Together with a differential expression analysis, these
functional annotations were used to characterize triacylglycerol synthesis of
Cutaneotrichosporon curvatus. Both the CrowdGO high-throughput
annotations, and its utilization in a manual annotation pipeline, show promise
towards the improvement of annotations for oleaginous yeasts.

84



1. Introduction

1.1 Basidiomycota yeasts and biotechnology

Yeasts are the species with the most biotechnological applications, in
particular the model species Saccharomyces cerevisiae of the ascomycota
subdivision [190]. The ascomycota yeasts are known for applications in
fermenting food and drinks, heterologous protein production, probiotics, and
many more. These yeasts are well studied because of their applicability, and
because of their potential in biotechnology, they are studied in even more
detail. The subdivision basidiomycota, however, is not widely used in
biotechnological applications, despite some interesting characteristics
amongst which the most promising is their potential to produce large amounts
of secondary metabolites such as terpenoids, carotenoids, and complex
carbohydrates. To try and break this circle, it is interesting to study functional
genomics of basidiomycota species.

1.2 The oleaginous basidiomycota yeast Cutaneotrichosporon
curvatus

Cutaneotrichosporon curvatus is a non-model oleaginous yeast of the
subdivision basidiomycota, able to produce up to 60% triacylglycerol (TAG) of
its dry weight [191]. It is able to grow on low-cost carbon sources such as whey
permeate, molasses, and other sugar wastes [192, 193]. These characteristics
made C. curvatus an interesting organism to study since the 80’s [192].
Studying its TAG production is mostly focused on the dynamics of nitrogen
starvation: an insufficient amount of nitrogen leads to an increase in TAG
synthesis, and lowers the cells growth rate [191]. While the general TAG
synthesis pathway in yeast is well understood, predicting which proteins are
involved in each step is challenging [56]. Furthermore, given the challenges in
protein function prediction, automated annotations are often incomplete
(chapter 3)[194], potentially leaving out key enzymes and transporters.
Accurately annotating the metabolism of Cutaneotrichosporon curvatus, and
in particular its TAG production in relation to nitrogen levels, would give
valuable insights for any potential biotechnological applications for this yeast
and can act as a reference for other basidiomycetes.
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1.3 Functional genomics of Cutaneotrichosporon curvatus

While model species generally have a large amount of their protein functions
assessed in wet-lab experiments, non-model species such as C. curvatus do not.
As a result, large-scale computational predictions need to be done to retrieve
their protein functions. Cutaneotrichosporon oleaginosum is a species closely
related to Cutaneotrichosporon curvatus, with over 8,500 proteins in the
TrEMBL UniProt database, and for which a bit more than half have one or more
GO terms assigned to it using UniProt’s UniRule and SAAS annotation
pipelines [159]. These pipelines attempt to find protein domains and other
functional regions and annotate Gene Ontology (GO) terms to proteins using
a manually (UniRule) or computationally (SAAS) generated set of rules, based
on for example domain presence - absence, or taxonomic evidence.

However, as discussed in chapter 3 and 4, annotating non-model species in
high-throughput can be particularly challenging. The estimate for the age of
the Ascomycota and basidiomycota split was between 1 and 2 GA ago [195].
Annotating GO terms of non-model species using only sequence similarity to
reference proteins or domains will likely be incomplete at such a large
phylogenetic distance.

Chapter 4 addresses this issue with the introduction of CrowdGO, a protein
function prediction tool that merges and improves Gene Ontology (GO) term
annotations from other high-throughput prediction tools. In this study, we use
CrowdGO GO term annotations to study the metabolism of C. curvatus.
However, CrowdGO is tested on an artificial data set that does not represent a
real functional genomics study. Therefore, the functional genomics study of C.
curvatus can act as a hands-on scenario to assess the performance of
CrowdGO.

1.4 Manual curation of Cutaneotrichosporon curvatus
metabolism

For the further assessment of CrowdGO, and to gain high-resolution GO terms
in C. curvatus, we use CrowdGO as part of a biocuration pipeline of the C.
curvatus metabolic proteins. This was done using CrowdGO annotations as a
starting point, and comparative genomics with the manually curated
metabolic proteins of the ascomycota yeast Yarrowia lipolytica. By comparing
the electronically inferred CrowdGO predictions to those of the biocurated
proteins we can assess the performance of CrowdGO.
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1.5 Differential expression of Cutaneotrichosporon curvatus to
study triacylglycerol synthesis

Finally, we performed differential expression analysis using our transcriptomes
of nitrogen replete and nitrogen deplete growth conditions and used this to
further characterize the TAG metabolism of C. curvatus. This detailed
metabolic map allows us to generate hypotheses regarding the genetics of TAG
synthesis during nitrogen starvation, and to assess the accuracy of the manual
annotation.

1.6 Aim

The main aim of this chapter is to assess the performance of CrowdGO in a
real-case scenario, while a sub-aim is to perform a functional genomics study
on Cutaneotrichosporon curvatus to improve our knowledge of basidiomycetes
metabolism, with a special interest for its triacylglycerol synthesis. CrowdGO
is assessed throughout each step of the functional genomics study, either by
comparing it to the annotations of an existing basidiomycota, assessing GO
enrichment analysis, or by comparing it to the biocurated proteins.
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2. Methods

2.1 Culturing of Cutaneotrichosporon curvatus

Cutaneotrichosporon curvatus ATCC 20509 was selected for culturing. Two
growth media were used based on Meesters et al 1996 [191]. The glycerol and
NH4Cl concentrations were adapted to generate our desired carbon and
nitrogen ratio’s (table 1). The carbon nitrogen ratios are taken from Ykema et
al [196], which shows a C. curvatus growth for a ratio of less than 5, and lipid
production for a ratio between 20 and 40 carbon / nitrogen.

Table 1: Glycerol and NH4Cl levels for the different media, as well as the

carbon and nitrogen ratios.

- Glycerol | NH4Cl | Carbon / nitrogen ratio (mol)

Medium A
Medium B 8 5 2.8

C. curvatus was inoculated from a freshly prepared YPD-agar plate in 50 ml of
YPD medium and grown O/N in a 100 ml Erlemeyer flask at 30 °C and 225 rpm.

The culture was divided in two 25 ml portions and centrifuged (10 min. 300
rpm) to collect the cells. The cell pellets were resuspended in 30 ml medium A
or medium B. 4 ml of the resuspended cells was used to start duplicate cultures
in medium A and B which were incubated for 18 hours at 30 °C and 225 rpm.
Each culture was divided in two equal portions and the cells were harvested by
centrifugation and the wet pellet frozen in liquid and used for RNA extraction,
fatty acid analysis and dry weight determination. Medium samples were taken
for glycerol and nitrogen analysis.

2.2 RNA extraction procedure

RNA was extracted using an acidic hot phenol extraction procedure. Briefly,
the cell pellet was ground in liquid nitrogen and mixed with 4 volumes of pre-
warmed (60°C) phenol + extraction buffer (1% SDS, 10 mM EDTA, 0,2 M NaAC
(pH 5) after these 2 volumes of chloroform were added and mixed thoroughly.
After centrifugation the buffer layer was washed once with chloroform. RNA
was precipitated from the buffer layer by adding 8 M LiCL to and end
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concentration of 2M. After centrifugation the pellet was washed once with 2M
LiCl and twice with 70% ethanol. The remaining pellet was resuspended in
RNase free water.

Total RNA extract, RNA sequencing, and RNAseq data processing were
performed as described in [197]. Samples were sequenced by NovoGene using
Total RNA.

2.3 Proteome comparison to Cutaneotrichosporon oleaginous
We compared our predicted proteins to the existing C. oleaginosum proteins
in UniProt. All C. oleaginous proteins were extracted from SwissProt and
Trembl version 2017_12 [55], and used as a BLAST [60] database for our C.
curvatus proteins. The BLAST hits for each C. curvatus protein against a C.
oleaginous protein were concatenated. If the concatenated BLAST hit length
was 99% or more than that of the C. oleaginosum protein its length and vice
versa, and the concatenated BLAST hit shared 99% or more amino acid
identity, we considered it the same protein. If those numbers were 30% or
higher but lower than 99%, we considered it an incomplete protein match. In
any other case, we considered it a dissimilar protein. All matches were
categorized in the following groups: proteins that have a match in both species,
proteins that have an incomplete match in one of the species, and proteins that
are unique to either one of the species.

2.4 Protein function prediction

Protein function prediction was done using CrowdGO described in Chapter 4.
Instead of the training set used in Chapter 4, we created a training set
consisting of only fungal proteins created between o1-o01-2015 and 01-01-2017.
All predictions for the training set were done on database and program
versions before 01-01-2015. In the final annotation, all GO terms that were not
annotated to any existing fungal protein in UniProt version 2017_o01 were
removed. We used a cut-off score of 0.6 to differentiate between true and false
predictions.
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2.5 Biocuration of C. curvatus protein functions

We used CrowdGO annotations in conjunction with other methods and visual
inspection to manually annotate the metabolic proteins of
Cutaneotrichosporon curvatus. A simplified overview of the biocuration
approach is given in Figure 1.

1) We extracted single proteins from the manually curated Yarrowia
lipolytica genome-scale model iNL850 [198]. The protein sequence,
UniProt identifier, and any enzyme annotations were retrieved from
KEGG [69]. GO term annotations were retrieved from UniProt [55]. If
KEGG does not contain an enzyme annotation for the protein, we
check if any of the GO terms correlate to an enzyme.

2) Ifthe protein is not annotated with an enzyme, we assumed it to be a
transporter. Otherwise, we assumed it to be an enzyme.

3) For every enzyme with sequence information in UniProt we created a
Hidden Markov Model [185]. If three or more sequences of the enzyme
were present in SwissProt, we based the model solely off of these
proteins. In other cases, we based the model both off of SwissProt and
Trembl proteins. All C. curvatus proteins were subject to a HMMScan
[185] against any enzyme annotated to the Y. lipolytica protein.

4) For every C. curvatus protein we did a global alignment against the Y.
lipolytica protein using NEEDLE [199].

5) We only took the top three C. curvatus candidates, starting with the
most likely candidate until we found a match to the Y. lipolytica
protein and its function. For enzymes the top candidates are selected
using the HMMScan results; for transporters the top candidates are
selected using the NEEDLE results.

6) The C. curvatus protein its GO term predictions were compared to the
Y. lipolytica protein its GO terms. Information was returned on
whether each C. curvatus GO term was identical or similar to a Y.
lipolytica GO term, or not related to the Y. lipolytica protein at all.

7) We performed a web-BLAST for the C. curvatus protein on the
SwissProt database to visually inspect if it has any significant
homology, and if any of the homologous proteins have relevant
functional information.

8) We performed a web-PFAM HMMScan for the C. curvatus protein to
see if there are any known domains in the sequence, and if these
domains have any function related to the Y. lipolytica protein.
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9) To summarize, we have: a HMMScan on any enzyme of interest, a
global alignment to the Y. lipolytica protein, comparison of GO terms
between the proteins, homology information, and domain
information. Using this information, we assess if the C. curvatus
protein performs the same function as the Y. lipolytica protein. If not
the case, we repeat the assessment steps with the next C. curvatus top
hit.

For all C. curvatus and Y. lipolytica matches, we transferred the enzymatic or
transporter function with its accompanying reaction to the C. curvatus protein.

