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Summary

Greenhouse gas (GHG) emissions from unsustainable land-use practices around the world

contribute significantly to anthropogenic climate change. Growing population pressure

and low efficiency of agricultural production systems in Sub-Saharan Africa (SSA) trigger

the expansion of agricultural land into natural ecosystems, which leads to deforestation

and land degradation, and causes GHG emissions. At the same time, prolonged droughts

and increasingly erratic weather patterns due to climate change jeopardise food security

in SSA countries such as Kenya.

The concept of ’Climate-Smart Agriculture’ (CSA) as a global development goal was

introduced to guide the transformation of agricultural systems towards sustainable food

production systems by integrating measures of climate change adaptation, mitigation and

food security. To achieve this goal in SSA, the largely smallholder-driven food production

has to be intensified on existing agricultural land. The sustainable intensification of

smallholder production systems is crucial to avoid compromising environmental goals

such as safeguarding the carbon (C) sink capacity of forest ecosystems.

Kenya’s agricultural sector is the largest contributor of the country’s total GHG emissions,

while 90 % of the agricultural emissions stem from livestock production alone. To curb the

increase of GHG emissions, Kenya as a member state of the UN Framework Convention on

Climate Change (UNFCCC) has been developing national and sectoral policies that aim to

mitigate GHG emissions from agriculture, while increasing agricultural productivity. As

part of its ambitious economic development plan, Kenya seeks to boost its dairy sector

in order to meet the increasing demand for milk, which results from the fast growing

population.

Prior to the implementation of interventions that aim to realise CSA policy objectives,

candidate interventions (e.g. climate-smart livestock feeds) have to be evaluated, priori-

tised and targeted. Decisions must be made by policy makers and planning institutions

about the specific practices that are targeted at certain locations. To do so, quantitative

information is required that shows whether the interventions at hand can realise ’win-win’

potentials for smallholder farmers and climate change mitigation. However, the necessary

approaches to obtain this information are often missing. The objectives of this PhD thesis

are i) to improve the support of decision-making processes that aim to prioritise and target
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CSA practices robustly at national scale and ii) to elucidate the potential of intensified

smallholder dairy production in Kenya to increase milk yields and to reduce direct and

indirect GHG emissions effectively through feed improvements.

Chapter 2 - CSA-targeting and decision-making : ”targetCSA”, a spatially-explicit frame-

work to target CSA practices was developed and applied in Kenya. The framework

strengthens evidence-based decision-making by integrating i) knowledge and opinions

on the prioritisation of CSA practices obtained from cross-sectoral stakeholders and ii)

spatially-explicit data on climate change vulnerability and CSA suitability. Vulnera-

bility and suitability indices were calculated and weighed by the various preferences of

involved stakeholder groups. A multi-criteria optimisation model was used to find con-

sensual preferences, which were then mapped to explore the potential effects of vari-

ous decision-making outcomes based on group-specific preferences and the approached

consensus among stakeholder groups. The integration of quantitative information and

stakeholder views to explore and find consensus solutions enables more informed and

transparent decisions on targeting CSA interventions.

Chapter 3 - Dairy feed improvements and land availability : The improvement of dairy

cattle feeds can lead to synergies between increased farm production and climate change

mitigation. However, land-use change (LUC) resulting from the cultivation of improved

feeds and the shortage of arable land required to grow the additional feed alternatives

can result in GHG emissions that outbalance mitigation or render the implementation

of certain feed alternatives unfeasible. By applying a spatially-explicit livestock model,

’win-win’ potentials to increase milk yields and to mitigate agricultural GHG emissions,

including emissions from LUC, for the entire dairy production region in Kenya were

assessed. Moreover, potential productivity gains and GHG emission reduction potentials

were linked to related quantitative targets at national scale. The results indicate that

Kenya’s dairy sector can reduce GHG emission intensities by up to 31 % through feed

improvements that increase the forage quality through Napier grass and increase the

supplementation of dairy concentrate. In addition, these feed improvements are promising

options to meet Kenya’s national climate change mitigation target, while the milk yield

target could be achieved partially by up to 41 %. In contrast, LUC emissions from feed

conservation based on maize increase the risk to compromise Kenya’s mitigation target

at national level. The shortage of land that would be required to cultivate additional

fodder maize renders the implementation of related feed improvement options largely

unfeasible.

Chapter 4 - Sustainable intensification and forest disturbance: Negative spillover effects

such as C leakage may result from fragmented mitigation approaches that fail to link agri-

cultural and forest land uses. Assessing the impact of agricultural production beyond farm

boundaries is therefore crucial to target CSA practices that result in effective mitigation

outcomes. The effects of farm practices and characteristics such as cattle management
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and fuelwood consumption on forest disturbance were quantified based on empirical farm

data and a forest change detection algorithm using Landsat time-series data. The results

show that the intensification of smallholder dairy farming in Kenya can alleviate the pres-

sure on local forests. Improved dairy cattle and feeds, and more trees on farms located

closely to forests lower the need to use these forests for cattle grazing and as source for

fuelwood, reducing the risk of forest disturbance.

Chapter 5 – Mitigating emissions from agriculture and forests : The combined agricultural

and forest mitigation potentials of on-farm CSA practices such as the improvement of dairy

feeds, including closing the yield gaps of fodder maize was quantified for the entire dairy

production region in Kenya. Forest C loss due to dairy cattle was quantified by using

remote-sensing time-series data on aboveground C change. The results indicate that GHG

emission intensities on agricultural land can be reduced by up to 20 % through closing

the maize yield gap. The effect of reduced GHG emissions from avoided LUC was up to

five times higher than the increase of GHG emissions from fertiliser application required

to close the yield gap. The lowered demand for arable land to cultivate alternative dairy

feeds close to forests could reduce forest C loss due to avoided grazing of dairy cattle inside

forests by up to 94 %. However, improved forage quality through Napier grass and the

increased supplementation of dairy concentrates showed i) the highest potential to reduce

emission intensity (29 %), ii) the lowest demand for arable land and iii) the highest

reduction of forest C loss (270 %). These feed improvements could reduce combined total

GHG emissions by 2.5 % and, therefore, lead to a net mitigation of direct and indirect

GHG emissions from dairy production. Dairy feed improvements may turn mountain

forests in Kenya into C sinks.

Overall, the results of this PhD thesis show that context-specific and detailed ex-ante

impact assessments are essential to inform integrated CSA policies that target effective

climate change mitigation across land use sectors and agricultural development. This

thesis provides novel approaches and information that contribute to the evidence-based

prioritisation and targeting of CSA interventions. These approaches allowed to study

interactions between the agricultural and forestry sectors based on empirical data and

enabled to identify and quantify synergies and trade-offs that were not known before.





Zusammenfassung

Treibhausgasemissionen (THG) aus nicht nachhaltigen Landnutzungspraktiken tragen

weltweit erheblich zum anthropogenen Klimawandel bei. Wachsender Bevölkerungs-

druck und geringe Effizienz landwirtschaftlicher Produktionssysteme in Subsahara-

Afrika (SSA) bewirken die Ausdehnung landwirtschaftlicher Flächen hinein in natürliche

Ökosysteme. Derartige Expansionsprozesse führen zu Entwaldung und Landdegrada-

tion und verursachen THG-Emissionen. Gleichzeitig gefährden die aufgrund des Kli-

mawandels zunehmenden Dürreperioden und unberechenbarer werdende Wetterlagen die

Ernährungssicherheit in SSA-Ländern wie Kenia.

Das Konzept der
”
Climate-Smart Agriculture” (CSA, klima-intelligente Landwirtschaft)

wurde als globales Entwicklungsziel eingeführt, um die Transformation land-

wirtschaftlicher Produktionssysteme hin zu einer nachhaltigen Nahrungsmittelproduk-

tion durch die Integration von Maßnahmen zur Anpassung an den Klimawandel, zur

Eindämmung des Klimawandels und zur Ernährungssicherheit zu steuern. Um diese Ziele

in SSA zu erreichen, muss die weitgehend kleinbäuerliche Nahrungsmittelproduktion auf

bereits bestehenden landwirtschaftlichen Flächen intensiviert werden. Die nachhaltige

Intensivierung von kleinbäuerlichen Produktionssystemen ist von entscheidender Bedeu-

tung, um Umweltziele wie die Sicherung der Kohlenstoff-Senkenfunktion von Waldökosys-

temen nicht zu gefährden.

Kenias Landwirtschaftssektor hat den größten Anteil an den THG-Emissionen des Landes.

Allein 90 % der landwirtschaftlichen Emissionen stammen aus der Tierproduktion. Um

den Anstieg der Treibhausgasemissionen einzudämmen, hat Kenia als Mitgliedsstaat der

UN-Klimarahmenkonvention (UNFCCC) nationale und sektorale Strategien und Richtlin-

ien entwickelt, die darauf abzielen, die THG-Emissionen aus der Landwirtschaft zu ver-

ringern und gleichzeitig die landwirtschaftliche Produktivität zu steigern. Im Rahmen des

ambitionierten Plans zur ökonomischen Entwicklung des Landes will Kenia den Aufbau

seines Milchsektors fördern, um der steigenden Nachfrage nach Milch, die sich aus der

rasant wachsenden Bevölkerung ergibt, gerecht zu werden.

Vor der Implementierung von Interventionen, die darauf abzielen, die gesteckten CSA-

Ziele zu erreichen, müssen potenzielle Optionen wie z. B. klimafreundliche Tierfuttermit-

tel evaluiert, priorisiert und deren Umsetzung gezielt geplant werden. Politische Entschei-
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dungsträger und Planungsinstitutionen müssen Entscheidungen über den Einsatz bes-

timmter CSA-Praktiken und deren Auswirkungen an den Orten ihrer Umsetzung treffen.

Dazu sind quantitative Informationen erforderlich, die zeigen, ob die zur Verfügung stehen-

den Interventionen
”
win-win”-Potenziale für Kleinbauern und den Klimaschutz realisieren

können. Die notwendigen Ansätze, um diese Informationen zu erhalten, fehlen jedoch oft.

Die Ziele dieser Dissertation sind i) die Verbesserung der Unterstützung von Entschei-

dungsfindungsprozessen, die darauf abzielen, CSA-Praktiken auf nationaler Ebene zu pri-

orisieren sowie deren Umsetzung zu planen, und ii) das Potenzial einer nachhaltig in-

tensivierten, kleinbäuerlichen Milchproduktion in Kenia aufzuzeigen, die Milchleistung zu

steigern sowie direkte und indirekte THG-Emissionen durch Futterverbesserungen effektiv

zu reduzieren.

Kapitel 2 - CSA-Priorisierung und Entscheidungsfindung :
”
targetCSA”, ein räumlich-

explizites Konzept zur multi-kriteriellen Unterstützung von Entscheidungsprozessen für

die Planung von CSA-Praktiken wurde entwickelt und in Kenia angewendet. Das Konzept

stärkt evidenzbasierte Entscheidungsfindung durch die Integration von i) Wissen und

Präferenzen der einbezogenen, sektorübergreifenden Interessengruppen im Hinblick auf

die Priorisierung von CSA-Praktiken und ii) durch die Einbindung räumlich-expliziter

Daten zur Anfälligkeit für den Klimawandel und der CSA-Eignung. Anfälligkeits- und

Eignungsindizes wurden mit Hilfe der verschiedenen Präferenzen der involvierten Inter-

essengruppen berechnet und gewichtet. Ein multi-kriterielles Optimierungsmodell wurde

verwendet, um konsensuale Präferenzen zu finden, die dann kartiert wurden, um die

möglichen Auswirkungen verschiedener Entscheidungsergebnisse auf der Grundlage von

gruppenspezifischen Präferenzen und dem angenährten Konsens zwischen Interessengrup-

pen zu untersuchen. Die Integration von sowohl quantitativen Informationen als auch

qualitativer Informationen bezüglich der Ansichten von Interessengruppen, unterstützt

die Suche nach Konsenslösungen und ermöglicht informierte und transparentere Entschei-

dungen im Hinblick auf die Planung von CSA-Interventionen.

Kapitel 3 – Verbessertes Futter für Milchvieh und Flächenverfügbarkeit : Die Verbesserung

von Milchviehfutter kann zu Synergien zwischen der Steigerung landwirtschaftlicher Pro-

duktion und der Reduktion von Treibhausgasemissionen führen. Landnutzungsänderun-

gen, die sich aus dem Anbau verbesserter Futtermittel ergeben, und der Mangel an Ack-

erland, das für den Anbau der zusätzlichen Futteralternativen erforderlich ist, können

jedoch Treibhausgasemissionen zur Folge haben, die letztlich zu einer Nettoerhöhung der

Treibhausgasemissionen führen oder die Potentiale zur Umsetzung bestimmter Futter-

alternativen gravierend einschränken. Durch die Anwendung eines räumlich-expliziten

Simulationsmodells wurden
”
win-win”-Potenziale zur Steigerung der Milchleistung und

zur Minderung der landwirtschaftlichen THG-Emissionen, einschließlich der Emissionen

von Landnutzungsänderungen, für die gesamte Milchproduktionsregion in Kenia berech-

net. Darüber hinaus wurden potenzielle Produktivitätszuwächse und Minderungen der

Treibhausgasemissionen mit entsprechenden quantitativen Zielen auf nationaler Ebene
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verknüpft. Die Ergebnisse zeigen, dass Kenias Milchsektor die Intensität der Treibhaus-

gasemissionen um bis zu 31 % reduzieren kann, indem die Futterqualität durch Napier-

gras erhöht und das Viehfutter mit Konzentraten ergänzt wird. Darüber hinaus sind

diese Futterverbesserungen vielversprechende Optionen die dazu beitragen können, Ke-

nias nationales Klimaschutzziel zu erreichen, während das Milchertragsziel um bis zu

41 % erreicht werden kann. Im Gegensatz dazu erhöhen Emissionen als Folge von

Landnutzungsänderungen, die nötig wären um den zusätzlichen Mais zur Futterkon-

servierung anzubauen das Risiko, Kenias Klimaziel auf nationaler Ebene zu gefährden.

Der Mangel landwirtschaftlicher Flächen, die für den Anbau von zusätzlichem Futter-

mais benötigt würden, reduziert ferner die Machbarkeit der Umsetzung entsprechender

Futterverbesserungsoptionen drastisch.

Kapitel 4 - Nachhaltige Intensivierung und Degradation von Wäldern: Negative Übertra-

gungseffekte wie die bloße geografische Verdrängung, anstatt der effektiven Minderung,

von THG-Emissionen können durch fragmentierte Maßnahmen politischer Steuerung

entstehen, die die Verknüpfungen zwischen der Nutzung von Landwirtschafts- und

Waldflächen nicht berücksichtigen. Die Analyse der Auswirkungen landwirtschaftlicher

Produktion über die Grenzen kleinbäuerlicher Höfe hinaus ist daher von entscheiden-

der Bedeutung für die Planung und Umsetzung von CSA-Praktiken, die zu wirksamen

THG-Reduktionseffekten führen sollen. Die Auswirkungen der landwirtschaftlichen Prak-

tiken und Charakteristiken im Hinblick auf Viehwirtschaft und Brennholznutzung auf

die Degradation von Wäldern wurden auf der Grundlage von empirischen Befragungen

und eines Algorithmus zur Erkennung von Waldveränderungen unter Verwendung von

Landsat-Zeitreihendaten quantifiziert. Die Ergebnisse zeigen, dass die Intensivierung der

kleinbäuerlichen Milchviehhaltung in Kenia den Druck auf die örtlichen Wälder verringern

kann. Produktivere Milchkühe und verbessertes Futtermittel sowie mehr Bäume auf Höfen

in der Nähe von Wäldern verringern die Notwendigkeit, diese Wälder als Weidegrund und

als Brennholzquelle zu nutzen, wodurch das Risiko von Waldschäden verringert wird.

Kapitel 5 - Minderung von Emissionen aus Landwirtschaft und Wäldern: Die kom-

binierten Potenziale von CSA-Praktiken, wie der Verbesserung von Milchviehfutter, ein-

schließlich der Erhöhung von Futtermaiserträgen, THG-Emissionen aus Landwirtschaft

und Wäldern zu reduzieren wurden für die gesamte Milchproduktionsregion in Kenia

quantifiziert. Der Verlust von Kohlenstoff aus Wäldern durch Beweidung von Milchvieh

wurde mit Hilfe von Zeitreihendaten über die von Satelliten beobachtete Veränderung

oberirdischer Biomasse in Wäldern ermittelt. Die Ergebnisse zeigen auf, dass die In-

tensität von THG-Emissionen auf landwirtschaftlichen Flächen durch Schließung der Er-

tragslücken für Mais um bis zu 20 % reduziert werden kann. Der Effekt reduzierter

THG-Emissionen durch vermiedene Landnutzungsänderungen ist bis zu fünf Mal höher

als der Anstieg von THG-Emissionen durch den erhöhten Eintrag von Düngemitteln,

der erforderlich wäre um die Ertragslücken zu schließen. Der dadurch sinkende Bedarf

an Ackerland für den Anbau von alternativen Milchviehfutter auf landwirtschaftlichen
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Flächen in der Nähe von Wäldern könnte den Verlust von Kohlenstoff aus Wäldern um

bis zu 94 % reduzieren, da die Notwendigkeit Wälder als Weidegrund zu nutzen verringert

wird. Eine verbesserte Futterqualität durch Napiergras und die Ergänzung des Futters

mit Konzentraten zeigten jedoch i) das höchste Potenzial zur Verringerung der Emis-

sionsintensität (29 %), ii) den niedrigsten Bedarf an Ackerland und iii) damit die größte

Verringerung des Kohlenstoffverlusts aus Wäldern (270 %). Verbessertes Milchviehfutter

basierend auf den letztgenannten Optionen könnte die Gesamtemissionen von Treibhaus-

gasen um 2,5 % verringern und somit zu einer Nettoverminderung direkter und indirekter

THG-Emissionen aus der Milchproduktion führen. Klima-intelligente Milchviehhaltung

kann somit die kenianischen Bergwälder in Kohlenstoffsenken verwandeln.

Insgesamt zeigen die Ergebnisse dieser Dissertation, dass kontextspezifische und detail-

lierte ex-ante Folgeabschätzungen wesentlich sind, um integrierte CSA-Maßnahmen zu

planen, die auf eine wirksame Reduktion von THG-Emissionen aus Landnutzungssek-

toren und der landwirtschaftlichen Entwicklung abzielen. Diese Arbeit liefert neue

Ansätze und Informationen, die zur evidenzbasierten Priorisierung und Planung von

CSA-Interventionen beitragen. Diese Ansätze erlaubten es, Interaktionen zwischen Land-

wirtschaft und Wäldern basierend auf empirischen Daten zu untersuchen und Syn-

ergien sowie Zielkonflikte, die bisher nicht bekannt waren, zu identifizieren und zu quan-

tifizieren.
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Chapter 1

Introduction



2 Introduction

1.1 Background

Negative impacts of climate change on food production are observed already and will

become more evident in the near future, especially in regions that are vulnerable to cli-

mate shocks such as droughts and floods (Niles & Salerno, 2018). In the tropics, these

extreme weather events are shown to detrimentally affect crop yields and to increase live-

stock mortality and are expected to cause large-scale failures of food production systems,

including rapid increases of food prices with more frequent and widespread occurrences

(IPCC, 2014). Consequently, climate change affects food security, which is defined as the

sufficient access to healthy and nutritious food supplied through domestic production or

imports (Wheeler & von Braun, 2013). One of the most food insecure continents is Africa,

where currently about 1.3 billion people live. Africa’s population is projected to increase

up to 2.5 billion by 2050 (UN, 2017b). The fast growing population will further rise the

continent’s demand for food, which is produced predominantly by smallholder farmers

(van Ittersum et al., 2016).

The global sustainable development is targeted by the United Nations (UN). With ’Sus-

tainable Development Goal 2’ (SDG 2), the UN seeks to ”end hunger, achieve food security

and improved nutrition, and promote sustainable agriculture” (UN, 2017a, p. 4). Par-

ticularly in Sub-Saharan Africa (SSA), where about 30 % of the undernourished people

worldwide live (FAO et al., 2017), research and development efforts must be strengthened

to achieve this goal. Many SSA countries are lacking food self-sufficiency, which is de-

fined as the ratio between domestic food production and consumption (van Ittersum et al.,

2016). The shortage of food produced domestically makes these countries dependent on

food imports and renders them highly vulnerable to climate change, particularly given the

expected, drastic population increases. Growing population pressure and low efficiency of

agricultural production systems in SSA trigger the conversion of natural ecosystems into

agricultural land, which leads to deforestation and land degradation, and causes green-

house gas (GHG) emissions (Fisher, 2010; Hosonuma et al., 2012), thus, contributing to

further climate change.

In Kenya, East Africa, the expansion of mostly smallholder-driven agriculture has dwin-

dled the original extent of Afromontane forests to fragmented patches of isolated moun-

tain forests that suffer from anthropogenic disturbance due to high intensity of forest use

(Government of Kenya, 2009b; Kinyanjui, 2011). These remaining forest systems, called

’water towers’, however, offer valuable ecosystem services such as the supply of water, the

sequestration of carbon (C), and erosion control (Jacobs et al., 2017). The forest cover in

Kenya amounts to about 7 %, while land allocated to largely rain-fed agriculture accounts

for about 49 % of the country’s land surface (Government of Kenya, 2015b). Nutrient-

depleted agricultural soils, stagnating and even declining crop yields, scarcity of arable

land and decreasing farm sizes represent significant constraints of the Kenyan food pro-
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duction systems that have to feed a growing population (Tittonell et al., 2009; Vanlauwe

et al., 2014; Zhou et al., 2014; van Ittersum et al., 2016). At the same time, Kenya faces

increasingly prolonged drought spells and a higher frequency of erratic weather patterns,

which have led to crop harvest failures and livestock loss (Molua et al., 2010; Gachathi &

Eriksen, 2011).

Kenya has recently committed to the UN Framework Convention on Climate Change

(UNFCCC) to combat climate change (Government of Kenya, 2015a). All member states

of the framework agreed to limit the impact of climate change by halting the ongoing

global temperature rise by the end of this century, known as the ’2 degrees Celsius target

of the Paris agreement’ (UN, 2015). To curb the global temperature increase below

two degrees Celsius above pre-industrial levels, Kenya as a UNFCCC member state must

contribute by developing and putting in place policies and planning schemes that mitigate

GHG emissions throughout economic sectors.

1.2 Agricultural and forestry land use sectors: the

livestock focus

GHG emissions from ’Agriculture, Forestry and Other Land Uses’ (AFOLU) account

globally for roughly 24 % (10 – 12 Gt CO2eq yr-1) of the total anthropogenic GHG

emissions (IPCC, 2014). GHG emissions from agriculture, including related land use

changes (LUC) and forestry have with 5.0 – 5.8 Gt CO2eq yr-1 and 4.3 – 5.5 Gt CO2eq

yr-1 respectively the largest shares of GHG emissions from the AFOLU sector (IPCC,

2014). GHG emissions from global livestock production represent the dominant part

of agricultural emissions. Livestock emissions are responsible for about 10 – 14.5 % of

all human-induced GHG emissions (Westhoek et al., 2011; Gerber et al., 2013). Large

ruminants such as cattle used in the beef and milk production sectors contribute 66 % to

the total livestock emissions (Gerber et al., 2013). Beef is responsible for 2.9 Gt CO2eq

yr-1 while the production of milk from cattle emits 1.4 Gt CO2eq yr-1. Disaggregating

livestock-related emissions into sources shows that methane (CH4) emissions from enteric

fermentation and nitrous oxide (N2O), carbon dioxide (CO2), and CH4 emissions from

feed production and processing account for about 39 % and 45 % respectively, which

are by far the largest proportions of the total livestock emissions (Gerber et al., 2013).

The intensity of emissions, i.e. the rate of emission per unit output (e.g. kg milk or

protein produced), varies across regions. The highest emission intensity of milk production

is shown for SSA where on average 9.0 kg CO2eq kg fat and protein corrected milk

(FPCM)-1 are emitted, compared to less than 1.7 kg CO2eq kg FPCM-1 from intensified

production systems in North America and Europe (Gerber et al., 2013). Such a high

emission intensity indicates in general low efficiencies of dairy production in SSA, which
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is largely smallholder-driven.

Kenya’s agricultural sector is with 30 Mt CO2eq yr-1 the largest contributor of the coun-

try’s total GHG emissions, while 90 % of the agricultural emissions stem from livestock

production alone (Government of Kenya, 2015b). At the same time, agricultural pro-

duction in Kenya is of paramount economic importance. The entire sector contributes

directly and indirectly about 51 % of the country’s gross domestic product (GDP) and

assures the livelihood of 80 % of the rural population (Government of Kenya, 2010). Live-

stock production contributes 12 % to the GDP in Kenya. Dairy production accounts for

about 4 % of the GDP and represents the largest agricultural sub-sector (Government of

Kenya, 2010). Milk is predominantly produced (roughly 70 - 80 %) by about two million

smallholder farmers, which represent 35 % of the rural population in Kenya (Udo et al.,

2016; Government of Kenya, 2017b). Nevertheless, low feed quality and the fluctuating

availability of cattle feeds, increasing herd sizes, and overgrazed and degraded pastures

are determinants for the relatively low productivity of smallholder dairy farms and the

high environmental burden of dairy production in Kenya (Bosire et al., 2016).

The global loss of forests contributes about 6 – 17 % of the total anthropogenic GHG

emissions (Baccini et al., 2012). Roughly 80 % of the deforestation worldwide is caused

by agricultural expansion. Smallholder agriculture is with about 40 % the predominant

reason for the loss of forests in SSA (Hosonuma et al., 2012). Forests are vital ecosystems,

which offer a wide array of goods and services that people depend on (Foley et al., 2005).

The unsustainable use of forests, however, leads to forest disturbance, which causes GHG

emissions through the net removal of biomass or the suppression of vegetation regrowth.

Timber harvest, fuelwood extraction and livestock grazing are named as common drivers

of forest disturbance in SSA. In SSA countries that passed the peak of deforestation,

such as Kenya, fuelwood extraction (58 %), timber harvest (33 %) and livestock grazing

inside forests (8 %) represent the most important drivers of forest disturbance (Hosonuma

et al., 2012). The role of fuelwood extraction was assessed by several studies for SSA

in general and for Kenya in particular (e.g. Bailis et al., 2015; Pearson et al., 2017).

However, estimates of the extent and impact of the presence of domestic livestock in

forests are missing yet. Remote-sensing data such as satellite imagery over longer time

periods, obtained from the Landsat archive offer promising opportunities to study the

effects of livestock management on forests. This knowledge is important to improve the

understanding of the interactions between agricultural production and the state of forests.

Moreover, the knowledge is needed to quantify the agricultural GHG emissions that result

directly from farm operations and occur indirectly beyond the farm gates.
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1.3 Climate-Smart Agriculture

Feeding a growing population sufficiently while reducing the environmental footprint of

food production requires the transformation of current agriculture towards sustainable

food production systems. The umbrella concept of ’Climate-Smart Agriculture’ (CSA)

was brought forward to guide this transformation (FAO, 2013). CSA integrates the three

pillars of food security, climate change adaptation and mitigation to ensure the availability

of healthy food world-wide, produced from agricultural systems that are well adapted and

resilient to the various effects of climate change while releasing the lowest levels of GHG

emissions or even removing them, if possible (Lipper et al., 2014). To achieve this goal,

especially in regions that are characterised by smallholder farming systems such as SSA,

the efficiency of food production on existing agricultural land has to be increased. Higher

yields per unit land must be attained through sustainable intensification (Smith et al.,

2013). Closing the yield gap, i.e. the difference between the actual yield and the yield

that can be potentially achieved for a certain crop or livestock product at a given location

is shown to contribute to the intensification of smallholder farming without compromising

environmental goals (Foley et al., 2011; Mueller et al., 2012). Yield gaps are estimated to

be high across SSA, e.g. about 58 % for maize (Hillocks, 2014). There is great potential to

increase actual yields in SSA, for instance, though improved resource management such as

the appropriate use of organic and synthetic fertilisers for crops and through improvements

in the quality of livestock feeds to increase milk yields from dairy production (Lukuyu

et al., 2012; van Ittersum et al., 2016).

The climate-smartness of agricultural production has to be studied beyond the level of

single farms to assess whether interventions are likely to be effective in achieving CSA

objectives. Farms as units of agricultural production are embedded in landscapes, which

consist of different land use types such as cropland, pastures and natural ecosystems (e.g.

forests) that interact with each other (Scherr et al., 2012). The way how farms are man-

aged has implications for other parts of the landscape. Thus, the landscape level offers a

suitable scale at which the effects of CSA practices on different parts of the landscape can

be studied. Landscape approaches enable inter and transdisciplinary assessments that

integrate several land use sectors and stakeholders to explore the potential impact of tar-

geted CSA practices on the landscape, including synergies and trade-offs between CSA

objectives and constraints that limit the feasibility of their implementation (Reed et al.,

2016). Hence, direct and indirect emissions can be analysed to assess whether intensifi-

cation is sustainable throughout the broader landscape. Focusing on synergies between

CSA objectives such as the increase of agricultural productivity and the reduction of

GHG emissions is important (i) to increase the likelihood that farmers adopt targeted

CSA practices and (ii) to concentrate the financial investment on promising interven-

tions that realise ’win-win’ potentials for farmers and climate change mitigation (FAO,

2013).
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1.4 Research gaps

Following from the commitments to the UNFCCC, countries in SSA have to build ca-

pacity to achieve their national targets to reduce the impact of agricultural production

on the climate system. Kenya targets to curb the increase of its total GHG emissions

by 30 % during the period of 2010 – 2030, as defined in the country’s ’Nationally Deter-

mined Contribution’ (NDC) (Government of Kenya, 2015a). Frameworks and approaches

are required urgently, which aid the data-driven and evidence-based integration of climate

change mitigation into policy instruments that promote the sustainable development of

the agricultural sector and aim to ensure food security. Kenya has developed a national

CSA strategy to guide and foster the implementation of measures that increase agri-

cultural productivity sustainably, improve resilience of food production and minimise its

GHG emissions by 2026 (Government of Kenya, 2017a). The strategy includes (i) the mit-

igation of GHG emissions from livestock production through improved feeds and manure

management, (ii) the reduction of emissions from deforestation and forest disturbance,

and (iii) the development of ’Measurement, Reporting and Verification Systems’ (MRVs)

to improve the reporting of mitigation actions (Government of Kenya, 2017a). Further-

more, policies that facilitate the development of Kenya’s dairy sector are put in place such

as the national dairy master plan, which targets the sustainable increase of productivity

in the sector by 2030 to meet higher demands for dairy products due to the growing

population (Government of Kenya, 2010). Kenya’s dairy ’Nationally Appropriate Mitiga-

tion Action’ (NAMA) seeks to develop a low-emission and climate resilient dairy sector

by focusing on synergies between the mitigation of GHG emissions, the increase of milk

yields and farmers’ incomes (Government of Kenya, 2017b).

Prior to the implementation of interventions that aim to realise CSA-related policy ob-

jectives, candidate sets of CSA practices have to be evaluated, prioritised and targeted.

Decisions must be made by policy makers and planning institutions about the specific

practices that are targeted at certain locations. These decisions should be based on evi-

dence and require, therefore, information that shows the urgency to intervene in specific

areas due to their high vulnerability to climate change and the suitability of candidate

practices at hand (Notenbaert et al., 2017). However, integrated frameworks that are

able to couple spatially-explicit information on climate change vulnerability and CSA

suitability with the heterogeneous stakeholder knowledge and opinions to support the

decision-making on targeting CSA are missing.

Spatially-explicit information that indicates the ’win-win’ potentials to increase the pro-

ductivity of livestock production and to mitigate GHG emissions of specific CSA options

such as feed improvements is missing. The knowledge on ex-ante impacts of candidate

interventions is crucial to target CSA effectively. The scarcity of arable land in agricul-

tural landscapes with high population density, such as in Central and Western Kenya
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(Vanlauwe et al., 2014), is often neglected in CSA assessments. In order to assess the

feasibility of implementing candidate practices and to avoid negative spillovers such as C

leakage, it is important to include information about constraints such as the availability

of arable land into landscape-level approaches that are used to analyse livestock feed im-

provements. The leakage of C results from the unintended displacement of GHG emissions

that may occur outside the geographical scope of mitigation interventions (Minang & van

Noordwijk, 2013). Approaches that are being developed and applied in this context have

to integrate various data on livestock production such as feed intake, feed quality, yields of

included feed types, and cattle breeds as well as emission-related parameters such as emis-

sion factors. Livestock and spatial modelling techniques need to be coupled to estimate

baseline and scenario-related livestock productivity, GHG emission levels, and to upscale

this information based on agro-ecological information and production systems.

The intensification of smallholder farming is shown to increase productivity, e.g. milk

yields, while mitigating GHG emissions on farms by reducing emission intensities (Camp-

bell et al., 2014; Descheemaeker et al., 2016). Knowledge on the quantitative effects of

smallholder intensification on local forests is, however, missing. Answering questions such

as to what extent can GHG emissions from forests be avoided due to sustainable intensi-

fication of livestock production is crucial to inform CSA policies about the effectiveness

of candidate interventions across land use sectors prior to their implementation. In ad-

dition, this information is required to evaluate targeted CSA practices regarding their

achievement of sectoral and national mitigation targets. Kenya does not have a spe-

cific legal framework of ’Reducing Emissions from Deforestation and Forest Degradation’

(REDD+) yet. Quantitative information on the potential reduction of GHG emissions

from forests due to the improved management on farms could contribute, therefore, to

the design of policy instruments that integrate CSA and REDD+.

1.5 Research objectives

The main objectives of this thesis are i) to improve the support of decision-making pro-

cesses that aim to prioritise and target CSA practices robustly at national scale and ii)

to elucidate the potential of intensified smallholder dairy production in Kenya to increase

milk yields and to reduce direct and indirect GHG emissions effectively through feed im-

provements. Based on these objectives, four research questions (RQ) are addressed:

A. How can ’multi-criteria decision-making’ support national climate change adapta-

tion and mitigation planning to target CSA practices?

B. Which climate change mitigation options in the Kenyan dairy sector contribute to

climate mitigation and food production targets defined at national level?

C. How does the intensification of smallholder dairy farming affect forest disturbance?
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D. What is the potential of livestock intensification options to reduce GHG emissions

from agriculture and forests?

1.6 Thesis outline

This thesis is structured into four chapters that address the RQs outlined in Section 1.5

(Figure 1.1) and finishes with a concluding synthesis chapter.

Figure 1.1: Overview of chapters that address the four research questions outlined in Section

1.5

Chapter 2 presents the decision-support framework ”targetCSA”, which was developed

to aid the targeting of CSA practices (RQ A). The framework uses spatially-explicit

data on climate change vulnerability and CSA suitability and integrates related stake-

holder knowledge and opinions. An optimisation technique is applied to find the most

consensual stakeholder preferences regarding the prioritisation of CSA practices. Stake-

holder preferences, vulnerability and CSA suitability are coupled to derive an index of

CSA potential, which is mapped to explore consensus-driven CSA targeting scenarios

and the potential effects of differences in stakeholder opinions. The applicability of the

framework is demonstrated in Kenya.

Chapter 3 assesses dairy feed improvements regarding their synergistic potentials to

increase milk yields and to mitigate agricultural GHG emissions for the entire dairy pro-

duction region in Kenya, including emissions from LUC (RQ B). Livestock and spatial
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modelling techniques are used to estimate and upscale productivity and GHG emissions.

The demand for land and the availability of potentially arable land are analysed to evalu-

ate the feasibility to implement the feed improvement scenarios. In addition, the scenarios

are linked to national mitigation and productivity targets to assess to what extent these

targets can be achieved.

Chapter 4 quantitatively relates farm indicators and farm types to forest disturbance

across an agriculture-forest landscape located in the Kenyan highlands to analyse the

effects of the intensification of smallholder farms on forest disturbance (RQ C). Farm

information is obtained from empirical ground data. Forest disturbance data is derived

by applying a novel forest change detection algorithm based on time-series data from

satellite imagery.

