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Anthropogenic activities during the last century have had a profound impact on 

greenhouse gas balances at a global scale. One of the clearest consequences of the rapid 

increase of greenhouse gas emissions is the rise of the mean global temperature (IPCC 

2014). Quite some plant species are responding to a warming climate by expanding their 

ranges to higher latitude and altitude regions within continents (Chen et al. 2011). 

Similarly to introduced exotic species that become invasive, the arrival of range-expanding 

plant species in recipient ecosystems may have consequences for the composition and 

functioning of ecological communities, both of native plant species and soil communities 

(Morriën et al. 2010). In this thesis, I study plant species that expand their range as a 

response to current global warming and I focus on how these species interact with the 

abiotic soil environment, the soil microbial communities, and how they influence soil 

community functioning compared to native plant species. I will especially focus on the 

impacts of range-expanding plant species on litter decomposition and soil nutrient 

cycling, which regulate ecosystem carbon balance and the provisioning of nutrients for 

plant growth. 

 

Climate change and plant responses 

Global biochemical cycles have been profoundly modified by human activities (Vitousek 

et al. 1997), with important consequences for the climate system. The concentration of 

carbon dioxide in the atmosphere has now increased by 40% with respect to pre-industrial 

times. The increase in greenhouse gas emissions, mainly derived from fossil fuel 

emissions, has triggered an increase on global average surface temperatures of 0.6oC over 

the 20th century (IPCC 2014). This temperature increase varies locally and has especially 

been prominent in areas of high latitudes (Fig. 1.1). All projected climate scenarios predict 

that global temperature will continue to rise during the 21st century, which may further 

increase carbon dioxide emission from natural ecosystems (Crowther et al. 2016). 

Plant species can respond to climate warming in different ways. Plants can undergo 

genetic and phenotypical adaptation induced by climate warming. Adaptation can result, 

for example, in phenological changes such as earlier flowering time, or longer growing 

season (Peñuelas and Filella 2001, Cleland et al. 2007). However, adaptation processes in 

the future may be critically limited by the rapid rates at which the climate changes and by 

decreased gene flow between fragmented habitats (Davis and Shaw 2001, Jump and 

Penuelas 2005). Thereby, climate warming can also lead to local extinctions of plant species 
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that are unable to adapt or disperse (Thomas et al. 2004). Wild plant species can also 

respond to a warming climate by expanding their ranges to higher latitude and altitude 

regions within continents (Parmesan and Yohe 2003, Lenoir et al. 2008, Chen et al. 2011). 

It has been estimated that the average distribution of species has shifted polewards at a 

rate of 16.9 km per decade (Chen et al. 2011). Due to the increase of temperature in areas 

of high latitude, especially in the northern Hemisphere (Fig. 1.1), habitats have become 

more suitable for thermophilic plant species. For example, in the Netherlands, the number 

of plant species from warmer climatic regions has increased substantially during the last 

decades (Tamis et al. 2005, NDFF 2018). Even though the introduction of some of these 

species may have been induced by human activity, natural range expansion and the 

spread of plant species is likely to be enabled by warming climate. 

 

Fig. 1.1. Map of the observed surface temperature change, from 1901 to 2012 (source: IPCC, 2014). Trends 

have been calculated where data availability permitted a robust estimate (i.e., only for grid boxes with greater 

than 70% complete records and more than 20% data availability in the first and last 10% of the time period), 

other areas are white. Grid boxes where the trend is significant, at the 10% level, are indicated by a + sign. 

 

Plant species that expand their range within continents establish in ecosystems outside 

their native range. Similarly, plant species that have been introduced to other continents 

also establish outside their native range. In the ecological literature, the latter are 

traditionally referred to as (introduced) exotic species (Keane and Crawley 2002). While it 

can be argued that plants that expand their range within a continent into previously un-

colonized higher latitude areas are exotic species as well, I will refer to them as “range-



Chapter 1 
 
 

12 
 

expanders” in this thesis. In contrast, I will use the term exotic species to refer to studies 

that have investigated the causes and consequences of intercontinental plant 

introductions. Numerous studies have examined successfully established exotic plants 

that become invasive and induce important changes on the composition and functioning 

of the invaded ecosystems (Ehrenfeld 2010, Vilà et al. 2011, Pyšek et al. 2012). However, 

little is known about the manner that range-expanding plant species may affect the 

composition and functioning of ecosystems in the new range. 

 

Plant-soil interactions 

All plant species, including introduced exotic plants, can induce changes in the soil biotic 

and abiotic components that affect their own performance and the performance of 

subsequent plant generations (Wardle et al. 2004, Bezemer et al. 2006). This phenomenon 

is known as plant-soil feedback (Bever et al. 1997). Individual plants and soil communities 

interact with each other in a direct or indirect manner, and the outcome of these 

interactions can have positive, negative or neutral feedback effects to plants. According to 

the general framework proposed by Wardle et al. (2004), soil communities can affect plants 

in a direct manner when soil organisms associate with living plant roots or in an indirect 

manner when soil organisms that consume dead plant material provide the nutrients 

needed by plants to grow (Fig. 1.2). Mechanisms of direct plant-soil interactions include 

pathogenesis, herbivory or symbiotic-mutualistic relationships. The association of 

pathogens, herbivores and symbiotic mutualists with a host plant has immediate effects 

to its performance. In contrast, the soil decomposer subsystem transforms organic plant 

material into inorganic plant-available nutrients via litter decomposition, thereby affecting 

plant performance indirectly. Besides the strong influence of climatic conditions on 

decomposition processes, plant traits and soil decomposer communities have been shown 

to regulate decomposition rates in soil (Cornelissen et al. 2004, Cornwell et al. 2008, 

Bradford et al. 2017). These indirect interactions mediated by plant litter and the 

functioning of decomposer communities are essential for understanding ecosystem 

productivity (van der Heijden et al. 2008) and the soil carbon balance (De Deyn et al. 2008, 

Sayer et al. 2011).  
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Fig. 1.2. Conceptual schematic of plant-soil interactions mediated by the rhizosphere and the plant litter 
pathways (after Wardle et al. 2004). Plants influence rhizosphere communities as they grow (black arrow), 
which can affect plant growth via direct effects (solid red arrow). When rhizosphere communities are 
dominated by enemies, direct effects will be negative for plant performance. When rhizosphere communities 
are dominated by mutualistic symbionts, direct effects will be positive for plant performance. After plants 
senesce, death aboveground (AG) and belowground (BG) plant material is left in the soil. Litter quantity and 
quality influences the soil decomposer community and decomposition activity (purple arrow, top). Through 
decomposition activity, decomposer communities mineralize and mobilize nutrients in plant litter and, thus, 
affect plant performance indirectly (dashed red arrow). The rhizosphere community may also influence the 
decomposer community and decomposition activity (solid purple arrow, bottom) and, thereby, affecting plant 
performance indirectly (dashed red arrow). Note that among decomposer microorganisms there can be 
facultative saprophytic pathogens, which can directly affect plant performance as litter decomposes. 

 

Unraveling mechanisms underlying plant-soil feedbacks is important to understand plant 

community dynamics, including dynamics of exotic plant species, during invasions 

(Klironomos 2002, van der Putten et al. 2010, Dostál et al. 2013, Dostálek et al. 2016). In this 

way, research efforts trying to elucidate the underlying mechanisms of invasion success 

have focused on understanding the interactions between exotic plants and native plant 

and soil communities. It has been suggested that range-expanding plant species may 

undergo shifts in the composition and structure of their associated above and 

belowground communities as they expand their range (van der Putten 2012). A main 

reason for this asynchronous range expansion can be that plants and their associated 

organisms have different requirements and rates of dispersal (Berg et al. 2010). 
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Consequently, and similarly to intercontinental invasive species, range-expanding plants 

may then be subjected to different plant-soil interactions in the new range as compared to 

the original range which can have consequences on their establishment and performance 

(Van Grunsven et al. 2010).  

 

Plant-soil interactions in exotic plant species 

Biotic interactions between exotic plants and soil organisms in the invaded ecosystem can 

facilitate or control the spread of the exotic plant species (Keane and Crawley 2002). Exotic 

species can experience enemy release when their specialist enemies are not present in the 

invaded range and they are not recognized by the enemies present in the invaded range 

(Mitchell and Power 2003, Verhoeven et al. 2009). As a result of this evolutionary 

mismatch, exotic plant species can have an advantage over native species in the new range 

when native species experience more negative effects of above and belowground enemies 

(Andonian et al. 2011). Furthermore, exotic species that become invasive have been shown 

to gain competitive advantage by the release of phytochemical compounds that are novel 

to the invaded community and can have allelopathic, defensive or antimicrobial properties 

(Callaway and Ridenour 2004, Cappuccino and Arnason 2006). On the other hand, the 

native plant and soil communities in the invaded range can also exert biotic resistance to 

the exotic species, thereby reducing their performance (Levine et al. 2004). However, 

because most published studies to date focus on exotic species that have become invasive 

in their new range, relatively little is known about mechanisms of biotic resistance. 

Exotic plant species can also affect the soil community by providing litter and root 

exudates that differ from those of native plants. As plants grow, they release root exudates 

to the rhizosphere soil surrounding their roots. Root exudates are composed of numerous 

chemical compounds with a wide array of functions (Walker et al. 2003, Philippot et al. 

2013). For example, root exudates can act as signaling molecules that can interfere in direct 

plant-soil interactions because they may attract or repel plant-specific pathogens or 

symbionts (Paterson et al. 2007, Badri and Vivanco 2009). However, root exudates can also 

play a role in indirect plant-soil interactions by stimulating litter and organic matter 

decomposition in the soil (Cheng et al. 2003, Kuzyakov et al. 2006, de Graaff et al. 2010). 

Thus, root exudates contribute to mobilize mineral nutrients that can be acquired by plants 

again. Because root exudation seems to be plant species-specific (Badri and Vivanco 2009, 

Philippot et al. 2013), root exudation may be a pathway by which exotic plant species affect 
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soils differently than natives (Bradford et al. 2012). Differences in litter chemistry and litter 

quantity between exotic and native plant species can also affect soil decomposer 

communities and decomposition rates in the invaded ecosystems. The degree of 

recalcitrance (e.g. lignin or dry matter content) and the presence of secondary metabolites 

in the litter are strong drivers of decomposition rates (Cornwell et al. 2008, Freschet et al. 

2012, Chomel et al. 2014). Non-native plant species, both in the case of exotics and range-

expanders, have been shown to have more unique and novel metabolites in their tissues 

according to a number of studies (Cappuccino and Arnason 2006, Macel et al. 2014). 

Because of these differences, they may affect decomposition and decomposer communities 

in the soil differently. Such effects may remain in soil as legacy effects that can influence 

plant-soil feedbacks (Ehrenfeld 2003, Meisner et al. 2012).  

The mechanisms of plant-soil interactions that enable exotic species to perform well in 

other continents might be the same that also influence range-expanding plant species that 

establish in new ranges within continents. For example, range-expanding plant species 

have been shown to perform better in soils of the new range than in soils of the original 

range, which may indicate enemy release during range expansion (Van Grunsven et al. 

2010, Van Nuland et al. 2017). Some studies have also shown that, within the new range, 

range-expanding plant species experience less negative pressure from soil communities 

than related native species (van Grunsven et al. 2007, Engelkes et al. 2008, Morriën et al. 

2012, Morriën et al. 2013). These results suggest that the establishment and performance 

of range-expanding plant species in the new range may be promoted by low enemy 

pressure. Yet, we have a poor understanding of how range-expanding plant species 

interact with decomposer communities in the soil. Nevertheless, indirect interactions via 

decomposition play an important role in nutrient provisioning for plant growth and drive 

crucial ecosystem functions such as litter decomposition and nutrient cycling. Therefore, 

in this thesis I examine the functional consequences of range-expanding plant species for 

the soil communities in the new range via indirect plant-soil interactions. 

 

Functional consequences of exotic plant invasions 

Soil carbon and nutrient cycling 

Exotic plants have been shown to alter soil nutrient dynamics (Ehrenfeld 2003). In global 

meta-analyses, exotic plant species appeared to enhance ecosystem primary productivity, 
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carbon and nitrogen pools and fluxes in the soils of invaded ecosystems relative to native 

ecosystems (Liao et al. 2008, Vilà et al. 2011). Empirical studies have found that effects of 

exotic plants can be detected at the level of decomposition rates and enzyme activities in 

the soil (Kourtev et al. 2002b, Allison and Vitousek 2004, Allison et al. 2006). Despite these 

general trends, the effects of exotic plant species on soil processes are not unidirectional 

and can be highly variable. One reason for this may be that the impacts of exotic species 

depend on the characteristic of the site and the plant species compared (Ehrenfeld 2010). 

In that case, local factors of individual invaded sites (such as the identity and the traits of 

the resident plant community, the soil biotic resistance or abiotic factors), may contribute 

to determining the community and ecosystem responses to the introduction of the exotic 

species.  

Feedback effects of plant litter 

Research on plant-soil feedbacks under controlled greenhouse conditions has largely 

focused on legacy effects driven by interactions between ‘living’ plant roots and soil 

communities, whereas less is known about legacy effects driven by litter inputs to the soil 

(Ehrenfeld et al. 2005, Kulmatiski et al. 2008). However, it has been shown that plant-soil 

feedback effects mediated by plant litter can increase the performance of exotic plant 

species over the performance of resident native species (Eppinga et al. 2011, Elgersma et 

al. 2012, Mariotte et al. 2017). In order to have positive effects of litter feedbacks to 

invasion, the litter of the exotic plant species has to alter soil nutrient status and, at the 

same time, the exotic plant species must benefit from this change in soil nutrients more 

than the native species. It is often the case that plant litter from exotic species enhances 

decomposition and, therefore, leads to higher nutrient availability (Ehrenfeld 2003, Allison 

and Vitousek 2004). Besides, exotic plant species seem to grow in soils that have higher 

nutrient content than soil of natives (Sardans et al. 2017) and to be faster and more efficient 

than native plant species during nutrient acquisition (Blumenthal et al. 2009, Liu and van 

Kleunen 2017). Thereby, in fertilized or nutrient rich soils exotic species are more likely to 

become dominant. Altogether, this suggests that exotic plant species may develop positive 

feedback through their litter that enhances their dominance. In the case of range-

expansion, it has been shown that range-expanding plants may not exploit soil nutrients 

better than natives but that they have more nutrient-rich shoot tissues than native species 

(Meisner et al. 2011). Nutrient-rich litter consequently increased decomposition rates, but 

did not inhibit the germination of native plant species (Meisner et al. 2012). However, the 



Introduction 
 
 

17 
 

consequences of plant litter feedbacks on the growth of range-expanding plants beyond 

the seedling stage and in combination with rhizosphere feedbacks remain unclear.  

The role of specialized soil communities 

As plants establish outside their native range, specific interactions between plants and 

their co-evolved above and belowground communities may be disrupted due to the lack 

of these specialized organisms in the new range (van der Putten 2012). Thereby, novel 

interactions with soil organisms may be established in the new range. While empirical 

evidence suggests that both exotic and range-expanding plant species may benefit from 

escaping soil borne enemies or from beneficial soil organisms in the new range (Keane and 

Crawley 2002, Mitchell and Power 2003, Van Grunsven et al. 2010), less is known about 

the role of specialized decomposers. In theory, plants may also lose positive interactions 

with specialized decomposer communities, as the “home-field advantage” hypothesis 

predicts that litter decomposition is accelerated beneath the plant it originates from 

(“home”) than beneath another plant (“away”) due to the presence of specialized 

decomposer communities (Gholz et al. 2000, Ayres et al. 2009a). Although home-field 

advantage effects are highly context-dependent and variable across studies (Veen et al. 

2015b), decomposer communities in the soil have been shown to adapt to the history of 

specific litter inputs (Keiser et al. 2011). It remains unknown whether specialized 

decomposer communities may be lost during range expansion and whether range-

expanding plants may develop specialized communities in their new range over time. Yet, 

interactions with specialized decomposer communities may be important for local plant 

performance as decomposition drives soil nutrient availability locally. Thereby, 

addressing the role of specialist decomposer communities in the context of plant range 

expansion may help to predict the consequences of range-expanding plant species for 

ecosystem functioning in the new range. 

 

Interactions of extreme weather events and plant range-expansion 

Soil microbial communities and soil ecosystem functioning might not only be affected by 

range-expanding plants, but are also subjected to direct impacts of climate change. The 

consequences of individual factors of climate change such elevated CO2, warming and 

drought events on plants and soils have been widely studied (Rustad et al. 2001, de Graaf 

et al. 2006, Fuchslueger et al. 2014). Climate directly influences soil microbial communities 
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and their activity (Waldrop and Firestone 2006a). The physiological traits of the microbial 

communities and their interactions with other soil biota will determine to what extent 

microbial activity is affected by climate change (Allison and Martiny 2008, Griffiths and 

Philippot 2013, Crowther et al. 2015). Soil microbes and their activity can also be affected 

indirectly through changes in plant community composition and plant inputs (Kardol et 

al. 2010, Sayer et al. 2017). Therefore, in order to understand how ecosystems may respond 

to predicted future climate scenarios, it is important to integrate both plant community 

changes and direct climate effects (Bardgett and van der Putten 2014, Classen et al. 2015). 

The arrival of range-expanding plant species to recipient ecosystems at higher latitudes 

and altitudes will modify plant community composition and, thereby, have an indirect 

impact on soil microbial communities and processes by the provisioning of resources. 

Furthermore, projected climate scenarios in the Netherlands predict that drought during 

summer periods will become more recurrent (KNMI 2015). Therefore, the presence of 

range-expanding plant species from typically warmer and drier areas is likely to interact 

with extreme climate events. However, little is known about the effect of such interactions 

on important soil functions, such as litter decomposition and nutrient cycling. 

 

Objectives of this thesis 

In this thesis, my aim is to investigate plant-soil interactions of range-expanding plant 

species that operate through plant inputs to the soil and to determine how these 

interactions compare to those of native plant species in the new range. Therefore, in my 

thesis, I focus mostly on indirect plant-soil interactions, which are mediated by the 

decomposer subsystem. In this thesis, I investigate how range-expanding plant species 

affect soil communities and functions such as litter decomposition and nutrient cycling. I 

aim to determine the role of specialized decomposer communities in range-expanding 

plants and that of plant-soil feedback effects mediated by litter inputs. I also study how 

plant range-expansion interacts with extreme climatic events to modify soil functions.  

 

Study system and experimental approach 

Plant range expansions within continents provide a unique study system to investigate 

how non-native plant species interact with above and belowground communities. A main 

difference with studies about exotic species introduced to other continents is that gradients 
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of range expansion allow the test hypotheses both in the new and native range, because it 

is relatively easy to trace back where these plants originated from and also because there 

are less logistic constraints to do so (Van Grunsven et al. 2010). In Europe, plants that are 

native from the Mediterranean regions expand their range northwards, resulting in the 

arrival of thermophilic plants to the Netherlands, among other regions (Tamis et al. 2005). 

The design of a sampling scheme along this latitudinal gradient of range expansion 

enables to study how communities around range-expanding plants shift along the 

latitudinal gradient and how species perform in both the native and new ranges. 

Throughout this thesis, I pay special attention to the role of plant origin (i.e. range-

expander or native) in indirect interactions. The role of plant origin in the effects of plant 

species in ecosystems has not been explicitly addressed before as, generally, studies have 

been carried out to compare exotic plant species with resident natives that may be more 

or less similar to the exotic species besides their difference in origin. Thereby, in those 

studies several other factors, such as trait differences between compared species, may 

determine the impact of the exotic species, whereas the underlying effect of plant origin 

(native vs non-native) is not known. For this reason, in the experimental approach 

throughout my thesis I used phylogenetically controlled comparisons which allow to test 

the effect of origin in species that are otherwise ecologically similar (Agrawal et al. 2005).  

 

Thesis outline 

In Chapter 2, I analysed plant chemical composition and soil nutrient availability from 

field populations of range-expanders and native plant species both in the expansion and 

the original range. I tested the hypothesis that range-expanding plant species have higher 

nutrient concentrations, both in their leaf tissues and in their associated soils, than native 

species in the new range. These patterns are characteristic in exotic plant species that are 

invasive in other continents (Pyšek et al. 2012, Sardans et al. 2017), and thereby, may be an 

indicator of plant invasiveness among plant species that expand their range within 

continents.  

In Chapter 3, I studied the bacterial communities that assemble in the rhizosphere of 

range-expanding plants and compared them to those of related native plant species. In 

this experiment, I aimed to test the effect of plant origin on bacterial community 
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composition and soil functioning by teasing apart the role of plant traits and the role of 

site-specific differences on soil communities from the role of plant origin. 

In Chapter 4, I investigated plant-soil feedback effects through rhizosphere and plant litter 

legacies of range-expanding plant species and related natives. Here, I incorporated the 

plant litter pathway to plant-soil feedbacks to determine how litter feedbacks contribute 

to the performance of the range-expanding and native plant species in the new range. In 

the feedback phase, I focused both on plant growth responses and on decomposition 

responses of subsequent plant litter to conditioned soils. 

In the last experimental chapter, Chapter 5, I was interested in how plant communities of 

range-expanders sustained soil functioning in terms of litter decomposition and how these 

functions were affected in comparison to native communities under extreme drought 

events. Apart from the origin of the plant community, the experiment also included soil 

biota originating from the original range of the range-expanding plant species. 

Decomposition, basal soil respiration and enzyme activity were measured at different 

times after an artificial drought treatment, comparable to the more frequently occurring 

summer droughts, to assess performance of soil communities. 

In Chapter 6, I provide a general discussion and synthesis of the main findings of this 

thesis. I compare these results to those of the literature on both range expansion and exotic 

invasive species. Finally, I present ideas for further research. 
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Abstract 

Introduced exotic plant species that become invasive often have higher nutrient 

concentrations in their tissues and occur in soil patches with higher nutrient availability 

than co-occurring native species. Opposite to the many studies on nutrient contents of 

exotic plant species that have been introduced from other continents, no such studies are 

known on plant species that expand their range naturally within continents under current 

climate warming. Here, we investigated whether range-expanding plant species may also 

have higher nutrient concentrations in their leaves and associated soils than native species. 

We collected leaf and soil samples from European field populations of range-expanding 

plants in the new (north) and original (south) ranges (from the Netherlands to 

Montenegro). In order to avoid confounding effects of plant relatedness in the comparison 

between range expanders and co-occurring native plant species, we compared range 

expanders with congeners that are native in both the original and invaded habitats. We 

also examined range-expanding plant species that do not have related native species along 

the expansion range. Our results show that plant and soil chemistry varied between the 

north and south ranges, but the direction and size of these latitudinal differences was 

dependent on the parameter and the plant species considered. Differences in plant and 

soil nutrients of range-expanding and related native plant species were linked to species 

identity and there was no general pattern associated with plant species origin. We 

conclude that there are species-specific differences between plants that expand their range 

and their related natives, but that in general range-expanding plant species do not have 

higher nutrient contents in plant tissues and associated soil in their novel range.  
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Introduction 

Predicting plant invasion success is a main challenge in invasion ecology. Previous work 

has aimed at elucidating prevalent traits of invasive plant species that may drive their 

invasiveness and characteristics of the recipient environments that may drive their 

susceptibility to invasions (Rejmanek and Richardson 1996, Hayes and Barry 2008, 

Ordonez et al. 2010, te Beest et al. 2012). Identifying such traits and characteristics may 

help to predict when and where exotic plant species may impact native ecosystems 

(Levine et al. 2003). Invasion by exotic plants has often been linked to the availability of 

nutrients in the soil and their turnover rates (Ehrenfeld 2010). Soil nutrient concentrations 

are generally higher in soils occupied by exotic invasive plants than in soils of natives 

(Pyšek et al. 2012, Sardans and Peñuelas 2012). A meta-analysis indicated that this pattern 

is particularly strong in nutrient-poor ecosystems, where exotic invasive plants have 

higher nutrient levels in their soils and leaves than adjacent natives (Sardans et al. 2017). 

Even though this analysis does not reveal whether invasive species cause changes in 

nutrient availability or are affected by it, empirical studies widely suggest that exotic 

invasive species can alter available soil nutrient pools and mineralization (Ehrenfeld 2003, 

Kourtev et al. 2003, Allison and Vitousek 2004, Ashton et al. 2005, Gómez-Aparicio and 

Canham 2008, Liao et al. 2008, Vilà et al. 2011, Castro-Díez and Alonso 2017).  

The relationship between exotic plant species and high soil nutrient availability may be 

either a cause or a consequence of invasion. The growth of exotic plant species has been 

shown to benefit more than natives from fertilization pulses and overall high amount of 

nutrients available in the soil (Valliere and Allen 2016, Liu and van Kleunen 2017). Thus, 

high availability of soil nutrients may facilitate the establishment of exotic plant species. 

On the other hand, plant litter of exotic plant species has been shown to decompose more 

readily than that of surrounding natives because it contains higher nutrient 

concentrations, and thus has overall higher quality (Allison and Vitousek 2004, Ashton et 

al. 2005). Exotics plant species may, therefore, increase soil nutrient availability through 

their litter inputs to the soil (Wardle and Peltzer 2017), which can create a positive 

feedback to their own growth. In general, high nutrient availability in the soil, both via 

pre-existing soil condition or via litter effects, may become even more important when 

exotic plant species are released from their specialized enemies as shown by Blumenthal 

et al. (2009).  
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Currently, a novel type of exotic plant introduction can take place intra-continentally. 

Enabled by climate warming, some plant species are able to expand their geographic range 

to areas of higher latitudes and altitudes within continents (Parmesan and Yohe 2003, 

Chen et al. 2011). Thereby, processes of range-expansion also result in the introduction of 

non-native species in those ecosystems, which may or may not include invasive plant 

species (Morriën et al. 2010). Such range-expanding plants may lack soil-borne enemies in 

the new range, which can enhance plant performance (Van Grunsven et al. 2010), and 

favour plant success in the new range. In contrast to introduced exotic invaders, less is 

known about the interactions between range-expanding plants and the abiotic soil 

environment. Yet, examining the relationship between plant and soil nutrient content in 

plant range expansions may help to identify general trends characteristic of invasive exotic 

species. While in studies on introduced exotic species, exotic plants are often compared 

with adjacent native vegetation, intracontinental range-expansions enable to compare 

range-expanding species with related species that are native along the expansion gradient. 

However, at the same time, many range-expanding plant species within Europe are 

unrelated to native vegetation (NDFF 2018). The ecology of range expanders that do not 

have closely related native species in the expansion range may resemble that of exotic 

invasive species to a larger extent (Strauss et al. 2006, Koorem et al. 2018). Yet, we have a 

poor understanding of whether range-expanding plants, like introduced exotics, are 

associated with higher nutrient levels in plant tissues and associated soil, and whether 

there are differences between range-expanding plant species that do and do not have 

related native species along the expansion range. 

Here, we investigated nutrient concentration in plant leaves and soils of range-expanding 

plant species, both in the original and the new range. We hypothesized that, in line with 

introduced exotic invasive plants, 1) range-expanders have higher nutrient concentrations 

in their leaf tissue than congeneric native plant species in the new range; 2) range-

expanders have higher nutrient concentrations in their associated soils than congeneric 

native plant species in the new range. In addition, we examined range-expanders that do 

not have closely related natives in the expansion range and compared new and original 

range and their similarity to co-occurring, but unrelated native plant species. Furthermore, 

we also expected differences in plant chemistry to be consistent in the original and new 

range, as that would indicate that these are inherent characteristics of the successfully 

range-expanding plant species. We tested the hypotheses using a dataset of plant and soil 

chemistry of both range-expanding plant species in their original (hereafter, south) and 
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expansion (hereafter, north) ranges in Europe, and native plant species that are native in 

both ranges.  

Materials & Methods 

Plant and soil sample collection 

In the spring and summer of 2014, we collected plant material and soil under all plants 

along a latitudinal transect in Europe, spanning from Montenegro to the Netherlands. We 

considered samples collected from mid-Germany and Netherlands to be representative of 

the North range, and samples collected from Montenegro and Slovenia to be 

representative of the South range. We selected native plant species from South-East 

Europe that have expanded their range to North-West Europe within the last 50 years 

approximately, and that are present in riverine ecosystems of central Netherlands (Tamis 

et al. 2005). Seven range-expanders were sampled along the latitudinal transect: four of 

them have a native congener along the latitudinal range (related range-expanders) and 

three of them do not have native congeners in native flora of the expansion range 

(unrelated range-expanders). Four native species were harvested to act as control for the 

related range-expanders: one congeneric native for each range expander. In total, eleven 

plant species were surveyed. Within each of the sampling locations, we identified three 

plant populations of each species. Within each population 3 individual plant and soil 

samples were collected, aiming at 9 individual plant-soil samples per location. We 

recorded the geographical location of each population, collected middle leaves from 

plants, which were all sampled when being in the flowering stage, and subsequently took 

a soil sample from underneath each plant individual. In total, 318 plant and soil samples 

were collected (Table S2.1). All samples were cooled and brought to the Netherlands 

Institute of Ecology (Wageningen, the Netherlands) for laboratory analyses. The related 

range expanders were Centaurea stoebe, Chaerophyllum temulum, Geranium pyrenaicum and 

Tragopogon dubius. The congeneric natives were Centaurea jacea, Chaerophyllum bulbosum, 

Geranium molle and Tragopogon pratensis. The unrelated range-expanders selected were 

Ditrichia graveolens, Lactuca serriola and Rapistrum rugosum. 

Soil chemical analyses 

All soils were sieved to 4 mm and oven dried at 40 oC for 5 days prior chemical analyses. 

