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SUMMARY 

Nitrogen rich wastewaters (10-400 mg N L-1) are usually produced by municipal, 

industrial and agricultural wastes, such as effluents from anaerobic treatments. 

These represent a risk to the environment due to the high nutrient concentrations 

(nitrogen and phosphorous), which can cause eutrophication of water bodies, 

deteriorating the quality of the ecosystems. As a solution, the potential nitrogen 

removal capacity of a novel bio-treatment system, namely the Photo-Activated 

Sludge (PAS), composed of microalgae and bacteria consortia, was studied. 

Experimental work using photobioreactors for the cultivation of microalgae and 

bacteria under sequencing batch conditions (Chapters 3, 4 and 5) showed that 

microalgal-bacterial consortia can remove ammonium 50% faster than solely 

microalgal consortia (Chapter 3). The increase in ammonium removal rates was 

due to the action of nitrifying bacteria, supplied with oxygen produced by algae. 

Also, the addition of bacteria to the microalgal culture increased the biomass 

retention, which allowed to uncouple the hydraulic retention time (HRT) and solids 

retention time (SRT) (Chapter 3). In all experiments, nitrification was the main 

ammonium removal mechanism within the microalgal-bacterial biomass, followed 

by algal uptake and nutrient requirements for bacterial growth (Chapters 3, 4, 5 

and 7). Carbon oxidation and denitrification were the main removal mechanisms 

for organic carbon (Chapters 4 and 5). Hence, the role of algae within the 

microalgal-bacterial system is to provide oxygen to support the aerobic processes. 

The microalgal-bacterial system offers the possibility of reducing the hydraulic 

retention time, which can decrease the large area requirements often demanded by 

algal systems (Chapter 3 and 4). 



xii 

 

The SRT was identified as the main parameter to control the efficiency of the 

technology (Chapter 4). The control of the suspended solids concentration, by 

adjusting the SRT, influences the light penetration within the reactor, which can 

limit or enhance the oxygen production by algae (growth rate). In Chapters 5 and 

6, a mathematical model for microalgal-bacterial systems that can describe the 

microbiological processes occurring within the microalgal-bacterial consortia was 

proposed. The results provided by the model identified the light extinction 

coefficient of the microalgal-bacterial biomass as the most sensitive parameter of 

the system. Furthermore, the model was used to evaluate certain scenarios and 

estimate the optimum SRT required for microalgal-bacterial systems, which seems 

to lie between 5 and 10 days. 

Chapter 7 showed, using respirometric tests with microalgal-bacterial biomass, that 

the main nitrogen removal mechanism is the uptake by algae, where part of the 

nitrogen is stored within the cell, and part used for growth. Furthermore, the 

nitrogen storage by algae was introduced in the model, and the process was 

calibrated using data from the respirometric tests. Thus, the maximum amount of 

nitrogen stored by algae could be calculated to be 0.33 grams of nitrogen per gram 

of algal biomass.  

This thesis demonstrated that photo-activated sludge systems using microalgal-

bacterial consortia are a sustainable treatment option for ammonium rich 

wastewaters, providing clean effluents and opening reuse options for the biomass. 

Furthermore, the PAS systems can reduce the area requirements by halve in 

comparison with algal systems and likely have a positive energy balance, since the 

sun is one of the main sources of energy.  
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SAMENVATTING 

Ammoniumrijk afvalwater wordt veelal geproduceerd door gemeentelijk, industrieel 

en landbouwafval, en effluent uit anaerobe afvalwaterzuiveringsmethoden. Dit 

vormt een risico voor het milieu vanwege de hoge concentratie aan voedingsstoffen 

(stikstof en fosfor), wat eutrofiëring in waterpartijen kan bevorderen en daarmee 

de kwaliteit van ecosystemen kan aantasten. Als innovatieve oplossing hierop is een 

nieuw biologisch verwerkingsmechanisme genaamd Photo-Activated Sludge (PAS) 

geëvalueerd, wat gebruik maakt van een consortium van microalgen en bacteriën 

voor de zuivering van ammoniumrijk afvalwater. 

Experimenteel onderzoek met fotobioreactoren voor de cultivering van microalgen 

en bacteriën onder sequentiële batch-condities (Hoofdstuk 3, 4 en 5) toont aan dat 

microalgen-bacteriële consortia ammonium 50% sneller verwijderen dan pure 

microalgen consortia (Hoofdstuk 3). De snelheidstoename in 

ammoniumverwijdering is een gevolg van de activiteit van nitrificeerders, met 

zuurstof aangeleverd door algen. Bovendien zorgt de toevoeging van bacteriën aan 

het microalgen consortium voor een toename van biomassa retentie, wat het 

ontkoppelen van de hydraulische verblijftijd (HRT) en slib verblijftijd (SRT) 

toestaat (Hoofdstuk 3). Voor alle experimenten geldt dat nitrificatie het 

voornaamste ammoniumverwijderingsmechanisme is, gevolgd door algenopname en 

de opname van voedingsstoffen door bacteriën (Hoofdstuk 3, 4, 5 en 7). 

Koolstofoxidatie middels denitrificatie was het voornaamste 

verwijderingsmechanisme van organisch koolstof (Hoofdstuk 4 en 5). De rol van 

algen in een microalgen-bacterieel consortium is om zuurstof te leveren aan alle 

aërobe processen. Het microalgen-bacteriëel systeem biedt de mogelijkheid om de 
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HRT te verlagen en daarmee de grote landbehoefte, wat voor algensystemen vaak 

wordt vereist, te verlagen (Hoofdstuk 3 en 4). 

De SRT is geïdentificeerd als zijnde de voornaamste parameter om de efficiëntie 

van de technologie aan te passen (Hoofdstuk 4). Het aanpassen van de suspensie 

met behulp van de SRT beïnvloedt de lichtdoorlating in de reactor, waarmee de 

zuurstofproductie door algen beïnvloed kan worden. In Hoofdstuk 5 en 6 is een 

wiskundig model van het microalgen-bacteriëel systeem voorgesteld, waarmee 

microbiologische processen in het microalgen-bacteriëel consortium worden 

beschreven. Met de resultaten verkregen met het model is de 

lichtdoorlaatbaarheidscoëfficiënt van de microalgen-bacterieel biomassa als meest 

gevoelige parameter geïdentificeerd. Bovendien is het model gebruikt om 

verscheidene scenario's te evalueren en de optimale SRT voor microalgen-bacteriële 

systemen is gedefiniëerd tussen 5 en 10 dagen. 

De laatste bevindingen van Hoofdstuk 7, verkregen met respirometrische testen, 

resulteerden in de identificatie van het lot van stikstof wanneer het wordt 

opgenomen door algen, waar een deel van de stikstof is opgeslagen in de cel, en een 

deel wordt gebruikt voor groei. Verder is aan de hand van gedetailleerde data van 

de respirometrische testen stikstofopslag door algen toegevoegd aan het model. 

Hiermee is berekend dat de maximale hoeveelheid opgeslagen stikstof door algen 

0.33 gram stikstof per gram algenbiomassa is. 

Samenvattend, dit proefschrift demonstreert dat microalgen-bacteriële consortia 

een duurzame zuiveringsmethode voor ammoniumrijk afvalwater vormen, wat 

schoon effluent produceert en tevens toepassingen biedt voor het hergebruiken van 

biomassa en gezuiverde het effluent. Tenslotte kan hiermee de landbehoefte worden 
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gehalveerd, in vergelijking met algensystemen, en heeft deze technologie een 

positieve energiebalans, omdat de zon de grootste energiebron is. 
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1.1 BACKGROUND 

The environment has always been affected by anthropogenic activities, reflected in 

urbanization and industrialization. Water is one of the most important natural 

resources, and it is vital for the environment and the human population. 

Wastewater originated from households, industries, and agriculture is one of the 

main sources of water pollution. Yet, in 2017 up to 80% of the total wastewater 

generated worldwide is not treated (UNESCO, 2017). This causes environmental 

problems such as eutrophication, bioaccumulation of toxic compounds and oxygen 

depletion (UNESCO, 2017). The treatment and reuse of wastewater is becoming 

imperative due to scarcity and pollution in some areas, and has important benefits 

such as protection of the environment, reduction of fresh water consumption and 

thereby intrinsic economic benefits.   

Several treatment technologies are being applied around the world for wastewater 

treatment. They comprise centralized and decentralized systems such as activated 

sludge systems, upflow anaerobic sludge blanket (UASB) reactors, anaerobic filters, 

anaerobic baffled reactors, stabilization ponds, wetlands, high rate algae ponds 

(HRAP), membrane bioreactors (MBR), and soil aquifer treatment (SAT). As 

concluded by Noyola et al. (2012), based on a survey carried out over 2734 

wastewater treatment facilities located in Latin America and the Caribbean (80% 

of the 2734 facilities analyzed), the most representative technologies in Latin 

America and the Caribbean are activated sludge systems, waste stabilization ponds, 

and UASB. Noyola et al. (2012) reported that in terms of energy consumption per 

cubic meter of treated wastewater (kWh m-3), stabilization ponds have the lowest 

energy consumption, followed by UASB reactors coupled with activated sludge for 

nutrient removal, while activated sludge systems have the highest energy 
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consumption, mainly due to the aeration demands of the process. Tandukar et al. 

(2007) reported an energy consumption for an activated sludge system of 2-3 kW 

h-1 kgBOD-1 removed. The high energy consumption in these systems is attributed 

to aeration, which represents between 54-97% of the total energy requirements of 

the plant (Young and Koopman, 1991). 

Recently, natural methods for the treatment of wastewater streams have gained 

higher relevance due to their lower energy requirements, reliability and high 

removal efficiency of organic and inorganic compounds, in addition to their 

simplicity and lower operational costs (Abdel-Raouf et al., 2012). Among them, 

algae present photosynthetic capabilities by using the solar energy for cell growth, 

offering potential valuable biomass while removing diverse pollutants via different 

removal mechanisms (de la Noue and de Pauw, 1988). Algae are floating unicellular 

microorganisms, most of them phototrophic, that perform photosynthesis using 

light as source of energy and H2O as electron donor. Phototrophic microalgae grow 

in the presence of different minerals, nutrients and CO2 as their carbon source 

(Bitton 2005). 

1.1.1 Wastewater treatment with algal technologies 

Wastewater treatment using microalgae and microalgal-bacterial consortia can 

provide clean effluents free of organic and inorganic compounds, heavy metals, and 

pathogens, and simultaneously produce useful biomass, which can be used for the 

production of biofuels, fertilizers and other bioproducts (Samorì et al., 2013). One 

of the main advantages of the use of microalgae for wastewater treatment is the 

diversity of removal mechanisms for different types of pollutants. Nutrients 

assimilation, nitrogen volatilization and phosphorous precipitation, aerobic 
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biodegradation of organic matter, ammonium removal through nitrification, 

biosorption of heavy metals and pathogen disinfection due to pH fluctuations, are 

some of the documented mechanisms (Alcántara et al., 2015). Overall, microalgae 

cultivation using wastewater as the growth medium has multiple applications in 

biofuel production, carbon dioxide mitigation and bioremediation (Cai et al., 2013), 

while offering a positive impact on the production and emission of greenhouse gasses 

(Di Termini et al., 2011). However, one of the main drawbacks is the large area 

requirements to achieve higher efficiencies and removal rates than conventional 

systems such as activated sludge. 

Numerous studies at pilot and laboratory scale level have demonstrated the 

potential of microalgae for the removal of different contaminants, mainly nitrogen 

and phosphorous (Aslan and Kapdan, 2006; González et al., 2008; Hoffmann, 1998; 

Park and Craggs., 2010). The main mechanisms for nutrient removal reported in 

the literature are via algal utilisation, nitrification/denitrification, and pH 

fluctuations that promote ammonia stripping or phosphorous precipitation (Cai et 

al., 2013). Furthermore, for nitrogen and phosphorous there is a limited range of 

treatment technologies that meet the standards in developed and developing 

countries (von Sperling and Chernicharo, 2002), being decentralized systems easier 

to operate with lower operational costs, making them more appropiate.  

Microalgae have a high potential to be applied for the treatment of nutrient rich 

wastewaters due to their capacity for nutrient uptake. Consequently, microalgae 

systems can be used as post-treatment systems for the removal of nutrients from  

effluents treated in anaerobic units, which usually contain substantial amounts of 

nitrogen and phosphorus (Olguín, 2003). For instance, as claimed by Ruiz-Martinez 

et al. (2012), the use of microalgae as a post-treatment of an anaerobic membrane 
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bioreactor can provide an excellent water quality in the effluent, while generating 

biogas and recovering nitrogen and phosphorous from the microalgal biomass.  

1.1.2 Wastewater treatment using microalgal-bacterial systems 

For microalgal systems to be competitive against other technologies such as 

activated sludge, the design and operation of the reactors must achieve faster and 

more efficient removal rates, and simultaneously strive to decreasing the area 

requirements, while offering lower operation costs. One of the nitrogen and carbon 

removal mechanisms that can achieve higher removal rates is through the symbiosis 

between microalgae and aerobic bacteria. This removal mechanism is achieved 

through the dual action of microalgae and bacteria: during the photosynthetic 

process microalgae assimilate CO2 and generate oxygen, the latter can be used by 

heterotrophic bacteria to oxidize the organic matter and produce CO2, while 

nitrifiers oxidize ammonium, creating a symbiotic relationship (Muñoz and 

Guieysse, 2006; Samorì et al., 2013). 

This consortium between microalgae and bacteria has shown promising results for 

high strength and municipal wastewaters (Godos et al., 2010; González-Fernández 

et al., 2011a; Hernández et al., 2013; Su et al., 2012a; van der Steen et al., 2015; 

Wang et al., 2015; Liu et al., 2017; Maza-Márquez et al., 2017). They can achieve 

nitrogen removal efficiencies of between 50 and 90% without (external) aeration 

and phosphorous removal efficiencies of up to 60% mostly by entrapment in the 

biomass or chemical precipitation. Karya et al. (2013) reported 100% nitrification 

using synthetic wastewater in a photobioreactor (24-12 hours hydraulic retention 

time) using a mixed culture of algae and nitrifying bacteria without (external) 

aeration. The oxygen production of that setup was estimated to be 0.46 kg O2 m-3 
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d-1, which is higher than in HRAP or stabilisation ponds (Karya et al., 2013) and 

the highest ammonium removal rate was 7.7 mg NH4
+-N L-1 h-1. Furthermore, the 

short hydraulic retention time makes the processes competitive with activated 

sludge. Vargas et al. (2016) reported 92% removal of ammonium from synthetic 

wastewater with an average concentration of 1214 (± 40) mg NH4
+-N L-1, being 

60% removed through nitrification, while 40% was assimilated by microalgae. The 

advantage of photo-oxygenation compared with traditional systems is the lower 

operational costs. 

Microalgal-bacterial consortia present themselves as a novel option for wastewater 

treatment. Nevertheless, there is a lack of understanding concerning the kinetic 

parameters and operational conditions that can enhance the removal efficiencies 

and rates. The use of photo-oxygenation as main source of oxygen for aerobic 

processes is a key aspect to increase the removal rates. However, in order to 

maximize these interactions, the optimum operational parameters, and their 

limitations and/or the negative effects of the interaction between algae and bacteria 

need to be determined to make these systems an attractive option for wastewater 

treatment. 

1.2 PROBLEM STATEMENT 

There is a need for municipal and industrial wastewater treatment systems that 

can provide high quality treated effluents, with low energy consumption and that 

are technically and economically easy to operate and maintain. Activated sludge 

systems present limitations due to their high energy requirements (mostly for 

aeration) and their high capital costs (Osada et al., 1991) that can account for 

between 45 - 75% of the total energy consumption (Ekama and Wentzel, 2008a). 
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On the other hand, anaerobic treatment has poor nutrient removal efficiencies and 

sometimes the effluent concentrations of certain parameters are even higher than 

in the influent (Khan et al., 2011). These effluents thus require post-treatment 

processes in order to remove nutrients that otherwise would promote eutrophication 

in the receiving surface water bodies.  

Using wastewater to support algal growth in open and closed reactors, algal-

bacterial interactions could help to achieve an efficient degradation. Literature has 

shown the potential of microalgal and bacterial consortia for the bioremediation of 

wastewaters with high concentrations of nutrients, especially in the agro-industrial 

sector and for the post-treatment of effluents from anaerobic systems without the 

use of external aeration (de Godos et al., 2016; González et al., 2008; Hernández et 

al., 2013), which reduces considerably the operational costs. The energy 

consumption of a HRAP using a microalgal-bacterial consortium treating a primary 

settled effluent is approximately 0.023 kWh per m3 of wastewater treated 

(Alcántara et al., 2015), while the same effluent would require 0.33-0.60 kWh m-3 

(Plappally and Lienhard, 2012) in an activated sludge system. However, the area 

requirements of HRAP systems are larger than for conventional activated sludge 

and anaerobic treatment, due to the longer required HRT and shallow depths. 

Therefore, the investment costs for HRAP in relation with the area increases the 

total cost of the system. Microalgal-bacterial systems should thus aim to reduce the 

HRT while maintaining the removal efficiency in order to be competitive with 

conventional technologies. As a result, it is proposed to develop and evaluate a 

novel bio-treatment system for open ponds, like high-rate algae ponds (HRAPs), 

that can make use of consortia composed of microalgae and bacteria (the so called 

Photo-Activated Sludge (PAS)) for the treatment of nitrogen from wastewater. 
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The co-cultivation of the key groups of microorganisms can allow a faster 

degradation of contaminants and the enhancement of physiological mechanisms 

that a single species or strain cannot easily carry out (Brenner et al., 2008). 

However, there is a lack of understanding concerning the interactions that govern 

the carbon and nitrogen removal mechanisms of the symbiosis, and even regarding 

the effects of key parameters such as the kinetics of the microorganisms involved 

(heterotrophs, autotrophs and chemoautotrophs). In order to maximize the nutrient 

removal efficiencies, it is necessary to determine which kinetics and stoichiometry 

parameters are more sensitive for the consortia of algae and bacteria. For instance, 

it is important to determine the role of the maximum growth rate of each of the 

different microorganisms (µm) (nitrifiers, heterotrophic bacteria and algae), and the 

different operational conditions that have the higher impact on the nutrients 

removal.  

The identification of these parameters can lead to the determination of the (optimal) 

design and operational parameters (mostly HRT and SRT) that affect the consortia 

and contribute to the development of design principles for microalgal-bacterial 

reactors. For instance, the development of an open reactor that can achieve an 

optimum operation using microalgal-bacterial consortia implies the achievement of 

a sustainable photo-oxygenation for the oxidation of ammonium (nitrification) and 

organic matter. Moreover, the understanding of the symbiosis could perform the 

double task of pollutant degradation, as well as the commercial production of by-

products, contributing to the mitigation of CO2 emissions (Subashchandrabose et 

al., 2011) and the reduction of the footprint and land requirements.  

The main objective of the present research is to maximize the efficiency of 

microalgal-bacterial consortia for the removal of nitrogen from wastewater rich in 
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ammonium nitrogen, e.g. effluents from anaerobic digestors. The understanding of 

the symbiosis between microalgae and bacteria and the effect of the key design and 

operational parameters (SRT and HRT) affecting their interactions will help to 

define the optimal conditions for open photobioreactors such as HRAPs.  

The research will focus on investigating the kinetics of the microorganisms involved 

(heterotrophs, autotrophs and phototrophs) in order to optimize the removal 

efficiency of the microalgal-bacterial consortia. The phototrophic organisms that 

this thesis will focus on are eukaryotic algae and prokaryotic cyanobacteria. The 

overall work will contribute to the development of design criteria for high rate algae 

ponds using the PAS system for wastewater treatment as a simple, yet innovative, 

technology with low energy requirements, high removal efficiencies of organic 

compounds and nutrients. 

1.3 OUTLINE OF THESIS 

This thesis has been structured in 8 chapters (Figure 1.1). Chapter 1 is a general 

introduction on the background of the research, highlighting the benefits of natural 

systems for wastewater treatment, focusing on the implementation of microalgal-

bacterial consortia in standard algal systems such as HRAP and the research needs 

for the development of microalgal-bacterial systems. 



1. General introduction 

 

10 

 

 

Figure 1.1. Thesis structure and connection among the different chapters  

Chapter 2 presents the state of the art of the microalgal-bacterial interactions 

within wastewater, nutrient removal, photobioreactor configurations, and growth 

limitations. 

In Chapter 3 the benefits of using microalgal-bacterial consortia over solely algal 

consortia is demonstrated in a flat panel sequencing photobioreactor, and the 

differences in the ammonium removal rates and pathways at different loading rates 

and HRT are studied. Chapter 4 studies the effect of the SRT on the removal 

mechanisms of the microalgal-bacterial consortia and determines the relationship 

between the removal rates and the length of the SRT in a sequencing batch 

photobioreactor. Chapter 5 demonstrates the feasibility of the microalgal-bacterial 

consortia to treat high ammonium strength wastewater in a sequencing batch 

photobioreactor. Furthermore, the data was used to propose and calibrate a 

Chapter 3

Microalgal-bacterial consortia 
removed up to 50% more ammonium 
than microalgal consortia. Uncoupling 
of SRT and HRT is one of the most 
important operational conditions.

Chapter 2
Advances in microalgal-

bacterial systems for 
nutrients removal: 
innovation needed

Chapter 4

Definition of key 
operational parameters to 
increase the ammonium 
removal efficiencies and 
rates in a microalgal-
bacterial consortia

Chapter 5

Assessment of a 
microalgal-bacterial consortia 

treatment using real high 
strength wastewater, and 

development of a 
mathematical model

Chapter 6

Mathematical 
modelling (chapter 5) of a 

microalgal-bacterial 
consortia for treatment of 
wastewater at different 
SRTs (data Chapter 4)

Chapter 7

Improvement of the 
mathematical model of the 

microalgal-bacterial 
consortia using data from 

respirometric tests

Chapter 8
Conclusions and 

recommendations and 
future perspectives in 
microalgal-bacterial 

systems for treatment of 
N-rich wastewaters
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mathematical model to describe the microalgae and bacteria processes for the 

removal of ammonium and microalgal-bacterial growth.  

Chapter 6 presents the result of the calibration and validation of the mathematical 

model proposed in Chapter 5 at different SRTs, and using the laboratory data of 

Chapter 4. Chapter 7 demostrates the ability of algae to store nitrogen 

intracellularly. The mathematical model developed in Chapter 5 and 6 was updated 

including the processes related with nitrogen storage and phototrophic growth on 

nitrogen storage compounds. 

Chapter 8 summarizes the results of this research, and discusses the future 

perspectives for the proposed technology. It also gives recommendations for 

practical applications and future research. 
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2.1 MICROALGAL-BACTERIAL CONSORTIA  

The basis of the Photo-Activated Sludge system (PAS) for the treatment of 

nitrogen in wastewater is the consortium between microalgae and bacteria (Figure 

2.1). Microalgae and bacteria co-habit in freshwater, wastewater and marine 

systems. Symbiosis among aerobic bacteria and microalgae for treatment of 

wastewater was first reported by Oswald et al. (1953) in oxidation ponds. One of 

the interactions reported is the exchange of oxygen: the oxygen produced by the 

microalgae, through photosynthesis, is used by aerobic bacteria (heterotrophic and 

nitrifiers) to oxidize organic matter and ammonium. Heterotrophic bacteria produce 

carbon dioxide through respiration and oxidation of organic matter, which can be 

taken up as a carbon source by the microalgae. In the case of nitrogen, after nitrate 

is produced, it can be taken up by microalgae as a source of nitrogen, or further 

denitrified by bacteria when anoxic conditions are met, usually during dark periods, 

or dark zones within the reactor. These interactions create a synergistic relationship 

between microalgae, heterotrophs and nitrifiers in which the required oxygen is 

supplied by microalgae. The aeration supplied by microalgae is defined as 

photosynthetic oxygenation. The term was first defined by Oswald et al. (1953) as 

"production of oxygen through the action of light on the chloroplastic tissue of 

microscopic green plants, growing dispersed in the aqueous medium". 

The symbiosis has been reported to occur in waste stabilization ponds, oxidation 

ponds and high rate algae ponds (HRAP). Zhou et al. (2006) reported removal of 

nutrients through nitrification/denitrification in high rate algae ponds treating 

rural domestic wastewater. About 50% of the nitrogen was removed through 

nitrification/denitrification, followed by algae assimilation and sedimentation. In 
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the case of phosphorus, the main removal mechanisms were through algae 

assimilation followed by chemical precipitation.  

Additional to the removal of nutrients, a consortium of algae and bacteria is able 

to remove hazardous pollutants, as reviewed by Muñoz and Guieysse (2006). 

Pollutants such as acetonitrile were found to be removed at a rate of 2300 mg L-1d-

1 by a consortium of Chlorella sorokiniana and a bacterial consortium suspended in 

a stirred tank reactor. Safonova et al. (2004) reported the removal of different 

xenobiotic compounds through a consortium of algae and bacteria. They observed 

different removal efficiencies for phenols (85%), anionic surfactants such as 

secondary alkane sulfonates (73%), oil spills (96%), copper (62%), nickel (62%), 

zinc (90%), manganese (70%) and iron (64%). The consortia used consisted of the 

algal strains Chlorella sp., Scenedesmus obliquus, Stichococcus and Phormidium sp. 

and of bacterial strains such as Rhodococcus sp., Kibdelosporangium aridium and 

two other unidentified bacterial strains. The removal mechanisms were the 

association between the oil degrading bacteria and the algal strains, the ability of 

algae to supply oxygen and at the same time the ability of aerobic bacteria to 

degrade hydrocarbons.  
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Figure 2.1. Microalgae and bacterial oxidation interactions in a microalgal –

bacterial consortia. Source: Adapted from Muñoz and Guieysse (2006). OHO: 

Heterotrophic organisms, PHO: phototrophic organisms, and P: phosphorous. 

2.1.1 Interactions within microalgal-bacterial consortia 

The interactions between algae and bacteria are not limited to the exchange of 

carbon dioxide and oxygen. On the opposite, the interactions can be either 

mutualism, parasitism or commensalism (Ramanan et al., 2016). As a result, algae 

and bacteria are able to change their physiology and metabolism (Ramanan et al., 

2016).  

There are several studies showing the benefits and negative effects of bacteria and 

algae when present in consortia (Unnithan et al., 2014). Algae can either promote 

bacterial growth through the release of organic exudates (Abed et al., 2007), 

nutrient exchange as result of algal lysis (Unnithan et al., 2014), or decreased algal 

growth through the release of algicidal substances by bacteria (Fukami et al., 1997) 

and/or pH fluctuations as a result of the photosynthesis. Kirkwood et al. (2006) 

reported how the production of exudates by cyanobacteria did not completely 

inhibit bacterial growth, but instead were used as substrate in a consortium of 
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heterotrophic bacteria and cyanobacteria treating pulp and paper wastewater. In 

addition, the study revealed that the exudates also enhanced the removal of 

dichloroacetate, and at the same time affected the removal of phenolic compounds.  

Choi et al. (2010) reported the negative effect of cyanobacteria on the nitrification 

rates in a bioreactor growing only nitrifiers. The presence of algae and cyanobacteria 

in the autotrophic bioreactor inhibited the maximum nitrification by a factor of 4, 

however, the ammonium was still efficiently removed (Choi et al., 2010). Other 

negative effects of microalgae on bacteria are the increase in pH due to the 

photosynthetic activity and high dissolved oxygen concentration. The fast growth 

rate of microalgae can create a high density in the culture that led to the increase 

of dark zones, in which microalgae can perform respiration and diminish the amount 

of oxygen for bacteria (Muñoz and Guieysse, 2006).  

On the opposite, there are also microalgae growth-promoting bacteria (MGPB). As 

the name states, these bacteria enhance the growth of microalgae. De Bashan et al. 

(2004) demonstrated how the bacterium A. brasilense boosted the growth of 

Chlorella sorokiniana, which lead to an effluent with less nitrogen and phosphorus. 

Additionally, the consumption of oxygen by the aerobic bacteria helps to prevent 

oxygen saturation conditions.   

The presence of bacteria in microalgal cultures improves the flocculation of 

suspended algae. Some studies have reported the improvement in the settling 

characteristics of the biomass in microalgal-bacterial cultures through the formation 

of granules or aggregates (Gutzeit et al., 2005; Lee et al., 2013; Van Den Hende et 

al., 2014). The formation of flocs in an algal-bacterial consortium is promoted by 

the bacterial exopolymers, increasing the aggregation and stabilizing the already 
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existing aggregates, while increasing settleability (Subashchandrabose et al., 2011). 

Algal-bacterial flocs vary from 50 µm to 1 mm, but the predominant size is between 

400 - 800 µm (Gutzeit et al., 2005). Tiron et al. (2017) reported the development 

of granules or as the author calls them “activated algae flocs”, for this already 

formed algal flocs and the bacterial population already present in the raw dairy 

wastewater were used as inoculum. The developed activated algae granules had a 

size between 600 – 2000 µm, and a settling velocity of 21.6 (± 0.9) m h-1 (Tiron et 

al., 2017). Figure 2.2 presents an example of an activated algae granule. This 

positive effect tackles one of the drawbacks of solely algal systems: efficient biomass 

harvesting. Tiron et al. (2017) the formation of the granules was achieved in a 1.5 

L photobioreactor operated as sequencing batch using diluted pretreated dairy 

wastewater (15.3 – 21.8 mg NH4
+-N L-1) with an HRT between 96 - 24 hours.  

 

Figure 2.2. Algae granules containing the algae strains: Chlorella sp. and 

Phormidium sp. (Tiron et al. 2017) 

Despite some of the negative interactions, the consortium between microalgae and 

bacteria enhances the removal of nutrients and other pollutants. The synergistic 

relationship provides sturdiness to overcome extreme environmental conditions and 

fluctuations due to operational changes. The complexity of these interactions needs 
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to be understood in order to maximize the positive effects to develop culture 

conditions that enhance wastewater treatment. 

2.1.2 Nutrient removal by microalgal-bacterial consortia 

The main difference between an algal system and a microalgal-bacterial consortium 

in terms of nitrogen removal is the removal pathways. In algal systems, assimilation 

into the biomass and ammonium volatilization due to pH fluctuations are the two 

main removal mechanisms. In microalgal-bacterial consortia these are not the only 

removal mechanisms, but another important pathway of nitrogen removal is 

nitrification, as nitrifiers can make use of the oxygen produced by the microalgae. 

The exchange of oxygen and carbon dioxide allows the efficient removal of organic 

matter and nitrogen by heterotrophic and nitrifying bacteria. Furthermore, open 

and closed photobioreactors contain dark zones in which anoxic conditions allow 

denitrification by anoxic heterotrophic (denitrifying) bacteria.  

Phosphorus can be removed from the water either by chemical or microbiological 

mechanisms. Like nitrogen, phosphorus is an essential nutrient for microalgae. 

Phosphorus is taken up by algae preferably in the forms of H2PO4
- and HPO4

2-, and 

incorporated into the cell through phosphorylation (transformation into high energy 

organic compounds) (Martínez et al., 1999). However, there is no a clear description 

in the literature about how the phosphorous removal is achieved in waste 

stabilization ponds, as the reasons are not well understood (Powell et al., 2008). 

The chemical mechanism of phosphorus removal is through precipitation. This 

mechanism depends on the pH and the dissolved oxygen concentration in the bulk 

liquid. At high pH and dissolved oxygen concentrations, phosphorus will precipitate 

(Cai et al., 2013). de Bashan and Bashan (2004) presented a review of the different 
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forms of phosphorus precipitation. Usually it can occur at pH higher than 9, 

depending on the concentrations of the different ions and P. Due to the fact that 

phosphorus does not exist in gaseous form (like atmospheric nitrogen which 

eventually could be fixed by algae) and that it can be easily bound with other ions, 

it is the most important growth limiting factor in microalgae cultivation, besides 

light (Grobbelaar, 2008). Phosphorus assimilation is the main biological mechanism 

of removal in algal systems. Di Termini et al. (2011) achieved phosphorus removal 

between 80 - 90% in outdoor and indoor closed photobioreactors through microalgae 

assimilation. 

Several authors have reported the use of microalgal-bacterial consortia for nutrient 

(nitrogen and phosphorous) removal from real or synthetic wastewater using 

different types of photobioreactors (Subashchandrabose et al., 2011). The different 

studies showed nitrogen removal efficiencies were between 100% and 15%, whereas 

the phosphorous removal efficiencies were between 90% and 31.5% 

(Subashchandrabose et al., 2011).   

The symbiosis between microalgae and bacteria offers a large potential for the 

treatment of nutrient rich wastewaters, although some aspects need to be taken 

into account, as they determine the nutrient removal efficiencies or the nutrient 

removal pathways. The selection of a particular strain for wastewater treatment is 

a decisive step when engineering a consortium of microalgae and bacteria. In open 

ponds, there is a natural selection of the microalgae species, which depends on the 

organic load of the wastewater, species interactions, seasonal environmental 

conditions, competition and interactions among the microorganisms present in the 

culture (Riaño et al., 2012). Natural selection of microalgae within a microalgal-
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bacterial consortium allows to achieve higher efficiencies as there are no inhibitory 

effects by the source of the wastewater. 

González-Fernández et al. (2011a) compared the removal efficiency of 4 ponds using 

microalgal-bacterial consortia for the treatment of pig slurry. The ponds differed in 

terms of operational conditions (optimal and real conditions), and source of the 

slurry (anaerobically digested or fresh). The three reported removal mechanisms 

were nitrification/denitrification, stripping and biomass uptake. Among these three, 

the main driving force of removal depended on the substrate source. The NH4
+-

N/COD ratio of the substrates was responsible for the different removal rates and 

the main removal pathway. The anaerobic digested slurry had a ratio of 0.46 NH4
+-

N/COD, whereas the fresh slurry had a NH4
+-N/COD ratio of 0.13.  Since the 

organic matter in the anaerobically digested slurry is more recalcitrant, the oxygen 

is more likely taken up for nitrification, reason why nitrification rates were higher 

for ponds fed with anaerobically digested slurry (González-Fernández et al. 2011a). 

Molinuevo-Salces et al. (2010) compared open and closed configurations and the 

results showed that even though ammonium was completely removed, the removal 

mechanisms were different. In the open configuration the biomass uptake was 

between 38 - 47%, while 52 - 29% was nitrified/denitrified. In the closed reactor 

10.5% was volatilized and 11.3% nitrified, 41% nitrified/denitrified and 31.3% taken 

up by algae (Molinuevo-Salces et al., 2010). About 80% of the phosphorous was 

removed regardless the configuration. 

Ammonium removal through nitrification/denitrification as main removal 

mechanism in microalgal-bacterial systems has the advantage of achieving faster 

removal rates in comparison with solely algal systems, especially for high 
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concentrated effluents from industrial sectors. Wang et al. (2015) used microalgal-

bacterial consortia to treat anaerobically digested swine manure with ammonium 

concentrations up to 297 (± 29) mg NH4
+-N L-1 (value after 3 times dilution) in a 

sequencing batch photobioreactor (4 days hydraulic retention time), achieving a 

90% total nitrogen (TN) removal efficiency, from which 80% was removed through 

nitritation/denitritation without any external aeration. Furthermore, Manser et al. 

(2016) reported the successful combination of microalgae, ammonium-oxidising 

bacteria (AOB) and anammox in a sequencing batch photobioreactor achieving 

ammonium oxidation to nitrite at a rate of 7.0 mg NH4
+-N L-1 h-1 in the light periods, 

and during the night periods in which anoxic conditions were achieved, about 82% 

of the nitrite was reduced by anammox bacteria. 

Table 2.1 Nutrient removal using a microalgal-bacterial consortia for different 

types of wastewater and using different types of reactors. Source: 

Subashchandrabose et al. (2011). 

Cyanobacterium/
microalga 

Bacterium
Source of 

waste 
water 

Nutrients and 
removal 
efficiency 

System - 
reactor used

Spirulina platensis 
Sulfate-
reducing 
bacteria 

Tannery 
effluent 

Sulfate 80% 
(2000 mg/L) 

High rate 
algal pond 
(HRAP) 

Chlorella vulgaris
Azospirillu

m 
brasilense 

Synthetic 
wastewater

Ammonia 91% 
(21 mg/L) 

Chemostat 
Phosphorous 

75% (15 mg/L) 

Chlorella vulgaris
Wastewate
r bacteria 

Pretreated 
sewage 

DOC 93% (230 
mg C/L Photobioreact

or pilot-scale Nitrogen 15% 
(78.5 mg/L) 
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Cyanobacterium/
microalga 

Bacterium
Source of 

waste 
water 

Nutrients and 
removal 
efficiency 

System - 
reactor used

Phosphorous 
47% (10.8 mg/L) 

Chlorella vulgaris
Alcaligenes 

sp. 

Coke 
factory 

wastewater

NH4
+ 45% (500 
mg/L) 

Continuous 
photobioreact
or with sludge 
recirculation 

Phenol 100% 
(325 mg/L) 

Chlorella vulgaris
A. 

brasilense 
Synthetic 

wastewater

Phosphorous 
31.5% (50 mg/L) 

Inverted 
conical glass 
bioreactor 

Nitrogen 22% 
(50 mg/L) 

Chlorella 
sorokiniana 

Mixed 
bacterial 
Culture 
from an 
activated 
sludge 
process 

Synthetic 
wastewater

Phosphorous 
86% (15 mg/L) 

Tubular 
biofilm 

photobioreact
or 

Nitrogen 99% 
(180 mg/L) 

Chlorella 
sorokiniana 

Activated 
sludge 

bacteria 

Pretreated 
piggery 

wastewater

TOC 86% (645 
mg/L) 

Glass bottle 
Nitrogen 87% 
(373 mg/L) 

Chlorella 
sorokiniana 

Activated 
sludge 

bacteria 

Pretreated 
swine 
slurry 

TOC 9-61% 
(1247 mg/L) 

Tubular 
biofilm 

photobioreact
or 

Nitrogen 94-
100% (656 

mg/L) 

Phosphorous 70-
90% (117 mg/L) 
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Cyanobacterium/
microalga 

Bacterium
Source of 

waste 
water 

Nutrients and 
removal 
efficiency 

System - 
reactor used

Chlorella 
sorokiniana 

Activated 
sludge 

bacteria 

Piggery 
wastewater

TOC 47% (550 
mg/L) Jacketed glass 

tank 
photobioreact

or 

Phosphorous 
54% (19.4 mg/L) 

NH4
+ 21% (350 
mg/L) 

Euglena viridis 
Activated 

sludge 
bacteria 

Piggery 
wastewater

TOC 51% (450 
mg/L) Jacketed glass 

tank 
photobioreact

or 

Phosphorous 
53% (19.4 mg/L) 
NH4

+ 34% (320 
mg/L) 

Microalgae 
present in tertiary 
stabilization pond 
treating domestic 

wastewater 

Bacteria 
present in 
tertiary 

stabilizatio
n pond 
treating 
domestic 

wastewater

Piggery 
wastewater

COD 58.7% (526 
mg/L) 

High rate 
algal pond 
(HRAP) 

Total Kjeldahl 
Nitrogen 78% 

(59 mg/L) 

2.1.3 Microalgal-bacterial systems and configurations 

Algal wastewater treatment systems can be divided in open and closed 

photobioreactors. According to the reactor geometry, closed photobioreactors can 

be divided into: (i) vertical columns, (ii) tubular reactors and (iii) flat panel reactors 

(Wang et al. 2012). Open reactors can be listed into: (i) waste stabilization ponds 

(WSP), (ii) raceway ponds and (iii) high rate algae ponds (HRAP). Figure 2.3 

presents a scheme of the three most used photobioreactors for algal cultvations. 
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Currently, open systems are the most used type for wastewater treatment and 

biomass cultivation using microalgae (Carvalho et al., 2006; Wang et al., 2012) due 

to their low investment and maintenance cost and easiness to scale up (Cai et al., 

2013). Closed systems are mostly used for sensitive microalgae strains, products 

vulnerable to microbial degradation or when the harvested biomass is aimed at 

direct human consumption such as for cosmetics or nutritional supplements 

(Carvalho et al., 2006). Closed systems have a higher light harvesting, thus biomass 

production can achieve a higher population density, however the investment and 

maintenance costs are higher compared with open systems (Carvalho et al., 2006). 

HRAP are the most efficient open systems as they are operated with a higher depth 

in comparison with the other options. HRAP are raceway type ponds with depths 

between 0.2 - 1 m. They can treat up to 35 g BOD m-2 d-1 compared with 5 - 10 

BOD m-2 d-1 in waste stabilisation ponds (Muñoz and Guieysse, 2006). However, 

light penetration in such reactors is limited by the depth or solids concentration. 

Furthermore, open and closed systems both require large areas for operation in 

order to either efficiently remove the contaminants or to achieve high biomass 

production. Therefore, the reactor selection and the growth medium composition 

depends on the objective of the system.  
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Figure 2.3.The three most used algal system configurations. A) High rate algae 

pond, B) Closed tubular photobioreactor, and C) Flat panel airlift reactor Source: 

(Wang et al., 2018). 

2.1.4 Limiting and operational conditions of microalgal-bacterial 

photobioreactors 

There are several factors that can affect the growth of algae and bacteria, especially 

when using wastewater as growth medium, since there are many substances, 

compounds and factors to take into account. In open and closed photobioreactors 

there are physical, chemical, biological and operational factors that can limit the 

growth of microalgae (Borowitzka, 1998). Among those, the parameters that have 

a strong effect on the efficiency of microalgae and bacteria when treating 

wastewater are: pH, light intensity, temperature, dissolved carbon dioxide, 

nutrients, mixing, dilution and algae harvesting  (Borowitzka, 1998; Rawat et al., 

2011).  

In terms of operation, different operational parameters have an effect on the 

cultivation of microalgae and bacteria separately. Therefore, special attention 
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should be given when combining these two groups of microorganisms. One of the 

most critical operational parameters is the biomass retention time, which in the 

case of a consortium can be determined by the influent flow rate, and whether there 

is biomass recirculation. Solid retention time (SRT) and hydraulic retention time 

(HRT) influence the biomass concentration and the overall productivity of the 

microalgal-bacterial systems (Valigore et al., 2012). This PhD research focused on 

open photobioreactors such as high rate algae ponds. For this reason, the 

implications of some of the factors limiting algal and bacterial growth in high rate 

open algal ponds are described below. 

Light 

Light is the energy source to perform photosynthesis, allowing microalgae growth. 

Hence, the uptake efficiency of light is crucial for the productivity of algal biomass 

and photo-oxygenation. Microalgae can absorb only a fraction of the irradiance, 

between 400 - 700 nm. This range is called the photosynthetically-active radiation 

(PAR). Open ponds obtain this irradiance from the sun, hence the ponds are 

shallow in order to allow a maximal light penetration. Height it is not the only 

limitation for the light irradiance, attenuation by the biomass itself is another factor, 

which can increase when co-cultured with bacteria, and the fact that light can be 

easily absorbed by other materials or substances (Fernández et al., 2013; Jeon et 

al., 2005). Dense and concentrated cultures present mutual shading, reducing the 

light intensity from the illuminated surface to the centre of the reactors, which 

increase the dark zones and consequently microalgal respiration (Chen et al., 2011; 

Fernández et al. 2013). Due to this, microalgae are exposed to light/dark zones. 

For instance, in open ponds except for the upmost thin layer, the irradiance in the 

pond is below the photo-compensation point for algal growth (Barbosa et al., 2003), 
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as a result of this photosynthetic rates decrease, as well as algal growth.  This effect 

can be compensated by a good mixing which allows the cells to be exposed to a 

sufficient amount of irradiance (Chen et al., 2011). In open ponds, usually the 

mixing is provided by a paddle wheel, while aeration is usually applied in closed 

photobioreactors. 

Indoor cultures and closed photobioreactors use other sources of light different from 

sunlight. For instance, high pressure sodium lamps, tungsten-halogen lamps, 

fluorescent tubes and light emitting-diodes (LED lights). Although, these lamps 

provide a reliable source of energy, the disadvantages are the high power 

consumption and high operational costs, and they do not contain the full spectrum 

of light energy (Chen et al., 2011). On the other hand, sunlight is free and holds 

the full spectrum of light energy. 

pH 

pH is one of the most important parameters in microalgal cultures, as it determines 

the solubility of carbon dioxide, removal of other nutrients like P and N, and most 

importantly it affects the metabolism of the microalgae (Becker, 1994). 

Furthermore, pH fluctuations can inhibit bacterial activity such as autotrophic and 

heterotrophic bacteria. Fluctuations of pH in microalgae cultures are a consequence 

of the processes of photosynthesis and respiration during the light and dark periods, 

respectively. During the day, the pH increases due to the assimilation of CO2 and 

the release of OH-. pH values of up to 10 have been reported after the depletion of 

NO3
- and CO2 (Becker, 1994). Increments of the pH are limited in some cases by 

the respiration of the different microorganisms. Additionally, nitrogen removal 

through nitrification has an effect on the pH fluctuations, since the pH decreases 

during this process due to the release of H+. Therefore, the addition of ammonium 
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can help to reduce the pH increment (Larsdotter, 2006), making it a good option 

for pH control in open ponds. Also, the addition of CO2 can help to control the pH 

as shown by Park and Craggs (2010). 

pH values can affect the growth of microalgae and therefore the removal of nutrients, 

this can vary for the different strains. Some algae such as Microcystis aeruginosa 

and Anabena spiroides have growth limitations and inhibition when exposed to a 

pH below 6 (Wang et al., 2011). pH fluctuations can also determine the removal of 

N and P, as higher pH causes ammonium volatilization and phosphorus 

precipitation. When this occurs faster than the uptake by algae, it leads to algal 

growth limitation due to the lack of nutrients. Therefore, pH control strategies 

must be developed in order to avoid possible negative effects caused by drastic pH 

fluctuations. 

