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Chapter 1 

1 Introduction 

  



2  Introduction 

1.1 Introduction 

The term ‘landslide’ represents the movement of a mass of rock, debris, or earth 
down a slope, under the influence of gravity (Cruden 1996). Landslides can be 
classified into fall, topples, slide, flow, spread and complex landslides, based on the 
type of movement (Figure 1) (Varnes 1978; Crozier 1986; Cruden 1996). Complex 
landslides contain a combination of two or more principle types of movements at 
the same time, during the evolution of the landslide. 
 

 

 

Figure 1.1. Classification of landslides according to the type of movement (Cruden 
1996) 

Intense or prolonged rainfall, earthquakes, and rapid snowmelt are the main 
external triggers in areas susceptible to landslides. Also, the intensive exploitation 
of land by humans for building infrastructure (i.e., railway and road construction, 
new settlements) are increasing the occurrence of landslides in landslide prone 
areas (Guzzetti 2006).  
 
Landslides are geo-hydromorphological natural events that have disastrous 
impacts on society and the environment. They cause fatalities and economic losses 
with negative long-term socio-economic effects. Petley (2012) analyzed the global 
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pattern of fatalities that resulted from landslides. He concluded that from 2004 to 
2010, 2620 fatal landslides occurred globally with a total of 32,322 recorded 
deaths. Also, regarding the economic losses from landslides, Brabb (1991) assessed 
that the annual economic losses and damages arising from landslides could be tens 
of billions of dollars. The impacts of landslides on the environment can be long-
lasting. Landslides change the topography of earth surface, the structure of rivers 
and streams and quality of water, cause deforestation and change the habitat of 
natural wildlife (Geertsema et al. 2009).  

1.2 Landslide inventory maps  

The spatial distribution of landslides are documented in landslide inventory maps. 
A comprehensive database for a landslide inventory map should contain 
information on landslides that have left recognizable signs in the landscape. The 
required information are the location and time of landslide occurrence (or time of 
mapping), and the size, extent and type of the landslide (Guzzetti et al. 2000; 
Guzzetti et al. 2012). The distribution of landslides in most landslide inventory 
maps were traditionally recorded in point format. After the introduction of GIS, 
landslides are documented in polygon format (Xu 2015). Nowadays, the multi-stage 
activities of landslides can be monitored and mapped over several decades using 
time series of remote sensing measurements (Geertsema et al. 2009).  
  
Several factors influence the mapping and documenting of landslides: i) the 
applicability of landslide inventory maps, ii) the scale of base maps, iii) the scale 
and resolution of imagery sources (e.g., aerial photographs, remote sensing satellite 
images and LiDAR elevation data), and skills and experience of geomorphologists 
in identifying landslides through iv) imageries and v) direct field mapping (Guzzetti 
et al. 2000; Van Westen et al. 2006; Guzzetti et al. 2012). Landslide inventories are 
prepared usually on three different scales, from small-scale inventories 
(<1:200,000) and medium-scale inventories (<1:25,000 to 1:200,000) to large-
scale inventories (>1:25,000) (Guzzetti et al. 2012). Also, depending on the type of 
mapping, landslide inventory maps are grouped into archive mapping and 
geomorphological mapping (Guzzetti et al. 2000; Malamud et al. 2004). In archive 
mapping, landslide information is collected from news, newspapers, articles and 
other literature sources (Taylor and Brabb 1986). Geomorphological landslide 
inventory maps are classified into three groups: i) historical inventories which 
show landslides over periods of tens to thousands of years (Galli et al. 2008), ii) 
event-based inventories which document single landslides after external triggers 
such as rainfall events (Guzzetti et al. 2004) and earthquakes (Parker et al. 2011), 
and iii) multi-temporal landslide inventories which map landslides over longer 
time periods (Galli et al. 2008). 
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1.3 Landslide susceptibility modelling 

To mitigate the destructive effects of landslides, decision makers and land use 
planners use landslide susceptibility models and maps, which reflect the likelihood 
of landslide occurrence based on local terrain properties (Brabb 1984). The term 
‘landslide susceptibility’ refers to ‘where’ landslides are likely to occur (Guzzetti et 
al. 2005; Guzzetti et al. 2006). In mathematical words, landslide susceptibility 
reflects the spatial probability of landslide occurrence given a set of environmental 
conditioning attributes (Guzzetti et al. 2005). This separates landslide 
susceptibility as a purely spatial concept from landslide hazard in two aspects 
(Guzzetti et al. 2005; Guzzetti et al. 2006; Rossi et al. 2010): landslide susceptibility 
is time-invariant and does not take the temporal probability of landslide occurrence 
into account. Also, it does not consider the magnitude of expected landslides (i.e., 
how large or destructive the landslide occurrence will be). Both landslide inventory 
mapping and landslide susceptibility modelling are the main initial and crucial 
steps towards landslide hazard and risk assessment (Cardinali et al. 2002; Guzzetti 
et al. 2005; Van Westen et al. 2006). In landslide hazard, the spatial susceptibility is 
combined with temporal information of landslide triggers (mainly rainfall), 
providing the information regarding ‘when’ or how frequently landslides will occur 
and with which magnitude (Guzzetti et al. 2005). The combination of landslide 
mapping, landslide susceptibility modelling and landslide hazard modelling 
contribute to the assessment of landslide risk, which reflects the expected number 
of casualties, injuries, and the economic losses to society and the environment 
(Varnes 1984; Van Westen et al. 2006). These are the key tools towards the 
sustainable planning of land use, proper decision making, and the mitigation of 
destructive impacts of landslides.  

In the two last decades, there has been much progress in the development of open-
source and commercial GIS and statistical software, and an increased availability of 
environmental data in GIS databases. This has led to many different approaches and 
techniques for modelling susceptibility to landslide occurrence (Rossi et al. 2010). 
These approaches and techniques can be both qualitative and quantitative. 
Qualitative approaches rely on the experience and knowledge of geomorphologists, 
and subjectively describe the susceptibility levels in qualitative terms (Van Westen 
et al. 2003; Reichenbach et al. 2018). Quantitative approaches combine the 
landslide distribution from the landslide inventories with environmental 
conditioning attributes to model susceptibility to landslide occurrence (Van 
Westen et al. 2006). Reichenbach et al. (2018) classified all the approaches in the 
literature into five groups: (i) geomorphological mapping, (ii) analysis of landslide 
distribution in landslide inventories, (iii) heuristic or index-based approaches (iv), 
physically or process-based models, and (v) statistically-based models. These 
approaches all rely on the same assumption to model landslide susceptibility: the 
past and present are key to understand the future (Varnes 1984; Carrara et al. 1991; 
Hutchinson 1995). From this assumption follows that landslides will occur in the 
future under the same conditions that they occurred under in the past and present. 
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1.4 Research gaps 

In the last two decades, rise and development in GIS, remote sensing and statistical 
software have facilitated collecting, mapping and modelling susceptibility of 
landslides. Using these novel technologies and data, landslide susceptibility 
modelling at medium scale has become playground for many researchers to try new 
data integration approaches and techniques. This has resulted in the many different 
qualitative and quantitative approaches for landslide susceptibility modelling. 
However, due to complex nature of landsliding, the prediction of the occurrence of 
landslides in both space and time is still difficult (Deng et al. 2017).  
 
The underlying assumption in different landslide susceptibility modelling 
approaches is ‘past and present are the key to the future’ (Varnes 1984; Carrara et 
al. 1991). In such an assumption, usually relations between environmental factors 
and distribution of landslides are considered. Importantly, this assumption does 
not consider possible legacy effects of landslides on the environment, and its effects 
on the future landslide susceptibility.  
 
Yet, these legacy effects of landslides on environmental variables are expected since 
landslides disrupt the morphology of surface and topography, slope angle (Van 
Westen et al. 2006) and reduce the strength of materials forming the hillslope. This 
implicates that the legacy of landslides could change the future landslide 
susceptibility. However, changes caused by landslides in the environmental 
variables are difficult to obtain and not usually available since they need continuous 
monitoring and mapping of environmental variables. 
 
A path dependency horizon from complex system theory (Phillips 2006) could be 
used to reflect the historical legacy effects of landslides on the environment, and 
hence on the future susceptibility. In this respect, path dependency means that the 
history of a system determines the future state of the system through legacy effects. 
In other words, previous landslides could trigger future landslides. The reason for 
neglecting such an effect could be the lack of mapping and monitoring of multi-stage 
activities of landslides. Multi-temporal landslide inventory does allow monitoring 
and mapping of multi-stage activities, evolution and legacy effects of landslides. In 
this research, a multi-temporal landslide inventory - provided by CNR-IRPI from 
Collazzone study area in Umbria region in central of Italy – is used. This multi-
temporal landslide inventory contains mapped landslides in 19 time slices over a 
period of 75 years.  
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1.5 Research objectives 

The overall objective of this thesis is to assess the effect of landslides on 
susceptibility of future landslides. To explore such an effect, the following research 
questions are addressed: 
 

A. what are the indications of landslides following previous landslides? 

 
B. What are the characteristic spatial and temporal scales in landslide path 

dependency? 

 
C. Can we predict the occurrence of future landslides as a function of 

properties of previous landslides? 

 
D. Does including landslide path dependency improve landslide susceptibility 

modelling? 

 

1.6 Thesis outline 

The chapters 2, 3 and 4 of this thesis are based on three peer-reviewed publications, 
and the chapter 5 is based on a manuscript to be submitted. These chapters deal 
with one or two research questions posed in the introduction as indicated in Table 
1.1. 

Table 1.1. Research questions and chapters. 

Research question Chapter 
A 2 
B 2, 3 and 5 
C 3 
D 4, 5 

Chapter 2 explores the existence of path dependency among landslides using 
empirical approaches and the index of spatial overlap of landslides in the 
Collazzone multi-temporal landslide inventory. I also looked at the differences in 
the size, shape and parameters of frequency-area statistics between landslides with 
spatial overlap and landslides without spatial overlap. At the end, I propose a 
modification in the definition of landslide susceptibility modelling; to take landslide 
path dependency effects into account. 

Chapter 3 characterizes and quantifies the spatiotemporal dynamics of landslide 
path dependency in the multi-temporal landslide inventory. The geometrical and 
topographical differences between landslides that cause or do not cause follow-up 
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landslides are assessed. Also, I tried to predict the occurrence of a follow-up 
landslide using geometric and topographic attributes of an earlier landslide. 

Chapter 4 implements the effect of landslide path dependency in slope-based 
landslide susceptibility modelling. I developed three different landslide 
susceptibility models using logistic regression: i) a conventional landslide 
susceptibility model, ii) a conventional plus path dependent landslide susceptibility 
model, and iii) a pure path dependent landslide susceptibility model. Finally, I 
compared the coefficients, performance and susceptibility maps from these three 
models. 

Chapter 5 quantifies spatiotemporal dynamics of landslide path dependency 
between the center points of landslides using space-time Ripley’s K Function. Then, 
the quantified space-time landslide path dependency is implemented in a pixel-
based landslide susceptibility model and the result is compared to a conventional 
landslide susceptibility model and a purely path dependent landslide susceptibility 
model. The performance, coefficients and landslide susceptibility maps from the 
three models are compared. 

Chapter 6 summarizes the main findings of this thesis and provides reflections, 
outlooks and recommendations for further research in this field. 

 

Figure1.2. Overview of the four core chapters of this thesis and how they are linked.



 



 

 
 
 
Chapter 2 

2 Do landslides follow landslides? Insights in path 
dependency from a multi-temporal landslide 
inventory  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

This chapter is based on: 

Samia, J., Temme, A., Bregt, A., Wallinga, J., Guzzetti, F., Ardizonne, F., Rossi, M.   
(2017). Do landslides follow landslides? Insights in path dependency from a multi-
temporal landslide inventory. Landslides, 14, 547-558, DOI: 10.1007/s10346-016-
0739-x 
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Abstract  

Landslides are a major category of natural disasters, causing loss of lives, 
livelihoods and property. The critical roles played by triggering (such as extreme 
rainfall and earthquakes) and intrinsic factors (such as slope steepness, soil 
properties and lithology) have previously successfully been recognized and 
quantified using a variety of qualitative, quantitative and hybrid methods in a wide 
range of study sites. However, available data typically do not allow to investigate 
the effect that earlier landslides have on intrinsic factors and hence on follow-up 
landslides. Therefore, existing methods cannot account for the potentially complex 
susceptibility changes caused by landslide events. In this study, we used a 
substantially different alternative approach to shed light on the potential effect of 
earlier landslides using a multi-temporal dataset of landslide occurrence containing 
17 time slices. Spatial overlap and the time interval between landslides play key 
roles in our work. We quantified the degree to which landslides preferentially occur 
in locations where landslides occurred previously, how long such an effect is 
noticeable, and how landslides are spatially associated over time. We also 
investigated whether overlap with previous landslides causes differences in 
landslide geometric properties. We found that overlap among landslides 
demonstrates a clear legacy effect (path dependency) that has influence on the 
landslide affected area. Landslides appear to cause greater susceptibility for follow-
up landslides over a period of about ten years. Follow-up landslides are on average 
larger and rounder than landslides that do not follow earlier slides. The effect of 
earlier landslides on follow-up landslides has implications for understanding of the 
landslides evolution and the assessment of landslide susceptibility.  
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2.1 Introduction 

Existing landslide research recognizes the critical role that is played by external 
triggers (e.g. extreme rainfall events, earthquakes and human interferences) along 
with intrinsic attributes of site (e.g. slope and lithology) that contribute to landslide 
occurrence (Carrara et al. 1999; Crozier 1986; Guzzetti et al. 2008). Much work has 
been done on the modelling of landslide susceptibility and hazard. By definition, 
landslide susceptibility is a non-temporal concept that refers to locations where 
landslides preferentially occur (Guzzetti et al. 2005; Varnes 1984), whereas 
landslide hazard describes the likelihood of landslide occurrence in time and space 
(Guzzetti et al. 1999; Varnes 1984) along with the magnitude of landslide 
occurrence (Guzzetti et al. 1999). Landslide susceptibility and hazard have been 
studied using qualitative (Barredo et al. 2000; Ruff and Czurda 2008; Van Westen 
et al. 2003), and quantitative (Godt et al. 2008; Guzzetti et al. 2005; Lan et al. 2004; 
Remondo et al. 2003; Van Westen et al. 1997; Van Westen and Terlien 1996; Yeon 
et al. 2010) approaches. Qualitative approaches emphasise the role of experience 
and expert knowledge in determining landslide susceptibility (Van Westen et al. 
2003). Quantitative approaches  assume that conditions that lead to landslide 
occurrence in the past and present are likely to cause landslides in the future, thus 
the probability of occurrence of future landslides is determined using correlations 
among various conditioning factors and landslide inventories by statistical 
methods (Tien Bui et al. 2015; Van Westen and Terlien 1996). Deterministic 
quantitative approaches use detailed geotechnical and hydrological data in 
combination with statistical models to estimate the probability of slope failure 
(Aleotti and Chowdhury 1999; Van Westen and Terlien 1996).  
 
Empirical landslide inventories that document the location, and sometimes the 
date, shape and type of landslides play an important role in assessing landslide 
susceptibility and hazard (Cardinali et al. 2006; Guzzetti et al. 2012; Guzzetti et al. 
2005; van Westen et al. 2008; van Westen et al. 2006b). Most of the landslide 
inventories are prepared through the interpretation of stereoscopic aerial 
photographs (Guzzetti et al. 2012). In addition, field mapping (Brunsden 1993), 
analysis of surface morphology through high-resolution DEMs and interpretation 
of satellite images (Guzzetti et al. 2012) are used for mapping  landslide inventories. 
Overall statistics of landslide inventories have been studied and it was documented 
that the frequency-area distribution of landslides follows a power law distribution 
for medium and large landslides with an exponential rollover for small landslides 
(Guzzetti et al. 2009; Guzzetti et al. 2002; Malamud et al. 2004; Stark and Hovius 
2001; Turcotte et al. 2006; Wood et al. 2015).  
 
Although a vast amount of research has been done on the prediction of landslide 
occurrence, there has, to our knowledge, been no empirical attention for the effect 
of earlier landslides on future landslides. This effect is nonetheless expected 
because landslides typically change the surface morphology (Schuster and 
Highland 2003), the sediment or regolith properties (Chen 2009), the vegetation 
(Singh et al. 2014) and the slope angle (van Westen et al. 2006a), which are all 
factors that change landslide susceptibility. If true, such importance of landslide 
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history for landslides susceptibility would be a form of path dependency (a concept 
from complexity theory (Phillips 2006; Temme et al. 2015)) – indicating that the 
history of the landsliding process affects its future through one or more legacy 
effects. A likely reason for the lack of attention for quantifying the effect of earlier 
landslides on future landslides is that multi-temporal landslide inventories are very 
difficult to obtain (Atkinson and Massari 1998; Brenning 2005) and high-resolution 
multi-temporal datasets of intrinsic properties are virtually absent. 
 
In this paper, we explore the possible effects of earlier landslides on future 
landslides. For this, we will use a rich multi-temporal landslide inventory from the 
Collazzone area in central Umbria, Italy (Ardizzone et al. 2013; Galli et al. 2008; 
Guzzetti et al. 2006).  
 
Our main objective is to investigate whether earlier landslides determine the 
susceptibility for future landslides, i.e. whether there is path dependency in 
landslide occurrence. We test two hypotheses. The first hypothesis is that 
landslides follow landslides; i.e., that landslides increase the likelihood of another 
(in our terms: follow-up) landslide occurring in the same place. We operationalize 
this hypothesis without attention for the role of intrinsic attributes (e.g., slope and 
geology) to offer a clear contrast with existing approaches. The second hypothesis 
is that follow-up landslides differ from other landslides in terms of their shape, size, 
and frequency-area distribution.  

