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Abstract 
 
Amazonian Dark Earths (ADE) are anthropic soils that are enriched in carbon (C) 
and several nutrients, particularly calcium (Ca) and phosphorus (P), when compared 
to adjacent soils from the Amazon basin. Studies on ADE empower the 
understanding of complex pre-Columbian cultural development in the Amazon and 
may also provide insights for future sustainable agricultural practices in the tropics. 
ADE are highly variable in size, depth and soil physico-chemical characteristics. 
Nonetheless, the differentiation between ADE and the adjacent soils is not 
standardized and is commonly done based on visual field observations. In this 
regard, the pretic horizon has been recently proposed as an attempt to classify ADE 
systematically. Spatial modelling techniques can be of great use to study the 
structure of the spatial variation of soil properties in highly variable areas. Here, we 
predicted the carbon and nutrients stocks in ADE by applying spatial modelling 
techniques using an environmental covariate (i.e. expected anthropic enrichment 
gradient) in our model. In addition, we used the pretic horizon criteria to classify 
pretic and non-pretic areas and evaluate their relative contribution to the total stocks. 
In this study, we collected soil samples from five 20-cm soil layers at n = 53 
georeferenced points placed in a grid of about 10 to 60 m spacing in a study area 
located in Central Amazon (~9.4 ha). Ceramic fragments were weighed and 
quantified. Samples were analysed for: Total C, Total Ca, Total P, Exchangeable Ca 
+ Mg, Extractable P, soil pH, potential CEC (pH = 7.0) and the clay content. The use 
of the pretic horizon criteria allowed us to clearly distinguish two unambiguous areas 
with a sharp transition, rather than a smooth continuum, in contrast to previous 
studies in ADE. Depth- and profile-wise linear regression model parameters 
indicated a greater importance of the chosen environmental covariate (i.e. expected 
anthropic enrichment gradient) to explain the spatial variation of Total Ca and Total P 
stocks than Total C stocks. The overall Total Ca and Total P stocks were twice as 
large in the pretic area when compared to the non-pretic area.  
 
Highlights 
 

 Carbon and nutrients stocks in ADE were predicted using an environmental 
covariate. 

 Total Ca and Total P contents exhibited better fit to our model than Total C 
content. 

 Pretic horizon criteria enabled the differentiation of two unambiguous areas. 

 Pretic relative contribution was higher for Total Ca and Total P than Total C 
stocks. 
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1. Introduction  
 

Amazonian Dark Earths (ADE) are anthropic soils (Anthrosols) characterized by 
darker colour and enrichment in carbon (C) and other nutrients, particularly calcium 
(Ca) and phosphorus (P). These soils also exhibit higher pH and cation exchange 
capacity (CEC) and frequently evidences of human activity (e.g. ceramic artefacts 
and charcoal fragments) when compared to the carbon- and nutrient-poor adjacent 
soils from the Amazon basin (Glaser et al., 2001; Kämpf et al., 2003; Kern et al., 
2017; Sombroek, 1966). Radiocarbon dating indicated that these soils were formed 
between 2500 and 500 before present and are of pre-Columbian origin (Neves et al., 
2003). Possible carbon and nutrients sources are: terrestrial/aquatic plant biomass, 
human/animal excrements/bones and charcoal/ash residues of incomplete 
combustion (Glaser, 2007).  

Due to the prevalence of weathered clay minerals (e.g. kaolinite) and iron and 
aluminium oxides in these soils, their ability to retain nutrients depends mainly on soil 
organic matter (SOM). However, high temperature and precipitation in the tropics 
accelerate the decomposition of SOM. Studies have suggested that high carbon 
content in ADE are related to the black carbon (BC) content in these soils (Glaser, 
2007; Glaser et al., 2001). BC has been claimed to be one of the most stable forms 
of carbon found in soils due to its poly-condensed aromatic structure that makes it 
more difficult to be decomposed by soil microorganisms (Glaser, 2007; Haumaier 
and Zech, 1995; Novotny et al., 2007). In addition, high CEC in ADE is also likely to 
increase primary production due to higher soil fertility. Therefore, SOM input of non-
BC origin is also expected to be increased in ADE. Despite tropical conditions, ADE 
have intriguingly remained highly fertile after abandonment of sites following 
European colonization. Current research indicates that the extent and intensity with 
which Amerindians occupied and transformed the Amazon is far more complex than 
previously assumed due to possible environmental limitations (Kern et al., 2017). 
Studies on ADE empower the understanding of complex pre-Columbian cultural 
development in the Amazon and may also provide insights for future sustainable 
agricultural practices in the tropics. 

ADE are highly variable in size, depth and soil physico-chemical characteristics 
not only among different sites, but also within a single site. This variation is mainly 
caused by the diversity and complexity of pre-Columbian settlements (Costa et al., 
2013; Costa and Kern, 1999; Kern et al., 2015). The debate whether ADE were 
formed intentionally (for agricultural purposes) or unintentionally (as the unintended 
consequence of waste deposition), seems to be diminishing in relevance. Currently, 
scientists tend to perceive the formation of ADE (and other Anthrosols) as the 
inevitable outcome of daily activities throughout years of past human occupations 
(Fraser et al., 2014). The persistence of anthropic markers likely depends on 
frequency and intensity of occupation of the site that may lead to a regime shift 
which manifests as ADE formation (Browne-Ribeiro, 2016). 