Figure 1: Workflow of the biocuration process. Numbered steps are
further explained in the main text.
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2.6 Differential expression analysis

We performed differential expression using the nitrogen rich and nitrogen
starved RNA-Seq sets. This was done using the EDGE R package [200], with
the replete set as a reference. Anything up-regulated with less than o0.05 p-
value was taken as a protein up-regulated during nitrogen starved conditions;
everything down-regulated with less than o0.05 p-value was taken as a protein
down-regulated during nitrogen starved conditions. Triacylglycerol (TAG)
metabolism analysis was done by taking all manually annotated proteins,
color-coding the proteins based on their differential expression, and overlaying
the proteins on KEGG maps [69].

2.7 GO enrichment analysis

Using the gene expression data, we performed a GO-enrichment analysis. This
analysis was only done using predictions from CrowdGO, as the manually
annotated GO terms are a specific subset of proteins. Initial GO enrichment
was done using GOSEQ from the Bioconductor R package [201]. The resulting
GO enrichments with their p-values were entered into REVIGO to produce
more general GO term enrichments [202]. For this we used REVIGO’s Lin’s
algorithm [188] and a similarity score of 0.4. The tables were taken directly
from REVIGO, as were the figures apart from some minor human readability
edits.
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3 - Results and discussion

3.1 Gene prediction

We performed a de novo gene prediction on the genome of
Cutaneotrichosporon curvatus ATC20509 [203] using BRAKER1.0. Translation
of these genes results in some 7,600 proteins, of which around 7,400 are larger
than 100 amino acids in length (Table 2).

Table 2: Protein summary of
Cutaneotrichosporon curvatus

e

Proteins 7,597
Proteins larger 7,596
than 33 AA

Proteins larger 7,593
than 50 AA

Proteins larger 7,376
than 100 AA

Average  protein 493
length

Largest protein 5.051

3.2.1 Cutaneotrichosporon curvatus annotation summary

All C. curvatus proteins were annotated using CrowdGO (Chapter 4). We
found 168 proteins that did not have a BLAST hit to any protein in UniProt and
treated these hypothetical proteins as false positive proteins. The CrowdGO
annotations showed that a select amount of generic GO terms is annotated to
these proteins (Supplementary table 1), and as such we assume these GO terms
are prone to overfitting by CrowdGO. The full annotations are summarized in
table 3 A without filtering for overfitted terms, and table 3 B with filtering for
overfitted terms. A term was deemed overfitted if it appeared more than 40
times in the annotations for the hypothetical proteins in Supplementary table
1, and all the GO term annotations for any overfitted GO term were removed
from the list.
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3.2.2 Cutaneotrichosporon curvatus annotation summary -
discussion

What can be observed in the annotation summary is that merging the Argot2,
FFPredz, and InterProScan predictions with CrowdGO results in lower amount
of GO terms than the sum of the three tools after filtering for overfitted terms.
This is contradictory with the results from chapter 4 table 3 where it shows
that CrowdGO re-annotates a sizeable amount of GO terms initially labelled
as false negative to a true positive, and true negative to a false positive.
However, the test set proteins of chapter 4 did not contain hypothetical
proteins, which affects the results.

The decrease of total annotated GO terms, and average GO terms per protein,
is a clear indicator CrowdGO performs strict filtering of the input GO terms.

A noticeable result is the difference in the prediction of Cellular Component
GO terms before and after filtering out of overfitted terms. This is due to two
factors: only two of the input tools are able to predict Cellular Component
terms, and because many Cellular Component GO terms are relatively non-
specific compared to Biological Process or Molecular Function terms but still
technically correct predictions for many terms, CrowdGO is prone to
overfitting on the data with respect to these terms. This was noticeable in the
annotation of the presumed false positive proteins, where over half of the over-
fitted terms were Cellular Components explaining the dramatic reduction in
proteins annotated with a Cellular Component term by CrowdGO (table 3).
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Table 3: Annotation numbers for CrowdGO and the three methods
utilized in the CrowdGO. Displayed are the amount of proteins having
one or more GO terms annotated to it, the range of GO terms used to
annotate these proteins, the total amount of GO terms annotated to
proteins, and the average amount of GO terms annotated to a protein.
MF: Molecular Function. BP: Biological Process. CC: Cellular
Component.

A: without filtering out overfitted terms.

Method Annotated | Annotated | Annotated | Unique | Total GO s
proteins proteins proteins GO’s GO’s
MF BP CC p roteln

CrowdGO 5,809 6,621 7,566 21,566

Argot2 2,962 3,032 1,441 878 4,742 2
FFPred2 4,462 5,076 [¢) 175 11,887 2
InterProScan 3,086 2,655 1,293 574 4,104 1

B: After filtering out overfitted terms

Method Annotated | Annotated Annotated | Unique | Total GO’s
proteins Proteins Proteins CC GO’s GO’s
MF BP D roteln

CrowdGO 3,001 2,764 21,566

Argot2 2,962 3,032 1,441 878 4,742 2
FFPred2 4,405 5,076 o 175 11,887 2
InterProScan 3,004 2,655 998 574 4,104 1

3.3.1 Annotation comparison to Cutaneotrichosporon
oleaginosum

We compared the C. curvatus predictions to the existing UniProt annotations
of Cutaneotrichosporon oleaginosum, both after filtering for over-fitted terms,
to provide a reference on the quantitative performance of CrowdGO (Table
4A). Additionally, we compared the annotations between the species for the
5,000 cross-species orthologs found (Table 4B).
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3.3.2 Annotation comparison to Cutaneotrichosporon
oleaginosum discussion

The comparison between the CrowdGO annotations of C. curvatus and the
UniRule annotations of C. oleaginosum shows that they annotate roughly the
same amount of proteins. Importantly, the range of GO terms used by
CrowdGO and UniRule is vastly different. In C. curvatus the 5,000 orthologs
are annotated with only 839 GO terms, compared to 1,898 for UniRule (Table
4 B). It is certainly possible that UniRule is able to correctly annotate a wider
range of GO terms to proteins, however over 1,800 compared to less than 850
for CrowdGO indicates that at least a fraction of these GO terms are false
positives. Additionally, using the predictions of more than three tools as an
input for CrowdGO will likely increase the range of GO terms it uses to
annotate proteins, but this will likely also increase the number of false
positives.

Finally, table 4 B shows that approximately two thirds of orthologs between
the two species have one or more GO terms in common. This implies that both
the CrowdGO and UniRule annotations are able to represent these proteins,
and that the range of GO terms assigned by CrowdGO to C. curvatus is large
enough to represent the putative function of its proteins.
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Table 4: Comparison of the Cutaneotrichosporon curvatus
annotations with the Cutaneotrichosporon oleaginosum protein
annotations.

A: Comparison of all proteins

Cutaneotrichosporon | Cutaneotrichosporon
curvatus (CrowdGO) | oleaginosum (UniRule)

Total proteins 7,597 8,317
Proteins annotated 4,332 4,223
Total GO terms 8,123 9,569
Unique GO terms 952 2,261
GO’s per protein 1,9 23

B: Comparison of orthologs

Cutaneotrichosporon | Cutaneotrichosporon
curvatus (CrowdGO) | oleaginosum (UniRule)

Total proteins 5,110 5,110
Proteins annotated 2,946 2,914
Total GO terms 5344 6,828
Unique GO terms 839 1,898
GO’s per protein 1,8 3,6
Matching ortholog 2,342 2,342
annotations
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3.4 Manual annotation of the Cutaneotrichosporon curvatus
metabolic proteins

We manually curated the metabolic proteins of C. curvatus using the
CrowdGO annotations and comparative genomics with proteins from the
Yarrowia lipolytica model iNL895[198] (Methods section 2.5). This resulted in
710 manually annotated proteins, involved in over a thousand reactions (Table
5). Additionally, we compared the CrowdGO annotations to the manual
curations of C. curvatus in table 6. In this table, closely related annotations are
proteins that have one or more GO parent and child terms of each other.
During the manual annotation process the CrowdGO annotations of 553
proteins were in line with the final manual annotation, according to the
biocurator.

Table 5: Summary of the manual annotations

Tot
al

Proteins 710

Enzyme proteins 540

Transporter 170
proteins
Enzyme 930
annotations
Unique enzyme 461
annotations
Reactions 1155

98



Table 6: Annotation comparison between the high-throughput and the
manually annotated proteins. Only enzymatic proteins were chosen for

analysis.

Exact annotation 110
Closely related annotation 203
False positive annotation 74
Annotation used in man annotation 553

3.5 Manual annotation of the Cutaneotrichosporon curvatus
metabolic proteins discussion

In our process of manually annotating the C. curvatus proteins we used our
CrowdGO annotations as part of the curation pipeline. Comparing the
CrowdGO numbers to the manual annotations provide valuable insight in the
usefulness of the predictions for biological interpretation (Table 6). With a
0.6 cut-off for the predicted annotations, a minority fraction of the proteins
has an exact match with its manual annotated enzymatic function. When
looking at GO terms that are related by either being a direct or indirect term,
a majority fraction of the predictions match with the manual annotations.
Only 74 proteins are annotated without an exact or closely related annotation
to the proteins biocurated function, which we deemed false positives. This is
after removing the term GO:0016887 ATPase activity from all our predicted
annotations, CrowdGO annotated it 44 times above and never below the 0.6
confidence interval, indicating over-fitting by CrowdGO. Not removing
ATPase activity from the set of annotations would increase the amount of
false positive annotations to over a hundred.

3.6 GO Enrichment analysis

We use the CrowdGO annotations and differential expression analysis as proxy
for protein activity to obtain an overview of C. curvatus triacylglycerol (TAG)
synthesis in nitrogen replete and deplete conditions. GO enrichment analyses
for these conditions are summarized for replete conditions (Figure 2,3) and
nitrogen deplete conditions (Figure 4,5). Replete conditions show more
expression for cell maintenance and growth-related proteins, while nitrogen
starved conditions show more expression for proteins related to catabolism
and usage of stored energy.
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3.6.1 GO Enrichment analysis discussion

The GO enrichment analysis does not provide much more information than
what is already known for oleaginous eukaryotes in relation to nitrogen stress
conditions. However, because the general processes that are differentially
regulated are so well known, for example cell growth during normal conditions
and catabolism during nitrogen stress conditions, we can use this as a
validation of the high-throughput CrowdGO annotations on a general level.
Considering the GO enrichment shows us what we would expect, we assume
that the CrowdGO annotations are accurate on a general-level basis.
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3.8 Differential expression analysis of triacylglycerol synthesis
We use our manual annotations and differential expression to characterize
TAG synthesis in C. curvatus (Figure 6). Several key enzymes show a significant
(p<0.05) up-or-down-regulation during nitrogen starved conditions. These
enzymes are down-regulating sugar metabolism, differentially expressing the
TCA cycle, and differentially expressing various steps between glycerol and
triacylglycerol conversion. EC 3.1.1.23 acyl glycerol lipase, which is present for
Y. lipolytica in the KEGG database [69], was missing in the Y. lipolytica
genome-scale model. A candidate for the enzyme was found in C. curvatus and
was manually annotated without comparative genomics. The fold changes for
the enzymes can be found in Table 7.

