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Abstract 17 

Increased soil salinity is a significant agricultural problem that decreases yields for common agricultural 18 

crops. Its dynamics require cost and labour effective measurement techniques and widely acknowledged 19 

methods are not present yet. We investigated the potential of Unmanned Aerial Vehicle (UAV) remote 20 

sensing to measure salt stress in quinoa plants. Three different UAV sensors were used: a WIRIS thermal 21 

camera, a Rikola hyperspectral camera and a Riegl VUX-SYS Light Detection and Ranging (LiDAR) 22 

scanner. Several vegetation indices, canopy temperature and LiDAR measured plant height were derived 23 

from the remote sensing data and their relation with ground measured parameters like salt treatment, 24 

stomatal conductance and actual plant height is analysed. The results show that widely used 25 

multispectral vegetation indices are not efficient in discriminating between salt affected and control 26 

quinoa plants. The hyperspectral Physiological Reflectance Index (PRI) performed best and showed a 27 

clear distinction between salt affected and treated plants. This distinction is also visible for LiDAR 28 
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measured plant height, where salt treated plants were on average 10 centimetres shorter than control 29 

plants. Canopy temperature was significantly affected, though detection of this required an additional 30 

step in analysis – Normalised difference Vegetation Index (NDVI) clustering. This step assured 31 

temperature comparison for equally vegetated pixels. Data combination of all three sensors in a multiple 32 

linear regression model increased the prediction power and for the whole dataset R2 reached 0.46, with 33 

some subgroups reaching an R2 of 0.64. We conclude that UAV borne remote sensing is useful for 34 

measuring salt stress in plants and a combination of multiple measurement techniques is advised to 35 

increase the accuracy. 36 

Keywords: UAV, remote sensing, soil salinity, quinoa, LiDAR, Hyperspectral, Thermography 37 

1. Introduction 38 

Increased soil salinity is a significant agricultural problem that decreases yields for common agricultural 39 

crops (Maas and Grattan, 1999). Moreover, soil salinity is a dynamic phenomenon which makes timely 40 

soil salinity data essential for agricultural management of affected regions. Remote sensing can provide 41 

the necessary spatial and temporal resolution, but widely acknowledged methods and techniques for soil 42 

salinity monitoring of cropland using remote sensing are not present yet. Most of them propose to use 43 

vegetation indices, Normalised Difference Vegetation Index (NDVI) being the most popular(Rahmati and 44 

Hamzehpour, 2017; Zhang et al., 2015). Other plant parameters, like remotely sensed canopy 45 

temperature (Ivushkin et al., 2017; Ivushkin et al., 2018), have been applied as a proxy for soil salinity. 46 

Bare soil remote sensing was also used, though less often (Bai et al., 2016; Nawar et al., 2014). This can 47 

be explained by the fact that upper layer of soil does not reflect actual salinity levels in root zone, which 48 

is the most important information for agriculture. 49 

Though the above mentioned studies reported high correlations and accuracies of prediction in some 50 

situations, their application on other study areas did not show the same usability and accuracy (Allbed et 51 

al., 2014; Douaoui et al., 2006). Moreover, widely available satellite images cannot provide high spatial 52 

resolution and temporal flexibility of data acquisition, which are important for agricultural application.  53 

One of the solutions to overcome the issues of scale, resolution and temporal flexibility is the use of 54 

Unmanned Aerial Vehicles (UAV) as a sensor platform. UAV-based remote sensing is currently used for a 55 

wide range of applications in agriculture and soil science. These applications include but are not limited 56 

to: soil erosion monitoring (Oleire-Oltmanns et al., 2012), crop and soil mapping for precision farming 57 

(Honkavaara et al., 2013; Sona et al., 2016), quantifying field-based plant–soil feedback (van der Meij et 58 

al., 2017) and measuring physiological indicators of crops (Domingues Franceschini et al., 2017; Roosjen 59 
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et al., 2018). There is an increasing amount of operational UAV service providers in agriculture industry 60 

and many farmers start to maintain their own fleet. All this makes UAV’s widely available remote sensing 61 

platforms with vast potential applications, including soil salinity monitoring. 62 

Several studies discuss the potential of UAV-borne remote sensing for soil salinity and water deficit 63 

stresses, which often leads to a similar stress response in plants. Romero-Trigueros et al. (2017) 64 

investigated Citrus species grown under deficit irrigation with reclaimed water of increased salinity. They 65 

found that Red and Near Infrared spectral bands are significantly correlated with the chlorophyll content, 66 

stomatal conductance and net photosynthesis and concluded on the feasibility of an UAV-borne imagery 67 

to assess physiological and structural properties of Citrus under water and saline stress. Quebrajo et al. 68 