Chapter 5 capitalises on the approaches and findings from Chapters 3 and 4 to assess

the potential of dairy feed improvements to reduce direct and indirect GHG emissions

from the agricultural land and from forests by avoiding the forest C loss that results

from the presence of dairy cattle (RQ D). A subset of feed improvement scenarios from

Chapter 3 is complemented by scenarios that increase the yields of maize used as silage

to explore the effects on the demand for arable land of feed improvement scenarios that

turned out to require most land in Chapter 3. Data on forest C change were derived from

satellite-based time-series products.

Chapter 6 synthesises and highlights the main findings of this thesis and reflects on

the relevance and implications for the CSA policy arena. In addition, an outlook is given

outlining further research. The chapter concludes by giving key recommendations inferred

from this thesis to policy-makers.





Chapter 2

How to target climate-smart

agriculture? Concept and

application of the consensus-driven

decision support framework

”targetCSA”

This chapter is based on:

Brandt, P., Kvakić, M., Butterbach-Bahl, K., Rufino, M.C., 2017. How to target

climate-smart agriculture? Concept and application of the consensus-driven decision

support framework ”targetCSA.” Agricultural Systems 151, 234–245.
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Abstract

Planning for agricultural adaptation and mitigation has to lean on informed decision-

making processes. Stakeholder involvement, consensus building and the integration of

comprehensive and reliable information represent crucial, yet challenging, pillars for suc-

cessful outcomes. The spatially-explicit multi-criteria decision support framework ”tar-

getCSA” presented here aims to aid the targeting of climate-smart agriculture (CSA) at

the national level. This framework integrates quantitative, spatially-explicit information

such as vulnerability indicators (e.g. soil organic matter, literacy rate and market access)

and proxies for CSA practices (e.g. soil fertility improvement, water harvesting and agro-

forestry) as well as qualitative opinions on these targeting criteria from a broad range

of stakeholders. The analytic hierarchy process and a goal optimisation approach are

utilised to quantify collective, consensus-oriented stakeholder preferences on vulnerability

indicators and CSA practices. Spatially-explicit vulnerability and CSA data are aggre-

gated and coupled with stakeholder preferences deriving vulnerability and CSA suitability

indices. Based on these indices, relevant regions with the potential to implement CSA

practices are identified. ”targetCSA” was applied in Kenya exploring group-specific and

overall consensus-based solutions of stakeholder opinions on vulnerability and CSA under

different consensus scenarios. In this example, 32 experts from four stakeholder groups

who participated in two surveys were included. The subsequent analyses revealed consis-

tently regions with high CSA potential but also highlighted different high potential areas

depending on the applied consensus scenario. Thus, this framework allows stakeholders to

explore the consequences of scenarios that reflect opinions of the majority, minority or are

based on a balance between them. ”targetCSA” and the application example contribute

valuable insights to the development of policy and planning tools to consensually target

and implement CSA.
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2.1 Introduction

Addressing climate change is crucial to safeguard food provisioning from agricultural sys-

tems. Hence, planning efforts are urgently needed to target and implement agricultural

adaptation and mitigation options in line with governmental strategies, such as national

climate change action plans (Preston et al., 2011; Conway & Mustelin, 2014). Climate-

smart agriculture (CSA) as a global development goal was introduced to guide the trans-

formation of agricultural systems integrating adaptation, mitigation and food security

(FAO, 2013). Alleviating vulnerability and fostering resilience of agricultural systems to

climate change to secure the sustainable provisioning of food while reducing greenhouse

gas (GHG) emissions are the major objectives of CSA (Harvey et al., 2014a).

The targeting of CSA at the national level is fraught with several challenges that, if not

properly dealt with, potentially hamper the legitimacy and outcome quality of made de-

cisions. First, relevant stakeholder groups have to be involved in the decision-making

process that contribute their valuable expert knowledge but also might disagree due to

conflicting interests and views (Nordström et al., 2010). Second, high complexity and

uncertainty may arise from the multitude of criteria that need to be considered for the

selection and prioritisation of CSA practices at specific locations (Greene et al., 2011).

Third, reliable quantitative and spatially-explicit data are required to identify regions

suitable for targeting certain CSA practices. Such a database should include biophysical,

social and economic determinants on agricultural vulnerability to climate change, conse-

quently, offering a demand-based perspective on CSA (Fellmann, 2012; FAO, 2013). A

framework that integrates knowledge and opinions from a broad range of expert stakehold-

ers, weighs those opinions based upon consensus and couples them with spatially-explicit

datasets on vulnerability and CSA practices is of paramount interest to support robustly

the decision-making on targeting CSA. To the authors’ knowledge, such a framework has

not been published so far.

The aim of this study was to develop a decision support framework for the spatially-

explicit targeting of CSA, named ”targetCSA”, which includes multiple stakeholders,

vulnerability indicators and suitable CSA practices. The applicability of this framework

is demonstrated through an example from Kenya. Large parts of the country are charac-

terised by arid or semi-arid climate with agricultural production dominated by smallholder

farming. Erratic weather patterns, frequent droughts and reduced growing seasons are

threats that will increase the vulnerability of the agricultural sector in Kenya (Molua

et al., 2010; Gachathi & Eriksen, 2011). The national climate change action plan recently

passed by the Kenyan government calls for urgent implementation of CSA practices, thus,

rendering ”targetCSA” highly relevant for the development of policy and planning instru-

ments (Government of Kenya, 2012).
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2.2 Material and methods

2.2.1 Conception of the decision support framework ”targetCSA”

Background

Supporting decision makers in their assessment of options based on several criteria can be

achieved through multi-criteria decision-making (MCDM) analyses (Romero & Rehman,

2003). MCDM aims to elicit transparently individual and subjective stakeholder judge-

ments, aggregate them to collective preferences and help to explore their implications for

decision-making processes (Greene et al., 2011). Spatial information has to be integrated

into MCDM since implementing CSA involves landscape planning. Geographic informa-

tion systems (GIS) can be applied to link the spatial attributes of criteria to stakeholder

preferences (Boroushaki & Malczewski, 2008). MCDM is based on a well-established set

of methods that have been frequently applied to different planning contexts such as the

targeting of projects on the mitigation of GHG-emissions or the design of ecological re-

serves and corridors (cf. Ferretti & Pomarico, 2013; Lin et al., 2014; Tammi & Kalliola,

2014).

Adaptation and mitigation planning is the centrepiece of coping strategies for climate

change such as action plans passed by national governments (Preston et al., 2011). The

decision support framework proposed here is designed to aid planners and decision makers

that aim to implement CSA at the regional or national level. Such a planning process

involves several sectors such as governmental institutions, civil society, science and the

private sector making it mandatory to involve respective stakeholder organisations (FAO,

2013). Therefore, the framework integrates multi-sectoral stakeholder groups to con-

tribute expert knowledge on the selection and importance of vulnerability indicators as

well as CSA practices that fit into a country’s or regional profile due to prevailing envi-

ronmental and socio-economic conditions. However, stakeholder perceptions on what is

important might differ and result in conflicting judgements and trade-offs among decision

options (Nordström et al., 2012). Hence, an adequate decision support framework should

allow the exploration of trade-offs and minimise dissent. Integrating expert knowledge

and spatial information into MCDM is crucial for informed and robust decisions based

on evidence and acceptance (Preston et al., 2011). ”targetCSA” uses an optimisation-

based approach developed by González-Pachón & Romero (2007) that applies distance

minimisation algorithms to reduce disagreement among the stakeholders’ opinions and to

facilitate the exploration of different consensus scenarios. Moreover, consensus-oriented

opinions from stakeholders are coupled with quantitative and spatially-explicit vulnera-

bility and CSA data building the factual foundation for decisions on where to target CSA.

”targetCSA” is structured into three main stages (Figure 2.1).
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Figure 2.1: Conceptual overview of the decision support framework ”targetCSA”.

Climate change vulnerability and climate-smart agriculture

The vulnerability of a system to stressors such as droughts or floods depends on its

sensitivity to perturbations, the degree of exposure, and its capacity to adapt on the

impact (Challinor et al., 2007; Abson et al., 2012). Climate change is expected to increase

the vulnerability of farmers by threatening their livelihood strategies as well as entire food

productions systems (Challinor et al., 2007; Harvey et al., 2014b; Thornton et al., 2014).

The concept of CSA couples climate change and food security through the integration

of adaptation and mitigation measures. It aims to reduce vulnerability by improving

the adaptive capacity of agricultural systems to climate stress and, hence, secures the

provision of food while reducing GHG-emissions from agricultural practices and land

uses contributing to climate change (Scherr et al., 2012; Campbell et al., 2014; Harvey

et al., 2014a). Thus, a short (adaptation) and long term (mitigation) perspective are
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integrated into the CSA concept which should be considered in proper targeting and

planning processes.

By explicitly including the vulnerability concept into CSA-targeting, a demand-based

perspective is taken, meaning that regions with higher climate change vulnerability require

more urgently interventions that strengthen their adaptive capacity. The vulnerability

of the agricultural sector to climate change is influenced by environmental and socio-

economic factors (Abson et al., 2012; Fellmann, 2012). Thus, information about relevant

biophysical (e.g. climate), social (e.g. education) and economic (e.g. market access)

dimensions should be taken into account to inform an assessment of where specific CSA

practices are suitable.

Stage 1: Structuring the decision-making problem

Stakeholder involvement and data collection. Relevant stakeholders should be identified

at the beginning of the planning process (Nordström et al., 2010). During the first stage

(Figure 2.1), meetings with cross-sectoral stakeholders are conducted, e.g. from gov-

ernments, civil societies, science and private sectors to develop a structured catalogue

of context-specific vulnerability indicators and CSA practices (cf. Patt et al., 2010; Fell-

mann, 2012; Scherr et al., 2012). Related datasets can be obtained from publicly available

geo-databases such as the FAO GeoNetwork, HarvestChoice and GEO-Wiki branches or

compiled and made spatially-explicit based on sub-national census data using GIS.

The analytic hierarchy process. The analytic hierarchy process (AHP) is widely used in

MCDM with numerous applications (Wind & Saaty, 1980; Saaty, 1994; Nordström et al.,

2012). A complex problem is decomposed into pairs of criteria (decision options) through

pair-wise comparisons (PC), where two criteria are compared with each other at a time

(Wind & Saaty, 1980). Stakeholders assign numerical preference weights as expression

of their opinion to one of the paired criteria that are compared on a measurable scale

known as the Saaty scale (Saaty, 1977). It orders the importance of potential judgements

from 1 = equal preference to 9 = extreme preference towards one of the paired criteria.

Finally, the individual stakeholder preferences are aggregated deriving a normalised vector

of overall preferences for considered criteria (Saaty, 1977).

Stage 2: Eliciting stakeholder preferences and consensus building

Multi-criteria decision-making model. The second stage integrates and aggregates for-

malised stakeholder opinions (Figure 2.1). Individual preference weights are queried

through PC questionnaires that are administered through workshops, expert surveys

or interviews (cf. Diaz-Balteiro et al., 2009; Sae-Lim et al., 2012). A commonly used
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technique to aggregate individual stakeholder preferences in group decision-making pro-

cesses is to calculate overall priority vectors (Eigenvectors) through geometric or arith-

metic mean methods (Ishizaka & Labib, 2011; Nordström et al., 2012). ”targetCSA”,

however, utilises a goal programming (GP) approach by implementing a set of MCDM

models that are based on linear optimisation. These models were developed by González-

Pachón & Romero (2007) and applied by Diaz-Balteiro et al. (2009) as well as Gebrez-

gabher et al. (2014). The GP approach has two advantages compared to the conventional

Eigenvector-based aggregation methods: i) stakeholder preferences do not have to be con-

sistent throughout the PC questionnaire (González-Pachón et al., 2003; González-Pachón

& Romero, 2007) and ii) the MCDM models are designed to minimise distances among

obtained PC questionnaires enabling the search for a collective consensus. Hence, this

approach offers integrated support for participatory management and planning processes

that rely on consensus (Sae-Lim et al., 2012; Gebrezgabher et al., 2014).

The GP approach computes a consensus matrix, which shows minimised differences to the

input PC matrices derived from the questionnaires and infers the consensus preferences

from this matrix by using a distance minimisation algorithm (González-Pachón & Romero,

2007). In this context, consensus is specifically defined as a mathematical optimisation

goal achieved by minimising matrix distances using certain boundary constraints to find a

solution that represents the minimum disagreement between individual preferences. The

meaning of consensus from an optimisation point of view does not coincide with the

general meaning of the term consensus used in group decision-making processes, where

consensus refers to reaching decisions that all stakeholders willingly agree on (Bressen,

2007).

The optimisation process can be controlled by following different consensus scenarios mov-

ing along a trade-off curve between majority and minority consensus (González-Pachón

& Romero, 2011). The majority consensus represents the closest solution to all stake-

holder preferences whereas the solution based on the minority consensus seeks to satisfy

preferences of the stakeholder far apart from the majority. The MCDM models were nu-

merically programmed in R (v. 3.1.1) using the linear programming library ’lpsolve’ (v.

5.6.10). A detailed description of the models can be found in Appendix (S1).

Eliciting stakeholder preferences. Stakeholder preferences represent a source of uncertainty

in the decision making process (Mosadeghi et al., 2013). Therefore, it is recommended

to elicit preferences iteratively (Nordström et al., 2010). The iterations allow to capture,

assess and to reduce the variability of preferences which result from adjusted stakeholder

opinions that might affect the targeting outcome (Mosadeghi et al., 2013). Evaluating

the robustness of preferences is important to obtain a transparent measure of how reliable

the included expert knowledge is for final decision-making (Xu & Zhang, 2013).
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Stage 3: Spatial aggregation and coupling of vulnerability and CSA indices

Deriving vulnerability and CSA suitability indices. The third stage combines elicited

preferences with spatial data representing quantitative vulnerability indicators and data

reflecting CSA practices (Figure 2.1). Weighed linear combination (WLC) is a widely

applied aggregation rule where high values of one criterion can be offset by low values

of another criterion (Eastman et al., 1995; Greene et al., 2011; Lin et al., 2014). In

”targetCSA”, values of standardised spatially-explicit criteria are multiplied with related

stakeholder preferences and finally summed up deriving combined vulnerability and CSA

suitability scores using WLC. Spatial information of constraints, such as regions with

legal restrictions or a lacking relevance are masked and excluded from the decision-making

process.

Finally, two standardised and spatially-explicit indices depicting climate change vulnera-

bility and CSA suitability are generated. Subsequently, a re-scaling of both indices into

low, mid and high vulnerability as well as CSA suitability allows to superimpose them and

to assess overlaying classes for the identification of areas with high potential for selected

CSA practices. Maps showing these indices can be used to explore the consequences of

different consensus scenarios on the CSA targeting and guide decision-making.

Validation. If stakeholder preferences are elicited at several occasions they can be used

to validate the robustness of the calculated spatial indices (Figure 2.1). This is crucial to

assess how reliable and, hence, how useful the vulnerability and CSA suitability indices

are as source of information in a decision-making process (Delgado & Sendra, 2004). Sev-

eral sets of aggregated and coupled indices can be spatially compared. Large differences

in areas of CSA potential could point to high uncertainties associated to blurred stake-

holder opinions and knowledge gaps which have to be addressed (Nordström et al., 2010;

Mosadeghi et al., 2013).

2.2.2 Application example from Kenya

Study area

Kenya covers a total area of 581,881 km2 and has a population of about 38 million people

(Figure 2.2) (Wiesmann et al., 2014). While the most productive land is situated in the

Central and Western, sub-humid parts of Kenya, about 80 % of Kenya is characterised as

semi-arid or arid lands with erratic rainfall, droughts and sporadic floods (Molua et al.,

2010; Gachathi & Eriksen, 2011). The agricultural sector plays a pivotal role for food

provisioning and the country’s economy. However, it suffers from recurring crop failure,

livestock mortality and food insecurity (Grace et al., 2014). A large part of Kenya’s

labour force works in the agricultural sector, which makes about 75 % of the national

gross domestic product (Odera et al., 2013). The vulnerability of the mainly rainfed
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agricultural sector to climate change is marked by its exposure and sensitivity to harsh

biophysical factors relating to climate and soil as well as low adaptive capacity determined

by the socio-economic context, e.g. poverty, poor access to education and health facilities

as well as to markets (Eriksen & O’Brien, 2007).

Selection of stakeholders, vulnerability indicators and CSA practices

The CSA targeting process started in 2013 through discussions between the Kenyan Min-

istry of Environment, Water & Natural Resources and the Research Program on Climate

Change, Agriculture and Food Security (CCAFS). Stakeholders were selected from four

groups representing governmental organisations (GOs), civil society (NGOs), scientific

institutions and the private sector (Appendix S2, Table S2.1). A stakeholder workshop

was held in early 2014 to select vulnerability indicators and CSA practices. Subsequently,

related quantitative data were collected, compiled and processed in ArcGIS (v. 10.1). All

datasets were derived from publicly accessible databases or censuses conducted by govern-

mental institutions in Kenya. Resulting grid data were resampled to match a consistent

resolution of approximately 10 x 10 km. A subset of six vulnerability indicators and CSA

practices was selected, suitable to test the applicability of ”targetCSA” (Table 2.1).

Table 2.1: Overview of the stakeholder-based selection of climate change vulnerability indi-

cators and CSA practices for the application example in Kenya, including descriptions as well

as linkages between indicators and practices.

Indicators of climate

change vulnerability

Data description and

sources

Linkages climate change

vulnerability - CSA

Biophysical

Annual precipitation: Annual precipitation based

on the period: 1950-2000 (Hi-

jmans et al., 2005).

’Annual precipitation’ was se-

lected as indicator for wa-

ter availability and ecosys-

tem productivity. The avail-

ability of water largely de-

termines agricultural produc-

tivity. The improvement of

water harvesting and man-

agement and the introduction

of drought tolerant crop va-

rieties represent viable CSA

practices to deal with vul-

nerability to water shortages

(Harvey et al., 2014a).
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Table 2.1: continued

Soil organic matter: Organic carbon content in

the top soil layer, up to

30 cm depth, contained in

(decomposed) plant and ani-

mal residues, tissues and cells

(Nachtergaele et al., 2012).

’Soil organic matter’ is an in-

dicator of soil fertility and,

thus, ecosystem productiv-

ity. Regions with low soil or-

ganic carbon need CSA prac-

tices that alleviate nutrient

depletion such as measures to

stop erosion to build up soil

carbon through organic fer-

tilisers and integrated prac-

tices such as agroforestry (Lal

et al., 2011).

Social

Percentage of households

with access to safe water

sources:

Proportion of households per

county with access to safe wa-

ter sources such as: bore-

holes, protected wells and

springs, piped water and

collected rainwater (Govern-

ment of Kenya, 2009a; Wies-

mann et al., 2014).

’Percentage of households

with access to safe water

sources’ was selected as

an indicator of household

well-being. Required CSA

practices should, thus, im-

prove the management of

water that is used for agri-

cultural purposes as well as

drinking water and thereby

safeguard its availability

(Wiesmann et al., 2014).
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Table 2.1: continued

Literacy rate: Proportion of the population

(aged 15+) per county that is

able to read and write (Gov-

ernment of Kenya, 2013).

’Literacy rate’ is an educa-

tion indicator. High illiteracy

reflects reduced capabilities

(adaptive capacity) of mak-

ing informed decisions re-

garding viable coping strate-

gies under climate change

(Atela et al., 2014). Thus,

it reflects obstacles for im-

plementing CSA due to lack

of knowledge and informa-

tion. CSA practices in turn

have to contribute necessary

knowledge, thus, help to re-

duce information gaps as well

as facilitate relevant practical

skills.

Economic

Female participation in eco-

nomic activities:

Active female labour force

divided by the total female

labour force per county (Gov-

ernment of Kenya, 2009a;

Wiesmann et al., 2014).

’Female participation in

economic activities’ is un-

derstood as an indicator

for women empowerment

and economic development.

Gender inequality increases

the susceptibility to sud-

den changes and threats as

such climate change. Inte-

grated CSA practices such

as conservation agriculture

and agroforestry have the

potential to promote gender

equality and improve liveli-

hoods for women and men

while supporting mitigation

and adaptation (Beuchelt &

Badstue, 2013).
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Table 2.1: continued

Connectivity through trans-

port infrastructure:

Degree of connection between

places across Kenya, based on

time needed for travelling to

the next city > 50000 in-

habitants (Uchida & Nelson,

2009).

’Connectivity through trans-

port infrastructure’ indicates

farmers’ accessibility to mar-

kets for selling farm pro-

duces and buying inputs as

well as accessing extension

services such as vaccination.

A reduced access adds addi-

tional risks for farmers un-

der climate change (Abson

et al., 2012). CSA prac-

tices are supposed to sup-

port farmers to deal with

the impacts of climate shocks

such as losses of livestock or

crop failures. CSA exam-

ples are insurance schemes

and drought tolerant vari-

eties/breeds, improved soil

and water management (Har-

vey et al., 2014a; Vrieling

et al., 2014).

CSA practices Examples, proxy datasets

and assumption of use

Link to indicators of cli-

mate change vulnerabil-

ity

Improvement of soil fertility

and soil management:

Example: low-cost soil fer-

tility enhancement options,

such as green manures,

legumes, composting, ani-

mal manure management,

improved fallows and con-

servation agriculture; Proxy

dataset: low nutrient capi-

tal reserves (Sanchez et al.,

2003); Assumption: Depleted

nutrient stocks in soils call

for improved soil fertility

management through CSA.

Biophysical: ’Soil organic

matter’; Social: ’Literacy

rate’
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Table 2.1: continued

Identification and distribu-

tion of drought tolerant ce-

real crops:

Example: sorghum, millet

and maize; Proxy dataset:

suitability of rainfed cereal

crops assuming an improved

management scenario in

terms of labour, fertiliser

use, pest control and con-

servation measures (van

Velthuizen et al., 2007); As-

sumption: The biophysical

suitability for cereals under

region-specific farm manage-

ment reflects the potential to

grow drought tolerant cereal

varieties.

Biophysical: ’Annual pre-

cipitation’; Social: ’Literacy

rate’

Reduction of greenhouse gas

emissions from the livestock

sector:

Example: manure manage-

ment, more efficient breeds,

species, feeds and biogas

technologies; Proxy dataset:

Methane and nitrous ox-

ide emissions from livestock

per kg protein, including

cattle, sheep, goats, pigs

and poultry (Herrero et al.,

2013); Assumption: High

livestock-based emission in-

tensities show high demand

for GHG mitigation prac-

tices.

This is a mitigation practice

that, in a long-term perspec-

tive, reduces the vulnerability

to climate change in general.

Therefore, it links to all vul-

nerability indicators included

here.
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Table 2.1: continued

Improvement of water har-

vesting and water manage-

ment:

Example: community water

pans, micro-catchments and

dams constructed to harvest,

store and distribute water for

crop irrigation and livestock;

Proxy dataset: aridity in-

dex (Zomer et al., 2008); As-

sumption: Agricultural prac-

tices in drylands, such as pas-

toralism, are prone to wa-

ter deficits. Hence, these re-

gions reflect high demands to

improve the harvesting and

management of water.

Biophysical: ’Annual precip-

itation’; Social: ’Percentage

of households with access to

safe water sources’, ’Literacy

rate’; Economic: ’Connectiv-

ity through transport infras-

tructure’

Identification and establish-

ment of agroforestry prac-

tices:

Agroforestry integrates trees

into croplands and pastures.

Example: identifying agro-

forestry practices (based on

surveys etc.), establishing

community agroforestry, tree

nurseries; Proxy dataset:

percentage of cropland area

(Fritz et al., 2015) restricted

to regions with a tree cover

< 10 % (Hansen et al.,

2013). Assumption: Regions

with higher proportions of

cropland show potential for

integrating trees into agricul-

tural landscapes that lack a

minimum tree cover aligning

this CSA practice with the

national policy target in

Kenya to achieve a tree cover

of at least 10 % (Government

of Kenya, 2007).

Biophysical: ’Soil organic

matter’; Economic: ’Female

participation in economic ac-

tivities’



2.2 Material and methods 25

Table 2.1: continued

Implementation of livestock

insurances:

Example: monetary subsi-

dies for farmers in cases

of severe climate mediated

livestock mortality; Proxy

dataset: Insurance premium

rates for livestock mortal-

ity based on remote-sensing

time-series data (normalised

difference vegetation index,

NDVI) from 1981 - 2012

(Vrieling et al., 2014). As-

sumption: Regions with in-

creased drought risks and wa-

ter shortages have a higher

demand for livestock insur-

ance schemes.

Biophysical: ’Annual precip-

itation’; Social: ’Percentage

of households with access to

safe water sources’, ’Literacy

rate’; Economic: ’Connectiv-

ity through transport infras-

tructure’

This choice was based on three criteria. First, the selection of vulnerability indicators

was based on the scientific vulnerability literature dealing with climate change in Africa

(cf. Challinor et al., 2007; Abson et al., 2012; Atela et al., 2014). Selected CSA practices

are also listed in a catalogue that is part of the Kenyan National Climate Change Ac-

tion Plan (Government of Kenya, 2012). Second, the data quality was ensured through

peer-reviewed published datasets and consultation of experts. Third, there was no high

collinearity among vulnerability and CSA datasets (Spearman’s rho < 0.75).

There was no information about the effectiveness of selected CSA practices on alleviating

vulnerability of the agricultural sector in Kenya. Therefore, this application example

represents a spatially-explicit ex-ante assessment that explores the potential to target

CSA practices consensually by focusing on regions that are shown to be vulnerable and

suitable.

2.2.3 Expert survey

The designed questionnaire comprised two parts. The first part dealt with the pair-

wise comparison of six selected vulnerability indicators, while the second part focused on

comparing the six selected CSA practices. The number of PC items was restricted to

six avoiding potential reductions in consistency and quality of the answers (Saaty, 1977).

The leading questions in both parts were formulated to elicit preference weights according

to the relative importance of the items compared to each other. For this application

example, a slightly reduced rating scale was used compared to the original Saaty scale,
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ranging from 1 to 7, based on results from a pre-test. In order to separate the different

intensities of possible preferences more clearly, they were defined as: 1 = equal preference,

3 = slight preference, 5 = moderate preference and 7 = strong preference. Five different

versions of the questionnaire were created differing in their sequence of comparisons based

on randomisation to prevent a possible bias resulting from a fixed order of comparisons

(Podsakoff et al., 2003).

The survey took place between September and November 2014 interviewing eight experts

from each of the four stakeholder groups (n = 32). Each interview took approximately 20

minutes. Before an interview started, the questionnaire was explained and put into the

CSA targeting context to avoid misguided judgements due to potential misconception of

queried items (Keeney, 2002). During a stakeholder workshop conducted in November of

2014, the survey results were presented, discussed and preferences were re-elicited using

the identical PC questionnaire for the validation of spatial indices. Furthermore, the

questionnaire was sent to stakeholders that could not attend, including supplementary

information about the workshop results. Finally, 16 validation questionnaires were filled

covering 50 % of each originally sampled stakeholder group.

2.2.4 Multi-criteria decision-making model

Applying the GP optimisation approach developed by González-Pachón & Romero (2007)

allowed us to explore both conflicting group interests and consensus solutions regarding

stakeholder preferences for vulnerability indicators and CSA practices. The MCDM mod-

els were fitted i) to aggregate group specific preferences separately keeping the experts

in each group as individuals and ii) to search a consensus based on the entire set of in-

cluded expert opinions, referred to as the overall consensus, assuming a collective interest

in striving for consensus in a decision-making process. The ability of the MCDM models

to move towards mutually exclusive majority or minority oriented consensus scenarios

was tested by González-Pachón & Romero (2007). In this example, three scenarios were

applied to explore results that reflect the preferences of the i) majority, ii) minority, and

iii) the optimal trade-off indicating the consensus solution that is most balanced in repre-

senting the stakeholder opinions (González-Pachón & Romero, 2011). The latter scenario

characterises a compromise, which is especially interesting in a decision-making context

where no information is available about the socially desired outcome of the negotiation

process. A detailed description of the applied optimisation model used to find the consen-

sus with the most balanced trade-off (i.e. compromise scenario) can be found in Appendix

(S1). The modelling procedure was applied on stakeholder preferences obtained from both

expert surveys enabling the assessment of changes in opinions among stakeholders.
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2.2.5 Spatial aggregation and coupling of weighted vulnerability and CSA

suitability indices

The WLC rule was used to combine linearly each of the two sets of spatial data (Table

2.1), excluding constraints such as protected areas, forests, lakes and settlements, with

preferences inferred from the overall consensus, deriving combined vulnerability and CSA

suitability indices (Eastman et al., 1995). Spatial datasets reflecting these constraints

were obtained during the initial data collection process. A detailed description of the

WLC rule can be found in the Appendix (S1).

By overlaying the indices of vulnerability and CSA suitability, it was possible to assess

the targeting potential of selected CSA practices based on their suitability in regions

that bear high vulnerability. The indices were computed for three different consensus

scenarios (majority, minority, and the most balanced trade-off) to explore differences in

regions with high CSA potential. For validation, the CSA potential was computed based

on stakeholder preferences derived from both surveys applying the consensus scenario

with the most balanced trade-off. Through comparison of CSA potentials, areas where

the survey results (dis)agree were investigated.

2.3 Results

2.3.1 Vulnerability indicators and CSA practices

Both biophysical indicators, ’annual precipitation’ and ’soil organic matter’ show relatively

high vulnerability in Northern and Eastern parts of Kenya (Figure 2.2A). The social

indicator ’households with access to safe water sources’ reveals a more heterogeneous

pattern of vulnerability than the indicator ’literacy rate’ which shows higher illiteracy

in the North and, thus, elevated vulnerability compared to the rest of the country. The

two economic indicators depict a contrasting pattern. Whereas ’female participation in

economic activities’ highlights the South-Eastern regions as more vulnerable, the indicator

’connectivity through transport infrastructure’ emphasises the North and partially the

East as more remote and, hence, potentially more vulnerable.
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Figure 2.2: Maps show the spatial distribution of consistently re-scaled datasets used to

represent (A) vulnerability indicators and (B) CSA practices ranging from 0 - 1. For the

vulnerability maps, dark red colour means highly vulnerable, for the CSA suitability, dark

blue colour means highly suitable for the selected CSA practice. Included CSA practices are

reflected by proxy datasets explained in Table 2.1.

Focusing on CSA practices, the dataset on soil nutrients shows a scattered pattern of areas

in the North-East, West and South of Kenya where CSA practices relating to the ’im-

provement of soil fertility and soil management’ are potentially suitable (Figure 2.2B). For

the ’identification and distribution of drought tolerant cereal crops’ regions in Western,

Central and coastal Kenya indicate favourable conditions using the dataset on suitability

for cereal crops. The arid areas in the North and East are shown as not or marginally

suitable for cereals due to prevailing biophysical conditions rendering crop-based agricul-

ture impossible in general, except for the narrow belts along rivers that are not captured

by this dataset due to its grid cell resolution of 10 x 10 km. Relatively high methane

and nitrous oxide emissions due to livestock production identify Western, Central and
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partially Eastern as well as Southern regions as suitable for mitigation interventions fo-

cusing on the ’reduction of GHG-emissions from the livestock sector’. Increased aridity in

the entire North and North-East of Kenya compared to its Western and Central regions

reveal areas for the ’improvement of water harvesting and water management’. The per-

centage of croplands, constrained by low tree cover, used as proxy for the ’identification

and establishment of agroforestry practices’ delineates Western and Central regions from

the rest of the country emphasising them as suitable for related interventions. Insur-

ance premium rates for livestock mortality as proxy for the ’implementation of livestock

insurances’ reveals Northern and Eastern areas as prone to higher risks offering eligible

conditions for implementing this practice.

2.3.2 Aggregated group-specific and overall consensus-based prefer-

ences

The distribution of preference weights inferred from each stakeholder group separately

and based on the overall consensus, including all experts, are shown for vulnerability

indicators (Figure 2.3A) and CSA practices (Figure 2.3B). Illustrated preferences result

from the consensus scenario that shows the most balanced trade-off between majority

and minority. The results for majority and minority scenarios can be found in the Ap-

pendix (S2, Figure S2.1 and S2.2). Stakeholder groups differed in their preferences for

each of the vulnerability indicators and CSA-practices indicated by across group stan-

dard deviation (SD) ranging from 0.02 - 0.09 for vulnerability indicators and from 0.00 -

0.12 for CSA practices. However, the vulnerability indicator and CSA practice that were

weighed low across all groups, namely ’connectivity through transport infrastructure’ and

’implementation of livestock insurances’, show a relatively homogenous pattern of pref-

erences with the lowest across group SD. Highly preferred vulnerability indicators across

stakeholder groups are ’annual precipitation’ and ’households with access to safe water

sources’. These indicators relate to the biophysical and social dimensions of vulnerability

to climate change. The economic vulnerability indicator ’connectivity through transport

infrastructure’ and the social indicator ’literacy rate’ were weighed low throughout the

stakeholder groups except for the science group, which assigned slightly lower preferences

to ’female participation in economic activities’. For CSA-practices, high preferences were

assigned to ’improvement of water harvesting and water management’ and ’identification

and distribution of drought tolerant cereal crops’. Yet, NGOs deviated from this pattern

giving higher importance to ’identification and establishment of agroforestry practices’.

Low weighed CSA practices across stakeholder groups are ’implementation of livestock

insurances’ and ’reduction of GHG-emissions from the livestock sector’.
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Figure 2.3: Preference weights for each stakeholder group and the overall consensus, includ-

ing all experts, resulting from the consensus scenario showing the most balanced trade-off

between majority and minority for (A) vulnerability indicators and (B) CSA practices.

The preferences based on the overall consensus largely resemble the distribution of group-

specific preferences. However, they rank within the ranges of group preferences for each

of the indicators and CSA practices except for ’implementation of livestock insurances’

indicating minimised distances among stakeholder opinions by using consensus matrices

to infer the overall consensus.
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2.3.3 CSA potential: coupling spatial indices of vulnerability and CSA suit-

ability under different consensus scenarios

The combined indices for vulnerability and CSA suitability derived from the overall con-

sensus preferences, including all experts, as well as CSA potential maps that resulted

from coupling the indices are shown for the majority (Figure 2.4A), minority (Figure

2.4B) and the most balanced trade-off (Figure 2.4C) consensus scenarios. In general, high

vulnerability to climate change based on the included indicators is shown for the North

and to some degree in Eastern parts of Kenya whereas high CSA suitability is indicated

for Western, Central, coastal and partly in Northern parts throughout applied consensus

scenarios. However, there are differences in vulnerability among the consensus scenarios

at county level. The majority consensus led to higher vulnerability for Turkana and Kitui

counties than the minority consensus, which identified the same counties as medium or

marginally vulnerable. In contrast, the minority consensus indicated higher vulnerabil-

ity for Wajir and Tana River counties. The consensus scenario with the most-balanced

trade-off shows a pattern of vulnerability intensities that lays between those indicated

by majority and minority for these counties. Differences in CSA suitability between the

consensus scenarios are less pronounced, yet obvious in several parts of Kenya.

Overlaying CSA suitability on top of high vulnerability regions reveals areas with high

CSA potential in Baringo, Mandera and Wajir counties in agreement with all three con-

sensus scenarios. The consensus scenarios disagree on areas of high CSA potential in

Turkana, Kitui and Marsabit counties. Comparing majority and minority consensus sce-

narios, these differences become most obvious for Turkana and Kitui counties. The most-

balanced trade-off consensus reflects areas with high CSA potential whose extents rank

between those indicated in the majority and minority consensus scenarios.
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Figure 2.4: Maps show the spatially-explicit indices of vulnerability and CSA suitability as

well as the CSA potential for high vulnerability regions based on consensus scenarios of the (A)

majority, (B) minority and (C) most-balanced trade-off. Underlying stakeholder preferences

were inferred from the overall consensus, including all experts. Classes of vulnerability and

CSA suitability indices (low, mid and high) resulted from quantile splits to preserve equal n

sizes per class.
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2.3.4 Validation

The preferences inferred from the overall consensus based on two expert surveys differed

as shown for vulnerability indicators (Figure 2.5A) and CSA practices (Figure 2.5B)

under the consensus scenario with the most-balanced trade-off between majority and

minority. These differences are less pronounced for vulnerability indicators than for CSA

practices indicated by mean differences between the preferences from the two surveys of

0.08 and 0.13 respectively. However, Wilcoxon signed-rank tests did not reveal significant

median difference among the two sets of vulnerability indicators and CSA practices (p >

0.05).
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Figure 2.5: Comparison of preferences inferred from the overall consensus (including all

experts) based on two expert surveys for (A) vulnerability indicators and (B) CSA practices

under the consensus scenario with the most-balanced trade-off. Inset map (C) illustrates

agreement on low, mid and high CSA potential in areas with high vulnerability among the

two expert surveys under the same consensus scenario. Regions where the surveys disagreed

on CSA potential are coloured in orange.