We extracted soil mineral nitrogen (NO3-, NO2- and NH4+) by shaking a 10 g dry weight 

equivalent of soil in 50 ml of 1M KCl solution for 2 hours. In the extract, we measured soil 
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NO3-NO2 and NH4 concentrations using an auto-analyzer (QuAAtro Segmented Flow 

Analysis system, SEAL Analytical Ltd., Southampton, UK). A second subsample of dry 

soil was used to quantify plant-available phosphate (P-Olsen). We extracted phosphate 

from 2.5 g of soil in a 0.5 M NaHCO3 solution and measured it using an auto-analyzer 

(QuAAtro Segmented Flow Analysis system, SEAL Analytical Ltd., Southampton, UK). A 

third subsample of dry soil was ground using a ball mill. Then, we weighted 5 mg of 

ground soil into tin cups to prepare for the measurement of elemental concentrations of 

carbon and nitrogen using and elemental analyser (QuAAtro Segmented Flow Analysis 

system, SEAL Analytical Ltd., Southampton, UK).  

Plant chemical analyses 

Plant material was oven dried at 70 oC for 48 h, ground and homogenized using a ball mill. 

We then measured the total amount of elemental C and N in 2 mg of ground plant material 

using an autoanalyser (QuAAtro Segmented Flow Analysis system, SEAL Analytical Ltd., 

Southampton, UK). The total amount of phosphorous in the plant material was measured 

in the form of orthophosphate. Orthophosphate was obtained by ignition of ground plant 

material at 550 oC and subsequent digestion in an autoclave with 2.5 % potassium 

persulfate solution. The obtained extract was measured colorimetrically with and 

autoanalyzer (QuAAtro Segmented Flow Analysis system, SEAL Analytical Ltd., 

Southampton, UK). 

Data analyses 

We performed Principal Component Analyses (PCA) to explore the variation between all 

samples based on their plant and soil characteristics. We then used redundancy analyses 

(999 permutations) to test the effect of range and plant origin on explaining the variation 

among samples. Data were log transformed prior analyses and standardized and centred 

prior to analyses to enable comparing variables expressed in different units and with 

different ranges. Multivariate analyses were conducted in CANOCO 5.0 software (Ter 

Braak and Šmilauer 2012). For simplification, we present separate ordination plots for each 

plant genus by selecting PCA scores for one genus at a time, but without changing the 

overall ordination analyses. In this way, figures can be directly compared. 

We then used univariate analyses on each of the plant and soil parameters separately. For 

the plant pairs of related range-expanders and congeneric natives, we used generalized 

linear models with plant genera, range (North and South) and plant origin (native and 
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range-expander) as fixed factors. For the unrelated range-expanders, we used generalized 

linear models with plant genera and range as fixed factors. Although within one range 

plants were sampled from three populations, we did not include population as a factor in 

the model. This is because the distance between individual samples within populations 

was not controlled for and was highly variable. Prior to univariate analyses, data were log-

transformed. We used a post-hoc Tukey test of least square means to determine the effects 

of plant origin and range within each plant genera using the package “lsmeans” in R 

(Lenth 2016). Model residuals plots were inspected for normality. Univariate analyses 

were performed in R (R Core Team 2017). 

In the data set, two samples had extremely high values for nitrogen availability in the soil 

(40 and 17 times higher than average). These values were also identified as outliers using 

the Grubbs test for outliers from the “outliers” package in R (Komsta 2011), and therefore 

removed from the analyses. This was the case for a Centaurea jacea soil sample collected in 

the South range and a Lactuca serriola soil sample collected in the South range.  

Results 

Principal component analyses  

In a principal component analysis (PCA), we analysed the variation of samples based on 

the plant and soil chemical parameters measured. The first and second axis of the PCA 

explained 39 and 20 % of the variation, respectively, in plant chemical composition and 

soil nutrient availability and chemical composition (Fig. 2.1). Principal Component 1 

represented variation in nitrogen and carbon in soil and plants, while Principal 

Component 2 mainly represented the variation in phosphorous and plant carbon content. 

Axis 2 mainly separated samples by range (north and south). The variation in axis 1 

characterized the variation of samples within the southern part of the range.  

Range played a major role in separating the samples (Redundancy Analyses permutation 

test: pseudo-F = 38.2, p 0.001). Plant origin played a smaller role than range, but still 

significant, in separating the samples in the ordination plot (Redundancy Analysis 

permutation test: pseudo-F = 10.6, p 0.001). Differences between samples within the north 

range were smaller than within the south, indicating that habitat characteristics and plant 

chemistry were more variable in the south range than in the north. These effects of range 

and plant origin are apparent when presenting the PCA ordination for each plant genera 

separately (Fig. S2.1).  
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Fig. 2.1. Principal Component Analyses of all samples based on the plant and soil chemical 
composition. Different symbol shape indicate plant origin (native, congeneric range-expander 
(RE+) and unrelated range-expander (RE-)) and colour indicate north (green) and south (orange) 
range. Symbols indicate centroids and error bars indicate standard error around the centroids. 
Arrows indicate plant and soil parameters measured and used in this analysis. 

 

Differences in plant and soil nutrients between range-expanders and their related natives 

All plant and soil nutrient parameters measured were significantly different between the 

four plant genera sampled, with the only exception of soil ammonium (Table 2.1). 

Furthermore, all parameters were also different between the north and south range (Table 

2.1). Nitrogen concentrations in plant leaves and in the soil (both available and total 

nitrogen), carbon to nitrogen ration in plant leaves and carbon in the soil was higher in the 

south than in the north range, while the opposite pattern was found for phosphorous in 

plant leaves and soil. Main effects of origin were weak and only significant for leaf 

phosphorous content, soil phosphate and soil nitrate (Table 2.1). For these three 
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parameters, range-expanding plant species had higher values than natives, even though 

these effects are not significant in the post hoc test for soil nitrate and phosphate. Both 

effects of range and plant origin were plant genus-specific, as indicated by the multiple 

significant interactions of plant genera with range and/or plant origin. Below, differences 

between range-expanding plant species and their congeneric natives and between the 

north and the south range are further detailed for each parameter measured and plant 

genera. 

Plant nitrogen (Fig. 2.2): In Centaurea, nitrogen percentage in plant leaves was not 

significantly different between native and range-expander or between north and south. In 

the case of Chaerophyllum, leaf nitrogen was higher for the native species than the range-

expander in the South range, while there were no differences in the North. For Geranium 

and Tragopogon, leaf nitrogen percentage was generally higher in range-expanders than in 

related natives. However, for Tragopogon this was only significant in the south range and 

for Geranium this was only significant in the north range. 

Carbon to nitrogen (CN) ratio in plant leaves (Fig.  2.2): CN ratio of range-expander and native 

Centaurea and Geranium species was not different in any of the two ranges. The range-

expanding Chaerophyllum had higher CN ratio than natives in the south, but there was no 

difference in the north. Tragopogon species had a higher CN ratio in the north than in the 

south range, but there was no effect of origin. 

Plant phosphorous (Fig. 2.2): Phosphorous in leaves of range-expander and native Centaurea 

and Geranium were not significantly different in any of the two ranges. Range-expanding 

Chearophyllum had higher phosphorous percentage than the native in the north range, 

while there was no difference in the south. Native Tragopogon had higher leaf phosphorous 

than the range-expander, in both south and north ranges.  
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Fig. 2.2. Plant chemical composition (nitrogen content, carbon to nitrogen ratio and phosphorous 

content in leaves) for native plant species, congeneric range-expanders (RE+) and unrelated range-

expanders (RE-) within plant genera. Different colours indicate samples belonging to the north 

range (green) or the south range (orange). Bars are averages and error bars indicate standard error. 

Sample size of each bar can be found in Table S2.1. Letters above the bars indicate significant 

differences between samples of different plant origin and range within each plant genera. 

 

Soil nitrate (Fig. 2.3): In Centaurea and Tragopogon, soils of range-expanders had higher 

nitrate in the south than in the north, while soils of the natives were not different between 

ranges. Furthermore, there were no significant differences between soils of range-

expanders and natives. In Chaerophyllum, soil nitrate was not significantly different due to 

plant origin or range. There was a main effect of range on soil nitrate in the case of 
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Geranium, with soils of the south range having highest nitrate availability, but there were 

no differences between range-expander and native plant species (Fig.3). 

Soil ammonium (Fig. 2.3): In soils of Centaurea, ammonium concentration was higher in the 

south than in the north and in soils of the native than the range-expander. In soils of 

Chaerophyllum, there was no effect of range within species, but soils of the range-expander 

had higher ammonium availability than soils of the native. In Geranium, ammonium 

availability was higher in soils of the range-expander than the native in the south, but not 

in the north. In the case of Tragopogon, soils in the south had significantly higher phosphate 

availability than soils in the north. Furthermore, soils of the native species had higher 

availability of ammonium than soils of range expanders in the north, but not in the south.  

Soil phosphate (Fig. 2.3): Soil phosphate was neither affected by range nor by plant origin 

in the case of Centaurea. In Chaerophyllum, soil phosphate availability was higher in the 

north than the south, but there was no effect of plant origin. For Geranium, soil phosphate 

availability was higher in soils of the range-expander than the native in both ranges, but 

there was no difference between ranges. Range-expanding Tragopogon had higher 

phosphate availability in the soil than the native in the south, but there was no difference 

in the north. 

Soil total carbon (Fig. 2.4): Generally, there were no differences in soil carbon content 

between soils of natives and range-expanders. Only native Centaurea in the north had more 

carbon than soils of the range-expander.  

Soil total nitrogen (Fig. 2.4): Nitrogen content in the soil was generally higher in the south 

than the north for all plant pairs, with the exception of Chaerophyllum soils, which were 

not different. Range-expanding Tragopogon had higher soil nitrogen content than the 

native in the south, while native Centaurea had higher soil nitrogen content than range-

expanders in the north.  
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Fig. 2.3. Soil nutrient availability (nitrate and nitrite, ammonium and phosphate) for native plant 
species, congeneric range-expanders (RE+) and unrelated range-expanders (RE-) within plant 
genera. Different colours indicate samples belonging to the north range (green) or the south range 
(orange). Bars are averages and error bars indicate standard error. Sample size of each bar can be 
found in Table S2.1. Letters above the bars indicate significant differences between samples of 
different plant origin and range within each plant genera. 
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Fig. 2.4. Soil chemical composition (carbon and nitrogen content) for native plant species, 
congeneric range-expanders (RE+) and unrelated range-expanders (RE-) within plant genera. 
Different colours indicate samples belonging to the north range (green) or the south range (orange). 
Bars are averages and error bars indicate standard error. Sample size of each bar can be found in 
Table S2.1. Letters above the bars indicate significant differences between samples of different plant 
origin and range within each plant genera. 

 

When examining north and south for each parameter separately, we found that differences 

between north and south, when present, were also genus specific (Table 2.1). In the case 

of plant nutrients, nitrogen concentrations in leaves were highest in the south for Lactuca, 

while there was no difference for Dittrichia and Rapistrum. CN ratio did not differ between 

north and south for any plant species. Phosphorous was highest in the north range in the 

case of Dittrichia and Rapistrum (Fig. 2.2), while there was no difference for Lactuca. For 

soil nutrients (Fig. 2.3), soil nitrate was not different between the north and the south for 

any plant species. Available ammonium was higher in the north range for Ditricchia, while 

there were no differences for Lactuca and Rapistrum. In the case of soil phosphate, 

availability was higher in the north than in the south for both Dittrichia and Rapistrum, 

which coincided with higher phosphorous amount in plant leaves for these two species, 

but there were no differences in Lactuca.  Finally, soil carbon content was higher in the 

south than in the north for Dittrichia and Lactuca species, while there were no differences 
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for Rapistrum (Fig. 2.4). In terms of nitrogen content, there were no differences between 

north and south for any of the species (Fig. 2.4). 

Discussion 

In this study, we investigated nutrient concentrations in plant leaves and soils of range-

expanding and native plant species to identify whether non-native species have higher 

nutrient concentrations in their aboveground plant tissues and soils than natives. Our 

results show that differences in plant and soil chemistry between range-expanding and 

congeneric native plant species are genus-specific, and that there is no general relationship 

between plant species origin (range-expander or native) and plant and soil nutrient 

concentrations. In addition, differences between range-expanding and native plant species 

were range-specific as they sometimes only occurred within the north or the south range, 

without a clear general pattern. Furthermore, plant and soil chemistry within plant species 

differed between the north and south ranges, and the direction and magnitude of these 

latitudinal differences were dependent on the parameter and plant species considered.  

We found mixed support for our first and second hypotheses that range expanders have 

higher nutrient content in their leaves and soils than congeneric natives. The main 

observation from the four plant pairs examined is that native species along the range and 

species that are native in the south and have expanded their range to the north do not 

consistently differ in plant and soil nutrient content. This result contrasts with studies of 

exotic invasive plants showing that exotics generally have higher nutrient concentrations 

in their shoots and are associated with soils that have higher nutrient availabilities than 

natives (Pyšek et al. 2012, Sardans et al. 2017). In our study, we did not specifically select 

range-expanders that are highly invasive, but just species that rapidly increase abundance 

in the novel range. In contrast, studies on exotic plant species generally focus on those 

species that become invasive and have the biggest impacts on the recipient ecosystem 

(Pyšek et al. 2008). However, it has been estimated that the number of exotic introductions 

is much larger (Williamson and Fitter 1996), and the question is whether all those exotic 

species also show higher plant and soil nutrient concentrations than natives.  

The lack of general effects of plant origin on plant and soil nutrients in the present study 

may be explained in several ways. A main difference between our study and those on 

introduced invasive exotics is that we have selected plant species that have expanded their 

range but that have not been classified as invasive species in the north range (NDFF 2018). 
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Therefore, we might miss out species that become really invasive. Furthermore, we 

compared range-expanding plant species to congeneric natives, which allows 

disentangling the effect of origin from those of other traits. Consequently, this approach 

may also decrease variation between compared congeneric species. In most studies on 

introduced exotics, comparisons are made without accounting for species relatedness, 

which might results into larger differences between compared exotic and native species 

(Wolfe and Klironomos 2005, Sardans et al. 2017). The differences observed in those 

studies, however, may also be due to other characteristics of the species that have not been 

controlled for, such as life history traits or growth form. Therefore, generalizations about 

the effect of origin may then be less accurate than in strongly controlled studies, such as 

the present one, where phylogenetically controlled comparisons are used. Finally, a 

limitation of our study is that only four plant pairs have been considered, which could 

have limited possibilities to find strong patterns in the compared plant and soil 

parameters.  

Strauss et al. (2006) suggested that exotic plant species that are less phylogenetically 

related to natives have a higher chance to becoming invasive. In our study, we did not 

include a specific test of the role of plant relatedness on plant and soil chemistry. 

Nevertheless, according to our PCA ordination, unrelated range expanders seem to be 

more dissimilar from natives than related range-expanders in terms of their plant and soil 

chemistry (Fig.1). This dissimilarity between unrelated range-expanders and natives is 

more prominent in the south range, which is the original range of all plant species. This 

might be due to the initial choice of plant species that was based on their co-occurrence in 

the north range, where all plant species occurred in the same riverine habitat, whereas in 

the south the variation of habitats where the species could be found was much wider. This 

may also explain why variability between samples was lower in the north than in the south 

range. In order to fully determine the role of plant relatedness in plant range expansion it 

will be needed to control and test for different levels of relatedness between range-

expanding and native plant species and to include comparable environmental variation in 

both the original and new range habitats. 

Because nutrient contents of plant leaves of range-expanding species are not generally 

higher than in plant leaves of natives, it seems unlikely that range-expanders may enhance 

soil nutrients via their litter inputs as suggested for introduced exotic species (Wardle and 

Peltzer 2017). Furthermore, from our soil data it also seems unlikely that range-expanders 
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preferentially establish in field locations with generally higher nutrient availabilities than 

native species. Altogether, these results provide limited evidence to conclude whether 

range-expanding plant species respond to high soil nutrient availabilities or increase them 

by the input of litter of higher quality. Nevertheless, soil nutrient availabilities differed 

between ranges indicating that range-expanders show a certain degree of plasticity (Funk 

2008). In general, we found no evidence that plant range-expansions can be associated 

systematically to the introduction of plants with higher nutrient contents or to plants that 

selectively colonize sites with higher nutrient availability as compared to relative native 

species. 

Making generalizations about what makes certain plant species invasive in a specific 

environment and finding predictors that explain invasiveness and invasibility remain a 

general challenge in invasion studies (Hayes and Barry 2008). A main reason for it may be 

the large diversity of traits of exotic species investigated and also their interactions with 

the large variability among invaded communities and environments, which also play an 

important role in determining introduction success (Levine et al. 2004). Plant range 

expansions provide a novel study system to investigate standing questions in invasion 

ecology, such as what mechanisms may enable successful introductions, and what may be 

the functional roles of non-native species in the ecosystems in the new range (van der 

Putten 2012). Additionally, range-expanders may encounter related species during range 

expansion, which make them less novel than in case of intercontinental exotics, and allows 

investigating simultaneously the effect of both origin and plant species relatedness. It is 

likely that there are plant species that expand their range that do and ones that do not have 

traits of invasive exotic species. Our data suggest that predicting when and where range-

expanding plant species may resemble exotic invasive species may be just as challenging 

as it is for intercontinental exotics. Furthermore, our data suggest that similarity in plant 

and soil parameters between range-expanding and native plant species may decrease with 

increasing relatedness between compared plants. We conclude that while there are 

species-specific differences in plant and soil chemistry and nutrient content between 

plants that expand their range and their related natives, in general range-expanding plant 

species do not have higher nutrient contents in plant tissues and associated soil in their 

novel range.  
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Fig. S2.1. Principal component analyses of all samples based on the plant and soil chemical 
composition and represented for each of the four plant pairs separately: (a) Centaurea, (b) 
Chaerophyllum, (c) Geranium and (d) Tragopogon. The shape of the symbol indicates plant origin: 
native (squares) and congeneric range-expander (triangle). Colour indicates north (green) and 
south (orange) range. Centroids of each plant origin by range combination are shown next to the 
individual samples in the ordination plot with bigger symbols. Arrows indicate plant and soil 
parameters measured and used in this analysis. 
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Fig. S2.2. Principal component analyses of all samples based on the plant and soil chemical 
composition and represented for each of the three unrelated range-expander species separately: (a) 
Dittrichia graveolens, (b) Lactuca serriola and (c) Rapistrum rugosum. Colour indicates north (green) 
and south (orange) range. Centroids for each range are shown next to the individual samples in 
the ordination plot with bigger symbols. Arrows indicate plant and soil parameters measured and 
used in this analysis. 
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Abstract 

Introduced exotic plant species that originate from other continents are known to alter soil 

microbial community composition and nutrient cycling. Plant species that expand range 

to higher latitudes and altitudes as a consequence of current climate warming might as 

well affect the composition and functioning of native soil communities in their new range. 

However, the functional consequences of plant origin have been poorly studied in the case 

of plant range shifts. Here, we determined rhizosphere bacterial communities of four 

intracontinental range-expanding plant species in comparison with their four congeneric 

natives grown in soils collected from underneath those plant species in the field and in 

soils that are novel to them. We show that, when controlling for both species relatedness 

and soil characteristics, range-expanding plant species in higher latitude ecosystems will 

influence soil bacterial community composition and nutrient cycling in a manner similar 

to congeneric related native species. Our results highlight the importance to include 

phylogenetically controlled comparisons to disentangle the effect of origin from the effect 

of contrasting plant traits in the context of exotic plant species.  
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Introduction 

Current climate change is reshaping natural communities by enabling species range 

expansions to higher altitudes and latitudes (Parmesan and Yohe 2003, Chen et al. 2011, 

Pauli et al. 2012). Whereas patterns for plants and animals have been relatively well 

explored, consequences of these range shifts for cryptic species assemblages, such as soil 

biota, are poorly known (Van Nuland et al. 2017). During range expansion, specific 

interactions between plants and their co-evolved soil organisms will become disrupted 

when they have different dispersal capacities (Berg et al. 2010). In the new habitat, range-

expanding plant species may benefit from the absence of specialized pathogens (Engelkes 

et al. 2008, Van Grunsven et al. 2010, Morriën et al. 2013, Dostálek et al. 2016). Such enemy 

release has been documented well for exotic plant species that have been introduced from 

other continents (Mitchell and Power 2003, Reinhart et al. 2010), and have been proposed 

to contribute to increased performance of exotics over co-occurring natives (Keane and 

Crawley 2002, Blumenthal et al. 2009). However, the soil community contains not only 

pathogens, but also numerous other symbionts and saprophytic microbes that are 

involved in a variety of ecosystem processes, such as decomposition and nutrient cycling. 

A key question that is still not well addressed for both introduced exotics and range 

shifting plant species is how multifunctional soil communities, also including saprophytic 

microorganisms, may respond to novel host plants with which they lack a co-evolutionary 

history (van der Putten 2012, Evans et al. 2016).  

In the rhizosphere, bacterial community composition is determined by plant species and 

soil characteristics (Kowalchuk et al. 2002, Berg and Smalla 2009). Saprophytic soil 

microbes are indirectly affected by plants through the quality and quantity of plant litter 

and root exudates (De Deyn et al. 2008, Eilers et al. 2010). Novel plant species that have 

different root exudation patterns or tissue chemistry compared to natives (Macel et al. 

2014) will select a specific assemblage of belowground microorganisms (Lankau et al. 

2009, Lankau 2011). Depending on the novel plant characteristics, soil communities may 

shift in their composition and functions when exotic plant species invade (Kourtev et al. 

2002a, Wolfe and Klironomos 2005, Vilà et al. 2011, Gibbons et al. 2017, Harkes et al. 2017). 

However, many studies on belowground functional consequences of exotic invaders are 

based on comparing species with different traits and life history strategies. Therefore, 

studies including controls for factors known to influence soil community composition and 
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functioning are important to elucidate the effects of species origin (Agrawal et al. 2005, 

Funk and Vitousek 2007).  

Across-species comparison has shown that the invasive potential of exotic species may 

result from distant relatedness to native plant species, rather than from an effect of 

geographical origin per se (Strauss et al. 2006). Therefore, identifying functional 

consequences of ecological novelty of exotic plant species may be more accurate when 

comparing exotic species with related natives. Several experimental studies have singled 

out effects of ecological novelty (i.e. plant geographical origin in this case) by comparing 

exotic plant species with congeneric natives, demonstrating that even when controlling for 

species relatedness exotics can differ from natives (Agrawal et al. 2005, Funk and Vitousek 

2007, Funk and Throop 2010, Meisner et al. 2013b). Here, we aim at understanding how 

plant species that expand their range to higher latitudes within continents will impact the 

composition and functioning of the soil bacterial community in the new range as a result 

of their ecological novelty. We determined the impact of novel range-expanding plant 

species on native ecosystems in comparison with congeneric natives according to a 

phylogenetically controlled experimental set up (Engelkes et al. 2008, Meisner et al. 2011, 

Meisner et al. 2012).   

Besides taking into account the relatedness between the compared species, it may also be 

important to study the effects of plant novelty in the same context. In field studies on plant 

invasions, it is often difficult to disentangle effects of pre-existing soil communities and 

abiotic properties from selection effects by plants. In our experiment, we investigated 

whether potential differences in rhizosphere bacterial community composition between 

range-expanders and native plant species are the result of selection effects by plants or a 

response of range-expanders to existing soil heterogeneity. We collected independent 

replicates of soils from locations in the expanded range where the plant species already 

occur. In addition, we compared plant effects on bacterial community composition in soils 

in the expanded range that are new to both range-expanding and native plant species. In 

this case, differences in rhizosphere bacterial communities are expected to be the 

consequence of plants selecting for specific bacterial communities. We investigated for 

both these conditions how range-expanding plant species and congeneric natives develop 

soil bacterial communities in their rhizosphere, and how this influenced a number of 

decomposition-related functions.  
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In the present study, we compared rhizosphere bacterial communities of range-expanding 

plant species and their related natives in two different contexts; grown in soils from their 

own field populations and in soils where both are ecologically novel. Because such 

differences may depend on plant ontogeny, we repeated our assessments in a time series, 

so that we could control for differences that may result from plant development. Our first 

hypothesis was that rhizosphere community composition of range-expanding plants 

differs from related natives when plants grow in their “own” field soils. Our second 

hypothesis was that plant origin-specific differences in bacterial rhizosphere communities 

increase over time when plants are grown in “novel” soils, as that would reveal plant 

selection effects on soil communities determined by their geographical origin. We assessed 

functional consequences of differences in soil community composition by measuring 

catabolic response profiles and soil enzymatic activities. We tested our hypotheses using 

a controlled greenhouse experiment with four pairs of range-expanding plant species and 

congeneric natives. Each plant species was grown in “own” and “novel” soils. We 

determined bacterial community composition and community-level functioning in the 

rhizosphere of all plants after four, eight and twelve weeks of plant growth.  

Materials & Methods 

Plant species selection and seed origin 

We used four pairs of range-expanding and congeneric native plant species and all eight 

species co-occur in riverine habitat of the Netherlands (Table S3.1). This river-

accompanying ecosystem is connected to Central Europe through the Rhine river, and to 

South-East Europe through the Rhine-Danube canal. In Central and South-East Europe, > 

800 km away from the Netherlands, the range-expanding and congeneric native plant 

species are all native. The plant species were selected based on the same criteria used in 

previous studies (Engelkes 2008, Meisner 2011) (Engelkes et al. 2008, Meisner et al. 2011). 

Briefly, we selected range-expanding plant species that are present in the Netherlands and 

co-occur in the same ecosystem with an abundant native plant species of the same genus. 

The range-expanding plant species were first recorded in the Netherlands during the 

second half of the 20th century with the exception of Geranium, which was first recorded in 

19th century (Dutch flora is very well tracked by many volunteer florists) and show an 

increasing trend in abundance in the Netherlands over the last decades (NDFF 2018). 

Because of their co-occurrence in the same riverine habitat and their close phylogenetic 

(intra-genus) relationship plant species belonging to the same pair differ in their 
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geographical origin (i.e. range-expander vs native), but are otherwise quite comparable in 

genetic background and general ecology.  

Seeds of Rorippa species, native Geranium molle, and range-expanders Centaurea stoebe and 

Tragopogon dubius were collected from the field in the Netherlands. Seeds of native 

Centaurea jacea, Tragopogon pratensis and the range-expander Geranium pyrenaicum were 

purchased from an external supplier that collects and propagates seeds from wild plant 

populations (Cruydt Hoeck, Nijeberkoop, the Netherlands). All seeds were surface 

sterilized (3 min, 10 % bleach solution) and germinated on glass beads under controlled 

conditions (16 h of daylight at 20 oC and 8 h of darkness at 10 oC). Rorippa seeds were not 

surface sterilized due to their small size and were germinated in gamma-sterilized soil 

(minimally 25 KGray, Syngenta BV, Ede, the Netherlands). 

Soil collection 

During August-October 2015, we collected soils from five independent plant populations 

of each plant species in order to act as soil inocula in our experiment (Table S3.1). Even 

though the plant species of interest occurred in mixed plant communities, soils were 

collected from underneath individuals of the species of interest in each of the five 

populations. Soil samples were collected from locations that were at least 60 meters apart 

from each other (Table S3.1). The soils were kept separate as five experimental replicates 

throughout the experiment. Field soils were sieved using a 4 mm mesh size to remove 

coarse elements and stored at 4 oC in the dark until the experiment started. A subsample 

of each soil was stored at -80 oC for further molecular analyses of the soil microbial 

community. A second subsample was oven dried at 40 oC for five days in order to 

determine moisture content and soil C: N ratio using an elemental analyzer (Flash EA 

1112, Thermo Fisher Scientific Inc., Waltham, USA). Soil available phosphate (P-Olsen) 

was extracted in a 0.5 M NaHCO3 solution and quantified using an autoanalyzer 

(QuAAtro Autoanalyzer, SEAL Analytical Ltd., Southampton, UK). Finally, we extracted 

available N (nitrate and ammonia) from field moist soils by shaking a 10 g dry weight 

equivalent in a 50 ml of 1M KCl solution for 2 hours. We measured soil pH in the KCl 

extracts and determined the concentration of mineral nitrogen (NH4+ and NO3--NO2-) using 

an autoanalyzer (QuAAtro Autoanalyzer, SEAL Analytical Ltd., Southampton, UK). 

In our experiment, we inoculated a sterilized background soil with living (non-sterilized) 

field soil. This method is commonly used and allows studying plant responses to soil biota 

while controlling for potential differences in abiotic properties of the soils (Engelkes et al. 
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2008). Background soil was collected from a riparian area near Beneden-Leeuwen, the 

Netherlands (N51°53.952, E05°33.670). Background soil was sieved using a 1 cm mesh size, 

homogenized and gamma-sterilized (minimally 25 KGray, Syngenta BV, Ede, the 

Netherlands).  

Experimental setup 

We inoculated the sterilized background soil with 10% of live field soil (dry weight basis). 

For each plant species we used two different types of soil inocula, i.e., one type from 

replicate sites where the plant species was present in the field (“own soils”) and one type 

from replicate sites representing a novel soil inoculum where neither that plant species 

nor its related congener were present (“novel soils”). Each novel soil replicate was created 

by mixing one replicate of the soils of all non-congeneric species using equal amounts on 

a dry weight basis. The novel soil of each replicate was split into two halves, one for 

growing the range expander and the other for growing the congeneric native. Therefore, 

the “novel” soil mixes also originated from habitats within the riverine ecosystem where 

plant species could occur, but had not been previously conditioned by the plant species 

grown in the experiment. 