(2018) used thermal imagery from a UAV mounted camera to detect water stress in sugar beet plants. 69 

They concluded that this a reliable method to monitor the spatio-temporal variations of crop water use in 70 

sugar beet fields, but further research is required to propose optimal recommendations for a specific 71 

plant species. 72 

These examples show that effects of salt and water stress in plants are definitely detectable by UAV 73 

remote sensing systems, but UAV’s specific application for salinity stress was investigated only in one of 74 

them (Romero-Trigueros et al., 2017) and with the focus on water stress rather than salinity stress. 75 

Therefore, considering that available research on the topic is limited, we have formulated two research 76 

questions: 77 

1. Do the UAV sensed variables significantly change in salt treated plants on plot scale? 78 

2. Does a combination of the different variables have an added value? 79 

To answer them we have conducted our research using UAV platforms with three significantly different 80 

sensors: thermal camera, hyperspectral camera and Light Detection and Ranging sensor (LiDAR). The 81 

research was conducted in the frame of a bigger experiment on salt tolerance of quinoa crop which has 82 

been set up on the experimental field at Wageningen University & Research, the Netherlands. 83 
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2. Methods and materials 84 

2.1 Planting experiment set-up 85 

The experiment was set up on the experimental farm of Wageningen University & Research located in the 86 

central part of the Netherlands. Plants for the experimental trial were sown on March 28, 2017 in a 87 

greenhouse, the plants were put outside for cold acclimation on April 21, 2017 and were planted in the 88 

field on April 24, 2017 (salt trial) and April 25, 2017 (control trial).   89 

The two experimental plots of  13 x 13 m were planted with in total 97 different genotypes and varieties 90 

of quinoa (Figure 1). The three varieties were Atlas, Red Carina and Pasto. The other 94 genotypes were 91 

F3-families of a cross between Atlas and Red Carina. Each plot consists of 110 planting units measuring 92 

60x70 cm with a gap between the units of 40 cm (gross unit size = 100 x 110 cm). In the unit, the inner 93 

Figure 1. Planting experiment spatial layout. The planting units are marked by the coloured 
squares on an aerial photo background. Each variety is colour coded. 

Control plot 

Salt treated 
plot 



5 
 

60 x 70 cm was planted with 42 plants spaced at 10 x 10 cm. The southern plot is treated with salt and 94 

the northern plot is used as control plot. Around each plot of 110 planting units, an edge row of Pasto 95 

plants was planted in order to make sure the light conditions of the experimental edge rows was similar 96 

to that further away from the edge. 97 

Salt was applied to the salt treated plot in 14 steps to create a final EC of just above 30 dS/m 98 

(equivalent to 300 mM NaCl) by adding irrigation water with NaCl, initially at 200 mM and later at 400 99 

mM NaCl (Table 1). In the end natural rainfall occurred so frequently, that prior to a rainfall event an 100 

equivalent amount of salt was added equal to the amount applied with each 400 mM NaCl irrigation 101 

application. These solid applications quickly dissolved in the rainwater and infiltrated in less than 24 102 

hours. 103 

Table 1. Salt applications. From 11/5 to 30/6 each application was given in irrigation water as 5 L 104 

of solution at the mentioned concentration of NaCl. 105 

Date mM, concentration 
of NaCl solutions 

g 
NaCl/planting 
unit 

11/5/2017 200 58 

15/5/2017 400 117 

17/5/2017 400 117 

24/5/2017 400 117 

2/6/2017 400 117 

9/6/2017 400 117 

16/6/2017 400 117 

30/6/2017 400 117 

11/7/2017 as solid 120 

14/7/2017 as solid 240 

17/7/2017 as solid 240 

21/7/2017 as solid 240 

Total (g per planting unit) 
 

1717 

Total (g per m2) 
 

1561 

 106 

Electrical conductivity was measured at 0-10, 10-20 and 20-30 cm soil depth regularly. For each planting 107 

unit, three locations were sampled. Soil samples were weighed fresh and dried in order to see humidity 108 

of the current soil. Following this, electric conductivity meter (ProfiLine Cond 315i, Xylem Analytics, 109 

