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In recent years, increasing attention has been directed towards the development of 

biological medicines. For example, biopharmaceutical proteins are a class of 

medicines used to treat life threatening diseases such as cancer and auto immune 

diseases [1]. A special class of these biopharmaceutical proteins is formed by the 

monoclonal antibodies. Monoclonal antibodies can bind specific antigens and thus 

specifically target certain cells like cancer cells [2], [3]. With the increased knowledge 

on disease progression, better antibodies are designed that more effectively target the 

diseases. As a consequence monoclonal antibodies have become a major class of 

biopharmaceutical proteins and the number of antibodies on the market and in clinical 

trials is rapidly growing. Biopharmaceutical proteins are complex proteins that have 

specific post translational modifications, among which glycosylation is the most 

important one [4]. Correct glycostructures are important for the efficacy of the protein 

as well as for the side effects. Human like glycosylation can only be attained by 

production in mammalian cells. Thus, the main production host for biopharmaceutical 

proteins is the Chinese Hamster Ovary cell line [5]. A problem with these 

biopharmaceutical medicines is their high price, which imposes an increasing financial 

pressure on the health care system. The high price can at least in part be explained by 

the high development costs of these products, the long development time and the high 

failure rate during development. However, currently a number of biopharmaceutical 

products are going off patent [6]. This opens up the possibility for other companies to 

produce a similar copy of this protein, which is called a biosimilar. If the biosimilar has 

a similar structure as the originator molecule the development paths can be 

substantially shorter and less expensive and thus will result in cheaper products. 

 

1.1 Antibody biosimilar development 
 

The regulatory pathway for biosimilar medicines is designed to ensure that the 

proposed biosimilar medicine is highly similar to the off-patent approved biological 

medicine (reference product) in terms of structure, efficacy, safety, and quality [7]. Thus 

approval of biosimilars relies on well-designed comparative studies to demonstrate the 

high similarity between proposed biosimilar product and reference product. Similarity 

is based on intensive characterisation such as structural analyses, functional assays, 

functional, non-clinical, immunogenicity assessments, and comparative clinical 

assessments [8], [9]. 
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Biosimilar medicines have the potential to reduce the high cost of to original biological 

medicine up to 30% [10]. Nevertheless, the costs of biosimilar development are still 

high with a range of 100-250 million dollars per product [10]. Costs show variation 

depending on the biological medicine class. For example, the costs of biosimilar 

development for antibodies is much higher than for human growth factor biosimilars, 

due to, amongst others, the higher complexity of the product and of the 

biomanufacturing process [10]. As stated, antibody-based drugs are among the major 

classes of therapeutics against cancer, and immunological disorders [11], and more 

than 70 antibody-based drugs have been approved by the European medicines agency 

EMA [12]. Moreover, more than 600 therapeutic antibodies are currently in different 

phases of clinical trials [13].  

 

As stated pharmaceutical  proteins such as antibody-based drugs are complex proteins 

with extensive post translational modifications like glycosylation. Therefore, production 

of these proteins is done in mammalian cells like CHO cells. These cells require a 

complex chemically defined medium containing in general more than 80 components. 

Furthermore, to optimize production more complex processes like fed-batch or 

perfusion are used, increasing further the number of parameters that can influence the 

quality of the product like the composition of feeds and the feed addition strategy. To 

design a robust and good process for the production of these high-value therapeutic 

proteins, in general, a large number of experiments are required, which is time and 

resource consuming. Traditionally, process development for biopharmaceuticals was 

quite empirical and trial and error based. Once a good enough process was obtained, 

all parameters were fixed and deviations were not allowed. Quality of the product was 

tested after it was manufactured. This traditional process development approach is 

associated with an high failure rate during development as during scale-up unexpected 

changes occurred in the process and product quality. Furthermore, once a process 

was approved it also led to high failure rates during manufacturing as process 

deviations often resulted in rejection of the production batch Thus, there was a need 

for a more pro-active scientific approach, such as quality by design (QbD), for the 

development of new biopharmaceutical products as well as of biosimilar products to 

increase the production efficiency and reduce the failure risk.  
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1.2 Quality by Design 
 

Quality by design is an approach that focusses on a better scientific understanding of 

the product and the manufacturing process including the associated risks and how to 

mitigate these risks. This should lead to a process where the quality of the end product 

is an integral part of the manufacturing process. For the product this means that there 

is a good understanding of the relation between the structure of the product and its 

efficacy and side effects. This understanding results in the definition of the so called 

critical quality attributes (CQAs), which are the structural aspects of the product 

important for quality. Next the quality can be built into the process by a proper 

understanding of the relation between all the process parameters, including their 

interactions, and the CQAs. Central to this and to the QbD approach are the concepts 

of knowledge space, design space and control space. The knowledge space is the 

range of parameter values that is studied and typically also includes parameter values 

resulting in insufficient product quality. The design space is the range of parameter 

values within which a proper quality is attained. The control space is the range of 

parameter values within which the process should be controlled, which falls usually 

well within the design space. Given the complexity of the process and the large number 

of parameters, identification of the design space requires a large number of 

experiments. Usually first a set of screening experiments are done to select a proper 

clone and identify parameters, the so called critical process parameters (CPPs), that 

are important, as well as an initial range for these parameters. Next, using high 

throughput experimentation the design space is identified for the CPPs. Figure 1 

illustrates how critical process parameters (CPPs) influence cell physiology and 

through that also the quality of the product during the cultivation process. These 

experiments are performed in small-scale systems such as shake flasks or 15-100ml 

minibioreactor systems (e.g. ambr) (see Figure 2). It is very important that these small 

scale systems are a proper scale-down of the production reactor, meaning results 

obtained can be translated to the production reactor without changes occurring.  

 

The glycosylation pattern is the main indicator of quality throughout the life cycle of 

production and for process development, including cell line development, feed and 

process optimisation and cultivation [14]. Glycosylation is a post-translational 
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modification (PTM) that is considered one of the most important CQAs [15], [16]. All 

approved glycoprotein therapeutics contain N-linked glycans. The patterns of these N-

linked carbohydrates have been widely reported to have a direct impact on the safety 

and efficacy of IgG therapeutics administered to patients. For example, glycoforms can 

negatively affect the protein half-life, tissue targeting and modulate biological activity 

[15]. 

 

The concept of establishing a design space is based on a statistical knowledge on the 

relation between the critical process parameters and the critical quality attributes of the 

product like glycosylation structure. As stated this requires extensive experimentation 

requiring considerable resources but more importantly considerable time. In addition 

still al limited number of parameters is studied. This problem can be reduced by 

obtaining a better biological understanding on how the CPPs affect the CQAs. If the 

biological mechanisms are known critical process parameters and possible interaction 

effects can be predicted, meaning a reduction in the amount of parameters and 

interaction effects that need to be studied. Furthermore, results can easier be 

translated to other products using other clones. Finally, possibly markers or 

combinations of markers can be found that can directly predict product quality and can 

be measured on-line, allowing for on line control of product quality. A possible tool to 

obtain this biological understanding is by measuring global gene expression or 

transcriptome analysis. With the availability of the CHO genome and a CHO cell 

specific microarray measuring gene expression in CHO cells became relatively easy 

either using RNAseq or micro-arrays. However, not everything is regulated on the gene 

expression level, as there is also regulation on the translational level and on protein 

activity. Thus transcriptome analysis can clarify whether certain processes are at least 

in part regulated on the gene-expression level and these changes in gene expression 

can link changes in process parameters to changes in for example glycosylation. Apart 

from giving mechanistic insight, the transcriptome can also be used as a fingerprint of 

the physiological state of the cells. As such it can be used to compare certain 

conditions and study whether they affect the state of the cells on the gene expression 

level. If yes one can do a functional analysis to find the cause of these differences. 
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Figure 1: The influence of process parameters on product formulation in a cell 

factory. 

 

 1.3 Aim and outline of the thesis 
 

The aim of this thesis is to study the value of transcriptome analysis for process 

development for the upstream cultivation process. In the experiments presented in this 

thesis, a commercial Affymetrix® Chinese Hamster Ovary (CHO) Gene 2.1 ST Array 

Plate was used for transcriptomic profiling of CHO cells producing a potential antibody 

biosimilar in batch, fed-batch and perfusion cultivation modes. Transcriptomic profiling 
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is used in the two ways as decribed before: (1) to carry out process fingerprinting using 

an unsupervised methodology such as principal component analysis (PCA); and (2) to 

gain understanding of biological processes in the cell by identifying correlations 

between gene expression, CQAs and CPPs, as well as between gene expression and 

key perfomance indicators (KPIs). As such the results of this thesis can contribute to 

applying transcriptomic profiling in a QbD approach. 

 

Different cultivation systems and scales are used in this thesis and the associated 

cultivation system are illustrated in Figure 2. In Chapter 2 to 4 transcriptome analysis 

is used to assess different small-scale reactor systems. As stated for process 

development high throughput experiments are required, which need to be done at 

small scale. These small scale systems must be representative for the larger scale 

systems. Two small scale systems are studied being shake flasks and the ambr® 15 

bioreactor system.  

 

Figure 2 several types of cultivation system used in this thesis. (A) shake flask, 

and (C) 1L bioreactors used in Chapter 2 (batch mode) and Chapter 3 (Fed-

batch). (B) ambr®, and (E) 10 L biostat STR used in Chapter 4 (fed-batch).(D) 

perfusion cultivation mode used in Chapter 5. Figure 2. B and E are adopted from 

Sartorius with their permission to be published in this thesis. Figure 2 D adopted 

from Applikon biotechnology. Figure 2. C adopted from Eppendorf.  
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A B C D E

Batch
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Fed-batch

Batch

Fed-batch
Perfusion Fed-batchCultivation 

mode

Cultivation 

system

3L bioreactor vessel and 10L 

BioSep system cell retentions 

(Applikon biotechnology) 
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In Chapter 2 the shake flask system is compared to 1l bioreactors for a batch cultivation 

process on the gene expression level with the aim to study whether shake flasks are 

representative for the bioreactors. Shake flasks are in principle not a proper scale-

down from controlled reactors. They lack control of the pH and of the dissolved oxygen 

tension as opposed to bioreactor systems where these are controlled. Furthermore 

mixing is done by shaking and not by an impeller as in the bioreactors and gas transfer 

occurs through the surface only whereas in bioreactors sparging is used. Nevertheless, 

the shake flask system is still used for early process development and consequently it 

is important to know to what extent they are representative for the bioreactor systems. 

Gene expression analysis is done on 3 time points to capture the dynamics of the 

cultures, being early and late exponential phase and the stationary phase. Apart from 

gene expression also the glycosylation is measured together with other important 

parameters like cell concentrations, and glucose and lactate concentrations.  

 

In Chapter 3 a similar study is done for a fed-batch process. For a fed batch process it 

is more likely to find differences between the uncontrolled shake flasks and controlled 

bioreactors due to the more complex process (addition of feed) and higher cell 

densities reached.  

 

In Chapter 4, a fed-batch process in a 10 litre bioreactor is scaled down to the ambr® 

15 system which contains 48 miniature bioreactors with a maximum working volume 

of 15 mL. Two different scale-down criteria are compared with one based on matching 

the agitation tip-speed with the 10 L process and the other  based on matching the 

agitation power input per volume of liquid. The ambr® 15 results are compared to the 

10 L process in terms of cell growth, metabolism, mAb production, mAb glycosylation 

and transcriptome. The main difference with the shake flasks is that in the reactors of 

the ambr® 15 system the DO and pH can be controlled and that as compared to shake 

flasks the agitation and gassing system are more comparable to that in the larger scale 

bioreactors. Thus we can assess whether having this more comparable system is 

beneficial for the validity of the scale-down and whether the transcriptome analysis is 

useful to assess this. In Chapter 5 transcriptome analysis is used for a different 

purpose namely to characterize a perfusion process in a 1.5 litre bioreactor using CHO 
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cells. Continuous manufacturing draws a lot of attention currently because it allows a 

more efficient use of equipment and thus a reduction in costs. For the upstream part 

of the manufacturing process continuous perfusion is the preferred cultivation mode to 

fit in this approach. In such a system a steady state can be reached at high cell 

densities allowing for high volumetric productivities under constant conditions. Here we 

study the use of transcriptome analysis to identify the different states of a perfusion 

process and the variation in gene expression during the steady state as defined based 

on other culture parameters. For this samples are analysed for gene expression 

throughout the culture period. Again next to transcriptome analysis also cell growth, 

metabolism, mAb production, and mAb glycosylation are measured. Finally, in Chapter 

6 the application of transcriptome analysis in process development and quality by 

design is discussed. 
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Abstract  
 

Chinese Hamster Ovary cell lines are currently the primary host for production of 

therapeutic glycoproteins. Fast process development resulting in robust and scalable 

processes is a critical success factor in the highly competitive market for biosimilars. 

In process development screening of hundreds of clones and selection of process 

conditions are routinely performed in uncontrolled cultivation systems like shake 

flasks. A handful of potential candidate clones is nominated to be evaluated more 

intensively in well controlled small-scale bioreactors. Cell performance in the 

uncontrolled systems and to a lesser extent in the small-scale bioreactors may, 

however, be different from that in the final production reactor, which may result in 

failures during scale-up and thus extra development time. In this work, the focus is on 

better understanding the differences in cell performance between controlled and 

uncontrolled systems, which can be used to make process development faster and 

more robust in terms of scale-up. For this, we evaluated differences in gene 

expression profiles between shake flask and bioreactor cultures at three different time 

points during the exponential and stationary phase of a batch culture using 

commercially available Affymetrix CHO Gene 2.1 ST arrays and multivariate data 

analysis on the outcomes. The outcomes were correlated with differences in 

glycosylation patterns and other culture parameters. Results showed large differences 

in gene expression over time and much smaller differences between the two cultivation 

systems. Furthermore, our study identified differentially expressed genes and 

corresponding metabolic and mechanistic pathways that can be related to degree of 

the control of the system.
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2.1 Introduction 
 

Chinese hamster ovary (CHO) cells are currently the main host for production of 

biopharmaceutical proteins [1]. In the last 10 years, a large increase in volumetric 

productivity and product titers has been achieved [2]. Nevertheless, process 

development is still time-consuming, taking an average of 9-12 months [3], [4]. Due to 

patent expiration of major glycoprotein therapeutics, biosimilars are now being 

developed. For these potential biosimilars it is important to accelerate process 

development and achieve robust and scalable processes in a shorter time to meet the 

highly competitive and regulated markets. Early process development involves clone 

selection and finding the proper process conditions like pH, dissolved oxygen (DO), 

medium composition and for fed-batch processes feed composition as well as a 

feeding strategy. Part of the early process development is usually done in a high-

throughput way in small-scale systems without pH and DO control, which results in a 

potential risk of failures due to scalability issues [2], [5]–[8]. For example, screening of 

clones can involve hundreds of clones and is for practical and logistic reasons often 

performed in batch cultivations in well plates or shake flasks without proper control of 

pH and DO. A few selected clones are then studied more intensively in well controlled 

lab-scale bioreactors in which, if applicable, also fed-batch cultivation is studied. In 

principle, these bioreactor studies should be done in such a way that no issues occur 

anymore during scale-up. 

 

The conditions in the uncontrolled high-throughput systems used in early process 

development are different from the conditions in the controlled bioreactors in the final 

production process. Consequently, clones that give good results in the uncontrolled 

systems may fail in the small-scale bioreactor studies or in the final production process 

due to an unexpected drop in productivity and titer or changes in the glycosylation 

pattern. Furthermore, clones that would have done well at the manufacturing scale 

may not be selected. 

 

A proper understanding of how culture conditions and culture systems affect cell 

physiology and how this will affect the performance of the clone in the final production 

system will reduce the process development time, result in selection of better clones 
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for the final production process and decrease the risk of failure during scale-up. One 

way to obtain more insight into the physiology of CHO cells is by measuring gene 

expression profiles and correlate this to cell performance and culture conditions. 

Analysis of gene expression profiles can help to mechanistically link changes in 

process conditions to important process outputs like product titer and quality. It can 

also be used as a fingerprinting tool where certain expression patterns are linked to a 

good or bad clone or process. Finally, it is possible that this fingerprint can be reduced 

to a few marker genes, which would make analysis simpler and faster. There are some 

examples of previous studies that integrate transcriptomic profiling in CHO cell lines 

into process development, such as identifying genes that are related to the growth rate, 

or other process characteristics [9]. However, the differences in gene expression 

between uncontrolled shake flasks and controlled bioreactors during the time course 

of cultivation process has not been thoroughly studied, since all of the previous studies 

used only a limited CHO cDNA microarray either customized or in-house [9], [10]. Most 

of these studies are either performed in shake flasks or in bioreactors. Only a few of 

these studies are performed in both systems, however without direct comparison of 

the systems. For example Clarke et al. (2011) did large-scale microarray profiling 

experiments associated with growth and productivity in 123 shake flasks, and 172 

bioreactors using proprietary CHO-specific WyeHamster2a oligonucleotide arrays on 

which only 10-15 % of the CHO transcriptome is represented [11].  

 

The aim of this work is to study how representative uncontrolled batch cultures in shake 

flasks are for controlled bioreactors on the level of gene expression and cell culture 

characteristics like cell number, viability, glucose consumption, lactate metabolism, 

product titer and product glycosylation. For this, gene expression profiling was 

performed in an IgG-producing CHO-K1 cell line cultivated in batch mode in shake 

flasks and bioreactors using the commercially available Affymetrix GeneChip CHO 

Gene 2.1 ST arrays. The expression design of this array provides the most 

comprehensive coverage of the transcribed genome of CHO cells currently available.  
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2.2 Materials and Methods 
 

2.2.1 Cell line and culture medium 
 

CHO-k1 IgG-secreting cell lines BC® were provided by Bioceros Holding BV, The 

Netherlands. All the cultures used chemically defined CD FortiCHO™ Medium 

(Gibco®, Life Technologies), supplemented with 4 mM L-glutamine and 0.5% (v/v) anti-

clumping agent (both from Gibco®, Life Technologies). Pre-cultures were maintained 

in a 125 mL un-baffled shake flask (VWR, USA) with 20 ml working volume 

supplemented with selection reagents (200 µg/mL ZeocinTM and 5 µg/mL Blasticidin, 

both from Life technologies) for five passages prior to the experiments.  

 

2.2.2 Bioreactor and incubation conditions 

 

Bioreactor batch culture conditions were kept at 37oC with a working volume of 600 ml 

in a 1 litre DasGip parallel bioreactor systems (DasGip, an Eppendorf Company, 

Germany). pH was kept constant at 7.2 using CO2 sparging combined with 0.5 M 

NaOH. Agitation was kept at 100 rpm. Sparging with a mixture of oxygen and nitrogen 

was used to maintain the DO at 50 % air saturation. Total of 10 ppm concentration of 

Antifoam (Antifoam C Emulsion, Sigma-Aldrich®) was added to the bioreactors. 

Addition was done when needed. For the cultivation in a batch shake flask, the working 

volume was 60 ml in 250 ml total volume (VWR, USA) in an incubator (Multitron CO2 

incubator; Infors HT) operated with 90% humidity, 8% CO2, and 37 oC at 100 rpm 

rotational speed and 50 mm orbital shaking diameter. Inocula for the batch shake flasks 

and the bioreactors were prepared from one pool of cells (shake flask). The starting 

cell density in both systems was 0.3 X 106 cells.ml−1. 

 

2.2.3 Analytical methods 
 

2.2.3.1 Growth rate and metabolic nutrients 
 

Total cell density, viable cell density and cell diameter where measured daily using an 

automated cell counter (TC20™; BIO-RAD) using the trypan blue dye (Sigma-Aldrich) 

exclusion method. Glucose and lactate were measured using an YSI analyser (YSI 
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2700, YSI Life Sciences). All samples were filtered through a 0.2 µm filter (Minisart, 

Sartorius™) and the supernatant was stored at -20 oC for further analysis.  

 

2.2.3.2 Quantitative measurement for IgG titrations 
 

The concentration of the IgG1 was determined by Ultra High-Performance Liquid 

Chromatography UHPLC with a bio-monolith protein A column from Agilent 

technologies according to biopharmaceutical application note from Agilent (Urbas et 

al., 2008). 

 

2.2.3.3 Glycosylation structure analysis 
 

For determining the composition of the N-glycan structures from samples taken from 

both shake flasks and bioreactors, the method developed by Waters® [13] was used. 

In short, filtered supernatant was desalted by PD-10 columns (GE Healthcare, USA) 

and then purified using 1 mL HiTrap MabSelect SuRe column (GE Healthcare, USA) 

in combination with an Äkta pure system Unicorn 6.3 (GE Healthcare). Next, the IgG 

was concentrated with Amicon Ultra 0.5 mL centrifugal filters (Sigma-Aldrich, USA) 

and N-glycans were released using peptide N-glycosidase F, called PNGase F solution 

(Sigma-Aldrich, USA). Glycans were labelled with fluorescence active 2-

Aminobenzamide (2-AB), followed by post-labelling clean-up of glycan released by 

hydrazinolysis with module cartridges GlycoPrep® (Prozyme, USA) and elution of N-

glycans. The labeled glycans were analyzed using HILIC UPLC with a column from 

Waters® [13]. 

The overall galactosylation and fucosylation were calculated as follows [14]. 

