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Abstract

Amazonian Dark Earths (ADE) are anthropic soils that are enriched in carbon (C)
and several nutrients, particularly calcium (Ca) and phosphorus (P), when compared
to adjacent soils from the Amazon basin. Studies on ADE empower the
understanding of complex pre-Columbian cultural development in the Amazon and
may also provide insights for future sustainable agricultural practices in the tropics.
ADE are highly variable in size, depth and soil physico-chemical characteristics.
Nonetheless, the differentiation between ADE and the adjacent soils is not
standardized and is commonly done based on visual field observations. In this
regard, the pretic horizon has been recently proposed as an attempt to classify ADE
systematically. Spatial modelling techniques can be of great use to study the
structure of the spatial variation of soil properties in highly variable areas. Here, we
predicted the carbon and nutrients stocks in ADE by applying spatial modelling
techniques using an environmental covariate (i.e. expected anthropic enrichment
gradient) in our model. In addition, we used the pretic horizon criteria to classify
pretic and non-pretic areas and evaluate their relative contribution to the total stocks.
In this study, we collected soil samples from five 20-cm soil layers at n = 53
georeferenced points placed in a grid of about 10 to 60 m spacing in a study area
located in Central Amazon (~9.4 ha). Ceramic fragments were weighed and
guantified. Samples were analysed for: Total C, Total Ca, Total P, Exchangeable Ca
+ Mg, Extractable P, soil pH, potential CEC (pH = 7.0) and the clay content. The use
of the pretic horizon criteria allowed us to clearly distinguish two unambiguous areas
with a sharp transition, rather than a smooth continuum, in contrast to previous
studies in ADE. Depth- and profile-wise linear regression model parameters
indicated a greater importance of the chosen environmental covariate (i.e. expected
anthropic enrichment gradient) to explain the spatial variation of Total Ca and Total P
stocks than Total C stocks. The overall Total Ca and Total P stocks were twice as
large in the pretic area when compared to the non-pretic area.

Highlights

e Carbon and nutrients stocks in ADE were predicted using an environmental
covariate.

e Total Ca and Total P contents exhibited better fit to our model than Total C
content.

e Pretic horizon criteria enabled the differentiation of two unambiguous areas.

e Pretic relative contribution was higher for Total Ca and Total P than Total C
stocks.
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1. Introduction

Amazonian Dark Earths (ADE) are anthropic soils (Anthrosols) characterized by
darker colour and enrichment in carbon (C) and other nutrients, particularly calcium
(Ca) and phosphorus (P). These soils also exhibit higher pH and cation exchange
capacity (CEC) and frequently evidences of human activity (e.g. ceramic artefacts
and charcoal fragments) when compared to the carbon- and nutrient-poor adjacent
soils from the Amazon basin (Glaser et al., 2001; Kampf et al., 2003; Kern et al.,
2017; Sombroek, 1966). Radiocarbon dating indicated that these soils were formed
between 2500 and 500 before present and are of pre-Columbian origin (Neves et al.,
2003). Possible carbon and nutrients sources are: terrestrial/aquatic plant biomass,
human/animal excrements/bones and charcoal/ash residues of incomplete
combustion (Glaser, 2007).

Due to the prevalence of weathered clay minerals (e.g. kaolinite) and iron and
aluminium oxides in these soils, their ability to retain nutrients depends mainly on soil
organic matter (SOM). However, high temperature and precipitation in the tropics
accelerate the decomposition of SOM. Studies have suggested that high carbon
content in ADE are related to the black carbon (BC) content in these soils (Glaser,
2007; Glaser et al., 2001). BC has been claimed to be one of the most stable forms
of carbon found in soils due to its poly-condensed aromatic structure that makes it
more difficult to be decomposed by soil microorganisms (Glaser, 2007; Haumaier
and Zech, 1995; Novotny et al., 2007). In addition, high CEC in ADE is also likely to
increase primary production due to higher soil fertility. Therefore, SOM input of non-
BC origin is also expected to be increased in ADE. Despite tropical conditions, ADE
have intriguingly remained highly fertile after abandonment of sites following
European colonization. Current research indicates that the extent and intensity with
which Amerindians occupied and transformed the Amazon is far more complex than
previously assumed due to possible environmental limitations (Kern et al., 2017).
Studies on ADE empower the understanding of complex pre-Columbian cultural
development in the Amazon and may also provide insights for future sustainable
agricultural practices in the tropics.

ADE are highly variable in size, depth and soil physico-chemical characteristics
not only among different sites, but also within a single site. This variation is mainly
caused by the diversity and complexity of pre-Columbian settlements (Costa et al.,
2013; Costa and Kern, 1999; Kern et al., 2015). The debate whether ADE were
formed intentionally (for agricultural purposes) or unintentionally (as the unintended
consequence of waste deposition), seems to be diminishing in relevance. Currently,
scientists tend to perceive the formation of ADE (and other Anthrosols) as the
inevitable outcome of daily activities throughout years of past human occupations
(Fraser et al., 2014). The persistence of anthropic markers likely depends on
frequency and intensity of occupation of the site that may lead to a regime shift
which manifests as ADE formation (Browne-Ribeiro, 2016).