2.2 Study area and data 

The Collazzone area extends for 78.9 km2 in central Umbria, Italy (Figure 2.1). 
Elevation in the area ranges from 145 to 634 m above sea level and the slope, 
computed from a 10  10 m Digital Terrain Model (DTM), ranges from 0° to 63.7° 
with a mean value of 9.9°. The terrain is hilly with asymmetrical valleys, with 
lithology and attitude of bedding controlling the slopes. Only sedimentary rocks 
crop out in the area and include: (1) alluvial deposits, Holocene in age; (2) 
travertine, Pleistocene in age; (3) continental deposits (gravel, sand, clay), Plio–
Pleistocene in age (Guzzetti et al. 2006); (4) layered sandstone and marl, Miocene 
in age; and (5) thinly layered limestone, Lias to Oligocene in age. The land use is 
characterised by cropland, forests, urban areas, pastures, vineyards, orchards and 
water. Farming in the area favours the development of slope failures and erosion. 
Soils range in thickness from a few decimetres to more than 1 m; they have a fine 
or medium texture (Fiorucci et al. 2015). Soils have a xeric moisture regime 
characterized by cold and moist winters and dry summers. Precipitation is most 
abundant in October and November; with a mean annual rainfall of 841 mm in the 
period from 1951 to 2013. Snow falls in the area on average every 2–3 years. 
Landslides are abundant, and range in age, type, morphology, and volume from 
relict – partly eroded – large and deep-seated landslides, to young, mostly shallow 
landslides involving the soil mantle. Landslides are triggered predominantly by 
meteorological events, including intense and prolonged rainfall and rapid 
snowmelt. 
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Figure 2.1. Location of Umbria region and of the Collazzone study area (right map). Multi-
temporal landslide inventory overlying a shaded relief image (left map). The coordinate 
system of the relief image is EPSG:32633. 
 

2.2.1 Description of the Multi-temporal Landslide Inventory  

A detailed multi-temporal landslide inventory is available for the Collazzone area 
(Figure 2.1and Table 2.1). The inventory was originally prepared at 1:10,000 scale 
through the visual interpretation of five sets of stereoscopic aerial photographs 
taken unsystematically in the period 1941–1997 at scales ranging from 1:13,000 to 
1:33,000. The landslide inventory was continued in the period from 1999 to 
December 2005 through field surveys carried out after periods of prolonged 
rainfall, and in March and May 2010 using stereo satellite images (Ardizzone et al. 
2013). 
 
Landslides ages were estimated from the date of the aerial photographs and the 
morphological appearance of the landslide. In each of the five sets of stereoscopic 
aerial photographs used to prepare the multi-temporal inventory, landslides that 
appeared “fresh” on the aerial photographs, were separated from the other 
landslides that had occurred since the previous photograph. The date (i.e., year) of 
the aerial photographs used to identify the landslides was assigned to the “fresh” 
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slope failures. The other slope failures (i.e., the “non-fresh” landslides) were 
attributed to the period between the date of the aerial photograph where they were 
identified and the date of the previous aerial photographs.  
 
Galli et al. (2008) demonstrated the high quality of the multi-temporal landslide 
inventory map for the Collazzone study area. Nonetheless, we acknowledge that the 
mapping and age attribution is not perfect. Errors are probably largest in time slices 
that were obtained through field mapping due to the difficulty in translating lateral 
assessments onto vertical photographs, but even here we expect the uncertainty in 
determining a landslide boundary to be less than 3 meters. For other time slices, 
the aerial photographs and satellite images that were used have resolutions of 1m 
or better, and hence uncertainty is of the same order. With an average size of 
landslides of over 5000 m2, it was expected that the uncertainty in mapping did not 
substantially affect our results.   
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 



2.2 Study area and data   15 

Table 2.1. Properties of landslides in different time slices of the multi-
temporal landslide inventory for the Collazzone area, Umbria, Central Italy. 
Period covered, number and density of landslide per period, total affected 
area and inventory type per period. Inventory type: P, obtained from the 
systematic interpretation of stereoscopic aerial photographs; F, obtained 
through direct field mapping; S, obtained from the interpretation of 
stereoscopic satellite images. Landslide periods are estimated from the date 
of the aerial photographs and the morphological appearance of the landslide. 

Period 
covered 

Number of 
landslides(N) 

Density(N)/(Km2) 
Total Area of 

landslides(Km2) 
Inventory 

type 

Relict   27 0.34 5.72 P 

Older than 
1937 

269 3.41 6.55 P 

1937-1941 706 8.86 4.09 P 

1941-1954   63 0.79 0.42 P 

1954   97 1.23 0.71 P 

1954-1977 409 5.18 1.49 P 

1977 252 3.19 0.69 P 

1978-1985 105 1.33 0.62 P 

1985 135 1.71 0.45 P 

1986-1997   63 0.79 0.27 P 

1997 413 5.23 0.78 P 

1999-2000   17 0.21 0.07 F 

May 2004   71 0.89 0.27 F 

December 
2004 

154 1.94 0.38 F 

December 
2005 

  62 0.90 0.18 F 

March 2010 158 2.00 0.29 S 

May 2010   55 0.69 0.085 S 
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2.3 Methods  

In addition to our use of the term path dependency (indicating that previous 
process activity affects future process activity through legacy effects), it is useful to 
clarify some other terms that are important for our analysis. The mono-temporal 
inventories that together make up our multi-temporal inventory are separately 
called ‘time-slices’, whereas subdivisions of the multi-temporal inventory based on 
topology (see below) are called ‘sub-inventories’. We use ‘earlier’ and ‘follow-up’ to 
describe landslides based on their relative order in the multi-temporal inventory. 
Note that follow-up landslides are not reactivated landslides. We consider a 
landslide a reactivated landslide when all or most of the landslide moved down 
again, under the same general condition as the first landslide. Instead, a follow-up 
landslides is a new landslides that has different size and shape than the pre-existing 
landslide. The particular topological relations of interest between landslides in 
earlier and follow-up time slices we call ‘spatial association’. 
 
To test our hypotheses, two sets of analyses were done on the multi-temporal 
landslide inventory. The first set of analyses focusses on the effect of overlap 
between landslides on the total area affected by landslides (Figure 2.2a), on the 
degree of overlap between landslides from different time slices (Figure 2.2b) , and 
on the number of overlaps between landslides over the entire inventory (Figure 
2.2c). The second set of analyses focusses on the properties of classes of landslides 
that vary in their spatial association with landslides from the earlier periods (Figure 
2.2d). 
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Figure 2.2. Overview of the analyses performed on the multi-temporal dataset to test two 
hypotheses. 

2.3.1 Degree of overlap 

We propose three complementary methods for this purpose, to express the 
importance of overlap between landslides: (1) unaffected area, (2) overlap index, 
and (3) number of overlaps (Figure 2.2). 
 
The first method measures the cumulative effect that landslide overlapping has on 
the total area affected by landslides, by comparing a theoretically unaffected area 
with the actually unaffected area. This method allows assessment of the amount of 
reduction in affected area caused by (potentially followed-up) overlapping 
landslides. The theoretically unaffected relative area (-, where - denotes that this is 
a dimensionless parameter) if no overlap between landslides would occur is 
defined as: 
 
Theoretically unaffected area𝑡 = (∑ 𝐴𝐿𝑇𝑖

t
i=1 )/𝐴𝑆                                                                              (1) 

 
Where AS is the area of interest (m2), and ALTi is the total area (m2) of all landslides 
in the time slices i of an inventory. The relative area that is actually unaffected by 
landslides over the entire period is calculated as: 
 
Actually unaffected area𝑡 = ( ∪𝑖=1 

𝑡 𝐴𝐿𝑇𝑖)/AS                                                                                         (2)    
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Where ∪ denotes the spatial union among landslides in consecutive time slices, i.e. 
the total area covered by landslides after accounting for overlaps. 

The second method provides a standardized measure of overlap between 
landslides in consecutive time slices. This overlap index (-), earlier termed relative 
area overlap (Maruca and Jacquez 2002), is calculated as: 

Overlap index𝑡− 𝑡+𝑛 =
ALt  ALt+n

ALt+ALt+n−(ALt  ALt+n)
                                                                  (3)  

Where t is the assumed date of occurrence of landslides from a first time slice (see 
below), and t+n is the average date of occurrence of landslides in a later time slice, 
and  denotes the geometric intersection (i.e., the overlapping area) between two 
time slices. This is qualitatively similar to the error index that has been used to 
calculate positional mismatch for pairs of corresponding landslides in the two 
inventories (Ardizzone et al. 2002; Carrara et al. 1992; Santangelo et al. 2015). The 
overlap index is non dimensional, ranges from zero (no overlap) to unity (perfect 
overlap), and is not a function of the size of the study area. The overlap index was 
calculated for consecutive time slices, and for pairs of time slices that are two or 
three time slices apart. The value for the overlap index was then related to the time 
that passed between time slices. 

As explained above, in some time slices, there is more uncertainty about the date of 
occurrence of a landslide than in others. Uncertainty is larger in the time slices that 
describe longer periods, such as the time slice describing landslides that occurred 
between 1954 and 1977 (see Table 1). In some other cases, the date of occurrence 
is relatively well known, for instance in the time slice made of landslides that 
occurred after the 01-01-1997 rapid snowmelt event. These uncertainties, large or 
small, propagate into uncertainty about the time elapsed between landslides. We 
assumed uniform probability distributions of landslides in the time slices that 
describe periods – meaning that landslides may have happened at any moment 
during the considered time slice, with equal probability. This is despite the fact that 
there may have been significant rain, snowfall and snowmelt events in these 
periods that may have caused landslides to be clustered in time. No information 
about this intra-period variability was available. Using the uniform probability 
distributions, we performed stochastic simulation, randomly placing 10,000 pairs 
of landslides in the periods of two time slices and then recording the time passed 
between each pair. The median time passed between time slices (t-t+n) was used 
as the time passed between time slices, and the first and third quartile were 
recorded to express uncertainty of the time between both time slices. This approach 
is unbiased and therefore no bias in consequent analyses is expected. 

The third method quantifies the relation between area and number of overlaps. 
This method was used to quantify repeated overlapping over multiple time slices 
of the multi-temporal inventory. Every time slice of the inventory was rasterized at 
1 m resolution and the cells involved in landsliding in each inventory were given a 
value of 1. Then, all raster were summed, resulting in a raster where the values 
correspond to the number of overlaps over the entire multi temporal inventory. The 
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analysis was performed using standard raster operations in ArcGIS. This measure 
does not change with the order of time slices, but is affected by the area involved in 
landsliding in the multi-temporal inventory, and by the number of time slices in it. 
Therefore, it was compared with the number of overlaps from a null model in which 
the observed area of landsliding per time slice was assigned randomly to the study 
area, regardless of slope or lithology. Since spatial information was not needed for 
this calculation, the null model was calculated in Microsoft Excel. 

2.3.2 Effect of different spatial association 

Spatial associations between landslides from a given time slice and the immediately 
preceding time slice were used (Figure 2.2d). Four classes of spatial association 
were defined (Figure 2.3). The ‘inside’ class contains landslides that are completely 
inside landslides from the earlier time slice. The ‘partial’ class contains landslides 
that partially overlap landslides from the earlier time slice. The ‘touching’ class 
contains landslides that are outside landslides from the earlier time slice, but that 
touch landslides from this time slice, and the ‘outside’ class contains landslides that 
neither overlap nor touch landslides from the earlier time slice. This classification 
was chosen based on the assumption that different spatial associations between 
landslides relate to different mechanisms in which landslides affect the probability 
of follow-up landslides. Landslides that are ‘inside’ earlier landslides, for instance, 
may particularly point to saturation of materials on top of an earlier landslide (Igwe 
and Fukuoka 2015), and landslides that are ‘touching’ an earlier landslide may 
point to a slope-effect because slopes are most strongly changed along the borders 
of earlier landslides (van Westen et al. 2006b). The ‘outside’ class was considered 
likely unrelated to earlier landslides, by any mechanism. 
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Figure 2.3. Examples of spatial association of landslides with landslides from the previous 
time slice. 

Standard GIS tools were used to separate landslides from each time slice of the 
multi-temporal inventory, except the first time slice, into the four classes of 
association. The sub-classes of association (sub-inventories) were then merged 
over the different time slices. Then, the following geometrical properties were 
calculated for landslides in each merged sub-inventory: minimum, mean, and 
maximum area, roundness (a measure of shape), and the three parameters of the 
inverse-gamma distribution that is often used in landslide research to describe 
frequency-area relationships (Malamud et al. 2004), see below. This allowed us to 
test our second hypothesis: that landslides following up on earlier landslides have 
different geometric properties.  

Minimum, mean, median and maximum sizes of landslides were calculated with 
standard GIS tools. Roundness (-) is introduced here as a simple measure of shape: 

𝑅𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 =
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 

𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
                                                                                                   (4) 

Where the theoretical circular perimeter (m) is the perimeter of the landslide, if it 

would have been perfectly round with the same area: 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 = 2𝜋√(
𝐴𝐿

𝜋
)                                                                                           (5)         
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where AL is the area of the landslide (m2). Roundness values closer to unity indicate 
round shapes, values close to zero indicate more elongated shapes (Figure 2.4). In 
earlier research, a landslide geometry generating algorithm was used to 
approximate the shape of landslides using geometric features such as upper and 
lower length and lateral boundary of the landslide scar (Chiang 2015). Taylor et al. 
(2015) approximated landslide shapes by ellipses and then used the length to width 
ratio of these ellipses to characterize shape. We argue that the proposed roundness 
is a simpler measure that makes no assumptions about landslide shape that 
nonetheless captures the most important difference between landslide shapes. 

 

Figure 2.4. Example shapes illustrating different degrees of roundness. 

To estimate power-law parameters, we fitted the three-parameter inverse Gamma 
distribution (Malamud et al. 2004) to the four sub-inventories, using LANDSTAT 
software (version 9) (Rossi and Malamud 2014). The three-parameter inverse 
gamma distribution is:  

𝑝𝑑𝑓(𝐴𝑙|𝛼, 𝜂, 𝜆) = [
𝜆2𝛼

Г(𝛼)
] [(

1

𝑥+𝜂2)
(𝛼+1)

]  𝑒𝑥𝑝 [−
𝜆2

𝑥+𝜂2]                                                        (6) 

Parameter α controls the steepness of the right tail of the probability density 
function. Parameter η controls the steepness of the left tail of the probability 
density function. Parameter λ controls the position of the rollover. From these 
parameters, the rollover, the most likely size of a landslide, can be calculated. 
Maximum likelihood estimation was used and uncertainties for the three 
parameters and the rollover were calculated using bootstrapping with 250 
repetitions. 

We used standard Analysis of Variance to test whether differences in landslide 
properties between sub-inventories are significant, complemented with T-tests for 
normally distributed properties (Student 1908) and U-tests for non-normally 
distributed properties (Mann and Whitney 1947). 
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2.4 Results  

2.4.1 Degree of overlap 

Over time, significant differences occur between the theoretically unaffected area 
(Eq. 1), and the actually unaffected area (Eq. 2) (Figure 2.5). After the last time slice 
in the inventory, from May 2010, 7.8 % of the area has not experienced landsliding 
during the entire period of observation because of overlapping landslides. Clearly, 
there is a significant amount of overlap between landslides. 
 

 
Figure 2.5. Theoretically and actually relative unaffected area by landslides in the 
Collazzone study area. 
 

The overlap index (Eq. 3) appears to be negatively correlated with the time passed 
between time slices, although variation in overlap index is large, especially when 
observations are close together (Figure 2.6). The overlap of landslides with those 
from an earlier time slice appears to decrease substantially over a period of about 
10 years. This suggests that the cause of new landslides is not completely external. 
If the cause of overlap was completely external (for instance through repeated 
landsliding at particularly dangerous locations), then no relation between overlap 
index and the amount of time passed between slides should exist.  

Instead, earlier landslides themselves appear to affect the probability of 
reoccurrence to a substantial degree - probably through legacy effects. Importantly, 
this effect decreases over time. This means that if a landslide happened longer ago, 
it is less likely to be overlapped by a future landslide. However, this is not always 
the case: some time slices that are close together in time, have low overlap index. 
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Apparently, not all landslides affect their environment such that there is a larger 
probability for future landslides. 

 

Figure 2.6. Overlap index as a function of time between time slices of the multi-temporal 
landslide inventory; the data shows a higher overlap index for time intervals up to 
approximately 10 years.  

 

Figure 2.7. Area versus number of overlapping landslides. The area experiencing more than 
four overlaps is larger for the observed dataset than for the random dataset. 
 

About 200 m2 of the study area has been affected seven times by landslides in the 
17 time slices of the multi-temporal inventory (Figure 2.7). In the null-model in 

y = -1.18x + 8.38
R² = 0.97

y = -0.62x + 6.41
R² = 0.99

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8

L
o

g 
(a

re
a 

in
 m

2
)

Number of overlaps

random

observed



24 Do landslides follow landslides?  

which landslide cells are placed randomly in the study area, seven overlaps do not 
occur. Overall, much more of the study area has been affected by three or more 
overlapping landslides than in the random model, whereas the area where no 
overlapping occurs, or where only one or two overlaps occur, is less than in the 
random model. The relation between number of overlaps and the logarithm of area 
is about twice as steep in the random model than in the dataset, again a clear sign 
of spatial overlap between follow-up landslides. 

2.4.2 Effect of spatial association 

 

Overall, 28% of landslides are in the classes inside (9 %), partial (10%), and 
touching (9%). The remaining 72% of landslides belong to the ‘outside’ class.  
 