Pots of 1.1-liter were filled with the equivalent of 850 g of dry weight of soil. We adjusted 

soil moisture to 60% of the soil water holding capacity and kept it constant during the 

experiment by watering two times per week to re-set weight. Pots with soil only were pre-

incubated in the greenhouse for 4 days in order to adjust to the water content and allow 

the inoculated soil microbial communities to establish in the sterilized soil. Afterwards, 

one seedling of each plant species was planted in the pots. During the first week, we 

replaced the seedlings that failed to establish. Greenhouse conditions were controlled to 

16 h day length with day temperature of 21 oC, night temperature of 16 oC and average air 

humidity of 60%. Artificial light was supplied when required (High pressure Sodium 

(Son-T, 600W Philips GP)). 

We destructively sampled rhizosphere soil at 3 different time points during plant 

development and measured plant biomass after 4, 8 and 12 weeks since the start of the 

experiment. Pots were organized in a randomized block design in the greenhouse with 5 

replicate blocks. In total, 240 pots were set up (8 plant species × 2 soil treatments (“own” 

and “novel”) × 3 time points × 5 replicates). 

Soil and plant biomass sampling 
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At each sampling time, we destructively harvested 80 pots (8 plant species × 2 soil 

treatments (“own” and “novel”) × 5 replicates). First, we removed the whole plant and soil 

from the pot. Then, the top soil in the pots and the soil attached loosely to plant roots was 

separated and discarded. Finally, roots were shaken vigorously and the soil that detached 

last from the roots was considered the “rhizosphere soil”. We filled an Eppendorf tube 

with that rhizosphere soil and stored it at -80 oC for further molecular analyses of the 

bacterial community composition. We used the remaining rhizosphere soil to analyze soil 

community functioning. Plant roots and shoots were separated, roots were washed and 

above and belowground plant biomass was measured after oven drying to constant 

weight at 70 oC for 48 h (data not shown). 

DNA extraction and community-level sequencing analyses 

We extracted DNA from all soil samples and subsequently amplified the 16S rRNA gene 

to determine bacterial community composition. PCR amplicons were sequenced using 

Illumina MiSeq platform. Details can be found in the Supplementary Information 

(Materials and Methods). 

Community-level functioning of rhizosphere microbial communities 

The functional capacities of the soil microbial communities were analyzed by measuring 

their catabolic response profile (CRP) at each time point of harvesting (after 4, 8 and 12 

weeks). Hydrolytic enzyme activity was measured for the last time point (after 12 weeks). 

Details are presented in the Supplementary Information (Materials and Methods). 

Statistical analyses 

Abiotic properties of field inocula soils were analyzed with 2-way ANOVA in R (R Core 

Team 2017). We tested the effect of plant genera and plant origin on each of the soil abiotic 

parameters. We considered plant genus as a fixed factor and not random since we selected 

the genera available after accounting for our selection criteria (Engelkes et al. 2008, 

Meisner et al. 2011). We tested the effect of plant origin within each plant genus for each 

of the soil parameters using post-hoc comparisons of least square means with Tukey 

adjustment. Data was transformed prior analyses to meet assumptions of normality using 

Box-Cox power transformation for linear models in R (R Core Team 2017). 

Canoco 5 software was used to conduct multivariate statistics on bacterial community 

composition of field soils used as inoculum, and on compositional and functional (CRP) 
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data of rhizosphere bacterial communities (Ter Braak and Šmilauer 2012). Relative 

abundances of bacterial OTUs in soil communities and on soil respiration responses were 

log transformed prior the analyses. We performed Principal Coordinate Analyses (PCoA) 

of the dissimilarity matrix based on Bray-Curtis distances to visualize differences in 

bacterial community composition and soil functioning between our treatments. For the 

inocula soils, soil abiotic properties measured (pH, C:N ratio, nitrate, ammonia and plant-

available phosphate) were projected as supplementary variables in the PCoA ordination. 

Furthermore, we statistically tested the effect of soil parameters and plant species on 

bacterial community composition of the inocula soils using PERMANOVA (999 

permutations) (Oksanen et al. 2018). As explained earlier in the Methods section, during 

the experiment, each plant pair formed by a native and range-expanding plant species was 

grown in novel soils created by mixing the soils from the replicate sites of the non-

congeneric plant species. Thereby, the novel soils were different from one plant pair to 

another and, for this reason data analyses were performed for each plant pair separately. 

For the same reason, we also conducted the analyses in “novel” and “own” soils per plant 

pair. The analyses within “novel” and “own” soils allowed us to zoom in on the plant-

driven variation in rhizosphere communities and their functions in the case of novel soils, 

and examine differences in more detail in the case of own soils. In all cases, block was 

included as a covariate in the analyses. To statistically test the significance of plant origin, 

soil inocula and time of harvest effects on community composition and functioning, we 

performed PERMANOVA analyses using the ‘adonis’ function in the ‘vegan’ package in 

R (Oksanen et al. 2018). Permutation tests (9999 permutations) were performed within 

each plant pair and we tested the effect of individual and interaction effects of plant origin, 

soil inocula and time of soil conditioning by the plants. We performed multivariate 

dispersion analyses (999 permutations) to test for homogeneity of dispersion between  the 

different plant origin, soil and time point groups and, thereby, validate the PERMANOVA 

tests (Anderson 2006). Homogeneity of dispersion was measured using the ‘betadisper’ 

function in the “vegan” package (Oksanen et al. 2018). 

Bacterial OTU richness and Shannon’s diversity indices of bacterial communities  (H’) and 

evenness were computed for each sample using Canoco 5 (Ter Braak and Šmilauer 2012). 

We analyzed the community parameters in inocula soils following the same way as the 

abiotic soil parameters described above. For the experimental soils, we analyzed 

community parameters with linear mixed models using “lmerTest” package (Kuznetsova 

et al. 2013). We modeled community parameters for each of the three time points 
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separately with plant genus, plant origin and soil as fixed effect factors and block as 

random factor. All analyses were conducted in R  (R Core Team 2017). OTU richness was 

log transformed prior to analyses. Diversity and evenness data were transformed prior to 

analyses to meet assumptions of normality using Box-Cox transformation for linear 

models in R. 

Additionally, the effects of plant origin and soil inocula on soil enzyme activity were tested 

using linear mixed models with plant genus, plant origin (native or range expander) and 

soil inocula (“own” or “novel”) as fixed effect factors, and block as a random factor. 

Enzyme activity rates were log transformed prior to analyses to meet assumptions of 

normality. All analyses were conducted in R (R Core Team 2017).  
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Results 

Bacterial community in field soils (inocula soils) 

The variation of bacterial community composition represented by the first two axes of the 

PCoA was 39 % of the total variation (Fig. S3.1). Soil abiotics and plant species identity 

explained 40 and 21 % of the variation in soil bacterial communities, respectively, as tested 

with PERMANOVA (Table S3.2). Bacterial communities in soils of native and range-

expanding Geranium species were more similar to each other than for the other plant pairs. 

However, soil bacterial communities associated with the natives Centaurea jacea and 

Tragopogon pratensis were more similar to each other than to their related range-expanders 

Centaurea stoebe and Tragopogon dubius (Fig. S3.1). Soil bacterial communities of Rorippa 

species were most different from the rest and were associated to soils with higher soil pH 

and C: N ratio compared to the other plant species (Fig. S3.1, Fig. S3.2, Table S3.3). Overall, 

bacterial community richness, diversity and evenness was affected by plant genus, yet no 

significant effect was found for plant origin (Table S3.3, Fig. S3.2). Soil nitrate availability 

was significantly higher in soils of native plant species than in soils of range expanders. In 

the case of ammonia, soils of native species had lower ammonia then soils of range-

expanders, with the exception of the Tragopogon species (Table 3.2, Fig. S3.2). 

Bacterial community composition in the rhizosphere of the experimental plants 

The variation of bacterial community composition represented by the first two axes of the 

PCoA accounted for 18 %, 16 %, 25 % and 36 % of the total variation in Centaurea, Geranium, 

Tragopogon and Rorippa species, respectively (Fig. 3.1). Soil inocula (“novel” or “own”) was 

the most important factor explaining variation in bacterial community composition in all 

plant pairs with the exception of the Tragopogon pair, where soil inocula and plant origin 

explained the same amount of variation (Table 3.1). The interaction of plant origin and soil 

inoculum explained bacterial community in the rhizosphere in all plant pairs except in 

Geranium (Table 3.1). Overall, bacterial communities were separated between native and 

range expanders when they were grown in their “own” field soils, but did not differ when 

grown in “novel” soils. Multivariate dispersion analyses indicated that dispersion within 

groups was homogeneous between range-expanders and natives and between time points 

for each of the 4 plant pairs. However, “own” soils had significantly higher variation than 

“novel” soils in Geranium, Tragopogon and Rorippa plant pairs (F 8.8 p 0.004, F 58.2 p 0.001 

and F 28.8 p 0.001, respectively). This indicated that community composition was more 
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similar between samples of “novel” soils, while there was more variation between samples 

in “own” soils. 

 

Fig. 3.1. Principal Coordinate Analyses of the rhizosphere bacterial community composition for each 
pair of a range-expander and its congeneric native plant species (A: Centaurea, B: Geranium, C: 
Tragopogon, D: Rorippa) grown in soils from their own field locations (own) and soils that are novel to 
both of them (novel). The symbols are means ± SE (N=5). Within each pair, circles represent the native 
plant species and triangles the range-expander. Colours indicate soil treatment (“own” and “novel”) 
and time of harvest (4, 8 and 12 weeks) as noted in the legend. 

 

To test the effect of plant origin more accurately we performed the same analyses within 

each soil treatment, which allows to disentangle the effect of plant origin from the effect 

of pre-existing differences in soil bacterial communities. We then observed that, in “novel” 

soils, plant origin no longer explained variation in bacterial community composition (Fig. 

S3.3, Table S3.5). Instead, time of harvest appeared to explain around 10 % of the total 

variation in Geranium and Tragopogon plant pairs (Table S3.5). In “own” soils, i.e. 

originating from field populations of each species, plant origin significantly explained 
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bacterial community composition at the end of the growth experiment (Fig. S3.4, Table 

S3.5). In both “novel” and “own” soils, the variation in community composition of the 

samples belonging to range-expanders and natives and to the different time points 

showed homogeneous dispersion, indicating that the variation in community composition 

was equal between the groups. There was only the exception of the Geranium plant pair 

grown in “own” soil, where soils of range-expanders had higher variation in community 

composition than soils of natives (F 5.8 p 0.02). 

Soil treatments (“own” and “novel”) significantly differed in their bacterial richness and 

diversity at all sampling times (Table S3.3; Fixed factors, Soil). Novel soils, which were 

mixes of all soil samples collected from field sites with non-congeneric plant species, had 

significantly higher richness and diversity of bacterial OTUs than own soils, which 

originated from individual locations where the tested plant species were present in the 

field. Bacterial communities in own soils of Rorippa species were most different from the 

other plant pairs (Fig. S3.2, Table S3.4) and also from their novel soil, which is represented 

by a significant soil and plant genera interaction. Overall, richness, diversity and evenness 

of rhizosphere bacterial communities were not significantly affected by plant origin itself 

(Table S3.4). 
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Community-level functional analyses 

We used PCoA ordination to assess differences in the functional responses of soil 

communities to the various added organic substrates (catabolic response profile). The first 

and second axis represented 75 %, 68 %, 57 % and 55 % of the variation in catabolic 

response profiles of Centaurea, Geranium, Tragopogon and Rorippa soil communities, 

respectively (Fig. 3.2). Even though time seems to drive dissimilarity in community 

functioning in the ordination PCoA plots (Fig. 3.2), none of the experimental treatments 

(plant origin, soil inocula, time of harvest) explained differences in community level 

functioning (Table 3.1). Similarly, when functioning of the “novel” or “own” soils were 

examined separately, neither plant origin nor time of harvest explained the variation in 

community level functioning (Fig. S3.5, Fig. S3.6, Table S3.5). Overall, compositional 

differences in bacterial communities were not consistently linked to shifts in catabolic 

response profiles in our experiment. Multivariate dispersion analyses for community 

functioning showed that variation among functional profiles was not significantly 

different between groups of samples with the same plant origin, soil inocula type and 

across time points. 

To study soil functions related to nutrient cycling, the activity of three extracellular 

enzymes was measured in the rhizosphere soil collected after 12 weeks of plant growth 

(Table 3.2). There were no main effects of plant origin, indicating that both range-

expanders and related native species were associated with the same levels of enzyme 

activity in their rhizosphere soil. Plant genus marginally affected glucosidase enzyme 

activity in the soil (F3,60 2.91, p 0.04); however, post hoc testing using Tukey HSD did not 

yield significant differences between any specific group. Soil treatment (“own” and 

“novel”) significantly affected phosphatase activity (F1,60 11.00, p 0.001), with higher levels 

of phosphatase activity in “own” than in “novel” soils. 
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Fig. 3.2. Principal Coordinate Analyses of the catabolic response profiles for each pair of a range-
expander and its congeneric native plant species (A: Centaurea, B: Geranium, C: Tragopogon, D: 
Rorippa) grown in soils from their own field locations (own) and soils that are novel to both of them 
(novel). The symbols are means ± SE (N=5). Within each pair, circles represent the native plant 
species and triangles the range-expander. Arrows representing each substrate are displayed over 
the ordination plot as supplementary variables. Colours indicate soil (“own” and “novel”) and 
time of harvest (4, 8 and 12 weeks) as noted in the legend. 
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Discussion 

It is generally assumed that exotic plant species may alter composition and functioning of 

soil microbial communities (Ehrenfeld et al. 2001, Allison et al. 2006, Ehrenfeld 2010). 

However, in most case studies where exotics are compared with natives, the exotics that 

replace the natives not only differ in origin, but also in traits or life histories, whereas pre-

invasion site conditions cannot easily be controlled for (Kourtev et al. 2002a, Wolfe and 

Klironomos 2005, Vilà et al. 2011). Here, we compare how intra-continental range 

expanding plant species and congeneric natives influence bacterial community 

composition and functioning in their rhizosphere, while minimizing genetic differences 

between range expanders and natives, and controlling for ecological novelty. We paired 

plant species that expand range most likely as a result of climate warming with species 

from the same genus that are native in the expansion range (Engelkes et al. 2008, Meisner 

et al. 2011, Morriën et al. 2013). All plant species were grown in soils collected from 

established field populations, as well as in soils from sites where neither the range 

expander nor the native currently occurred. In support of our first hypothesis, we show 

that rhizosphere bacterial communities differ when growing range expanders and natives 

in soils collected from their own field populations. Interestingly, when both species were 

grown in novel soils, there were no compositional differences in rhizosphere bacterial 

communities. Therefore, and opposite to our second hypothesis, we argue that in the 

present comparison plant origin per se has little effect on rhizosphere bacterial community 

composition.  

Many field studies on plant invasions and soil communities have shown that exotic plant 

species have distinct soil communities compared to native plants growing in adjacent 

areas (Kourtev et al. 2002a, Kourtev et al. 2002b, Scharfy et al. 2009, Collins et al. 2016, 

Stefanowicz et al. 2016, Gibbons et al. 2017). Consistent with these results, in our 

experiment we also observe that the composition of the rhizosphere bacterial community 

differed by plant origin in all four plant pairs when plants were grown in their own field 

soils (Fig. 3.1, Fig. S3.4). These results suggest that plant origin indeed influences bacterial 

community composition even in a phylogenetically constrained comparison between 

range expanders and natives. However, in the present study, as well as in most field 

studies it is difficult to exclude the possibility that invaded sites were already different 

from adjacent sites prior arrival of the exotic species. If that is the case, the bacterial 

assembly in the rhizosphere may simply reflect differences of initial bulk soil communities 
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(de Ridder-Duine et al. 2005), or a combination of site and origin differences and, overall, 

the capacity to disentangle the effect of ecological novelty from other co-varying effects is 

limited. We tried to rule out such confounding factors as much as possible by growing 

range-expanding and native plant species also in the same “novel” soil.  

In contrast to our second hypothesis, the geographical origin of the plant species (range-

expanding or native) did not affect rhizosphere bacterial community composition 

differently when both range-expanding and congeneric native plant species were grown 

in the same “novel” soils (Fig. 3.1, Fig. S3.3). Our results diverge from previous controlled 

experiments, which concluded that plant origin may play a role in influencing soil 

community composition in both intercontinental exotic plant invasion (Kourtev et al. 2003) 

and plant range-expansion (Morriën et al. 2013). In contrast with many intercontinental 

exotic plant invasion studies, we used phylogenetically controlled comparisons to assess 

the effect of plant species origin, while intending to minimize their ecological differences. 

Consequently, plant species in each plant pair were not expected to differ strongly in e.g. 

life history and plant functional type, which have been suggested as important biotic 

predictors of soil community and soil functional shifts (Scharfy et al. 2011, de Vries et al. 

2012b, Legay et al. 2014, Lee et al. 2017). Alternatively, the relatively short running time of 

our experiment (3 months) might have limited the divergence of the bacterial communities 

between plants from different origins, although this running time is not shorter than that 

of most plant-soil feedback experiments where plants produced different soil microbial 

community compositions (Heinen et al. 2017). Furthermore, our main interest was to 

assess shifts in saprophytic microbes in the rhizosphere community and thereby, we 

analyzed the composition of the whole bacterial community rather than looking at the 

abundance of specific microbial groups, such as potential plant pathogens (Morriën et al. 

2013). 

In spite of the substantial differences in bacterial community composition in the 

rhizosphere of plants growing in soil collected from field populations (Fig. 3.1), we 

observed limited differences in community functioning (Fig. 3.2, Table 3.2). Previous 

experiments manipulating the composition of microbial communities have shown high 

levels of functional redundancy in microbial communities (Franklin and Mills 2006, Wertz 

et al. 2006). Plant-induced changes in microbial-mediated soil processes may be the result 

of comparing phylogenetically distant plant species (Ehrenfeld et al. 2001) or major plant 

community shifts (Carney and Matson 2005). They may also be derived from studies 
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focusing on longer time scales (Collins et al. 2016) or on specific soil processes such as 

nitrogen cycling (Hawkes et al. 2005). Nevertheless, in spite of the possibility that plant 

selection effects may have influenced soil fungal communities (Dassen et al. 2017, Hannula 

et al. 2017), it is obvious that those changes, if occurring in our study, have not influenced 

soil microbial functioning either. 

We conclude that intracontinental plant range expansions may lead to populations of 

novel plant species that have different bacterial communities than congeneric natives, but 

that this is not necessarily due to their different geographical origin. When range 

expanding and native plant species from the same genus pair were grown for three 

months in novel soils, bacterial rhizosphere communities of the range expander and the 

congeneric native were indistinguishable. Interestingly, the differences in bacterial 

community composition did not result in altered ecosystem processes as is demonstrated 

by the respiration of different organic substrates. Therefore, our results demonstrate that 

plant origin per se does not necessarily have a major impact on bacterial community 

composition and soil microbial functioning when keeping all other aspects the same. This 

does not exclude the possibility that range expanders may influence community 

composition and ecosystem functioning when they are exposed to the soils for longer time 

periods, or in other ways, such as by responding differently to extreme weather events 

(Meisner et al. 2013b), natural enemies (Engelkes et al. 2008, Van Grunsven et al. 2010, 

Dostálek et al. 2016), and other conditions that may typify their novel environments. 
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Supplementary information 

SI Materials and Methods 

In this section, we provide detailed information about the community-level sequence 

analyses and functional analyses (catabolic response profiling and extracellular enzyme 

activity). 

Community-level sequence analyses 

Eppendorf tubes containing rhizosphere soil were freeze-dried prior to DNA extraction 

(FreeZone 12, Labconco, Kansas City, USA). DNA was extracted from 0.25 g of soil using 

PowerSoil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, California, USA) following 

the manufacturer’s instructions. We then amplified DNA using duplicate PCR reactions 

with bar-coded primers. Bacterial community composition was determined by targeting 

16S rRNA gene using 515F/806R primers (Caporaso et al. 2012). PCR products were 

purified using the Agencourt AMPure XP magnetic bead system (Beckman Coulter Life 

Sciences, Indianapolis, Indiana, USA) with a volume of PCR product to beads of 1 to 0.7. 

Purified PCR products were analyzed in a Fragment Analyzer using a Standard Sensitivity 

NGS Fragment Analysis kit (1bp-6000bp) and following manufacturer’s instructions 

(Advanced Analytical Technologies GmbH, Heidelberg, Germany). Finally, bacterial PCR 

amplicons were sequenced using Illumina MiSeq platform. 

The 16S rRNA amplicon reads, MiSeq paired-end reads, were merged when reads had a 

minimum overlap of 150bp and at least a PHRED score of 25 using the RDP extension of 

PANDASeq (Masella et al. 2012) named Assembler (Cole et al. 2014). Primer sequences 

were removed using Flexbar version 2.5 (Dodt et al. 2012). Sequences were clustered to 

OTU with VSEARCH version 1.0.10 (Rognes et al. 2016), using the UPARSE strategy by 

dereplication, sorting by abundance with removing singletons and clustering using the 

UCLUST smallmem algorithm (Edgar 2010). Chimeric sequences were detected using the 

UCHIME algorithm. All reads were mapped to OTUs and a OTU Table was created and 

converted to BIOM-Format 1.3.1 (McDonald et al. 2012). Taxonomic information for each 

OTU obtained using the RDP Classifier version 2.10 (Cole et al. 2014). All steps where 

implemented in a workflow made with Snakemake (Köster and Rahmann 2012). Samples 

with a total sequence number lower than 1000 reads and singleton OTUs (e.g. OTU which 

is only found once in one sample) were removed from further analyses. 
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The sequencing analyses of the 16S rRNA region of all soils yielded an average of 2.761 

OTUs per sample (± 944 SD), with a total of 5.452.733 reads. OTUs belonged to 25 different 

phyla (including bacteria and archaea), 82 classes, 136 orders, 274 families and 630 genera.  

Catabolic response profiling 

We used a catabolic response profile method as described in Fierer et al. (2012) in order to 

assess how soil communities differ in their ability to mineralize different organic carbon 

compounds. For each pot, we measured the CO2 production response of the soil 

communities after the addition of 8 organic substrates of varying complexity (i.e., glucose, 

sucrose, glycine, oxalic acid, citric acid, yeast, lignin and cellulose). Organic carbon 

solutions were made before the soil sampling started and adjusted to a pH of 6.0. These 

analyses were carried out immediately after sampling of rhizosphere soil. Briefly, the 

equivalent of 4 g of dry soil was weighed into 9 different 50 ml centrifuge tubes. Then, 

each tube received 8 ml of one of the organic carbon substrate solutions. Additionally, one 

of the tubes received water as a control. Tubes containing soils and substrates were 

incubated for 1 h uncapped in a horizontal shaker (20 oC). Centrifuge tubes were then 

closed tightly with a modified lid equipped with a rubber septum and a rubber O-ring in 

order to ensure air tightness. We then flushed the headspace air in the tubes with CO2-free 

air for 2 min at 1 bar (Westfalen Gassen Nederland BV, Deventer, the Netherlands). We 

incubated the tubes at constant temperature of 20 oC in the dark using a climate-controlled 

chamber (Economic Lux chamber, Snijders Labs, Tilburg, the Netherlands). 

After incubation, we collected 6.2 ml of headspace air from each tube using a syringe and 

stored it into pre-evacuated 5.9 mL Exetainer vial (Labco Ltd., Buckinghamshire, UK). 

Samples were collected after 4 h of incubation for labile substrates (glucose, sucrose, 

glycine, oxalic acid, citric acid and yeast) and after 24 h for more recalcitrant substrates 

(lignin, cellulose). 

The concentration of CO2 in the gas vials (over pressure of 1 bar) was measured by 

injecting 250 µl of each sample in a Trace Ultra GC gas chromatograph equipped with a 

flame ionization detector with methanizer (mFID) (Interscience BV, Breda, the 

Netherlands) and a TriplusRSH auto-sampler (Interscience BV, Breda, the Netherlands), 

and a Rt-QBOND (30 m, 0.32 mm ID) capillary column (Restek, Bellefonte USA). We used 

helium 5.0 as a carrier gas, a sample split ratio of 1: 20 and set oven temperature at 50 °C 

with a flow of 5 ml. We used a calibration curve of known concentrations of CO2 ranging 

from 0 to 4600 ppm of CO2 preprared out of a reference gas (2.38% CO2 in synthetic air, 



Chapter 3 
 
 

66 
 

Westfalen AG, Munster, Germany) to determine the amount of CO2 in our samples. 

Chromeleon 7.2 Data System Software (Thermo Scientific Waltham, USA) was used to 

automatize the measurements and process data. 

Extracellular enzyme activity 

Remaining rhizosphere soil was kept at -20 oC for further analyses of extracellular enzyme 

activity in the soil. We measured soil enzyme activity using high-throughput fluorometric 

measurements, where a gain of fluorescence over the incubation time represents the 

amount of enzymatic activity (Baldrian 2009). We determined the potential activity of 3 

enzymes in soils involved in different pathways of carbon and nutrient cycling: 

glucosidase, phosphatase and aminopeptidase. Enzyme activity was measured in the 80 

soil samples of the last time point (12 weeks). Briefly, 1 g of fresh soil was weighed into a 

clean glass jar before adding 50 ml of sodium acetate buffer (2.5 mM, pH = 5.5). Vials were 

then capped tightly and shaken in a horizontal shaker for 10 min at 330 rpm in order to 

obtain the soil homogenate.  Fluorogenic substrates 4-methylumbellyferyl-β-D-

glucopyranoside (MUFG), 4-methylumbellyferyl-phosphate (MUFP) and L-alanine-7-

amido-4-methylcoumarin (AMCA) were purchased (Sigma-Aldrich Chemie NV, 

Zwijndrecht, Netherlands). We dissolved all substrates in DMSO at concentration of 2.5 

mM for AMCA and 2.75 mM for MUFG and MUFP. A 40ul of substrate solution was 

mixed with 250 µl of soil homogenate in each well of a black 96-well plate. Three technical 

replicates were included per soil sample and enzyme activity. We calibrated 

concentrations of enzyme activity product by a dilution curve made from a stable form of 

the fluorogenic compounds (1.0 mM methylumbellyferol (MUF) and 1.0 mM 7-

aminomethyl-4-coumarin (AMC) (Sigma-Aldrich Chemie NV, Zwijndrecht, Netherlands). 

Fluorescence was measured at time 0 h and after 2 h of incubation at 40 oC. We used a 96-

well plate reader with an excitation and emission wavelengths of 360 nm and 460 nm, 

respectively (Synergy HT, BioTek Instruments, Winooski, Vermont, USA). We compared 

the measured fluorescence in our samples, after subtraction of the blank, with standard 

curves of MUF and AMC to calculate the amount of enzymatic product formed over the 

incubation time. A unit of enzyme activity is defined as the amount of enzyme reaction 

product (µmol) per gram of dry soil and hour. 