Mapping the CSA potential based on the two sets of vulnerability and CSA suitability

indices under the consensus scenario with the most-balanced trade-off depicts agreement
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among surveys on areas with high CSA potential in the North and North-East of Kenya

mainly located in Wajir and Mandera counties (Figure 2.5C). Areas of disagreement due

to differing stakeholder preferences derived from the two surveys are distributed across

the North and Central-East of Kenya.

2.4 Discussion

2.4.1 Informing decisions with ”targetCSA” using spatially-explicit vulner-

ability and CSA suitability indices

The combined and spatially-explicit indices reveal a picture of where to target stakeholder

selected CSA practices to reduce agricultural vulnerability to climate change at the na-

tional level. For Kenya, areas of high vulnerability contrast with areas potentially suitable

for implementing CSA practices based on the empirical information included here. This

study showed that regions of high vulnerability in Kenya mainly coincide with semi-arid

and arid climate resulting in harsh biophysical conditions, confounded by low availability

of education and health infrastructure as well as reduced access to markets (Odera et al.,

2013; Wiesmann et al., 2014). High vulnerability to climate change for arid and semi-arid

areas was also reported at the global scale (Allen et al., 2007). In contrast, high suitabil-

ity for selected CSA practices concentrated around sub-humid, to some degree semi-arid

areas, and is discontinuously spread across arid climate (Grace et al., 2014). Nevertheless,

areas of high CSA potential were identified and could be targeted for CSA pilot projects.

The Western and Southern parts of Mandera county in the North-West of Kenya represent

an example of high CSA potential consistently shown for specific areas across different

consensus scenarios as well as expert surveys. The introduction of drought tolerant ce-

reals on moderately suitable lands, the improvement of water management in areas of

high aridity, or the implementation of livestock insurances addressing high mortality risk

may represent promising CSA measures (Figure 2.4). By coupling the computed spatial

indices, the originally unrestricted space could be narrowed to specific regions of high

CSA potential enabling a targeted exploration of areas of interest, potentially leading to

decisions that are informed by quantitative data and expert opinions.

2.4.2 CSA-targeting as a consensus-driven approach

Climate change adaptation planning calls for stakeholder participation integrating percep-

tions and opinions from a broad range of stakeholders to strive for legitimate decisions and

sustainable planning solutions (Conway & Mustelin, 2014; Krellenberg & Barth, 2014).

However, stakeholder integration may lead to dissent about the importance of planning

objectives reflected by measurable preferences on multiple AHP-criteria as shown in this
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example (Figure 2.3). This has also been reported for group decision processes in forest

planning (Linares & Romero, 2002; Kangas et al., 2010). Different interests, highly com-

plex problems and resulting uncertainties are common causes of dissent in multi-criteria

decision-making applications (Nordström et al., 2010). Approaching consensus solutions

by finding a PC matrix that shares the highest degree of similarity with the stakeholder-

derived PC matrices reduces discrepancy and hence dissent inherent to group-specific

preferences.

The question of what is the appropriate consensus scenario should be asked in a certain

decision-making context though. Following different consensus scenarios, changes the pat-

terns of inferred preferences, which determine the location of regions with high potential

for targeting selected CSA practices (Figure 2.4). Other studies have shown similar ef-

fects on the distribution of stakeholder preferences (Diaz-Balteiro et al., 2009; Nordström

et al., 2012). The ability to choose between consensus scenarios and to explore their

potential impact on decisions grants higher flexibility and legitimacy to the democratic

modes that shape group decision-making processes. Relying on the majority could be

a proper principle when all stakeholders possess similar influence on decisions. Instead,

giving more weight to the minority might be suitable when marginalised stakeholders such

as indigenous people are involved who usually have low influence on decision-making. If

no agreement on opting for the majority or minority principle is achievable, a compromise

solution, such as the one adopted here, is to select the most balanced trade-off between

these two mutually exclusive alternatives (González-Pachón & Romero, 2011). Hence,

the explicit role of ”targetCSA” is to structure decision-making problems and to facilitate

the exploration as well as the discussion of discrepancies among stakeholder opinions to

eventually achieve consensual solutions that aid decision-making processes where a broad

range of stakeholders are involved.

2.4.3 Sticking points of a decision support framework for targeting CSA

Capturing and reducing uncertainty from stakeholder preferences

Stakeholder opinions may vary over time, as shown here (Figure 2.5) and represent a

source of uncertainty for decision-making processes (Xu & Zhang, 2013). The detected

discrepancies regarding the preferences for some of the CSA practices are most likely an ef-

fect of shifts in stakeholder opinions due to changes of knowledge or interests. A reduction

of this uncertainty is attainable through an iterative mode of preference elicitation, e.g.

by following the Delphi method (Chung et al., 2014). Yet, this might be unfeasible in very

conflict prone decision-making situations that are not consensually manageable or due to

time and budget constraints (Nordström et al., 2010). Alternatively, additional experts

may be involved in case of controversial situations to integrate specific knowledge that was

missing but has the potential to mitigate such situations. An approach to analyse and un-
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derstand social dynamics behind preference changes and their effects on decision-making

systems is the use of agent-based models (Bousquet & Le Page, 2004).

Applicability of ”targetCSA”

This example demonstrated the applicability of the presented decision support framework

for targeting selected CSA practices. For instance, ”targetCSA” could be used in different

CSA related planning initiatives at national level such as Kenya’s national CSA framework

or the Nationally Appropriate Mitigation Action (NAMA) that is currently developed for

the dairy production sector in Kenya to support the decision-making on the prioritisation

of adaptation and mitigation options. The framework is applicable on a stratified, regional

scale, capturing the heterogeneous characteristics within a given country by involving

region-specific stakeholders, vulnerability indicators and CSA practices. Furthermore,

the restricted sets of vulnerability indicators and CSA practices that were chosen for this

application example are easily extendable and adoptable to other countries differing in

their biophysical, social and economic conditions. This includes vulnerability indicators

that reflect projected changes of temperature and precipitation, e.g. trends of decreasing

precipitation and increasing temperature would translate into higher vulnerability and

vice versa.

The main objective of ”targetCSA” is to support decisions for adaptation and mitigation

planning at the national and regional level by structuring decision-making problems as well

as exploring and building consensus among different stakeholder groups. However, several

scales have to be integrated eventually into a comprehensive planning for adaptation and

mitigation (FAO, 2013; Conway & Mustelin, 2014). Hence, this framework could be

coupled with bottom-up approaches to properly deal with local realities and to allow for

fine-scale planning (Chaudhury et al., 2014; Rosenstock et al., 2014).

2.4.4 Further research

Research efforts should be invested into elucidating the impact of CSA practices on vulner-

ability alleviation and analyses of synergies and trade-offs among adaptation and mitiga-

tion options in specific areas, including assessments of implementation costs and benefits

for farmers (Harvey et al., 2014a). Information that links the implementation of CSA

practices to their local effects could be derived from household surveys and exhaustive

meta-analyses of CSA case studies relating costs and profitability to biophysical and so-

cial conditions prevailing in regions of interest. The resulting spatially upscaled indices

of CSA costs and benefits would represent further layers of information supporting the

decision-making on CSA prioritisation together with the aggregated vulnerability and

CSA suitability indices. Moreover, vulnerability indicators need to be further elaborated
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to meet the needs of the planning process and to allow for quantitative analyses of in-

teractions and feedback mechanisms between biophysical indicators mostly pointing to

exposure and sensitivity as well as social and economic indicators mainly determining

the adaptive capacity of agricultural systems (Fellmann, 2012). Shedding light on how

to couple the national top-down approach of CSA-targeting with bottom-up initiatives is

necessary to synchronise local and broad scale adaptation planning (Conway & Mustelin,

2014).

2.5 Conclusions

Climate change adaptation and mitigation efforts need to be coordinated through na-

tional planning processes that implement properly climate change action plans. Related

decisions should be made in accordance with relevant stakeholders and guided by quanti-

tative information including biophysical, social and economic conditions. Especially the

latter point might be challenging in data-deficient regions, yet, the exemplary application

of ”targetCSA” in Kenya showed that it is potentially feasible.

The main benefits of ”targetCSA” for decision-makers are:

1. Problem structuring and complexity reduction by using AHP and pair wise com-

parison methods.

2. Spatially-explicit indices are built upon consensual preferences from cross-sectoral

stakeholders on multiple criteria reflected by included vulnerability indicators and

CSA practices.

3. The ability to choose between different consensus scenarios and to explore their

potential effects on decisions may lead to more sustainable planning outcomes due

to higher acceptance.

4. By using a three-dimensional concept of vulnerability, including biophysical, social

and economic factors a demand-based assessment of CSA potential becomes possi-

ble.

5. Its transferability to other countries makes the applicability of the framework highly

flexible.
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Abstract

Reducing greenhouse gas (GHG) emissions from agriculture has become a critical target

in national climate change policies. More than 80 % of the countries in Sub-Saharan

Africa (SSA) refer to the reduction of agricultural emissions, including livestock, in their

’Nationally Determined Contributions’ (NDC) to mitigate climate change. The livestock

sector in Kenya contributes largely to the gross domestic product and to GHG emissions

from the land use sector. The government has recently pledged in its NDC to curb total

GHG emissions by 30 % by 2030. Quantifying and linking the mitigation potential of

farm practices to national targets is required to support realistically the implementation

of NDCs. Improvements in feed and manure management represent promising mitigation

options for dairy production. This study aimed (i) to assess mitigation and food pro-

duction benefits of feed and manure management scenarios, including land use changes

covering Kenya’s entire dairy production region and (ii) to analyse the contribution of

these practices to national targets on milk production and mitigation, and their biophys-

ical feasibility given the availability of arable land. The results indicate that improving

forage quality by increasing the use of Napier grass and supplementing dairy concentrates

supports Kenya’s NDC target, reduces emission intensities by 26 - 31 %, partially achieves

the national milk productivity target for 2030 by 38 - 41 %, and shows high feasibility

given the availability of arable land. Covering manure heaps may reduce emissions from

manure management by 68 %. In contrast, including maize silage in cattle diets would

not reduce emission intensities due to the risk of 10-fold higher emissions from the conver-

sion of land required to grow additional maize. The shortage of arable land may render

the implementation of these improved feed practices largely infeasible. This assessment

provides the first quantitative estimates of the potential of feed intensification and ma-

nure management to mitigate GHG emissions and to increase milk yields at sectoral-level

and at a high spatial resolution for an SSA country. The scientific evidence is tailored to

support actual policy and decision-making processes at the national level, such as ’Nation-

ally Appropriate Mitigation Actions’ (NAMAs). Linking feed intensification and manure

management strategies with spatially-explicit estimates of mitigation and food production

to national targets may help the sector to access climate financing while contributing to

food security.
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3.1 Introduction

Greenhouse gas (GHG) emissions from ’Agriculture, Forestry and Other Land Uses’

(AFOLU) are estimated to contribute 24 % to the total anthropogenic GHG emissions

(Smith et al., 2014). The global livestock production as a sub-sector of AFOLU emits

between 10 - 14.5 % of total GHG emissions, of which 4 % are due to dairy production

(Gerber et al., 2010; Westhoek et al., 2011). Total GHG emissions from dairy production

are projected to increase by 82 % under ’business as usual’ (BAU) trajectories until 2050

compared to 2000, as production expands to keep up with the milk demand of a growing

human population (O’Mara, 2011).

Current food insecurity in many low-income countries, especially in Sub-Saharan Africa

(SSA), and sustained population growth call for assessments that contribute to both the

mitigation of AFOLU emissions and the improvement of food provisioning from agricul-

tural systems (Smith et al., 2013). The development of schemes that mitigate AFOLU

emissions such as ’Nationally Appropriate Mitigation Actions’ (NAMAs) have recently

gained attention from governments that ratified the Paris climate agreement under the

’United Nations Framework Convention on Climate Change’ (UNFCCC, 2011; Grassi

et al., 2017). Countries express their mitigation targets in the ’Nationally Determined

Contributions’ (NDCs). Kenya’s NDC targets to limit the increase in total GHG emis-

sions projected in the national BAU scenario by 30 % between the base year of 2010

and 2030 (Government of Kenya, 2015b). Reliable estimates of sectoral baseline emis-

sions and effective mitigation options are still missing and required urgently to develop

NAMAs that help achieve the NDC targets. Focussing on livestock production in Kenya

is highly relevant since it is responsible for about 30 % of its total GHG emissions and

contributes about 45 % to the agricultural gross domestic product (McDermott et al.,

2010; Government of Kenya, 2015a).

The dairy sector in Kenya sustains the livelihood of about two million smallholder house-

holds, who contribute approximately 80 % to the 3.4 M t of milk produced in the country

(Udo et al., 2016). In addition, dairy products supply a range of valuable nutrients and

therefore contribute to the human population health. Culturally, milk is a vital compo-

nent of agro-pastoralists diets in East Africa (Rufino et al., 2013). The population of dairy

cattle has increased by about 31 % to 4.3 M heads from 1998 to 2014 (Muriuki, 2011;

Government of Kenya, 2014), whereas feed inputs for dairy cattle have increased by about

32 % from 1998 to 2006 (Muriuki, 2011). Increased animal numbers and the additional

demand for feeds contribute largely to emissions of non-carbon dioxide GHGs, namely

methane (CH4) and nitrous oxide (N2O) through enteric fermentation, manure and soil

management. In addition, the trend of increasing livestock numbers leads to emissions

from degraded rangelands and forests (Kumar et al., 2009; O’Mara, 2011; Bosire et al.,

2016).
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The dairy sector has to increase production sustainably by 2030 to be able to meet the

projected milk demand estimated in the national policy framework for the development

of the dairy sector, called Kenya’s national dairy master plan (Government of Kenya,

2010). Several initiatives such as the ’East Africa Dairy Development’ (EADD) pro-

gram, the ’Smallholder Dairy Commercialization Programme’ (SDCP) supported by the

’International Fund for Agricultural Development’ (IFAD) and the ’Kenya Dairy Sector

Competitiveness Program’ (KDSCP) supported by the ’United States Agency for Interna-

tional Development’ (USAID) are actively engaged in the development of the dairy sector

in East Africa. These initiatives are increasingly looking for development outcomes that

realise climate change mitigation benefits at the same time. A challenge to realise the

projected growth of the dairy sector is that to date, a large share of cattle diets consists

of low quality roughage from overstocked grazing land and crop residues (McDermott

et al., 2010). Improving feed quality is needed to increase milk yields (Lukuyu et al.,

2012). However, the conversion of land to grow higher quality fodder and the GHG emis-

sions resulting from land use change (LUC) may compromise expected reductions from

changes in feeding practices advocated in national policies (Valin et al., 2013). In addi-

tion, the shortage of arable land may constrain the implementation of feeding practices

that increase the demand for cropland.

This study aimed to answer the question: to what extent the improvement of feed qual-

ity and manure management may contribute to the milk productivity target of Kenya’s

national dairy master plan and to the national mitigation target (NDC) given the avail-

ability of arable land. The objectives were: i) to quantify total GHG emissions and

GHG emission intensities under current feed and manure management conditions, and

alternative feed intensification scenarios, including manure management, ii) to assess the

potential of these scenarios to meet the national targets and the biophysical feasibility to

implement the practices, and iii) to map total baseline GHG emissions, milk production,

and the potential changes for the dairy sector. Such analyses are relevant to inform the

development of climate mitigation policies.

3.2 Material and methods

3.2.1 Study area

The main dairy region of Kenya is characterised by rainfed (71 %) and irrigated (29 %)

mixed crop-livestock production systems covering the Central and Western highlands as

well as humid areas in the West of Kenya with an area of approximately 65,000 km2

and 24 counties (Appendix S3, Figure S3.1). The delineation of the study area was

based on (Herrero et al., 2014) who assessed smallholder development trajectories in

mixed crop-dairy production systems. Dairy production takes place in a region with high
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agricultural potential, where about 68 % of the total human population lives (Herrero

et al., 2014). Typical smallholder farms are small with an average size of 0.47 ha (Lowder

et al., 2014).

3.2.2 Calculating GHG emissions and milk production

The emission source categories (IPCC, 2006) included in this analysis are: CH4 emissions

from enteric fermentation, CH4 emissions from manure management, direct and indirect

N2O emissions from manure management, direct and indirect N2O emissions from man-

aged soils, and N2O and carbon dioxide (CO2) emissions from LUC converting grazing

land to cropland using data from Don et al. (2011) and Hengl et al. (2015). This study fol-

lowed the IPCC tier 2 approach for most categories. For a detailed description of emission

parameters see (Appendix S3, Table S3.1). All emission source categories were quantified

separately for dairy cattle using a classification of livestock production systems (LPS)

(Appendix S3, Figure S3.2): mixed rainfed system in arid areas (MRA), mixed rainfed

system in humid areas (MRH), mixed rainfed system in tropical highlands (MRH), mixed

irrigated system in arid areas (MIA), mixed irrigated system in humid areas (MIH) and

the mixed irrigated system in tropical highlands (MIT). This LPS classification, devel-

oped by Robinson et al. (2011), has been used to analyse different environmental and

economic aspects of livestock production (Thornton & Herrero, 2010; Herrero et al., 2013;

Rufino et al., 2014). GHG emissions that result from dairy concentrate supplementation,

including the cultivation of feed ingredients were calculated using an emission factor from

Weiler et al. (2014). This factor was used in a dairy life cycle assessment at farm level in

the Kenyan highlands, assuming that the concentrate ingredients originate from Kenya

and Uganda (Appendix S3, Table S3.1).

Conversion factors (expressed as CO2 equivalents) for CH4 and N2O were applied accord-

ing to the most recent global warming potentials (GWP) from the fifth assessment report

of the ’Intergovernmental panel on climate change’ (IPCC, 2014). GHG emissions are

reported as total GHG emissions and emission intensities. The later notion is expressed

on product basis and converted into kg CO2eq per kg fat and protein corrected milk

(FPCM). Both notions were selected to relate the mitigation potential of the scenarios to

the NDC target (total emissions) and to communicate efficiency gains for each scenario,

relevant for a NAMA (emission intensity).

3.2.3 The Livestock Simulator: LivSim

The dynamic production model ’LivSim’ was used to simulate milk yields, and faecal

and urine excretion for individual dairy cattle on a monthly basis (Rufino et al., 2009).

The ’HeapSim’ model, coupled with LivSim, was used to integrate the dynamics of ma-

nure decomposition during storage, including the nutrient losses, and manure application
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(Rufino et al., 2007). LivSim was extended with a GHG emission module to compute

GHG emissions from the different source categories (Appendix S3, Table S3.1) following

(IPCC, 2006). The models were run using the open source language for numerical com-

putations GNU Octave (v.4.0) (Eaton et al., 2015). Each run simulated a dairy cow over

the maximum lifetime of 13 years and was replicated 100 times for each LPS to account

for stochasticity in calving and mortality.

LivSim was calibrated with information derived from literature and feed datasets (Anindo

et al., 1994; Rufino et al., 2009; Katiku et al., 2011; Herrero et al., 2013; Weiler et al.,

2014; Castellanos-Navarrete et al., 2015), cattle breeds and emission parameters (Kategile

et al., 1987; Stares et al., 1991; IPCC, 2006; Monfreda et al., 2008; Rufino et al., 2009;

Potter et al., 2010; Herrero et al., 2013) representing the baseline conditions for each LPS

in Central and Western Kenya (Appendix S3, Table S3.1). Emission uncertainties were

estimated using a twofold approach. First, Latin hypercube sampling (LHS) (Xu et al.,

2005) was applied to the baseline simulations sampling the ranges of 23 emission parame-

ters. One parameter at a time was sampled through LHS while keeping all others constant

at the mean of their ranges (ten Broeke et al., 2016) (Appendix S3, Table S3.1). Second,

the emission uncertainties of the modelled scenarios were calculated one parameter at a

time sampling at the minimum and the maximum of the parameter ranges.

3.2.4 Spatial upscaling of GHG emissions and milk production

Spatially-explicit datasets on LPS and cattle density, at a spatial resolution of 1 x 1 km

per grid cell (Robinson et al., 2011, 2014), were used to upscale and to map output tables

of GHG emissions and milk production derived from LivSim (Figure 3.1). Since this

study focused on GHG emissions from dairy production, the density of dairy cattle was

calculated using sub-national county level data on cattle types excluding cattle used for

beef production (Government of Kenya, 2014). Moreover, herd composition data were

applied to reflect the proportion of productive and non-productive animals in dairy herds

according to Bebe et al. (2002). The spatial upscaling procedure was implemented using

the statistical computing language R (v. 3.2.3), including the R library ’raster’ (v. 2.5)

(Hijmans, 2016; R Core Team, 2016). Feeds were assumed to be grown locally within one

grid cell. Therefore, no transport emissions were included.
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Figure 3.1: Flowchart shows the model framework applied in this study consisting of a

dynamic livestock modelling approach to compute output tables of GHG emissions and milk

production. Subsequently, these tables were upscaled based on livestock production systems

and mapped using data on herd composition, cattle category and density.

3.2.5 Feed and manure management

Baseline feeds

Feed composition and quantity data used to model the baseline reflected typical diets for

dairy cattle kept by smallholders across the Kenyan highlands. Feed data were obtained

from Rufino et al. (2009), Katiku et al. (2011), Herrero et al. (2013), Weiler et al. (2014),

and Castellanos-Navarrete et al. (2015). Agro-climatic conditions present in the various

LPS used were taken into account leading to differences in dry matter intake (DMI).

Annual DMI ranged between 2,414 – 2,475 kg per tropical livestock unit (TLU). The

baseline diet was composed of native grass from grazing land (36 – 52 %), Napier grass

(Pennisetum purpureum) (24 - 42 %), maize stover (21 – 27 %), and dairy concentrate

(1 %) (Appendix S3, Table S3.2). Feed quality data, including quality differences due
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to seasonal variation were derived from Rufino et al. (2009) and from the ’Sub-Saharan

Africa feed composition database’ (Anindo et al., 1994).

Feed intensification scenarios

Feeds with high energy and protein density increase feed digestibility and milk yields

(Hristov et al., 2013a). Thus, using these feeds would reduce the demand for feeds from

the low productivity and low quality natural pastures. Dairy farming in Kenya relies

primarily on these natural pastures as main source of feed. Different regional estimates

show that 41 - 90 % of the dairy farmers use native grass as main feed resource (Katiku

et al., 2011; Lukuyu et al., 2011; Njarui et al., 2011). Feeds of high quality pass the rumen

faster, which reduces anaerobic fermentation and methanogenesis due to post ruminal

digestion and, thus, results in lower production of CH4 (Eckard et al., 2010; Knapp et al.,

2014). Highly degradable feedstuffs with high protein and starch contents reduce ruminal

pH and shift the fermentation process from acetate to propionate formation increasing the

consumption of H2, which is consequently unavailable for CH4 production (Dijkstra et al.,

2011; Soren et al., 2015). However, increased protein content in diets may cause higher N

excretion leading to potential trade-offs between CH4 and N2O emissions (Dijkstra et al.,

2011). Feed intensification scenarios developed in this study were based on plausible

strategies that can improve milk yields and reduce GHG emission intensities:

Improved forage quality (Fo): Increasing forage digestibility improves the efficiency of

milk production and can reduce CH4 emissions per unit FPCM ranging from 2.5 - 21 %

(Boadi et al., 2004; Knapp et al., 2014; Trupa et al., 2015). Napier grass is a perennial

fodder crop with higher quality than native grass and is widely grown as fodder crop by

dairy farmers in Kenya (Kariuki et al., 1999; Muia et al., 2001). It is estimated, that 21 -

93 % of the farmers plant Napier grass in the region (Katiku et al., 2011; Lukuyu et al.,

2011; Njarui et al., 2011). Hence, there is potential to increase the proportion of Napier

grass in the dairy diet (Lukuyu et al., 2012; Owen et al., 2012).

Feed conservation and increased grain content (Fe): Ensiling fresh fodder such as whole

maize plants is proposed as feed conservation strategy for dairy farmers to reduce feed

scarcity during the dry season (Lukuyu et al., 2012). CH4 emissions can be reduced by up

to 33 % per unit FPCM replacing grasses with maize silage (Boadi et al., 2004; Chagunda

et al., 2010; Brask et al., 2013). Increasing the proportion of grain in the diet leads to

higher starch concentration, lower fibre content and decreased ruminal pH, which reduces

methanogenesis and CH4 emissions per unit feed (Beauchemin et al., 2008; Dijkstra et al.,

2011). Crop residues such as maize stover are also commonly fed to dairy cattle by 33 -

100 % of the Kenyan dairy farmers (Katiku et al., 2011; Njarui et al., 2011). Since maize is

an important food crop, additional maize and arable land are required to produce silage

and to avoid compromising food security. The conversion of grazing land to cropland
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causes N2O and CO2 emissions, which are henceforth defined as emissions from LUC (de

Boer et al., 2011; Don et al., 2011).

Dairy concentrates supplementation (Co): Higher proportion of concentrates in the diet

especially during the first half of the lactation can increase milk productivity by 8 - 37 %

(Agle et al., 2010; Richards et al., 2016). Higher concentrate proportion in the diet,

replacing roughage can decrease CH4 emissions by 15 - 39 % (Chagunda et al., 2010;

Hristov et al., 2013b; Knapp et al., 2014). About 10 - 88 % of dairy farmers in Kenya

supplement dairy concentrates, although at very low rates (Katiku et al., 2011; Lukuyu

et al., 2011; Njarui et al., 2011).

Figure 3.2: Feed intensification scenarios based on combinations of three feed intensification

strategies at medium and high level of intensification (DMI = dry matter intake). Dairy

concentrates supplementation was increased during the first 150 days of lactation. For details

on the baseline diet, see Appendix (S3, Table S3.2)

The scenarios were derived through combinations of the three feed intensification strate-

gies (Figure 3.2) and are henceforth called: ’forage quality and concentrate supplementa-

tion’ (FoCo), ’feed conservation and concentrate supplementation’ (FeCo), ’forage quality

and feed conservation’ (FoFe), and ’forage quality, feed conservation and concentrate

supplementation’ (FoFeCo). Each scenario was developed at medium and high level of

intensification (Figure 3.2). For the Fo and Fe strategies, baseline feeds were replaced by
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25 % and 50 % with higher quality alternatives. The supplementation of dairy concen-

trates was increased for the Co strategy by 3 kg day-1 and 6 kg day-1 during the first 150

days of lactation.

Manure management

Direct and indirect N2O emissions result from nitrification and denitrification of ammo-

nium and nitrate contained in manure, the leaching of nitrate, and the volatilisation of

ammonia (NH3) (IPCC, 2006). Manure management can prevent the loss of N during the

storage. Manure that is rich in nutrients can be used to improve soil fertility and farm

productivity (Tittonell et al., 2009, 2010). Covering manure heaps can reduce leaching

and volatilisation and, thus, N2O and NH3 emissions by about 30 % and 90 % respectively

compared to uncovered heaps (Chadwick, 2005; Hou et al., 2015). However, CH4 emis-

sions can be increased due to anaerobic conditions (Montes et al., 2014). Covering heaps

is considered a feasible practice for smallholders in SSA compared to other options such

as the separation and cooling of slurry or anaerobic digestion (de Boer et al., 2011). It is

uncommon for smallholders to cover manure heaps (Tittonell et al., 2010), thus uncovered

heaps were assumed for the baseline (Appendix S3, Table S3.1). For all scenarios, the

covering of heaps reduced the baseline factor for direct N2O emissions by about 1 % for

arid LPS and by about 0.25 % in the humid and highland LPS. The volatilisation and

leaching fractions were lowered by 5 % and 10 % respectively, across LPS in relation to

the baseline (IPCC, 2006).

3.2.6 Scenarios, national targets and their biophysical feasibility

Feed intensification and manure management scenarios were analysed in terms of: i) milk

yield increases in relation to the dairy master plan target, ii) total GHG emission increases

and the NDC target, and iii) the demand for arable land. Scenario increases in milk yield

(Xi) were re-scaled (0 – 100 %) to the baseline milk yields (Xmin) and the projected relative

increase in milk yield per dairy cow between 2010 - 2030 (Xmax = dairy master plan target)

using equation (3.1). Scenario increases in total GHG emissions (Xi) were re-scaled (0 –

100 %) to the baseline total GHG emissions (Xmin) and the projected relative increase in

total GHG emissions between 2010 - 2030 (Xmax = national BAU scenario). The relative

GHG emission increase of the BAU scenario and the tolerable increase according to the

NDC target, which reduces the increase in total GHG emissions by 30 % in relation to

the BAU scenario, were calculated by following steps (1 – 5) in Appendix (S3).

V res =
(X i −Xmin)

(Xmax −Xmin)
× 100 (3.1)
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Vres = re-scaled scenario values of increases in milk yield (%) and total GHG emissions

(%)

Xi = original scenario values of increases in milk yield (%) and total GHG emissions

(%)

Xmin = minimum values derived from the baseline model for milk yield and total GHG

emissions representing 0 %

Xmax = maximum values derived from the dairy master plan and Kenya’s national BAU

scenario representing 124.1 % of milk yield increase and 95.9 % of total emission increase

between 2010 – 2030.

The biophysical feasibility of the scenarios was assessed comparing their demand for arable

land and its availability. Only current grazing land was considered suitable for the conver-

sion to grow Napier grass and maize, as the remaining forests in Kenya are protected and

the expected GHG emissions from deforestation would be high (Don et al., 2011; Carter

et al., 2015). A spatially-explicit dataset on current grazing land was used to analyse

the availability of arable land for dairy cattle (van Velthuizen et al., 2007). The demand

for cropland was calculated for each scenario based on the crop-specific feed intake per

cow, density of dairy cattle, and expected yields per feed type (Appendix S3, Table S3.3,

equations S3.1 & S3.2). The shortage of arable land was calculated for each scenario

based on the proportion of grid cells, throughout the study area, where the demand for

land exceeds the amount of grazing land available (minimum = 0 %, maximum = 100 %).

The multivariate measure of Euclidean distances was calculated (Crawley, 2007) to quan-

tify how close each scenario approaches the theoretical optimum for the three dimensions

included. The optimum is hereby defined as 100 % milk yield increase, 0 % total emission

increase and 0 % shortage of arable land.

3.3 Results

3.3.1 Effects of feed intensification and manure management on total GHG

emissions and emission intensities

Across all scenarios, the simulations showed an average increase in total GHG emissions

of 39.5 ±23.0 % (standard deviation, SD) per TLU compared to the baseline. The lowest

increase was shown for the FoCo scenario at medium level of intensification and the

highest increase was indicated for the FoFeCo scenario at high level of intensification.

The increase in total emissions throughout the scenarios was largely caused by higher

emissions from manure management (35.6 ±32.9 %), emissions from soils due to the

cultivation of feeds including concentrates (206.1 ±163.4 %), and LUC emissions resulting

from the conversion of grazing land to cropland (Figure 3.3A). The increase in emissions
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from these sources outweighed the reduction of CH4 emissions from enteric fermentation

(9.5 ±6.7 %) achieved through substituting low quality feed ingredients by higher quality

alternatives. This effect was most pronounced for scenarios that included maize silage at

high level of intensification. The reduction of CH4 emissions from enteric fermentation

achieved in these scenarios was 11.2 ±8.6 %, whereas the increase of N2O emissions from

feed cultivation (mainly dairy concentrates) was on average four times higher compared

to the baseline. Feed conservation caused on average three times higher CO2 emissions

from LUC compared to scenarios that did not include this strategy at high intensification

level. Throughout the scenarios, the covering of manure heaps reduced the increase of

related direct N2O emissions due to elevated N excretion on average by 77.0 ±1.0 % when

compared scenarios without this management option. Indirect N2O emissions from N

leaching and volatilisation (NH3) were on average reduced by 15.3 ±3.0 %.

Variability in emissions (shown by SD) among LPS for the baseline and scenarios ranges

between 1.6 - 5.1 % for CH4 emissions from enteric fermentation, 6.5 - 20.3 % for CH4

and N2O emissions from manure management, 2.1 – 23.8 % for soil emissions from feed

cultivation, and 6.2 - 13.7 % for LUC emissions. This variability resulted from differences

in feed quality across LPS (1 - 2 %) leading to variation in N excretion rates (2.3 - 28.3 %).

Differences between the yields for Napier and maize (6.6 - 12.9 %) also influenced the

demand for additional cropland among the LPS.

Four scenarios showed a decrease in emission intensities in relation to the baseline, namely

FoCo at medium (27.2 %) and high intensification (20.4 %), FoFeCo at medium intensifi-

cation (11.2 %), and FeCo at medium intensification (9.1 %) (Figure 3.3B). Scenarios that

included the use of silage, especially at high intensification level, did not reduce emission

intensities, largely due to high LUC emissions. Higher milk yields were achieved, yet

LUC emissions increased largely due to the conversion of cropland needed to grow addi-

tional maize. These emissions were on average ten times higher than those of the high

intensification scenario using Napier instead of silage, outweighing the reductions in CH4

emissions from enteric fermentation by 8.4 % ±6.2.
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Figure 3.3: For the baseline and scenarios (A) shows total GHG emissions per TLU (tropical

livestock unit) for different LPS (livestock production systems, Appendix S3, Figure S3.2) and

(B) indicates GHG emission intensities per kg FPCM (fat and protein corrected milk). CH4

and N2O emissions were converted to kg CO2eq. Barplots represent i) CH4 emissions from

enteric fermentation, ii) CH4 and N2O emissions from manure management, iii) N2O emis-

sions from soils, including manure deposition on pasture, manure application to fodder crops,

crop residues from fodder crops and fertiliser application to fodder crops and emissions from

concentrate supplementation, and iv) N2O and CO2 emissions from land use change (LUC),

including N mineralisation and loss of soil organic carbon. Error bars indicate standard devi-

ations of calculated total GHG emissions derived from Latin Hypercube Sampling (baseline)

and sampling the minimum and maximum of the parameter ranges (scenarios).
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3.3.2 National targets and biophysical feasibility of scenarios

Two scenarios met Kenya’s NDC target, increased milk yields considerably associated with

a marginal shortage of arable land throughout the study region (Figure 3.4). The FoCo

scenarios at medium and high level of intensification increased total GHG emissions by 3.6

and 12.6 % respectively. Taking into account the emission uncertainties, total emissions

increased by 13.7 and 24.3 % respectively at the upper 95 % confidence limit. For the

NDC, an increase of total emissions by 67.1 % by 2030 relative to the base year 2010

would be tolerable. Only 0.5 % (medium intensification) and 2.8 % (high intensification)

of the study region would not have enough arable land to implement these two scenarios.

Through productivity increases in the same scenarios, the projected annual milk yield by

2030, as targeted in Kenya’s dairy master plan was on average achieved by 38.3 – 40.5 %.

Euclidean distances to the theoretical optimum were also shortest for the FoCo scenarios

at medium and high level of intensification (Figure 3.4).
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Figure 3.4: Scenarios (filled circles) are shown in 3-dimensional space marked by the increase

in milk yield relative to the baseline and the milk yield target of Kenya’s dairy master plan (x-

axis), the increase of total GHG emissions in relation to the national BAU scenario of the NDC

(y-axis), and the shortage of arable land (z-axis). Colours show the Euclidean distance of each

scenario to the theoretical optimum (defined as 100 % milk yield increase, 0 % total emission

increase and 0 % shortage of arable land). The dark grey plane indicates the threshold of

tolerable total emission increases according to the NDC target. X and z-axes are cut at 50 %

to improve visualisation. Error bars reflect the range of relative emission increases due to the

overall uncertainty in emission parameters at 95 % confidence levels.