The mean size of the landslides with spatial association ‘inside’, ‘partial’ and 
‘touching’ is larger than those with spatial association ‘outside’ (Table 2.2, p < 
0.001). The subtle decrease in mean area from ‘inside’ to ‘partial’ and ‘touching’ is 
not statistically significant (p > 0.05). 
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Table 2.2. Geometrical and area-frequency distribution properties of landslides 
depending on spatial association. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Inventories  Inside  Partial  Touching  Outside  

 n 165 199 185 2480 

Area (ha) Min 0.03 0.01 0.02 0.002 

 Mean ± SD   0. 91 ± 0.01 

 

0. 89 ± 0.01 

 

0. 82 ± 0.01 

 

0. 51 ± 0.01 

 Median 

 

0. 38 

 

0. 46 

 

0. 46 

 

0. 21 

 

 Max 6.90 5.70 7.50 1.73 

Roundness Mean ± SD 0.79 ± 0.10 0.78 ± 0.12 0.78 ± 0.12 0.83 ± 0.11 

 α ± SD 1.04 ± 0.08 

 

1.28 ± 0.50 1.78 ± 0.25 

 

1.32 ± 0.04 

 

Area-frequency 
statistics 

η ± SD 

 

16.2±4.3 

 

28.9±2.6 

 

32.8±4.2 

 

19.3±0.5 

 

 λ ± SD 52±6 69±5 

 

90±11 49±1 

 Rollover ± SD (m2) 1073±157 1317±158 1858±241 670±25 
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2.4.3 Shape factor 

 

Landslides that are not spatially associated with landslides from the immediately 
preceding time slice appear to be more round than other landslides (Figure 2.8). 
The type of spatial association is a significant determinant of shape (Table 2.3, p < 
0.001). This is because of the higher roundness of the ‘outside’  type – all other types 
of association are not significantly different from each other (p > 0.05).  
 

 
Figure 2.8. Roundness as a measure of shape for different classes of spatial association. 
Error bars indicate the standard error.  

 

2.4.4 Frequency-area statistics  

The frequency-area distributions for the four sub-inventories representing 
different spatial association exhibit power-law scaling for large and medium 
landslides with a rollover for small landslides (Figure 2.9a-d). The three parameters 
of the inverse gamma distribution, and the resulting rollover, differ between sub-
inventories (Table 2.2). When the strength of spatial association between 
landslides decreases (from ‘inside’ to ‘partial’ and ’touching’), the exponent of the 
inverse power law (α) increases. The average value of (α)  in the spatially associated 
sub-inventories is greater than in the ‘outside’ spatially un-associated sub-
inventory. Interestingly, the value of the rollover is much smaller for the un-
associated ‘outside’ sub-inventory than for the three other sub-inventories. The 
rollover also decreases with decreasing strength of spatial association. All 
differences between sub-inventories were significantly different (p < 0.001). 
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Figure 2.9. Comparison of the Inverse Gamma probability density function fit to frequency 
densities from four landslide sub-inventories representing different spatial association 
types.  
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2.5 Discussion 

In this discussion, we will first focus on our findings relating to the two hypotheses, 
before considering wider implications. 
 

2.5.1 Do landslides follow landslides? 

We found that the multi-temporal landslide inventory of our study site recorded 
substantial overlap between landslides, and an associated reduction in the fraction 
of the study area affected by landslides (Figure 2.5). The overlap is more for 
landslides happening sooner after an earlier landslide and decreases over a 
timescale of about ten years (Figure 2.6). This indicates that landslides in our study 
site do follow landslides. Importantly, it also suggests an internal control on the 
landslide system next to the range of intrinsic controls such as lithology, slope 
steepness and vegetation, which are commonly the focus of landslide susceptibility 
studies (Guzzetti et al. 2005; Van Westen et al. 1997). We propose that the 
mechanisms that can explain the nature of this internal control (i.e. a positive 
landslide-landslide effect that decreases over time) fit into two categories. First, the 
probability of landslides overlapping earlier landslides may decrease over time 
because the deposits of an earlier landslide stabilize due to e.g., a more stable slope 
geometry, the regrowth of vegetation, and the repair of soil structure and cohesion. 
Second, the probability can decrease over time because follow-up landslides have 
already occurred, erasing topographic instabilities that remained after an earlier 
landslide. Targeted field observations with high temporal resolution could quantify 
the relative importance of these two reasons by focussing on vegetation regrowth 
and detailed topographic evolution.  

Regardless of the mechanism, our findings suggest that there is path dependency 
among landslides: older landslides act in some way or other as initiators for follow-
up landslides for a certain period. This is also consistent with the number of 
landslide overlaps over the entire period captured by the multi-temporal inventory 
(Figure 2.7). This number of overlaps is larger than in the null model where 
landslides occur randomly in the study area – although when considered separately 
from Figure 2.6, this observation can also be explained by spatial differences in 
landslide susceptibility. Such landslide self-organization (Turcotte et al. 2002) into 
emergent patterns is not captured in traditional cause-effect studies of landslide 
susceptibility. It also adds an important consideration to the discussion about 
landslide self-organized critical behaviour (Guzzetti et al. 2002; Hergarten 2003; 
Turcotte et al. 2002). Apparently, not all landsliding potential (“metastable 
regions”, Guzzetti et al., 2002, p171) is removed by a landslide – instead first 
landslides appear in some cases to increase the potential for follow-up landslides. 
The interplay between the traditional cause-effect approach and path dependency 
in a self-organization approach should be explored and quantified in follow-up 
studies. 
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The period over which the positive landslide-landslide effect is observed – about 
ten years in our study area - is very likely specific for the local settings and other 
areas with similar climate, geology, topography, soils and vegetation. We maintain 
that this period is a measure of landslide path-dependency that reflects the rate of 
processes that reduce landslide susceptibility after a first landslide, or the rate at 
which follow-up landslides occur in our study site (see above). In areas with more 
frequent landsliding, or in sites with more rapid vegetation growth that restores 
stability, it may be shorter (all other factors being equal). 

2.5.2 Are follow-up landslides different? 

We also hypothesized that follow-up landslides have different properties in terms 
of size, shape, and frequency-area statistics. This is to some extent the case. Mainly, 
the mean size of landslides is lower for landslides that are not spatially associated 
with earlier landslides, than for those that are. Apparently, on average, follow-up 
landslides are larger (although there are also less of them, Table 2.2). In addition, 
our empirical data suggest that there may be a slight decrease of size with 
decreasing strength of spatial association between landslides (from ‘inside’ to 
‘partial’ to ‘touching’ landslides). 
 
The larger average size of follow-up landslides may be explained by conditions that 
have changed after occurrence of an earlier landslide, leading to increased landslide 
susceptibility. These changed conditions may relate to changes in surface 
morphology (Schuster and Highland 2003), sediment properties (Chen 2009), the 
vegetation (Singh et al. 2014), slope angle and land use (van Westen et al. 2006a). 
The shape of follow-up landslides differs from the shape of other landslides (Table 
2.2). Landslides that are spatially associated with earlier landslides are less round 
(on average) than those that are not (p < 0.01). The difference in roundness can be 
explained by two mechanisms. First, weaker materials in an earlier landslide may 
move faster, and therefore further than other materials. This would then be 
reflected in less round shape. Second, especially for landslides of the ‘touching’ 
class, an earlier landslide may be higher in the landscape, deflecting landslides 
downslope, which leads to them being more elongated. 
 
Both spatially associated landslides (‘inside’, ‘partial’ and ‘touching’ sub-
inventories) and spatially un-associated landslides (outside sub-inventory) follow 
a power-law scaling in the right tail of inverse Gamma distribution for large and 
medium landslides with an exponential rollover in the left tail of distribution.  
However, the exponent of the inverse power-law (α) and rollover (λ) differ between 
spatially associated landslides (even between sub-inventories) and spatially un-
associated landslides (Figure 2.9a, b, c and d)). The exponent of inverse power-law 
(α) on average in spatially associated sub-inventories (i.e., ‘inside’, ‘partial’ and 
‘touching’) are greater than un-associated sub inventory (‘outside’). For landslides 
that are spatially associated with earlier landslides the exponent of power law (α) 
increases when the strength of the spatial association (from ‘inside’ to ‘touching’) 
decreases (Table 2.2). The exponent of the inverse power law (α) for ‘touching’ 
landslides (α = 1.78) seems is consistent with the most reported range of values in 
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the literature (1.5 < α < 2.5) (Borgomeo et al. 2014; Guzzetti et al. 2002; Malamud 
et al. 2004; Van Den Eeckhaut et al. 2007). The other landslides (i.e., ‘inside’, ‘partial’ 
and ‘outside’) exhibited lower values for exponent of the inverse power law (α) (i.e., 
1 < α < 1.5) (Table 2.2). The small exponent of the power law in the sub-inventories 
suggests that larger landslides are contributing to each sub-inventory (Borgomeo 
et al. 2014; Van Den Eeckhaut et al. 2007).   
 
The rollover (λ), which represents the size of the most frequent landslide, is larger 
for spatially associated landslides than for non-spatially associated landslides 
(‘outside’, Table 2.2). Interestingly, the rollover for the ‘touching’ landslides is three 
times larger than for the ‘outside’ landslides, and larger than for the ‘inside’ and the 
‘partial’ landslides. Analogously to our explanation for lower roundness, this may 
be explained by a boundary effect that can be caused by steeper slopes on the sides 
of an earlier landslide. The lateral boundary of a landslide is an intrinsically more 
disturbed part of a landslide, where the mechanical properties are weaker and 
infiltration is commonly larger. These factors contribute to instability, and hence to 
larger landslides.  
 

2.5.3 Implications for landslide susceptibility assessment 

The traditional division between landslide susceptibility and hazard is that the 
former describes spatial differences in landslide probability, and the latter 
describes the likelihood of landslide occurrence in time and space (Guzzetti et al. 
1999; Varnes 1984). Our results suggest that a time-related internal control – the 
time that passed since an earlier landslide occurred – also plays a role in 
determining how susceptible a location is to landsliding. Apparently, susceptibility 
is not time-invariant, and contains a temporal element that traditionally was seen 
as part of the definition of hazard. Therefore, spatial and temporal probabilities of 
landsliding are not independent (Guzzetti et al. 2005). This means that the 
susceptibility of a location changes over time, as the effects of an earlier landslide 
slowly disappear. This can be expressed as: 

 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑠,𝑡 = 𝑓(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑠 , 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒𝑠𝑠,𝑡)             (7) 

where the susceptibility for landsliding of a certain location s at time t is not only a 
function of conditioning attributes such as slope or lithology, but also of the time 
passed since an earlier landslide in the same location or close by. In our dataset, the 
function describing the effect of earlier landslides on susceptibility is positive and 
decreases over time (e.g., Figure 2.2). An earlier landslide appears to make a 
location more likely to experience landsliding again over a period of about ten 
years, after which susceptibility appears to return to its previous value (Figure 
2.10). We explored possible mechanisms for this effect above. 
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Figure 2.10. A landslide susceptibility map bases on slope units (coloured polygons) with 
the occurrence of landslides over time (ellipses with black outline). In the susceptibility map, 
green means low risk, yellow means moderate risk, light red means high risk and dark read 
means very high risk. The implication of our work is seen in the clustering of landslides after 
a first landslide happens within a time scale of about 10 years. This is reflected in a 
temporarily higher susceptibility in the affected slopes. The two temporarily highly 
susceptible slopes (dark red polygons) experience different landslide dynamics as a result of 
different landslide histories. 

  
The effect of the type of spatial association with (or the distance to) an earlier 
landslide is complex (Table 2.2). In places, a closer spatial association of a landslide 
with an earlier landslide leads to properties closer to spatially un-associated 
landslides (e.g. for the rollover), whereas in other places it leads to properties that 
are more different from un-associated landslides (e.g. the mean area) (Table 2.2). 
This complexity should be further researched since it may lead to a deeper 
understanding of the processes causing follow-up landsliding.  

Other geomorphic settings could lead to different functions describing the effect of 
earlier landslides. For instance, exhaustion of sediment after landsliding, which 
occurs in locations where only little soil overlies bedrock (e.g., the steep basalt 
slopes of the Drakensberg in South-Africa (Singh et al. 2008) ), would lead to a 
decreasing  of landslide susceptibility instead of an increase. Given that weathering 
is required for new soil to form, it would also probably be a longer term effect than 
the ten years that we observed (Figure 2.6). Exhaustion of soft material apparently 
plays no important role in our study site – fitting with its geology of predominantly 
soft, easily weatherable rocks. A complicating factor is that when the duration of 
the effect of landslides on landslide susceptibility increases much beyond a decade, 
other slow changes will also start affecting susceptibility, such as land use changes 
(e.g., deforestation, afforestation, changes in agricultural practices) and climate 
changes. This makes it more difficult to observe the effect that landslides 
themselves have on susceptibility.  

The decreasing temporal effect of earlier landslides on susceptibility is to some 
extent comparable with the legacy effect of earthquakes on the occurrence of 
earthquake-induced landslides (Lin et al. 2007; Marc et al. 2015; Parker et al. 2015). 
For instance, Marc et al. (2015) demonstrated that landslide rates were 
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significantly elevated within 0.7-4.5 years after four earthquakes with magnitude 
higher than 6 Richter. After this, rates dropped gradually back to pre-earthquake 
levels. 

2.5.4 Implications for mapping and monitoring of landslide 
populations  

Most landslide inventories are not multi-temporal, although they do often describe 
landslides that occurred over a longer period, or in response to several events. 
From such inventories, it is not possible to estimate the time-dependent effect of 
landslides on landslide susceptibility. In settings where that effect is strong, this 
may lead to susceptibility assessments that are biased. In statistical terms this 
would be because the landslide observations used to estimate a susceptibility 
model or map are not independent. In geomorphic terms, if the landslide-landslide 
effect is positive and decreases over time (Figure 2.6), resulting susceptibility maps 
would probably be biased to a smaller range of conditioning attributes than would 
be otherwise the case. Some places that are susceptible to landsliding would then 
possibly be considered safe. In case of a negative landslide-landslide effect, they 
would probably be biased to a larger range of conditioning attributes. In this case, 
some places that are safe would possibly be considered susceptible. How 
substantial these biases are, should be the subject of further study. Clearly, this calls 
for more multi-temporal landslide inventories. 

2.6 Conclusions 

In our study area, landslides follow landslides – and they do so more often than 
expected based on a random control. This landslide path-dependency is strongest 
over a timescale of about ten years, after which the effect of earlier landslides on 
follow-up landslides appears to decrease. This legacy effect has a considerable 
consequence on the relative area that is affected by landslides. Follow-up landslides 
differ from non-follow-up landsides in terms of size and shape: they are typically 
larger and less round. Also, the exponent of the power-law (α) and the value of 
rollover in spatially associated landslides on average are greater than in spatially 
un-associated landslides. From these findings we conclude that landslide 
susceptibility in our study area should be considered as a dynamic measure that 
reflects path dependency and self-organisation in landslides. Susceptibility changes 
because the effect of previous landslides on susceptibility, which in our case is 
positive, decreases over a period of about 10 years. Although our research 
concentrated on the Collazzone region in Italy, we expect these results to be 
relevant for other landslide prone areas as well.  
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Abstract 

Landslides cause major environmental damage, economic losses and casualties. 
Although susceptibility to landsliding is usually considered an exclusively location-
specific phenomenon, indications exist that landslide history co-determines 
susceptibility to future landslides. In this contribution, we quantified the role of 
landslide path dependency (the effect of landslides on landslides) using a multi-
temporal landslide inventory from Italy. The fraction of landslides following earlier 
landslides in the same location exhibited an exponential decay, with susceptibility 
increasing 15-fold right after an initial landslide, and returning to pre-landslide 
values after about 25 years. We investigated the role of the geometry and location 
of a previous landslide for the occurrence of follow-up landslides. Larger landslides 
are more likely to cause follow-up landslides. Also landslide shape, topographic 
wetness index, the vertical distance to the nearest channel network, the absolute 
profile curvature and relative slope position of an earlier landslide, however, are 
important in predicting whether a follow-up landslide occurs. Combined in a binary 
logistic model, these attributes correctly predict 60% of times whether a landslide 
will be followed-up. These findings open the way for time-variant mapping of 
susceptibility to landslides, by including the effect of the spatio-temporal history of 
landsliding on susceptibility. 

 

  



3.1 Introduction   35 

3.1 Introduction 

Landslides are recognized worldwide as a major natural disaster because of the 
destructive effects on society and the environment. In susceptible areas, rainfall, 
earthquakes, snowmelt (Malamud et al. 2004; Guzzetti et al. 2009), and 
anthropogenic activities (Meusburger and Alewell, 2008) are the main triggers for 
landslides.  
 
Inventories of landslides document the distribution, type and extent of landslides 
(Guzzetti et al. 1996; Cardinali et al. 2001) and are a prerequisite for assessing 
susceptibility, hazard and risk assessment of landslides (Cardinali et al. 2002; 
Guzzetti et al. 2005; Van Westen et al. 2006). Multi-temporal inventories of 
landslides record the distribution of landslides in space and time and – although 
rare - are essential to increase understanding of evolutionary processes of 
landsliding (Guzzetti et al. 2012). Using such an inventory for the Collazzone region 
in Central Italy (see below), we recently demonstrated the existence of path 
dependency among landslides (Samia et al. 2017). The concept of path dependency 
originates from complex system theory and means that the current state of a system 
depends on the state of the system in the past (Phillips, 2006; Temme et al., 2015; 
Samia et al. 2017). Applied to landsliding, path dependency means that earlier 
landslides affect (the susceptibility for) future landslides. In this context, we 
defined a follow-up landslide as a new landslide that happens inside a previous 
landslide, or partly overlaps or touches it (Samia et al. 2017). This is different from 
a reactivation of the first landslide, in which case (almost) the entire previous 
landslide moves down. For the Collazzone study area, we found that this effect is 
positive (increased rather than decreased susceptibility after a previous landslide), 
and we found indications that the effect decreases over time (increased 
susceptibility appeared to be present only over timescales of decades after an 
earlier landslide) (Samia et al. 2017). Recently, such a legacy effect on the 
occurrence of landslide was also observed in the response to external drivers of 
landslides. For example, Parker et al. (2015) demonstrated the legacy effect of 
earthquakes on landslides in New Zealand. They showed that the Buller earthquake 
of 1929 triggered landslides immediately, and also reduced the stability of 
hillslopes, leading to the occurrence of more landslides in response to the 1968 
Inangahua earthquake. Over shorter timescales, in rainfall-induced landslides, the 
legacy effect of antecedent rainfall, hydrological properties and accumulated 
damages in hillslopes facilitate the occurrence of landslides in later stages (Fan et 
al. 2015). Apparently, from our own work and from literature, path dependency has 
a role to play in explaining the future occurrence of landslides. The current 
operational approaches for mapping the susceptibility of landslides, however, do 
not take path dependency into account.  
 