The differentiation between ADE and the adjacent soil is commonly done by non-
quantitative field observations based on soil colour and the presence of 



3 
 

archaeological remains (i.e. ceramic and charcoal fragments). Costa et al. (2013) 
reported that ADE characteristics could fit several qualifiers for Anthrosols. Recently, 
the pretic horizon has been proposed as an attempt to classify ADE systematically 
and better accommodate ADE within Anthrosols (IUSS Working Group WRB, 2015). 
This is important because it takes into consideration quantitative data rather than 
vague descriptive data. The pretic horizon is a dark surface horizon that among other 
criteria is characterized by high contents of carbon and nutrients. 

Geochemical signatures reflect the variation within and beyond the limits of 
anthropic areas that were previously defined by visual evidence. Schmidt et al. 
(2014) reported a widespread pattern of past human occupation where terraces of 
domestic areas (e.g. houses or yards) are surrounded by waste disposal areas as 
middens that build up into mounds over time. Different geochemical signatures can 
be linked to past land use and occupation (Costa et al., 2013). However, 
interpretation of these patterns may be hindered by site-inherent complexity of past 
settlements and current land use and occupation (Kern et al., 2015). Moreover, 
anthropic soils likely exhibit these complexities both in small- and large-scale 
analyses. Hence, we still lack a solid understanding of the specific mechanisms that 
led to the formation and diversity of ADE (Schmidt et al., 2014). Limited and localized 
soil sampling is unlikely to elucidate those mechanisms in highly variable areas.  

Spatial modelling techniques can be of great use to study the structure of the 
spatial variation of soil properties as it considers the continuity of spatial phenomena 
and the deterministic effect of environmental conditions. For soil scientists, it is a 
great tool to visualize how soil properties can vary greatly both horizontally and 
vertically. For archaeologists, it is a great tool to infer on the location of specific 
activities in the past. Significant progress in spatial modelling techniques was 
possible due to recent advances in data processing. However, several 
methodological hurdles are still evident, especially in large areas with high spatial 
variation between soil properties and environmental covariates (Song et al., 2016). 
These hurdles can be of great importance in anthropic areas where abrupt and 
gradual transitions can be expected horizontally and vertically due to the complexity 
of settlements. Therefore, it is important to include uncertainties of predictions when 
using these techniques.  

Correlation between soil variables is not only dependent on the distance between 
sampling points, but also on their location. Therefore, environmental conditions may 
show a trend across a study area. Stochastic simulation of spatially distributed soil 
properties can be used for better predictions as it preserves the structure of the 
spatial variation, whereas kriging usually smoothens (Heuvelink and Webster, 2001). 
Predictions may be improved by using exhaustive environmental covariates (Lark 
and Webster, 2006). However, including several covariates is not always related to 
an increase in prediction accuracy (Samuel-Rosa et al., 2015).  

Therefore, the aims of this study were to: (i) predict the Total C, Total Ca and 
Total P stocks using an environmental covariate (including the uncertainties of 
predictions) and (ii) use the pretic horizon criteria to classify pretic and non-pretic 
areas and evaluate their relative contribution to the total stocks. 
 
2. Material and Methods 
 
2.1. Study area 
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The study area (~9.4 ha) is situated on the north margin of the Solimões river 
(Amazon river), in the municipality of Iranduba, Amazonas state, Brazil (03º14’22’’ - 
03º1547’’ S and 60º13’’02’’- 60º1350’’ W) (Fig. 1). Regional climate is classified as 
Aw according to Köppen classification (tropical rainy). Local annual mean 
temperature is 26.7°C, annual mean rainfall is 2100 mm and relative humidity is 
about 80%. The local slope is flat to undulated and the site is located above existing 
watercourses. The most common soil classes in the region are Xanthic Ferralsols, 
Plinthic Ferralsols, Pisoplinthic Plinthosols and Xanthic Acrisols (Macedo et al., 
2017). The study area is locally known as the Experimental Research Station of 
Caldeirão - Embrapa Western Amazon. Part of the study area (~30%), located in the 
west (W) and southwest (SW) sectors, is composed of a forested area that has not 
been cultivated for over 40 years. The remaining part (~70%), was converted into an 
experimental field where several crops have been cultivated and soil management 
practices have been applied over the past 40 years.  

 
Fig. 1. Location of the study area (Experimental Research Station of Caldeirão - 

Embrapa Western Amazon). (Google Earth® images). 

 
2.2. Soil sampling and analysis 
 

Soil samples were collected from five 20-cm soil layers (from 0 to 100 cm) with a 
manual post hole digger (sample volume = 0.0063 m3) at n = 53 georeferenced 
points (~5 m horizontal precision) placed in a grid of about 10 to 60 m spacing (265 
soil samples). Ceramic fragments (> 2 mm) were weighed and quantified. Samples 
were air-dried, sieved through 2 mm mesh, homogenized and stored in plastic bags 
at room temperature prior to analyses. Samples were analysed for: Total C, Total 
Ca, Total P, Exchangeable Ca + Mg, Extractable P, soil pH, potential CEC (at pH = 
7.0) and clay content. Total C was determined using an elemental analyser 
(PerkinElmer 2400 Series II) where acetanilide was used as reference material. Total 
Ca and Total P were determined at Geosol laboratories by Inductively Coupled 
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Plasma-Optical Emission Spectrometry (ICP-OES), where samples were previously 
digested with a multi-acid solution (HCl, HNO3, HF and HClO4). Extractable P, K, Na 
(Mehlich 1), Exchangeable Ca + Mg (1 M KCl) and H + Al (0.5 M calcium acetate at 
pH 7.0) were also determined. Soil pH was determined in water (soil:water ratio of 
1:2.5), potential CEC (at pH = 7.0) was defined as the sum of exchangeable cations 
(K, Na, Ca + Mg) plus acidity (H + Al) and the clay content was determined by the 
pipet method after organic matter removal with hydrogen peroxide. Detailed 
description on the methods are described in Embrapa (2017). 
 