In the case of nitrifiers, the growth is suppressed when the pH is not within the 7 

to 8 range (Ekama and Wentzel, 2008a). Nitrification performed by aerobic bacteria 

release hydrogen ions, reducing the alkalinity of the bulk liquid. Stoichiometrically, 

for every 1 mg free and saline ammonia (FSA) nitrified, 7.14 mg alkalinity (CaCO3) 

is consumed (Ekama and Wentzel, 2008a). When alkalinity is lower than 40 mg L-

1 in activated sludge systems, the pH decreases to low values, compromising the 

nitrification rates and settleability characteristics of the sludge (Ekama and 

Wentzel, 2008a). In systems working with algae and bacteria, the pH drop by 

nitrification can be counterbalanced by photosynthetic activity. Also denitrification 

recovers alkalinity, which occurs under anoxic conditions. In algal-bacterial systems, 

dark conditions guarantee the absence of oxygen production by algae, instead algae 

respire releasing CO2, which helps to decrease the pH. Based on this, it is evident 

that the balance in terms of alkalinity between microalgae and bacteria is important.   
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Hydraulic retention time 

Hydraulic retention time controls the nutrient loading rates, which at the same 

time will control the productivity and nutrient removal rate of an algae system.  In 

an open pond with well mixed and steady-state conditions, the productivity is 

governed by the dilution rate and the depth of the pond. The HRT corresponds to 

the reciprocal of the dilution rate. In algal ponds and HRAP, the HRT is the same 

as the solids retention time (SRT), since it is not common to recirculate the biomass, 

as the harvesting of algal biomass is one of the biggest challenges due to their low 

cell size (Lee et al., 2013). Therefore, in order to achieve complete removal rates of  

pollutants, it is common practice to operate algal systems at a HRT between 2-8 

days and depths between 0.2 -0.5 m (Shilton, 2006). Due to seasonal variations, it 

is recommended to vary the HRT, as the temperature changes limit or enhance the 

growth rates.  

Furthermore, shorter HRT in algal systems enhance the biomass production  

(Oswald et al., 1953; Takabe et al., 2016). Valigore et al. (2012) compared different 

HRT (from 8 -1.4 days) in a microalgal-bacterial culture, concluding that a shorter 

HRT enhanced the biomass productivity. However, a shorter HRT can decrease the 

nutrient removal rates in microalgal-bacterial systems, especially when it can 

promote wash out of the biomass. An optimum HRT enhances nutrient removal by 

allowing the proper growth of algal-bacterial populations, which will promote faster 

nitrification rates, especially since the growth rate of nitrifying microorganisms is 

low, i.e. µm=0.45 d-1 at 20ºC (Ekama and Wentzel, 2008a). Therefore, the HRT 

must be chosen depending on the objective, whether the maximization of the 

biomass production or the treatment of wastewater. Also, it must be taken into 

account that due to the depth of the HRAP, a longer HRT will result in larger 

areas, therefore optimization of this parameter is crucial for algal systems. 
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Solids retention time 

When working with a consortium of microalgae and activated sludge bacteria for 

nutrient and organic matter removal through photo-oxygenation, the sludge 

retention time plays an important role within the operational parameters. In fact, 

it is the most fundamental and important decision for the design of activated sludge 

systems (Ekama and Wentzel, 2008b). Sludge retention time controls the growth 

of the microorganisms, and corresponds to the relation between the volume of the 

reactor and the waste biomass flow from the reactor. Therefore, the sludge 

production in activated sludge systems decreases with the increase of the SRT 

(Ekama and Wentzel, 2008b). On the other hand, for suspended algae systems, the 

algae biomass production is controlled by the HRT. This parameter controls the 

biomass concentrations, which will affect the light utilization by microalgae 

(Lambeert-Beer law).  

Figure 2.4 presents the productivity curve for a flat panel reactor for different 

biomass concentrations and light intensity. The optimal concentration (Cx,opt), 

where the biomass production is at the maximum, will depend on the efficient use 

of light. This is achieved when the light at the back of the reactor equals the 

compensation point for microalgae growth. For lower concentrations, the light will 

pass through the reactor un-used, whereas for higher values, the light will not be 

able to reach the bottom/back of the photobioreactor (Janssen and Lamers, 2013). 

Therefore, there is a need for optimum SRT and HRT combinations to achieve a 

microalgal-bacterial biomass concentration that allows complete nitrification by 

ensuring sufficient oxygen without biomass wash-out.   
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Figure 2.4. Volumetric productivity of a photobioreactor rux as a function of the 

biomass concentration Cx.  Light intensity at the back of the reactor Iph,PAR (d) 

and the compensation light intensity Iph, PARc, are also shown. Source: Janssen and 

Lamers (2013) 

Valigore et al. (2012) concluded that biomass recycling at a SRT higher than the 

HRT reduces the wash-out of the microorganisms present in the reactor. Therefore, 

an appropriate SRT will ensure the successful growth of nitrifiers (slower growing 

microorganisms in activated sludge) and in addition guarantees light availability 

for photo-oxygenation. The recommended ranges of SRT values for complete 

nitrification are divided in two: (i) intermediate, between 10 to 15 days, this range 

ensures complete nitrification, and (ii) long sludge age refers to more than 20 days, 

for which the production of sludge is low with a rather inactive sludge (Ekama and 

Wentzel, 2008b).  

The sludge retention time also plays a role in the floc formation, since longer SRT 

and biomass recirculation enhances the biomass settleability and floc formation 

(Gutzeit et al., 2005; Medina and Neis, 2007; Valigore et al., 2012). It was reported 
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that settleability of algal-bacterial biomass increased from 13 to 93% when the SRT 

increases up to 40 days (Valigore et al., 2012). Additionally, Gutzeit et al. (2005) 

achieved during a period of 18 months a flocculent algal - bacterial biomass with 

excellent sedimentation characteristics, using a SRT between 20 - 25 days. On the 

other hand, longer SRT promote algal death due to high solids concentrations, 

which limits the light penetration and creates higher dark zones increasing the 

respiration activity (Oswald et al., 1953). Since HRT and SRT can operationally 

define the removal rate, biomass characteristics and productivity, it is essential to 

further investigate different conditions of these two in order to define the 

operational conditions for novel algal-bacterial based wastewater treatment systems.   

2.2 MICROALGAL-BACTERIAL MODELLING 

Modelling of processes in wastewater treatment has the advantage of getting insight 

into the performance of the technology, evaluation of possible scenarios for 

upgrading, evaluation of new plant design, support to the decision making related 

with operational conditions and personal training (van Loosdrecht et al., 2008). 

Modelling of microalgae systems, more specifically for open ponds, has to take into 

account several factors, such as light, wind, stripping of ammonia and carbon 

dioxide, as well as biological and hydrodynamic processes (Gehring et al., 2010). 

There are several models which focus on different microalgae processes, for instance 

on the net growth of microalgae (Decostere et al., 2013; Solimeno et al., 2015; 

Wágner et al., 2016), models dealing with light limitation and photosynthesis rates 

(Yun and Park, 2003), kinetics of nutrient removal (Kapdan and Aslan, 2008), 

pigments dynamics and respiration (Bernard, 2011) and dissolved oxygen rates 

(Kayombo et al., 2000).  
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In the case of activated sludge, bacteria are mostly modelled by a set of models 

(ASM1, ASM2 and ASM3, ASM3, ASM2d, ASM3-bio-P) developed by task groups 

of the International Water Association (IWA) and the metabolic model developed 

at Delft University of Technology (Gernaey et al., 2004). The activated sludge 

model No. 1 (ASM1) (Henze, 2000) is considered the reference model. It describes 

the removal of organic carbon compounds and nitrogen, while consuming oxygen 

and nitrate as electron acceptors. Additionally, it describes the sludge production 

and has adopted the chemical oxygen demand (COD) as measurement unit for 

organic matter (Gernaey et al., 2004). Furthermore, similar to ASM1, ASM3 was 

developed to correct the deficiencies of the ASM1 model. The main difference of 

the ASM3 model is the inclusion of the intracellular storage process of readily 

biodegradable COD, for the slower conversion from readily biodegradable into 

slowly biodegradable organic matter (Gernaey et al., 2004; van Loosdrecht et al., 

2008).  Other models include biological phosphorus removal, i.e ASM2d and the 

TUDelft model (van Loosdrecht et al., 2008). 

As mentioned in previous sections, usually in open ponds that are treating 

wastewater, not only microalgae play a role in the removal of nutrients and biomass 

production,  but at the same time, heterotrophic and nitrifying bacteria carry out 

different processes like oxidation of organic matter, nitrification, denitrification and 

respiration (Figure 2.1). Therefore, they make the system more complex as those 

microorganisms and their associated parameters and variables should be taken into 

account. Furthermore, models describing these complex relationships should be 

based on the microalgae models and activated sludge models. Models describing the 

relationships of algal-bacterial consortia in open ponds have been reported at first 

by Buhr and Miller (1983). Their objective was to develop a mathematical model 

for high rate algal-bacterial wastewater treatment systems. This model takes into 
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account the algal and bacterial growth, light limitation, and solution equilibrium 

related with the pH and mass balances. The variations of pH, DO and substrate 

concentrations along the pond length were evaluated under different feed loads and 

hydraulic residence times. Later on, Gehring et al. (2010) developed a model to 

simulate the processes in a waste stabilisation pond. The activated sludge model 

No. 3 (ASM3) was used as a basis. The new components were the integration of 

algae biomass and gas transfer processes for oxygen, carbon dioxide and ammonia 

depending on wind velocity. Furthermore, it had the possibility to model the algae 

concentrations based on measured Chlorophyll-a, light intensity and total 

suspended solids (TSS) measurements (Gehring et al., 2010). However, modelling 

of nitrification and denitrification was not considered in the simulations performed 

by Gehring et al. (2010) because the experimental data did not show any 

nitrification or denitrification rates. Therefore, the model was not evaluated under 

the two conditions of nitrification and algal growth.  

There are in the literature some models focused on algal-bacterial consortia 

(Solimeno et al., 2017; van der Steen et al., 2015; Wolf et al., 2007; Zambrano et 

al. 2016). Solimeno et al. (2017) developed the BIO-ALGAE model for suspended 

microalgal-bacterial biomass, which was an updated version of the algal model 

proposed by the same author (Solimeno et al., 2015). The model was calibrated and 

validated, reporting good results on the prediction of biomass characterization. 

Furthermore, it identified the light factor as one of the most sensitive parameters 

for microalgal growth. The model takes into account the algal growth on carbon 

and nutrients, gas transfer to the atmosphere, photorespiration and photoinhibition. 

The PHOBIA model was developed by Wolf et al. (2007) at the Delft University 

of Technology for microalgal-bacterial biofilms. It includes the modelling of different 



2. Microalgal-Bacterial consortia for wastewater treatment: A review 

 

36 

 

kinetic mechanisms of phototrophic microorganisms, such as internal polyglucose 

storage, growth in darkness, photoadaptation and photoinhibition, as well as 

nitrogen preference (Wolf et al., 2007). These models can serve as a basis for the 

development of further models whose aim is to explain and describe the microalgae-

bacteria symbiosis for their cultivation for wastewater treatment in suspended 

cultures. For this reason, there is still a need for models calibrated and validated 

with longer data sets or at different operational conditions treating diverse types of 

wastewaters.   

2.3 AIMS OF THIS PHD RESEARCH 

The aim of this research is to maximize the efficiency of microalgal-bacterial 

consortia for nitrogen removal. This is intended through the understanding of the 

symbiosis between microalgae and bacteria and of the operational parameters SRT 

and HRT, which have a great effect on the consortia.  

The objective is to define the optimal conditions for an innovative treatment called 

Photo-Activated Sludge (PAS) system. For this, the PhD focuses on the 

investigation of the kinetic parameters of the microorganisms involved 

(heterotrophs, autotrophs and photoautotrophs) in a microalgal-bacterial 

consortium for treatment of anaerobic effluent, in order to optimize the removal 

efficiency of ammonium nitrogen. The photoautotrophic organisms that this thesis 

will focus on are eukaryotic algae and prokaryotic cyanobacteria. The overall work 

will contribute to the development of design criteria for the PAS system, as a simple, 

yet innovative, technology with low energy requirements, high removal efficiencies 

of nutrients and organic compounds. 
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To achieve the objective of this PhD, it is necessary to (i) determine the optimal 

conditions of the key parameters affecting the interactions within the microalgal-

bacterial consortia (SRT, HRT) by assessing the ammonium removal and biomass 

production of the microalgae-bacteria under different operational conditions and (ii) 

to determine the key kinetic parameters of the microalgal-bacterial consortia based 

on laboratory scale experiments and the proposition of a mathematical model. This 

will allow the understanding of the effects of microalgae on the growth rate of the 

nitrifying microorganisms and visce versa. Overall, the results will serve as a base 

to maximize the photo-oxygenation, maximal growth rate and ammonium removal 

rates when using microalgal-bacterial consortia for nitrogen removal from municipal 

and high strength wastewater. 
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Abstract 

Ammonium removal from artificial wastewater by microalgal-bacterial consortia in 

a flat-panel reactor (FPR1) was compared with a microalgae only flat-panel reactor 

(FPR2). The microalgal-bacterial consortia removed ammonium at higher rates 

(100 ± 18 mg ܰܪସା − ܰ L-1 d-1) than the microalgae consortia (44 ± 16 mg ܰܪସା −ܰ L-1 d-1), when the system achieved a stable performance at a 2 days hydraulic 

retention time. Nitrifiers present in the microalgae-bacteria consortia increased the 

ammonium removal: the ammonium removal rate by nitrifiers and by algae in 

FPR1 was, respectively, 50 (± 18) and 49 (± 22) mg ܰܪସା − ܰ  L-1 d-1. The 

ammonium removal by algae was not significantly different between FPR1 and 

FPR2. The activity of the nitrifiers did not negatively affect the nitrogen uptake 

by algae, but improved the total ammonium removal rate of FPR1. 

3.1 INTRODUCTION 

Among the widely applied conventional biological nitrogen removal processes, 

algae-based systems have emerged as an economical solution with high nutrient 

removal efficiencies (García et al., 2000) and N-recover possibilities (Cai et al., 

2013). However, the areal foot-print of algae-based systems needs to be reduced, 

without compromising effluent quality, while maintaining lower operational costs. 

These challenges of algae-based systems could be solved by using microalgae-

bacteria consortia. Photosynthesis by the algae provides oxygen, which can be used 

by heterotrophic and ammonium oxidizing bacteria. The carbon dioxide released 

by carbonaceous oxidation processes can be used by the microalgae 



3.1. Introduction

 

41 

 

(Subashchandrabose et al., 2011). Moreover, the presence of bacteria within an 

algal culture improves the settling properties of the biomass (Su et al., 2012b). 

Better settling properties allow to control the solids retention time (SRT), which 

permits to operate the system at the shortest optimum SRT. This will promote 

higher active biomass and higher nutrient removal rates at short hydraulic retention 

times (HRT) without the risk of biomass wash out (Medina and Neis, 2007; Van 

Den Hende et al. 2014, 2011; Valigore et al., 2012). 

Faster conversion of ammonium either through nitrification or nitritation  increases 

the ammonium removal rates in microalgal-bacterial systems compared to solely 

algal systems (Rada-Ariza et al., 2015; Wang et al., 2015). There are several factors 

that affect the growth of algae and bacteria as well as their interactions (Ramanan 

et al., 2016), such as exchange of micro and macro nutrients, self-shading effect in 

suspended systems or release of toxins by either bacteria or algae that hinder their 

mutual growth (Ramanan et al., 2016). These interactions are affected by the 

operational conditions, such as pH, light intensity, temperature, inorganic carbon 

competition, nutrients, mixing, dilution rate, SRT, HRT, and algae harvesting 

(Borowitzka, 1998; Rawat et al., 2011). These parameters can have different 

optimum ranges for the microbial and microalgal populations. Therefore, it is 

necessary to study the interactions between the microalgae and bacteria to develop 

operational guidelines. Through a set of operational guidelines for the SRT and 

HRT, complete nitrification of ammonium can be achieved by the microalgal-

bacterial consortia. Ensuring nitrification is the first step for total nitrogen removal, 

which can be achieved by applying a further denitrification step. 
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This study assessed the ammonium removal rates by microalgal-nitrifying (reactor 

1, FPR1) and microalgal (reactor 2, FPR2) consortia. The two consortia were 

cultivated in flat panel photobioreactors operated at 25ºC and pH of 7.5. They were 

operated at different ammonium loading rates controlled by the influent flow rate, 

resulting in different HRT.  Both consortia were initialy grown under inorganic 

carbon limitation and subsequently under excess of inorganic carbon. The effect of 

key operating parameters like SRT and HRT on the ammonium removal rates were 

evaluated. Furthermore, the nitrogen (ammonium) loading rate (NLR), nutrient 

removal efficiency, and settleability of the microalgal-nitrifying and microalgal 

consortia were compared. 

3.2 MATERIALS AND METHODS 

3.2.1 Reactor set-up 

The flat-panel reactors (FPR) used in the experiment are shown in Figure 3.1. They 

had a total volume of 5.75 L and the dimensions were 0.25m x 0.23m x 0.1 m. They 

had a heat jacket at the back of the reactor, which was connected to a cooling 

tower to maintain the desired constant temperature. The influent is entered at the 

left side of the FPR at the bottom, to ensure full mixing of the synthetic wastewater 

with the algal (bacterial) biomass. The net working volume was 4 L and the FPRs 

were operated as sequencing batch reactor (SBR), 
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Figure 3.1. Open flat panel reactor (FPR) used in the experiments. 

The light intensity on the reactor surface was 700 µmol m-2 s-1, and temperature 

was controlled at about 25 oC using a cooling tower. The FPRs were completely 

mixed, using magnetic stirrers operated at 500 rpm. The pH in the FPRs was kept 

around 7.5 by addition of a phosphate buffer solution (PBS) to the synthetic 

wastewater. The FPRs were operated for 331 d in cycles of 24 h with two feedings 

per cycle. The two feedings were done in order to divide the nitrogen load and avoid 

nutrient limited conditions in the FPRs. A 24 hour cycle consisted of: (i) first 

influent addition (15 min), (ii) first reaction time (11 h 45 min), (iii) second influent 

addition (15 min), (iv) second reaction time (11h 15 min), (iv) settling (15 minutes), 

and (v) effluent withdrawal (15 min). The volumes pumped in and withdrawn from 

the FPRs varied along the periods, and were defined to achieve increasing NLR 

(Table 3.1). 
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3.2.2 Inoculation 

The two FPRs were inoculated with different mixtures of microalgae and bacteria. 

Reactor 1 (FPR1), set up to develop a microalgal-bacterial consortia, was 

inoculated with 50 mL containing 10 mL of five different pure cultures of algal 

strains, and 50 mL of mixed liquor activated sludge from the Harnaschpolder 

wastewater treatment plant (Delft, The Netherlands). The algae strains used were 

Scenedesmus quadricauda, Anabena variabilis, Chlorella sp., Chlorococcus sp. and 

Spirulina sp. Their cell density, determined using the Thoma cell counting chamber, 

was 0.48, 0.09, 0.29, 0.27 and 0.05 cell ml-1, respectively.  The activated sludge 

came from a conventional activated sludge treatment, of which a detailed 

composition is reported in (Gonzalez-Martinez et al., 2016). The inoculation ratio 

based on volume was a 1-to-1 ratio of microalgae-to-bacteria. On average, 9 L of 

mixed liquor activated sludge (3.1 g TSS L-1) was added to FPR1 from day 99 to 

122 (3 additions of 1 L each week, during 3 weeks). Reactor 2 (FPR2), assembled 

as control reactor to enrich a solely microalgal consortia, was inoculated solely with 

10 mL each of the five different algae strains.  

3.2.3 Composition of the synthetic wastewater 

The FPRs were fed with BG-11 medium as synthetic wastewater (Becker, 1994). 

The nitrogen source was ammonium and the concentration fed to the FPRs was 

changed throughout the different experimental periods (Table 3.). The phosphorous 

concentration of the influent remained constant during the FPRs operation (0.08 g 

L-1 of ܭଶܲܪ ସܱ). The phosphate buffer used for pH control had a concentration of 

0.10 mol of ܰܽଶܪଶܲ ସܱ and 0.02 mol of ܰܽܪଶܲ ସܱ. Inorganic carbon was added as 
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 ଷ to supply alkalinity, and concentrations were changed depending on theܱܥܪܽܰ

periods as detailed in (Table 3.1). Organic carbon was not added to the medium 

since the aim of the experiment was to assess the ammonium removal by nitrifying 

bacteria in the presence of algae. 

3.2.4 Experimental design 

Seven periods were studied based on different NLR (Table 3.). The NLR was 

adjusted with the HRT in order to assess its effect on the microalgal cultures and 

microalgal-bacterial consortia present in the two FPRs (Table 3.). Alkalinity was 

another parameter that was varied along the periods.  

Periods 1 to 4 were defined for acclimatization of the biomass. Period 5 was 

subdivided in 4 phases, labelled from (a) to (d). From Period 5a onwards, the HRT 

was set at 2 days in order to assess the ammonium removal at high NLR, and fresh 

activated sludge was re-added. Low alkalinity concentrations (0.42 g L-1) were used 

in Periods 1 to 5b. The alkalinity concentration was increased to 3.42 g L-1 from 

Period 5c onwards. During Period 5d nitrification stopped, therefore, in period 6 

the HRT was increased to 8 days to increase the biomass retention. During Period 

7, the HRT was again decreased to 2 days. The nitrification inhibitor N-

Allylthiourea was added to FPR2 from period 5d until the end of the experiment. 

The SRT was not controlled but calculated based on the total solid concentrations 

in the reactor and in the effluent, as described by (Ekama and Wentzel, 2008a).  
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3.2.5 Sampling and analytical methods 

Samples for the determination of	ܰܪସା − ܰ, ܱܰଶି − ܰ and ܱܰଷି − ܰ in the influent 

and effluent were collected three times per week. Once per week, mixed liquor and 

effluent samples were collected for the determination of total suspended solids 

(TSS), volatile suspended solids (VSS) and Chlorophyll-a content.  

All analytical parameters were determined in accordance to standard methods 

(APHA, 2005): ammonium and nitrite following the colorimetric method, nitrate 

using the spectrophotometric method with 2.6-dimethylphenol, and VSS and TSS 

concentrations by gravimetry. Chlorophyll-a was measured using the Dutch 

standard method NEN-6520. The dissolved oxygen (DO) concentration was 

measured in-situ and recorded continuously in the two FPRs using a WTW Oxy 

3310 electrode (Weilheim, Germany). 

3.2.6 Nitrogen balance 

The nitrogen mass balance (Appendix A) was calculated to define the nitrogen 

removal mechanisms. It was assumed that there was no volatilization of ammonium 

as the pH remained between 7.5 - 8.0 throughout the study periods (Escudero et 

al., 2014; García et al., 2000; González-Fernández et al., 2011a), and that neither 

nitrate nor nitrite was consumed by the microalgae (particularly in FPR1), since 

ammonium concentrations were still left in the effluent. Therefore, the mechanisms 

of ammonium removal are oxidation by nitrifiers and nitrogen consumption by 

algae and nitrifiers. The equations used to calculate the nitrogen for each removal 

mechanism were from Liu and Wang (2012) for partial and full nitrification and 

Mara (2004) for the algal activity. Based on the removal by each group of 
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microorganisms, the ammonium removal rate (ARR) was calculated. ARR is the 

amount of ammonium uptake or oxidised per volume of reactor in a specified time 

by algae and/or nitrifiers. The biomass production of nitrifiers and algae in the 

FPRs for each cycle was calculated using their nitrogen growth requirements, based 

on the amount of ammonium oxidised and the amount used for growth by nitrifiers 

and algae, respectively. The equations applied for the nitrogen growth requirement 

by nitrifying bacteria and algae are proposed by Ekama and Wentzel (2008) and 

by Mara (2004), respectively. The detailed calculation are described in SI 

(Appendix A). Statistical analysis was performed using the t-test (two tailed) in 

the software Excel. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Biomass concentration and production in the FPRs 

From Periods 1 to 3, the solids concentration increased in the two FPRs due to the 

start-up phase in which the biomass has an exponential growth. Further 

acclimatization to the different operational conditions occurred in FPR1 and FPR2 

during periods 3 to 7 (Figure 3.2). After Period 3, the HRT was reduced and the 

NLR increased by increasing the influent flow rate and effluent discharge volume. 

The combination of the higher discharge volume and the lower settleability resulted 

in a decrease in the solids concentration after period 3 (Figure 3.2). Furthermore, 

from Period 4 (4 d HRT), to Period 5a (2 d HRT), the solids concentration in 

FPR2 decreased by 30% (p<0.05). In contrast, the biomass concentration in FPR1 

did not show a significant difference between periods 4 and 5a. Microscopic analysis 
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of the biomass showed that for FPR1 and FPR2 after period 4 until period 7 most 

of the algae were identified as Chlorella vulgaris. This strain is known for its 

tolerance to high ammonium concentrations (Wang et al., 2010). Also, Cai et al. 

(2013) reported that Chlorella vulgaris has higher nutrient removal efficiencies 

when compared with other algae strains. Therefore, this species is expected since 

the synthetic wastewater was rich in ammonium and phosphorous. 

The addition of fresh activated sludge in Period 5b increased the solids 

concentration in FPR1 to 5 g TSS L-1, which later decreased to 1.5 g TSS L-1 during 

the same period. During Period 5c, the solids concentration in the two reactors 

increased presumably due to the increase in inorganic carbon concentration. Both 

nitrifiers and algae need inorganic carbon for their growth. The growth of algae 

increased as more inorganic carbon was available. Mokashi et al., (2016) concluded 

that 1g L-1 of sodium bicarbonate resulted in the highest biomass production and 

growth rate of the strain Chlorella vulgaris. Furthermore, the addition of ATU in 

the FPR2 stopped nitrification, which increased the availability of ammonium for 

algae growth. The smaller effluent volume discarded during Period 6, with the 

purpose of increasing the HRT (8 days), led to a further increase in the solids 

concentration in the two FPRs. During Period 7, the reduction in HRT decreased 

the solids concentration in FPR1. In contrast, there was no significant difference 

between the solids concentrations of Periods 6 and 7 in FPR2 (p>0.05). 



3. Nitrification by microalgal-bacterial consortia for ammonium removal in a flat panel 

sequencing photobioreactor 

 

50 

 

 

 

Figure 3.2. Evolution of biomass concentrations in FPR1 (A) and FPR2 

(B) along the experimental periods. TSS concentration in the FPR ( ), 

and VSS concentration in the reactor ( ). 
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Overall, both FPRs could not reach a stable operation in the initial Periods 1 to 4 

and in parts of Period 5, when analysing the solids concentration. Nevertheless, the 

FPR stabilized from Period 5d onwards. The biomass production was estimated 

taking into account the TSS present in the effluent (Figure 3.3), since no biomass 

was wasted from the reactor. The biomass production can be assumed to be a 

reflection of the algal and bacterial growth in each period. The biomass growth was 

higher in FPR1 than in FPR2 from Periods 2 to 4. The high production value for 

FPR1 in period 5b was due to the AS addition, and is thus not comparable with 

the other periods. 

 

Figure 3.3. Biomass production in FPR1 and FPR2 during periods 2 to 7.    

FPR1  ( ), FPR2 ( ). 
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path of 0.04 m2). The high solids concentration in the effluent during Period 7 (1.74 

± 0.13 g TSS L-1) for FPR1, and the larger effluent volume discarded of 2 L d-1 

(compared with Period 6 in which the discarded volume was 1 L d-1) led to an 

increase in the biomass production during Period 7. 

3.3.2 Solids retention time and the effect on ammonium removal rates 

The settling time in the sequencing batch operation had the aim to decouple the 

HRT from the SRT through the retention of biomass in the FPRs. There was no 

further control of the SRT, thus this parameter depended on the settling properties 

of the sludge, which determined the TSS retained in the reactor and the TSS lost 

in the effluent (Table 3.2). The SRT in FPR1 and FPR2 was highly affected by 

the poor settleability of the microalgal-bacterial biomass and the algal biomass, 

respectively. From Period 3 to 4, the SRT of the two FPRs decreased due to the 

increase in the discharged effluent volume, which decreased the HRT from 8d to 

4d. The larger discarded volume presumably limited the retention of nitrifiers in 

FPR1, due to a shorter SRT of 5.0 (± 0.7) days. A further reduction of the HRT 

to 2 days (Periods 4 to 5a) led to a SRT reduction in FPR1 of 3.5 (± 1.1) days. 

During these periods, most of the biomass was composed of algae. The addition of 

fresh activated sludge (AS) in Period 5b, improved the settling properties of the 

biomass in FPR1, increasing the SRT to 8.0 (± 3.8) days. By the re-addition of AS 

during this period, a new batch of conventional activated sludge microorganisms 

such as ordinary heterotrophs, nitrifiers and phosphate accumulating organisms 

(Gonzalez-Martinez et al. 2016) were added in the reactor, which helped with 

sedimentation and boosted the nitrification. 
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Table 3.2. Solids retention time (days) in FPR1 and FPR2 during periods 3 to 7. 

Period FPR1 FPR2 
3 7.0 ± 1.4 18.8 ± 12.3
4 5.0 ± 0.7 5.8 ± 1.8 
5a 3.5 ± 1.1 2.6 ± 0.7 
5b 8.0 ± 3.8 5.9 ± 2.2 
5c 4.2 ± 0.3 4.2 ± 1.1 
5d 3.9 ± 0.8 3.5 ± 1.2 
6 3.2 ± 0.3 4.3 ± 0.3 
7 2.6 ± 0.2 6.2 ± 0.9 

For SRTs between 3 and 5 days, 60% of the TSS of the FPRs was lost in the 

effluent of the reactors. The fraction is calculated using the TSS in the effluent 

compared with the TSS in the reactor. This percentage illustrates the poor 

settleability of the biomass which was not expected for FPR1 since the algal-

bacterial biomass has proven to increase the settleability properties compared with 

algal biomass (Su et al., 2012b). However, since organic carbon was not added in 

the medium, the growth of heterotrophic bacteria was limited in the microalgae-

bacteria consortia from FPR1. Furthermore, due to the low biomass retention in 

FPR1, the conversion rates by the nitrifiers was limited, which negatively affected 

the ammonium removal within the microalgal-nitrifying FPR1.  

The SRTs calculated in this study (Table 3.2),  for the different experimental 

periods were above the minimum SRT (SRTmin) for nitrification (2.6 days at 25ºC) 

calculated based on Ekama and Wentzel, (2008a). However, it was observed that 

the bacterial biomass did not settle as well as the algae and therefore the SRT for 

the nitrifiers was probably somewhat lower. On the contrary, if the increase in 

ammonium loading rate was achieved by increasing the ammonium concentration 
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while keeping the same HRT, this would probably have led to an increment in the 

growth of nitrifiers, increase of the biomass’ settleability thus a longer SRT, which 

would have resulted in higher ammonium removal rates (ARR). Therefore, the 

nitrification rates of microalgal-nitrifying consortia and/or micraolgal-bacterial 

consortia can be increased when a suitable biomass retention is ensured (depending 

on the environmental conditions). Higher nitrification rates through decoupling of 

the HRT and the SRT, while operating at a suitable retention time allows to reduce 

area requirements when cultivating microalgal-bacterial biomass. 

The retention of the biomass can be ensured by improving the settling 

characteristics of the microalgae, which can be achieved when combined with 

bacteria as reported by several studies   (Gutzeit et al., 2005; Medina and Neis, 

2007; Lee et al., 2013; de Godos et al., 2014; Van Den Hende et al., 2014). For this, 

the control of the SRT is extremely important for the development of good 

settleable microalgal-bacterial biomass (Gutzeit et al., 2005; de Godos et al., 2014). 

It should be underlined that the properties of microalgae affect the settleability, 

since their negative surface charge does not favour floc formation. Along the life 

cycle, algae change their surface charge, with lower surface charges present in older 

algal cultures (Henderson et al., 2008), which favours agglomeration. Medina and 

Neis (2007) found that longer SRTs in algae developed a more compact EPS matrix 

that helped to increase the settleability. In addition, for microalgal-bacterial 

biomass, factors such as the food/microorganism ratio (F/M) and the wastewater 

characteristics determine the formation of microalgal-bacterial flocs (Medina and 

Neis, 2007; Van Den Hende et al., 2014). For instance, long retention times (SRT 

40 days) resulted in improved settleability  of microalgal-bacterial biomass 
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(Valigore et al., 2012). Depending on the total organic carbon to total inorganic 

carbon ratios in the wastewater, flocs of microalgae and bacteria (heterotrophic and 

autotrophic) could be dominated either by bacteria or microalgae (van den Hende 

et al., 2014). During the experiment the short SRTs and HRTs resulted in an 

increase in dispersed algae concentrations as observed during the first phases (1 - 

5a). Thus, considering that short SRTs and HRTs favour rapid algal growth, the 

formation of flocs will be hard to achieve as microalgae present a negative surface 

charge and form a less compact matrix of EPS than bacteria. Thus, loss of bacterial 

biomass becomes a risk. Therefore, to maximize floc formation, stimulation of 

growth of heterotrophic biomass is recommended. This can help to improve 

settleability while achieving longer SRTs, increased EPS formation will eventually 

reduce the surface charge of the algae and thus result in an overall increase of the 

biomass retention and ammonium conversion rates. 

Operational strategies such as maintaining the SRTs>>HRTs in the initial periods 

can be implemented in a microalgal-bacterial reactor and HRAP to ensure good 

biomass settleability, yet it is important to start with a biomass that has a 

minimum settleability. This can be achieved by addition of activated sludge during 

the start-up period, which in overall can trigger algal-bacterial flocs formation. 

Rada-Ariza et al. (2015) tested several SRTs (1 - 15 days) with a HRT of 1 day in 

a continuous flow microalgal-bacterial system. A long SRT in the initial periods 

was achieved by recirculation of the biomass. This together with a low HRT, helped 

to develop a well settleable biomass. The good settleability allowed to further 

decrease the SRT, achieving the highest removal rate at an SRT of 3 day (0.075 ± 

0.002 g	NHସା − N L-1 d-1). By maintaining an optimum balance of solids through 
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SRT and HRT strategies, microalgal-bacterial systems in HRAP can achieve high 

removal rates treating ammonium-rich wastewater, without any external aeration 

or increase of their aerial footprint. 

3.3.3 Fate of nitrogen in the FPRs 

During the acclimatization Periods 1 to 4, the concentration of nitrogenous 

compounds in the effluent showed similar trends in both FPRs (Figure 3.4). 

Ammonium was removed to negligible values by the sole action of algae, since no 

nitrate or nitrite was measured in FPR1 and FPR2 and because denitrification was 

unlikely due to several reasons: (i) high DO values above oxygen saturation, (ii) no 

external addition of organic carbon, and (iii) not long enough SRTs. Since the pH 

oscillated between 7.5 to 8.0 and the temperature was kept at 25⁰C, ammonium 

stripping was ruled out as a potential removal pathway. The ARR for FPR1 during 

the acclimatization periods ranged between 3.9 (± 0.2) to 74.8 (± 4.4) mg NHସା −N L-1 d-1, and were not significantly different from those observed in FPR2 (with 

values between 3.9 (± 0.3) - 73.3 (± 3.3) mg	NHସା − N L-1 d-1) (Figure 3.5). 

During Period 5a, the HRT was decreased to 2 days and the NLR increased 

accordingly to supply more ammonium to avoid nitrogen limitation, and increase 

nitrification rates. Due to the limitation of algae to remove such nitrogen loads in 

a relatively short period of time (in FPR1 and FPR2), and nitrification was not yet 

occurring in FPR1 as intended, the ammonium concentrations increased in the 

effluent of both reactors (FPR1 and FPR2). The ARR by algae decreased to 34.3 

(± 26.8) and 28.6 (± 25.7) mg	NHସା − N L-1 d-1 in FPR1 and FPR2, respectively 

(Figure 3.5).  
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Nitrification started in Period 5b in the FPRs. The highest nitrate concentration 

of 41.3 (± 8.6) mg	NOଷି − N L-1 was observed in FPR1, while in FPR2, nitrate 

concentrations were around 12.7 (± 7.9) mg	NOଷି − N L-1 (Figure 3.4). The addition 

of AS and possibly growth of nitrifiers increased the nitrification rates. The ARR 

increased in period 5b up to 72.9 (± 36.9) and 50.2 (± 33.5) mg	NHସା − N L-1 d-1 in 

FPR1 and FPR2, respectively (Figure 3.5). The ARR in FPR1 was significantly 

higher (p < 0.05) than in FPR2, which is attributed to the combined removal by 

algae and bacteria. 
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Figure 3.4. Concentrations of nitrogen compounds in the effluents of FPR1 (A), 

and FPR2 (B), along the experimental periods. Legend: ( ) effluent NH4+-N, 

( ) effluent NO2--N, ( ) effluent NO3--N, and ( ) influent NH4+-N. 
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Figure 3.5. Total ammonium removal rates for nitrifiers (AOB & NOB) and algae 

based on the nitrogen balance in FPR1 (A) and FPR2 (B) during the different 

operational periods. NOB ( ), AOB ( ) and algae ( ) 
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From period 5c onwards the alkalinity concentration was increased from 0.42 to 3.4 

g L-1 NaHCO3 in order to enhance the nitrification rates. The increase in alkalinity 

(period 5c) boosted the rates of ammonium oxidation. The ammonium 

concentration in the effluent (period 5c) in both FPR decreased compared with 

Periods 5a and 5b (p < 0.05). The ARR in the two reactors increased on average 

by 57 mg	NHସା − N L-1 d-1. However, during Period 5C in FPR2 the measurement 

of nitrite production confirmed the growth of AOB, therefore, ATU was added from 

day 190 onwards in FPR2 to inhibit nitritation (Figure 3.4). 

The increase in inorganic carbon in the medium during Period 5C boosted the ARR 

by both algae uptake and nitrification, achieving the maximum rate in FPR1 of 

143(± 6) mg NHସା − N L-1 d-1. Before this period, the reactors had an alkalinity 

limitation. In Periods 5c to 7, for the influent ammonium concentration, the amount 

of alkalinity required for nitrification, assuming that 80% of the ammonium would 

be nitrified, was 1.9 g NaHCO-
3 L-1, while photosynthesis required 0.4 g NaHCO-

3 

L-1. Therefore, alkalinity in the influent was not a limiting factor (3.4 g NaHCO-
3 

L-1) from Period 5b onwards in the FPR1. Since both photosynthesis and 

ammonium oxidation require inorganic carbon, alkalinity must be sufficient in the 

wastewater to ensure efficient and faster ammonium removal.  

Following the alkalinity increase, the ammonium oxidising bacteria (AOB) activity 

increased resulting in a maximum effluent concentration of 105.1 (± 46.0) 

mg	NOଶି − N L-1 in FPR1, with no nitrate production. This shows that the nitrite 

oxidising bacteria (NOB) activity was still limited and did not further oxidize such 

nitrite concentrations to nitrate. Likely, this was due to the high concentrations of 

ammonium in the influent during Period 5c, which corresponds to an ammonia 
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concentration of 10.7 mg NH3 L-1. This value falls in the low range for AOB 

inhibition defined by Anthonisen et al. (1976) (10 - 150 mg NH3 L-1), and more 

importantly, it is considerably higher than the maximum NOB inhibition range of  

0.1 - 1.0 mg NH3 L-1. Possibly, these high concentrations also contributed to the 

inhibition of NOB and AOB by free nitrous acid (FNA). In relation with nitrite, 

the average nitrite concentration in FPR1 during Period 5C corresponds to 3.3 mg 

HNO2 L-1, which is above the high range proposed by Anthonisen et al. (1976) of 

0.2 - 2.8 mg HNO2 L-1 for both AOB and NOB inhibition. Ultimately, these 

concentrations lead to an inhibition of the activity of the nitrifiers in FPR1.  

Ammonia toxicity may prevail at low HRT and high ammonium loading rate, 

especially for NOB and algal species. Several studies have provided different 

limiting concentrations for ammonium. Toxicity of ammonia to algae was reported 

by Azov and Goldman (1982) with a 50% reduction in photosynthesis at 

concentrations of 22.1 mg	NHଷ − N L-1 between  pH 8 - 9.5. Tuantet et al. (2013) 

reported algae inhibition at 140 mg 	NHଷ − N L-1 at pH 8.2. He et al. (2013) 

observed a decrease in algal growth when the concentrations of ammonium 

increased in the influent from a maximum observed growth rate (µmobs_algae) of 0.92 

d-1 at 30 mg	NHସା − N L-1 to 0.33 d-1 at 143 mg	NHସା − N L-1 (at pH between 6.96 to 

7.10). A neutral pH in an algal system is for optimum nutrients removal necessary 

(Liang et al., 2013). Similarly, for nitrifiers, pH fluctuations can cause nitrite 

accumulation, as a stable pH avoids shifts in the ammonium/ammonia, as well as 

the nitrous acid equilibrium.  

In order to recover the system, a smaller volume was discharged from the FPR 

during Period 6, to increase the apparent HRT and reduce the NLR. This action 
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benefited the nitrifiers and algae in FPR1, since nitrate and nitrite concentrations 

in the effluent were on average 47.8 (± 14.1) mg	NOଷି − N L-1 and 83.8 (± 3.1) 

mg 	NOଶି − N  L-1, respectively, and ammonium concentrations decreased in the 

effluent (7.6 mg	NHସା − N L-1).  

Once nitrification was restored, the HRT was reduced to 2 days (period 7), and 

nitrification continued. The ARR reached 100.2 (± 17.9) mg	NHସା − N L-1 d-1, this 

corresponds to a surface removal rate of 10.2 g	NHସା − N m-2 d-1. This value is higher 

than 2.0 g	NHସା − N m-2 d-1 reported by Sutherland et al. (2014) for a pilot high rate 

algae pond (HRAP) operated at a 4 days HRT,  and close to the value reported by 

Godos et al. (2009) of 6.7 gNHସା − N m-2 d-1 for a pilot  HRAP treating piggery 

wastewater at a HRT of 10 days, where the main removal mechanisms was 

nitrification. The ARR of FPR1 is significantly higher (p < 0.05) than that of FPR2 

(Figure 3.5). Since no other removal mechanism could take place, it is assumed that 

the action of nitrifiers in FPR1 contributed to the doubling of the ARR compared 

with the ammonium removal activity observed in FPR2 driven solely by the 

activity of microalgae. 

3.3.4 Total and specific ammonium removal rates by algae and nitrifiers 

in the FPRs 

Total ammonium removal rates in FPRs 

Ammonium removal rates by nitrifiers and algae were calculated based on the 

nitrogen balance of the FPRs. Figure 3.5 shows the contribution of the algae, AOB 

and NOB (nitrifiers) to the total ammonium removal rate. In the first four periods, 

the daily nitrogen removal by the algae did not differ between the two FPRs (p > 
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0.05), and the oxidation of ammonium was not detected. Likewise, the total ARR 

by the FPRs was similar in the two reactors (p > 0.05) during the first 4 periods.  

When nitrification took place, the total ARR by both algae and bacteria in FPR1 

(Figure 3.5) was higher than in FPR2 (p < 0.05). In FPR1, during the periods in 

which nitrification ocurred (5b, 5c, 6 and 7), the ARR by algae ranged between 0.4 

– 2.8 mg	NHସା − N L-1 h-1, while in FPR2 it was between 0.8 - 4.0 mg	NHସା − N L-1 

h-1. Furthermore, the average ARR by algae in Periods 5a to 7 (except Period 6) 

between FPR1 and FPR2 (FPR1 = 53.6 (± 13.9) and FPR2 = 55.0 (± 17.6) 

mg	NHସା − N L-1 h-1) are not significantly different (p > 0.05). The presence of 

nitrifiers in the system thus did not inhibit the ammonium consumption by the 

algae, neither the possible shading effect of nitrifiers on algae. On the contrary, the 

presence of nitrifies improved the total ammonium removal rates of FPR1. 

In a laboratory study using an algal-bacterial consortia, Karya et al. (2013) found 

that nitrification can reach up to 7.7 (± 4.4) mg NHସା − N L-1 h-1. This value is 

higher than the ones obtained in this research. Presumably, this was due to the low 

biomass retention in the FPRs (Table 3.2). Despite having obtained relatively 

higher total ammonium removal efficiencies in the periods in which nitrification 

occurred, the maximum rate achieved was 5.9 mg	NHସା − N L-1 h-1 (Period 5c), while 

higher rates of 14 - 21 mg	NHସା − N L-1 h-1 can be achieved in activated sludge 

(Azimi and Horan, 1991). 

Specific ammonium removal rates by nitrifiers and nitrogen uptake by algae 

The nitrogen balance was used to estimate the nitrifying biomass and nitrogen 

uptake by algae, the equations used and detailed calculations can be seen in 
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Appendix A. The nitrogen uptake by algae was calculated based on the nitrogen 

balance and compared with theoretical values calculated using  the stoichiometric 

yield of ammonium consumption per algal biomass formed proposed by (Mara, 2004) 

of 9.2%, and the TSS and SRT of the FPR1.  However, when comparing these 

values it is found that the theoretical values are lower than the ammonium uptake 

by algae based on nitrogen balance. For instance, during Period 7, in FPR1 using 

the photosynthesis expression proposed by (Mara, 2004) , algae take up 7.4 

mg 	NHସା − N  h-1 in FPR1, and 4.4 mg 	NHସା − N  h-1 in FPR2, while with the 

calculations based on the nitrogen balance algae in FPR1 consume 7.1 (±3.2) and 

in FPR2 6.4 (±2.2) mg	NHସା − N h-1. In order to obtain similar values, the nitrogen 

content in algal biomass must be between 9 - 13%. Therefore, the nitrogen uptake 

by algae per gram of biomass formed in the reactors slightly exceeds the 9.2% 

proposed by Mara (2004). Ruiz et al. (2011), through a set of batch tests using 

Chlorella vulgaris at different nitrogen concentrations (5.8 - 226.8 mg	NHସା − N L-

1), obtained percentages of nitrogen in the biomass between 11.5 - 21.8%. The higher 

uptake of nitrogen by algae can be attribute to storage of N within the algae cell. 

Further studies are necessary to assess how and under which conditions the algal 

biomass can store N-compounds in addition to the uptake required for growth. 

Using the values of the nitrogen mass balance and the nitrifying biomass, the 

specific ammonium removal rates were calculated. The specific removal rates by 

nitrifiers for ammonium were 0.9, 1.6, 0.2 and 1.3 g	NHସା − N gVSSnitrifiers
-1 d-1, for 

Periods 5b, 5c, 6 and 7, respectively. Karya et al. (2013) reported a value of 1.4 

g	NHସା − N gVSSnitrifiers
-1 d-1. This value is comparable with the one obtained in 

Periods 5c and 7, in which the highest nitrification rates were achieved. When 
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compared with an optimized activated sludge system (4.5 g	NHସା − N g VSSnitrifiers
-1 

d-1) (Ekama and Wentzel, 2008a), the values obtained in the FPR1 are significantly 

lower. This can be related to the low SRTs between 3 - 4.0 days (Table 3.2), which 

was very close to the minimum SRT for nitrification in FPR1 (2.6 days).  