3.3.3 Baseline and mitigation scenarios at landscape level

Three Kenyan counties (Nyandarua, Uasin Gishu, and Kisii) within the dairy production

region show the highest total GHG emissions and milk production ranging between 1.3
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±0.5 – 1.6 ±1.2 t CO2eq ha-1 yr-1 and 0.6 ±0.2 – 0.7 ±0.5 t FPCM ha-1 yr-1 respectively

(Figure 3.5A - C). These counties have the highest densities of dairy cattle ranging from

0.7 ±0.5 – 0.9 ±0.6 TLU ha-1. Increases in total GHG emissions, milk production, and

the availability of grazing land were mapped for the two scenarios that complied with

Kenya’s NDC target and showed a marginal shortage of arable land (Figure 3.4), namely

FoCo at medium (Figure 3.5D - F) and high level of intensification (Figure 3.5G - I).

The total emission increases ranged between 3.4 ±3.3 - 12.1 ±4.5 %. Milk production

increases ranged between 47.6 ±7.2 - 50.2 ±5.6 %.
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Figure 3.5: Baseline results were mapped for (A) total GHG emissions from dairy production

and (B) milk production. Scenario changes relative to the baseline were mapped for increases

in (D, G) total emissions and (E, H) milk production. Maps (F, I) illustrate the availability of

arable land that could be converted to cropland required to grow additional maize and Napier

grass (red = shortage of arable land). Only the two scenarios that complied with Kenya’s

NDC target and showed the smallest shortage of arable land are indicated.
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The mean baseline emission intensity across LPS was 2.4 ±0.13 kg CO2eq kg FPCM-1.

Mean emission intensities decreased in relation to the baseline across LPS for the FoCo

scenarios at medium (30.6 ±1.7 %) and high level of intensification (25.7 ±1.6 %) ranging

from 1.7 ±0.03 to 1.8 ± 0.03 kg CO2eq kg FPCM-1 respectively (Figure 3.6).

Figure 3.6: Mean GHG emission intensity changes, relative to baseline model, of the two

scenarios that complied with Kenya’s NDC target. Bars represent the different LPS (Appendix

S3, Figure S3.2).

3.3.4 Uncertainties

Overall variability in total GHG emissions and emission intensities (pixel-based SD across

LPS) due to uncertainties in emission parameters was smallest for the baseline (±1.9 %)

and highest for the FoFe scenario at high level of intensification (±7.8 %) (Figure 3.3A

& B). The emission parameters used to quantify the baseline GHG emissions following

the IPCC methodology had different impact on the variability of emissions. The methane

conversion factor (Ym), with a range of 5.5 – 7.5 % was the parameter that showed the

strongest influence on the variation in baseline total GHG emissions with ±7.2 % relative

to the mean total GHG emissions across LPS (Appendix S3, Figure S3.3). The SOC

emission factor applied to calculate LUC emissions caused the largest uncertainty in total

GHG emissions of the FoFe scenario at high intensification level. Total GHG emissions
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varied by ±47.5 % across LPS (Appendix S3, Figure S3.4). Uncertainty in livestock

densities (expressed as mean SD across LPS) had the largest effect on CH4 emissions

from enteric fermentation (Figure 3.5). The smallest effect was indicated for the baseline

(±1.8 %), whereas the largest was shown for the FoFe scenario at high intensification level

(±4.4 %). The mean SD of milk production was lowest for the baseline (±1.8 %) and was

highest for the FoFeCo scenario at high intensification level (±4.2 %).

3.4 Discussion

3.4.1 Baseline emission intensities and mitigation potential of scenarios

In this study, the mean baseline emission intensity was 2.4 ±0.13 kg CO2eq kg FPCM-1

per grid cell. Most recent estimates for smallholder dairy production in Kenya report

similar emission intensities ranging from 2.4 - 3.1 kg CO2eq kg milk-1 for semi-intensive

and extensive production (Government of Kenya, 2017b). Emission intensities derived

from life cycle assessments calculated for smallholder farms across the Kenyan highlands

range from 1.8 - 2.0 kg CO2eq kg milk-1 for free grazing farms (Weiler et al., 2014; Udo

et al., 2016). Baseline emission intensities calculated in this study were within the range

estimated in other studies for Kenya. Emission intensities can vary due to different feed

quality values used to calculate CH4 emissions from enteric fermentation and manure

management based on the IPCC tier 2 methodology (IPCC, 2006). For this study, these

values were obtained from the East-African feed database and literature (Anindo et al.,

1994; Rufino et al., 2009).

Total GHG emissions were higher for all scenarios in relation to the baseline, with the

lowest increases of 3.4 - 12.1 % for the FoCo scenarios at medium and high level of

intensification respectively. However, the reduction of emission intensities by 30.6 % (1.7

±0.03 kg CO2eq kg FPCM-1) and 25.7 % (1.8 ±0.03 kg CO2eq kg FPCM-1) was achieved

through improvements in forage quality by increasing the proportion of Napier grass in the

diet and through supplementing dairy concentrates during early lactation. In addition,

emission intensities were reduced by covering manure heaps. The overall reduction of

N2O emissions from manure management by 68 % is in line with the reduction potential

reported in the literature on management of cattle manure (Chadwick, 2005; Hou et al.,

2015). Mottet et al. (2016) estimated the potential to reduce emission intensities by up

to 14 % through the improvement of feed quality alone in East Africa at a regional scale.

Bryan et al. (2013) reported a potential to reduce emission intensities (CH4 emissions

only) by up to 60 % through the increase of feed quality in a modelling study covering

highland areas in Kenya, yet omitting likely emissions from LUC. With reductions of 26

– 31 %, this study ranks moderately compared to these findings, yet is more robust as

detailed feed data and LUC emissions were included.
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The FoCo scenarios at medium and high intensification level led to relatively high achieve-

ment rates of the national dairy master plan target (Government of Kenya, 2010), increas-

ing milk yields by 38.3 and 40.5 % respectively. These scenarios led to the lowest increase

in total GHG emissions by 3.4 and 12.1 % respectively, complying with the NDC target

(Government of Kenya, 2015a), while facing the smallest shortage of arable land across

the dairy region (0.5 and 2.8 % respectively) (Figure 3.4). Thus, these two scenarios

present the lowest trade-offs between national level targets.

3.4.2 Synergies from implementing the most beneficial mitigation sce-

nario

Average milk yield increases of the two FoCo scenarios were 47.6 – 50.2 % higher than

the baseline, which are modest increases compared to estimates by (Rufino et al., 2009)

of 63 - 79 % for single dairy cows fed with similar diets. Experimental studies conducted

in Kenya estimated gains in milk yield of 37 % and 63 % supplementing 3 kg day-1 and

7.8 kg day-1 of dairy concentrates during lactation (Moran, 2005; Richards et al., 2016).

Growing Napier grass can have further positive effects on farm productivity for instance

as effective vegetative barriers preventing soil erosion and nutrient losses (Owino et al.,

2006; Guto et al., 2011). In addition, Napier grass can be a lucrative feed alternative.

Compared to diets of lower quality, Napier increased the net revenue for milk production

in Central and Western Kenya most at medium intensification level (by 0.08 – 0.12 USD l

milk-1) (Bryan et al., 2013). A medium level of intensification was also the most profitable

choice (573 USD yr-1) for smallholder dairy farmers when compared to low and high

intensification levels (473 and 360 USD yr-1 respectively) (Bebe et al., 2002). Dairy

concentrates are relatively expensive for smallholders, which seems to be the reason for

low adoption rates associated with fluctuations in milk prices (Lukuyu et al., 2011; Owen

et al., 2012). Therefore, the FoCo scenario at medium intensification would be the most

viable, with lower adoption barriers due to relatively high gains in milk yield, and lower

financial risks for smallholders compared to the high intensification scenario.

3.4.3 Supporting the development of sectoral and national mitigation

plans

As quantified in this study, the total land use based GHG emissions from dairy production

in Kenya represent 12.9 % of the total emissions from the agricultural sector. Agriculture

is the largest contributor to GHG emissions in Kenya, totalling 30 Mt CO2eq in 2010

(Government of Kenya, 2015b), which emphasises the significance of sectoral mitigation

actions. Kenya’s national mitigation target defined in the NDC sets the scene for mitiga-

tion actions such as a dairy NAMA (Government of Kenya, 2017b). The findings of this

study fill several knowledge gaps. First, it provides for the first time transparent quantifi-



3.4 Discussion 61

cations of baseline emissions and milk yields and changes in emissions and productivity

resulting from intensification scenarios at a sectoral scale. Increases in productivity of

smallholder dairy farms through feeding practices is one of the main objectives of Kenya’s

dairy NAMA (Government of Kenya, 2017b). This study identified promising mitiga-

tion practices such as the improvement of forage quality and supplementation of dairy

concentrates at medium intensification level. Second, the mitigation potential of specific

practices was assessed against the NDC, enabling an evaluation of their performances to

contribute to national mitigation targets. Demonstrating the technical potential of certain

practices to fulfil mitigation and productivity targets opens the door for climate financing

schemes that require reliable estimates to monitor the achievement of targets (Govern-

ment of Kenya, 2010, 2015a). Building a business case to finance climate mitigation, e.g.

through NAMAs, requires quantitative information about the mitigation potential and

productivity gains of specific practices in regions where these practices are feasible and an

evaluation of inherent uncertainties (Grassi et al., 2017) as provided by this study. Third,

considering changes in land availability and demand for land resulting from mitigation

actions before their actual implementation is crucial to achieve effective mitigation. That

is minimising the risk of negative spillover effects such as GHG emissions from indirect

LUC. GHG emissions from the conversion of arable land required to grow additional high

quality feeds can be substantial (Figure 3.3). Increasing the grain content in cattle di-

ets, e.g. through ensiling maize can compromise the effective mitigation potential of feed

intensification due to the relatively high demand for additional cropland.

Information provided by this study is required for ’Measurement, Reporting and Verifi-

cation’ (MRV) of agricultural mitigation actions and could guide the targeting of specific

practices at the sub-national level (Lipper et al., 2011). For instance, the baseline emis-

sions mapped in this study could aid in prioritising pilot projects in areas (e.g. counties)

that show the highest total emissions (Figure 3.5).

3.4.4 Climate-smart options that increase the mitigation potential for

Kenya’s dairy sector

At herd level, emission intensities can be reduced through improved reproduction such

as lowering the proportion of unproductive animals by artificial insemination (Hristov

et al., 2013a; Knapp et al., 2014). Vaccination programmes ameliorate animal health,

lower mortality rates and increase lifetime productivity of cattle (Mottet et al., 2016).

De-stocking of animals with low productivity and replacement by breeds showing higher

productivity would, in conjunction with improved feed management, decrease emissions

and maintain or increase production (Herrero et al., 2016). Low productivity due to nu-

trient depleted soils is common in Kenya (Tittonell et al., 2009). Improving the retention

and recycling of available nutrients through the management of manure and application

to soils as organic fertiliser is important to sustain soil fertility and to increase crop yields
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(Rufino et al., 2007; Tittonell et al., 2010; Castellanos-Navarrete et al., 2015). Covering

manure heaps, included in this study, is one option to minimise the loss of N during the

manure storage phase (de Boer et al., 2011). In addition, the combination of organic

and mineral fertiliser is proposed to compensate relatively small amounts of available

animal manure in smallholder dominated production systems (Tittonell et al., 2010). A

modelling exercise at global scale demonstrated that closing yield gaps could reduce LUC

emissions, including deforestation, in Africa effectively outweighing potential increases in

N2O emissions associated to fertiliser application (Valin et al., 2013).

3.4.5 Uncertainty implication and data limitations

In this study, the methane conversion factor (Ym) was the largest source of uncertainty

for CH4 emissions from enteric fermentation in the baseline. Data from laboratory mea-

surements on cattle breeds and feeds managed under conditions that represent tropical

production systems, especially from SSA, are required to derive improved estimates. Feed-

ing trials on native cattle breeds from Kenya, currently conducted by the International

Livestock Research Institute (ILRI) to estimate CH4 emissions from enteric fermentation

are promising efforts (Pelster et al., 2016). The loss of SOC due to the conversion of

grazing land to cropland for additional feed crops influenced the uncertainty of scenario

emissions most. High impact of LUC on total emissions due to the production of feeds

by up to 877 % were shown by van Middelaar et al. (2013). Dynamic land use models

simulating soil-vegetation dynamics in response to LUC could reduce the uncertainty.

However, a comprehensive parameterisation based on empirical data is required, which

might prove difficult in data deficient regions such as SSA (Kim et al., 2016). Cattle

density data were an additional source of uncertainty for upscaled emissions and milk

production since the spatially-explicit dataset was derived from predictive modelling to

match a very high resolution at sub-county level (Robinson et al., 2014). More detailed

census data at sub-location level could reduce the related uncertainty in cattle densi-

ties. Feed intensification scenarios can be further improved by more comprehensive feed

quality information, including empirical data on pastures and fodder trees. This would

allow exploring alternative feed strategies and scenarios such as improved pasture and

silvopastural management options.

3.5 Conclusions

This study demonstrated that specific farm-level practices focusing on feed intensification

and manure management can improve the efficiency in smallholder dairy production by im-

proving productivity significantly while increasing total GHG emissions only marginally.

At the same time, these practices can contribute to national targets reducing the impact
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of the agricultural sector on the climate system and safeguarding food security through

sustainable intensification in dairy production. Quantitative spatially-explicit estimates

showing ’win-win’ situations resulting from gains in agricultural productivity and climate

change mitigation at sub-national level are crucial to implement climate change policies

successfully. Assessing demand for land due to the intensification of feed production is

essential to obtain realistic estimates of how effective certain mitigation practices are at

landscape scale and to support tailor-made, location-specific mitigation planning at sub-

national level. Otherwise, mitigation planning could neglect the risk of GHG emissions

from LUC triggered by feed intensification, outweighing potential gains from promising

practices. Governments and the private sector could design financing instruments for

farmers that seek to increase milk yields in compliance with mitigation targets through

feed intensification and manure management using the findings of this study.
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Abstract

Increasing demand for food and the shortage of arable land call for sustainable intensifi-

cation of farming, especially in Sub-Saharan Africa where food insecurity is still a major

concern. Kenya needs to intensify its dairy production to meet the increasing demand

for milk. At the same time, the country has set national climate mitigation targets and

has to implement land use practices that reduce greenhouse gas (GHG) emissions from

both agriculture and forests. This study analysed for the first time the drivers of forest

disturbance and their relationship with dairy intensification across the largest montane

forest of Kenya. To achieve this, a forest disturbance detection approach was applied

by using Landsat time series and empirical data from forest disturbance surveys. Farm

indicators and farm types derived from a household survey were used to test the effects of

dairy intensification on forest disturbance for different farm neighbourhood sizes (r = 2 – 5

km). About 18 % of the forest area was disturbed over the period 2010 – 2016. Livestock

grazing and firewood extraction were the dominant drivers of forest disturbance at 75 % of

the forest disturbance spots sampled. Higher on-farm cattle stocking rates and firewood

collection were associated with 1 – 10 % increased risk of forest disturbance across farm

neighbourhood sizes. In contrast, higher milk yields, increased supplementation with con-

centrated feeds and more farm area allocated to fodder production were associated with 1

– 7 % reduced risk of forest disturbance across farm neighbourhood sizes. More intensified

farms had a significantly lower impact on forest disturbance than small and resource-poor

farms, and large and inefficient farms. The results show that intensification of smallholder

dairy farming leads to both farm efficiency gains and reduced forest disturbance. These

results can inform agriculture and forest mitigation policies which target options to reduce

GHG emission intensities and the risk of carbon leakage.
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4.1 Introduction

Poor management of agricultural land and forests leads to deforestation and land degra-

dation worldwide. The expansion of smallholder agriculture is one of the main drivers

of deforestation in Sub-Saharan Africa (SSA) (Hosonuma et al., 2012). Such unsustain-

able land uses cause greenhouse gas (GHG) emissions and affect adversely ecosystem

services such as soil carbon (C) sequestration and biodiversity (Barlow et al., 2016; Her-

rero et al., 2016; Grassi et al., 2017). Rising human population in many SSA countries has

increased the demand for food and reduced the availability of arable land (Carter et al.,

2018b). Thus, climate-smart practices are required to intensify production on smallholder

farms sustainably, which improve food security and contribute to climate change mitiga-

tion.

Recently, an intensification trend of smallholder farming has been documented for the East

African highland regions, particularly in Kenya (Herrero et al., 2014). However, in the

past large parts of the Kenyan montane forests have been converted to agricultural land.

Remaining forests are threatened by ongoing anthropogenic disturbance causing GHG

emissions from forests. The ’land use, land use change and forestry’ (LULUCF) sector

contributes about 38 % to total GHG emissions in Kenya (Government of Kenya, 2015b).

Three quarters of forest-related GHG emissions result from small-scale forest disturbances

such as fuelwood extraction, selective logging and wildfires (Pearson et al., 2017). Thus,

mitigation efforts to effectively reduce these emissions are required. Kenya has committed

to the United Nations framework convention on climate change (UNFCCC) defining mit-

igation targets in its nationally determined contribution (NDC) (Government of Kenya,

2015a). However, mitigation planning at national level is separated in land use sectors,

i.e. agriculture and forests, which is likely to render the reduction of GHG emissions in-

effective. Quantifying the relationship between agricultural land use practices and forest

disturbance could be used to develop integrated mitigation approaches that minimise the

risk of spillover effects such as C leakage (Minang & van Noordwijk, 2013).

The Mau Forest located in the Kenyan highlands is the largest remaining montane forest

complex in East Africa. The forest plays an important role as water tower for the whole

region as it is the headwater area for 12 major rivers supplying freshwater to about

five million people (Jacobs et al., 2017). The unsustainable use of the forest leads to

disturbances that impair ecosystem services such as C storage, freshwater supply and

biodiversity (Kinyanjui, 2011). To date, forest disturbance and its main drivers have not

yet been quantified or characterised, neither for Kenya’s forests nor for the Mau Forest,

in particular.

The Mau region is dominated by smallholder crop-livestock production (Robinson et al.,

2011). Smallholders throughout the highlands commonly engage in dairy farming con-

tributing about 80 % to Kenya’s total milk production (Udo et al., 2016). Increasing the
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productivity of smallholder dairy farming throughout East Africa is promoted by several

agricultural development programs to meet the demand for dairy products (Government

of Kenya, 2010). Sustainable intensification of agricultural production is urgently required

to improve the livelihood of smallholder farmers and is often reported as a promising mea-

sure to achieve climate mitigation targets (Campbell et al., 2014; Vanlauwe et al., 2014;

Ortiz-Gonzalo et al., 2017). Human presence in landscapes that were formerly domi-

nated by forests has been linked to changes in forest cover in SSA (Sassen et al., 2013;

Ryan et al., 2017). However, an assessment of local human activities and their effects on

adjacent forests is missing. A quantitative analysis of the relationship between specific

practises of smallholder dairy farming and forest disturbance is needed to assess whether

intensification is sustainable beyond individual farms. This analysis is also needed and

highly relevant for other montane regions in East Africa that share comparable farming

and forests systems and are exposed to similar pressures due to the increasing demand

for food.

Intensification of smallholder dairy farming includes changes in cattle management e.g.

feeds and breeds which have the potential to increase milk production (Rufino et al.,

2009) and to reduce GHG emissions per unit of product (Herrero et al., 2016; Udo et al.,

2016). To date, there are no comprehensive studies on the effects of intensification in

smallholder dairy farming on adjacent forests, which can undermine the climate change

mitigation effect of the farming practices promoted (Brandt et al., 2018b). This study

aims to answer two questions. First, what are the dominant anthropogenic drivers of

forest disturbance across the Mau Forest? Second, what is the intensification effect of

smallholder dairy farming on forest disturbance? The approach applied to answer these

questions involved i) the quantification of forest disturbance and the characterisation of

the dominant drivers using a spatially-explicit framework to detect forest disturbance

based on a Landsat time series and forest disturbance surveys and ii) the estimation of

intensification effects of smallholder farms on forest disturbance based on empirically-

derived farm indicators and farm types.

4.2 Material and methods

4.2.1 Study area

The Mau Forest is located in the Western highlands of Kenya (Figure 4.1) and repre-

sents the largest remaining Afromontane forest in the country covering about 400,000 ha

(Kinyanjui, 2011). It primarily consists of broadleaf tree species and bamboo forests, the

latter in regions above 2400 m (Ng’Eno, 1996). Large parts of forest have been converted

to agricultural land due to favourable biophysical conditions such as high annual precip-

itation and well drained soils. The region is characterised by high densities of human



4.2 Material and methods 69

and livestock populations (Herrero et al., 2014; Robinson et al., 2014). Apart from small-

holder crop-livestock production systems there are large-scale tea plantations (Baldyga

et al., 2008; Jacobs et al., 2017). The Mau Forest is used for fuelwood, for livestock grazing

and for timber production, which is mainly harvested from tree plantations (Government

of Kenya, 2009b; Olang et al., 2011).

Figure 4.1: The study area of the Mau Forest complex in Kenya. Circles and letters indicate

sampling sites selected to conduct farm and forest disturbance surveys: A) South Nandi Forest,

B) Western Mau Forest, C) Eastern Mau Forest, D) South West Mau Forest, E) Transmara

Mau Forest, and F) Maasai Mau Forest.
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4.2.2 Analysis approach

The approach followed in this study is shown in (Figure 4.2). First, remote sensing data

were acquired and pre-processed. Data on farm practices and forest disturbance were

obtained through field surveys (Section 4.2.3). Second, forest disturbance was detected

from remote sensing data using the ’Space Time Extremes and Features’ (STEF) algo-

rithm (Hamunyela et al., 2017) (Section 4.2.4). Third, farm indicators and farm types

were derived from farm survey data (Section 4.2.5). Fourth, the effects of farm indicators

and farm types on forest disturbance intensity were modelled by using generalised linear

mixed effect models (GLMMs) (Section 4.2.6).
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Figure 4.2: Flowchart of analysis steps followed in this study. Dark boxes represent data

inputs from remote sensing and field observations. NDMI = Normalised Difference Moisture

Index, STEF = Space Time Extremes and Features approach, GLMMs = Generalised Linear

Mixed Effect Models.

4.2.3 Acquisition and pre-processing of data

Remote sensing data

All available terrain-corrected (L1T) multi-spectral satellite images (n = 639) acquired by

Landsat 5-TM, Landsat 7-ETM+, and Landsat 8-OLI sensors (Figure 4.2, step 1) from
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January 2005 to December 2016 were downloaded from the United State of America’s

Geological Survey (USGS) Earth Explorer platform. The ’Normalised Difference Moisture

Index’ (NDMI) (Jin & Sader, 2005) was computed from each image. NDMI is sensitive

to changes in canopy moisture. It was chosen as it is known to discriminate well changes

in tropical wet forests (DeVries et al., 2015a). NDMI was used to study small-scale

disturbance in another Afromontane forest (DeVries et al., 2016). Clouds and cloud

shadows were masked using the ’cmask’ algorithm (Zhu et al., 2015).

A benchmark forest mask was created (Figure 4.2, step 1) to constrain the forest distur-

bance detection algorithm to forested areas. Clouds and cloud shadows were masked in

the available Landsat spectral band images from 2009. Gaps were filled by mosaicking

the images. A random forest model (Breiman, 2001) was trained to classify the study

area into forest and non-forest regions using all Landsat spectral bands as predictors. The

model was trained on randomly sampled polygons maintaining equal sample sizes (n = 40)

for both classes each containing at least 10000 Landsat pixels. This training dataset was

obtained by visual interpretation of very high resolution Google Earth imagery. Forest

patches smaller than 0.5 ha were excluded from the forest mask to satisfy the minimum

forest area criterion of the ’Food and Agriculture Organisation’ (FAO) of the UN forest

definition (FRA, 2000).

A time series dataset of all pre-processed NDMI images was created. In addition, tree plan-

tation data (Government of Kenya, 2015c; Jacobs et al., 2017) were used to exclude forest

plantation areas from the forest disturbance analysis. Monthly fire alert data (Giglio,

2015) from the ’Moderate Resolution Imaging Spectroradiometer’ (MODIS, MCD14ML)

were used to determine the extent and proportion of burnt forests over the monitoring

period.

Seasonal variability influences vegetation dynamics across the study area leading to fluc-

tuating spectral signals which impair the accuracy of forest disturbance detection algo-

rithms (Hamunyela et al., 2016b). A local spatial normalisation approach (Hamunyela

et al., 2016a, 2017) was used to reduce the effect of seasonality in the NDMI time series

(Figure 4.2, step 2). The normalisation procedure was applied on each NDMI image in

the time series prior forest disturbance detection. The local neighbourhood was defined

using a spatially-moving window with a size of 15 x 15 Landsat pixels. Each centre pixel

within the window was divided by the 95th percentile computed from pixel values within

the window (Hamunyela et al., 2016b). A 15 x 15 pixel window was deemed sufficient

because forest disturbances in the study area occur at small-scale.

Field data

Two field surveys were conducted between November and December 2016 to collect infor-

mation about smallholder farms (farm survey) and forest disturbance (forest disturbance
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survey) in adjacent forests by using ’Open Data Kit’ (ODK) questionnaires (Figure 4.2,

step 3 & 4). Sampling sites for each survey were selected based on a stratified sampling

design using spatially-explicit datasets on cattle density (Robinson et al., 2014) and forest

loss (Hansen et al., 2013). Forest loss data were converted to forest disturbance density by

using the kernel density tool in ArcGIS 10.3. Cattle and forest disturbance densities were

reclassified based on quantile splits to derive six combinations of sampling strata rang-

ing from low cattle and forest disturbance density to high cattle and disturbance density

(Appendix S4, Figure S4.1). Circular sampling sites (radius = 5 km) were placed into the

sampling strata derived. Furthermore, by ensuring a forest cover of 50 % in each site and

by excluding tree plantations (Figure 4.1), the number of sampling sites was constrained,

which led to the selection of the following areas: A) South Nandi Forest (n = 37 farms

and m = 36 disturbance spots sampled), B) Western Mau Forest (n = 39, m = 30), C)

Eastern Mau Forest (n = 34, m = 32), D) South West Mau Forest (n = 35, m = 44),

E) Transmara Mau Forest (n = 39, m = 45), and F) Maasai Mau Forest (n = 32, m =

34). A minimum sample size of 30 farms and 30 forest disturbance sports per site was

targeted. Often, additional farm and forest disturbance data could be obtained.

The farm survey was conducted to gather information on cattle numbers, milk yields, feed

types, farm area allocated to fodder production, farm size, and amount of firewood col-

lected from the forest. Farms were sampled based on locations randomly selected within

each sampling site (n = 216). The forest disturbance survey characterised disturbance

spots sampling randomly forest loss pixels derived from Hansen et al. (2013) that were

still forest according to the forest mask created (n = 221) to avoid the sampling of defor-

ested land. During this survey, information on disturbance types such as cattle grazing,

firewood extraction, wildfires, and charcoal burning was collected. In this analysis, forest

disturbance is defined as negative change in canopy cover over time directly or indirectly

induced by anthropogenic activities. A detailed list of variables collected during the sur-

veys is available in the supplementary information (Appendix S4, Table S4.1 & S4.2). The

field data gathered from this forest disturbance survey were used, in combination with

additional forest disturbance data collected during a previous forest disturbance survey

(n = 127). The later survey was conducted in the Mau Forest between March and April

2016 (Bewernick, 2016), to validate an earlier forest disturbance detection in a sub-region

of the study area.

4.2.4 Forest disturbance detection, calibration and classification

Forest disturbances were detected by using the STEF algorithm (Hamunyela et al., 2017).

STEF detects forest disturbances as extreme events in local data cubes of satellite-derived

time series (Figure 4.2, step 2). A local data cube was defined around each pixel contain-

ing both spatial and temporal extents which are user-defined (Hamunyela et al., 2017).

The temporal extent corresponded to the full length of the NDMI time series. A moving
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spatial window of 9 x 9 Landsat pixels was used as the spatial extent of the local data

cube. STEF takes the spatio-temporal context of an observation into account to reduce

the sensitivity to data noise, e.g. introduced by cloud remnants increasing the algorithm’s

accuracy (Hamunyela et al., 2016b, 2017). Extreme events are identified as abnormally

low observations in the monitoring period, by using an extreme value approach (Zscheis-

chler et al., 2013). A pixel was considered abnormally low if its value was below the

threshold computed from spatio-temporal observations in the history period of the local

data cube. The history period of the time-series analysis was defined from 2005 - 2009

and the monitoring period was set to 2010 - 2016. Following an application of STEF on

Afromontane forests in Ethiopia (Hamunyela et al., 2017), the 5th percentile was chosen

as the anomaly threshold. A pixel was flagged as potentially disturbed if the algorithm

detected two consecutive anomalies in the monitoring period. Once consecutive anomalies

are detected, STEF extracts 17 space-time features from the local data cube (Hamunyela

et al., 2017). The features include information on the proximity of the extreme event to

forest edges, existence and number of anomalies in the neighbourhood of the pixel where

the extreme event is detected, and the spatial variability across the local data cube at

the time step where a potential forest disturbance is detected (Hamunyela et al., 2017).

These space-time features were subsequently used to confirm forest disturbances.

Forest disturbance was confirmed by first calculating the probability for forest disturbance

by using the extracted space-time features as predictors of forest disturbances (Hamunyela

et al., 2017). The probability of disturbance was calculated by using a trained random

forest model. Random forest classifiers have the advantage to be of non-parametric nature

and can handle many predictors without overfitting (Breiman, 2001). The random forest

model was trained by using a calibration dataset (n = 204) acquired through visual

interpretation of multispectral Landsat images (Figure 4.2, step 3), complemented by very

high resolution imagery available in the Google Earth, based on methodology proposed

by Cohen et al. (2010). A stratified random sampling design was used to derive the

calibration data. The magnitude of change, which is one of the features extracted by

STEF indicating the deviation between detected anomaly and the 95th percentile of the

history distribution, was used to stratify the map of potential disturbances, produced from

STEF. The magnitude of change was sampled randomly along the quantiles to derive four

strata ranging from high to low magnitude.

Moreover, ground-truth data (n = 348) from forest disturbance surveys (Section 4.2.3)

were used to determine the optimal probability threshold (P) (Figure 4.2, step 3). A series

of probability thresholds, ranging from 0 to 1 at an interval of 0.01 was created. Each

probability threshold was used to classify the probability values derived for the ground-

truth data into disturbed and undisturbed forest while calculating user’s accuracy (UA

= inverse of commission error) and producer’s accuracy (PA = inverse of omission error).

The probability threshold that indicated the lowest area bias, which is the minimum

trade-off between commission and omission error was used to generate the final forest
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disturbance map (DeVries et al., 2015b; Hamunyela et al., 2017).

4.2.5 Defining farm types

Field data derived from the farm survey were used to cluster farms (Figure 4.2, step 4)

into distinct types based on indicators that reflected differences in the degree of intensi-

fication and which were expected to influence the effect of dairy farming on the forest.

Indicators chosen to cluster the farms were: number of cattle, milk yields, proportion of

grass from on-farm pastures in the diet, farm area allocated to fodder production, quan-

tity of feed concentrates supplemented, farm size, and amount of firewood collected. A

correlation analysis was conducted prior to the clustering to exclude highly correlated

variables (Spearman’s rho >= 0.7). The k-means partitioning algorithm was applied in

R to cluster the farms, after farm indicators were standardised, by using the Euclidean

distance measure (R Core Team, 2016). The number of farm types was determined vi-

sually based on the drop in intra-cluster variation as a function of increasing numbers of

clusters (Kassambara, 2017). In addition, farm types were tested regarding differences in

elevation and market access by using an elevation dataset (’Shuttle Radar Topography

Mission’, SRTM) and a proxy dataset indicating travel time to cities with more than

50.000 inhabitants (Jarvis et al., 2008; Uchida & Nelson, 2009). This analysis enabled an

interpretation of how the remoteness of farms affects intensification of smallholder dairy

production.

4.2.6 Modelling the effects of farms on forest disturbances

Using the ’raster’ package in R (Hijmans, 2016), circular distance buffers with radiuses

of 2, 3, 4, and 5 km were created around recorded farm centroids, henceforth called farm

neighbourhoods (Figure 4.2, step 4). The neighbourhood sizes were deemed to be appro-

priate to study the effects of local farm practices and characteristics on forest disturbance

in forests adjacent to smallholder farms based on field observations and interviews with lo-

cal forest rangers from the Kenyan Forest Service. The different neighbourhood sizes were

chosen to assess the sensitivity of farm-related effects on forest disturbance over discrete

changes of neighbourhood sizes through a sensitivity analysis. Two different response

variables were generated. First, the proportion of forest disturbance pixels within each

farm neighbourhood was calculated by dividing the number of these forest pixels by the

total number of forest pixels. The proportion of forest disturbance pixels were used as a

measure of ’disturbance intensity’. Second, forest disturbance sampled and characterised

during the forest disturbance survey were counted within farm neighbourhoods to model

farm effects on specific forest disturbance types.

GLMMs were used by applying the ’lme4’ package in R (Bates et al., 2015) to model

the association between farm characteristics and forest disturbance intensities. The as-
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sociations were interpreted as driver-response relations, that is, farm characteristics were

assumed to influence disturbance intensities. Farm indicators, farm types, and farm dis-

tances to the closest forest edge were included as fixed effects (explanatory variables).

A categorical variable, which represented the sampling sites was included as a random

effect. Binomial and Poisson GLMMs were run for the proportional disturbance intensity

and the counted forest disturbance types derived from forest disturbance detection and

survey data, respectively. Different GLMMs were run for each farm neighbourhood size

separately (Figure 4.2, step 4). Model evaluation and selection was based on the Akaike

information criterion (AIC) by applying likelihood ratio tests (Zuur et al., 2009). The

model candidates that showed the lowest AICs were chosen.

To understand the effects of farm indicators on forest disturbance intensity derived from

the binomial GLMMs, a relative risk measure was used. The relative risk quantifies the

likelihood of an outcome (forest disturbance intensity), as a result of exposure to specific

treatments such as farm practices and farm characteristic represented by chosen indicators

(Akobeng, 2005). The effects of interactions between farm types and farm distances to

the closest forest edges were explored to show potential differences of farm type effects

along a farm distance to forest gradient on forest disturbance intensity. To characterise

the influence of farm types on certain types of forest disturbance, modelled farm type

effects on forest disturbance types observed during the survey are shown.

4.3 Results

4.3.1 Forest disturbance across the Mau Forest

A lowest area bias of 0.7 % was achieved at P = 0.39 where the UA was 77.9 % and the

PA was 78.6 % (Appendix S4, Figure S4.2). Hence, the threshold of 0.39 was chosen as

the probability threshold to classify each forest pixel into disturbed and non-disturbed

forest.

In total, 17.7 % of the forested land was found to be disturbed between 2010 and 2016. The

intensity of forest disturbance varied across the Mau Forest complex with the largest im-

pacts in central and southern forest regions (Figure 4.3). Forest disturbance also strongly

differed between sampling sites. The proportions of disturbed forest detected at the

Western Mau Forest (42.4 %) and the Maasai Mau Forest (17.0 %) were the largest (inset

Figure 4.3). With 3.9 %, the South Nandi Forest had the smallest proportion of disturbed

forest.
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Figure 4.3: Forest disturbance mapped for 2010 to 2016 across the Mau forest. Circles

indicate sampling sites for the field surveys: A) South Nandi Forest, B) Western Mau Forest,

C) Eastern Mau Forest, D) South West Mau Forest, E) Transmara Mau Forest, and F)

Maasai Mau Forest. Inset bar plot shows proportions of disturbed forest area that was burnt

and unburnt for each sampling site.

4.3.2 Dominant drivers of forest disturbance across sampling sites

Firewood extraction and cattle grazing inside the forest were the most dominant drivers

of forest disturbance at all six sampling sites. Firewood extraction was observed at 76 %

and cattle grazing at 75 % of all disturbance spots visited. Burnt tree stems were observed
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on 31 % of all spots sampled at four sampling sites, suggesting wildfires are an important

driver of disturbance. Wildfire events observed on the ground were confirmed by MODIS

fire alert data for three of the six sampling sites, detecting wildfires at the Western Mau

Forest, Eastern Mau Forest, and Maasai Mau Forest at 25.6 %, 1.5 %, and 0.4 % of the

forested land respectively (inset Figure 4.3). The most common combination of drivers

observed on 48 % of all visited spots was firewood extraction and cattle grazing inside the

forest (Figure 4.4). This co-occurrence of drivers was predominant across the sampling

sites except for the Maasai Mau Forest site where forest grazing and wildfire were found

to co-occur more often (Figure 4.4).