𝑮𝒂𝒍𝒂𝒄𝒕𝒐𝒔𝒚𝒍𝒂𝒕𝒊𝒐𝒏 =
𝐆𝟏 + 𝐆𝟏𝐅 + 𝟐 𝐗 (𝐆𝟐 + 𝐆𝟐𝐅)

[𝟐(𝐆𝟎 + 𝐆𝟎𝐅 + 𝐆𝟏 + 𝐆𝟏𝐅 + 𝐆𝟐 + 𝐆𝟐𝐅)]
 

𝑭𝒖𝒄𝒐𝒔𝒚𝒍𝒂𝒕𝒊𝒐𝒏 =
𝐆𝟎𝐅 + 𝐆𝟏𝐅 +  𝐆𝟐𝐅

(𝐆𝟎 + 𝐆𝟎𝐅 + 𝐆𝟏 + 𝐆𝟏𝐅 + 𝐆𝟐 + 𝐆𝟐𝐅)
 

 

2.2.3.4 RNA extraction and sampling for gene expression profiling 
by array  
 

Samples (3 ml) were taken from both the bioreactors and the shake flasks, centrifuged 

at 300 g for 10 minutes, after which the cell pellet was snap-frozen in liquid nitrogen 
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and stored at -80 oC for later analysis. Total RNA was extracted using TRIzol® Reagent 

(Life Technologies, USA), and further purified using the RNeasy Mini kit (Qiagen, 

Valencia, CA). RNA concentration was measured on a Nanodrop 2000 (Thermo 

Scientific, Wilmington, DE), and RNA quality was assessed on a 2100 Bioanalyzer 

(Agilent, Santa Clara, CA) using the RNA 6000 Nano Kit. RNA samples were only 

included for microarray analysis if the RNA integrity number (RIN) was > 8. 

 

2.2.4 Gene expression profiling and analysis 
 

Affymetrix CHO Gene 2.1 ST arrays were used for transcriptome profiling (Affymetrix, 

Santa Clara, USA). Briefly, 100 ng of total RNA was labelled by the Whole-Transcript 

Sense Target Assay (Affymetrix) and hybridized to Affymetrix CHO Gene 2.1 ST 

arrays, as per the manufacturer’s recommendations. Quality control and data analysis 

pipeline have been described in detail previously [15]. Briefly, normalized expression 

estimates of probe sets were computed by the robust multiarray analysis average 

(RMA) algorithm [16], as implemented in the Bioconductor library AffyPLM. Probe sets 

were redefined according to Dai et al. [17] using well-annotated reference sequences 

based on the CriGri_1.0 genome assembly (NCBI Reference Sequence Project 

(RefSeq) Release 72), which resulted in the profiling of 60626 annotated sequences 

(transcripts) (custom CDF v20). After averaging the expression levels of probe sets 

targeting the same gene, expression data for 20859 unique genes was obtained, which 

was used for all subsequent analyses. Principle component analysis (PCA) was used 

to visually inspect the biological significance and the characteristics of the data set of 

gene expression changes [18]. Differentially expressed genes were identified by using 

linear models (library limma) and an intensity-based moderated t-statistic [19], [20]. 

Correlation due to the repeated sampling from the same bioreactors or shakers flasks 

was incorporated in the linear model fit, and hence into all tests for differential gene 

expression, by applying a strategy similar to fitting a random effects model, with the 

difference that all genes were constrained to share the same intra-block correlation. 

This consensus correlation was calculated by limma’s duplicateCorrelation() function 

[19], [21]. P values were corrected for multiple testing using a false discovery rate 

(FDR) method [22]. Genes that satisfied the criterion of FDR < 0.05 and absolute fold 

change > 1.4 were considered to be significantly regulated. All genes that were 

significantly differentially expressed between day 4 and day 2 (d4-d2), day 5 and day 
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4 (d5-d4), and day 5 and day 2 (d5-d2) were selected. Genes selected from the 

comparison of d4-d2 and d5-d4, are those that are strongly up or down regulated in 

one of these two comparisons or they are strongly transiently regulated, meaning first 

up and then down or vice versa. The d5-d2 comparison includes the genes that are 

slowly up or down regulated in time, such that they are not significant in both of the 

other comparisons. The selected genes were next subdivided in three groups of genes 

being 1. genes uniquely regulated in shake flask, 2. genes uniquely regulated in 

bioreactor and 3. genes regulated in both systems at the same time but in none of the 

three comparisons regulated uniquely. All these significant regulated genes groups 

were subjected to pathway overrepresentation analysis using Fisher's exact test and 

CHO-specific pathway information derived from the Kyoto Encyclopaedia of Genes 

and Genomes (KEGG).  

 

2.3 Results and Discussions  
 

2.3.1 Cell culture characteristics 
 

IgG producing CHO cells were cultivated in shake flasks and bench top bioreactors in 

batch mode in triplicate. The three shake flasks and three bioreactors were all 

inoculated from the same preculture at an initial concentration of 3.0 X 105 cell/ml. In 

Figure 1 the average values for the total and viable cell density, glucose, and lactate 

concentration, product concentration and the integral of the viable cell density as a 

function of time for the shake flask and bioreactor are shown. The integral of the viable 

cell density is shown because many parameters like total product formed or total 

essential amino acid consumed are proportional to this characteristic. As can be seen 

in Figure 1 there are no differences between these parameters for the shake flasks 

and the bioreactors, despite the fact that in the shake flasks, as opposed to the 

bioreactors, pH and DO are not controlled and, as a consequence, the cells may 

experience larger fluctuations with respect to these parameters in the shake flasks. 
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Figure 1 Comparison of cell performance between shake flask and bioreactor; 

A: Total and viable cell concentration, B. Antibody concentration, C. Lactate, and 

glucose concentration, D. Cumulative integral viable cell density. Data points are 

the average of 3 replicate shake flask and bioreactor runs. Error bars show the 

standard deviation.  

 

Glycosylation patterns are considered critical quality attributes in therapeutic IgG 

products [23], [24]. Any alterations or changes in the structure of the glycans can lead 

to adverse reactions in the patient and impact therapeutic efficacy [25]. Therefore, in 

upstream process optimisation, glycosylation patterns are a major concern [24]. The 

glycosylation patterns in both bioreactor and shake flask are summarized in Figure 2. 

It shows a significantly higher percentage of G0F for the shake flask, while the G1F 

and G2F glycoforms are significantly lower than in the bioreactor. As a consequence, 

also the overall galactosylation level was significantly lower in the shake flask (19%) 

than in the bioreactor (27%). The fucosylation level was identical (81%) for both 

systems. These differences in glycosylation patterns may be either directly or indirectly 

caused by the absence (shake flasks) or presence (reactors) of DO and pH control. 

Other studies have shown that glycosylation patterns are affected by process 

conditions such as pH, DO, temperature, and others [26]. 
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Figure 2 Average glycosylation patterns for the shake flask and the bioreactor. 

Error bars show the standard deviation of 3 replicate shake flask and bioreactor 

runs. 

 

2.3.2 Differential gene expression between both systems 
 

In order to study differences in cell physiology between cells cultivated in batch mode 

in uncontrolled shake flasks and in controlled bioreactors, we studied differential gene 

expression. RNA samples were taken during the exponential growth phase (day 2), 

just after the end of the exponential phase (day 4) and at the peak cell density just 

before the death phase (day 5) for both systems in triplicate and analyzed using a full 

genome CHO microarray. The complete dataset from the microarray experiment is 

available at gene expression omnibus (GEO) under accession number GSE104787. 

Figure 3 shows the result of principal component analysis (PCA) on the obtained 

expression data. The first two principal components explain 42% of the total variation. 

Principal component 1 captured the changes in gene expression as a function of 

culture time, i.e., progression of the culture from the exponential phase to the non-

exponential phase and finally to the death phase. Principal component 2 seemed to be 

associated with genes that were transiently regulated to deal with the changes in the 

culture conditions resulting in the stop of cell growth. On day 2 both culture systems 
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are grouped together meaning gene expression profiles were highly similar. This is to 

be expected as medium conditions, like pH, and nutrient concentrations, will still be 

comparable in both systems and differences in agitation apparently have no big 

influence on gene expression during the first two days. As culture time progressed to 

day 4 and 5, shaker and bioreactor cultures are more separated although the distance 

between the groups remained relatively small. The separation could be due directly to 

differences between the systems or indirectly due to a small difference in the speed 

with which the cultures develop. However, based on viable and total cell concentrations 

cells seem to grow equally fast in both systems and also have a comparable glucose 

metabolism (figure 2). To obtain more insight in the small difference between the two 

systems, the expression data are studied in more detail.  

 

 

Figure 3 PCA plot of gene expression for the first two principal components. 

Different culture days are shown with circles for day 2, day 4, and day 5. For 3 

shake flask (triangle red) and 3 bioreactor (circle blue) cultures. 
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Figure 4 Venn diagrams showing common and uniquely differentially expressed 

genes between different days for the shake flask (A) and the bioreactor (B). 

Applying (FDR-BH ≤ 0.05 and absolute fold change > 1.4). 

 

 

Shake flask

Bioreactor

647

689

326

153

A

B

Day 4-2 Day 5-4

Day 5-2

98

81

119

28

68

108

Day 4-2

Day 5-2

Day 5-4

0

0

363

455

Up

Down

737

814

396

194

127

97

163

41

85

107

0

0

492

599



33 

 

 

Figure 5 Venn diagrams showing uniquely and overlapping differentially 

expressed genes (FDR-BH ≤ 0.05 and absolute fold change > 1.4 for both 

systems for day 4-2 (A), day 5-4 (B), and day 5-2 (C) repectively. (D) Genes that 

are differentially expressed only in the bioreactor and only in the shaker at any 

time and genes that are only differentially expressed in both systems at any time 

(common). 

 

2.3.3 Differential pathways expressions 
 

Figure 4 shows for both the bioreactors and shake flasks the number of differential 

expressed genes for the three time comparisons. The number of genes regulated are 

comparable for day 4-2 and day 5-4. However, there is a relatively large number of 

slowly changing genes as can be seen in the day 5-2 comparison. To understand the 

differences in gene expression between the systems all the regulated genes in both 

systems and time points were divided into three categories as shown in Figure 5. 

Bioreactor, common and shake flask. Genes unique to the bioreactor or shaker are 

differentially expressed in the respective system in at least one of the time comparisons 

but never in the other system. Genes in the common category are differentially 

expressed in both systems for one of the time comparisons. The genes present in the 

three categories were next mapped onto CHO-specific pathways using the KEGG 

pathway database. The shake flasks had more uniquely regulated genes and these 

genes are distributed into a larger number of pathways as compared to the bioreactors. 
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This could be a reflection of the more variable conditions in the shake flasks. The 

unique genes expressed in the shake flasks could not be linked to one or a few specific 

pathways and thus cannot directly linked to differences in process conditions between 

both systems. Apparently, the absence of pH and DO control in the shake flasks is 

affecting many pathways. Complete pathways data can be found in the supplementary 

data file. 

 

Table 1 shows an overview of pathways involved in the basic processes related to 

growth being DNA replication and repair, transcription, translation and turnover of 

RNA, and the folding, sorting and degradation of proteins. These are the pathways in 

which a change in gene expression is expected because they are involved in cellular 

processes that change when cells pass from the exponential into the stationary phase. 

As can be seen in Table 1 indeed most regulation occurs in the common category 

meaning regulation occurs in both the bioreactor and the shake flask.  Furthermore, 

mostly it concerns down regulation of genes, which agrees with the stop of growth that 

occurs upon the phase transition from the exponential to the stationary phase [27]. 

Only for protein processing also significant up regulation is observed. For the 

bioreactor system, there is almost no additional regulation of genes compared to the 

common category. For the shake flask, however there is clearly down regulation of 

additional genes in, RNA transport, mRNA surveillance pathway, ribosome biogenesis 

in eukaryotes and RNA degradation.  

 

Table 2 shows pathways involved in glycan biosynthesis and metabolism. Generally, 

in both systems N-glycan biosynthesis is down regulated and degradation is 

upregulated. Remarkably, in the shake flasks additional genes are upregulated in the 

N-glycan biosynthesis, which is opposite the common trend and also opposite the 

bioreactor, which shows additional genes being down-regulated in this pathway. 

However, no clear link with the decreased galactosylation in the shake flask cultures 

can be made.
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Genes regulated in metabolism of carbohydrate, energy, lipid and nucleotides are 

listed in table 3. Biosynthesis of amino acids pathway has a significant number of up-

regulated genes in both the bioreactor and the shake flask (common), which may point 

to a shortage of one or more amino acids upon the transition to the stationary phase. 

In carbohydrate metabolism only a small number of genes are significantly up-

regulated in both systems. Furthermore, there are almost no genes additionally 

regulated only in the bioreactor or only in the shake flask. Likely the regulation of these 

pathways is more on a metabolite level and not transcriptional. Inositol phosphate 

metabolism is significantly enriched in upregulated genes in both systems and also 

additional genes are upregulated in this pathway for the shake flasks. Inositol 

phosphate is involved in signalling pathways. Pathways in lipid metabolism are 

significantly enriched in regulated genes in both systems, with genes being mostly 

upregulated. An exception is the steroid biosynthesis pathway, which is enriched with 

genes that are down regulated. When entering the stationary phase in principle no 

additional membranes have to be synthesized anymore and also no sterols are 

required explaining the down-regulation of this pathway. The fact that other pathways 

are upregulated may be related to remodelling of membranes and lipids upon entering 

the stationary phase. In the shake flask regulation of additional genes in these 

pathways can be seen, which is not the case for the bioreactor. As expected Purine 

and Pyrimidine metabolism pathways are down-regulated in both systems, which is in 

agreement with the down regulation of DNA replication and the stop of growth upon 

entering the stationary phase.  

 

In general, most pathways are more enriched in up or down regulated genes for the 

shake flasks as compared to the bioreactor. The biggest difference between bioreactor 

and shake flask is found for RNA transport, mRNA surveillance pathway, ribosome 

biogenesis in eukaryotes and RNA degradation, which contains significantly more 

down regulated genes for the shake flask. A smaller difference is seen in lipid 

metabolism, which contains slightly more upregulated genes for the shake flask. 
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2.4. Conclusion 
 

Currently bioprocess development is hampered by a lack of understanding on the 

cellular mechanism that determining process performance. Measuring and comparing 

gene expression can help to develop a scientific understanding of the process and 

though this contribute to a more rational, data driven process development for 

biopharmaceuticals in the near future. In this paper, a time series gene expression 

analysis is done to compare a batch culture of an IgG-secreting CHO cell line 

performed in uncontrolled shake flasks and controlled bioreactors. Cell growth, 

glucose and lactate metabolism, and product formation were comparable for both 

systems. For the product, the galactosylation level was slightly lower in the shake flask 

as compared to the bioreactor. For gene expression analysis, the Affymetrix GeneChip 

CHO Gene 2.1 ST arrays was used, which provides the most comprehensive 

coverage of the transcribed genome of CHO cells currently available. Overall the 

differences in gene expression between the shake flasks and bioreactors were small 

compared to the variation in gene expression over time. Nevertheless, more genes 

were regulated in shake flasks compared to bioreactors, which agrees with the 

absence of pH and DO control in the shake flask. The uniquely regulated genes in 

shake flask were, however, distributed into a large number of pathways and could not 

be linked directly to the differences in control between the systems.  
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Chapter 3  
 

 

 

 

 

Shake flask as scale down model for 
a fed-batch controlled bioreactor: a 

transcriptome comparison 
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Dirk E. Martens, “Shake flask as scale down model for a fed-batch controlled 

bioreactor: a transcriptome comparison”. 
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Abstract  
 

Fed-batch is the main used process mode for the production of glycoprotein 

therapeutics, due to the high cell density, volumetric productivity and the fact that it is 

well-accepted from a regulation perspective. Screening clones and process 

parameters, like for example feed composition and addition for fed-batch process 

development is often done in disposable shake flasks. However, critical process 

parameters like pH and DO are not controlled in shake flasks, which may lead to 

changes in process performance at scale-up. Here we study the differences in gene 

expression for a CHO cell fed-batch process performed in either a shake flask or a 

controlled bioreactor. Overall the cells in the shake flask grew faster than in the reactor 

and entered the stationary and death phase earlier. Moreover,  also the glycosylation 

pattern was different for both systems. With respect to gene expression PCA was able 

to discriminate between two types of differences being that growth was faster in the 

shake flask as compared to bioreactors (represented by PC1, 28.50%) and a 

difference between both systems that was independent from time (represented by 

PC2,10.95%). Apart from being a sensitive tool to detect differences in cell physiology, 

transcriptome data can also identify differentially expressed pathways, which may lead 

to the root cause of the differences. Differences related to regulation of pathways were 

especially related to the fact that shake flask cultures entered the stationary and death 

phase earlier, with down regulation of growth related processes and the up regulation 

linked to arrest of growth and stress in shake flasks.  
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3.1 Introduction  
 

Monoclonal antibodies form an important and rapidly growing class of therapeutic 

glycoproteins [1]. They are used to treat complex diseases, such as cancer and 

autoimmune disease [2]. The majority of the regulatory approved therapeutic 

monoclonal antibody products are produced in fed-batch with the Chinese Hamster 

Ovary (CHO) cell line as the primary host cell line. Fed-batch cultivation allows for high 

cell densities and product titres and at the same time gives a well-defined batch period, 

which is an advantage from the regulation perspective [3].  

 

The development of fed-batch processes relies on small scale, high throughput 

experiments to define the process design space. In the first step generally screening 

experiments are done for the selection of a few suitable clones, media an feed 

combinations and the determination of critical process parameters. These experiments 

are often done in shake flasks. Shake flasks are easy to use, relatively cheap, allow 

for high throughput experimentation and are flexible with respect to the number of 

experiments. At a certain moment during development, depending on the number of 

experiments that need to be done, a switch is made to controlled bench-scale 

bioreactors to more precisely define the design space and confirm the outcome of the 

shake flask experiments. A major issue in process development is that the conditions 

in the shake flasks are not representative of those in the controlled bench-scale 

bioreactor and the conditions in the production scale reactor. This leads to a difference 

in process performance between the shake flasks, the bench scale bioreactors and the 

final production scale, which in turn may lead to a delay in process development and/or 

suboptimal processes.  

 

The major difference between shake flasks and controlled bioreactors is in the absence 

of pH and DO control in the shake flask. Thus, cells in shake flasks are exposed to 

varying oxygen concentrations ranging from a dissolved oxygen tension of 100% air 

saturation to ultimately oxygen limitation depending on the cell concentration reached 

and volume used in the flask. Likewise, the pH will vary during the process depending 

on the level of lactate production and or consumption and the CO2 levels. Addition of 

feed with, for example, a relatively high pH will cause additional pH fluctuations during 

the run. A second important difference is in the absence of sparging in the shake flasks. 



 

48 

 

This results in differences in gas transfer and may result in oxygen limitation as 

mentioned before, but will also cause differences in CO2 levels and in cell death related 

to sparging. Finally, there is a difference in agitation, which may cause differences in 

mixing and in shear forces. Differences between shake flasks and controlled 

bioreactors with respect to the effect they have on cell physiology can be assessed in 

different ways as for example on a metabolic level or using transcriptome analysis.  

 

There are a number of studies where transcriptome analysis was done for CHO cell 

lines producing a high-value protein therapeutic. Vishwanathan et al. (2014) studied 

the transcriptome with the aim to find targets for genetic engineering, to design superior 

production cell lines. A limited number of transcriptome studies were done to obtain 

more insight into the effect of changes in cultivation conditions, such as temperature, 

on cell physiology [4]–[6], However, these comparisons were done on a single time 

point and thus did not take into account the culture dynamics [7], [8]. For example, If 

one culture develops faster than another comparison on one-time point is not valid 

anymore. For dynamic processes like batch and fed-batch transcriptome analysis has 

to be done on a series of time points spread over the culture period to obtain true 

insight in cell physiology and its dynamics. With the sequencing of the CHO cell 

genome and the availability of a CHO cell specific microarray transcriptome analysis 

in CHO cells could be used to study biological processes in the cell in response to 

process conditions [9], [10].  

 

In our previous study, we showed that for a batch cultivation process only minor 

differences in gene expression were present between shake flasks and controlled 

bioreactors (Chapter 2). However, this may be different for fed-batch processes as cell 

concentrations reached are much higher, which for example may easily result in larger 

differences in DO, CO2 concentration and pH between both systems. In addition, a 

feed is added which may result in nutrient and pH fluctuations that affect cell 

physiology. Despite the importance of shake flask experiments as part of the current 

process development practice, very little is known about the effect of the differences 

between shake flasks and controlled bioreactors on cell physiology. This limited 

knowledge increases the risk of unexpected cell performance at a later stage of 

process development requiring additional experiments or in case a bad clone was 
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selected starting at the clone selection again, which both mean a serious delay in 

process development. Therefore, the aim of this study is to obtain insight in the effect 

of the differences between shake flasks and controlled bioreactors on cell physiology 

for a fed-batch process. This is done by studying gene expression and link this to other 

measured parameters like cell metabolism. For this, gene expression profiling was 

performed using the commercially available Affymetrix GeneChip CHO Gene 2.1 ST 

array in an IgG-producing CHO-K1 cell line cultivated in fed-batch mode in shake flasks 

and bioreactors. 