So far, mapping the susceptibility of landslides is commonly considered time-
invariant, and a function of spatially varying conditioning attributes. Maps of 
susceptibility are produced using a wide range of qualitative (Van Westen et al. 
2003; Abella and Van Westen, 2008) and quantitative approaches (Van Westen, 
2000; Guzzetti et al. 2005; Abella and Van Westen, 2008; Rossi et al. 2010). All these 
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approaches study the relation between the distribution of landslides and 
conditioning attributes, such as topographic position, geological setting or land use. 
We proposed – in concept – a susceptibility approach that does take landslide path 
dependency into account (Samia et al. 2017). To the best of our knowledge, no 
previous research has quantified path dependency of landslides and has taken it 
into consideration in mapping the susceptibility of landslides. Nonetheless, clear 
candidate mechanisms can explain the path dependency of landslide : the effects of 
landslides on slope angle (Van Westen et al. 2006), surface morphology (Schuster 
and Highland, 2003), sediment properties (Chen, 2009) and vegetation (Singh et al. 
2014).  
 
To implement time-variant mapping of susceptibility, the path-dependent response 
of the landslide system needs to be quantified. To achieve this aim, we formulated 
four questions. First, how much is the susceptibility to landslides of an area 
increased after an earlier landslide? Second, how long does susceptibility to 
landslides remain elevated after an earlier landslide? Third, are landslides that 
cause follow-up landslides different from landslides that do not cause follow-up 
landslides? Answering this question affirmatively would mean that we are able to 
distinguish between landslides that cause follow-up landslides and those that do 
not. Therefore, the fourth research question is whether we can predict the follow-
up occurrence of landslides as a function of the geometry and location of an earlier 
landslide. To answer these research questions, we again use the detailed multi-
temporal inventory of landslides from the Collazzone area in central Umbria, Italy 
(Guzzetti et al. 2006b; Ardizzone et al. 2013). 
 

3.2 Study area and data  

The Collazzone study area is located in the Umbria region in central Italy with an 
extent of 78.9 km2 (Figure 3.1). The elevation varies from 145 to 635 m above sea 
level with slopes extracted from a 10 by 10 m Digital Terrain Model (DTM) that 
range from 0 to 64° (Guzzetti et al. 2006b). The area has been active in terms of 
occurrence of landslide from external triggers such as rainfall and rapid snowmelt 
(Guzzetti et al. 2006b). To avoid destruction by landslides, villages and individual 
farms in the area have been constructed on the top of ridges. A large part of the area 
is under arable land use and permanent forests are rare. A detailed multi-temporal 
inventory of landslides is available in which the size, type and extent of landslides 
in different periods were mapped and documented. Aerial photography, direct field 
mapping and high resolution stereo satellite images were used to prepare the multi-
temporal inventory of landslides. A full description of the study area and details 
about the multi-temporal landslide inventory have been published (Guzzetti et al. 
2006a; Guzzetti et al. 2006b; Galli et al. 2008; Samia et al. 2017). For the present 
study, we have added two recent time slices to the multi-temporal inventory of 
landslides (landslide inventories mapped in 2013 using a stereo couple of GEOEYE 
images and in 2014 using a stereo couple of WorldView images), which now 
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includes 17 time slices of mapped landslides from the period 1937-1941 to April 
2014 (Figure 3.1). 
 

 
Figure 3.1. Location of the Umbria region and of the Collazzone study area (main map) 
(adapted from Samia et al. 2017). Multi-temporal landslide inventory including 17 time slices 
of landslide inventory overlying a shaded relief image (left map). The coordinate system of 
the relief image is EPSG:32633 (www.spatialreference.org). The red box indicates the 
location of  Figure 3.7 and Figure 3.8.  

Types of landslides in the study area, include: (i) slide (rotational and 
translational); (ii) flow; and (iii) slide-flow. Landslides range in age, type, 
morphology, and volume from very old, partly eroded, large and deep-seated slides 
to young and shallow slides and flows. Recent landslides are most abundant in the 
cultivated areas and are rare in the forested terrain, indicating a relationship with 
agricultural practices (Fiorucci et al. 2015). Information about geo-mechanical 
properties is limited and the available data revealed a significant variability in the 
mechanical and the hydrological properties of the geological materials present in 
the study area (Mergili et al. 2014). Santangelo et al. (2015) investigated the 
influence of bedding on abundance and types of landslides in the study area, using 
morpho-structural domains and multi-temporal landslide inventory maps. The 
analysis revealed that bedding conditions are important to predict the distribution 
and abundance of the relict, very old and the deep-seated landslides, but not the 

http://www.spatialreference.org/
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distribution and abundance of the shallow landslides that constitute the majority of 
landslides in the multi-temporal inventory. 

 

3.3 Methods  

3.3.1 Temporal dynamics of landslide path dependency 

To answer the first two research questions about the strength and duration of path 
dependency, we investigated the number of follow-up landslides between time 
slices as a function of time between the time slices. This was complicated because 
some time slices describe multi-year periods, such as the time slice from 1937 to 
1941, while some time slices describe the date of landslides relatively exactly (such 
as the December 2004 time slice) (Figure 3.1). For time slices describing periods, 
temporal midpoints were used to calculate the time difference with other time 
slices. For every time slice, the number of follow-up landslides from each of the 
following time slices was calculated. This was done using standard GIS 
functionality. In this context, follow-up landslides are defined based on the spatial 
association with earlier landslides; they could be either completely inside, partly 
overlap or touch landslides from landslides in an earlier time slice (Figure 3.2) 
(Samia et al. 2017).  
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Figure 3.2. Examples of follow-up landslides and non-follow-up landslides with landslides 

from earlier time slice of multi-temporal inventory of landslides.  

 

For example, from the earliest time slice with temporal midpoint in 1939 until the 
newest time slice in April 2014, we calculated the number of follow-up landslides 
for each of the 16 subsequent time slices, and documented the time passed between 
the initial and follow-up landslide. For the second time slice (temporal midpoint 
1949), the approach was repeated, but now for only 15 subsequent time slices. This 
procedure was repeated until the two latest time slices (April 2013 and April 2014). 
Thus, in total, we calculated the number of follow-up landslides 127 times. 
Importantly, follow-up landslides are associated with the most recent earlier 
landslide. So, a landslide from 2014 that is spatially associated with a landslide from 
1939 and with a landslide from 1954, was counted as a follow-up landslide from 
1954 only. With this, we purely analyzed the effect of first landslides on second 
landslides. From this dataset, we calculated the follow-up landslide fraction ρ (-) as: 

𝜌 =  
𝐹𝐿𝑇2

𝑇𝐿𝑇2
 ×  

𝐴𝑆

𝐴𝐿𝑇1
                                                                                                                         (1) 
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where FLT2 is the number of follow-up landslides in a younger time slice T2, TLT2 is 
the total number of landslides in younger time slice T2, AS (m2) is the area of 
interest, and ALT1 (m2) is the area affected by landslides in the older time slice T1.                                                       

We then related the 127 observations of follow-up landslide fraction (ρ, Eq. 1) to 
elapsed time between the time slices T1 and T2, and fitted an exponential function 
reflecting our earlier finding (Samia et al. 2017) that the follow-up landslide 
fraction from a previous landslide ρa (-) decays over characteristic time scale b (y-

1), ultimately returning to its background value ρ0 (-): 

𝜌(𝑡) = 𝜌𝑎 𝑒𝑥𝑝(𝑏∗𝑡) + 𝜌0                                                                                                            (2) 

 

3.3.2 Are landslides that cause follow-up landslides different from 
those that do not?  

To answer the third research question, we compared geometric and topographic 
attributes between landslides with follow-up landslides, and those without follow-
up landslides. The analysis was carried out using analysis of variance (ANOVA). For 
the geometric attributes of the landslides, we used size and shape. For shape, we 
used the roundness (-) (Samia et al. 2017). In this measure, values closer to 1 
indicate rounder shapes and values closer to zero indicate more elongated shapes 
(Figure 3.3).  
 

 
Figure 3.3. Different degree of roundness showing different shapes of landslides (Samia et 
al. 2017). 

 
Topographic attributes were computed in the SAGA GIS (Conrad et al. 2015) 
exploiting a digital elevation model (DEM) with a 10  10 m ground resolution. 
Attributes selected were local terrain slope and aspect, Topographic Position Index 
(TPI), Topographic Wetness Index (TWI), plan and profile curvatures, absolute plan 
and profile curvatures, LS factor, vertical distance to channel network, and relative 
slope position. Aspect (°) was converted to northness (-) and eastness (-) using 
cosine and sine transformations (Harshburger et al. 2010). TPI (m) is a measure 
that compares altitude of cells in a DEM with surrounding cells (Weiss, 2001). TWI 
(radians-1), which is the logarithm of upstream area divided by slope (Moore and 
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Grayson, 1991), indicates the importance of local topography on soil moisture. Plan 
curvature (m-1) may affect the convergence or divergence of landslide deposits and 
flow in the landslide surface (Carson and Kirkby, 1972). Profile curvature (m-1) 
controls the acceleration or deceleration of flow and may affect the movement of 
landslide deposits (Ohlmacher, 2007). We also calculated the absolute values of 
plan and profile curvatures to quantify deviation from straight slopes. The LS factor 
(mm), which has been used in erosion studies, represents the slope length and 
steepness (Moore and Burch, 1986) and could be important in the process of 
landslide evolution. We used the vertical distance to channel network (m) (Bock 
and Köthe, 2008) to possibly capture landslides happening very close to a channel 
that leave less potential for follow-up landslides. Relative slope position (-), the 
height of a location above the nearest downslope channel relative to the height of 
nearest upslope crest above the same location (Vaughn et al. 2015), offers a 
measure of remaining potential energy: landslides following those with very low 
relative slope position have limited remaining potential energy. 

We then used one-way analysis of variance to evaluate whether any of the 
geometric and topographic attributes differ between earlier landslides where 
follow-up landslides occurred, and those that did not.  

3.3.3 Prediction of follow-up landslide occurrence  

Logistic regression - a multivariate statistical model that is widely used in the 
assessment of susceptibility to landslide (Cox, 1958; Lee and Sambath, 2006; Rossi 
et al. 2010; Rossi and Reichenbach, 2016) - was used to predict which landslides 
would experience a follow-up landslide. We applied logistic regression to predict 
the occurrence of follow-up landslides based on the geometric, topographic, and 
conditioning attributes of earlier landslides. We took care that no pair of these 
attributes had a correlation of more than 0.6 to avoid multicollinearity. In the 
logistic regression model, the occurrence or non-occurrence of follow-up landslides 
was considered as the binary dependent variable. We prepared different models 
using different sets of independent variables: only geometric variables, only 
topographic variables, only conditioning variables (land use and geology), and 
different combinations of these sets. We used 10 datasets of 598 landslides. Each 
dataset consisted of all 299 observed earlier landslides that do have follow-up 
landslides and 299 earlier landslides without follow-up landslides (randomly 
selected out of a total of 2,554 landslides without follow-up). For each dataset of 
598 landslides, 70 percent was again randomly selected for calibration (training) 
and the remaining 30 percent was used for validation (testing). Model 
performances were evaluated with the Receiver Operating Characteristic (ROC) 
(Green and Swets, 1966; Mason and Graham, 2002; Beguería, 2006; Fawcett, 2006), 
in particular using the area under the ROC curve (AUC), a quantitative measure of 
model performance (Mason and Graham, 2002; Fawcett, 2006; Van Den Eeckhaut 
et al. 2009). Ranges of AUC values were used to quantify uncertainty and variation 
in the model. 
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3.4 Results  

3.4.1 Temporal dynamics of landslide path dependency 

 

The follow-up landslide fraction (ρ, Eq. 1) in the same location is high immediately 
after the first landslide, and then decreases gradually over time (Figure 3.4). The 
decline appears to be somewhat well described by an exponential decay function 
(Eq. 2) that decays to 25% of its initial value 10 years after the earlier (first) 
landslide. After 40 years, the value of ρ is within 1% of its long-term value ρ0. The 
value of the exponential coefficient (b= -0.12±0.01 y-1) shows that the increase in 
susceptibility for follow-up landslides decreases quickly after first landslide 
happened. The background susceptibility is provided by ρ0, which is estimated at 
2.85 (-). The initial additional susceptibility because of a previous landslide ρa is 
estimated at 44 (-), which implies that the susceptibility temporarily increases by a 
factor of 15 following a landslide. The residual standard error of the model is 12.67 
(-). 
 

 
Figure 3.4. Temporal response of landslide path dependency with an exponential decay. 
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3.4.2 Which kind of geometric attributes and conditioning attributes 
of landslides are important for a landslide to cause a follow-up 
landslides?  

Here we investigate what types of geometric and topographic attributes of an 
earlier landslide are likely to induce a follow-up landslide. The histograms of 
geometric and topographic attributes of landslides that did and landslides that did 
not cause follow-up landslides demonstrate different distributions in some of these 
attributes (Figure 3.5). The mean area and roundness of landslides where follow-
up landslides occurred are higher than those for landslides with no follow-up 
landslides (p < 0.05, Table 3.1). Therefore, larger and rounder earlier landslides are 
more likely to have follow-up landslides, in our study area.  
 
The nature of the relation between the size of the landslides and the relative 
number of follow-up landslides (Figure 3.6) indicates that it is not merely a 
probability effect. In that case, a doubling in size would have led to a doubling in 
proportion of follow-up landslides. 
 
Also, the mean TWI of landslides where follow-up landslides occurred is higher 
than the TWI of landslides without follow-up landslides (p < 0.05, Table 3.1). This 
indicates that landslides in wetter places are more likely to experience follow-up 
landslides. Moreover, the mean vertical distance to the channel network, the 
relative slope position and the absolute profile curvature of landslides that caused 
follow-up are lower than these attributes for landslides that did not (p < 0.05). This 
reflects that landslides experiencing follow-up landslides typically occur in lower 
slope positions, and are closer to valley bottoms. Differences between both groups 
of landslides in terms of slope steepness, northness, eastness, plan curvature, 
profile curvature and LS factor are not statistically significant (all p > 0.05, Table 
3.1). Note that slope steepness apparently does not affect whether a follow-up 
landsliding occurs. This is interesting because slope is almost always an important 
conditioning attribute in mapping susceptibility.  
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Figure 3.5. Histograms of geometric and topographic attributes of landslides with (red) and 
without (blue) follow-up landslides. The purple means overlap between red and blue. 

 

 
 

Figure 3.6. Relation between size of earlier landslides and relative number of follow-up 
landslides. 
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Table 3.1. Results of one-way analysis of variance (ANOVA) for geometric and topographic 
attributes of landslides with follow-up (299 landslides) and without follow-up landslides 
(2594 landslides).  

Geometric and topographic 
attributes of landslides 

Follow-up?         Mean        SD       Min Max Significance 

size (m2) Yes 
 

5518 7591 60 57081 0.001 
 

No 
 

3529 5472 23 75256 

Roundness (-)  Yes 0.82 
 

0.12 
 

0.23 
 

0.98 
 

0.029 
 

No 0.80 
 

0.17 
 

0.13 
 

0.99 
 

Slope (°) Yes 12.49 
 

3.38 
 

5.39 
 

24.67 
 

0.362 
 

No 12.79 
 

4.32 
 

0.00 
 

38.41 
 

Northness (-) Yes 0.009 
 

0.711 
 

-0.99 
 

0.99 
 

0.860 
 

No 0.017 
 

0.706 
 

-0.99 
 

0.99 
 

Eastness (-) Yes 0.013 
 

0.704 
 

-0.99 
 

0.99 
 

0.608 
 

No -0.008 
 

0.707 
 

-0.99 
 

1.00 
 

TPI (m) Yes 0.496 
 

0.051 
 

0.25 
 

0.65 
 

0.517 
 

No 0.493 
 

0.064 
 

0.08 
 

0.83 
 

TWI (radians-1) Yes 8.46 
 

1.10 
 

4.13 
 

11.65 
 

0.002 
 

No 8.24 
 

1.18 
 

0.00 
 

15.64 
 

Plan curvature (m-1) Yes 
 

-0.179 0.300 -1.39 0.66 0.208 

No 
 

-0.150 0.379 -5.89 2.57 

Absolute plan curvature (m1) Yes 
 

0.240 0.253 0.0001 1.39 0.851 

No 
 

0.244 0.327 0.0000 5.89 

Profile curvature (m-1) Yes 
 

0.038 0.258 -1.00 1.07 0.220 

No 
 

0.071 0.452 -4.14 5.75 

Absolute profile curvature (m-

1) 

Yes 
 

0.166 0.202 0.0005 1.07 0.003 

No 
 

0.235 0.392 0.0000 5.75 

LS factor (mm)  Yes 
 

3.73 1.46 1.06 11.47 0.146 

No 
 

3.60 1.51 0.00 16.32 

Vertical distance to channel 
network (m) 

Yes 
 

20.32 16.68 0.00 81.66 0.019 

No 
 

23.05 19.29 0.00 115.22 

Relative slope position (-) Yes 
 

0.35 0.25 0.00 0.90 0.019 

No 
 

0.39 0.28 0.00 0.99  
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3.4.3 Prediction of the occurrence of follow-up landslides 

The logistic regression model that combines geometric and topographic landslide 
attributes is best able to predict the occurrence of follow-up landslides, with AUC = 
0.64 ± 0.02 for the 10 training data sets (calibration) and AUC = 0.58 ± 0.04 for the 
10 validation data sets (Table 3.2).  
 