Figure 4.4: Co-occurrence proportions of forest disturbance drivers (%). Forest disturbance

spots were characterised during a forest survey at each sampling site: A) South Nandi Forest,

B) Western Mau Forest, C) Eastern Mau Forest, D) South West Mau Forest, E) Transmara

Mau Forest, F) Maasai Mau Forest, and All) all sampling sites.

4.3.3 Effects of farm indicators on forest disturbance intensity

Firewood collection rates, farm sizes, and cattle numbers were associated with a signifi-

cantly increased risk of forest disturbance across farm neighbourhood sizes by 3 – 10 %,

1 – 5 %, and 1 – 5 % respectively (p < 0.001, Figure 4.5). In contrast, higher milk yields

were related to a significantly lower risk of forest disturbance by 3 – 7 % across farm

neighbourhood sizes (p < 0.001, Figure 4.5). Larger farm area allocated to fodder pro-

duction, increased supplementation of dairy concentrates and higher proportion of grass

from on-farm pastures in the diet were associated with a significantly lower risk of forest

disturbance by 2 - 5 %, 1 – 2 %, and 1 – 2 % in 3 (Figure 4.5B, C, D), 2 (Figure 4.5A,

D), and 2 (Figure 4.5C, D) of the farm neighbourhoods respectively (p < 0.001). The

risk of forest disturbance intensities decreased significantly by 8 – 15 % across all farm

neighbourhood sizes (p < 0.001), when farms were located further away from the forest.

In general, the effects of farm indicators to increase or reduce disturbance risks remained

relatively constant over the different neighbourhood sizes. However, effects sizes of farm
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indicators became smaller with increasing size of farm neighbourhoods except for cattle

numbers, which slightly increased the risk of forest disturbance in larger neighbourhoods

(Figure 4.5). The variability around the effects shown by their 95 % confidence intervals

was low across farm neighbourhoods. For details on model selection see Appendix (S4,

Table S4.3).

Figure 4.5: Relative risks of forest disturbance as response to farm indicators. Relative risks

were derived from GLMMs for different farm neighbourhood sizes (buffer radiuses): A) 2 km,

B) 3 km, C) 4 km, and D) 5 km. Horizontal bars show mean effect and 95 % confidence

intervals for each indicator. Stars show significance levels. Vertical dashed lines indicate no

effect.

4.3.4 Farm types

Three farm types were inferred from the cluster analysis: ’small and resource-poor farms’,

’large and inefficient farms’ and ’intensified farms’. Small and resource-poor farms had

the smallest mean sizes (0.7 ±0.6 ha, Figure 4.6A), the lowest total number of cattle herds
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(2.3 ±1.8 heads, Figure 4.6B) and the lowest number of dairy cattle (0.5 ±1.0 heads).

The quality of cattle feed was low indicated by a relatively low proportion of native grass

from pastures in the diet (72.7 ±30.4 %, Figure 4.6C), little farmland allocated to grow

higher quality fodder (0.03 ±0.04 ha, Figure 4.6D) and the smallest supplementation rate

of concentrated feed (0.08 ±0.11 kg cow-1 day-1, Figure 4.6E). Milk yields were the lowest

(1.2 ±1.4 kg cow-1 day-1, Figure 4.6F). Firewood collection rates were intermediate (36.5

±79.3 kg week-1, Figure 4.6G). In addition, the farm survey data show for this farm type

comparatively low proportions of farms with planted trees on on-farm pastures (13 %),

cropland (5 %), farm boundaries (84 %), and in woodlots (26 %).

Large and inefficient farms had the largest mean sizes (4.9 ±5.5 ha) and cattle herds (14.0

±16.7 heads) combined with a moderate number of dairy cattle (2.5 ±11.4 heads). Feed

quality was low shown by the highest proportion of native grass from pasture in the diet

(86.5 ±11.7 %), little farmland allocated to grow high quality fodder (0.10 ±0.45 ha), and

low supplementation rates of feed concentrates (0.11 ±0.14 kg cow-1 day-1). Milk yields

were only slightly higher than those of the small and resource-poor farms (1.8 ±1.2 kg

cow-1 day-1). Firewood collection rates for this farm type were the highest (84.5 ±160.6

kg week-1). The farm survey data indicate that the proportions of farms with planted

trees on on-farm pastures (16 %) and cropland (6 %), farm boundaries (78 %), and in

woodlots (25 %) were similar to those of the small and resource-poor farms.

Relatively more intensified farms had medium sizes (2.5 ±2.1 ha), moderate cattle head

sizes (5.0 ±2.9 heads) but the highest numbers of dairy cattle (3.0 ±3.5 heads). These

farms had the best feed quality indicated by a moderate proportion of native grass from

on-farm pastures in the diet (78.3 ±16.4 %), the largest farm area allocated to fodder

production (0.23 ±0.55 ha), and high rates of concentrated feed supplementation (0.9

±1.0 kg cow-1 day-1). Milk yields were the highest (5.1 ±2.2 kg cow-1 day-1). Firewood

collection rates were the lowest (31.2 ±81.6 kg week-1). This farm type had the highest

proportions of farms with planted trees on on-farm pastures (26 %), cropland (14 %),

farm boundaries (90 %), and in woodlots (40 %).
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Figure 4.6: Farm indicators used to cluster farm types. Farm types were (x-axes): small

= small and resource-poor farms, large = large and inefficient farms, intensified = intensified

farms. Included indicators were: A) cattle numbers, B) milk yields, C) proportion of grass

from on-farm pastures in the diet, D) farm area allocated to fodder production, E) concentrate

supplementation, F) farm size, and G) firewood collection. Different letters above whiskers

indicate significant differences between farm types by using pairwise Wilcoxon rank sum tests

(p-values were corrected for multiple testing).

Large and inefficient farms were located at higher elevation and show longer travel time

to cities compared to small and resource-poor farms and intensified farms (p < 0.001,

Figure 4.7A & B). Therefore, large and inefficient farms were located more remotely and

had less market access.
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Figure 4.7: Elevation and remoteness of farm types. Boxplots show A) elevation and B)

travel time to cities by farm type: small = small and resource-poor farms, large = large and

inefficient farms, intensified = intensified farms). Different letters above whiskers indicate

significant differences between clusters farm types by using pairwise Wilcoxon rank sum tests

(p-values were corrected for multiple testing).

4.3.5 Farm types and forest disturbance intensity

Farm types had a significant effect on forest disturbance intensity (p < 0.05) for all farm

neighbourhood sizes. Interactions between farm types and farm distance to forest edges

show that more intensified farms had significantly smaller effects on the intensity of forest

disturbance than the small and resource-poor farms and the large and inefficient farms for

the different neighbourhood sizes (p < 0.001, Figure 4.8). However, differences in effects

between large and small farms were not significant for the 4 km farm neighbourhood size

(Figure 4.8C). In general, the effect of farm types on forest disturbance intensity became

smaller with increasing farm distance to the forest edges. For the 5 km neighbourhood

size, effects of farm types were less distinguishable and their slopes decreased (Figure

4.8D), indicating that the influence of farm types on forest disturbance intensity are more
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difficult to disentangle from external effects. The 95 % confidence intervals around the

effects indicate an increased variability of the interaction effects of farm types along farm

distance to forests across farm neighbourhoods. The lowest variability of effects was shown

for intensified farms in all farm neighbourhood sizes. For details on model selection see

Appendix (S4, Table S4.4).
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Figure 4.8: Effects of farm types on forest disturbance intensity. Effects of farm types

interacting with farm distance to forest edges were derived from GLMMs for different farm

neighbourhood sizes (buffer radiuses): A) 2 km, B) 3 km, C) 4 km, and D) 5 km. Shaded

areas indicate 95 % confidence intervals for each farm type (small = small and resource-poor

farms, large = large and inefficient farms, intensified = intensified farms).

Effects of farm types on the two most important forest disturbance types (i.e. disturbance

drivers) observed during the survey (Figure 4.4) also differ (Figure 4.9). Intensified farms

were associated with significantly lower intensities of forest disturbance (p < 0.05) where

firewood collection (Figure 4.9A, C) and cattle grazing (Figure 4.9D) were recorded,
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compared to small and resource-poor farms as well as large and inefficient farms. An

exception is shown for forest grazing within the 2 km farm neighbourhood where large

farms were associated with a significantly higher disturbance intensity (p < 0.05) than

small and resource-poor farms and intensified farms (Figure 4.9B). Results are only shown

for the 2 and 3 km farm neighbourhoods due to few disturbance samples from the forest

survey within the 4 and 5 km farm neighbourhoods (Figure 4.9D). The variability around

the farm type effects was smallest for intensified farms shown by 95 % confidence intervals.

For details on model selection see Appendix (S4, Table S4.5).
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Figure 4.9: Farm types effects on forest disturbance types. Effects of farm types are shown

for firewood collection (A, C) and cattle grazing in the forest (B, D) modelled for the 2 and

3 km farm neighbourhood sizes. Different letters above bars indicate significant differences

between farm types (small = small and resource-poor farms, large = large and inefficient

farms, intensified = intensified farms). Vertical bars indicate 95 % confidence intervals.
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4.4 Discussion

4.4.1 Drivers of forest disturbance in context

Forest disturbance across SSA is responsible for large parts of the land-based GHG emis-

sions (Bailis et al., 2015; Pearson et al., 2017). In this study, the dominant drivers of forest

disturbance were the extraction of firewood primarily used by local smallholder farmers

living adjacent to the Mau Forest and cattle grazing inside the forest as opportunistic feed

resource for cattle owned by local smallholders (Figure 4.4). Grazing happens mostly on

forest land opened through fuelwood extraction or wildfires. Although grazing is not a

primary driver of forest disturbance in the montane forests studied, it prevents the re-

growth of woody vegetation, affects negatively C sequestration and, thus, reduces the C

sink capacity of forests (Samojlik et al., 2016). Wildfires occur across the Mau Forest,

often caused by human activities such as charcoal production or attempts to clear forested

land, which increase the risk to spread fire during dry seasons.

Firewood extraction from forests partly covers the demand for fuelwood, which is the

main driver of small-scale forest disturbance in SSA (Hosonuma et al., 2012). The high

demand for fuelwood in East African countries such as Kenya exceeds the supply capacity

of forest ecosystems (Mutoko et al., 2015). Therefore, Kenya is among the countries that

show the most unsustainable fuelwood production across the tropics (Bailis et al., 2015).

GHG emissions from fuelwood extraction and utilisation in tropical forests account with

0.62 Gt CO2eq year-1 for about one third of the forest emissions, compared to timber

production (1.09 Gt CO2eq year-1) and wildfires (0.35 Gt CO2eq year-1) as estimated by

Pearson et al. (2017). Livestock grazing in forests is with 8 % ranked as the third most

important driver of disturbance as estimated by Hosonuma et al. (2012) after fuelwood

extraction (58 %) and timber production (33 %) for SSA countries that are in their late

forest transition phase such as Kenya. In this study, forest livestock grazing showed a

more prominent role on forest disturbance, as it occurred at all six sampling sites at 75 %

of all spots visited (Section 4.3.2). Forest disturbance spots located deep inside the forest

were not visited. It is likely that the intensity of forest grazing decreases further inside

the forest with limited access. In addition to negative effects of C storage in forests,

livestock grazing was shown to modify nutrient cycles and to reduce species richness in

forests (Close et al., 2008; Denmead et al., 2015).
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4.4.2 Mitigation potential on forested and agricultural land

Intensification may reduce the impact of smallholder farms on forests

The increase in agricultural production in SSA has been mostly achieved through expan-

sion of agriculture into natural ecosystems, including forests (Fisher, 2010). Increasing

productivity without compromising environmental goals is required to meet future food

demand and to contribute to climate change mitigation (Smith et al., 2013). This study

shows that larger farms and higher cattle numbers increased the risk of forest distur-

bance by 1 – 5 % (Figure 4.5). Higher firewood collection rates had an even stronger

impact on the forest increasing the risk of disturbance by 3 – 10 % (Figure 4.5). On the

contrary, higher milk yields decreased these risks by 3 – 7 % (Figure 4.5). The effects

of indicators related to feed intensification such as larger farm area allocated to fodder

production, supplementation of dairy concentrate and increased proportion of grass in the

diet were less pronounced. These indicators reduced the risk of forest disturbance by 1 –

5 % (Figure 4.5). The results indicate that farms which own more cattle and collect more

firewood are likely to cause more disturbance in the nearby forest than more intensified

farms with high milk productivity and improved feed quality. The analysis of farm type

effects on forest disturbance confirmed this pattern. More intensified farms had a lower

impact on forests in general but also on disturbance caused by firewood extraction and

livestock grazing in particular (Figure 4.8 & 4.9). Compared to small and resource poor

farms and large but inefficient farms, intensified farms planted more trees on farmland

(Section 4.3.4) e.g. in woodlots or on farm boundaries. These trees represent fuelwood

sources available on-farm (Mbow et al., 2014), potentially translating into lower firewood

extraction from the forest (Figure 4.6G). Small farms that lack resources such as land and

access to higher quality feeds, and large but inefficient farms with many low productivity

cattle (Figure 4.6A - F) increase the risk to remove biomass from local forests unsustain-

ably by exceeding the regrowth rates. Yet, effect sizes of farm indicators and differences

among the effects of farm type on forest disturbance were, despite significant, relatively

small. The inefficiency of large farms is likely related to their location at higher elevation

(Figure 4.7). Remoteness and lack of infrastructure result in reduced market access for

these farms, rendering it more difficult for smallholders to buy higher quality feeds and

feed supplements, and to sell the milk produced (Makoni et al., 2014).

The effects of dairy production and intensification on local forests can be quantified by

relating farm practices and characteristics to forest disturbance patterns. Including farm-

related activities outside the farm boundaries that affect the broader landscape is relevant

to assess the effectiveness and sustainability of policies that target climate change miti-

gation and food security (DeFries & Rosenzweig, 2010). Potential spill over effects can be

revealed, causes be identified and the risk of C leakage be minimised.
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4.4.3 Increase of farm efficiency and on-farm tree cover

Dairy production in SSA shows the highest GHG emission intensities compared to dairy

production in other continents which points to low efficiency of smallholder dairy pro-

duction (Gerssen-Gondelach et al., 2017). Mitigation and development policies seek for

’win-win’ situations where increased farm production goes hand in hand with the avoid-

ance of additional GHG emissions (Brandt et al., 2018b). Low quality feed from natural

pastures and from opportunistic cattle grazing inside the forest result in low milk yields

and high GHG emission intensities (Lukuyu et al., 2012). Increasing milk yields on small-

holder farms can be achieved through feed intensification by improving the protein and

energy density in feeds (Agle et al., 2010; Trupa et al., 2015). The intensified farm type

showed the highest milk yields (Figure 4.6F). The quality of feed that is either grown

on-farm such as fodder grasses or supplemented as concentrated feed such as dairy meals

was also highest for intensified farms compared to the other two farm types (Figure 4.6D

& E). Perennial fodder grasses such as Napier grass show high potential for feed intensifi-

cation as it has a higher quality than native grass from pastures and is widely accepted by

smallholders across the Kenyan highlands (Katiku et al., 2011). Higher supplementation

of concentrates during lactation periods was related to the increase in milk yields in this

study (Figure 4.6E) and was also reported to improve milk yields in Kenya (Rufino et al.,

2009; Richards et al., 2016).

However, C leakage emerging from intensification processes have to be considered. Feed

imports from other regions or countries may raise due to feed intensification if the in-

creased demand of higher quality feeds cannot be covered locally (Meyfroidt et al., 2014).

GHG emissions from indirect land use changes due to agricultural expansion could be

the consequence. Styles et al. (2018) conducted a life cycle assessment (LCA) of dairy

intensification in the United Kingdom showing possible cascade effects of pasture-crop

displacement and expansion of pastures that lead to deforestation in Brazil. Therefore,

appropriate mitigation policies and funding schemes need to integrate measures (e.g. pro-

tocols on land use legacies, certification) that enable feed production which does not

undermine effective climate change mitigation.

Depleted soils due to nutrient mining is a common reason for stagnating or falling crop

yields in Kenya (Tittonell et al., 2010). Increasing the efficiency of nutrient cycling

through improved manure management can increase soil fertility and crop yields as shown

by Castellanos-Navarrete et al. (2015) for smallholder crop-livestock production systems

in Kenya. Closing the yield gap is especially important for small farms that lack land

to grow fodder. Furthermore, intensified farms had less cattle than large and inefficient

farms (Figure 4.6B, F), and instead owned more improved breeds (Section 4.3.4). Re-

duced stocking rates with higher herd efficiency and the replacement of local cattle with

improved breeds that produce more milk accompanied by better access to animal health

services are additional factors to increase the efficiency of milk production and to reduce
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GHG emission intensities on smallholder dairy farms in Kenya (Bryan et al., 2013; Mot-

tet et al., 2016). Adopting the dairy hub model, developed by the ’East African Dairy

Development’ (EADD) program, could facilitate the improvement of market access. This

can be achieved by infrastructure funds and by linking the different actors throughout

the dairy value chain such as dairy farmers, feed producers and dairy companies (EADD,

2014).

Agroforestry could increase the C sequestration potential of smallholder farms in the

tropics and offset GHG emissions resulting from agricultural production (Mutuo et al.,

2005; Abbas et al., 2017; Ortiz-Gonzalo et al., 2017). Kenya’s target to increase the tree

cover from about 6 % in 2000 to 10 % by 2030 is the policy frame to improve the tree

cover on farm land (Government of Kenya, 2015b). However, between 2000 and 2010, the

tree cover on farm land in Kenya on average increased by about 1 % (Zomer et al., 2016).

Thus, incentives such as climate financing schemes are required to encourage smallholder

farmers to plant trees on their farms which could be used as fodder trees or as fuelwood

source. Moreover, more efficient cooking stoves would reduce the demand of fuelwood and

indoor air pollution translating into health improvements (Malla et al., 2011). Improved

forest management that actively involves local communities could enable the sustainable

use of forest resources e.g. by establishing regulated wood pastures located at the forest

edges or tree plantations used for a certified fuelwood production (Börner & Wunder,

2012; Chidumayo & Gumbo, 2013; Mutoko et al., 2015).

4.4.4 Limitation and benefits of the approach

This is the first study that combines a remote sensing approach with an analysis of farm

production to investigate the connection between dairy production and forest disturbance

in Africa. It is also one of the first studies that applied a forest disturbance detection

approach utilising the spatio-temporal information from Landsat time-series (Hamun-

yela et al., 2017). The approach was shown to outperform change detection based on

temporal information only in terms of accuracy especially in environments where forest

disturbances occur mainly at small-scale (Hamunyela et al., 2016b, 2017). The spatial

accuracy achieved here (UA = 77.9 %, PA = 78.6 %) is comparable to Hamunyela et al.

(2017) who studied small-scale disturbances in the Ethiopian highlands (UA = 76.8 %,

PA = 78.3 %). By reducing false detections of small-scale disturbances, STEF could

improve national forest monitoring capabilities especially in regions where these distur-

bance patterns are dominant such as in many SSA countries (DeVries et al., 2015b). The

spatial resolution of Landsat sensors limits the detection of small-scale disturbances. How-

ever, new satellite systems such as the Sentinal platform bears high potential for forest

monitoring applications due to increased spatial and temporal resolution (Mitchell et al.,

2017).
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Training and validation data obtained from the ground are necessary to improve the de-

tectability of forest disturbances even more so if they occur at small-scale and visual

interpretation methods based on high resolution satellite imagery become unsuitable. In-

volving local experts into the monitoring can enhance the validity of detected changes and

enable the characterisation of their drivers e.g. through community-based forest moni-

toring integrating remote-sensing and smart phone technologies (DeVries et al., 2016).

Higher variability in the effects of farm type on forest disturbance reflected uncertainties

that were introduced through the clustering of farm types by using farm survey data. Such

uncertainties have to be reduced to improve the quantification of agricultural drivers and

GHG emissions resulting from forest disturbance – e.g. through comprehensive measuring

and reporting efforts.

4.5 Conclusions

This study revealed that the main anthropogenic drivers of forest disturbance across the

Mau Forest are extraction of firewood and cattle grazing inside the forest. Both drivers are

related to farm practices and characteristics of local smallholder farms. Intensification of

smallholder dairy farming was associated to a lower risk of forest disturbance. Less forest

disturbance translates eventually into reduced GHG emissions from forests. Thus, these

results are informative for policy formulation and decision-making targeting mitigation

options that increase farm efficiency and minimise negative effects on forests at the same

time.

Incentive-based climate financing instruments are required for stakeholders such as farm-

ers, cooperatives and the private sector involved in dairy production. These funds could

be accessed once certain criteria are fulfilled such as the implementation of on-farm prac-

tices such as feed intensification that mitigate direct and indirect GHG emissions and

increase farm productivity. A nationally appropriate mitigation action (NAMA) cur-

rently in development for the dairy sector in Kenya offers a promising policy framework

to develop low emission dairy production, including capacity development and investment

support targeting about two million smallholder households. However, assessments and

criteria that minimise the risk for carbon leakage through indirect land use changes have

to be integrated into policy development to achieve effective mitigation in the land use

sector.

Based on the key results, policy recommendations are: i) reducing the emission source

potential of agriculture through the increase of production efficiencies on dairy smallholder

farms and through the improvement of their offsetting potential (i.e. the increase of tree

cover on farmland) and ii) enhancing the C sink potential of forest systems by minimising

forest disturbances through sustainable intensification of farming and improved forest

management.
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Abstract

Countries in Sub-Saharan Africa (SSA) need to produce more food to feed their fast

growing populations. Agriculture drives forest disturbance in SSA through forest livestock

grazing by preventing vegetation regrowth, which reduces the carbon (C) sink capacity

of forests and causes greenhouse gas (GHG) emissions. Smallholder farming hast to be

intensified sustainably by producing more food on agricultural land and by releasing

the pressure on forests, which contributes to climate mitigation. Kenya aims for the low-

emission development of its dairy sector to meet the growing demand for milk. This study

assessed the potential of dairy feed improvements, including closing the yield gap of fodder

maize, to mitigate agricultural GHG emissions and forest C loss linked to dairy cattle. The

livestock production model LivSim was applied to estimate and upscale GHG emissions

and milk yields for different feed improvement scenarios. Forest C loss due to dairy cattle

was quantified by using remote-sensing data on aboveground C change. The shortage of

grazing land potentially available to cultivate improved dairy feeds was analysed around

forests to relate the scenarios and forest C loss due to dairy cattle. Scenarios that closed

the maize yield gap could increase milk yields by up to 51 % and lower GHG emission

intensities by up to 19 % due to reduced land requirements. The reduction of GHG

emissions from land use change was up to 5 times higher than the increase of GHG

emissions from additional fertilizer application. Forest C loss due to dairy cattle could be

reduced by up 225 %, which turns forests into C sinks. However, only the scenario that

improved forage quality based on Napier grass and increased concentrate supplementation

would achieve a net reduction of combined total agricultural GHG emissions and forest

C loss due to dairy cattle. The combined total emissions would be 2.5 % lower than

in the baseline, while the milk yield could be increased by 45 %. Thus, dairy feeds

can realise productivity and effective mitigation benefits across land use sectors. The

approach followed can aid the targeting and planning of interventions that improve the

climate-smartness of smallholder livestock production.
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5.1 Introduction

Low agricultural productivity and rising human population in Sub-Saharan Africa (SSA)

jeopardize food security and degrade natural ecosystems through unsustainable land-

use practices (Herrero et al., 2016; Grassi et al., 2017). Agriculture is shown to drive

forest disturbance in SSA, which causes the loss of forest carbon (C) and greenhouse gas

(GHG) emissions (Carter et al., 2015). In addition to the conversion of forests into farm

land, timber logging, and fuelwood extraction, cattle grazing causes forest disturbance

by preventing the regrowth of vegetation (Hosonuma et al., 2012; Pearson et al., 2017;

Brandt et al., 2018a). Forest disturbance reduces the sequestration of C and, thereby,

decreases the C sink capacity of forests, and affects water and nutrient cycling, and

biodiversity, which feedback negatively on agricultural production (Barlow et al., 2016;

Arias-Navarro et al., 2017; Jacobs et al., 2017; Wanyama et al., 2018). Safeguarding and

improving the supply of nutritious food is one of the ’Sustainable Development Goals’

(SDG 2) of the ’United Nations’ (UN) to achieve food security globally but especially

in SSA (UN, 2017a). The majority of food in SSA is produced by smallholder farmers

that are often affected by low livestock productivity, low and stagnating crop yields due

to nutrient-depleted soils, and small farm sizes (Tittonell et al., 2009; Zhou et al., 2014;

Brandt et al., 2018b). Food production on smallholder farms in SSA has to be intensified

sustainably to reduce malnutrition and to reach SDG2. The concept of ’Climate-Smart

Agriculture’ (CSA) was brought forward to adapt agricultural systems to climate change,

to mitigate anthropogenic impacts on the climate system and to safeguard food security

(FAO, 2013).

Agriculture in East Africa is increasingly prone to erratic weather patterns and prolonged

drought spells. To address these challenges, Kenya set up a national CSA strategy to

transform the country’s agricultural sector towards climate-smart food production sys-

tems. Agriculture is not only the country’s economic backbone but also contributes with

about 40 % to its GHG emissions budget. About 90 % of the agricultural emissions

stem from livestock production (Government of Kenya, 2015b). As part of its ambitious

economic development plan, Kenya seeks to develop its dairy sector to be able to meet

the increasing demand for milk, which results from the fast growing human population

(Government of Kenya, 2010). Dairy production engages approximately two million small-

holder farmers, who contribute about 80 % to the total milk production in Kenya (Udo

et al., 2016). However, higher cattle numbers and the increasing demand for feeds will

lead to higher GHG emissions from enteric fermentation, animal manure, the additional

arable land allocated to feed production and pastures. Low yields of feed crops, small

farm sizes and the shortage of agricultural land in Kenya increase the pressure on remain-

ing natural forests and the risk of forest C loss due to forest cattle grazing (Kumar et al.,

2009; O’Mara, 2011; Bosire et al., 2016; Brandt et al., 2018a). Therefore, sustainable

intensification of the dairy sector is required, which increases milk yields by producing
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higher quality feeds more efficiently on available agricultural land without the need to

expand into natural ecosystems.

Kenya defined targets in various national and sectoral mitigation and development policies

such as the ’Nationally Determined Contribution’ (NDC) and the national dairy master

plan. The increase of total GHG emissions in Kenya has to be lowered by 30 % relative to

projected business as usual emissions between 2010 - 2030 (Government of Kenya, 2015a).

Within the same time frame, milk yields of dairy cattle have to be increased by 150 %

(Government of Kenya, 2010). The ’Nationally Appropriate Mitigation Action’ (NAMA)

for the dairy sector in Kenya focuses on the low-emission development of smallholder

dairy farming by increasing on-farm productivity through the improvement of dairy feeds

(Government of Kenya, 2017b). To analyse weather these targets can be met effectively,

the impact of feed improvements on dairy-related GHG emissions from the entire ’Agri-

culture, Forestry and Other Land Use’ (AFOLU) sector have to be included into the

assessments.

Brandt et al. (2018b) reported synergies between improving dairy feeds, milk yield in-

creases, and GHG mitigation benefits on agricultural land. In addition, intensified small-

holder dairy farms located close to forests are shown to reduce the risk of local forest

disturbance (Brandt et al., 2018a). However, changes in cattle diet may require the

conversion of potentially arable land such as grazing land to cultivate more nutritious

feeds, which can cause GHG emissions from land use change (LUC) (van Middelaar et al.,

2013), and ultimately render certain feed improvement options unfeasible (Brandt et al.,

2018b). Promoting dairy production in a region with shortages of agricultural land for

feed cultivation could, therefore, increase the risk of negative spillover effects such as C

leakage as farmers may use close-by forests for grazing. Closing the yield gap of feed crops

could reduce the demand for additional land and, thus, alleviate the disturbance pressure

on forests. To date, there are no assessments that integrate the effects of agricultural

intensification and GHG mitigation measures on forests in SSA, which are crucial for ef-

fective CSA targeting and planning, and to avoid negative spillover effects of mitigation

interventions.

This study aimed to answer the questions: What is the potential of dairy feed improve-

ments, including closing the yield gap of fodder maize, i) to reduce the direct total GHG

emissions and emission intensities related to dairy production and ii) to decrease the C loss

from forests due to the presence of dairy cattle? The livestock production model LivSim

(Rufino et al., 2009) was used to calculate milk yields and GHG emissions for different

feed improvement and intensification scenarios throughout the dairy production area in

Kenya. Remote-sensing data were used to quantify forest C change and to approximate,

for the first time, an estimation of forest C loss related to the presence of dairy cattle. The

scenarios considered in this study are plausible and spatially-explicit ’what if’ scenarios

of dairy intensification and their potential effects on milk production, agricultural GHG



5.2 Material and methods 97

emissions, and forest C loss.

5.2 Material and methods

5.2.1 Study area

The study area is located in the Central and Western highlands of Kenya. The area has

a size of about 65 000 km2 and is characterized by smallholder crop-livestock production

systems. The region was defined previously in the analyses of Herrero et al. (2014) on

smallholder dairy development pathways for the Kenyan highlands. The area shows the

highest densities of human and livestock populations throughout Kenya (Imo, 2012). The

majority of milk that is marketed in Kenya originates from this region and is mainly

produced by dairy smallholders (Brandt et al., 2018b). Apart from agricultural land,

the remaining Afromontane forests called ’water towers’ are located in the area, namely

the Aberdare range Forest, the Cherangani Hills Forest, the Mau Forest, the Mount

Elgon Forest, and the Mount Kenya Forest. All of these forests experience ongoing forest

degradation due to the unsustainable use of forest resources such as cattle grazing on

forested land and fuelwood extraction (Imo, 2012; Drigo et al., 2015).

5.2.2 Analytical framework

The framework included a number of steps (Figure 5.1): First, spatially-explicit data

on net forest C loss and gain were pre-processed and a dataset on forest C loss due

to the presence of dairy cattle was created. Second, farm indicators and farm types

derived from a farm survey were related to net forest C loss, gain and change to quantify

the relationship between smallholder farming practices and forest C change. Third, a

livestock simulation model was used to compute spatially-explicit data on dairy-related

agricultural GHG emissions, milk production and the requirement of arable land to meet

the demand of improved feeds. This analysis was conducted by applying a typical dairy

diet and scenarios of feed improvements, including closing the yield gap of maize to

quantify mitigation potentials for the agricultural land. Subsequently, the shortage of

land was estimated, which is required land minus available land. Land shortage was

related to forest C change associated to the presence of dairy cattle, which is C gain

minus C loss due to dairy cattle for each feed improvement scenario to quantify the

mitigation potentials for forests.
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Figure 5.1: Flowchart of steps conducted to calculate mitigation potentials of feed improve-

ment scenarios, including closing the yield gap of maize, on agricultural land and in forests.

Carbon (C) loss-cattle(forest) = C loss related to the presence of dairy cattle in forests, Carbon

change-cattle(forest) = Forest C change, which includes the C loss fraction related to the pres-

ence of dairy cattle, LivSim = livestock simulation model. Dashed boxes represent scenarios of

feed improvement and closing the yield gap of maize used to produce maize silage by realising

water-limited yield potentials.



5.2 Material and methods 99

5.2.3 Pre-processing

Spatially-explicit datasets, which indicate the changes in C density of aboveground

biomass between 2003 - 2014 were obtained to quantify annual forest C changes (Baccini

et al., 2017). These datasets include net gains (C gain) and losses of C (C loss) at a pixel

resolution of 463 x 463 m (Figure 5.1, step 1). A forest mask was applied to restrict the

C change data to land that was forested in 2016 within the study area deriving net C

loss(forest) and net C gain(forest). The forest mask was based on a land cover dataset of

Africa at a pixel resolution of 20 x 20 m (ESA, 2017). Moreover, a dataset of tree planta-

tions was used to limit the forest mask to natural forests (Government of Kenya, 2015c).

The various spatial resolutions of input datasets applied in this study were resampled to

a pixel resolution of 1 x 1 km used consistently throughout the analyses.

Wildfires release substantial amounts of C from forests (Hurteau et al., 2008). Open

forests in the aftermath of fire events represent land that is accessible for livestock and is

frequently used as opportunistic grazing land. However, the C loss due to forest fires can

neither be attributed to the presence of cattle in forests nor can this C loss be mitigated

through improvements of cattle feeds. Therefore, pixels that indicate burnt forest between

2003 - 2014 were excluded from C loss(forest) (Figure 5.1, step 1) by using daily fire alert

data from the ’Moderate Resolution Imaging Spectroradiometer’ (MODIS, MCD14ML)

(Giglio, 2015) and the ’Visible Infrared Imaging Radiometer Suite’ (VIIRS) (Schroeder

et al., 2014).

Fuelwood harvest from forests causes about one third of the total forest emissions in

Kenya (Pearson et al., 2017). Kenya is one of the countries that show highly unsus-

tainable patterns of fuelwood consumption exceeding the capacity of natural ecosystems

such as forests to regrow the biomass that is extracted as fuelwood (Bailis et al., 2015).

Thus, this source of forest C loss was accounted to approximate the aboveground C loss

related to cattle presence in forests (C loss-cattle(forest)). A spatially-explicit dataset of

non-renewable biomass (NRB) harvested annually as fuelwood was obtained at a pixel

resolution of 100 x 100 m (Drigo et al., 2015). The NRB dataset was subtracted from the

net C loss(forest) data after restricting it to forests (NRB(forest)) by using the same forest

mask applied previously to derive C loss-cattle(forest) (Figure 5.1, step 1). County-level

data on cattle types was used to calculate the proportion of dairy cattle by excluding

cattle used for beef production (Government of Kenya, 2014). The C loss-cattle(forest)
data was multiplied by proportions of dairy cattle to calculate forest C loss that could

be attributed to the presence of dairy cattle. The estimate of C loss-cattle(forest) is a

first approximation of C loss related to dairy cattle in forests and is based on previous

empirical work with observations of cattle grazing in the forest (Brandt et al., 2018a). So

far, there are no spatially-explicit data available that quantify the effects of livestock on

carbon dynamics in Kenyan mountain forests.
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The uncertainty, which propagated into C loss-cattle(forest) due the uncertainties inherent

to the input datasets net C loss(forest) and NRB(forest) was quantified by applying equation

(5.1) (Lee & Forthofer, 2006):

var(C loss− cattle(forest)) = var(C loss(forest)) + var(NRB(forest))

– 2× cov(net C loss(forest), NRB(forest))
(5.1)

The reported values of relative standard deviations (SD) were used to quantify the input

variances (Bailis et al., 2015; Baccini et al., 2017). The uncertainty values in this study

are reported as relative SD.

5.2.4 Relating smallholder farms and forest C loss, gain and change

The effects of smallholder farms on forest C change were based on previous empirical

analyses in the study area (Brandt et al., 2018a). These analyses related farming prac-

tices and characteristics obtained from a farm survey to forest disturbance derived from a

remote-sensing based time-series analysis, which was validated by data from forest distur-

bance surveys (Brandt et al., 2018a). The farm survey was conducted in 2016 sampling

216 smallholder farms, located in close vicinity to forests. Information on total numbers of

cattle, number of improved dairy cattle, milk yields, proportion of feed types in the cattle

diet such as grass from on-farm pastures, fodder crops, and concentrated feed supplements,

farm area allocated to fodder production such as fodder crops and on-farm pastures, and

total farm size was collected, henceforth called ’farm indicators’. In addition, farms were

clustered into farm types, which are henceforth called: ’small and resource-poor farms’,

’large and inefficient farms’, and ’intensified farms’. For details on the methodology see

Brandt et al. (2018a). The results indicated stronger disturbance effects of farms that

have higher total numbers of cattle and low milk yields. Farms that fed dairy cattle with

improved diets showed smaller effects on forest disturbance.