 

3.2 Materials and Methods 
 

3.2.1 Cell line and fed-batch culture 
 

A CHO-k1 BC® IgG-producing cell line was provided by Bioceros (Bioceros Holding 

BV, The Netherlands). The chemically defined CD FortiCHO™ Medium (Gibco®, Life 

Technologies) complemented with 4 mM L-glutamine and 0.5%(v/v) anti-clumping 

agent (both from Gibco®, Life Technologies) was used for all cultures. Pre-cultures 

were maintained in a 125 mL un-baffled shake flask (VWR,USA) with 20 mL working 

volume supplemented with selection reagents (200 μg/mL ZeocinTM and 5 μg/mL 

BlasticidinTM, both from Life technologies) for five passages prior to inoculation into 3 

replicate 250 mL un-baffled shake flask (VWR,USA), (initial working voume 30 mL) 

and 3 replicate 1 litre DasGip Parallel bioreactors (DasGip, Eppendorf Company, 

Germany), (initial working volume 500 ml). An inoculation density of 0.3-0.4 X 106 cells 

ml−1 was used for the three shake flasks and the three bioreactors. For both systems 

identical feeding regimes were applied, which started from day 3 using a ratio of 1:1 

(v/v) chemically defined Efficient Feed™ A and B (EFA/B) (Gibco®, Life Technologies). 

In short, the daily feeding amount was calculated in such a way as to keep the glucose 

concentration above 5mM until the next day. This calculation was based on the specific 

glucose consumption rate and the expected cell concentration the next day. Detailed 

calculations are described  in Pan et al., 2017, [11]. 
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3.2.2 Bioreactor and incubation conditions 
 

The bioreactors were controlled at temperature of 37 oC. The  pH was controlled at 7.2 

by either sparging CO2 or adding 0.5 M NaOH. The DO was controlled at 50 % by a 

cascade regulation changing the oxygen fraction in the gas phase and  the agitation 

rate in the range 100-300 rpm. Antifoam (Antifoam C Emulsion, Sigma-Aldrich®) was 

added on a daily basis to only the bioreactors. Shake flasks were placed in an incubator 

(Multitron CO2 incubator; Infors HT), operated at 90 % humidity, 8% CO2, and 37 oC  

at 100 rpm rotational speed and 50 mm orbital shaking diameter. 

 

3.2.3 Analytical methods 
 

3.2.3.1 Growth rate and metabolite concentrations  
 

Dead and viable cell density were measured by a TC20™ automated cell counter (BIO-

RAD) using trypan blue (Sigma-Aldrich) exclusion method. Glucose and lactate were 

measured daily using the YSI analyzer (YSI 2700, YSI Life Sciences).  

 

3.2.3.2 IgG concentration 
 

The concentration of the IgG1 was measured by Ultra High-Performance Liquid 

Chromatography (UHPLC) with a bio-monolith protein A column from Agilent 

technologies according to the instruction of biopharmaceutical application note from 

Agilent (Urbas et al., 2008)[12]. 

 

3.2.3.3 Glycosylation structure analysis 
 

For determining the composition of the N-glycan structures, samples were taken in 

triplicate on day 7 from both shake flasks and bioreactors were analyzed using the 

method developed by Waters® [13]. In short, filtered supernatant was desalted by PD-

10 columns (GE Healthcare, USA) and then purified using 1 mL HiTrap MabSelect 

SuRe column (GE Healthcare, USA) in combination with an Äkta pure system Unicorn 

6.3 (GE Healthcare). Next, the IgG was concentrated with Amicon Ultra 0.5 mL 

centrifugal filters (Sigma-Aldrich, USA) and N-glycans were released using peptide N-
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glycosidase F, (PNGase F solution,Sigma-Aldrich, USA). Glycans were labelled with 

the fluorescent 2-Aminobenzamide (2-AB), followed by post-labelling clean-up of 

glycan released by hydrazinolysis with module cartridges GlycoPrep® (Prozyme, USA) 

and elution of N-glycans. The labeled glycans were analyzed using HILIC UPLC with 

a column from Waters® [13]. 

 

3.2.3.4 RNA Sampling and quality 
 

3mL cell suspension was  sampled from both bioreactors and shake flasks and mixed 

with TRIzol® Reagent (Life Technologies, USA), on day3, 5, and 7. Samples were next 

snap-frozen in liquid nitrogen and stored at -80 oC for later analysis. Total RNA was 

extracted and purified using the RNeasy Mini-kit (Qiagen, Valencia, CA). RNA quality 

was assessed as described in Alsayyari, et al [14].  

 

3.2.4 Transcriptomic analysis  
 

Transcriptomic analysis on Affymetrix CHO Gene 2.1 ST arrays was carried out as 

described [14], [15]. Briefly, normalized expression estimates of probe sets were 

computed by the robust multiarray analysis (RMA) [16], as implemented in the 

Bioconductor library AffyPLM. Probe sets were redefined according to Dai et al. [17], 

based on the CriGri_1.0 genome assembly (NCBI Reference Sequence Project 

(RefSeq) Release 72), which resulted in the profiling of 60626 transcripts (custom CDF 

v20). After averaging the expression levels of probe sets targeting the same gene, 

expression data for 20859 unique genes were obtained, which were used for all 

subsequent analyses.  

After scaling and centering, principle component analysis (PCA) was performed in R 

using the prcomp function [18] to visually inspect the characteristics of the data set 

[19]. Differentially expressed genes were identified by using linear models (library 

limma) and an intensity-based moderated t-statistic [20], [21]. Correlation due to the 

repeated sampling from the same bioreactors or shake flasks was taken into account 

in the linear model fit by incorporation of the consensus intra-block correlation 

calculated by limma’s duplicate correlation function [20], [22]. P values were corrected 

for multiple testing using a false discovery rate (FDR) method [23]. Genes that satisfied 

the criterion of FDR < 0.05 and absolute fold change > 1.4 were considered to be 
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significantly regulated. Regulated genes were subjected to KEGG pathway 

overrepresentation analysis using Fisher's exact test, and visualized using the library 

pathview [24]. 

 

3.3 Results and discussion 
 

3.3.1 Cell culture characteristics 
 

Both shake flask and bioreactor cultures were done in fed-batch mode in triplicate. 

Nutrient feeding started from day 3 as described in material and methods. The glucose 

concentration was maintained between 2-6 g/L (11.2-35.2 mmol/L). The starting cell 

concentrations are slightly different for the shake flask (0.3X106 cells.ml-1) and the 

bioreactor (0.45 106 cells.ml-1). Figure 1A shows the growth curve for both cultivation 

systems. Starting from day 2 the growth in the bioreactor and shake flask started to be 

different. The growth in the bioreactor was slower than in the shake flask and reached 

the stationary phase about 1-2 days later than the shake flasks. The cell concentrations 

reached in the bioreactors were higher than in the shake flasks. For both systems the 

viable cell concentration dropped after the maximum cell concentration was reached. 

However, for the bioreactor the total cell concentration remained constant, while in the 

shake flasks the total cell concentration dropped in the same way as the viable cell 

concentration. Consequently, the viability as measured by trypan blue exclusion 

decreased in the bioreactors after reaching the maximum viable cell concentration, 

while in the shake flasks it remained constant except for the last two days. During the 

fed-batch the cultures are diluted due to addition of feed to the bioreactors and the 

shake flasks and the addition of base and antifoam to the bioreactors. The dilution due 

to antifoam and base addition is negligible compared to the dilution caused by addition 

of the feed. Furthermore, the sample sizes for both systems are the same, meaning 

that relatively more sample is taken from the shake flask. The chosen feeding strategy 

resulted in feed additions that were comparable relative to the culture volume and thus 

dilution of both systems was also comparable. On day 8 the total dilution factor for  the 

shake flask and the bioreactor is respectively 1.9 and 1.7. At the day 10 the differences 

have become slightly higher at 2.4 and 1.9 for the shake flasks and bioreactors, 

respectively. The growth curves corrected for dilution are shown in appendix Figure 

A.1. As expected the correction does not change the observed differences between 
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the two systems. The decrease in viable cells at a constant high viability as observed 

in the shake flask means that substantial cell lysis occurs. Why this happens in the 

shake flask and not in the bioreactors is not clear, but could be due to different 

limitations occurring in both systems upon reaching the maximum cell density, which 

in turn may be due to the differences in conditions. Also until day 6 the viability in the 

bioreactor was slightly lower than in the shake flask, which could be due to the higher 

shear forces due to sparging and agitation in the bioreactors.  
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Figure 1. Comparison of cell performance between fed-batch shake flask and 

bioreactor; A:Total and viable cell concentration, B: IgG concentration, C: 

Cumulative integral viable cell concentration (IVCC). Data points are the average 

of three replicate shake flask and bioreactor cultivations. 

 

Until day 4 the glucose concentration (Appendix figure A.2) was comparable between 

both systems, while from day 4 on the glucose concentration was consistently lower in 

the bioreactor system, which could be explained from the higher cell concentrations in 

the bioreactor. The lactate concentration (Appendix figure A.1) was slightly higher in 

the bioreactors for the first 4 days, after which it became comparably low for both 

systems. The IgG concentrations are lower in the bioreactor during the first 5 days and 

become higher from day 7 on, which can be explained from the cell concentrations as 

the integral of the viable cell density (see figure 1.C) becomes higher for the bioreactor 

at around the same time. This means that the specific productivity was comparable for 

both systems. For glycosylation three replicate samples were analysed taken from the 

shake flasks and bioreactors at day 7, which represents the harvest point as defined 

as the latest time point where the viability is still high (above 80 %) for both cultivations. 

The glycosylation profile (Figure 2) shows that major differences are present in the 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

0 1 2 3 4 5 6 7 8 9 10

Shake flask TCD Shake flask VCD Bioeactor TCD

Bioreactor VCD Shake flask Viability Bioreactor Viabililty

Days 

C
e

ll
/m

l

0

100

200

300

400

500

600

700

3 4 5 6 7 8 9

Shake flask Bioreactor

u
g

/m
l

Days

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 1 2 3 4 5 6 7 8 9

Shake flask Accumulative IVCC

Bioreactor  Accumulative IVCC
C

e
ll
s
.m

l-1
.d

a
y

Days

A

B C



 

55 

 

glycan structure in G0, G0F and G1F between shake flask and bioreactor at day 7. 

Clearly the overall galactosylation is lower in the shake flask system with an increase 

in the G0F and GO and a major decrease in G1F and minor decrease in G1 and G2F. 

These results are in agreement with our previous study comparing shake flasks to the 

bioreactors in batch cultivation mode [14]. 

Figure 2. Average glycosylation pattern for the shake flask (red) and the 

bioreactor (white) at day 7. Error bars show the standard deviation of 3 replicate 

shake flask and bioreactor runs.  

 

3.3.2 Differential gene expression 
 

In Figure 3 principal component analysis (PCA) for gene expression on three time 

points in the shake flask and bioreactor is shown. The three time points represent the 

dynamics of the cultures being; early exponential phase (day3) for both shake flasks 

and bioreactors, late exponential phase for bioreactors (day5) early stationary phase 

in shake flasks (day5) and bioreactors (day7), and late stationary phase in shake flasks 

(day7). All samples were taken in biological triplicates (i.e. three bioreactors and three 

shake flasks) except the shake flasks on day 3, where one shake flask sample was 

excluded due to technical failure of the DNA microarray chip. PC1, contains 28.5%  of 

the variation and represents the development of the cultures in time. On the PC1 axis 
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day 5 of the shake flasks is close to day 7 of the bioreactors and day 5 of the 

bioreactors falls in between day 3 and day 5 of the shake flasks, confirming the faster 

growth of the cells in the shake flasks and the fact that the development of the shake 

flask cultures is ahead of that in the bioreactors by 1-2 days as observed in Figure 1. 

PC2 covering 10.95% of the variation represents a difference between both systems 

that is independent form time. 

 

In Figure 4 the number of genes that are differentially expressed between day 3-5 (A), 

5-7 (B) and 3-7 (C) are shown and divided into genes that change only in the shake 

flask, only in the bioreactor and in both systems. Note that the day 3-7 comparison 

may contain genes that change expression slowly and are thus absent from the day 3-

5 and day 5-7 comparison. Furthermore, genes that have an opposite regulation on 

day 3-5 as compared to day 5-7 may be absent in the day 3-7 comparison. From these 

three comparisons, we next select genes that are uniquely regulated in one system, 

meaning that for none of the comparisons they are regulated in the other system. 

Furthermore, we also select genes which are only regulated in common and never 

uniquely. Clearly always more regulated genes are found in the shake flasks than in 

the bioreactors. Also, the number of uniquely regulated genes is higher for the shake 

flasks than for the bioreactors. This may reflect the more dynamic conditions in the 

shake flask caused by the lack of pH and DO control. However, it can also be caused 

by the difference in development of the cultures over time with the shake-flask being 

ahead of the bioreactor. Since day 7 of the bioreactors is more or less comparable to 

day 5 of the shake flasks also the comparison day 3-7 bioreactor to day 3-5 shake flask 

was made. For this comparison, the bioreactor is still slightly ahead of the shake flask 

resulting now in more genes differentially expressed for the bioreactor and much less 

for the shake flasks. This shows that the period around day 5 is a very dynamic period 

and that differences in differential gene expression are highly dependent on the 

developmental status of the culture and the moment of sampling. Finally, it should be 

noted that since the shake flasks are ahead of the bioreactors the unique genes for the 

bioreactor in figure 4D are probably really unique for this system, whereas the unique 

genes for the shake flask may contain many genes that are differentially expressed 

during late stationary phase and thus not changed yet in the bioreactors. Likewise, for 

the comparison in Figure 4E the bioreactor is slightly further in development than the 
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shake flask, and here the unique genes of the shake flasks are probably related to the 

shake flask, while those of the bioreactor may now be due to the time effect. 

 

Figure 3 Principle component analysis shake flask (red), and bioreactor (blue). 

Different culture days are shown day 3, day 5 and day 7.  
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Figure 4 Venn diagram showing uniquely and common differentially expressed 

genes (FDR-BH ≤ 0.05 and fold changed > ±1.4) for three time points A: day3-5, 

B: day 5-7, and C: day 3-7. (D) represent all the significant uniquely regulated 

genes in the shake flasks and the bioreactors, and the common regulated genes 

in both systems, after eliminating all duplicated and overlapped genes within the 

three time point comparisons. (E) comparison of bioreactor day 3-7 and shake 

flask day 3-5. 

 

 
3.3.3 Differential Pathway expression 
 

To obtain more insight in the effect of the differences in conditions between shake 

flasks and bioreactors the pathway enrichment of the genes selected in Figure 4 is 

studied. The pathways and biological functions are necessary to understand the 

dynamic changes occurring in both cultivation systems as well as the differences 

between them. The Venn diagram in Figure 4 shows that the number of genes up 

regulated is comparable to the number of down regulated genes for all three time points 

for both systems. Pathway analysis will show whether genes in certain pathways are 

consistently up or down regulated or contain a mix of up and down regulated genes. 

Complete pathways data can be found in the supplementary data file A. From the top 
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significantly up and down regulated pathways of comparison 4A,B,C,D a selection is 

made of pathways that could be relevant for this study and these are shown in Table 

1.  

  

As can be seen most pathways represent the fact that the shake flask culture grows 

faster than the bioreactor. Thus, at day 5 the shake flask is already close to the 

stationary phase and the bioreactor is still in the exponential phase. At day 7 the shake 

flask is in the death phase while the bioreactor is in the stationary phase. Thus the 

genes unique to the shake flask are involved in processes that are related to down 

regulation of growth like the down regulation of DNA replication, and up regulation of 

processes that are related to stress and cell death like apoptosis and autophagy. 

Furthermore, in the oxidative phosphorylation pathway, 14 genes are uniquely up 

regulated in the shake flasks. As shown in Figure 5, six genes (Atp6v1a: Atp6v1c2: 

Atp6v0d2: Atp6v1d, Atp6v1e1, Atp6v1h) out of these 14 encode components of 

vacuolar ATPase (V-ATPase) which is responsible for transporting Hydrogen ions (H+) 

over cell membranes at the cost of ATP. Vacuolar ATPases have a wide variety of 

functions among which protein turnover, nutrient sensing, and a role in autophagy.  

Considering the late change in expression, it may be related to these functions here. 

Furthermore, the higher fluctuations of the conditions in the shake flask environment 

can lead to increasing energy demands for the cells to adapt to these changes, which 

may alter many genes and pathways related to stress adaption [25]. These genes are 

also involved in other pathways such as phagosome and mTOR signaling pathway.  

Additionally, two genes (Ndufa7 and Ndufb7) coding for NADH ubiquinone 

oxidoreductase subunit A7 and B7of the translocating NADH dehydrogenase are 

uniquely up regulated in shake flasks. These genes are related to cellular respiration 

in the mitochondria. The upregulation of genes involved in oxidative phosphorylation 

may indicate oxygen limitation in the shake flasks, which can occur at the high cell 

densities reached in shake flasks [26]. The Oxidative phosphorylation pathway is 

important for ATP production process and lower flux through this pathway due to for 

example oxygen limitation can result in arresting the cell cycle and progression of the 

cells into the death phase [27].  
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Another example of an uniquely up regulated gene in the shake flask is the Itpr3 gene 

which is involved in many pathways among which apoptosis.  Itpr3 codes for an inositol 

1,4,5-trisphosphate receptor type 3 with functions as and  intracellular signalling 

mechanism sensitive to oxidative stress [28]. Itpr3 was up regulated uniquely in the 

shake flask during time points (days: 3-5, 5-7, and 3-7) with fold changes of 1.4,1.5 

and 2.21 respectively. This is another indication that varying and limiting oxygen 

concentrations may be a problem in the shake flasks. As stated limitations in oxygen  

can trigger cell cycle arrest and apoptosis [27]. Table 1.B  illustrates a list of pathways 

regulated uniquely in the shake flask (Figure 4D). This more or less confirms the time 

comparisons discussed before. Cell cycle pathways, although not present in the top 

10, consisting of 129 genes show significant down regulation in the shake flask as 

compared to the bioreactors, which agrees with the earlier arrest of growth in the shake 

flasks (see supplementary data table A). Similar results were obtained when 

comparing shake flasks and bioreactors in batch mode (Chapter 2). Furthermore, DNA 

replication, Fatty acid elongation, histidine metabolism, mismatch repair autophagy, 

phasgosome, and apoptosis are all down regulated in shaker only. The down 

regulation of all these processes agrees with the earlier arrest of cell growth except for 

apoptosis. When cells are earlier exposed to for example nutrient limitation an 

upregulation of apoptosis would be expected. The reason for the down regulation is 

not clear but could be related to the fact that despite the decrease in viable cell 

concentration the cell viability remains high in the shake flasks indicating fast lysis of 

dead cells. 

 

Many pathways that are regulated in Table 1 are thus the result of a difference in 

growth rate in both systems, which makes it difficult to study other differences between 

both systems that are not related to development time and possible form the root cause 

for the difference in time development. Information on this could be still extracted from 

Figure 4D and 4E. In Figure 4.D the number of significant differential expressed genes 

unique for each of the three groups (shake flask, common, and bioreactor) are given. 

Whereas, as stated, the genes unique to the shake flask may still be there because of 

the fact that the shake flasks are further in their development, the bioreactor genes are 

probably unique to the bioreactor conditions. Likewise, the genes in Figure 4E the 

bioreactor is further in development than the shake flask and thus the unique genes of 
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the shake flask are probably due to the specific conditions in the shake flask. However, 

no pathways that could be linked to system differences could be derived from this, 

which like stated before could be linked to the very strong time effect and the highly 

dynamic behaviour of gene expression around day 5, masking other effects. Thus, In 

Table 1B panel E shows that none of the  pathways from the list of pathways selected 

for Table1A are significantly regulated. This again confirms that the different regulation 

of the pathways selected from figure 4,A,B,C and D is mainly related to the difference 

in development in time.  
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3.4 Conclusion 
 

In process development a major part of screening clones, media and feeds is 

performed in high throughput experiments in shake flasks. A good understanding of 

the differences of cell behaviour in these uncontrolled shake flasks and controlled 

bioreactors is needed to avoid unexpected changes upon transfer to the more 

controlled production runs. We have used commercial Affymetrix CHO plates to 

identify the transcriptomic changes between uncontrolled shake flask and the 

controlled bioreactor systems and to gain an understanding differences between them 

on a pathway level. Principal component analysis showed a clear difference in gene 

expression for both systems and is able to discriminate differences that are due to a 

different speed of development in time (i.e. differences in growth rate) from differences 

between the systems that seem independent from time. On a pathway level the 

differences in time development are clearly seen back in the down regulation of growth 

related processes and the up regulation of processes related to arrest of growth and 

stress in the shake flasks. It is more difficult to find time independent differences on a 

pathway level,  which is at least in part due to the highly dynamic nature of the gene 

expression in the fed-batch cultures. Nevertheless, pathway analysis does indicate 

potential oxygen limitation in the shake flasks. 
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Appendix 
 

 

 

Figure A.1: Viable cell density (VCD) and total cell density (TCD) corrected for 

dilution for shake flasks and bioreactors as functional of the time. Each curve 

is the average of three replicate cultures. 
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Figure A.2: Lactate and glucose concentration for shake flask and bioreactors. 
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Abstract  
 

Transcriptome and metabolism analysis were performed to evaluate the scale-down 

of a CHO cell fed-batch process from a 10 L bioreactor to an ambr 15® (ambr) system. 