Germany) was used to measure the concentration of salts in saturated soil. Twenty grams of soil and 160 110 

ml of water (1:8) were mixed and EC of the solution measured by EC meter. During the salt applications, 111 

soil samples were taken three days after the treatments. The EC values increased from about 2 dS/m 112 
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(the same level as in the control plot at the start of the season after fertilisation) to about 40 dS/m in the 113 

layer 0-10 cm, 15 dS/m in the layer 10-20 cm and 18 dS/m in the layer 20-30 cm of soil depth (at 114 

flowering, after June 16, 2017). EC-levels were variable as they were higher just after application and 115 

lower after rainfall events, but gradually increased as mentioned. The level of 40 dS/m in the top layer 116 

exactly reflects the NaCl concentration of 400 mM used in the application. The surface soil salinity of 40 117 

dS/m corresponds to extremely saline conditions (>16dS/m) and 10-20 cm values of up to 15 118 

correspond to highly saline conditions (8-16 dS/m). In general, experimental setup corresponds to 119 

highly-extremely saline conditions where only tolerant species can grow. 120 

The total irrigation plus rainfall from planting to harvest (on August 7, 2017) was 229 mm. The initial soil 121 

moisture content was about 100 mm (30 % relative water content taken over the first 30 cm soil). At 122 

harvest the relative water content was about 20-25 % (or 60-75 mm in the first 30 cm of soil). So on 123 

average the total water use (soil evaporation and transpiration) was about 260-270 mm.  124 
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2.2 Field measurements of plant variables 125 

2.2.1 Stomatal conductance measurements 126 

The stomatal conductance measurements were taken on two consecutive days from two leaves per one 127 

plant in each planting unit twice a day, in the morning and the afternoon using a Decagon SC-1 128 

porometer. The morning measurement took place from 10 to 12 o‘clock and afternoon from 13 to 15 129 

o’clock. The standard deviation between the units on control plot is 68 mmol/m2/s and on salt treated 130 

plot 28 mmol/m2/s. In our analysis we have used the average value of these four measurements as an 131 

estimate of the midday values to ensure best comparison with the UAV flight data which were taken at 132 

midday. The stomatal conductance map (Figure 2) is based on these ground measurements and is 133 

produced for visualisation and spatial analysis. 134 

  135 

Figure 2. Stomatal conductance map showing the average stomatal conductance per planting unit. 
Units of stomatal conductance are mmol/m2/s 

Control plot 

Salt treated 
plot 
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2.2.2 Plant height measurements 136 

Final plant height was measured after the final harvest (on August 7, 2017) by taking the 90 % quantile 137 

of the plant height (so from the 42 plants the longest four plants were excluded, so the length of the 5th 138 

longest plant was taken). Plant height was measured from the base of the plant to the top of the head on 139 

the main stem using regular ruler. 140 

2.2.3 Biomass and grain measurements 141 

After the final harvest, the plants were split into stem (plus some remaining leaves, but most were dead 142 

and/or fallen off) and head. The head was dried at 35°C until the weight was stable (about 4 days) prior 143 

to separating grain and residual head in order to obtain viable seeds for follow-up experiments. The 144 

weight of residual head and grain were determined after being dried at 35°C and from these dried 145 

materials subsamples were taken to determine dry weights after 24 h drying at 105°C. Stem weights 146 

were also determined after drying at 105°C. The total biomass (dry weight) is the sum of the dry grain 147 

weight, the dry residual head weight and the stem dry weight. 148 

2.3 UAV data acquisition and processing 149 

The UAV data used were acquired on 20th of June, 2017. Two flights were made with an Altura AT8, one 150 

carrying the hyperspectral camera and the other one with the thermal camera on board. A third flight 151 

was conducted with the Riegl Ricopter system, carrying the Riegl VUX-SYS LiDAR system. The systems 152 

and data are described in more detail below. 153 

2.3.1 Hyperspectral data system and processing 154 

A light weight hyperspectral camera (Rikola Ltd., Oulu, Finland) based on a Fabry-Perot interferometer 155 

(FPI) (Honkavaara et al., 2013; Roosjen et al., 2017) has been used. The image produced has a 156 

resolution of 1010x1010 pixels. In total 16 bands were sampled in a range of 515-870 nm with full width 157 

at half maximum (FWHM) varying between 13 and 17 nm, as described in Table 2. 158 

Table 2. Characterization of the spectral bands of the camera. 159 

Spectral 
bands 
centre 
(nm) 

515 530 550 570 630 670 680 690 700 710 720 740 760 780 800 870 

FWHM 
(nm) 