To test whether similar farm effects are found when the same farm data are related to

forest C changes, farm indicators and farm types were linked to forest C data within

circular buffers created around farm centroids (Figure 5.1, step 2). A radius (r) of 5 km

was selected for these buffers, which are henceforth called ’farm neighbourhoods’. This

radius was chosen following Brandt et al. (2018a), who found that r = 5 km created the

maximum farm neighbourhood size in which farm indicators and farm types could be

related significantly to forest disturbance. Forest C change that includes only the C loss

fraction related to the presence of dairy cattle (C change-cattle(forest)) = net C gain(forest)

– C loss-cattle(forest) was calculated within each farm neighbourhood (Figure 5.1, step 2).

Farm indicators were correlated with net C loss(forest), net C gain(forest), NRB(forest), C

loss-cattle(forest), and C change-cattle(forest). Differences between farm types were tested

by using non-parametric pairwise Wilcoxon rank sum tests.
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5.2.5 Mitigation potential of improving dairy feeds on agricultural land and

in forests

Livestock production modelling and feed intensification

The livestock production model LivSim (Rufino et al., 2009) was used following the

methodology of Brandt et al. (2018b) to quantify and upscale milk production and agricul-

tural GHG emissions from smallholder dairy production. GHG emissions were quantified

based on IPCC tier 2 methodology (IPCC, 2006) and included methane (CH4) emissions

from enteric fermentation, CH4 emissions from manure management, direct and indi-

rect nitrous oxide (N2O) emissions from manure management, direct and indirect N2O

emissions from managed soils, including fertiliser application, and N2O and carbon diox-

ide (CO2) emissions from LUC. The incorporation of LUC emissions is important since

changes in the cattle diet require the cultivation of energy and protein-dense feeds with

higher digestibility to increase milk yields (Hristov et al., 2013a; Brandt et al., 2018b).

These feeds would be cultivated on potentially arable land such as grazing land that

is converted to cropland. Milk yield and GHG emissions were computed by simulating

dairy cows over a lifetime of 13 years. Model outputs were upscaled and mapped by using

spatially-explicit data on livestock production systems (LPS), cattle density (Robinson

et al., 2011, 2014), and dairy herd composition data (Bebe et al., 2002; Government of

Kenya, 2014). For details on the modelling approach, input data, and scenarios see Brandt

et al. (2018b).

Milk yields and GHG emissions were calculated for the baseline feed and several scenarios

(Figure 5.1, step 3), which focused on three feed intensification strategies (Brandt et al.,

2018b). The baseline represented a typical diet for smallholder dairy cattle in Kenya with

a large proportion of low quality grass and crop residues. Scenarios included strategies

such as the increase of forage quality (i.e. Napier grass, Pennisetum purpureum), feed

conservation based on maize silage, and increased supplementation of dairy concentrates

(i.e. dairy meal). The scenarios represent combinations of the three strategies and are

henceforth called: ’forage quality and concentrate supplementation’ (FoCo), ’feed conser-

vation and concentrate supplementation’ (FeCo), and ’forage quality, feed conservation

and concentrate supplementation’ (FoFeCo). Moreover, each scenario included medium

and high intensification levels. The baseline feeds were replaced by 25 % and 50 % higher

quality feeds representing the medium intensification and high intensification levels re-

spectively. Rations of dairy meal were increased to 3 kg day-1 and 6 kg day-1 during early

lactation. The mitigation analyses in this study focused on three scenarios reported in

Brandt et al. (2018b). The following scenarios were selected according to their mitigation

potentials on agricultural land: i) FoFeCo with low potential at high intensification, ii)

FeCo with medium potential at medium intensification and iii) FoCo with high potential

at medium intensification level.
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The ranges of GHG emission parameters were sampled by using Latin hypercube sampling

(LHS) (Xu et al., 2005) to estimate overall emission uncertainties of the baseline. Each

parameter was sampled separately through LHS while all others were kept at their mean.

Emission uncertainties of the scenarios were estimated one parameter at a time, sampling

at the minimum and the maximum of the parameter ranges (Brandt et al., 2018b).

Closing the yield gap of maize

Each of the scenarios requires a certain amount of arable land to cultivate feeds such as

Napier grass and maize. Brandt et al. (2018b) reported that the scenarios, which include

feed conservation based on maize silage have a high demand for arable land. In addition

to cropland used to cultivate maize for human consumption, cropland to grow maize

exclusively as cattle feed was needed to prevent detrimental effects on food security. In

Central and Western Kenya, the yield gap of maize ranges between 30 - 82 % suggesting

a high potential to intensify maize production (van Ittersum et al., 2013). Closing the

yield gap of maize would increase the actual yield and could, therefore, help to reduce

the land demand calculated in the scenarios. CO2 emissions from LUC would be lowered

at the expense of N2O emissions from soils due to increased application rates of synthetic

fertiliser.

The potential yield of crops is defined by several abiotic and biotic factors such as solar

radiation, temperature, atmospheric CO2 concentration, and cultivar traits (van Ittersum

et al., 2013). Maize cultivation in Kenya is rainfed. The water-limited yield potential

(Yw) is the most relevant benchmark indicator for rainfed crops as it further includes

yield-limiting factors such as water supply, soil properties (e.g. water holding capacity),

and topography (e.g. runoff). In this study, actual yields of maize in the baseline were

increased by two levels realising Yw(maize) at 50 % and 80 %. Realising Yw at 80 % is

deemed to approach the maximum exploitable yield gap. Farm yields often reach a saddle

point around 80 % of Yw and are not feasible for farmers to increase further (van Ittersum

et al., 2013). Actual yields (Ya) of maize cultivated in the Kenyan highlands were obtained

from Monfreda et al. (2008), Weiler et al. (2014), and Castellanos-Navarrete et al. (2015).

Data on Yw(maize) and the minimum nitrogen (N) input required to realise Yw(maize)

at 50 % and 80 % in Kenya were obtained from the ’Global Yield Gap Atlas’ (GYGA)

and are based on agro-climatic zones used to upscale location-specific yield estimates

derived from crop simulation models (van Wart et al., 2013a,b). Yw(maize) and minimum

N input were linked to the LPS classification used in this study to upscale milk yield

and GHG emissions. Each scenario that included maize silage was complemented by two

versions, which closed the yield gap of maize: Yw-50(maize) and Yw-80(maize) (Figure 5.1,

step 3).
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Analysing availability of potentially arable land and cattle grazing in forest

The availability of potentially arable land was calculated for each scenario by comparing

the extent of grazing land and demand for arable land per pixel using the R library ’raster’

(v. 2.5) (Hijmans, 2016; R Core Team, 2016). Only existing grazing land was assumed

to be available to cultivate additional Napier grass and maize (Brandt et al., 2018b).

Scenario demands for additional cropland to cultivate feeds were quantified based on the

yields (Ya(maize), Yw-50(maize) and Yw-80(maize)) per feed type, crop-specific feed intake

per dairy cow (Rufino et al., 2009; Katiku et al., 2011; Herrero et al., 2013; Weiler et al.,

2014; Castellanos-Navarrete et al., 2015), and the density of dairy cattle per 1 x 1 km pixel

(Robinson et al., 2014). The availability of potentially arable land was quantified by using

a spatially-explicit dataset on the density of grazing land, which had an original spatial

resolution of 10 x 10 km (van Velthuizen et al., 2007). All pixels that showed an excess of

the demand for arable land in relation to the amount of grazing land available were labelled

as pixels that have a shortage of potentially arable land. Spatially-explicit land shortage

polygons were created for each scenario (Figure 5.1, step 3). For calculation details see

Brandt et al. (2018b) and Appendix (S3, Table S3.3, equations S3.1 & S3.2).

The pre-processed datasets on forest C change, which include the C loss fraction related

to the presence of dairy cattle (C loss-cattle(forest)) and C gain (C gain(forest)), and the

polygons of land shortage were used to link forest C change relate to the presence of

dairy cattle to the management of dairy feeds on agricultural land. All C loss-cattle(forest)
and C gain(forest) pixels were assumed to reflect the baseline forest C change (C change-

cattle(forest)) without any feed improvements. For the scenarios, it was assumed that the

shortage of arable land and the resulting lack of available cattle feed on agricultural land,

which surrounds forests forces smallholders to bring their dairy cattle into close-by forests

to cover the daily feed requirements of cattle. Brandt et al. (2018a) reported significantly

negative effects between indicators related to livestock management on smallholder dairy

farms and forest disturbance for farm neighbourhoods that have a maximum r of 5 km.

Therefore, land shortage polygons were buffered with this distance. All C loss-cattle(forest)
pixels that intersected with a buffered land shortage polygon were assumed to represent

potential forest C losses related to the presence of dairy cattle that is likely to occur, if a

certain scenario is implemented. Subsequently, the sum of C change-cattle(forest) pixel was

calculated for each scenario and compared to the sum of baseline C change-cattle(forest)
pixel to quantify the mitigation potential in forests (Figure 5.1, step 3).
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5.3 Results

5.3.1 Effects of smallholder farms on C change in adjacent forests

Correlation analyses of the empirical data on farm indicators and the quantified forest C

change indicate that the total number of cattle on farm was positively correlated to C loss-

cattle(forest) (ρ = 0.15, p < 0.05) and negatively correlated to the C change-cattle(forest)
(ρ = -0.17, p < 0.05), which reflects C gain(forest) minus C loss-cattle(forest) (Figure 5.2).

The number of improved dairy cattle per farm and milk yield were negatively correlated

to C loss-cattle(forest) (ρ = -0.37, -0.26 , p < 0.001) and positively correlated to C change-

cattle(forest) (ρ = 0.39, 0.27, p < 0.001, Figure 5.2). The farm indicators, which reflect

feed intensification such as the proportion of fodder crops in the cattle diet, the sup-

plementation of concentrated feeds, and farm area allocated to the cultivation of fodder

crops were negatively correlated to C loss-cattle(forest) (ρ = -0.39, -0.21, -0.34 , p < 0.001)

and positively correlated to C change(forest) (ρ = 0.41, 0.22, 0.36 , p < 0.001, Figure 5.2).

Farm level fuelwood extraction was positively correlated with non-renewable biomass due

to fuelwood harvest from forests (NRB(forest), ρ = 0.47, p < 0.001, Figure 5.2).
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Figure 5.2: Correlation matrix of farm indicators derived from a farm survey and forest

carbon (C) change variables: net forest C loss (C loss(forest)), net forest C gain (C gain(forest)),

non-renewable biomass due to fuelwood harvest in forests (NRB(forest)), forest C loss related to

the presence of dairy cattle (C loss-cattle(forest)), and forest C change (C change-cattle(forest)),

which includes C gain(forest) and the C loss fraction of dairy cattle (C loss-cattle(forest)). The

forest C loss data were related to farms through farm neighbourhoods, which are distance

buffers around farm centroids (r = 5 km). Crosses indicate non-significant correlations.

Farm types differed in the amount of net C loss(forest), NRB(forest), C loss-cattle(forest), and

forest C change (C change-cattle(forest)) within their neighbourhoods (r = 5 km, Figure

5.3). Intensified farms showed significantly less mean net C loss(forest), C loss-cattle(forest),

and C change-cattle(forest) (means = 1676.4, 512.0, and -54.6 kg C ha-1 yr-1 respectively)

than small and resource-pour farms (means = 2476.5, 855.5, and -565.8 kg C ha-1 yr-1

respectively) and large and inefficient farms (means = 2564.6, 980.6, and -842.0 kg C

ha-1 yr-1 respectively) (p < 0.05, Figure 5.3A, C, D). Large and inefficient farms had

significantly higher mean NRB(forest) within their neighbourhoods (mean = 656.2 kg C ha-1

yr-1) than small and resource-pour farms (mean = 501.0 kg C ha-1 yr-1) and intensified
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farms (mean = 463.1 kg C ha-1 yr-1) (p < 0.05, Figure 5.3B).

Figure 5.3: Boxplots of farm types and: A) net forest carbon (C) loss (C loss(forest)), B)

forest C loss from firewood extraction (NRB(forest)), C) forest C loss due to the presence of

dairy cattle (C loss-cattle(forest)), and D) forest C change (C change-cattle(forest)), which is C

gain(forest) minus the C loss fraction of dairy cattle (C loss-cattle(forest)). All C change variables

were calculated for farm neighbourhoods with a radius of 5 km. Farm types shown (X-axes)

are: small = small and resource-poor farms, large = large and inefficient farms, intensified

= intensified farms. Different letters above whiskers indicate significant differences between

farm types computed by using pairwise Wilcoxon rank sum tests (p-values were corrected for

multiple testing).
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5.3.2 Agricultural and forest mitigation potentials of dairy feed improve-

ments

Reducing forest C loss through closing the yield gap of maize: an example

The analyses show that all water tower forests were affected by C loss (C loss-cattle(forest))

and gained C (C gain(forest)) between 2003 - 2014. In total, forests across the study area

lost 781,546.2 kg CO2eq yr-1 due to dairy cattle (Figure 5.4A, B). Feed improvements

on agricultural land, including closing the yield gap of maize used for silage production

could potentially reduce the amount of C loss-cattle(forest). This effect was shown for the

feed improvement scenario FeCo, which combined feed conservation based on maize silage

and concentrate supplementation at medium intensification level (Figure 5.4C). However,

the shortage of potentially arable land in the vicinity of forests would lead to forest C

loss due to dairy cattle (C loss-cattle(forest)) because feed deficits would be met by forest

grazing. Closing the yield gap of maize may reduce the amount of arable land required

to grow additional maize and, therefore, can alleviate the land shortage as shown for the

Maasai Mau Forest region (Figure 5.4C - E). Higher yields of maize in areas close to forests

translate into a sufficient availability of improved feeds for dairy cattle, which would result

in less C loss-cattle(forest) as forest grazing of dairy cattle is not required.
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Figure 5.4: Forest carbon (C) loss due to dairy cattle and forest C gain. Map A) shows the

baseline C loss-cattle(forest) and C gain(forest) for the entire dairy production region in Kenya.

Inset map B) illustrates the baseline C loss-cattle(forest) and C gain(forest) for the Maasai Mau

Forest region. For the same forest region, inset maps C – E) show the C loss-cattle(forest) due to

the shortage of potentially arable land for the scenario FeCo, which combines feed conservation

based on maize silage and concentrate supplementation at medium intensification level. Inset

map D) indicates the shortage of potentially arable land and the potential C loss-cattle(forest)
with actual maize yields (Ya). Realising the water-limited yield potential of maize (Yw(maize))

at 50 % (D) and 80 % (E) may reduce the shortage of potentially arable land and C loss-

cattle(forest) within a radius of 5 km.

Total agricultural emissions, emission intensities and forest C change

Across the study area, the feed improvement scenarios increased total agricultural GHG

emissions in relation to the baseline by 3.2 – 69.4 ± 2.8 – 6.5 % (Figure 5.5A). The

lowest increase of GHG emissions was indicated for the FoCo scenario at medium inten-
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sification level. The highest increase in emissions was shown for the FoFeCo scenario at

high intensification level and with actual maize yields (baseline Ya(maize)), although GHG

emissions from enteric fermentation were reduced by 1.9 – 21.1 %. The FoCo scenario

at medium intensification level had the lowest effect on the reduction of emissions from

enteric fermentation. In contrast, the FoFeCo scenarios at high intensification level, had

the strongest effect on lowering enteric fermentation emissions. Emissions from manure

management were increased by up to 100 % through scenarios that included the feed

intensification strategy of improving forage quality such as the FoFeCo scenarios at high

intensification level. More N was excreted by cattle when the proportion of Napier grass

in the cattle diet increased, which led to higher N2O emissions. GHG emissions from soils

allocated to produce cattle feeds were increased by 48.3 – 266.5 %. The lowest increase of

feed-related GHG emissions was shown for the FoCo scenario at medium intensification

level. The highest increase was indicated for the FoFeCo scenario at high intensification

level and with Yw realised at 80 % (Yw-80(maize)). The FoFeCo scenario, which included

maize to produce silage at high intensification level and a water-limited yield potential

of Yw-80(maize) led to highest increases in feed-related emissions due to high fertiliser N

application rates of 108.2 – 167.9 kg N ha-1 required to realise this yield potential. The

scenarios that included feed conservation such as FeCo and FoFeCo showed higher emis-

sions from LUC than the FoCo scenario, which did not include silage. Maize required

more land to convert pasture into cropland than Napier grass (Figure 5.5A). However,

LUC emissions from FeCo and FoFeCo scenarios were reduced by 69.0 – 75.3 % due to the

increased yield of maize (from actual Ya(maize) to Yw-80(maize)). There was a reduction of

GHG emissions from feed production and LUC by closing the maize yield gap throughout

the scenarios that included maize silage (Figure 5.5A). The reduction of emissions from

LUC was 2.6 – 4.9 times higher than the increase of emissions from additional fertiliser

N. Despite the reduction of emissions from enteric fermentation and LUC by closing the

yield gap of maize, none of the feed improvement scenarios could achieve a net reduction

of total emissions on agricultural land (Figure 5.5A).

The GHG emission intensity of the baseline was 2.36 ± 0.05 kg CO2eq kg fat and protein

corrected milk (FPCM)-1 (Figure 5.5B). Milk production increased in all scenarios by 44.2

– 51.4 ± 1.2 – 2.6 % relative to the baseline. The feed improvement scenario FoFeCo at

high intensification level, with actual maize yield did not reduce GHG emission intensity

(2.64 ± 0.10 kg CO2eq kg FPCM-1). Realising Yw(maize) at least at 50 % reduced emis-

sion intensity compared to the baseline (Figure 5.5B). The lowest emission intensity was

shown for the FoCo scenario at medium intensification level (1.68 ± 0.05 kg CO2eq kg

FPCM-1).

Forest C loss due to dairy cattle (C loss-cattle(forest)) was reduced in all scenarios by 47.9

– 270.4 ± 7.4 – 4,935.1 % relative to the baseline (Figure 5.5C). The scenarios with maize

and actual maize yields Ya(maize) showed the lowest reduction of C loss-cattle(forest) (by

47.9 – 93.5 ± 121.1 – 789.3 %). Realising the yield potential Yw(maize) at 50 % and
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80 % lowered C loss-cattle(forest) (by 157.4 – 225.4 ± 18.2 – 4,935.1 %) as the shortage of

potentially arable land was reduced and the feed availability of maize silage on agricultural

land in the vicinity of forests was increased throughout the study area. Hence, closing

the yield gap of maize can turn forests into C sinks (Figure 5.5C). Nevertheless, the

smallest shortage of potentially arable land, the lowest C loss-cattle(forest) and, therefore,

the highest forest C sink potential was indicated for the FoCo scenario. This scenario

showed the highest mitigation potential for the agricultural land and for forests due to

the highest reduction of agricultural GHG emission intensities (by 28.8 %) and forest C

loss (by 270.4 %) while increasing milk production by 45.4 %. For the FoFeCo scenario

(Yw-80(maize)), high uncertainties (relative SD = 4,935.1 %) propagated into forest C

change related to the presence of dairy cattle due to high variances in input datasets of C

loss(forest), NRB(forest) and C gain(forest) that were used to estimate C change-cattle(forest),

which is close to zero (Figure 5.5C).
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Figure 5.5: Caption follows on the next page.
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Figure 5.5: Agricultural GHG emissions and forest carbon (C) change related to smallholder

dairy production. Plots show: A) aggregated total agricultural GHG emissions, B) agricultural

GHG emission intensity per kg fat and protein corrected milk (FPCM), and C) aggregated for-

est C change due to dairy cattle (C change-cattle(forest)). Bars indicate baseline and three feed

improvement scenarios, which represent combinations of three feed intensification strategies at

medium or high intensification levels. The two scenarios that included maize silage use actual

maize yields and two levels of water-limited yield potentials (Yw(maize)). Ya(maize) = actual

baseline yields, Yw-50 = Yw(maize) realised at 50 %, Yw-80 = Yw(maize) realised at 80 %. CH4,

N2O emissions, and forest C change were converted to kg CO2eq. Agricultural GHG emission

sources include i) CH4 emissions from enteric fermentation, ii) CH4 and N2O emissions from

manure management, iii) N2O emissions from feed production, including manure deposition

on pasture, manure application to fodder crops, crop residues from fodder crops and synthetic

fertilizer application to fodder crops and emissions from concentrate supplementation, and

iv) N2O and CO2 emissions from land use change, including N mineralization and loss of soil

organic carbon. Error bars indicate relative standard deviations.

5.4 Discussion

5.4.1 Intensification of smallholder dairy farms and forest C change

Total number of cattle on smallholder farms in the dairy production region was positively

linked to the loss of forest C, which is related to the presence of dairy cattle in forests

located within farm neighbourhoods (Figure 5.2). This is an important finding because

there are no quantitative assessments of the impact of livestock production on tropical

forest systems in SSA. Hosonuma et al. (2012) reported that 8 - 12 % of the forest

disturbance across SSA can be attributed to livestock grazing in forests. Brandt et al.

(2018a) found that cattle grazing inside tropical mountain forests in Kenya is prevalent at

75 % of the forest disturbance spots visited during a forest survey. The use of mountain

forests by smallholder farmers to graze livestock is also reported for Ethiopia (Baudron

et al., 2017; Duriaux Chavarŕıa et al., 2018). Positive effects on dietary diversity and

nutrient balances on farms located in the vicinity of the forests (distance = 5.5 km)

that are used for grazing were found. The authors argue that the amount of herbaceous

biomass removed from the forest through grazing is likely to be lower than the regrowth

rates. However, these studies did not quantify the impact of forest grazing on forest

disturbance and the resulting C loss. In contrast, Brandt et al. (2018a) reported an

increased risk of forest disturbance by up to 5 % due to higher total numbers of cattle

on smallholder farms within their farm neighbourhoods (maximum forest distance = 5

km). The results of this study show a net forest C loss due to dairy cattle within the

neighbourhoods of smallholder farms ranging in average between 54.6 – 842.0 kg C ha-1

yr-1 (Figure 5.3D).
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Farm indicators of improved cattle feeds and intensified milk production on smallholder

farms such as the proportion of fodder crops in cattle diet, concentrated feed supplements,

farm area allocated to the cultivation of fodder crops, the number of improved dairy

cattle and milk yield were negatively related to forest C loss that can be attributed

to the presence of dairy cattle. The same set of indicators was positively related to

forest C change, which is forest C gain minus forest C loss due to dairy cattle (Figure

5.2). Intensification of smallholder agriculture is in general postulated to reduce the

pressure on forest ecosystems. Higher farm productivity is likely to reduce the demand

for land (Campbell et al., 2014). Valin et al. (2013) showed in a modelling exercise that

intensification of livestock production can lower GHG emissions from deforestation in SSA,

through improved management practices such as intensified feeds. A modelling study

conducted in Brazil reported that the intensification of dairy production can reduce the

pressure on forests through pasture intensification (Caviglia-Harris, 2018). Brandt et al.

(2018a) reported lower risks of forest disturbance by up to 7 % within the neighbourhoods

of farms that had improved dairy cattle, attained higher milk yields and fed improved

cattle feeds. In addition, this study indicated that intensified farms have less C loss related

to the presence of dairy cattle and gained more C in adjacent forests than non-intensified

farms within their neighbourhoods of r = 5 km (Figure 5.3C, D). Brandt et al. (2018a)

showed that intensified farms affected forest disturbance less within their neighbourhoods

than non-intensified farms.

The intensification of smallholder dairy production in Kenya based on more nutritious

cattle feeds and improved dairy cattle appears to follow the general notion that an inten-

sification of extensive production systems reduces the negative impact on local, natural

ecosystems such as forests (Wollenberg et al., 2011). Thus, apart from the agricultural

mitigation potential of intensification also quantified by Ortiz-Gonzalo et al. (2017) and

Brandt et al. (2018b), smallholder dairy production in Kenya shows potential to mitigate

GHG emissions from forests. However, the spatial distance of the relationship between

farming practices and forest C loss (5 km) was determined empirically (Brandt et al.,

2018a) and should be taken with caution when extrapolating to other regions. This dis-

tance depends on the region-specific land use dynamics and has to be assessed based on

farming systems and landscape configurations.

5.4.2 Mitigation of GHG emissions from smallholder dairy production across

land use sectors

This study showed that dairy feed improvements and the increase in feed productivity

mitigates i) GHG emission intensities on agricultural land through higher milk yields

and ii) the loss of C from forests related to the presence of dairy cattle through reduced

grazing inside forests (Figure 5.5). The increase of livestock productivity through higher

feed digestibility has been reported to benefit agricultural mitigation mainly through
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increased feed conversion efficiency and lower CH4 emissions from enteric fermentation

(Hristov et al., 2013a; Knapp et al., 2014; Herrero et al., 2016). In addition, closing the

yield gaps of feed crops can play a major role in avoiding CO2 emissions from LUC (Valin

et al., 2013; Herrero et al., 2016; Weindl et al., 2017). The increased N2O emissions due

to higher fertiliser N application rates to close the yield gap of maize could be offset by

reduced CO2 emissions from LUC on agricultural land due to lower land requirements

(Figure 5.5A). This finding is in line with other modelling exercises on the mitigation of

livestock-related AFOLU emissions at a coarser continental scale for SSA (Valin et al.,

2013; Havĺık et al., 2014). The potential to close the yield gap of maize in Kenya is high

(van Ittersum et al., 2013). Apart from being used as livestock feed, maize is a staple crop

in Kenya and widely used for human consumption. However, the production of maize in

Kenya does not meet the demand (van Ittersum et al., 2016). The country relies, therefore,

on imported maize (USDA, 2017). Consequently, increasing maize yields is necessary to

assure food security, especially if the livestock sector invests further into the promotion of

grain-based livestock feeds. Opportunities of yield intensification increase the feasibility to

implement feed improvement options, given the constraint of land availability, especially

in regions that face shortages of arable land due to high densities of human and livestock

populations (Gerssen-Gondelach et al., 2017; Brandt et al., 2018b). Smallholder farmers

across the Kenyan highlands lack frequently the required land to grow sufficient amount

of feeds with higher energy and protein density (Bebe, 2008), which leads to off-farm

grazing on common land such as forests.

Throughout the study area, forest C loss related to the presence of dairy cattle could be

reduced by feed improvement scenarios. For scenarios that included the strategy of feed

conservation through maize silage, such as FeCo and FoFeCo, higher reductions of forest

C loss were achieved by realising higher water-limited yield potentials for maize. Less

shortage of potentially arable land due to the improved availability of higher quality feeds

on agricultural land minimised the need to compensate the lack of feed through forest

grazing (Figure 5.4 & Figure 5.5C). Realising the water-limited yield potential for maize

at least at 50 %, can turn forests into C sinks as the C gain fraction overweighed the C

loss due to dairy cattle (Figure 5.5C). That the increase of feed and livestock productivity

can result in land sparing effects, which reduce the pressure on natural ecosystems such as

forests and lower GHG emissions from LUC has been shown by several modelling studies

at a coarse continental scale for SSA (Valin et al., 2013; Havĺık et al., 2014; Kreidenweis

et al., 2018). However, these studies did neither include empirical bottom-up information

on farm practices nor spatially-explicit data on forest C loss related to the presence of

cattle, which are required to identify location-specific effects of certain feed improvement

options on forests and to detect land constraints that limit the feasibility of mitigation

interventions.
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Figure 5.6: Changes of combined total agricultural GHG emissions and forest carbon (C)

change, which is forest C gain minus the C loss fraction related to dairy cattle. Bars show

changes of combined GHG emissions between feed improvement scenarios and the baseline.

Ya(maize) = actual baseline yields, Yw-50 = Yw(maize) realised at 50 %, Yw-80 = Yw(maize)

realised at 80 %.

Land requirements and the resulting shortage of potentially arable land were lowest for

the FoCo scenario, which included the strategies of forage quality and concentrate sup-

plementation. Almost no cattle grazing inside forests to compensate the lack of feed on

agricultural land was needed for this scenario. The related forest C loss was reduced by

270 %, which led to the lowest forest C loss among all scenarios (Figure 5.5C). Conse-

quently, the forest C sink potential was highest compared to all other scenarios. The FoCo

scenario could result in a net benefit for AFOLU mitigation by reducing GHG emissions

across the agricultural and forest sectors effectively, since total agricultural GHG emis-

sions and forest C change combined were 2.5 % lower than in the baseline (Figure 5.6).

The national dairy master plan and the dairy NAMA seek for feed options that realise

milk yield gains and mitigation benefits (Government of Kenya, 2010, 2017b). Therefore,

this feed improvement option could represent a promising candidate to be targeted by the

dairy sector.

5.4.3 Policy relevance: targeting and financing the implementation of CSA

practices

The added value of this study emerges from the combined mitigation potential of small-

holder intensification for the entire dairy production region in Kenya by linking agricul-

tural production and the use of forests. The mitigation estimates were quantified across
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land use sectors based on empirical information from the ground (farm and forest surveys),

using spatially-explicit input data on milk production, GHG emissions and forest C loss

at high spatial resolution. The approach followed can shed light on the effectiveness of

potential CSA practices to mitigate AFOLU emissions in the context of developing agri-

cultural production such as dairy production in Kenya at sectoral level. Multi-objective

modelling tools that aim to support decision-making processes on prioritising CSA prac-

tices based on evidence by integrating qualitative and quantitative information at various

spatial and temporal scales have been developed recently (Brandt et al., 2017; Dunnett

et al., 2018). This study provides input data for such tools to explore the feasibility

of CSA practices in terms of land availability and their effectiveness to mitigate GHG

emissions from agricultural land and forests.

Policy instruments that aim to enable the development of climate-smart food production

sectors such as NAMAs have to rely on evidence, which shows the potential to realise

’win-win’ situations that benefit smallholder farmers and contribute to climate mitiga-

tion goals (e.g. NDCs) (Lipper et al., 2014; Grassi et al., 2017). In addition, mitigation

policies need to support the creation of economic incentives, which are required to foster

the implementation of targeted CSA practices and to reduce potential adoption barri-

ers (Lipper et al., 2014). Climate financing schemes could use quantitative information

on productivity gains and mitigation potentials of specific feed improvement options to

inform decisions on the investment into candidate practices that are targeted to be im-

plemented at farm level, yet effect largely the broader landscape. Agricultural practices

affect the use of tropical forests and their C dynamics, e.g. through the removal of biomass

due to grazing or fuelwood harvest (Pearson et al., 2017; Brandt et al., 2018a). This study

shows that intensified feed and livestock production helps to reduce GHG emissions from

forests. This finding emphasises the alignment of climate mitigation policies and financ-

ing mechanisms across the land use sectors of agriculture and forestry to achieve effective

mitigation outcomes, i.e. the net reduction of AFOLU emissions. Therefore, policy frame-

works are required that integrate the CSA concept and policies on ’Reducing emissions

from deforestation and forest degradation’ (REDD+) (Carter et al., 2018a).

5.4.4 Limitation and future research

This is the first study that quantified the impact of livestock on forest C change by using

spatially-explicit, remote-sensing data. Measurements obtained from grazing experiments

for different forest and cattle types are required to estimate the direct impact of cattle

on above and belowground carbon stocks in forests (e.g. Schulz et al., 2016). Animal

movement patterns can be traced through telemetry analyses to gain knowledge about

distances that cattle walk and the time they spend inside forests (Gao et al., 2016).

Aggregated spatially and temporally, this ground-truth information could be used to

calibrate and validate the estimates of forest C change related to cattle grazing derived
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from remote-sensing data. The approach to improve maize yields, chosen in this study,

was to increase the N application from external inputs of synthetic fertiliser. Realising the

water-limited yield potential of maize at 80 % required high N inputs of up to 108 - 168 kg

N ha-1 (van Bussel et al., 2015). Fertiliser, transport and labour costs of high N application

rates, however, may render the intensification of feed production economically unfeasible

or simply uninteresting for smallholders, if economic returns from milk sales do not justify

these investments. Consequently, moderate application rates of synthetic fertiliser of 60 –

90 Kg N ha-1 could be more realistic from a farmer’s point of view in the Kenyan highlands

(Mucheru-Muna et al., 2007, 2014). Therefore, reliable market prices for milk, improved

access to markets are required for smallholders to adopt practices that close the yield

gap of feed crops such as maize. To increase the adoption of dairy feed improvements,

assessments of agricultural productivity and climate change mitigation have to be coupled

with cost-benefit analyses that take into account seasonal variation of costs and returns

and farm distances to markets to find optimal cost-benefit ratios for smallholder farmers.

Moreover, apart from abiotic and biotic factors, crop management practices influence the

improvement and the stability of maize yields (Kiboi et al., 2017; Rattalino Edreira et al.,

2018). Hence, the dissemination of knowledge about best practices through agricultural

extension is crucial.

Greater efforts to intensify smallholder agriculture have to be undertaken to improve

crop and livestock yields and to achieve food security goals in SSA (van Ittersum et al.,

2016). More food produced from existing agricultural land will be required to feed the

continent’s fast growing population. Considering the shrinking of farm sizes and the in-

creasing shortage of arable land in SSA (Vanlauwe et al., 2014), research at landscape level

has to be strengthened to explore the boundaries within which smallholder agriculture

can be intensified sustainably to safeguard food security. For instance, this study did not

include international C leakage effects that potentially result from the displacement of

GHG emissions due to the increased demand for feed imports, which could trigger crop-

land expansion into natural ecosystems outside the study area (Styles et al., 2018). The

market-oriented stimulation of agricultural production sectors can lead to rebound effects

due to reduced prices, higher demand and, therefore, further increasing production (Valin

et al., 2013). Analyses of AFOLU mitigation need to integrate various scales ranging

from farm, landscape to sectoral level and have to be coupled with economic models to

further improve the estimates of effective mitigation potentials by incorporating feedbacks

between markets and agricultural development.

5.5 Conclusions

Dairy feed improvements may have climate change mitigation benefits for agriculture and

forests and can contribute to food security by increasing milk yields in Kenya. Closing
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the yield gap of maize used to produce silage could increase the feasibility to implement

improved grain-based cattle feeds, and can reduce GHG emission intensities from milk

production and the loss of C in local forests. However, the largest mitigation benefits

across land use sectors could be achieved through the improvement of forage quality and

the supplementation of concentrates. These findings emphasise the importance to assess

the impact of specific CSA practices prior their targeting and prioritisation at high spatial

resolution to identify mitigation potentials across land use sectors and to reveal imple-

mentation constraints such as land availability. General recommendations derived from

top-down assessments conducted at coarse spatial scales risk to miss differences between

candidate options identified by using bottom-up and high resolution data, which may ren-

der the implementation of targeted interventions unfeasible or may reduce the effectiveness

of mitigation outcomes. Integrated mitigation and development policy frameworks and

climate financing instruments could benefit from the approach followed and the informa-

tion provided to prioritise the most effective CSA practices and to invest into bundles

of options that show the most promising potentials for sectoral development and climate

mitigation.
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6.1 Main findings

The objectives of this thesis were to i) improve the robust prioritisation and targeting of

CSA practices at national level and to ii) shed light on the potential of intensified dairy

feeds to reduce direct and indirect GHG emissions effectively. Four research questions were

defined in Section 1.5 to address these objectives. The main findings for each question

are summarised below, based on results from the previous chapters.

6.1.1 How can ’multi-criteria decision-making’ support national climate

change adaptation and mitigation planning to target CSA practices?

(RQ A)

Adaptation and mitigation measures have to be prioritised and targeted robustly to trans-

form agriculture into climate-smart food production systems at large scale. The multi-

criteria decision-making framework ”targetCSA” was developed in Chapter 2 to explore

targeting options for adaptation and mitigation practices based on spatially-explicit in-

dices of climate change vulnerability and CSA suitability. The vulnerability index shows

how urgent an implementation of CSA interventions would be at certain locations. CSA

suitability indicates the technical feasibility of these interventions. The indices were de-

rived from the integration of spatially-explicit data such as biophysical, social and eco-

nomic indicators of climate change vulnerability and proxy data on CSA suitability (Table

2.1). An optimisation model was used to find combinations of stakeholder preferences re-

garding the prioritisation of certain CSA practices that approach the potential consensus

achieved through minimising the disagreement between all stakeholder preferences. Vul-

nerability and suitability indices were weighed by the preferences of involved stakeholder

groups and the aggregated consensual preferences to map and explore the potential ef-

fects of various decision-making outcomes based on group-specific preferences and the

computed preference weights that approach the consensus of all stakeholder groups. Fac-

ing decision-makers with the effects decisions based on their ’point of view’ may have and

contrasting these with a consensus scenario can guide further negotiations to find agreed

solutions in a decision-making process. The robustness of CSA-targeting outcomes can be

increased by applying ”targetCSA”, as it helps to explore the potential of CSA-practices

based on evidence (data-driven) and the minimised disagreement among stakeholders,

which could lead to more informed and transparent decisions.