Two different agitation scale-down principles were applied, resulting in two different 

agitation rates in the ambr system: 1300 RPM based on the agitator tip speed, and 

800 rpm based on the volumetric power input (P/V). Culture performance including cell 

growth, product titer, glycosylation, and specific consumption/production rates of 

metabolites was the same for both agitation rates in the ambr and was comparable to 

that of the 10 L system. The initial variation in gene expression between the inocula 

for the ambr and 10 L system was no longer present after three days of culture, 

indicating comparable culture conditions in both systems. Based on principal 

component analysis, changes in gene expression over time were similar between both 

scales with less than 6% variation. 2455 genes were uniquely regulated in the ambr 

system compared to 1604 genes in the 10 L system. Functional analysis of these 

genes did not reveal their relations with scale or cellular function. This study further 

strengthens that the ambr system gives representative culture performance for the 10 

L bench-scale bioreactor.  
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4.1 Introduction 
 

The development of a Chinese Hamster Ovary (CHO) cell production process within 

the biopharmaceutical industry aims at obtaining a consistent and robust cell culture 

process with a high product volumetric productivity, as well as a consistent and desired 

product quality. To reach this, it is important to identify the parameters that influence 

the culture performance and the range within which these parameters should stay to 

ensure a reproducible process with a consistent product quality. This requires high 

throughput experimentation for which small-scale bioreactors are needed. The small 

scale bioreactors should be representative of the large-scale so that the process 

developed at small-scale, including the design space for the critical process 

parameters, can be translated to large-scale with the same process performance. 

Different scale-down criteria can be used to develop a representative small-scale 

process. These criteria include, for example, the overall volumetric gas-liquid mass 

transfer coefficient (kLa), the volumetric power input (P/V), and the agitator tip speed 

[1], [2]. Production scale reactors can be properly scaled down to bench-scale reactors 

(1-10 L) which are traditionally used as the main platform for process development [3], 

[4]. However, the number of experiments that can be done in a certain time frame at 

bench-scale is still too small for studying all the parameters that can be relevant to a 

culture process (pH, DO, temperature, nutrient concentrations, pre-culture age, 

seeding density, etc.). In order to increase the experimental throughput, several 

miniature bioreactor systems at mL scales have been developed during the past 

decade [5], [6]. Like in large-scale reactors, DO, pH, agitation, and gas sparging can 

be monitored and controlled in these small-scale systems as well. The higher 

throughput allows for a shorter development time and the use of design of experiment 

(DoE) with a higher resolution, resulting in a more accurate definition of the design 

space.  

The ambr® 15 (from hereon called the ambr) system has advantages compared to 

other miniature systems due to the advanced automated operation which reduces 

handling errors and increases the experimental throughput. A characterization of both 

the ambr and large-scale stirred tank bioreactors (STRs) was conducted by Nienow et 

al. (2013a). It was shown that the physical environment between the ambr and 

conventional STRs differs in some aspects including the flow regime, gas superficial 

velocity, and volumetric power input. Several studies have been performed to compare 
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the culture performance of the ambr system to STRs ranging from 2 L up to 1000 L for 

CHO cell fed-batch processes [8]–[11]. Overall, similar process performances were 

reported across all scales. In a recent study done by Rouiller et al (2016), it was shown 

that the ranking of 12 CHO cell clones based on product titer reached in batch cultures 

was more similar between 3.5 L bioreactors and ambr (Pearson correlation 

coefficient=0.97) than between 3.5 L bioreactors and deep well plates and shake 

tubes. In the study of Janakiraman et al. (2015), for several studied process 

parameters, the ranges of these parameters which resulted in acceptable product 

quality attributes were similar between ambr and 5 L bioreactors. These studies show 

that the result of screening experiments as well as determined process parameters 

ranges are transferable from ambr to bench-scale systems. In contrast, Siva et al. 

(2015) showed that for a fed-batch process using a CHO DHFR- cell line the ambr 

gave different results compared to 5-L and 250-L STRs. Lower cell density and final 

titer together with an earlier decrease of cell viability were observed in the ambr 

system. They hypothesized that a foaming problem along with a higher ammonium 

concentration, a higher osmolality, and a lower pH in the ambr cultures were the 

causes of these differences. Summarizing, representative culture performances have 

been reported in ambr as compared to the bench-scale systems in all studies except 

for one and the ambr system has gained acceptance for use in process development 

in biopharmaceutical industries. A better understanding of the effects of the different 

physical environments present in the small-scale ambr system as compared to bench-

scale systems on cell physiology could be helpful for further validating the ambr 

system, specifically for developing better small-scale reactors in general.  

A better understanding of cell physiology and gene regulation in relation to process 

conditions can be obtained using transcriptomics [15]. Transcriptome analysis can be 

used in different ways for process understanding. (i) The expression levels of genes 

can be used as a fingerprint to compare two process conditions, e.g. small- and large-

scale. For example, Jayapal and Goudar (2013) used transcriptome analysis to 

confirm the scalability of a BHK cell perfusion culture process. (ii) The genes that are 

differentially expressed can be studied on a functional level. This approach can give 

mechanistic information on how differences in process conditions (e.g. differences 

between scales) influence cell physiology and process performance. For example, 

Sieck et al. (2013; 2014) found that transcripts related to DNA damage and repair 
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mechanisms were up-regulated when elevated shear forces from agitation and 

sparging were applied to a CHO cell culture. 

The aim of this study is to evaluate whether the physiology and performance of the 

cells in the ambr systems is comparable to that in a 10 L system for a fed-batch 

process. The CHO cells are compared on the metabolic and gene expression level. A 

detailed analysis of the 10 L process, including cell metabolism has been presented in 

a previous study [19] and was the starting point for the comparison with the ambr 

system in this work. CHO gene microarrays were used to measure the transcriptome. 

In addition, in order to investigate the impact of different scale-down criteria for 

agitation on cell physiology and culture performance, two different impeller agitation 

rates (800 and 1300 RPM) were included in the ambr experiment. The 800 RPM in 

ambr is equivalent to the impeller volumetric power input (P/V) value that was 

employed at the 10 L scale, whereas the 1300 RPM is equivalent to the maximum 

impeller tip-speed at the 10 L scale. 

 

 4.2 Materials and methods 
 

4.2.1 Cell line and pre-culture 
 

A suspension CHOBC® cell clone (BC-P, provided by Bioceros Holding BV) producing 

a recombinant immunoglobulin G1 (IgG1) was used in this study. Cells were thawed 

from a working cell bank and maintained in ActiCHO-P medium (GE Healthcare) 

supplemented with 4 mM glutamine (Gibco, Life Technologies) and 0.5% Anti-

clumping agent (Gibco®, Life Technologies). 200 µg×mL-1 ZeocinTM and 5 µg×mL-1 

Blasticidin (both from Life Technologies) were added as two selection reagents during 

the pre-cultures. Sub-culture was conducted in repeated batch cultures in shake flasks 

grown under 37°C and 8% CO2 conditions. The inoculum for the 3×10 L bioreactors 

was prepared in a single culture bag on a rocking bioreactor system. For each 10 L 

bioreactor, a 500 mL inoculum at a viable cell concentration of 3×106
 cells×mL-1 was 

directly inoculated in 4500 mL of pre-heated fresh medium, resulting in a starting 

density of 3×105 viable cells×mL-1 at a starting volume of 5 L. The inoculum for the 

ambr bioreactors was expanded in shake flasks. To prepare the inoculum for the ambr 

cultures, the cells from the flasks were pooled together and spun down at 300×g. Next, 

the used medium was discarded and cells were re-suspended in fresh medium at a 
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viable cell concentration of 3×106
 cells×mL-1. 1.4 mL inoculum was inoculated in 12.6 

mL of pre-heated fresh medium in each ambr bioreactor, resulting in a starting density 

of 3×105 viable cells×mL-1 at a starting volume of 14 mL. 

 

4.2.2 10 L culture experiment  
 

Triplicate fed-batch cultures were conducted in 10 L Sartorius bioreactors (Sartorius 

Stedim Biotech) controlled by BIOSTAT® B-DCU II. The geometry of the BIOSTAT® B-

DCU II 10 L bioreactor is shown in Table I. Culture temperature was controlled at 37°C, 

dissolved oxygen (DO) was controlled at 40% by pure O2 flow through a micro sparger, 

pH was controlled at 7.2, by using base, and CO2 through a macro sparger. An air flow 

through the macro sparger was used to strip out the accumulating dissolved CO2 

(pCO2). Mixing was done at 200 RPM. From day 3 on, feeds were added to each 

bioreactor daily. First, the glucose concentration was measured. If the concentration 

was lower than 18 mM, a 45% (w/w) glucose solution was added as one bolus to reach 

a glucose concentration of 28 mM in the reactor. Next, 4.5% (v/v) ActiCHO feed A, 

also containing about 500 mM glucose amongst other nutrients, and 0.45% (v/v) 

ActiCHO feed B (both from GE Healthcare, USA) per culture volume per day were fed 

to each reactor. FoamAway™ antifoam (ThermoFisher Scientific) solution was added 

to each bioreactor prior to inoculation and during the culture when needed. 

For each 10 L bioreactor, a 15 mL sample was taken daily before and after feed 

addition. Total cell density, viable cell density, and cell diameter were measured using 

a CedexHiRes® analyzer (Innovatis). 3 mL of the sample was spun down at 300×g for 

5 min (Heraeus Multifuge X3R, Thermo Scientific). The cell pellet was collected and 

the total RNA was extracted using 3 mL TRIzol reagent (Invitrogen™) and stored at -

80°C for later transcriptome analysis. The remaining sample was spun down at 3345 

×g for 15 min. 1 mL supernatant from the sample was measured for off-line pH, pCO2, 

glucose, lactate, ammonium concentrations and osmolality by a nova BioProfile FLEX 

analyzer (nova biomedical). The remaining supernatant was stored at -20 °C for later 

analysis. On culture day 4, 7 and 10 biomass samples were taken. The preparation of 

the biomass samples was performed in the same way as in [19]. 
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Table I. Geometry of the BIOSTAT® B-DCU II (10 L) and the ambr® 15 (ambr) 

bioreactors, based on Sartorius Stedim Biotech 

 10 L ambr 

Overall reactor shape Cylinder Rectangular parallelepiped 

Internal cross-section 

area (mm2) 
π × (80)2 28 × 15 

Reactor height (mm) 470 60 

Maximum working 
volume (mL) 

10,000 15 

Number of impeller 1 or 2 1 

Impeller type 3-blade segment impeller 2-blade segment impeller 

Impeller diameter (mm) 78 11.4 

Impeller shaft location Centroid 3 mm off the center 

Number of baffles Not baffled Not baffled 

Number of spargers 2 1 

Sparger types 
1× ring sparger 

1× micro sparger 
1× 1 mm open pipe sparger 

 

4.2.3 ambr culture experiment 
 

The ambr system (ambr® 15, from Sartorius Stedim Biotech) used in this study 

consisted of 4 culture stations (CS), each CS contained 12 bioreactors. In total 48 

bioreactors were used in this study. The geometry of the ambr bioreactor is shown in 

Table I. The reactor volume was kept between 13 and 15 mL throughout the culture. 

For all 4 CSs, the temperature was controlled at 37°C, dissolved oxygen (DO) was 

controlled at 40% by oxygen enrichment in gas supply through an open pipe sparger, 

and pH was controlled by 0.5 M NaOH and CO2 enrichment in gas supply. pH was 

measured off-line on a different analyzer as the 10 L cultures, because of the smaller 

sample volume. Measurement differences in pH due to the different analyzer used 

were accounted for creating matching bands of control. The daily feeding strategy was 

similar as in the 10 L culture experiment with a difference that the feed can only be 

added at one time as a bolus. 4×diluted FoamAway™ antifoam (ThermoFisher 

Scientific) solution was added to each ambr bioreactor when needed. Two different 
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agitation rates were tested in the ambr culture experiment being: CS-1 and CS-2 at 

800 RPM which is equivalent to the volumetric power input (P/V) value of the 10 L 

culture experiment, and CS-3 and CS-4 at 1300 RPM which is equivalent to the 

agitator’s tip-speed of 10 L culture experiment (Table II). The P/V value for the 10 L 

reactor is obtained from: 

 

𝑃

𝑉
=

𝑃0𝜌𝑁3𝐷5

𝑉
     Equation 1 

 

where P is the power input from impeller (W), V is the culture volume (m3), P0 is the 

power number of the 10 L bioreactor impeller and was determined as 2.1 based on 

[20], ρ is the liquid density (kg×m-3), N is the impeller speed (s-1), D is the impeller 

diameter (m). The Reynolds number (Re) and the Kolmogorov length (λk, µm) scale in 

a turbulent flow are calculated based on [20]: 

 

𝑅𝑒 =
𝜌 𝑁𝐷2

𝜂
     Equation 2 

 

𝜆𝑘 = (
𝑃

𝜌𝑉𝜗3)−
1

4     Equation 3 

 

where η is the dynamic viscosity (N·s·m-2), and ϑ is the kinematic viscosity (m2·s-1).  

Maximum 800 µL daily sample volume was taken before feed addition from each 

individual ambr bioreactor. Individual ambr bioreactors were sampled every other day 

to measure off-line pH, pCO2, glucose concentration, and lactate concentration on a 

blood gas analyzer (ABL90 FLEX). Larger samples were obtained daily from paired 

cultures run under identical conditions which were analyzed for metabolites, cell 

density and culture viability, IgG concentration, spent media, biomass composition, 

and RNA preparation by using the same methods as for the 10 L cultures. 
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Table II. Physical comparison between ambr and 10 L reactors. The 300 RPM of 

the 10 L experiment is not used in this study. It is shown for comparison only. 

 

 10 L ambr 

Agitation rate 

(RPM) 
200 300 800 1300 

Tip-speed (m×s-1) 0.82 1.23 0.48 0.78 

P/V (W×m-3) 40 135 65* 280* 

kLa (h-1) 2-40 2-40 4-6* 5-8* 

Reynolds number 29000 43000 2500 4000 

Flow type Turbulent Turbulent Laminar Transient 

Kolmogorov (um) 55 40 - 27 

 

 

4.2.4 Biomass, spent medium, and mAb analysis 
 

The analysis of biomass composition including cell dry weight, soluble cellular protein, 

fatty acids, and carbohydrate was performed using the same method as described in 

[19]. Compositions of the spent medium including extracellular amino acids and 

organic acids were quantified using NMR (Spinnovation Biologics BV). mAb (IgG1) 

titer was quantified by using Protein-A chromatography (Agilent, 5069-3639). mAb N-

glycan composition was analyzed by a Hydrophilic Interaction Chromatography (HILIC 

UPLC). The methods for mAb quantification and N-glycan analysis were described in 

Pan et al. (2017).  

 

4.2.5 Average specific metabolic rates 
 

The calculation of the specific production/consumption rate of a compound is the same 

as described in Pan et al. (2017). In brief, the following equation is used, assuming a 

constant qx 

 

𝑀𝑥(𝑡) − 𝑀𝑥(0) − 𝑉𝑓 × 𝐶𝑓 = 𝑞𝑥 × ∫ 𝑋𝑉𝐶
𝑡

0
𝑑𝑡    Equation 4 
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where Mx (mg; mmol) is the total amount of compound x in a culture at time 0 and t, 

XVC (cells) is the number of viable cells in a culture, Vf (mm3) is the total volume of feed 

added, Cf (mM) is the concentration of compound x in the feed, and qx (mg·cell-1·day-

1; mmol·cell-1·day-1) is the cell-specific production rate of compound x. When the rates 

are calculated based on cell volume, XVC (mm3) presents the volume of viable cells in 

a culture and qx (mg·mm-3·day-1 or mmol·mm-3·day-1) is the cell volume-specific 

production rate of compound x. The average specific production rates (q) were 

obtained from the slope of a plot of accumulated consumed/produced compound mass 

against the accumulated integral of viable cell number (or the integral of viable cell 

volume) using linear regression.  

 

4.2.6 Transcriptome analysis 
 

For both scales, the transcriptome analysis was carried out on: cells from the inoculum 

just before inoculation, on day 3 which represents the exponential phase, on day 5 

which represents the cell size increase phase, and on day 9 which represents the 

stationary phase. For the inoculum of the 10 L experiment, three samples were taken 

from the culture bag before inoculation. For the inoculum of the ambr experiment, three 

samples were taken from the pooled shake flasks just before centrifugation. During 

the culture, for the 10 L experiment, three samples were taken from the three individual 

bioreactors, whereas for the ambr, also three samples were taken with each sample 

obtained by pooling the samples from two bioreactors of the 800 RPM condition. The 

total RNA was purified using the RNeasy Mini kit (Qiagen, Valencia, CA). RNA 

concentration was measured on a Nanodrop 2000 (Thermo Scientific, Wilmington, 

DE). RNA quality was assessed on a 2100 Bioanalyzer using the RNA 6000 Nano Kit 

(Agilent, Santa Clara, CA), and all samples had a greater than 8 in RNA integrity 

number (RIN). Affymetrix GeneChip™ CHO Gene 2.1 ST Arrays (Affymetrix, Santa 

Clara, USA) were used for transcriptome expression profiling. In short, the same 

amount of RNA was labeled by the Whole-transcript Sense Target Assay (Affymetrix, 

Santa Clara, USA) and hybridized according to the manufacturer’s instructions. Quality 

control and data analysis were done as described in [21]. Normalized expression 

estimates of probe sets were computed by the robust multi-array analysis (RMA) [22], 

using R/Bioconductor package AffyPLM [23]. The well-annotated reference 

sequences are based on the CriGri_1.0 genome assembly NCBI reference sequence 
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project (RefSeq) Release 72, which resulted in 60626 annotated sequences 

(transcripts profiles) (custom CDF v20). After averaging the expression levels of probe 

sets targeting the same gene, expression data for 20858 unique genes were obtained, 

which was used for all subsequent analysis. Linear models (Limma package) were 

used to identify the differential expressed genes taking into account correlation due to 

the repeated sampling from the same bioreactors followed by an intensity-based 

moderated t-statistic [24], [25]. P-values were adjusted for multiple testing using the 

Benjamin and Hochberg (FDR.BH) method [26]. Genes regulation that satisfied the 

criterion of FDR.BH<0.05 and absolute fold-change (FC)>1.4 were defined to be 

significant and were subjected to KEGG pathways over-representation analysis using 

fisher’s exact test and Venn diagram. These cut-off values are commonly applied to 

reduce the number of false-positive genes and the background noises that are picked 

up by the differential gene analysis [27]–[29]. The raw data on transcriptome analysis 

is available in Supplementary A. 

 

4.3 Results and discussion 
 

4.3.1 DO and pH control 
 

Proper control of dissolved oxygen (DO) and pH is critical for the culture performance. 

The online DO and pH profiles of a representative ambr reactor and a representative 

10 L reactor are shown in Figure 1. For the ambr cultures, the DO and the pH were 

well controlled around the set-point. However, compared to the 10 L cultures, the ambr 

cultures showed higher spikes of DO and pH. In addition, slightly higher pH values 

from day 5 to 8 can be seen in the ambr cultures. The higher spikes of DO were caused 

by the opening of the vessels which was needed for feed addition, base addition, and 

sampling. The spikes in pH in both the ambr and the 10 L cultures were caused by the 

daily addition of ActiCHO feed B, which has a high pH value of 11. The spikes were 

higher in the ambr cultures, due to the fact that for the ambr the feed was added as a 

bolus whereas for the 10 L it was added over a period of 2 hours.



  

 

F
ig

u
re

 1
. 
 E

x
a

m
p

le
s

 o
f 

th
e

 o
n

li
n

e
 m

e
a

s
u

re
d

 p
H

 a
n

d
 D

O
 p

ro
fi

le
s

. 
G

ra
p

h
 A

, 
B

, 
a

n
d

 C
 s

h
o

w
 D

O
 p

ro
fi

le
s

 o
f 

th
e

 a
m

b
r 

8
0

0
 R

P
M

, 

th
e

 a
m

b
r 

1
3

0
0
 R

P
M

, 
a

n
d

 t
h

e
 1

0
 L

 b
io

re
a

c
to

r,
 r

e
s

p
e

c
ti

v
e

ly
. 

G
ra

p
h

 D
, 

E
, 

a
n

d
 F

 s
h

o
w

 p
H

 p
ro

fi
le

s
 o

f 
a

m
b

r 
8

0
0

 R
P

M
 a

g
it

a
ti

o
n

, 

a
m

b
r 

1
3
0

0
 R

P
M

 a
g

it
a
ti

o
n

, 
a

n
d

 1
0
 L

, 
re

s
p

e
c
ti

v
e

ly
. 