3.8.1 Differential expression analysis of triacylglycerol synthesis
- discussion

The differential expression analysis shows us a complete picture of C. curvatus
TAG synthesis, with only one key enzyme missing in the entire set of 33
enzymes used to annotate the differential expression of TAG metabolism.
Differential expression reveals up-and-down regulation of key processes, such
as down-regulation of glucose and fructose metabolism related enzymes
during nitrogen depleted conditions, confirm our annotations. Additionally,
we see other interesting enzymes in response to nitrogen-depleted conditions,
such as an up-regulation of enzyme 2.3.1.158 phospholipid diacylglycerol
acyltransferase (PDAT) compared to enzyme 23.a.20 diglyceride
acyltransferase (DGAT). PDAT is shown in literature to be a big contributing
enzyme for oleaginous yeasts and adding additional copies of this enzyme
leads to increased TAG synthesis. Another interesting finding is the down-
regulation of enzyme 2.7.1.30, which is responsible for the direct conversion of
glycerol to glycerol-3P. The fact that during nitrogen starved conditions C.
curvatus is suggested to create glycerol-3P through glycerone-phosphate
might be interesting for any follow up studies regarding TAG synthesis in this
organism.
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Figure 6: Summary of TAG synthesis and key differentially regulated
enzymes in Cutaneotrichosporon curvatus during nitrogen deplete

conditions.
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Table 7: LOG2 fold changes of the differentially expressed enzymes
related to triacylglycerol synthesis, as displayed in figure 6

2.3.3.8 -0.32 0.46
2.7.1.1 -0.21 0.006
5.4.2.2 -0.20 0.01
3.1.1.23 -0.33 0.16
2.7.1.30 -0.56 1.58e-10
2.3.1.20 -0.31 0.003
1.3.5.1 0.28 0.01
1.1.1.37 0.43 0.04
4.1.1.49 0.48 5.6e-5
1.1.5.3 0.26 0.004
2.3.1.158 0.24 0.005

Conclusion

We were able to thoroughly functionally annotate C. curvatus proteins using
the CrowdGO method as described in chapter 4, as shown by comparisons with
C. oleaginosum existing annotations, GO enrichment analysis, and its role in
manually annotating the proteins. However, the comparison to the manual
annotations show that while the CrowdGO method is a clear improvement
over existing methods, it is not able to consistently predict full enzyme
annotations. That said, any analysis of specific metabolic processes should be
done by manual annotation. The CrowdGO annotations have been specifically
useful in speeding up this process.
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Abstract

Motivation: Botryococcus braunii is a biotechnologically interesting
microalgae to study due to its ability to synthesize and excrete high amounts
of hydrocarbons or polysaccharides, depending on the strain. In this chapter
we perform a comparative genomics study to find differences between these
two strains, which we can correlate to the production of hydrocarbons or
exopolysaccharides. However, Botryococcus braunii is a non-axenic microalga,
which is challenging to perform a genomics study on. Therefore, we also set
out to create a workflow for future microalgal research, able to study non-
axenic microalgae both on a genome-scale and a pathway scale.

Results: We developed a proteomics-based workflow, which with the help of
CrowdGO (chapter 4) and manual annotations provided insights in the
comparative genomics of Botryococcus braunii. Using this workflow, we
identified several key enzymes involved in hydrocarbon synthesis and
exopolysaccharide synthesis. In the non-mevalonate pathway, we identified 4
enzymes that are significantly more expressed in the hydrocarbon producing
strain, and in the GDP-L-Fucose biosynthesis pathway we identified 3 enzymes
that are significantly more expressed in the polysaccharide producing strain.
We also found significant differences in expression levels of key enzymes
involved in the core metabolism of Botryococcus braunii, showing that
hydrocarbon and exopolysaccharide production have a metabolism-wide
effect on the species, and indicating the two strains might not be as closely
related as their shared name suggests.

1. Introduction

Botryococcus braunii, a member of the class Chlorophyceae, is a prime example
of a photosynthetic microalgae exploitable for commercial interest, due to its
unique ability to produce and excrete vast quantities of large chain
hydrocarbons and exopolysaccharides during nitrogen limiting conditions
[204]. The hydrocarbons form a lipid biofilm matrix holding together
Botryococcus braunii cells in colonies, and the exopolysaccharides are believed
to serve as carbon reserves and perhaps as a protective layer against harmful
environmental conditions and pathogens. These features attract attention as a
potential resource of natural biopolymers, aromatic bulk chemicals, and fine
chemicals.

The Botryococcus braunii species are classified into three chemical races: A, B,
and L, depending on the chemical nature of the large chain hydrocarbons they
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synthesize [205, 206]. Race A primarily synthesizes odd-numbered n-alkadiene
and n-alkatrienes (C23-C33); race B primarily synthesizes triterpenoid
botryococcenes (C30-C37) and methylated squalenes (C31-C34); race L
primarily synthesizes the tetraterpenoid hydrocarbon lycopadiene, via an
alternative pathway using a squalene synthase-like enzyme [207]. The
predominant metabolic pathway for the biosynthesis of isoprenoids is the non-
mevalonate (MEP) pathway [208]. In this pathway, 1-deoxy-D-xylulose-5-
phosphate (DOXP) is converted into 2-C-methyl-D-erythritol-4-phosphate
and MEP intermediate, which in turn is converted into isopentenyl
diphosphate (IPP) and dimethylallyl (DMAPP), which are used as precursors
for the biosynthesis of farnesyl pyrophosphate (FPP). FPP is subsequently used
via a series of intermediates for the synthesis of botryococcenes and
methylated squalenes. Carotenoid biosynthesis follows the same pathway as
botryococcenes, but starting from the higher carbon number geranyl-geranyl
pyrophosphate [204]. However, more evidence is necessary to fully understand
the characteristic metabolic pathways underlying large chain hydrocarbon and
carbohydrate biosynthesis in Botryococcus braunii.

Botryococcus braunii is, however, a challenging species to study. The genus has
an unclear taxonomy, and its species boundaries are not well defined.
Phenotypic characteristics such as colony forms, colour, cell shape, and cell
size, have been reported to depend on environmental growth conditions
hampering its diagnostic use [209-211]. In addition to morphological data,
molecular data have been used to increase the phylogenetic resolution.
Kawachi et al defined relationships based on nuclear 19S rDNA and categorized
31 isolates into three major phylogenetic clades correlating to a high degree
with the chemical races A, B, and L [212]. Recently, Hegediis et al used 18S
rDNA and ITSz molecular markers to classify Botryococcus race A strains and
defined two distinct phylogenetic subclades: A1 and A2 [213]. The phylogenetic
relationship of Botryococcus strains appeared to correlate with the typical
hydrocarbon profile of race A, B, and L. However, the high genetic divergence
of Botryococcus braunii does not support their classification into one single
species. This high genetic divergence is reflected in the transcriptome, which
hints at substantial differences in the biosynthetic pathways that Botryococcus
strains have adopted for the synthesis of hydrocarbons, ether-lipids, and
polysaccharides. In addition, several studies have indicated Botryococcus is
difficult to maintain and grow as an axenic culture, complicating
transcriptome profiling [16]. Specifically, Rhizobium species have been
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reported to encourage the growth of Botryococcus, while Acinetobacter species
have been reported to have a negative interaction [128], further complicating
the metabolic profiling Botryococcus .

We have undertaken a multi-disciplinary approach to identify common
features in non-axenic Botryococcus braunii CCALA778 and ACy61 strains,
which previously have been classified as race A and race B strains respectively
[214, 215]. We provide a comparative overview that links changes in algal
transcripts and proteins to the abundance of characteristic metabolites in race
A and B non-axenic cultures, and have identified candidate targets that play
an essential role in the characteristic metabolism of Botryococcus.

2. Materials and Methods

2.1 Organisms and their cultivation

Botryococcus braunii strains CCALA778 and AC761 were obtained from the
Culture Collection of Autotrophic Organisms (Trebon, Czech Republic) and
Algobank Caen (Caen, France), respectively. Both strains were maintained in
250 mL Erlenmeyer flasks in an Infors HT Multitron incubator with the
following environment parameters: illumination: Philips FL-Tube L 36W/77
lamps with intensity set at 150 umol photon m-2 sec-1; light:dark photoperiod
18:6 h; 2.5 % percent CO2; temperature 25°C; mechanical shaking at go rpm.

Culture media consisted of modified Chu 13 medium [216] without citric acid,
with the following composition: 1200 mg L-1 KNO3, 200 mg L-1 MgSO4.2Hz20,
108 mg L-1 CaCl2.2H20, 104.8 mg L-1 K2HPO4, 20 mg L-1 Fe-Na2EDTA, 9.4 pg
L-1 Na204Se, 2.86 mg L-1 H3BO3, 1.8 mg L-1 MnSO4.4H20, 220 pg L1
ZnS04.7H20, 9o pg L-1 CoSo4.7H20, 8o pg L-1 CuSO4.5H20, 60 pg L-1
Na2Mo0O4.2H20, 10 pl L-1 H2SO4. Final pH was adjusted to pH 7.2 with NaOH.

2.2 Photobioreactor cultivation

For experiments, the strains were cultivated in flat-panel airlift
photobioreactors (Algaemist, Technical Development Studio, Wageningen
University and Research, The Netherlands) with a working volume of 0.4 L,
and optical depth of 14 mm, and an illuminated area of 0.028 m2. All runs were
operated in batch mode. Light was provided by LED lamps (BXRA Wi200,
Bridgelux, USA) with a warm-white spectrum. The photon flux density was
measured with a LI-COR 190-SA 2pi PAR (400-700 nm) quantum sensor (LI-
COR, USA). Incident light intensity was measured at 28 points evenly
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distributed over the light-exposed surface of the front glass panel of the culture
chamber, and light measurement was repeated for every experiment. The
applied light regime was a block 18h:6h day:night light:dark cycle, and the
incident light intensity set at averaging 150 Bmol photon m™ sec™.

Aeration and mixing were done by sparging a gas stream of filtered air at a rate
of 200 mL min™ (0.5 vvm). pH was maintained at 7.2 (PLUS MINUS o.1) by on-
demand addition of CO, to the airflow. To ensure sufficient CO, in the medium
NaHCO; was added to the medium to a final concentration of smM.
Temperature was set to 25°C. The bioreactors were inoculated with shakeflask-
derived biomass so that the initial OD 68onm = 0.2; addition of biomass was
considered the start of the experiment and is referred to as t = o.

2.3 Experimental design

Earlier bioreactor tests with both strains indicated that, with using an initial
KNO3 concentration of 1200 mg L™ and using the initial inoculation density, a
window of non nutrient-limited growth of between 8 to 12 days was achievable,
counted from the first day where biomass concentration reached 1 g L”. The
end of this period was marked by the lack of detecting nitrate in the medium
and the reporting of the steady low signal reported by the bioreactor's light-
out sensor.

Per strain, at minimum 5 bioreactor runs, using inoculum obtained from
independent shake-flask cultures, were operated. Two of these runs were
sacrificed when nitrate was depleted; three runs continued for 7 days after
nitrate was depleted. To facilitate quantitative proteomics analysis, per run
either "N-labeled KNO3 or *N KNO3 (Sigma-Aldrich) were used.

Prior to every sampling time point, 3 mL culture broth was removed from the
bioreactor to clear the sampling port. Samples to determine cell dry weight (5
mL), optical density (1 mL). chlorophyll content (1 mL), and nitrate content (1
mL) were taken daily; samples for carbohydrate or hydrocarbon analysis (1 mL)
or elemental analysis (10 mL) were taken intermittently, as omics sampling had
precedence.

To acquire sufficient biomass for the various omics technologies, sampling
took place on alternating days to limit large disturbances in the cultivation
environment because of the large sampling volumes; total sampling volume
was kept as low as possible and did not surpassed 15% of bioreactor working
volume.
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For metabolite analysis and transcript expression analysis, 10 mL of culture
broth were removed, while for proteomics analysis, 20 mL culture broth was
removed. Samples were added to prepared tubes containing equal volume of
ice-cold (-20 °C) methanol, spun for 2 min at 4,000 x g in a bench-top
centrifuge, and supernatant was decanted while taking care to not disturb the
pellet. Samples were snap-frozen in liquid nitrogen and stored at -8o °C until
analysis. All omics samples were snap-frozen within 4 minutes after reactor
sampling.