The applicability of ”targetCSA” was demonstrated in Kenya. Stakeholders from various

sectors such as the Kenyan government, NGOs, science and the private sector involved

in the development of the national CSA strategy were interviewed about the importance

they assign to sets of vulnerability indicators and CSA practices. The stakeholder groups

weighed the importance of vulnerability indicators and CSA practices differently accord-
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ing to their agendas and interests (Figure 2.3). High dissent among stakeholders was

shown for the biophysical vulnerability indicators ’annual precipitation’ and ’soil organic

matter’ and for the CSA practices ’improvement of soil fertility and soil management’ and

’identification and establishment of agroforestry practices’. Decision-making processes on

complex issues such as climate change adaptation and mitigation are often characterised

by disagreements among involved stakeholders. A disagreement among opinions on which

CSA practices should be prioritised and targeted can slow down decision-making processes

or may prevent legitimate decisions in cases that are highly conflict-prone. ”targetCSA”

can be used to make these differences explicit by mapping the resulting CSA-targeting

scenarios and complement them with a scenario that reflects the minimised dissent among

stakeholder opinions.

Furthermore, different consensus modes can be explored by minimising the dissent towards

the majority of stakeholder preferences or towards the minority, which are preferences

that are far apart from the majority. In this thesis, CSA potentials based on three

different consensus scenarios were mapped (Figure 2.4). As a result, different regions

in Northern and Eastern Kenya would be prioritised by decision-makers. Following the

majority preferences, larger areas with high CSA potential concentrate in the Northwest,

Northeast and Central Eastern parts of Kenya, whereas the minority would prioritise

larger areas located in the North and Northeast of Kenya. A third consensus scenario

that reflects the compromise between majority and minority (i.e. the most balanced trade-

off) highlights larger areas with high CSA potential where both consensus modes agree,

which is the Northeast of Kenya. Mapping scenarios of CSA potentials based on different

consensus modes allows to explore disagreement between opinions of the majority of

stakeholders and a minority group. Visualising potential effects of disagreement between

stakeholder groups or the majority and minority of stakeholders could, therefore, help

to find solutions in a conflict-prone decision-making process, for instance in cases where

marginalised groups are involved.

Stakeholder opinions may differ over time, as shown in Figure 2.5, due to changes in

knowledge, interests and organisational agendas. Relying on ’snap-shot’ opinions would

fail to capture, illustrate and finally reduce the uncertainty that is introduced by varying

stakeholder opinions. In this thesis, a change in importance was shown most drastically

for the CSA practice ’improvement of soil fertility and soil management’, which was

ranked as fourth important CSA practice during the first expert survey and was ranked

as most important during the second survey. ”targetCSA” can be used iteratively to

monitor and validate the importance that stakeholders assign to vulnerability indicators

and CSA practices during the process of CSA prioritisation and targeting (Figure 2.1).

Decisions to target certain CSA practices at specific locations can be assumed to be more

robust and legitimate once stakeholder opinions are reflected by stabilised patterns of

preferences.
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”targetCSA” was in general designed to structure complex decision-making processes by

exploring preference scenarios derived from stakeholders based on quantitative and qual-

itative information to support the prioritisation and targeting of relevant CSA practices.

To apply the framework in a livestock mitigation case, for instance to reduce GHG emis-

sions from smallholder dairy production, input data should be adjusted to reflect this

CSA-targeting context. Vulnerability indicators at high spatial resolution could include

water and feed availability during dry seasons (e.g. mapped variability of vegetation and

water indices based on remote-sensing time-series), animal health such as the occurrence

of vector-borne diseases (e.g. mapped suitability of occurrence of vector species), yield

gap of feed crops (e.g. mapped difference between actual yields and potentially attainable

yields). Data that indicate the suitability of CSA practices could include the mapped

density of local and improved dairy cattle, the mapped shortage of arable land, which

shows the feasibility to implement certain livestock feed improvement practices (Chap-

ter 3) and the mapped potential of certain feed improvement practices to reduce GHG

emissions from agriculture and forests effectively (Chapter 5). The spatial extent of these

input data can be constrained to the dairy production area in Kenya. Stakeholder involve-

ment should include experts from dairy, feed and breeding companies, dairy cooperatives

and farmer associations, livestock and nutritional scientists as well as agricultural and

environmental ministries at county and national level.

6.1.2 Which climate change mitigation options in the Kenyan dairy sector

contribute to climate mitigation and food production targets defined

at national level? (RQ B)

In Chapter 3, the potential of livestock feed improvements to contribute to climate change

mitigation and productivity targets at national scale was assessed. Feed alternatives that

have higher protein and energy content are generally proposed to increase milk yields and

to reduce GHG emission intensities in smallholder livestock production systems (Hristov

et al., 2013a; Knapp et al., 2014). However, GHG emissions from LUC and the shortage of

potentially arable land (e.g. grassland) required to cultivate feed crops may compromise

mitigation efforts or render the implementation of promising practices unfeasible at certain

locations. The analyses of feed improvement scenarios based on combinations of three feed

intensification strategies (Figure 3.2) showed that feed conservation based on maize silage

requires a high amount of land to be converted into cropland, which would lead to higher

GHG emissions from LUC. LUC emissions from these scenarios were on average ten times

higher than LUC emissions from scenarios, which included the strategy of forage quality

improvement, by using Napier grass, instead of using maize to produce silage (Figure 3.3).

Overall, scenarios that included the strategy of feed conservation did not reduce GHG

emission intensities in regard to the baseline (Figure 3.3). In contrast, the improvement of

forage quality and the supplementation of dairy concentrates reduced emission intensities
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by up to 31 % (Figure 3.6). Implementing the improvement of forage quality would be

more feasible in terms of available potentially arable land compared to scenarios that

included maize silage used for feed conservation. Only 0.5 – 2.8 % of the agricultural land

throughout the study area lacked the amount of potentially arable land that would be

required to implement forage-based feed improvements. On the contrary, 26 – 50 % of the

agricultural land across the study area would lack the potentially arable land required to

implement scenarios that included maize silage (Figure 3.4). The shortage of potentially

arable land shown for these scenarios resulted from their high demands for arable land

due to additional maize that has to be cultivated in addition to existing maize, which was

assumed to be grown to produce food and, therefore, was unavailable as cattle feed.

Moreover, the feed improvement scenarios were assessed to quantify their relative contri-

bution to Kenya’s climate change mitigation and milk yield targets defined in the country’s

NDC and in its national dairy master plan (Government of Kenya, 2010, 2015a). All sce-

narios increased the milk yields and contributed to the milk yield target by fulfilling it

partially by 17 – 43 % (Figure 3.4). Several scenarios that included the feed conserva-

tion strategy at high intensification level exceeded the tolerable GHG emissions increase

of the NDC target due to high GHG emissions from LUC (Figure 3.4). The medium

intensification variants of these scenarios partially achieved the milk yield target by 17 -

39 % and increased total GHG emissions at a tolerable level according to the NDC target,

yet their implementation would be unfeasible on 24 – 26 % of the agricultural land due

the shortage of potentially arable land. The two scenarios that included the improve-

ment of forage quality and the supplementation of dairy concentrates showed relatively

high achievement rates in terms of the milk yield target (38 – 40 %) and increased only

marginally total GHG emissions by 4 – 13 %. This increase ranged at the lower end of

tolerable GHG emission increases as defined in the NDC. Based on these assessments, it

can be inferred that alternative dairy feeds that are based on the improvement of forage

quality and the supplementation of dairy concentrates are feasible to implement in the

majority of areas across Kenya’s dairy production region, are beneficial for smallholder

farmers, and contribute to planning targets at national level. Increased milk yields result

potentially in higher farm incomes (Bryan et al., 2013). However, the high intensification

variant of these two scenarios requires farmers to invest more in dairy concentrates (6 kg

day-1), which could render it economically less viable for smallholders in Kenya. The

medium intensification scenario, however, achieved a relatively high gain of milk yield

with moderate increases of concentrate supplementation rates (3 kg day-1) and, therefore,

shows a lower investment risk for smallholders (Bebe et al., 2002).

Uncertainties of emission parameters used to model GHG emissions influenced total GHG

emissions and emission intensities (Figure 3.3). Emission parameters were inputs to the

GHG emission module of the LivSim model. The ranges of emission parameters were

sampled by using the LHS approach. The methane conversion factor showed the strongest

effects on the variation of modelled baseline emissions, which varied by about ±7 %. The
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SOC emission factor used to estimate GHG emissions from LUC, influenced the variation

of scenario emissions most. For instance, the scenario that included the strategy of feed

conservation and forage quality at high intensification level varied by about ±48 %. LUC

was reported to be a significant source of uncertainty for the estimation of GHG emissions

from livestock production (van Middelaar et al., 2013). Since GHG emissions from LUC

play an important role in environmental impact assessments of feed production, efforts in

SSA must be strengthened to reduce the related uncertainty by measuring the effects of

LUC (e.g. the conversion of grassland into cropland) on SOC and by using dynamic land

use models that incorporate interactions between vegetation and soils. However, these

models have to be parametrised comprehensively. The empirical data required are often

missing in SSA.

Chapter 3 shows that ex-ante impact assessments of potential feed improvements are

required for a successful mitigation of GHG emissions from livestock production. Mitiga-

tion planning based on general recommendations or top-down analyses at coarse spatial

scales face the risk to neglect local realities, which can be uncovered by analyses that

include bottom-up information. More detailed, spatially-explicit assessments that incor-

porate i) the effects of converting grassland to cultivate alternative feed crops with higher

digestibility and ii) the availability of land (e.g. grassland) help to decide whether certain

practices result in mitigation and productivity benefits and whether their implementation

is feasible at specific locations. This is especially relevant for regions such as the Kenyan

highlands, which are characterised by small farm sizes and high population density (Her-

rero et al., 2014). Relating the effects of CSA practices on climate change mitigation

and agricultural production at sectoral level to national targets enables the performance

monitoring of CSA practices in regard to integrated policies such as NAMAs, which fo-

cus on low-emissions development (LED) of economies, and international commitments

such as UNFCCC. These assessments could also help to define realistic sectoral targets,

e.g. for the agricultural sector in Kenya. Kenya has to comply with its NDC, yet misses

quantitative targets that reflect sectoral responsibilities to contribute to the achievement

of the target at national scale.

6.1.3 How does the intensification of smallholder dairy farming affect forest

disturbance? (RQ C)

The intensification of smallholder farming has been proposed to increase food production

on existing agricultural land while releasing the pressure on natural ecosystems (Garnett

et al., 2013). The effects of smallholder dairy farm practices, characteristics and types on

forest disturbance were analysed in Chapter 4 to determine whether an intensification on

smallholder dairy farms could reduce the impact on the Mau Forest, the largest remaining

montane forest complex in East Africa, located in the Kenyan highlands. The forest plays

a critical role as ’water tower’ for the entire region. It is the headwater area for 12 major
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rivers and provides freshwater to about five million people (Jacobs et al., 2017). Firewood

extraction and cattle grazing inside forests were found to be the dominant drivers of forest

disturbance present at about 75 % of forest disturbance spots sampled during a forest

survey. Only sparse information exists so far on the magnitude of forest disturbance

related to fuelwood extraction and cattle grazing inside forests in SSA. According to

Hosonuma et al. (2012), the relative contributions of fuelwood extraction and forest cattle

grazing to forest disturbance are 58 % and 8 % respectively for countries in SSA, which are

in their late forest transition phase such as Kenya. Pearson et al. (2017) estimated that

fuelwood extraction contributes about 30 % to the GHG emissions from tropical forests.

However, none of these studies provides quantitative information about the impact of

smallholder agriculture on forest disturbance based on observational data. From this

thesis, the relative impact of farm-related practices such as firewood extraction and cattle

grazing inside forests on forest disturbance and resulting GHG emissions can be assumed

to be higher for montane forests located in the Kenyan highlands.

Farm practices and characteristics were used to calculate farm indicators for smallholder

dairy farms located close to forests during a farm survey. Within farm neighbourhood

sizes of r = 2 - 5 km, farm indicators such as total number of cattle, farm size and firewood

collection rates were related to higher risks of forest disturbance. Risk increases ranged

between 1 – 10 % (Figure 4.5). On the contrary, higher milk yields, and indicators that

reflected improved cattle feeds such as larger farm area allocated to fodder production

and increased supplementation of dairy concentrates were related to lower risks of forest

disturbance. Risk decreases ranged between 2 – 7 % (Figure 4.5).

Moreover, different farm types were derived from the farm indicators in Chapter 4 such as

small and resource-poor farms, large and inefficient farms, and intensified farms. These

farm types differed in their effects on forest disturbance. Intensified farms showed in

general a lower proportion of disturbed forest within their neighbourhoods (r = 2 - 5

km) than the non-intensified farm types (Figure 4.8). The effects of farm types on forest

disturbance that was specifically related to firewood extraction and cattle grazing inside

forests, indicated a similar pattern. Intensified farms had a lower proportion of disturbed

forest related to firewood extraction and cattle grazing in their farm neighbourhoods

(r = 2 – 3 km) than the two non-intensified farm types (Figure 4.9). More improved

dairy cattle, higher milk yields, higher proportions of improved cattle feeds, and more

frequently planted on-farm trees were found on intensified farms than on non-intensified

farms (Figure 4.6). Improved cattle, cattle feeds and more trees planted on farms, which

are potentially available as fuelwood supply reduce the need to use forest resources and

lower the risk to disturb forests located in close proximity to smallholder farms. However,

a recent study conducted in a landscape characterised by smallholder agriculture and

mountain forests in Ethiopia, reported positive effects between livestock grazing in forests

and livestock productivity (Duriaux Chavarŕıa et al., 2018). Farms located closer to

forests (5.5 km) showed higher milk yields and more positive nutrient balances than farms
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located further away (11 km). Although quantitative estimates of forest disturbance were

not included, the authors argue that the sustainable use of forest resources may increase

the performance of adjacent smallholder farms.

Chapter 4 integrates empirical ground data and results from a forest change detection

approach based on remote-sensing time series to relate smallholder farming and forest

disturbance, which is a novel approach to assess agriculture-forest interactions. Forest

disturbance and resulting GHG emissions caused by unsustainable land use practices can

be alleviated by intensifying smallholder dairy farming, which is shown to realise ’win-

win’ potentials for smallholders through milk yield increases, and for the mitigation of

agricultural GHG emissions (Chapter 3). The novel approach and the findings derived

from Chapter 4 open new avenues to mitigate AFOLU emissions across the agricultural

and forestry sectors (Chapter 5).

6.1.4 What is the potential of livestock intensification options to reduce GHG

emissions from agriculture and forests? (RQ D)

The potential of dairy feed improvements to mitigate GHG emissions from agricultural

land directly and from forests indirectly was assessed in Chapter 5 based on insights

obtained from Chapter 3 and 4. Independent datasets of C change, including C gain and

C loss (Baccini et al., 2017) were used to estimate the forest C loss related to the presence

of dairy cattle (Figure 5.1). Farm indicators and types that were analysed in Chapter 4

were linked to forest C change variables to test whether the intensification of smallholder

dairy farms can be associated with reduced forest C loss in their neighbourhoods. Farm

indicators related to improved dairy cattle and cattle feeds such as the proportion of fodder

crops in cattle diet, the supplementation of concentrated feeds, and farm area allocated to

the cultivation of fodder crops and increased milk yields were negatively linked to forest

C loss related to the presence of dairy cattle. The same set of indicators was positively

linked to forest C change, which is forest C gain minus C loss related to the presence of

dairy cattle (Figure 5.2). Lower forest C loss related to the presence of dairy cattle and

higher forest C change (negative values closer to zero) were found in neighbourhoods of

intensified farms compared to non-intensified farms (Figure 5.3). These results show that

an intensification of smallholder dairy farming could reduce C loss from forests through

the cultivation of improved cattle feeds on agricultural land, which lowers the need to use

forests as grazing land for dairy cattle.

Using the methodology developed in Chapter 3 (Figure 3.1), three feed improvement

scenarios were assessed regarding their potential to mitigate both GHG emissions from

agricultural land and forest C loss. The latter one was analysed based on the scenario

demand for land and the availability of potentially arable land required to cultivate addi-

tional maize (feed conservation strategy) and Napier grass (forage quality strategy). The
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shortage of grazing land that could be converted into cropland close to forests was assumed

to cause cattle grazing in forests to meet the demand for feeds. In addition, the three feed

improvement scenarios were complemented by variants that closed the yield gap of maize

by realising the water-limited yield potential at 50 % and 80 %. GHG emissions from

higher application rates of synthetic fertiliser required to close the gap of maize yields

increased by up to 267 %. In contrast, GHG emissions from LUC related to the conver-

sion of grassland into cropland needed to cultivate additional feed crops was reduced by

up to 75 %, which outbalanced the emission increase from soils due to higher fertiliser

application rates (Figure 5.5). The effect of reduced GHG emissions from avoided LUC

was up to five times higher than the increase of fertiliser-related emissions. Consequently,

GHG emission intensities of scenarios that included the strategy of feed conservation by

using maize silage were lowered by up to 20 % and less arable land would be required

to implement them. The lowered demand for arable land to cultivate alternative dairy

feeds close to forests reduced forest C loss due to avoided grazing of dairy cattle inside

forests by up to 94 % (Figure 5.5). However, the scenario that included the strategies

of improved forage quality and supplementation of dairy concentrates showed the highest

reduction in emission intensity (29 %), the lowest demand for arable land and the highest

reduction of forest C loss (270 %). This scenario was the only one modelled in this thesis

that resulted in a net mitigation benefit once the effects of feed improvements on i) GHG

emissions from agricultural and ii) on forest C loss were combined. Combined total GHG

emissions were reduced by 2.5 % in relation to the baseline (Figure 5.6).

Chapter 5 represents the first attempt to quantify the loss of C from tropical forests that

is related to the presence of dairy cattle at a larger scale by using remote sensing data.

The results emphasise the importance to incorporate the impact of agricultural practices

on forests into assessments that quantify and evaluate the performance and effectiveness

of CSA options in the livestock sector. Integrated policy instruments that aim to mitigate

AFOLU emissions (e.g. NAMAs) can make use of the approach and the results provided

in Chapter 5 to target CSA practices. Ex-ante information of land requirements and

availability and the effectiveness to reduce GHG emissions across land use sectors can

help to minimise the risk of negative spillover effects such as C leakage.

6.2 Reflection and outlook

The Paris agreement has set international efforts into motion to limit the global temper-

ature rise below two degrees Celsius. Technical and financial capacity has to be built

especially in SSA countries to achieve this ambitious target. AFOLU emission baselines

and reduction potentials have to be quantified to fulfil national climate change mitigation

targets expressed in NDCs. Methodological frameworks to target CSA practices based on

quantified mitigation benefits are required to support this process. This thesis contributes
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to the development of i) frameworks that prioritise and target CSA practices and ii) ap-

proaches that assess the potential of livestock-related CSA practices to mitigate GHG

emissions effectively while increasing agricultural productivity. These approaches allowed

to study interactions between the agricultural and forestry sectors based on empirical

data and enabled to identify trade-offs and synergies that were not known before. The

following sections will reflect on the methodologies developed and applied by focusing on

further research needed to increase their performance and scope through the inclusion of

additional climate-smart livestock options, the integration of models and scales, as well

as data improvements.

6.2.1 Further options to increase climate-smartness of livestock produc-

tion

In this thesis, the potential to reduce GHG emissions from sustainably intensified live-

stock production was assessed by focusing on dairy feed improvements across the Kenyan

highlands. The approach can be out-scaled to other regions that show comparable agri-

cultural production systems and forest disturbance dynamics such as highland areas in

Tanzania or Ethiopia (DeVries et al., 2016; Maleko et al., 2018). The need and interest to

develop smallholder-driven dairy production in East Africa is marked by project activi-

ties of several international ’green’ development programs such as the ’Smallholder Dairy

Commercialization Programme’ (SDCP) financed by the ’International Fund for Agricul-

tural Development’ (IFAD) and the ’East Africa Dairy Development’ (EADD) program.

These programs aim for market-oriented developments of smallholder dairy production

in the region (EADD, 2014; Government of Kenya, 2017b). Apart from the feed intensi-

fication strategies considered in this thesis, other options have to be assessed concerning

additional feed alternatives, animal health and herd structure as well as grazing and pas-

ture management to increase livestock productivity and to reduce the pressure on natural

ecosystems.

Further feed alternatives such as forage legumes and fodder trees should be explored to

enrich the portfolio of feed improvement pathways viable for the various smallholder dairy

production contexts in East Africa. Agricultural soils in SSA are often nutrient-depleted

and, thus, highly N-limited, which puts legumes as protein-rich forage and their abil-

ity to fix atmospheric N2 on the spot (Giller, 2001). Leguminous forage species such as

Desmodium, planted as sole crop or intercropped with grasses can improve soil fertility

and have a higher protein content than, for instance, Napier grass (Lukuyu et al., 2012).

Fodder trees grown on farmland improve the supply of nutritious livestock feeds and offer

additional services such as erosion control and on-farm fuelwood (Franzel et al., 2014).

Higher number of farms with trees on-farm were shown to contribute to reduced forest

disturbance at landscape level (Chapter 4). About 500 Calliandra trees are required to

feed a dairy cow. Therefore, small farms will not be able to feed dairy cattle based on
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fodder trees and have to rely on external feed inputs (Franzel et al., 2014). However,

feed alternatives have to be selected carefully to avoid detrimental effects on feed and

livestock productivity (e.g. through vulnerability to pest species or anti-nutritional prop-

erties). Additional work is required to improve the knowledge about nutrient quality and

suitability of available legume, fodder tree and shrub species under different agro-climatic

conditions in East Africa.

Apart from feeding higher quality diets, animal health has to be improved through ac-

cess to vaccination services and the reduction of heat stress, which reduce mortality and

increase lifetime productivity of dairy cows (Rufino et al., 2009; Mottet et al., 2016).

Shorter calving intervals and an increase of the proportion of productive animals in dairy

herds can improve the productivity at herd level, which further reduces GHG emission in-

tensities per unit product (Rufino et al., 2009; Herrero et al., 2016). Based on the ’Global

Livestock Environmental Assessment Model’ (GLEAM), Mottet et al. (2016) estimated

that the potential to mitigate GHG emissions in East Africa through an improved herd

structure ranges between 4 – 10 %. The effects of animal health and herd management

parameters on milk yields and resulting GHG emissions can also be explored by using

models like the LivSim model, which was applied in Chapter 3 and 5.

Grass obtained from grazing on native, low-productivity pastures is one of the main feed

sources in the Kenyan highlands (Chapter 3). Pastures in these areas are often overgrazed

and degraded, which affects heavily the feed availability and quality especially during

dry seasons (Lukuyu et al., 2012). The productivity of pastures should be improved in

terms of weed control, timing and intensity of grazing, and fertility management through

application of organic and inorganic fertiliser (Lukuyu et al., 2012; Mottet et al., 2016).

The latter option will also contribute to the increase of GHG emissions from pasture soils,

though (Wanyama et al., 2018). However, the extent of grazing land is low throughout

the Kenyan highlands (Chapter 3) (Bosire et al., 2016). Therefore, improved pasture

management for sustainably intensified smallholder dairy production in Kenya can be

assumed to take on a supporting role.

6.2.2 Integrated AFOLU mitigation policies require integrated ap-

proaches

Policies that aim to mitigate AFOLU emissions effectively require robust information

about the potential of candidate interventions to reduce GHG emissions across land use

sectors, prioritisation preferences of stakeholders, adoption constraints, and the economic

viability of practices that are being targeted in a certain context. Various spatial scales

have to be incorporated ranging from a single farm to the national or even international

level to obtain this information (Dunnett et al., 2018). Smallholders are the decision-

makers at farm level on which and how agricultural goods are produced on their land.
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Their decisions are determined by biophysical and socio-economic constraints such as

climate, soil fertility, financial capital, and education (van Wijk et al., 2009). The decisions

of policy-makers on economic development pathways and investments into climate-smart

production systems are made at (inter)national and sub-national scale such as the county

level in Kenya. Integrated modelling tools are needed that enable the assessment of

CSA-related policy interventions at the scale where farmers make decisions (i.e. the

farm level), including their implications at landscape level while incorporating feedback

dynamics between changes in productivity and market responses at the scale of production

sectors.

Various farm household models exist to date (e.g. van Wijk et al., 2014). The ’NUANCES-

FARMSIM’ model was developed specifically for smallholder systems in SSA and could

be used to study the effects of changes in management practices at farm level over time

(van Wijk et al., 2009). The model is able to simulate crop and livestock production

on smallholder farms, including the interactions between farm components such as soils,

crops and livestock. This enables the assessment of farmers’ decisions on resource and nu-

trient flows, GHG emissions, and feed and livestock productivity in relation to constraints

and changes in external systems such as climate and markets (Rusinamhodzi et al., 2015).

The impacts, which would result from development pathways of farms that operate un-

der certain biophysical and socio-economic constraints can be explored, including the

opportunities and barriers to adopt certain CSA practices. Chapter 3 of this thesis used

components of the FARMSIM model suite such as LivSim and HeapSim (Rufino et al.,

2007, 2009). Thus, the proposed use of the FARMSIM model represents an extension

of the methodology already applied and would require a broader range of input data to

parameterise the model.

FARMSIM can be parametrised and run for different farm types based on a farm typology,

which captures the various conditions of the landscapes and production regions that are

potentially affected by climate mitigation and developmental policies. Such farm typol-

ogy derived from farm censuses or farm surveys based on a stratified random sampling

approach could improve the upscaling and mapping procedure applied in Chapter 3 and 5

of this thesis. So far, the simulation results from dairy cows were used for upscaling onto

livestock production systems (Robinson et al., 2011). Farm type specific baseline data on

agricultural production and GHG emissions as well as mitigation potentials obtained from

the integrated crop-livestock production modelling based on ground data would reflect a

more detailed picture on the potential benefits and trade-offs of targeted CSA practices

at higher spatial scale such as the landscape or sectoral level. In addition, the effects of

changes in agricultural practices and the use of forests have to be linked as demonstrated

in Chapter 4. Therefore, the farm typology has to incorporate forest use variables to

capture information on forest grazing and fuelwood collection.

The knowledge about temporal and spatial dynamics of forest disturbance has to be
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improved to differentiate more clearly between their drivers. For instance, the analy-

ses conducted in Chapter 4 neither revealed the initial drivers of forest disturbance nor

characterised post-disturbance trajectories. This information is crucial to quantify GHG

emissions from forests and to allocate these emissions to certain drivers such as livestock

grazing in forests or fuelwood harvest, which are related to agricultural practices and

land uses. Moreover, this information is needed to monitor implemented CSA interven-

tions and to evaluate their effectiveness to mitigate GHG emissions from agriculture and

forests. Algorithms that detect forest changes based on remote-sensing data have to be

developed further to track the changes in vegetation structure, including both disturbance

and regrowth dynamics. Promising approaches have been brought forward recently (e.g.

DeVries et al., 2015a; Hamunyela et al., 2017), yet need to be advanced to enable the

characterisation of disturbance–regrowth dynamics at larger temporal and spatial scales.

Cloud computing systems such as ’SEPAL’ (developed by FAO), designed explicitly to

process large earth observation data and to analyse and monitor changes of the land

surface provide the necessary computational power for large-scale assessments. Based on

forest disturbance dynamics that are characterised more clearly and differentiated into

drivers, farm types and changes in farm management could be linked more closely to

their impact on forests.

Further interdisciplinary research is necessary to answer the question; to which extent is

the intensification of smallholder farming sustainable? This question cannot be answered

at farm level alone and includes environmental, social and economic dimensions of agricul-

tural production. In Chapter 4, it was shown that intensified farms were related to lower

levels of local forest disturbance than non-intensified farms. This relationship was used in

Chapter 5 to estimate the indirect mitigation benefits that could be achieved at landscape

level throughout the dairy production region in Kenya. However, it is unknown at which

point the farms, analysed in Chapter 4, are exactly on their intensification trajectory.

Multi-dimensional and multi-scale assessments are required to explore the boundaries of

sustainable intensification. For instance, rebound effects that are triggered by policy

interventions to foster the intensification of smallholder dairy farming in a certain re-

gion could lead to higher cattle numbers, which consequently increase GHG emissions

in this region or may result in negative spillover effects in other regions (e.g. countries)

(Meyfroidt, 2018). The increased demand for feeds, which cannot be satisfied locally or

regionally due to the shortage of resources such as arable land may lead to increasing feed

imports and potentially causes C leakage from indirect land use changes (Meyfroidt et al.,

2014). This interaction effect between remote regions was demonstrated for intensified

production systems in industrial countries by using a consequential live cycle assessment

approach (Styles et al., 2018). Rebound effects were shown for the export-oriented de-

velopment of commodity goods (Jadin et al., 2016) and the intensification of livestock

production in Latin America (Kaimowitz & Angelsen, 2008), and were studied through

modelling exercises at a coarse continental and global scale (e.g. Valin et al., 2013). Inte-
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grating interactions between the intensification of livestock production, market responses

and their feedback effects is, therefore, highly important to inform policies that aim to

mitigate AFOLU emissions effectively. The integration of changes in agricultural produc-

tion and market response is commonly done by using partial equilibrium models such as

’GLOBIOM’ or ’MAgPIE’ (e.g. Valin et al., 2013; Kreidenweis et al., 2018). However,

these models operate on a coarse spatial scale, i.e. grid cells have a size of roughly 55 x

55 km at the equator. Future research would need to investigate opportunities to couple

dynamically models of farm production (e.g. FARMSIM) with high resolution land use

models and economic models at larger scale.

The outputs obtained from an integrated modelling approach to estimate ex-ante im-

pacts of certain CSA practices represent potential inputs for multi-criteria decision-making

frameworks such as ”targetCSA” (Chapter 2). Up-scaled, bottom-up information is cru-

cial for policy and decision-makers to prioritise and target mitigation interventions for

livestock production at national and sub-national level. By using farm-level informa-

tion, local conditions can be captured, which may reveal constraints and trade-offs that

otherwise would have been missed. Therefore, relying on information from top-down ap-

proaches alone, could lead to low adoption rates or even negative impacts of targeted inter-

ventions. Decision-making on CSA, at large scale is likely to suffer from high complexity

and is often characterised by conflicting stakeholder interests and objectives (Notenbaert

et al., 2017). Thus, decision-making support frameworks would benefit from comprehen-

sive information derived from integrated assessments to illustrate the potential effects of

different stakeholder opinions on where to prioritise CSA interventions (Chapter 2). Vi-

sualising transparently various decision-making scenarios can aid eventually in building

consensus among involved stakeholders and increases the legitimacy and robustness of

decisions and their outcomes (Voinov & Bousquet, 2010).

6.2.3 Data improvements

Quantitative information is needed urgently to estimate GHG emission baselines, to in-

form CSA policies and to implement interventions robustly based on ex-ante impact

assessments. These assessments rely on i) data regarding crop and livestock management

and productivity at farm level, ii) data on forest use and its impact on C dynamics, and

iii) data from measurements of GHG emissions on smallholder farms.

Efforts have been strengthened recently to measure GHG emissions from smallholder

farms in East Africa, including CH4 and N2O emissions from croplands and pastures,

enteric fermentation and animal excreta (e.g. Pelster et al., 2016, 2017; Rosenstock et al.,

2016; Goopy et al., 2018; Wanyama et al., 2018). More studies are needed, conducted

systematically, considering the heterogeneity of soil, agro-climatic conditions and farming

systems in SSA to estimate related emission factors and to reduce the uncertainty of
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GHG emissions such as quantified in Chapter 3. Especially improved estimates of GHG

emissions from LUC, which result from the conversion of land used for livestock production

are required to inform mitigation assessments about trade-offs of feed improvements.

A promising initiative is the European-African ’SEACRIFOG’ project, which aims to

design a harmonised infrastructure to measure AFOLU emissions systematically based

on a ground-based observation network across the African continent (López-Ballesteros

et al., 2018). An improved data basis provides inputs for dynamic land use models that

can be used to investigate the effects of LUC on interactions between vegetation, soils

and resulting GHG emissions (e.g. Haas et al., 2013).

A standardised protocol for farm surveys that enables a consistent collection of crop and

livestock production data at farm level is needed for assessments that quantify and up-

scale mitigation potentials and monitor the performance of implemented CSA practices

(e.g. Rufino et al., 2016; Hammond et al., 2017). This protocol should further incorporate

variables on feed trade to trace changes in demand and supply of livestock feeds triggered

by policy interventions. Information on the use of local forests should also be included

such as the collection of fuelwood and livestock grazing inside forests to assess whether

changes in farm management reduce the pressure on forests. Such a protocol could be

integrated into agricultural censuses conducted regularly. However, mistrust of farmers

to reveal detailed information of their farm operations may compromise efforts to collect

high quality farm-level data. Trust-building measures need to be implemented such as

confidentiality agreements or the dissemination of information about the benefits of CSA

practices through extension services.

The effects of forest disturbance drivers on above and belowground C dynamics and GHG

emissions have to be studied more closely. Measurements based on grazing experiments are

potentially helpful to estimate the effects of livestock grazing inside forests on vegetation

structure and the loss of aboveground and belowground C for different forest types and

livestock species. Telemetry analyses of livestock can be utilised to study animal move-

ment patterns (e.g. Zampaligré & Schlecht, 2018) such as distances covered and time spent

inside forests. Based on daily nutrient and energy requirements and the resulting intake

of biomass, the loss of C can be inferred and aggregated. This information is useful to

calibrate and validate estimates of C change related to livestock presence in forests based

on remote-sensing data (e.g. Baccini et al., 2017). Recently launched earth observation

platforms such as the Sentinel-1 and Sentinel-2 satellites open new and promising avenues

to improve the detection of small-scale disturbance patters (Reiche et al., 2018) and to

study the effects of forest disturbance drivers on C loss due to higher spatial (5 – 10 m)

and temporal resolution (revisiting time of approximately 5 days) than, for instance, the

Landsat satellite platform.
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6.3 Recommendations for climate mitigation policies

and financing

This PhD thesis provides useful approaches and information that can assist the targeting

of CSA interventions based on:

1. the quantitative integration of climate change vulnerability, CSA feasibility, and

stakeholder opinions to build consensus in decision-making processes on CSA pri-

oritisation (Chapter 2).

2. quantified potentials of dairy feed improvements to mitigate GHG emissions and to

increase milk yields, including the feasibility to implement these improvements due

to land constraints (Chapter 3).

3. quantified potentials of dairy feed improvements to contribute to climate change

mitigation and dairy productivity targets at national level (Chapter 3).

4. knowledge, which shows quantitatively that the intensification of smallholder dairy

farming reduces the negative impact on natural forests ecosystems (Chapter 4).

5. quantified potentials of dairy feed improvements to mitigate direct and indirect

GHG emissions effectively across land use sectors (Chapter 5).

The following key messages for policy makers can be deduced from this thesis. Context-

specific and detailed ex-ante impact assessments are essential to inform integrated CSA

policies that target mitigation and agricultural development. Candidate interventions

need to be assessed in terms of their direct and indirect mitigation benefits and produc-

tivity gains, which lead potentially to higher farm incomes. Concentrating on practices

that realise these ’win-win’ potentials is especially important in the context of smallholder

farming in SSA, which is marked by low production efficiencies (Gerber et al., 2013; De-

scheemaeker et al., 2016). Analysing the demand of candidate interventions for arable

land and land availability is imperative to answer the questions of how feasible and ef-

fective the implementation of the CSA practices at hand are at certain locations. Policy

instruments such as the NAMA developed for the Kenyan dairy sector (Government of

Kenya, 2017b) can target specific climate-smart feed practices based on ex-ante knowl-

edge about their direct and indirect mitigation benefits and productivity gains that were

quantified location-specific. Capacity and infrastructure development, including feed, fer-

tiliser supply and trade, access to markets and extension services can be promoted more

effectively.