2.3. Spatial modelling 
 

The spatial variation of soil properties was modelled as a function of fixed 
(deterministic) and random (stochastic) effects. The fixed effects describe the part of 
the spatial variation of a soil property that can be explained using spatially 
exhaustive covariates (Heuvelink and Webster, 2001). Spatial data covering the 
entire study area that can be related to the environmental conditions that likely 
influenced the observed large-scale patterns of spatial variation (> 50 m in our study 
area) can be used as covariates. Here, we assumed that past anthropic activities 
that caused enrichment of carbon and nutrients likely occurred closer to the river, 
despite specificity among activities. In addition, the current land use in the SW sector 
(forested area) is also expected to have caused some enrichment of organic matter 
due to SOM input, whereas the current land use in the NE (agronomic experimental 
field) is expected to have caused some impoverishment of organic matter due to 
cultivation. Therefore, the largest enrichment of carbon and nutrients likely occurred 
in the SW sector with decreasing enrichment gradient towards the NE sector. 
Because of the spatial association between these conditions, we chose to use one 
covariate to serve as their surrogate, which we defined as the expected anthropic 
enrichment gradient (Fig. 2a).  

The understanding that this covariate could explain the large-scale spatial 
variation of soil properties was formalised by individually calibrating depth-wise linear 
regression models with soil property as dependent variable and the covariate as the 
independent variable. For an arbitrary soil depth (d), such linear regression model 
was defined as: 
 
Y(si, d) = β0d + exp[x(si, d)]Tβ1d + ε(si, d), with i = 1, 2, …, n, (1) 
 
where the β’s are the estimated linear regression model coefficients conditional on 
the soil property (Y) and the covariate data (x) at the observation locations (si, d). 
The covariate is expressed in exponential form to emphasise the combined effect of 
past and current land use and occupation on enrichment of carbon and nutrients 
nearby the margin of the river. 

In Eq. (1), ε(si, d) is the spatially auto-correlated difference between the fitted and 
observed values of the soil property (regression residuals) (Heuvelink and Webster, 
2001). For an arbitrary soil depth (d), the structure of this spatial autocorrelation was 
analysed using the auto-variogram: 
 
γd(h) = 0.5 mean{[ε(si, d) – ε(si + h, d)]2} (2) 
 
where h is a vector of separation distances between two observation locations (si 
and si + h). We used five exponentially spaced distance classes up to a maximum 
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separation distance of about 315 m (half the diagonal of study area). Exponentially 
spaced distance classes were used because they deliver a better picture of the 
small-scale structure of spatial variation (< 50 m in our study area) (Pettitt and 
McBratney, 1993). The size of the two smallest distance classes (~20 m) starting at 
the variogram origin was determined by the sampling grid spacing (~10 to 60 m). 

Regression residuals of a soil property from adjacent soil depths can be expected 
to have the same magnitude and/or sign. Such vertical correlation is characterized 
by the translocation of elements from upper to lower soil depths caused by natural 
and/or anthropic influences. For any two arbitrary soil depths, dj and dk, the structure 
of this spatial cross-correlation was analysed using the cross-variogram (Kyriakidis 
and Journel, 1999). 
 
γjk(h) = 0.5 mean{[ε(si, dj) – ε(si + h, dj)][ε(si, dk) – ε(si + h, dk)]}, with j ≠ k (3) 
 

By using the cross-variogram, we enforced the depth-wise auto-variograms of a 
soil property to be coherent among soil depths. For all soil properties, the shape of 
the variograms was defined using the sum of a nugget variance and the exponential 
covariance function: 
 
γ(h) = c0 + c[1 – exp(-h/0.333a)], (4) 
 
where c0 is the nugget variance, c is the sill variance, and a is the correlation range 
(Supplementary Data).  

Considering the phenomenon under study and the scale of analysis determined 
by the range of distances between nearest neighbouring observations (~10 to 60 m), 
the choice for using the exponential covariance function reflects our expectation that 
the spatial auto- and cross-correlation decrease rapidly with increasing separation 
distances. Generally, the nugget variance arises from measurements errors and very 
small-scale spatial variation. In this study, the latter corresponds to separation 
distances smaller than about 35 m (average distance between nearest-neighbouring 
observations). 

The depth-wise empirical distribution of soil properties was transformed to 
Gaussian using the Box-Cox family of power transformations to meet statistical 
constraints and facilitate the estimation of model parameters. Then, the Box-Cox 
transformed variables were standardized to zero mean and unit standard deviation. 
The parameters of the depth-wise linear regression models were estimated using 
ordinary least squares, while the parameters of the auto- and cross-variogram 
models were estimated using iteratively reweighted least squares within the 
framework of the linear model of coregionalization (Pebesma, 2004). 