The differentiation between ADE and the adjacent soil is commonly done by non-
guantitative field observations based on soil colour and the presence of
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archaeological remains (i.e. ceramic and charcoal fragments). Costa et al. (2013)
reported that ADE characteristics could fit several qualifiers for Anthrosols. Recently,
the pretic horizon has been proposed as an attempt to classify ADE systematically
and better accommodate ADE within Anthrosols (IUSS Working Group WRB, 2015).
This is important because it takes into consideration quantitative data rather than
vague descriptive data. The pretic horizon is a dark surface horizon that among other
criteria is characterized by high contents of carbon and nutrients.

Geochemical signatures reflect the variation within and beyond the limits of
anthropic areas that were previously defined by visual evidence. Schmidt et al.
(2014) reported a widespread pattern of past human occupation where terraces of
domestic areas (e.g. houses or yards) are surrounded by waste disposal areas as
middens that build up into mounds over time. Different geochemical signatures can
be linked to past land use and occupation (Costa et al., 2013). However,
interpretation of these patterns may be hindered by site-inherent complexity of past
settlements and current land use and occupation (Kern et al., 2015). Moreover,
anthropic soils likely exhibit these complexities both in small- and large-scale
analyses. Hence, we still lack a solid understanding of the specific mechanisms that
led to the formation and diversity of ADE (Schmidt et al., 2014). Limited and localized
soil sampling is unlikely to elucidate those mechanisms in highly variable areas.

Spatial modelling techniques can be of great use to study the structure of the
spatial variation of soil properties as it considers the continuity of spatial phenomena
and the deterministic effect of environmental conditions. For soil scientists, it is a
great tool to visualize how soil properties can vary greatly both horizontally and
vertically. For archaeologists, it is a great tool to infer on the location of specific
activities in the past. Significant progress in spatial modelling techniques was
possible due to recent advances in data processing. However, several
methodological hurdles are still evident, especially in large areas with high spatial
variation between soil properties and environmental covariates (Song et al., 2016).
These hurdles can be of great importance in anthropic areas where abrupt and
gradual transitions can be expected horizontally and vertically due to the complexity
of settlements. Therefore, it is important to include uncertainties of predictions when
using these techniques.

Correlation between solil variables is not only dependent on the distance between
sampling points, but also on their location. Therefore, environmental conditions may
show a trend across a study area. Stochastic simulation of spatially distributed soil
properties can be used for better predictions as it preserves the structure of the
spatial variation, whereas kriging usually smoothens (Heuvelink and Webster, 2001).
Predictions may be improved by using exhaustive environmental covariates (Lark
and Webster, 2006). However, including several covariates is not always related to
an increase in prediction accuracy (Samuel-Rosa et al., 2015).

Therefore, the aims of this study were to: (i) predict the Total C, Total Ca and
Total P stocks using an environmental covariate (including the uncertainties of
predictions) and (ii) use the pretic horizon criteria to classify pretic and non-pretic
areas and evaluate their relative contribution to the total stocks.

2. Material and Methods

2.1. Study area



The study area (~9.4 ha) is situated on the north margin of the Solimdes river
(Amazon river), in the municipality of Iranduba, Amazonas state, Brazil (03°14'22" -
03°1547” S and 60°13”02”- 60°1350” W) (Fig. 1). Regional climate is classified as
Aw according to Koppen classification (tropical rainy). Local annual mean
temperature is 26.7°C, annual mean rainfall is 2100 mm and relative humidity is
about 80%. The local slope is flat to undulated and the site is located above existing
watercourses. The most common soil classes in the region are Xanthic Ferralsols,
Plinthic Ferralsols, Pisoplinthic Plinthosols and Xanthic Acrisols (Macedo et al.,
2017). The study area is locally known as the Experimental Research Station of
Caldeirdo - Embrapa Western Amazon. Part of the study area (~30%), located in the
west (W) and southwest (SW) sectors, is composed of a forested area that has not
been cultivated for over 40 years. The remaining part (~70%), was converted into an
experimental field where several crops have been cultivated and soil management
practices have been applied over the past 40 years.
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Fig. 1. Location of the study area (Experimental Research Station of Caldeirdo -
Embrapa Western Amazon). (Google Earth® images).
2.2. Soil sampling and analysis