3.3.5 Implications of using microalgal-bacterial consortia for ammonium 

removal 

In algal systems, area reduction is one of the key challenges to face, as the need for 

higher nutrient removal efficiencies will lead to a higher area requirement. Using 

the total ammonium removal rates obtained in this research during Period 7 and 

using a depth of 0.1 m, the ammonium removed per unit of area is 4.4 g	NHସା − N 

m-2 d-1 for FPR2 (microalgal consortia), while it was 10.2 g	NHସା − N m-2 d-1 for 

FPR1. This higher value in FPR1 can be attributed to the activity of nitrifiers, 

which was the main reason for higher ammonium removal rates in comparison to 

FPR2. This allowed to reduce the area requirements, while operating at high 

ammonium loading rates, e.g. 126 mg	NHସା − N L-1 d-1, and lower HRT, e.g. 2 days. 

Despite these promising values, it must be noted that these calculations and 

estimations may change when upscaling the technology to pilot or full scale. 

When comparing the removal rates per unit of area with other studies, it is observed 

that (Karya et al., 2013) obtained a value of 10.5 g	NHସା m-2 d-1 (removal rate: 0.185 

g	NHସା − N L-1 d-1 and depth of 0.057 m) using a microalgal-bacterial consortia, 

which is similar to the value obtained for FPR1 in this study. At laboratory scale, 

using urine as influent medium, (Tuantet et al., 2014) achieved higher ammonium 

removal rates of up to 1.3 g	NHସା − N L-1 d-1 with Chlorella sorokiniana cultured in 
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a short-light path flat photobioreactor (5 mm width) at an HRT of 1 day. The 

values provided by Tuantet (2015) were used  to compare the microalgal-bacterial 

consortia removal rate per unit of area with a single algal strain system. In that 

system, the rate of nitrogen removed per area would be 6.5 g	NHସା − N m-2 d-1, which 

is higher than the value obtained for FPR2, but lower than the value for FPR1. 

Furthermore, the total ammonium removal rate reported by (Tuantet et al., 2014) 

is noticeably higher than the ones obtained in this research (Figure 3.5), possibly 

due to the short light path (5 mm) which benefitted the light penetration. In 

practice, light paths will be longer, which will result in higher area requirements. 

For more practical situations, Park and Craggs (2011) reported an ammonium 

removal rate of 0.16 mg	NHସା − N L-1 h-1 in a pilot HRAP treating real domestic 

wastewater. Based on this rate reported and the depth of the pilot HRAP (0.3 m), 

the surface removal rate of ammonium is estimated to be 1.1 g	NHସା − N m-2 d-1, 

which is noticeably lower than the values obtained in this research.  

Ensuring higher nitrification rates in microalgal-bacterial consortia is the first step 

to ensure total nitrogen removal. HRAP using microalgal-bacterial consortia should 

ensure the decoupling between the SRT and the HRT. It is important that the SRT 

is higher than the minimum SRT required for nitrification. Thus SRT control 

through biomass wasting and/or development of a good settleable biomass to avoid 

wash out it is important for a stable operation. Once nitrification is achieved, 

denitrification can take place (de Godos et al., 2014; Wang et al., 2015). This can 

be achieved by introducing dark periods in the operational cycles and ensuring 

sufficient organic carbon. Thus, a full nitrification-denitrification microalgal-
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bacterial consortia treatment can be implemented as a secondary treatment for an 

anaerobic digestion effluent. 

3.4 CONCLUSIONS 

A microalgal-bacterial consortium in a flat-panel photobioreactor removed 

ammonium from artificial wastewater at higher rates (100±18 mg	NHସା − N L-1 d-1) 

than an algae-only system (44±16 mg	NHସା − N L-1 d-1) at an HRT of 2 days. 

Nitrification was the mechanism that caused the increase in ammonium removal. 

This only occurred when the growth and retention of biomass was sufficient to 

achieve an SRT higher than the minimum SRT for nitrifiers. Consequently, control 

of the SRT and HRT is key to increase the nitrification rates in microalgal-bacterial 

systems. 
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Abstract 

Microalgal-bacterial consortia have important advantages over conventional 

activated sludge systems by achieving full nitrification and organic carbon oxidation 

without the need of external oxygen supply. This study assessed the different 

ammonium removal mechanisms and oxygen production of a microalgal-bacterial 

consortium at the different solids retention times (SRT) of 52, 48, 26 and 17 days 

treating synthetic wastewater. The ammonium removal efficiency exceeded 94%, 

while the total nitrogen removal efficiency was higher than 70% at the different 

SRTs applied. The main nitrogen removal mechanism was through 

nitrification/denitrification, followed by algal cell synthesis and bacterial nitrogen 

growth requirements. Shorter SRTs favoured the nitrification/denitrification 

processes over the assimilation of nitrogen by algae. The highest volumetric 

ammonium removal rate observed was 2.12 mgNH4
+-N L-1 h-1 at an SRT of 17 d. 

The total gross oxygen production at the different SRTs ranged between 0.2 and 

0.3 kg O2 m-3 d-1, reaching highest production at a 52 d SRT. The differences in 

oxygen production between the different SRTs are attributed to the algal biomass 

content and light attenuation. The oxygen consumption decreased at shorter SRTs 

due to a decrease in the respiration of the microalgal-bacterial biomass. This study 

showed that the SRT is a key operational parameter that allows to control the 

nutrient removal processes and observed growth of the microalgal-bacterial 

consortia. 

 

 



4.1. Introduction

 

71 

 

4.1 INTRODUCTION 

The conventional activated sludge process is a widespread technology for 

wastewater treatment. Artificial aeration can account for between 45 to 75% of the 

energy consumption in activated sludge plants (Rosso et al., 2008; Lee et al., 2015; 

Fan et al., 2017). During the last years more attention has been paid to algae-based 

systems as an alternative technology to the high energy consuming conventional 

wastewater treatment systems (de Godos et al., 2014; van den Hende et al., 2014b; 

van der Steen et al., 2015; Rada-Ariza et al., 2017) . Algae-based systems are 

natural and sustainable technologies to supply oxygen through photosynthesis by 

making use of the autotrophic metabolism of microalgae and cyanobacteria that 

utilize light to produce oxygen (Subashchandrabose et al., 2011). 

High rate algae ponds (HRAP) have emerged as optimized or re-engineered waste 

stabilization ponds (WSP). HRAP are designed to operate at higher loading rates 

and shorter retention times, shallower depths and higher algal productivities (Evans 

et al., 2005) than conventional WSP. HRAPs often favour the development of 

microalgal-bacterial consortia that can reduce the concentrations of pollutants 

through the dual action of microalgae and bacteria. Ammonium removal rates 

between 0.12 and 5.6 mg NH4
+-N L-1 h-1 have been reported in several HRAP studies 

with algal-bacterial consortia (Evans et al., 2005; García et al., 2006; Park and 

Craggs, 2011; Wang et al., 2015). Since microalgae and bacteria have shown 

promising results for nutrient-rich wastewaters, there is an increasing need and 

interest to further develop the ‘photo-activated sludge’ systems (van der Steen et 

al., 2015). At lab-scale, certain studies have reported an ammonium removal 
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efficiency and rate in a sequencing batch photo-bioreactor of up to 85% and 7.7 mg 

NH4
+-N L-1 h-1, respectively, using synthetic wastewater with an influent 

concentration of 50 mg NH4
+-N L-1  (Karya et al., 2013). Other researchers have 

achieved a maximum removal rate of 4.1 (± 0.7) mg NH4
+-N L-1 h-1 and ammonium 

removal efficiency of 70% in a sequencing batch microalgal-bacterial system fed 

with synthetic wastewater with an influent concentrations of 250 mg NH4
+-N L-1 

(Rada-Ariza et al., 2017), while in other studies removal rates of up to 0.13 mg 

NH4
+-N L-1 h-1 in a pilot-scale HRAP enriched with a microalgal-bacterial consortia 

treating pikeperch wastewater (32.7 ± 11.7 to 68.4 ± 12.4 g L-1 of total nitrogen) 

have been reported by van den Hende et al. (2014a). 

The use of microalgal-bacterial systems presents several challenges in their 

operation, since the reactors need to be designed to carry out bacterial and algal 

processes efficiently. Therefore, clear specifications for operational conditions need 

to be studied and researched, in order to improve bioflocculation, harvesting and 

biomass control (Muñoz and Guieysse, 2006). Gutzeit et al. (2005) showed an 

ammonium removal efficiency of 60% in a pilot scale system using microalgal-

bacterial biomass treating pre-treated sewage (53.9 ± 7.6 mg NH4
+-N L-1) operated 

at an SRT of 40 days. Furthermore, Gutzeit et al. (2005) based on the pilot-scale 

and laboratory results proposed operational conditions for SRT and hydraulic 

retention time (HRT) between 20 – 25 days and 2 - 3 days, respectively. On the 

other hand,  Arashiro et al. (2016) reported ammonium removal efficiencies up to 

98% in a laboratory scale photobioreactor treating the centrate from an anaerobic 

digestor treating swine manure (236 ± 19 mg NH4
+-N L-1 at an SRT of 7 and 11 

days. Therefore, shorter SRTs on microalgal-bacterial systems can be achieved and 
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still achieve high removal efficiencies. Furthermore, to our knowledge few studies 

combined the optimization of both: (i) increase of the ammonium removal rates 

and (ii) optimum operational for biomass retention on microalgal-bacterial systems. 

In addition, the effect of the biomass retention on the different processes within a 

microalgal-bacterial system treating nitrogen-rich wastewater needs to be analysed.   

Focusing on the operational conditions usually implemented on algal systems, it is 

not common to define the sludge retention time (SRT), since usually there is no 

biomass recycling in open or closed algae reactors and because the common practice 

is to harvest the biomass for further uses. Nevertheless, when working with a 

consortium of microalgae and activated sludge bacteria for nutrient and organic 

matter removal through photo-oxygenation, the SRT plays an important role. In 

fact, it is the most important design and operating parameter of activated sludge 

systems (Ekama and Wentzel, 2008a). Furthermore, biomass retention is necessary 

in microalgal-bacterial reactors to ensure higher nitrification rates  (Rada-Ariza et 

al., 2017, 2015). In addition, the effects of light attenuation caused by the solids 

concentration, which is strongly dependent on the SRT, and its effects on the 

ammonium removal rates have also been addressed elsewhere (Arashiro et al., 2016). 

However, there is a lack of comprehensive studies that evaluates the combined 

effects of these key operating conditions. The present study was carried out with 

the aim of optimizing key operational conditions affecting the microalgal-bacterial 

consortium in a sequencing batch photobioreactor. Therefore, this paper assesses 

the effects of different SRTs on the ammonium removal, oxygen production and 

biomass productivity of a microalgal-bacterial consortium. 
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4.2 MATERIALS AND METHODS 

4.2.1 Photobioreactor set-up 

The cylindrical glass jacketed reactor (internal diameter 11.5 cm), described in 

detail by Karya et al. (2013),  had a capacity of 1L, the light intensity and 

temperature were 25.9 µmol m-2 s-1 and 28 ºC, respectively, temperature was 

maintain constant using a cooling tower which was connected to the reactor. The 

light intensity was measured at the inner surface of the reactor wall using a 

Photometer model Li-250 (Li-COR, United States). The light source was provided 

by four white lamps (40W, Phillips, The Netherlands) positioned around the reactor. 

pH in the reactor was maintained at a constant value of 7.5 using NaOH and HCl 

solutions which had a concentration of 0.2 M each. The dosage of the solutions was 

controlled and the pH set point (7.5) was controlled using a Bio-Console Applikon 

Holland system. The reactor was operated as a sequencing batch reactor (SBR) 

consisting of two cycles of 12 hours per day, and the total duration of the 

experiment was 310 days. The influent was 1 L per day and the volume discarded 

per day was 1 L, divided in 0.5 L in each cycle every 12 hours.  

The cycles had two different operational schemes (Figure 4.1). In the first period 

(1), the SRT was 48 days and the cycles consisted of filling, followed by an aerobic 

phase, anoxic phase, second aerobic phase, settling and effluent withdrawal. The 

aerobic phase was under constant illumination for a total of 7.5 hours. For this 

period, the synthetic wastewater, containing nitrogen (N), phosphorous (P) and 

trace elements, was fed at the beginning of the aerobic phase, while the organic 

carbon source (acetate) was added at the beginning of the dark phase. In the 
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subsequent periods (2A, 2B and 2C), the SRT was gradually adjusted to 52, 26, 

and 17 days, respectively. The cycle scheme was different than the one applied in 

period 1, and started with a filling phase, followed by an anoxic phase, aerobic 

phase, second anoxic phase (during which there was the second filling phase), 

second aerobic phase, settling and effluent withdrawal. During this cycle scheme 

the aerobic phases were under constant illumination for a total of 8.5 hours. From 

period 2A onwards, the artificial wastewater contained both the organic carbon 

source and the required N, P and trace elements to simulate the composition of 

municipal wastewater. In the experimental periods 2A, 2B and 2C, there were two 

feedings of artificial wastewater at the beginning of the anoxic phases, both 

containing ammonium and organic carbon. In order to prevent the development of 

biofilm on the reactor walls, the reactor was cleaned twice a week. The control of 

the SRT in the reactor was done through the waste of the biomass as recommended 

elsewhere (Rada-Ariza et al., 2017). For the determination of the actual SRT 

(Valigore et al., 2012), the concentration of the wasted biomass and the solids 

concentration in the effluent was taken into account in accordance to the following 

equation: 

ࢀࡾࡿ  = ࡿࢄቀࡿࡽାࢃࡽࡾࢂ ൗࡾࢄ ቁ   (4.1)

Where:  

ோܸ= Reactor volume (L) ܳௐ= Flow rate of the waste of sludge (L d-1) ܳௌ= Effluent flow rate (L d-1) 
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ௌܺ= TSS concentration in the effluent (g L-1) ܺோ= TSS concentration in the reactor (g L-1) 

Therefore, in order to determine the amount of sludge waste per day, the 

measurements of the TSS in the effluent in the reactor were done. Secondly, the 

SRT desired was defined, and then using the equation (4.1), the ܳௐ was determined. 

As soon as the change in the sludge waste was done, the first weeks the solids 

concentrations were measured in order to verify that the SRT was achieved. 

4.2.2 Growth medium, microalgal-bacterial consortia and inoculation 

Artificial wastewater was used as growth medium for the microalgal-bacterial 

consortia. The composition of the artificial wastewater was a modification of the 

BG-11 medium (Becker, 1994): ammonium was adjusted to 23 mg NH4
+-N L-1 and 

sodium acetate was used as the carbon source at a concentration of 200 mg COD 

L-1. The biomass was composed of a mixture of microalgae, nitrifiers and ordinary 

heterotrophic bacteria (OHO). In order to start with a biomass that contained a 

large population of nitrifiers (ammonium and nitrite oxidizing bacteria (AOBs and 

NOBs)), a reactor previously cultivated with activated sludge from Harnaschpolder 

wastewater treatment plant (Delft, The Netherlands) as initial inoculum was fed 

with ammonium and other trace elements (no organic carbon) to enrich the 

nitrifying bacteria.  
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P Operational scheme for each period 
SRT 

(days)

1 

 

48 

2A 

 

52 

2B 26 

2C 17 

Figure 4.1. Operational scheme, composition of the synthetic wastewater and 

SRT’s applied in the different operational periods assessed in this study. The 

duration of each phase is presented in minutes below each scheme. P: Period,  

aerobic phase ( ), anoxic phase ( ), settling phase ( ), and effluent withdrawal 

phase ( ). 

The inoculation of the photo-bioreactor was carried out at different days: on day 1, 

100 ml of sludge rich in AOBs and NOBs was added. The reported total suspended 

solids (TSS) of the biomass used as inoculum was 2.5 g L-1. Additionally, 50 ml of 

fresh activated sludge from Harnaschpolder wastewater treatment were also added. 

On the 8th day, 5 pure cultures of algae species (total 50 ml) were inoculated: 

Scenedesmus quadricauda, Anabaena variabilis, Chlorella sp., Chlorococcus sp., 

Spirulina sp., as well as unidentified algae from a canal in Delft. Prior to addition, 

Artificial
wastewater -
ammonium

Carbon 
source 

addition

450 90 60 105 15

Artificial
wastewater -
ammonium + 
carbon source

Artificial
wastewater -
ammonium + 
carbon source

45 255 45 255 115 5
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the concentration of chlorophyll-a in the algae mixture was 3 mg L-1. After the 8th 

day, the biomass had a TSS concentration of 2.1 g L-1, with a volatile suspended 

solids (VSS) and chlorophyll-a concentration of 1.1 g L-1 and 10.8 mg L-1, 

respectively. 

4.2.3 Sampling and analytical methods 

Samples from the influent and effluent (taken at the end of the withdrawal stage) 

were analysed daily for nitrogenous compounds and COD. Additional samples were 

collected daily at the end of the second filling time to determine the chlorophyll-a, 

VSS and TSS concentrations.  

In each of the periods (1, 2A, 2B, and 2C), certain cycles were analysed in detail 

through collection of different samples every half an hour for the determination of 

nitrogenous compounds and COD concentrations. A total of 4 cycles for periods 1 

and 2C; 3 cycles for period 2A; and 5 cycles for period 2B were analysed. The 

detailed data collected was used to estimate the nitrogen and oxygen balances, as 

well as for biomass characterization and removal rates.  

Chlorophyll-a was determined according to the Dutch standard methods NEN 6472 

and 6520. Nitrite (NO2
--N), TSS and VSS were analysed according to standard 

methods (APHA, 1995). Nitrate (NO3
--N) was analysed using a Dionex ICS-100. 

The total nitrogen (TN) content of the biomass was determined according to NEN 

6472, after digestion at ± 300ºC of the dried biomass, using salicylic acid and a 

H2SO4– selenium mixture (100 mL concentrated H2SO4, with 0.35 g selenium and 

7.2 g of salicylic acid). The alkalinity was determined by titration with 0.020 N 

HCl using a methyl red indicator. 
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4.2.4 Biomass productivity, nitrogen and oxygen mass balance equations 

The biomass productivity considered the biomass leaving the reactors (waste and 

in the effluent), as it would be the biomass used for further uses or production of 

bio-products. It was calculated using the solids wasted from the reactor to control 

the SRT and the solids in the effluent (4.2): 

ݕݐ݅ݒ݅ݐܿݑ݀݋ݎ݌	ݏݏܽ݉݋݅ܤ  (݃ ܶܵܵ ݀ିଵ) = ܺோ ܳௐ + ௌܺ ܳௌ (4.2)

The estimation of the surface biomass productivity (g TSS m-2 d-1) was carried out 

considering the total biomass productivity divided by the illuminated area of the 

reactor. Since the reactor had a circular shape, and the light was applied around it, 

the illuminated area of the reactor was defined using the equation of the 

circumference (2Πr, where r is the radius of the circumference) and the height of 

the reactor. 

The nitrogen mass balance (See Appendix B.1) was calculated to assess the 

potential nitrogen removal mechanisms. The data collected in the detailed cycles 

of each period was used for this purpose. The pH was controlled between 7.5 - 8.0, 

thus ammonium volatilization was ruled out as a significant removal mechanism 

(Escudero et al., 2014; González-Fernández et al., 2011b). In addition, it was 

assumed when ammonium was present neither nitrate nor nitrite was consumed by 

the microalgae. Therefore, the main nitrogen removal mechanisms assumed to have 

taken place were nitrification/denitrification, algal uptake and nitrogen 

requirements for OHO growth. Previous equations proposed to calculate the 

ammonium removed by partial and full nitrification (Liu and Wang, 2012) were 

applied in this study. The N-requirements for OHO were calculated based on 
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Ekama and Wentzel (2008b) and the algal uptake was calculated as described in 

previous reports (Mara, 2004). A complete description of the calculation steps is 

presented in Appendix B.1. The characterization of the biomass was calculated 

using the information of the N-removed through nitrification/denitrification, algal 

uptake and acetate oxidation by the OHOs. The biological reactions (equations) 

and the detailed calculations are presented in Appendix B.2. 

4.2.5 Total specific and volumetric ammonium removal rate 

For the different cycles studied, the total volumetric ammonium removal rates 

( ்_஺௠ݎ ) were calculated with Aquasim® (Reichert, 1994) using a previously 

proposed model (Arashiro et al., 2016) (Appendix B.3). For this purpose and in 

accordance to the operating and environmental conditions of each cycle in each of 

the periods, certain operational parameters, such as light and volume of the reactor, 

were adjusted within the model as well as the fractions of the biomass 

concentrations of algae, AOB, NOB and OHO. The model was fitted to the 

measured data, and the average ammonium consumption rates were estimated 

considering the activities of algae, nitrifiers and OHO and the results of the model. 

Based on the estimated ammonium removal rates, the volumetric ammonium 

removal rates were calculated for each period(4.3): 

்_஺௠ݎ  = ܵேுସ_௧(଴)(ݐ)ݐ − (4.3) (0)ݐ

Where: ݎ஺௠_்: Total volumetric ammonium removal rate (mg NH4
+-N L-1 h-1). 
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ܵேுସ_௧(଴): Initial ammonium concentration (mg NH4
+-N L-1) (ݐ)ݐ: Time at which the ammonium concentration has reached zero or drops below 

detection limits (h) (0)ݐ: Initial time (h) 

The total specific ammonium removal rate (݇஺௠_் ) for the total biomass was 

calculated using ݎ஺௠_், and the total VSS concentration using Eq. (4.4): 

 ݇஺௠_் = ்ܸܵܵ_஺௠ݎ  (4.4)

Where: ݇஺௠_்: Total specific ammonium removal rate (mg NH4
+-N mg VSS-1 d-1) ܸܵܵ: Volatile suspended solids concentrations (g VSS L-1). 

4.2.6 Oxygen mass balance 

In order to calculate the oxygen production by algae, an oxygen mass balance was 

performed (Appendix B.4) over the light periods. The data used was the oxygen 

concentration for each of the detailed cycles, recorded every 5 minutes. In addition, 

the calculations of the oxygen required for ammonium oxidation by nitrifiers, 

acetate oxidation by heterotrophic bacteria as well as the algal and bacterial 

respiration were included in the balance. The oxygen transfer within the reactor 

was also taken into consideration using the calculated oxygen transfer coefficient. 

The oxygen produced by algae was calculated with Eq. B.4.3 and the endogenous 

respiration by OHO using the equations defined by Ekama and Wentzel (2008a). 

The algal respiration for the algal biomass was calculated taking into account the 
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dark zone of the reactor for the different SRTs and applying the endogenous 

respiration coefficient of 0.1 d-1 (Zambrano et al., 2016). The oxygen consumed for 

nitrate production and acetate oxidation by aerobic heterotrophic bacteria were 

calculated using the stoichiometric expressions used for the nitrogen balance. 

4.3 RESULTS AND DISCUSSION 

4.3.1 Biomass concentration and chlorophyll-a 

The solids concentration in the photobioreactor (Figure 4.2) decreased within the 

first 30 days after inoculation due to the waste of biomass and the loss of biomass 

through the effluent. After this period, the biomass reached a maximum value of 

4.2 g TSS L-1. Most of the algal biomass was composed of Chlorella sp. as observed 

through microscopic observations. The SRT of periods 1 and 2A was similar (48 

and 52 d, respectively), which may explain why, in spite of the different operational 

conditions, the average solids concentration was not significantly different between 

them (p>0.05). During period 2B, when the SRT was decreased to 26 days, the 

TSS concentration decreased to an average of 1.1 (± 0.4) g TSS L-1, which is 

significantly lower than in periods 1 and 2A. During period 2C, the SRT was further 

reduced to 17 days, but the average solids concentration (1.2 ± 0.4 g TSS L-1) was 

not different from that of period 2B. Overall, the control of the SRT in the 

microalgal-bacterial consortia had an impact on the solids concentration present in 

the reactor. 
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Figure 4.2. Suspended solids concentration in the sequencing-batch 

photobioreactor during the 4 periods. Total suspended solids concentration (TSS) 

( ), volatile suspended solids ( ). 

The highest biomass productivity (Table 4.1) was observed in period 2C, 

corresponding to a biomass productivity per surface area of 3.3 (± 1.2) g TSS m-2 

d-1. The higher value in period 2C was related to the higher amount of biomass 

wasted to ensure the SRT of 17 days. For the remaining periods, the biomass 

productivity was not different among them and the values were around 1.7 g TSS 

m-2 d-1. These values are low in comparison with other laboratory studies on 

microalgal-bacterial consortia. For instance, Su et al., (2011) obtained 10.9 TSS m-

2 d-1 under semi-batch operation treating municipal wastewater with an ammonium 

concentration between 14 and 19 mg NH4
+-N L-1. Halfhide et al. (2015) reported a 

biomass productivity of 2.5 g TSS m-2 d-1 in a semi-continuous system with a cell 

residence time of 7 days treating anaerobically digested municipal sludge centrate 

(220 mg NH4
+-N L-1). One of the reasons may be related to the SRT, which defines 

the biomass harvested from the reactor and thus the solids concentration. In 
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addition, ammonium availability could be another explanation because the low 

ammonium concentration can limit the biomass production, due to the competition 

between nitrifiers and algae for nitrogen (Risgaard-Petersen et al., 2004). 

Table 4.1. TSS, VSS, Chl-a concentration, Chl-a content in the biomass, and 

biomass productivity in the 4 periods. P: Periods; BP: Biomass productivity 

(*Values reported for the biomass inside the photobioreactor). 

P 
SRT 
(d) 

TSS* 
(g L-1) 

VSS* 
(g L-1) 

Chl-a* 
(mg L-1) 

Chl-a 
content in 
biomass*  
(g Chl-a g 

VSS-1) 

BP (g 
m-2 d-1) 

VSS/TSS*

1 48 2.6 ± 0.9 1.7 ± 0.7 19.6 ± 10.4 0.011 ± 0.003 1.9 ± 0.6 0.65 ± 0.11
2A 52 2.9 ± 0.8 2.6 ± 0.3 28.1 ± 8.1 0.012 ± 0.002 1.7 ± 0.5 0.82 ± 0.03
2B 26 1.1 ± 0.4 1.1 ± 0.4 7.9 ± 3.0 0.008 ± 0.001 1.8 ± 0.6 0.90 ± 0.03

2C 17 1.2 ± 0.5 0.9 ± 0.2 5.1 ± 2.1 0.005 ± 0.004 3.3 ± 1.2 0.90 ± 0.05

Analysing the VSS fraction from the TSS of the biomass (Table 4.1), the fraction 

of inorganic solids was lower during periods 2B and 2C than in periods 1 and 2A. 

Therefore, an apparently higher active biomass fraction was present in the last two 

periods, comprising more than 85% of the VSS with regard to the TSS. This fraction 

is composed of biodegradable and un-biodegradable (endogenous residue) biomass 

(Ekama and Wentzel, 2008b). At lower SRT, the endogenous residue decreases, 

and correspondingly the endogenous respiration, which can have an effect on the 

decrease in oxygen consumed by the aerobic processes. 

The average chlorophyll-a concentration is an indicator of the algal biomass present 

in a photobioreactor in relation with the total VSS. In periods 1 and 2A, the Chl-
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a concentration was significantly higher than in periods 2B and 2C (Table 4.1). 

The highest average Chl-a concentration was 28.1(± 8.1) mg L-1 in period 2A. Based 

on the average values, the reduction in Chl-a concentration during periods 2B and 

2C was a result of the SRT reduction: a higher volume of biomass was wasted to 

decrease the SRT, and most of the biomass was composed of algae. Thus, the 

Chlorophyll-a content in the biomass did not remain constant during the 4 periods, 

but instead showed the same trend as the solids concentrations. The Chl-a content 

ranged from 0.5 to 1.1%, similar to the values of 1.0 -1.5% reported in previous 

studies (Karya et al., 2013). However, higher values of up to 2.4%, when treating 

an effluent from anaerobically digested swine waste that contained 297 (± 29) mg 

NH4
+-N L-1, can also be found in literature (Wang et al., 2015).  

4.3.2 Nitrogen and ammonium removal efficiencies and rates 

Nitrogen and ammonium removal efficiency 

During the 4 operational periods, the ammonium removal efficiency exceeded 94% 

(Table 4.2) and the ammonium effluent concentrations dropped below the detection 

limit (Figure 4.3). Furthermore, the total nitrogen removal efficiencies were above 

70% during all the experimental periods (Table 4.2). Full nitrogen removal was not 

achieved, mainly because of the nitrate concentrations present in the effluent. 

Nitrate was not removed during part of period 1 and during most of period 2A. 

Nitrite concentrations were, with the exception of one day (day 165), below 0.2 mg 

NO2
--N L-1	(Figure 4.3). Overall, the ammonium removal was successful during the 

4 periods (310 days) without any external oxygen addition and despite the different 

operational schemes. 
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Table 4.2. Ammonium removal efficiencies and rates for the 4 operational periods 

P SRT 
(days) 

ARE (%) NRE (%)

ࢀ_࢓࡭࢘
(mg 

NH4
+-N 

L-1 h-1) 

ࢀ_࢓࡭࢑
(mgNH4

+-N 
mgVSS-1 d-1)

 ࢀ_ࡺ࢘
(mg 

NH4
+-N 

L-1 h-1) 

ࢀ_ࡺ࢑
(mgNH4

+-N 
mgVSS-1 d-1)

1 48 94.3±23.3 87.2±25.7 2.94 0.061±0.005 1.9±0.3 0.029±0.013
2A 52 100±0.0 73.9±24.7 1.85 0.017±0.002 1.4±0.5 0.017±0.010
2B 26 99.9±0.4 89.5±1.5 1.71 0.042±0.022 1.7±0.1 0.048±0.019
2C 17 96.6±15.1 87.0±16.7 2.12 0.063±0.009 1.6±0.3 0.049±0.039

P: periods; ARE: ammonium removal efficiency; NRE: total nitrogen removal efficiency; ࢘ࢀ_࢓࡭ : Volumetric 
ammonium removal rate; ࢀ_࢓࡭࢑: specific ammonium removal rate; ࢘ࢀ_ࡺ: Volumetric nitrogen removal rate; ࢀ_ࡺ࢑: 
Specific nitrogen removal rate 

During period 1 and 2A, the denitrification process was limited and the 

concentrations in the effluent reached up to 11.5 mg NO3
--N L-1 in period 1 and 

19.8 mg NO3
--N L-1 in period 2A. During these periods, it appears that the 

concentration of organic carbon was limiting the denitrification activity. 

Furthermore, the denitrification process was further limited at longer SRTs when 

reaching the highest concentrations of solids (Figure 4.2). Most of the biomass was 

composed of algae, more specifically Chlorella sp. (microscopic observations, data 

non shown). Chlorella sp. are known to grow mixotrophically (Perez-Garcia et al., 

2011; Wu et al., 2014), especially under dark conditions. Therefore, possibly, a 

competition for organic carbon between algae and OHO occurred in the dark phases 

of periods 1 and 2A. For instance, in period 1 after 40 days, the denitrification 

process ceased, coinciding with the higher biomass concentration (Figure 4.2). Once 

the SRT decreased to 26 days, consequently decreasing the solid and algal 

concentrations, the denitrification process resumed and total nitrogen removal was 

achieved in periods 2B and 2C. These observations support the hypothesis that 
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algae and OHO may compete for organic carbon sources at longer SRT, which can 

lead to higher concentrations of solids. 

 

Figure 4.3. Daily nitrogenous concentrations in the reactor along the experimental 

periods. Influent NH4+-N ( ), effluent NH4+-N ( ), effluent NO3--N ( ), 

and effluent NO2--N ( ). 

Figure 4.4 presents an example of the evolution of the N-compounds and oxygen 

concentration trends during one cycle in period 1 (day 47) and one cycle in period 

2B (day 117). The trends of the N-compounds and oxygen concentration for period 

2B were similar in periods 2A and 2C. In this particular comparison among these 

two cycles, it can be observed that the conversion of ammonium to nitrate was 

higher in period 1 than 2B, this is due the different feeding schemes. During periods 

2A, 2B and 2C, the ammonium and organic carbon sources were supplied 

simultaneously (at the beginning of the dark phase), hence part of the organic 

carbon that was not used for denitrification or not consumed by Chlorella sp. in 

period 2A was oxidized aerobically. This can lead to a competition for oxygen 

between AOBs and OHO, resulting in lower ammonium to nitrate conversion rates. 

Certainly, the feeding regime proposed in period 1 is not realistic since ammonium 
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and organic carbon within the wastewater cannot be selectively separated. 

Therefore, the operational conditions were modified in the last 3 periods (2A, 2B 

and 2C) to create more realistic operating conditions. 

Cycle scheme day 47 Cycle scheme day 117 

Figure 4.4. Variation of nitrogen compounds and dissolved oxygen during a SBR 

cycle scheme for day 47 (Period 1) and day 117 (Period 2B). The trends of the N-

compound and oxygen concentrations during period 2B were similar to periods 2A 

and 2C. Anoxic refers to the dark periods and aerobic to the light periods. NH4+-

N ( ), NO3--N ( ), and NO2—N ( ). 

Ammonium and total nitrogen removal rates at different SRTs 

The total volumetric ammonium removal rate was calculated for the 4 periods 

(Table 4.2) using the algal-bacterial model in Aquasim (Reichert, 1994). The 

highest ammonium removal rate among the 4 periods (ݎ஺௠_்) was 2.94 mg NH4
+-N 
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L-1 h-1 for period 1. The higher removal rate in period 1 compared with periods 2A, 

2B and 2C could be a consequence of the feeding operation rather than the SRT 

(period 2A and 1 had similar SRT times). The separated feeding of organic carbon 

and ammonium favoured the nitrification in period 1, since there was no O2 

competition between AOBs and OHOs with regard to the oxidation processes.   

The ݎ஺௠_் varied among periods 2A, 2B and 2C (same operational scheme) for the 

different SRTs tested, but it did not show any clear trend as there is a decrease in ݎ஺௠_் from period 2A to 2B, but the fastest ammonium removal was observed in 

period 2C (2.12 mg NH4
+-N L-1 h-1) at an SRT of 17 days. An ݎ஺௠_் for a microalgal-

bacterial reactor of 7.7 mg NH4
+-N L-1 h-1 have been previously reported (Karya et 

al., 2013), treating synthetic wastewater at an SRT of 15 days. While values of 

around 4.1 mg mg NH4
+-N L-1 h-1 at a HRT of 1 day and SRT of 2.6 days have also 

been observed (Chapter 3). Herein, the rates calculated for periods 2A to 2C are 

similar to those reported by other researchers with an ARR of 2.3 mg mg NH4
+-N 

L-1 h-1 in a continuous laboratory-scale microalgal-bacterial system treating 

synthetic wastewater at a SRT of 15 days and HRT of 1 day (van der Steen et al., 

2015). Ammonium removal rates in the range of 1.5 mg NH4
+-N L-1 h-1 have also 

been reached (Molinuevo-Salces et al., 2010) in a closed reactor with a HRT of 10 

days treating a diluted anaerobically digested slurry.  

In contrast to the ݎ஺௠_், when comparing the average values for periods 2A, 2B and 

2C (performed under similar operational conditions), the highest specific 

ammonium removal rates increased at shorter SRTs reaching a maximum specific 

rate of 0.063 (± 0.009) mg NH4
+-N mgVSS-1 d-1 in period 2C. This value is a 

reflection of the dual action of nitrifiers and algae. Furthermore, this indicates that 
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the biomass was significantly more active at shorter SRT, being able to remove 

more ammonium per gram of biomass. For cultures of algae and nitrifying bacteria, ݇஺௠_் of 0.02 mg NH4
+-N mgVSS-1 d-1 and 0.05 mg NH4

+-N mgVSS-1 d-1, respectively, 

have been found in literature (Vargas et al., 2016), for a total value in a microalgal-

bacterial consortium of 0.07 mg NH4
+-N mgVSS-1 d-1. In a pilot-scale HRAP 

operated to cultivate algae using domestic wastewater (containing 39.7± 17.9 mg 

NH4
+-N L-1), the ݇஺௠_் was 0.03 mg NH4

+-N mgVSS-1 d-1 (Sutherland et al., 2014). 

In another study, the highest specific removal rate reached 0.05 mg TN mg TSS-1 

d-1 (Posadas et al., 2013) in a pilot-scale raceway. Noteworthy, the latter study 

reported the ݇஺௠_்  rate in terms of TSS, which can underestimate the specific 

removal rate, as it includes the inorganic fraction of the biomass.  

The ݇஺௠_் of nitrifying bacteria can vary between 0.5 and 5.2 mg NH4
+-N mgVSS-

1 d-1 (Wiesmann, 1994a). The reason for this wide range of values can be due to the 

biomass characterization. Despite that the ammonium removal through nitrifying 

bacteria in a microalgal-bacterial system can account for more than 50% of the 

total removal (Su et al., 2011; Karya et al., 2013; Van Den Hende et al., 2014; 

Wang et al., 2015), the nitrifying biomass does not comprise more than 6% of the 

total biomass (Karya et al., 2013; Chapter 3). Other studies using microalgal-

bacterial systems using synthetic wastewater have reported values of 0.1 and 1.4 

mg NH4
+-N mgVSSnitrifiers

-1 d-1, in which nitrification was the main ammonium 

removal mechanism (Karya et al., 2013; Chapter 3). Moreover, based on the results 

of the specific nitrogen removal rates, and just taking into account periods 2A, 2B 

and 2C (performed under similar conditions) (Table 4.2), it can be observed that 

the rates in period 2B and 2C are significantly higher than in period 2A, suggesting 
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that shorter SRTs also tend to favour the nitrogen removal rates of microalgal-

bacterial consortia. Likely, lower SRTs increased the specific ammonium removal 

rates due to an increase in the ammonium loading rate, which results in an increase 

in the ammonium oxidation rate (Pollice et al., 2002) once all the other conditions 

are met, and as far as the applied SRT is not shorter than the minimum required 

SRT for nitrification (Ekama and Wentzel, 2008b). 

4.3.3 Nitrogen removal mechanisms and biomass characterization 

Nitrogen removal mechanisms 

The contribution of the nitrogen removal mechanisms to the total N removal were 

estimated in order to identify if there was a correlation among them and the SRT 

tested. The calculations were made only with detailed data from cycles of periods 

2A, 2B and 2C, since they were performed under similar operating conditions. Based 

on the results of section 4.3.2, the ammonium and nitrogen removal efficiencies did 

not differ among the different SRT tested. Also, the amount of ammonium removed 

during the three periods was not significantly different (p > 0.05) and remained 

around 13.9 (± 1.4) mgNH4
+-N d-1 (Table 4.3). The ammonium removal 

mechanisms identified were nitrification/denitrification and nitrogen consumption 

due to the growth requirements of OHOs and algal uptake (Table 4.3). 

Nitrification/denitrification was the main removal mechanism (44 - 74%), the 

remaining ammonium was removed by algae assimilation (11 - 38%) and a small 

portion was used for bacterial growth (OHOs and nitrifiers). Other studies have 

also reported the successful removal of ammonium and TN up to negligible values 

at laboratory and pilot scale, when using microalgal-bacterial consortia without any 
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supply of external air or oxygen. This shows the ability of the system to benefit 

from the symbiosis of algae and bacteria (Arashiro et al., 2016; García et al., 2017; 

Liang et al., 2013; Chapter 3; Solimeno et al., 2017; van der Steen et al., 2015; 

Wang et al., 2015). 

With further data analysis, the maximum nitrate formation rate occurred in period 

2C (of 10.3 ± 2.8 mgNO3
--N d-1), which corresponded to the shortest SRT tested, 

and the highest denitrification rate was found in periods 2B and 2C. The lowest 

nitrogen consumption for biomass synthesis of heterotrophic bacteria was observed 

in period 2A (at a SRT of 52 days), which was somehow expected since the nitrogen 

requirements for biomass growth decreases as the sludge age increases (Ekama and 

Wentzel, 2008b). The uptake of ammonium by algae was higher at longer SRTs, 

like in period 2A and 2B, and was not significantly different among them (p>0.05), 

while the lowest (1.5±0.9 mgNH4
+-N d-1) was observed in period 2C at the short 

SRT of 17 days. Despite that the net amount of ammonium removed was not 

different between the three periods, the main removal mechanisms were different, 

and the nitrification rate was higher at the shortest retention time tested. At longer 

SRTs, the main removal mechanism was through algae assimilation followed by 

nitrification, while the opposite took place at shorter SRTs where nitrification was 

the main removal mechanism. The differences might be attributed to the oxygen 

conditions during the different SRTs, which is an indirect result of the different 

solid concentrations and biomass characteristics. 

Biomass characterization 

The biomass was mainly composed of algae and heterotrophic bacteria (Figure 4.5). 

Based on the removal mechanisms (Table 4.3), the theoretical biomass 
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characterization shows that the total VSS was composed of 40 to 70% by algae. 

The OHOs comprised between 25 and 50%, and their highest fraction was estimated 

in period 2C. Two to 7% of the total VSS was composed of nitrifiers, and similar 

to OHO their highest fraction was observed in period 2C, when the highest 

ammonium to nitrate conversion was observed. The lowest algae content was 

observed in period 2C, this value is mainly due to the lower algal uptake measured 

in this period (Table 4.3), which is in line with the chlorophyll-a concentrations. 

This suggests that shorter SRTs also had an effect on the bacterial composition. 

When comparing these results to those from other studies, in a HRAP treating 

municipal wastewater at an HRT of 4 days, the biomass was composed of 56-78% 

by algal biomass (Solimeno et al., 2017), while 30-20% by bacteria (including OHO 

and nitrifiers). In another study, the biomass composition contained 67% algae, 

16% OHO and 17% nitrifiers in a lab-scale photobioreactor treating diluted centrate 

from an anaerobic digester used to process swine manure (Arashiro et al., 2016). 

The differences are attributed to the different operational conditions and cultivation 

medium. Nevertheless and despite those differences, algae dominated the 

microalgal-bacterial biomass in all those studies.    

The biomass fractionation was calculated based on the VSS concentration 

(Appendix B.3). Therefore, it must be taken into account that an endogenous 

residue (e.g. of non active biomass within the VSS) is accounted for within this 

value (Ekama and Wentzel, 2008b). This endogenous residue depends on the SRT: 

it is higher at longer SRT for activated sludge (Ekama and Wentzel, 2008b). In the 

case of algae, the high solids concentration can increase the dark zones within the 

reactor causing light attenuation, and in parallel increase the endogenous 
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respiration of algae. Consequently, the control of the VSS through the SRT can 

affect the oxygen consumption and the biomass composition. 

 

Figure 4.5. Biomass composition at the different SRTs tested. VSS nitrifiers ( ),  

VSS OHO ( ),VSS Algae ( ). 
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4.3.4 Oxygen production in a microalgal-bacterial photobioreactor 

under different SRTs 

The oxygen production by algae and the oxygen consumption by the different 

aerobic processes was calculated (Table 4.4 and Table 4.5). The highest production 

of oxygen by algae was 0.33 kg O2 m-3 d-1 during period 2A, while for periods 2B 

and 2C, there were no significant differences (p>0.05). The total O2 produced by 

algae was sufficient to sustain the total oxygen consumption within the 

photobioreactor (nitrification, algal and bacterial respiration and COD oxidation). 

A higher oxygen production rate of up to 0.46 kg O2 m-3 d-1 for a microalgal-bacterial 

system using synthetic domestic wastewater has been reported previously (Karya 

et al., 2013). The different oxygen production rates cannot be directly explained 

based on nitrogen uptake (as a means to assess the algal activity) since the 

ammonium uptakes are similar in both studies (4.7 ± 2.7 mg NH4
+-N L-1 (Karya et 

al., 2013) versus 4.9 ± 0.8 mg NH4
+-N L-1 during period 2A). Possibly and in spite 

of the similar ammonium uptake, the difference in O2 production could be due to 

light limitation. Actually, the higher biomass concentrations reported in period 2A, 

that likely induced light attenuation, are higher than those observed elsewhere 

(Karya et al., 2013). Furthermore and interestingly, in this study the oxygen 

production did not cease when the ammonium was consumed (Figure 4.4). 

Moreover, the microalgal-bacterial biomass in this research did not take up nitrate 

during the conduction of ex-situ batch tests (data not shown) that could be used 

as an alternative source of nitrogen. As such, there may be other additional or 

alternative N sources for algae to grow and perform photosynthesis. Nevertheless, 

algae are capable of storing N under N-stress conditions (Lavín and Lourenço, 2005). 
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Probably, this mechanism took place in this study, as observed previously (Wágner 

et al., 2016), when ammonium was exhausted. Further studies are required to assess 

the potential mechanism of oxygen generation by algae via the potential use of 

intracellularly stored nitrogen compounds. 

Table 4.4. Total oxygen produced and consumed in the SBR. P: Periods 

P SRT 
O2 produced by 

algae (kg O2 m-3 d-1)
O2 transfered 
(kg O2 m-3 d-1)

O2 consumed 
(kg O2 m-3 d-11) 

2A 52 0.33±0.04 0.03±0.00 0.32±0.05 
2B 26 0.25±0.04 0.02±0.01 0.19±0.03 
2C 17 0.21±0.02 0.03±0.02 0.20±0.02 

Table 4.5. Oxygen consumption by the different aerobic and endogenous 

respiration processes. P: Periods 

P SRT 

O2 
nitrification 
(kg O2 m-3 

d-1) 

O2 COD 
oxidation  
(kg O2 m-3 

d-1) 

O2 algae 
respiration 
(kg O2 m-3 

d-1) 

O2 OHO 
respiration 
(kg O2 m-3 

d-1) 
2A 52 0.06±0.01 0.06±0.04 0.131±0.015 0.07±0.01 
2B 26 0.06±0.00 0.02±0.01 0.025±0.009 0.08±0.02 
2C 17 0.11±0.03 0.03±0.02 0.005±0.002 0.05±0.01 

Based on an oxygen mass balance, an oxygen production of 0.19 kg O2 m-3 d-1 for a 

microalgal-bacterial system treating real anaerobic digested swine waste centrate 

at a SRT of 8 days and HRT of 4 days was estimated previously (Wang et al., 

2015). That lower O2 production compared with the values found in this research 

(Table 4.4) might be caused by light limitation. In that study (Wang et al., 2015), 

the oxygen concentration did not exceed 0.5 mg O2 L-1, which the author attributed 

to the turbidity of the swine waste centrate.  
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Herein, the consumption of oxygen was higher at the SRT of 52 than at the SRT 

of 26 or 17 days. However, different aerobic processes were involved in the oxygen 

consumption at an either long or short SRT. During the SRT of 52 days (period 

2A), COD oxidation accounted for 19% of the oxygen consumption, and it was 

higher than in periods 2B and 2C. Also, at a SRT of 52 days, the denitrification 

process deteriorated (Figure 4.3). Therefore, part of the COD supplied was not 

consumed by denitrifiers in the dark period, but mostly oxidised in the aerobic 

phase. Despite these issues, the COD removal efficiencies were 89%, 84% and 88% 

in the experimental periods 2A, 2B and 2C, respectively. It appears that the 

respiration of OHO was not significantly different among these periods (p>0.05) 

meanwhile the algal respiration decreased at shorter SRTs. It was higher in period 

2A, which accounted for 41% of the total oxygen consumption, while during period 

2C (SRT 17 days) algae respiration represented only 2% of the total O2 

consumption (Table 4.5).  