For Total C, Total Ca and Total P, universal cokriging was used to make spatial 
predictions of the contents. Predicted values and prediction error variances were 
back-transformed using simulations as described elsewhere (Samuel-Rosa et al., 
2015). For Total C, Exchangeable Ca + Mg and Extractable P data at the first depth 
(0–20 cm) used for the pretic horizon criteria, conditional sequential Gaussian 
simulation was used to produce 1000 equally probable realisations of their 
respective random fields (Pebesma, 2004). Spatial predictions and simulations were 
done in regular grids per soil depth containing 94,462 point-predictions at 1.0 m 
spacing. For further information on the geostatistical methods we used here, we refer 
to Goovaerts (1997) and Webster and Oliver (2007). 
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2.4. Computation of predicted carbon and nutrients stocks 
 

Point-predicted values of Total C, Total Ca and Total P contents were taken to be 
equivalent to the average content of the respective element expected to be found in 
blocks of 0.2 m³. This was possible since point and block universal cokriging should 
yield equivalent predictions given the existing sampling density and the chosen 
prediction grid spacing. Then, the risk of underestimating the true prediction errors is 
minimized since block kriging yields lower estimates of the prediction error variance 
than point kriging (Oliver and Webster, 2014). 

Although it is often reported that ADE are rich in ceramic fragments, quantitative 
data is rarely shown. Therefore, the relative contribution of ceramics volume to the 
total soil volume is often unknown. In our study area, the volume of coarse fragments 
(i.e. ceramics fragments) per volume of soil was generally below 1% and never 
larger than 4%. In fact, ceramics were absent in 65% of our soil samples (Fig. 2b). 
Therefore, the volume of coarse fragments was assumed to be negligible and was 
not included to estimate the stocks.  

Data on soil bulk density were obtained from three soil profiles located in our 
study area (P1, P2 and P3 in Fig. 2a) and described in previous studies (Macedo, 
2012; Neves Júnior, 2008). These data could not be readily used as the soil depths 
intervals did not match the 20-cm soil layers of our study. Therefore, we fitted a 
model to the soil bulk density data using the depth at the centre of the sampled soil 
layers as predictor variable. To account for nonlinearities in the relation between soil 
bulk density and soil depth, the latter was transformed into m sets of new variables 
using natural spline basis functions (Hastie et al., 2009). These consisted of m cubic 
polynomial functions fitted to m adjacent subsets of the soil depth data, each subset 
being defined by breakpoints (knots) at the appropriate m-1 percentiles. The 
collection of polynomial functions was constrained to be continuous at the inner 
knots and linear beyond the boundary knots. Based on leave-one-out cross-
validation results (data not shown), we found the best number of degrees of freedom 
of the natural cubic spline (the number of piecewise polynomials) to be m = 5. The 
fitted model was used to predict soil bulk density at the centre of the five 20-cm soil 
layers (i.e. 10, 30, 50, 70, and 90 cm) (Fig. 2c). Predicted values were then assumed 
to be equivalent to the average soil bulk density of the respective depths throughout 
the entire study area. 
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Fig. 2.  (a) Expected anthropic enrichment gradient (covariate). Values range linearly 

from 0 to 1, where 1 means maximum enrichment. The location of the n = 53 

sampling points and the three soil profiles (P1, P2 and P3) used to model soil bulk 

density are indicated as circles and triangles, respectively. (b) Frequency distribution 

of the volume of ceramics to the total volume of soil. (c) Soil bulk density modelled 

as a function of soil depth. The 90% confidence and prediction intervals around the 

fitted natural spline are shown in dark and light grey, respectively. Horizontal dashed 

lines indicate the position of the interior knots of the natural cubic spline. 

 
Depth-wise predictions of Total C, Total Ca and Total P stocks (kg m-2) were 

done by multiplying the predicted contents (g kg-1) to the predicted soil bulk density 
(BD, Mg m-³) and the known thickness of the soil layer (0.2 m). Depth-wise 
uncertainty of predicted stocks was approximated using a straightforward first-order 
Taylor series expansion (Heuvelink et al., 1989). For instance, the standard deviation 
(σ) of a total stock in an arbitrary block of 0.2 m³ was calculated as: 
 
σstock ≈ 0.2 ∙ (BD2 ∙ σ2

content + content2 ∙ σ2
BD)0.5 (5) 

 
Profile-wise prediction of the stocks (kg m-2) was done by stacking all five depth-

wise predictions and then computing the combined stocks in blocks of 1.0 m3. 
Profile-wise uncertainty of predicted stocks was approximated by squaring the 
standard deviation (σ) of each of the 0.2 m³ stacked blocks, computing the sum and 
taking the square root of that value.  
 
2.5. Classification of pretic and non-pretic areas 
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The pretic horizon, among other diagnostic criteria, is a dark surface horizon with 
one or more layers with a combined thickness of ≥ 20 cm, that has: (i) ≥ 10 g kg-1 
Organic carbon; (ii) ≥ 2 cmolc kg-1 Exchangeable Ca + Mg and (iii) ≥ 30 mg kg-1 
Extractable P (IUSS Working Group WRB, 2015). Here, we compute the probability 
of these three soil properties at the first soil depth (0–20 cm) to meet the diagnostic 
criteria by accounting the number of time the pretic horizon criteria were met in 1000 
simulations at each of the 94,462 points of the simulation grid. The three probabilities 
were multiplied and the value was taken as the estimated pretic probability (ppretic). 
Finally, a cut-off at ppretic ≥ 0.9 was used to differentiate pretic from non-pretic areas. 
Total C, Total Ca and Total P stocks on each area were then computed separately to 
evaluate the relative contribution of pretic and non-pretic areas to the total stocks. 
 