14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 17 

 160 

The area of the 2 plots was captured in 4 flight lines, parallel to the longest side of the area. The flight 161 

height was 20 meters above ground level and the flight speed was 2 meters/second. The overlap 162 
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between flight lines was approximately 80%, within the flight line the overlap between images is 163 

approximately 60%. The images were acquired with a ground sampling distance of 0.015 m. The flight 164 

lines were constructed with the Unmanned Ground Control Software mission planning software (UGCS, 165 

2017). 166 

Due to intrinsic sensor characteristics, images corresponding to different wavelengths were not 167 

registered at the same time, since changes in the wavelengths measured depend on internal adjustment 168 

of the sensor system. The mismatch between images corresponding to different wavelengths was solved 169 

during photogrammetric processing of the images in Agisoft PhotoScan software (Agisoft LLC, 2017). 170 

This procedure depends on implementation of the Structure from Motion (SfM) algorithm, with feature 171 

matching, self-calibrating bundle adjustment and image-to-image registration based on overlapping 172 

imagery (Harwin et al., 2015). For that, image alignment and dense point cloud derivation were 173 

performed using the original resolution of the images (i.e., setting quality to ‘high’ and ‘ultra-high’ during 174 

these steps in the software processing chain, respectively).  175 

Conversion of digital numbers (registered with 12-bit radiometric resolution) to radiance, in mW*sr-1*m-176 

2*nm-1, was performed based on dark current measurements, which were taken before the flight, using 177 

proprietary software provided with the camera (HyperspectralImager version 2.0). Radiance values were 178 

then converted into reflectance factor through the empirical line approach using images, also acquired 179 

before the flight, of a Spectralon reference panel with 50% reflectance (LabSphere Inc., North Sutton, 180 

NH, USA), under same general illumination conditions observed during the data acquisition. 181 

2.3.2. Thermal data processing 182 

The thermal camera used is a Workswell WIRIS 640 (Workswell s.r.o., Praha, Czech Republic). This 183 

thermal camera captures images with 640x512 pixels resolution, and has a temperature sensitivity of 184 

0.05°C, with a spectral range of 7.5-13.5 μm. The default setting for emissivity of 0.95 was used. The 185 

thermal camera captures calibrated images which means that the actual temperature is recorded. 186 

The area of the 2 plots was captured in 4 flight lines, parallel to the longest side of the area. The flight 187 

height was 20 meters above ground level and the flight speed was 2 meters/second. The overlap 188 

between flight lines was approximately 80%, within the flight line the overlap between images is 189 

approximately 60%. The images were acquired with a ground sampling distance of 0.025 m. The flight 190 

lines were constructed with the Unmanned Ground Control Software mission planning software (UGCS, 191 

2017). 192 
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The calibrated images were processed with Agisoft PhotoScan software (Agisoft LLC, 2017) where a 193 

mosaic for the whole trial has been constructed. Unfortunately, the GPS malfunctioned during the 194 

acquisition so no GPS coordinates were available for the imagery. Since the images were captured with 195 

sufficient overlap (70%),  PhotoScan still can construct a mosaic applying the Structure from Motion 196 

(SfM) algorithm, but the result is without geo-reference. The geo-referencing was done manually in 197 

ArcMap (ESRI, 2016) by selecting recognizable locations on the thermal mosaic and a georeferenced 198 

hyperspectral image of the area. 199 

2.3.3 Lidar height measurements and data processing 200 

The RIEGL RiCOPTER with VUX®-1UAV (RIEGL Laser Measurement Systems GmbH, Horn, Austria) 201 

integrated UAV and sensor system has been used for LiDAR data acquisition. The RiCOPTER is a battery-202 

driven octocopter with an empty weight (no batteries and equipment) of 9 kg that can carry a payload of 203 

up to 8 kg. Together with the VUX®-1UAV scanner (3.75 kg), the system controller (0.9 kg), the IMU 204 

(0.7 kg) and optional cameras the total system weights just under 25 kg. The batteries allow flight times 205 

of up to 30 min at 30 km/h maximum cruise speed. This allows flying multiple overlapping flight lines to 206 

increase target coverage (Brede et al., 2017).  207 

The VUX®-1UAV is a survey-grade laser scanner that is mounted underneath the RiCOPTER. It uses a 208 

rotating mirror with a rotation axis in flight direction to direct the laser pulses and achieve an across-209 

track Field Of View (FOV) of 330° perpendicular to the flight direction. This means that lateral flight line 210 

overlap is only restricted by the maximum operating range of the laser. An Applanix AP20 IMU attached 211 

to the VUX®-1UAV and Global Navigation Satellite System (GNSS) antennas on top of the RiCOPTER 212 

record flight orientation and GNSS data. The on-board instrument controller manages all sensors’ data 213 

streams and includes a 220GB SSD storage, which is sufficient for several missions (Brede et al., 2017). 214 