Interestingly, the logistic regression model constructed using only the geometric 
landslide attributes of earlier landslides (inherent properties, i.e., size and shape) 
predicts follow-up landslides with an AUC = 0.60 ± 0.01 for the training dataset, 
which is slightly more than the model constructed with only topographic attributes 
(AUC = 0.57 ± 0.03). The models that considered geology and land use were never 
significantly related to whether a landslide experienced follow-up sliding. Hence, 
no regression models that have them as explanatory variables, are reported. 
Apparently, in our study area geology and land use do not play an important role in 
determining whether a landslide will have a follow-up landslide.  
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Table 3.2. Logistic regression models implemented to predict occurrence of follow-up 
landslides based on geometric and topographic attributes of earlier landslides. Numbers 
between parentheses indicate the number of times that variables were selected by logistic 
regression in 10 times repetition. 

 
Set of 

variables 

Variables available for 

logistic regression 

Variables selected by logistic 

regression 

 

AUC calibration 

 

AUC validation 

Geometry 2 Area (10), roundness (10), 0.60 ± 0.01 0.55 ± 0.03 

Topography 

 

 

 

 

 

12 

 

 

 

 

 

Absolute profile curvature (6), 

TWI (5), LS factor (4), slope 

(4), relative slope position (2), 

vertical distance to channel 

network (1) 

 

0.57 ± 0.03 

 

 

 

 

 

0.56 ± 0.05 

 

 

 

 

 

Geometry + 

topography 

14 Area (10), Roundness (10), 

absolute plan curvature (5), 

absolute profile curvature (4), 

LS factor (4), TWI (4), slope 

(4), Vertical distance to 

channel network (2), relative 

slope position (2), eastness (1) 

 

0.64 ± 0.02 0.58 ± 0.04 
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3.5 Discussion 

We will first focus on the answers to our four research questions and then discuss 
the implications of our findings. 
 

3.5.1 Temporal dynamic of landslide path dependency 

The quantification of the timescales involved in landslide path dependency 
indicates that, in our study area, an increased susceptibility caused by earlier 
landslides is reduced to about a quarter of its magnitude after ten years, and is 
insignificant after ~25 years (Figure 3.4). This corroborates and refines our earlier 
findings where we found a positive landslide-landslide effect for a period of several 
decades (Samia et al. 2017). Additionally, we find that susceptibility immediately 
after a landslide is about 15 times higher than background levels.  
 
Although it is beyond the scope of this study to identify the mechanisms that drive 
these temporal dynamics, we can make some inferences. This is based on the 
findings reported above and a field exploration of landslides in the study area, 
which we carried out after a rainstorm in May 2016. During the latter, we observed 
indications that the potential mechanism that causes landslides to increase 
susceptibility, results from changes of slope hydrology. Small ponds formed on and 
in landslide deposits, saturating the material on the surface. In several places, this 
seemed to induce repeated failures (Figure 3.7). Closer inspection revealed the 
existence of smeared surfaces on the sliding planes, which may limit infiltration 
through them, and, hence, cause saturation of the landslide deposit and areas 
further downslope (Figure 3.). Assuming that increased susceptibility indeed 
results from disruptions in slope hydrology, we propose that the decay of additional 
susceptibility after a landslide is caused by the slow restoration of the original slope 
hydrology and removal of smeared surfaces, most likely by means of root growth, 
soil faunal activity and ploughing (which reaches depths of typically 20 cm in the 
study area).  
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Figure 3.7. Ponding on top of landslide deposit (23-03-2016, Collazzone study area in 
Italy). 

 
Figure 3.8. Smeared surface on landslide shear plane (23-03-2016, Collazzone study area 
in Italy). 
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In some ways, the increased likelihood of follow-up landslides soon after an earlier 
landslide is similar to the increased occurrence of landslides after earthquakes. It 
has been suggested that this increase results from the (transient) reduction of 
ground strength (Marc et al. 2015) – a different mechanism than we propose for 
our observations. Marc et al. (2015) suggested that the intensity of landsliding 
could remain elevated for several months to years before ground strength is 
restored – about an order of magnitude smaller than the timescales we describe for 
the decay of increased susceptibility. Also, post-earthquake landslides and 
sediment delivery ratio after the 1999 Mw 7.6 Chi-Chi earthquake and Typhoon 
Toraji in Taiwan (Dadson et al. 2004) was elevated for only four years after the 
earthquake.  

The slower decay of increased susceptibility that we observe, is likely a function of 
a different follow-up mechanism (subsoil hydrology disruption in our case versus 
ground strength reduction in both mentioned cases). These differences may reflect 
geological setting and disruptive agent (previous landslides in our case, versus 
earthquakes in both other mentioned cases). The fundamental difference from the 
perspective of mapping susceptibility, however, is that increased sliding after 
earthquakes happens in the same manner across large areas, whereas we describe 
the influence of individual landslides on sliding susceptibility in the immediate 
vicinity.  

3.5.2 Differences between landslides that experience and do not 
experience follow-up landslides 

We found that size and shape of a landslide play important roles in determining 
whether a landslide is likely to cause a follow-up landslide (Table 3.1, Figure 3.6). 
Earlier landslides that are larger and rounder lead to occurrence of more follow-up 
landslides. The role of size is easily explained: larger landslides result in more 
disruption of hillslopes, in terms of volume of material affected, and in terms of 
slope hydrology. The effect of size does not manifest itself through simply an 
increased probability of a new landslide happening close to or overlapping with, an 
older landslide – that would have led to a much stronger effect of size on the ratio 
of landslides that are follow up (Figure 3.6). Regarding the effect of shape, we 
suggest that rounder landslides are more likely to be slump-like (as opposed to 
more flow-like) and can, hence, result in stronger smearing of the subsurface.  
 
The effects of these geometric landslide attributes fit with the concept of 
“landsliding potential” remaining after landslides occur (Samia et al. 2017). This 
landsliding potential was earlier called “meta stable regions” – the regions for 
propagation of landslides after they happened - to explain the concept of self-
organized critical behaviour (Guzzetti et al. 2002). Apparently, some landslides 
create such “meta stable regions” better or more than others.  
 
We also found that larger TWI, smaller vertical distance to channel network and 
lower relative slope position have a slightly positive effects on the likelihood of 
follow-up landsliding. The larger values of TWI in earlier landslides that 



3.5 Discussion   51 

experienced follow-up landslides may indicate that slides of wetter material are 
more likely to smear or otherwise hydrologically affect the subsurface. This finding 
at the aggregate level again suggests that slope hydrological changes made by a first 
landslide increase the likelihood of occurrence of a follow-up landslide. It is an open 
question whether earlier landslides in drier locations – with lower TWI values – do 
not create the kind of smeared surfaces that we observed in the field (Figure 3.), or 
that those locations are simply less likely to experience repeated levels of wetness 
that together with a smeared surface would lead to a follow-up landslide. Careful 
field observations of smearing and other subsurface changes caused by landslides 
along a slope transect from high to low TWI could shed more light on this question. 
 
Apparently, slope steepness itself does not play a role in determining whether 
follow-up landslides occur (Table 3.1) – whereas it is often a prominent factor in 
determining susceptibility in the first place. Slope apparently controls 
susceptibility, but not how susceptibility changes locally after a landslide.  

The results of ANOVA add an important point to the susceptibility of landslides 
where size of landslide needs to be considered. For prediction of follow-up 
landslides, differences in mean value of geometric attributes and topographic 
attributes of landslides are important. The mean values of roundness, TWI, vertical 
distance to channel and relative slope position are almost the same (Table 3.1). 
Therefore, they are useless for prediction whereas a clear difference between the 
mean value of size (area) should be considered as diagnostic criterion in landslide 
susceptibility. This was confirmed by the results of logistic regression model where 
the size of landslides predicted the occurrence of follow-up landslides (AUC = 0.60 
± 0.01) (Table 3.2). This stresses the importance of using inherent properties of 
landslides (in particular size of landslides) for the assessment of susceptibility to 
landslides.  

A combination of geometric attributes and topographic attributes of landslide used 
in logistic regression increased the capability of prediction of occurrence of follow-
up landslides (AUC = 0.64 ± 0.02) (Table 3.2). Apparently, geometric attributes of 
landslides help to predict the occurrence of follow-up landslides. Interestingly, 
adding geology and land use to the regression models did not improve predictions. 
This suggests that landslides have the potential to cause follow-up landslides 
regardless of the land use or geology. It must be mentioned, however,  that the 
landslides in our study area occur in geology that almost uniformly weathers into 
clayey soils. Therefore, a possible effect of other geological settings on the 
likelihood of follow-up landslide remains to be investigated. Specifically, it is 
plausible that the main presumed follow-up mechanism in our study area – changes 
in slope hydrology caused by a previous landslide – is less important in areas with 
less clayey soils.   
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3.5.3 Role of landslide path dependency in evolutionary process of 
landslides 

Our results suggest that temporal landslide path dependency plays an important 
role in the long-term evolutionary process of landslides. Per our findings, where a 
certain type landslide affects a slope strongly enough, follow-up landslides are 
likely to continue to occur and eventually, clusters of landslides may form. Such 
clustering of landslides was mentioned earlier by Larsen and Montgomery (2012), 
who found spatial clustering of landslides in areas with higher rates of uplift. These 
authors do not refer to path dependency effects, however, and refer to landslides 
that are close to each other, but not directly spatially associated (as in Figure 3.2). 
To facilitate further discussion of both types of clustering, we propose to 
distinguish both types of clustering into conjunctive clustering, where landslides 
touch or overlap, and disjunctive clustering, where a group of landslides is closer to 
each other than to other landslides or groups of landslides. In our study area, path 
dependency between landslides contributed to the development of 444 direct 
clusters of landslides, containing 2,350 landslides (77% of the total number of 
landslides). The largest cluster consisted of 55 landslides, which were recorded in 
12 time slices. 738 landslides did not (yet) experience follow-up sliding (Figure 
3.9). 

 
Figure 3.9. The number of clusters (landslide areas containing one or more (partially) 
overlapping landslides), shown as a function of the number of landslides per cluster recorded 
in the multi-temporal landslide inventory. 

Following from the positive effect of landslide size on follow-up landslides, the size 
of an earlier landslide also has a positive influence on the total number of follow-up 
landslides in a cluster, and, hence, on the size of the clusters (Figure 3.10). This 
leads to the idea that, over longer timescales, a slope can be ‘turned on’ by one 
(large) initial landslide. The exponential growth response in role of size of first 
landslide on the number of landslides per cluster appears to describe this process 

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 >=12

N
u

m
b

er
 o

f 
cl

u
st

er
s

Number of landslides per cluster



3.5 Discussion   53 

adequately, although in reality it would be limited because landslides cannot be 
larger than the slopes they occur in.  

 

Figure 3.10. Relation between number of landslide versus size of earlier landslide per 
cluster. 

 

3.5.4 Implications for susceptibility to landslides 

The present study was designed to quantify the effect of landslide path dependency. 
This was already named “effect of previous landslides” and discussed to be a 
component of a time-variant landslide susceptibility (Samia et al. 2017) as:  
 

𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑠,𝑡 = 𝑓(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑠 , 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒𝑠𝑠,𝑡)                 (3) 

 
We now quantified the time-variant component of susceptibility using the temporal 
dynamics of follow-up landslide fraction (ρ, Eq. 1). These temporal dynamics were 
shown to follow an exponential decay. The most important characteristic numbers 
for our study area, that should be sufficiently generic to allow comparison with 
other study areas, are b (y-1, the decay coefficient) and ρa /ρ0 (-, the relative increase 
in landslide susceptibility immediately after an earlier landslide). In our case, ρa /ρ0 

is larger than 1, indicating a positive effect of landslides on future landslides that 
decays over time. As suggested before (Samia et al. 2017), the opposite case, with 
ρa /ρ0 < 0, would be expected in situations where landslides reduce the risk of 
follow-up landslides (such as where soils are thin and renewed weathering is 
needed before a new landslide is possible (Singh et al. 2008).  
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A path dependent dynamic time-variant landslide susceptibility should be 
considered in addition to traditional susceptibility mapping where the influence of 
conditioning attributes in space is explored in a susceptibility mapping method (i.e., 
logistic regression). Then, an ‘additional’ time-dependent susceptibility term 
modifying the traditional susceptibility to landslides should be introduced to 
account for certain time changes after a landslide occurred. Using such a modelling 
approach based on coefficients of our exponential decay function (ρa, b, and ρ0, Eq. 
2), we could determine which area (e.g. a slope unit (Carrara et al. 1991; Alvioli et 
al. 2016)) has recently experienced a landslide that may cause a follow-up 
landslide, quantify the increased probability to experience follow-up landslides and 
determine for how long this effect will persist. 

3.5.5 Implications for inventory requirements for landslides 

We found that geometric attributes (size and shape) of initial landslides have a 
strong effect on the likelihood of occurrence of follow-up landslides (Table 1) and 
the formation of landslide clusters (Figure 3.10). This had not been documented 
before, probably because in nearly all landslide inventories, the locations of 
landslides are mapped as points. We, therefore, recommend mapping of landslides 
with polygons either in field surveys or in remote sensing approaches (aerial 
photographs and satellite images) to allow determination of size and shape of 
landslides, and use this information to assess susceptibility to landslides.  

For existing point-based multi-temporal inventories, quantification of landslide 
path dependency can be attempted if information about landslide area (in classes 
or in real numbers) is available. Under an assumption for landslide shape, this 
would allow the creation of an approximate landslide polygon, centred on the 
reported point-based location. From there, it can be determined whether landslides 
from subsequent time slices possibly overlap, follow-up landslide fraction (ρ, Eq. 1) 
can be calculated and its temporal dynamics can be estimated. This procedure can 
be easily performed stochastically if estimates of the uncertainty in position, area 
and shape are available, yielding uncertainty bounds for ρ and its temporal 
dynamics.  

3.5.6 Implications for regional planning 

Planning regulation in mountainous landslide prone areas depends on proper 
landslide susceptibility zonation of that territory. Given that the existing 
distribution of landslides in inventory maps of landslides is used to produce maps 
of landslide susceptibility, regular monitoring of the location and distribution of 
landslides is already required to keep maps of landslide susceptibility up to date for 
sustainable land use planning. Such regularly updated landslide inventory maps 
will also allow us to consider the short-term effect of existing landslides on follow-
up landslide occurrence (Samia et al. 2017). Given that design timescales for 
buildings and infrastructure are usually longer than the ~25 years over which 
previous landslides meaningfully affect the susceptibility for future landslides, 
time-variant maps of susceptibility do not seem to be meaningful starting points for 
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planning purposes. Maps of the time-variant portion of landslide susceptibility that 
are based on Eq. 3, however, are likely to show different patterns of susceptibility 
than traditional maps of susceptibility – and may, therefore, be valuable inputs to 
planning processes in regions that experience substantial follow-up landsliding.  

3.6 Conclusions  

 
We quantified the path dependent response of landslides. The path dependency 
between landslides exhibits an exponential response over time. In our study area, 
susceptibility increases by a factor of about 15 immediately after an earlier 
landslide and decreases to background levels of susceptibility over a period of 25 
years. Larger and rounder landslides are more likely to be the cause of follow-up 
landsliding. The size of earlier landslides also plays an important role in forming 
landslide clusters. In addition, Topographic Wetness Index (TWI), absolute profile 
curvature, vertical distance to channel network, and relative slope position of a 
landslide co-determine the occurrence of follow-up landslides. A logistic regression 
model to predict follow-up landslide occurrence based on a combination of 
geometric and topographic attributes predicts follow-up landslide occurrence with 
60% confidence. These findings can be used in a dynamic time-variant mapping of 
landslide susceptibility where changes in susceptibility levels occur over time 
based on exponential response of landslide path dependency. We stress the 
importance of multi-temporal polygon mapping and documenting of landslides to 
perform a time-variant assessment of susceptibility to landslides. 
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Abstract 

Landslide susceptibility modelling - a crucial step towards the assessment of 
landslide hazard and risk - has hitherto not included the local, transient effects of 
previous landslides on susceptibility. In this contribution, we implement such 
transient effects, which we term ‘landslide path dependency’, for the first time. Two 
landslide path dependency variables are used to characterise transient effects: a 
variable reflecting how likely it is that an earlier landslide will have a follow-up 
landslide, and a variable reflecting the decay of transient effects over time. These 
two landslide path dependency variables are considered in addition to a large set 
of conditioning attributes conventionally used in landslide susceptibility. Three 
logistic regression models were trained and tested fitted to landslide occurrence 
data from a multi-temporal landslide inventory: 1) a model with only conventional 
variables, 2) a model with conventional plus landslide path dependency variables, 
and 3) a model with only landslide path dependency variables. We compare the 
model performances, differences in the number, coefficient and significance of the 
selected variables, and the differences in the resulting susceptibility maps. 
Although the landslide path dependency variables are highly significant and have 
impacts on the importance of other variables, the performance of the models and 
the susceptibility maps do not substantially differ between conventional and 
conventional plus path dependent models. The path dependent landslide 
susceptibility model, with only two explanatory variables, has lower model 
performance, and differently patterned susceptibility map than the two other 
models. A simple landslide susceptibility model using only DEM-derived variables 
and landslide path dependency variables performs better than the path dependent 
landslide susceptibility model, and almost as well as the model with conventional 
plus landslide path dependency variables – while avoiding the need for hard-to-
measure variables such as land use or lithology. Although the predictive power of 
landslide path dependency variables is lower than those of the most important 
conventional variables, our findings provide a clear incentive to further explore 
landslide path dependency effects and their potential role in landslide susceptibility 
modelling. 
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4.1 Introduction 

Landslide susceptibility modelling is a key component in landslide hazard and risk 
assessment, crisis management and land use planning. Landslide susceptibility is 
the probability of landslide occurrence in an area based on a set of conditioning 
attributes (e.g., morphology, geology, soil) (Brabb 1984). In this context, landslide 
susceptibility is a time-invariant concept that purely provides an assessment of 
where a landslide is likely to occur (Guzzetti et al. 1999; Guzzetti et al. 2005). Hence, 
landslide susceptibility differs from landslide hazard which does consider the 
temporal probability of landslide occurrence (Varnes 1984; Guzzetti et al. 2005; 
Guzzetti et al. 2006a) and its magnitude (Guzzetti et al. 2005). 