During period 2C, nitrification had the highest oxygen consumption, accounting for 

54% of the total O2 consumed (Table 4.5). This is in line with the findings of the 

nitrogen balance since in period 2C the highest formation of nitrate occurred. The 

higher nitrification rates observed in period 2C could be associated with a higher 

availability of oxygen in comparison with period 2A (Table 4.5). As the reactor is 

operated as a sequencing batch reactor, oxygen limitation could occur as soon as 

the medium was fed. During period 2A, there was a higher algal respiration and 

COD oxidation; therefore, during the first hours of the cycle, oxygen was limited 

at longer SRT. Similar findings have been reported in literature (Arashiro et al., 

2016) who compared two photobioreactors at different SRT (7 and 11 days). In 
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that study, at shorter SRT the NH4
+ conversion to nitrite was higher than at longer 

SRT, attributed to the higher availability of oxygen at the shorter SRT. Therefore, 

longer SRTs can cause oxygen limitation, hindering the oxidation of ammonium by 

AOB and the oxidation of organic carbon. Ultimately, this will decrease the 

efficiency of the system. 

With regard to algae respiration, it must be taken into account that algae respire 

at higher rates under dark conditions. The dark zones were estimated using the 

Lambert-Beert equation and the total solids concentration for each period. The 

dark zones fractions calculated were 0.78, 0.36, and 0.17 for periods 2A, 2B and 2C, 

respectively. Since the respiration rate is assumed to remain constant at a rate of 

0.1 d-1 (Zambrano et al., 2016), the combination of the higher algal concentration 

and the dark zones might have caused an increase in algal respiration at longer 

SRTs. However, in spite of the light limitation at longer SRTs, the oxygen 

production was not considerably different among the SRTs, and the highest O2 

production took place in period 2A. This can be related to the higher ammonium 

uptake observed in period 2A, compared with periods 2B and 2C. Nevertheless, 

microalgae have the capacity to adapt to either light limited environments or higher 

light irradiance. In a pilot-scale HRAP, in which the HRT was equal to the SRT 

(not decoupled), a decrease in light availability at longer HRT (and therefore with 

higher biomass concentrations) was also observed (Sutherland et al., 2015). 

However, the photosynthetic efficiency (rate of photosynthesis) increased at longer 

HRT and higher depths. Under a higher light intensity, algae regulate the light 

absorption by decreasing the chlorophyll content per cell (Bonente et al., 2012), 

while under low light conditions algae increase the synthesis of photosynthetic 
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systems within the cell to convert more light (Falkowski and Raven, 2013).  

Nonetheless, the light attenuation by the biomass in the reactor has a direct 

implication for the O2 production. Therefore, in order to supply sufficient oxygen 

for the aerobic process without causing O2 saturation, or oxygen limited conditions, 

the control of the biomass in the reactor should be ensured by controlling the SRT.  

4.3.5 Effects of SRT on the light penetration, ammonium removal 

mechanisms and oxygen production 

This study shows that high ammonium removal rates can be achieved in microalgal-

bacterial systems at higher volumetric and specific rates through 

nitrification/denitrification when operated at shorter SRTs. The SRT controls the 

solids concentration, which affects the light conditions inside the reactor, as well as 

the respiration rates. This will concomitantly affect the oxygen production and 

availability. Nonetheless, it must be taken into account that the SRT should not 

fall below the minimum required SRT for nitrification (a SRT at which the dilution  

of biomass is higher than the doubling time of the nitrifiers), otherwise this will 

lead to the wash out of nitrifying organisms from the system (Ekama and Wentzel, 

2008a). The minimum SRT calculated for this system is 2.9 days, and at lower SRT 

the nitrification rates will start to decrease exponentially (Ekama and Wentzel, 

2008a). When testing different SRT between 5 and 2 days in a sequencing batch 

nitrifier reactor, partial nitrification was observed at an SRT below 2 days, while 

for SRTs of 3, 4 and 5 days full nitrification was achieved (Munz et al., 2011). In 

activated sludge systems, sludge ages of 10 to 25 days are recommended for 
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biological nutrient removal, a value usually 5 to 8 days longer than that applied in 

systems that achieve only COD removal (Ekama and Wentzel, 2008b).  

Thus, to achieve nitrogen removal via ammonium oxidation and further 

denitrification, microalgal-bacterial systems can be operated at shorter SRT, 

without have higher HRT. Shorter SRT improve light conditions inside the reactor 

by ensuring low biomass concentration, while avoiding biomass wash out, which 

ultimately promote nitrification over algal uptake, as long as other conditions are 

met (e.g. C/N/P ratio, pH, and temperature). Therefore, uncoupling of the SRT 

from the HRT, allows to select SRTs that promote higher ammonium removal rates 

by optimizing the O2 production, decrease of the light attenuation, and higher 

biomass productivities while requiring less area. 

The SRT is a key operational parameter that allows to control the efficiency and 

growth of the microalgal-bacterial systems (at constant conditions), specially under 

different environments in which the incident light cannot be modified. During 

seasonal variations, when light is limited or there is a lower temperature, the 

biomass concentration in the reactor can be adjusted to keep higher removal 

efficiencies. Based on the results and literature data, the optimal SRT and HRT 

for the design of a microalgal-bacterial system treating municipal wastewater is 

between a SRT of 10 to 17 days with a HRT of 1 day. However, it must be noted 

that these conclusions were made using laboratory-scale experiments, therefore 

these results must be tested at pilot and large scale. Furthermore, they may vary 

depending on the environmental conditions and influent characteristics of the 

wastewater of interest. 



4. Ammonium removal mechanisms in a microalgal-bacterial sequencing-batch 

photobioreactor at different SRT 

 

102 

 

4.4 CONCLUSIONS 

Ammonium and total nitrogen were successfully removed at a SRT of 52, 26 and 

17 days. The SRTs had an impact on the removal mechanisms. Nitrification was 

the main removal mechanism, achieving higher nitrate formation at shorter SRTs. 

Ammonium removal through nitrification increased from 50.5% (SRT 52 d) to 

74.3% (SRT 17 d). The highest ammonium removal rate was 2.12 mg mgNH4
+-N 

L-1 h-1 with a specific removal rate of 0.063 gNH4
+-N gVSS-1 h-1 at a SRT of 17 days. 

Shorter SRT improve light conditions inside the reactor by reducing the solids 

concentration, which has a direct positive effect on the oxygen production and 

consumption. This study suggests that higher ammonium removal rates for 

microalgal-bacterial systems operated as sequential batch reactor can be achieved 

at shorter SRTs and HRTs. 
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Abstract 

The treatment of high ammonium strength wastewater was achieved using an algal-

bacterial consortium in two photo-sequencing batch reactors (PSBRs). The 

nitrogen removal mechanisms were nitritation/denitritation, in this process, algae 

provide oxygen for nitritation during the light period, while denitritation takes 

place during the dark (anoxic) period, reducing overall energy and chemical 

requirements. The two PSBRs were operated at different solids retention times 

(SRTs) and the ammonium concentration in the wastewater fed was 264 mg NH4
+-

N L-1, with a 12 hour on/12 hour off light cycle. The average surface light intensity 

was 84 μmol m−2s−1. The total inorganic nitrogen removal efficiencies for the two 

PSBRs was ~95%, and the biomass settleability was measured as SVI (53-58 mLg-

1).  Higher biomass density was observed at higher SRT, resulting in greater light 

attenuation and less oxygen production. A mathematical model was developed to 

describe the algal-bacterial interactions using the Activated Sludge Model No.3 

(ASM3) as base, and including two algal processes. The results of the model 

predicted the experimental data closely. One of the most sensitive parameters was 

found to be the maximum growth rate of algae (ߤ௠௔௫,௉). 
5.1 INTRODUCTION 

Anaerobic digestion (AD) of domestic, industrial and agricultural wastes stabilizes 

organic matter and produces biogas that can be used as an energy source. However, 

effluents from AD contain high NH4
+-N concentrations, which can induce 

eutrophication in natural waters. The conventional biological nitrogen removal 
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pathway for such effluents is the combination of nitrification and denitrification. 

Innovative shortcut nitrogen removal processes (i.e. nitritation-denitritation) have 

been developed over the past decade that save up to 25% of energy for aeration 

and 40% of carbon source requirements compared with conventional nitrification-

denitrification processes (Wiesmann et al., 2006). Aeration costs could be further 

reduced by using algae photosynthesis for oxygen supply. Studies have shown that 

wastewater treatment systems containing algal-bacterial consortia may provide 

additional energy savings and higher nutrient removal efficiency, when compared 

to systems that rely only on either algal or bacterial processes (Liang et al., 2013). 

This algal-bacterial symbiosis can be applied in photobioreactors to reduce the 

concentrations of nutrients while reducing the electrical energy demands from 

aeration in wastewater treatment processes (Kouzuma and Watanabe, 2015). In 

these reactors, the photosynthetic activity of microalgae provides oxygen needed 

for organic matter oxidation and nitrification during the light periods. 

Denitrification or denitritation processes take place primarily during the dark 

(anoxic) period. 

The availability of light inside the photobioreactor is a major factor for microalgal 

photosynthesis, affecting the oxygen production process. Light availability is 

affected by concentrations of dissolved organic compounds and total suspended 

solids (TSS), which are related to the photobioreactor operating conditions, 

particularly the solids retention time (SRT). A SRT of 15 days was shown to result 

in complete nitrification  without mechanical aeration in a study using a consortium 

of algae and nitrifiers to treat synthetic wastewater (50 mg NH4
+-N L-1) in photo-

sequencing batch reactors (PSBRs) (Karya et al., 2013). Wang et al. (2015) treated 
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centrate from anaerobically digested swine manure with higher ammonium 

concentration (300 mg NH4
+-N L-1) and also achieved complete ammonia removal 

via nitritation-denitritation in PSBRs with alternating light and dark periods and 

SRT of 8 days. 

Although these authors and others (de Godos et al., 2014) recently studied algal-

bacterial symbiosis for wastewater treatment there is still a lack of research on 

modelling the performance of algal-bacterial systems. Models are needed to predict, 

for example, growth of both microorganisms, efficiency of nutrient removal from 

wastewater during different seasons and in different geographic regions or the effect 

of system design and operational parameters on overall system performance. One 

of the latest biological process models for use in wastewater treatment is the 

Activated Sludge Model no. 3 (ASM3), which better describes the decay processes 

compared to ASM1 and includes cell internal storage compounds (Henze et al. 2000). 

However, a disadvantage of ASM3 is the representation of nitrification and 

denitrification as single-step processes. Thus, the activities of the ammonium 

oxidizing bacteria and archaea (AOB and AOA) and nitrite oxidizing bacteria 

(NOB) are not properly distinguished. In order to be able to describe shortcut 

nitrogen removal, nitrite dynamics in wastewater treatment systems should be 

modelled. Some researchers therefore have proposed new versions of ASM3, 

extended to two-step nitrification and two-step denitrification, i.e. with nitrite as 

an intermediate (Iacopozzi et al., 2007; Kaelin et al., 2009). Models for bacterial 

growth could be combined with models for algal growth. Several researchers have 

suggested mathematical models to describe algal photosynthesis and growth 

kinetics, which can be expressed as a function of light conditions (Halfhide et al., 
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2015; Martinez Sancho et al., 1991), temperature and pH (Costache et al., 2013), 

and inorganic carbon, inorganic nitrogen and inorganic phosphorus (Decostere et 

al., 2016).  

This chapter reports on experimental PSBR studies and the development and 

calibration of a mathematical model that represents the performance of the algal-

bacterial PSBR under varying operating conditions. The model describes how light 

availability is affected by dissolved and suspended matter concentrations in the 

PSBR and how light attenuation influences oxygen production and nitrogen 

removal. 

5.2 MATERIALS AND METHODS 

5.2.1 Experimental 

Photo-sequencing batch reactor 

The design and operation of the bench-scale PSBRs used in this study have been 

described elsewhere (Wang et al., 2015). Briefly, two cylindrical glass reactors (2L 

volume, 16 cm diameter, 10 cm height) were inoculated with a mixed microbial 

consortium, which contained nitrifying and heterotrophic bacteria derived from a 

wastewater mixed liquor seed and wild strain algae - mainly Chlorella spp. The 

PSBRs were fed with centrate from a pilot-scale mesophilic anaerobic digester that 

was used to process swine manure, which was collected from Twenty Four Rivers 

Farm (Plant City, FL) on a weekly basis, mixed with urea and local groundwater 

and fed to the digester three times per week. Urea was added to make up for the 
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loss of urine due to the farm operation. The swine centrate was centrifuged for 15 

min at a speed of 4000 rpm, filtered with a 0.45μm membrane filter and diluted 

three times before being used to feed the PSBRs, with an average NH4
+-N 

concentration of 264±10 mg L-1. Typical characteristics of the influent are shown 

in Table 5.1. Despite the centrifugation and filtration the soluble fraction of the 

COD represented 72% of the total COD, similar values (76 %) were found by Wang 

et al., (2015), who used the same influent following the same pre-treatment of 

centrifugation and dilution.  

Table 5.1. Typical characteristics of the influent (diluted swine centrate). 

Variable Value 
pH 6.8 ± 0.1 

Total COD (mg/L) 810 ± 82 
Soluble COD (mg/L) 589 ± 71 

NH4
+-N (mg/L) 264 ± 10 

NO2
--N (mg/L) 4.0 ± 0.3 

NO3
--N (mg/L) 0.3 ± 0.1 

TN (mg/L) 313 ± 137 
Alkalinity (mg 

CaCO3/L) 
1574 ± 46 

TP (mg/L) 27.5 ± 4.2 
Soluble TP (mg/L) 22.9 ± 4.7 

The operation of the PSBRs consisted of a 24 hour cycle (feed, react, settle, decant), 

of which 12h were illuminated and 12h were dark. The PSBRs were continuously 

stirred at 200 rpm using a magnetic mixer, except during settling and withdrawal 

stages at the end of the dark period. The temperature inside both PSBRs was 27 

(± 3) ˚C.  The experiment was divided into two phases (Figure 5.1); in Phase 1 
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no external carbon source was applied while during Phase 2 sodium acetate was 

added at the start of the dark period to promote denitrification, based on the 

stoichiometry of 2.2 g COD g-1 NO2
--N removed. Between Phase 1 and Phase 2, a 

4-day dark period was applied when sodium acetate was added (amount needed for 

full denitrification) to the PSBRs to eliminate accumulated NO2
--N from Phase 1. 

No inflow or outflow were introduced during the 4-day dark period. No CO2 was 

added during the operational steps since alkalinity was sufficient for the nitrification 

and algae growth (1574 mg CaCO3 L-1). 

 

Figure 5.1. Operational steps of the PSBRs during one cycle of a) Phase 1: no 

sodium acetate addition and of b) Phase 2: with sodium acetate addition at the 

start of the dark period. 

The hydraulic retention time (HRT) was maintained at 4 days in both PSBRs, but 

each reactor was operated at a different SRT. Reactor 1 (R1) was operated with 

an average SRT of 7 days and Reactor 2 (R2) of 11 days. SRTs were maintained 

by withdrawing a portion (R1: 250 mL, R2: 150mL) of the mixed liquor each day, 

just before the settling period. The SRT was calculated by equation (5.1): 
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 SRT	(d) = ܶܵܵோ ோܸܶܵܵோ ௐܸ + ܶܵܵா ாܸ (5.1)

where ܶܵܵோ	 is the biomass concentration of the mixed liquor (mg L-1); ܶܵܵா	 is the 

biomass concentration of the effluent (mg L-1); ோܸ is the reactor volume (L); ௐܸ is 

the daily volume of wasted mixed liquor (L d-1) and ாܸ is the daily volume of effluent 

(L d-1). 

Incident light 

The PSBRs were irradiated with two banks of eight cool white fluorescent tubes 

(Philips Cool White-20W, 24 inches), placed on two sides of the reactors providing 

an average light intensity on the surface of the PSBRs of 84 ± 3 μmol m−2 s−1. 

Incident light intensity was measured with a Quantum meter MQ-200 (Apogee 

Instruments, US) at eight different points along the reactors’ wall and the light 

intensity considered for both PSBRs is given as the average value of these 

measurements. 

Light attenuation 

The light intensity (I) within the PSBRs cannot be merely represented by the light 

intensity at the surface of the PSBRs. Light attenuation causes a considerable 

reduction in light intensity along the depth of the reactor. The modified Beer-

Lambert law was applied to describe the light intensity at a specific position from 

the light source as (Martinez Sancho et al., 1991): 

(ݔ)ܫ  = ଴ܫ exp(−்݇ܺݔ) (5.2)
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where ܫ଴ is the initial light intensity (μmol m−2 s−1), ݇ is the extinction coefficient 

(m2 g-1 TSS), ்ܺ is the TSS concentration (g TSS m-3) and ݔ is the distance from 

the light source (m). 

The light intensity was measured at nine different points along the reactor radius 

(every 1 cm distance from 0 cm to 8 cm), at varying distance from the light source, 

inside one of the PSBRs using a Quantum meter MQ-200 (Apogee Instruments, 

US). This procedure was repeated with seven different concentrations of mixed 

liquor and influent to study the influence of TSS concentration on the light 

availability inside the PSBR. All the dilutions were made using the influent and 

the first concentration (C1) corresponds to the influent without any algal-bacterial 

biomass. The data collected from this experiment were used to determine the 

extinction coefficient, k, in Eq. 5.2 using the MS Excel tool Solver (GRG nonlinear 

algorithm). 

Analytical methods 

pH and dissolved oxygen (DO) were measured with an Orion GS9156 pH and DO 

meter (Thermo Fisher Scientific Inc., Waltham, MA, US), respectively, and 

calibrated electrodes. Chlorophyll-a was measured using the ethanol extraction 

method according to NEN 6520 – Dutch Standard (NEN 2006). TSS and volatile 

suspended solids (VSS) were measured according to Standard Methods 2540 D 

(APHA 2012). The concentrations of NH4
+, NO2

- and NO3
- were measured using a 

Metrohm Peak 850 Professional AnCat ion chromatography (IC) system (Metrohm 

Inc., Switzerland), with method detection limits (MDLs) of 0.20, 0.04 and 0.01 mg 
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L-1, respectively. Total nitrogen (TN) of samples was measured using Hach Total 

Nitrogen Reagent set TNT 828 (Hach Inc., US). 

5.2.2 Integrated microalgal-bacterial model 

The mathematical model was mainly based on the parameters and rates defined by 

ASM3, which comprises processes of autotrophic bacteria (nitrifiers) and 

heterotrophic bacteria (denitrifiers). Nitrification and denitrification are 

represented as single-step processes in ASM3; therefore, modifications were made 

according to methodology proposed by Iacopozzi et al. (2007) and Kaelin et al. 

(2009). Nitrification was separated into two processes with NH4
+ and NO2

- as 

substrates for autotrophic bacteria, AOB and NOB respectively. Denitrification was 

divided into two steps with NO3
- and NO2

- as substrates for heterotrophic bacteria 

(Figure 5.2).  

Since algal processes and rates are not accounted for in ASM3, two processes were 

incorporated, related to algal growth and endogenous algal respiration. Similar to 

the methodology described by Martinez Sancho et al. (1991), the algae growth was 

represented by an exponential model, which is one of the most common kinetic 

models for representing the variability of algae specific growth rate with light 

intensity: 

ߤ  = ܲ,ݔܽ݉ߤ ൤1 − exp ൬− ௦൰൨ (5.3)ܫܫ

where ߤ is the algae specific growth rate (d-1), 	ݔܽ݉ߤ,ܲ is the maximum specific growth 

rate for algae (d-1), ܫ is the actual light intensity (μmol photon m-2 s-1) and ܫ௦ is the 

saturation light intensity (μmol photon m-2 s-1). 



5.2. Materials and Methods

 

113 

 

The modified Beer-Lambert law was used to incorporate the light intensity 

variation into the model. Considering equation (5.2, it is possible to calculate the 

point-by-point variation in light intensity inside the PSBR. However, it is very 

complex to establish this variation in a cylindrical reactor, so an analogy with a 

parallelepiped was applied to calculate the mean light intensities (ܫ௠) by integrating 

equation (5.2 from x=0 to x=L (length of the light pathway inside the reactor) and 

dividing by L: 

݉ܫ  = ܮ0݇ܺܶܫ ሾ1 − exp(−݇ܺܶܮ)ሿ (5.4)

The average specific growth rate can be described by substituting ܫ௠ in equation 

(5.3 and assuming that the algal cells adapt to the average value of light intensity 

and grow as if continuously exposed to that light intensity (Martinez Sancho et al. 

1991). Integrating the effect of NH4
+ substrate concentration (expressed as a Monod 

equation) and the average light intensity, the algal biomass growth rate is 

represented by r (g COD m-3 d-1): 

ݎ  = 	 ௠௔௫,௉ߤ 	 ܲ,4ܪܰܭ4ܪܰܵ + 4ܪܰܵ ቊ1 − expቆ−ܫ௢ൣ1 − exp൫−݇ ܺܶ ൯൧݇ܮ ܺܶ ܮ ௦ܫ ቇቋ	ܺܲ (5.5)

where ܵேுర(g  NH4
+-N m-3) is the NH4

+-N concentration, ܭேுర,௉ is the NH4
+ half 

saturation constant (g  NH4
+-N m-3) and ܺ௉  is the phototrophic biomass 

concentration (g TSS m-3). 

The phototrophic endogenous respiration rate, R (g COD m-3 d-1), was defined using 

the same type of mathematical expression as is used for endogenous respiration 

rates for bacteria as: 
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 ܴ = ܾ௉ ܺ௉ (5.6)

where ܾ௉ is the endogenous respiration constant for phototrophs (d-1), and ܺ௉ is the 

total solids concentration for phototrophs (g COD m-3). 

The mathematical equations were set into the software Aquasim 2.0® (Reichert, 

1994) to perform simulations, calibration and sensitivity analysis. The model 

calibration was done using the data collected hourly during one cycle (24 hours) of 

R1 on day 49, Phase 2. The initial conditions used as input for the calibration are 

shown in Table C.1 of Appendix C. The Aquasim tool ‘Sensitivity analysis’ was 

used in order to identify the most sensitive parameters. Afterwards, the calibration 

was done using the tool ‘Parameter estimation’ to estimate new values for the most 

sensitive parameters, based on the profiles of NH4
+-N, NO2

--N, NO3
--N and DO. The 

methodology for the sensitivity analysis and calibration is described by Reichert 

(1998). 
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5.2.3 Statistical analysis 

A statistical analysis applying the t-test (two tailed paired) was performed to 

compare the hourly NH4
+ removal and NO2

- formation rates between R1 and R2 

during the light period of one cycle. Data from three cycles (Days 14, 42 and 49) 

were recorded and the average values were used for the statistical analysis. The 

NH4
+-N, NO2

--N and NO3
--N concentrations in the effluent of R1 and R2 during 

Phase 1 and Phase 2 were analysed by single factor Analysis of Variance 

(ANOVA) (α=0.05) using Minitab 16 (PA, USA). The root-mean-square error 

(RMSE) was used to calculate the error between the values for R1 measured during 

the experimental period and the values predicted by the model. 

5.3 RESULTS AND DISCUSSION 

An algal-bacterial consortium was successfully cultured in two PSBRs for 50 days. 

The biomass developed good settleability with a sludge volume index (SVI) of 53 

mL/g for R1 and 58 mL/g for R2. In addition, steady nitritation-denitritation was 

observed with total nitrogen removal over 90% achieved (see below). Measurements 

of nitrogen species, biomass concentration and light attenuation were combined 

with operational parameters to obtain data to calibrate the model. 

5.3.1 Experimental 

Photo-sequencing batch reactors 

Average effluent NH4
+-N and NO2

--N concentrations were significantly higher 

(single factor ANOVA, p < 0.05) in Phase 1 than in Phase 2 for both PSBRs (Table 
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5.2). Total inorganic nitrogen (TIN) removal efficiencies during Phase 1 were 

approximately 38% and 40% for R1 and R2, respectively. NO2
- removal by 

denitrification was most probably hindered by the lack of a readily biodegradable 

carbon source remaining until the dark period. Likewise, Kinyua et al. (2014) 

reported that, compared to the total COD of anaerobically digested swine manure, 

the readily biodegradable COD fraction was very low (4-5%). Wang et al., (2015) 

showed that little denitritation occurred without addition of an external carbon 

source when treating anaerobically digested swine manure in a PSBR. Furthermore, 

previous studies of systems treating wastewater with high levels of total NH4
+-N 

and free ammonia have reported inhibition of NOB activity (Kouba et al., 2014; 

Vadivelu et al., 2007), favouring partial nitrification (i.e. nitritation). Consequently, 

NO2
- accumulation was observed in the PSBRs during Phase 1 (Figure 5.3). For 

this reason, sodium acetate was added to the PSBRs and a 4-day full dark period 

was implemented to provide conditions required for denitritation. During Phase 2, 

sodium acetate was added just before the dark cycle to ensure enough readily 

degradable carbon source for NO2
- reduction, enhancing TIN removal efficiencies 

for R1 and R2 to 95% and 94%, respectively. 
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 Figure 5.3. Influent and effluent ammonium nitrogen (NH4+-N), nitrite 

nitrogen (NO2--N) and nitrate nitrogen (NO3--N) concentrations over time in R1 

(SRT 7d) and R2 (SRT 11d). 
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Table 5.2. Average NH4+-N, NO2--N and NO3--N concentrations in the influent 

and effluent of R1 (SRT 7d) and R2 (SRT 11d). Effluent NH4+-N and NO2--N 

concentrations were significantly different between phases, for both reactors. 

Differences between reactors were not significant (single factor ANOVA 95% 

confidence interval). 

 Influent Effluent 

 R1 and R2 R1 R2 

 
Phase 

1 
Phase 

2 
Phase 

1 
Phase 

2 
p 

value* 
Phase 

1 
Phase 

2 
p value*

NH4
+-N 

(mg L-1) 
290±3 236±19 83±9 1±1 5.14e-12 106±8 5 ± 2 2.73e-14

NO2
--N 

(mg L-1) 
5±0 3±0 97±11 24±7 8.52e-08 70±10 16±3 1.26e-05

NO3
--N 

(mg L-1) 
< 

MDL 
1 ± 0 2±1 

< 
MDL 

- 1±0 
< 

MDL 
- 

* p value of ANOVA between Phase 1 and Phase 2. 

Light attenuation measurements 

This study allowed a better understanding of the light attenuation inside the 

PSBRs and further analysis of how the light attenuation, TSS concentration, 

oxygen production and nitrogen removal are interlinked. Light intensity varied with 

distance from the light source inside the reactor and was affected by TSS 

concentrations (C1 to C7) (Figure 5.4). By fitting Eq. (5.2) to these results, the 

light coefficient k was determined as 0.0748 ± 0.0048 m2 g-1 TSS, later used as an 

input for the model calibration. 
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A further analysis based on the light intensities along the light path inside the 

PSBR at varying TSS concentrations was performed to approximately calculate 

and compare the portion of irradiated and completely dark volumes in each of the 

PSBRs. TSS concentrations C5 (1480 mg TSS/L) and C6 (2167 mg TSS/L) were 

the ones closest to the average in R1 (1357±58 mg TSS/L) and R2 (1744±88 mg 

TSS/L), respectively. The completely dark volumes were assumed to be the radial 

portion from the point in which there was no light detected by the quantum meter. 

For example, for C5 the light intensity was zero from 6cm to 8cm while for C6 the 

light intensity was zero from 4cm to 8cm distance (Figure 5.). 

 

Figure 5.4. Light intensities measured at varying distance from light source inside 

the PSBR, and varying TSS concentrations (C1-C7). 

These values indicate that a higher algal-bacterial biomass concentration hindered 

the photosynthetic activity in R2 due to the shading effect of the TSS. Therefore 

not all biomass was continuously irradiated. The average total biomass during the 

experiment in R2 was 1.44 times higher than in R1. However, applying the 
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percentage of irradiated volume (Figure 5.5) for both reactors and considering only 

the irradiated biomass, the ratio is almost equalized, lowering the value from 1.44 

to 1.09. This indicates that the amount of irradiated algal biomass in both reactors 

was very similar. Although it is a rough estimation, one can assume that since the 

oxygen production in the algae chloroplasts is directly related to the light 

availability, the gross oxygen production for both reactors was similar. The net 

oxygen production by algae is the gross production minus the oxygen used for algal 

endogenous respiration. The latter increases with the biomass concentration, and 

therefore the net oxygen production is probably lower in R2 than in R1. As a result 

there is more oxygen available for AOB in R1 than in R2 and indeed the NH4
+ 

removal and NO2
- formation rates were significantly higher for R1 than for R2 

(p<0.05) (Figure 5.6). In addition, the average biomass productivity during the 

experiment was 187±8 mg L-1 in R1 and 156±9 mg L-1 in R2. The DO profiles, 

which are discussed below, also confirmed that more oxygen was available in R1, 

since the increase in DO towards the end of the light period was higher and started 

earlier. These results and comparisons indicate that higher SRT resulted in higher 

TSS concentrations in R2, decreasing the light intensity and oxygen availability for 

AOB inside the PSBR.  

As shown in Figure 5.5, R1 had a higher estimated irradiated volume, due to a 

lower TSS concentration. It is important to note that these estimations are based 

on radial decrease of light intensity, while the actual light distribution inside the 

PSBRs was probably similar to an elliptical shape.  This is an artefact of the 

experimental set-up, in which the light was applied from the sides of the PSBRs.  

In a full-scale algal pond, light would be coming from the surface of the pond. 
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Figure 5.5. Estimation of irradiated zones at varying light intensities (R1: 98%, 

R2: 75% of reactor volume), and completely dark zones (R1: 2%, R2: 25% of 

reactor volume) inside both PSBRs. 

In photobioreactors with only algal biomass, productivity is maximized when the 

light intensity is above the compensation light intensity at all locations inside the 

photobioreactor. Under such conditions all the algal cells are photosynthesizing and 

there is no dark zone, which increases the biomass productivity (de Mooij et al., 

2016). Based on the observed light attenuation in R1, this would require a SRT 

that is lower than 7 days, to allow further light penetration inside the reactor. 

Rada-Ariza et al. (2015) observed NH4
+ removal from 77-96 mg NH4

+-N L-1 in the 

influent to less than 4 mg NH4
+-N L-1 in the effluent, when the SRT was 3 days or 

larger. When the SRT was shortened to 1 day, the effluent concentration increased 
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to 18 mg NH4
+-N L-1. This shows that if the SRT in algal-bacterial systems is too 

low, slow-growing AOB are washed out of the reactor.  Therefore, an optimum SRT 

should be slightly above the minimum SRT for nitrifiers in order not to decrease 

the light availability more than necessary. However, as AOB are sensitive to light, 

the dark zone may also have a secondary benefit as it could protect these 

microorganisms from photoinhibition (Yoshioka and Saijo, 1984). Furthermore, the 

presence of a dark zone likely prompted simultaneous nitritation-denitritation 

during the light period, which was also reported by Wang et al. (2015). This 

indicates the presence of aerobic and anoxic zones inside the PSBRs in addition to 

the most probable existence of DO gradients within the algal-bacterial flocs. 

In summary, the experiments showed that SRT and light intensity are important 

factors affecting nutrient removal efficiency in PSBRs, and that SRT should be 

chosen to optimally balance growth requirements of algae and AOB, since they are 

combined in one single system. 

5.3.2 Integrated microalgal-bacterial model 

The list of variables and parameters used in the model, the list of processes and 

rates and the stoichiometric matrix are provided in Appendix C, table C.2, C.3 and 

C.4. Profiles of measured values and model predictions of nitrogen species and DO 

for the light period in both reactors showed a good fit to the experimental data 

(Figure 5.6). The results for the sensitivity analysis indicated the maximum specific 

growth rate of phototrophs (ߤ௠௔௫,௉), saturation constant of NH4
+ for phototrophs 

ேுర,௉ܭ) ) and saturation light ( ௦ܫ ) as the most sensitive coefficients for the 

predictions of nitrogen species and DO. Hence, the calibration resulted in adjusted 
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values for these coefficients (see Table C.2). The following RMSE values were 

calculated: 8.0 (NH4
+-N), 6.8 (NO2

--N), 0.5 (NO3
--N) and 1.4 (DO). However, the 

predicted NH4
+ release during the dark period was significantly higher than 

observed. An assumption of the model is that only algal ‘endogenous respiration’ 

takes place in the absence of light, as well as the bacterial processes. The effect of 

those processes on NH4
+ release should be considered. Decostere et al. (2016) 

proposed a microalgal growth model, which includes respiration and an additional 

decay process; however, both these processes do not affect the NH4
+ concentration. 

In contrast, the heterotrophic respiration taken from ASM3 includes NH4
+ release 

(see Table C.5). Apparently the mixed algal-bacterial biomass releases much less 

NH4
+ than is observed for endogenously respiring bacteria. This may be explained 

by the fact that decay and cell disruption are lumped together in ASM3 as 

‘endogenous respiration’. And decay and disintegration of bacterial cells may occur 

at higher rates than algal cell disintegration, due to the strong algal cell wall. 

Therefore, further studies related to the decay and disintegration of algae biomass 

could elucidate the absence of NH4
+ release during the dark period (Edmundson 

and Huesemann, 2015) 

The predicted formation and removal of NO2
- followed the same trend as the 

experimental data, although the observed decrease in NO2
- was faster than 

predicted by the model. This could have been because of an underestimation of the 

growth rate of denitrifiers, considering that the influent and internally generated 

COD were ignored. NO3
- concentrations remained low (<3 mg L-1) throughout the 

experiments due to the shortcut process of nitritation-denitritation in both 

experimental data and model performance. 
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Figure 5.6. Profiles of model predictions and experimental data of nitrogen species 

and DO for both reactors, during one cycle (Phase 2, Day 49). 

In order to compare the performance of NH4
+ removal in algal-bacterial and algal-

only systems, the model was used to simulate PSBR performance with an 

assumption that R1 contained only algal biomass. This simulation was done using 

the uncalibrated model (i.e. with parameters from the literature; See Table C.2) 

and inactivating the bacterial processes in the software (Figure 5.7). 

As expected, the simulation did not fit to the observed values, since the AOB and 

NOB activities were not included. However, the results indicate that NH4
+ uptake 

solely by algae in a PSBR occurs at a slower rate than for a mixed consortium of 

microalgae and nitrifying bacteria (Rada-Ariza et al., 2017). Therefore, the NH4
+ 
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removal simulated is much lower than the measured values in the PSBRs with the 

algal-bacterial consortium. The proportion of algae and bacteria in the biomass in 

R1 was approximately calculated based on the stoichiometry and dry weight 

obtained from the experiment. The algal-bacterial biomass composition was 

estimated to be 67% algae, 16% heterotrophs and 17% nitrifiers. The percentage 

for nitrifiers was similar as observed in a study carried out by van der Steen et al. 

(2015). The stoichiometric oxidation of NH4
+ by microbial conversion (nitrification) 

is much higher compared to the uptake from algal growth. This explains why, even 

if the algal biomass concentration was much higher than the bacterial biomass 

concentration, the AOB activity plays an important role in the decrease of NH4
+ 

concentration in simulations for combined systems. Hence, when assuming only 

algal biomass, the NH4
+ removal is considerably lower than in algal-bacterial 

systems. In this experiment, the NH4
+-N removal during one cycle (Phase 2, day 

49) was 177 mg NH4
+-N in R1, from which 96 mg NH4

+-N (54%) was removed by 

nitritation-denitritation, and 174 mg NH4
+-N in R2, from which 87 mg NH4

+-N 

(50%) was removed by nitritation-denitritation. Karya et al. (2013) and Wang et 

al. (2015) reported higher values, with approximately 85% of NH4
+-N removal in 

algal-bacterial systems was due to nitrification, and only 15% by algae uptake. It 

is important to note that the algal performance in this model was only based on 

NH4
+ concentration and light availability, but other factors may also be important 

(i.e. phosphorus concentration, alkalinity and pH). 
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 Figure 5.7. Simulations of the base model (uncalibrated) considering an algal 

system in R1, i.e. with no bacterial processes incorporated. 

The model presented in this paper, therefore, can help to evaluate nitrogen removal 

dynamics, as well as to predict the most relevant operating conditions that 

accelerate or restrict processes in algal-bacterial systems. 

5.4 CONCLUSIONS 

The proposed holistic process has the potential to recover bioenergy from domestic, 

industrial and agricultural waste while producing treated effluents that can be 

reused or safely discharged to receiving waters without causing eutrophication. TIN 

removal (95%) from high NH4
+ strength wastewater (264 mg NH4

+-N L-1) using an 

algal-bacterial consortium in PSBRs was successfully achieved by nitritation-

denitritation processes, provided that a biodegradable carbon source was supplied. 

The operational control of SRT had an important effect on the NH4
+ removal in 

the algal-bacterial systems. An SRT of 11 days led to higher TSS concentrations 

than at SRT of 7 days, hindering the light availability for microalgae due to the 
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self-shading by algal and microbial cells. Consequently, less net oxygen production 

was observed, decreasing the nitritation rates. 

The model developed provided satisfactory results, although further improvements 

are needed to describe the effect of endogenous respiration on NH4
+ concentrations 

during the dark periods of the PSBR cycle. This tool can be useful to design and 

optimize the operations of PSBRs for different applications (e.g. maximizing algal 

productivity, minimizing effluent total nitrogen concentration) and different 

geographic locations and seasons. 
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Abstract 

Mathematical modelling of the microalgal-bacterial consortia was presented in 

Chapter 5, and shown to be an efficient tool to evaluate the removal mechanisms 

within the consortia. In this Chapter, further improvement of the model was 

achieved using the experimental data from Chapter 4. The complete set of 

experimental data, which included hourly logs of ammonium, nitrite, nitrate, COD 

and oxygen concentrations at different SRTs, allowed to calibrate and validate the 

model for different processes. The SRT of 26 days was used for the calibration, 

while the SRTs of 52 and 17 days were selected for validation. The most sensitive 

parameters were the maximum growth rate of algae (ࡼ,࢓ࣆ) and light extinction 

coefficient (࢑). After calibration and validation, the ࡼ,࢓ࣆ was found to be 2.00 (± 

0.05) d-1, the maximum growth rate of heterotrophic biomass (ࡴ,࢓ࣆ) was 5.5 (± 0.01) 

d-1, ammonium oxidizing bacteria maximum growth rate (࡮ࡻ࡭,࢓ࣆ) was 1.1 (± 0.02) 

d-1 and the maximum growth rate of nitrite oxidizing bacteria (࡮ࡻࡺ,࢓ࣆ) was 1.3 (± 

0.01) d-1. Furthermore, the minimum SRT for nitrification was calculated using the 

validated model, and it was found to be between 5 and 10 days. Overall, the model 

identified the critical point at which the reactor starts to fail, and the limiting 

conditions when reducing the SRT.       
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6.1 INTRODUCTION 

Microalgal-bacterial consortia can to successfully treat a wide range of wastewater 

effluents containing different concentrations of nutrients and organic matter, and 

using different operational conditions (Godos et al., 2010; González-Fernández et 

al., 2011a; Hernández et al., 2013; Su et al., 2012a; van der Steen et al., 2015; Wang 

et al., 2015; Liu et al., 2017; Maza-Márquez et al., 2017). The identified removal 

mechanisms are: nitrification/denitrification, algal uptake, nitrogen requirements 

for bacterial growth and depending on the pH, ammonium volatilization (Godos et 

al., 2009; González-Fernández et al., 2011a; Chapter 3; Chapter 4). Microalgal-

bacterial systems can generate high quality effluents and due to the photosynthetic 

oxygenation by algae, the operational costs are expectedly considerably lower 

compared to conventional wastewater treatment systems (Alcántara et al., 2015).  

So far, the removal mechanisms reported for the microalgal-bacterial consortia 

depend on different conditions, some of the most important are the operational 

conditions: SRT and HRT, as reported in Chapter 4, and the wastewater 

characteristics, followed by the reactor design and the environmental conditions 

(Muñoz and Guieysse, 2006). Considering these conditions, and taking into account 

the results from Chapter 5, an efficient tool to further study the symbiosis between 

microalgae and bacteria is the use of mathematical models, which can be useful to 

get a better understanding of the process, assess and define key operational 

conditions and eventually can be used to scale up and design a reactor. To date, 

certain models for microalgal-bacterial biomass have been developed based on 
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calibrated and validated algal models and/or bacterial models (Solimeno et al., 2017; 

Arashiro et al., 2016; Zambrano et al., 2016; Wolf et al., 2007).  

One of the first models for algae and bacteria was proposed by Wolf et al. (2007), 

the model described the processes occurring in a biofilm composed by 

chemoautotrophic, photoautotrophic and heterotrophic microorganisms. 

Furthermore, Decostere et al. (2016) presented a model (developed based on the 

activated sludge models, ASMs (Henze, 2000)) to describe the activity of the algal 

biomass. Part of the measured variables and yields were obtained from 

respirometric experiments, which contributed to the calibration and validation of 

the model. Solimeno et al. (2017) published the BIO-ALGAE model for microalgal-

bacterial biomass growth in high rate algae ponds (HRAP). This model has been 

calibrated and validated, and has also been proven to be able to provide reasonable 

predictions of the biomass production. 

In Chapter 5, the microalgal-bacterial model described was based on the activated 

sludge model 3 (ASM3) (Henze, 2000) and the modified ASM3 (Iacopozzi et al., 

2007). The microorganisms modelled were ammonium oxidising bacteria (AOB), 

nitrite oxidising bacteria (NOB), ordinary heterotrophic bacteria (OHO) and 

photoautotrophic organisms (algae). The model described the nitrification process 

as a two-step process, and the denitrification process also as a 2-step process. The 

calibration of the model was carried out based on laboratory experiments using the 

results of a sequential-batch photobioreactor (described in Chapter 5) that showed 

that nitratation-denitritation was the main nitrogen removal mechanisms. 

Furthermore, the authors measured the light extinction coefficient of the biomass 

in order to take into account the light attenuation effect on the algal growth, 
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following the equation proposed by Halfhide et al. (2015). This helped to calibrate 

the model using the N-compounds and oxygen concentrations reporting low errors, 

and therefore, modelling the nitrification and denitrification short-cut processes 

(nitritation/denitritation). However, the full two step nitrification and 

denitrification process was not calibrated and overall the model was not validated 

due to the lack of information.  

Therefore, the objective of this chapter is to improve the model proposed in Chapter 

5 using the experimental data reported in Chapter 4. The experimental data 

presents a longer and more complete set of measurements, which includes hourly 

logs of ammonium, nitrite, nitrate, COD and oxygen concentrations at different 

SRTs (52, 26 and 17 days). This more complete data set helps to improve the 

calibration and validation of the model. The main removal mechanism reported in 

Chapter 4 was via the nitrification/denitrification pathway, which allows to 

evaluate the two-step approach of these processes proposed in ASM3 and adopted 

in Chapter 5. In addition, in comparison with the previous version, the available 

hourly data of COD concentrations allows to evaluate the denitrification and 

aerobic oxidation of COD, and the estimation of parameters that are sensitive to 

these processes. The model is calibrated and validated in batch mode and sequential 

batch mode, allowing to estimate the optimum SRT to maximize the removal rates 

of the system, and the minimum SRT below which the system starts to fail. 
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6.2 MATERIALS AND METHODS 

6.2.1 Microalgal-bacterial model 

Conceptual model 

The model represents the interaction between microalgae and activated sludge 

microorganisms such as AOB, NOB and OHO. The first version of the model was 

published by Arashiro et al. (2016), and it is explained in detail in Chapter 5.  The 

model uses the processes and variables defined in the ASM3, and the modified 

versions of the ASM3 proposed by Iacopozzi et al. (2007) and Kaelin et al. (2009) 

for the nitrification and denitrification activities, respectively. The modifications 

included the modelling of nitrification and denitrification activities as two separate 

processes. The algal activity was modelled by two equations: algal growth and 

endogenous algal respiration. The algal growth takes into account the light 

limitation due to the shading effect of the biomass. The model assumes that algal 

cells can adapt to the corrected average light intensity, when the biomass has 

reached steady-state conditions. There are in total 21 processes, 16 variables and 

47 parameters (Figure 5.2). The nomenclature of each of them, and the Gujer 

matrix with the stoichiometry and equations are reported in Appendix C.1. The 

table with the literature values used in this version of the model are presented in 

Appendix D.1. The software used for the implementation of the model was Aquasim 

2.0 (Reichert, 1994), which allows to run the model either in continuous, 

sequencing-batch mode or batch mode as well as to perform parameter estimations 

and sensitivity analysis. 
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The following assumptions were made in order to simplify the model: 

1. The growth of algae only takes place using ammonium, as the algal-bacterial 

biomass did not grow on nitrate based on the results presented in Chapter 4.  

2. Phosphorous and alkalinity were not considered limiting factors, therefore the 

processes related to these variables are not included in this version of the model. 

3. The shape of the photobioreactor was considered parallelepipedical instead of 

cylindrical in order to simplify the calculations of light attenuation (Chapter 5). 

4. The aerobic and anoxic processes were active during light and dark phases, and 

the limiting conditions of the aerobic processes were defined based on the oxygen 

concentration in the bulk liquid. 