After sampling, medium without nitrate was added to the reactor vessel up to
the working volume. When nitrate was present in the medium, nitrate was
added to the bioreactor to the initial KNO; concentration, thus ensuring that
removal of large sampling volumes did not remove nitrate dissolved in the
medium.

2.4 Cell Dry Weight

Five mL aliquots of culture broth were filtered onto pre-weighed GF/D glass-
fibre membranes (Whatman) and washed with 5 mL demineralized water. The
filters were dried at 100°C for 24 hours and weighted, after which the biomass
amount was determined by subtraction. For biomass concentrations over 3 g
L", filters became clogged and 2 mL aliquots of culture broth were filtered
instead.

2.5 Hydrocarbon extraction and analysis

One mL of culture broth was combined in a glass vial with 2.5 mL methanol
and 1.25 mL dichloromethane and mixed on a rotary shaker at 30 rpm for 6
hours. After mixing, 1.25 mL dichloromethane was added and mixed for one
minute, after which 1.25 mL 0.9 % (w/v) NaCl solution was added and mixed
for another minute. Hereafter, samples were centrifuged for 5 minutes at 1,500
x g. The bottom phase was removed to a new glass vial using a glass Pasteur
pipette and dried under nitrogen gas. The residue was resuspended in 1.0 mL
hexane and stored at -20°C.

Hydrocarbon analysis was carried out using gas chromatography (GC-FID).
The instrument used was an Agilent Technologies HP68go series equipped
with auto sampler, a using Restek Rxi-sms (30 m x 0.25 mm x 0.25 pm) column.
Helium was used as the carrier gas, and a hydrogen/air moisture detection, gas
splitless injectors at 350°C oven temperature and injection volume of 1 puL. The
oven program was 50°C for 1 minute, then 15°C per minute to 180°C, then 7°C
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per minute to 230°C, then 30°C per minute to 350°C and hold for 15 minutes
with a total running time of 35 minutes. Samples were diluted in hexane, and
several dilutions of standards using squalene were used.

2.6 Total Carbohydrate extraction and analysis

Total carbohydrate contents were determined using the method first reported
by Dubois [217]. In brief, 500 BuL -20 °C methanol was added 500 BuL culture
broth, centrifuged for 3 minutes at 3,000 x g to pellet cells, and supernatant
was carefully discarded. The pellet was hydrolysed by adding 500 BuL of 2.5M
HCI and incubation for 3 h while vortexing hourly and neutralized thereafter
by adding 500 Bul of 2.sM NaOH solution. Samples which 450 BEuL
demineralized water was added. Gently, 500@uL. 5% phenol in water solution
was pipetted into the tube. 2.5 mL concentrated sulphuric acid was added
directly onto the liquid surface, and incubator at room temperature for 10
minutes. Hereafter, tubes were placed in a 35 °C waterbath for 30 minutes,
while vortexing every 5 minutes. Absorbance was read at 483 nm. A D-glucose
solution was used as standard.

2.7 Nitrate content

Measurements were performed with 10020 MQuant Nitrate Test according to
manufactures protocol. The nitrate concentration is measured semi-
quantitatively by visual comparison of the reaction zone of the test strip with
the fields of a colour scale.

2.8 Phylogeny

All chlorophyta chloroplast sequences and an Arabidopsis thaliana chloroplast
sequence were retrieved using the sequences from Lemieux et al [218]. We
performed gene prediction on these chloroplasts using Prodigal [219]. For all
these genes we did a Needle [199] search against 45 Chlamydomonas reinhardtii
chloroplast proteins from the SwissProt database [55]. All the best Needle hits
for each chloroplast sequence were extracted. The best Needle hits for each
chloroplast protein were aligned using Muscle [220], and poorly aligned
regions were removed using trimAl [221]. Finally, the alignments for all the
chloroplast proteins were concatenated using PhyUtility [222]. The resulting
concatenated alignment file was used as an input to PhyML to calculate the
phylogenetic distances [223], and the final tree was drawn with TreeDyn [224].
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2.9 Functional protein annotation

We assigned Gene Ontology (GO) terms using a combination of protein
function classification methods: Argot2 [2], FFPred2 [167], and InterProScan
[61].

Only annotations with a confidence of 0.7 or higher were annotated to the
proteins.

For the pre-trained random-forest model we used the sequences of all proteins
created between o01-11-2013 and 9-11-2015 with one or more experimentally
validated GO terms. The number of true positives and false positives in the
random-forest training was reduced to equal size in order to avoid bias in the
dataset.
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3. Results

3.1 Strain selection and cultivation

We selected two out of 16 Botryococcus braunii strains based on their race type
and distinct product profile [215] as we aimed to contrast their underlying
physiologies. Under our growth conditions the race A strain CCALA778
produces polysaccharides up to 2 g/L, while hydrocarbons could not be
detected (Figure 1A). In contrast, the race B strain AC761 produces both
polysaccharides and hydrocarbons although the former to a much lower extent
(0.6 g/L) compared to CCALA778 (data not shown). Hydrocarbon levels in
AC7611eached up to 0.4 g/L (Figure 1C). Colonial morphology differed between
the strains (Figure 1B and D). CCALA778 cells appear round and assemble into
compact colonies while AC761 cells tend to be droplet-shaped within a more
dispersed colony.

Both races reached similar dry weights of 4.6g/L for CCALA778 and 5.2 g/L for
AC761 (Figure 1A and C). Nitrogen levels were monitored in the bioreactors
over the entire growth period. Increased product accumulation correlated with
nitrogen-limited conditions in both races.
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Figure 1: A) Hydrocarbon and polysaccharide production for the race A
strain CCALA778, and B) its morphology. C) Hydrocarbon and
polysaccharide production for the race B strain AC761 and D) its

morphology.
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3.2 Phylogenetic placement of Botryococcus braunii

The heterogeneity of chemical and morphological features has been
recognized and it has been suggested that the name B. braunii in fact covers
multiple distinct species [209], but the community has not widely embraced
this nomenclature. Kawachi et al constructed a relationship between
hydrocarbons produced and molecular phylogeny by 18S rRNA mapping
between strains and showed that the chemical races map to distinct
phylogenetic clades [212]. However, the relative positioning of B. braunii
strains relative to other algae has not been carried out, in part due to the lack
of sequencing information. Using our sequence information (see below), we
constructed a phylogenetic distance tree of algal chloroplast proteins (Figure
2). Our analysis indicates that our two strains used lie too far away to be
considered near-identical species, even though AC761 and CCALA778 are
closer related to each other than to other microalgae. Reassuringly, CCALA778
is more closely related to the race A SHOWA strain, than it is to the race B
AC761.

Following these results, we performed extensive comparative omics analysis
between Botryococcus braunii CCALA778 and AC761. This workflow is
visualized in figure 3.
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Figure 2: Phylogenetic placement of CCALA778 and AC761 relative to other microalgal
species, based on chloroplast proteins.
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Figure 3: Using Iso-Seq sequencing we identified 33,000 protein models
for CCALA778 and 16,000 protein models for AC761. B) The protein
models were used to create hypothetical peptides for an LC-MS/MS
database. Consecutive proteomics analysis on various conditions
validated the protein models. These protein models were assigned a
biological function using CrowdGO (chapter 4). C) Using 14N and 15N
labelling of the peptides, we distinguished the CCALA778-based and
AC761-based peptides. This allowed us to compare the rations between
the different races for the various sampled conditions. A thousand
proteins were identified to have peptides occurring in both CCALA778
and AC761. These were functionally analyzed using manual curation.
Together with the peptide ratios from the quantitative proteomics
analysis the thousand proteins were used to analyze several key
pathways between the two races to identify key differences and link
protein expression to hydrocarbon or exopolysaccharide production.
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3.3 Creating the initial protein models

We used Iso-Seq RNA sequencing to identify Botryococcus braunii transcripts
for both strains, and predicted protein models using MAKER. This resulted in
33,000 protein models for CCALA778 and 16,000 protein models for AC761
(Figure 3). All protein models were assigned Gene Ontology (GO) term
annotations using CrowdGO (chapter 4), summarized in table 1. To aid further
analysis of the protein models, they were clustered based on 50% or more
sequence similarity. These clusters are considered similar enough to present
the same protein model with a defined functional entity for further biological
analysis.

Table 1: A summary of the Iso-Seq protein functional annotations. A full
code enzyme is an enzyme with four codes in the enzyme code

nomenclature
o
Annotations 391,464
Proteins with a GO term annotation 50,330
Unique GO terms 1,480
Unique enzymes 462
Unique full code enzymes 363
Proteins with full code enzyme 5,553

3.4 Quantitative proteomics analysis

We then performed quantitative proteomics analysis to compare the two
Botryococcus braunii strains. Races A and B were grown in bioreactors at
different conditions and isotopically labeled with either *N or "N KNO;. For
comparison, differentially N /°N labeled races A and B stemming from the
same growth condition were mixed. The rationale for mixing was to
quantitatively compare peptides that are identical between race A and race B,
in order to measure and relate expression of conserved key metabolic
pathways. For proteome analysis the N and "N labelled samples were mixed
on equal chlorophyll content and fractionated via SDS-PAGE. From each lane
36 bands were excised and digested tryptically as previously described [225]. In
total, 689 samples were analysed by liquid coupled mass spectrometry (LC-
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MS). Using the 50,000 IsoSeq-based proteins for the peptide database, a total
of 70,081 unique peptides were identified. 35,375 and 34,056 peptides mapped
to the race A and race B databases, respectively. 6,284 peptides mapped to the
bacterial database derived from metagenomics. For peptide quantification
pyQms was used [226]. Retention-time (RT) alignment between all LC-MS/MS
runs and enhancement defining RT windows was performed using pigDB
earlier [227, 228]. Peptide ratios were calculated for 12,239 peptides. These
peptides mapped to 2,407 protein groups in race A, 2,708 protein groups in
race B and 575 protein groups in the bacterial database. 1567 peptides were
identified and quantified in both races A and B. Due to enhancement via pigDB
it was possible to gather quantitative information for some peptides identified
in both race A and B, providing ratios and increasing the number of peptides
usable for quantitative comparison. In total, 3,025 peptides with a ratio
between race A and B were identified. Those mapped on 1,832 protein groups
in race A, 1641 protein groups in race B and 322 protein groups in the bacterial
database. The quantitative data are displayed as ratios of the absolute number
of peptides measured in race A over absolute number of peptides measured in
race B, absolute amount in light divided by absolute amount in dark, and
absolute amount of nitrate deficient divided by absolute amount in nitrogen
presence.

The 3,025 peptides shared between race A and race B belonged to 972 protein
clusters as identified earlier based on the IsoSeg-based proteins, and these
were used for further comparative analysis. To get a higher resolution of their
protein functions we manually annotated these proteins with one defined
function, using CrowdGO annotation, BLAST hits, and PFAM hits as a starting
point. The manual annotation results are summarized in table 2.
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Table 2: A summary of the manual annotations for the orthologs
between CCALA778 and AC761. Displayed are the total proteins with an
annotation, the amount of unique functions used to describe the
proteins, and the top 10 categories of these functions.