The availability of commercial and open source GIS, and of statistical software 
(Rossi et al. 2010; Rossi and Reichenbach 2016) has allowed many researchers to 
construct different empirical models for landslide susceptibility modelling. Direct 
geomorphological mapping, heuristic approaches and quantitative statistical 
models have all been used to model susceptibility to landslides. Within the category 
of quantitative statistical models, the last two decades landslide susceptibility 
modelling has been the playground for new data integration techniques including 
fuzzy logic (Saboya et al. 2006), artificial neural networks (Kawabata and Bandibas 
2009), support vector machines (Kavzoglu et al. 2014), and random forests (Trigila 
et al. 2015). The various approaches applied in these models always involve 
estimating the relation between the presence or absence of landslides on the one 
hand, and a generally large set of conditioning attributes on the other hand. 
Performance of such models is usually assessed with a strong emphasis on Receiver 
Operating Characteristic (ROC) curves, and Area Under Curve (AUC) values (Mason 
and Graham 2002).  

The temporal validity of predicted susceptibility levels in landslide susceptibility 
models have been considered  indefinitely in all those approaches. However, there 
are indications from empirical studies that susceptibility levels are instead 
dynamic, such as the existence of a “relaxation time” of the landscape, following a 
major event triggering landslides. In the “relaxation time”, the effects of external 
triggers (e.g., earthquake, rainfall) and also the strengths of ground change over 
time. These changes were demonstrated with the impacts of four earthquakes (MW 
6.6-7.6) on the rate of landsliding. Marc et al. (2015) showed that the regional 
susceptibility of landsliding increases immediately after an earthquake, remains 
high for several months to years, and then returns to the background susceptibility 
level. This shows that landslide susceptibility levels are dynamic, and suggests that 
these changes need to be reflected in landslide susceptibility modelling. 

We recently quantified the duration and strength of path dependency among 
landslides for the Collazzone study area in central Italy (Samia et al. 2017b; Samia 
et al. 2017a). Path dependency is a concept from complex system theory stating that 
the history of a system partly determines the future state of the system (Phillips 
2006). In landsliding, path dependency means that the history of landslides at a 
certain location affects the susceptibility of future landslides at or near that location 
(Samia et al. 2017b). We found that in our study area earlier landslides locally, 
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temporarily and positively affect the susceptibility to future landslides. 
Susceptibility rises immediately after a first landslide, and then decays to the 
original susceptibility values over a period of about two decades in the vicinity of 
existing landslides (Samia et al. 2017b; Samia et al. 2017a). These results led us to 
propose the concept of time-variant landslide susceptibility modelling in which a 
space-time dynamic component reflecting landslide history is added to the purely 
spatial conditioning attributes that have conventionally been used in landslide 
susceptibility modelling (Samia et al. 2017b; Samia et al. 2017a). 

Our current work presented in this paper includes – for the first time – landslide 
path dependency in landslide susceptibility modelling, and compares results with 
conventional landslide susceptibility modelling. To do this, we use a detailed multi-
temporal landslide inventory containing 16 time slices of mapped landslides from 
the Collazzone study area in central Umbria, Italy (Guzzetti et al. 2006a; Ardizzone 
et al. 2013). 

 

4.2 Study area and data 

4.2.1 Study area 

The hilly Collazzone study area, in central Umbria, Italy, covers an area of 78.9 km2 
(Figure 4.1). The elevation in the area ranges from 145 to 634 m above sea level, 
and slope varies between 0 and 64° derived from a Digital Terrain Model. Climate 
is Mediterranean with annual average precipitation of 885 mm, and snow falls 
every 2 to 3 years (Rossi et al. 2010). Both forms of precipitation trigger landslides 
in the area (Guzzetti et al. 2006a). The majority (57%) of the area is used as arable 
land. Forests, urban areas, pastures and vineyards are other substantial land uses. 
Soils have fine to medium textures and their thicknesses vary from a few 
centimetres to more than 1 meter (Rossi et al, 2010). A full description of study area 
can be found in (Guzzetti et al. 2006b; Galli et al. 2008; Samia et al. 2017b).  
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Figure 4.1. Multi-temporal landslide inventory including 16 time slices of landslide 
distribution overlaying a shaded relief image (left map) (adapted from (Samia et al. 2017b)). 
Location of Umbria region and of the Collazzone study area (right map). The coordinate 
system of both maps is EPSG:32633 (www.spatialreference.org). Note that the time slice 
from 1939 was only used to compute landslide path dependency variables, and not in 
landslide susceptibility modelling. 

4.2.2 Multi-temporal landslide inventory 

The Collazzone study area is active in terms of landslide occurrence. Landslides are 
regularly mapped and monitored using interpretation of aerial photographs, direct 
field mapping after major external triggers (e.g., intense rainfall and snowmelt), and 
also remote sensing with stereo couples of GEOEYE and Worldview images 
(Ardizzone et al. 2013). A multi-temporal landslide inventory based on these 
sources is available for the study area, containing 3391 landslides mapped in 19 
different time slices. All landslides in the multi-temporal landslide inventory are 
shallow and deep-seated landslides (Guzzetti et al. 2006b). The first three time 
slices where the dates of previous landslides are not well-constrained, were not 
used in this study. Therefore, the multi-temporal landslide inventory that is used in 
this work contains 16 time slices with a total of 2383 landslides (Figure 4.1). The 
time slices range from landslides in 1947 to landslides in April 2014. A detailed 
description of the multi-temporal landslide inventory, with information about the 

http://www.spatialreference.org/
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preparation and mapping of time slices of landslides inventories, age of landslides, 
spatial and temporal uncertainty of mapped landslides and frequency area relation 
of the multi-temporal landslide inventory is given in (Guzzetti et al. 2006b; Samia 
et al. 2017b). 

4.2.3 Mapping unit for landslide susceptibility modelling 

A subdivision of the study area into mapping units (Figure 4.2) i.e., morpho-
hydrological subdivisions of terrain containing a set of conditions different from 
neighbouring units, is common for the preparation of landslide susceptibility maps 
(Carrara et al. 1995; Guzzetti et al. 1999; Guzzetti et al. 2006b; Alvioli et al. 2016). 
We used a set of previously defined “slope units” that divide the study area into 
hydrological regions bounded by drainage and divide lines (Carrara et al. 1991; 
Alvioli et al. 2016). These slope units have proven to be a reliable unit to map 
susceptibility to landslides in our study area (Guzzetti et al. 2006a; Guzzetti et al. 
2006b) and more generally in the Umbria region in Italy (Carrara et al. 1991; 
Guzzetti et al. 1999; Cardinali et al. 2002). In total, 894 slope units were identified 
for our study area. Along with the preparation of slope units, 30 morphological and 
hydrological parameters (Table 4.1) were created that are part of the set of 
conditioning attributes used in this work. A detailed description regarding the 
preparation of slope units and their use for susceptibility modelling can be found in 
(Carrara et al. 1991; Rossi et al. 2010). 
 

4.2.4 Conditioning attributes 

To classify the slope units according to their susceptibility to landslide, we used the 
same set of 51 conditioning attributes as previous work (Rossi et al. 2010). This set 
(Table 1) includes 24 morphological, six hydrological, nine lithological (Figure 4.2), 
three structural, and eight land use classes (Figure 4.2), and one attribute showing 
the presence of ancient deep-seated landslides. A detailed description of the 
preparation of these attributes and their importance in landslide susceptibility 
mapping can be found in (Guzzetti et al. 2006a; Guzzetti et al. 2006b; Rossi et al. 
2010). For this study, additional variables reflecting landslide path dependency 
were calculated. These variables describe the spatial probability of earlier landslide 
causing follow-up landslides and landslide susceptibility temporal decay (Table 4.1 
and see section 4.3.1).  
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Figure 4.2. Slope units and slope (a), geology (b), land use (c), and bedding attitude with 
respect to slope (d) in the Collazzone study area. 
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Table 4.1. Conditioning attributes used in conventional landslide susceptibility modelling 
(Rossi et al. 2010) and landslide path dependency variables.  

Category  Conditioning attributes (independent variables or classes) 

Land use Arable, built area, forest, grass, orchard, road, vineyard, 

water 

Old landslides Deposit of ancient deep-seated landslide 

Lithology Recent alluvial deposit, clay, conglomerate, limestone, marl, 

sand, sand-silt, sandstone, travertine  

Slope direction Slope unit facing N-NE, slope unit facing S-SE, slope unit 

facing S-SW, concave profile downslope, concave–convex 

profile downslope, downslope concave slope, slope unit 

mean terrain gradient, slope unit rectilinear profile, slope 

unit slope (lower portion), slope unit terrain gradient 

(intermediate portion), slope unit terrain gradient (upper 

portion), slope unit terrain gradient standard deviation, 

slope unit with convex slope (downslope profile), slope unit 

with convex–concave slope (downslope profile), slope unit 

with irregular slope (downslope profile), aspect (D8 

notation),  

Hydrological Drainage basins total area upstream the slope unit, drainage 

channel mean slope, slope unit drainage channel length, 

slope unit drainage channel magnitude, slope unit drainage 

channel order, slope unit area 

Geomorphological Standard deviation of terrain unit length, slope unit 

elevation standard deviation, slope unit length, slope unit 

mean elevation, slope unit surface roughness index, 

maximum orientation of the slope unit, minimum 

orientation of the slope unit, mean slope angle of the slope 

unit squared 

Structural Anaclinal slope, cataclinal slope, orthogonal slope 

Landslide path 

dependency 

Susceptibility temporal decay, spatial probability of earlier 

landslides causing follow-up landslides  
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4.3 Methods 

We compared (i) conventional landslide susceptibility modelling, (ii) conventional 
plus path dependent landslide susceptibility modelling, and (iii) path dependent 
landslide susceptibility modelling using a forward conditional Multiple Logistic 
Regression (MLR) (Figure 4.3). We assessed the performance of all three models 
with Area Under Curve (AUC) values of the Receiver Operating Characteristics 
(ROC) curve. Then, we compared the coefficients estimated in landslide 
susceptibility models. Finally, we compared the predicted susceptibility maps.  

 

Figure 4.3. Flowchart of methods used. For difference between sequential split and non-
sequential split see section 4.3.2. 

4.3.1 Landslide path dependency variables 

We computed four landslide path dependency variables in an attempt to reflect the 
history of landslides from the multi-temporal landslide inventory (Figure 4.1). The 
first path dependency variable, called susceptibility temporal decay (Table 1) 
reflects that the additional local susceptibility due to an earlier landslide decays 
exponentially, following:  

𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 temporal 𝑑𝑒𝑐𝑎𝑦 = 𝑒(𝑏∗𝑡)                                                                            (1) 
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For every slope unit in each time slice, we calculated the susceptibility temporal 
decay depending on when a landslide last time happened in the slope unit, 
regardless of where in the slope unit the landslide happened. The susceptibility 
temporal decay values range from 0 to 1. Values close to 1 indicate that landslides 
happened recently in the slope unit and values close to 0 indicate that the most 
recent landslide happened a long time ago. This was based on our earlier finding of 
exponential decay in the number of landslides geographically overlapping with 
earlier landslides (Samia et al. 2017a). We found that for the Collazzone study area 
the susceptibility is raised immediately after an earlier landslide by a factor of 15, 
and then it decreases over time with an exponential coefficient value of b = - 0.12 ± 
0.01 y-1 (Figure 4.). The second variable (Table 4.1) is the spatial probability of 
earlier landslides causing follow-up landslides, which was quantified according to 
geometric and topographic attributes of earlier landslides (Samia et al. 2017a). The 
third variable is the sum of spatial probability of all landslides that may have 
happened in the most recent time slice experiencing follow-up landslides. The 
fourth variable is an aggregated number combining the probability of follow-up 
landslides of all known earlier landslides under the assumption that susceptibility 
decays exponentially (b = - 0.12) as following: 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 

∑    𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑎𝑟𝑙𝑖𝑒𝑟 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑖  𝑐𝑎𝑢𝑠𝑖𝑛𝑔 follow − up 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 ∗ 𝐸𝑎𝑟𝑙𝑖𝑒𝑟 𝑠𝑙𝑖𝑑𝑒 𝑛
𝐸𝑎𝑟𝑙𝑖𝑒𝑟 𝑠𝑙𝑖𝑑𝑒 𝑖 𝑒(𝑏∗𝑡)       

                                                                                                                                                                          (2) 

Time differences, spatial association among landslides, geometric and topographic 
attributes of landslides were the key elements to calculate all these four variables.  

Only the first two of these landslide path dependency variables were used in 
landslide susceptibility modelling because the third and fourth variables were very 
strongly correlated with the second variable (r > 0.6) for our dataset. However, they 
may be less correlated and hence useful in other settings with multi-temporal 
landslide inventory. 
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Figure 4.4. Temporal response of landslide path dependency with an exponential decay 
(Samia et al. 2017a). 

4.3.2 Sequential and non-sequential splitting of multi-temporal 
landslide inventory for training and testing 

Usually, in landslide susceptibility modelling, a mono-temporal landslide 
inventory (i.e. a geomorphological) (Guzzetti et al. 2012) is divided randomly 
into a training and a testing dataset, with a ratio of 70% of the data for training 
and 30% of the data for validation (Tien Bui et al. 2016). In previous studies that 
used almost the same multi-temporal landslide inventory as we do in this work, 
older time slices have been used for training, and younger time slices for testing 
(Rossi et al. 2010). We named this approach ‘sequential splitting’ (Figure 4.3, 
Table 4.2) and we used it as a first splitting approach in this work, with the 7 
oldest time slices from 1947 to 1991 (covering a period of 44 years) used for 
training , and the 9 most recent time slices from 1997 to 2014 (covering a period 
of 17 years) used for testing. 

However, this method of splitting is not well suited where an estimation of the 
effects of landslide path dependency is required. Note that the landsliding history 
of the area is not known before the earliest time slice in 1939. That means that 
for this time slice, the value of the temporal decay susceptibility (Table 4.1) is 
unknown, and that also subsequent old time slices may miss an important part 
of the landslide history of the area. Thus, sequential splitting leads to a narrower 
distribution of times since previous landslides in the training dataset than in the 
testing dataset. A model based on the training dataset may hence be uncertain 
about the role of the time passed since a previous landslide, especially for longer 
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times passed. Additionally, in recent times, time slices are closer together in time 
due to more frequent availability of high quality remote sensing imagery. The 
corresponding lack of very short temporal separations in the training dataset will 
hamper accurate estimation of the role of time as well. More generally, the path 
dependency paradigm creates room for thought that the conventional space-
focussed susceptibility rules change over time. If so, a model trained on an old 
dataset may not be accurate for a recent dataset. 

For these reasons, we also employed a ‘non-sequential splitting’ approach, which 
to our knowledge is novel in the realm of landslide susceptibility modelling. The 
non-sequential selection of time slices from the multi-temporal landslide 
inventory (Figure 4.1, Table 4.2) prioritizes an equal range of temporal 
separations between time slices in the training and the testing datasets, to avoid 
the disadvantages mentioned above. On the downside, this approach makes it 
more difficult to have approximately equal numbers of slope units with and 
without landslides in both datasets. For the training dataset, the 1st, 2nd, 5th, 6th, 
9th, 10th, 13th and 14th time slices were used (covering a period of 63 years). Note 
that the first time slice here refers to 1947 – the first time slice for which a partial 
history of landsliding is known. For the testing dataset, the 3rd, 4th, 7th, 8th, 11th, 
12th, 15th and 16th time slices were used (covering a period of 49 years) (Table 
4.2).  

 

Table 4.2. Sequential and non-sequential splitting of time slices of the multi-temporal 
landslide inventory to be used in conventional, conventional plus path dependent and 
purely path dependent landslide susceptibility modelling 

Selection of 

training and testing 

datasets  

Time slices in the  

training dataset  

 

Time slices in the 

 testing dataset 

 

Sequential splitting 1947, 1954, 1965, 1977, 

1981, 1985, 1991 

 

1997, 1999, May 2004, Dec 2004, 

Dec 2005, March 2010, May 2010, 

April 2013, April 2014 

 

Non-sequential 

splitting 

1947, 1954, 1981, 1985, 

1999, May 2004, March 

2010, May 2010 

1965, 1977, 1991, 1997, Dec 2004, 

Dec 2005, April 2013, April 2014 

 

4.3.3 Multiple logistic regression model 

Logistic regression is the most widely used statistical model in landslide 
susceptibility modelling (Mancini et al. 2010; Martinović et al. 2016). In logistic 
regression, a set of explanatory (independent) variables explains variation in the 
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binary dependent variable (Menard 2000). In landslide susceptibility modelling, 
explanatory variables are e.g., slope and geology, and the dependent variable is 
the presence or absence of landslides in the mapping unit of choice. The relation 
between independent variables and dependent variable is used to classify the 
mapping units (slope unit or pixel) of an area to different levels of susceptibility 
to landslides. In this context, each mapping unit has a probability of landslide 
occurrence (ρ) in the range from 0 to 1 (Martinović et al. 2016): 

𝜌 =  ln (
1

1 + 𝑒−𝑧),                                                                                                                     (3) 

where z is a linear combination of coefficients related to independent variables 
selected by logistic regression according to their importance and significance 
reflected as: 

𝑧 =  𝛽0 +  𝛽1 𝑋1 +  𝛽2 𝑋2 + ⋯ + 𝛽𝑛 𝑋𝑛                                                                             (4) 

where β0 is the intercept of the model, β1, β2 and βn are the coefficients of 
independent variables, and X1, X2, Xn are independent variables selected by the 
model. 