6.2.2 Sensitivity analysis 

The sensitivity analysis was performed using the sensitivity analysis tool from 

Aquasim 2.0 (Reichert, 1994). The sensitivity analysis was done using 4 linear 

sensitivity functions, the one reported in this research was the absolute-relative 

sensitivity function. This function evaluates the effect of different parameters on 

specific variables, for this function the units of the parameter do not depend on the 

units of the variable (Reichert, 1998). The two most sensitive parameters for each 

of the chosen variables were taken into account for the calibration.  

The parameters chosen to perform the sensitivity analysis were: the maximum 

growth rates of AOB (࡮ࡻ࡭,࢓ࣆ), NOB (࡮ࡻࡺ,࢓ࣆ), OHO (ࡴ,࢓ࣆ), and phototrophs 

 and ,(௦ܫ) the light saturation constant ,(࢑)the light extinction coefficient ,(ࡼ,࢓ࣆ)

the COD storage rate constant (݇ௌ்ை). Some of the parameters were chosen based 

on the results obtained by Solimeno et al. (2017), Decostere et al. (2016) and 
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Zambrano et al. (2016) and the sensitivity analysis performed in Chapter 5. The 

effect of these parameters was evaluated on the variables of ammonium, nitrite, 

nitrate, COD and oxygen concentrations. 

6.2.3 Reactor and data collected 

The microalgal-bacterial biomass characteristics and the reactor used for this model 

are described in detail in Chapter 4. The reactor was operated as a sequencing 

batch reactor, and each cycle had a duration of 12 hours (HRT). In each of the 

cycles there were two light and two dark phases, it was reported that the light 

phases were considered to be aerobic phases and the dark phases anoxic phases. 

The reactor was operated for 300 days, and during this time 4 different SRTs were 

tested: 48, 52, 26 and 17 days. For the calibration and validation of this model the 

SRT of 52 (period 1A), 26 (period 1B), and 17 (period 1C) days will be used, since 

these three periods have the same feeding and operational conditions (as described 

in Chapter 4). 

In each of the periods a detailed sample collection of some cycles was carried out. 

Samples were taken every half an hour to measure N-nitrogen compounds and COD. 

In addition, O2 measurements were recorded every 5 seconds using an O2 probe, 

and samples for the analysis of Chlorophyll-a, VSS and TSS concentrations were 

collected for every cycle. The information of periods 1A, 1B and 1C was used to 

calibrate and validate this model. In Chapter 4, a detailed example of the 

information collected and the number of cycles per period is described. This detailed 

information was used to calculate the nitrogen ammonium removal rates, oxygen 

production and biomass characterization (also presented in Chapter 4). 
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6.2.4 Calibration and validation of the microalgal-bacterial model 

The calibration of the microalgal-bacterial model was done using the measured data 

of period 2B. The calibration was carried out for two operational modes: (i) batch 

mode and (ii) sequencing batch mode. Period 2B was chosen to calibrate the model 

because it has the highest amount of measured cycles. The parameters to calibrate 

were chosen based on the sensitivity analysis. The half-saturation constants of 

ammonium (ࡴࡺࡷ૝,࡮ࡻ࡭) and oxygen (ࡻࡷ૛,࡮ࡻ࡭) for AOB, and the half-saturation 

ammonium constant for phototrophs (ࡴࡺࡷ૝,ࡼ) were also calibrated. The rest of the 

parameters was not calibrated and remained as the typical values reported in the 

literature (Table D.1, Appendix D.1). 

Calibration and validation of the batch mode 

The calibration of the batch operational mode did not take into account the waste 

of sludge, and it was performed using the parameter estimation tool from Aquasim. 

The model calibration of the batch mode was performed in two  steps: first, the 

variables of ammonium, nitrite, and nitrate and oxygen concentration were fitted 

to the detailed measured data of the cycles by calibrating the following parameters: ߤ௠,஺ை஻, ߤ௠,ேை஻, ߤ௠,ு, ߤ௠,௉, ݇, ܫ௦, ܭேுସ,஺ை஻, ܭைଶ,஺ை஻, and ܭேுସ,௉. The second step 

was to calibrate the ݇ௌ்ை using the measured data of COD. Other input parameters 

of the model, such as the fraction of AOB, NOB and algae in the biomass  were 

determined previously (as presented in Chapter 4), and were included in the model 

as initial biomass composition. These values were calculated based on mass balances 

for the nitrogen removal of each group of microorganisms (bacteria and algae), their 

stoichiometry, and the VSS measured in the reactor. The values were introduced 
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in the model in units of mg COD L-1. Thus, in the case of bacteria (OHO and 

nitrifiers), a conversion factor of 1.48 mg COD mg VSS-1 was used (Ekama and 

Wentzel, 2008b), and for algae biomass the factor was 0.953 mg COD mg VSS-1 

(Zambrano et al., 2016). 

In order to validate the model, the values of the parameters calibrated in period 2B 

were used in the remaining periods (2A and 2C). As such, for each period, the 

initial characteristics of the biomass and the initial concentrations of  ammonium, 

nitrate, nitrite and COD, were the only input data modified. The results from the 

calibration and validation of the model were compared with the data measured and 

the errors between predicted and observed data were calculated to assess the fitting 

of the model. The results of the calibration and validation are presented in 

Appendix D.2. 

Calibration of the sequencing batch mode operation 

The operation of the reactor in the laboratory in a sequencing batch mode was 

composed of cycles that included the feeding period, reaction time (lights on and 

off), settling phase and effluent withdrawal (Figure 4.1). Therefore, the model in 

Aquasim was also set up in a sequencing batch mode following the operation of the 

lab system (including the influent addition, sludge waste and effluent withdrawal, 

and the lights turned on and off). The SRT was defined setting a defined volume 

of waste of sludge per day.  

Figure 6.1 shows the conceptual tanks defined in Aquasim to represent the 

operation of the reactors. There were three tanks defined in the model: (i) mixed 

reactor, (ii) waste sludge tank (WAS tank), and (iii) the effluent tank. The 
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sedimentation was not defined within the cycle of the reactor in Aquasim, but 

modeled using defined biomass retention ratios from the effluent. Therefore, part 

of the biomass would remain in the reactor (݂_ܺݐ݁ݎ௜) and the rest would leave the 

reactor through the effluent (1 −  ௜). Prior to the calibration of the removalݐ݁ݎܺ_݂

rates and trends of N-compounds, COD and oxygen concentrations, the calibration 

of the modelled biomass was done in Aquasim. The calibration of the biomass was 

perfomed by adjusting the retention ratios from the effluent to the reactor. The 

recirculation takes place at the end of the reaction time, and within the model the 

process is immediate. Given that the settling properties of the biomass differed 

among microbial populations, besides the definition of the SRT, different retention 

ratios were defined for algae (݂_ܺݐ݁ݎ௉) and bacteria (ammonium oxidising bacteria: ݂_ܺݐ݁ݎ஺ை஻, nitrite oxidising bacteria: ݂_ܺݐ݁ݎேை஻, heterotrophic bacteria: ݂_ܺݐ݁ݎு 

and inert solids ݂_ܺݐ݁ݎூ ).  

 

Figure 6.1. Graphical scheme of the conceptual arrangement of tanks of the 

photo-activated bioreactor in Aquasim. 
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The modelled biomass and fractionation was compared with the measured VSS 

reported in Chapter 4, and also the fractionation of the biomass into the different 

microorganisms: heterotrophic, ammonium and nitrite oxidizing bacteria and 

microalgae. The calibration of the ratios was carried out with data from period 2B 

and validated with data from periods 2A and 2C. The modelled biomass 

concentration was compared with the average measured VSS of each period. 

Once the calibration and validation of the biomass was achieved, the calibration of 

the concentrations of ammonium, nitrite, nitrate, COD and oxygen was done 

manually. First, selecting the parameters to calibrate based on a sensitivity analysis. 

In addition, taking into account that the kinetics between the batch mode and the 

sequencing batch mode operation differed, the re-calibration of the following 

parameters was necessary:ߤ௠,௉ ௠,஺ை஻ߤ , ௠,ேை஻ߤ  ௠,ுߤ , , and ݇ . Basically, the re-

calibration consisted of the growth rates of the different microorganisms and the 

light extinction coefficient. The other parameters remained the same as calibrated 

in the batch mode.  

In order to reach steady-state conditions in the model for the sequencing batch 

mode of operation, for each of the periods the model was run for an equivalent 

duration of 6 times the SRT applied. Thus, in the case of the SRT of 26 days, the 

model ran for 156 days. Thereafter, the comparison between the calibrated model 

and the measured data of the cycles was done using the last days of the modelling, 

ensuring that it reached steady-state conditions. 

The validation of the model was performed using the data measured in periods 2A 

and 2C. The light attenuation coefficient (݇) was the only parameter that was 

modified for each of the periods during the validation. 
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6.2.5 Calculation of the error 

The index of agreement (IOA) (6.1) (Wilmot et al., 2012) was calculated in order 

to evaluate the error of the model in comparison with the measured data. The index 

of agreement estimates the variance of the model and compares the results with the 

variance of the measured or observed data. Therefore, when the result is equal to 

1 it means that the variance of the model is lower than the variance of the data. 

When the index IOA is equal to zero, the variance of the model is equal to the 

variance of the observed data. Lastly, when the IOA is lower than zero means that 

the variance of the model is higher than the variance of the observed data, this is 

a negative indication of the performance of the model. Any value between zero and 

1 is acceptable. Furthermore, the closer to 1 the better the description of the model 

of to the real data. 

ܣܱܫ  = 1 − ݏܾ݋ߪߝߪ = 1 − ௢௕௦ݕ)∑ − ௢௕௦ݕ)∑௠௢ௗ)ଶݕ − ௢௕௦)ଶݕ  (6.1)

Where: ݕ௢௕௦: Measured data points. ݕ௠௢ௗ: Modelled data points. ݕ௢௕௦: Average of the measured series. 

6.2.6 Evaluation of shorter SRTs 

The shortest SRT at which the photobioreactor was operated during the 

experimental phase was 17 days. Therefore, in order to further investigate the 

outcome of the microalgal-bacterial system at SRT shorter than 17 d, once the 
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model was calibrated and validated, it was run in a sequencing batch mode 

operation using shorter SRTs. The objective was to identify the minimum SRT at 

which nitrification/denitrification stops, which affects the performance of the 

system for N removal and ultimately the failure of the system. 

The SRTs modelled were firstly 15, 10, and 5 and subsequently 3, 2, 1 and 0.8 days. 

The approach to model all proposed SRTs was as follows: 

• In order to ensure that steady-state conditions were achieved, for every SRT 

tested the model ran for a duration of 120 days. In most cases, the steady-

state was achieved at a duration of 6 times the SRT applied; for instance, 

for the SRT of 15 days, steady-state conditions were achieved after an 

equivalent simulation time of 90 days. 

• Prior to modelling the scenarios, the model was calibrated with the SRT of 

26 days and validated with the SRT of 17 and 52 days.  

• After calibration and validation, the SRT was changed in the model to the 

already defined values and the results of the concentrations of ammonium, 

nitrate, nitrite, oxygen, organic carbon and biomass from the days 98 to 100 

were reported and compared. 

6.3 RESULTS AND DISCUSSION 

6.3.1 Sensitivity analysis 

The sensitivity analysis was performed to identify the effect of different parameters 

on the following variables: ammonium, nitrite, nitrate, COD and dissolved oxygen 

concentrations (Figure 6.2). The parameters selected were the maximum growth 
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rates of AOB (࡮ࡻ࡭,࢓ࣆ), NOB (࡮ࡻࡺ,࢓ࣆ), OHO (ࡴ,࢓ࣆ), and phototrophs (ࡼ,࢓ࣆ), the 

light extinction coefficient (࢑), the light saturation constant (࢙ࡵ), and the COD 

storage rate constant (ࡻࢀࡿ࢑). In the previous version of this model (Chapter 5), the 

sensitivity analysis was performed using fewer parameters (ࡴࡺࡷ ,࢙ࡵ ,ࡼ,࢓ࣆ૝,ࡼ), which 

were identified to be the most sensitive. For this version, since the two-step 

nitrification step is modelled, the growth rates of AOB and NOB were included. 

Also, the growth rate of heterotrophs was added, since it defines the rate of 

denitrification and COD oxidation.  

Figure 6.2 shows the results of the sensitivity analysis, the effect of the different 

parameters on each of the variables of interest was evaluated during the reaction 

time of the cycle (5 hours). For each of the variables, the concentrations calculated 

show the dependence of the sensitivity functions with regard to each parameter. 

The two most sensitive parameters for each variable were chosen for calibration. 

The sign (positive or negative) of the concentration defines if the parameter has a 

direct or inverse proportional effect on the variable. For instance, negative 

concentrations mean that the concentration of the variable decreases as the 

parameter increases, and the opposite when the variable increases.  

Two of the parameters that were identified to be the most sensitive were ࡼ,࢓ࣆ and ࢙ࡵ (Figure 6.2). These two values had the strongest effect on all the variables 

modelled. Accordingly, Decostere et al. (2016) and Solimeno et al. (2017) reported 

the maximum growth rate of algae as one of the most sensitive parameters for the 

algal and algal-bacterial model, respectively. Zambrano et al. (2016) reported that 

the ammonium and oxygen concentrations were most sensitive to the ࣆ of algae 

and bacteria.  
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In this research, besides the ࡼ,࢓ࣆ and the ࢙ࡵ, other sensitivity estimations of more 

parameters were analysed in order to contribute to explain the different 

relationships between these ones and the variables modelled. The ammonium 

concentration (Figure 6.2.A) is affected by ࡴ,࢓ࣆ ,࡮ࡻ࡭,࢓ࣆ ,ࡼ,࢓ࣆ, and an increase of 

these parameters causes a decrease in the ammonium concentration, due to a higher 

consumption of ammonium for biomass growth and/or oxidation. 

In the case of nitrite (Figure 6.2.B) and nitrate (Figure 6.2.C) concentrations, the ࡼ,࢓ࣆ and ࡮ࡻ࡭,࢓ࣆ have the strongest effect. An increase in ࡼ,࢓ࣆ results in a decrease 

in the NO2
--N concentrations and an increase of the NO3

--N concentrations, since 

there is more oxygen available to fully complete the two-step nitrification. The 

opposite occurs when there is an increase in ࡮ࡻ࡭,࢓ࣆ , the nitrite concentration 

increases while the nitrate concentration decreases. On the contrary, an increase in 

the NOB growth rate (࡮ࡻࡺ,࢓ࣆ) causes a decrease in the nitrite concentration and 

an increase in the nitrate concentration. The growth rate of OHO only has an effect 

on the nitrate concentration, which decreases when there is an increase in ࡴ,࢓ࣆ, 

which is attributed to a higher denitrification potential.  

One parameter that was found to have a strong effect on the concentration of COD 

(Figure 6.2.D) was the COD storage rate constant (ࡻࢀࡿ࢑), an increase in this 

parameter decreases the COD concentration in the reactor. The same effect is 

caused by an increase in ࡼ,࢓ࣆ, as there is more oxygen at a higher microalgal growth 

rate. As expected, the oxygen concentration (Figure 6.2.E) was highly affected by 

the ࡼ,࢓ࣆ, and the ࢙ࡵ. 
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Based on the sensitivity analysis, the parameters chosen for calibration were ࡮ࡻ࡭,࢓ࣆ ,࢑ ,࢙ࡵ ࡮ࡻࡺ,࢓ࣆ , ࡼ,࢓ࣆ , ࡴ,࢓ࣆ , ࡻࢀࡿ࢑   and ࢑ . The last parameter (light extinction 

coefficient) was chosen for calibration despite that it had a minimal or almost 

negligible effect on the rest of the variables during the time tested. The light 

extinction coefficient is a physical characteristic of the biomass that was not 

measured during data collection. Hence, it needed to be estimated by the model. 

Furthermore, other parameters selected for calibration that were not included in 

the sensitivity analysis were ࡴࡺࡷ૝,࡮ࡻ࡭ ࡮ࡻ࡭,૛ࡻࡷ , ࡼ,૝ࡴࡺࡷ , . The selection of these 

parameters for calibration was based on the previous results in Chapter 5. 
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Figure 6.2. Sensitivity analysis of the mathematical prediction of (A) NH4+-N, (B) 

NO2--N, (C) NO3--N, (D) COD and (E) O2, with respect to: ࢙ࡵ ( ), ࢑ ( ) ࡮ࡻ࡭,࢓ࣆ ,( ) ࡮ࡻࡺ,࢓ࣆ ,( ) ࡴ,࢓ࣆ ,( ) ࡼ,࢓ࣆ ,( ), and ࡻࢀࡿ࢑ ( ). 
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6.3.2 Calibration and validation of the N-compounds, oxygen and COD 

in batch operational mode 

The calibration of the total concentration and composition of the algal-bacterial 

biomass was done using the laboratory data of period 1B. The parameters calibrated 

(Table D.2) in the first part were ܫ௦, ݇, ܭேுସ,஺ை஻, ܭைଶ,஺ை஻, ܭேுସ,௉, ߤ௠,஺ை஻, ߤ௠,ேை஻ 

and ߤ௠,௉ . These were calibrated by fitting the model to the measured 

concentrations of ammonium, nitrate, and O2. The ݇ௌ்ை  was calibrated in the 

second part of the calibration, using the COD concentration data since it was one 

of the most sensitive parameters with regard to the organic carbon concentration. 

The fitting between the measured data and the data predicted by the model for 

period 2B is shown in Figure 6.3. The error between the modelled and measured 

data was determined by the IOA, once the model was calibrated. The IOA 

calculated were 0.91, 0.89, 0.73 and 0.69 for the ammonium, nitrate, COD and 

oxygen concentrations, respectively. Therefore, the variance of the model is lower 

than the variance of the observed data. The model closely describes the laboratory 

data for period 2B, and the processes, coefficients and variables proposed and 

defined in the model could follow the trend of the different variable concentrations 

of the runs in a batch operational mode. 

The calibrated parameters using the data from period 2B were successfully 

validated for periods 2A and 2C. The microalgal-bacterial model showed a 

satisfactorily description of the concentrations of ammonium and nitrate, but less 

accurate for COD and O2. Nevertheless, the description of the measured data can 

be considered acceptable. Figures D.1 and D.2 show the modelled and measured 
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data for ammonium, nitrate, COD and oxygen concentrations. The values of the 

IOA are presented in the graphs (Figure D.1 and D.2).  

Figure 6.3. Modelled and measured data for NO3--N (A), NH4+-N (B), COD (C)  

and O2 (D) concentrations during period 1B. Solid line: model data during period 

1B; measured data during period 1B in cycles C1 ( ), C2 ( ), C3 ( ), C4 ( ) 

and C5 ( ). 

6.3.3 Calibration and validation of the biomass characterization and 

production in sequencing batch mode operation 

To simulate the settling properties of the different biomasses, certain retention 

ratios for the different biomass species were defined during the calibration in period 
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1B (Figure 6.4). Thus, the retention ratios were found to be 0.7 for the 

heterotrophic biomass (݂_ܺݐ݁ݎு), ammonium oxidising (݂_ܺݐ݁ݎ஺ை஻) and nitrite 

oxidising (݂_ܺݐ݁ݎேை஻) biomass; and 0.6 for the microalgal biomass (݂_ܺݐ݁ݎ௉). The 

validation was performed with data from periods 1A and 1C (Figure D.3). 

In Chapter 4, the composition of the biomass into the different groups of 

microorganisms was estimated based on the stoichiometry of their biomass 

composition (Figure 4.5). This information was compared with the results from the 

model (Table 6.1). In the case of period 1B, the model could describe accurately 

not only the total VSS concentration of the biomass, but also the fractions of the 

different microorganisms present (p>0.05). For validation purposes, the model 

predictions of the total VSS concentrations of period 1A were not significantly 

different than the measured data (p>0.05). However, this was not the case for 

period 1C (p<0.05), in which the total predicted biomass concentration is 

significantly higher than the measured data. Possibly, the differences during period 

1C might be due to the recirculation factors, yet the retention ratios were not 

modified for this period. One of the reasons is that the predictions of the 

concentrations of the dissolved parameters (NH4
+, NO3

-, NO2
-, COD and O2) led to 

low errors. Also, the difference between the measured and predicted concentrations 

of the biomass was not higher than 40%. Furthermore, for the three periods of 

study, the concentrations of nitrifiers described by the model were lower than the 

values estimated theoretically using the stoichiometry and measured data (Table 

6.1). Overall, the defined biomass yields, used in the model and selected from 

literature, could describe the biomass production and fractionation within the 

microalgal-bacterial reactor (Figure 6.4). 
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Figure 6.4. Comparison between the modelled and measured biomass in the 

microalgal-bacterial reactor for period 1B. X_T: Total biomass, X_P: 

Phototrophic biomass, X_H: Heterotrophic biomass, X_AOB+X_XNOB: 

Ammonium and nitrite oxidising bacteria. 

Furthermore, in the case of period 1C, it can be observed that the heterotrophic 

biomass concentration is higher than the phototrophic biomass concentration, 

which was well described by the model. This can be attributed to the shorter SRT 

and the lower retention ratio of algae (0.6) in comparison with that of the bacterial 

biomass (0.7). In addition, the growth rate of the heterotrophic bacteria (5.5 ± 0.01 

d-1) is higher than the algae (2.00 ± 0.05 d-1) (Table 6.2). For periods 1B and 1A 

(longer SRTs), algal biomass represented on average 50% of the biomass and the 

rest was heterotrophic bacteria and inert biomass, while nitrifiers only comprised a 

very small fraction of the total mass (0.3-0.7%). Similar to these observations, 

Solimeno et al. (2017) reported that in a modelling study algae represented between 

58 and 68.4% of the total biomass, whereas nitrifiers only between 0.15 and 0.18%. 
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The smaller retention factor of the algal biomass is in accordance with the physical 

characteristics of algal cells, and their poor settleability, when compared with 

activated sludge bacteria. Algal cells commonly are smaller than 30 μm, and the 

settling velocities are not higher than 10−6 m s-1 (Granados et al., 2012). However, 

based on the experimental data (Chapter 4), the agglomerates made by algae and 

bacteria helped to increase the biomass settleability.The higher settleability due to 

the formation of agglomerates has been also reported by other authors (Quijano et 

al., 2017), which is enhanced under sequencing batch reactor operational modes 

through the selection of the fastest settling species (de Godos et al., 2014; Van Den 

Hende, 2014; Valigore et al., 2012). With regard to the model, special assumptions 

and considerations regarding the retention ratios should be made when the biomass 

is composed of activated algal granules. Algal granules have higher settling 

velocities (21.6 ± 0.9 m h-1) than algal-bacterial agglomerates or flocs (Tiron et al., 

2017). 
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Table 6.1. Biomass concentrations based on mass balances (Exp.) in the 

microalgal-reactor and modelled biomass (Model) using the microalgal-bacterial 

model. 

Biomass  
Biomass concentrations (gVSS L-1) 

1A 
Exp. 

1A2 
Model 

1B 
Exp. 

1B1 
Model 

1C 
Exp. 

1C2 
Model 0.00±1.42 0.23±1.95  ۾܆ 0.81±0.28 0.68±0.02 0.00±0.74 0.13±0.63 ۶܆ 0.53±0.00 0.34±0.14 0.32±0.13 0.39±0.00  ۰۽ۼ܆	,۰۽ۯ܆ 0.84±0.00 0.53±0.07

0.05±0.00 0.01±0.00 0.02±0.00 0.01±0.00 0.00±2.80 0.30±2.64 ܂܆ 0.01±0.00 0.06±0.04 1.15±0.39 1.26±0.01 0.92±0.22 1.43±0.01 
1Calibrated period 
2Validated periods 

6.3.4 Calibration and validation under sequencing batch operational 

mode of then concentrations of N-compounds, oxygen and organic 

carbon 

The calibration of the model at the SRT of 26 days (period 1B) for the sequencing 

batch mode operation was carried out for an equivalent duration of 150 days. The 

stable conditions in the model were reached after day 120. The parameters 

calibrated for the batch and sequencing batch operational modes are presented in 

Table 6.2. The results of the modelled concentrations of N-compounds between day 

130.5 and day 131 are presented in Figure 6.5, while Figure 6.6 presents the 

comparison between the modelled (steady state) and average measured parameters 

for the cycles (ammonium, nitrite, nitrate, oxygen and COD) and the calculated 

IOA. 
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Table 6.2. Calibrated parameters for the algal-bacterial model and literature 

values. 

Symbol This study Unit 
Typical values 

reported 
in literature 

Reference 

 0.41 ± 35.0 ࢙ࡵ
µmol 

photon m-2 
s-1 

13 
Martinez Sancho et 

al. (1991) 

758 ± 23 Wágner et al. (2016)

࢑ 
0.019 ± 
0.0032 

m2 gTSS-1

0.07 
Molina Grima et al. 
1994; Solimeno et al. 

(2017)* 

0.0748 
Arashiro et al. 

(2016)* 

0.29-0.25 
Blanken et al. 

(2016) 

 g N m-3 0.021 ± 0.13 ࡮ࡻ࡭,૝ࡴࡺࡷ

0.5 

Solimeno et al. 
(2017)*; van der 

Steen et al. (2015)*; 
Reichert et al. 

(2001) 

2 
Iacopozzi et al. 

(2007); Henze (2000)

2.4 
Chapter 5*; 

Wiesmann (1994) 

 g O2 m-3 0.011 ± 0.75 ࡮ࡻ࡭,૛ࡻࡷ
0.5 

Solimeno et al. 
(2017)*; Reichert et 
al. (2001); Henze 

(2000) 

0.79 
Chapter 5*; Manser 

et al. (2005) 
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Symbol This study Unit 
Typical values 

reported 
in literature 

Reference 

 ࡼ,૝ࡴࡺࡷ
0.001 ± 
0.0001 

g N m-3 

0.00021 Chapter 5* 
0.017 Wolf et al. (2007)* 

0.1 
Solimeno et al. 

(2017)*; Reichert et 
al. (2001) 

0.1 
Zambrano et al. 

(2016) 

0.3 
Decostere et al. 

(2016) 
2.13 ± 0.86 Wágner et al. (2016)

 d-1 0.022 ± 1.10 ࡮ࡻ࡭,࢓ࣆ

0.11 
van der Steen et al. 

(2015)* 

0.63 
Gujer et al. (1999); 

Solimeno et al. 
(2017)* 

0.6313 
Iacopozzi et al. 

(2007) 

0.9 
Chapter 5*; Kaelin 

et al. (2009) 

 d-1 0.012 ± 1.30 ࡮ࡻࡺ,࢓ࣆ

0.5 
van der Steen et al. 

(2015)* 

0.65 
Chapter 5*; Kaelin 

et al. (2009) 

1.0476 
Iacopozzi et al. 

(2007) 

1.1 
Gujer et al. 1999; 
Solimeno et al. 

(2017)* 
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Symbol This study Unit 
Typical values 

reported 
in literature 

Reference 

 d-1 0.052 ± 2.00 ࡼ,࢓ࣆ

0.13 Choi et al., (2010) 

0.15-0.39 
Decostere et al. 

(2016) 

0.62 
van der Steen et al. 

(2015)* 
0.85 Chapter 5* 

1.6 
Zambrano et al. 

(2016)* 

1.5 
Solimeno et al. 

(2017)* 

2.37 
Martinez Sancho et 

al. (1991) 
3.6±0.04 Wágner et al. (2016)

6.48 and 3.36 
Blanken et al. 

(2016) 

 d-1 0.012 ± 5.5 ࡴ,࢓ࣆ

2 Henze (2000) 

1.3 
Solimeno et al. 

(2017) 
1 Chapter 5* 

2-10 
Metcalf & Eddy et 

al. (2002) 

 0.031 ± 0.88 ࡻࢀࡿ࢑
g CODSs g 
CODXH

-1 d-

1 

5 
 

Chapter 5*-; Henze 
(2000) 

7.38 
Iacopozzi et al. 

(2007) 
*. Microalgal-bacterial biomass models. 
1. Batch operational mode. 
2. Values calibrated under sequetial batch mode operation. 
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Figure 6.5. Calibrated N-compounds concentrations for period 1B with a SRT of 

26 days: NH4+-N ( ), NO3--N ( ) and NO2--N ( ) modelled concentration  

and NH4+-N ( ), NO3--N ( ) and NO2--N ( ) measured concentration (average 

between of the measured cycles). The grey-shaded areas correspond to the dark 

phases (lights turned off) during the cycles. 
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Figure 6.6. Description of the concentrations of ammonium ( ), nitrate ( ), 

nitrite ( ), oxygen ( ), COD ( ) for period 1B with a SRT of 26 days 

after calibration and comparison with the measured data ( )(average between 

of the measured cycles). 
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The validation of the model under sequencing batch mode operation was done using 

the remaining periods 1A and 1C (Figure 6.7). However, the different SRTs had an 

impact on the solids concentration, which ultimately affects the light availability 

for algae and as such the increase or decrease of the dark zones (under complete 

mixed conditions). Therefore, in order to model the effect of the biomass 

concentration on the light availability, the light attenuation coefficient k was 

adjusted in periods 1A and 1C. For the calibrated period 1B (26 days SRT), k had 

a value of 0.020 m2 gTSS-1, while for periods 1A (52 days) and 1C (17 days), ࢑ was 

0.015 and 0.021 m2 gTSS-1, respectively. Thus, the average light extinction 

coefficient of the biomass was estimated around 0.019 ± 0.003 m2 gTSS-1. 

Table 6.3 IOA calculated for the modelled parameters in period 1A and 1C. 

Parameter
IOA 

Period 1A Period 1Cࡴࡺ૝ା − ࡺ ૛ିࡻࡺ 0.81 0.88 − ࡺ ૜ିࡻࡺ 0.00 0.16 − ࡺ  ૛ 0.66 0.76ࡻ 0.44 0.20
COD 0.53 0.86 
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Figure 6.7. Validation of the model showing the concentrations of the N-

compounds for period 1A (A) and 1C (B) with a SRT of 52 days and 17 days, 

respectively: NH4+-N ( ), NO3--N ( ) and NO2—N ( ) modelled 

concentrations and NH4+-N ( ), NO3--N ( ) and NO2--N ( ) measured 

concentration (average between of the measured cycles). The grey-shaded areas 

correspond to the dark phases (lights turned off) during the cycles. 

The individual graphs of the modelled N-compound concentrations as well as the 

oxygen and COD concentrations and the measured data for the validation periods 
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are presented in Appendix D.3. Based on the estimated IOA values, the model 

described satisfactorily the measured data during the three periods. Furthermore, 

the best descriptions were achieved for the ammonium, COD and oxygen 

concentrations (with IOA values closer to 1.0); meanwhile the highest errors were 

observed for the description of the nitrite and nitrate concentrations (with IOA 

values between 0.0 and 0.5).  

Analysing closely the values of nitrite and nitrate shown in Figure 6.6, D.4 and D.5 

(these last two in Appendix D), the nitrite concentrations were always higher than 

the measured ones. However, it did not exceed values higher than 2 mg NO2
--N L-

1, and was always transformed into nitrate, or denitritated. With regard to nitrate, 

the modelled concentrations were higher than the measured concentrations. Still, 

looking closely at the nitrate production in each of the periods, the highest 

production was obtained in period 1C with a value of 6.4 mg NO3
--L-1, followed by 

periods 1B and 1A with values of 4.7 and 4.1 mg NO3
--L-1, respectively. Thus, 

following the same trend of the measured data. Period 1C had the lowest biomass 

concentration resulting in lower oxygen consumption from biomass respiration and 

less light attenuation. However, it must be noted that the nitrate production 

modelled is delayed in comparison with the measured data. This is associated with 

the availability of oxygen inside the reactor, the modelled concentration of nitrate 

starts when the concentration of oxygen modelled starts to increase in the bulk 

liquid. In fact, the measured O2 concentrations were described closely by the model 

in the three periods as shown by the low errors (with IOA values close to 1). 

However, the concentration of oxygen also starts later than the measured data, 

which as explained before influenced the nitrate production.  
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Observing closely the production of measured oxygen concentration (Figure 6.6), it 

started even before ammonium was completely consumed: it started as soon as the 

light phase started, while this was not the case with the modelled oxygen 

concentration. Therefore, it could be that the oxygen production modelled was 

limited by the calibrated growth rate of algae, or the light extincition coefficient. 

Yet, the combination of calibrated parameters for period 1B resulted in lower errors, 

and could be further validated. Furthermore, based on the errors presented and the 

results obtained, the model described satisfactorily the light attenuation effect by 

the biomass on the oxygen production (by microalgal growth). Accordingly, as 

reported in Chapter 4, the highest oxygen production was observed in period 1A, 

followed by periods 1B and 1C, respectively. Therefore, the model was able to 

describe and reproduce the different oxygen production and consumption profiles 

occurring in the microalgal-bacterial reactor at different SRTs.     

6.3.5 Growth rate in a microalgal-bacterial consortium 

The maximum growth rates of the AOB, NOB, heterotrophic bacteria and algae 

were calibrated and validated under sequencing batch mode operation for the three 

experimental periods (Table 6.2). The maximum growth rates of the AOB and 

NOB were 1.10 (± 0.02) and 1.30 (± 0.01) d-1, respectively. The maximum growth 

rate was the same in all three periods, hence, there was no accumulation of NO2
--N 

in the reactor, neither presence of nitrite in the effluent. The differences in nitrate 

production in the three periods as well as the differences in ammonium consumption 

that can be clearly seen when comparing Figure 6.7 and Figure 6.5, are attributed 

to the oxygen availability in the reactor. This was calculated in Chapter 4, and 
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explained more in detail in section 4.3.4. Therefore, the limiting step for the 

nitrification is the oxygen, which is ultimately related to the algal growth rate and 

the limiting factors affecting the photosynthesis. Therefore, the maximization of 

the nitrification process can be done by ensuring the presence of sufficient oxygen 

during the aerobic phase.   

Comparing the growth rates of AOB and NOB with other studies, the growth rate 

of AOB is higher than the studies reported in the literature; yet, close to the value 

reported in Chapter 5. Furthermore, comparing in particular with the values 

reported in microalgal-bacterial models, Solimeno et al. (2017) observed lower 

values for the growth rate of AOB (0.63 d-1)  and NOB (1.10 d-1). It must be taken 

into account that the experimental high rate algae pond used by Solimeno et al. 

(2017) for the model calibration was run in continuous mode with an HRT of 4.2 

days, which could have had an implication on the retention of nitrifiers. 

Furthermore, in that study nitrification was performed during the night with 

oxygen being externally supplied during that period, hence the nitrification was not 

sustained by photosynthesis. Van der Steen et al. (2015) calculated, through 

modelling, a maximum growth rate of AOB of 0.11 d-1 for a microalgal-bacterial 

reactor with a SRT of 15 days and HRT of 1 day. These authors attributed this 

lower value to an overestimation of the biomass of nitrifiers, which corresponded to 

18% of the total VSS in the reactor.  

Finally, comparing with the previous version of the model, in Chapter 5 the growth 

rate was 0.90 d-1 and 0.65 d-1 for AOB and NOB, respectively; these values were not 

calibrated but taken from the literature (Kaelin et al., 2009). Also, the limiting step 

in the experiments conducted in Chapter 5 was the growth rate of NOB, contrary 
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to the results reported in Chapter 4 and this Chapter. Thus, no nitrate was present 

in the N-compound profiles, and the main removal mechanism was via nitritation-

denitritation (Figure 5.). Also, during the experiments conducted in Chapter 5, a 

real wastewater was used with a high concentration of ammonium (264 ± 10 mg L-

1), which might have inhibited the second step in the nitrification due to the possible 

inhibiton of NOB by free ammonia. In this new version of the model, the calibration 

of the two-step nitrification was achieved under different operational conditions, 

different initial concentrations, and under a continuous sequencing batch 

operational mode, confirming the cability of the model to describe the processes of 

interest under different scenarios.  

Heterotrophic bacteria play an important role within the microalgal-bacterial 

consortia removing the organic carbon in the anoxic and aerobic phases either 

through denitrification or oxidation. The calibration and validation of the 

heterotrophic bacterial activity for the conditions tested were achieved with a 

growth rate of 5.5 (± 0.01) d-1, which compared to other studies, is higher than the 

ones reported in the literature for microalgal-bacterial consortia. However, 

compared with activated sludge, the growth rate of heterotrophic bacteria is within 

the typical reported values (Table 6.2) (Metcalf & Eddy, 2002). Additionally, most 

of the heterotrophic bacterial biomass was active under anoxic conditions, thus the 

anoxic factor defined for the modelling was 0.9. Total denitrification was achieved 

during the anoxic phase (lights off), which lasted less than one hour. Therefore, and 

taking into account that heterotrophs consumed 8.66 gCOD gNO3
--N-1 denitrified, 

and that at shorter SRT the nitrate production was higher (Figure 6.7), during 

period 1C up to 50% of the COD was removed anoxically.  
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Within the microalgal-bacterial consortia one of the most important processes is 

the growth rate of algae, and consequently the photosynthesis, especially when the 

main objective is to support the aerobic processes, without using any external 

aeration.  The growth rate of algae was calibrated at  2.00 (± 0.05) d-1, while other 

authors have reported values for algal growth between 0.66 - 1.50 d-1 for algal-

bacterial biomass (Solimeno et al., 2017; van der Steen et al., 2015; Zambrano et 

al., 2016). Comparing these values with the maximum growth rate calculated in 

this research, ߤ௠,௉ is on the high side for an algal-bacterial biomass. Moreover, algal 

growth rates can range from 0.1 - 11 d-1 (Decostere et al. 2013), such as reported 

by Decostere et al. (2016) with a growth rate of 0.254 d-1 for Chlorella vulgaris and 

Wágner et al. (2016) with a maximum growth rate for an algal biomass of 3.6 (± 

0.04) d-1, calculated using the ASM-A model proposed by Wágner et al. (2016).  

Furthermore, the rate of algal growth in Chapter 5 (0.85 d-1) is slower than the 

value obtained in this chapter of 2.00 (± 0.05) d-1. These differences are attributed 

to the dynamics between the light extinction coefficient, biomass concentration, 

light intensity and water turbidity. The ݇ was 0.0748 m2 gTSS-1 in Chapter 5, 

experimentally calculated, while in this new version of the model the ݇  was 

calibrated resulting in a lower value of 0.019 m2 gTSS-1. This is one of the most 

important parameters that influence the growth of algae, especially when comparing 

some of the operational parameters. For instance, in Chapter 5 the light intensity 

was 84 (± 3) µmol m-2 s-1, while in this chapter (Chapter 4) it was much lower (25.9 

µmol m-2 s-1). Furthermore, the solids concentration within the reactor in Chapter 

5 at an SRT of 11 days was 1.74 (± 0.08) g TSS L-1, while in period 1A (52 days 

SRT) the TSS was significantly higher with a value of 2.7 (± 0.8) g TSS L-1.  
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Therefore the light attenuation, effecting the availability of light in the reactor, is 

one of the most important factors for the optimization of algal growth in a 

microalgal-bacterial system. Similarly to this results, Solimeno et al. (2017) 

concluded that light attenuation in experimental ponds was one of the limiting 

factors for microalgal growth, reporting an increase in the growth rate of 40% to 

60% when changing the light factor (which included the photoinhibition, 

photolimitation and light attenuation effect). Taking into account that the light 

extinction coefficient is a physical characteristic of the biomass, the performance of 

a microalgal-bacterial system could be improved by optimizing the SRT and HRT. 

In this regard, mathematical models can be helpful to evaluate different possible 

scenarios towards the optimization of microalgal-bacterial systems. 

6.3.6 SRT optimization using the microalgal-bacterial model 

As described previously, the calibrated and validated model can be a tool for the 

identification of limiting conditions and/or determination of optimal operational 

parameters. Therefore, the evaluation of shorter SRTs was carried out using the 

validated model from period 1C (17 days SRT). The SRT was shortened to values 

of 15, 10, 5, 3, and 1 days, in order to assess (i) the ammonium removal mechanisms, 

(ii) oxygen production and biomass production, and (iii) to identify a possible 

failure of the system at different operational conditions. The results of the N-

compounds and oxygen concentrations for the SRTs of 10, 5 and 0.9 days are 

presented in Figure 6.8. The rest of the results at other SRT scenarios are presented 

in Appendix D.4.  
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Based on the results from the microalgal-bacterial model under the different SRTs, 

the optimum SRT for the microalgal-bacterial biomass lies between 5 to 10 days. 

This selection is based on the results of the ammonium removal rate, nitrate 

production, and denitrification. At the SRT of 10 days, most of the ammonium is 

converted to nitrate at a faster rate, and at the same time denitrification is fully 

achieved during the anoxic phase. At the SRT of 10 days the VSS in the reactor 

decreased to 1.26 (± 0.01) gVSS L-1, compared to the concentration of 1.43 (± 0.01) 

g VSS L-1 at the SRT of 17 days (Table 6.1). The fractionation of biomass remained 

very similar between the two scenarios, during the SRT of 17 days the biomass was 

composed of 34.9% ۰۽ۯ܆ %1.0 ,۶܆ %54.6 ;۾܆	and ۰۽ۼ܆ and 9.5% ۷܆. Meanwhile at 

the SRT of 10 days the composition was 41.7% ۰۽ۯ܆ %0.7 ,۶܆ %50.7 ;۾܆ and ۰۽ۼ܆,and 6.3% ۷܆. Therefore, since the fractionation of the biomass as well as the 

influent ammonium concentration remained similar, the only difference between the 

two scenarios was the reduction of solids in the reactor by decreasing the SRT 

(having a higher wastage of solids). The light attenuation factor slightly increased 

from 0.32 to 0.40 when decreasing the SRT from 17 to 10 days. Therefore, oxygen 

production was enhanced and oxygen was not a limiting factor, because there were 

less solids that could decrease the light attenuation and less oxygen consumption 

by respiration. The ammonium removal rate for 17 days SRT was 2.12 mg NH4
+-N 

L-1 h-1 (Chapter 4), while for SRTs of 10 and 5 days, the ammonium removal rate 

was 2.39 and 2.76 NH4
+-N L-1 h-1, respectively. Therefore, the reduction of the SRT 

helped to increase the removal rates of ammonium, due to the higher availability 

of oxygen at shorter SRTs. These results are similar to the findings of Chapter 5, 

when comparing two reactors operated with SRTs of 7 and 11 days each. In that 

study, the oxygen production and light attenuation were similar, but the 
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ammonium removal rates were higher at the SRT of 7 days due to a higher oxygen 

availability and the lower biomass respiration.  

Figure 6.8. Prediction of the N-compounds and oxygen concentration for shorter 

SRTs: 10, 5 and 0.9 day. NH4+-N ( ), NO3--N ( ), NO2--N ( ), and O2 

( ) concentrations. The gray-shaded areas correspond to the dark phases 

(lights turned off) during the cycles. 

Further reduction of the SRT to values below 5 days SRT resulted in an incomplete 

nitrification, an increase in nitrite concentration, accumulation of nitrate, and an 

increase in oxygen production as seen in the peaks of Figure 6.8. The lower the 
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SRTs, the higher the oxygen production and accumulation once the COD and 

ammonium concentrations had been depleted.  

The limitation of the denitrification or denitritation process could be due to the 

lack of organic carbon. Analysing the results of the 3 days and 1 day SRTs (Figure 

D.8), and taking into account the higher availability of oxygen, a hypothesis is that 

most of the organic carbon was removed through aerobic oxidation. In order to 

prove this hypothesis an extra scenario was modelled with an SRT of 3 days and 

increasing the organic carbon concentration to 175 mgCOD L-1. The results are 

presented in Figure D.8 in Appendix D.4. As expected, the limitation of the 

denitrification was due to a lack of organic carbon, mostly because with the higher 

oxygen production most of the organic carbon was oxidized aerobically and became 

insufficient to support the denitrification or denitritation processes, resulting in a 

higher concentration of NO3
--N in the effluent. Furthermore, in spite of the higher 

oxygen concentration, and taking into account that the reactor is operated under 

sequencing batch conditions, in this simulation not all the ammonium (8.0 mg 

NH4
+-N L-1) was fully converted to nitrate (reaching a concentration of 5.0 mg NO3

-

-N L-1), but also it reached a high concentration of nitrite of up to 2.4 mg NO2
--N 

L-1. 

In any case, the applied SRT must not fall below the minimum SRT required for 

nitrification (SRTmin). The minimum SRT modelled was 1 day without showing any 

wash-out of the biomass. However, at 0.9 days SRT the NOB disappeared from the 

reactor and there was nitrite accumulation, thereafter the ammonium removal rates 

decreased and the denitritation stopped (Figure 6.8). The microorganisms with the 

lowest growth rate within the microalgal-bacterial biomass are the AOBs, which 
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implies that these would be the first to be washed-out of the system at shorter 

SRTs. The SRTmin for AOBs, using the maximum growth rate calibrated herein, is 

0.9 days, calculated using the equation proposed by Ekama and Wentzel, (2008a). 

Indeed, when the model was run at SRT 0.8 days, nitrification fully stopped, 

ammonium accumulated and the only active processes were the photosynthesis and 

COD aerobic oxidation. Once the model was run with an SRT of 0.5 days, after 1 

day run, there was nor algal neither bacterial biomass present in the system (data 

non shown).   

Overall, the SRT in a microalgal-bacterial reactor is the most important operational 

parameter, it not only determines the solids concentration in the reactor but also 

plays an important role in the removal mechanisms. This conclusion was also 

supported by the experimental data in Chapter 4. Moreover, the results of the 

modelled SRTs showed that for SRTs higher than 15 days, the system was oxygen 

limited and did not reach the highest ammonium removal rate and neither the 

specific removal rate required. On the opposite, at SRTs shorter than 10 days, 

oxygen was not limiting. However, it inhibited the denitrification process due to 

the faster aerobic oxidation of organic matter, becoming insufficient or unavailable 

in the anoxic phase for denitrification purposes. The SRT can also be used as a 

selective pressure for more settleable algal strains and/or faster growing AOBs. For 

instance, Wu et al. (2016) observed an increase in the AOBs growth rate (from 0.39 

to 1.45 d-1) and ܭேுସ,஺ை஻ (from 0.51 to 5.23 mg N L-1) at shorter SRTs on a nitrifiers 

biomass, and also NOB repression at a SRT of 6 days (SRTs tested from 3-15 days). 

In that study, the strategy was to select fast growing AOB over slow growing AOB 
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by reducing the SRTs and at an ammonium concentration of 15 mg N L-1, while 

ensuring the availability of sufficient dissolved oxygen.  