 



Belowground consequences of range-expanding plants 
 
 

67 
 

 

  

 

Table S3.1. List of plant genera and species used in the experiment and the coordinates of the field 
locations where soils were sampled 

Genera Species Origin Site Coordinates 
Centaurea jacea Native 1 N51° 52.076' E5° 59.529' 
      2 N51° 52.764' E6° 00.292' 
      3 N51° 52.985' E5° 42.911' 
      4 N51° 52.787' E5° 43.751' 
      5 N51° 52.036' E6° 01.505' 
  stoebe * Range-expander 1 N51° 51.599' E5° 53.332' 
      2 N51° 51.605' E5° 53.332' 
      3 N51° 51.606' E5° 53.342' 
      4 N51° 51.605' E5° 53.354' 
      5 N51° 51.609' E5° 53.350' 
Geranium molle Native 1 N51° 46.700' E5° 55.612' 
      2 N51° 52.006' E5° 59.429' 
      3 N51° 52.743' E6° 00.267' 
      4 N51° 52.627' E6° 00.032' 
      5 N51° 52.641' E6° 00.120' 
  pyrenaicum Range-expander 1 N51° 57.872' E5° 40.861' 
      2 N51° 46.702' E5° 55.579' 
      3 N51° 52.662' E6° 01.296' 
      4 N51° 51.856' E6° 00.938' 
      5 N51° 51.822' E6° 00.953' 
Tragopogon pratensis Native 1 N51° 52.972' E5° 42.850' 
      2 N51° 52.869' E5° 43.318' 
      3 N51° 52.797' E5° 43.466' 
      4 N51° 52.781' E5° 43.731' 
      5 N51° 52.468' E5° 46.793' 
  dubius * Range-expander 1 N51° 50.161' E5° 51.224' 
      2 N51° 50.152' E5° 51.228' 
      3 N51° 50.285' E5° 51.113' 
      4 N51° 50.248' E5° 51.075' 
      5 N51° 50.253' E5° 51.072' 
Rorippa sylvestris Native 1 N51° 52.275' E5° 54.398' 
      2 N51° 52.104' E5° 56.275' 
      3 N51° 52.145' E5° 59.389' 
      4 N51° 52.652' E6° 00.010' 
      5 N51° 52.761' E6° 00.255' 
  austriaca Range-expander 1 N51° 52.316' E5° 54.397' 
      2 N51° 52.177' E5° 56.197' 
      3 N51° 52.057' E5° 59.462' 
      4 N51° 52.204' E5° 59.468' 
      5 N51° 52.239' E5° 59.495' 
(*) Range-expanders Centaurea stoebe and Tragopogon dubius are rare in the Netherlands and therefore, 
field soils of these species were collected from 5 individuals that were maximally 100 m apart 
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Table S3.2. PERMANOVA test on Bray-Curtis 
dissimilarity matrix of bacterial communities in the field 
inocula soils (999 permutations) 
Factor R2 Signif. 
Soil pH 0.188 *** 
Soil (NO3- NO2)-N 0.059 ** 
Soil NH4-N 0.061 ** 
Soil PO4 0.029 * 
Soil CN ratio 0.065 ** 
Plant species 0.216 ** 
Significance levels:  * p<0.05; ** p<0.01; *** p<0.001 

 

 

 

Table S3.3. Effects of plant genus and plant origin and their interaction on soil abiotic parameters and 
bacterial community characteristics of the field soils were analyzed using 2-way ANOVA 
  Plant genus Plant origin Genus * Origin 
Soil parameters F Signif. F Signif. F Signif. 
pH 33.461 *** 2.495 ns 2.641 . 
Nitrate ((NO3

--NO2
-)-N) 6.705 ** 5.344 * 1.667 ns 

Ammonia (NH4
+-N) 19.521 *** 4.705 * 4.932 ** 

P-Olsen 6.196 ** 0.715 ns 1.654 ns 
C: N ratio 18.768 *** 4.048 . 8.203 *** 
Bacterial community F Signif. F Signif. F Signif. 
OTU richness 12.817 *** 0.811 ns 0.756 ns 
Diversity (H’) 11.129 *** 2.249 ns 1.089 ns 
Evenness 3.574 * 0.981 ns 1.259 ns 
Significance levels: ns p>0.1; . p<0.1;* p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001 
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Fig. S3.1. Principal Coordinate Analyses of the bacterial community of field soils, which originate from 
locations where the plant species grown in the field and served as inocula in our experiment. Soil abiotic 
properties are projected in the ordination plot as supplementary variables (arrows). Symbols are means 
± SE (N=5). Different colours represent the different plant pairs of range expander and congeneric 
natives.  Within each pair, circles represent the native plant species and triangles the range-expander. 
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Fig. S3.2. Soil properties of the soils collected from field populations, and used as inocula in the 
experiment. White bars represent native plant species and grey bars represent range-expanding plant 
species in each plant genus. (A) pH, (B) nitrate and nitrite availability, (C) ammonium availability, (D) 
phosphate availability, (E) soil C: N ratio, (F) 16S OTU richness, (G) OTU Shannon diversity index, H’ 
(1) and (H) community evenness, EH (2). Means with standard error (n=5) are presented for native (white 
bars) and range-expanding (grey bars) plant species. Asterisk (*) and dot (.) symbols indicate P < 0.05 
and P < 0.1, respectively, in pairwise within-genus comparisons. (1) Shannon diversity index  𝐻𝐻′ =
−∑ 𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑛𝑛

𝑖𝑖=1 𝑝𝑝𝑖𝑖   where pi is the proportion of species i relative to the total number of species. (2) Community 
evenness  𝐸𝐸𝐻𝐻 = 𝐻𝐻/ ln 𝑆𝑆  where S is the total number of OTUs. 
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Fig. S3.3. Principal Coordinate Analyses of the rhizosphere bacterial community composition for each 
pair of a range-expander and its congeneric native plant species (A: Centaurea, B: Geranium, C: 
Tragopogon, D: Rorippa) grown in “novel” soils. The symbols are means ± SE (N=5). Within each pair, 
circles represent the native plant species and triangles the range-expander. Colors indicate time of 
harvest (4, 8 and 12 weeks) as noted in the legend. 
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Fig. S3.4. Principal Coordinate Analyses of the rhizosphere bacterial community composition for each 
pair of a range-expander and its congeneric native plant species (A: Centaurea, B: Geranium, C: 
Tragopogon, D: Rorippa) grown in “own” soils. The symbols are means ± SE (N=5). Within each pair, 
circles represent the native plant species and triangles the range-expander. Colors indicate time of 
harvest (4, 8 and 12 weeks) as noted in the legend. 

  



Belowground consequences of range-expanding plants 
 
 

73 
 

 

Fig. S3.5. Principal Coordinate Analyses of the catabolic response profiles for each pair of a range-
expander and its congeneric native plant species (A: Centaurea, B: Geranium, C: Tragopogon, D: Rorippa) 
grown in “novel” soils. The symbols are means ± SE (N=5). Within each pair, circles represent the native 
plant species and triangles the range-expander. Arrows representing each substrate are displayed over 
the ordination plot as supplementary variables. Colors indicate time of harvest (4, 8 and 12 weeks) as 
noted in the legend. 
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Fig. S3.6. Principal Coordinate Analyses of the catabolic response profiles for each pair of a range-
expander and its congeneric native plant species (A: Centaurea, B: Geranium, C: Tragopogon, D: 
Rorippa) grown in “own” soils. The symbols are means ± SE (N=5). Within each pair, circles represent 
the native plant species and triangles the range-expander. Arrows representing each substrate are 
displayed over the ordination plot as supplementary variables. Colors indicate time of harvest (4, 8 and 
12 weeks) as noted in the legend. 
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Abstract 

Plant-soil feedback (PSF) results from the legacy that plants leave in the composition of 

soil communities and abiotic soil properties. PSF is known to be the net outcome of plant-

soil interactions induced by the rhizosphere and by litter inputs into the soil, however, we 

have little understanding of their individual contributions. Here, we examine feedback 

effects from the rhizosphere of living plants, decomposing litter, and their combination. 

We used climate warming-induced range-expanding plant species, to assess how PSF may 

play a role in their establishment and performance in the new range. We tested PSF effects 

on plant biomass production, as well as on decomposition. We tested the hypothesis that 

the plant rhizosphere provides less negative feedback to range expanders than to natives, 

and that decomposition does not provide such an advantage because these soil biota are 

expected to be less specialized. We used a highly sensitive PSF approach by using soil 

from the congener species as an “away” soil control, as that would indicate whether range-

expanders may have lost their specialized soil biota upon arrival in the novel range soil. 

Our results show that although range-expanding plant species and their congeneric 

natives developed neutral PSF in both rhizosphere and litter-conditioned soils, two out of 

four range-expanders produced significantly more biomass than natives in soils 

conditioned by litter. Shoot litter from two out of four range-expanding species showed 

more decomposition than natives, but decomposition was unaffected by soil conditioning. 

In general, biomass of plants growing in soils conditioned by plant rhizosphere plus litter 

may be predicted from biomass production in soils conditioned by living plant 

rhizosphere or plant litter alone. In our experimental set-up, using control soils that are 

known to produce conservative PSF values, PSF effects via the rhizosphere and litter were 

not affected by plant origin. Still, range-expanders appeared to benefit more from high 

nutrient availability in the soil than natives, which will provide an advantage under 

otherwise equal environmental conditions. 
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Introduction 

Growing plants induce changes in the composition of soil communities and the 

physicochemical soil environment (Berg and Smalla 2009). The legacy of these changes can 

alter the growth and fitness of themselves, their neighbours and subsequent plants via so-

called plant-soil feedback (PSF) effects (Bever et al. 1997, Kulmatiski et al. 2008). The biotic 

component of PSF is driven by three main groups of soil biota: enemies (including 

pathogens and herbivores), mutualistic symbionts (such as mycorrhizal fungi and 

rhizobia), and decomposers, which are responsible for the breakdown of organic 

compounds (van der Putten et al. 2016). The mechanism by which these different soil biota 

can steer plant performance is a net effect of direct interactions with living plant roots, 

mostly pathogens and mutualistic symbionts, and indirect interactions with plants via the 

breakdown of plant litter, mostly by decomposer organisms, or by changes in the abiotic 

soil environment (Wardle et al. 2004). Little is known about the relative contribution of 

these direct and indirect interactions to overall net PSF effects and subsequent plant 

growth responses, whereas this knowledge is relevant in order to understand how global 

environmental changes may influence spatio-temporal dynamics in plant communities 

(van der Putten et al. 2013, van der Putten et al. 2016).  

The rhizosphere harbors a large diversity of soil microorganisms and invertebrates 

(Philippot et al. 2013), and plant species affect rhizosphere communities in a species-

specific way (Berg and Smalla 2009). Rhizosphere organisms include specific plant 

pathogens, plant growth-promoting bacteria or mutualistic symbionts, which can have 

direct beneficial, neutral or harmful effects on the host plant (Singh et al. 2004, Raaijmakers 

et al. 2009, Mendes et al. 2013). They use living plant roots or root exudates released by 

plants, both serving as carbon and nutrient sources and, in turn, affect plant performance 

by feeding damage but also by regulating water and nutrient availability and the 

production of volatile organic compounds (Bailly and Weisskopf 2012, Mendes et al. 2013). 

In this way plants leave behind a legacy effect in the soil that may affect subsequent plant 

growth. Many previous studies have focused on rhizosphere-induced PSF effects and 

showed that these can range from negative (pathogens and parasites dominate) to positive 

(mutualistic symbionts dominate) (Kulmatiski et al. 2008, Ma et al. 2017, Lekberg et al. 

2018).  

Plant-soil feedback effects can also be affected by plant litter decomposition (Ehrenfeld et 

al. 2005, Eppinga et al. 2011, Eppinga and Molofsky 2013, Zhang et al. 2016b). Besides 
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shaping a specific rhizosphere community of soil biota, plant species may also develop 

distinct and specific decomposer communities (Keiser et al. 2011, Elgersma et al. 2012) via 

the quantity, quality (i.e. chemical properties) and timing of litter inputs into the soil 

(Austin et al. 2014). As a result, decomposing plant litter may leave a plant species-specific 

legacy in the form of altered nutrient status, secondary chemistry, water availability and 

altered physical soil properties (Ehrenfeld 2010, Freschet et al. 2013). These alterations will 

indirectly, and sometimes even directly determine subsequent plant performance and 

therefore contribute to PSF effects. In addition, locally specialized decomposer 

communities may accelerate decomposition rates, referred to as home-field advantage 

(Gholz et al. 2000, Ayres et al. 2009b), which may also influence subsequent plant growth 

by PSF. Even though litter-mediated effects on soil community composition, functioning 

and the resulting PSF effects are expected to be less specific than those mediated via the 

rhizosphere (Ke et al. 2015), we still have poor understanding of the relative importance 

of the decomposer contribution to net PSF. For example, the decomposer pathway may 

reduce negative effects mediated via the rhizosphere pathway (Zhang et al. 2016b). 

Therefore, in order to further understand how PSF impacts on plant growth and 

performance, it will be important to take both effects mediated by rhizosphere and litter 

decomposition into account.  

PSF effects have been proposed to play an important role during the establishment of 

introduced exotic plant species (Klironomos 2002, Blumenthal et al. 2009, Eppinga et al. 

2011). PSF is often less negative, or more positive in novel than in native ranges (Reinhart 

et al. 2003, Callaway et al. 2004) and soil biota in the new range may alter plant resource 

allocation strategies (te Beest et al. 2009). Thus far, most PSF studies on introduced plants 

have considered exotic species that have been introduced from other continents (Suding 

et al. 2013). However, many plant species are also migrating intra-continentally, because 

ongoing climate warming enables range expansion to higher latitudes and altitudes 

(Parmesan and Yohe 2003, Chen et al. 2011, Alexander et al. 2015). During these intra-

continental range shifts, PSF effects may vary between the new and original range, because 

of different dispersal rates of plants and soil biota (Berg et al. 2010) and different 

specificities of soil biota involved in rhizosphere and litter-induced feedback interactions 

(van der Putten 2012).  

Range-expanding plant species have been shown to benefit from escaping their natural 

enemies in the rhizosphere, thereby experiencing less negative, or even positive PSF in the 
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new compared to the original range (Van Grunsven et al. 2010, Dostálek et al. 2016). In 

addition, range expanders may increase soil nitrogen availability (Meisner et al. 2012) and 

may have different nutrient acquisition strategies or time of peak growth than natives 

(Mariotte et al. 2017). However, it is largely unknown how indirect interactions, such as 

through plant litter decomposition, may contribute to net PSF during plant range 

expansion. In order to further understand how direct effects from pathogens and 

mutualistic symbionts and indirect effects from decomposer organisms may contribute to 

PSF, a first step is to consider feedback effects from rhizosphere and litter both separately 

and in combination. We will do this by comparing range expanders in their new range 

with co-occurring congeneric native species, as these range expanders and natives are 

expected to differ in the degree to which direct and indirect PSF components contribute to 

net PSF effects (van der Putten 2012).  

We designed a two-phase feedback experiment in the greenhouse in order to determine 

PSF effects of range-expanding plant species and congeneric related species that are native 

in the new range. Eight plant species (four range expanders and four natives) were grown 

in soils conditioned by living plants and/or plant litter. We tested four hypotheses: (1) For 

rhizosphere feedback effects, range expanders do not show different growth responses to 

soils conditioned by either conspecifics or congeneric natives, whereas natives will 

perform worst in their own soil. (2) For litter feedback effects, both range-expanders and 

congeneric natives will perform best in soils conditioned by litter of range-expanders, as 

they are expected to have higher quality litter and decompose more than litter of natives 

(Meisner et al. 2012). (3) Because litter feedback effects are expected to alleviate nutrient 

limitations in plant growth potential, plant growth responses in the combined treatment 

of rhizosphere and plant litter conditioning should be predictable from responses to 

individual rhizosphere and litter conditioning. (4) Litter breakdown is greater for litter of 

native plant species in their own conditioned soils, but not for range-expanders due to the 

lack of specialized decomposers in the new range.  

In order to test the hypotheses, we have conditioned soils by growing plants, 

incorporating plant litter in the soil, or a combination of growing plants and litter 

incorporation. We conditioned the soils using living plants or litter from four range-

expanding and four congeneric related native plant species, all individually. At the end of 

the conditioning phase we have assessed the functional capacity of the soil community, 

soil nutrient status, plant growth, and decomposition responses to the soil conditioning 
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treatments, by growing plants and by decomposing litter in soils conditioned by 

conspecific and congeneric species. In our experiment, the control for PSF effects was 

based on a comparison of performance in conspecific conditioned soil to that in congeneric 

conditioned soil, which enabled us to detect eventual high degree intra-genus 

specialization of the soil communities between natives and range expanders. This method 

is far more sensitive than using a sterilized or a more general “away” soil as a control, so 

that we would not be able to detect whether range expanders in general are having less 

negative PSF than congeneric natives, as done in other studies on plant range shifts 

(Engelkes et al. 2008, Van Grunsven et al. 2010, Dostálek et al. 2016). Nevertheless, this 

approach allowed us to tease apart PSF effects of living plant roots, decomposing litter, or 

both. 

Material and Methods 

Plant species selection 

We used four pairs of range-expanding plant species and congeneric natives (Centaurea 

stoebe and Centaurea jacea, Geranium pyrenaicum and Geranium molle, Tragopogon dubius and 

Tragopogon pratensis, Rorippa austriaca and Rorippa sylvestris, respectively). Seeds were 

collected from field populations or purchased from a commercial supplier (Cruydt Hoeck, 

Nijeberkoop, the Netherlands) that harvests seeds from plant material originally collected 

from the field. All seeds were surface sterilized (3 min, 10 % bleach solution) and 

germinated on sterilized glass beads under controlled conditions (20/10 oC day/night, 16 

h photoperiod). Due to their small size, Rorippa seeds were germinated directly in gamma-

sterilized soil under the same controlled conditions (minimally 25 KGray, Syngenta BV, 

Ede, the Netherlands). 

Soil collection 

Background soil was collected from a former agricultural field in a riparian area near 

Beneden-Leeuwen, the Netherlands (N51° 53.952, E05° 33.670) and sterilized by gamma 

irradiation (minimally 25 KGray, Syngenta BV, Ede, the Netherlands). Inocula soils were 

collected from natural field populations of each of the plant species used. We collected soil 

inocula from 5 independent populations of each plant species obtaining a total of 5 

replicates × 2 origins (i.e., native and range-expander) × 4 plant species pairs = 40 

independent soil inocula (Table S4.1). Soil inocula of each of the five independent 

replicates consisted of equal amounts of soil from each of the eight plant species (dry w/w). 
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So, the soil inoculum for replicate one contained equal amounts of soil of replicate one of 

all eight plant species, the same for replicate two, three, four and five. In this way, we 

created five independent soil replicates, each consisting of a mix of field soil communities 

from all eight plant species. 

Experimental design 

The experiment consisted of two phases: a conditioning phase and a feedback phase. In 

the conditioning phase, we used three different types of conditioning treatments: with 

living plants (plant conditioning), with plant litter material (litter conditioning) and with 

both (plant + litter conditioning). This resulted into 120 pots (8 plant species × 3 

conditioning types of plant, litter, and both × 5 replicates). After 13 weeks of conditioning, 

we harvested the plant material and used the soil in the feedback phase.  

In the feedback phase we conducted two separate, simultaneously running experiments, 

one focusing on plant growth responses to soil conditioning and one focussing on litter 

decomposition responses to soil conditioning. For the feedback experiment on plant 

growth, we grew individual plants of each plant species in “own” soils (i.e. conditioned 

by themselves) and in “away” soils (i.e. conditioned by their congeneric species). There 

were 240 pots to test plant biomass production (3 conditioning type × 2 own/away soils × 

8 plant species × 5 replicates). For the feedback experiment on litter decomposition, we 

used soils conditioned by plant litter material (litter conditioning) to determine the effect 

of species-specific conditioning on breakdown of shoot and root litter of the same plant 

species and the congeneric species. The feedback phase included 200 incubation 

microcosms (2 shoot/root litter × 2 own/away soil × 8 plant species × 5 replicates + 40 

control soil only). Control soils were incubations containing only the 40 conditioned soils 

(8 plant species × 5 replicates) and with no litter added, which allow to quantify and correct 

for the basal respiration of the soil.    

Conditioning phase 

We filled 3 L pots with sterilized soil mixed with 10% of live soil inocula (dry w/w). All 

soils were kept at 60 % of the water holding capacity by watering to pre-determined 

weight twice a week. We incubated the pots with the soil in the greenhouse for 11 days to 

allow the soil inocula to establish before starting the conditioning by plants, litter, and 

plants + litter. We used litter of both shoots and roots, which was harvested from senescing 

greenhouse-grown plants. Root material was washed and both shoots and roots were air-
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dried and sterilized prior to use in the experiment (minimally 25 KGray, Syngenta BV, 

Ede, the Netherlands). We fragmented litter in pieces of appr. 1 x 1 cm and added in total 

6 g of dry litter per pot (50-50 % shoot-root litter). The amount of litter was chosen to be 

representative of the average litter fall to the soil in temperate ecosystems (Peñuelas et al. 

2007). Litter was mixed through the soil for each individual pot separately. Soils in the 

pots that received no litter were mixed in the same mechanical way to make all soils 

exposed to the same degree of disturbance. Subsequently, we planted three individuals of 

each plant species per pot and grew them for 13 weeks under controlled greenhouse 

conditions (21/16 oC, 16 h photoperiod supplied with 600W high pressure sodium lamps 

at 250 µmol m-2 s-1 PAR and average air humidity of 60 %).  

After 13 weeks of soil conditioning, we removed the plants from the soil, washed the roots, 

dried both above and belowground biomass at 40 oC for five days and measured biomass. 

We immediately took a subsample of soil from each pot to analyse the soil catabolic 

response profile at the day of harvest and followed the protocol of Fierer et al. (2012). We 

added eight different organic substrates of varying complexity. Labile substrates were 

glucose, sucrose, glycine, oxalic acid, citric acid and yeast, and recalcitrant substrates were 

chitin and cellulose) separately to 4 g of soil (dry weight equivalent). Soils were weighed 

into 50 mL centrifuge tubes modified with a rubber O-ring in the inner part of the lid to 

ensure air tightness, and equipped the lids with a butyl rubber to allow headspace air 

sampling with a syringe. We then added 8 mL of substrate solution with concentrations 

ranging from 15 to 100 mM depending on the compound as used by Fierer et al. (2012). 

We capped the vials tightly, flushed the headspace with O2-free air during 2 min at 1 bar 

(Westfalen Gassen Nederland BV, Deventer, the Netherlands) and incubated the vials at 

20 oC and darkness using a controlled climate chamber (Economic Lux chamber, Snijders 

Labs, Tilburg, the Netherlands). We measured the net accumulation of CO2 over a period 

of 4 h for labile substrates or 24 h for recalcitrant substrates. A headspace sample of 6.2 ml 

was collected from each tube using a syringe and stored it into pre-evacuated 5.9 mL 

Exetainer vial (Labco Ltd., Buckinghamshire, UK). 

The concentration of CO2 in the gas vials (over pressure of 1 bar) was measured by 

injecting 250 µl of each sample in a Trace Ultra GC gas chromatograph equipped with a 

flame ionization detector with methanizer (mFID) (Interscience BV, Breda, the 

Netherlands) and a TriplusRSH auto-sampler (Interscience BV, Breda, the Netherlands), 

and a Rt-QBOND (30 m, 0.32 mm ID) capillary column (Restek, Bellefonte USA). We used 
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helium 5.0 as a carrier gas, a sample split ratio of 1: 20 and set oven temperature at 50 °C 

with a flow of 5 ml. We used a calibration curve of known concentrations of CO2 ranging 

from 0 to 4600 ppm of CO2 preprared out of a reference gas (2.38% CO2 in synthetic air, 

Westfalen AG, Munster, Germany) to determine the amount of CO2 in our samples. 

Chromeleon 7.2 Data System Software (Thermo Scientific Waltham, USA) was used to 

automatize the measurements and process data. 

A soil subsample was dried at 40 oC for 5 days to determine moisture content and 

phosphorous availability (P-Olsen) using extraction in a 0.5 M NaHCO3 solution and 

quantification by autoanalyzer (QuAAtro Autoanalyzer, SEAL Analytical Ltd., 

Southampton, UK). Lastly, we took a fresh soil subsample and measured mineral nitrogen 

and pH after KCl extraction. Briefly, we mixed 10 g of soil (based on dry weight 

equivalent) with 50 ml of 1M KCl solution in a glass vial and shook it for 2 h. We measured 

the concentration of mineral nitrogen (NH4+ and NO3--NO2-) in the solution using an 

autoanalyzer (QuAAtro Autoanalyzer, SEAL Analytical Ltd., Southampton, UK). The 

remaining soil from each pot was kept in a separate bag at 4oC to be used for the two 

feedback phases. 

Feedback phase: effects on plant biomass 

The feedback phase to test plant growth responses to the conditioned soils was set up 10 

days after the end of the conditioning phase. We divided the soil from each pot in the 

conditioning phase into two parts to fill two pots of 1.1 L with the equivalent of 850 g of 

dry soil. We covered every pot with aluminium foil to prevent water evaporation and to 

diminish the number of air-borne propagules that could potentially land in our 

conditioned soils. 

We planted one seedling of each species in “own” and one in “away” soil. After a week, 

we replanted seedlings in pots where plants had failed to establish. To assess plant growth 

responses to the different conditioning treatments, we harvested all plants after 6 weeks 

of plant growth and measured shoot and root biomass after oven drying (70 oC, 48 h). We 

chose this relatively short duration of feedback phase to avoid both nutrient limitation and 

pot size limitation effects on plant growth. 

Feedback phase: effects on litter decomposition 

After weighing the dry plant biomass resulting from the conditioning phase, we cut the 

shoot and root material into small pieces of 1 x 1 cm to serve as litter for a decomposition 
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experiment. As litter originated from different plant individuals of the same species, we 

homogenized the resulting litter pieces within each species. Shoot and root litter were kept 

separately. Subsequently, we sterilized the litter material using gamma irradiation 

(minimally 25 KGray, Syngenta BV, Ede, the Netherlands). After sterilization, we 

measured litter C: N ratio of shoots and roots of each species as a proxy for litter quality 

using an elemental analyser (Flash EA 1112, Thermo Fisher Scientific Inc., Waltham, USA). 

We used modified 50 mL centrifuge tubes as microcosms to measure decomposition 

activity. We added 1.00 g of dry sterilized litter and inoculated it with conditioned fresh 

soil (0.50 g of dry weight equivalent). Control microcosms were set up for each of the soils 

and used to quantify how much CO2 evolved from soil only. Due to the small amount of 

soil, priming effects were not measured and expected to be negligible. Microcosms were 

kept at 65 % of the water holding capacity by watering them to pre-determined weight. 

Water holding capacity was determined for each plant litter type and species separately.   

We collected samples for CO2 measurements 11 times during the 48-day incubation (on 

days 1, 2, 3, 5, 7, 9, 12, 17, 23, 31 and 47). We tightly closed the tubes and flushed them with 

CO2-free air for 2 min at 1 bar. Then, tubes were placed back to the incubator for 4 hours 

before collecting a 6.2 ml sample of headspace air from each tube using a needle equipped 

with a pressure lock. We stored headspace air samples in pre-evacuated Exetainer vials 

(Labco Ltd., Buckinghamshire, UK). Exetainer vials containing CO2 samples were stored 

at 4oC and darkness until their measurement in the gas chromatograph. CO2 concentration 

in the gas samples were measured using the same setting as for the catabolic response 

profile. However, for this case we used an additional calibration curve from 0 to 1200 ppm 

of CO2 in order to increase measurement accuracy of control samples containing only soil 

with no litter added. At the end of the incubation, we also assessed decomposition by 

measuring litter mass loss. Dry weights at the start of the incubation experiment were 

recorded using a 4 decimal scale, as well as on day 48 after freeze-drying the incubation 

tubes with the remaining materials.   

Data analyses 

At the end of the conditioning phase, we analysed the effect of plant identity on soil pH 

and soil nutrient content within each conditioning type using linear mixed effect models. 

Plant genera and plant origin were included as fixed factors and block as random effect 

factor. We then used Tukey post-hoc test to determine significant pairwise differences 

between plant genera and plant origin. For plant biomass, we tested whether plants grew 
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equally well with or without litter using linear mixed models with conditioning type, 

genera and plant origin as fixed factors and block as a random effect factor. We assessed 

normality of model residuals using Q-Q plots. We then used pairwise comparisons within 

each plant species to determine for which plant species, plant conditioning had significant 

effects on plant biomass. Canoco 5 software was used to conduct multivariate statistics on 

the catabolic response profiles of the soil communities (Ter Braak, 2012). We calculated the 

relative mineralization of each substrate and data were log transformed prior to analyses. 

We used Principal Coordinate Analyses of the dissimilarity matrix based on Bray-Curtis 

distances to visualize differences between conditioning treatments and plant origin within 

each plant pair. To test the significance of conditioning and plant origin on the catabolic 

response profiles, we then performed PERMANOVA analyses (999 permutations) using 

the ‘adonis’ function in the ‘vegan’ package in R (R Core Team 2017). 

After the feedback phase, we analysed the effects of soil conditioning on total plant 

biomass production within each separate plant genus using linear mixed effect models. 

Soil conditioning type, plant origin and soil origin (own vs away) were used as fixed effect 

factors and block was included as a random effect factor. Post-hoc Tukey tests were used 

to determine significant pairwise interactions. We analysed litter-derived CO2 production 

from shoot and root litter separately using linear mix model effects. Plant genera, plant 

origin and soil origin (own vs away) were used as fixed effect factors and block was 

included as a random effect factor. We also calculated PSF effects as “ln(own/away)” 

(Brinkman et al. 2010). We calculated PSF effects for both feedback on plant growth and 

on litter decomposition to assess the relative effects of soils conditioned by the congeneric 

species compared to soils conditioned by the conspecific in the conditioning phase. One-

sample t-test were used to test whether PSF effects significantly differed from 0. 

We then determined whether plant biomass responses in the conditioning treatment with 

plants and litter could be predicted by the average of the responses to conditioning by 

living plants and plant litter separately. Predicted biomass values were calculated within 

the five experimental blocks and compared to the observed values. One-sample t-testing 

was used to test whether differences between observed and predicted biomass 

significantly differed from 0. 
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Results 

Conditioning phase 

At the end of the conditioning phase, soils that were conditioned by growing plants with 

or without plant litter had lower availability of all measured nutrients than soils that were 

conditioned by litter only (Table 4.1). Within each conditioning treatment, plant origin did 

not have a consistent effect on soil nutrient availability (Table 4.1, Table 4.2).  