The area of the 2 plots was captured in 6 flight lines, 3 parallel to the longest side of the area, situated to 215 

the left, middle and right of the plots and 3 parallel to the shortest side of the area, also situated to the 216 

left, middle and right of the plots. This way, the quinoa plants are scanned from all sides. For each flight 217 

line a scan line is captured. The flight lines were constructed with the Unmanned Ground Control 218 

Software mission planning software (UGCS, 2017). 219 

Pre-processing of the trajectory data (flight orientation and GNSS data) was performed with the POSPac 220 

Mobile Mapping Suite (Applanix, 2017) using base station data provided by 06-GPS (06-GPS, 2017). This 221 

makes it possible to achieve centimetre accuracy for the geo-location of the laser data.   222 
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Processing of the raw scanning data was done with the RIEGL RiPROCESS software which is the default 223 

software tool for processing data from the VUX®-1UAV scanner. With RiPROCESS, the raw data is 224 

converted to a geo-referenced point cloud using the pre-processed trajectory data for accurate geo-225 

positioning. Internal co-registering of the different scan line data was carried out with the RiPRECISION 226 

tool. This tool finds matching control planes between scan lines and performs the co-registration. The 227 

resulting LiDAR point cloud data was exported as LAS files for further processing with the LAStools 228 

software (rapidlasso GmbH, 2017).    229 

Classification of ground points and calculation of the plant height was done with the LAStools software 230 

suite. For ground point classification, the lasground_new tool was used with the wilderness option. This 231 

enables the detection of smaller features on the ground in high resolution LiDAR. The results were 232 

visually evaluated and the pattern of the ground classification was found accurate enough for further 233 

processing. Next, the height of all points above the ground was calculated with the lasheight tool. The 234 

result is still a point cloud with the Z value of each point is the relative height above the ground. The Z 235 

value for ground points is 0. This point cloud was rasterized into a raster file with the lasgrid tool using 236 

the highest option with a step size of 2.5 cm. This means that within a grid cell of 2.5 by 2.5 centimetres 237 

the highest Z value of LiDAR points that fall within this grid is assigned as value to the grid cell.  The 238 

result is a raster file covering the whole plot area with the maximum height of the vegetation per 2.5 by 239 

2.5 cm’s. This file is used to derive statistical information about the plant height for each planting unit. 240 

2.4 Vegetation indices calculation 241 

Three vegetation indices were calculated for the research. The first one is well known and broadly used 242 

Normalised Difference Vegetation Index (NDVI): 243 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅                    (1) 250 

The second one is Optimized Soil Adjusted Vegetation Index (OSAVI) (Rondeaux et al., 1996), calculated 244 

as: 245 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =  
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅 + 0.16                       (2) 251 

In our calculation NIR is the reflectance at 870 nm and R is reflectance at 690 nm spectral band. The 246 

third index is PRI (Gamon et al., 1992), calculated as: 247 

𝑃𝑃𝑃𝑃𝑃𝑃 =
R531– R570

R531 + R570                               (3) 252 

where Rx is the reflectance on the corresponding wavelength in nm. PRI is known to be responsive to 248 

salinity stress in plants (Zinnert et al., 2012). 249 
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2.5 NDVI clustering 253 

To filter out the influence of the total biomass on a UAV measured temperature we applied NDVI 254 

clustering. In this way we ensure that we compare the temperatures of the equal amount of a plant 255 

material per pixel. The clusters were created by sorting the plant units based on their average NDVI 256 

value and assigning them into groups of equal size. A total 5 clusters were established each containing 257 

24 planting units, which means that 120 planting units were included into regression analysis. NDVI 258 

ranges for each class are indicated in Table 3. 259 

2.6 Further geospatial and statistical analysis 260 

Further geospatial analysis was implemented in ArcGIS Pro software package (ESRI, 2017). That analysis 261 

consisted of calculating average NDVI, PRI, OSAVI and temperature values for each planting unit using 262 

Zonal Statistic as Table tool. Then importing of the table into the readable form for IBM SPSS Statistics 263 

software (IBM Corp, 2015) for further statistical analysis and plotting. In SPSS correlation coefficients of 264 

Table 4 were calculated and boxplots were created. The Multiple Linear Regression model also has been 265 

calculated in SPSS software package. For that, functionality of Linear Regression tool has been applied, 266 

where canopy temperature, PRI and LiDAR measured plant height were chosen as independent variables. 267 