F
o

r 
D

O
 t

h
e

 s
e

t-
p

o
in

ts
 a

re
 s

h
o

w
n

 b
y
 r

e
d

 s
o

li
d

 l
in

e
s

, 
a

n
d

 f
o

r 
p

H
 t

h
e

 d
e

a
d

-

b
a

n
d

s
 a

re
 s

h
o

w
n

 i
n

 r
e

d
 d

a
s

h
e

d
 l

in
e
s

. 
T

h
e
 d

if
fe

re
n

c
e

s
 i

n
 p

H
 m

e
a

s
u

re
m

e
n

t 
d

u
e

 t
o

 t
h

e
 d

if
fe

re
n

t 
a

n
a

ly
s

e
rs

 u
s

e
d

 b
e

tw
e
e

n
 t

h
e

 

s
c

a
le

s
 w

e
re

 c
o

rr
e
c

te
d

 f
o

r 
a

s
 m

e
n

ti
o

n
e

d
 i

n
 m

a
te

ri
a
ls

 a
n

d
 m

e
th

o
d

s
 4

.2
.2

 a
n

d
 4

.2

82 



 

83 

 

 

4.3.2 Cell growth 
 

The cell growth characteristics including viable cell density (VCD), viability, and 

average cell diameter are shown in Figure 2 for the two agitation rates of the ambr 

experiment, and the 10 L experiment. As described in our previous study [19], the fed-

batch culture can be divided into a cell number increase phase (NI phase, day 0-4), a 

cell size increase phase (SI phase, day 4-8), and a stationary phase followed rapidly 

by a death phase (day 8-12). Similar cell growth and viability profiles were observed 

between the two agitation conditions in the ambr cultures. Compared between the two 

scales, the ambr cultures resulted in a slightly higher peak VCD (~8×106 cells×mL-1) 

than the 10 L cultures (~7×106 cells×mL-1). Due to a difference in inoculation method 

(see section 2.1), the ambr cultures are started with 100% fresh medium whereas the 

10 L cultures are started with medium that contains 10% spent medium from the 

inoculum. This led to lower starting nutrient concentrations in the 10 L cultures and is 

a possible cause for a lower maximum VCD in the 10 L cultures. In addition, the two 

experiments were conducted from different pre-culture trains which may also affect 

the first few days of culture. The difference between the inocula of the two scales is 

further investigated in the following transcriptome analysis (section 4.3.6.1). 
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Figure 2. A. Viable cell density (VCD, 106 cells×mL-1) and viability (%), and B. 

average cell diameter (µm) of ambr 800 RPM (closed square, black lines), ambr 

1300 RPM (closed diamond, black lines), and 10 L (close circle, green lines) 

cultures. The error bars represent the standard deviation for ambr (n=5 for each 

condition) and 10 L (n=3) cultures. 

 

4.3.3 mAb production and glycan distribution 
 

Product characteristics including product titer, cell-volume based specific productivity, 

and N-glycan distribution are presented in Figure 3 for the two agitation conditions of 

the ambr and 10 L cultures. In a previous study [19], it was shown that the specific 

productivity increases linearly with the cell volume. The cell-volume specific 

A  

B  
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productivity is constant during the whole process and therefore for comparison of the 

specific productivity the cell volume-based specific productivity is used instead of the 

cell-based value. First of all, the two agitation conditions in the ambr gave similar 

product characteristics. Compared between scales, the ambr cultures yielded a 

slightly higher mAb titer (750 mg×L-1) than the 10 L cultures (650 mg×L-1) (Figure 3A). 

However, the cell volume-based specific mAb productivity (Figure 3B) was the same 

between the two scales, meaning that the difference in mAb titer was caused by the 

difference in viable cell density, since the volume per cell is comparable between 

scales (Figure 2). Thus, the difference in mAb titer was most likely a result of the 

different inoculation methods (as discussed in section 3.2) and was not related to the 

difference between the two bioreactor systems. A difference in the N-glycan 

distribution is observed at culture day 12 between the ambr and 10 L cultures, 

represented by a higher fraction of G0 and G1, and a lower fraction of G0F for the 

ambr cultures compared to the 10 L cultures (Figure 3C). A survey from the historical 

data using the same cell line and culture media system (not published data from the 

Bioprocess Engineering group of Wageningen University) showed a 10-20% variation 

of the mAb N-glycan species, which could be caused by the difference in the pre-

culture batches and in the sampling time. Considering this variation, the difference in 

mAb glycosylation between the ambr and 10 L experiment in this study (Figure 3C) is 

minor.  
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Figure 3. A. mAb concentration (mg×L-1) of ambr 800 RPM (closed square, blue 

line), ambr 1300 RPM (closed diamond, blue line), and 10 L (close circle, green 

line) cultures. B. Cell volume-specific mAb productivity (g×L-1×day-1). C. Relative 

mAb N-glycan composition (%) of ambr 800 RPM, ambr 1300 RPM, and 10 L 

cultures of the culture day 12. N-glycans with different numbers of terminal 

residuals (G: galactose, F: fucose, S: sialic acid) are shown. *: P<0.05, T-test. 

The error bars represent the standard deviation (n=3) of biological triplicates.  
 

A  B  

C  
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Figure 4. Profiles of the extracellular glucose concentration (mM) (A), lactate 

concentration (mM) (B), ammonium concentration (mM) (C), osmolality 

(mOsm×kg-1) (D), and dissolved CO2 (mmHg) (E) of ambr 800 RPM (closed 

square), ambr 1300 RPM (closed diamond), and 10 L (closed circle) cultures. All 

measurements that were done using different methods were corrected between 

the two scales. The error bars show standard deviation for ambr (n=5 for each 

agitation condition) and 10 L (n=3) cultures. 
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4.3.4 Metabolite profiles 
 

The primary metabolite concentrations and osmolality profiles are shown in Figure 4 

for the two agitation conditions tested in the ambr, and in the 10 L cultures. The other 

measured metabolite concentrations are shown in Supplementary B. The two 

agitation conditions in the ambr experiment gave similar results, only the pCO2 profile 

was lower at 800 RPM from day 5 onwards. This was probably the result of increased 

CO2 stripping due to the fact that the 800 RPM condition required a higher gas flow 

rate compared to the 1300 RPM condition to maintain the DO at the set-point. The 

higher gas flow rate was needed because of the lower oxygen transfer from the 

headspace due to the lower agitation rate.  

The glucose concentration profiles showed a similar pattern between the two scales. 

Note that the slightly lower glucose concentration and osmolality on the first days in 

the 10 L bioreactor were caused by the different treatments in inoculum media as 

explained before. The lactate concentration for both scales showed a similar increase 

until day 3. From day 4 to day 8, however, the lactate concentration was up to 20 mM 

higher in the ambr as compared to in the 10 L cultures. This was a consequence of 

both the higher cell density (Figure 2A) and the higher specific lactate productivity 

(Figure 5a) in the ambr as compared to in the 10 L culture. After day 9, all cultures 

showed a sharp increase in the lactate concentration again, which coincided with the 

decrease in viability (Figure 2). The profiles of the ammonium concentration and 

osmolality were similar between the two scales. The culture osmolality increased from 

day 3 on for all conditions due to the feed addition. pCO2 levels were comparable until 

day 5. From day 5 to day 9, a difference in the pCO2 level was observed between the 

two scales. The pCO2 in the ambr 1300 RPM cultures is more comparable to the 10 L 

cultures and they are both higher than in the ambr 800 RPM cultures.  
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Figure 5. Average cell-specific production rates (µmol×106 cell-1×day-1) of 

glucose and lactate (A), ammonium (B), essential amino acids (C), and non-

essential amino acids (D) of the 10 L (black) and the ambr (red) cultures during 

the number increase (NI, stripes), and the size increase (SI, filled) phase. 

Positive values indicate production, negative values indicate consumption. The 

error bars show the standard deviation (n=3) of biological replicates. * shows 

the rate was not constant over the measurement points in time (R2< 0.9). “ ” 

shows a significant difference (P<0.05, T-test) between the values calculated 

from the two compared scales.  
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4.3.5 Cell metabolism 
 

Small differences can be seen in the extracellular product (Figure 3A), lactate (Figure 

4B), and nutrient (Supplementary B) concentrations between the two scales, which 

might be caused by the small difference in viable cell density. In order to compare the 

two scales at the cellular level we investigated the metabolism, by looking at specific 

metabolite consumption and production rates, and the biomass composition. The 

specific rates are the same for the two agitation rates in the ambr (data not shown). 

This demonstrates that the two agitation rates calculated based on two scale-down 

criteria did not cause a difference in cell metabolism. Therefore, in this section, only 

the ambr 800 RPM condition is shown and compared with the 10 L bioreactor. 

 

4. 3.5.1 Specific consumption/production rates 

 

The cell specific rates of the primary metabolites and amino acids are compared 

between the ambr and 10 L cultures for the NI phase SI phase in Figure 5. In a 

previous study [19], it was shown that the cell specific rates are more or less constant 

despite the increase in volume. Slightly higher specific lactate production and 

consumption rates are observed in the ambr cultures compared to the 10 L cultures 

(Figure 5A). A possible cause was the different pH and DO profiles in these two 

systems (Figure 1). First of all, slightly higher pH values from day 5 to 8 and pH spikes 

towards higher values were observed in the ambr cultures (Figure 1D&E), which may 

favor the transport of lactate out of cells [30]. Furthermore, it was reported by Serrato 

et al. (2004) that compared to a constant DO, oscillating DO values resulted in an 

increased glycolytic metabolism and an increased lactate yield. Next to the specific 

rate of lactate production, minor differences in specific rates between the two scales 

can be observed for ammonium during the NI phase, and for a few amino acids in both 

the NI and the SI phase (Figure 4B). Although the values for these amino acids are 

statically different between the two scales, the differences are so small that they are 

not of biological relevance. Overall, the specific metabolic rates of these primary 

metabolites are very comparable between the two scales.  
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Figure 6. (A&B) Score plots generated from the transcriptome results of the 10 

L (filled markers), ambr experiments with 800 RPM agitation rate (open markers), 

and pre-cultures at the moment of inoculation (filled diamond: pre-culture 10 L 

reactor, open diamonds: pre-culture ambr reactor). Samples for pre-cultures are 

grouped by red circles. Samples on the same culture day are grouped by green 

circles. On day 9, one replicate of the ambr culture was excluded due to a 

technical error in the microarray. (C) Venn diagram of the number of genes that 

are differentially regulated between the ambr and 10 L cultures for the pre-

culture samples and the samples on day 3. 
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4.3.5.2 Biomass composition 

 

The cell size increased during the fed-batch process (Figure 2B). In our previous 

study it was shown that the biomass composition changes when the cells increase in 

size [19]. The biomass composition between two scales is compared on day 7 that 

represents the cell size increase phase. In addition to biomass dry weight (DW), the 

relative composition (w/w) of several main biomass components were measured 

including protein, fatty acids, and carbohydrates (Table III). The results show identical 

biomass composition between the 10 L and the ambr cultures on culture day 7. 

Together with the similar cell diameter profiles (Figure 2B), this indicates highly 

comparable biomass dynamics between 10 L and ambr cultures.  

It can be concluded that the process performance in terms of cell growth, product titer, 

glycosylation, and specific consumption/production rates of metabolites in the two 

bioreactors with different scales showed very comparable results. Thus, for the 

specific process used in this study, agitation seems to have no impact on the process 

performance and the scale-down based on equal kLa seems to be the best choice. 

However, this may be different for cells that are more sensitive to shear by agitation 

for which differences between both systems may occur and the P/V value has to be 

taken into account as well. Finally, also the pCO2 level and cell death through sparging 

may still influence the process performance and have to be further studied. 

 

Table III. Biomass composition of the CHO cells from the 10 L and ambr cultures 

on day 7 of the fed-batch cultures.  

 10 L  ambr 

Dry weight (pg×cell-1) 1530 ±77  1483 ±43 

Protein (w/w %) 70.0 ±1.2  71.3 ±1.3 

Fatty acids (w/w %) 4.5 ±0.1  4.4 ±0.2 

Carbohydrates (w/w %) 3.8 ±0.2  3.9 ±0.1 

 

 

 

 

 



 

93 

 

4.3.6 Transcriptome analysis 
 

Gene expression was measured using CHO Gene microarrays of the cells in the 

inocula just before inoculation and on day 3, 5, and 7 in both systems in triplicate. For 

the transcriptome study, only the 800 RPM condition of the ambr experiment is used 

to compare to the 10 L experiment. First, principal component analysis (PCA) is used 

to study the global variation in gene expression between the two scales. Next, 

functional analysis is performed for the genes that are uniquely regulated in one of the 

systems in order to study their relationship with the differences between the two 

bioreactor systems and with cell behavior. 
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Figure 7. Score plots for the transcriptome results of the 10 L (filled markers) 

and ambr experiments with 800 RPM agitation rate (open markers) on day 3, 5, 

and 9. On day 9, one replicate of the ambr culture was excluded due to a 

technical error in the microarray. 

 

 

4.3.6.1 Global variation analysis in gene expression  

 

The principal component analysis (PCA) result is presented in Figure 6A&B, which 

shows the overall variation in gene expression for all analyzed samples including the 

inocula. The inocula are included at first because the difference in the inocula may 

cause differences in cell behavior between both systems. The principal components 

(PC) PC1, PC2, and PC3 represent 33%, 10%, and 6% of the total variation, 

respectively. The other individual PCs have only a minor contribution (less than 5% 

per individual component) to the total variation and are not considered. The variance 

explained by PC1 correlates with the culture development over time. For the variance 

explained by PC2, no clear unique correlation to the culture performance can be found. 

PC3, which represents 6% of the total variance, mainly explains the variance between 

the inocula. After three days of culture, both systems group together on all three 

A B 



 

95 

 

principle components and the variance in gene expression observed in the inocula has 

disappeared. 

The genes that are significantly differentially expressed (FDR.BH<0.05 and absolute 

FC>1.4, see section 2.6) between the two pre-cultures are compared to those that are 

significantly differentially expressed between both systems on day 3 (Figure 6C). 

Between the two inocula, 1089 genes (total number of genes in the pre-culture circle) 

were differentially expressed, while between the two systems on day 3, only 167 genes 

(total number of genes in the day 3 circle) were differentially expressed. Moreover, of 

the genes that were differentially expressed between the inocula, only 14 were also 

differentially expressed between both systems on day 3. Thus the differences in gene 

expression on day 3 involve different genes than those that caused differences 

between the inocula. In conclusion, the difference in gene expression between the 

inocula probably did not cause differences in gene expression between the two scales 

later on and thus did not influence the scale comparison. As mentioned in section 3.2, 

the inocula for the two scales were treated in different ways. This does complicate the 

interpretation of the results a bit for the difference that is observed in the cell and 

product concentration between the two scales, which may now be caused by a 

difference in inoculation or a difference between scales. However, the specific 

metabolic and production rates and the profiles for viability, cell growth, and cell 

diameter are comparable between the two scales. Furthermore, here it was shown 

that on a transcriptome level the effect of different inocula is not present anymore on 

day 3. Thus, it is most likely that the small differences in biomass and product 

concentration are due to the difference in inoculation method and is not associated 

with the bioreactor system. In the future, this can easily be solved by also adding the 

pre-culture directly to the ambr reactor without replacing the medium. 

Next, the differences in gene expression between the ambr and 10 L system are 

studied by comparing the gene expression data from day 3, 5, and 9, excluding the 

inocula samples. The results of PCA are shown in Figure 7. PC1, PC2, and PC3 now 

represent 37%, 10%, and 6% of the total variation, respectively. The other individual 

PCs each have only a minor contribution (less than 5% per individual component) to 

the total gene expression variance and are not considered. Samples taken on the 

same culture day of the two scales are closely grouped on PC1 and PC2 (Figure 7A). 

PC1 again correlates with the culture development over time. PC2 shows a transient 
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pattern that correlates with the cell size increase, since the cell size increased on day 

5 but not on day 3 and 9. Based on PC1 and PC2 there is a slight separation of the 

ambr and 10 L cultures on day 3 and day 9. When looking at the development in time 

as represented by PC1 moving to the right and PC2 moving to a minimum on day 5, it 

seems that the ambr system is slightly ahead of the 10 L cultures in its development. 

In agreement with this, slightly larger cell diameters during the SI and the stationary 

phase are observed in the ambr cultures (Figure 2B). PC3 relates to the difference 

between the two scales. As can be seen the difference becomes more prominent for 

the later stage of the cultures (day 5 and 9). PC3 describes 6% of the total variance, 

which is much less than the variance that is due to the changes in gene expression 

over time (47%, PC1+PC2). To analyze whether this global difference in gene 

expression between the scales is relevant for the evaluation of the scale-down, the 

function of the genes that are differentially expressed between both systems were 

subsequently studied in more detail. 
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Figure 8. Venn diagram of the number of genes that are differentially regulated 

from day 3 to 5, 5 to 9, and 3 to 9 for the ambr and 10 L cultures. Red numbers 

indicate up-regulation, blue numbers indicate down-regulation. Numbers in 

brackets from day 3 to 9 show the number of genes significantly regulated from 

day 3 to 9, but not from day 3 to 5 and day 5 to 9. The number of regulated genes 

that are unique to each system, and are common for two systems (dash boxes) 

are also shown. A gene is unique to a system means it is differentially expressed 

in at least one of the three time comparisons for that system and never 

differentially expressed in one of the three time comparisons for the other 

system
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4.3.6.2 Gene functional analysis 

  

For the functional analysis, first, for each system the genes that are significantly 

differentially (as shown in section 2.6) expressed from day 3 to 5, day 5 to 9, and day 

3 to 9 are selected. Genes are considered differentially expressed between two days 

if the FDR.BH is smaller than 0.05 and the absolute fold-change (FC) is larger than 

1.4 (section 2.6). Next, the differentially expressed genes over time are compared 

between the ambr and 10L system and the result is shown in Figure 8. Note that the 

day 3-9 comparison picks up genes for which the expression level goes up or down 

slowly in time such that they were still insignificant in the 3-5 and 5-9 time frames. 

However, the day 3-9 time frame misses genes that are first up-regulated and then 

down-regulated or vice versa. These genes are picked up by the day 3-5 and 5-9 time 

frames. The number of the genes that slowly change over time are shown between 

brackets in the day 3-9 time frame in Figure 8. Their number is roughly half of the total 

regulated genes from day 3-9. The Venn diagrams show for each time frame the 

number of genes that change in the same way for both systems, and the number of 

genes that change uniquely in a specific system and not in the other. From these 

comparisons, genes are selected that are only regulated in time in one system and 

never in the other system (unique for the system) as well as the genes that are always 

regulated in the same way in both systems (common for two systems). The numbers 

are given at the bottom of the figure. In this way differences in gene expression 

between the two systems due to time delays are filtered out. It can be seen from 

Figure 8 that: (i) The amount of commonly regulated genes is about twice the uniquely 

regulated genes for each system except for the up-regulated genes in ambr from day 

5-9 where it is more or less comparable. (ii) From day 3-5 the amount of uniquely 

regulated genes is the same between the two systems whereas from day 5-9 it is twice 

as much in the ambr as compared to the 10 L system. This is in agreement with the 

observation in the PCA analysis that the difference between both systems becomes 

progressively more with time. This may be related to the larger fluctuations in 

conditions, like the pH, DO, and nutrient concentrations in the ambr system. (iii) The 

total amount of uniquely regulated genes in two systems is 4059 (total number of 

genes in “unique for each system” in Figure 8), which is in the same range as the total 

amount of common genes in two systems (5304, “common for two systems” in Figure 

8). The total number of uniquely regulated genes is higher in the ambr than in the 10L 
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reactor, which again may be due to the higher fluctuations in conditions like pH, DO, 

and nutrient concentrations. 

The biological function of the identified genes that were uniquely regulated in one of 

the systems (the genes in “unique for each system” in Figure 8) are next categorized 

based on the KEGG pathway database and their up/down-regulations are presented 

in Supplementary C. The aim is to study whether these genes specifically belong to 

certain pathways that can be linked to the differences that exist between the scales. 

The genes unique to a system are distributed over almost all the functional pathways, 

including global metabolism of carbohydrate, protein, lipid, nucleotide, energy, signal 

transduction, etc. In the ambr cultures, overexpression of the hypoxia-inducible factor 

1 (HIF-1) signaling pathways (Supplementary C) is observed. HIF-1 is known to 

respond to extracellular oxygen levels and to play a role in anaerobic respiration and 

lactate formation [32]. The higher regulation of the HIF-1 signaling pathways in ambr 

may be caused by the fluctuations in DO (Figure 1) and may be related to the higher 

lactate production (Figure 5A). Moreover, as mentioned before, higher pH levels from 

day 4 to 8 and higher pH spikes towards higher values are observed in the ambr 

cultures (Figure 1D&E), which would favor the transport of lactate out of cells. The 

transport is done by H+-monocarboxylate cotransporters (MCTs) [33]. Among several 

MCTs (MCT1-MCT4) that are known for lactate transport, MCT2 (encoded by 

SLC16A7 gene) has a higher affinity for substrates compared to the other MCTs [34] 

and it showed a higher up-regulation from day 3-9 in the 10 L cultures (3.6 FC, 

FDR.BH=0.00) compared to that of in the ambr cultures (2.2 FC, FDR.BH=0.00) (see 

the data in Supplementary A). This might be associated with the differences in lactate 

production/consumption between the two systems (Figure 5A). Regulations of MCT1, 

MCT3, and MCT4 are however similar between the two systems. Furthermore, for the 

N-glycan biosynthesis pathway (Supplementary C), the one up-regulated gene 

unique to the 10 L system is Fut8 (1.5 FC from day 3-9, FDR.BH=0.00, see the data 

in Supplementary A) which gene encodes the fucosyltransferase that is responsible 

for the α-1,6-fucosylation. This agrees with the observation of the higher percentage 

of fucosylated mAb in the 10 L cultures (Figure 3C).  