 

 

 

Table 4.1.  Soil pH, soil nitrate and nitrite availability (NO3+NO2), ammonium (NH4) and available phosphate (PO4) 
for all plant species and conditioning types at the end of the conditioning phase. RE indicates range-expanding plant 
species. Values are averages per treatment ± standard error (N = 5). Letters indicate significant differences between 
plant genera (p < 0.05). Asterisks indicate significant differences between plant origin within plant genera (p < 0.05) 
 

Conditioning Plant genera Origin Soil pH N-(NO3+NO2) N-(NH4) P-(PO4) 
Plant Centaurea Native 7.33 ± 0.08 0.00 ± 0.00 

a 
0.00 ± 0.00 52.4 ± 2.04  

  RE 7.38 ± 0.05 0.00 ± 0.00 0.06 ± 0.03 50.8 ± 1.37  
 Geranium Native 7.38 ± 0.06 0.05 ± 0.05 

a 
0.08 ± 0.02 49.8 ± 2.21  

 
 

RE 7.39 ± 0.07 0.18 ± 0.18 0.24 ± 0.16 47.9 ± 1.19  
 Tragopogon Native 7.37 ± 0.10 0.00 ± 0.00 

a 
0.03 ± 0.01 53.9 ± 1.93  

 
 

RE 7.43 ± 0.08 0.05 ± 0.05 0.09 ± 0.05 49.5 ± 2.01  
 Rorippa Native 7.33 ± 0.11 0.40 ± 0.10 

b 
0.15 ± 0.09 49.3 ± 1.15  

 
 

RE 7.37 ± 0.09 0.52 ± 0.21 0.56 ± 0.41 48.5 ± 2.09  
Litter Centaurea Native 7.43 ± 0.03 62.99 ± 5.17 

ab 
0.09 ± 0.03 58.5 ± 0.30  

  RE 7.48 ± 0.01 62.51 ± 5.56 0.17 ± 0.06 57.4 ± 1.77  
 Geranium Native 7.40 ± 0.04 63.45 ± 6.70 

bc 
0.16 ± 0.07 61.6 ± 1.65 

*  
 

RE 7.37 ± 0.04 78.94 ± 10.9 0.08 ± 0.02 57.0 ± 0.54 
 Tragopogon Native 7.28 ± 0.11 81.06 ± 2.82 

c 
0.22 ± 0.13 58.2 ± 1.48  

 
 

RE 7.33 ± 0.05 105.89 ± 21.2 0.13 ± 0.03 59.0 ± 0.43  
 Rorippa Native 7.30 ± 0.08 86.56 ± 6.77 

bc 
0.20 ± 0.06 57.0 ± 0.97 

*  
 

RE 7.43 ± 0.04 70.27 ± 2.22 0.11 ± 0.03 61.2 ± 1.27 
Plant + Litter Centaurea Native 7.51 ± 0.03 0.02 ± 0.02 

a 
0.36 ± 0.08 53.2 ± 2.23 

a  
RE 7.42 ± 0.09 0.03 ± 0.03 0.33 ± 0.07 53.7 ± 2.23 

Geranium Native 7.26 ± 0.12 0.48 ± 0.24 
a 

0.40 ± 0.02 54.2 ± 2.32 
a  RE 7.36 ± 0.08 0.50 ± 0.26 0.47 ± 0.11 49.5 ± 0.90 

Tragopogon Native 7.24 ± 0.08 0.07 ± 0.07 
a 

0.46 ± 0.20 51.9 ± 1.08 
a  

RE 7.34 ± 0.10 0.09 ± 0.08 0.40 ± 0.16 51.5 ± 0.96 
Rorippa Native 7.34 ± 0.10 0.97 ± 0.31 

b 
0.51 ± 0.21 56.6 ± 1.13 

b  
RE 7.37 ± 0.08 1.32 ± 0.33 0.29 ± 0.16 59.1 ± 1.78 

Sterile background soil  - 1.79  ± 0.05  19.7 ± 0.20 75.3 ± 0.50  
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Mineral nitrogen: Soil ammonium was generally very low and there were no significant 

differences between plant genera or plant origin within each conditioning treatment. Soil 

nitrate availability differed among plant genera within all conditioning treatments (Table 

4.1, Table 4.2). Following conditioning with living plants and with living plants in 

combination with plant litter, soils of Rorippa had higher nitrate availability than the other 

soils. When conditioned by plant litter, Centaurea soils had the lowest nitrate availability 

and soil of Tragopogon the highest.  

Plant-available phosphorous: conditioning by the combination of living plants and litter 

resulted in a significant main effect of plant genus (Table 4.2), because soils of Rorippa 

species had significantly higher phosphorous than soils of the other plant genera (Table 

4.1). In the conditioning treatment with litter only, incubation of litter of native Geranium 

led to higher availability of phosphorous in the soil than litter of range-expanding 

Geranium, whereas this was opposite for the Rorippa pair (Table 4.1).  

Catabolic response profile: at the end of the conditioning phase the catabolic response profile 

of the soil communities was significantly affected by the type of soil conditioning (Fig. 4.1, 

Table 4.3). Whether soil was conditioned by plants, litter or a combination, explained 69 

% of the variation in catabolic response profiles (Table 4.3). However, neither plant genus 

nor plant origin significantly affected the catabolic response profile of the soil community 

for any of the plant pairs (Table 4.3). 

 

Table 4.2. Linear mixed model analysis of the effects of plant genera and plant origin on soil pH and 
nutrient availability after the conditioning phase for the three types of soil conditioning: living plant 
rhizosphere, decomposing litter, and their combination. Fixed factors: Plant genera (G) and plant origin 
(O). Response variables: soil pH, soil nitrate and nitrite availability (NO3+NO2), ammonium (NH4) and 
available phosphate (PO4). 

Conditioning Fixed factor  pH N-(NO3+NO2) N-(NH4) P-(PO4) 
num df F Signif. F Signif. F Signif. F Signif. 

Plant 
Genera (G) 3 0.216 ns 10.080 *** 1.181 ns 2.091 ns 
Origin (O) 1 0.632 ns 1.104 ns 2.518 ns 3.715 . 
G x O 3 0.039 ns 0.190 ns 0.554 ns 0.487 ns 

Litter 
Genera (G) 3 2.610 . 3.829 * 0.380 ns 0.620 ns 
Origin (O) 1 1.618 ns 0.782 ns 1.411 ns 0.039 ns 
G x O 3 0.740 ns 1.849 ns 1.144 ns 5.917 ** 

Plant+Litter 
Genera (G) 3 2.223 ns 14.566 *** 0.199 ns 7.196 *** 
Origin (O) 1 0.461 ns 0.563 ns 0.466 ns 0.240 ns 
G x O 3 0.821 ns 0.391 ns 0.397 ns 1.972 ns 

Significance levels “***” p<0.001; “**” p<0.01; “*” p<0.05; “.” p<0.1 
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Plant biomass: For most plant species, plant biomass during the conditioning phase did not 

differ between treatments with or without litter. However, plant biomass of both Geranium 

species and the range-expander Centaurea were significantly greatest when plants grew 

without litter in the soil (Fig. 4.2). 

 

Fig. 4.1. Principal coordinate analyses ordination plots of the catabolic response profiles for each 
plant pair (A: Centaurea; B: Geranium; C: Tragopogon; D: Rorippa). Circles represent native and 
triangles represent range-expanding plant species. Different colors indicate the conditioning 
treatments: plant (green), litter (red), plant + litter (blue). Symbols are centroids and error bars 
indicate standard errors (n=5). 
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Fig. 4.2. Total plant biomass at the end of the conditioning phase for the soils conditioned by living 
plants without litter (Plant) and with litter (Plant + Litter). Error bars indicate standard error (n=5). 
Asterisks indicate significant differences between plant biomass in the conditioning treatment with 
only plants and plant biomass in the conditioning treatment with both plants and litter within plant 
species (significance levels: *** p<0.001; ** p<0.01; * p<0.05). 

 

  

Table 4.3. Permanova test (9999 permutations) on Bray-Curtis distance matrix of catabolic 
response profile data for all plant species and conditioning treatments: living plant rhizosphere, 
decomposing litter, and their combination. Fixed factors: Plant genera (G), plant origin (O) and 
soil conditioning type (C). 
 Df SS MS F R2 p-value 
Plant genera (G) 3 -0.005 -0.002 -0.165 -0.001 0.966 
Plant origin (O) 1 0.007 0.007 0.802 0.002 0.442 
Conditioning type (C ) 2 2.177 1.088 119.620 0.696 0.000 
G x O 3 0.007 0.002 0.254 0.002 0.853 
G x C 6 0.050 0.008 0.908 0.016 0.536 
O x C 2 0.001 0.000 0.053 0.000 0.889 
G x O x C 6 0.017 0.003 0.319 0.006 0.910 
Residuals 96 0.874 0.009   0.279   
Total 119 3.128     1.000   
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Feedback effects on plant biomass 

Conditioning by plants, litter, or both: Plants of all plant genera produced more biomass in 

the soils conditioned by plant litter than conditioned by living plants and by plants plus 

litter (Fig. 4.3, Table 4.4). Range-expanding Centaurea and Geranium produced significantly 

more biomass than their congeneric natives in soils that had been conditioned by plant 

litter (Fig. 4.3A-4.3B, Table 4.4; Conditioning × Origin interaction). Although both 

Centaurea species seem to grow best in soil conditioned by plants plus litter of the range-

expanding Centaurea (Conditioning × Origin × Soil interaction (Fig. 4.3A)), this effect was 

not significant in the pot-hoc test. Tragopogon species produced more biomass in litter-

conditioned than in plant-conditioned soils, while plant biomass in the combined 

conditioning treatment was intermediate (Fig. 4.3C). For Rorippa, the main effects of soil 

conditioning and plant origin on plant biomass were not significant in the post-hoc test 

(Fig. 4.3D; Table 4.4).  

Conditioning by own versus away: There were no significant effects of soil conditioning by 

“own” versus “away” soils (Table 4.4). Only in the case of Centaurea, there was a significant 

interaction between the three factors (Conditioning × Origin × Soil). This interaction is 

mainly driven by conditioning by plants plus litter, which led to enhanced biomass 

production in the soils of range-expanding Centaurea than in the soils of the native 

Centaurea (Fig. 4.3A). In most cases, PSF effects of total plant biomass did not significantly 

differ from 0 in any case, indicating neutral PSF effects. There was only one exception of a 

negative PSF when the range-expanding Geranium grew in soils conditioned by plant plus 

litter (Fig. S4.1).  
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Fig. 4.3. Total plant biomass at the end of the feedback phase for the native and range-expanding 
(RE) plant species (A: Centaurea; B: Geranium; C: Tragopogon; D: Rorippa) grown in soils conditioned 
by themselves (“own”, white bars) or soils conditioned by the congeneric species (“away”, grey 
bars) and for the three types of soil conditioning (plants, litter, plant + litter). Different letters 
indicate significant differences (p < 0.05) between native and range-expanding plant biomass and 
between conditioning treatment type (plant, litter, plant + litter). Bars are averages and error bars 
indicate standard error (n=5).  
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Prediction of plant biomass responses 

In most cases, plant biomass in the soils conditioned by plants plus litter was not 

significantly different from the average of the biomass in soils conditioned by plants and 

in soils conditioned by litter (Fig. 4.4). Therefore, in most cases observed total plant 

biomass in soils conditioned by plants plus litter could be predicted by averaging the 

biomass of the individual plant and litter conditioning treatments. However, the predicted 

biomass was significantly greater than the measured plant biomass in case of the range 

Table 4.4. Linear mixed model of the effects of soil conditioning treatment 
(living plant rhizosphere, decomposing litter, and their combination), plant 
origin (native and range expander) and soil origin (own and away) on total 
plant biomass at the end of the feedback phase for the four different plant 
genera. Fixed factors: Conditioning type (C), plant origin (O) and soil 
conditioning (S). 

Plant genera Fixed factor 
Total plant biomass 

df F Significance 

Centaurea 

Conditioning (C ) 2 163.131 *** 
Origin (O) 1 8.912 ** 
Soil (S) 1 0.448 ns 
C x O 2 4.309 * 
C x S 2 0.239 ns 
O x S 1 3.34 . 
C x O x S 2 4.802 * 

Geranium 

Conditioning (C ) 2 92.819 *** 
Origin (O) 1 5.629 * 
Soil (S) 1 2.695 ns 
C x O 2 3.973 * 
C x S 2 0.668 ns 
O x S 1 0.202 ns 
C x O x S 2 2.582 . 

Tragopogon 

Conditioning (C ) 2 33.74 *** 
Origin (O) 1 1.256 ns 
Soil (S) 1 2.255 ns 
C x O 2 0.172 ns 
C x S 2 0.31 ns 
O x S 1 1.901 ns 
C x O x S 2 1.093 ns 

Rorippa 

Conditioning (C ) 2 13.072 *** 
Origin (O) 1 6.455 * 
Soil (S) 1 1.13 ns 
C x O 2 1.594 ns 
C x S 2 0.073 ns 
O x S 1 0.038 ns 
C x O x S 2 0.107 ns 

Significance levels “***” p<0.001; “**” p<0.01; “*” p<0.05; “.” p<0.1 
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expander Geranium (in all soils) and both range-expander and native Centaurea (growing 

in the soil of native Centaurea). Native Geranium follows the same trend as the range 

expander, however, not significant (p 0.055 and 0.080 for away and own soil, respectively).  

 

Fig. 4.4. Difference between observed plant biomass in the conditioning treatment with plant and 
litter and plant biomass predicted from the average of the individual conditioning treatments of 
plants and litter. Plants were grown in “own” conditioned soils (white bars) and in “away” soils 
conditioned by the congeneric species (grey bars). Bars are averages (n=5) and error bars indicate 
standard error. Asterisks indicate significant difference from 0 tested with one-sample t-test. 
Significance levels: *** p<0.001; ** p<0.01; * p<0.05.  

 

 Feedback effects on litter decomposition 

Litter carbon to nitrogen ratio differed among plant genera (Fig. S4.3). Shoot litter of range-

expander Geranium and root litter of range-expander Centaurea and Tragopogon had lower 

carbon to nitrogen ratio than their congeneric natives. This was opposite for root litter of 

Geranium, while no differences were measured for the Rorippa plant pair (Fig. S4.2). Plant 

origin had a significant effect on both shoot and root litter decomposition, however the 

direction of that effect varied among plant genera as indicated by the significant plant 

genus × plant origin interaction (Fig. 4.5, Table 4.5). For instance, both shoots and roots of 

range-expander Centaurea decomposed more than shoots and roots of its congeneric 

native. This effect was opposite for Tragopogon, where both shoots and roots of the range-

expander decomposed less than shoots of its congeneric native. In the case of Rorippa 

species, shoots of the range-expander decomposed more than shoots of the congeneric 



Chapter 4 
 
 

96 
 

native, however, this was the opposite for root decomposition. Decomposition of plant 

shoots did not depend on soil conditioning by native or range expander (Fig. 4.5A, Table 

4.5). Furthermore, roots of range-expanders decomposed more in soils conditioned by 

litter of natives than of their own (Table 4.5; Origin × Soil interaction). Furthermore, we 

show that litter breakdown measured by litter-derived CO2 and by differences in weight 

(mass loss %) yielded comparable insights, as both variables have a strong linear 

relationship (Fig. S4.3, Fig. S4.4). When we calculated “PSF” for litter decomposition, PSF 

effects were not significantly different from zero indicating that litter does not decompose 

differently in soils conditioned by conspecific versus congeneric species (Fig. S4.5).  

 

Fig. 4.5. Cumulative CO2 mineralization from the litter incubations of shoots (A) and roots (B) of 
all the native and range-expanding (RE) plant species with soils conditioned by their own species 
(“own”, white bars) or by the congeneric species (“away”, grey bars) and over a period of 48 days. 
Bars are averages (n=5) and error bars indicate standard error. Asterisks indicate significant 
differences between native and range-expanding species within plant genera (significance levels: 
*** p<0.001; ** p<0.01; * p<0.05). 
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Discussion 

We disentangled feedback effects from living plant roots and decomposing litter, while 

analysing responses of climate warming-induced range-expanding and congeneric native 

plant species to themselves and each other. Plant-soil feedbacks are important drivers of 

plant community composition and dynamics (Bever et al. 1997, Kardol et al. 2006) and 

may be caused by biotic and abiotic changes in the soil induced in the rhizosphere of living 

plants and by decomposing plant litter. Comparing PSFs of range-expanding and 

congeneric co-occurring native plant species to themselves and each other will help to 

understand and predict the establishment success and the ecological consequences of 

climate-warming induced range shifts, and this knowledge may also help to understand 

how introduced exotic plant species will influence their new environments (Eppinga et al. 

2011, van der Putten et al. 2016). 

In support of our first hypothesis, the growth of range-expanders in soils conditioned by 

living conspecifics was not different from soils conditioned by the living congenerics (Fig. 

4.3). This supports the view that, indeed, in the new range range-expanders do not have 

highly specialized soil biota (Van Grunsven et al. 2010). However, opposite to our first 

hypothesis, native plant species did not have negative PSF either (Fig. 4.3). These neutral 

PSF effects of both natives and range expanders appear to contrast with other studies in 

the new range showing that range-expanders experience less negative feedback than 

native species (Engelkes et al. 2008). This different result can be explained by the highly 

conservative “away” treatment that we have used in the current study, as we compared 

each species in soil conditioned by its own with soil conditioned by a plant species from 

Table 4.5. Linear mixed model of shoot and root decomposition at the end 
of the feedback phase on decomposition. Fixed factors: Genera (G), plant 
origin (O: native versus range expander) and soil conditioning (S: own 
versus away. 
 Shoot litter Root litter 
Fixed factors df F sign. df F sign. 
Genera (G) 3 131.28 *** 3 1342.97 *** 
Origin (O) 1 44.81 *** 1 4.73 * 
Soil (S) 1 0 ns 1 0.33 ns 
G x O 3 62.77 *** 3 39.61 *** 
G x S 3 0.03 ns 3 0.32 ns 
O x S 1 2.35 ns 1 8.04 ** 
G x O x S 3 0.6 ns 3 0.82 ns 
Significance levels “***” p<0.001; “**” p<0.01; “*” p<0.05; “.” p<0.1 
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the same genus. In other studies, the “away” treatment usually consists of soil conditioned 

by plant species from other genera (see e.g. Engelkes et al. (2008)). We have used a so-

called congeneric-constrained comparison as suggested by Anacker et al. (2014) and 

according to our results, PSF through rhizosphere legacies may not help to explain the 

successful establishment of range-expanding plant species in the new range. Yet, the 

feedback phase in our experiment was relatively short (van de Voorde et al. 2012). 

Ultimately, it will be important to test PSF of range-expanding species and the neighboring 

plant community in the field to be able to predict when and where PSF can play a role in 

the establishment of range-expanding plant species. 

According to our second hypothesis, we expected all plants to perform best in soils 

conditioned by litter of range-expanders, because litter of exotics in general is associated 

with higher decomposition rates and nutrient availability (Ehrenfeld et al. 2005, Eppinga 

et al. 2011). However, our results show that plant biomass of range-expanders and 

congeneric natives was not significantly different in soils conditioned by litter from either 

range expanders or natives (Fig. 4.3). As a result, PSF effects from litter of range expanders 

and congeneric natives were both neutral (Fig. S4.1). The results are in line with the 

availability of nitrogen in the soil, which was overall high but not significantly different 

between soils that received range-expander or native litters. In a previous study on plant 

range shifts it was shown that soils with litter from exotics had enriched available nutrients 

compared to related natives (Meisner et al. 2012), however, some of those range expanders 

were from inter-continental origin. The only overlapping plant genus, Rorippa, showed 

identical results in both studies.   

In soils conditioned by plant litter, range-expanders Centaurea and Geranium produced 

more biomass than their congeneric natives (Fig. 4.3). This indicates that some range-

expanders, as exotic species, may be more efficient in nutrient utilization than natives (Liu 

and van Kleunen 2017), which might provide them with a competitive advantage over 

natives. However, to conclude if that is actually the case both range-expanders and natives 

need to be grown in competition. It has been shown that introduced exotic species that 

originate from other continents can benefit from the release of soil-borne enemies in high 

resource environments, where most plants are known to have predominant negative PSF 

(Blumenthal et al. 2009). Our findings suggest that this may also be the case for plants that 

expand their range within continents, and thereby it may be interesting to study whether 
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synergistic effects on plant biomass may occur when including effects of both soil biota 

and nutrient availability.  

In support of our third hypothesis, the addition of plant litter during soil conditioning 

partly alleviated nutrient limitation for subsequent plant growth. Biomass of the 

Tragopogon and Rorippa plant pairs in the combined conditioning treatment did not differ 

from the prediction based on individual conditionings (Fig. 4.4). These cases suggest that 

PSF effects from living plants and litter interact additively, rather than synergistically or 

antagonistically. However, for the range-expander Geranium and both Centaurea species 

growing in the soil of the native Centaurea, the measured plant biomass was significantly 

smaller than the predicted biomass (Fig. 4.4). In those cases, PSF effects from living plants 

and litter in combination decrease subsequent plant growth disproportionally. Both 

Geranium species and the native Centaurea may have synergistic negative PSF effects from 

living plants and litter (Fig. S4.1), as it has been shown previously for other plant species 

(Zhang et al. 2016b). Alternatively, it may also be that biomass production of these species 

is disproportionately benefiting from the individual litter and plant conditioning. 

Interestingly, during the conditioning phase, biomass of Geranium was already smaller 

when grown in soils that contained own plant litter compared to the control without litter 

(Fig. 4.2), suggesting that a synergistic negative effect may be a more plausible explanation 

for the biomass production in the feedback phase.  

The small biomass of Geranium species grown in combination with litter in the soil could 

be due to negative effects of phyllosphere microorganisms (Whitaker et al. 2017), to auto-

toxicity effects from conspecific litter via self-DNA (Mazzoleni et al. 2015), or from 

allelopathic compounds released during decomposition (Inderjit et al. 2011). It may also 

be that the decomposition of Geranium litter caused nutrient limitation to growing plants, 

because of the immobilization of available nutrients by decomposers (Güsewell and 

Gessner 2009). Although these effects appeared to be plant species-specific in our 

experiment, understanding how PSF drives plant community dynamics may require 

experiments testing the consequences of PSF incorporating both, rhizosphere and litter, as 

soil conditioning elements. 

Opposite to our fourth hypothesis, decomposer communities conditioned by litter of 

natives did not appear to decompose litter from natives more than from the congeneric 

range-expanding species (Fig. S4.5). Possibly, the plant species used do not benefit from 

specialized decomposers. Alternatively, our results do not exclude the possibility that 
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during range-expansion plant species remain connected to their specialized decomposers. 

However, the close relationship between the natives and range expanders does not 

exclude the possibility that the decomposer communities perceives both litter types 

equally well (Freschet et al. 2012). Thus, the plant species used in the present study may 

not experience as much of an advantage from specialized decomposers as plant species 

that have very contrasting functional traits (Veen et al. 2015a). While it is difficult to 

determine the underlying mechanisms, our analyses of the catabolic response profiles of 

the soil communities suggest that soils conditioned with litter of natives and range-

expanders were functionally equivalent (Fig. 4.1, Table 4.3). Interestingly, we showed 

more litter breakdown was for shoots and roots of range-expander Centaurea and shoots 

of range-expander Rorippa than for their respective related natives (Fig. 4.5). These results 

suggest that, at least for some plant species, range-expanders have the potential to build 

up a positive litter feedback which could promote their own performance. 

Synthesis 

In our experiment, we found that PSF effects both through the rhizosphere of living plants 

and decomposing litter were neutral for both range-expanders and congeneric related 

native plant species, which may have been due to our comparison of “own” and “away” 

conditioned soils within plant genera. Therefore, our results suggest that PSF effects from 

plant rhizospheres may not play a crucial role in the eventual replacement of native plant 

species by congeneric range-expanders. Nevertheless, in our study, two out of four range-

expanding plant species benefitted disproportionally from high nutrient availability in the 

soil when compared to congeneric natives. Therefore, when litter of range expanders also 

decomposes at higher rates than natives, as was the case with Centaurea and Rorippa 

(shoots) in our experiment, range expanders may experience an overall positive feedback 

from litter decomposition. We also found these results to depend on the plant species 

examined. Finally, neither range-expanders nor natives appeared to be influenced by 

specialized decomposer communities. In conclusion, our results emphasize the need to 

consider legacies from soil conditioning by both plant rhizospheres and decomposing 

plant litter in PSF experiments in order to finally understand how PSF may contribute to 

the success, or failure, of inter-continental exotic plant invasions and intra-continental 

range expansions. 
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Fig. S4.1. Plant-soil feedback effect [ln(own/away)] on plant biomass of native and range-
expanding (RE) plant species of the four genera (A: Centaurea; B: Geranium; C: Tragopogon; D: 
Rorippa). Bars are averages (n=5) and error bars indicate standard errors. Asterisks indicate 
significant difference from 0 tested with one-sample t-test. Significance levels: *** p<0.001; ** p<0.01; 
* p<0.05.  

 

  



Rhizosphere and litter feedbacks 
 
 

103 
 

 

 
Fig. S4.2. Carbon to nitrogen ratio (C: N ratio) of shoot (A) and root (B) litter of the native and 
range-expander (RE) plant species used in the feedback phase to test effects on decomposition. Bars 
are averages (n=5) and error bars indicate standard error. Asterisks indicate significant differences 
in litter C: N ratio between native and range-expander within plant genera. Significance levels: *** 
p<0.001; ** p<0.01; * p<0.05.   
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Fig. S4.3. Litter mass loss (% of mass loss) at the end of the feedback phase to test effects on 
decomposition. Each litter was incubated in soils that have been conditioned by the same litter 
species (“own”, white bars) and in soils that have been conditioned by the congeneric plant species 
(“away”, grey bars). Bars are averages (n=5) and error bars indicate standard error. 
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Fig. S4.4. Relationship between cumulative litter-derived CO2 and % of litter mass loss at the end 
of the feedback phase on decomposition for shoot (open triangles) and root litter (filled triangles). 
R2 and p-value of the Pearson correlation test are indicated for shoot and root litter separately. 
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Fig. S4.5. Plant-soil feedback effect [ln(own/away)] on litter decomposition of native and range-
expanding (RE) plant species of the four genera (A: Centaurea; B: Geranium; C: Tragopogon; D: 
Rorippa). Bars are averages (n=5) and error bars indicate standard errors. Asterisks indicate 
significant difference from 0 tested with one-sample t-test. Significance levels: *** p<0.001; ** p<0.01; 
* p<0.05.  
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Abstract 

Current climate warming enables plant species to expand their range to higher latitudes 

and altitudes. At the same time, climate change increases the incidence of extreme weather 

events such as drought. While it is expected that plants and soil organisms originating 

from the south are better able to cope with drought, little is known about the consequences 

of these range shifts on soil functioning under drought events. Here, we test how range-

expanding plant species and soil communities drive soil functioning under drought. We 

performed a full-factorial mesocosm experiment with plant communities of range 

expanders or related natives, with soil inocula from the novel or the original range, and 

with and without summer drought. We measured soil functions (litter decomposition, 

carbon mineralization and enzyme activities), microbial biomass and the relative 

abundance of soil saprophytic fungi immediately after drought and at 6 and 12 weeks after 

rewetting.  

Drought decreased all soil functions regardless of the plant and soil origin except for soil 

respiration, which was less hampered in soils of range-expanding plant communities, 

suggesting a higher resistance to drought. After rewetting, soil functioning responses 

depended on plant and soil origin. Soils of native plant communities with a history of 

drought had more litter mass loss and higher relative abundance of saprophytic fungi than 

soils without drought and soils of range expanders. Soil functions beneath range 

expanders recovered in a more conservative manner than soils of natives, i.e. without 

stimulation of litter mass loss above the control rates. At the end of the experiment, most 

soil functions in mesocosms with drought history did not differ from the control. We 

conclude that functional consequences of range expansion of plants and soil biota may 

interact with the effects of drought, and that these effects are most prominent during the 

first weeks after rewetting of the soil.  



Soil functional responses to drought 
 
 

111 
 

Introduction 

Climate change enables latitudinal and altitudinal range shifts of species from warm to 

previously colder climate zones (Parmesan and Yohe 2003, Chen et al. 2011, Pauli et al. 

2012). This intra-continental movement of species increases the number of introductions 

of aliens in native ecosystems. For example, in the Netherlands the presence of 

thermophilic plants typically originating from lower latitudes is increasing in natural 

ecosystems favoured by mild winter temperatures (Tamis et al. 2005). All plants, including 

range-expanders, live in association with above and belowground organisms (Wardle et 

al. 2004, De Deyn and Van der Putten 2005). However, it has been suggested that soil 

organisms are more limited in their dispersal ability and may not expand their range at 

the same rate as plants, which may lead to asynchronous introduction of plants and their 

associated soil organisms in the new range (Berg et al. 2010). Furthermore, it is increasingly 

acknowledged that although bacteria and fungi are widely present in terrestrial 

ecosystems, the diversity and composition of soil microbial communities follow global 

biogeographical patterns (Fierer and Jackson 2006, Tedersoo et al. 2014, Delgado-

Baquerizo et al. 2018). As a result plants may encounter a novel soil community in the new 

range, and together with potential differences in dispersal rates between plants and soil 

biota, this may lead to temporally disrupted plant-soil interactions (Berg et al. 2010, van 

der Putten 2012). Previous work has indicated that this may result in the release from 

plant-specific root pathogens, which can favour the performance of range-expanding plant 

species in their new habitat (Engelkes et al. 2008, Morriën et al. 2013). At the same time, 

range-expanding plants may also alter pools and rates of carbon and nutrient cycling via 

litter effects on soil saprophytic activity (Meisner et al. 2012). However, the functional 

consequences of plant range expansion and disrupted plant-soil interactions on such 

ecosystem processes are unknown. 

The ecosystems where range-expanding plant species establish are also subjected to other, 

more direct, effects of climate change such as altered temperature and precipitation 

regimes. For example, in the Netherlands and other regions of central Europe, the severity 

and frequency of drought events is projected to increase with current climate change 

(KNMI 2015, EEA 2016). Drought events can have direct effects on important ecosystem 

functions and services such as primary productivity, carbon storage and nutrient cycling, 

both at the scale of ecosystems (de Vries et al. 2012a) and of continents (Ciais et al. 2005). 

Generally, drought increases the relative abundance of slow-growing taxa in soil 
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communities and results in more fungal-dominated food webs (de Vries and Shade 2013, 

Fuchslueger et al. 2014), because fungal-dominated food webs appear to withstand 

drought better than bacterial-based food webs (de Vries et al. 2012a, Morriën et al. 2012, 

Barnard et al. 2013, Worrich et al. 2017). However, severe drought can also alter fungal 

community composition (Toberman et al. 2008, Meisner et al. 2018), causing loss of 

decomposition capacity (Setälä and McLean 2004). With ongoing intra-continental species 

range expansions, direct effects of drought will interact with changes in plant and soil 

community composition (Bardgett and van der Putten 2014, Classen et al. 2015). Although 

plant-soil interactions and drought stress are known to affect carbon and nitrogen cycling 

separately, the consequences of their interactions for soil ecosystem functioning remain 

poorly understood (Kardol et al. 2010, Sanaullah et al. 2011, Bardgett et al. 2013). Coupling 

these interactive effects of drought and plant community changes in experiments is crucial 

for understanding the consequences of plant range shifts (Meisner et al. 2013b) and exotic 

plant invasions (Caldeira et al. 2015, Alba et al. 2017) on ecosystem functioning. 