Soil samples were collected from five 20-cm soil layers (from 0 to 100 cm) with a
manual post hole digger (sample volume = 0.0063 m3) at n = 53 georeferenced
points (~5 m horizontal precision) placed in a grid of about 10 to 60 m spacing (265
soil samples). Ceramic fragments (> 2 mm) were weighed and quantified. Samples
were air-dried, sieved through 2 mm mesh, homogenized and stored in plastic bags
at room temperature prior to analyses. Samples were analysed for: Total C, Total
Ca, Total P, Exchangeable Ca + Mg, Extractable P, soil pH, potential CEC (at pH =
7.0) and clay content. Total C was determined using an elemental analyser
(PerkinElmer 2400 Series Il) where acetanilide was used as reference material. Total
Ca and Total P were determined at Geosol laboratories by Inductively Coupled
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Plasma-Optical Emission Spectrometry (ICP-OES), where samples were previously
digested with a multi-acid solution (HCI, HNOs, HF and HCIOg4). Extractable P, K, Na
(Mehlich 1), Exchangeable Ca+ Mg (1 M KCI) and H + Al (0.5 M calcium acetate at
pH 7.0) were also determined. Soil pH was determined in water (soil:water ratio of
1:2.5), potential CEC (at pH = 7.0) was defined as the sum of exchangeable cations
(K, Na, Ca + Mg) plus acidity (H + Al) and the clay content was determined by the
pipet method after organic matter removal with hydrogen peroxide. Detailed
description on the methods are described in Embrapa (2017).

2.3. Spatial modelling

The spatial variation of soil properties was modelled as a function of fixed
(deterministic) and random (stochastic) effects. The fixed effects describe the part of
the spatial variation of a soil property that can be explained using spatially
exhaustive covariates (Heuvelink and Webster, 2001). Spatial data covering the
entire study area that can be related to the environmental conditions that likely
influenced the observed large-scale patterns of spatial variation (> 50 m in our study
area) can be used as covariates. Here, we assumed that past anthropic activities
that caused enrichment of carbon and nutrients likely occurred closer to the river,
despite specificity among activities. In addition, the current land use in the SW sector
(forested area) is also expected to have caused some enrichment of organic matter
due to SOM input, whereas the current land use in the NE (agronomic experimental
field) is expected to have caused some impoverishment of organic matter due to
cultivation. Therefore, the largest enrichment of carbon and nutrients likely occurred
in the SW sector with decreasing enrichment gradient towards the NE sector.
Because of the spatial association between these conditions, we chose to use one
covariate to serve as their surrogate, which we defined as the expected anthropic
enrichment gradient (Fig. 2a).

The understanding that this covariate could explain the large-scale spatial
variation of soil properties was formalised by individually calibrating depth-wise linear
regression models with soil property as dependent variable and the covariate as the
independent variable. For an arbitrary soil depth (d), such linear regression model
was defined as:

Y(si, d) = Bod + exp[x(si, d)]"B1a + &(si, d), withi=1,2, ..., n, (1)

where the B’'s are the estimated linear regression model coefficients conditional on
the soil property (Y) and the covariate data (x) at the observation locations (si, d).
The covariate is expressed in exponential form to emphasise the combined effect of
past and current land use and occupation on enrichment of carbon and nutrients
nearby the margin of the river.

In Eq. (1), &(si, d) is the spatially auto-correlated difference between the fitted and
observed values of the soil property (regression residuals) (Heuvelink and Webster,
2001). For an arbitrary soil depth (d), the structure of this spatial autocorrelation was
analysed using the auto-variogram:

ya(h) = 0.5 mean{[e(si, d) — &(si + h, d)]?} (2)

where h is a vector of separation distances between two observation locations (s;
and s; + h). We used five exponentially spaced distance classes up to a maximum
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separation distance of about 315 m (half the diagonal of study area). Exponentially
spaced distance classes were used because they deliver a better picture of the
small-scale structure of spatial variation (< 50 m in our study area) (Pettitt and
McBratney, 1993). The size of the two smallest distance classes (~20 m) starting at
the variogram origin was determined by the sampling grid spacing (~10 to 60 m).

Regression residuals of a soil property from adjacent soil depths can be expected
to have the same magnitude and/or sign. Such vertical correlation is characterized
by the translocation of elements from upper to lower soil depths caused by natural
and/or anthropic influences. For any two arbitrary soil depths, d; and dk, the structure
of this spatial cross-correlation was analysed using the cross-variogram (Kyriakidis
and Journel, 1999).

vi(h) = 0.5 mean{[e(si, d;) — &(si + h, d)][e(si, dk) — &(si + h, dW]}, with | # k 3)

By using the cross-variogram, we enforced the depth-wise auto-variograms of a
soil property to be coherent among soil depths. For all soil properties, the shape of
the variograms was defined using the sum of a nugget variance and the exponential
covariance function:

y(h) = co + c[1 — exp(-h/0.333a)], 4)

where co is the nugget variance, c is the sill variance, and a is the correlation range
(Supplementary Data).

Considering the phenomenon under study and the scale of analysis determined
by the range of distances between nearest neighbouring observations (~10 to 60 m),
the choice for using the exponential covariance function reflects our expectation that
the spatial auto- and cross-correlation decrease rapidly with increasing separation
distances. Generally, the nugget variance arises from measurements errors and very
small-scale spatial variation. In this study, the latter corresponds to separation
distances smaller than about 35 m (average distance between nearest-neighbouring
observations).

The depth-wise empirical distribution of soil properties was transformed to
Gaussian using the Box-Cox family of power transformations to meet statistical
constraints and facilitate the estimation of model parameters. Then, the Box-Cox
transformed variables were standardized to zero mean and unit standard deviation.
The parameters of the depth-wise linear regression models were estimated using
ordinary least squares, while the parameters of the auto- and cross-variogram
models were estimated using iteratively reweighted least squares within the
framework of the linear model of coregionalization (Pebesma, 2004).