3. Results 
 
3.1. Soil properties  
 

Depth-wise empirical distribution of soil properties is shown in Fig. 3. Total C, 
Total Ca and CEC exhibited a trend to decrease with soil depth, as well as their 
variation, although the distribution remained skewed. Total P and pH remained 
approximately constant with soil depth. However, the variance of Total P increased 
with soil depth, as well as its skewness. The variance of pH exhibited an 
approximately symmetric distribution. The clay content increased with soil depth with 
approximately constant variance and symmetric distribution.  

 
Fig. 3. Depth-wise empirical distribution of Total C, Total Ca, Total P, potential CEC 

(at pH = 7.0), pH and clay content (Clay) in n = 53 observation locations at five 20-

cm soil layers (265 soil samples). The filled black dot in each box-and-whisker plot 

represents the median or second quartile (0.5), while the box range indicates the first 

and third quartiles (0.25, 0.75) defining the interquartile interval. The whisker length 
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represents data points that are not distant from the box ≥ 1.5 times the box length, 

while the empty circles indicate extreme values. 

 
3.2. Linear regression model parameters 
 

Estimated depth-wise linear regression model parameters are shown in Table 1. 
The amount of variance explained given by the coefficients of determination (R2) was 
overall low (0.01 to 0.34). Out of the three elements, Total C had the lowest R2 
values (0.01 to 0.08) and the data fit to the model was not significant in all soil 
depths (p > 0.05). Compared to Total C, Total Ca had slightly higher R2 values (0.07 
to 0.24) and Total P had the highest R2 values (0.24 to 0.34). Total Ca and P data fit 
to the model was significant in all soil depths (p < 0.05), except for Total Ca at 80–
100 cm (p > 0.05).  
 
Table 1. Depth-wise linear regression model coefficients fitted to Total C, Total Ca 
and Total P and the amount of variance explained by the covariate as measured with 
the regression sum of squares and the coefficient of determination (R2).  

Soil depth (cm) Intercept Covariate Sum of Squares R2 p 

Total C 
     

0–20 -0.99 (0.51) 0.54 (0.26) 3.91 0.08 0.05 
20–40 -0.78 (0.51) 0.42 (0.27) 2.44 0.05 0.12 
40–60 -0.67 (0.52) 0.36 (0.27) 1.79 0.03 0.18 
60–80 -0.40 (0.52) 0.22 (0.27) 0.65 0.01 0.43 
80–100 -0.28 (0.52) 0.15 (0.27) 0.30 0.01 0.59 

      
Total Ca 

     
0–20 -1.77 (0.46) 0.96 (0.24) 12.36 0.24 0.00 
20–40 -1.47 (0.48) 0.79 (0.25) 8.52 0.16 0.00 
40–60 -1.62 (0.47) 0.87 (0.25) 10.36 0.20 0.00 
60–80 -1.60 (0.47) 0.86 (0.25) 10.12 0.19 0.00 
80–100 -0.96 (0.51) 0.52 (0.26) 3.64 0.07 0.06 

      
Total P 

     
0–20 -1.79 (0.46) 0.97 (0.24) 12.68 0.24 0.00 
20–40 -1.97 (0.44) 1.07 (0.23) 15.43 0.30 0.00 
40–60 -2.11 (0.43) 1.14 (0.22) 17.64 0.34 0.00 
60–80 -2.07 (0.43) 1.12 (0.23) 16.94 0.33 0.00 
80–100 -1.91 (0.45) 1.03 (0.23) 14.45 0.28 0.00 

Data were Box-Cox transformed and standardized to zero mean and unit standard 
deviation prior to analysis. The approximate standard errors of the fitted coefficients 
are shown in brackets. The p values of the F statistics indicate the approximate 
significance of the covariate. 
 
3.3. Predicted carbon and nutrients stocks  
 

Depth- and profile-wise maps of predicted Total C, Total Ca and Total P stocks 
and maps of the associated standard deviation of predictions are shown in Fig. 4, 
Fig. 5 and Fig. 6, respectively. Stocks are commonly reported in Mg ha-1 for a certain 
soil depth. Here, given the point-prediction spacing (1.0 m), stocks are reported in kg 
m-2 in depth- (0.2 m) and profile-wise (1.0 m) maps. 
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Depth-wise maps of predicted Total C, Total Ca and Total P stocks indicated 
enrichments in the SW sector that decrease gradually with soil depth. One patch in 
the SW sector exhibited the highest Total C stocks (~10.0 kg m-2) in the uppermost 
soil layer (0–20 cm). This evidence fades down to 40–60 cm soil depth (~4.0 kg m-2) 
and diffuses linearly in the NE direction. The Total C stocks in the last two soil 
depths (60–80 and 80–100 cm) were rather homogenous (~1.0 to 3.0 kg m-2) for the 
entire study area (Fig. 4a). Large patches enriched in Ca (~0.8 kg m-2) were 
identified in the uppermost soil layer (0–20 cm). This evidence fades down with soil 
depth while diffusing in the NE direction. The Total Ca stocks were up to ~0.5 kg m-2 
even at the lowest soil layer (80–100 cm) (Fig. 5a). The patches with the highest 
Total C and Total Ca stocks diffusing from the SW to the NE sector, can also be 
seen on the maps of predicted Total P stocks. The highest Total P stocks (~1.0 kg m-