All statistical analysis has been implemented on a planting unit level, therefore average pixel values per 268 

planting units were used for producing boxplot graphs and calculating regression and correlation 269 

coefficients. 270 
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3. Results and discussion 271 

3.1 Vegetation indices analysis 272 

 273 

The multispectral indices did not show 274 

significant differences between control 275 

and salt treated plots, and to some 276 

extent even show an inverted correlation, 277 

where both NDVI and OSAVI showed 278 

slightly higher values for salt treated 279 

planting units (Figure 3). We connect this 280 

outcome with adaptation mechanisms of 281 

quinoa plants. Since quinoa is a well-282 

known halophyte, it can increase its fresh 283 

weight under salinity stress and leaves 284 

show the highest increase in weight 285 

(Koyro et al., 2008). This means that multispectral vegetation indices that mainly relate to the greenness 286 

and green biomass will not be useful for salt tolerant plants like quinoa, where relationship of salt stress 287 

and biomass are not straightforward.  288 

Figure 3. NDVI and OSAVI boxplots of control and salt treated quinoa plots. 

Figure 4. Physiological Reflectance Index (PRI) boxplot 
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Even though the total biomass of salt affected plants was slightly higher than for the control, the actual 289 

yield was lower (i.e. the harvest index was reduced by the salt treatment), which means that there are 290 

certain negative physiological responses even in such salt tolerant plants as quinoa. To detect these 291 

responses we have investigated Physiological Reflectance Index (PRI) values, which is known to be 292 

influenced by salinity stress (Zinnert et al., 2012). In this case results were more in line with previous 293 

studies and showed that PRI values of salt treated plants were lower than for the control (Figure 4). This 294 

confirms that actual photosynthetic efficiency has decreased because of the salt stress. Visual 295 

assessment of the PRI map in Figure 6 shows these differences, with more reddish colours (higher PRI) 296 

on the control plot and more yellow (lower PRI) on salt treated plot. The map also shows that there are 297 

quite some inconsistencies and sometimes very low values in control plot and very high in the treated 298 

one. Because of this, the differences between two means reached only 0.005. Suspecting that these 299 

inconsistencies appear because of the differences in canopy cover per pixel and not because of actual 300 

performance of the plant at the moment of measurement, we applied NDVI clustering (ranges per cluster 301 

are in Table 3), as described in the Methods section. This allowed us to compare planting units with 302 

comparable canopy cover. In Figure 5 it is visible that application of NDVI clustering increased the 303 

differences of means on average twofold, now reaching 0.01, which leads to a clearer distinction between 304 

control and salt treated plants. Therefore NDVI clustering appears to be a useful step in the analysis for 305 

plants with non-common salinity stress responses, like quinoa.  306 

Figure 5. Physiological Reflectance Index (PRI) boxplot for different NDVI clusters 
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  307 

Figure 6. PRI map. The salt treated plot has visibly lower PRI values. 

Control plot 

Salt treated 
plot 
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In addition to differences between control 308 

and salt treated plants, PRI was quite 309 

variable between different quinoa 310 

varieties (Figure 7). Pasto variety showed 311 

the most remarkable result because of 312 

the inverted relation – salt treated plant 313 

showed higher PRI values than control, 314 

which suggests that Pasto is the most 315 

salt tolerant variety among the three. 316 

These values correspond well with 317 

ground measured indicators of plant 318 

performance. Red Carina’s mean PRI is 319 

also slightly higher on salt treated plot, 320 

but this difference is barely reaching 0.001 and the general boxplot distribution shows that the majority 321 

of the values are in the lower range, therefore PRI values in the case of Red Carina are not significantly 322 

different between control and salt affected plants. Atlas variety followed a general pattern of reduced PRI 323 

on salt treated plants compared to control.  324 

3.2 Canopy temperature analysis  325 

Analysis of canopy temperature 326 

differences between saline and non-saline 327 

plot are also much clearer when NDVI 328 

clustering is applied. Figure 8 shows that 329 

when temperature data are stratified only 330 

by soil salinity treatment, the 331 

temperature measurements are not 332 

significantly different. But in case of NDVI 333 

clustered analysis, depicted in Figure 9, in 334 

4 out of 5 cases the average temperature 335 

of the plant is higher for salt affected 336 

plants. This suggests that the general 337 

principle of canopy temperature increase in response to salinity, which was previously observed with 338 

satellite sensors on landscape scale (Ivushkin et al., 2017; Ivushkin et al., 2018), is also present with 339 