For Total C, Total Ca and Total P, universal cokriging was used to make spatial
predictions of the contents. Predicted values and prediction error variances were
back-transformed using simulations as described elsewhere (Samuel-Rosa et al.,
2015). For Total C, Exchangeable Ca + Mg and Extractable P data at the first depth
(0—20 cm) used for the pretic horizon criteria, conditional sequential Gaussian
simulation was used to produce 1000 equally probable realisations of their
respective random fields (Pebesma, 2004). Spatial predictions and simulations were
done in regular grids per soil depth containing 94,462 point-predictions at 1.0 m
spacing. For further information on the geostatistical methods we used here, we refer
to Goovaerts (1997) and Webster and Oliver (2007).



2.4. Computation of predicted carbon and nutrients stocks

Point-predicted values of Total C, Total Ca and Total P contents were taken to be
equivalent to the average content of the respective element expected to be found in
blocks of 0.2 m3. This was possible since point and block universal cokriging should
yield equivalent predictions given the existing sampling density and the chosen
prediction grid spacing. Then, the risk of underestimating the true prediction errors is
minimized since block kriging yields lower estimates of the prediction error variance
than point kriging (Oliver and Webster, 2014).

Although it is often reported that ADE are rich in ceramic fragments, quantitative
data is rarely shown. Therefore, the relative contribution of ceramics volume to the
total soil volume is often unknown. In our study area, the volume of coarse fragments
(i.e. ceramics fragments) per volume of soil was generally below 1% and never
larger than 4%. In fact, ceramics were absent in 65% of our soil samples (Fig. 2b).
Therefore, the volume of coarse fragments was assumed to be negligible and was
not included to estimate the stocks.

Data on soil bulk density were obtained from three soil profiles located in our
study area (P1, P2 and P3 in Fig. 2a) and described in previous studies (Macedo,
2012; Neves Junior, 2008). These data could not be readily used as the soil depths
intervals did not match the 20-cm soil layers of our study. Therefore, we fitted a
model to the soil bulk density data using the depth at the centre of the sampled soll
layers as predictor variable. To account for nonlinearities in the relation between soil
bulk density and soil depth, the latter was transformed into m sets of new variables
using natural spline basis functions (Hastie et al., 2009). These consisted of m cubic
polynomial functions fitted to m adjacent subsets of the soil depth data, each subset
being defined by breakpoints (knots) at the appropriate m-1 percentiles. The
collection of polynomial functions was constrained to be continuous at the inner
knots and linear beyond the boundary knots. Based on leave-one-out cross-
validation results (data not shown), we found the best number of degrees of freedom
of the natural cubic spline (the number of piecewise polynomials) to be m = 5. The
fitted model was used to predict soil bulk density at the centre of the five 20-cm soil
layers (i.e. 10, 30, 50, 70, and 90 cm) (Fig. 2c). Predicted values were then assumed
to be equivalent to the average soil bulk density of the respective depths throughout
the entire study area.
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Fig. 2. (a) Expected anthropic enrichment gradient (covariate). Values range linearly
from O to 1, where 1 means maximum enrichment. The location of the n = 53
sampling points and the three soil profiles (P1, P2 and P3) used to model soil bulk
density are indicated as circles and triangles, respectively. (b) Frequency distribution
of the volume of ceramics to the total volume of soil. (c) Soil bulk density modelled
as a function of soil depth. The 90% confidence and prediction intervals around the
fitted natural spline are shown in dark and light grey, respectively. Horizontal dashed
lines indicate the position of the interior knots of the natural cubic spline.

Depth-wise predictions of Total C, Total Ca and Total P stocks (kg m?) were
done by multiplying the predicted contents (g kg?) to the predicted soil bulk density
(BD, Mg m3) and the known thickness of the soil layer (0.2 m). Depth-wise
uncertainty of predicted stocks was approximated using a straightforward first-order
Taylor series expansion (Heuvelink et al., 1989). For instance, the standard deviation
(o) of a total stock in an arbitrary block of 0.2 m3 was calculated as:

Ostock = 0.2 - (BD? - 0%content + cOntent? - g2gp)°> (5)

Profile-wise prediction of the stocks (kg m?) was done by stacking all five depth-
wise predictions and then computing the combined stocks in blocks of 1.0 mS.
Profile-wise uncertainty of predicted stocks was approximated by squaring the
standard deviation (o) of each of the 0.2 m3 stacked blocks, computing the sum and
taking the square root of that value.

2.5. Classification of pretic and non-pretic areas



The pretic horizon, among other diagnostic criteria, is a dark surface horizon with
one or more layers with a combined thickness of = 20 cm, that has: (i) 2 10 g kg™
Organic carbon; (ii) 2 2 cmolc kg' Exchangeable Ca + Mg and (iii) 2 30 mg kg
Extractable P (IUSS Working Group WRB, 2015). Here, we compute the probability
of these three solil properties at the first soil depth (0—20 cm) to meet the diagnostic
criteria by accounting the number of time the pretic horizon criteria were met in 1000
simulations at each of the 94,462 points of the simulation grid. The three probabilities
were multiplied and the value was taken as the estimated pretic probability (ppretic).
Finally, a cut-off at ppretic = 0.9 was used to differentiate pretic from non-pretic areas.
Total C, Total Ca and Total P stocks on each area were then computed separately to
evaluate the relative contribution of pretic and non-pretic areas to the total stocks.