2) were found in subsurface layers (20–40 and 40–60 cm). Nonetheless, Total P 
stocks were up to 0.6 kg m-2 even at the lowest soil layer (80–100 cm) (Fig. 6a). 
Profile-wise maps of predicted Total C, Total Ca and Total P stocks emphasized the 
highest stocks in the SW sector as well as the enrichment gradient that diffuses in 
the NE direction (Fig. 4c, Fig. 5c and Fig. 6c). Depth- (Fig. 4b, Fig. 5b and Fig. 6b) 
and profile-wise (Fig. 4d, Fig. 5d and Fig. 6d) maps of associated standard deviation 
of predictions showed that uncertainties were higher in the SW sector given the 
extreme values found in this part of the study area.  
 



12 
 

 
Fig. 4. Depth- (0.2 m) and profile-wise (1.0 m) maps of predicted Total C stocks (kg 

m-2) (a and c, respectively) including the maps of the associated standard deviation 

(kg m-2) (b and d, respectively). 

 



13 
 

 
Fig. 5. Depth- (0.2 m) and profile-wise (1.0 m) maps of predicted Total Ca stocks (kg 

m-2) (a and c, respectively) including the maps of the associated standard deviation 

(kg m-2) (b and d, respectively). 
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Fig. 6. Depth- (0.2 m) and profile-wise (1.0 m) maps of predicted Total P stocks (kg 

m-2) (a and c, respectively) including the maps of the associated standard deviation 

(kg m-2) (b and d, respectively). 

 
3.4. Probability of point-predictions to meet the pretic horizon criteria (ppretic) 
 

The probability map of point-predictions to meet the pretic horizon criteria (ppretic) 
according to Total C, Exchangeable Ca + Mg and Extractable P is shown in Fig. 7. 
The pretic horizon criteria (and a cut-off at ppretic ≥ 0.9) allowed us to clearly 
distinguish two main areas with nearly half of the sampling points located on each 
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side. One area was located in the SW sector (~4.2 ha) and exhibited the highest 
probability to find a pretic horizon (ppretic values close to 1), whereas the other area 
was located in the NE sector of the study area (~5.2 ha) with the lowest probability to 
find a pretic horizon (ppretic values close to 0). The transition between these two main 
areas of either very high or very low ppretic was rather sharp.  

 
Fig. 7. Probability map of point-predictions to meet the pretic horizon criteria (ppretic) 

according Total C, Exchangeable Ca + Mg and Extractable P. Soil properties were 

simulated separately and the lowest (most restrictive) probability was taken as the 

estimated pretic probability (ppretic). Values vary from 0 to 1 and a cut-off at ppretic ≥ 

0.9 was used to differentiate pretic from non-pretic areas. 

 
4. Discussion 
 

Depth- and profile-wise linear regression model parameters did not indicate a 
great importance of the chosen covariate (i.e. expected anthropic enrichment 
gradient) to explain the spatial variation of Total C stocks (Table 1). Low R2 values 
indicate low accuracy (how close a value is to the true value) and low precision 
(standard deviation to the true value). Nonetheless, the chosen covariate indicated a 
greater importance for Total Ca stocks and most importantly, Total P stocks (Table 
1). Costa and Kern (1999) pointed out that high carbon turnover rates in the tropics 
likely hinders past interpretations. Therefore, Total Ca and Total P stocks are 
possibly better markers of the anthropic enrichment in ADE in contrast to Total C 
stocks. Costa et al. (2013) suggested that phosphorus can be an important indicator 
and delimiter of anthropic areas due to high affinity to bind to iron and aluminium 
oxides in the soil.  

Depth- and profile-wise maps of predicted Total C, Total Ca and Total P stocks 
exhibited high spatial variation in our study area. Therefore, limited amount of soil 
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samples selected on highly contrasting areas based on field observations (i.e. dark- 
versus light-coloured soils and presence versus absence of archaeological remains) 
are likely to give an unrealistic estimation of the overall carbon and nutrients stocks 
in ADE. Costa and Kern (1999) reported that only the surface horizon exhibited 
anthropic enrichments. However, here we showed that enrichments can be observed 
even in deep soil layers. One patch in the SW sector exhibited the highest stocks for 
all three elements (Fig. 4 to Fig. 6). Given the sampling density limitation to capture 
the structure of the spatial variation in the short-scale (< 50 m), the uncertainties of 
predictions are higher around this one patch with extreme values.  