aerial data acquired from a UAV on a plot scale. 340 

Figure 7. Physiological Reflectance Index (PRI) 
boxplot clustered by variety 

Figure 8. Temperature boxplot for the unclustered 
dataset. 
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The fact that a higher correlation is 341 

observed only after NDVI clustering, 342 

suggests that even though the canopy 343 

temperature is influenced by soil salinity, 344 

the amount of vegetation in each pixel is 345 

crucial for valid soil salinity assessment. 346 

Moreover, this connection between 347 

canopy temperature and soil salinity can 348 

be observed in salt tolerant crop, which is 349 

a surprising finding, taking into account 350 

that salt tolerant and salt sensitive plants 351 

have different salt stress adaptation 352 

mechanisms (Shabala and Munns, 2012). In this trial this distinguishing was possible by applying 353 

additional step in the analysis –  NDVI stratification. Therefore, canopy temperature increase in response 354 

to salinity stress can be observed in salt tolerant plants, though the effect is less pronounced compared 355 

to conventional crops (Ivushkin et al., 2017; Ivushkin et al., 2018). 356 

Canopy temperature generally depends on stomatal conductance. Figure 10 and Table 3 show how they 357 

correspond in our case. When the dataset is analysed without any clustering the correlation between 358 

stomatal conductance and UAV recorded temperature was -0.188. This is quite surprising considering 359 

that stomatal conductance ground measurements have a clear spatial distribution (Figure 2) which shows 360 

significantly lower stomatal conductance on the salt affected plot. The reason for this is the different 361 

amount of vegetation signal per pixel and specifics of adaptation mechanism of quinoa, as described 362 

before. In this case, though stomatal conductance is decreased with a higher salinity level, the increase 363 

in total amount of vegetation per pixel (and, as a result total amount of stomata per pixel) leads to 364 

temperature compensation and there is no difference between control and salt affected plot observed in 365 

remote sensing data. But when the analysis was done on the NDVI clustered dataset the correlation 366 

coefficient reached -0.657 and 3 out of 5 coefficients are significant. However, the two marginal clusters 367 

(first and the last) showed low correlation coefficients. This suggests that plants with highest and lowest 368 

green biomass of the study area are less suitable for the thermal monitoring of salt induced stress. 369 

  370 

Figure 9. Temperature boxplot for different NDVI 
clusters. 
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Table 3. Correlation coefficients between stomatal conductance and UAV measured canopy 371 

temperature per NDVI cluster (correlation is significant at the *0.05 or **0.01 level). 372 

NDVI rank 1 2 3 4 5 NDVI unclustered 

NDVI range <0.781 0.781-0.800 0.800-0.809 0.809-0.816 0.816-0.840 - 

Correlation coefficient -0.285 -0.445* -0.406* -0.657** 0.008 -0.188* 

 373 

 374 

  375 

Figure 10. Stomatal conductance vs. canopy temperature scatterplot. Different colours represent 
different NDVI clusters. Lines are the best fit lines for each cluster.  
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3.3 LiDAR height measurements analysis 376 

LiDAR measurements of plant height 377 

were compared with actual ground 378 

measurements. The results show that 379 

LiDAR can accurately predict plant 380 

height with the R2 of 0.78. This is 381 

remarkably good as the height 382 

measurements of the LiDAR predict the 383 

height of the crop at the harvest 48 384 

days later. That means that LiDAR data 385 

has a potential for plant height 386 

prediction at the time of harvest, which 387 

can further be used for yield prediction. 388 

Moreover, the R2 most likely has been 389 

decreased by the fact that not every single plant has been measured by ground measurements, but only 390 

the 90 % quantile of the plant height of 42 plants was determined, while LiDAR provided an average of 391 

every plant’s height in each planting unit.    392 

The plant height was significantly affected by salt treatment. The salt treated plants are on average 10 393 

cm shorter than the control plants (Figure 12). However, this is not true for the Pasto variety, which 394 

showed a reversed correlation and salt affected plants are 5-10 cm higher than control. This can clearly 395 

be seen on the LiDAR height map, where 396 

Pasto can be identified by its difference in 397 

height compared to the neighbouring 398 

planting units of other varieties (Figure 399 

13). 400 

Considering that plant height is usually 401 

affected by salt stress, LiDAR systems 402 

have an added value in soil salinity 403 

monitoring allowing to obtain plant height 404 

measurements over big areas in short 405 

period of time. Adding this data into 406 
Figure 12. Lidar measured plant height 