3. Results
3.1. Soil properties

Depth-wise empirical distribution of soil properties is shown in Fig. 3. Total C,
Total Ca and CEC exhibited a trend to decrease with soil depth, as well as their
variation, although the distribution remained skewed. Total P and pH remained
approximately constant with soil depth. However, the variance of Total P increased
with soil depth, as well as its skewness. The variance of pH exhibited an
approximately symmetric distribution. The clay content increased with soil depth with
approximately constant variance and symmetric distribution.
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Fig. 3. Depth-wise empirical distribution of Total C, Total Ca, Total P, potential CEC
(at pH = 7.0), pH and clay content (Clay) in n = 53 observation locations at five 20-
cm soil layers (265 soil samples). The filled black dot in each box-and-whisker plot
represents the median or second quartile (0.5), while the box range indicates the first
and third quartiles (0.25, 0.75) defining the interquartile interval. The whisker length
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represents data points that are not distant from the box = 1.5 times the box length,
while the empty circles indicate extreme values.

3.2. Linear regression model parameters

Estimated depth-wise linear regression model parameters are shown in Table 1.
The amount of variance explained given by the coefficients of determination (R?) was
overall low (0.01 to 0.34). Out of the three elements, Total C had the lowest R?
values (0.01 to 0.08) and the data fit to the model was not significant in all soil
depths (p > 0.05). Compared to Total C, Total Ca had slightly higher R? values (0.07
to 0.24) and Total P had the highest R? values (0.24 to 0.34). Total Ca and P data fit
to the model was significant in all soil depths (p < 0.05), except for Total Ca at 80—
100 cm (p > 0.05).

Table 1. Depth-wise linear regression model coefficients fitted to Total C, Total Ca
and Total P and the amount of variance explained by the covariate as measured with
the regression sum of squares and the coefficient of determination (R?).

Soil depth (cm) Intercept Covariate Sum of Squares R? p

Total C

0-20 -0.99 (0.51) 0.54 (0.26) 3.91 0.08 0.05
20-40 -0.78 (0.51) 0.42(0.27) 244 0.05 0.12
40-60 -0.67 (0.52)  0.36 (0.27) 1.79 0.03 0.18
60-80 -0.40 (0.52) 0.22(0.27) 065 0.01 043
80-100 -0.28 (0.52)  0.15(0.27) 0.30 0.01 0.59
Total Ca

0-20 -1.77 (0.46)  0.96 (0.24) 12.36 0.24 0.00
20-40 -1.47 (0.48)  0.79 (0.25) 8.52 0.16 0.00
40-60 -1.62 (0.47)  0.87 (0.25) 10.36 0.20 0.00
60-80 -1.60 (0.47)  0.86 (0.25) 10.12 0.19 0.00
80-100 -0.96 (0.51) 0.52(0.26) 3.64 0.07 0.06
Total P

0-20 -1.79 (0.46)  0.97 (0.24) 12.68 0.24 0.00
20-40 -1.97 (0.44)  1.07 (0.23) 15.43 0.30 0.00
40-60 -2.11 (0.43) 1.14 (0.22) 17.64 0.34 0.00
60-80 -2.07 (0.43) 1.12(0.23) 16.94 0.33 0.00
80-100 -1.91 (0.45)  1.03(0.23) 1445 0.28 0.00

Data were Box-Cox transformed and standardized to zero mean and unit standard
deviation prior to analysis. The approximate standard errors of the fitted coefficients
are shown in brackets. The p values of the F statistics indicate the approximate
significance of the covariate.

3.3. Predicted carbon and nutrients stocks

Depth- and profile-wise maps of predicted Total C, Total Ca and Total P stocks
and maps of the associated standard deviation of predictions are shown in Fig. 4,
Fig. 5 and Fig. 6, respectively. Stocks are commonly reported in Mg ha* for a certain
soil depth. Here, given the point-prediction spacing (1.0 m), stocks are reported in kg
m2in depth- (0.2 m) and profile-wise (1.0 m) maps.