Total proteins 972
Unique functions 841
Protein metabolism 79
Ribosome 68
Translation 55
Lipid and fatty acid 48
Amino acid metabolism 45
Stress response and redox reactions 43
Endomembranes and vesicular trafficking 41
Photosynthesis 4
General metabolism 38
Carbohydrate and sugar metabolism 38

We linked these proteins to eight peptide ratios: light against dark and nitrate
against no nitrate for both strains, and early log phase, mid-late log phase,
stationary phase I, and stationary phase II between both races. As depicted in
figure 5, many enzymes of the respective key metabolic pathways, namely the
GDP-L-fucose biosynthesis pathway and methylerythritol 4-phosphate (MEP)
pathway could be comparatively quantified. Additionally, we further analysed
the core metabolism of Botryococcus braunii (Figure 6).

3.5 Fucose synthesis

As described in Figure 1, race A (CCALA778) produces more polysaccharides
than race B (AC761). With our proteome data we were able to identify members
of the GDP-L-fucose biosynthesis from GDP-L-mannose pathway. In the first
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step of this pathway, phosphomannomutase (PMM) converts D-mannose-6P
to D-mannose-1P. Then a mannose-1-phosphate guanylyltransferase (GMMP)
combines the D-mannose-1P with GTP to produce GDP-D mannose. After that,
GDP-D-mannose is converted into GDP-4-keto-6-deoxy-D-mannose by GDP-
D-mannose 4,6-dehydratase (GMD), which is then used by GDP-L-fucose
synthase to produce GDP-L-fucose.

The peptide ratios show a differential expression of these enzymes between
race A and race B (Figure 4). PMM was about 1.5-1.8-fold more abundant in the
early logarithmic phase in race A compared to race B but is diminished in
abundance as the cell grows. GMMP and GMD were much more abundant in
race A when the cells were in the early (4 fold) and mid (4 to 8-fold)
logarithmic phase, and the stationary phase (4 fold). Similar abundance
changes for GMPP and GMD were found when we compared light and dark
grown cells. Moreover, higher protein amounts of GMPP and GMD were
detected in race A than in race B when comparing the non-nitrogen. GDP-L-
fucose synthase showed varying protein abundances, overall being slightly
more abundant in CCALA778 compared to AC761 during the early and mid-
logarithmic phases, and 8-fold more abundant in race A when the cells were
grown in dark conditions. These data clearly indicate that in the B. braunii race
A (CCALA778) the enzymes involved in GDP-L-Fucose biosynthesis were
significantly more abundant than in race B (AC761), correlating with the
increased polysaccharide production in race A (Figure 1).

3.6 MEP pathway

Previous work on B. braunii showed that the specific hydrocarbons synthesized
by the race B (Showa) are the botryococcenes, which are triterpenoids derived
from the MEP pathway [214, 229]. Biosynthesis of linear triterpenoid
hydrocarbons occurs via the farnesyl-diphosphate, which occurs as an
intermediate in the MEP pathway. First, two molecules of farnesyl-
diphosphate are condensed by squalene synthase to form prequalene-
diphosphate. Then, in the presence of NADPH, squalene-synthase like 2 (SSL-
2) forms squalene, and squalene-synthase like 3 (SSL-3) synthesizes
botryococcenes. The extracellular liquid hydrocarbons in race B are usually
methylated botryococcenes. Its methylation steps are performed by S-
adenosylmethionine (SAM)-dependent methyltransferases (TMTi/2 for
squalene, and TMT3 for botryococcenes).

We were able to identify members of above pathway for both race A
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(CCALA778) and race B (CCALA778) and observed several key differences in
their proteomics ratios (Figure 4). DXR (1-deoxy-D-xylulose-5-phosphate
reductoisomerase) and ISPG (4-hydroxy-3-methylbut-2-enyl-diphosphate
synthase) were highly expressed in race B compared to race A during early
logarithmic growth phase (16-fold). Two other components of the MEP
pathway, 2-C-methyld-D-erythritol 2,4-cyclodiphosphate synthase (ISPF) and
4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase (SIPH), were 3-3-fold
more abundant in race B compared to race A during the mid-logarithmic and
stationary phase.

These data indicated that in race B (AC761) the gene products of the MEP
pathway were overall more abundant, likely to provide precursors for
botryococcenes.
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3.7 Proteomics analysis of core metabolism
We identified many proteins in the core metabolism of B. braunii for both race
A (CCALA778) and race B (AC761). These are summarized in Figure 5.

In the Calvin-Benson cycle, carbon dioxide converts to glucose and other
compounds. We were able to detect a number of enzymes involved in the cycle,
including RuBisCO, phosphoglycerate kinase, fructose-bisphosphate aldolase,
transketolase, ribose-5-phosphate isomerase and phosphoribulokinase. The
chloroplast encoded large subunit of Rubisco was more than 2-fold increased
from early, mid-log and stationary phase in race B (Figure 6). Transketolase
peptide levels were found to be 2-fold more abundant in race A compare to
race B in the stationary phase. Fructose-bisphosphate aldolase displayed a
more than 2-fold down regulation in race A in the stationary phase but was
over 2-fold up regulated in the stationary phase II.

For glycolysis we found proteins corresponding to hexokinase, glucose-6-
phosphate isomerase, fructose-bisphosphate aldolase, phosphoglycerate
kinase, triose-phosphate isomerase, phosphoglycerate kinase, enolase,
pyruvate kinase and phosphopyruvate carboxylase. Triose-phosphate
isomerase was upregulated in race A compared to race B in most of conditions
tested, with the most prominent increase of over 2-fold seen in the early log
phase. Enolase was 3-fold up regulated in race A compared to race B during
light conditions, and a little over 3-fold down regulated in the early log phase.

In the citric acid cycle, we identified citrate synthase, aconitate hydratase,
isocitrate dehydrogenase, malate dehydrogenase and ATP citrate lyase. The
latter was over 2-fold down regulated in race A in the light, dark and the
different growth stages.

For the fatty acid biosynthesis pathway we identified acetyl-CoA carboxylase,
3-oxoacyl-ACP synthase, 3-oxoacyl-ACP reductase, enoyl-ACP reductase and
acyl-ACP desaturase. Acetyl-CoA carboxylase was 3-fold down in race A
compared to race B in dark conditions. 3-oxoacyl-ACP synthase showed a 2-
fold down regulation in the light as well as in the early log phase, while 3-
oxoacyl-ACP reductase displayed a 3-fold down regulation in the early log
phase.
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Figure 5: An overview of the protein ratios between the race A
(CCALA778) and race B (AC761) strains. The same growth conditions are
analyzed as in figure 4. Red indicates more abundance for AC761
orthologs, and blue indicates more abundance for CCALA778 orthologs.
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Discussion

This paper aimed to unravel why different botryococcus braunii races produce
different products in large quantities, namely exopolysaccharides or
hydrocarbons. We used a proteomics-based workflow to overcome the
challenges of genome assembly, gene prediction, and differential expression
(Figure 2). Using the workflow, we were able to compare the two different
strains CCALA778 (race A) and AC761 (race B) by looking at commonly shared
peptides. Based on peptide ratios between the orthologs of the two races
performed a differential expression analysis. This was enhanced by the use of
functional information from CrowdGO, and the manual curation of 972
protein clusters which contain orthologs in both CCALA778 and AC761. With
this approach we were able to study key differences in the metabolism of the
two strains. We found that the race A CCALA778 has several key enzymes
overexpressed in the GDP-L-fucose biosynthesis pathway (Figure 5),
correlating to its abundant production of exopolysaccharides (Figure 1). In
contrast, we found that race B AC761 has several key enzymes overexpressed
in the MEP pathway (Figure 5), correlating with its abundant hydrocarbon
synthesis (Figure 1). Additionally, we saw differences in protein expression
between the two races in the Calvin Benson cycle, glycolysis, citric acid cycle,
and fatty acid biosynthesis pathway.

These differences in expression indicate that while both are B. braunii strains,
and share a high amount of orthologs, there are numerous key differences in
their metabolic behaviour. While their product formation suggests enzymes
related to hydrocarbon and exopolysaccharide production should be affected,
as validated by our proteomics results, there are also vast differences on a core
metabolism level. More extensive research on the metabolism of Botryococcus
braunii should be done to unravel more of its metabolic differences. While in
this study we only looked at differential expression in orthologues, follow-up
studies could look at differences in the qualitative proteome.

Finally, this paper is a successful demonstration of proteomics and high
resolution of protein function information to perform a comparative genomics
study of non-axenic microalgal strains, allowing us to go from metagenomic
sequences to the identification and comparison of microalgal orthologs and
their functions. In the future, similar approaches should be used for likewise
large-scale studies of non-axenic microalgae.
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Chapter 7

General discussion



1.1 - The SPLASH project

The study of this thesis was done in light of the Sustainable Polymers for Algae
(SPLASH) project [230]. This EU consortium was funded to study the
oleaginous microalgae Botryococcus braunii because of its potential for
producing large amounts of hydrocarbons and polysaccharides, which are
excreted in large quantities out of the cell [204, 216]. A large part of the SPLASH
project was the genomics study, where we aimed to characterize the genome
of Botryococcus braunii using omics data, specifically for the identification of
key proteins involved in hydrocarbon and polysaccharide production. For this,
the aim was to apply comparative genomics between the hydrocarbon
producing B. braunii race AC761, and the polysaccharide producing race
CCALA778. With the comparative genomics study, we were able to find key
differentially expressed proteins in the non-mevalonate pathway and the L-
GDP-Fucose biosynthesis pathway, related to hydrocarbon and polysaccharide
production respectively. These findings provided us testable hypotheses for
the engineering of these proteins in other, faster growing microalgae such as
Chlamydomonas reinhardtii.

Genomics, however, was only one part of the SPLASH project. The multi-
disciplinary consortium was set up to investigate many aspects of Botryococcus
braunii, with the main studies being:

1. Development of innovative cultivation and downstream concepts for
improved growth, product enhancement, and integrated recovery of
polysaccharides and hydrocarbons.

2. Product development and testing

3. Process demonstration at pilot scale

4. Process integration, sustainability assessment, and market analysis

Each of these studies is important in their own right, and a few can utilize any
results from genomics studies.

1.2 Genomics for the development of cultivation and
downstream concepts for improved growth and product

enhancement

An important part within the SPLASH project, and a widely studied factor in
microalgal research, was trying to find innovative ways of cultivating and
growing B. braunii and extract its hydrocarbons and polysaccharides. For the
first goal, growth media, day and night cycles, and growth temperatures,
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amongst others were optimized. This resulted in 3-fold increased
polysaccharide and 2-fold increased biomass production. These numbers can
be increased in two ways: first, by analysing genetic effects on specific growth
media and environmental conditions and attempting to optimize these further
based on the genetic responses. And second, as discussed in the introduction,
there are metabolic constraints that limit the potential growth, hydrocarbon,
and polysaccharide production of microalgae. Finding these constraints and
possibly circumventing these by the use of metabolic engineering or synthetic
biology will provide a boost to the growth and production capabilities of B.
braunii.

1.3 Genomics to aid in process demonstration at pilot scale

An important question for microalgae, is how they can be cultivated in large
open pond algae farms for commercial purposes. As part of SPLASH, several
‘hotspots’ were found that increase the cost for commercializing microalgae,
including the need to increase the amounts of hydrocarbons and
polysaccharides being made in a pilot scale setup. This subtask did not succeed
in developing a pilot scale setup able to produce large amounts of
hydrocarbons or polysaccharides. While no definitive reasons are given, one of
several reasons might be that B. braunii lives in communities with a high
number of bacteria. It is hypothesized these consist of symbiotic, parasitic, and
mutualistic relationships, and that some bacteria enable B. braunii to produce
large quantities of hydrocarbons and polysaccharides. For these questions,
genomics can be used to identify key proteins that might interact with proteins
or compounds coming from or going to bacterial sources. One such technique
that can be used is that of mathematical modeling, based on the metabolic
capabilities of the microalgae and those of the bacteria.