When in addition to plants, soil organisms expand their range as well, this may modify 

the impact of range-expanding plant species on ecosystem functioning under drought. 

This is because the responses of soil microbial processes (e.g. respiration, enzyme activity) 

to current drought vary in their type and magnitude depending on historical climatic 

conditions at a regional level (Hawkes and Keitt 2015, Averill et al. 2016, Hawkes et al. 

2017). For example, soil communities from Southern Europe that may expand their range 

have evolved under a typically warm and dry environment, which could affect their 

response to drought differently from communities that have evolved under cooler and 

wetter high-latitude conditions. As a result, soil microbial communities originating from 

dry climate regions are generally more resistant to drought than communities from mesic 

climate zones (Manzoni et al. 2012). Therefore, the effects of drought on soil functioning 

could be alleviated by not only the presence of range-expanding plants, but also by the 

presence of their associated southern soil communities. However, we have poor 

understanding on ecosystem responses under drought beneath range-expanding plants 

with or without their own soil community. 

The aim of our study was to assess the effects of range-expanding plants and soil biota 

alone and in combination on soil functional responses to extreme summer drought. We 

focused on crucial microbial-driven soil functions that support ecosystem productivity 

and nutrient cycling, such as litter decomposition, soil respiration and extracellular 
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enzyme activity, and the abundance of soil saprophytic fungi. We measured these soil 

functions immediately after drought and upon rewetting to determine the ability of the 

soil communities to withstand drought (i.e., resistance) and the rate at which communities 

are able to recover (i.e., resilience), respectively (Pimm 1984, Allison and Martiny 2008, 

Griffiths and Philippot 2013). We tested the hypotheses that: (1) soils conditioned by range 

expanding plants are more resistant to drought than soils conditioned by related native 

plant communities, and (2) soils conditioned by range-expanding plants recover faster 

after a drought event than soils influenced by related native plant communities. For both 

hypothesis 1 and 2, we expected that these effects would be stronger when range-

expanding plants were grown in soils with a southern than with a northern soil 

community. 

To test our hypotheses, we set up a multi-year mesocosm experiment outside with either 

range-expanding or related native plant communities growing in soils with or without a 

soil inoculum from the original range of the range-expanding species, i.e., Southern 

Europe. Two years after the setup of the mesocosms, we simulated a summer drought in 

half of the mesocosms. In order to assess consequences for ecosystem functioning, we 

measured litter mass loss, soil respiration, soil enzyme activity, soil microbial biomass and 

the relative abundance of soil saprophytic fungi at the end of the drought period and at 6 

and 12 weeks after rewetting. 

Materials and Methods 

Mesocosm setup 

In 2013 mesocosms of 1 m3 were set up in the experimental garden of the Netherlands 

Institute of Ecology (Wageningen, the Netherlands). A total of 40 mesocosms were 

distributed in 5 rows of 8 mesocosms with a spacing of 0.5 m between them. Mesocosms 

were filled with bulk soil collected from a riparian area in Boven-Leeuwen, the 

Netherlands (51° 53' 56.80", 5° 33' 45.49").  

We inoculated the topsoil (~20cm) of the mesocosms with 20% of field soil inoculum 

originating from a riparian area in the Netherlands, the expansion range (hereafter, 

northern soil), or South-East Europe, where the range-expanding plants selected are native 

(hereafter, southern soil). Northern soil was collected from the Millingerwaard natural 

area in the Netherlands (51° 51' 56.97", 5° 59' 33.60"). Southern soil was collected from a 

floodplain area near Solt in Hungary (46° 47' 58.95", 18° 57' 30.97"). Inoculation soils were 
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collected from 5 independent locations in the field (minimum 60 meter apart) and were 

kept separately to act as experimental replicates in this experiment.  

Thereafter, all mesocosms were planted with plant communities of riverine areas formed 

by range-expanding plant species or related native species. A complete overview of 

selected range expanders and related native species used can be found in Table S5.1. For 

the experimental plant communities used in 2015-2016, four of the native plant species 

were selected for being phylogenetically related to the range-expanding species. The other 

four species of range expanders did not have a congeneric species in the expansion range, 

thereby we chose four native plant species with similar traits and life strategies. All seeds 

were collected from the field in the Netherlands or purchased from an external supplier 

(Cruydt Hoeck, Nijeberkoop, The Netherlands). In 2015-2016, we planted a total of 64 

plant individuals (8 individuals of each plant species) following a regular squared 8x8 grid 

to ensure balanced plant communities in terms of diversity and evenness of species. Each 

year at the beginning of the spring, we re-planted annual plants and perennial plants that 

had died off and removed weedy plant species. 

Experimental design 

In summer 2016, we installed rain shelters above all mesocosms. Then, half of the 

mesocosms were artificially watered two times a week to ensure a rainfall regime 

representative of the seasonal average precipitation in the area of the last five years (34 

litres per week, source: KNMI). The remaining half of the mesocosms received no artificial 

watering during a period of six weeks in order to mimic an extreme summer drought event 

(from end of June to 9th August). When the drought phase ended, rain shelters where 

removed from all mesocosms and we artificially watered the mesocosms when needed to 

ensure a minimum water input of 34 litres per week for 12 weeks, which is when the last 

measurements were collected. In total, the experimental period lasted for 18 weeks and 

was divided in three phases of six weeks each: the experimental drought phase, an early 

recovery (rewetting phase) and a late recovery phase. 

Measurements 

Litter decomposition 

Litter mass loss was measured at the end of the three different phases of the experiment 

using a modified version of the Tea Bag Index method, a standardized protocol to assess 

decomposition of substrates of contrasting chemical complexity. Instead of a 3-month 
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incubation proposed by Keuskamp et al. (2013), we buried tea bags in the soil for a total 

of 6 weeks corresponding to our experimental phases. At the start of each period of six 

weeks, we buried pre-weighed green and rooibos tea bags at 8 cm below the soil surface 

in each mesocosm. In this way, the chemical composition of the substrates was 

standardized at the beginning of each phase. The three sets of tea bags were buried in three 

locations in the centre of the mesocosms avoiding potential edge effects. In each of the 

mesocosms plants were planted following a regular grid and tea bags were consistently 

buried beneath the same plant species in either native or range-expanding plant 

communities. At the end of each six-week phase, we retrieved the teabags from the soil, 

removed big fragments of roots, oven-dried the remaining tea material (70 oC for 48 h), 

dry sieved it to 0.4 mm to remove soil particles and weighed it to determine mass loss.  

Soil sampling 

At the end of each of the six-week experimental phases, i.e., right after drought, six and 

twelve weeks after the end of the drought, we collected soil samples. We took a composite 

soil sample of four different soil cores (2.5 cm diam.; 0-10 cm depth) to obtain a 

representative soil sample from each mesocosm. Soil samples were immediately sieved 

through a 4 mm sieve. Then, a subsample was collected in an Eppendorf tube, immediately 

frozen in liquid nitrogen and kept at -80 oC for molecular analyses. The rest of the soil was 

kept at 4 oC and darkness until further analyses, which were performed within a week 

after soil collection.  

Background environmental parameters 

To determine how drought affected soil nutrient availability in the mesocosms, we 

quantified mineral nitrogen in the soil before the drought event started and at the end of 

the drought. We extracted soil available nitrogen (NO-3, NO-2 and NH+4) from all 

mesocosm by shaking a 10 g dry weight equivalent in a 50 ml of 1M KCl solution for 2 

hours. We determined the concentration of mineral nitrogen using an autoanalyzer 

(QuAAtro Autoanalyzer, SEAL Analytical Ltd., Southampton, UK). 

We measured plant biomass in November 2016, corresponding to the end of the growing 

season, to assess plant productivity under the different experimental treatments (Fig. S5.1). 

For aboveground biomass, we subsampled a fixed row of eight individual plants per 

mesocosm containing one individual of each species. For root biomass, we collected three 

soil cores of 73.6 cm3 each (15 cm depth * 2.5 cm diameter) and subsequently washed the 
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root material contained in each core to have an estimate of standing root biomass in the 

topsoil. 

Soil carbon mineralization and soil microbial biomass 

We measured soil carbon mineralization (basal soil respiration) in all soil samples. We 

weighed the equivalent of 4 g of dry soil in 50 mL centrifuge tubes with a modified lid 

equipped with a rubber septum and a rubber o-ring in order to ensure air tightness. Tubes 

were capped tightly and we then flushed the headspace air in the tubes with CO2-free air 

for 2 min at 1 bar (Westfalen Gassen Nederland BV, Deventer, Netherlands). We incubated 

all tubes at 20 oC for 24 h in a climate-controlled chamber (Economic Lux chamber, Snijders 

Labs, Tilburg, Netherlands). Subsequently, we took a 6.2 mL sample of headspace air from 

each tube using a needle and stored it in pre-evacuated air-tight vial (Labco Exetainer). 

We determined the concentrations of CO2 in the gas vials (over pressure of 1 bar) by 

injecting 250 µl of each sample in a Trace Ultra GC gas chromatograph equipped with a 

flame ionization detector with methanizer (mFID) (Interscience BV, Breda, the 

Netherlands) and a TriplusRSH auto-sampler (Interscience BV, Breda, the Netherlands), 

and a Rt-QBOND (30 m, 0.32 mm ID) capillary column (Restek, Bellefonte USA). We used 

helium 5.0 as a carrier gas, a sample split ratio of 1: 20 and set oven temperature at 50 °C 

with a flow of 5 ml. We used a calibration curve of known concentrations of CO2 ranging 

from 0 to 4600 ppm of CO2 prepared out of a reference gas (2.38% CO2 in synthetic air, 

Westfalen AG, Münster, Germany) to determine the amount of CO2 in our samples. 

Chromeleon 7.2 Data System Software (Thermo Scientific Waltham, USA) was used to 

automatize the measurements and process data. 

Subsequently, we also measured substrate-induced respiration, a proxy for soil microbial 

biomass (Anderson and Domsch 1978; Fierer 2003). After the sampling of headspace gas 

for soil carbon mineralization, we added 4 mL of yeast extract solution (12 g yeast / litre) 

to each tube and incubated them at 20 oC for 4 h. We then proceeded to sample headspace 

air and measure its CO2 concentration following the same protocol as for the soil carbon 

mineralization. 

Hydrolytic enzyme activity in the soil 

At the end of each six-week phase, we measured potential activity of β-glucosidase, acid 

phosphatase and alanine-aminopeptidase enzymes using fluorometric assays (Baldrian 

2009). We obtained soil homogenates by shaking (10 min, 330 rpm) 1 g of fresh soil 
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suspended in 50 mL of sodium acetate buffer (2.5 mM, pH = 5.5). Fluorogenic substrates 

4-methylumbellyferyl-β-D-glucopyranoside (MUFG), 4-methylumbellyferyl-phosphate 

(MUFP) and L-alanine-7-amido-4-methylcoumarin (AMCA) were commercially obtained 

(Sigma-Aldrich Chemie N.V. Zwijndrecht, Netherlands). We dissolved all substrates in 

dimethyl sulfoxide at concentrations of 2.5 mM for AMCA and 2.75 mM for MUFG and 

MUFP. A 40µl of substrate solution was mixed with 250 µl of soil homogenate in each well 

of a black 96-well plate. Three technical replicates were included per soil sample and 

enzyme activity. We calibrated concentrations of enzyme product with a dilution curve 

made from a stable form of the two fluorogenic compounds (1.0 mM methylumbellyferol 

and 1.0 mM 7-aminomethyl-4-coumarin). Fluorescence was measured using a plate reader 

at the start of the incubation and after 2 h of incubation at 40 oC with an excitation and 

emission wavelengths of 360 nm and 460 nm, respectively (Synergy HT, BioTek 

Instruments, Winooski, Vermont, USA). We compared the measured fluorescence in our 

samples, after subtraction of the blank, with the standard dilution curves to calculate the 

amount of enzymatic product formed over the incubation time. In our study, a unit of 

enzyme activity is defined as the amount of enzyme reaction product (µmol) per gram of 

dry soil and hour. 

Fungal community and relative abundance of saprophytic fungi 

We extracted DNA from soils samples stored at -80 oC. Briefly, DNA was extracted from 

0.25 g of soil using the PowerSoil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, 

California, USA) following the manufacturer’s instructions. We then amplified DNA using 

duplicate PCR reactions with bar-coded primers for multiplexing and re-identifying 

individual samples following sequencing. Fungal community composition was 

determined by targeting the ITS2 region using ITS4 and ITS9 primers (Ihrmark et al. 2012). 

PCR products were purified using the Agencourt AMPure XP magnetic bead system 

(Beckman Coulter Life Sciences, Indianapolis, Indiana, USA) with a volume ratio of PCR 

product to beads of 1: 0.7. Purified PCR products were analysed in a Fragment Analyzer 

using a Standard Sensitivity NGS Fragment Analysis kit (1bp-6000bp) and following 

manufacturer’s instructions (Advanced Analytical Technologies GmbH, Heidelberg, 

Germany). Finally, fungal ITS amplicons were sequenced using the Illumina MiSeq 

platform. 

The ITS amplicon reads were analysed using the Hydra pipeline version 1.3.2 (de 

Hollander 2017) implemented in Snakemake (Köster and Rahmann 2012). Adapter 
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sequences and PhiX contaminants were removed using BBDuk2 from the BBMap tool 

suite (Bushnell 2015). Paired-end reads were merged using the option fastq-mergepairs of 

vsearch (Rognes et al. 2016). Sequences were converted to FASTA format and 

concatenated into a single file. All reads were clustered into OTUs using the UCLUST 

smallmem algorithm (Edgar 2010). Chimeric sequences were detected using the UCHIME 

algorithm (Edgar 2011). All reads were mapped to OTUs using the usearch-global method 

implemented in VSEARCH and a OTU Table was created and converted to BIOM-Format 

(McDonald et al. 2012). Taxonomic information for each OTU was obtained using the RDP 

Classifier re-trained on the UNITE database 7.2 (Kõljalg et al. 2013). Soil samples with a 

read number lower than 1000 reads and singletons were not included in further analyses.  

Although we collected fungal community composition at OTU level and at different times 

during the experiment, we have only focused on data at the functional level obtained using 

the Funguild database (Nguyen et al. 2016). These samples were collected at the same 

times as the different soil functions were measured in our experiment. In our study we 

focused on the relative abundance of soil saprophytic fungi with respect to the total fungal 

community in order to link shifts in functional composition to differences in saprophytic 

activities measured. Thereby, we calculated the relative abundance of saprophytic fungi 

by accounting the total number of reads that were assigned to the saprophytic trophic 

mode (as a single trophic mode or in combination) within the total number of OTU reads 

in that sample (OTUs with other trophic modes and OTUs with no assigned guild). 

Data analyses 

We used general linear mixed effect models to test the effect of the experimental 

treatments on soil functions (litter mass loss, soil respiration, substrate-induced 

respiration and enzyme activity), the relative abundance of soil fungi and plant shoot and 

root biomass. We included plant community origin, soil inoculum and drought as fixed 

factors and block as random factor. Satterthwaite approximation of denominator degrees 

of freedom was used with “lmerTest” package in R (R Core Team 2017). Enzyme activity 

rates, root biomass and relative abundance of saprophytic fungi data were log transformed 

when needed prior analyses to meet normality assumption in ANOVA as checked with 

Shapiro-Wilks test. Two extreme outlier data points of phosphatase and aminopeptidase 

activity were detected using the “outlier.test” function in the “car” package in R and 

removed from the analyses (R Core Team 2017). 
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Subsequently, for each variable we calculated the proportional change from the control as 

a measure of stability of the soil communities during drought (i.e., resistance) and at 

different stages after drought (i.e., resilience) (Griffiths et al. 2000). Negative values of this 

proportional change from the control indicate that drought negatively influenced that 

parameter with respect to the control. Positive values indicate that drought stimulated that 

parameter over the control levels. This relative difference to the control was always 

calculated within each of the five independent blocks. We then tested stability differences 

between plant communities of different origin and soil inoculum using general linear 

mixed effect models, which did not include the fixed factor “drought”. All statistical tests 

were performed using R (R Core Team 2017). 

Results 

Background environmental parameters 

The soil moisture content at the start of the experiment was 20.8 ± 1.1 %. At the end of the 

six weeks of drought, soil moisture in the drought treatment was reduced to 4.9 ± 0.6 % 

while it was 11.9 ± 1.6 % in the control treatment. After the six weeks period of the early 

stage recovery, the soil moisture of the drought treatment levelled with that of the control 

(13.3 ± 1.2 and 13.6 ± 1.9 %, respectively). At the end of the following six weeks period, late 

stage recovery, soil moisture was 16.1 ± 1.3 % for the drought mesocosms and 16.4% for 

the control. 

Soil nitrate availability was affected by plant community origin and soil inoculum before 

the drought started (Plant: F1,32 = 10.7, P = 0.002; Soil: F1,32 = 12.4,  P = 0.001), and by soil 

inoculum only in the case of ammonium (Soil: F1,32 = 4.3, P = 0.044). Before the drought, 

soils of range-expanding plant communities had more soil nitrate than soils of native 

communities, and northern soils had more soil nitrate and ammonium than southern soils.  

At the end of the drought, soil nitrate availability was negatively affected by drought in 

soils of native plant communities with respect to the control, but not in soils of range 

expanders (Soil x Plant: F1,32 = 17.1, P < 0.001), and in northern soils with respect to southern 

soils (Drought x Soil: F1,32 = 5.03, P = 0.031). The main effect of soil inoculum remained for 

ammonium, where availability was higher for northern soils compared to southern soils 

(Soil: F1,32 = 4.8, P = 0.034). Mesocosms subjected to drought had significantly higher 

availability of ammonium than control mesocosms (Drought: F1,32 = 17.9, P < 0.001). 
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Neither above nor belowground plant biomass were affected by drought, plant 

community origin or soil inoculum (Fig. S5.1). 

Decomposition of high-quality substrate 

Mass loss of high-quality litter, i.e. green tea, was decreased by drought during the dry 

period (Table 5.1, Table 5.2). After rewetting of the soil (i.e. early-stage recovery), mass 

loss of high-quality litter tended to be stimulated in soils with a history of drought (Table 

5.1, Table 5.2). During late recovery, litter mass loss was significantly higher in soils of 

native plant communities than in soils of range expanders (Table 5.1, Table 5.2). 

The proportional change in litter mass loss in the dry treatment relative to the control in 

each treatment (i.e., same plant origin and soil inoculum) was negative during drought 

and decomposition was decreased by 12.9% on average (Fig. 5.1A). Despite the significant 

plant and soil interaction (Table 5.3), post-hoc pairwise comparisons of least square means 

revealed no significant differences between any specific treatments. During early-stage 

recovery, decomposition in the drought treatment recovered to control values (Fig. 5.1B). 

Both during drought and early recovery, the proportional change from the control was not 

affected by plant community origin and soil inoculum (Table 5.3). During the late 

recovery, there was a significant interaction between plant community origin and soil 

inoculum, where “home” combinations (i.e., northern soils with native communities or 

southern soils with range-expanding communities) had a positive proportional change, 

while this did not occur for “away” combinations (i.e., northern soils with range-

expanding communities or southern soils with native communities combinations) (Fig. 

5.1C, Table 5.3). 

Decomposition of low-quality substrate 

Mass loss of low-quality litter, i.e. rooibos tea, was significantly decreased by drought 

during the dry period (Table 5.1, Table 5.2). During both recovery phases, litter mass loss 

was stimulated by drought history beneath native plant communities, while it remained 

negatively affected beneath range-expanding plant communities (Table 5.1, Table 5.2). 

Furthermore, mass loss was higher in southern soils than northern soils (Table 5.1, Table 

5.2).  
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Mass loss of low-quality litter was decreased by 26.2% on average across all treatments 

with respect to the control during drought (Fig. 5.1D), but there was no influence of plant 

community origin and soil inoculum (Table 5.3). During both recovery phases, plant 

community origin significantly affected the proportional change from the control 

regardless of soil inoculum. Mass loss of low-quality litter was more positively affected by 

drought history in soils of native plant communities than in soils of range expanders (Fig. 

5.1E, 5.1F, Table 5.3). There was no effect of soil inoculum on the change in litter mass loss 

during the recovery phases. 

 

 

Fig. 5.1. Proportional change from the control in mass loss of high-quality substrate (A,B,C) and 
low-quality substrate (D,E,F) during each of the 6-week experimental phases: drought (A,D), early 
recovery (B,E) and late recovery (C,F) after drought. Means with standard error (n=5) are presented 
for native (white bars) and range-expanding (grey bars) plant communities. 
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Soil basal respiration and soil microbial biomass (SIR) 

In line with litter mass loss, drought decreased soil basal respiration and microbial 

biomass in all soils (Table 5.1, Table 5.2). Soil respiration was higher beneath native plant 

communities than beneath range-expanders under control conditions, but this effect was 

reversed under drought conditions (Table 5.1, Table 5.2). Soils of range expanders had 

higher microbial biomass in southern soils than in northern soils and, overall, microbial 

biomass was higher beneath native plant communities compared to range expanders at 

the end of the dry period. In the early recovery, there were no effects of our treatments on 

soil respiration. However, there was a significant interaction of plant community origin 

and drought history for microbial biomass (Table 5.2), indicating that history of drought 

still had a negative effect on microbial biomass in soils of range expanders but not in soils 

of natives. In the late recovery, there was an interaction of soil inoculum and drought 

history on soil respiration (Table 5.2). Southern soils with a history of drought had lower 

respiration rates than controls, but this did not occur for northern soils (Table 5.1). 

However, there were no effects of our treatments on soil microbial biomass in the late 

recovery. 

Right after the drought period, the proportional change from the control in both soil 

respiration and microbial biomass was more negative in soils of native plant communities 

than in soils of range-expanding plant communities (Fig. 5.2A, 5.2D, Table 5.3), indicating 

that soils of range-expanding plant communities are less hampered by drought than soils 

of native. During the early recovery, microbial biomass was more negatively affected by 

drought in soils of range-expanding plant communities than in soils of natives (Fig. 5.2B, 

5.2E, Table 5.3). Although it was the same trend, this effect was not significant for soil 

respiration (Table 5.3). In the late recovery, the proportional change from the control in 

soil respiration tended to be negative for southern soils and positive for northern soils (Fig 

5.2C, 5.2F, Table 5.3). 
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Fig. 5.2. Proportional change from the control in soil basal respiration (A,B,C) and microbial 
biomass (D,E,F) at the end of the 6-week experimental phases: drought (A,D), early recovery (B,E) 
and late recovery (C,F) after drought. Means with standard error (n=5) are presented for native 
(white bars) and range-expanding (grey bars) plant communities. 

Enzyme activity stability 

At the end of the drought period, the interaction between soil inoculum and drought 

affected the potential enzyme activity rates for all three enzymes. Drought stimulated 

glucosidase and phosphatase activity in northern soils but had decreased their activity in 

southern soils, and vice-versa for aminopeptidase activity (Table 5.1, Table 5.2). Drought 

also stimulated glucosidase activity beneath native plant communities but decreased it 

under range expanders. History of drought did not affect enzyme activity upon rewetting 

of the soil in both early and late recovery measurements. Glucosidase and phosphatase 

activity were higher in northern soils compared to southern soils during the recovery, but 

there was no significant effect of soil inoculum on aminopeptidase activity (Table 5.2). 
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In soils collected at the end of the drought period, the proportional change from the control 

was more positive in northern soils compared to southern soils for all three enzyme 

activities, indicating the positive effect of drought on enzyme activity in northern soil and 

a negative effect on southern soils (Fig. 5.3A, Table 5.3). During both early- and late 

recovery phases, there were no significant effects of plant community origin or soil 

inoculum on the proportional change from the control (Fig. 5.3B, 5.3C, Table 5.3). 

 

Fig. 5.3. Proportional change from the control in b-glucosidase (A,B,C), acid phosphatase (D,E,F) 
and alanine aminopeptidase (G,H,I) activities at the end of the 6-week experimental phases: 
drought (A,D,G), early recovery (B,E,H) and late recovery (C,F,I) after drought. Means with 
standard error (n=5) are presented for native (white bars) and range-expanding (grey bars) plant 
communities. 
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Soil saprophytic fungi 

There were no differences in the relative abundance of saprophytic fungi between drought 

and control and between plant communities and soil inoculum from different origins at 

the end of the drought period (Table 5.1, Table 5.2). During early recovery, the relative 

abundance of soil saprophytic fungi tended to be higher in soils of native plant 

communities with a drought history compared to the control, but there was no effect of 

drought history for soils of range-expanding communities (Table 5.1, Table 5.2). This effect 

was stronger during late recovery as was indicated by a significant plant community × 

drought interaction (Table 5.2). The proportional change from the control indicates the 

same trend; saprophytic fungi in soils with drought were, indeed, stimulated with respect 

to the control after rewetting of the soil, but only in soils of native plant communities and 

not in soils of range-expanders (Fig. 5.4, Table 5.3). 

 

Fig. 5.4. Proportional change from the control in the relative abundance of soil saprophytic fungi 
at the end of the 6-week experimental phases: drought (A), early recovery (B) and late recovery (C) 
after drought. Means with standard error (n=5) are presented for native (white bars) and range-
expanding (grey bars) plant communities. 

 

Discussion 

Multiple global change factors, such as species range shifts and extreme weather events, 

may affect species composition in terrestrial ecosystems as well as important soil 

processes, such as litter decomposition and nutrient cycling. In order to predict how 

ecosystems will respond to global change, it is important to study both independent and 
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interactive effects of the different factors of global change. Here, we used a factorial 

experiment to test the hypotheses that soils of range-expanding plants originating from 

Southern Europe are more resistant and resilient to drought than soils of native plant 

communities, especially when range-expanding plants grow in soils with southern soil 

biota. Our results show that plant community origin and soil inoculum can modify the 

magnitude and direction of the responses of soil functions to extreme drought. In general, 

responses were strongest shortly after rewetting and often associated with a positive effect 

of drought history on soil activity beneath native plant communities. However, these 

responses differed between specific soil functions measured and varied with the different 

experimental phases. 

Responses to drought 

In line with our first hypothesis, we found that soil respiration was less hampered by 

drought in soils from range-expanders than in soils from native plant communities. Under 

moderate drought, plant species may increase root exudation, and thereby maintain the 

activity of the soil microbial community in the root zone (Palta and Gregory 1997, Preece 

and Peñuelas 2016, Birgander et al. 2017, Ahmed et al. 2018). However, we do not know 

whether plant origin in our study (native vs. range expander) resulted in different carbon 

inputs to the soil under drought. In contrast with our first hypothesis, plant community 

origin did not influence the resistance to drought for litter decomposition, microbial 

biomass and the abundance of saprophytic fungi. Instead, in our study the severe summer 

drought may have reduced soil community activity in all treatments as a result of low 

substrate diffusion hampered by low soil water availability (Stark and Firestone 1995, 

Manzoni et al. 2012). 

In contrast to our expectation that soils with an inoculum from Southern Europe would be 

more resistant to drought than soils with an inoculum from Northern Europe (Hawkes et 

al. 2017), we found that northern and southern soils generally responded to drought in the 

same way. This means that within the latitudinal gradient selected we found no evidence 

that differences in latitudinal origin of the soil influences current responses of soil 

community functioning to drought. Only for the response of enzyme activity we found 

that soil inoculum played an important role. Interestingly, the interaction effect of soil 

inoculum and drought was dependent on the specific enzyme activity measured (e.g. 

phosphatase and glucosidase activity were enhanced by drought in northern soils, but 

decreased in southern soils). Even though the soil inocula only represented 30% of the 
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topsoil in our mesocosms, differences in the soil mineral fraction between soil inoculum 

types may have influenced the stabilization of extracellular enzymes during periods of 

low water availability (Stursova and Sinsabaugh 2008) and hence may explain differences 

in enzyme activities under drought.  

Responses to soil rewetting after drought 

Our second hypothesis was that soil functions would recover faster from drought (i.e. 

higher resilience) in soils of range expanders, especially in combination with southern soil 

communities. However, we found rewetting to immediately stimulate decomposition of 

low-quality substrate (i.e. rooibos tea), microbial biomass and relative abundance of 

saprophytic fungi in soils of native plant communities, independent of soil inoculum. Soils 

of range-expanding plants appeared to be more conservative in their response to drought. 

As a result, decomposition activity recovered more gradually and rewetting did not 

influence microbial biomass and the relative abundance of saprophytic fungi in 

comparison to the control. 

It is well established that rewetting of dry soil generally enhances soil microbial activity 

(Birch 1958). This so-called ‘Birch’ effect seems to be caused by metabolic adjustments at 

the level of individual microbial cells, which immobilize solutes intracellularly during 

drought and release them upon rewetting thereby stimulating microbial activity (Fierer et 

al. 2003, Schimel et al. 2007). Our results show that native plants enhanced the Birch effect 

in terms of decomposition (low-quality substrate) and microbial growth as compared to 

range expanders. Previous work has explained differences in the Birch effect between 

plant communities via altered soil microbial communities (Fierer and Schimel 2002). Our 

findings that microbial biomass, as well as the relative abundance of saprophytic fungi 

increased under native communities, suggests that plant-induced changes in the microbial 

community may indeed explain differences in the Birch effect between native and range-

expanding plant communities. These plant-induced effects may operate, for example, via 

drought-induced root mortality and turnover or via different patterns of root exudation 

upon rewetting. Such effects have not yet been shown for range-expanding plant species.  