In summary, only for a few genes a possible relationship between their expression and 

differences that exist between both scales can be found, which could be related to the 

fact that the differences between both systems in terms of process performance are 
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small. Given this fact, the fraction of uniquely regulated genes of 20% is rather high 

(4059 uniquely regulated genes out of a total of 20858, Figure 8). Possibly the 

difference in gene expression of these genes between both scales represents an 

adaptive response to differences that exist between scales, leading to a comparable 

process performance. Overall, this study shows that transcriptomics is a sensitive tool 

to measure differences in the physiological response of cells to different bioreactor 

environments. However, these differences in gene expression could not be related to 

the process performance, which was comparable between scales or differences in the 

bioreactor systems. To be able to rate the importance of the observed differences, 

comparison is needed on gene expression data of other scale comparisons from both 

successful and failed scale-up/scale down experiments. These data are currently 

lacking in literature. 

 

4.4 Conclusion 

 

For the specific cell line and the fed-batch process tested in this study, the results 

obtained in the ambr at two different agitation rates are comparable to that obtained 

in a 10 L bioreactor in terms of cell growth, metabolism, productivity, and product 

quality. Transcriptome analysis showed differences in gene expression between both 

systems. The number of genes that were significantly regulated over culture time in 

only one of the systems and never in the other was higher in the ambr (2455) than in 

the 10 L system (1604), which may be related to the higher fluctuation of conditions 

like DO, pH and nutrient concentrations in the ambr. In general, these genes were 

spread over all KEGG pathways and could not be linked to differences in bioreactor 

system or differences in cell physiology. For a few genes possible functional 

relationships with differences in DO and pH patterns, lactate metabolism, and 

glycosylation pattern could be identified. Furthermore, transcriptome analysis showed 

that a difference in gene expression between the inocula was not present anymore 

after three days of culture, and thus did not influence the system comparison. In 

addition to existing literature, this study further strengthens the opinion that the ambr 

system gives representative culture performances for the 10 L bench-scale bioreactor. 

Differences in gene expression between scales could be observed by using 

transcriptome analysis. However, the differences could not be linked to specific 
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process conditions. More studies are needed to determine the sensitivity of the 

transcriptome analysis on scale comparison.
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Appendix A. Supplementary data 
 

Supplementary material related to this article can be found, in the 

online version, at doi:https://doi.org/10.1016/j.jbiotec.2018.05.0



 

107 

 

 

 

 

Chapter 5  
 

 

 

 

 

Transcriptome analysis as a tool for 
characterizing a CHO cell perfusion 

culture 
 
 
 
 
 
 
 
 
 
This chapter is submitted as  

 

Abdulaziz A. Alsayyari, Jort Altenburg,, Jos A. Hageman, Guido J. Hooiveld, Rene 

H. Wijffels, Dirk E. Martens, “Transcriptome analysis as a tool for characterizing a CHO 

cell perfusion culture”.



 

108 

 

 Abstract  
 

Perfusion cultivation technology provides a practical alternative for cost-effective and 

efficient glycoprotein production for continuous biomanufacturing. In this study, we 

explore the use of transcriptomic profiling for characterisation of CHO cell perfusion 

cultures. This study shows that transcriptome data can be linked to specific phases of 

a perfusion process like a period characterized by a cell size increase and a period 

with a specific nutrient limitation. More importantly, quantitative transcriptome data 

visualized using Principle Component Analysis (PCA) show a clear separation 

between the steady state data points and the other data points. During the steady state 

a high consistency in the glycosylation patterns is observed while for the non-steady 

state period variation in glycosylation patterns are seen. This paper shows the potential 

of integrating gene expression data into process development and process 

characterisation in mammalian cell perfusion culture. 
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5.1 Introduction 
 

There is an increasing industrial interest to implement continuous biomanufacturing for 

the production of therapeutic glycoproteins in order to reduce the production costs [1]. 

Furthermore, both regulatory authorities and industry support continuous 

manufacturing as a way to reduce variability in product quality [2]. With respect to the 

upstream cultivation process, perfusion technology forms the fundamental cornerstone 

for continuous biomanufacturing. 

In perfusion cultures cell concentrations can be reached that are substantially higher 

than in fed-batch processes and consequently higher volumetric productivities are 

achieved [3]. Furthermore, a steady state can be reached that in theory can be 

maintained for longer periods of time, resulting in less down time and thus contributing 

to a further increase in volumetric productivity. In this steady state, the conditions are 

constant in time, which in theory should result in a more constant product quality over 

time and a reduction in release testing of product quality. With a proper characterisation 

and control of the steady state, release testing may not be necessary anymore and 

product release can be done based on measurement of the critical steady state 

parameters. Finally, the higher volumetric productivity means that smaller bioreactor 

systems can be used meaning scale-up from clinical to commercial scale is easier and 

can be done faster.  

In the past robustness and scale-up of the cell separation systems were a problem, 

which was the main cause preventing the use of perfusion systems [4]. Thus, in the 

last 30 years, perfusion cultivation was used mainly for the production of unstable 

therapeutic proteins, because the residence time of the protein in the reactor can be 

relatively short when using high perfusion rates [5]. For the more stable pharmaceutical 

proteins, such as monoclonal antibodies, fed-batch was and is still the preferred 

cultivation strategy [6], despite the fact that in principle it is less cost-effective than 

perfusion cultivation. 

With the development of more robust and single use separation devices like the ATF 

system [7], perfusion technology has become more robust, scalable and flexible. 

Perfusion processes have a feed rate of usually 1 to 4 reactor volumes per day 

supplying fresh nutrients, a perfusion flow through the filter of spent medium and a 

certain bleed rate of cells and spent medium directly out of the bioreactor. The bleed 

rate usually has a value between 0 and 20% of the reactor volume per day, which is 
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needed to maintain an acceptable viability. Because the separation efficiency of the 

filter is often not 100% also the perfusion flow contributes to the bleed. The ideal 

perfusion process consists out of a short growth phase followed by a long steady state 

production phase. In the current practice, however, the period before steady state is 

reached may still be quite long and dynamic and the product quality may vary and be 

different from that in the steady state phase. Consequently, the volumetric productivity 

during part of the process will be suboptimal. In addition, part of the product produced 

may not be of sufficient quality and has to be discarded, which further lowers the 

volumetric productivity.  

In order to reach steady state earlier and achieve higher volumetric productivities 

during the steady state a good understanding of the relation between the different 

process parameters, like feed rate, feed composition and bleed rate, and cell 

performance is needed. Moreover, perfusion cultivation in biopharmaceutical practices 

are associated with extra validations compared to fed-batch cultivation in terms of 

cellular performance, definition of the steady state phase, and quality compliance. Next 

to other analytical methods, transcriptome analysis is possibly a good tool to 

characterise the physiological state of the cells and find the relation between the 

physiological state and the different process parameters. 

The aim of this study is to evaluate transcriptomics as a tool to characterize the 

dynamics of CHO-cell perfusion cultures as well as the steady state production phase. 

Quantitative transcriptome data visualized using principle component analysis (PCA) 

show a clear separation between pre-steady state and steady state. In addition 

principal components could be linked to culture parameters like, cell size, high cell 

density and metabolic activities.  

 

5.2 Materials and Methods 
 

5.2.1 Cell line and Culture medium  
 

A recombinant CHO cell line producing an IgG was used (provided by Bioceros Holding 

BV, The Netherlands). The cells were grown in ActiCHO P Base (GE Lifesciences, 

United Kingdom), supplemented with 4mM glutamine and 0.5% Anti-Clumping Agent 

(both from Invitrogen, United State). 
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 Two selection markers (200 µg/mL ZeocinTM and 5 µg/mL Blasticidin both obtained 

from life Technologies, USA) were applied in the pre-cultures for four passages. During 

scale-up for inoculation as well as in the perfusion run no selection markers were 

added. Perfusion medium was sterilized by 0.2 µm microfiltration using Sartobran® P 

300 filters (Sartorius, Germany), then stored directly at 8°C for later use within 5 days.  

The pre-culture was incubated in un-baffled shake flasks at a shaking speed of 100 

rpm, a humidified atmosphere with  5% CO2 at 37°C (Multitron CO2, Infors HT).  

 

5.2.2 Bioreactor Operation 
 

The perfusion run was carried out in a 3L bioreactor with a 1.5L working volume 

(Applikon Biotechnology, Netherlands) connected to a DASGIP® control system 

(Eppendorf, Germany). The cell retention device utilized was a 10L BioSep system, 

and an APS 990 controller (Applikon Biotechnology, Netherlands). The controller was 

set at run / stop cycle times of 10 min / 3s and a power level of 2W. The perfusion rate 

was 1 RV/day using a Watson-Marlow 205U (Watson-Marlow, England) peristaltic 

pump connected to the APS 990 controller. The recirculation tube had a length of 0.5 

m and an internal diameter of 5 mm. The recirculation rate was maintained at 2.5 times 

the perfusion rate. A cell bleed of 0.1 RV/day was applied by using a dip tube. To 

ensure a constant reactor volume the reactor was placed on a balance, which was 

used to control the feed rate. The bioreactor was inoculated at initial density of 3.0 × 

105 viable cells/mL. 

 

5.2.3 Bioanalytical methods 
 

Daily cell counts were done using the trypan blue exclusion method in combination 

with a TC20™ Automated Cell Counter (Bio-Rad Laboratories, United States), as well 

as with manual cell counts using a disposable counting chamber (INCYTO, Korea). 

Glucose and lactate levels of the culture were measured daily by an YSI 2700 

Biochemistry Analyser (YSI Life Sciences, United States). Samples for product quality 

analysis and amino acids analysis were centrifuged at 10000 x g for 15 minutes and 

the supernatant was stored at -20°C until further analysis. The spent medium 

composition was analysed using NMR (Spinnovation biologics, Netherlands). The 
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product concentration was measured using an Agilent 1290 Infinity Binary LC System 

UHPLC and Bio-Monolith Protein A Column (Agilent Technologies, United States).  

 

5.2.4 N-glycosylation analysis 
 

3ml samples were desalted and purified with the Äkta Pure System (GE Lifesciences, 

United Kingdom) using a HiTrab MabSelect SuRe column (GE healthcare, United 

States). Samples were then concentrated and N-glycans enzymatically detached using 

PNGase F (Roche, Switzerland). In a next step, 2-AB reagent (Roche, Switzerland) 

was used to label oligosaccharides. Finally, N-glycans were analysed with a HILIC 

UPLC System on an ACQUITY UPLC BEH Glycan Amide column [8].  

 

5.2.5 Gene expression data analysis 
 

Gene expression samples were prepared by centrifuging 1.5 mL cell suspension at 

300 x g for 15 minutes. Subsequently the supernatant was removed and the cell pellet 

was resuspended in 2 mL TRIzol® reagent (Life Technologies, United States) and 

immediately stored at -80°C. Samples stored at -80°C were thawed and next purified 

using the RNeasy Mini kit (Qiagen, USA), according to the manufacturer instructions. 

The total RNA concentration was quantified by a Nanodrop 200 (Thermo Scientific, 

Wilmington, DE). The RNA integrity number (RIN) was determined by RNA 600 Nano 

kit using 2100 Bioanalyzer (Agilent, Santa Clara, CA). Only RNA with RIN > 8 was 

used in transcriptome profiling analysis.  

Affymetrix CHO Gene 2.1 ST arrays were used for transcriptome profiling (Affymetrix, 

Santa Clara, USA). In short, 100 ng of total RNA was labelled by the Whole-Transcript 

Sense Target Assay (Affymetrix) and hybridized to Affymetrix CHO Gene 2.1 ST 

arrays, according to the manufacturer instructions. The quality control and the data 

analysis pipeline, including normalization, have been described in detail previously [9] 

[10]. Normalized expression estimates of probe sets were computed by the robust 

multiarray analysis average (RMA) algorithm [11], as implemented in the Bioconductor 

library AffyPLM. Probe sets were redefined according to Dai et al. [12] using well-

annotated reference sequences based on the CriGri_1.0 genome assembly (NCBI 

Reference Sequence Project (RefSeq) Release 72), which resulted in the profiling of 

60626 annotated sequences (transcripts) (custom CDF v20). After averaging the 
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expression levels of probe sets targeting the same gene expression data for 20859 

unique genes was obtained, which was used for all subsequent analyses. 

 

5.2.6 Calculations 
 

The separation efficiency is defined as: 

𝑆𝐸 = 100 ∙
𝐶𝑥𝑣𝑟−𝐶𝑥𝑣𝑝

𝐶𝑥𝑣𝑟
 (1) 

Where SE is the separation efficiency (%), and Cxvr, Cxvp are respectively the viable 

cell concentration in the bioreactor and in the perfusion flow (cells∙m-3). 

The specific growth rate is calculated from a balance over the viable cells: 

𝑑𝐶𝑥𝑣𝑟

𝑑𝑡
= −𝐵𝐶𝑥𝑣𝑟 − 𝑃(1 − 𝑆𝐸

100⁄ )𝐶𝑥𝑣𝑟 + 𝜇𝐶𝑥𝑣𝑟 − 𝜇𝑑𝐶𝑥𝑣𝑟 (2) 

Where B and P are respectively the specific bleed rate (day-1) and specific perfusion 

rate (day-1), and µ and µd are respectively the specific growth and death rate (day-1). 

The specific death rate is calculated from the dead cell balance assuming that the 

separation efficiency is the same as for viable cells and there is no cell lysis: 

𝑑𝐶𝑥𝑑𝑟

𝑑𝑡
= −𝐵𝐶𝑥𝑑𝑟𝜇𝑑 − 𝑃(1 − 𝑆𝐸

100⁄ )𝐶𝑥𝑑𝑟 + 𝜇𝑑𝐶𝑥𝑣𝑟 (3) 

Where Cxdr is the dead cell concentration in the reactor. 

The specific production of the metabolites including product is calculated form their 

balance according to: 

𝑑𝐶𝑖

𝑑𝑡
= 𝐹(𝐶𝑖

𝑖𝑛 − 𝐶𝑖) + 𝑞𝑖𝐶𝑥𝑣𝑟 (4) 

Where F is the specific feed rate (day-1), which is the sum of the specific bleed and 

perfusion flow (F=B+P), Ci
in, Ci are respectively the concentration of compound i in the 

incoming feed flow and the bioreactor (mol.m-3, g.m-3) and q is the specific production 

rate of compound i (mol.cell-1.day-1, g.cell-1.day-1), where a negative value indicates 

consumption. 

The accumulation term at the left side of equation 2,3 and 4 is not always zero and is 

estimated by: 

𝑑𝐶𝑖

𝑑𝑡
(𝑡2) =

𝐶𝑖(𝑡2)−𝐶𝑖(𝑡1)

𝑡2−𝑡1
+

𝐶𝑖(𝑡3)−𝐶𝑖(𝑡2)

𝑡3−𝑡2

2
 (5) 

Where t1,t2,t3 are three consecutive time points (day). 
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5.3 Results and discussions 
 

A perfusion culture was run for a period of 39 days. The traditional key performance 

indicators (KPIs) like cell density and viability and the concentrations of various 

metabolites were measured daily and will be presented first. Next gene expression 

data will be presented and related to the KPIs. 

 

5.3.1 Cell growth 
 

Figure 1A&B show the cell concentration, viability, total biomass concentration as 

represented by total cell volume, and cell diameter. The culture was operated as a 

batch culture during the first three days. At day 3 perfusion and bleed were started at 

a rate of respectively one reactor volume per day and 0.1 reactor volume per day, 

which was maintained for the rest of the culture. From the start of the culture the cell 

concentration increased until day 8, during which the cell diameter was constant. After 

day 8 a sharp drop occurred in the cell concentration until about day 15 and at the 

same time the cell diameter increased from about 16 µm to 27 µm, which is equivalent 

to an about 5 times increase in cell volume. Notably, the biomass concentration as 

represented by the total cell volume per ml remained constant from day 8 until day 15. 

These changes can be explained by the fact that cells stop dividing, while biomass 

growth continues. The stop of cell proliferation can clearly be seen from the specific 

proliferation rate shown in Figure 1C.  During this period from day 8 to day 15 a slight 

drop in viability occurred, which is related directly to the negative proliferation rates in 

Figure 1C. The stop of cell proliferation and concomitant increase of cell size was also 

observed earlier in fed-batch cultures using the same cell line and basal medium. In 

that study, it was shown that cells were arrested mainly in the G1/G0 phase and to a 

minor extent also in the G2/M phase [13].  

 

From day 15 on cells started dividing again at a slow rate and at the same time the cell 

diameter dropped to the original values on day 20. During this period, the cell 

concentration remained more or less constant and the biomass concentration 

decreased with a factor 3. From day 20 on the cell diameter remained constant and 
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the cells grew with a relatively high growth rate to a cell density of about 14 million per 

ml on day 26, after which the cell concentration total cell volume and cell diameter 

remained constant and a steady state is reached.  

To confirm that the observed dynamics is reproducible, a validation run was done. The 

results in comparison to the first run are shown in Appendix figure A2, A3, and A4. The 

validation run was terminated due to a contaminations on day 14. During these first 14 

days, containing the main fluctuation, the results are very similar, showing that at least 

the main variation in cell concentration, glucose and lactate concentration and cell size 

is reproducible. 

For CHO perfusion processes with a fixed perfusion and bleed rate the time to reach 

steady state is usually around 10-15 days [5,7]. This is somewhat shorter than the 

length of the dynamic period here, which is probably due to the growth arrest and cell 

size increase, which is a characteristic of the used medium cell line combination. For 

other cell lines substantial longer dynamic periods have been observed [14] . The 

dynamic period can be substantially shortened if the cell concentration is controlled at 

a certain level by changing the bleed rate using an on-line biomass measurement tool 

[15]. The cell concentrations reached are lower than those obtained in literature, which 

are usually between 40-60 106/ml for comparable perfusion and bleed rates. Possibly 

this is due to glucose limitation as during steady state both glucose and lactate 

concentration are below the detection limit.  

In summary, it took about 26 days for the system to reach steady state. The relatively 

long dynamic period is in this specific situation seems related to the changes in cell 

size that occur in this period. 
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Figure 1 Cell performance data of a perfusion culture. Perfusion and bleed were 

started from day 3 on: A: Cell density (diamonds) and viable cell concentration 

(circles), B: Cell size (circles) and total cell volume (diamonds), C: Specific 

cellular proliferation rate. The dashed line indicates the specific bleed rate, D: 

Product concentration (circles) and cell specific productivity (diamonds). 

 

5.3.2 Product formation and glycosylation patterns 
  

The product concentration shows the same fluctuation as the cell density and became 

constant at day 26 (figure 1A). The specific productivity dropped from the beginning of 

the culture until day 8 and next stayed at a constant low value of 12 pg/cell/day until 

about day 15. From day 15 on it increased to the original value and became constant 

from day 26 on with a value of about 20 pg/cell/day. Thus, the period of low specific 

productivity coincided with the period where proliferation is arrested and the increase 

in cell size. This is in contrast to the work of Pan et al. where the cell specific 

productivity increased from about 7.5 pg/cell/day to 15 pg/cell/day during the cell size 

increase [16].  

The glycosylation pattern is considered as a critical quality attribute for the glycoprotein 

therapeutics due to its clinical impact in terms of efficacy, pharmacokinetics, and side 

effects [17]–[20]. The glycosylation pattern consists of several glycan attributes such 

as fucosylation, galactosylation, and sialylation [21]. Therefore, the analysis of 

0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40

V
ia

b
il
it

y
[%

]

C
e

ll
D

e
n

s
it

y
[x

1
0

6
c
e
ll
s
/m

L
]

Days

0

10

20

30

40

50

60

70

80

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 T
o

ta
l 

C
e
ll
 V

o
lu

m
e
 [

c
m

3
]

C
e

ll
 D

ia
m

e
te

r 
[µ

m
]

Days

0

5

10

15

20

25

30

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 5 10 15 20 25 30 35 40

C
e

ll
s
p

e
c
if

ic
P

ro
d

u
c
ti

v
it

y
 

[p
g

/c
e
ll
/d

a
y
]

P
ro

d
u

c
t 

C
o

n
c
e
n

tr
a
ti

o
n

 [
g

/L
]

Days

A

C

B

D

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40

S
p

e
c
if

ic
G

ro
w

th
R

a
te

[d
-1

]

Days



 

117 

 

glycosylation patterns is essential and part of the list of KPIs during the upstream phase 

[22].  

 

The glycosylation profiles are plotted in Figure 2 and show the four major glycoforms 

(G0, G0F, G1, G1F, and G2F). The sample points were chosen in such a way that they 

represent various growth phases in the culture. The first five samples (day 7, 12, 13, 

14 and 16) represent the pre-steady state, whereas the last four samples (day 27, 31, 

34 and 40) represent the steady state. The steady state samples as expected show 

high consistency in the glycosylation pattern as was also observed by others [23]. In 

the pre-steady state the glycosylation pattern was clearly not consistent, which can be 

attributed to the varying conditions in the culture. Nevertheless, for some days (day 7 

and 14), the profiles were still comparable to steady state glycosylation profile.  

The main change occurring in the glycosylation profile was a drop in G0F at day 12 

and a concomitant increase in G1. From day 12 to day 14 both glycoforms returned to 

the steady state level. This change occurred during the cell size increase part and thus 

also during the period of low specific productivity. Previous studies have shown the 

correlation between variations in glycosylation pattern and some of the process 

parameters such as dissolved oxygen tension (DOT), pH, temperature, and nutrient 

addition [24], [25]. Therefore, these changes in glycosylation pattern may be related to 

the changes in the nutrient and waste product concentrations during this period from 

day 5-18 (supplementary file A).  
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Figure 2: Glycosylation patterns: N-glycan structure distributions over time of 

the perfusion cultivation. 