1.4 Genomics to aid process integration, sustainability
assessment, and market analysis

Part of any big project like SPLASH is a market analysis, to assess if the
commercialization of a product is viable, and if not, how it is to be made viable.
It was concluded that, as was predicted, hydrocarbon and polysaccharide
production with B. braunii is the most viable. While currently not ready to put
on the market, the main conclusion of the final report was:

“It can be concluded that the in SPLASH developed cultivation and milking
technologies have the potential to operate economically, in particular for EHC,
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provided that all the involved processes will be optimized and the targeted
products are of higher than commodities value.” [230]

For this purpose, genomics is able to aid in product synthesis optimization. In
particular, metabolic engineering of B. braunii can lead to a higher production
of specific hydrocarbons and polysaccharides, or increased growth of the algae.
This would lead to a more favourable market analysis for B. braunii by
decreasing the cost for cultivation relative to hydrocarbons and
polysaccharides produced.

All three topics can potentially use predictions based on genomics studies to
create testable hypotheses. These can be gained through the identification of
key enzymes, the study of pathways, or by utilizing mathematical models.
What they have in common, is that at their core they require a good functional
annotation of their proteins. As discussed in the introduction, improvements
need to be made in the prediction of microalgal protein functions. The study
of microalgal protein functions in this thesis is therefore not only for the
benefit of the genomics study in SPLASH, but also in a broader sense for other
algae projects.

2 - Goal of the thesis

With the SPLASH project in mind, the goal of this thesis was to develop and
use bioinformatics tools and pipelines to increase our understanding of
oleaginous microalgal cell factories. During my thesis I mainly worked on the
improvement of protein function annotations. Genome annotation of the
basidiomycota yeast Cutaneotrichosporon curvatus was used as a proof of
concept for my developed function prediction tool and manual curation
pipeline (chapter 5), and in chapter 6 I apply these for the comparative
genomics of two races of the Botryococcus braunii microalgae. Here I will
mainly focus on protein function annotation, how these annotations are
connected to microalgal cell factories, and how they can be further improved.
Finally, I discuss how comparative genomics can be used for protein farming
in microalgae.

Knowing the functions of all proteins of an organism, its functionome, is a core
requirement to understand the capabilities of the metabolism of an organism
at a genetic level. There are several ways of retrieving protein functions:
through wet-lab experiments, manual curation of protein features, or by
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computationally predicting them. Figure 1 visualizes a workflow on how an
ideal case scenario of a microalgal cell factory functional genomics study, such
as that for the SPLASH genomics, is connected to these various stages of
annotation and what each step provides towards more knowledge of cell
factories.

Step 1: High-throughput annotations

Normally the first step in functional genomics for the study of microalgal cell
factories is high-throughput predictions. This forms the basis for further
research, and a high accuracy and coverage of annotations allows for easier
follow-up studies and a better understanding of the metabolism of an
organism. As explained in the introduction, there is a wide array of methods
that are able to predict in high-throughput which Gene Ontology (GO) terms
belong to a protein [64], most of them falling in the sequence similarity and
machine learning categories. Many of these methods participated in the
Critical Assessment of protein Function Annotation (CAFA) competition [56,
182], where they aim to correctly predict the GO terms belonging to proteins
with an unknown function. The most recent finished CAFA competition
compared 126 prediction methods from 56 research groups, which are assessed
on 3,681 proteins from 18 species. Because of its scale and competitiveness, any
functional genomics research should be utilizing one or more of the well-
performing methods participating in CAFA.

The Critical Assessment of protein Function Annotation

Because predicting protein functions is an important subfield in
bioinformatics, there is a wide array of ever improving prediction methods
available. These are hard to compare, because they all use different data sets
and different evaluation metrics to benchmark their performance on. The
CAFA competition aims to find the top performing protein function prediction
methods by benchmarking them using the same evaluation metrics. The first
CAFA results got published in 2013 and evaluated the performance of 54
methods based on 866 proteins from 11 species [56]. Predictions were initially
done on 48,298 proteins, but only the proteins that were experimentally
validated over the course of 15 months after the submission deadline were used
for the evaluation of the methods. For this edition of CAFA, only biological
process and molecular function GO terms were considered. BLAST [60] and
Naive predictions were used as a baseline, where BLAST predictions used the
top sequence similarity hit to transfer GO terms to the target protein and its
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sequence similarity as a confidence score, and Naive predictions assigned a
confidence score to each GO term based on their relative abundance in the
SwissProt database. The results of the first CAFA showed Jones-UCL and
Argot2 [2] as the winner and runner up for both biological process and
molecular function predictions. As a result, I used FFPred2 [167] from UCL-
Jones and Argotz for the duration of this thesis.

However, apart from showing the top performers, there were multiple notable
results to be observed in the study. BLAST was outperformed by 33 methods in
the molecular function category, and 26 methods in the biological process
category. Also, for all methods including BLAST, biological processes were
harder to predict than molecular functions. The authors hypothesize that this
is likely due to biological processes being more abstract in their function
compared to molecular functions, making them harder to predict by looking
at straightforward amino acid conservation [56].

Furthermore, the authors looked at performance differences between ‘easy’
and ‘hard’ to predict proteins. Proteins with 60% or more sequence similarity
to an experimentally validated protein were classified as easy, and others as
hard. Unsurprisingly, BLAST had a tougher time predicting hard proteins than
easy proteins. However, the top performers of CAFA showed no significant
difference in predicting easy or hard proteins. This hints that the state-of-the-
art prediction methods are good at utilizing multiple sources of data and were
able to compensate for a low sequence similarity to proteins with a known
function.

The second edition of CAFA was published in 2016. 126 methods participated
and were benchmarked on 3,681 proteins from 18 species. Most of the general
results were similar to those of the first edition, however the top performers of
the second edition outperformed the top performers of the first edition. This
indicates an improvement over time for protein function prediction methods.
However, it has to be taken into consideration that the increase of available
data in databases such as SwissProt [55] leads to better training of prediction
methods, and more information to be used for predicting protein sequences.
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The first edition of CAFA contained detailed information on the techniques
used for predictions by each team. Looking at the top five competitors in this
edition, we get a varied list of techniques used:

1. Jones-UCL: profile-profile alignments, sequence properties,
protein interactions, gene expression, literature, machine
learning, orthology

2. Argot2: sequence alignments, sequence-profile alignments
Pannzer: Sequence alignments, profile alignments, orthology,
paralogy [231]

4. ESG: sequence alignments [232]

5. PDCN: profile-profile alignments, sequence-profile alignments
[233]

In conclusion, BLAST-based protein annotation, which is still considered an
acceptable method of GO term annotation by many, is shown to be vastly
outperformed by state-of-the-art prediction methods and should not be used
directly for these kinds of purposes. Because of its scale and competitiveness
any functional genomics research should be utilizing one or more of the top-
performing methods in CAFA.

139



Figure 1: A workflow of different steps in omics research for cell factories, and
how they are interconnected by protein function annotations. 1) High-
throughput annotations form the core for any further research, but is limited
in its usage. 2) Manual curations improve upon these high-throughput
annotations, providing the first detailed metabolic map. These curated
proteins can be used as a template for future high-throughput annotations of
other species. 3) The manual curations are used to create a genome-scale
metabolic model of the organism, describing the metabolic reactions using
mathematical equations. These can be used to form in silico driven hypotheses
for metabolic engineering experiments. Removing, introducing, or over
expressing genes in the model gives more information on the protein
functions, which can be used to update the manually curated proteins. 4)
Metabolic engineering experiments are done to test the hypotheses. These lead
to new strains of the organism. Characterization of the changes introduced by
removing, introducing, or over expressing genes validates its function. These
validated functions can be used to improve the genome-scale metabolic model,
and as a template for future high-throughput predictions.
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Merging high-throughput annotations with CrowdGO

As discussed in the introduction, in an ideal case scenario the GO terms of
several prediction tools are combined to form a more accurate and complete
representation of protein functions. The CAFA results show that from the top
five performers, none of them use the same combination of techniques. This
implies that there are vast improvements to be gained from combining the
predictions of different methodologies, as they might be complementary to
each other. For this purpose, chapter 4 describes CrowdGO: a tool able to
merge the predicted GO terms from different prediction tools, resulting in
significantly improved GO annotations. In chapter 5 and 6 we used two of the
top performing methods of the most recent CAFA: FFPredz from the Jones-
UCL team, and Argot2. To supplement them, we used the widely used
prediction tool InterProScan, which works with sequence-profile alignments,
shown to be a top performing technique in CAFA. The predictions of these
methods were merged with CrowdGO. This has led to significantly more
accurate predictions (chapter 4, figure 3), and we further used this way of
protein function annotation in both chapter 5 and 6 for functional genomics.

Shortcomings of high-throughput annotations

However, high-throughput prediction methods are limited. These GO term
predictions are often very general, or in low amounts. Their predicted GO
terms are either shallow or have a low coverage. For example, GO:0016298
represents any lipase activity, and has ten directly related child terms, such as
triglyceride lipase activity and phospholipase activity. In most cases, the GO
term for lipase activity will be predicted instead of one of the more downstream
terms. As a result, most high-throughput annotations can only be used as a
general guideline for the function of a protein. Because CrowdGO merges GO
terms from other prediction methods, it has the same limitation.

A straightforward solution for getting more specific GO terms is by improving
the input predictions for CrowdGO. New CAFA:2 predictors outperformed the
top predictors of CAFA1, and during the end of my thesis improved versions of
Argot(2.5) and FFPred(3) became publicly available. The first improvement to
be made is to use the top-performers of the second CAFA edition and see if
with this input CrowdGO is able to predict more specific GO terms. Also, the
enzyme prediction tool EnzDP became available. This is a prediction method
specifically for predicting enzymes, resulting in highly specific enzyme
annotations. Applying EnzDP on the oleaginous yeast Cutaneotrichosporon
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curvatus from chapter 5 resulted in an overlapping prediction of 75% with the
enzymes involved in the manually curated triacylglycerol synthesis pathway
(Supplementary Table 1), which is a high recall for high-through methods.
Because we are mainly interested in enzymes for our metabolic research,
EnzDP is an interesting option.

Another thing to take into account is that most high-throughput methods use
SwissProt proteins as a reference for their predictions. For example, CrowdGO
uses a training and test set derived from SwissProt proteins to train its
parameters on. Because SwissProt is exclusively manually curated it contains a
relatively low amount of proteins compared to for example the high-
throughput annotated TrEMBL database. This means that a training and test
set for CrowdGO contains a limited amount of proteins, consisting of
predominantly a select few species: humans and other mammals,
Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana,
Oriza sativa, and various bacteria. These lead to a biased set of proteins used
for the testing of CrowdGO and other protein function prediction methods. As
such, while CrowdGO performs well given the circumstances of chapter 4, it is
not a given that it will perform as well on the proteins of non-model species
such as microalgae, which are not represented in the top 50 SwissProt species.
Additionally, because CrowdGO works largely based on pattern recognition of
training data derived from SwissProt, there could be a chance that it has a hard
time correlating patterns of non-model species to highly specific GO term
predictions.

Hopefully in the future predicting highly specific GO terms will become more
consistent. However, high-throughput predictions currently are only
applicable for a general overview of an organism’s metabolism and function
enrichment analysis, if expression data is available. For any further analysis,
the high-throughput annotations will most likely be too shallow, inaccurate,
and incomplete.