4.3.4 Landslide susceptibility modelling 

Conventional landslide susceptibility modelling was performed using a set of 51 
previously used conditioning attributes (Rossi et al, 2010) (Table 4.1). The 
conventional plus path dependent landslide susceptibility modelling was 
performed using the same 51 conditioning attributes, plus spatial probability of 
earlier landslides causing follow-up landslides and susceptibility temporal decay 
variables describing landslide path dependency (Table 4.1). Path dependent 
landslide susceptibility modelling was performed using only the two new 
landslide path dependency variables (Table 4.1). The number of slope units 
without landslides is more than the number of slope units with landslides (Figure 
4.3). To make a dataset with equal numbers of slope units with and without 
landslides, all slope units with landslides and a random but equal number of 
slope units without landslides were selected. To explore the effect of this random 
selection, it was repeated 10 times. After preparation of the 10 training datasets 
with sequential splitting, and 10 training datasets with non-sequential splitting, 
we applied logistic regression to all twenty. We imposed an entry probability of 
0.05 and a removal probability of 0.06 to reduce the risk of overfitting in the 
model. To avoid multicollinearity, we allowed only inter-variable correlations 
less than 0.6. Then, the contingency tables were computed to show the True 
Positive (slope units with landslide and predicted with landslide), True Negative 
(slope units without landslide and predicted without landslide), False Positive 
(slope units without landslide but predicted with landslide) and False Negative 
(slope unites with landslide and predicted without landslide) (Jolliffe and 
Stephenson 2003). Finally, the Area Under Curve values (AUC), quantifying the 
accuracy of performance of predicted models (Mason and Graham 2002; Fawcett 
2006), and the Akaike Information Criterion (AIC) which quantifies the goodness 
of fit while penalising for the complexity of the model (Akaike 1974; Petschko et 
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al. 2012) were computed for the training datasets. To test the models, the models 
were applied to the 20 testing datasets, and again contingency tables and the AUC 
values for these testing datasets were calculated. The coefficients of variables 
selected by logistic regression in conventional landslide susceptibility were 
compared with the coefficients of variables selected by logistic regression in 
conventional plus path dependent landslide susceptibility. Finally, we averaged 
the probability of landslide occurrence in the 10 training and 10 testing datasets, 
and used this to map susceptibility to landslides. 
 

4.4 Results 

4.4.1 Model performance 

In our test case, conventional plus path dependent landslide susceptibility 
modelling resulted in similar model performance to conventional landslide 
susceptibility modelling. This was true for both sequential and non-sequential 
splitting of the multi-temporal landslide inventory (Table 4.3). In sequential 
splitting, the best training result was obtained with conventional plus path 
dependent landslide susceptibility modelling with highest AUC = 0.775 ± 0.006 
(Table 4.3, Figure 4.5) and lowest Akaike Information Criterion (AIC) = 2281 ± 23. 
In non-sequential splitting, the best training result was obtained again with 
conventional plus path dependent landslide susceptibility modelling with highest 
AUC = 0.767 ± 0.007 and lowest AIC = 1515 ± 15. 

The best testing result was obtained with conventional plus path dependent 
landslide susceptibility for the non-sequential splitting, with AUC = 0.754 ± 0.012 
(Table 4.3 and Figure 4.5). The landslide susceptibility model using only landslide 
path dependency variables performed acceptably as well, with best AUC = 0.688 ± 
0.009 for training in non-sequential splitting, and AUC = 0.682 ± 0.022 for testing 
in the sequential splitting (Table 4.3).  

The clearest difference between these three landslide susceptibility models is that 
the testing results are higher or closer to the training results when only using 
landslide path dependency variables. In general, non-sequential splitting has larger 
differences between model performance and testing (Table 4.3).  
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Table 4.3. Area Under Curve (AUC) and Akaike Information Criterion (AIC) values in 
conventional, conventional plus path dependent and path dependent landslide susceptibility 
modelling in sequential and non-sequential splitting. 

AUC and 

AIC 

values 

Conventional susceptibility  Conventional plus path 

dependent susceptibility  

Path dependent susceptibility 

Sequential Non-sequential Sequential Non-sequential Sequential Non-sequential 

AUC 

training  

0.773 ± 0.008 0.763 ± 0.008 0.775 ± 0.006 0.767 ± 0.007 0.662 ± 0.007 0.688 ± 0.009 

AIC 

training 

2287 ± 26 1523 ± 23 2281 ± 23 1515 ± 15 2586 ± 16 1671 ± 13 

AUC 

testing  

0.730 ± 0.007 0.753 ± 0.011 0.733 ± 0.012 0.754 ± 0.012 0.682 ± 0.022 0.673 ± 0.007 

 
 
 
 
 

  
 
Figure 4.5. Examples of Receiver operating characteristic (ROC) curves with highest AUC 
values for training in conventional plus path dependent landslide susceptibility modelling 
for the sequential splitting (right) and for testing in conventional plus path dependent 
landslide susceptibility modelling for the non-sequential splitting (left). 

The contingency tables values (Table 4.4) calculated with a probabilistic cut off 
value of 0.5 showed slight differences between conventional and conventional plus 
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path dependent susceptibility, in sequential and non-sequential splitting. The path 
dependent susceptibility model differs substantially from these two models. 

Table 4.4. Contingency table for conventional susceptibility, and conventional plus path 
dependent susceptibility and purely path dependent susceptibility in sequential and non-
sequential splitting.  

 
  

4.4.2 Effect of landslide path dependency variables on variable 
selection 

The spatial probability that an earlier landslide will cause a follow-up landslide was 
selected as an explanatory variable (independent variable) in all 10 repetitions of 
conventional plus path dependent susceptibility modelling using sequential 
splitting, and in 8 out of 10 repetitions using non-sequential splitting (Table 4.5). In 
these 18 cases, the significance of this variable was always better than 0.0001. The 
susceptibility temporal decay variable was selected 6 times, both in sequential and 
non-sequential splitting of conventional plus path dependent susceptibility (Table 
4.5). In these 12 cases, susceptibility temporal decay variable was always 
significant as imposed during the training of the model (p < 0.05). When using only 
the two path dependency variables, the spatial probability of earlier landslide 
causing follow-up landslide variable was always selected (i.e., 20 times), whereas 
susceptibility decay variable was selected 6 times in sequential and 10 times in non-
sequential splitting. These variables were significant (p < 0.05) in all 36 cases as 
well. The importance of the landslide path dependency variables is also shown by 
their effects on the number and coefficients of variables selected by the model 
(Table 4.5, Figure 4.6 and Figure 4.7).  

 

 

 

 

 

 Conventional susceptibility Conventional plus path dependent 
susceptibility 

Path dependent susceptibility 

 Sequential  Non-sequential   
 

Sequential Non-sequential Sequential Non-sequential 

          Observed landslides                            Observed landslides                                 Observed landslides 
 Yes      No  Yes  No Yes No Yes No Yes No Yes No 
Predicted 
landslides 
in training  

Yes 37%    13% 37% 13% 38% 12% 38% 12% 
37% 13% 36% 14% 

No 17%    33%   18% 32% 17% 33% 18% 32% 23% 27% 20% 30% 

Predicted 
landslides 
in testing  

Yes 35%    15%   36% 14% 37% 13% 35% 15% 43% 7% 28% 22% 

No 19%    31% 17% 33% 21% 29% 17% 33% 29% 21% 17% 33% 
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Table 4.5. Variables selected by logistic regression in conventional susceptibility, 
conventional plus path dependent susceptibility and path dependent susceptibility. Only 
variables included 6 or more times out of 10 repetitions are reported. Numbers between 
parentheses indicate the number of times that variables were selected in the 10 repetitions. 

  

 Landslide 

susceptibility 

Variables selected by logistic regression in 10 times repetition 

of logistic regression model 

Average 

number 
 of 

variables 

in the 

model 

S
eq

u
en

ti
al

 s
p

li
tt

in
g

 

Conventional (51 

variables 
available) 

 

Limestone (10), forested area (10), slope unit area (10), 

minimum orientation of the slope Unit (10), cultivated area 
with trees (9), slope unit mean terrain gradient (8), slope unit 

length (8), mean slope angle of the slope unit squared (8), 

water bodies (7), recent alluvial deposit (6), marl (6), slope 
unit mean elevation (6), slope unit mean terrain gradient (6) 

13.7 

Conventional plus 

path dependent (53 
variables 

available) 

  

Spatial probability of earlier landslide causing follow-up 

landslide (10), limestone (10), forested area (10), slope unit 
area (10), minimum orientation of the slope unit (10), 

cultivated area with trees (9), recent alluvial deposit (7), 

susceptibility decay (6), water bodies (6), slope unit mean 
elevation (6), slope unit mean terrain gradient (6), mean slope 

angle of the slope unit squared (6)  

14 

Path dependent 

(two variables 
available) 

Spatial probability of earlier landslide causing follow-up 

landslide (10), susceptibility temporal decay (6) 

1.6 

N
o

n
-s

eq
u

en
ti

al
 s

p
li

tt
in

g
 

Conventional (51 

variables 
available) 

Limestone (10), recent alluvial deposit (9), cultivated area (8), 

slope unit length (7), gravel and coarse continental sediments 
(6), pasture (6), slope unit elevation standard deviation (6), 

slope unit length (6)  

10.7 

Conventional plus 

path dependent (53 
variables 

available) 

Limestone (10), spatial probability of earlier landslide causing 

follow-up landslide (8), slope unit elevation standard 
deviation (8), recent alluvial deposit (8), slope unit length (7), 

cultivated area (7), susceptibility temporal decay (6)  

11 

Path dependent 
(two variables 

available) 

Spatial probability of earlier landslide causing follow-up 
landslide (10), susceptibility temporal decay (10) 

2 

 

In sequential splitting, for conventional susceptibility, on average 13.7 variables 
and for conventional plus path dependent susceptibility 14 variables were selected 
(Table 4.5). Also, in non-sequential splitting the conventional landslide 
susceptibility selected on average 10.7 variables and the conventional plus path 
dependent susceptibility selected 11 variables on average. With adding the two 
landslide path dependency variables into the conventional landslide susceptibility, 
the inclusion and exclusion of other variables also changed. These were seen both 
in sequential and non-sequential splitting. In conventional plus path dependent 
susceptibility in sequential splitting, on average 3.25 variables were removed and 
2.7 variables were added. In conventional plus path dependent susceptibility in 
non-sequential splitting, on average 3.5 variables were removed and 3.1 variables 
were added. In path dependent susceptibility, for the sequential splitting on 
average 1.6 variables (out of two landslide path dependency in 10 times repetition) 
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were selected, and for non-sequential splitting both landslide path dependency 
variables were selected in all of the10 times repetition (Table 4.5). 

The regression coefficients of variables that were present in both the conventional 
and the conventional plus path dependent models changed slightly (less than 10%) 
with sequential splitting (Figure 4.6). The largest change is for recent alluvial 
deposit; around 11%. With non-sequential splitting, limestone and cultivated area 
changed, about 12% and 14% respectively (Figure 4.7).  

 

Figure 4.6. Percentage change in the coefficients with adding two landslide path dependency 
variables in sequential splitting. The changes of coefficients in variables that were 6 times or 
more common between two models were reported. Error bars represent standard error. 
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Figure 4.7. Percentage change in the coefficients with adding two landslide path dependency 
variables in non-sequential splitting. The changes of coefficients in variables that were 6 
times or more common between two models were reported. Error bars represent standard 
error. 

4.4.3 Landslide susceptibility maps 

The landslide susceptibility maps for conventional and conventional plus path 
dependent in sequential and non-sequential splitting are presented in Figure 4.8. 
Note that in all cases the landslide susceptibility maps were made by averaging the 
probability of landslide occurrence in the slope units of all training and testing 
datasets. In both splitting approaches, there were no substantial differences 
between the histograms of probability of landslide occurrence between 
conventional and conventional plus path dependent landslide susceptibility (Figure 
4.8a, b, c and d). These slight differences between conventional and conventional 
plus path dependence susceptibility maps both in sequential and non-sequential 
splitting are in accordance with the slight differences in AUC values of their 
susceptibility models (Table 4.3). However, somewhat more slope units were 
predicted with probability of landslide occurrence lower than 0.2, and less slope 
units with probability larger than 0.8 using conventional plus path dependent 
susceptibility than using conventional landslide susceptibility. 
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Limestone

Area of slope unit

Recent alluvial deposit

Cultivated area

Percentage change in coefficients
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Figure 4.8. Conventional landslide susceptibility maps in sequential and non-sequential 
splitting (a, c) and conventional plus path dependent landslide susceptibility maps in 
sequential and non-sequential splitting (b, d). Highlighted slope units in black indicate 
substantial differences in susceptibility between conventional and conventional plus path 
dependent landslide susceptibility maps. 

The difference map for the sequential splitting, made by subtracting conventional 
susceptibility map from the conventional plus path dependent susceptibility map, 
shows that the susceptibility of slope units did not change substantially in about 
46% of our study area (409 slope units) (Figure 4.9a). In about 21% of the slope 
units, the probability of susceptibility slightly increased (192 slope units) and in 
33% of the slope units (293 slope units) the probability of susceptibility slightly 
decreased. The difference map for non-sequential splitting showed similar results 
as well. 
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Figure 4.9. Difference between conventional landslide susceptibility map with conventional 
plus path dependent landslide susceptibility map in sequential (a) and non-sequential (b) 
splitting. 

 

Path dependent landslide susceptibility maps in sequential and non-sequential 
splitting had substantial different geographical patterns in comparison to 
conventional and conventional plus path dependent landslide susceptibility maps 
(Figure 4.10a, b). The clear differences were in the slope units that did not have 
susceptibility smaller than 0.2 (Figure 4.10a) and larger than 0.8 (Figure 4.10a, b). 
This is due to the fact that susceptibility of the slope units to landslides decreases 
over time, which has been implemented into this model.  
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Figure 4.10. Path dependent landslide susceptibility maps predicted with only landslide 
path dependency variables in sequential splitting (a) and non-sequential splitting. The 
highlighted slope unit was selected as an example to show the change in susceptibility over 
time in Figure 4.12. 

In sequential splitting, the difference map between conventional and path 
dependent landslide susceptibility maps showed that in 23% of the slope units, the 
susceptibility did not change, in about 23% of the slope units, the susceptibility 
increased, and in about 54% of the slope units, the susceptibility decreased (Figure 
4.11a). In non-sequential splitting, in 21% of the slope units, the susceptibility did 
not change, in 11% of the slope units, the susceptibility increased, and in 68% of 
the slope units, the susceptibility decreased (Figure 4.11b). 
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Figure 4.11. Difference between conventional landslide susceptibility map with path 
dependent landslide susceptibility in sequential (a) and non-sequential splitting (b). 

4.5 Discussion 

We will first discuss the concept of time-variant landslide susceptibility and then 
focus on the performance of the three landslide susceptibility models, and then 
discuss the importance of landslide path dependency variables in landslide 
susceptibility mapping. We will also discuss the possibility to create a simpler and 
easier to calculate landslide susceptibility model using DEM-derivative variables 
and landslide path dependency variables. 

4.5.1 Time-variant landslide susceptibility modelling 

By definition, conventional landslide susceptibility is considered to be constant 
over decadal timescales (Guzzetti et al. 1999; Guzzetti et al. 2005) (Figure 4.12). In 
conventional plus path dependent susceptibility, due to the effect of landslide path 
dependency, landslide susceptibility is dynamic and changes over the timescale of 
analysis. The fact that the change in the intensity of susceptibility is only slight, is 
due the fact that the set of 51 conditioning attributes already captures most of the 
spatio-temporal variation in landslide occurrence. This of course no longer the case 
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in susceptibility maps prepared using the model with only the two landslide path 
dependency variables. Here, there is a quite intensive and dynamic change in the 
level of susceptibility, reflecting the imposed exponential decay of landslide path 
dependency (Samia et al. 2017a)(Figure 4.12). 

 

Figure 4.12. Modelled landslide susceptibility in the highlighted slope unit in Figure 4.10 
using conventional, conventional plus path dependent and path dependent landslide 
susceptibility models and sequential splitting. 

4.5.2 Performance of landslide susceptibility models 

We found that adding landslide path dependency variables to the conditioning 
attributes variables used in conventional landslide susceptibility model slightly 
improved the performance of the susceptibility model (Table 4.1). These slight 
improvements in model performance are reflected in the high significance of 
landslide path dependency variables, affected the coefficients and significances of 
other variables (Figure 4.6, Figure 4.7), and inclusion and exclusion of other 
variables. The fact that the model improvement due to path dependent variables is 
nonetheless only slight, can be explained by: a) the 51 conventional variables 
(conditioning attributes) already capture almost all systematic variation; b) area 
under curve (AUC) considers the overall performance of the model without any 
spatial consideration while landslide path dependency attempts to describe the 
“local” effect on susceptibility and c) simply limited performance and relevance of 
landslide path dependency variables.  