The probability map of point-predictions to meet the pretic horizon criteria (ppretic) 
indicated that the ppretic was higher in the SW sector (Fig. 7). Nonetheless, depth-
wise maps of predicted total stocks showed that the non-pretic area can also exhibit 
stocks as high as the pretic area (Fig. 4a to Fig. 6a). In this sense, we reinforce that 
limited soil sampling is unlikely to capture the complexity of the spatial variation of 
soil properties in ADE. Studies with extensive soil sampling (Fraser et al., 2011; 
Schmidt et al., 2014), suggested that the transition from ADE to the adjacent soil is 
characterized by a soil fertility continuum. In addition, Fraser et al. (2011) pointed out 
that ADE are sometimes subcategorized into Terra Preta and Terra Mulata. The term 
Terra Preta refers to the typical carbon- and nutrient-enriched soils with 
archaeological remains, whereas Terra Mulata refers to a less enriched soil with few 
or no evidence of archaeological remains. Nonetheless, both soil categories would 
differ from the adjacent soil. Costa et al (2013) reported that it was not possible to 
identify a specific geochemical signature for Terra Mulata. In our study, we did not 
find indications to support a subcategory within ADE (i.e. Terra Mulata) nor did we 
find a smooth transition between ADE and the adjacent soil. Here, we showed that 
the pretic horizon criteria (and a cut-off at ppretic ≥ 0.9) allowed us to clearly 
differentiate two unambiguous areas with a sharp transition, rather than a smooth 
continuum, despite high spatial variation in our study area. 

Depth-wise Total C, Total Ca and Total P stocks in pretic and non-pretic areas 
are shown in Fig. 8. Overall, the predicted carbon and nutrients stocks were higher in 
the pretic area. However, the additional stocks in the pretic area (enrichment factor) 
varied per element and soil depth (Fig. 8). The overall Total C stock was 162.9 Mg 
ha-1 m-1 in the pretic area and was on average only 14% larger than the non-pretic 
area. We used an average soil bulk density of 1.3 Mg m-3 to estimate the stocks in 
other studies and compare with our results. Overall, the range of carbon stocks 
reported for the soils of the Amazon basin is very broad. Moraes et al. (1995) 
reported an overall mean carbon stock of about 100 Mg ha-1 m-1 for soils in the 
Amazon basin, while Glaser et al. (2002) reported values in ADE as high as 500 Mg 
ha-1 m-1. Lima et al. (2002) investigating A horizons in a toposequence in the 
Amazon, reported carbon stocks from 54.7 to 134.9 Mg ha-1 in ADE and 6.3 to 35.4 
Mg ha-1 in the adjacent soil. In general, nutrient stocks in soils of the Amazon basin 
have been less investigated than carbon stocks. In our study, the overall Total Ca 
and Total P stocks were 14.2 and 19.0 Mg ha-1 m-1 in the pretic area as opposed to 
6.6 and 11.0 Mg ha-1 m-1 in the non-pretic area. These values correspond to 2.1- and 
1.7-fold larger stocks in the pretic area for Total Ca and Total P stocks, respectively. 
Costa et al. (2013) reported values corresponding to 2.8 Mg ha-1 and 2.3 Mg ha-1 for 
Total Ca and Total P stocks at 0–20 cm, respectively. In contrast, the adjacent soil 
exhibited values corresponding to only 0.4 and 0.5 Mg ha-1 for Total Ca and Total P 
stocks at 0–20 cm, respectively.  
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Fig. 8. Depth-wise Total C, Total Ca and Total P stocks in pretic and non-pretic 

areas. The stocks in the pretic area are the sum of the stocks in the non-pretic area 

(empty bars) plus the additional stocks in the pretic area (filled bars). The enrichment 

factors per soil depth are shown on the left side of each bar. 

 
Besides the commonly reported high carbon and nutrients contents in ADE, one 

of the most remarkable characteristics of ADE is the higher CEC when compared to 
the adjacent soils. Liang et al. (2006) reported a high correlation between CEC and 
the carbon content in ADE. In our study, the correlation between the CEC and the 
Total C content was also higher in the pretic area (R2 = 0.82, p < 0.05, 125 soil 
samples) than the non-pretic area (R2 = 0.57, p < 0.05, 140 soil samples). Even 
though the Total C content decreased with depth, the ratio between CEC and the 
Total C content (CEC:C) increased with soil depth, most importantly in the pretic 
area (Fig. 9a). Data in Glaser et al. (2000) showed higher CEC:C in ADE when 
compared to the adjacent soil at surface horizons (0.33 against 0.08 in ADE and the 
adjacent soil at 0–10 cm, respectively). Here, we showed that the CEC:C is even 
greater in deeper soil layers (Fig. 8a). Data in Oliveira et al. (2014) also showed 
higher CEC:C with increasing soil depth in ADE under different land use (0.44 in 
ADE at 0–10 cm under corn and 2.46 in ADE at 100–130 cm under orchard). Even 
though the clay content increased with soil depth in our study area (Fig. 3), we did 
not observe differences in the soil texture between pretic and non-pretic areas 
(Supplementary Data). Therefore, the differences in CEC:C ratio between these 
areas may be attributed to carbon-related characteristics. Studies have shown that 
oxidation of black carbon (BC) is a key trait explaining high CEC in ADE (Glaser and 
Birk, 2012; Hiemstra et al., 2013; Liang et al., 2013; Novotny et al., 2007). 
Conceding that ADE is a model to sustainable agriculture in the tropics, higher CEC 
per unit of carbon is certainly a desirable characteristic to be reproduced.  