Step 2: Biocuration of protein annotations

The next step in the research for microalgal cell factories is functional
genomics through manual curation of proteins involved in a microalgae’s
metabolism. Using high-throughput predictions we are able to get most of the
conserved metabolism of microalgae, due to sequence similarity with
experimentally characterized proteins of Arabidopsis thaliana. However, most
microalgal metabolic proteins do not have well-characterized homologous
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proteins. This subset of proteins should be manually curated. For this step, the
high-throughput annotations are an excellent starting point, especially if they
are relatively accurate to begin with.

Step 2.2: Using CrowdGO in a biocuration pipeline

The most well-known database of manually curated proteins is SwissProt, part
of the UniProt database. As discussed in the introduction, SwissProt uses an
extensive pipeline for the manual curation of its proteins (chapter 1, figure 2).
This database is regarded as the gold standard for protein functions and is used
by most prediction methods including CrowdGO. However, its protein
curation is a slow and laborious process, as is reflected by comparing the
number of proteins to those of the non-curated UniProt TrEMBL database: 550
thousand proteins in SwissProt against 115 million in TrEMBL. Because of this
reason, we implemented CrowdGO in a manual curation pipeline, in addition
to BLAST, PFAM, and HMMER searchers for the curation of 1,700 proteins in
chapter 5 and 6. The annotation process of the 700 proteins in chapter 5 took
the equivalent of two weeks for one person. Additionally, the manually curated
proteins were used to fully characterize triacylglycerol (TAG) synthesis of
Cutaneotrichosporon curvatus, with only one enzyme initially missing. This
reflects a high and accurate coverage of manually curation using this pipeline.

In chapter 6 we biocurated a 1000 proteins of Botryococcus braunii in a similar
manner. However, microalgae have a complex genomic architecture, and
complicated sequencing efforts are required to assemble their genomes with
high quality. Part of the genomics study of SPLASH was to create a high-quality
genome and gene set of B. braunii. This wasn’t possible before a large amount
of long read sequencing was done, using PacBio and HiSeq sequencing.
Furthermore, gene curation was done using the widely used MAKER tool but
required extensive biocuration by overlaying RNA IsoSeq sequences on the
genome, and visually inspecting and correcting these genes in CLC workbench.
The process of attaining a high-quality genome for Botryococcus braunii
CCALA78 and AC761 and their respective gene sets took place over the entire
duration of the SPLASH project. While we managed to achieve a high-quality
genome for B. braunii, the majority of other microalgae have lower quality
genomes. Additionally, the phylogenetic tree we constructed in chapter 6
figure 2 shows B. braunii species are not closely related to extensively studied
microalgal model species such as Chlamydomonas reinhardtii, Volvox carteri,
or Ostreococcus taurii. This means we did not have a well-curated genome to
use as a reference for the manual curation of proteins. Due to the lack of
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comparative genomics this manual curation process was slower than that of C.
curvatus, resulting in two people curating the protein functions for a month to
achieve the same accuracy as for those of C. curvatus.

Incorporating CrowdGO in biocuration

For the foreseeable future the SwissProt database will likely be the gold
standard [55], and it is unlikely they will adopt our manual curation pipeline.
However, UniProt has eight on-going biocuration projects for specific
organisms [234]. Cooperation with the UniProt consortium to start a
microalgal biocuration project would be a tremendous boost to the study of
microalgae, and efforts should be made from the microalgal community to
start such a project. In this case, the manual pipeline used for the curation of
Botryococcus braunii metabolic proteins can be used as a starting point for
such a project. Botryococcus braunii might not be the ideal representative for
microalgae as a UniProt biocuration project, however their proteins can be
incorporated for other oleaginous microalgae. For example, the manually
curated B. braunii proteins for the non-menavolate and GDP-L-Fucose
synthesis can serve as a conserved reference to other oleaginous microalgae. A
more feasible species to adopt for a microalgal biocuration project should be
easier to manipulate in the wet-lab for the purpose of any required validation
experiments. One species that comes to mind is Chlamydomonas reinhardtii
[156], and another one is the oleaginous Nannochloropsis gaditana [235] which
due to its properties might reflect the interest in microalgae better.

One way SwissProt can benefit from the work in this thesis is by the annotation
of TTEMBL proteins [55] using CrowdGO. The SwissProt curation pipeline uses
TrEMBL proteins as a starting point, and therefore more and better
information on their function will improve the accuracy and speed of curation.
TrEMBL proteins with existing GO term annotations can be updated by
merging them with CrowdGO, or the entire database can be revamped de novo
using a standard set of prediction tools such as InterProScan [61] and selected
CAFA methods, and merged using CrowdGO as described in this thesis. Given
the significant increase in accuracy, there is no downside to applying the tool.

In conclusion, CrowdGO can play a positive role in the biocuration of yeast
and microalgae, as shown in chapter 5 and 6. Biocuration of these proteins
has led to an increased resolution of metabolic information on these species.
Finally, if third party manual annotations are fed back into protein databases
such as SwissProt, they can serve as reliable blueprints for the high-throughput
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annotation of other proteins. Currently, all high-throughput annotations are
based off of SwissProt proteins so any extensions to this database will increase
the usability of high-throughput prediction methods.

Step 3: Constructing a genome-scale, constraint-based
metabolic model

There are several

Qualitative Quantitative>

types of models used
to describe microalgal
metabolism. Lenka et
al describes the major

types used so far in

th taboli
Network Constraint-based Dynamic ¢ metabolic

Modeling Modeling Modeling

modeling of
microalgae [1]. These

Figure 2: Network analysis, flux balance analysis, and kinetic ~ can  be  described
modeling in a schematic overview from qualitative modeling using qualitative

to quantitative modeling. Adapted from [1]. modeling; a

representation of
metabolism mostly by visualization and concepts using little to no
mathematics, and quantitative modeling: a representation of metabolism
using one or more equations. Figure 2 shows how these different types of
models fall on the qualitative to quantitative scale.

Network modeling can be done using topological network or graph analysis.
These forms of modeling describe the interaction between proteins in the
network, and their place in the network. While these models are relatively easy
to interpret, they provide little prediction power as to metabolic flows of the
organism. For splash we use topological network modeling to describe
hydrocarbon and polysaccharide production of Botryococcus braunii (chapter
6).

Constraint-based models are representations of a biological system in a
stoichiometric matrix, with each row representing a metabolite and each
column a reaction (chapter 2, box 2). Such a model, as mentioned in the
introduction, consists of a set of algebraic equations describing the
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stoichiometry of the metabolic reactions of an organism, up to genome-scale.
A detailed metabolic map of an organism provides a blueprint for creating a
genome-scale metabolic model (GSMM) [109, 124, 236]. This is useful for
predicting metabolic fluxes under given specific operating conditions and can
be used to propose gene knock-outs, knock-ins, and over-expressions.

One technique to analyse constraint-based models is flux balance analysis.
Flux balance employs two constraints: the metabolism is assumed to be steady
state, meaning no production or degradation of intermediate compounds is
possible, and each reaction’s flux is given an upper and lower bound depending
on thermodynamics and substrate availability. One or more reactions are then
set as the objective function, such as triacylglycerol production. With the
matrix, the constraints, and the objective function, we now have a linear
programming problem, for which the optimal solution is found. Flux balance
analysis is the most widely used modeling approach in microalgae, mostly in
the form of genome-scale metabolic models. Several of such models exist,
mostly for Chlamydomonas reinhardtii as described in chapter 2.

Finally, dynamic models describe the metabolism of an organism using rate
equations and are generally represented in the form of an Ordinary Differential
Equation (ODE), or a series of ODE’s in the case of multiple reactions. These
dynamic models are able to describe the metabolism in much more detail than
with network or constraint-based models, however they are highly dependent
on accurate knowledge of the reaction order and rate constants. Due to their
mathematical complexity and necessary input data, dynamic models are
generally used to describe small biological networks in high detail. One
example is Tevatia et al who describes the relation between growth, nitrogen
levels, and lipid accumulation in Chlamydomonas reinhardtii using a dynamic
model [237].

Because of the widespread availability of stoichiometric data, the direct
relationship between protein functions and their metabolic reactions, and the
questions that flux balance analysis can answer, genome-scale, constraint-
based metabolic models are effective to broadly describe the metabolism of a
microalgae.

Step 3.2: Improving protein annotations by using Genome-Scale
Metabolic Models

In the genomics research of chapter 5 and 6 we don’t create a GSMM to
further study the species. However, it would be the logical next step for both
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studies. There are a few automatic GSMM generators, which provide models
are relatively correct in a general sense but require manual curation to provide
more detail. Even so, these automated GSMM’s act as a good starting point for
further research. Importantly, these automatic GSMM generators can aid in
the annotation of an organism’s functionome by identifying which enzymes
and transporters are missing. If flux balance analysis can’t solve the model it
means there are enzymatic or transporter reactions missing, indicating there
is a gap in the metabolic map. Additionally, if the in-silico phenotype does not
match that of the wet-lab, it might also be due to a missing protein or pathway.
But in this case, it could also be due to other factors such as wrong equations
in the model. In the case of a gap in the model all proteins should be checked
for hints of any protein able to fill this gap.

Step 4: Creating new strains

A thorough high-quality genome analysis can lead to actionable knowledge to
improve product formation. Given the hypotheses generated by the use of the
GSMM, genome engineering techniques such as CRISPR-CASg can be used to
replace, over express, or introduce new genes in an organism to create strains
with better industrophilic properties. These strains are hopefully commercially
viable for the production of interesting compounds. Even if not, characterizing
the new strains and the effect of the engineered genes provides valuable
information on protein function and any metabolic changes. Iteratively, these
engineering experiments can be used to further inform the GSMM, resulting
in an iterative Design-Build-Test-Learn cycle as discussed in the introduction.
Furthermore, any highly reliable information gained on protein function
should be documented in a FAIR manner (section 4). By documenting the
information on protein function, metabolic engineering experiments improve
the performance and usability of high-throughput predictions (step 1) for other
species by acting as a reference, completing the circle of protein function
annotations.

4 - Microalgae as protein farms

4.1 The potential of microalgal protein farms

Microalgae are not the only oleaginous eukaryotes with a lot of potential, and
we are not sure if them being a host organism for commercial purposes is
optimal due to their metabolic constraints [42]. To make microalgae viable as
cell factories, many metabolic constraints need to be circumvented by
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metabolic engineering, including potentially its photosynthesis mechanics.
Using other organisms as cell factories are possibly more straight forward,
however, these often don’t have the interesting characteristics of microalgae.
One example is the possibility of Botryococcus braunii to synthesize large
amounts of triacylglycerols and to excrete them, which would mean an easier
extraction process of these lipids compared to organisms that don’t, potentially
reducing the cost of triacylglycerol synthesis. However, Botryococcus braunii
has slow growth and is difficult to maintain in a steady-state condition due to
it living in a community with a vast amount of bacteria [238]. In this case it
would make sense to genetically engineer the genes responsible for B. braunii
triacylglycerol synthesis and excretion to an organism that grows faster and is
easier to main, for example the microalgal model species Chlamydomonas
reinhardthii or a yeast. With an estimated amount of 500,000 to a million
microalgae in the wild [239], they would provide excellent sources as gene
farms.
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4.2 A workflow for mining microalgal proteins

This means that large-scale comparative genomics would be an excellent way
to study microalgae, but also other oleaginous organisms such as fungi or
cyanobacteria as they could potentially be hosts for microalgal genes. This
would allow for the identification of key proteins in both interesting metabolic
and non-metabolic proteins, and the cross-linking between microalgae and
other organisms. Figure 3 summarizes a mock up pipeline for this approach:

1) Select an oleaginous organism of interest.