 

5.3.3 Metabolites: glucose and lactate concentration 
 

During the first days, the glucose was rapidly consumed and lactate was produced as 

shown in Figure 3. The glucose concentration dropped below the detection level at day 

6. From day 5 on lactate was consumed and the concentration was below the detection 

limit on day 7 which correlates with the stop of cell division. The lactate concentration 

started increasing slowly again from day 11. Likewise, from day 15 the glucose 

concentration increased again, which can be explained from the drop in the biomass 

concentration as represented by the total cell volume. This was followed by a more 

rapid increase in lactate concentration from day 16 till about day 21, which agrees with 

the more rapid proliferation and high glucose concentrations during this period. 

Glucose reached a peak at day 19 and with the increase in cell density dropped to zero 

at day 22. As soon as the glucose concentration became zero, the cells switched again 

from lactate production to consumption. The lactate concentration became zero at day 

26 and from day 26 on both glucose and lactate were below the detection limit. Both 

at the start of the culture as well as during the period from day 16 to 21 rapid growth 
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correlates with glucose concentrations higher than zero and the production of lactate. 

As soon as the glucose concentration dropped to zero lactate was consumed again. 

Glucose and lactate concentrations of zero correlate with the cell size increase at day 

7. However, also at day 21 at the start of the steady state phase their concentration 

became zero and no cell size increase was observed. This indicates that the fact that 

glucose and lactate are limiting is at least not the sole reason for the cell size increase. 

Figure 3 Glucose (open diamonds) and lactate (open circle) concentration as a 

function of time. 

 

5.3.4 Other Organic acids  
 

Next to lactic acid also citric acid, fumaric acid, formic acid, acetic acid, isovaleric acid 

and butyric acid were produced. Formic acid reached a peak at day 10 of 6 mM and 

then decreased to a more or less steady state value between 2 and 3 mM at day 15. 

Fumaric acid, butyric, 2-hydroxy butyric acid and isovaleric acid had a comparable 

concentration pattern with an increase until day 10 followed by a decrease and an 

increase to a more or less constant value. Concentrations were a bit lower than for 

formic acid being about 0.5 mM for fumaric acid, 0.35 for butyric, 2-hydroxy butyric 

acids and 1.2 mM for isovaleric acid. Acetic acid concentration varied between 0 and 

0.7 mM, but seemed to level of around 0.3 mM. Citric acid showed a constant 
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concentration between 0.8-1.0 mM. Succinic acid and pyruvic acid were both 

consumed, where succinic acid became constant at 5 mM around day 15 and the 

pyruvic acid concentration became 0 mM after day 7. Moreover, the concentrations of 

all acids were constant from day 26 till the end of the culture, which confirms that a 

steady state was reached.  

 

All amino acid concentrations showed a very comparable pattern with a minimum at 

day 7 and a peek at day 18 followed by a decrease to the steady state value at day 24. 

After day 24 the concentrations remained more or less constant, demonstrating again 

that indeed a steady state was reached. Glycine is the only amino acid with a different 

pattern with a peak at day 10 after which the concentration dropped to a more or less 

constant value from day 18 on. The concentration of most amino acids stayed above 

the detection limit. Only tyrosine (day 7) arginine (day 7) and cysteine (day 7 and 27, 

35 and 37) became zero. However, amino acid concentrations are not analysed every 

day and it cannot be excluded that one of the other amino acids became zero at one 

of the other days. For example, glutamine and asparagine concentrations were quite 

low at day 7, and may have been zero at day 8 or 9. The cell size increase is possibly 

related to the limitation of tyrosine and arginine at day 7. Note that during the steady 

state (form day 24) these amino acids are not limiting. Other candidates triggering the 

cell size increase may be cystine, glutamine and asparagine. However, the 

concentrations of glutamine and cystine were also quite low during the steady state 

phase where no size increase occurred, which seems to exclude these amino acids. 

The complete amino acids analysis can be found in supplementary file-A. 

 

5.3.5 Transcriptomic analysis  
 

To study whether transcriptome analysis can further support characterisation of the 

culture, samples were analysed for almost all days (except day 0-3, 12, 35,and 38-40). 

In the PCA of all data points, day 16 and 30 were for the first 4 PCs always in a very 

different position than the surrounding days as shown in appendix figure A.1. In 

addition, PC2 was based almost entirely on these two points. Based on this it was 

assumed that something went wrong with the transcriptome analysis of these points 

and they were removed from the PCA analysis. Figure 4 shows the result of principal 

component analysis for PC1 to PC3, which together represent 45% of the variation. 
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PC1 separates days 9 to 18 from the rest with day 8 and 19 being in the transition 

zone. This correlates very well with the increase in cell size and the stop of cell 

proliferation. PC2 separates day 4,5,6, and 13-22 from the other points, which 

correlates very well with the presence of glucose. Since the lactate concentration 

correlates with the glucose concentration it of course also correlates with the lactate 

concentration. Finally, there is also some correlation with the pattern seen for the 

concentration of most amino acids. PC3 clearly separates culture time with days 4-11 

separated from the later days with the exception of day 19 and 36. This correlates with 

the proliferation rate, which is higher than 0.5 day-1 until day 7 and stays below this 

value after that. It also correlates very well with the concentrations of some organic 

acids. Especially fumaric acid, which increases to a constant high value around day 11 

and succinic acid which declines to a constant low value around day 11. Butyric acid 

and isovaleric acid also increase from day 0 to a high value, however they reach high 

values earlier on day 7. For both plots (PC1, PC2 and PC3) the samples from day 26 

to the end of culture always closely group together, with the exception of day 36 (PC3) 

and 39 (PC2) supporting that a steady state was present during these days. In 

summary, transcriptome data clearly identify the different phases in the culture. 

Although some parameters become constant 1-2 days before day 26, the 

transcriptome data clearly show that the steady state period ranges from day 26 to 39, 

since these points are the only points that group together for all three principal 

components and do not show a clear order in time. 

 

Furthermore, it is possible to discriminate specific events in the culture like a change 

in cell size and the presence of glucose. Therefore, the transcriptomic analysis is a 

powerful tool to indicate the physiological state of the cells  during perfusion cultivation. 

Also, gene expression  data can be used to identify gene expression patterns that are 

considered optimal for harvesting time points with a good product quality.  
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Figure 4: Principal Component Analysis score plots for PC1 vs PC2 and PC1 vs 

PC3: Day 4-25 is the  pre steady state (black), day 26-39 is the steady state phase 

(red).  

 

5.4 Conclusions 
 

In this study, we study the use of transcriptomics to further characterize perfusion 

cultures. The dynamic period before reaching steady state was quite long, which is 

probably related to the stop of cell proliferation and accompanying change in cell size 

during this period. Quantitative transcriptome data were used as a key performance 

indictor (KPIs). Thus, transcriptome analysis was able to identify the steady state and 

the transcriptome data correlated well with events occurring in the perfusion cultivation 

such as the stop of cell proliferation, the increase in cell size, and nutrient 

concentrations. Furthermore, studying the transcriptome could be an useful approach 

to improve understanding of the perfusion process and CHO cell biology. Moreover, in 

combination with other analytical data, transcriptome data have potential to become a 

KPI for the batch definition and the release of batches. 
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Appendix 

Figure A.1: Principle Component Score plot showing PC1 vs PC2 including 

the two outliers on day 30 and day 16, day 4-25 represent the pre steady 

state (black), and day 26-39 represent the steady state phase (red).  
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Figure A.2: The total cell density (TCD) and viable cell density (VCD) for the 

validation run (Run 2) and the experimental run (Run 1) until day 14. Run 2 was 

terminated on day 14 due to a contamination,. Run 1 continued until day 40.  

 
 

 
Figure A3: Glucose and Lactate concentration for the  validation run (Run 2) and 

the experimental run (Run 1) until day 14. Run 2 was terminated on day 14 days 

due to a contamination,. Run 1 continued until day 40. 
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Figure A4: Cell size for the validation run (Run 2 ) and the experimental run (Run 

1) until day 14. Run 2 was terminated on day 14 due to a contamination,. Run 1 

continued until day 40.  
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Chapter 6  
 

 

 

 

 

General discussion 
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 6.1 Background 
 

In recent years, a better understanding of disease progression and on the design of 

proteins have led to a major increase in the number of antibody therapeutics [1]. In 

combination with improvements in manufacturing this has led to new treatments for 

complex diseases such as cancer and autoimmune diseases. However, the costs per 

patient of antibody therapeutics are still very high, which at least in part is due to the 

high development costs of a new product including clinical trials and the relatively high 

failure rate of new potential medicines. Part of the development costs as well as 

causes for the high failure rate are related to the development of the manufacturing 

process. Development of the manufacturing process must be fast and robust to quickly 

have material for clinical testing and be on the market as quick as possible. Currently, 

many of the first developed glycoprotein therapeutics products will be coming off 

patent or are already off patent, which allows for the development of biosimilars. A 

biosimilar is a biological product that is highly similar to the original product (reference 

product) in terms of safety, efficacy and quality and is usually made by a different 

company and process [2]. In general the biosimilar regulatory path requires less 

clinical testing leading to lower costs and faster development. Thus, the expectation 

is that the price of biosimilars can be on average about 30% lower than the reference 

products [3]. Currently, more than 41 biosimilar products have received marketing 

authorization in the European Union (EU) [4]. Fourteen of these products are 

biosimilars of which six are biosimilars for reference antibodies, namely infliximab, 

adalimumab, rituximab, etanercept, trastuzumab, and bevacizumab (see Table 1). 

Chinese Hamster Ovary (CHO) cells are considered to be the most reliable host for 

producing proteins with complex structures and for ensuring correct post-translational 

modification (PMT) [5]. In addition, they are known to have a low susceptibility to 

certain viral infections and have a low risk of triggering unwanted immune reactions 

[6]. Consequently, CHO cells are the production platform of 70% of the glycoprotein 

therapeutics [7], and 19 of the biosimilars currently approved by the EMA use CHO 

cells as production host (12 Antibodies, 5 Enzymes (Epotein) and 2 Hormones 

(Folitropin)). Currently, there is only one approved biosimilar where the host cell differs 

from that of the reference product [8], which is Flixabi®. This biosimilar is produced in 

CHO cells, while the reference monoclonal antibody Infliximab (Remicade®) is 

produced in mouse cells. 
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The production of biopharmaceuticals in mammalian cells is commonly done in either 

batch or fed-batch mode. While the perfusion cultivation mode has recently received 

increasing attention from the biopharmaceutical industry, the fed-batch mode remains 

the most popular mode for production on a commercial scale [9]. Thus, the antibody 

biosimilars that are currently approved almost all use the fed-batch mode. 

Nevertheless, the biopharmaceutical industry shows an increasing interest in 

continuous manufacturing and perfusion technology, due to the many potential 

advantages, such as shorter production time, increased flexibility and agility in 

response to manufacturing needs, more efficient use of equipment, and reducing 

manufacturing scale and the size of the production facilities. In addition, single-use 

bioreactors are available that fit effectively with the continuous biomanufacturing 

practice. Finally, in perfusion systems a steady state can be reached where conditions 

and cellular physiology are constant, which is beneficial for the product quality and 

also may facilitate process transfer during the scale-up better than  the dynamic fed-

batch. All this is expected to lead to a reduction in production costs. However, the 

introduction of continuous manufacturing technology requires proof of robustness with 

respect to delivering a high-quality product in a reproducible way. Therefore, 

implementing quality by design elements in continuous biomanufacturing will provide 

confidence in this manufacturing technology. 

. 
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Table 1: List of approved antibody biosimilars products [10] 
 

  

Medicine Name Active Substance Marketing Authorization Holder Authorization date 

Host 

cells 

Humira (reference) adalimumab  AbbVie Deutschland GmbH & Co. KG 08/09/2003 CHO 

Amgevita adalimumab Amgen Europe B.V. 22/03/2017 CHO 

Cyltezo adalimumab Boehringer Ingelheim International GmbH 10/11/2017 CHO 

Imraldi adalimumab Samsung Bioepis UK Limited (SBUK) 24/08/2017 CHO 

Avastin (reference) bevacizumab Roche Registration GmbH 12/01/2005 CHO 

Mvasi & Solymbic bevacizumab Amgen Europe B.V. 12/01/2018 CHO 

Enbrel (reference) etanercept Pfizer Limited 03/03/2000  CHO 

Benepali etanercept Samsung Bioepis UK Limited 14/01/2016 CHO 

Erelzi etanercept Sandoz GmbH 23/06/2017 CHO 

Remicade (reference)  infliximab Janssen Biologics B.V.  13/08/1999 Mouse 

Flixabi infliximab Samsung Bioepis UK Limited (SBUK) 26/05/2016 CHO 

Inflectra infliximab Hospira UK Limited 10/09/2013 Mouse 

Remsima infliximab Celltrion Healthcare Hungary Kft. 27/09/2013 Mouse 

MabThera (reference) rituximab Roche Registration Ltd  02/06/1998  CHO 

Blitzima &  Ritemvia rituximab Celltrion Healthcare Hungary Kft. 13/07/2017 CHO 

Rituzena (previously 

Tuxella) rituximab Celltrion Healthcare Hungary Kft. 13/07/2017 CHO 

Rixathon &  Riximyo rituximab Sandoz GmbH 15/06/2017 CHO 

Truxima rituximab Celltrion Healthcare Hungary Kft. 17/02/2017 CHO 

Herceptin (reference)  trastuzumab Roche Registration Ltd  28/08/2000 CHO 

Ontruzant trastuzumab Samsung Bioepis UK Limited (SBUK) 15/11/2017 CHO 
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6.2 Quality by design (QbD) 
 

Quality by design (QbD) is a holistic manufacturing approach to increase the efficiency of 

biopharmaceutical manufacturing while maintaining a high standard of quality control. In 

general, the efficiency of biopharmaceutical production is considered low (2-3 sigma, 25–

35% defects) compared to many other well-established industries such as chemical and 

automobile manufacturing [11]. Therefore, pharmaceutical and biopharmaceutical 

companies are encouraged to adapt process improvement strategies [12]. In 2011, the 

EMA and FDA launched a joint pilot program for the parallel assessment of QbD 

applications [13]. This joint pilot program to implement QbD was a milestone in the 

development of pharmaceutical and biopharmaceutical products. The QbD approach has 

also helped to shift the attention of biopharmaceutical manufacturers toward the process, 

and away from their heavy reliance on post-manufacturing testing and quality control.  

Atezolizumab (Tencentriq®), and obinutuzumab (Gazyvaro®/Gazyva®) are currently the 

only two approved mAbs with both FDA and EMA that used a full QbD approach including 

definition of the design spaces. Despite the limited number of approved products using a 

full QbD approach, the development of almost all new biopharmaceutical and biosimilar 

products implements certain elements of QbD as described in ICH guidelines: Q8, 9 ,10, 

11 such as risk assessment. The most critical element or principle in the QbD approach 

is the concept of a well-defined design space. The design space is formed by a value 

range for all critical process parameters (CPP), including their interaction effects, within 

which the product quality is good. Any changes within the approved design space would 

not require regulatory notifications [14]. Defining this design space for the cultivation 

process remains a challenging task because of the high number of critical process 

parameters (CPPs), which can affect any one of the well-defined critical quality attributes 

(CQAs) of the glycoprotein therapeutics. All these parameters must be identified after 

which the valid range must be established, and proper monitoring and control must be 

implemented. Finally, continuous improvement throughout the life cycle of the product 

must be implemented. Usually the design space is identified using a design of experiments 

(DOE) approach resulting in detailed statistical relations between CPPs and CQAs. These 
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relationships do, however, not provide cellular mechanistic knowledge although they are 

a good basis to obtain this knowledge.  

The identification of a design space usually also includes traditional routine 

measurements or key performance indicators (KPIs), like cell counts, viability, nutrient 

consumption, by-product concentrations, and product concentration profiles, that are 

important for determining the status of the culture and the cells. They can give more 

mechanistic insight in the relation between CPPs and CQAs and also form the basis of 

many critical decisions in cell culture practice, such as determining the moment of feeding, 

and harvesting in fed-batch cultures. Regulatory bodies require biomanufacturers to use  

state-of-the-art techniques to ensure consistency and reproducibility. Transcriptomic 

profiling is such a state of the art technique and a powerful tool that can be used to 

characterize the physiological state of the cells and to understand the biology behind the 

relation between CPPs, KPIs and CQAs in the cultivation process. Dynamic transcriptomic 

profiling has the potential to be a major KPI for cellular performance and can be 

implemented in process development, technology transfer, i.e. the transfer of the 

developed process to the manufacturing site or from one to another manufacturing site, 

and during the actual manufacturing itself. Such knowledge can improve the validity of the 

design space and reduce the number of experiments that are needed to identify this 

design space. 

 

6.3 Dynamic transcriptomic profiling  
 

The last decade techniques to analyze the whole transcriptome, like RNAsec and 

microarrays, have rapidly improved an become cheaper and are now well-established 

techniques to measure the expression of thousands of genes [15]. Such transcriptomic 

expression profiling techniques have had a significant impact on the fundamental 

understanding of physiological responses to cultivation conditions, and have the potential 

to improve cell culture, in terms of cell line development, and process design [16]. In 2011, 

the genome sequence of the CHO-K1 cell line was published, opening up promising 

opportunities for studying cellular physiology [17]. In addition, CHO specific microarrays 

became available, making it easier to do transcriptome analysis for these cells. Although, 
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transcriptomic profiling is used intensively in several biopharmaceutical production 

platforms such as E.coli and yeast, the use in CHO cell cultivation is still limited.  

 

6.4 Aim 
 

The aim of this thesis is to evaluate the value of transcriptome analysis for process 

development for the upstream cultivation process and give an outlook on its possible use 

in Quality by Design. In the experiments presented in this thesis, a commercial Affymetrix® 

Chinese Hamster Ovary (CHO) Gene 2.1 ST Array Plate was used for  transcriptomic 

profiling of an antibody producing CHO cell line cultured in batch, fed-batch and perfusion 

mode. In principle, data obtained on transcriptomic profiling can be used in two ways: (1) 

to carry out process fingerprinting using an unsupervised methodology such as principal 

component analysis (PCA) and thereby identifying specifc expression patterns and/or 

combinations of specifc marker genes; and (2) to gain cellular mechanistic understanding 

by linking CPPs to CQAs and KPIs through gene expression. In the following section, five 

typical cases of these approaches will be presented and critically discussed.  

 

6.5 Process fingerprinting using multivariate data analysis 
 

Case 1. Detection of process deviations  
 

Gene expression data can be coupled with multivariate data analysis (MDVA) tools such 

as principal component analysis (PCA) to fingerprint the cultivation process on a cellular 

level. In case 1, six fed-batch bioreactors were run in parallel under the same process 

conditions (all the bioreactors were operated according to material and methods described 

in Chapter 3), with samples taken at three time points, namely days 3, 5, and 7. Traditional 

KPI measurements showed these runs to be similar in terms of cellular performance, 

nutrient and product concentrations, and glycosylation patterns (see supplementary case 

1). However, at the gene expression level, the measurements showed that two of the 

bioreactors deviated from the others, as illustrated in the PCA plot in Figure 1. Bioreactor 

1 started to deviate on day 5 and continued to deviate, while bioreactor 3 deviated on day 

7 only. Upon closer inspection it was found that these deviations were caused by an 
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unintentional increase in gas flow due to a system fault in the DO control cascade. This 

demonstrates that deviations in the process can be easily detected using such a 

transcriptomic fingerprinting approach. If it is possible to perform the analysis within a few 

hours it could be even used for correcting the deviation or abort the cultivation in time. 

The next step would be to link this to the critical quality attributes of the product like the 

glycosylation pattern. 

 

Figure 1. PCA score plot of gene expression for 6 fed-batch bioreactor runs, for 

three time points (days 3, 5, and 7) as indicated by the red circles in the graph. 

Arrows indicate the deviating cultures. 

 

Case 2. Down-scale validation 
 

In this case 2, examples are presented where transcripomtic analysis was used as a 

fingerprinting tool to compare two different reactor scale-down models. Validating the 

scale-down model is considered one of the critical concerns of implementing design 

space, since differences in conditions between the small scale and production scale 

reactor may result in unexpected changes in the design space upon scale-up of the 

process and failure of the product. Figure 2. shows the transcriptome data of two different 

scale-down comparisons; (1) 250mL shake flasks (30mL working volume) compared to 
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1L bioreactors (Chapter 3). (2) The ambr 15® system (15ml working volume) compared to 

10 L bioreactors (Chapter 4). Both  comparisons were done for a fed-batch process. As 

shown in Figure 2.A&B (data described in Chapter 3 and Chapter 4), the variation in gene 

expression is larger between the shake flasks and the 1L bioreactors as compared to the 

variation between the ambr and the  10 L bioreactors. This is to be expected as the ambr 

system has control of pH an DO and agitation like in the 1 and 10 liter bioreactors, whereas 

shake flasks have no control of pH and DO and a different way of agitation. Although the 

medium system is different for both comparisons,  the PCA indicates that the ambr is a 

better scale down model than the shake flask and that the higher level of control in the 

ambr is relevant. This case also indicates the high sensitivity of the transcriptome analysis.  