The present study shows that mathematical models can be used as a tool to assess 

different scenarios to test different operational conditions, such as the SRT, 

pollutant concentration, and/or physical characteristics of the reactor/pond, 

towards the optimization of algal-bacterial systems. Further improvements to the 

model need to focus on the effect of phosphorous and inorganic carbon 

concentrations on algal growth and their effect on the different processes.    

6.4 CONCLUSIONS 

A microalgal-bacterial model was successfully calibrated and validated for three 

main operational conditions (52, 26 and 17 days SRT). The model sucessfully 

described the main processes of the system, namely, the two-step nitrification and 

denitrification, COD oxidation, algal growth and biomass production as well the 

biomass fractionation with regard to the different groups of microorganisms. Still, 

further improvements are needed in the model, related with the trend of oxygen 

and nitrate production in time. However, the model identified that the optimal 

SRT lies between 10 and 5 days. Within the optimal SRT range, the volumetric 

and specific ammonium removal rates were maximized, and the denitrification and 

COD removal processes were satisfactory. The ammonium removal rate for the 

SRT of 10 and 5 days was 2.56 and 2.76 mg NH4
+-N L-1 h-1, respectively, while it 

was of 2.12 mg NH4
+-N L-1 h-1 for the 17 days SRT. The minimum SRT was defined 

at 0.9 days, at which the efficiency of ammonium removal starts to decrease (60%) 
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as well as the ammonium removal rate (0.96 mg NH4
+-N L-1 h-1). Furthermore, the 

system completely fails at 0.5 days SRT. The SRT was identified as the most 

important operational parameter, controlling the removal mechanisms and 

dynamics within the reactor. The light extinction coefficient was found to be one 

of the most sensitive parameters related to the physical characteristics of the 

biomass. 
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Abstract 

Respirometric tests (RT) are a common tool for assessment of microbiological 

processes in wastewater. Respirometric tests were used in this chapter on  

microalgal bacterial biomass previously cultivated in a flat panel photobioreactor. 

The RTs were performed successfully showing a high ammonium removal by algal 

uptake, reaching up to 60% of the total ammonium removed. The removal of 

ammonium by algae was identified to have a higher rate than nitrification mainly 

due to the ammonium storage capacity of the microalgae. The storage of nitrogen 

(ammonium) by microalgae was modelled by adapting the model presented in 

Chapter 6, including two new processes: (i) nitrogen algal uptake and (ii) 

phototrophic growth on stored nitrogen. The model was calibrated for ammonium, 

nitrite, nitrate and oxygen concentrations resulting in small errors (indexes of 

agreement exceeding 0.8). The maximum nitrogen stored was 0.3 g Nsto gVSS-1  of 

algal biomass, while the maximum specific phototrophic growth was 3.5 and 1.2 d-

1 for the growth on extracellular nitrogen and the growth on stored nitrogen, 

respectively. The maximum growth of ammonium oxidising bacteria  and nitrite 

oxidising bacteria was 0.50 and 0.76 d-1, respectively.        

7.1 INTRODUCTION 

The interactions between algae and bacteria are not just about the exchange of 

carbon dioxide and oxygen. For instance, cyanobacteria release a variety of organic 

molecules as presented by Abed et al. (2007), these exudates serve as carbon source 

for aerobic heterotrophic bacteria. While working with heterotrophic organisms 
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from paper wastewater and cyanobacteria, Kirkwood et al. (2006) reported how the 

production of exudates by cyanobacteria did not completely inhibit bacterial 

growth, instead, they were used as a organic carbon substrate. This can be 

explained by natural selection since the microorganisms were already adapted to 

the exudates. In addition, the study reported that the exudates also enhanced the 

removal of dichloroacetate. Choi et al. (2010) reported the negative effect of 

cyanobacteria on nitrification rates, which were inhibited by a factor of four. 

Nevertheless, ammonium was completely removed. Other negative effects of 

microalgae on bacteria are the increase of pH due to the photosynthetic activity 

which could inhibit the growth of bacteria. Therefore, microalgal and bacterial 

interactions can have positive or negative effects on both microorganisms.   

The interactions between microalgae and bacteria offer a large potential for 

bioremediation of nutrient rich wastewaters. However, some aspects need to be 

taken into account since they determine the removal efficiencies and the nutrient 

removal pathways. In order to optimize the operational parameters, which can 

enhance the removal of pollutants, it is necessary to understand the interactions 

between microalgae, bacteria, light and nutrients (Subashchandrabose et al., 2011).  

In order to maximize the nutrient removal efficiency, it is necessary to determine 

which stoichiometric and kinetic parameters are most sensitive within a microalgal-

bacterial consortium. Furthermore, to analyse how these parameters can be affected 

by the growth and operational conditions. For instance, in Chapter 5 it was shown 

that the SRT is a key parameter that affects the growth rate of the microorganisms 

by either increasing or decreasing the solids content in the photobioreactor.  
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Respirometric tests are a common tool to assess the aerobic process rates and 

characterise the biomass (Spanjers and Vanrolleghem, 2016). A variation to this 

technique is the inclusion of titrimetric measurements, called respirometric-

titrimetric measurements. In this variation, in addition to the oxygen profiles, 

information about the nitrogen removal can be determined by the dosage of acid or 

base in order to maintain the pH of the system (Decostere et al., 2013). 

Respirometry has been used for the kinetic determination of several activated sludge 

microorganisms (Spanjers and Vanrolleghem, 2016). In addition, Decostere et al. 

(2013) developed a protocol for respirometric-tritimetric measurements in algae, for 

the calculation of the kinetic parameters, and further calibration of a microalgae 

growth model.   

The objective of this chapter is to apply respirometry to microalgal-bacterial 

biomass from a steadily performing reactor, in order to identify the most significant 

kinetic parameters, such as the biomass specific ammonium oxidation and the 

aerobic oxidation by AOB and NOB, respectively, and the total oxygen production 

rate. Furthermore, to get a closer look into the intracellular nitrogen storage 

processes performed by microalgae in a microalgal-bacterial biomass. This been 

widely studied in marine ecology, but there is a lack of information regarding the 

intracellular storage of nitrogen by microalgae in microalgal-bacterial consortia 

treating wastewater. 
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7.2 MATERIALS AND METHODS 

7.2.1 Microalgal-bacterial parent reactor 

A 5.75 L open flat-panel reactor (FPR) (0.25m x 0.23m x 0.1 m) with a net working 

volume of 4 L was operated as a sequencing batch reactor (SBR). A detailed picture 

of the FPR is presented in Figure 7.1. The light intensity on the reactor surface 

was 766.5 (± 154.1) µmol m-2 s-1, and the temperature was controlled at about 25 

oC through a heating jacket. The FPRs were completely mixed, using magnetic 

stirrers operated at 500 rpm. The pH in the FPRs was kept around 7.5 through the 

addition of a phosphate buffer solution (PBS) to the synthetic wastewater. The 

FPRs were operated for 331 d in cycles of 24 h with two feedings per cycle. The 

HRT was set to 1 day and the SRT at 10 days. The inoculation was done following 

the same procedure described in Chapter 3. The base reactor was fed with BG-11 

medium as synthetic wastewater (Becker, 1994). The nitrogen source was 

ammonium and the concentration fed to the FPRs was 0.15 g L-1 of NH4Cl to ensure 

an ammonium concentration of 40 mg NH4
+ L-1 in the influent. The phosphorous 

concentration in the influent was 5 mg PO4
3--P L-1 (0.03 g L-1 of K2HPO4). The 

phosphate buffer used for pH control had the same concentration as defined in 

Chapter 3. Bicarbonate was added as a supply of inorganic carbon, at the beginning 

of the operation the concentration was set at 400 mg HCO3
- L-1, and from day 170 

onwards the bicarbonate concentration was 700 mg HCO3
- L-1 as NaHCO3 (0.96 g 

NaHCO3 L-1). Acetate was added as organic carbon source with a concentration in 

the influent of 120 mgCOD L-1. Three operational periods were defined during the 

operation of the reactor. The first period was between day 0 and day 130, the 
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second period between days 130 – 170, and, finally, period 3 from day 170 to day 

320. The analysis of the ammonium removal rate and biomass characterization was 

done following the same approach presented in Chapter 4. 

Light extinction coefficient 

The light extinction coefficient was calculated using the approach described in 

Chapter 5. The light measurements were done in 12 points along the area of 

incidence light and at 5 points along the depth (light path) (Figure 7.1) using a 

Quantum meter MQ-200 (Apogee Instruments, US). The light measurements were 

done at 9 different concentrations, where C1 corresponds to the actual 

concentration in the reactor, and C9 is the concentration of the influent medium. 

The dilutions from C1 to the different concentrations were done using the influent 

medium. The data collected from this experiment were used to determine the 

extinction coefficient, k, in Eq. 5.2 using the MS Excel tool Solver (GRG nonlinear 

algorithm). 
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Figure 7.1. Flat panel reactor used as parent microalgal-bacterial reactor, the 

light was applied perpendicular to the largest cross-sectional area. 

7.2.2 Respirometric test methodology 

Once the nitrification process reached steady conditions in the parent microalgal-

bacterial reactor, the respirometry tests were performed using the enriched 

microalgal-bacterial biomass. The respirometry unit that was used for these tests 

can be seen in Figure 7.2. The unit consists of a double-heat jacketed reactor of 1 

L of volume connected to a 10-mL double heated jacketed respirometer vessel, in 

which oxygen was measured online using an oxygen probe WTW Oxy 3310 

electrode (Weilheim, Germany). The reactor and the respirometric vessel have both 

a magnetic stirrer that ensures complete mixing of the biomass. The respirometric 

unit was illuminated (respirometric vessel and reactor) using LED lights (Phillips, 

The Netherlands) with an average light intensity of 310 (± 52.8) µmol m-2 s-1. The 

microalgal-bacterial biomass was placed in the reactor, and additions of different 
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compounds were performed in this reactor to evaluate the different algal and 

bacterial processes. Biomass was pumped from the reactor to the respirometer vessel  

for 30 seconds, while online oxygen measurements were recorded. Samples for the 

analysis of different compounds of interest were taken simultaneously from the 

reactor. The reactor of the respirometer unit was air tight, and it was connected to 

a vessel that contained a sodium hydroxide solution with the aim of entrapping the 

carbon dioxide produced. 

 

Figure 7.2. Respirometric unit used to perform the respirometric tests. Reactor of 

1 L connected through a pump (not in picture) to the double wall heated 

respirometer vessel (RV). 
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General steps to perform the respirometric tests 

1) Prior to the conduction of the RTs, light measurements were performed over 

the respirometric unit to ensure an approximate incident light of 300 µmol m-2 

s-1. 

2) 0.5 L of biomass were withdrawn from the microalgal-bacterial base reactor at 

the end of the cycle before the settling time started. Using the withdrawn 

volume and prior to the start of the test, samples were collected for the 

determination of the following parameters: ammonium, phosphate, VSS, TSS 

and alkalinity. 

3) The volume used for the respirometric tests was 0.4 L, this volume was placed 

in dark conditions (by covering the respirometric unit) in the reactor of the 

respirometric unit. Thereafter, N2 was flushed in order to remove the dissolved 

O2 from the sample. 

4) After the placement of the biomass and when the dissolved O2 concentration 

dropped below the detection limit, the medium was added. This medium 

contained all the micronutrients and macronutrients of the modified BG-11 

medium fed to the base reactor. The only variation for certain tests were the 

concentrations of ammonium and inorganic carbon (bicarbonate). 

5) Depending on the objective of the test, allylthiourea (ATU) was added to inhibit 

nitrification (like in tests RT-2 and RT-3). 

6) After the addition of the medium, and it was completely mixed (for 20 to 30 

seconds), biomass was recirculated from the respirometric reactor to the 

respirometric vessel, and the light was turned on to promote photosynthesis. In 

order to avoid any oxygen saturation in the respirometric vessel, once the 
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concentration reached values between 7 – 8 mgO2 L-1, the light was turned off, 

and the respirometric reactor was covered with an aluminium foil. The dark 

conditions promoted the respiration of the biomass and further decrease of the 

O2 concentration. At the same time, recording the oxygen consumption allowed 

to calculate the biomass respiration rate. Alternatively, when nitrification 

occurred, the consumption of O2 by this aerobic process was determined.  

7) Once the oxygen concentration reached in between 1 – 2 mg O2 L-1, the algae-

bacteria mixture was recirculated from the respirometric vessel to the 

respirometric reactor and viceversa using an external pump to ensure similar 

conditions in the respirometric reactor and respirometric vessel (e.g. same 

nitrogen and inorganic carbon concentrations). 

8) Samples were collected in the respirometric reactor. At the beginning of the 

tests, the sampling was more frequent but less frequent towards the end. Usually, 

measurements were taken at the beginning every 5 to 15 minutes, and towards 

the end, every 30 to 60 minutes.   

9) The RTs had usually a duration between 5 to 8 hours due to practical 

limitations, or until there was no more oxygen production. 

10) At the end of the tests the following analysis were performed using the 

remaining biomass: ammonium, phosphate, VSS, TSS and alkalinity. 

11) All analytical parameters were determined in accordance to Standard Methods 

(APHA, 2005), and following the methodology described in Chapters 3 and 4. 
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7.2.3 Modelling of nitrogen storage and utilization of stored nitrogen by 

microalgae 

The modelling of the respirometric tests was done using the microalgal-bacterial 

model described in Chapter 6. The only two new processes included were the 

ammonium storage by microalgae, and the growth on stored nitrogen (Appendix 

E). Furthermore, the model was run in batch mode for each respirometric test. The 

initial values of the biomass characterization were calculated according to the 

methodology described in Appendix B.   

Storage of nitrogen by microalgae 

The storage of nitrogen by algae has been documented by other authors (Fong et 

al., 1994; Mooij et al., 2015; Wágner et al., 2016); however, to the best of our 

knowledge, it is not yet included in any of the mathematical models developed for 

microalgal-bacterial systems. In this study, the model of the nitrogen storage 

process by algae was conceptualized following the approach proposed by Sin et al. 

(2005) in which the storage and growth processes occur simultaneously. Therefore, 

the total nitrogen uptake by algae can be either stored within the cell and the 

remaining can be used for biomass growth.  

The rate and maximum capacity of nitrogen stored by algal biomass was defined 

following the equations proposed by Sin et al. (2005) and Wágner et al. (2016), and 

using a Monod-type function for its description. The nitrogen storage rate depends 

on the ammonium concentration in the medium, on the maximum intracellularly 

N storage capacity of the algal cell, and the minimum nitrogen required for 

maintenance ( ௡݂). Mooij et al. (2015) reported the uptake of ammonium nitrogen 
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by algae in dark conditions, suggesting that the availability of light does not 

condition this process. The following kinetic equation was proposed for modelling 

the storage products in algae: 

 ݀ ே݂݀ݐ = ܵேுరܵேுర + ௦,ேுరܭ ݇௦௧௢,ே ௡݂,௠௔௫ − ௡݂൫ ௡݂,௠௔௫ − ௡݂൯ + ௌ்ை,ேܭ ܺ௉ 

Where:  

ௗ௙ಿௗ௧ : Nitrogen storage rate (gN m-3 d-1) 

ܺே: Concentration of stored nitrogen in the algal biomass (gN m-3). ܵேுర: Concentration of ammonium nitrogen (gN m-3). ܭ௦,ேுర: Microalgal saturation constant for growth on ammonium nitrogen (gN m-3). ݇௦௧௢,ே: Storage rate of nitrogen in the algal biomass (gN gCODX_P
-1 d-1). 

௡݂,௠௔௫: Maximum fraction of nitrogen stored in the microalgal biomass, the fraction 

is expressed in grams of nitrogen per gram of microalgal biomass (X_P)  (gN 

gCODX_P
-1). 

௡݂: Minimum fraction of nitrogen stored in the microalgal biomass, the fraction is 

expressed in grams of nitrogen per gram of microalgal biomass (X_P)  (gN 

gCODX_P
ௌ்ை,ே: Saturation constant for nitrogen storate (gN gCODX_Pܭ .(1-

-1) ܺ௉: Microalgal biomass (gCODX_P m-3). 
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For this process the parameters selected for calibration were: ݇௦௧௢,ே, ௡݂,௠௔௫, and ܭௌ்ை,ே. These values were selected for calibration due to the lack of information 

related to the storage of nitrogen in microalgal-bacterial consortia.   

Growth of microalgae on nitrogen stored by microalgae 

The growth of microalgae on stored nitrogen was based on the equation proposed 

by Sin et al. (2005). The growth of algae on stored nitrogen would depend on the 

ammonium concentration in the medium and the effect of the light attenuation. 

The mathematical expression that describes the use of the stored nitrogen is 

composed by two parts. The first part is expressed as a Monod function, in which 

the use of stored nitrogen depends on the half-saturation constant for growth on ܺே. The second term regulates the use of stored nitrogen based on a regulation 

constant of the cell ( ௑݂ோಿாீ). Then, when ௑ಿ௑ು is higher then the use of the stored 

nitrogen will be high depending on the regulation constant. It is assumed that the 

rate of utilization of stored nitrogen is different from the growth rate on external 

nitrogen substrate. The kinetic process proposed for the utilization of the stored 

nitrogen (XN) is: 

݀ܺ௉݀ݐ = ௠,ௌ்ை,ேߤ 	 ܵேுరܭேுర,௉ + ܵேுర 	ቊ1 − expቆ−ܫ௢ሾ1 − exp(−݇	்ܺ	ܮ)ሿ݇	்ܺ	ܮ	ܫ௦ ቇቋ	൞ ܺேܺ௉ܭௌ்ை,ே,௉ + ܺேܺ௉ 	
ܺேܺ௉௑݂ோಿாீ ൢܺ௉ 

Where: ߤௌ்ை,ே: Microalgal maximum growth rate on stored nitrogen (d-1). ܭௌ்ை,ே,௉: Half-saturation constant for growth on ܺே (g NSTO g CODXP
-1). 
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௑݂ோಿாீ : Regulation constant of the microalgal biomass controlling the growth of 

microalgal on XN (g NSTO g CODXP
-1). 

For this process the parameters selected for calibration were: ߤௌ்ை,ே, ܭௌ்ை,ே,௉, and 	 ௑݂ோಿாீ. These values were selected for calibration due to the lack of information 

related to the storage of nitrogen in microalgal-bacterial consortia.   

7.3 RESULTS AND DISCUSSION 

7.3.1 Solids concentration and light attenuation coefficient in the base 

microalgal-bacterial reactor 

The TSS concentration in the parent reactor (Figure 7.3) was 1.78 (± 0.22), 2.13 

(± 0.19) and 1.56 (± 0.18) gTSS L-1 for periods 1, 2 and 3, respectively. The 

concentration of VSS was 1.43 (± 0.19), 1.82 (± 0.09) and 1.27 (± 0.17) gVSS L-1 

for periods 1, 2 and 3, respectively. The highest biomass concentration was 

measured in period 2, while in period 3 the biomass reached steady-state conditions. 

The standard deviation was not higher than 11% compared to the average 

concentration during period 3. The solids in the effluent along the three periods 

were not higher than the 15% of the solids in the reactor, which suggests that there 

was a good biomass retention within the reactor. 
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Figure 7.3. Suspended solids concentrations during the entire operation of the 

microalgal-bacterial reactor. TSS in the reactor ( ), VSS in the reactor ( ), 

effluent TSS ( ), and effluent VSS ( ). 

The light extinction coefficient of the microalgal-bacterial biomass in the reactor 

was calculated using the light intensities measured with a submerged light meter. 

These measurements were done along the surface area of the incident light in 4 

points (horizontal distance), in 3 points along the height of the reactor (vertical 

distance, and 5 different points (depth) along the light path of the reactor (total 

depth of the reactor 10 cm). Figure 7.4 shows that at concentration 1 (concentration 

in the reactor), the light intensity is zero after 3.5 cm. Solving Equation (5.2) using 

the measurements herein, the light extinction coefficient for this microalgal-

bacterial biomass was calculated to be around 0.0763 (± 0.0075), m2 gTSS-1. This 

value was used for the calibration of the model. 



7. Respirometric tests for microalgal-bacterial biomass: modelling of nitrogen storage by 

microalgae 

 

188 

 

 

 

 Figure 7.4. Light measurements (µmol m-2 s-1) in the flat panel reactor at C1: 1.56 

(± 0.18) gTSS L-1 and C9 corresponds to zero as it corresponds to the synthetic 

medium fed to the reactors. 
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7.3.2 Ammonium removal rates, efficiency and biomass characterization 

of the base microalgal-bacterial reactor 

The parent reactor used to cultivate the microalgal-bacterial biomass for later use 

in the respirometric tests was operated steadily for 310 days, and the entire 

operation was divided in three periods. During the three periods ( 

Figure 7.5), the ammonium removal efficiency was 94.7 (± 4.0) %. The ammonium 

removal rate (ARR) between the three periods was not significantly different 

(p>0.05), with values of 3.26 (± 0.30), 3.34 (± 0.51) and 3.21 (± 0.24) mg NH4
+-

N L-1 h-1 for period 1, 2 and 3, respectively. The ammonium removal rate of algal 

biomass and bacterial biomass was calculated for periods 1 and 3, whereas for period 

2 this was not possible. During period 2 possibly simultaneous 

nitrification/denitrification occurred. Therefore, it was difficult to differentiate 

between how much ammonium was removed by algae and how much by nitrifiers. 

The ammonium removal rate by nitrifiers was 2.49 (± 0.46) and 1.87 (± 0.32) mg 

NH4
+-N L-1 h-1 for period 1 and 3, respectively. On the other hand, the ammonium 

removal rate by algae was lower than by nitrifiers with values of 0.77 (± 0.63) and 

1.34 (± 0.38) mg NH4
+-N L-1 h-1 for periods 1 and 3, respectively.  

The simultaneous nitrification/denitrification process that took place during period 

2 is probably due to the presence of anoxic conditions within the reactor, e.g. the 

O2 concentration droped below detection limits soon after the influent feeding. The 

decrease in oxygen concentration during this period could be caused by the increase 

in biomass towards the last days of period 1 and the start of period 2 (Figure 7.3), 

as well as by the higher activity of the aerobic processes and biomass respiration. 
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Therefore, during period 3 the inorganic carbon was increased from 0.4 (period 1 

and 2) to 0.7 g HCO3
- L-1. This led to an increase in algal activity that increased 

the oxygen generation and avoided the development of anoxic conditions. 

Furthermore, it increased the contribution of algae to the removal of ammonium. 

Since the main objective was to have a nitrifying biomass under steady-state 

conditions to be used in the respirometric tests, in order to confirm that 

denitrification did not take place, an evaluation of one of the cycles in period 3 was 

carried out (data non shown). The N-compound concentrations  were measured 

every half an hour during the entire reaction time of the sequencing batch operation, 

showing the absence of denitrification (e.g. nitrate produced was not removed), and 

the oxygen concentrations never decreased below 6 mg O2 L-1. 

The total specific ammonium removal rate of the system was 0.05, 0.04 and 0.06 

gNH4
+-N gVSS-1 d-1. Therefore, the highest biomass activity was observed in period 

3, and during this period all the respirometric tests were performed. Also in this 

period, the biomass was characterized. The total biomass was comprised of 80.6 (± 

10.8) % microalgae, 17.8 (± 9.9) % heterotrophic bacteria, 1.2 (± 0.6) % ammonium 

oxidizing and 0.5 (± 0.2) % nitrite oxidizing bacteria. 
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Figure 7.5. Nitrogen compounds concentrations during the entire operation of the 

microalgal-bacterial reactor. Influent NH4+-N ( ), effluent NO2--N ( ), effluent 

NO3--N ( ), and effluent NH4+-N ( ). 

7.3.3 Nitrogen storage by microalgae in a microalgal-bacterial biomass 

Respirometric tests were conducted according to the methodology described in the 

materials and methods and using the microalgal-bacterial biomass cultivated in the 

base reactor during the third period. Figure 7.6 presents the result of a respirometric 

test performed on day 175. The initial concentrations were 13.4 mg NH4
+-N L-1  for 

ammonium, 11.6 mg NO2
--N L-1 for nitrite and 10.3 mg NO3

--N L-1 for nitrate. As 

seen in the respirometric test-1 (RT-1) (Figure 7.6), during the first 13 minutes, 

there is a rapid decrease in ammonium concentration at a rate of 45 mg NH4
+-N L-

1 h-1. However, this rapid decrease does not match with the production of nitrate 

0

5

10

15

20

25

30

35

40

45

50

0 40 80 120 160 200 240 280 320

N
-C

om
po

un
ds

 (
m

g 
N

 L
-1
)

Time (days)

3rd Period 1st Period
2nd

Period 



7. Respirometric tests for microalgal-bacterial biomass: modelling of nitrogen storage by 

microalgae 

 

192 

 

and neither with nitrite. Furthermore, after the rapid decrease of ammonium 

stopped, the ammonium removal rate (0.51 mg NH4
+-N L-1 h-1) matched with the 

rates of nitrite and nitrate (0.25 (nitrite) + 0.34 (nitrate) = 0.59 mg NH4
+-N L-1 h-

1) (between 0.6-9.2 hours). 

 

Figure 7.6. RT-1 with initial ammonium concentration of 13.4 mg NH4+-N L-1. 

NH4+-N ( ), NO2--N ( ), NO3--N ( ), and O2 ( ). 

The ammonium removal efficiency reached 100%, from which 42% (5.51 mgNH4
+-

N L-1) was removed through nitritation and nitrification and 58% (7.84 mgNH4
+-N 

L-1) by algal uptake. Moreover, other possible explanations for such a rapid decrease 

can be ruled out. Ammonium volatilization was not a potential removal mechanism 

since the pH was maintained at 7.5. Another possible removal pathway is through 

the adsorption of ammonium into the biomass; however, there is not literature 

reporting such a high adsorption rate in microalgal biomass. Also, no organic carbon 
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was present during the RT, therefore simultaneous nitrification/denitrification 

could not take place. In addition, controlled respirometric tests using the effluent 

from the reactor (without biomass) were executed to rule out any chemical 

precipitation as an ammonium removal mechanism (data not shown).  

The total net oxygen production rate during the entire test was 0.0202 gO2 L-1 h-1 

(taking into account solely the light phase), and since the respirometer vessel was 

air tight, the oxygen production was entirely provided by photosynthesis. The 

ammonium removal rate was 1.5 mgܰܪସା − ܰ L-1 h-1 for the microalgal-bacterial 

biomass. The specific ammonium removal rate of the system was 0.98 gܰܪସା − ܰ 

gVSS-1 h-1, and the specific ammonium removal rates of AOB and NOB were 

estimated around 0.009 gܰܪସା − ܰ  gVSS-1 h-1 and 0.031 gܰܪସା − ܰ  gVSS-1 h-1, 

respectively. The total ammonium removal through nitrification/nitritation was 5.5 

mg NH4
+-N L-1, while algae removed 7.8 mg NH4

+-N L-1. 

The rapid and high uptake of ammonium by algae is considered as a luxury uptake. 

Comparing the total production of oxygen with the total ammonium consumed by 

algae in this test, it can be observed that not all the ammonium was utilized for 

growth. Thus, it was assumed that it was likely stored intracellularly in the form 

of inorganic nitrogen pools (Lavín and Lourenço, 2005). The total oxygen produced 

was 0.0820 g O2 L-1 (including the net oxygen, biomass respiration and consumption 

by nitrifiers), calculated during the duration of the RT (9.5 hours). The total 

amount of ammonium required to produce this oxygen concentration can be 

calculated using the yield of oxygen on ammonium proposed by Mara (2004) of 

16.85 g NH4
+-N g-1O2. Therefore, the ammonium required to produce the measured 

O2 concentration is 4.86 mg NH4
+-N L-1 and, since the total amount of ammonium 
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removed by the algae in the 9.5 hours was 7.84 mg NH4
+-N L-1, it leaves 2.97 mg 

NH4
+-N L-1 of ammonium to be stored in the algal cells. 

In order to assess the nitrogen uptake by algae in a microalgal-bacterial biomass, a 

nitrification inhibitor (allylthiourea)  was added during the respirometric test-2 

(RT-2) (Figure 7.7). Figure 7.7 shows the result of this test, which was divided in 

two parts, in the first part there is ammonium removal after a pulse addition of 

medium (containing all nutrients except organic carbon), and after the 5th hour the 

oxygen production stopped. Therefore, only ammonium was supplied, as it was 

considered to be the limiting step. From this time onwards, the second part of the 

experiment starts, during which ammonium was rapidily removed within the first 

half an hour. However, after this second ammonium addition, the production of 

oxygen did not increase despite that ammonium was not the limiting (still 8.64 

NH4
+-N L-1 remaining). Thus, inorganic carbon was added. Subsequently, after the 

re-addition of inorganic carbon, the ammonium removal rate was similar to the one 

observed in the first part of the experiment. The total ammonium removed was 2.5 

and 10.6 mgܰܪସା − ܰ L-1 for the first and second part, respectively. 
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Figure 7.7. RT-2 with initial ammonium concentration of 13.4 mg NH4+-N L-1 and 

addition of ATU to stop nitrification and nitritation. NH4+-N L-1 concentration (

) and O2 concentration ( ). 

In the first part the total oxygen production rate was 0.0306 gO2 L-1 h-1 and the 

total ammonium removal rate was 0.46 mgܰܪସା − ܰ L-1 h-1. The total specific 

ammonium removal rate was 0.391 gܰܪସା − ܰ  gVSS-1 h-1. The total inorganic 

carbon consumed during this part was 0.10 gHCO3
- L-1. 

In the second part, the total oxygen production rate was 0.0228 gO2 L-1 h-1, and as 

seen in Figure 7.7, two ammonium removal rates can be identified. A maximum 

removal rate of 14.76 mgܰܪସା − ܰ L-1 h-1 within the first half an hour, and 1.01 

mgܰܪସା − ܰ  L-1 h-1 after the rapid decrease on ammonium. The total specific 

0

20

40

60

80

100

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

O
xy

ge
n 

co
nc

en
tr

at
io

n 
(m

g 
O

2
L-

1 )

N
-c

om
po

un
d 

co
nc

en
tr

at
io

n 
(m

g 
N

 L
-1
)

Time (hours)

In
flu

en
t 

pu
lse

 a
dd

iti
on

H
C

O
3- : 

13
5.

9 
m

g 
H

C
O

3-
L-

1

H
C

O
3-

pu
lse

 a
dd

iti
on

T
im

e:
 6

.0
8 

hr
.

H
C

O
3- : 

95
.2

 m
g 

H
C

O
3-

L-
1

N
H

4+
N

 p
ul

se
 a

dd
iti

on
T

im
e:

 5
.6

6 
hr

.

H
C

O
3- : 

33
.7

 m
g 

H
C

O
3-

L-
1

First part Second part

H
C

O
3-

m
ea

su
re

d 
be

fo
re

 a
m

m
on

iu
m

 
pu

lse
 a

dd
iti

on
 

33
.9

 m
g 

H
C

O
3-

L-
1



7. Respirometric tests for microalgal-bacterial biomass: modelling of nitrogen storage by 

microalgae 

 

196 

 

ammonium removal rate was 3.14 gܰܪସା − ܰ gVSS-1 h-1 and the total amount of 

inorganic consumed during this part was 0.06 gHCO3
- L-1. 

An approximate determination of the ammonium used for growth and stored within 

the cell was done linking the oxygen production with the total uptake of ammonium. 

The total oxygen produced during the first part of the respirometric test is 0.0577 

gO2 L-1, which would require the uptake of 3.42 mg NH4
+-N L-1 to support the 

microalgal growth (16.85 gO2 gNH4
+-N-1), assuming that biomass growth occurred 

only in the light phase, hence when oxygen was produced. Yet, comparing this 

value with the uptake of ammonium calculated from the measurements of 2.52 mg 

NH4
+-N L-1, it is concluded that the total amount of ammonium taken up is not 

enough, and that 0.9 mg NH4
+-N L-1 extra are required to produce the amount of 

oxygen measured during the first part. However, it must be taken into account that 

this amount is very low and probably statistically not significant. These results 

confirm that the mass balances for oxygen and ammonium can be linked using the 

quoted stoichiometry. In the second part, the total oxygen production was 0.0401 

gO2 L-1, and the total ammonium consumed by algae was 10.56 mg NH4
+-N L-1. 

Applying the same approach used in part 1, the nitrogen necessary to produce the 

total amount of O2 is 2.38 mg NH4
+-N L-1, which indicates that 8.17 mg NH4

+-N L-

1 was more likely to be stored inside the cell, as there was no ammonium 

volatilization (pH controlled), and any chemical precipitation was ruled out. 

In microalgal-bacterial systems, algae can be exposed to nitrogen limiting conditions, 

as reported in Chapters 4 and 5, in which most of the ammonium was removed 

through nitrification. Also, in Figure 4.4 (Chapter 4), it can be observed that even 

after ammonium was depleted, there is oxygen production by microalgae. These 
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observations support the potential intracellular storage of nitrogen since algae 

might have produced the oxygen using the internal ammonium stored in the cell. 

However, strictly, this was not observed during the RT-2 (Figure 7.7), as towards 

the end of the 5th hour (last hour of the first part) there was still ammonium present 

in the medium. Yet, 0.9 mg NH4
+-N L-1 extra was necessary in order to produce the 

total oxygen measured in the first part. When reviewing the inorganic carbon 

concentrations measured in both parts for the RT-2, the average bicarbonate 

concentration at the end of both parts (at which the oxygen production stopped) 

is 33.82 (± 0.14) mg HCO3
- L-1. Therefore, it can be inferred that the system could 

have been limited by the low inorganic carbon concentration. Furthermore, to 

support this hypothesis, it can be stated that the inorganic carbon is necessary for 

both nitrification and algal uptake, therefore being also a limiting nutrient in 

microalgal-bacterial systems. 

7.3.4 Phototrophic growth on stored nitrogen 

In order to assess the growth of microalgae on the nitrogen stored, the microalgal-

bacterial biomass was washed prior to the RT to ensure that neither inorganic 

carbon nor inorganic nitrogen was present in the mixture. Subsequently, it was 

placed in the respirometric reactor and a pulse addition of medium without 

ammonium was supplied. The results of the respirometric test-3 (RT-3) are 

presented in Figure 7.8. 
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Figure 7.8. RT-3 with initial ammonium concentration of 0.22 mg NH4+-N L-1 and 

addition of ATU to stop nitrification and nitritation. NH4+-N L-1. NH4+-N ( ), 

NO2--N ( ), NO3--N ( ), and O2 ( ). 

As seen in the respirometric test-3 (RT-3), despite that the concentrations of 

ammonium in the medium were below 0.5 mg NH4
+-N L-1, the oxygen concentration 

reached a maximum concentration of 174 mg O2 L-1, and a maximum production 

rate of 0.13 gO2 L-1 h-1. In order to produce such a concentration of oxygen, the 

ammonium required is 10.3 mg NH4-N L-1. The concentration of HCO3
- at the 

beginning of the test was 126.6 mg HCO3
- L-1 (soon after addition), and at the end 

of the test the bicarbonate concentration was 20.6 mg HCO3
- L-1. Since bicarbonate 

at the end of this test was still available, it can be assumed that the oxygen 

production was only limited by the concentration of nitrogen and, being absent in 

the liquid phase, the only potential nitrogen source available was the intracellularly-
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stored nitrogen. These results support nitrogen storage is an algal mechanism use 

to remove N and utilize it in subsequent N-deprived periods.  

Overall, the nitrogen stored measured and calculated in the respirometric tests 

presented herein was 2.97 mg NH4
+-N L-1 for RT-1, and 0.9 and 2.87 mg NH4

+-N L-

1 for the parts 1 and 2 of RT-2, respectively, and finally 10.3 mg NH4-N L-1 in RT-

3. Expressing these values in terms of nitrogen stored per gram of algal biomass, 

the values obtained are 0.0026 gN gVSSxp
-1 for RT-1, 0.0007 and 0.0068 gN g VSSxp

-

1 for RT-2, and 0.011 gN gVSSxp
-1 for the RT-3. Wágner et al. (2016) reported 

maximum values of nitrogen stored for algal biomass for different experiments of 

0.012 (± 0.003) gN gCOD-1 and the minimum stored value reported was 0.009 (± 

0.004) gN gCOD-1. Quinn et al. (2011) reported a maximum value of up to 15% of 

nitrogen per gram of biomass. The values presented herein are lower. However, the 

values reported in previous studies have been obtained in enriched algal cultures, 

whereas in this study they have been observed in a mixed algal-bacterial culure, 

which could have played a role in the intracellular storage processes. 

Ammonium is the preferred nitrogen compound by algae among the three different 

inorganic nitrogen concentrations usually available in natural or wastewater flows 

(Hellebust and Ahmad, 1989; Lavín and Lourenço, 2005). This inorganic compound 

is taken up by algae and assimilated either by the glutamine cycle or via the 

metabolic pathway of glutamate dehydrogenase (Hellebust and Ahmad, 1989). The 

last metabolic pathway has been reported for some species such as Chlorella under 

high ammonium concentrations (Hellebust and Ahmad, 1989). Furthermore, Mooij 

et al. (2015) reported the storage of ammonium nitrogen under dark conditions. 

The maximum nitrogen stored during the dark phase was 16.6 mg N L-1. The 
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storage of nitrogen described and measured by Mooij et al. (2015) occurred in a N-

limited environment by uncoupling the carbon fixation (light phase) from the 

ammonium uptake (dark phase). In the light, all nutrients and inorganic carbon 

were fed with the exception of ammonium, which was added at the beginning of 

the dark phase. Other conditions for nitrogen storage have been reported by Lavín 

and Lourenço (2005) when comparing the nitrogen storage under inorganic carbon 

limited and non-limited conditions. The results showed that there was a high 

accumulation of inorganic nitrogen in both scenarios during the first days of the 

culture. Also, the concentration of stored ammonium decreased when the nitrogen 

in the medium was limiting, but inorganic carbon was sufficient (Lavín and 

Lourenço, 2005). Finally, they concluded that the availability of inorganic carbon 

influences the accumulation of inorganic nitrogen, in some scenarios the high N 

found in the inorganic nitrogen pools in algae was effected by the limitation of 

inorganic carbon. In this study, similar observations were obtained indicating that 

a mixed algae-bacteria culture can also have an intracellular nitrogen storage 

process for its further utilization as a source of nitrogen for growth or oxygen 

production. 

7.3.5 Modelling the nitrogen storage by algae in a microalgal-bacterial 

biomass 

The modelling of the nitrogen storage processes was done by including two new 

processes in the model proposed in Chapter 6: (i) nitrogen storage and (ii) growth 

of microalgae on stored nitrogen. The proposal to include these two processes was 

made following a combined approach of two different models proposed by Sin et al. 
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(2005) and Wágner et al. (2016). The first one presents a new approach for 

modelling of simultaneous growth and storage of organic carbon, while the second 

presents a biokinetic model for algae based on the activated sludge models, and 

taking into account nitrogen storage by algae. The model considers that the growth 

of algae on external and internal nitrogen as well as the storage of nitrogen occur 

simultaneously. Therefore, part of the nitrogen uptake by algae was stored as ܺே, 

and the rest was used for growth. Furthermore, the use of ܺே for algae growth was 

assumed to occur at a lower rate than the growth on extracellular nitrogen 

represented by ߤ௉,ௌ்ை. 

Respirometric tests used for calibration 

Three respirometric tests were selected for calibration. The three tests selected 

exhibit a fast decrease in ammonium, and based on the oxygen concentrations and 

ammonium consumed, it was concluded that ammonium was stored intracellularly. 

Data from the respirometric test-4 (RT-4) (Figure 7.9) was the first set used for 

calibration. For this test the biomass was exposed to light conditions for 2.5 hours 

in order to exhaust some of the ammonium and/or inorganic carbon left from the 

cycle in the base reactor. After that, a pulse of medium addition was supplied to 

ensure an ammonium concentration of 22.5 mg NH4
+-N L-1. The total ammonium 

removed in Figure 7.9 was 19.6 mgܰܪସା − ܰ L-1, from which 40% was removed 

through nitritation and nitrification and 60% by algal uptake. This 60% of removal 

of ammonium includes the storage of nitrogen within the first 20 minutes upon its 

addition.  
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Figure 7.9. Results of the RT-4 data measured for calibration of the expanded 

model. NH4+-N ( ), NO2--N ( ), NO3--N ( ), and O2 ( ). 

Respirometric tests 5 and 6 (RT-5 and RT-6) (Figure 7.10) were carried out by 

adding a higher concentration of ammonium than in previous tests. On average, 

the ammonium addition was 82.6 (± 3.3) mg NH4
+-N L-1. For both tests the biomass 

was left overnight for 12 hours without any feeding and under light conditions in 

order to exhaust any nitrogen stored intracellularly. In both tests, nitrification 

removed in average 50.0 (± 12.3) % and algal uptake 50 (± 12.7) % of the 

ammonium available. Also, for both tests the calculated oxygen production was 

0.023 gO2 L-1 h-1. 
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Figure 7.10. Results of RT-5 (A) and RT-6 (B) measured for calibration of the 

expanded model. NH4+-N ( ), NO2--N ( ), NO3--N ( ), and O2 ( ). 

0

20

40

60

80

100

120

0

10

20

30

40

50

60

70

80

90

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

C
um

ul
at

iv
e 

ox
yg

en
 c

on
ce

nt
ra

ti
on

 (
m

g 
O

2
L-

1 )

N
-c

om
po

un
ds

 c
on

ce
nt

ra
ti

on
s 

(m
g 

N
 L

-1
)

Time (hours)

A

0

20

40

60

80

100

0

10

20

30

40

50

60

70

80

90

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

C
um

ul
at

iv
e 

ox
yg

en
 c

on
ce

nt
ra

ti
on

 (
m

g 
O

2 
L-

1 )

N
-c

om
po

un
d 

co
nc

en
tr

at
io

ns
 (

m
g 

N
 L

-1
) 

Time (hours)

B



7. Respirometric tests for microalgal-bacterial biomass: modelling of nitrogen storage by 

microalgae 

 

204 

 

Model calibration 

The model was calibrated using the data sets obtained in three respirometric tests 

(RT-4, RT-5 and RT-6). The model was successfully calibrated being able to 

describe the following processes: nitrogen storage, phototrophic growth on 

intracellularly stored nitrogen, phototrophic growth on dissolved nitrogen in the 

bulk liquid, and ammonium oxidation by nitrifiers. The growth of heterotrophic 

bacteria (organic carbon oxidation and denitrification) was not calibrated, as no 

COD was added in the respirometric tests. The calibrated values for all three tests 

for the nitrogen storage and the growth of algae on N-stored were: ௡݂,௠௔௫, ݇௦௧௢,ே, ܭௌ்ை,ே, ߤௌ்ை,ே,௉,  ܭௌ்ை,ே,௉, and ௑݂ோಿாீ. Furthemore, for nitrification the calibrated 

parameters were: ߤ௉ ஺ை஻ߤ  , and ߤேை஻ . Table 7.1 presents the results of the 

parameters calibrated for the processes previously listed. Figure 7.11 and Figure 

7.12 present the comparison between the modelled and measured data. As seen 

from the calculation of the error (Table 7.2), the results of the model could describe 

accurately the trends of the conversions of ammonium removal, and nitrite, nitrate 

and oxygen production during the respirometric tests.   
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Table 7.1. Calibrated parameters for the nitrogen storage, phototrophic growth on 

both nitrogen storage and external ammonium, and autotrophic processes for RT-

4, RT-5 and RT-6. 

Parameter RT-4 RT-5 RT-6 Unit 

Nitrogen storage process ݇௦௧௢,ே 20 20 20 d-1 ܭௌ்ை,ே 0.0001 0.0001 0.0001 g N gCODX_P
-1 

௡݂,௠௔௫ 0.13 0.22 0.35 g Nsto g CODX_P
-1 

Phototrophic growth on ࡺࢄ 

௑݂ோಿாீ 0.009 0.005 0.09 g Nsto g CODX_P
ௌ்ை,ே,௉ߤ 1- 1.2 1.2 1.2 d-1 ܭௌ்ை,ே,௉ 0.2 0.2 0.2 g NSTO g CODXP
-1 

Phototrophic growth on ࡴࡺࡿ૝శ and autotrophic growth ߤ௉ 3.5 3.5 3 d-1 ߤ஺ை஻ 0.22 0.5 0.5 d-1 ߤேை஻ 0.32 0.76 0.71 d-1 
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Table 7.2. IOA calculated between the modelled and measured data for the 

different compounds for RT-4, RT-5 and RT-6. 

Compound 
RT-4 RT-5 RT-6 

IOA value ܵேுరశ 0.88 0.91 0.87 ܵேைమష 0.98 0.98 0.87 ܵேைయష 0.97 0.80 0.94 ܱଶ 0.98 0.99 0.99 

 

 

Figure 7.11. Calibration results for RT-4. Measured NH4+-N ( ), measured NO2--N 
( ), measured NO3--N ( ), measured O2 ( ), modelled NH4+-N ( ), modelled 

NO2--N ( ), modelled NO3--N ( ), and modelled O2 ( ). 
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Respirometric test-5 Respirometric test-6 

Figure 7.12. Calibration results for RT-5 and RT-6. Measured NH4+-N ( ), 

measured NO2--N ( ), measured NO3--N ( ), measured O2 ( ), modelled NH4+-N (

), modelled NO2--N ( ), modelled NO3--N ( ), and modelled O2 ( ). 

To describe the experimental data, the maximum nitrogen storage capacity of each 

test was found. For RT-6, it had a value of 0.33 g Nsto gVSSX_P
-1, while the lowest 

was found for RT-4 (0.12 g Nsto gVSSX_P
-1). These values are similar to those 

reported by Flynn et al. (1993), who observed a maximum nitrogen storage within 

the cell of 0.2 g N per g algal biomass. However, these values are higher than the 

ones calculated based on the measured data. This may be related to the fact that 

the tests used for modelling presented a higher ammonium concentration in the 
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pulse addition. Also, the nitrogen storage calculations performed are based on the 

stoichiometry assuming that all the oxygen produced proceeded from the uptake of 

nitrogen from the bulk liquid, implying that there was less nitrogen to be stored 

within the cells. In this study, it was found that the ௑݂ோಿாீ is higher when the storage 

of ammonium is maximized. This parameter regulates the amount of intracellularly 

stored nitrogen inside the cell that is used for growth. However, this value presents 

a high variability (ranging from 0.009 to 0.09 g Nsto g VSSX_P
-1) due to unknown 

reasons. Likely, it depends on the maximum storage N capacity, but the cell growth 

process and factors that affect the intracellular N storage utilization may have a 

strong effect on this parameter. Therefore, more studies are necessary to assess the 

factors that regulate the utilization of the intracellularly stored nitrogen pools. The 

growth rate of algae on the stored nitrogen remained similar in all the three tests 

assessed (at 1.2 d-1), while the highest growth rate on the ammonium present in the 

medium was 3.5 d-1. Wágner et al. (2016) observed algal growth rates of between 

3.54 and 4.12 d-1 in a culture composed mainly of Chlorella sorokiniana and 

Scenedesmus. The rate at which nitrogen was stored in the cell was the same for 

all three tests (20 g N g CODX_P
-1 d-1), which is higher than the one reported by 

Wágner et al. (2016) of 0.36 gN gCOD-1 d-1. 