In our study, we did not find an effect of drought history on soil respiration upon 

rewetting. Studies investigating responses of soil respiration after rewetting often focus 

on a time frame of hours to days after rewetting of the soil (Göransson et al. 2013, Meisner 

et al. 2017). In contrast, we assessed the first responses to rewetting after six weeks, when 

immediate changes in soil respiration may have recovered already, while the impact of 
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drought history on longer-term processes, such as litter decomposition and changes in 

microbial biomass, are still present. Therefore, responses of plants and soil communities 

to rewetting after drought may cascade from altered respiration rates, which occur 

immediately upon rewetting (Meisner et al. 2013a), to promoting changes on soil 

(saprophytic) microbial communities, decomposition and nutrient dynamics that persist 

to later stages after the drought stress (Fierer and Schimel 2002, Fierer et al. 2003). 

Plant response strategies 

Our results that short-term responses of soil functions to rewetting were dependent on 

plant community origin and soil inoculum indicate that plant range shifts can play a role 

in ecosystem responses to global change (Kardol et al. 2010). Even though climatic 

parameters can directly drive changes in soil communities and their functions, it has been 

shown that plants can modulate these effects via different mechanisms such as changes in 

soil microclimate, plant-soil interactions and the provisioning of carbon resources (Dukes 

and Hungate 2002, Waldrop and Firestone 2006b, Drigo et al. 2007).  

While the presence of native plant communities stimulated soil activity as a response to 

soil rewetting after drought, the presence of range-expanding plants decreased the 

magnitude of the soil functioning responses to drought. Instead, soil functions beneath 

range-expanding plants recovered to control levels without surpassing them, suggesting 

a more conservative response upon soil rewetting. This conservative response of soil 

functioning promoted by range-expanding plants could be the result of adaptation to 

drought events, typically more incident in South Europe where range-expanding plants 

originate from. In spite of the relatively limited nature of our experiment (i.e. single 

drought event, single year, short time frame), these results may add to the discussion on 

whether range-expanding plants may increase the stability of soil ecosystem functioning, 

as suggested by our data. In contrast to the effects of plant community origin, we found 

less impact of the origin of the soil inoculum on responses of ecosystem functions to 

drought, suggesting functional redundancy of soil communities from these different 

latitudes when compared under the same environmental conditions (Wertz et al. 2007). 

Both the duration of drought periods and the frequency of drying-rewetting cycles can 

have important consequences for soil ecosystem functioning (Fierer and Schimel 2002, 

Meisner et al. 2013a). Short-term dynamics of soil functions upon rewetting may become 

most relevant under a future climate scenario with recurrent drying and rewetting. Under 

such scenarios depending on seasonality, plant range expansion may have the potential to 
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substantially influence ecosystem-level processes over longer time scales, such as net 

ecosystem productivity or soil carbon balance. Furthermore, as soil activity responses to 

dry-rewetting cycles can have a substantial contribution to global CO2 dynamics, 

especially in water-limited ecosystems (Almagro et al. 2009, Matteucci et al. 2015), we 

emphasize the need to also include the effect of changes in plant communities (e.g. as 

results of climate warming-induced range shifts) on soil activity responses. To understand 

the full potential of plant range expansion to modify soil ecosystem functioning in the 

longer term, it will be essential to study their interactive effects with future climate 

scenarios and to get a mechanistic understanding of these interactions. 

Conclusion 

We conclude that plant range expansion may influence short-term responses of soil 

ecosystem processes to rewetting after drought periods, and that these effects are 

independent of the geographical origin of the soil community. In particular, range-

expanding plant species from warm climate zones affected soil functioning in a more 

conservative manner following soil rewetting than native plant species. We propose that 

these different responses could have ecosystem level consequences depending on the 

nature and recurrence of the drought and on whether drought occurs during peak 

growing time for the plants or later in the season.  
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Table S5.1. Native and range-expanding plant species used during the mesocosms since its 
establishment in 2013. During the first 2 years of experiment, 3 range-expanding species and 
3 related natives were planted in combination with 3 native grass species (*) to condition the 
soil. During 2015 and 2016, we planted the experimental plant communities. In 2016, the 
drought experiment was carried out. 
 
Plant community 
origin 2013 – 2014 2015 -2016 

Native 

Centaurea jacea L. 
Tragopogon pratensis L. 

Angelica sylvestris L. 
 

Phleum pratense L. * 
Poa trivialis L. * 

Festuca rubra L. * 

Centaurea jacea L. 
Geranium molle L. 

Tragopogon pratensis L. 
Rorippa sylvestris (L.) 

Sinapis arvensis L. 
Crepis biennis L. 

Pulicaria dysenterica L. (Bernh.) 
Alliaria petiolata (M. Bieb.) 

Range expanding 

Centaurea stoebe L. 
Tragopogon dubius (Scop.) 
Angelica archangelica L. 

 
Phleum pratense L. * 

Poa trivialis L. * 
Festuca rubra L. * 

 

Centaurea stoebe L. 
Geranium pyrenaicum (Brum. F.) 

Tragopogon dubius (Scop.) 
Rorippa austriaca (Crantz) Besser 

Rapistrum rugosum (L.) All. 
Lactuca serriola L. 

Dittrichia graveolens (L.) 
Bunias orientalis L. 

No individuals per 
species 6 8 

Total number of plants 36 64 
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Fig. S5.1. Shoot and root biomass at the end of the growing season in the watered control (white 
bars) and in the drought treatment (grey bars). Bars indicate means with standard error (n=5). 
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The general aim of this thesis was to investigate indirect plant-soil interactions of range-

expanding plant species, which operate via the plant inputs to the soil, and the conversion 

of these inputs by the soil decomposer community into plant-available nutrients. I was 

especially interested in how these plant-soil interactions of range-expanding plants 

compare to those of natives in order to determine functional consequences of range 

expansion for the invaded ecosystems. I investigated whether plants that expand their 

range within continents would resemble invasive exotic species in terms of the chemistry 

and nutrient concentration in their leaves and in the soils where they grow, and I 

compared range expanders with native plant species (Chapter 2). Then, in a controlled 

greenhouse experiment, I determined the role of plant origin on bacterial community 

composition in the rhizosphere and the functional capacity of the soil community (Chapter 

3). In Chapter 4, I investigated plant-soil feedback effects driven by plant litter and living 

plants and determined effects of this soil conditioning on plant biomass and litter mass 

loss. Finally, I investigated how plant community changes resulting from range 

expansions can interact with extreme drought events to modify soil processes such as litter 

decomposition and nutrient cycling (Chapter 5). In the present chapter, I discuss the major 

findings of this thesis in the context of published literature on both range-expanding and 

exotic plant species. To finalize, I provide some ideas for further research and conclude 

with the main outcomes of this thesis research. 

 

Predictability in plant range expansion 

A main aim of invasion ecology is to be able to predict when and where exotic plant species 

may become established and become disproportionally abundant (Hayes and Barry 2008). 

To be able to make such predictions, research has focused on determining widespread 

characteristics associated with exotic plant invasions. For example, plant traits such as 

growth rate, fitness or biomass allocation to shoots are often higher in invasive plant 

species than in non-invasive species (van Kleunen et al. 2010). Furthermore, microbial 

community structure in the soil can differ between invaded and non-invaded sites 

(Kourtev et al. 2002a). Besides, soil nutrient content and plant primary chemistry have also 

been associated to plant invasiveness because exotic species most often have higher 

nutrient levels than co-occurring natives (Pyšek et al. 2012, Sardans et al. 2017). These 

differences in soil nutrient content and plant chemistry may further promote invasive 
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abundance of exotic plant species, as exotics have been shown to benefit more than natives 

do from high soil nutrient availability (Blumenthal et al. 2009, Liu and van Kleunen 2017). 

In my research, I aimed at determining whether these characteristics of exotic plant species 

may also be present in range-expanding plant species. The results of Chapter 2 indicate 

that, based on the species selected, there is no general pattern of plant and soil nutrients 

in relation to plant range expansion. I mainly observed species-specific effects, where the 

range-expanding species in some cases and the native species in other cases had higher 

nutrient concentration in leave tissues and in the soils. Therefore, the main outcome from 

this study is that even though some range-expanding plant species may follow such 

patterns of invasive species, these characteristics cannot be associated to non-native plant 

origin in general. Then in Chapter 3, I examined soil bacterial communities of sites where 

both natives and range-expanding plant species grow in the field. There, I show that plant 

species are associated to different bacterial communities in the soil. Besides soil bacteria, I 

also show that there were differences in soil pH and nutrient content between plant 

species. However, there was not a general pattern of plant origin for neither soil 

communities nor abiotic characteristics. This is line with the results from Chapter 2, and 

altogether my research shows that range-expanding plant species may establish in sites 

that differ from their original range and from sites of related native plant species. Yet, 

when present, these differences are species-specific and cannot be attributed to differences 

in their geographical origin in general. 

Despite the overall patterns in nutrients associated to exotic invasive species, there is 

substantial variation between individual studies (Vilà et al. 2011, Pyšek et al. 2012). Exotic 

plant species seem to display higher plasticity than natives (Funk 2008), perhaps making 

them more capable of occupying sites with varying abiotic conditions. Certainly, variation 

is also high among the limited number of range-expanding plant species studied here. 

Increasing the number of replicate range-expanding plant genera is likely to increase the 

capacity to generalize about the role of plant origin in plant range expansions and improve 

predictions of what species are likely to expand their range and what site characteristics 

are most common for range expanding plant species to become established. 
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Functional consequences of plant range-expansion on native ecosystems 

A key question to understand the ecological consequences of range expansion is to what 

extent range-expanding plant species may alter soil functions and biogeochemical cycles 

in the new range. Determining the impacts of exotic plant species on ecosystems has been 

a focus of plant invasion studies (Levine et al. 2003, Vilà et al. 2011). Exotic plant invasions 

have often been associated to increases in nitrogen pools and cycling in the soil (Allison 

and Vitousek 2004, Ashton et al. 2005, Hawkes et al. 2005, Castro-Díez and Alonso 2017), 

soil enzymatic activity (Kourtev et al. 2002b, Allison et al. 2006) and to faster litter 

decomposition (Rothstein et al. 2004, Ashton et al. 2005, Arthur et al. 2012, Zhang et al. 

2016a). These changes in important soil functions can have local consequences for native 

ecosystems and can enhance the performance of exotic plant species over natives via 

competition and soil legacy effects (Ehrenfeld et al. 2005). 

The results of this thesis suggest that there are no overall impacts of range-expanding plant 

species on soil processes such as litter decomposition and soil enzyme activity. Instead, I 

show that soil microbial communities of range-expanders and related natives share similar 

ability to utilize organic substrates of varying recalcitrance after conditioning via the 

rhizosphere (Chapter 3 and 4), but also after conditioning with plant litter and rhizosphere 

plus plant litter (Chapter 4). Furthermore, soils of range-expanders and related natives 

display similar ability to breakdown plant litter, especially of aboveground plant litter 

(Chapter 4), and show similar decomposition rates under non-drought conditions 

(Chapter 5). However, this does not mean that there are no differences between plant 

species or that the impact of range-expanding and native plants is similar under all 

environmental conditions. First, in Chapter 4 I have shown that litter mass loss is not 

related to plant origin but to plant identity. There I show that in some species-specific 

cases, such as in genera Centaurea or Rorippa, litter of range-expanders may indeed have 

higher decomposition rates. Yet, this is not the case for the other two plant genera used in 

the experiment, so that this effect does not seem to be caused by their different origin, but 

rather to specific differences in their chemistry (Macel et al. 2014, Wilschut et al. 2017). 

Secondly, in the mesocosm drought experiment of Chapter 5, I showed that soils of native 

plant communities that were subjected to drought stimulated soil functioning upon 

rewetting of the soil, whereas this was not observed in soils of range-expanders. These 

short-term responses may be due to adaptation of the range expanders under climate 

conditions that include long summer droughts, such as occurring in Mediterranean and 
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East-Continental Europe. In such areas, interactions between plants and soils may favour 

nutrient retention after drought and rewetting cycles. At the longer term, however, these 

effects were not detectable anymore. Although the effects of plant origin in this experiment 

were limited in terms of the time they lasted, changes in the short-term responses to 

drought events may become more relevant in scenarios of recurrent drought-rewetting 

cycles. Under these scenarios of recurrent climate extremes, soils under communities that 

contain range-expanding plant species may function differently, possibly less responsive 

to a set-back of normal rainfall conditions, than those composed of native species only. 

 

The role of specialized decomposer communities 

Decomposer communities in the soil may specialize to decompose litter from the locally 

dominant plant species (Gholz et al. 2000, Ayres et al. 2009a, Ayres et al. 2009b). This 

specialization may have developed in the same co-evolutionary manner as plants and their 

specialized enemies have co-evolved. The enemy release hypothesis predicts that exotic 

plant species outside their native range may benefit from the lack of co-evolved specialist 

enemies (Keane and Crawley 2002). Based on the same idea and provided that plant 

species have co-evolved specialist decomposer communities in their native range, exotic 

plant species that establish outside their native range may lack specialized decomposer 

communities. This mismatch between plants and their specialized decomposer 

communities in the new range may have consequences for decomposition, nutrient cycling 

and thereby plant growth. In this thesis, I examined the role of specialized decomposer 

communities in plant range expansion using two different approaches.  

During the feedback phase on litter decomposition of Chapter 4, I tested the role of 

specialized decomposer communities in plant range expansion. There, I used the soils 

conditioned by plant litter to determine how the identity of the conditioning litter species 

affected contemporary decomposition of the same species or of the related native or range-

expander species. I showed that litter mass loss was mainly controlled by litter species 

identity (Cornwell et al. 2008), and that the previous litter used to condition the soil did 

not influence contemporary mass loss. Therefore, I could not find evidence for the loss of 

specialized decomposer activity. Alternatively, paired range-expander and native plant 

species may share specialist decomposer communities as they are expected to differ in 

origin only, while traits are relatively similar. Thus, I could not observe a benefit from 
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specialist decomposers between phylogenetically related species, while studies using 

plant species with contrasting litter quality can identify specialization in decomposer 

communities (Freschet et al. 2013, Veen et al. 2015a).  

Interestingly, for root litter, mass loss of range-expander roots was greatest in soils 

conditioned by the litter of native plants. This effect was mainly observed in Centaurea and 

suggested that, in some cases, soils of native plants may further increase root 

decomposition of range-expanding plant litter in the new range. In general, the 

contribution of plant roots on decomposition activity in the soil and plant-soil feedback 

has been overlooked in the literature (Ma et al. 2016, Zhang et al. 2016b). Yet, a recent study 

has shown that the presence of local roots may not only stimulate decomposition but also 

mediate specific litter-decomposer interactions (Tian et al. 2018). Thus, more research 

would be needed to investigate to what extent there are differences in the role of 

specialized decomposers for decomposition of above and belowground litter, as root 

decomposability is expected to differ substantially from shoot litter (Birouste et al. 2012, 

Freschet et al. 2013), and to determine how dominant plant species may influence the role 

of specialized decomposers. 

In Chapter 5, I had expected that soil functions under range-expanding plant communities 

would be less affected by drought stress when soils from the expansion range were 

inoculated with soil from the original range, because these plants and soils have co-

evolved under dry weather conditions. My results, however, were not in support of this 

hypothesis because there was no significant interaction effect of plant community (range-

expander or native) and soil (from new or original range) on soil functions during or after 

drought. Previously, Hawkes et al. (2017) have shown that the respiration of soils from 

drier areas is less sensitive to moisture changes than soils from wetter areas. In my 

experiment, independently of plant community identity, litter mass loss after rewetting 

was higher in soils from the original range than in soils from the expansion range. In 

addition, two out of three enzyme activities measured were higher in soils from the 

expansion range throughout the experiment as well. This indicates that while soils from 

the original and expansion range may differ in the response to drought for specific 

functions as also shown by Hawkes et al. (2017). However, these responses of soils from 

the original and new range do not seem to interact with the origin of the standing plant 

community in my experiment. 
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The results obtained in my thesis suggest a limited role of specialized interactions between 

(microbial) decomposer communities and plant species in the context of range expansions. 

My conclusions, however, need to be considered within the framework of my 

experimental approach. First of all, effects of specialist decomposers may develop and 

become stronger over time, and the limited length of my experiments (circa 3 months) 

perhaps has limited the effect strengths that I observed. Time has been an important factor 

for the development of negative interactions of exotic plants and specialized enemies in 

the new range (Diez et al. 2010). In that study, negative plant-soil feedbacks developed 

over periods of decades to centuries. Secondly, decomposers are suggested to be 

generalists and as a result, the degree of specialization may only be sensitive to higher 

taxonomical levels of plants or larger functional differences between plant species (Veen 

et al. 2015a). Consequently, when comparing congeneric species there may be limited 

scope for finding impacts of specialized decomposer communities (but see Madritch and 

Lindroth (2011)). 

 

Future scenarios of global change and the role of plant range expansions 

Extreme weather events (drought or extreme rainfall episodes and more recurrent heat 

waves) are predicted to increase in areas where range-expanding plant species originating 

from South Europe are establishing, such as in the Netherlands (KNMI 2015, NDFF 2018). 

Consequently, plant range expansion interacts with other, more direct, effects of climate 

change in the expansion range. In Chapter 5, I show that there are little differences in the 

effect of range-expanding plant communities on soil functioning as compared to native 

plant communities. Yet, after extreme drought and shortly upon rewetting of the soil, I 

show that range-expanding plant communities stimulate litter decomposition activity in 

the soil to a larger extent than native plant communities. Thereby, my results suggest that 

the presence of range-expanding plant species or natives may become more relevant under 

scenarios of extreme weather events, which will become more regular under current 

climate warming. Furthermore, I show that beyond the interactions with the standing 

plant community, drought also has a general and strong effect on basal soil respiration 

and on litter breakdown, which is in line with previous climate manipulation and gradient 

studies (Garten et al. 2009, Schindlbacher et al. 2012, Liu et al. 2018). My research also 

supports the idea that climate change is currently affecting terrestrial ecosystems in 

multiple direct and indirect ways. Thus, in order to fully understand how ecosystems may 



Chapter 6 
 
 

144 
 

respond to climate change, it will be crucial to investigate both direct and indirect effects 

via changes on plant community composition on soil communities and their functioning  

(Bardgett et al. 2008, Bardgett and van der Putten 2014, Classen et al. 2015). 

 

Issues with generalizations in exotic and range-expanding plant species: the role of 

novelty and relatedness in comparisons 

Literature on the impact of introduced exotic species has widely focused on exotic species 

that become locally invasive in other continents while introduced plant species that are 

naturalized but not (yet) invasive are far less well studied. This has created a bias in the 

literature towards those exotic species that have the biggest impact on the recipient 

ecosystems (Pyšek et al. 2008). However, it has been shown that the percentage of 

introduced exotic species that become invasive is around one per cent according to the 

tens rule proposed by Williamson and Fitter (1996). Furthermore, among those species 

that do become invasive there are no universal impacts of exotic invasive plants on the 

recipient ecosystems (Vilà et al. 2011, Pyšek et al. 2012, Castro-Díez et al. 2014). While it 

seems clear that introduced exotic plant species can alter nutrient pools and soil processes 

as compared to the native state, the direction and strength of these effects depend on the 

context of the studied sites or the species comparisons used. A main question is, therefore, 

what makes some exotic species and not others become invasive and with the potential to 

alter soil processes to variable extents?  

In the case of range expansion within continents, and based on the results of my thesis, 

range-expanders do not seem to differ consistently from related natives that co-occur in 

the same ecosystems. Based on phylogenetic controlled comparisons, I show that soil 

bacterial communities (Chapter 3), soil community functioning (Chapter 3 and 4) and 

plant-soil feedback (Chapter 4) are not affected differently by range-expanders than by 

congeneric related plant species that are native in the invaded ecosystems. Especially in 

Chapter 3, I conducted a greenhouse experiment to disentangle the effects of trait 

differences between plant species and site characteristics by growing range-expanders and 

related natives in the same soils that were novel to both. I then determined bacterial 

community composition and soil community functioning in the rhizosphere over time. 

My results showed that communities did not differ between the range expander and the 
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congeneric native throughout plant development, suggesting that there are no general 

differences between range-expanding and native plant species. 

Overall, generalizations about the impacts of both intercontinental exotic and 

intracontinental range-expanding plant species seem difficult to make, because very often 

impacts are highly context dependent. Key aspects behind this context dependency may 

be plant relatedness and trait novelty. Plant species that are less phylogenetically related 

to natives have been suggested to have higher invasive potential (Strauss et al. 2006), 

which may also be the case for range-expansions (Koorem et al. 2018). Unrelated exotic 

plant species are also more likely to bring specific plant traits into the ecosystem that are 

not present in the native community. Studies have shown that impacts of exotic species on 

soil communities and their functions are often strongest when compared species are more 

distant in their functional traits (Vilà et al. 2011) or bring in novel chemicals (Callaway and 

Ridenour 2004). For example, impacts of an exotic legume on nitrogen cycling in the soil 

will differ from impacts of non-nitrogen fixer (Castro-Díez et al. 2014), independent of its 

exotic origin. Besides traits, evolutionary novelty may shape the interactions of exotic 

species and soil organisms in the new range as well (Verhoeven et al. 2009, Lankau 2011). 

Therefore, the degree of evolutionary novelty may determine whether the exotic plant can 

be recognized by native soil biota and vice-versa, which may also contribute to the 

magnitude and type of impact of the particular species. Altogether, these factors that are 

characteristic to each specific study may play an important role in explaining the variation 

in impacts of exotic species. In my studies, I used phylogenetically controlled comparisons 

of congeneric plant species, which may have decreased variation of plant traits between 

compared species. Also, the evolutionary novelty of range expanders that have congeneric 

native species along the expansion range may be less than that of intercontinental exotics. 

Among range-expanders however, there can still be species-specific cases where range-

expanders and related natives differ substantially in some specific effects, for example the 

range-expander Centaurea stoebe that has been shown to be less affected by root-feeding 

nematodes possibly due to its novel chemistry (Wilschut et al. 2017). 

 

The role of plant-soil interactions in plant range expansion  

The ecological consequences of plant range expansions are only starting to be investigated. 

Studying plant-soil interactions and feedbacks can help to understand the success and 
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effects of plant range-expansion induced by climate warming (van der Putten 2012). In my 

thesis, I examined the role of indirect plant-soil interactions driven by plant inputs to the 

soil and the activity of the decomposer community. Often, I show that range-expanding 

plant species resemble related natives that occur in the same ecosystems, both in terms of 

their effect on soil communities (Chapter 3) and soil functioning (Chapter 3, 4 and 5). 

Through the different chapters, I showed that, in general, these indirect plant-soil 

interactions are not dependent on plant origin and thus are not a simple explanation of the 

success and consequences of range-expanding plants. Only for some species-specific cases, 

such as for the range expander Centaurea stoebe in Chapter 4, I suggest that positive litter 

feedbacks can potentially play a role on invasiveness in the longer term.  

Nevertheless, direct plant-soil interactions, mediated by natural enemies and mutualists 

in the rhizosphere, may be important determining the success of range-expanding plant 

species. Previous studies have shown that plants perform better in soils of their new range 

than in soils from their original range (Van Grunsven et al. 2010, Dostálek et al. 2016) and 

are less affected by natural enemies in the new range (Engelkes et al. 2008, Morriën et al. 

2012, Morriën et al. 2013). It is plausible that direct plant-soil interactions play a bigger role 

than indirect interactions, as their effects on plant performance are rapid and severe 

compared to those of decomposers and soil nutrients. Yet, the role of plant litter and 

nutrient availability in the soil may become important in combination with direct effects 

(Blumenthal et al. 2009) and in the long term, via the buildup of plant-soil feedback effects 

via plant litter (Eppinga and Molofsky 2013, Mariotte et al. 2017).  

 

Future research 

Long-term plant-soil feedbacks through plant litter 

In my thesis, I suggest that some range-expanding plant species could potentially develop 

a positive feedback effect via plant litter inputs and litter decomposition in the soil 

(Chapter 4). The role of plant litter feedbacks, however, may become stronger and more 

relevant over time especially under field conditions where nutrient provisioning for plants 

depend on the amount and quality of litter and its decomposition (Wardle et al. 2004, van 

der Heijden et al. 2008). As suggested by the results presented in this thesis some range-

expanding plant species may stimulate higher decomposition rates and some may also 

benefit from higher nutrient availability in the soil. Experiments addressing litter 
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feedbacks in field conditions should preferably last for multiple growing seasons as litter 

feedbacks would only start to play a role after the first plant generation. Overall, longer-

term experiments may enable litter feedbacks to be established and more accurately 

measured. An overarching hypothesis would be that if litter feedbacks play a role in the 

performance of range-expanding plants, effects are most likely to be quantified over 

longer conditioning times, when root litter is also included, or in interaction with extreme 

weather events such as summer drought. 

Competition between range-expanding and native plant species 

In order to understand plant species responses to climate change, it is essential to 

incorporate competitive interactions between novel exotic species and natives (Alexander 

et al. 2015, Alexander et al. 2016). When an exotic plant enter a novel community in the 

new range, it will encounter novel competitors. The outcome of such competitive 

interactions will determine the performance of the exotic species and its effects on native 

communities. Furthermore, competitive plant-plant interactions can strongly affect plant-

soil feedback effects (Casper and Castelli 2007). In plant range expansions, the competitive 

interactions between range-expanding plant species and natives have received little 

attention (but see Koorem et al. (2018)). Therefore, in order to determine the establishment 

success and the effects of range-expanding plant species under field conditions in the new 

range, it will be important to assess their performance together with naturally occurring 

competitors and through the feedback effects resulting from such competition, including 

both related and unrelated plant species.  

 

Conclusions 

In my thesis, I show that plant species that expand their range as a result of climate 

warming in general are not species with higher nutrient content in their leaves and in the 

soils where they grow in the field as compared to native plant species. I conclude that there 

are no general patterns in plant and soil chemistry and nutrient content due to plant origin. 

Therefore, and similarly to exotic plant species, it remains a challenge to make accurate 

predictions of what range-expanding plant species, when or where may successfully 

establish in the new range.  

Furthermore, I have shown that range-expanding plant species recruited similar bacterial 

rhizosphere communities as native species when both species are grown in the same soil. 
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However, in some cases communities in soils of range-expanding plant species in the field 

may be different from communities in the soils of native species. All soil communities, 

however, shared similar ability to utilize organic substrates regardless of whether range-

expanding or native plant species conditioned the soil and regardless of how similar 

bacterial communities were in those soils. Therefore, plant origin does neither explain 

variation in soil bacterial communities nor substrate utilization profiles, as soil 

communities were functionally redundant. 

In the plant-soil feedback study, I demonstrated that plant-soil feedbacks are neutral 

between range-expanding and congeneric native plant species, both via rhizosphere and 

litter pathways. However, some range-expanding plants, such as Centaurea stoebe, could 

benefit from positive feedbacks via plant litter because its litter decomposes more than the 

litter of natives and it can grow more than the native Centaurea jacea under high nutrient 

availability. However, I have also determined that these features are not characteristic of 

range-expanding plants in general, but are particular to some plant genera and not to 

others.  

My study has also shown that soils of range-expanding plant species may be less 

responsive to drought and rewetting cycles than soils of native plant communities, 

suggesting that the effects of plant-soil interactions on soil functioning may be more 

important under scenarios of climate extreme events. Although differences in the response 

of soil functions to drought and rewetting were most prominent in the short-term after 

drought, I emphasize that these dynamics may become more important in scenarios of 

recurrent drought events.  

Overall, the results of my thesis suggest a limited role of plant origin and specialist 

decomposer communities on indirect plant-soil interactions of range-expanding plant 

species. When applying phylogenetic controlled comparisons, range-expanding and 

related native species do not differ in rhizosphere bacterial community composition, soil 

community functioning, and plant-soil feedback effects. Therefore, it seems unlikely that 

range-expanding species with congeneric natives will resemble exotic invasive species and 

will change general soil functioning in the new range, although local effects in the field 

may need to be quantified. 
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Summary 

The disproportionate rise in greenhouse gas emissions over the last century, originating 

largely from anthropogenic activities, has triggered an increase of global mean 

temperatures. Current climate warming is occurring at an unprecedented rapid rate, with 

important consequences for many plant and animal species. In order to persist, plants may 

adapt to the warmer conditions or expand their geographical range to areas of higher 

latitudes and altitudes within continents, where they were previously not present. Thus, 

in Europe plant species from warmer climate areas, mainly from the Mediterrenean 

region, are currently increasing in number and abundance in Central and Northern 

Europe, including the Netherlands. It has been suggested that among plant species that 

expand their range there may be species with the potential to become invasive. Yet, 

relatively little is known about the ecological consequences of plant range expansion for 

the invaded ecosystems.  

Unraveling plant-soil interactions in the context of plant range expansions may elucidate 

mechanisms explaining establishment success and consequences of range-expanding 

plant species. As range-expanding plants establish in ecosystems outside their original 

range, they may encounter novel soil communities. Missing specialist enemies may benefit 

the establishment of range-expanding plant species in the new range. However, relatively 

less is known about the interactions between range-expanding plant species and the bulk 

of the soil community, including decomposer communities. In my thesis, I studied plant-

soil interactions of plants that expand their range enabled by climate warming. I focused 

on indirect plant-soil interactions mediated by the resources that plants provide to the soil 

in the form of litter or root exudates, which influence the activity of the soil decomposer 

community and soil nutrient availability. I compared these interactions of range-

expanding plants to those of native plants species in order to identify the functional 

consequences of plant range expansion in the new range. In my approach, I mainly used 

phylogenetic controlled comparisons because they allowed to test the effect of plant origin 

and disentangling it from the effect of trait differences.   