10



Depth-wise maps of predicted Total C, Total Ca and Total P stocks indicated
enrichments in the SW sector that decrease gradually with soil depth. One patch in
the SW sector exhibited the highest Total C stocks (~10.0 kg m) in the uppermost
soil layer (0—20 cm). This evidence fades down to 40—-60 cm soil depth (~4.0 kg m)
and diffuses linearly in the NE direction. The Total C stocks in the last two soil
depths (60-80 and 80-100 cm) were rather homogenous (~1.0 to 3.0 kg m) for the
entire study area (Fig. 4a). Large patches enriched in Ca (~0.8 kg m2) were
identified in the uppermost soil layer (0—20 cm). This evidence fades down with soll
depth while diffusing in the NE direction. The Total Ca stocks were up to ~0.5 kg m-?
even at the lowest soil layer (80-100 cm) (Fig. 5a). The patches with the highest
Total C and Total Ca stocks diffusing from the SW to the NE sector, can also be
seen on the maps of predicted Total P stocks. The highest Total P stocks (~1.0 kg m"
2) were found in subsurface layers (2040 and 40-60 cm). Nonetheless, Total P
stocks were up to 0.6 kg m? even at the lowest soil layer (80-100 cm) (Fig. 6a).
Profile-wise maps of predicted Total C, Total Ca and Total P stocks emphasized the
highest stocks in the SW sector as well as the enrichment gradient that diffuses in
the NE direction (Fig. 4c, Fig. 5¢c and Fig. 6c). Depth- (Fig. 4b, Fig. 5b and Fig. 6b)
and profile-wise (Fig. 4d, Fig. 5d and Fig. 6d) maps of associated standard deviation
of predictions showed that uncertainties were higher in the SW sector given the
extreme values found in this part of the study area.
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Fig. 4. Depth- (0.2 m) and profile-wise (1.0 m) maps of predicted Total C stocks (kg
m) (a and c, respectively) including the maps of the associated standard deviation

(kg m?) (b and d, respectively).

12



0.25

0.20

0.15

0.10

0.05

0.45

0.40

0.35

0.30

0.25

0.20

0.15
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Fig. 6. Depth- (0.2 m) and profile-wise (1.0 m) maps of predicted Total P stocks (kg
m2) (a and c, respectively) including the maps of the associated standard deviation
(kg m?) (b and d, respectively).

3.4. Probability of point-predictions to meet the pretic horizon criteria (ppretic)

The probability map of point-predictions to meet the pretic horizon criteria (ppretic)
according to Total C, Exchangeable Ca + Mg and Extractable P is shown in Fig. 7.
The pretic horizon criteria (and a cut-off at ppreic = 0.9) allowed us to clearly
distinguish two main areas with nearly half of the sampling points located on each
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side. One area was located in the SW sector (~4.2 ha) and exhibited the highest
probability to find a pretic horizon (ppreiic Values close to 1), whereas the other area
was located in the NE sector of the study area (~5.2 ha) with the lowest probability to
find a pretic horizon (ppreiic Values close to 0). The transition between these two main
areas of either very high or very low ppretic was rather sharp.

1.0

500 1

0.8

400 A

- 0.6
300 A

Northing (m)

- 0.4
200 -

- 0.2
100 1

100 200 300

Easting (m)

Fig. 7. Probability map of point-predictions to meet the pretic horizon criteria (Ppretic)
according Total C, Exchangeable Ca + Mg and Extractable P. Soil properties were
simulated separately and the lowest (most restrictive) probability was taken as the
estimated pretic probability (ppretic). Values vary from 0 to 1 and a cut-off at ppretic =
0.9 was used to differentiate pretic from non-pretic areas.

4. Discussion

Depth- and profile-wise linear regression model parameters did not indicate a
great importance of the chosen covariate (i.e. expected anthropic enrichment
gradient) to explain the spatial variation of Total C stocks (Table 1). Low R? values
indicate low accuracy (how close a value is to the true value) and low precision
(standard deviation to the true value). Nonetheless, the chosen covariate indicated a
greater importance for Total Ca stocks and most importantly, Total P stocks (Table
1). Costa and Kern (1999) pointed out that high carbon turnover rates in the tropics
likely hinders past interpretations. Therefore, Total Ca and Total P stocks are
possibly better markers of the anthropic enrichment in ADE in contrast to Total C
stocks. Costa et al. (2013) suggested that phosphorus can be an important indicator
and delimiter of anthropic areas due to high affinity to bind to iron and aluminium
oxides in the soil.

Depth- and profile-wise maps of predicted Total C, Total Ca and Total P stocks
exhibited high spatial variation in our study area. Therefore, limited amount of soill
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samples selected on highly contrasting areas based on field observations (i.e. dark-
versus light-coloured soils and presence versus absence of archaeological remains)
are likely to give an unrealistic estimation of the overall carbon and nutrients stocks
in ADE. Costa and Kern (1999) reported that only the surface horizon exhibited
anthropic enrichments. However, here we showed that enrichments can be observed
even in deep soil layers. One patch in the SW sector exhibited the highest stocks for
all three elements (Fig. 4 to Fig. 6). Given the sampling density limitation to capture
the structure of the spatial variation in the short-scale (< 50 m), the uncertainties of
predictions are higher around this one patch with extreme values.