2) Retrieve the proteome of the organism.

3) Use CrowdGO to high-throughput annotate the proteome.

4) Manually annotated the proteome of the species.

5) Perform differential expression analysis on as many growth conditions
as possible.

6) Gather phenotypic data.

7) Use point 3, 4, and 5 to summarize everything in biological pathways.

8) Store everything in a database for oleaginous organisms. This database
is the starting point for hypothesis creation for new strain
development using synthetic biology.

9) Retrieve and compare the phenotypic traits of the oleaginous
organisms.

10) For the phenotypic traits of interest, select the related proteins and
their differential expression analysis.

1) With this information, there is now a selected subset of proteins and
their meta data related to a phenotypic trait.

12) Use this subset of proteins to create new strains using CRISPR-CASg
[41, 240]. Feed its phenotypic data back into the database, and in the
optimal case, use the newly developed strain to commercialize a
product such as hydrocarbons or polysaccharides.

A comparative genomics pipeline like this is ambitious and poses a few
challenges. Different data is handled by different people at different times. This
means that there are a multitude of different assembly, gene prediction,
protein function prediction, and other analysis strategies used. Furthermore,
existing and future data for different species and projects use different
environmental conditions and differ in quality. Finally, analysing vast amounts
of big data requires computational methods that are able to handle and store
this data in an efficient manner.
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B

Figure 3: An overview of a mock-up comparative genomics pipeline used to harness
comparative genomics for new oleaginous strain development. A) Input data
required for the oleaginous organism database, B) utilizing the oleaginous organism

database.
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4.3.1 Standardization for comparative genomics

One challenge of large-scale comparative genomics research, as described in
Figure 3, is the different ways data sets are generated, and the different ways
these data sets are analysed. Differences in data generation and analysis
produce small to large differences in the results, and most importantly,
introduce different errors. These differences make it hard to distinguish
between actual biological differences and those introduced by different tools
and methodologies. In order to facilitate comparisons between data sets it is
necessary to standardize the procedures for data acquisition and analysis as
much as possible and be transparent about these procedures. For transparency,
the FAIR (Findable Accessible Interoperable Reusable) data principles should
be followed [241]. The FAIR principles are guidelines on how to store all
generated biological data. This means the data should be stored together with
its metadata such as where the samples are from, how the sequences were
sequenced, and what data analysis tools were used. Following these principles,
analysis and microalgal projects in the future will be a lot easier to perform,
and unnecessary research or data generation can be avoided. An example of a
pipeline using standardization and FAIR principals is SAPP, a Semantic
Annotation Platform with Provenance. This pipeline provides automated
structural and functional annotations given a genome, and stores these in a
FAIR manner. It is built on the GBOL ontology, a standardized RDF data
structure built specifically to make big data interoperable. This has made it
possible to, for example, perform comparative genomics on 432 Pseudomonas
strains [242], and to use protein domains as a fast alternative for sequence-
based similarity approaches on functional genomics [243].

The case of the workflow described in Figure 3 requires standardization in the
following aspects: genome assembly and error correction, gene prediction,
protein function prediction, differential expression analysis, and databases
from which to retrieve metabolic information.

4.3.2 Assembly

Assembling a genome is the first aspect of any genomics research, and the
hardest to standardize. Due to the differences in next generation sequencing
technologies used [244], for example Illumina , PacBio, or 10x sequencing, or
due to differences in cultivation and growth of the to-be-sequenced organism,
there is no one-rules-all assembly tool out there. There are short read
assemblers, long read assemblers, and hybrid assembler that combines long
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reads with short reads. Additionally, there are de novo assemblers and
reference-based assemblers. On top of that, some assemblers might work
better depending on the organism or the quality of the sequencing data.
Therefore, it is almost impossible to standardize genome assembly.

What can be done, however, is standardize the quality of a genome or
transcriptome assembly to be used in a comparative genomics analysis.
BUSCO (Benchmarking Universal Single-Copy Orthologs) is a tool developed
to assess the quality of a genome or transcriptome assembly based on its ability
to find single-copy orthologous genes that are present in all of a certain
taxonomic class [245]. It de novo predicts genes based on the given genome or
transcriptome assembly, and returns a percentage of completeness, which is
the amount of single-copy orthologs genes it was able to predict given the
assembly. In the case for green algae, the orthologous genes are based on the
embryophyta, a clade of green plants. In the nearby future it would be useful
to create an orthologous group of BUSCO proteins for green microalgae. All
genome and transcriptome assemblies to be included in a large-scale
comparative genomics study should pass a certain threshold of BUSCO
completeness, for example 9o% or 95%. A lower amount of completeness
means an inability to predict a large amount of proteins correctly.

4.3.3 Gene prediction

The next step is gene prediction. When comparing the metabolism of species
on a genetic level we are comparing their proteins and their functions, and how
these interact with other proteins and compounds. Therefore, gene prediction
is essential. However, even the best gene prediction tools make many errors
that can alter the length, reading frame, and hypothetical function drastically.
Luckily, unlike with genome assemblies, gene prediction can mostly be done
using the same tool. There are only two exceptions: prokaryotic genes are
predicted differently than eukaryotic genes, and fungal genes use different
parameters for gene prediction than other eukaryotes. For the case of this
pipeline, where we are primarily interested in the gene prediction for
microalgae and some fungi, it is possible to predict all genes using either
BRAKER [246] or MAKER [247], which are shown to be state-of-the-art gene
prediction methods. It is even possible to take the combined prediction of
genes to get a more complete gene set, but which might introduce a few more
false positive predictions.
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4.3.4 Function prediction

After gene prediction and translation to proteins, the next step is protein
function prediction. It is important that the best function prediction methods
are used and that these are standardized cross-species, as these predictions are
highly differential between methods as shown in chapter 4 and 5.

4.3.5 Differential expression analysis

Apart from using the same differential expression tool and settings for every
to-be-compared gene set, it is also important to use the same pre-processing
tool to generate the input data. In the case of differential expression analysis
this concerns aligning reads to the genes. This can be done with TopHat2 [248],
Bowtie2 [249], or STAR [250]. Two standardly used differential expression
analysis packages are EdgeR [200] and DEseqz [251].

4.3.6 Databases from which to retrieve metabolic reactions

The final step of the workflow described in Figure 3 is overlaying the
differential expression on pathways. These pathways and other metabolic
information can be retrieved from reaction and pathway databases, such as
KEGG [69], WikiPathways [71], MetaCyc [72], and more. However, due to the
differences in these databases, which are often contradictory, and missing data
in some of them, it might be better to include a few databases in order to
include as much data as possible. Because the step of analysing differential
expression data overlaid on pathways is mostly done without the aid of any
further tools, the user can make a well-informed decision on which reactions
and pathways to include from which databases.

Concluding remarks

This thesis shows some of the challenges facing microalgal cell factories,
especially those of functionally annotating proteins. While I have made steps
on this topic, there are still many improvements required to be made on a wide
array of challenges if microalgal biotechnology research is to come of age.
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Summary

Chapter 1 provides the background for the thesis. In it, I provide a short
overview of what biotechnology is and how it has been utilized it for thousands
of years. I then address how modern biotechnology has evolved over the past
few decades. Its progress has been triggered by the discovery of nucleic acids
and marked by a focus on genetic understanding of cell and organism function
and on the subsequent manipulation to ultimately benefit society in one way
or another. Furthermore, computational biology has been increasingly
important to determine the success of biotechnological research, in for
example an anti-malarial drug- producing yeast. However, for microalgae,
which are very promising organisms for biotechnological applications, there
are essentially no successful commercialized examples of modern
biotechnology. The chapter further discusses the importance of
computationally predicting protein functions and its role in bioinformatics
and systems biology research, concluding that this is one of the challenges for
microalgal biotechnology. This topic is discussed in all chapters of this thesis,
as its overarching goal is to develop and deploy tools and methodologies that
lead to increase our understanding of microalgae as cell factories.

Chapter 2 is a review on the state of microalgal biotechnology in 2014, of which
the major discussion points are still valid, and how bioinformatics and systems
biology should be used to further microalgal research. It describes the
challenges of microalgal genomics, bioinformatics, and systems biology
research. The chapter addresses a few challenges for microalgae in particular:
a lack of genomic data, a low amount of validated protein functions, and
genome-scale metabolic models largely based off of Arabidopsis thaliana.
Suggestions are made on how to overcome these challenges, by for example
better utilizing bioinformatics methods and databases. Chapter 3 addresses a
specific challenge: the need for accurate annotation of the functions of
microalgal proteins. It exposes the lack of understanding we have of their
protein functions, with a staggering 9o% of their annotations also present in
the distantly related plant Arabidopsis thaliana. Finally, this chapter outlines
areas in which microalgal protein function prediction can be improved. In
Chapter 4, I present CrowdGO, a prediction tool based on the “wisdom of the
crowd” principle for protein function prediction that aims to overcome the
major problem highlighted in Chapter 3. It operates by taking and merging the
existing predictions made by other methods. These merged predictions are
then put through a machine learning algorithm which is trained to recognize
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patterns in these predictions and correlate them to true or false positives.
CrowdGO shows significantly higher accuracy, with a p-value < 2.22e-16, over
existing prediction methods, as well as an improved precision and recall
optimum.

In Chapter 5 deploy CrowdGO to the genomics of the oleaginous yeast
Cutaneotrichosporon curvatus, which thus serves as a real biological test case
for the method. Comparisons between the CrowdGO annotated C. curvatus
proteins to the existing ones of a related yeast showcases the potential of
CrowdGO. GO enrichment analysis of C. curvatus between transcriptomes of
normal growth conditions and nitrogen starved conditions shows cell
maintenance functions enriched during the first, and stress functions enriched
during the latter. This is in line with what one would expect for an oleaginous
eukaryote and reassures us that the CrowdGO annotations are reliable. The
CrowdGO annotations are further used in a manual annotation pipeline, which
we used to manually curate over 700 metabolic C. curvatus proteins. These are
used together with differential expression analysis to characterize
triacylglycerol synthesis during nitrogen starvation conditions. Only one
enzyme was missing after the first round of annotations, displaying a high
recall for enzymes when using the manual annotation pipeline.

In chapter 6 we study the comparative genomics between different
Botryococcus braunii strains, an oleaginous eukaryote that either makes large
number of polysaccharides or hydrocarbons based on the strain. In this
chapter, all methodologies discussed or developed in the previous chapters are
used to try and identify the key genetic differences between the two strains
that lead to polysaccharide or hydrocarbon synthesis. We use CrowdGO to
annotate all the proteins and perform manual annotation on a thousand
metabolic proteins. These are used in conjunction with quantitative
proteomics analysis of several conditions including light and dark, different
nitrogen levels, and different cell phases. By combining the manual
annotations and the proteomics analysis, we were able to characterize several
key pathways including the non-mevalonate pathway, fucose synthesis
pathway, and the TCA cycle. Analysis of these pathways reveals key differences
in the expression of enzymes that are likely to correspond to polysaccharide or
hydrocarbon synthesis. Apart from revealing some key features about
Botryococcus braunii, this chapter serves as a template for future large-scale
microalgal research.
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Chapter 7 is a general discussion on the thesis. In it, I discuss how the work in
this thesis relates to the SPLASH project for microalgae. Furthermore, I discuss
how microalgal annotations can still be improved through the use of various
stages of bioinformatics, systems biology, and synthetic / metabolic
engineering research. Finally, I discuss how microalgae have potential as
protein farms, and how it might be possible to unlock this potential.
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