Figure 11. Scatterplot of plant height measured by 
Lidar and by hand 48 days later. The line is 1:1 line. 
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multivariable analysis will increase the prediction power and accuracy of the results, which is 407 

demonstrated in the next subsection. 408 
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3.4 Multiple Linear Regression 409 

Application of Multiple linear regression has 410 

showed higher regression coefficient 411 

compared to the cases when only a single 412 

predictor is used. When data from all three 413 

sensors were used (thermal, hyperspectral, 414 

LIDAR) the R2 reached 0.64 (0.58 R2 415 

adjusted) for the fourth NDVI class (Table 416 

4) and 0.46 for all classes combined (Figure 417 

14). The predictors in this case were PRI, 418 

canopy temperature and LIDAR measured 419 

plant height. Though the average regression 420 Figure 14. Scatterplot of MLR predicted vs measured 
stomatal conductance values. The line is 1:1 line. 

Figure 13. Lidar measured plant height (m) map (Pasto planting units are marked by the circles) 

Control plot 

Salt treated 
plot 
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coefficient has been increased by application of multiple linear regression, the deviations of the 421 

regression coefficients between different NDVI clusters are quite high and R2 varies from 0.1 to 0.64 422 

(Table 4) so there is a room for improvement on the consistency of the results. 423 

Table 4. Determination coefficients (R2) for different indicators vs. stomatal conductance (MLR 424 

combines PRI, canopy temperature and LIDAR measured plant height) 425 

NDVI rank 1 2 3 4 5 NDVI unclustered 

MLR .590 .376 .410 .638 .104 .241 

Canopy temperature .081 .198 .165 .431 .000 .035 

PRI .434 .184 .200 .263 .043 .142 

LIDAR measured plant height .487 .218 .263 .417 .079 .213 

 426 

It is fully conceivable that the remote sensing data could be more accurate than the actual stomatal 427 

conductance measurements, which were only done using measurements on four leaves and on two 428 

different days in a morning and afternoon part. The amount of work does not allow to finish this large 429 

number of stomatal conductance measurements on a larger number of leaves within a few hours. This 430 

might  add bias and residual error in the stomatal conductance measurements. The remote sensing data 431 

have been collected in a much shorter period (less bias between different parts of the experiment) and 432 

on the whole planting unit instead of only on four leaves per planting unit. 433 

In addition to salt stress, stomatal conductance can be used as an indicator of other stresses, like water 434 

stress. Its effective measurements using such cost and labour effective technique as UAV remote sensing 435 

can be useful as a component of a precision agriculture systems. In general, remote sensing 436 

measurements methods for different plant properties, might be a useful addition for modern agricultural 437 

management system, where UAVs are already playing an important role. 438 

Among the directions for a future research we suggest to investigate the application of the method to 439 

other crops. It is likely that other crops might have different degree of responses and with more sensitive 440 

crops the data analysis might be more efficient by skipping the NDVI stratification step. Though we are 441 

sure that the trend will be the same, since general physiological mechanisms are similar in most of the 442 

plants. Taking into account that salt treatments in this experiment correspond to highly and extremely 443 

affected lands we see an added value in conducting experiment with lesser concentrations, which will 444 

correspond to salinity conditions that are more widespread on cultivated lands. 445 
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4. Conclusions 446 

This study investigated plot scale assessment of soil salinity using three different UAV mounted sensors: 447 

thermal camera, hyperspectral camera and LiDAR. The results showed that an increase of canopy 448 

temperature in response to salt stress is also happening in salt tolerant plants, like quinoa, though this 449 

increase is less pronounced. The other variables investigated, namely Physiological Reflectance Index 450 

and LiDAR measured plant height, are also affected by soil salinity stress. Physiological Reflectance Index 451 

of quinoa plant is significantly decreased because of the increased soil salinity and seems to be a 452 

valuable indicator of salt stress, in opposite to multispectral indices like NDVI or OSAVI, which showed 453 

insignificant differences between control and salt treated plants, with even reverted correlations. LiDAR 454 

measured height of quinoa plant is significantly decreased because of the increased soil salinity. 455 

Stratification of an area by NDVI values ensures the equal amount of vegetation per pixel and, therefore, 456 

increases the correlation’s strength between soil salinity level and remotely sensed physiological 457 

variables like PRI and canopy temperature. The combination of multiple remote sensing variables in 458 

Multiple Linear Regression model has improved regression coefficient and therefore we conclude that 459 

implementation of multiple measurement techniques bears a lot of potential for soil salinity monitoring of 460 

cropland by remote sensing.  461 
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