The probability map of point-predictions to meet the pretic horizon criteria (ppretic)
indicated that the ppretic Was higher in the SW sector (Fig. 7). Nonetheless, depth-
wise maps of predicted total stocks showed that the non-pretic area can also exhibit
stocks as high as the pretic area (Fig. 4a to Fig. 6a). In this sense, we reinforce that
limited soil sampling is unlikely to capture the complexity of the spatial variation of
soil properties in ADE. Studies with extensive soil sampling (Fraser et al., 2011;
Schmidt et al., 2014), suggested that the transition from ADE to the adjacent soil is
characterized by a soil fertility continuum. In addition, Fraser et al. (2011) pointed out
that ADE are sometimes subcategorized into Terra Preta and Terra Mulata. The term
Terra Preta refers to the typical carbon- and nutrient-enriched soils with
archaeological remains, whereas Terra Mulata refers to a less enriched soil with few
or no evidence of archaeological remains. Nonetheless, both soil categories would
differ from the adjacent soil. Costa et al (2013) reported that it was not possible to
identify a specific geochemical signature for Terra Mulata. In our study, we did not
find indications to support a subcategory within ADE (i.e. Terra Mulata) nor did we
find a smooth transition between ADE and the adjacent soil. Here, we showed that
the pretic horizon criteria (and a cut-off at ppretc =2 0.9) allowed us to clearly
differentiate two unambiguous areas with a sharp transition, rather than a smooth
continuum, despite high spatial variation in our study area.

Depth-wise Total C, Total Ca and Total P stocks in pretic and non-pretic areas
are shown in Fig. 8. Overall, the predicted carbon and nutrients stocks were higher in
the pretic area. However, the additional stocks in the pretic area (enrichment factor)
varied per element and soil depth (Fig. 8). The overall Total C stock was 162.9 Mg
hal m? in the pretic area and was on average only 14% larger than the non-pretic
area. We used an average soil bulk density of 1.3 Mg m= to estimate the stocks in
other studies and compare with our results. Overall, the range of carbon stocks
reported for the soils of the Amazon basin is very broad. Moraes et al. (1995)
reported an overall mean carbon stock of about 100 Mg ha! m for soils in the
Amazon basin, while Glaser et al. (2002) reported values in ADE as high as 500 Mg
hal m?. Lima et al. (2002) investigating A horizons in a toposequence in the
Amazon, reported carbon stocks from 54.7 to 134.9 Mg ha'in ADE and 6.3 to 35.4
Mg hal in the adjacent soil. In general, nutrient stocks in soils of the Amazon basin
have been less investigated than carbon stocks. In our study, the overall Total Ca
and Total P stocks were 14.2 and 19.0 Mg ha' m in the pretic area as opposed to
6.6 and 11.0 Mg ha* min the non-pretic area. These values correspond to 2.1- and
1.7-fold larger stocks in the pretic area for Total Ca and Total P stocks, respectively.
Costa et al. (2013) reported values corresponding to 2.8 Mg ha* and 2.3 Mg ha™* for
Total Ca and Total P stocks at 0-20 cm, respectively. In contrast, the adjacent soil
exhibited values corresponding to only 0.4 and 0.5 Mg ha™* for Total Ca and Total P
stocks at 0—20 cm, respectively.
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Fig. 8. Depth-wise Total C, Total Ca and Total P stocks in pretic and non-pretic
areas. The stocks in the pretic area are the sum of the stocks in the non-pretic area

(empty bars) plus the additional stocks in the pretic area (filled bars). The enrichment
factors per soil depth are shown on the left side of each bar.

Besides the commonly reported high carbon and nutrients contents in ADE, one
of the most remarkable characteristics of ADE is the higher CEC when compared to
the adjacent soils. Liang et al. (2006) reported a high correlation between CEC and
the carbon content in ADE. In our study, the correlation between the CEC and the
Total C content was also higher in the pretic area (R> = 0.82, p < 0.05, 125 soil
samples) than the non-pretic area (R? = 0.57, p < 0.05, 140 soil samples). Even
though the Total C content decreased with depth, the ratio between CEC and the
Total C content (CEC:C) increased with soil depth, most importantly in the pretic
area (Fig. 9a). Data in Glaser et al. (2000) showed higher CEC:C in ADE when
compared to the adjacent soil at surface horizons (0.33 against 0.08 in ADE and the
adjacent soil at 0-10 cm, respectively). Here, we showed that the CEC:C is even
greater in deeper soil layers (Fig. 8a). Data in Oliveira et al. (2014) also showed
higher CEC:C with increasing soil depth in ADE under different land use (0.44 in
ADE at 0-10 cm under corn and 2.46 in ADE at 100-130 cm under orchard). Even
though the clay content increased with soil depth in our study area (Fig. 3), we did
not observe differences in the soil texture between pretic and non-pretic areas
(Supplementary Data). Therefore, the differences in CEC:C ratio between these
areas may be attributed to carbon-related characteristics. Studies have shown that
oxidation of black carbon (BC) is a key trait explaining high CEC in ADE (Glaser and
Birk, 2012; Hiemstra et al., 2013; Liang et al.,, 2013; Novotny et al., 2007).
Conceding that ADE is a model to sustainable agriculture in the tropics, higher CEC
per unit of carbon is certainly a desirable characteristic to be reproduced.