Financial investment to stimulate the adoption of CSA can be channelled more closely

along promoted practices that have been shown to realise mitigation and productivity

benefits. The private sector has engaged recently to finance the implementation of CSA

practices at farm level through micro-financing and crediting (e.g. www.f3-life.com).
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Accessing these services offers promising opportunities for individual farmers to adopt

certain practices. Various international climate funds exist under the umbrella of the

’African Development Bank’ (AfDB), e.g. the ’Climate Investment Funds’ (CIF), the

’Green Climate Fund’ (GCF), and the ’Africa Climate Change Fund’ (ACCF) with a

current total investment volume of about USD 12 billion (AfDB, 2018). These large-

scale financing schemes, which will include the reduction of GHG emissions from forests

through REDD+ components, fund projects and initiatives across SSA that target and

implement CSA measures on the ground. Both, small and large-scale financing schemes

require evidence that indicates the effectiveness and feasibility of these practices across

the agricultural and forestry land use sectors.

Kenya pledged to reduce total GHG emission increases by 30 % between 2010 – 2030, as

defined in its NDC (Government of Kenya, 2015a). Linking CSA practices, implemented

at farm level, to sectoral and national scales enables the assessment of the extent at which

targeted practices contribute to the achievement of national mitigation targets. Up-scaling

mitigation potentials, as done in this thesis (Chapter 3 & 5), could, therefore, be useful

to monitor the mitigation performance and to report the status of target fulfilment (e.g.

through MRVs) to the UNFCCC.
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Campbell, B. M., Thornton, P., Zougmoré, R., van Asten, P., & Lipper, L. (2014). Sus-

tainable intensification: What is its role in climate smart agriculture? Current Opinion

in Environmental Sustainability , 8 , 39–43. doi: 10.1016/j.cosust.2014.07.002.

Carter, S., Arts, B., Giller, K., Soto, G., Kok, K., de Koning, J., van Noordwijk,

M., Reisdma, P., Rufino, M., Salvini, G., Verchot, L., Wollenberg, E., & Herold,

M. (2018a). Climate-smart land use requires local solutions, transdisciplinary re-

search, policy coherence and transparency. Carbon Management , (pp. 1–11). doi:

10.1080/17583004.2018.1457907.

Carter, S., Herold, M., Avitabile, V., de Bruin, S., Sy, V. D., Kooistra, L., & Rufino,

M. C. (2018b). Agriculture-driven deforestation in the tropics from 1990 to-2015:

Emissions, trends and uncertainties. Environmental Research Letters , 13 , 014002. doi:

10.1088/1748-9326/aa9ea4.

Carter, S., Herold, M., Rufino, M., Neumann, K., Kooistra, L., & Verchot, L. (2015). Mit-

igation of agricultural emissions in the tropics: Comparing forest land-sparing options

at the national level. Biogeosciences , 12 , 4809–4825. doi: 10.5194/bg-12-4809-2015.

Castellanos-Navarrete, A., Tittonell, P., Rufino, M., & Giller, K. (2015). Feeding, crop

residue and manure management for integrated soil fertility management - A case study

from Kenya. Agricultural Systems , 134 , 24–35. doi: 10.1016/j.agsy.2014.03.001.

Caviglia-Harris, J. L. (2018). Agricultural innovation and climate change policy in

the Brazilian Amazon: Intensification practices and the derived demand for pas-

ture. Journal of Environmental Economics and Management , 90 , 232–248. doi:

10.1016/j.jeem.2018.06.006.

Chadwick, D. (2005). Emissions of ammonia, nitrous oxide and methane from cattle

manure heaps: Effect of compaction and covering. Atmospheric Environment , 39 ,

787–799. doi: 10.1016/j.atmosenv.2004.10.012.

Chagunda, M., Flockhart, J., & Roberts, D. (2010). The effect of forage quality on

predicted enteric methane production from dairy cows. International Journal of Agri-

cultural Sustainability , 8 , 250–256. doi: 10.3763/ijas.2010.0490.

Challinor, A., Wheeler, T., Garforth, C., Craufurd, P., & Kassam, A. (2007). Assessing

the vulnerability of food crop systems in Africa to climate change. Climatic Change,

83 , 381–399. doi: 10.1007/s10584-007-9249-0.

Chaudhury, A. S., Helfgott, A., Thornton, T. F., & Sova, C. (2014). Participatory adap-

tation planning and costing. Applications in agricultural adaptation in western Kenya.

Mitigation and Adaptation Strategies for Global Change, . doi: 10.1007/s11027-014-

9600-5.

Chidumayo, E., & Gumbo, D. (2013). The environmental impacts of charcoal production

in tropical ecosystems of the world: A synthesis. Energy for Sustainable Development ,

17 , 86–94. doi: 10.1016/j.esd.2012.07.004.



References 141

Chung, E.-S., Won, K., Kim, Y., & Lee, H. (2014). Water resource vulnerability character-

istics by district’s population size in a changing climate using subjective and objective

weights. Sustainability (Switzerland), 6 , 6141–6157. doi: 10.3390/su6096141.

Close, D., Davidson, N., & Watson, T. (2008). Health of remnant woodlands in frag-

ments under distinct grazing regimes. Biological Conservation, 141 , 2395–2402. doi:

10.1016/j.biocon.2008.07.006.

Cohen, W., Yang, Z., & Kennedy, R. (2010). Detecting trends in forest disturbance and re-

covery using yearly Landsat time series: 2. TimeSync - Tools for calibration and valida-

tion. Remote Sensing of Environment , 114 , 2911–2924. doi: 10.1016/j.rse.2010.07.010.

Conway, D., & Mustelin, J. (2014). Strategies for improving adaptation practice in de-

veloping countries. Nature Climate Change, 4 , 339–342. doi: 10.1038/nclimate2199.

Crawley, M. (2007). The R Book . The R Book. West Sussex (UK): Whiley. doi:

10.1002/9780470515075.

de Boer, I., Cederberg, C., Eady, S., Gollnow, S., Kristensen, T., Macleod, M., Meul, M.,

Nemecek, T., Phong, L., Thoma, G., van der Werf, H., Williams, A., & Zonderland-

Thomassen, M. (2011). Greenhouse gas mitigation in animal production: Towards

an integrated life cycle sustainability assessment. Current Opinion in Environmental

Sustainability , 3 , 423–431. doi: 10.1016/j.cosust.2011.08.007.

DeFries, R., & Rosenzweig, C. (2010). Toward a whole-landscape approach for sustainable

land use in the tropics. Proceedings of the National Academy of Sciences of the United

States of America, 107 , 19627–19632. doi: 10.1073/pnas.1011163107.

Delgado, M., & Sendra, J. (2004). Sensitivity analysis in multicriteria spatial decision-

making: A review. Human and Ecological Risk Assessment , 10 , 1173–1187. doi:

10.1080/10807030490887221.

Denmead, L., Barker, G., Standish, R., & Didham, R. (2015). Experimental evidence that

even minor livestock trampling has severe effects on land snail communities in forest

remnants. Journal of Applied Ecology , 52 , 161–170. doi: 10.1111/1365-2664.12370.

Descheemaeker, K., Oosting, S. J., Tui, S. H.-K., Masikati, P., Falconnier, G. N., & Giller,

K. E. (2016). Climate change adaptation and mitigation in smallholder crop–livestock

systems in sub-Saharan Africa: A call for integrated impact assessments. Regional

Environmental Change, 16 , 2331–2343. doi: 10.1007/s10113-016-0957-8.

DeVries, B., Decuyper, M., Verbesselt, J., Zeileis, A., Herold, M., & Joseph, S. (2015a).

Tracking disturbance-regrowth dynamics in tropical forests using structural change de-

tection and Landsat time series. Remote Sensing of Environment , 169 , 320–334. doi:

10.1016/j.rse.2015.08.020.

DeVries, B., Pratihast, A., Verbesselt, J., Kooistra, L., & Herold, M. (2016). Charac-

terizing forest change using community-based monitoring data and landsat time series.



142 References

PLoS ONE , 11 , 1–25. doi: 10.1371/journal.pone.0147121.

DeVries, B., Verbesselt, J., Kooistra, L., & Herold, M. (2015b). Robust monitoring of

small-scale forest disturbances in a tropical montane forest using Landsat time series.

Remote Sensing of Environment , 161 , 107–121. doi: 10.1016/j.rse.2015.02.012.

Diaz-Balteiro, L., Gonzalez-Pachon, J., & Romero, C. (2009). Forest manage-

ment with multiple criteria and multiple stakeholders: An application to two pub-

lic forests in Spain. Scandinavian Journal of Forest Research, 24 , 87–93. doi:

10.1080/02827580802687440.

Dijkstra, J., Oenema, O., & Bannink, A. (2011). Dietary strategies to reducing N excretion

from cattle: Implications for methane emissions. Current Opinion in Environmental

Sustainability , 3 , 414–422. doi: 10.1016/j.cosust.2011.07.008.

Don, A., Schumacher, J., & Freibauer, A. (2011). Impact of tropical land-use change on

soil organic carbon stocks - a meta-analysis. Global Change Biology , 17 , 1658–1670.

doi: 10.1111/j.1365-2486.2010.02336.x.

Drigo, R., Bailis, R., Ghilardi, A., & Masera, O. (2015). WISDOM Kenya - Analysis

of Woodfuel Supply, Demand and Sustainability in Kenya. Tier 2 Report. URL:

https://cleancookstoves.org/binary-data/RESOURCE/file/000/000/426-1.pdf

[Accessed: 2017-07-02].

Dunnett, A., Shirsath, P. B., Aggarwal, P. K., Thornton, P., Joshi, P. K., Pal, B. D.,

Khatri-Chhetri, A., & Ghosh, J. (2018). Multi-objective land use allocation modelling

for prioritizing climate-smart agricultural interventions. Ecological Modelling , 381 , 23–

35. doi: 10.1016/j.ecolmodel.2018.04.008.
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González-Pachón, J., Rodriguez-Galiano, M., & Romero, C. (2003). Transitive approxi-

mation to pairwise comparison matrices by using interval goal programming. Journal

of the Operational Research Society , 54 , 532–538. doi: 10.1057/palgrave.jors.2601542.
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Primeval Forest in the nineteenth and twentieth centuries. Ambio, 45 , 904–918. doi:

10.1007/s13280-016-0795-4.

Sanchez, P., Palm, C., & Buol, S. (2003). Fertility capability soil classification: A tool to

help assess soil quality in the tropics. Geoderma, 114 , 157–185. doi: 10.1016/S0016-

7061(03)00040-5.

Sassen, M., Sheil, D., Giller, K., & ter, B. (2013). Complex contexts and dynamic drivers:

Understanding four decades of forest loss and recovery in an East African protected

area. Biological Conservation, 159 , 257–268. doi: 10.1016/j.biocon.2012.12.003.

Scherr, S. J., Shames, S., & Friedman, R. (2012). From climate-smart agriculture to

climate-smart landscapes. Agriculture & Food Security , 1 , 12. doi: 10.1186/2048-7010-

1-12.

Schroeder, W., Oliva, P., Giglio, L., & Csiszar, I. A. (2014). The New VIIRS 375m active

fire detection data product: Algorithm description and initial assessment. Remote

Sensing of Environment , 143 , 85–96. doi: 10.1016/j.rse.2013.12.008.

Schulz, K., Voigt, K., Beusch, C., Almeida-Cortez, J. S., Kowarik, I., Walz, A.,

& Cierjacks, A. (2016). Grazing deteriorates the soil carbon stocks of Caatinga

forest ecosystems in Brazil. Forest Ecology and Management , 367 , 62–70. doi:

10.1016/j.foreco.2016.02.011.

Smith, P., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., House, J., Jafari,

M., Masera, O., Mbow, C., Ravindranath, N. H., Rice, C. W., do Abad, C. R., Ro-

manovskaya, A., Sperling, F., & Tubiello, F. (2014). Chapter 11 - Agriculture, forestry

and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change.

IPCC Working Group III Contribution to AR5 . Cambridge University Press.

Smith, P., Haberl, H., Popp, A., Erb, K.-H., Lauk, C., Harper, R., Tubiello, F.,

De Siqueira Pinto, A., Jafari, M., Sohi, S., Masera, O., Böttcher, H., Berndes, G.,
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Appendix S1 belonging to Chapter 2 of this thesis

Computing a consensus matrix based on input PC matrices

The aim is to search a consensus matrix (c) that shows minimised differences to the input

PC matrices (m) obtained from individual stakeholders (k). The distance minimisation

function is translated into a linear goal programming model (S1.1) (González-Pachón &

Romero, 2007).

Achievement function:

Min(1− λ)D + λ

 m∑
k=1

n∑
i=1

n∑
j=1
j 6=i

(nkij + pkij)


i,j refer to the elements of a matrix, subjected to the following constraints:

mc
ij −mk

ij + nkij − pkij = 0, i, j ∈ {1, ..., n}, k ∈ {1, ...,m}
n∑
i=1

n∑
j=1
j 6=i

(nkij + pkij)−D ≤ 0, k ∈ {1, ...,m}

1/9 ≤ mc
ij ≤ 9, i, j ∈ {1, ..., n}

n ≥ 0, p ≥ 0

λ ∈ [ 0, 1] (control parameter) (S1.1)

The control parameter λ is used to explore possible solutions as well as trade-offs be-

tween the consensus towards the majority (λ = 1) and the minority (λ = 0). The metric

D indicates the deviation between the stakeholder matrix that is furthest from the ob-

tained consensus matrix. The variables nkij and pkij measure the degree of under and

over-achievement between single matrix preferences (mk
ij) and calculated preferences of

the consensus matrix (mc
ij). They can be accumulated to the measure A, which indicates

the overall deviation between the computed consensus matrix and all individual stake-

holder preferences (González-Pachón & Romero, 2007). The resulting consensus matrix

has the same structure as the input PC matrices.

Inferring preference weights from a single PC matrix

The preference vector (w) for i = 1,...,n criteria is calculated through the following opti-

misation model (S1.2) (González-Pachón & Romero, 2007).



167

Achievement function:

Min(1− λ)D + λ

 n∑
i=1

n∑
j=1
j 6=i

(nij + pij)


subjected to the following constraints:

mijwj − wi + nij − pij = 0, i, j ∈ {1, ..., n}
nij + pij ≤ D, i, j ∈ {1, ..., n}
n∑
i=1

wi = 1, wi > 0, ∀i

n ≥ 0, p ≥ 0

λ ∈ [ 0, 1] (control parameter) (S1.2)

The meaning of variables λ, D, nij and pij is congruent with model (S1.1).

Inferring preference weights from several PC matrices

The following optimisation model (S1.3) is an extension of model (S1.2) applicable to

(k) stakeholders. A scenario that might be interesting in a case where stakeholders are

kept as individuals and do not form one consensus oriented group (González-Pachón &

Romero, 2007).

Achievement function:

Min(1− λ)D + λ

 m∑
k=1

n∑
i=1

n∑
j=1
j 6=i

(nkij + pkij)


subjected to the following constraints:

mk
ijwj − wi + nkij − pkij = 0, i, j ∈ {1, ..., n}, k ∈ {1, ...,m}
n∑
i=1

n∑
j=1
j 6=i

(nkij + pkij)−D ≤ 0, k ∈ {1, ...,m}

n∑
i=1

wi = 1, wi > 0, ∀i

n ≥ 0, p ≥ 0

λ ∈ [ 0, 1] (control parameter) (S1.3)
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Determining the consensus matrix that shows the most balanced trade-off

between majority and minority consensuses

An additive maximisation function was utilised based on standardised indices of majority

(A) and minority (D) deviation by using equations (S1.4), (S1.5) and (S1.6) developed

by González-Pachón & Romero (2011).

IAλ =
(A0 − Aλ)
(A0 − A1)

, λ ∈ [ 0, 1] (S1.4)

IAλ = index of majority consensus, A1 = closed point towards majority, A0 = most distant

point from majority, Aλ = A for a certain λ value

IDλ =
(D1 −Dλ)

(D1 −D0)
, λ ∈ [ 0, 1] (S1.5)

IDλ = index of minority consensus, D0 = closed point towards majority, D1 = most distant

point from majority, Dλ = D for a certain λ value

The applied utility function maximises the sum of both indices for a certain consensus

matrix for λ = 0 - 1:

IA∗ + ID∗ = Max(IAλ + IDλ) (S1.6)

The highest value is selected representing the most balanced trade-off (i.e. compromise)

between majority and minority consensus (González-Pachón & Romero, 2011).

Combination and aggregation of spatial datasets and stakeholder preferences

using the weighed linear combination rule (WLC)

Prior to the spatial aggregation, all single datasets have to be standardised and consis-

tently rescaled to range from 0 - 1 (0 = low, 1 = high vulnerability and CSA suitability)

by applying equation (S1.7).

xi =
(Ri −Rimin)

(Rimax −Rimin)
(S1.7)

xi = standardised dataset i, Ri = original dataset i, Rimin = minimum grid cell value of

dataset i, Rimax = maximum grid cell value of dataset i

Subsequently, the products of standardised datasets xi and related preference weights wi
are summed up as shown in equation (S1.8). Finally, the summed products are combined

with boolean constraints cj (e.g. areas that have to be excluded) deriving the composite

index S (Eastman et al., 1995).

S =
∑

(wixi)× Πcj (S1.8)

S = weighted composite index, wi = preference weight relating to dataset i, xi = stan-

dardised dataset i, ci = boolean constraint j
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Appendix S2 belonging to Chapter 2 of this thesis

Table S2.1: Overview of involved stakeholder groups and related organisations.

Group Organisation

Governmental organisations (GOs) Ministry of Agriculture Livestock and Fish-

eries (MoALF)

Ministry of Environment and Mineral Re-

sources (MEWNR)

Ministry of Water & Irrigation

State Department of Livestock

Kenya Forest Service (KFS)

National Environment Management Author-

ity (NEMA)

National Treasury

National Agricultural Research Laboratories

(NARL)

Non-governmental organisations (NGOs) African Centre for Technology Studies

(ACTS)

SNV-Netherlands Development Organisation

Kenya Community Development Foundation

(KCDF)

Consumer Unity & Trust Society Africa Re-

source Centre (CUTS ARC)

Vi Agroforestry

Kenya Climate Justice Women Champions

(KCJWC)

Wetlands International

Kenya National Farmers’ Federation (KE-

NAFF)

Scientific institutions South Eastern Kenya University (SEKU)

Kenya Institute for Public Policy Research

and Analysis (KIPPRA)

IGAD Climate Prediction And Applications

Center (ICPAC)

University of Nairobi (CASELAP)

University of Reading

Kenya Meteorological Department (KMS)

World Agroforestry Centre (ICRAF)
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Table S2.1: continued

International Livestock Research Institute

(ILRI)

Private Sector Kenya Private Sector Alliance (KEPSA)

Price Water House Coopers (PwC)

Kenya Association of Manufacturers (KAM)

GrainPro

African Seed Trade Association (AFSTA)

Coffee Board Of Kenya

Geo-EnviAgro Solutions International

Kenya Tea Development Agency (KTDA)
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Figure S2.1: Preference weights for each stakeholder group and the overall consensus (includ-

ing all experts) resulting from the majority consensus scenario for (A) vulnerability indicators

and (B) CSA practices.
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Figure S2.2: Preference weights for each stakeholder group and the overall consensus (includ-

ing all experts) resulting from the minority consensus scenario for (A) vulnerability indicators

and (B) CSA practices.
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Appendix S3 belonging to Chapter 3 of this thesis

Study Area

Figure S3.1: Dairy production region in Kenya, adapted based on Herrero et al. (2014).
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Figure S3.2: Spatial distribution of livestock production systems (LPS) within the study

area: mixed rainfed system in arid areas (MRA), mixed rainfed system in humid areas (MRH),

mixed rainfed system in tropical highlands (MRT), mixed irrigated system in arid areas (MIA),

mixed irrigated system in humid areas (MIH) and the mixed irrigated system in tropical

highlands (MIT).

The Livestock Simulator

LivSim

LivSim is an individual-based livestock production model used to simulate animal produc-

tion such as milk and excreta as well as maintenance requirements (Rufino et al., 2009).
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Different livestock units can be taken into account each characterised by animal species

and breeds such as a specific dairy cattle breeds (e.g. Frisians). The state variables of the

model are the age, weight and reproductive status of the animal. Conception, sex of the

calves and mortality (involuntary disposal) are prompted stochastically. Changes in age,

weight and mortality due to undernourishment are described deterministically. Intake is

determined by feed quality and quantity, and animal characteristics. Each time step in a

simulation represents a month. Animal production is calculated on a monthly basis.

HeapSim

The dynamics of nutrients through manure collection, storage and use as well as changes in

quality due to management are simulated by HeapSim (Rufino et al., 2007). This model is

able to consider the transfer efficiencies for the different processes under different livestock

production systems and types of storage. HeapSim is coupled with LivSim. Manure

inputs are obtained from the LivSim model dynamically during simulations on a monthly

basis.

Calculation of GHG emissions from dairy production

Table S3.1: Descriptions of parameters, their values and uncertainty ranges (min - max),

used to compute CH4, N2O and CO2 emissions from enteric fermentation (EF), manure man-

agement (MM), managed soils (MS), including land use changes, and dairy concentrate sup-

plementation.

Parameter Applied

IPCC-

equation

Value / range Reference

Net energy mainte-

nance (EF)

Eq. 10.3 Cf = 0.386 for lactating

cow; Cf = 0.322 for non-

lactating cow

IPCC (2006, table

10.4)

Net energy activity

(EF)

Eq. 10.4 Ca = 0.17 for grazing; Ca

= 0 for non-grazing

IPCC (2006, table

10.5)

Net energy growth

(EF)

Eq. 10.6 BW = calculated by

LivSim; C = 1; WG =

calculated by LivSim

IPCC (2006), Rufino

et al. (2009)

Net energy lactation

(EF)

Eq. 10.8 Milk yield = calculated by

LivSim; Fat = calculated

by LivSim (2.7 % – 4.2 %);

Lactation state = calcu-

lated by LivSim

Rufino et al. (2009)
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Table S3.1: continued

Net energy preg-

nancy (EF)

Eq. 10.13 Cpregnancy = 0.1; Preg-

nancy state = calculated

by LivSim

IPCC (2006, table

10.7), Rufino et al.

(2009)

Ratio net energy

available for mainte-

nance to digestible

energy consumed

(EF, MM)

Eq. 10.14 DE = feed type specific

(%):

• Grazing land: 45 –

55

• Napier grass: 50 - 60

• Maize stover: 45 - 55

• Maize silage: 50 – 60

• Dairy concentrate:

75 – 85

IPCC (2006),

Anindo et al. (1994),

Rufino et al. (2009)

Ratio net energy

available for growth

to digestible energy

consumed (EF, MM)

Eq. 10.15 DE = see above IPCC (2006)

Gross Energy (EF,

MM)

Eq. 10.16 DE = see above IPCC (2006)

CH4 emissions (EF) Eq. 10.21 Ym = 5.5 % – 7.5 % IPCC (2006, table

10.12)

Volatile solid excre-

tion (MM)

Eq. 10.24 DE = see above; UE*GE =

0.04; ASH = 0.08

IPCC (2006)

CH4 emissions (MM) Eq. 10.23 Bo(T) = 0.11 – 0.15; MCF

storage (%) = 1.5 – 2 (dry

lot) and 4 - 5 (solid stor-

age); MCF grazing (%)

= 1.5 - 2; MCF appli-

cation (%) = 0.5 - 1;

MS = proportion of ma-

nure stored based on ra-

tio between grazing land

(not managed) and crop-

land under feed production

(managed)

IPCC (2006, table

10.17 and 10A-4)

N excretion (MM) N content of urine and fae-

ces = calculated by LivSim

Rufino et al. (2009)
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Table S3.1: continued

Direct N2O emis-

sions (MM)

Eq. 10.25 EF3 = 0.01 – 0.02 (dry lot)

and 0.0025 – 0.0075 (solid

storage)

IPCC (2006, table

10.21), Herrero et al.

(2013)

N volatilisation as

NH3 and NOx (MM)

Eq. 10.26 MS = see above; Frac-

GasMS (%) = 30 – 50 (dry

lot), 30 – 40 (solid storage)

IPCC (2006, table

10.22), Herrero et al.

(2013)

N losses due to leach-

ing (MM)

Eq. 10.28 MS = see above; Fra-

cleachMS (%) = 0 – 20

(dry lot) and 5 – 15 (solid

storage)

IPCC (2006, table

10.23), Herrero et al.

(2013)

Indirect N2O emis-

sions (MM)

Eq. 10.27 and

10.29

EF4 = 0.02 – 0.01; EF5 =

0.0005 - 0.0075; N2O = N

* 44 / 28

IPCC (2006, table

11.3), Herrero et al.

(2013)

N from animal ma-

nure applied to soils

used for feed produc-

tion (MS)

Eq. 11.4 FracFEED = 1 - MSO

(%) (fraction of manure for

other uses) 0.1 - 0.2

IPCC (2006), Her-

rero et al. (2013)

N in urine and dung

deposited on pasture

(MS)

Eq. 11.5 1 – MS = fraction of ma-

nure dropped on grazing

land

IPCC (2006)

Direct N2O emis-

sions from manure

deposited on pas-

tures (MS)

Eq. 11.1 EF3PRP = 0.007 – 0.06 IPCC (2006, table

11.3), Herrero et al.

(2013), Rosenstock

et al. (2016)

N in synthetic fer-

tiliser (MS)

Eq. 11.1 FSN (kg ha-1) = spatially

explicit dataset

Potter et al. (2010)

N in crop residues

(above and below

ground) (MS)

Eq. 11.7 and

11.7A

Fcr = calculated per

crop (Napier grass and

maize); Yields (kg ha-1):

Napier grass = 12000

(MRA, MIA) – 16000

(MRH, MIH), Maize =

2335 (MRA, MIA) – 4747

(MRH, MIH) FracRemove

= 0.75; Area burnt = 0;

Other values taken from

table 11.2, for Napier grass

= perennial grasses

IPCC (2006, table

11.2), Monfreda

et al. (2008),

Katiku et al.

(2011), Weiler et al.

(2014), Castellanos-

Navarrete et al.

(2015)
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Table S3.1: continued

Mineralised N in

mineral soils due to

loss of soil carbon

through land use

change

Eq. 11.8 R (C:N ratio) = spatially

explicit dataset; Area =

see equation (S3.1) below

Hengl et al. (2015)

Direct N2O emis-

sions (MS)

Eq. 11.1 EF1 = 0.003 – 0.005

(MRA, MIA), 0.003 – 0.02

(MRH, MIH), 0.003 – 0.01

(MRT) and 0.0004 – 0.036

(MIT)

IPCC (2006, table

11.1 and 11.2), Her-

rero et al. (2013),

Hickmann et al.

(2017)

N2O-N from atmo-

spheric deposition

(MS)

Eq. 11.9 FracGASM = 0.05 – 0.3

(dry lot) and 0.05 – 0.2

(solid storage); FacGASF

= 0.03 – 0.3; EF4 = 0.002

– 0.01

IPCC (2006, table

11.3), Herrero et al.

(2013)

N2O-N from leach-

ing/runoff (MS)

Eq. 11.10 FracLEACH-H = 0.1 – 0.3;

EF5 = 0.005 - 0.0075

IPCC (2006, table

11.3), Herrero et al.

(2013)

Indirect N2O emis-

sions (MS)

Eq. 11.9 and

11.10

Fcr = calculated per crop

(Napier grass and maize);

N2O = N2O–N * 44 / 28

IPCC (2006, table

11.2 and 11.3), Her-

rero et al. (2013)

CO2 emissions from

land use change

(only grazing land to

cropland)

Soil carbon loss (kg C ha-1

yr-1) = 11.1 – 688.2; Area

= see formula (1) below;

CO2 = Soil carbon loss *

44 / 12

Don et al. (2011)

CO2eq emissions

from dairy concen-

trate

Emission factor (kg CO2eq

kg concentrate-1) = 1.36

Weiler et al. (2014)

Cattle densities Spatially explicit dataset

(heads km-2) used to up-

scale GHG emissions and

milk production. Grid cell

wise uncertainty ranges

are calculated based on:

RMSE of 0.42 = log (x +

1)

Robinson et al.

(2014)
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Table S3.2: Ingredients of the baseline diet and their proportions in relation to the annual

dry matter intake (DMI) per tropical livestock unit (TLU) as lifetime average. Grazing refers

to native grass species from natural pastures.

LPS DMI

(kg TLU-1

yr-1)

Grazing

(%)

Napier

grass (%)

Maize

stover (%)

Dairy con-

centrate

(%)

MRA 2470 52 24 23 1

MRH 2474 34 38 27 1

MRT 2414 36 42 21 1

MIA 2466 52 24 23 1

MIH 2475 34 38 27 1

MIT 2417 36 42 21 1

Calculation of the NDC target

Steps (1 – 5) were applied to calculate the tolerable relative GHG emission increase

according to the Kenya NDC target (Government of Kenya, 2015a):

(1) National baseline 2010: 73 Mt CO2eq

(2) National BAU scenario 2030: 143 Mt CO2eq = 95.9 % increase relative to the base-

line

(3) Expected BAU increase: 143 Mt CO2eq – 73 Mt CO2eq = 70 Mt CO2eq

(4) NDC target to reduce emission increase by 30 %: 70 Mt CO2eq * 0.3 = 21 Mt

CO2eq

(5) Tolerable emission increase (according to the NDC) relative to the national baseline:

(21 Mt CO2eq + 73 Mt CO2eq) / 73 Mt CO2eq = 67.1 %

Calculation of land demand and availability

Table S3.3: Data used to analyse land demand and availability.

Data Type Reference

Maize yields Spatially explicit dataset

with a grid cell resolution of

10 x 10 km (kg ha-1 yr-1)

Monfreda et al. (2008)

Napier yields literature (kg ha-1 yr-1) Katiku et al. (2011), Weiler

et al. (2014), Castellanos-

Navarrete et al. (2015)
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Table S3.3: continued

Feed intake literature (kg TLU-1 yr-1) Rufino et al. (2009), Katiku

et al. (2011), Herrero et al.

(2013), Weiler et al. (2014),

Castellanos-Navarrete et al.

(2015)

Dairy cattle density tabular data at county level

(%), spatially explicit dataset

with a grid cell resolution of

1 x 1 km (TLU km-2)

Government of Kenya (2014),

Robinson et al. (2014)

Grazing land Spatially explicit dataset

with a grid cell resolution of

10 x 10 km (ha km-2)

Velthuizen et al. (2007)

Equations (S3.1) and (S3.2) were applied to calculate land availability and the scenario-

specific demand for land for each grid cell across the study area (Figure S3.1) based on

data of feed intake per tropical livestock unit (TLU), fodder crop yields, and spatially

explicit data on cattle density and grazing land (Table, S3.3).

land demand (ha TLU−1) =
n∑
i=1

feed intakecropi (kg TLU−1)

crop yieldcropi (kg ha−1)
(S3.1)

land availability (ha km−2) = available grazing land (ha km−2)

− land demand (ha TLU−1)× dairy cattle density (TLU km−2) (S3.2)
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Sources of Uncertainties

Figure S3.3: Variation in baseline total GHG emissions due to the uncertainty in ap-

plied emission parameters calculated through latin hypercube sampling derived from baseline

LivSim simulations, one parameter at a time while all others were fixed at the mean of their

range. Control = all parameters were fixed at the mean of their range. Dashed horizontal line

represents the control mean.
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Figure S3.4: Variation of total GHG emissions shown for the scenario ’forage quality and

feed conservation (FoFe)’ at high level of intensification derived from LivSim simulations.

The variation was caused by uncertainties in applied emission parameters calculated through

sampling the minimum and maximum of each parameter range, one parameter at a time while

all others were fixed at the mean of their range. Control = all parameters were fixed at the

mean of their range. Dashed horizontal line represents the control mean.
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Appendix S4 belonging to Chapter 4 of this thesis

Data collection

Sampling design

Figure S4.1: Schematic of applied stratified sampling design to collect field data through

farm and forest disturbance surveys.

Collection of field data

Table S4.1: List of variables queried in the farm survey.

Category Variables

Farm animals cattle numbers (heads)

breeds (categorical)

small ruminant numbers (heads)

Dairy production milk yield (kg cow-1 day-1)

proportion of milk sold (%)

milk buyer type (categorical)

dairy herd size (heads)
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Table S4.1: continued

Feeding given feed type (categorical)

given feed type proportions (%)

concentrate type (categorical)

concentrate quantity (kg cow-1 day-1)

feed conservation (categorical)

external feed source (categorical)

external feed type (categorical)

Grazing on-farm pasture area (ha)

off-farm grazing on community land (categor-

ical)

on-farm pasture leased (categorical)

Fodder crops crop type (categorical)

farm area under fodder crops (ha)

feed crop sold (categorical)

fertiliser use (categorical)

Food crops crop type (categorical)

farm area under food crops (ha)

feed crop sold (categorical)

fertiliser use (categorical)

Cash crops crop type (categorical)

farm area under cash crops (ha)

feed crop sold (categorical)

fertiliser use (categorical)

Farm in general household size (persons)

total farm area (ha)

tress on farm (categorical)
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Table S4.2: List of variables queried in the forest disturbance survey.

Variable Value categories

Disturbance class logging

charcoal

grazing

burned

windfall

other

none

Surrounding forest type pristine primary forest

secondary successional forest

heavily disturbed forest

other

none

Grazing signs livestock presence

paw prints

dung

other

none

Succession type bare soil

herb layer only

heterogeneous shrub and herb layers

trees with closing canopies

other

none
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Results

Spatial accuracy assessment

Figure S4.2: User’s accuracy (UA) and producer’s accuracy (PA) for disturbances detected

in the Mau Forest between 2010 and 2016 across probability thresholds ranging from 0 - 1.

Vertical dashed line shows optimal threshold chosen based on the crossover point between UA

and PA.
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Model selection

Table S4.3: Overview of GLMMs established by including farm indicators. The differences

in Akaike’s information criterion (∆AIC) are shown in relation to final models. Indicated

significance levels were derived from likelihood ratio tests of model candidates against Null

models.

Neighbourhood sizes

Model (fixed ef-

fects)

2 km 3 km 4 km 5 km

∆AIC sign.

level

∆AIC sign.

level

∆AIC sign.

level

∆AIC sign.

level

’farm distance to

forest’ + ’farm

area for fodder

production’ +

’milk yield’ +

’concentrate sup-

plementation’

+ ’proportion

of grass in the

diet’ + ’cattle

numbers’ + ’farm

sizes’ + ’firewood

collection’

0.00 p <

0.001

0.00 p <

0.001

0.00 p <

0.001

0.00 p <

0.001

Intercept only

(Null model)

1962.80 5758.05 6618.36 5929.35
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Table S4.4: Overview of GLMM selection results, including final, intermediate model can-

didates, and the Null models in descending order. The differences in Akaike’s information

criterion (∆AIC) are shown in relation to final models. Indicated significance levels were

derived from likelihood ratio tests of model candidates against Null models.

Neighbourhood sizes

Model (fixed ef-

fects)

2 km 3 km 4 km 5 km

∆AIC sign.

level

∆AIC sign.

level

∆AIC sign.

level

∆AIC sign.

level

’farm type’ +

’farm distance to

forest’ + ’farm

type’ x ’farm

distance to forest’

0.00 p <

0.001

0.00 p <

0.001

0.00 p <

0.001

0.00 p <

0.001

’farm type’ +

’farm distance to

forest’

125.04 p <

0.001

124.22 p <

0.001

224.65 p <

0.001

280.07 p <

0.001

’farm type’ 824.84 p <

0.001

2794.87 p <

0.001

2960.12 p <

0.001

3402.49 p <

0.001

Intercept only

(Null model)

1200.82 3860.39 3844.11 3816.37

Table S4.5: Overview of GLMM selection results, including final models and Null models

in descending order. The differences in Akaike’s information criterion (∆AIC) are shown in

relation to final models. Indicated significance levels were derived from likelihood ratio tests

of model candidates against Null models.

Neighbourhood sizes

Model (fixed effects) 2 km 3 km 4 km 5 km

∆AIC sign.

level

∆AIC sign.

level

∆AIC sign.

level

∆AIC sign.

level

’farm type’ 0.00 p <

0.01

0.00 p <

0.001

0.00 p <

0.001

0.00 p <

0.001

Intercept only (Null

model)

9.75 17.30 12.13 11.90
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