In the first part of the thesis, I determined concentrations of major nutrients (C, N and P) 

in plant tissues and nutrient availability in the soils of range-expanding plant species and 

natives. All parameters were measured in samples from individual plants and their 

associated soils in the field of the expansion (north) and the original (south) ranges. I 

expected that range expansion, similarly to successful exotic species, is associated with 
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higher nutrients in plants and soils compared to native species. I show that differences in 

plant and soil chemistry of range-expanding and related native plant species were linked 

to plant species identity rather than origin. Furthermore, plant and soil chemistry varied 

between the north and south ranges but the direction and size of these latitudinal 

differences was dependent on the parameter and plant species considered. Therefore, I 

concluded that there are no general differences in plant and soil nutrients between range-

expanding and congeneric native plant species that co-occur with the range expanders in 

the novel range. Thus, I found no evidence that patterns observed in the literature on 

invasive exotic species apply to plant species that expand their range within continents. 

Then, in a controlled greenhouse pot experiment, I studied the functional consequences of 

plant origin by comparing rhizosphere bacterial communities and soil community 

functioning of range-expanding and native plant species. Overall, exotic plant species 

have been shown to alter soil microbial communities and their functions. Thus, I expected 

that range-expanding plant species would have similar influence on the soil communities 

in their new range, where they are novel. I grew plants for three months and examined 

four replicate plant genera to determine general effects of range-expanding plant species. 

At the end of each month, I destructively sampled part of the experiment and assessed 

bacterial communities with 16S sequencing, and community level functioning by 

measuring enzyme activity and the respiration response of the soil communities to organic 

substrates of varying recalcitrance. To disentangle the effects of plant origin from those of 

the specific field sites where these plants currently occur, I grew plants in soils collected 

from underneath the same plant species in the field and in soils that are novel to them. The 

main finding of this experiment was that, when controlling for both species relatedness 

and soil characteristics, range-expanding plant species influence soil bacterial community 

composition and nutrient cycling in a manner similar to congeneric related native species. 

These results also illustrate the importance of phylogenetically controlled comparisons to 

disentangle plant origin effects from effects of contrasting plant traits.  

As a follow up, I studied feedback effects from the rhizosphere of range-expanding and 

native plants species, as well as feedback effects induced by decomposing plant litter and 

their combination. In the literature, feedback effects of plant litter have been less studied 

than those mediated by the rhizosphere of living plants. Nevertheless, plant litter 

feedbacks have been suggested to promote the performance of exotic plant species in the 

new range. Therefore, in this two-phase feedback experiment, I conditioned the soil with 

living plants, plant litter and their combination. I took a sensitive approach using control 
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soils from the congeneric species in order to determine whether specialist soil biota may 

be lost upon establishment in the new range. Here, I expected less negative feedback to 

range-expanders than to natives in soils conditioned by living plants and that all plant 

species would benefit from soils conditioned by the litter of range-expanders as litter of 

range-expanders is expected to have higher nutrient concentrations than the litter of 

natives. In this experiment, I tested plant-soil feedbacks on subsequent plant biomass and 

on litter decomposition. Results indicate that both range-expanding and native plant 

species developed neutral plant-soil feedbacks in both the rhizosphere and litter 

conditioned soils. However, two out of the four examined range-expanders produced 

more biomass than the natives in soils conditioned by litter. Furthermore, litter 

decomposition was also higher for range-expanders than natives in two out of four genera, 

but decomposition was unaffected by soil conditioning. Overall, the experimental setup 

used provided conservative plant-soil feedback effects both to plant growth and 

decomposition, indicating similar roles of specialist soil communities for range-expanding 

and native plant species under these experimental conditions. For the specific case of 

Centaurea, I show that it produces more biomass under high soil nutrient availability and 

it decomposes more than its congeneric native. Therefore, I conclude that in some specific 

cases, range-expanders may benefit from high nutrient availability, which may also be 

induced by litter feedbacks. 

Plant range expansion may interact with direct effects of climate change, such as drought 

events, in the new range. In Chapter 5, I investigated the role of range-expanding plant 

communities and soil biota from the original range on driving soil functioning during and 

after drought. Because plant species and soils that originate from dryer areas are expected 

to cope better with drought, I hypothesized that soils of range-expanding plant 

communities would be less affected by drought and recovered faster than soils of native 

plant communities, especially when soils were inoculated with live soil from the original 

range. In a mesocosm experiment outside, plant communities of range-expanding and 

native plant species were established in soils with and without inocula from the original 

range. I measured soil functions (litter decomposition, carbon mineralization and enzyme 

activities), microbial biomass and the relative abundance of soil saprophytic fungi 

immediately after drought and at 6 and 12 weeks after rewetting. While drought affected 

most soil functions equally, after re-wetting, soils of native plant communities with a 

history of drought had more litter mass loss and higher relative abundance of saprophytic 

fungi than soils without drought and soils of range expanders. This was not the case in the 
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soils of range-expanders, where soil functions were not stimulated over the watered 

controls after drought and regardless of soil inocula. Overall, soil inocula effects were 

weak and all soil functions were recovered by the end of the experiment. These results 

suggest that shortly after soil re-wetting, functional consequences of plant range 

expansion may interact with the effects of drought. 

With this research, I contributed to the understanding of the interactions that range-

expanding plants establish with soils in the new range and of the specific role of plant 

origin in these interactions. I have shown that overall range-expanding plant species 

examined do not resemble invasive exotic species because they did not affect rhizosphere 

bacterial communities and soil functions differently from related natives. Thereby, I have 

found little evidence suggesting that, in general, range-expanding plant species may 

impact soil communities and functions similarly to invasive exotic species. Nevertheless, 

in some specific cases range-expanding plant species may benefit from high nutrient 

availability in the soil and positive litter decomposition feedbacks. Finally, I have shown 

that plant-soil interactions of range-expanding plants may differ most from natives under 

climate extreme events such as drought. To address remaining questions on the impact of 

indirect plant-soil interactions for range-expanders, field studies should incorporate plant-

soil feedbacks of plant litter. Furthermore, experiments may assess potential benefits for 

range-expanders over natives in competition. Also, it is crucial that further studies on 

examining ecosystem functioning under climate change scenarios incorporate 

multifactorial designs accounting for changes in plant community composition induced 

by climate change. 
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Sumari 

L’increment desproporcionat de les emissions de gasos d’efecte hivernacle, originades 

majoritàriament de les activitats antropogèniques, ha desencadenat un augment de la 

temperatura mitjana global. Aquest escalfament s’està produint a una velocitat sense 

precedents, i té importants conseqüències per a nombroses espècies vegetals i animals. Per 

tal de persistir en aquestes condicions climàtiques canviants, les plantes s’han d’adaptar o 

han d’incrementar el seu rang de distribució cap a latituds i altituds més elevades. A 

Europa, plantes que són natives de zones de clima càlid, majoritàriament de la zona 

Mediterrània, estan incrementant en nombre i abundància al centre i nord del continent, 

incloent els Països Baixos. Estudis previs han suggerit que, entre les plantes que 

incrementen el seu rang de distribució, poden haver-hi espècies potencialment invasores. 

Tot i així, en termes generals es desconeixen quins són els impactes ecològics de les 

expansions de plantes per als ecosistemes on arriben a establir-se. 

Les plantes interaccionen contínuament amb els organismes del sòl, i el seu creixement i 

desenvolupament depèn en gran mesura d’aquestes interaccions. Les interaccions planta-

sòl poden tenir un paper important durant les expansions d’espècies vegetals, i poden 

ajudar a identificar els mecanismes que determinen l’èxit i l’impacte d’aquestes plantes. 

Quan les plantes s’instal·len fora del seu rang de distribució original, poden establir 

interaccions amb organismes del sòl diferents de les que tenien en el seu rang original. 

Això és degut al fet que els organismes del sòl solen tenir distribucions geogràfiques 

diferents a les de les plantes, o al fet que responen d’una manera diferent a l’escalfament 

global i, per tant, no varien el seu rang de distribució o ho fan a velocitats molt inferiors a 

les de les plantes, ja que es dispersen més lentament. Quan això passa, per exemple, les 

plantes en expansió poden deixar enrere organismes patògens que es troben entre els 

organismes del sòl. D’aquesta manera les plantes en expansió poden beneficiar-se d’una 

comunitat del sòl lliure de patògens. A banda de les interaccions planta-patògen, però, es 

desconeixen les interaccions que s’estableixen entre les plantes i les comunitats 

microbianes del sòl que s’encarreguen de descompondre la matèria orgànica i del 

reciclatge de nutrients, i que constitueixen la major part dels microorganismes del sòl. Per 

tant, l’objectiu d’aquesta tesi és estudiar les interaccions que s’estableixen entre les plantes 

que estan ampliant el seu rang i els microorganismes del sòl responsables de la 

descomposició de la matèria orgànica i del reciclatge de nutrients. En general, les plantes 

proveeixen de recursos als microorganismes del sòl en forma de fullaraca, material orgànic 

i exsudats de les arrels, que aquests utilitzen com a font de matèria i energia, per tant, 
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modulen l’activitat microbiana del sòl. Quan aquests recursos provenen de plantes 

exòtiques, és a dir, plantes que són noves a l’ecosistema, es poden produir alteracions en 

la composició i funcionament de les comunitats del sòl. Aquestes alteracions poden 

repercutir de manera indirecta al creixement de les plantes a través de la mineralització i 

la disponibilitat de nutrients. En els diferents capítols d’aquesta tesi, he comparat les 

interaccions planta-sòl de les plantes en expansió que s’estan establint als Països Baixos 

amb les de les plantes que són natives per tal d’identificar les conseqüències de les 

expansions de plantes pel funcionament dels ecosistemes on s’estableixen. En el meu 

procediment, he utilitzat comparacions d’espècies que estan relacionades 

filogenèticament, les quals m’han permès determinar els efectes de l’origen de les plantes 

(natives o en expansió) i separar-los d’aquells efectes que estan condicionats per altres trets 

propis de cada espècie.    

Primerament, vaig determinar les concentracions de carboni i nutrients als teixits de les 

plantes i la disponibilitat de nutrients als sòls on creixen aquestes plantes al camp. Vaig 

prendre mostres de fulles i sòls que pertanyen a plantes en expansió i a plantes natives. La 

meva hipòtesi principal afirmava que les plantes en expansió estan associades amb una 

concentració més elevada de nutrients al teixit vegetal i al sòl que les plantes natives, tal i 

com passa amb les plantes exòtiques que aconsegueixen establir-se de manera exitosa fora 

del seu rang original. Els resultats obtinguts mostren que les diferències observades 

depenen de cada espècie individualment, però no hi ha una tendència general causada per 

l’origen geogràfic de les plantes. Per tant, vaig concloure que no hi ha diferències generals 

entre les plantes en expansió i les natives pel que fa al contingut de nutrients de les plantes 

i dels sòls.  

Seguidament vaig estudiar els efectes que tenen les plantes sobre les comunitats de la 

rizosfera. Vaig comparar les comunitats bacterianes i l’activitat de la comunitat microbiana 

a la rizosfera de plantes en expansió i plantes natives. En general, es coneix que les plantes 

exòtiques que s’estableixen de manera exitosa fora del seu rang modifiquen les comunitats 

bacterianes que habiten la rizosfera i n’alteren així el seu funcionament. Per tant, la 

hipòtesi era que les plantes que han incrementat el seu rang poden tenir efectes similars al 

de les plantes exòtiques en el seu nou rang, ja que hi són espècies noves. Vaig investigar 

quatre gèneres de plantes diferents, que vaig utilitzar com a rèpliques per tal d’identificar 

un efecte general de les plantes que amplien la seva distribució. Durant el 

desenvolupament de les plantes, vaig recollir mostres de sòl de la rizosfera, vaig 

determinar la comunitat bacteriana utilitzant tècniques de seqüenciació 16S, l’activitat 
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enzimàtica i la mineralització de diversos compostos orgànics. Per tal de poder separar els 

efectes de l’origen de les plantes d’aquells que són causats per altres condicions dels llocs 

on aquestes plantes habiten en el camp, vaig fer créixer les plantes en sòls provinents de 

llocs on aquestes plantes són presents en el camp i en sòls als quals les plantes no han estat 

exposades prèviament. El resultat més important d’aquest experiment va ser que, quan es 

té en compte i s’eliminen els efectes de les característiques prèvies dels sòls i la relació 

filogenètica de les plantes a comparar, les plantes en expansió  influencien la composició 

de les comunitats bacterianes i el reciclatge de nutrients d’una manera similar a les plantes 

natives. Aquests resultats remarquen la importància de les comparacions controlades 

filogenèticament per tal de separar els efectes causats per l’origen de les plantes dels 

causats per altres trets propis de cada espècie.  

A continuació, vaig investigar els efectes “feedback” que s’estableixen entre les plantes i 

els sòls on creixen. Els efectes “feedback” són els efectes que les plantes tenen sobre el seu 

propi creixement o el creixement de les espècies que ocuparan el seu lloc en futures 

generacions a través dels canvis que les mateixes plantes indueixen mentre hi creixen. 

Aquests canvis són tant a nivell de les comunitats microbianes del sòl com a nivell de 

disponibilitat de nutrients i poden ser causats per les plantes mentre viuen o per la seva 

fullaraca en finalitzar el seu cicle. Els efectes “feedback” determinats per la descomposició 

de la fullaraca es coneixen relativament poc comparat amb els efectes originats per les 

plantes durant el seu creixement. Per tant, en aquest experiment, vaig estudiar aquests 

efectes “feedback” en el context de les plantes que amplien el seu rang, ja que s’ha vist que 

en alguns casos poden estimular el creixement de les plantes exòtiques. Els resultats han 

indicat que tant les plantes natives com les plantes en expansió tenen efectes “feedback” 

neutrals. Això passa tant en sòls que han estat exposats a les plantes com en sòls que han 

rebut la seva fullaraca. No obstant això, dues de les quatre espècies en expansió 

analitzades presentaven un creixement superior que les natives en sòls que havien estat 

condicionats amb fullaraca i, per tant, tenien una disponibilitat més alta de nutrients. 

També vaig observar que la descomposició de la fullaraca de les plantes en expansió era 

superior a la descomposició de la fullaraca de plantes natives en dues dels quatre espècies 

analitzades. Per tant, certes espècies de plantes en expansió poden beneficiar-se d’una 

disponibilitat elevada de nutrients al sòl, que pot ésser a la vegada induïda per la 

descomposició de la seva pròpia fullaraca.  

Les conseqüències del canvi climàtic pels ecosistemes naturals son múltiples. L’expansió 

de la distribució de les plantes i el conseqüent canvi en la composició de les comunitats 
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vegetals n’és una. A la vegada però, aquesta interacciona amb altres conseqüències més 

directes del canvi climàtic com, per exemple, els episodis de sequera. Les plantes típiques 

de climes més secs tenen més facilitat de persistir durant episodis de sequera i, per tant, 

seria d’esperar que les funcions del sòl on creixen també es veurien menys afectades. Això 

és precisament el que vaig estudiar en l’últim estudi d’aquesta tesi. Per fer-ho, vaig establir 

un experiment amb comunitats vegetals formades per plantes que amplien el seu rang i 

plantes natives i vaig determinar diferents funcions del sòl (descomposició de la matèria 

orgànica, mineralització de carboni i activitat enzimàtica), la biomassa microbiana i 

l’abundància relativa de fongs saprofítics. Tots els paràmetres van ser mesurats al final 

d’un episodi de sequera, i al cap de 6 i 12 setmanes després de tornar a regar. La sequera 

va fer disminuir les funcions del sòl, sense importar el tipus de comunitat vegetal. Per altra 

banda, després de regar, la descomposició de matèria orgànica i l’abundància relativa de 

fongs saprofítics en el sòls que havien estat exposats a la sequera van incrementar per 

sobre del tractament control, però només en sòls de plantes natives. En el cas dels sòls de 

plantes que amplien el seu rang, les funcions es van recuperar lentament però en cap cas 

van ser estimulades per sobre del llindar del tractament control. Tot i que les funcions dels 

sòls que van patir sequera van ser recuperades al final de l’experiment, aquest resultats 

suggereixen que cal tenir en compte les interaccions dels diferents factors del canvi 

climàtic, sobretot a curt termini i en escenaris de canvi climàtic on els episodis de sequera 

poden ser més recurrents. 

La recerca d’aquesta tesi ha contribuït a entendre les interaccions planta-sòl en el context 

de les expansions de plantes, i a determinar el rol de l’origen geogràfic de les plantes en 

aquestes interaccions. He demostrat que les espècies de plantes en expansió que hem 

examinat no s’assemblen a les plantes exòtiques que són invasores, ja que la seva 

composició química, els seus efectes sobre les comunitats i funcions dels sòls no es 

diferencien dels de les plantes natives. Tanmateix, he mostrat que certes espècies de 

plantes en expansió, sense ser la tendència general, poden beneficiar-se d’una 

disponibilitat de nutrients al sòl elevada i poden tenir un efecte “feedback” positiu sobre 

el seu propi creixement a través de la descomposició de la seva fullaraca. Finalment, he 

demostrat que durant fenòmens meteorològics extrems com, per exemple episodis de 

sequera, les interaccions planta-sòl esdevenen més crucials per mantenir el funcionament 

dels ecosistemes. Per tal de continuar la investigació i resoldre les preguntes que queden 

pendents fruit dels resultats d’aquesta tesi, caldria portar a terme estudis de camp de més 

llarga durada, que incorporessin els efectes “feedback” causats per la descomposició del 
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material vegetal i que incloguessin les relacions competitives entre plantes natives i 

plantes en expansió. També seria important que els estudis que investiguen els efectes del 

canvi climàtic pel funcionament dels ecosistemes incloguessin en els seus dissenys 

experimentals els canvis en la composició de les comunitats vegetals que alhora són 

induïts pel mateix canvi climàtic. 
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Samenvatting 

De toename in de uitstoot van broeikasgassen zorgt dat de aarde gedurende de laatste 

eeuw is opgewarmd. Dit heeft grote gevolgen voor planten en dieren. Om te blijven 

bestaan, moeten ze zich aanpassen aan de nieuwe omstandigheden, of hun areaal kunnen 

uitbreiden naar gebieden met meer geschikte omstandigheden. Binnen Europa heeft dit 

tot gevolg dat planten uit Mediterrane gebieden hun areaal uitbreiden naar Centraal- en 

Noord-Europa. Tussen deze planten zitten mogelijk soorten die invasief kunnen worden 

in het nieuwe areaal. We weten echter nog zeer weinig over de ecologische gevolgen van 

de areaaluitbreiding van planten voor de door hen gekoloniseerde ecosystemen. 

Om het succes en de gevolgen van de vestiging van areaaluitbreidende planten te 

begrijpen, is het nodig om plant-bodem interacties nader te onderzoeken. In hun nieuwe 

leefgebied komen areaaluitbreiders in aanraking met andere bodemgemeenschappen dan 

in hun herkomstgebieden. Eerder onderzoek heeft aangetoond dat areaaluitbreiders in 

hun nieuwe leefgebied baat kunnen hebben bij het ontbreken van gespecialiseerde 

vijanden in de bodem. Naast het ontbreken van vijanden kunnen meer verschillen bestaan 

tussen het bodemleven in herkomstgebieden en de nieuwe leefgebieden. Zo kunnen 

areaaluitbreiders bijvoorbeeld in aanraking komen met nieuwe bodemorganismen die 

organisch materiaal afbreken. Er is echter weinig bekend over de gevolgen van interacties 

tussen areaaluitbreidende planten en organismen die organisch materiaal afbreken voor 

de vestiging in en het functioneren van de nieuwe leefgebieden.  

In mijn proefschrift bestudeer ik de interacties tussen areaaluitbreidende planten en 

bodemgemeenschappen. Ik richt me met name op indirecte interacties tussen levende 

planten en bodemorganismen, waarbij organische stoffen zoals strooisel (dood 

plantenmateriaal) of wortelexudaten worden afgebroken en omgezet tot voor de planten 

opneembare voedingsstoffen. Ik bestudeer ook de gevolgen van de afbraak van organische 

stoffen voor de kringloop van koolstof en voedingsstoffen in de bodem. Ik vergelijk plant-

bodeminteracties tussen inheemse and areaaluitbreidende planten om de functionele 

gevolgen van areaaluitbreiding voor het nieuwe leefgebied te begrijpen. Ik gebruik paren 

van fylogenetisch verwante plantensoorten om het effect van plantenherkomst te kunnen 

testen, terwijl ik corrigeer voor verschillen in andere planteneigenschappen. 

In het eerste deel van mijn proefschrift heb ik de concentratie van voedingsstoffen 

(koolstof, stikstof en fosfaat) in plantenweefsel en de beschikbaarheid van voedingsstoffen 

in de bodem bepaald voor inheemse en areaaluitbreidende plantensoorten. Ik heb 
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monsters verzameld van individuele planten in het veld in het nieuwe leefgebied (Noord-

Europa) en in het gebied waar de areaaluitbreiders inheems zijn (Zuid-Europa). Ik 

verwachtte dat, net als bij intercontintenale exoten, de nutrientenconcentraties hoger 

zouden zijn in plantenweefsel en bodems van areaaluitbreiders dan van inheemse planten. 

Ik vond echter dat de hoeveelheid voedingsstoffen in planten en bodem vooral 

verschilden tussen plantensoorten, maar niet per se gerelateerd waren aan de herkomst 

van de plantensoorten. Daarnaast verschilden de hoeveelheid voedingsstoffen in planten 

en de bodems tussen het noorden en zuiden van Europa, maar de richting en grootte van 

deze verschillen was afhankelijk van de plantensoort en de parameter die ik testte. Mijn 

conclusie is dat er geen algemene verschillen zijn in de concentratie van voedingsstoffen 

in plantenweefsel en bodem tussen inheemse en areaaluitbreidende plantensoorten. 

Patronen die eerder werden gevonden voor invasieve intercontintale exoten worden dus 

niet bevestigd voor areaaluitbreiders. 

Vervolgens heb ik in een kasexperiment onderzocht hoe plantenherkomst de 

samenstelling en het functioneren van bacteriële gemeenschappen in de wortelzone 

beïnvloedde. Ik verwachtte dat, net als in het geval van intercontinentale exoten, de 

samenstelling en het functioneren van microbiële gemeenschappen anders zou zijn in de 

wortelzone van areaaluitbreiders dan in de wortelzone van inheemse plantensoorten. Ik 

heb vier paren (elk bestaande uit een areaaluitbreider en een inheemse plantensoort van 

hetzelfde geslacht) onderzocht. Planten groeiden in een bodem met een gemeenschap die 

was verzameld in het veld onder een plant van dezelfde soort, of in een bodem waar 

andere plantensoorten voorkwamen en die dus volledig nieuw was voor de testplanten. 

Na één, twee en drie maanden heb ik bodemmonsters uit de wortelzone van de planten 

genomen en met 16S sequencing de samenstelling van de bacteriële gemeenschap bepaald. 

Daarnaast heb ik de activiteit van enzymen gemeten en de bodemrespiratie bepaald na 

het toedienen van diverse organische substraten. Het belangrijkste resultaat van dit 

experiment was dat areaaluitbreidende en inheemse plantensoorten, die in een volledige 

nieuwe bodem groeiden, de samenstelling en het functioneren van bodemgemeenschap 

op dezelde manier beïnvloedden. Dit experiment laat zien dat het belangrijk is om 

fylogenetisch gerelateerde soorten te gebruiken om effecten van plantenherkomst te 

kunnen scheiden van effecten van andere planteneigenschappen. 

Daarna heb ik bestudeerd hoe veranderingen in de bodem via levende planten, strooisel 

en hun combinatie terugkoppelen naar plantengroei en de afbraak van strooisel. Eerdere 

studies over plant-bodem terugekoppelingen richtten zich vooral op effecten via levende 



 

174 
 

planten, terwijl minder bekend is over terugkoppelingen die veroorzaakt worden door 

strooisel. Desalniettemin wordt verondersteld dat terugkoppelingen via strooiselafbraak 

de groei van exoten kunnen stimuleren. In dit experiment heb ik bodems geconditioneerd 

met levende planten, strooisel en de combinatie van beiden. Daarna heb ik bepaald hoe 

areaaluitbreiders en inheemse plantensoorten groeien in deze bodems, waarbij ik planten 

uit hetzelfde geslacht heb vergeleken. Ik verwachtte dat als gevolg van de aanwezigheid 

van gespecialiseerde vijanden de groei van inheemse plantensoorten meer geremd zou 

zijn in bodems die geconditioneerd waren door planten van hun eigen soort dan de groei 

van areaaluitbreiders. Ook verwachtte ik dat alle plantensoorten beter zouden groeien in 

bodems met strooisel van areaaluitbreiders dan met strooisel van inheemse soorten, 

omdat strooisel van areaaluitbreiders mogelijk een hogere concentratie aan 

voedingsstoffen bevat. Ik vond dat inheemse en areaaluitbreidende planten een neutrale 

plant-bodem terugkoppeling ontwikkelden, zowel via levende planten als via strooisel. 

Toch hadden twee van de vier areaaluitbreidende plantensoorten meer biomassa dan 

inheemse plantensoorten in bodems die waren geconditioneerd door strooisel. 

Bodemconditionering had geen effect op strooiselafbraak, maar strooisel van twee van de 

vier areaaluitbreiders werd sneller afgebroken dan van de inheemse plantensoorten. Mijn 

resultaten laten dus zien dat effecten van plant-bodemterugkoppelingen, zowel via 

levende planten als strooisel, gelimiteerd waren en vergelijkbaar waren voor 

areaaluitbreiders en nauw verwante inheemse plantensoorten. Echter, in het geval van 

Centaurea soorten produceerde de areaaluitbreider meer biomassa als er veel 

voedingsstoffen beschikbaar waren (incubatie met strooisel) en dat strooisel sneller afbrak 

dan in het geval van de inheemse plantensoort. Mijn conclusie is daarom dat in specifieke 

gevallen areaaluitbreiders kunnen profiteren van plant-bodem terugkoppelingen via 

strooisel. 

Er is een wisselwerking tussen effecten van areaaluitbreiding en directe effecten van 

klimaatverandering, zoals droogte, op het functioneren van de nieuwe leefgebieden. Ik 

onderzocht hoe areaaluitbreiders en bodemgemeenschappen uit het noorden en zuiden 

van Europa het functioneren van de bodem tijdens en na een periode van droogte 

beïnvloedden. Ik verwachtte dat plantengemeenschappen uit het zuiden beter waren 

aangepast aan droogte dan die uit het noorden en dus dat die bodems minder sterk 

zouden reagerem op droogte en sneller zouden herstellen, vooral in combinatie met 

bodemgemeenschappen uit het zuiden. In een mesocosmos experiment had ik 

plantengemeenschappen van inheemse en areaaluitbreidende soorten gecreëerd met en 
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zonder bodemgemeenschappen uit het zuidelijke areaal. Ik heb bodemfuncties 

(strooiselafbraak, koolstofmineralisatie en de activiteit van enzymen), microbiële 

biomassa en de relatieve abundantie van saprofytische schimmels gemeten direct na de 

droogte en na een periode van 6 en 12 weken herstel. Het effect van droogte was hetzelfde 

voor alle planten- en bodemgemeenschappen, echter, tijdens de herstelperiode was 

strooiselafbraak sneller en de relatieve abundantie van sapropfytische schimmels hoger in 

bodems van inheemse planten die vlak daarvóór waren blootgesteld aan droogte, dan in 

bodems die geen droogtebehandeling hadden gehad. In tegenstelling daarmee werden 

bodemfuncties niet gestimuleerd in bodems van areaaluitbreidende planten met een 

historie van droogte. De herkomst van de bodemgemeenschap had weinig effect op de 

gemeten bodemfuncties. Na 12 weken waren alle bodemfuncties hersteld voor alle 

bodems en plantengemeenschappen. Deze resultaten laten zien dat wisselwerkingen 

tussen droogte en areaaluitbreiding vooral optreden tijdens het vroege herstel na een 

extreem–weer gebeurtenis. 

Met dit onderzoek heb ik bijgedragen het begrijpen van plant-bodem interacties van 

areaaluitbreidende planten in hun nieuwe leefgebied. Ik heb laten zien dat de effecten van 

areaaluitbreidende soorten op de samenstelling en het functioneren van 

bodemgemeenschappen niet overeenkomen met effecten die we kennen voor 

intercontinentale invasieve plantensoorten. Uiteindelijk, als alle factoren gelijk worden 

gehouden, blijken areaaluitbreiders dezelfde effecten te hebben op de samenstelling en het 

functioneren van de bodemgemeenschap als inheemse plantensoorten uit hetzelfde 

geslacht. Desalniettemin, waren er specifieke gevallen waarin areaaluitbreiders meer 

profiteerden van hoge beschikbaarheid van voedingsstoffen en plant-

bodemterugkoppelingen via strooisel dan inheemse planten. Tot slot heb ik laten zien dat 

de grootste verschillen in plant-bodem interacties tussen areaaluitbreiders en inheemse 

planten mogelijk optreden tijdens het herstel na extreme weersomstandigheden, zoals na 

een droogteperiode. Om beter te begrijpen hoe areaaluitbreiders plant-bodem interacties 

beïnvloeden is het nodig dat veldstudies worden uitgevoerd waarin plant-bodem 

terugkoppelingen via strooisel worden onderzocht. Daarnaast is het nodig om 

experimenten te doen waarbij inheemse plantensoorten en areaaluitbreiders worden 

bestudeerd in competitie. Het is ook essentieel dat in vervolgstudies naar de effecten van 

klimaarveranderingen op het functioneren van ecosystemen rekening gehouden wordt 

met verschuivingen in de samenstellinging van de plantengemeenschappen door 

klimaatverandering. 
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