There was a high significant correlation between Total Ca and Total P contents in
the pretic area (R? = 0.78, p < 0.05, 125 soil samples). Conversely, the correlation
between Total Ca and Total P contents in the non-pretic area was close to zero and
not significant (R? = 0.03, p > 0.05, 140 samples) (Fig. 9b). This clearly indicates
different sources and reaction pathways for these elements in pretic and non-pretic
areas. Sato et al. (2009) investigating a chronosequence of ADE sites reported that
biogenic calcium phosphate (i.e. bone-derived) disappeared after approximately
2000 years of ADE formation. Biogenic calcium phosphate transformations into more
soluble fractions coincided with increased phosphorus adsorbed on soil oxides,
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organic phosphorus and occluded phosphorus. In addition, these authors reported
that degradation of biogenic calcium phosphate occurred ten times faster than that of
geogenic calcium phosphate (i.e. mineral-derived) under tropical conditions. Costa et
al. (2013) also reported a high correlation between Ca and P values in ADE when
compared to adjacent soils. In addition, these authors reported areas enriched in P
where no ceramic was found, which may indicate the location of disposal areas,
particularly of animal origin (i.e. bones). For instance, the one patch in our study area
where the highest stocks were found (Fig. 4 to Fig. 6) could have been a former
waste disposal area (Costa et al., 2013; Schmidt et al., 2014). Studies commonly
describe ADE as rich in ceramics and some studies even suggested that ceramics
may be an important source of nutrients in ADE (Valente and Costa, 2017).
However, ceramics fragments were totally absent in the majority (> 65%) of the soll
samples in our study area (Fuig. 2b). Therefore, effects of ceramics on enrichment of
nutrients are likely to be of minor importance and extremely localized.
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Fig. 9. (a) Depth-wise CEC (cmolc kg*) per Total C content (g kg*) (CEC:Total C).
(b) Correlation between Total Ca and Total P contents in pretic (125 samples) and
non-pretic areas (140 soil samples).

Interdisciplinary studies are highly recommended to understand the complexity of
ADE (Kern et al., 2017). Despite decades of research in ADE, direct comparison of
data between studies is hindered by different analytical approaches. Soil samples
can be analysed by different methods to determine either exchangeable or total
contents. It is important to note that carbon stocks are commonly estimated with
carbon content determined by the Walkley-Black (WB) method (Walkley and Black,
1934). However, the reliability of this method to account for BC has been questioned
(Knicker et al., 2007) since the resistance of BC to sodium dichromate oxidation and
its recovery is dependent on BC intrinsic level of oxidation and methodological
reaction conditions (Hardy and Dufey, 2017). Therefore, if BC is of great importance
in ADE (Glaser, 2007; Glaser et al., 2001), then the WB method is unlikely to provide
a realistic estimation of the carbon content in ADE or any other soil expected to be
enriched in BC. Here, we determined Total C by elemental analysis to avoid
underestimation of the carbon content.

It is possible that several mechanisms are simultaneously acting to explain the
striking characteristics of ADE. For carbon, it is worth to note that Total C determined
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by elemental analysis accounts for carbon of different origins and different turnover
rates. On the one hand, part of the carbon content likely exhibits a high turnover rate
that hinders past interpretations (Costa and Kern, 1999). On the other hand, BC
found in ADE is expected to remain in the soil for longer periods due to its inherent
stability (Glaser, 2007; Haumaier and Zech, 1995; Novotny et al., 2007). In this
sense, specific assessment of the BC content may contribute to better interpretations
of the carbon content in ADE. For calcium, higher CEC derived from BC oxidation
likely enhances Ca adsorption (Archanjo et al., 2014). For phosphorus, it has been
suggested that adsorption of phosphate (PO43) and SOM to soil oxides may inhibit
their further growth and polymerization (Eusterhues et al., 2008; Fukushi and Sato,
2005) and are likely to be the cause of nano-sized particles with high surface area in
soils (Hiemstra et al., 2010). A higher surface area likely increases the amount of
adsorbed SOM that can be of BC and non-BC origin. However, since PO43 may
compete with SOM for adsorption sites on the surface of oxides (Antelo et al., 2007;
Weng et al., 2008), the trade-offs are poorly understood. Therefore, further research
is still needed to better understand the relative contribution of these different
mechanisms in order to reproduce ADE remarkable characteristics that are desirable
for sustainable agriculture.

5. Conclusions

The use of the pretic horizon criteria in combination with a cut-off at at ppretic 2 0.9
permits an unambiguous identification of distinctive areas in ADE. In contrast to
previous ADE studies, the presented method generates a sharp transition between
two areas rather than a smooth continuum. Total Ca stocks and especially Total P
stocks were better markers of anthropic enrichment in ADE than Total C stocks.
Depth- and profile-wise linear regression model parameters indicated a greater
importance of the chosen environmental covariate (i.e. expected anthropic
enrichment gradient) to explain the spatial variation of Total Ca and Total P stocks
than Total C stocks. The overall Total Ca and Total P stocks were twice as large in
the pretic area when compared to the non-pretic area. In addition, there was a high
significant correlation between Total Ca and Total P contents in the pretic area,
whereas no correlation was found in the non-pretic area. This clearly indicates
different sources and reaction pathways for these elements in pretic and non-pretic
areas.
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