There was a high significant correlation between Total Ca and Total P contents in 
the pretic area (R2 = 0.78, p < 0.05, 125 soil samples). Conversely, the correlation 
between Total Ca and Total P contents in the non-pretic area was close to zero and 
not significant (R2 = 0.03, p > 0.05, 140 samples) (Fig. 9b). This clearly indicates 
different sources and reaction pathways for these elements in pretic and non-pretic 
areas. Sato et al. (2009) investigating a chronosequence of ADE sites reported that 
biogenic calcium phosphate (i.e. bone-derived) disappeared after approximately 
2000 years of ADE formation. Biogenic calcium phosphate transformations into more 
soluble fractions coincided with increased phosphorus adsorbed on soil oxides, 
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organic phosphorus and occluded phosphorus. In addition, these authors reported 
that degradation of biogenic calcium phosphate occurred ten times faster than that of 
geogenic calcium phosphate (i.e. mineral-derived) under tropical conditions. Costa et 
al. (2013) also reported a high correlation between Ca and P values in ADE when 
compared to adjacent soils. In addition, these authors reported areas enriched in P 
where no ceramic was found, which may indicate the location of disposal areas, 
particularly of animal origin (i.e. bones). For instance, the one patch in our study area 
where the highest stocks were found (Fig. 4 to Fig. 6) could have been a former 
waste disposal area (Costa et al., 2013; Schmidt et al., 2014). Studies commonly 
describe ADE as rich in ceramics and some studies even suggested that ceramics 
may be an important source of nutrients in ADE (Valente and Costa, 2017). 
However, ceramics fragments were totally absent in the majority (> 65%) of the soil 
samples in our study area (Fuig. 2b). Therefore, effects of ceramics on enrichment of 
nutrients are likely to be of minor importance and extremely localized. 

 
Fig. 9.  (a) Depth-wise CEC (cmolc kg-1) per Total C content (g kg-1) (CEC:Total C). 

(b) Correlation between Total Ca and Total P contents in pretic (125 samples) and 

non-pretic areas (140 soil samples). 

 
Interdisciplinary studies are highly recommended to understand the complexity of 

ADE (Kern et al., 2017). Despite decades of research in ADE, direct comparison of 
data between studies is hindered by different analytical approaches. Soil samples 
can be analysed by different methods to determine either exchangeable or total 
contents. It is important to note that carbon stocks are commonly estimated with 
carbon content determined by the Walkley-Black (WB) method (Walkley and Black, 
1934). However, the reliability of this method to account for BC has been questioned 
(Knicker et al., 2007) since the resistance of BC to sodium dichromate oxidation and 
its recovery is dependent on BC intrinsic level of oxidation and methodological 
reaction conditions (Hardy and Dufey, 2017). Therefore, if BC is of great importance 
in ADE (Glaser, 2007; Glaser et al., 2001), then the WB method is unlikely to provide 
a realistic estimation of the carbon content in ADE or any other soil expected to be 
enriched in BC. Here, we determined Total C by elemental analysis to avoid 
underestimation of the carbon content.  

It is possible that several mechanisms are simultaneously acting to explain the 
striking characteristics of ADE. For carbon, it is worth to note that Total C determined 
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by elemental analysis accounts for carbon of different origins and different turnover 
rates. On the one hand, part of the carbon content likely exhibits a high turnover rate 
that hinders past interpretations (Costa and Kern, 1999). On the other hand, BC 
found in ADE is expected to remain in the soil for longer periods due to its inherent 
stability (Glaser, 2007; Haumaier and Zech, 1995; Novotny et al., 2007). In this 
sense, specific assessment of the BC content may contribute to better interpretations 
of the carbon content in ADE. For calcium, higher CEC derived from BC oxidation 
likely enhances Ca adsorption (Archanjo et al., 2014). For phosphorus, it has been 
suggested that adsorption of phosphate (PO4

-3) and SOM to soil oxides may inhibit 
their further growth and polymerization (Eusterhues et al., 2008; Fukushi and Sato, 
2005) and are likely to be the cause of nano-sized particles with high surface area in 
soils (Hiemstra et al., 2010). A higher surface area likely increases the amount of 
adsorbed SOM that can be of BC and non-BC origin. However, since PO4

-3 may 
compete with SOM for adsorption sites on the surface of oxides (Antelo et al., 2007; 
Weng et al., 2008), the trade-offs are poorly understood. Therefore, further research 
is still needed to better understand the relative contribution of these different 
mechanisms in order to reproduce ADE remarkable characteristics that are desirable 
for sustainable agriculture. 
 
5. Conclusions 
 
The use of the pretic horizon criteria in combination with a cut-off at at ppretic ≥ 0.9 
permits an unambiguous identification of distinctive areas in ADE. In contrast to 
previous ADE studies, the presented method generates a sharp transition between 
two areas rather than a smooth continuum. Total Ca stocks and especially Total P 
stocks were better markers of anthropic enrichment in ADE than Total C stocks. 
Depth- and profile-wise linear regression model parameters indicated a greater 
importance of the chosen environmental covariate (i.e. expected anthropic 
enrichment gradient) to explain the spatial variation of Total Ca and Total P stocks 
than Total C stocks. The overall Total Ca and Total P stocks were twice as large in 
the pretic area when compared to the non-pretic area. In addition, there was a high 
significant correlation between Total Ca and Total P contents in the pretic area, 
whereas no correlation was found in the non-pretic area. This clearly indicates 
different sources and reaction pathways for these elements in pretic and non-pretic 
areas.  
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