The algal growth model proposed by Droop (1973, 1983) differentiates the nitrogen 

uptake from the nitrogen used by growth, by introducing an extra “compartment”, 

and proposing a luxury uptake of nutrients, in this case nitrogen. The storage of 

nitrogen occurs in all phytoplankton species in different environments (Lavín and 

Lourenço, 2005). In addition, other authors have reported the storage of nitrogen 

by microalgae (Lavín and Lourenço, 2005; Mooij et al., 2015; Wágner et al., 2016). 
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The ability of algae to store nitrogen allows the growth and maintenance of the 

microorganisms when nitrogen has been depleted (Flynn, 1990; Wágner et al., 2016). 

It has been reported that the storage of nitrogen occurs in diatoms under nitrogen 

limiting conditions (Mooij et al., 2015), and in phytoplankton in which the nitrogen 

uptake will depend on the nutrient concentration in the medium, while the growth 

is associated to the internal concentration (algal tissue) (Fong et al., 1994). 

Furthermore, the internal nitrogen pool of the microalgal cell can affect the specific 

nitrogen uptake rate by algae, which decreases when the internal nitrogen 

concentration is high (Quinn et al., 2011). Nevertheless, in this study, a similar 

approach like that propose by Droop (1973) was followed by including the 

intracellular storage of nitrogen and its further utilization by algae. This approach 

satisfactorily described the storage processes and the nitrogen and algal-biomass 

activity observed in three different experiments. Since the mechanisms that trigger 

the intracellular nitrogen storage mechanisms are not fully clear, more studies are 

necessary to explain the internal pathways associated to the storage of nitrogen 

(Mooij et al., 2015). The model developed in this study can nevertheless be used as 

tool to assess in more detail the required mechanisms and contribute to get a better 

understanding of this process.  

A deeper understanding of the factors affecting the nitrogen storage within the 

algae cells will allow to suggest operational techniques envisioned to maximize the 

nitrogen uptake, while opening a wide range of possibilities for by-product recovery. 

By introducing dark and light feed regimes, algae can produce storage compounds 

such as starch, proteins, glucose or lipids depending on the feeding times of the 

nutrient and inorganic carbon. However, this would mean that compounds such as 
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inorganic carbon and ammonium are fed at different times (Mooij, 2013), which is 

not feasible when treating wastewater. Nevertheless, as reported in this chapter, 

nitrogen storage occurs in microalgal-bacteria consortia at higher rates, and 

contributes to increasing the ammonium removal rates. Therefore, more research is 

needed to further validate this model and analyse other factors, such as the effect 

of inorganic carbon or ammonium feeding under dark conditions. 

7.4 CONCLUSIONS 

Respirometric tests were used for the evaluation of the ammonium removal 

mechanisms by a microalgal-bacterial consortia. The RTs showed the large effect 

of nitrogen storage by algae, since even when no ammonium was fed, a cumulative 

oxygen production reached maximum values of 174 mg O2 L-1. Both the ammonium 

removal by nitrification and algal uptake reached 50% each. Therefore, in order to 

evaluate the nitrogen storage by algae and the nitrification process, the model 

presented in Chapter 6 was expanded for N-storage and successfully calibrated, 

including the processes of nitrogen storage by algae, and algal growth on nitrogen 

stored. The maximum storage of nitrogen calculated by the model was 0.33 g Nsto 

gVSS-1 of algal biomass. The model, that included nitrogen storage, phototrophic 

growth on intracellular nitrogen and growth on ammonium in the bulk liquid, was 

successfully calibrated. The updated model can serve as a tool to evaluate the 

nitrogen storage by algae in microalgal-bacterial consortia.  
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8.1 INTRODUCTION 

This thesis focuses on the use of microalgal-bacterial consortia for nitrogen removal. 

Furthermore, the use of the microalgal-bacterial consortia in an innovative system 

called Photo-Activated Sludge (PAS) was evaluated. The treatment is based on the 

symbiosis between microalgae and aerobic bacteria, in which the objective is to 

maximize the oxidation of ammonium and organic carbon using the oxygen 

produced by microalgae through photosynthesis. One of the targeted effluents for 

the application of these consortia are the effluents from anaerobic digesters. These 

effluents exhibit high concentrations of organic carbon (COD), ammonium, and 

phosphorous. The concentrations of ammonium can be between 400 -1150 mg NH4
+-

N L-1, while for phosphorous and COD, the range is between 29 - 74 mg P L-1 and 

920 - 7800 mg COD L-1, respectively (Dębowski et al., 2017). Although microalgal 

systems can be an economic and sustainable option for the treatment of these 

effluents, the large areas (Rawat et al., 2011) and hydraulic retention times required 

for their operation present an important drawback for this technology. Furthermore, 

the low settling characteristics of the microalgal biomass increase the operational 

costs due to the high energy consumption needed for the harvesting, and 

additionally decrease the possibility of biomass recovery for further production of 

by-products (Christenson and Sims, 2011). Microalgal-bacterial consortia have 

shown promising results in both aspects: increasing the ammonium removal rates 

when treating ammonium high strength wastewater (Wang et al., 2015) and 

increasing the settleability of algal biomass by the addition of bacteria (Quijano et 

al., 2017; Tiron et al., 2017; Van Den Hende et al., 2014). However, the optimal 

operational parameters to maximize the removal rates and/or efficiency and the 

factors that influence the different removal mechanisms (de Godos et al., 2016), as 
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well as the metabolic interactions between these two groups of microorganisms are 

still not fully understood. 

Therefore, during this research the main objective was to assess how the dual action 

of microalgae and aerobic bacteria could successfully treat these effluents by 

maximizing the ammonium removal rates and at the same time quantify the 

different removal mechanisms and interactions occurring in the microalgal-bacterial 

systems. The research was divided in four major sections: the first section (Chapter 

3 and 4) assessed the removal mechanisms in microalgal-bacterial consortia using 

synthetic wastewater under different operational conditions in two types of 

photobioreactors (circular and flat panel reactor). The second section (Chapter 5) 

consisted of the assessment of the microalgal-bacterial consortia using real 

wastewater (effluent from an anaerobic digester treating swine manure). In the 

third section (Chapter 5 and 6), the calibration and validation of a mathematical 

model that describes the microbiological processes occurring between aerobic 

oxidising bacteria (AOB), nitrite oxidising bacteria (NOB), heterotrophic bacteria 

and microalgae. In the fourth section (Chapter 7), the use of respirometric tests for 

microalgal-bacterial biomass showed the fate of the nitrogen taken up by microalgae 

and its effects on the nitrification. Figure 8.1 shows the most important findings 

per chapter, and how the information found was used from chapter to chapter. A 

further discussion of each of these findings can be found in the sections below.       
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Figure 8.1. Key important findings of the research on algal-bacterial systems 

performed in this PhD study. 

 

Chapter 3
Microalgal-bacterial consortia removed 

up to 50% more ammonium than 
microalgal consortia. Uncoupling of 

the SRT and HRT is one of the most 
important operational conditions.

Chapter 4
Higher nitrification rates 
are achieved at shorter 

SRTs. This improves light 
conditions and has a 
positive effect on the 
photo-oxygenation by 

microalgae.

Chapter 5
Successful removal of 

ammonium up to 264 mg 
NH4

+ - N L-1 through 
nitritation/denitritation at an 
SRT of 7 days. Development 
of a mathematical model for 

microalgal-bacterial 
consortia.

Chapter 6
Successful calibration and 

validation of a mathematical 
model under long term 

operations. Identification of 
the optimal SRT (between 5 
– 10 days) for a microalgal-

bacterial system.

Chapter 7
Identification of nitrogen 

storage by microalgae 
using respirometric tests. 
N-storage by algae cells 

from a microalgal-bacterial 
consortia was identified.
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8.2 ADVANTAGES OF MICROALGAL-BACTERIAL CONSORTIA 

FOR AMMONIUM REMOVAL 

8.2.1 Advantages on ammonium removal rates 

In Chapter 2, it was demonstrated that microalgal-bacterial consortia removed 

ammonium 50% times faster than in a solely microalgal system, which ultimately 

increases the efficiency of the system. Furthermore, Chapter 3 had the highest 

ammonium removal rate and specific ammonium removal rate in comparison with 

the other chapters in this research (Table 8.1). The main removal mechanism that 

contributed to the increase in the ammonium removal rates was nitrification. 

Furthermore, other studies have also reported the successful treatment of high 

strength wastewater using microalgal-bacterial cultures (Godos et al., 2010; 

González et al., 2008; Wang et al., 2015; Zhao et al., 2014). The removal rates 

obtained during this research are higher than those reported by solely algal cultures 

treating a diverse range of ammonium concentrations in the influent (Abou-Shanab 

et al., 2013; Aslan and Kapdan, 2006; Cabanelas et al., 2013). Furthermore, as 

stated in the general objectives of this thesis (See section 2.3), the algae strains 

used as inoculum were a combination between eukaryotic algae and prokaryotic 

cyanobacteria. Yet, once the reactors reached steady state, the most predominant 

algal strain was Chlorella. In the literature, it can be found that the most used 

strains of microalgae for wastewater treatment are Chlorella sp. (Cabanelas et al., 

2013; Ruiz et al., 2011), Scenedesmus sp. (Kim et al., 2013; Park et al., 2010) and 

Spirulina sp. (Olguín, 2003).  
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Table 8.1. Summary of volumetric and specific ammonium removal rates under 

the different operational conditions tested in each chapter 

Chapter 
Influent 

(mg 
NH4+ L-1) 

 ࢀ_࢓࡭࢘
(mgNH4

+-N 
L-1 h-1) 

 ࢀ_࢓࡭࢑
(mgNH4

+-N 
mgVSS-1 d-1) 

SRT (d) & 
HRT (d) 

Light 
intensity 

(µmol m-2 s-1)

3 297.3 4.16 ± 0.75 1.84 ± 0.12 
SRT:4.2 ± 

0.3 
HRT: 1 

700 

4 23 2.12 
0.063 ± 
0.009 

SRT:17 
HRT: 0.5 

25.9 

5 264 ± 10 2.4 ± 0.17
0.033 ± 
0.002 

SRT:7 
HRT: 4 

84±3 

7 
45.36 ± 

5.52 
3.21 ± 0.24

0.063 ± 
0.012 

SRT:10 
HRT: 1 

766.5 ± 154.1

 ஺௠_்: Volumetric ammonium removal rate; ݇஺௠_்: specific ammonium removal rateݎ

The presence of nitrifiers in the microalgal culture increased the volumetric and 

specific ammonium removal rates. The oxidation of ammonium by nitrifiers is faster 

than the algal uptake (Chapter 5). Therefore, the presence of nitrifiers in the 

biomass has a strong impact on the removal of ammonium despite they have a low 

content in the total biomass composition, between 1.8 to 17% (Chapter 3, 4 and 5). 

Also, the presence of other microorganisms played an important role in the total 

nitrogen removal. For instance, heterotrophic bacteria not just removed the organic 

carbon present in the influent, but also removed ammonium for their biomass 

growth (Chapter 4 and 5). In addition, during anoxic periods, heterotrophic 
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bacteria, when sufficient organic carbon is present, could denitrify the nitrate or 

nitrite produced by nitrification (Chapter 4 and 5). 

8.2.2 Operational conditions and area requirements 

In Chapter 3, the ammonium removal rate by the reactor containing just microalgae 

was 1.84 (± 0.66) mg NH4
+-N L-1 h-1 (See section 3.4) and the specific ammonium 

removal rate was 0.025 (± 0.009) mg NH4
+-N mgVSS-1 d-1. These values are 

significantly lower than the results for microalgal-bacterial reactors in the remaining 

chapters (Table 8.1). Thus, for 100% ammonium removal in the microalgal reactor 

of Chapter 3, and assuming that the volumetric ammonium removal would remain 

similar, the required HRT would be approximately 6.7 days, assuming all other 

macronutrients and micronutrients are sufficient. Alcántara et al. (2015) calculated 

that in a microalgae-based system, such as high rate algae ponds (HRAP) treating 

medium-strength domestic water, the necessary HRT would be 7.5 for complete 

nitrogen and phosphorous removal. Higher nitrogen uptake by algae would result 

in a higher concentration of solids, which limits the light penetration, and thus 

reduces the growth rate of algae. Noteworthy, HRT values in HRAP could be 

reduced when carbon dioxide is sparged to avoid inorganic carbon limitation. This 

can also help as a pH-control to maintain an optimum pH. Park and Craggs (2011) 

obtained ammonium removal efficiencies of up to 83.3% at a HRT of 4 days with 

CO2 addition in a high rate algae pond treating an effluent from anaerobic digestion. 

However, in HARPs with CO2 supply, the growth of nitrifiers can be enhanced, 

especially when inorganic carbon is not limiting and in most cases when the HRT 

is not long enough for nitrifiers to grow (de Godos et al., 2016; Park and Craggs, 

2011). The latter occurs in conventional HRAPs where the HRT and the SRT are 
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not uncoupled and therefore the HRT corresponds to the solids retention time 

(SRT). 

The high ammonium removal rates (volumetric and specific) by microalgal-

bacterial consortia can further help to reduce the HRT of the system. This can be 

done by ensuring that the main ammonium removal mechanism within the 

microalgal-bacterial system is through nitrification. Comparing the oxygen 

production by algae with the oxygen consumption by nitrification, the yield of 

oxygen on ammonium consumed is 16.85 gO2 gNH4
+-N-1 consumed (Mara, 2004). 

This is significantly higher than the 4.57 gO2 gNH4
+-N-1 required for complete 

nitrification (Ekama and Wentzel, 2008a). Therefore, the design of a microalgal-

bacterial system should ensure enough oxygen production by algae to support all 

aerobic processes. Another important condition that should be met is the retention 

of nitrifiers within the system. Thus, for the cultivation of a microalgal-bacterial 

consortium in which nitrification is envisioned as the main removal mechanism, 

there should be an uncoupling between the SRT and the HRT (Chapter 3; Valigore 

et al., 2012). 

The possibility of reducing further the HRT by the uncoupling between the SRT 

and HRT in a microalgal-bacterial system has positive effects on the nitrification 

process, and the objective of microalgae supplying the necessary oxygen to support 

the aerobic processes. Also, the reduction of the HRT contributes to the reduction 

of the large area requirements of algal systems. Since microalgae would not be the 

main removal mechanisms, the limitation of light by solids should be enough to 

support photo-oxygenation. Therefore, the designing depths of reactors using 

microalgal-bacterial consortia could be deeper. During Chapter 3, the microalgal-

bacterial system had a surface removal rate of 10.2 g	NHସା − N m-2 d-1, compared 
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with 4.4 g	NHସା − N m-2 d-1 for the microalgal consortia. Comparing these values 

with the study of Tuantet et al. (2014), who achieved a maximum removal rate of 

54.1 mg	NHସା − N L-1 h-1 using urine as growth medium, the surface ammonium 

removal rate calculated was 6.5 g	NHସା − N m-2 d-1. This value is lower than for 

microalgal-bacterial systems, and also the reactor used for cultivation by Tuantet 

et al. (2014) had a short light path of  5 mm, which avoided any light limitation in 

the culture. In practice, HRAP are designed with a HRT between 2 to 8 days and 

depths between 0.2 to 0.5 m (Shilton, 2006). Using the information reported by 

Park and Craggs (2011) in a HRAP treating domestic wastewater, the surface 

removal rate was estimated to be 1.1 g	NHସା − N m-2 d-1, which is considerably lower 

than the values found in this thesis. In summary, the uncoupling of the HRT and 

SRT allows to develop a higher settleable biomass. Consequently, both SRT and 

HRT can be further shortened, which has a positive result on the light limitation 

by solids and on the nutrient removal rates. As a result, the depth (light path) of 

the reactors using microalgal-bacterial consortia, in which the main ammonium 

removal mechanism is through nitrification, can be further decreased, which will 

help to reduce area requirements. Based on the results presented in this thesis (see 

section 3.3.5), the area requirements for a microalgal-bacterial consortia can be 

reduced up to 50% in comparison with solely algal systems. Nonetheless, the rates 

presented in this research are calculated based on laboratory-scale experiments, and 

more research is required at pilot scale in order to define minimum depths that are 

able to meet the necessary oxygen production, and at the same time maintain the 

nutrient removal efficiency of the system.  
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8.2.3 Photo-oxygenation and algal harvesting 

Another important advantage of the use of microalgal-bacterial consortia over other 

technologies are the economic costs. Especially on two aspects: the cost of aeration 

when comparing this technology with activated sludge, and the cost of harvesting 

when comparing with algal systems. Comparing this technology with activated 

sludge systems, the oxygen required for nitrification and COD oxidation is fully 

supported by microalgae (Chapter 3, 4 and 7). Operational costs by aeration can 

represent up to 60 to 80% (Holenda et al., 2008)  of the total operational costs in 

activated sludge plants. The energy consumption is on average between 0.33 to 0.60 

kWh m-3 in activated sludge plants in the United States (Plappally and Lienhard, 

2012), while for HRAP the power consumption for mixing, calculated by Alcántara 

et al. (2015), was 0.023 kWh m-3. Therefore, the energy needed for removal of 

ammonium in high strength wastewater using an activated sludge process would be 

considerably higher when compared with a microalgal-bacterial system. 

Another advantage of the microalgal-bacterial systems is the improvement in the 

settling characteristics of the biomass (Chapter 4 and 5) when compared with algal 

systems. The uncoupling of the SRT and HRT, and the operation in sequencing 

batch creates a selective environment for fast settleable microalgae, and 

furthermore promoted the formation of algal-bacterial aggregates. This positive 

effect on biomass harvesting by the presence of bacteria in algal systems has been 

reported by other studies as well (Gutzeit et al., 2005; Park and Craggs, 2011; Van 

Den Hende, 2014). Furthermore, the increase in settleability reduces the cost of 

operation in these systems, and so no extra energy is required for solids separation, 

such as centrifugation or dissolved air flotation. In addition, the bioflocculation 

avoids contamination of the biomass, since no chemicals are needed to promote 
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flocculation (Su et al., 2011). Finally, more studies are under development to 

improve this positive effect of algae and bacteria. For instance Tiron et al. (2017) 

published an approach to develop activated algae granules which have 

sedimentation velocities of 21.6 (± 0.9) m h-1, and in terms of the separation of the 

algal biomass from the bulk liquid, the biomass recoveries were up to 99%.     

8.3 INFLUENCE OF THE SRT ON THE OPERATION OF A 

MICROALGAL-BACTERIAL PHOTOBIOREACTOR 

Chapter 3 showed that the uncoupling of the SRT and HRT is imperative for the 

development of a steady nitrifying microalgal-bacterial consortium. Furthermore, 

Chapter 4 and 5 showed the effects of the SRT on the removal mechanism of 

microalgal-bacterial consortia, still the ammonium removal efficiency was 100% 

under the different operational conditions tested. In both chapters, volumetric and 

specific ammonium removal rates were higher at shorter SRTs (17 days SRT for 

Chapter 4 and 7 days SRT for Chapter 5). Furthermore, the ammonium removal 

mechanisms differ at different durations of the SRT. In Chapter 4, at a longer SRT 

of 52 days, ammonium removal by algal uptake represented up to 38% of the total 

ammonium removal, while it decreased up to 11% at a SRT of 17 days (Table 4.3). 

In both cases, the main ammonium removal mechanism was 

nitrification/denitrification.  

Therefore, one of the most important operational parameters to control the 

efficiency and rates of ammonium removal in microalgal-bacterial consortia is the 

SRT. The SRT controls the amount of solids in the reactor, which will have a high 

impact on the light penetration used for algal growth and consequently oxygen 
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production. Longer SRTs in activated sludge increase the concentration of 

endogenous residues, which reduce the active fraction of the biomass and increase 

the oxygen consumption through respiration of the bacterial biomass (Ekama and 

Wentzel, 2008b). In addition, longer SRTs increase the solids concentration in the 

reactor, hence the dark zones within the reactor increase (Figure 5.), which will 

also increase the oxygen consumption by algal respiration. As a result, oxygen is 

less available for the aerobic processes such as organic carbon oxidation and 

nitrification, resulting in a shift in the removal mechanism from nitrification to 

algal uptake. However, if the HRT is not long enough and the ammonium 

concentration in the influent is high, the efficiency of the system could be hindered, 

and both high concentrations of nitrite and ammonium (partial nitrification and no 

denitritation) and organic carbon can end up in the effluent. 

The uncoupling of the SRT from the HRT permits to select an optimum SRT that 

allows enough light penetration to maximize the nitrification rates and reduce the 

solids concentration. This will decrease the endogenous residue by the bacterial 

biomass, while at the same time increase the growth rate of the nitrifiers (Ekama 

and Wentzel, 2008a). Decreasing of the SRTs and increasing the ammonium 

removal rates can help to further decrease the HRT, which would as well offer the 

possibility to  reduce the area requirement of the technology as stated above. 

However, HRTs shorter than 0.5 days were not tested in this research. Therefore, 

more research is needed to demonstrate the feasibility of this low HRT. 

Furthermore, it is imperative to not fall below the SRTmin for nitrifiers, since below 

this value nitrifiers would be washed out of the system and the system would 

collapse. Finally, based on the experiments performed during this research, the 
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optimum SRTs for microalgal-bacterial reactors would be between 5 - 10 days 

(Chapter 4, 5 and 6). 

8.4 EVALUATION OF THE MICROALGAL-BACTERIAL 

CONSORTIA USING MATHEMATICAL MODELS 

Chapters 5, 6 and 7 present the successful calibration and validation of a 

mathematical model for microalgal-bacterial systems. The model describes the 

different microbiological processes occurring within the consortia when treating 

ammonium rich wastewaters. The model was proposed in Chapter 5, and is based 

on the modified activated sludge model number 3 (modified ASM-3) proposed by 

Iacopozzi et al. (2007) and Kaelin et al. (2009). The phototrophic growth on light 

limitation was based on a similar approach proposed by Martinez Sancho et al. 

(1991). In Chapter 5, the model was calibrated using the data from the hourly 

cycles (Figure 5.) under batch conditions. In Chapter 6, the model was calibrated 

and validated for long-term sequencing batch operation using the information of 

the hourly cycles measured during the three operational periods in Chapter 4. 

Finally, in Chapter 7, the model was updated and calibrated, adding two new 

processes to the model: nitrogen storage by microalgae and growth on this stored 

nitrogen (See section 7.2.3).  

8.4.1 Mathematical model for analysis of phototrophic growth, 

nitrification/denitrification and organic carbon removal processes 

The mathematical model proposed in this research could describe the measured 

data, reporting good values of the index of agreement (0.5 - 1) (Table 7.2). The 
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index of agreement compared the variances between the measured data and the 

modelled values. The light extinction coefficient was found to be one of the most 

important parameters in the microalgal-bacterial system, and the more sensitive 

parameter during the calibration process (Chapter 6). In the BIO-ALGAE model 

proposed by Solimeno et al. (2017), the light factor (which includes photoinhibition, 

photolimitation and light attenuation) was the  main limiting factor for algal 

growth. These results are in accordance with the conclusions made on the effects of 

the SRT on microalgal-bacterial systems, related with the solids concentrations in 

the reactor. For instance, the light extinction coefficient was measured in Chapter 

5 (0.0748 m2 gTSS-1), while the light extinction coefficient calibrated during Chapter 

6 was 0.019 m2 gTSS-1. The higher extinction coefficient measured in Chapter 5 is 

presumably influenced by the turbidity of the real wastewater used in the 

experiment (Table 5.1), while for Chapter 6, the experiments were done using 

synthetic wastewater. Furthermore, the effect of the different values of the light 

extinction coefficient can be seen on the predicted maximum algal growth: the 

maximum algal growth rate was lower in Chapter 5 (Table C.2; 0.85 d-1) than in 

Chapter 6 (Table 6.2; 2.00 ± 0.05 d-1). Therefore, it is advised to measure the light 

extinction coefficient of the microalgal-bacterial biomass, since it would improve 

the veracity of the model. By measuring this parameter experimentally, the 

calibration is not necessary and the model would describe the different processes 

occurring in the reactor. 

Analysing the ammonium half saturation coefficient for algal growth in Chapter 5 

and 6, and comparing with the literature on algal and microalgal-bacterial models 

(Table 6.2), the values calibrated in both chapters are lower than the ones found 

in the literature. As can be seen from Figure 4.4 and Figure 5., oxygen was produced 
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even after ammonium was completely removed or at very low concentrations. Two 

hypothesis could explain this: the first one would consider the uptake of ammonium 

at microalgal-bacterial floc level, therefore the ammonium is not measured in the 

bulk liquid. The second one, and more likely, would be the storage of nitrogen 

within the algae cell for later use as nitrogen substrate for growth when ammonium 

concentrations are zero or limiting. The storage of nitrogen in the microalgal 

biomass was also suggested in Chapter 3 (See section 3.3.4) and 4 (See section 

4.3.4), when comparing the ammonium removed against the oxygen production in 

the bulk liquid. Also, during Chapter 7, the performance of the respirometric tests 

showed the ability of algae to produce oxygen with little to no ammonium present 

in the bulk liquid (Figure 7.8). Furthermore, nitrogen storage by microalgae occurs 

naturally in phytoplankton in natural environments (Lavín and Lourenço, 2005).  

The maximum growth rate of AOB and NOB, calibrated and validated in Chapter 

6, was similar to values of the maximum growth rate reported in the literature 

(Table 6.2). Therefore, the nitrifiers did not show any sign of inhibition by the 

presence of microalgal biomass. The same conclusion was reported in Chapter 3 

(Figure 3.5) based on the comparison between the microalgal-bacterial reactor, and 

the microalgal reactor. However, the inhibition of the maximum growth rates of 

algae and bacteria in microalgal-bacterial systems treating effluents rich in 

ammonium could be more associated with the inorganic carbon limitation or 

ammonia inhibition at higher ammonium concentrations and slight changes in the 

pH values.  

Overall the model provided insight in the different interactions between microalgae 

and bacteria. The calibration and validation of the model in sequencing batch 

operation, which took into account the hydraulics and sludge wasting, served as a 
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tool for the evaluation of further scenarios that were not tested experimentally. The 

model found that the optimum SRT lies between 5 to 10 days. This tool can be 

further improved to include more processes such as growth of algae on nitrate or 

transfer of inorganic carbon and oxygen from the atmosphere into the 

photobioreactor. 

8.4.2 Respirometric tests and mathematical model for the analysis of 

nitrogen storage by microalgae 

The results of the respirometric tests reported in Chapter 7 showed a high and 

rapid uptake of ammonium by algae. In addition, the relation between the 

ammonium taken up by microalgae and the oxygen produced were not in balance. 

It was demonstrated that one of the factors that would force algae to store nitrogen 

was related to the limitation by inorganic carbon (Figure 7.7). Therefore, algae 

would store the ammonium in intracellular pools for later use when inorganic carbon 

is present and ammonium is limited. It has been reported that under nitrogen 

limiting conditions, phytoplankton stores nitrogen (ammonium, nitrate and rare 

occasions nitrite) within the cell, and furthermore in cultures under nitrogen-

starved conditions, nitrogen uptake can be faster than when it is assimilated for 

growth (Dortch et al., 1984). This rapid uptake is stored in the so called transient 

pools (Dortch et al., 1984). However, more research is needed to understand the 

internal metabolic processes (Mooij et al., 2015) and how the photosynthetic 

apparatus changes when algae store nitrogen within the cell.  

Based on the results of the respirometric tests, the model was updated by adding 

two processes: nitrogen storage by algal biomass, and phototrophic growth on the 

stored nitrogen. The introduction of the two processes resulted in the identification 
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of two important parameters: the maximum amount of nitrogen stored per gram of 

algal biomass, and the regulation factor within the cell for the use of stored nitrogen 

for phototrophic growth ( ௑݂ோಿாீ). The maximum nitrogen storage capacity was 0.33 

g Nsto gVSS-1. The maximum storage capacity of the cells is influenced by the algal 

strain, the nitrogen compound fed, and whether the culture is under conditions of 

nitrogen limitations, or the opposite (Dortch et al., 1984). During these experiments, 

it was also found that inorganic carbon could also trigger the nitrogen storage. 

During the proposition of the model, it was assumed that the utilization of the 

stored nitrogen would occur at a lower rate, and this could occur simultaneously, 

which is highly dependent on the regulation factor within the cell. The calibration 

of the respirometric tests resulted in different values of the internal regulation factor 

( ௑݂ோಿாீ) among the different calibrated respirometric tests (Table 7.1), hence the 

high variations made it risky to conclude about this parameter. Instead, more 

research is required in order to fully understand the factors that govern nitrogen 

storage in microalgal-bacterial consortia. 

8.5 OUTLOOK AND CONCLUDING REMARKS 

The findings in this PhD dissertation show that microalgal-bacterial consortia are 

able to effectively remove nitrogen at shorter SRTs and HRTs than usually used in 

algal systems, showing high ammonium removal efficiencies. Furthermore, the co-

cultivation of microalgae and bacteria offers advantages such as higher ammonium 

removal rates through nitrification/denitrification and consequently reduction of 

the area requirements in the implementation of the technology. Also the 

development of a bioflocculant algal-bacterial biomass without the addition of 

chemicals nor energy input is an advantage. 
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The experiments performed and the conclusions proposed in this research were 

based on laboratory scale reactor set-ups. Therefore, the operational considerations 

made should be tested at pilot scale for further validation. The PAS system could 

fit within a holistic approach for wastewater treatment consisting of an anaerobic 

digester coupled with a microalgal-bacterial photobioreactor (Figure 8.2). The 

anaerobic digester is used for bioenergy production through a combined heat and 

power (CHP) system, and the high nutrient strength centrate is further treated in 

a microalgal-bacterial photobioreactor. The biomass produced in the 

photobioreactor can be returned to the anaerobic digester to increase biogas 

production by co-digestion with the main waste(water) streams (Wang and Park, 

2015). Part of the stabilized solids from the anaerobic digester and the microalgal-

bacterial reactor could be used as biosolids for fertilizer replacement, promoting a 

circular economy within the treatment of wastewater. 

 

Figure 8.2. Scheme of the proposed holistic approach for treatment of domestic, 

industrial and agricultural wastes. CHP: combined heat and power system, N: 

nitrogen and P: phosphorous 
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At pilot scale and using sunlight as energy source, it is important to take into 

account the feeding conditions of the medium. However, this also depends on the 

final objective of the water reclamation of the treated effluent. For instance, 

effluents with high concentrations of nitrate, when just nitrification is performed in 

the microalgal-bacterial system, can support irrigation for crop growth (Taylor et 

al., 2018). In case that due to the prior treatment there is a lack of micronutrients 

or other nutrients such as phosphorous, the effluent can be mixed in a certain ratio 

with the influent from the anaerobic digester to supply all the compounds needed. 

When the objective of the microalgal-bacterial system is the treatment of the 

wastewater to negligible ammonium and total nitrogen concentrations, the system 

should support nitrification and denitrification as seen in Chapter 4 and 5. Then, 

during a HRT of 1 day, nitrification can be performed during the daylight and 

denitrification can be supported at night when there is no longer oxygen production. 

Therefore, it is recommended that the influent is fed during the dark conditions, 

then some of the oxygen still present from the light phase would be consumed for 

organic matter oxidation and part of the ammonium would be oxidized or taken up 

by algae. The rest of the organic matter would be used for denitrification, and the 

remaining ammonium that is not nitrified or taken up in the dark phase would be 

nitrified in the next light phase.  

Taking into account the results from Chapter 7 on nitrogen storage by algae, the 

night feeding could also promote the nitrogen storage within the cells as observed 

by Mooij et al. (2015). Furthermore, this nitrogen feeding regime could also limit 

the nitrogen during the light feeding as partly will be consumed at night, which 

will force the algal biomass to store inorganic carbon as mainly carbohydrates and 

lipids (Mooij et al., 2015). Therefore, evaluation of this biomass for biofuel 
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production could be an option. Taking into account that the growth medium is 

wastewater, the energy balance for the production of algal fuels could shift to an 

energy positive balance and make it cost competitive against fossil fuels (Sivakumar 

et al., 2012). However, there is still the challenge of maximizing the lipids 

production within the algal cells, specially when cultivated in municipal wastewater 

(Tan et al., 2018).  

The symbiosis of microalgae and bacteria has shown promising results not just for 

nutrient and organic carbon removal, but for the elimination of other pollutants 

and contaminants from different industries as well (Rawat et al., 2011). The results 

and conclusions of this thesis offer new directions for research on microalgal-

bacterial consortia. New studies on the co-culturing of different microorganisms for 

treatment of wastewater is already on-going (Mukarunyana et al., 2018; Manser et 

al., 2016). This shows the ability of algae to be resilient and adapt to different 

microbial populations and environments, and can help to further develop 

microalgal-bacterial consortia as sustainable approach to today’s and tomorrow’s 

wastewater problems. 
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A.1 NITROGEN MASS BALANCE 

The expression proposed by Liu and Wang (2012) was used to estimate the amount 

of ammonia partially nitrified to nitrite (nitritation) and full nitrification:  

ସାܪܰ  + ସାܪ0.0225ܰ + 1.38750ܱଶ + ଶܱܥ0.0900 + ଷିܱܥܪ0.0225 																												௬௜௘௟ௗሱۛ ሮۛ ହܥ0.0225 ଻ܱܰଶܪ + ܱܰଶି + ାܪ104 +                       ଶ          Eq. (A.1)ܪ0.9775

 

Nitrification (ammonium oxidized to nitrate by nitrifiers) was calculated with the 

following equation (Liu and Wang 2012):  

ସାܪܰ  + ସାܪ0.0298ܰ + 1.851ܱଶ + ଶܱܥ0.1192 + ଷିܱܥܪ0.0298 																					௬௜௘௟ௗሱۛ ሮۛ ହܥ0.0298 ଻ܱܰଶܪ + ܱܰଷି + ଶܱܪ0.9702 +      ା           Eq. (A.2)ܪ2

Algae growth was described based on the photosynthetic activity using the equation 

defined by Mara (2004) (Eq. A.3).  

ଶܱܥ106 + ଶܱܪ236 + ସାܪ16ܰ + ܲܪ ସܱଶି ௟௜௚௛௧ሱۛ ሮۛ ଵ଼ଵܪଵ଴଺ܥ ସܱହ ଵܰ଺ܲ + 118ܱଶ ଶܱܪ171+ +                       ା                                 Eq. (A.3)ܪ14

The total removal of ammonium by nitrifiers was calculated using Eq. (A.4), and 

the total uptake (removal) of ammonium by algae was determined by Eq. (A.5) as 

follows: ݈ܶܽݐ݋	݉ݑ݅݊݋݉݉ܽ	݀݁ݒ݋݉݁ݎ௡௜௧௥௜௙௜௘௥௦ = ܵேைమషିே,௘௙௙௟௨௘௡௧ ∗ ܳ ∗ ଵ௒೙೔೟ೝ೔೟೐ +			ܵேைయషିே,௘௙௙௟௨௘௡௧ ∗ ܳ ∗ 1/ ௡ܻ௜௧௥௔௧௘                    Eq. (A.4)                      
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௔௟௚௔௘݀݁ݒ݋݉݁ݎ	݉ݑ݅݊݋݉݉ܽ	݈ܽݐ݋ܶ = ൫ܵேுరశିே,௜௡௙௟௨௘௡௧ ∗ ܳ൯ − ൫ܵேுరశିே,௘௙௙௟௨௘௡௧ ∗ ܳ൯  ௡௜௧௥௜௙௜௘௥௦               Eq. (A.5)݀݁ݒ݋݉݁ݎ	݉ݑ݅݊݋݉݉ܽ	݈ܽݐ݋ܶ−

Where: ݈ܶܽݐ݋	݉ݑ݅݊݋݉݉ܽ	݀݁ݒ݋݉݁ݎ௡௜௧௥௜௙௜௘௥௦ : Total amount of ammonium removed by 

nitrifiers which mainly comprises the ammonium oxidized (in mg d-1). ܵேைమషିே,௘௙௙௟௨௘௡௧: Concentration of nitrite measured in the effluent (in mg L-1). ܳ: Daily flow fed to the reactors (in L d-1). 

௡ܻ௜௧௥௜௧௘: Ratio of nitrite produced through nitritation, calculated based on Eq (A.1)  

(0.977 mg	ܱܰଶି − ܰ/ mg	ܰܪସା − ܰ). ܵேைయషିே,௘௙௙௟௨௘௡௧: Nitrate concentration in the effluent (in mg L-1). 

௡ܻ௜௧௥௔௧௘: Ratio of nitrate produced from ammonium oxidation, calculated using Eq 

(A.2) (0.971 mg	ܱܰଷି − ܰ/ mg	ܰܪସା − -௔௟௚௔௘: Ammonium uptake by algae for growth (in mg d݀݁ݒ݋݉݁ݎ	݉ݑ݅݊݋݉݉ܽ	݈ܽݐ݋ܶ .(ܰ

1). ܵேுరశିே,௜௡௙௟௨௘௡௧: Ammonium concentration in the influent (in mg L-1). 

ܵேுరశିே,௘௙௙௟௨௘௡௧: Ammonium concentration in the effluent (in mg L-1).  

 

The biomass production of nitrifiers and algae in the FPRs for each cycle was 

calculated using their nitrogen growth requirements, based on the amount of 

ammonium oxidised and removed by nitrifiers and algae, respectively, using the 

following expressions: 
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௏ௌௌ,௔௟௚௔௘݊݋݅ݐܿݑ݀݋ݎܲ = ݈݁ܽ݃ܽ	ݕܾ	݀݁ݒ݋݉݁ݎ	݉ݑ݅݊݋݉݉ܽ	݈ܽݐ݋ܶ ∗ ௔ܻ௟௚௔௘ Eq. (A.6)                      

And 	ܲ݊݋݅ݐܿݑ݀݋ݎ௏ௌௌ,௡௜௧௥௜௙௜௘௥௦ = ݏݎ݂݁݅݅ݎݐ݅݊	ݕܾ	݀݁ݒ݋݉݁ݎ	݉ݑ݅݊݋݉݉ܽ	݈ܽݐ݋ܶ ∗ ஺ܻ  Eq. (A.7) 

                                                                           

Where:  ܲ݊݋݅ݐܿݑ݀݋ݎ௏ௌௌ,௔௟௚௔௘: Production of algae VSS in the reactor (in mgVSS d-1) 

௔ܻ௟௚௔௘: Algae yield coefficient per ammonium taken of 10.83 mgVSS mgܰܪସା − ܰ-1 

based on Eq. (A.3).  ܲ݊݋݅ݐܿݑ݀݋ݎ௏ௌௌ,௡௜௧௥௜௙௜௘௥௦: Concentration of nitrifiers VSS in the reactor (in mgVSS 

d-1) 

஺ܻ: Nitrifiers yield coefficient of 0.24 mgVSS mgܰܪସା − ܰ-1 based on Eq. (A.2) (in 

mgVSS mgܰܪସା − ܰ-1) 

 

The nitrogen uptake by algae calculated from the nitrogen balance (Eq.  A.5) was 

compared with the theoretical nitrogen uptake by algae. The last one was calculated 

using the nitrogen biomass growth requirement equation as developed by  Ekama 

and Wentzel (2008a). The average nitrogen content within the algae biomass was 

calculated using the following expression: 

 ௦ܰ,௔௟௚௔௘ = ௡݂ ௏ೝ	௑ೇೄೄ,ೌ೗೒ೌ೐ௌோ் 	                           Eq. (A.8) 

 

Where: 
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௦ܰ,௔௟௚௔௘: Theoretical nitrogen uptake by algae (in mgܰܪସା − ܰ d-1) 

௡݂: Stoichiometric fraction of nitrogen in algae biomass (%) estimated in 0.092 mgN 

mgVSSalgae
-1 as if Eq. A.1. 	ܺ௏ௌௌ,௔௟௚௔௘: Algae biomass (in mgVSSalgae L-1) calculated using Eq. A.6. ܴܵܶ: Sludge retention time in each FPR (in d). 
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B.1. NITROGEN MASS BALANCE 

The nitrogen balance was made in order to identify the fractions of biomass oxidised 

or taken up by the biomass; the fractions removed were calculated per day. The 

nitrogen mass balance was calculated using the detailed 24 hour cycles of each 

operational period. There were 4 cycles for period 1, 3 cycles for period 2A, 5 cycles 

for period 2B and 4 cycles for period 2C.  For each cycle  

B.1.1 Calculation of the total removed ammonium  

The ammonium removed was calculated based on the measured ammonium 

concentrations in the influent and effluent: ܵேுସ_் = ൫ܵேுସ_ூேி − ܵேுସ_ாிி൯	ܳ                               Eq.B.1.1 

Where:  ܵேுସ_்: Total ammonium concentration removed (mg NH4
+-N d-1) ܵேுସ_ூேி: Total ammonium concentration in the influent (mg NH4

+-N L-1) ܵேுସ_ாிி: Total ammonium concentration in the effluent (mg NH4
+-N L-1) ܳ: Daily flow fed to the reactors (in L d-1). 

B.1.2 Calculation of the ammonium removed by algae, nitrifiers and OHO bacteria. 

The amount of NH4
+-N oxidized by nitrifiers (ܵேுସ_஺ை஻,ேை஻) was determined using 

the total measured nitrate formed at the end of each cycle, and the equations Eq. 

B.1.2 (proposed by Liu and Wang, 2012) and Eq. B.1.3. The total amount of 

ammonium removed by nitrifiers also includes the nitrogen required for biomass 

growth. 
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ସାܪܰ + ସାܪ0.0298ܰ + 1.851ܱଶ + ଶܱܥ0.1192 + ଷିܱܥܪ0.0298 																									௬௜௘௟ௗሱۛ ሮۛ ହܥ0.0298 ଻ܱܰଶܪ + ܱܰଷି + ଶܱܪ0.9702 + ା            Eq. B.1.2     ܵேுସ_஺ை஻,ேை஻ܪ2 = ܵேைయషିே_ாிி ∗ ܳ ∗ ௡ܻ௜௧௥௔௧௘                      Eq. B.1.3 

Where: S୒ୌସ_୅୓୆,୒୓୆ : Total amount of ammonium removed by nitrifiers which mainly 

comprises the ammonium oxidized (in ܰܪସା − ܰ d-1). ܵேைయషିே,௘௙௙௟௨௘௡௧: Nitrate concentration in the effluent (in mg ܱܰଷି − ܰ L-1). 

௡ܻ௜௧௥௔௧௘: Ratio of nitrate produced from ammonium oxidation, calculated using Eq. 

A.1.2 (1.0298 mg	ܰܪସା − ܰ/mg	ܱܰଷି − ܰ). 

The nitrogen requirement by the heterotrophic bacteria is calculated based on the 

COD removed by heterotrophic bacteria. The COD concentration was measured in 

the influent and effluent. The total COD removed is equal to the differences 

between fed and measured concentrations in the effluent. The equation used (Eq. 

B.1.4) is proposed by Ekama and Wentzel (2008): 

ௌܰ = ܵ஼ை஽	 ே݂	Q ቂ ଵି௒ಹೡଵା௕ಹௌோ் (1 + ு݂ܾுܴܵܶ)ቃ                           Eq. B.1.4 

Where: 

ௌܰ: Concentration of N that is incorporated into the sludge mass (mg ܰܪସା − ܰ d-

1). ܵ஼ை஽ : COD concentration removed (mg COD L-1), oxidized and taken up by 

denitrification. 

ே݂: N content in the sludge (0.1 mg N mg VSS-1). 

ுܻ௩: Specific yield coefficient for OHO (0.45 mg VSS mg COD-1). 
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ܾு: Endogenous respiration rate (0.24 d-1). 

ு݂: Endogenous residues fraction (0.2). 

Algae growth was calculated as the difference between the total ammonium 

removed in the system and the ammonium removed by nitrifiers and OHO growth 

(Eq. B.1.5): ܵேுସ_௔௟௚௔௘ = ܵேுସ_் −	ܵேுସ,஺ை஻,ேை஻ − ௌܰ                  Eq. B.1.5 

Where S୒ୌସ_ୟ୪୥ୟୣ: Ammonium nitrogen removed by algae (mg d-1). 

B.2. BIOMASS CHARACTERIZATION 

The calculation of the biomass characterization allowed to distinguish the different 

microorganism (nitrifiers, OHO and algae) fractions within the microalgal-bacterial 

consortia. The nitrogen mass balance and the total organic carbon removed was 

used as base for the determination of the biomass characterization. 

B.2.1 Biomass production for nitrifiers 

Based on the total ammonium removed by nitrifiers and the nitrogen growth 

requirements (calculated from Eq. B.1.2), the biomass production was determined 

using Eq. B.2.1.: ܺܯ௏ௌௌ_஺ை஻,ேை஻ = S୒ୌସ_୅୓୆,୒୓୆ ∗ ௏ܻௌௌ,஺ை஻,ேை஻                     Eq. B.2.1 

Where: ܺܯ௏ௌௌ_஺ை஻,ேை஻: Biomass production per day of nitrifiers VSS (mg VSS d-1). 

௏ܻௌௌ,஺ை஻,ேை஻: Nitrifiers yield coefficient of 0.24 mgVSS mgܰܪସା − ܰ-1 based on Eq. 

(B.1.2). 
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B.2.2 Heterotrophic biomass production 

Heterotrophic biomass includes aerobic heterotrophic bacteria and denitrifiers 

(anoxic heterotrophic bacteria). Eq. B.2.2 is taken from Ekama and Wentzel (2008b) 

and the calculation is based in the biodegradable organic load and the SRT of the 

system. 