At different scales also the preculture for that scale will be different as it is prepared in a 

different bioreactor system. The preculture is considered a critical step in batch-to-batch 

reproducibility. In the second example of this case 2 we assess the effect of differences 

in the preculture on the scale comparison. The precultures for two cultivations that were 

run in the comparison of the ambr15® and 10 L Sartorius stainless steel bioreactors 

(Chapter 4) came from two different vials from the same working cell bank (full data 

provided in Chapter 4). The cells for the ambr system were precultured in a shake flask, 

while the cells for the 10 liter system were precultured in a wave bag. Comparative gene 

expression analysis of the precultures and of cells taken from the ambr15® and the 10 L 

Sartorius bioreactors on day 3 are shown in the PCA plot in Figure 2.B. PC1 represents 

time variation with 32.8% explained variance. With respect to PC1 the data points of the 

preculture samples overlapped with those of day 3 in the ambr and 10L system, since the 

preculture was used for inoculation also at day 3. PC3 (6.8% explained variation) 

represents variation between both precultures. As can be seen the difference that exists 

between the precultures is not present anymore on day 3 in both reactors. The Venn 

diagram in Figure 2.C compares the number of genes that were significantly up- or down-

regulated in the precultures and on day 3 of the ambr and 10L bioreactors. Also here it 

can be seen that the difference between the precultures (about 1100 genes) has 

disappeared on day 3 in the reactor systems (150 genes). Moreover the genes that are 

different between both reactors are different genes than those that are different between 
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the precultures. Thus on day 3, the effects of the precultures on gene expression levels 

have disappeared and the preculture differences do not affect the scale comparison.  

 

Figure 2. (A) Principle component analysis (PCA) score plot of gene expression 

data from shake flasks (red), and bioreactors (blue) for three time points (days 3, 5, 

and 7) , (B) PCA score plot of gene expression data for three time points (days 3, 5, 

and 9) and for the preculture. Open shapes indicate measurements from the ambr 

bioreactor; filled shapes indicate those from the 10 L Sartorius bioreactor; red 

shapes indicate preculture measurements. (C) Venn diagram comparing gene 

expression data form the 10 L reactors to the ambr (full data are provided in Chapter 

4). Number of up-regulated genes indicated in red, down-regulated in black. (Figure 

2.A is adapted from figure 3 in chapter 3 and figure 2.B is adapted from figure 6 in 

chapter 4). 

 

Case 3. Assessing process modifications 
 

In case 3 we use transcriptome fingerprinting to assess the effect of the feeding strategy 

in a fed-batch process. Commercial fed-batch production processes commonly use bolus 

feeding. However, industrial biomanufacturing practices are increasingly employing a 

continuous feeding strategy in order to limit fluctuations in concentrations of nutrients, 

waste metabolites and pH and thereby maintain a more constant environment for the cell 
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and thus a more constant product quality. Reliable and state-of-the-art pumps are 

available, which provide accurate feeding control and can be adjusted to respond to 

cellular needs. However, experiments during early process development are performed 

at ml scale at which continuous feeding is often technically not possible and thus replaced 

by bolus feeding. Therefore, designing continuous feeding at large scale requires an 

assessment of how and to what extent the applied feeding strategy affects the cell 

physiology and product quality. Case 3 presents a comparison between the bolus and 

continuous feeding strategies using a 1 L bioreactor in fed-batch cultivation mode. The 

cellular performance and the glycosylation patterns showed no differences between the 

two feeding strategies (further details provided in Appendix figure A.1 and figure A.2), an 

outcome that suggests the feeding strategy has no impact on quality. The PC1 (27.9% 

explained variation) of the PCA analysis shown in Figure 3 again  represents the variation 

over time on days 3, 5, and 7. The PC2 of the PCA score plot of this experiment represents 

the feeding strategy related variation indicating an increasing separation over time in 

terms of gene expression levels between these two feeding strategies on days 5 and 7 

(8.4% explained variation). Detecting such an effect of feeding on gene expression 

illustrates again the high sensitivity of transcriptomic profiling.  
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Figure 3. PCA score plot of gene expression data taken for three time 
points (days 3, 5, and 7) of a fed-batch culture. Solid blue shapes 
indicate continuous feeding, and open red shapes indicate bolus 
feeding (data are provided in appendix).

Day5 Day7 
Day3 
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Case 4. Effect of different media 
 

The effect of the choice of medium on cell physiology is another parameter that we 

can assess using transcriptomic profiling. For this case we used data collected using 

a single clone cultivated in two different media for different reactors and different 

process modes. The PCA score plot is shown in Figure 4 (data generated from 

Chapters 3, 4, and 5, and from non-published experiments). PC1 (21.4 %) again 

represents time variation and PC2 (13.0%) mainly represents the variation due to the 

use of the two different media. The difference in medium has, after process time, by 

far the biggest impact on gene expression levels being more than any of the other 

process variations named above. Moreover, the differences between both media 

increased with time. 

 

Case 5: Process characterization 
 

In case 5, we use the gene expression data to characterize the different states of a 

perfusion cultivation (data described in Chapter 5). The PCA in Figure 5 shows a clear 

separation between different states of the culture. Furthermore PC3 versus PC1 

shows a clear spiral like development towards steady state, with the steady state 

points, as defined from the other measured parameters, grouping together and 

separate from the other points. Also in the PC2 vs PC1 plot the steady state points 

group together. Another example of the use of dynamic transcriptomic profiling for 

process characterization is shown In Figure 6 where we do a direct comparison 

between two different production modes fed-batch and perfusion. The PCA shows a 

clear separation between the two processes. Furthermore during the dynamic period 

of the perfusion system the variation in gene expression is comparable to the fed-

batch. However, it is immediately clear that as expected the steady state of the 

perfusion shows much less variation than the fed-batch.  
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Figure 4. PCA score plot of gene expression data obtained from cultivations 

with a variety of process conditions in two different commercial well-defined 

media. Seven different cultivation processes with biological triplicates ( as 

described in Table 2). All the cultivation used the same clone.  

 

Table 2 

Groups Cultivation system medium Symbol  

Run 1 1 L bioreactors ( bolus feeding) FortiCHO Filled blue triangle 

Run 1 1L bioreactor (additive feed Uridine, 

Manganese, Galactose (UMG) 

FortiCHO Open blue triangle 

Run 2 250 ml shake flask (30ml working volume) FortiCHO Filled red diamond  

Run 2 1 L bioreactor (bolus feeding ) FortiCHO Filled blue circle 

Run 2 1 L bioreactor (continuous feeding ) FortiCHO Filled blue square 

Run 3 Ambr15® microscale reactor ActiCHO Open black circle 

Run 3 10 L bioreactor ActiCHO Open black square 
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Figure 5. PCA score plot for a perfusion culture showing PC1 
(22.19%), PC2 (8.86%), and PC3 (8.77%). Day 4-23 dynamic phase 
(black), Day 24-39 steady state phase (red). (This figure is adapted 
from figure 4 in chapter 5). 
 

 

 

 

 



 

144 

 

 

Figure 6 PCA score plot for gene expression data form a fed-batch and perfusion 

cultivation for PC1 (22.44%), and PC2 (17.56%), for the 1.5L perfusion cultivation 

(4-39 days except 12,16,30,35) (Red square ),  and 10L fed-batch cultivation 

(days:3, 5, 7, and 9)(Black diamond).  

 

6.6 Using gene expression to understand cellular mechanisms  
 

Understanding the interaction between CQAs and CPPs forms an essential basis for 

the design space and control strategy. The design space is mainly formed by the 

process parameter ranges within which the process output is certainly good. The 

CQAs are influenced by many factors and complex interactions. Therefore, 

implementing QbD elements in cultivation steps started with building a knowledge 

management (KM) system with more emphasis on understanding the dynamics of the 

biological processes in the cell during the cultivation process using omics tools. One 

way of addressing this is to use transcriptomic profiling to identify the genes and 

pathways that are significantly up- or down-regulated and link the phenotype with 

process conditions. 
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As an example of this, in chapters 2 and 3, a comparison between shake flasks and 

bioreactors showed that the number of genes that are up- or down-regulated is higher 

in shake flasks than in bioreactors, indicating that in shake flasks more pathways are 

being affected than in bioreactors. The most frequently up- or down-regulated 

pathways are related to stress. Furthermore also  a pathway related to  oxygen 

limitation was regulated (see Chapters 2 and 3). For the batch the development of the 

shake-flasks and bioreactor cultivations was similar over time and differences were 

due to system differences. The fed-batch shake flasks had, however, a different 

development of the cultivation over time being that they are ahead of the fed-batch 

bioreactor. Therefore, some of the differences in pathways were due to time transitions 

and not directly to the system itself. It can be that the difference between the systems 

itself is responsible for the time-delay and thus indirectly for the difference  in gene 

expression related to time. However, since the difference in time-development is not 

seen for the batch, it must be a combination of fed batch and system differences. 

Appendix-table A.1, provides an overview of the top up- and down-regulated pathways 

in the shake flasks and bioreactors (also provided in Chapter 3). The stress related 

genes are probably related to the fact that the cells in the shake flasks grew faster and 

were already in the death phase while the cells in the bioreactor were still in the 

stationary phase. In the top of the list of up-regulated pathways is the oxidative 

phosphorylation pathway. The oxidative phosphorylation Pathview [18] analysis (see 

Figure 7) shows that the NADH dehydrogenase gene family and the V type ATPase 

family are only up-regulated in the shake flasks. This may be an indication of oxygen 

limitation, which is linked to the process of cellular respiration in the mitochondria and 

is likely due to levels of dissolved oxygen (DO) in the shake flask dropping to very low 

levels (unmeasured) towards the end of the culture.  

 

In biomanufacturing, technology transfer, as for example the transfer of the process to 

manufacturing, and optimization can lead to unacceptably high variations in 

glycosylation patterns. The glycosylation composition is known to be highly sensitive 

to changes in the cultivation process [19]. Several studies have been done to 

understand the interaction between glycosylation and the cultivation process [20]–[22]. 

Many empirical approaches have been used to control the composition level of 

glycosylation, such as using additive feed with different concentrations of uracil, 
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manganese, and galactose (UMG)[23]. Integrating transcriptomic profiling into 

univariate experimental studies and process cultivation conditions can improve 

understanding of the glycosylation process inside the cell factory. Investigating the 

process of glycosylation at the gene and pathway level can help to modulate the 

glycosylation compositions and lead to better control. 

 

 

Figure 7. Pathview analysis of oxidative phosphorylation. Comparison between 

shake flask and bioreactor. Up-regulated genes are indicated in red and down-

regulated genes are indicated in green. FDR-BH < 0.5, fold change > ±1.4 ( This 

figure is adapted from figure 5 chapter 3). 

 

This was addressed in chapters 2 and 3, which compared the transcriptomic profiles 

of shake flasks (uncontrolled system) and 1-liter benchtop bioreactors (controlled 

system) in batch and fed-batch cultivation modes. As demonstrated in Chapters 2 and 

3, glycosylation compositions varied between controlled and uncontrolled systems. 

Figure 8 shows the results of the Pathview analysis of differences in gene expression 

in N-glycan pathways over time between fed-batch shake flasks and bioreactors. This 

Pathview analysis is an example of how changes in gene expression can be observed 

during cultivation time and to demonstrate the comparability between related 

cultivation process conditions and gene-phenotype. The shake flask has more 
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uniquely regulated genes than the bioreactor in N-glycan biosynthesis pathway. 

Uniquely regulated genes in the shake flasks are for example: AlG2, and AlG3, which 

are upregulated  and  AlG6, AlG10, and ALG7 that are down regulated. The next step 

is to link the changes in gene expression mechanistically to the glycosylation 

differences and process conditions in both systems, for which further research is 

required. This shows the possibility to use gene expression data with pathway analysis 

to study cellular mechanism during different cultivation conditions. 

 

Figure 8. N-glycan biosynthesis changes over time. Comparison between fed-

batch shake flask and bioreactor. Up-regulated genes are indicated in red and 

down-regulated genes are indicated in green. FDR-BH < 0.5, fold change > ±1.4. 

(Chapter 3). 

 

6.7 Transcriptome profiling as a tool in QbD a process 
development.  
 

As stated transcriptome analysis can be used in two ways being as a fingerprinting 

tool to compare different conditions and as a tool to get a better understanding of cell 

physiology. Transcriptome profiling data in combination with MVDA can be used to 

generate a fingerprint of a cultivation process. This can next be used to compare 

different conditions or reactor systems as is done in this thesis in chapter 2, 3 and 4. 

Although the tool seems highly sensitive, problems are that not everything is controlled 

at the transcriptome level and that it is hard to state what amount of variation is 
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acceptable purely based on a fingerprint. The first problem can be solved by including 

additional measurement techniques like for example proteomics or metabolomics. The 

second problem can be solved by building up a knowledge management system (KM 

) so that in the end based on historical data one can give meaning to the observed 

variance. Moreover, the expression fingerprint possibly can be linked to product quality 

attributes and be used as an additional process key performance indicator to define 

the design space. In addition, to this also specific marker genes or pathways could be 

correlated to product quality. For example Van der Waterbeemd et al. [24] defined a 

quality score based on gene expression to determine the harvest point. This can be 

used in process development and to check whether a production process performed 

well and did not deviate from what was expected. Possibly, if the analysis of gene 

expression is fast enough, it could also be used to timely detect deviations in the 

process and act on this. Whereas for fast growing yeasts and bacteria this may be 

difficult it may be possible for the slower growing CHO cells. It could in principle 

already be applied to timely detect deviations from steady state in perfusion cultures. 

(Chapter 5).  

The above approach is based on statistical relations between process parameters 

gene expression and product quality and not on mechanistic understanding of cell 

physiology. A mechanistic understanding on how process parameters affect PQAs will 

result in an increased confidence in the relations and may also be able to predict 

effects of process parameters or combinations of process parameters that were not 

studied yet. Analysis of pathways and genes that are differentially expressed can help 

in getting this mechanistic understanding. Furthermore, such mechanistic knowledge 

may reduce the number of experiments in a design space exploration simply because 

the effect of some parameters or interaction of parameters on PQAs can be predicted 

based on biological mechanisms. This information can also be used to further improve 

the CHO cell as a host for pharmaceutical protein production. For example, for yeast 

cells Huang et al. [25] use RNAseq and inverse metabolic engineering to show that by 

tuning metabolism yeast cells are able to efficiently secrete proteins. A specific 

problem with using transcriptome analysis for biological understanding is the lack of 

annotation for a number of genes. In addition, even for annotated genes not all 

functions are known. This is clearly more difficult for CHO cells than for yeasts and 
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bacteria due to the higher level of complexity. Finally, like with the fingerprinting 

approach not everything is regulated on the expression level.  

. 
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6.8 Conclusions 
 

Dynamic transcriptome profiling of CHO cells, the primary host for production 

glycoprotein biosimilars, is a promising step for better scientific understanding of the 

production process. This will support the implementation of QbD as a holistic approach 

to increase the efficiency of manufacturing and will result in faster process 

development. Apart from getting more insight into CHO cell physiology, the 

transcriptome can also be used as a fingerprint of the CHO cell physiological state. As 

such it can be used for various purposes like comparing two processes or reactors, 

detecting deviations in the process and establishing whether a steady state is reached. 

In the end it may be possible to relate certain fingerprints directly to the product quality. 

Not only will this lead to better and cheaper processes, but it will also lead to more 

trust with regulatory bodies that the manufacturing process is well controlled.
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Appendix  
 

Table A.1. Comparison of top up- and down-regulated pathways in fed-batch 

shake flask and bioreactor. (FDR-BH< 0.5, fold change > ±1.4) (chapter 3) 

 

 

 

Figure A.1. Average of 3 replicate glycosylation Patterns for the between 

continuous feeding (CF) and bolus feeding (BF).  

0

20

40

60

80

100

Day 3 Day 7 Day 10

%

Overall Galactosylation

0

20

40

60

80

100

Day 3 Day 7 Day 10

%

Overall Fucosylation

0

20

40

60

80

100

G0 G0F G1 G1F G2F

BF Day 3 BF Day 7 BF Day 10 CF Day 3 CF Day 7 CF Day 10

%

N-acetylglucosamine Mannose Fucose Galactose



 

155 

 

 

Figure A.2: Comparison of cell performance between continuous feeding (CF) 

in blue and bolus feeding (BF). A: Viable cell density, B: Culture volume, C: 

Lactate profile, D: Glucose profile. Data points are the average of 3 replicate 

shake flask and bioreactor runs. Error bars show the standard deviation.  
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Summary 
 

Global healthcare demands for affordable and accessible biological medicines are 

rapidly increasing as a result of an increasing number of patients. Biosimilars products 

have a potential to help decrease the price and increase the availability of the 

biological medicines. Monoclonal antibodies are a special class of biopharmaceutical 

proteins that are used to treat life-threatening diseases like cancer. Mammalian cells 

and more specific Chinese Hamster Ovary cells are the main production platform for 

these monoclonal antibodies. Many of the first products, which were developed in the 

early 1990s are going off patent opening the possibility to develop biosimilars. 

Nowadays, for the development of biosimilars and also completely new 

biopharmaceuticals it is required for pharmaceutical companies to include (aspects of) 

Quality by Design (QbD). This means that they need to have a good scientific 

understanding of the relation between critical process parameters (CPPs) and critical 

quality attributes (CQAs) of the products as wells as with key performance indicators 

(KPIs), like the cell concentration. These relations are usually statistical relations that 

are not based on detailed knowledge of biological mechanisms, although they are a 

good basis to acquire such knowledge. Transcriptomics is a state of the art technique 

to measure the global gene expression of a cell population and can give insight into 

the biological mechanisms that are behind the relation between CPPs, CQAs and 

KPIs. Furthermore, the transcriptome is a good representation of the physiological 

state of the cells and can thus be used for comparison of for example reactors of 

different scales, different processes, or comparison of a new bioreactor production run 

to past runs. 

 

The aim of this thesis is to study the value of transcriptome analysis for process 

development and the quality by design approach for the upstream cultivation process. 

All experiments in this thesis use the same CHO cell clone producing a monoclonal 

antibody. All transcriptome measurements are done using commercially available 

Affymetrix CHO Gene 2.1 ST arrays. 

 

Early process development for biopharmaceuticals is often partly done in small scale 

systems in a high throughput approach. Transcriptome analysis is used in this thesis 
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to assess whether the small scale systems are representative for the production scale 

reactor.  

The focus of Chapter 2 is to have a better understanding of the differences in cell 

performance between uncontrolled (shake flask) and controlled (bioreactor) systems. 

In this chapter, we evaluated differences in gene expression profiles between shake 

flask and bioreactor cultures at three different time points during the exponential and 

stationary phase of a batch cultivation. Both systems showed a similar large variation 

in gene expression over time, meaning the differences between two cultivation 

systems are small. However, the small gene expression difference between the two 

systems occurred during a short period of cultivation during batch cultivation and could 

be directly linked to the absence of control of some of the process cultivation 

parameters such as pH and DO in the shake flask. 

 

For fed-batch processes larger differences are expected to be present between 

controlled and uncontrolled systems as compared to batch due to the higher cell 

densities, bolus addition of concentrated feeds and longer process duration. 

Therefore, we investigate in Chapter 3, the differences in gene expression between, 

shake flasks and 1 L bioreactors for a  fed-batch cultivation process. The shake flask 

cultures grew faster than the bioreactor cultures and went earlier into the stationary 

and death phase. Using PCA the difference in time development was represented in 

PC1, while also a time independent difference was observed and represented by PC2. 

Although transcriptome data can also identify differentially expressed pathways, which 

may lead to the root cause of the differences, here we were not able to identify this 

root cause. 

 

In Chapter 4, transcriptome analysis was used to evaluate the down scale of a CHO 

cell fed-batch process from a 10 L bioreactor to an ambr 15® (ambr) system. In this 

case both systems have control of pH and DO. The results of this comparative 

transcriptomic study showed that the variation in gene expression was less than 6% 

based on PCA. Moreover, the gene and pathway analysis did not reveal a direct 

relation of this difference with scale differences or specific process conditions. To be 

able to obtain an objective meaning to this 6% difference more transcriptome 

experiments need to be done. In this Chapter we also show that differences in gene 
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expression in the preculture quickly disappear in the culture systems, showing that the 

preculture did not have an effect on the comparison. 

 

In Chapter 5, we explore the use of transcriptomic profiling for monitoring long term 

production campaigns such as occur using a perfusion cultivation mode. The results 

show that transcriptome data can be linked to specific phases of a perfusion process 

like a period characterized by a cell size increase and a period with a specific nutrient 

limitation. More importantly, quantitative transcriptome data visualized using PCA. 

show a clear separation between the steady state data points and the other data points 

and can thus be used to identify the steady state.  

 

In Chapter 6, transcriptomic profiling as a tool for quality by design in the cultivation 

process of antibody biosimilars is discussed. Comparative transcriptomic analysis 

could play a role in validation of the scale down system by demonstrating similar 

responses of biological processes for both systems. Likewise it can be an useful tool 

to detect process deviations, evaluate process modifications, and process 

characterization. Furthermore, in combination with other analyses it can give insight 

into biological processes that link CCPs to CQAs. Thus, transcriptomic profiling can 

be part of process performance indicators and combined with other bioanalytical 

measure  give a better understanding and faster development of the design space. 

When the analysis can be done routinely and sufficient fast it can possibly also be 

used at line to evaluate and control running production runs
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