௏ௌௌ_ைுைܺܯ = ቀܳ	ܵ஼ை஽ ௒ಹೡௌோ்(ଵା௕ಹௌோ்) + 	ܳ	ܵ஼ை஽ ௒ಹೡௌோ்(ଵା௕ಹௌோ்)	 ு݂ܾுܴܵܶቁ ܴܵܶ൘ 	     Eq. B.2.2 

Where: ܺܯ௏ௌௌ_ைுை: Biomass production per day of OHO bacteria (mg VSS d-1). ܵ஼ை஽: The total biodegradable organics, the value taken for the calculation was the 

total organics removed in the reactor (COD oxidation and COD for denitrification) 

(mg COD L-1). 

A.2.3 Algae biomass production 

The biomass production of algae for each cycle was calculated using their nitrogen 

growth requirements, which was calculated using the equation proposed by Mara 

(2004) and the amount of ammonium taken up by algae: 

ଶܱܥ106 + ଶܱܪ236 + ସାܪ16ܰ + ܲܪ ସܱଶି ௟௜௚௛௧ሱۛ ሮۛ ଵ଼ଵܪଵ଴଺ܥ ସܱହ ଵܰ଺ܲ + 118ܱଶ	 +171ܪଶܱ + ௏ௌௌ_௔௟௚௔௘ܺܯ ା                             Eq.B.2.3ܪ14 = ܵேுସ_௔௟௚௔௘ ∗ ௏ܻௌௌ_௔௟௚௔௘                Eq.B.2.4 																																
Where: ܺܯ௏ௌௌ_ୟ୪୥ୟୣ: Production of algae VSS in the reactor (mgVSS d-1). 
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୚ܻୗୗ_ୟ୪௚௔௘: Algae yield coefficient per ammonium taken of 10.83 mgVSS mgܰܪସା −ܰ-1 based on Eq. (B.2.3).  

A.2.3 Total biomass production 

The biomass characterization was obtained based on the sum of the total biomass 

production per day. ܺܯ௏ௌௌ = ௏ௌௌ_஺ை஻,ேை஻ܺܯ	 + ௏ௌௌ_ைுைܺܯ  ௏ௌௌ_ୟ୪୥ୟୣ           Eq. B.2.5ܺܯ	+

Where: ܺܯ௏ௌௌ: Total biomass production in the reactor (mgVSS d-1). 

The biomass distribution respecting to the total VSS within the photobioreactor 

was calculated as follows: 

ݏݎ݂݁݅݅ݎݐ݅݊% = ௏ௌௌ_஺ை஻,ேை஻ܺܯ ௏ௌௌൗܺܯ                            Eq. B.2.6 

ܱܪܱ% = ௏ௌௌ_ைுைܺܯ ௏ௌௌൗܺܯ                                   Eq. B.2.7 

%݈ܽ݃ܽ݁ = ௏ௌௌ_ୟ୪୥ୟୣܺܯ ௏ௌௌ൘ܺܯ                                 Eq. B.2.8 

 

B.3. AMMONIUM REMOVAL MODELLING 

In order to determine the volumetric and specific ammonium removal rate, the 

ammonium removal measured for the cycles in each of the period was modelled in 

Aquasim. The model used as a base for the algal-bacterial system was published by 

Arashiro et al. (2016). The equations for the nitrifiers, OHO and algae processes 

were used as stated by the author. In the same way, the yields and kinetics were 

used as defined by Arashiro et al. (2016). The only parameters that were modified 
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were the biomass characterization, light intensity, ammonium, nitrate, nitrite and 

oxygen concentrations and reactor characteristics (dimensions). 

A.3.1 Ammonium fitting 

The fitting of the ammonium profile for period 1 (4 cycles) was done using all the 

cycles and taking into account that there was just one feeding per cycle for this 

period. The operational scheme of these periods 2A, 2B and 2C had two feeding 

times, therefore, the fitting of the ammonium was done for both feedings. Figure 

B.3.1 presented an example of a cycle during period 2B. The cycles during periods 

2A, 2B and 2C had the same trend in relation with the N-compounds and oxygen 

concentrations. During the fitting, the parameters that were modified were the 

growth rate of AOB, NOB and algae and the half saturation constants of AOB for 

ammonium and oxygen.  

 

 



Appendix B 

 

244 

 

 

Figure B.3.1. Cycle on a day 117 during period 2B. NH4+-N ( ), NO3--N ( ), 

and NO2--N ( ) and Oxygen (solid line) 

During the fitting of each period, the biomass, nitrogen compound and oxygen 

concentrations were changed. The biomass of each microorganisms was determined 

using Equations B.2.6, B.2.7 and B.2.8, and the average biomass concentration for 

that period. For instance during period 2A, the biomass was characterized as 2.2% 

nitrifiers, 23.8% OHO and 74.0% algae. The average VSS concentration for that 

period was 2640 mg VSS L-1, thus nitrifiers, OHO and algae biomass were 58.2, 

627.4 and 1954.4 mg VSS L-1, respectively. These values were introduced in the 

model in units of mg COD L-1. Thus, in the case of bacteria (OHO and nitrifiers) 

the conversion factor used was 1.48 mg COD mg VSS-1 (Ekama and Wentzel, 2008b) 

and for algal biomass the factor was 0.953 mg COD mg VSS-1 (Zambrano et al., 

2016). Figure B.3.2 present the fitting for the ammonium removal for the different 

periods. 
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Figure B.3.2 Measured (markers) and modelled (solid line) ammonium 

concentration data for the different periods. 
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B.4. OXYGEN MASS BALANCE 

The oxygen mass balance was calculated in periods 2A, 2B and 2C, since during 

these periods the oxygen concentration data was detailed and complete. This allows 

to determine the change of oxygen in a fixed period of time. Furthermore, the 

oxygen balance was aimed to determine the mass of oxygen production by algae 

and the oxygen consumption by the different aerobic processes in a day (mg O2 d-

1). Therefore, the balance was calculated for the light phases of the cycles.  The 

approach followed was: 

B.4.1 Determination of the oxygen transfer coefficient of the reactor. 

The oxygen transfer was measured using the same approach by Zalivina (2014) and 

the transfer coefficient determined was 0.48 h-1. 

B.4.2 Oxygen mass balance equation for determination of the O2 produced by algae. 

During the light period, considered the aerobic periods, the oxygen mass balance 

was defined as follows:  ܱ݀ܵଶ݀ݐ = ௔൫ܱܵଶ_ௌܮܭ − ܱܵଶ൯ + ܱଶ_௔௟௚௔௘ − ܱଶ_௡௜௧௥ − ܱଶ_ைுை − ܱଶ_௥௘௦௣ೌ೗೒ೌ೐ − ܱଶ_௥௘௦௣ೀಹೀ	 
Eq. B.4.1 

Where: ܱܵଶ: Oxygen concentration in the bulk liquid (mg O2 L-1). ܮܭ௔: Oxygen coefficient transfer (0.48 h-1) ܱܵଶ_ௌ: Saturation oxygen concentration (mg O2 L-1). ܱଶ_௔௟௚௔௘: Oxygen production by algae (mg O2 L-1). ܱଶ_௡௜௧௥: Oxygen consumption by nitrifiers (mg O2 L-1). 
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ܱଶ_ைுை: Oxygen consumption for COD oxidation by OHO (mg O2 L-1). ܱଶ_௥௘௦௣ೌ೗೒ೌ೐: Oxygen respiration by algae (mg O2 L-1). 

ܱଶ_௥௘௦௣ೀಹೀ	: Oxygen respiration by OHO (mg O2 L-1). ܮܭ௔൫ܱܵଶ_ௌ − ܱܵଶ൯: Oxygen transfer (mg O2 L-1 h-1).  

 

Eq. B.4.1 was solved to determine the oxygen produced by algae. The solution is 

stated in Eq. B.4.2: 

 ܱଶ_௔௟௚௔௘ = ܱܵଶ + ܱଶ_௡௜௧௥ + ܱଶ_ைுை + ܱଶ_௥௘௦௣ೌ೗೒ೌ೐ + ܱଶ_௥௘௦௣ೀಹೀ	 − ௔൫ܱܵଶ_ௌܮܭ − ܱܵଶ൯ 
       Eq. A.4.2 

B.4.3 Oxygen transfer 

The oxygen transfer was calculated from the oxygen data. For each time step the 

oxygen transfer was calculated, and later summed up for the two aerobic periods 

(light phase). The first aerobic period started at 0.3 h and finished at 5 h and the 

second aerobic started at 5.3 h and finished at 11 h. Eq. B.4.3 was used to calculate 

the oxygen transfer in terms of mg O2 L-1. 

(ଵିܮଶܱ	݃݉)	ݎ݂݁ݏ݊ܽݎݐ	݊݁݃ݕݔܱ  = ∑ቀ݈ܭ௔൫ܱܵଶೞ − ܱܵଶ೟ୀ௜;௧ୀ௜ାଵ൯ ∗ ௜ାଵݐ) −         						௜)ቁݐ
Eq. B.4.3 
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B.4.4 OHO bacterial respiration 

The endogenous bacterial respiration by OHO (ܱଶ_௥௘௦௣ೀಹೀ	) was calculated in terms 

of mass of oxygen utilized per day based on Eq. B.4.4 (Ekama and Wentzel, 2008b). 

This equation takes into account the endogenous fraction within the OHO biomass 

and the COD load in the reactor. 

 ܱଶ_௥௘௦௣ೀಹೀ	 = ܵ஼ை஽ ቂ(1 − ு݂)ܾு ௒ಹೡ௙೎ೡௌோ்(ଵା௕ಹௌோ்)ቃ                         Eq. B.4.4 

Where: 

௖݂௩: COD/VSS ratio for activated sludge (mg COD mg VSS-1). 

 

B.4.5 Algal respiration 

The algal respiration was calculated taking into account the dark zones in the 

reactor, as algal respiration is higher at dark conditions. To determine the dark 

zone (Dz) in the reactor at different SRTs, the incident light intensity was measured 

on 12 points outside the reactor wall (Figure B.4.1a). The average incident light 

intensity was 25.9 µmol m-2 s-1. To calculate the penetration of light a different 

points inside the reactor the Lambert-Beer equation was used. In order to simplify 

the calculation, it was assumed that the reactor had a rectangular shape with a 

light path of 0.075 m, which corresponds to the radius of the circular reactor (Figure 

B.4.1b). This calculation was done for each period. In period 1, the light penetration 

was just up to 1 cm. For the periods 2A, 2B and 2C, the light reach up to 2 to 4 

cm inside the reactor (Figure B.4.2). 
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Figure B.4.1. (A) Incident light over the photobioreactor and location of the 

measuring points and (B) rectangular representation of the photobioreactor for 

simplification of the light measurement 

 

Figure B.4.2. Light penetration from the surface to the centre of the 

photobioreactor estimated using the Lambert-Beer equation. 

Based on this data, the dark zones inside the reactor were estimated. The values 

were 0.9, 0.78, 0.36 and 0.17% for periods 1, 2A, 2B and 2C. 
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Furthermore, with the value of the dark zones, the dark respiration coefficient of 

0.1 d-1 (Zambrano et al., 2016) and the algal biomass (calculated in the biomass 

characterization), the algal respiration was calculated using Eq. B.4.5.: 

 ܱଶ_௥௘௦௣ೌ೗೒ೌ೐ = 	ܺ௏ௌௌ_ୟ୪୥ୟୣ	 ௖݂௩,௔௟௚௔௘	ݖܦ	ܾ௔௟௚௔௘	݈݁ܿݕܥ	݁݉݅ݐ            Eq. B.4.5 

Where: ܱଶ_௥௘௦௣ೌ೗೒ೌ೐: Oxygen respire by algae (mg O2 L-1). 

ܺ௏ௌௌ_ୟ୪୥ୟୣ: Algal biomass concentration (mg VSS L-1). 

௖݂௩,௔௟௚௔௘: COD/VSS ratio for algal biomass (0.953 mg COD mg VSS-1). ݖܦ: Dark zone fraction within the reactor. ܾ௔௟௚௔௘: Dark respiration coefficient for algal biomass (0.1 d-1) 

 

B.4.6 Oxygen consumption by nitrifiers and COD oxidation. 

The oxygen consumed by nitrification was calculated based on the nitrate formation 

and the O2 requirements of 4.57 mg O2 mg NH4
+- N-1 nitrified to nitrate, as defined 

by Ekama and Wentzel (2008b). The maximum nitrate formation in a determined 

period of time and Eq. B.1.3 was used to determine the nitrification. 

The oxygen requirement for COD oxidation (ܱଶ_ைுை) was determined based on the 

total amount of COD oxidised, which corresponds to the total COD removed minus 

the COD required for denitrification. Eq. A.4.6 utilized was proposed by Ekama 

and Wentzel (2008b): 
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ܱଶ_ைுை = ܵ஼ை஽೚ೣ೔(1 − ௖݂௩ ுܻ௩)                                  Eq. B.4.6 

Where: ܱଶ_ைுை: Oxygen used for COD oxidation (mg O2 L-1). ܵ஼ை஽೚ೣ೔: COD concentration oxidized (mg COD L-1). 
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C.1. MODEL INPUTS, PROCESSES, RATES AND STOICHIOMETRY 

Table C.1 List of variables used as input for the model (R1 and R2 at day 49 of 

phase 2) 

Symbol State variable Unit R1 R2 ܮ Effective light path m 0.08 0.08 ܫ଴ Incident irradiance 
μmol photon 

m-2 s-1 
84 84 

ூܵ Soluble inert organics g COD m-3 10 10 ܵேுర Ammonium g N m-3 88.69 87.20 ܵேைమ Nitrite nitrogen g N m-3 1.63 5.5 ܵேைయ Nitrate nitrogen g N m-3 0.21 0.93 ܵேమ Nitrogen gas g N m-3 0 0 ܵைమ Dissolved oxygen g O2 m-3 2.33 1.45 

ௌܵ Readily 
biodegradable 
substrate 

g COD m-3 746 646 

஺ܺை஻ AOB biomass g COD m-3 300 265 ܺேை஻ NOB biomass g COD m-3 5 8 

ூܺ Inert particulate 
organics 

g COD m-3 50 66 

ܺு 
Heterotrophic 
biomass 

g COD m-3 300 396 ܺ௉ Phototrophic biomass g COD m-3 1220 1597 

ௌܺ Slowly biodegradable 
substrate 

g COD m-3 748 765 

ௌ்ܺை 
Organics stored by 
heterotrophs 

g COD m-3 50 50 
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Table C.2 List of coefficients for model elaboration and calibration. 

Symbol Model parameter Value 
Calibrated 

value 
Unit Reference 

 ௠௔௫,஺ை஻ߤ
Maximum specific 

growth rate of AOB 
0.9  d-1 

Kaelin et al. 
(2009) 

 ௠௔௫,ுߤ
Maximum specific 

growth rate of 
heterotrophs 

2  d-1 
Henze et al. 

(2000) 

 ௠௔௫,ேை஻ߤ
Maximum specific 

growth rate of NOB 
0.65  d-1 

Kaelin et al. 
(2009) 

 ௠௔௫,௉ߤ
Maximum specific 

growth rate of 
phototrophs 

0.96 0.85 d-1 
Sasi et al. 

(2011) 

஺ܾை஻ 
Respiration rate 

constant for AOB 
0.061  d-1 

Iacopozzi et 
al. (2007) 

஺ܾை஻,ேை௫ Anoxic respiration rate 
constant for AOB 

0.05  d-1 
Henze et al. 

(2000) ܾேை஻ 
Respiration rate 

constant for NOB 
0.061  d-1 

Iacopozzi et 
al. (2007)  ܾேை஻,ேை௫ Anoxic respiration rate 

constant for NOB 
0.05  d-1 

Henze et al. 
(2000) 

ܾு 
Aerobic endogenous 
respiration rate for 

heterotrophs 
0.1  d-1 

Iacopozzi et 
al. (2007) 

ܾௌ்ை,ைమ Aerobic respiration 
rate for ௌ்ܺை 

0.2  d-1 
Henze et al. 

(2000) 

ܾ௉ 
Respiration rate 

constant for 
phototrophs 

0.09  d-1 
Wolf et al. 

(2007) 

ௌ݂ூ Production of ூܵ in 
hydrolysis 

0  ൫g CODௌ಺൯(g COD௑౏)ିଵ Henze et al. 
(2000) 

௑݂಺ Production of ூܺ in 
endogenous respiration 

0.2 
 

 

g COD௑౅ ൫g COD௑ా౉൯ିଵ 
 

Henze et al. 
(2000) 
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Symbol Model parameter Value 
Calibrated 

value 
Unit Reference 

 ௦ Light intensityܫ
saturation 

13 4 
μmol photon 

m-2 s-1 
Martínez et 
al. (1991) 

݅ே,஻ெ 
N content of bacterial 
biomass (ܺு, ஺ܺை஻, ܺேை஻) 

0.07  
g N (g COD௑ా౉)ିଵ Henze et al. 

(2000) 

݅ே,௉ 
N content of algal 

biomass (ܺ௉) 
0.0657  

g N (g COD௑ౌ)ିଵ Calculated 
in this work݅ே,ௌ಺ N content of ܵூ 0.01  

g N (g CODௌ౅)ିଵ Henze et al. 
(2000) ݅ே,ௌೄ N content of ௌܵ 0.03  

g N (g CODௌ౏)ିଵ Henze et al. 
(2000) ݅ே,௑಺ N content of ூܺ 0.02  

g N (g COD௑౅)ିଵ Henze et al. 
(2000) ݅ே,௑ೄ N content of ௌܺ 0.04  

g N (g COD௑౏)ିଵ Henze et al. 
(2000) ݇ 

Light extinction 
coefficient 

0.0748  m2/g TSS 
Calculated 
in this work݇ு 

Hydrolysis rate 
constant 

3  
g COD௑౏ ൫g COD௑ౄ൯ିଵ݀ି Henze et al. 

(2000) ݇ௌ்ை Storage rate constant 5  
g CODௌ౏ ൫g COD௑ౄ൯ିଵ݀ି Henze et al. 

 ௑ܭ (2000)
Hydrolysis saturation 

constant 
1  

g COD௑౏ ൫g COD௑ౄ൯ିଵ Henze et al. 
 ௌ்ைܭ (2000)

Saturation constant 
for ௌ்ܺை 

1  
g COD௑౏౐ో ൫g COD௑ౄ൯ିଵ Henze et al. 

 ூ,ேுర Ammonia inhibition ofܭ (2000)
nitrite oxidation 

5  g NH4
+ N m-3 

Iacopozzi et 
al. (2007)  ܭூ,ைమ Oxygen inhibition for 

heterotrophs 
0.2  g O2 m-3 

Kaelin et al. 
 ேுర,஺ை஻ܭ (2009)

Saturation constant 
for ܵேுర for AOB 

2.4  g N m-3 
Wiesmann 

(1994) 
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Symbol Model parameter Value 
Calibrated 

value 
Unit Reference 

 ேுర,ுܭ
Saturation constant 

for ܵேுరfor 
heterotrophs 

0.01  g N m-3 
Henze et al. 

(2000) 

 ேுర,௉ܭ
Saturation constant 

for ܵேுర for 
phototrophs 

0.017 0.00021 g NH3 m-3 
Wolf et al. 

(2007) 

 ேைమ,,஺ை஻ܭ
Saturation constant 
for ܵேைమ for AOB 

0.28  g NO2
--N m-3 

Manser et 
al. (2005) 

 ேைమ,,ுܭ
Saturation constant 

for ܵேைమ for 
heterotrophs 

0.5  g NO3
--N m-3 

Henze et al. 
(2000) 

 ேைమ,,ேை஻ܭ
Saturation constant 
for ܵேைమ for NOB 

0.28  g NO2
--N m-3 

Manser et 
al. (2005) 

 ேைయ,,ுܭ
Saturation constant 

for ܵேைయ for 
heterotrophs 

0.5  g NO3
--N m-3 

Henze et al. 
(2000) 

 ேைయ,,ேை஻ܭ
Saturation constant 
for ܵேைయ for NOB 

0.28  g NO2
--N m-3 

Manser et 
al. (2005) ܭைమ,஺ை஻ 

Saturation constant 
for ܵைమ for AOB 

0.79  g O2 m-3 
Manser et 
al. (2005) 

 ைమ,ுܭ
Saturation constant 

for ܵைమ for 
heterotrophs 

0.2  g O2 m-3 
Henze et al. 

(2000) 

 ைమ,ேை஻ܭ
Saturation constant 

for ܵைమ for NOB 
0.47  g O2 m-3 

Manser et 
al. (2005) ܭௌ,ு 

Saturation constant 
for ௌܵ for heterotrophs 

2  g CODௌ౩ m-3 
Henze et al. 

 ுߟ (2000)
Anoxic reduction 

factor for heterotrophs 
0.6  - 

Henze et al. 
(2000) 

஺ܻை஻ Aerobic yield of ஺ܺை஻ 0.2  
g COD௑ఽోా (g  .ௌಿಹర)ିଵ Sin et alܦܱܥ

(2008) 

ுܻ,ைమ Aerobic yield of ܺு 0.63  
g COD௑ౄ (g  .௑ೄ೅ೀ)ିଵ Henze et alܦܱܥ

(2000) 
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Symbol Model parameter Value 
Calibrated 

value 
Unit Reference 

ுܻ,ேைೣ Anoxic yield of ܺு 0.54  
g COD௑ౄ (g  .௑ೄ೅ೀ)ିଵ Henze et alܦܱܥ

(2000) 

ேܻை஻ Aerobic yield of ܺேை஻ 0.05  
g COD௑ొోా (g  .ௌಿೀమ)ିଵ Sin et alܦܱܥ

(2008) 

ௌ்ܻை,ைమ Aerobic yield of ௌ்ܺை 
in of ܺு 

0.85  
g COD௑ౄ (g  .ௌೄ)ିଵ Henze et alܦܱܥ

(2000) 

ௌ்ܻை,ேைమ Anoxic yield of ௌ்ܺை in 
of ܺு on nitrite 

0.8  
g COD௑ౄ (g  .ௌೄ)ିଵ Henze et alܦܱܥ

(2000) 

ௌ்ܻை,ேைయ Anoxic yield of ௌ்ܺை in 
of ܺு on nitrate 

0.8  
g COD௑ౄ (g  .ௌೄ)ିଵ Henze et alܦܱܥ

(2000) 

 

 

 

 

 

 

 

 



C. Model inputs, processes, rates and stoichiometry

 

259 

 

Table C.3 Processes and rates of the proposed model. 
 Process Process rate equation Reference

1 Hydrolysis kு ௌܺ ܺு⁄ܭ௑ + (ܺௌ ܺு)⁄ ܺு 
Original 
ASM3 

Heterotrophic organisms (aerobic and denitrifying activity)  

2 
Aerobic 
Storage 

kௌ்ை ܵைమܭைమ,ு + ܵைమ ௌܵܭௌ,ு + ௌܵ ܺு 
Original 
ASM3 

3 
Anoxic 

Storage on 
nitrite 

kௌ்ை	ߟு ூ,ைమܭூ,ைమܭ + ܵைమ ௌܵܭௌ,ு + ௌܵ ܵேைమܭேைమ,ு + ܵேைమ ܺு 
Modified 
ASM3 

4 
Anoxic 

Storage on 
nitrate 

kௌ்ை	ߟு ூ,ைమܭூ,ைమܭ + ܵைమ ௌܵܭௌ,ு + ௌܵ ܵேைయܭேைయ,ு + ܵேைయ ܺு 
Modified 
ASM3 

5 
Aerobic 
Growth 

௠௔௫,ுߤ ܵைమܭைమ,ு + ܵைమ ܵேுరܭேுర,ு + ܵேுర ௌܵܭௌ,ு + ௌܵ ܺு 
Original 
ASM3 

6 
Anoxic 

Growth on 
nitrite 

ுߟ	௠௔௫,ுߤ 	 ூ,ைమܭூ,ைమܭ + ܵைమ ܵேுరܭேுర,ு + ܵேுర ௌ்ܺை/ܺுܭௌ்ை + (ܺௌ்ை/ܺு) ܵேைమܭேைమ,ு + ܵேைమ 	ܺு 
Modified 
ASM3 

7 
Anoxic 

Growth on 
nitrate 

ுߟ	௠௔௫,ுߤ 	 ூ,ைమܭூ,ைమܭ + ܵைమ ܵேுరܭேுర,ு + ܵேுర ௌ்ܺை/ܺுܭௌ்ை + (ܺௌ்ை/ܺு) ܵேைయܭேைయ,ு + ܵேைయ 	ܺு 
Modified 
ASM3 

8 

Aerobic 
End. 

Respiration 
of ௌ்ܺை 

ܾௌ்ை,ைమ ܵைమܭைమ,ு + ܵைమ 	 ௌ்ܺை 
Original 
ASM3 

9 

Anoxic End. 
Respiration 
of ௌ்ܺை on 

nitrite 

ܾௌ்ை,ைమ	ߟு 	 ூ,ைమܭூ,ைమܭ + ܵைమ 		 ܵேைమܭேைమ,ு + ܵேைమ ௌ்ܺை 

Modified 
ASM3 

10 

Anoxic End. 
Respiration 
of ௌ்ܺை on 

nitrate 

ܾௌ்ை,ைమ	ߟு 	 ூ,ைమܭூ,ைమܭ + ܵைమ 		 ܵேைయܭேைయ,ு + ܵேைయ ௌ்ܺை 

Modified 
ASM3 

11 
Aerobic 
End. 

Respiration 

ܾு ܵைమܭைమ,ு + ܵைమ ܺு 
Original 
ASM3 

12 
Anoxic End. 
Respiration 
on nitrite 

ܾு ுߟ ூ,ைమܭூ,ைమܭ + ܵைమ ܵேைమܭேைమ,ு + ܵேைమ ܺு 
Modified 
ASM3 
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13 
Anoxic End. 
Respiration 
on nitrate 

ܾு ுߟ ூ,ைమܭூ,ைమܭ + ܵைమ ܵேைయܭேைయ,ு + ܵேைయ ܺு 
Modified 
ASM3 

Autotrophic organisms (nitrifying activity)  

14 
Aerobic 
Growth 
(AOB) 

௠௔௫,஺ை஻ߤ ܵைమܭைమ,஺ை஻ + ܵைమ ܵேுరܭேுర,஺ை஻ + ܵேுర ஺ܺை஻ 
Modified 
ASM3 

15 

Aerobic 
End. 

Respiration 
(AOB) 

஺ܾை஻	 ܵைమܭைమ,஺ை஻ + ܵைమ ஺ܺை஻ 

Modified 
ASM3 

16 
Anoxic End. 
Respiration 

(AOB) 
஺ܾை஻,ேை௫	 ைమ,஺ை஻ܭைమ,஺ை஻ܭ + ܵைమ ܵேைమܭேைమ,஺ை஻ + ܵேைమ ஺ܺை஻ 

Modified 
ASM3 

17 
Aerobic 
Growth 
(NOB) 

௠௔௫,ேை஻ߤ 	 ܵைమܭைమ,ேை஻ + ܵைమ ܵேைమܭேைమ,ேை஻ + ܵேைమ ூ,ேுరܭூ,ேுరܭ + ܵேுర ܺேை஻ 
Modified 
ASM3 

18 

Aerobic 
End. 

Respiration 
(NOB) 

ܾேை஻ ܵைమܭைమ,ேை஻ + ܵைమ 	ܺேை஻ 

Modified 
ASM3 

19 
Anoxic End. 
Respiration 

(NOB) 

ܾேை஻,ேை௫ ைమ,ேை஻ܭைమ,ேை஻ܭ + ܵைమ ܵேைయܭேைయ,ேை஻ + ܵேைయ ܺேை஻ 
Modified 
ASM3 

Phototrophic organisms  

20 

Phototrophic 
Growth 

considering 
NH4+ 

and Light 
intensity 

௠௔௫,௉ߤ 	 ܵேுరܭேுర,௉ + ܵேுర 	ቊ1 − expቆ−ܫ௢ሾ1 − exp(−݇	்ܺ	ܮ)ሿ݇	்ܺ	ܮ	ܫ௦ ቇቋ	ܺ௉ This work

21 
Phototrophic 

End. 
Respiration 

ܾ௉ ܺ௉ This work

 

  



C. Model inputs, processes, rates and stoichiometry

 

261 

 

 

Ta
bl

e 
C.

4 
 S

to
ich

io
m

et
ric

 m
at

rix
 o

f t
he

 p
ro

po
se

d 
m

od
el.

Pr
oc

es
se

s 
/ 

V
ar

ia
bl

es

1
H

yd
ro

ly
sis

H
et

er
ot

ro
ph

ic
or

ga
ni

sm
s

(d
en

itr
ifi

er
s)

2
A

er
ob

ic
St

or
ag

e

3
A

no
xi

c
St

or
ag

e
on

ni
tr

ite

4
A

no
xi

c
St

or
ag

e
on

ni
tr

at
e

5
A

er
ob

ic
G

ro
w

th

6
A

no
xi

c
G

ro
w

th
on

ni
tr

ite

7
A

no
xi

c
G

ro
w

th
on

ni
tr

at
e

8
A

er
ob

ic
En

d.
R

es
pi

ra
tio

n
of

9
A

no
xi

c
En

d.
R

es
pi

ra
tio

n
of

on
ni

tr
ite

10
A

no
xi

c
En

d.
R

es
pi

ra
tio

n
of

on
ni

tr
at

e

11
A

er
ob

ic
En

d.
R

es
pi

ra
tio

n

12
A

no
xi

c
En

d.
R

es
pi

ra
tio

n
on

ni
tr

ite

13
A

no
xi

c
En

d.
R

es
pi

ra
tio

n
on

ni
tr

at
e



Appendix C 

 

262 

 

  

P
ro

ce
ss

es
 /

 V
ar

ia
bl

es

A
ut

ot
ro

ph
ic

or
ga

ni
sm

s
(n

itr
ifi

er
s)

14
A

er
ob

ic
G

ro
w

th
(A

O
B

)

15
A

er
ob

ic
En

d.
R

es
pi

ra
tio

n
(A

O
B

)

16
A

no
xi

c
En

d.
R

es
pi

ra
tio

n
(A

O
B

)

17
A

er
ob

ic
G

ro
w

th
(N

O
B

)

18
A

er
ob

ic
En

d.
R

es
pi

ra
tio

n
(N

O
B

)

19
A

no
xi

c
En

d.
R

es
pi

ra
tio

n
(N

O
B

)

Ph
ot

ot
ro

ph
ic

or
ga

ni
sm

s

20
Ph

ot
ot

ro
ph

ic
G

ro
w

th
co

ns
id

er
in

g
N

H
4+

an
d

Li
gh

t
in

te
ns

ity

21
Ph

ot
ot

ro
ph

ic
En

d.
R

es
pi

ra
tio

n



 

 

 

D 
APPENDIX D 

 

 

  



Appendix D 

 

264 

 

D.1 CALIBRATED AND THEORETICAL PARAMETERS OF THE 

MICROALGAL-BACTERIAL MODEL 

Table D.1 Literature and calibrated values of the microalgal-bacterial model 

Symbol Model parameter 
Literature 

value 
Calibrated 

value 
Unit Reference 

 ௠௔௫,஺ை஻ߤ
Maximum specific growth rate of 
AOB 

 1.1±0.02 d-1  

 ௠௔௫,ுߤ
Maximum specific growth rate of 
heterotrophs 

 5.5 ±0.02 d-1  

 ௠௔௫,ேை஻ߤ
Maximum specific growth rate of 
NOB 

 1.3 ±0.01 d-1  

 ௠௔௫,௉ Maximum specific growth rate ofߤ
phototrophs 

 2.0 ±0.05 d-1  

஺ܾை஻ Respiration rate constant for AOB 0.061  d-1 
Iacopozzi et al. 
(2007) 

஺ܾை஻,ேை௫ Anoxic respiration rate constant 
for AOB 

0.05  d-1 
Henze et al. 
(2000) 

ܾேை஻ Respiration rate constant for NOB 0.061  d-1 
Iacopozzi et al. 
(2007)  

ܾேை஻,ேை௫ Anoxic respiration rate constant 
for NOB 

0.05  d-1 
Henze et al. 
(2000) 

ܾு 
Aerobic endogenous respiration 
rate for heterotrophs 

0.1  d-1 
Iacopozzi et al. 
(2007) 

ܾௌ்ை,ைమ Aerobic respiration rate for ௌ்ܺை 0.2  d-1 
Henze et al. 
(2000) 

ܾ௉ 
Respiration rate constant for 
phototrophs 

0.09  d-1 Wolf et al. (2007)

ௌ݂ூ Production of ூܵ in hydrolysis 0  ൫g CODௌ಺൯(g COD௑౏)ିଵ Henze et al. 
(2000) 
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௑݂಺ Production of ூܺ  in endogenous 
respiration 

0.2 

 
 

g COD௑౅ ൫g	COD௑ా౉൯
 

Henze et al. 
(2000) 

 

 ௦ Light intensity saturation  35.0±0.4ܫ
mol 

photon 
m-2 s-1 

 

݅ே,஻ெ 
N content of bacterial biomass 
(ܺு, ஺ܺை஻, ܺேை஻) 

0.07  
g N (g COD௑ా౉) Henze et al. 

(2000) 

݅ே,௉ N content of algal biomass (ܺ௉) 0.0657  
g N (g COD௑ౌ)ିଵ Calculated in this 

work 

݅ே,ௌ಺ N content of ூܵ 0.01  
g N (g CODௌ౅)ିଵ Henze et al. 

(2000) 

݅ே,ௌೄ N content of ௌܵ 0.03  
g N (g CODௌ౏)ିଵ Henze et al. 

(2000) 

݅ே,௑಺ N content of ூܺ 0.02  
g N (g COD௑౅)ିଵ Henze et al. 

(2000) 

݅ே,௑ೄ N content of ௌܺ 0.04  
g N (g COD௑౏)ିଵ Henze et al. 

(2000) 

݇ Light extinction coefficient  
0.019 

±0.003 
m2/g TSS 

Calculated in this 
work 

݇ு Hydrolysis rate constant 3  
g COD௑౏ ൫g COD௑ౄ൯ି Henze et al. 

(2000) 

݇ௌ்ை Storage rate constant  0.88±0.03 
g CODௌ౏ ൫g COD௑ౄ൯ି Henze et al. 

(2000) 

  ௑ Hydrolysis saturation constant 1ܭ
g COD௑౏ ൫g COD௑ౄ൯ି Henze et al. 

(2000) 

  ௌ்ை Saturation constant for ௌ்ܺை 1ܭ
g COD௑౏౐ో ൫g COD௑ౄ൯ି Henze et al. 

(2000) 

 ூ,ேுర Ammonia inhibition of nitriteܭ
oxidation 

5  
g NH4+ N 

m-3 
Iacopozzi et al. 
(2007)  
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ூ,ைమ Oxygen inhibition for heterotrophsܭ 0.2  g O2 m-3 
Kaelin et al. 
(2009) 

 ேுర,஺ை஻ܭ
Saturation constant for ܵேுర  for 
AOB 

 0.13±0.02 g N m-3  

 ேுర,ுܭ
Saturation constant for ܵேுర for 
heterotrophs 

0.01  g N m-3 
Henze et al. 
(2000) 

 ேுర,௉ܭ
Saturation constant for ܵேுర  for 
phototrophs 

 0.01±0.00 g NH3 m-3  

 ேைమ,,஺ை஻ܭ
Saturation constant for ܵேைమ  for 
AOB 

0.28  
g NO2- N 

m-3 
Manser et al. 
(2005) 

 ேைమ,,ுܭ
Saturation constant for ܵேைమ  for 
heterotrophs 

0.5  
g NO3- N 

m-3 
Henze et al. 
(2000) 

 ேைమ,,ேை஻ܭ
Saturation constant for ܵேைమ  for 
NOB 

0.28  
g NO2- N 

m-3 
Manser et al. 
(2005) 

 ேைయ,,ுܭ
Saturation constant for ܵேைయ  for 
heterotrophs 

0.5  
g NO3- N 

m-3 
Henze et al. 
(2000) 

 ேைయ,,ேை஻ܭ
Saturation constant for ܵேைయ  for 
NOB 

0.28  
g NO2- N 

m-3 
Manser et al. 
(2005) 

 ைమ,஺ை஻ܭ
Saturation constant for ܵைమ  for 
AOB 

 0.75±0.01 g O2 m-3  

 ைమ,ுܭ
Saturation constant for ܵைమ  for 
heterotrophs 

0.2  g O2 m-3 
Henze et al. 
(2000) 

 ைమ,ேை஻ܭ
Saturation constant for ܵைమ  for 
NOB 

0.47  g O2 m-3 
Manser et al. 
(2005) 

 ௌ,ுܭ
Saturation constant for ௌܵ  for 
heterotrophs 

2  
g CODௌ౩ 

m-3 
Henze et al. 
(2000) 

 ுߟ
Anoxic reduction factor for 
heterotrophs 

0.6  - 
Henze et al. 
(2000) 

஺ܻை஻ Aerobic yield of ஺ܺை஻ 0.2  
g COD௑ఽోా (g (ௌಿಹరܦܱܥ Sin et al. (2008) 
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ுܻ,ைమ Aerobic yield of ܺு 0.63  
g COD௑ౄ (g (௑ೄ೅ೀܦܱܥ Henze et al. 

(2000) 

ுܻ,ேைೣ Anoxic yield of ܺு 0.54  
g COD௑ౄ (g (௑ೄ೅ೀܦܱܥ Henze et al. 

(2000) 

ேܻை஻ Aerobic yield of ܺேை஻ 0.05  
g COD௑ొోా (g (ௌಿೀమܦܱܥ Sin et al. (2008) 

ௌ்ܻை,ைమ Aerobic yield of ௌ்ܺை in of ܺு 0.85  
g COD௑ౄ (g ௌೄ)ିଵܦܱܥ Henze et al. 

(2000) 

ௌ்ܻை,ேைమ Anoxic yield of ௌ்ܺை  in of ܺு  on 
nitrite 

0.8  
g COD௑ౄ (g ௌೄ)ିଵܦܱܥ Henze et al. 

(2000) 

ௌ்ܻை,ேைయ Anoxic yield of ௌ்ܺை  in of ܺு  on 
nitrate 

0.8  
g COD௑ౄ (g ௌೄ)ିଵܦܱܥ Henze et al. 

(2000) 
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D.2 CALIBRATION AND VALIDATION OF THE MICROALGAL-
BACTERIAL MODEL IN BATCH MODE 

Table D.2 Calibrated parameters for the algal-bacterial model  

Symbol Model parameter Value Unit 

 Light intensity ࢙ࡵ
saturation 

35.0±0.4 µmol photon m-2 s-1 

࢑ 
Light extinction 

coefficient 
0.005±0.001 m2 gTSS-1 

 ࡮ࡻ࡭,૝ࡴࡺ࢑
Half saturation 

constant for ܵேுరfor 
AOB 

0.13±0.02 g N m-3 

 ࡮ࡻ࡭,૛ࡻࡷ
Half saturation 

constant for ܵைమfor 
AOB 

0.75±0.01 g O2 m-3 

 Half saturation ࡼ,૝ࡴࡺࡷ
constant for ܵேுరfor 

phototrophs 
0.01±0.00 g N m-3 

 ࡮ࡻ࡭,࢓ࣆ
Maximum growth 

rate of AOB 
0.45±0.02 d-1 

 ࡮ࡻࡺ,࢓ࣆ
Maximum growth 

rate of NOB 
0.31±0.01 d-1 

 ࡼ,࢓ࣆ
Maximum growth 
rate of phototrophs 

0.85±0.05 d-1 

 Storage rate constant 0.88±0.03 ࡻࢀࡿ࢑
g CODSs g CODXH

-1 d-

1 
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Figure D.1 Modelled and measured data for (A) NO3--N, (B) NH4+-N, (C) COD 
and (D) O2 concentrations during period 1A. Solid line: model data during period 

2A; measured data during period 1A in cycles C1 ( ), C2 ( ), C3 ( ). 
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Figure D.2 Modelled and measured data for (A) NO3--N, (B) NH4+-N, (C) COD 
and (D) O2 concentrations during period 2C. Solid line: model data during period 
2C; measured data during period 2C in cycles C1 ( ), C2 ( ), C3 ( ), C4 ( ). 

 

 

 

 

 

 

 

 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

N
O

3-
-

N
 (

m
g 

L-
1 )

Time (h)

A
IOA:0.77

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

N
H

4+
-

N
 (

m
g 

L-
1 )

Time (h)

B
IOA:0.76

0

10

20

30

40

50

60

70

80

90

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

C
O

D
 (

m
g 

L-
1 )

Time (h)

C
IOA:0.91

0

2

4

6

8

10

12

14

16

18

20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

O
2 
(m

g 
L-

1 )

Time (h)

D
IOA:0.84



D. Calibration and validation of the microalgal-bacterial model

 

271 

 

D.3 CALIBRATION AND VALIDATION OF THE MICROALGAL-

BACTERIAL MODEL IN SEQUENCING BATCH MODE 

D.3.1 Biomass production validation 

 

 

Figure D.3 Biomass modelled in the microalgal-bacterial reactor for period 1A 

and 1C.  
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D.3.2 N-compound concentrations measured and modelled in sequencing batch 

mode 

 

Figure D.4 Modelled and measured data for ammonium, nitrate, nitrite, oxygen 

and COD during period 1A. Ammonium ( ), nitrate ( ), nitrite 

concentration ( ), oxygen ( ), COD ( ) and  measured data ( ). 
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Figure D.5 Modelled and measured data for ammonium, nitrate, nitrite, oxygen 

and COD during period 1C. Ammonium ( ), nitrate ( ), nitrite 

concentration ( ), oxygen ( ), COD ( ) and  measured data ( ). 
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D.3 SRT SCENARIOS 

Figure D.7 N-compounds concentration and oxygen concentration for modelled 

SRTs: 15, 3, 1 and 0.8 days . Ammonium ( ), nitrate ( ), nitrite 

concentration ( ), oxygen ( ). 
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Figure D.8 N-compounds concentration and oxygen concentration for 3 days SRT 

and COD concentration of 175 mgCOD L-1. Ammonium ( ), nitrate ( ), 

nitrite concentration ( ), oxygen ( ). 
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Appendix E. New parameters included in the mathematical model 

Table E.1 New included parameters in the algal-bacterial model  

Symbol Model parameter Unit 

 ࡺࢄ
Stored nitrogen 
concentration 

g N m-3 

 ࡺ,࢕࢑࢙࢚
Storage rate of 

nitrogen in the algal 
biomass 

g N gCODX_P-1 d-1 

 ࡺ,ࡻࢀࡿࡷ
Saturation constant 
for nitrogen storage 

g N m-3 

 Maximum fraction of ࢞ࢇ࢓,࢔ࢌ
nitrogen stored in the 
microalgal biomass 

gN gCODX_P-1 

 ࢔ࢌ
Fraction of nitrogen 

stored in the 
microalgal biomass 

g N gCODX_P-1 

 ࡺ,ࡻࢀࡿ,࢓ࣆ
Microalgal maximum 
growth rate on stored 

nitrogen 
d-1 

 ࡳࡱࡾࡺࢄࢌ
Regulation constant 

of the microalgal 
biomass 

g NSTO g CODXP
-1 
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Table E.2 New processes and rates for the phototrophic organisms included in 

the mathematical model 

 Process Process rate equation Reference

Phototrophic organisms  

20 
Nitrogen 

storage  

ܵேுరܵேுర + ௦,ேுరܭ ݇௦௧௢,ே ௡݂,௠௔௫ − ௡݂൫ ௡݂,௠௔௫ − ௡݂൯ + ௌ்ை,ேܭ ܺ௉ This work

21 

Phototrophic 

Growth 

considering 

NH4+ 

and Light 

intensity 

௠௔௫,௉ߤ 	 ܵேுరܭேுర,௉ + ܵேுర 	ቊ1 − expቆ−ܫ௢ሾ1 − exp(−݇	்ܺ	ܮ)ሿ݇	்ܺ	ܮ	ܫ௦ ቇቋ	ܺ௉ This work

22 

Phototrophic 

Growth on 

NH4+ stored  

and Light 

intensity 

௠,ௌ்ை,ேߤ 	 ܵேுరܭேுర,௉ + ܵேுర ቊ1
− expቆ−ܫ௢ሾ1 − exp(−݇	்ܺ	ܮ)ሿ݇	்ܺ	ܮ	ܫ௦ ቇቋ	൞ ܺேܺ௉ܭௌ்ை,ே,௉ + ܺேܺ௉ 	

ܺேܺ௉௑݂ோಿாீ ൢܺ௉ 
This work

23 

Phototrophic 

End. 

Respiration 

ܾ௉	ܺ௉ This work
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Nitrogen rich wastewaters (10-400 mg N L-1) 
are usually produced by municipal, 
industrial and agricultural wastes, such as 
effluents from anaerobic treatments. These 
represent a risk to the environment due to 
the high nutrient concentrations (nitrogen 
and phosphorous), which can cause 
eutrophication of water bodies, deteriorating 
the quality of the ecosystems. As a solution, 
the potential nitrogen removal capacity of 
a novel bio-treatment system, namely the 
Photo-Activated Sludge (PAS), composed 
of microalgae and bacteria consortia, 
was studied. The aim of this research is 
to maximize the efficiency of microalgal-
bacterial consortia for nitrogen removal. 
The research will focus on investigating 
the kinetics of the microorganisms involved 
(heterotrophs, autotrophs and phototrophs), 
and the optimal operational conditions such 
as hydraulic retention time (HRT) and solids 
retention time (SRT) in order to optimize 

the removal efficiency of the microalgal-
bacterial consortia. Experimental work 
using photobioreactors for the cultivation of 
microalgae and bacteria under sequencing 
batch conditions showed that microalgal-
bacterial consortia can remove ammonium 
50% faster than solely microalgal consortia. 
The increase in ammonium removal rates 
was due to the action of nitrifying bacteria, 
supplied with oxygen produced by algae. 
Based on this, microalgal-bacterial consortia 
are able to effectively remove nitrogen at 
shorter SRTs and HRTs than usually used 
in algal systems, showing high ammonium 
removal efficiencies. Furthermore, this thesis 
propose design criteria for high rate algae 
ponds using the PAS system for wastewater 
treatment as a simple, yet innovative, 
technology with low energy requirements 
and high removal efficiencies of organic 
compounds and nutrients.

This book is printed on paper 
from sustainably managed 
forests and controlled sources
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