To explore the first of these three possibilities, we compared a landslide 
susceptibility model with only the two most significant conditioning attributes 
variables with path dependent landslide susceptibility model (with the two 
landslide path dependency variables). The performance of the conventional model 
was much closer to the performance of the path dependency model (Table 4.6, 
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Table 4.3), indicating a relatively similar importance of landslide path dependency 
variables as the importance of conditioning attributes conventionally being used in 
landslide susceptibility modelling. 

In an additional exploration, we found that a very simple landslide susceptibility 
model using only   DEM-derived variables and landslide path dependency variables 
can lead to acceptable results (Table 4.6). This is potentially interesting since such 
landslide susceptibility models can be prepared easily, globally and within a short 
period of time. DEM-derived variables could easily be calculated for global extent 
with GIS related software, and high-resolution, accurate multi-temporal landslide 
inventories may be expected in the near future due to the recent widespread 
availability of high resolution remote sensing images. Therefore, landslide 
susceptibility model potentially could be prepared with a combination of DEM-
derived variables and landslide path dependency variables derived from multi-
temporal landslide inventory maps. 
 
Table 4.6. landslide susceptibility models made by two most significant conditioning 
attributes variables and combination of DEM-derived variables with landslide path 
dependency variables. 

AUC Landslide susceptibility model 
(two most significant variables) 

 Landslide susceptibility model 
(DEM-derivatives plus path 
dependent variables ) 

Sequential Non-sequential Sequential Non-sequential 
Training  0.712 ± 0.010 0.702 ± 0.012 0.749 ± 0.009 0.740 ± 0.011 

Testing  0.700 ± 0.012 0.700 ± 0.017  0.725 ± 0.013    0.731 ± 0.008 
 

Regarding the second point, performance of path dependence variables may have 
been limited by using the slope unit as mapping unit in the landslide susceptibility 
models. The values of landslide path dependency variables themselves were 
calculated based on geographical overlap with earlier landslides (Samia et al. 
2017a). Since landslides are generally much smaller than the slope units, the 
landslide path dependency variables reflect a process that affects landsliding at 
smaller spatial scale than the scale at which they have now been used (slope units). 
The value of exponential decay (b = -0.12) (Samia et al. 2017a) that was used was 
derived at the landslide scale, and may have needed to be re-estimated at the slope 
unit scale. This reasoning leaves open the possibility that for pixel-based 
susceptibility modelling the effect of landslide path dependency variables can be 
higher.  

Regarding the two sampling strategies used in this work, the non-sequential 
splitting of the multi-temporal landslide inventory has the best performing in 
testing, and has also the smallest difference in the performance of the model 
between training and testing (Table 4.3, Table 4.6). We maintain that this is 
important, as it indicates we are less overfitting our susceptibility models.  
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4.5.3 Landslide path dependency as conditioning attributes in 
landslide susceptibility modelling 

We implemented our previously quantified landslide path dependency (Samia et al. 
2017a) in landslide susceptibility modelling using only two landslide path 
dependency variables (Table 4.1). The landslide susceptibility predictions from 
these models (Figure 4. 10a, b) performed acceptably with AUC > 0.660 (Table 4.3) 
both for training and testing. This suggests that it is possible to use only landslide 
inventory itself to predict landslide susceptibility in areas where conditioning 
attributes are not available, or difficult to obtain. This could be potentially 
interesting since it has been always said that to do landslide susceptibility 
modelling, many conditioning attributes variables are needed (van Westen et al. 
2003; Guzzetti et al. 2006a; Ghosh et al. 2011). We showed that this is not 
necessarily the case (Table 4.3, Figure 4.10a, b). For the calculation of landslide path 
dependency variables, time of landslide occurrence or mapping time of landslide, 
spatial association among landslides, geometric and topographic attributes of 
landslides were needed. Clearly, none of the landslide path dependency variables 
can be extracted from mono-temporal landslide inventory or from landslide 
inventories where landslides are mapped as points. This stresses the importance of 
monitoring of earlier landslides where multi-temporal landslides inventory can be 
provided and landslides are mapped with polygon (Samia et al. 2017b). Providing 
multi-temporal landslide inventory could be facilitated by remote sensing images 
and techniques. However, if there is no spatial association among landslides then 
the effect of landslide path dependency might be difficult to extract as we have only 
one test study site with multi-temporal landslide inventory. Besides that, if a 
landslide goes down slope and it is no longer present in the slope, then the effect of 
path dependency could be limited or even absent. For deep-seated landslides and 
earthflows, it has been speculated that reactivation is caused by a thin layer of 
smeared clays under the landslide body – the so-called bathtub effect (Baum and 
Reid 2000; Van Den Eeckhaut et al. 2007). If this effect is also behind some of the 
shallow landslides that we studied, then explanatory variables reflecting clay 
content and mineralogy may be useful to identify regions and hillslopes that are 
particularly susceptible to path dependency in landsliding. 

4.5.4 Data and method differences with previous landslide 
susceptibility modelling in the study area 

The previous landslide susceptibility modelling in our study area (Rossi et al, 2010) 
differs from ours in terms of data and the way of calculating the dependent variable. 
First, the multi-temporal landslide inventory has increased by four time slices 
(March and May 2010, April 2013 and April 2014) (Figure 4.1) using high 
resolution remote sensing images  which have been used in this study, but were not 
available to Rossi et al. (2010). Besides, in our study landslides in the first available 
time slice (1939) were only used for computation of landslide path dependency 
variables , but were used as targets in landslide susceptibility modelling in Rossi et 
al. (2010). We calculated the dependent variable in slope units according to the 
presence or absence of each individual landslide. This allowed us to use the effect 
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of each individual landslide purely in landslide susceptibility modelling while Rossi 
et al. (2010), combined all the landslides first, and then calculated the dependent 
variable with the presence or absence of  all the combined landslides in slope units. 
These differences led to clear differences in the number of slope units located in 
different classes of probability to landslide occurrence. In Rossi et al (2010) more 
slope units (502 slope units) were predicted in the higher probability classes (0.6 – 
0.8 and 0.8 – 1), whereas we predicted less slope units (235 slope units in sequential 
splitting, and 197 slope units in non-sequential splitting) in the same high classes 
of probability (Figure 4.8a, c). Also, the number of slope units in the probability 
class of 0.4 – 0.6 in our conventional landslide susceptibility maps are higher (264 
slope units in sequential splitting, 309 slope units in non-sequential splitting) in 
comparison with 68 slope units predicted in this probability class by Rossi et al. 
(2010). 

4.5.5 Exportability of landslide path dependency variables in other 
areas for landslide susceptibility modelling 

Where multi-temporal landslide inventories are available (to our knowledge the 
only large multi-temporal landslide inventory available worldwide is the multi-
temporal landslide inventory used in this work), and the geological, climate 
conditions and type of landslides are similar to our study area, our exponential 
decay coefficient b = - 0.12 from susceptibility temporal decay (Table 4.1 and eq. 1), 
and spatial probability of each landslide causing follow-up landslide could directly 
be used to model susceptibility to landslide. However, most landslide inventories 
are mono-temporal usually recorded after extreme external triggers (e.g., rainfall 
and earthquake). From such landslide inventories, the exponential decay coefficient 
from susceptibility temporal decay cannot be computed. However, from geometric 
attributes (e.g., size, shape) and topographic attributes of each landslide in the 
mono-temporal landslide inventory, the spatial probability of earlier landslides 
causing follow-up landslides (Table 4.1) is computable if we assume that the model 
to predict the occurrence of follow-up landslides by Samia et al. (2017a) is valid. In 
this context, for every known landslide we would have a probability that shows 
whether a landslide will have a follow-up landslide, or not. This landslide path 
dependency variable in our study area was found to be the most significant and 
selected variable by the logistic regression when using it individually, or combined 
with conditioning attributes variables in landslide susceptibility modelling (Table 
4.1). Therefore, a combination of path dependent variables with a range of other 
possibility conditioning attributes or DEM-derived variables could be used to 
model susceptibility to landslide.  
 

4.6 Conclusions 

For our study area, where adding landslide path dependency variables to the 
conditioning attributes conventionally used in landslide susceptibility modelling 
improves the performance of landslide susceptibility model slightly. However, the 
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resulting landslide susceptibility maps from conventional and conventional plus 
path dependent landslide susceptibility models are not substantially different. The 
highest performance for landslide susceptibility model was obtained in 
conventional plus path dependent landslide susceptibility model with the AUC = 
0.775 ± 0.006 in sequential splitting and AUC = 0.754 ± 0.012 in non-sequential 
splitting. In addition, a landslide susceptibility model purely made by two landslide 
path dependency variables has decent model performance with the AUC values > 
0.660 in sequential and non-sequential splitting. The non-sequential sampling 
strategy has a better model performance in the testing dataset, and less difference 
with the performance of the model between training and testing datasets. 
Moreover, the spatial probability of earlier landslide causing follow-up landslide 
was selected in 18 out of 20 runs logistic regression for landslide susceptibility 
modelling. The susceptibility temporal decay was also selected in 60% of the runs 
(12 out of 20) of logistic regression. These landslide path dependency variables also 
changed the significance, inclusion and exclusion of other variables selected by 
logistic regression. A simple, easily computed landslide susceptibility model with 
reliable model performance can be obtained using combination of DEM-derived 
variables and landslide path dependency variables. Our landslide path dependency 
variables can possibly be applied to model susceptibility to landslide in areas 
similar to our study area where multi-temporal landslide inventory or mono-
temporal landslide inventory are available.  
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Abstract 

A pixel-based conventional landslide susceptibility model was compared with a 
model that includes landslide path dependency and also with a purely path 
dependent landslide susceptibility model. To quantify path dependency among 
landslides, we used a space-time clustering measure derived from Ripley’s space-
time K Function implemented on a point-based multi-temporal landslide inventory 
from the Collazzone study area in central Italy. We found that the space-time 
clustering measure remained high within a decadal time scale and within 200m 
distance from previous landslide with an exponential decay over these spatial and 
temporal scales. The maximum and the sum of space-time clustering measures for 
every pixel were computed as landslide path dependency variables and used along 
with DEM-derivative variables in landslide susceptibility modelling. Landslide path 
dependency variables modelled landslide susceptibility with a reasonable accuracy 
with AUC of 0.720, better than conventional landslide susceptibility modelled with 
DEM-derivative variables with AUC of 0.672. Combined landslide path dependency 
variables with DEM-derivatives in conventional plus path dependent landslide 
susceptibility model had the best model performance and accuracy with AUC of 
0.749. The conventional plus path dependent and path dependent landslide 
susceptibility maps are time-variant and change over time unlike conventional 
landslide susceptibility map which is constant overtime. The time-variant path 
dependent landslide susceptibility maps allow modifications in landslide hazard 
and risk assessment.  
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5.1 Introduction 

Landslides as a hydro-geomorphological type of natural disaster have destructive 
effects on the environment, infrastructure and society. Landslide susceptibility 
modelling calculates the likelihood of landslide occurrence in a certain location 
(Brabb 1984). The resulting landslide susceptibility maps which show where 
landslides are likely to occur (Guzzetti et al. 2005), are key tools for the preparation 
and mitigation of the destructive effects of landslides. Different methods and 
techniques have been used for landslide susceptibility modelling. Reichenbach et 
al. (2018) classified all these methods and techniques into five groups: (i) direct 
geomorphological mapping, (ii) analysis of landslide inventories, (iii) heuristic or 
index-based approaches, (iv) physically or process-based methods, and (v) 
statistical-based techniques.  
 
Statistically-based landslide susceptibility techniques have been the preferred 
technique in landslide susceptibility modelling (Reichenbach et al. 2018). In 
statistical landslide susceptibility modelling, relations are explored between 
landslide inventory maps and a set of conditioning attributes (e.g., slope and 
geology) (Van Westen et al. 2003; Guzzetti et al. 2005). Landslide inventory maps 
that document the distribution and type of landslides, are therefore a crucial input 
for landslide susceptibility modelling (Van Westen et al. 2008; Guzzetti et al. 2012). 
Direct field mapping, aerial photographs and other remote sensing images are the 
main sources for such mapping of landslides (Guzzetti et al. 2012). Traditionally 
landslides in inventory maps were stored in a point format, with points 
representing the geographic location of landslide center points. More recently, 
leveraging better technology such as GIS, landslide inventory maps have become 
typically polygon-based, with polygons representing landslide outlines (Xu 2015). 
Conditioning attributes are usaully DEM-derivatives (Digital Elevation Model) 
along with geological, soil and land use data (Neuhäuser et al. 2012; Günther et al. 
2014; Reichenbach et al. 2018). DEM-derivatives are nowadays easily computed at 
fine resolutions (≤30m) for all locations in the world in various open source and 
commercial software packages whereas the geology, land use and soil data are not 
always available in similar detail. Hence, the minimum available data for landslide 
susceptibility modelling are point-based landslide inventory with DEM-derived 
conditioning attributes. 
 
Recently, we proposed the concept of time-variant landslide susceptibility in which 
the space-time history of landslides is a component of landslide susceptibility 
(Samia et al. 2017a; Samia et al. 2017b). We referred to this as path dependency, a 
term adopted from complex system theory where it is used to describe the concept 
that the history of a system partly determines its future state (Phillips 2006). In our 
study area in Italy (Figure 5.1), we found the existence of path dependency among 
landslides: earlier landslides locally increase the susceptibility for future landslides 
for about two decades during which the susceptibility decays exponentially back to 
previous levels (Samia et al. 2017a). We implemented the effect of landslide path 
dependency in landslide susceptibility modelling at hillslope unit scale, and 
investigated the impact on landslide susceptibility models and maps. These models 
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and maps differed only slightly from conventional landslide susceptibility models 
(Samia et al. 2018). We argued that the limited impact of landslide path dependency 
on model predictions was due to the fact that landslide path dependency affects 
landslide patterns at spatial scales smaller than hillslope units, and it was 
hypothesized that differences between models were likely to increase when 
including path dependency at pixel scales.  
 
Our path dependent landslide susceptibility model was based on a unique polygon-
based multi-temporal landslide inventory (Samia et al. 2017a). As such multi-
temporal inventories are usually not available for most landslide prone areas in the 
world, the applicability of our previously explored method is limited. In most 
places, another approach would therefore be needed to implement landslide path 
dependency in landslide susceptibly modelling. Research is needed to leverage 
landslide path dependency effects in such areas. Admittedly, multi-temporal 
polygon-based landslide inventories are not currently available, but multi-temporal 
point-based landslide inventories are more often available and can be prepared 
easier than polygon-based multi-temporal landslide inventory.  
 
The objective of this work is thus to quantify landslide path dependency in a multi-
temporal point-based landslide inventory, and then consider it in landslide 
susceptibility modelling at the resolution of 10m pixels. We hypothesize that 
including landslide path dependency will improve the performance of conventional 
landslide susceptibility models. We also present a purely path dependent landslide 
susceptibility model and compare its results with conventional landslide 
susceptibility modelling. We again use the unique multi-temporal landslide 
inventory from the Collazzone study area (Figure 5.1) (Guzzetti et al. 2006a; 
Ardizzone et al. 2007; Ardizzone et al. 2013). 
 

5.2 Study area and data 

The Collazzone study area in Umbria region in central Italy (Figure 5.1) has been 
affected by landslides in many years. The study area extends about 80 km2 with 
elevation between 145 to 634 m above sea level and slope between 0 to 64° derived 
from a 10 by 10 meter Digital Train Model (DTM). The DTM was prepared using 
interpolation of contour lines of 5 and 10 meters in the 1:10,000 topographical map 
(Guzzetti et al. 2006b). Landslides are abundant in this area, and range from recent 
shallow landslides to old deep-seated landslides (Guzzetti et al. 2006a). Intense and 
prolonged rainfall and rapid snowmelt are the main triggers for landslide 
occurrence in this area (Cardinali et al. 2000; Ardizzone et al. 2007). A rich and 
detailed multi-temporal landslide inventory has been mapped continuously in 19 
different time slices containing 3391 landslides. The age of landslides ranges from 
relict and very old landslides until landslides that occurred in 2014. For preparation 
of the multi-temporal landslide inventory, aerial photographs, direct field mapping 
after major rainfall storms and snowmelt, and remote sensing images were used 
(Guzzetti et al. 2006a; Galli et al. 2008; Ardizzone et al. 2013). The age of landslides 
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in the first two time slices of the multi-temporal inventory is not accurately known. 
Therefore, these time slices were not used in this work. The time slice of 1939 was 
only used in computation of landslide path dependency variables and not in the 
landslide susceptibility modelling because of its unknown past. Therefore, a multi-
temporal landslide inventory was used that contains 16 time slices of mapped 
landslides from 1947 to landslides in 2014 (Figure 5.1). A full description of the 
study area and the multi-temporal landslide inventory can be found in (Guzzetti et 
al. 2006a; Ardizzone et al. 2007; Galli et al. 2008; Guzzetti et al. 2009; Samia et al. 
2017b).  
 

 
 
Figure 5.1. Multi-temporal landslide inventory overlaying a shaded relief image (left map) 
(adapted from (Samia et al. 2017b)). Location of Umbria region and of the Collazzone study 
area (right upper map). The coordinate system of maps is EPSG:32633 
(www.spatialreference.org). Landslide points were constructed in the geometric centre of 
each landslide polygon (map in the right lower corner). The rectangle red extent shows the 
location of the map in the lower right.  

 

 

 

 

 

http://www.spatialreference.org/
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Figure 5.2. DEM and nine derivatives used in conventional landslide susceptibility 
modelling. 

5.3 Methods 

We used logistic regression at pixel resolution to construct three landslide 
susceptibility models: (i) a conventional landslide susceptibility model, (ii) a 
conventional plus path dependent landslide susceptibility model and (iii) a purely 
path dependent landslide susceptibility model (Samia et al, 2018). We compared 
the performance of these models using Area Under Curve (AUC) values from the 
Receiver Operating Characteristic (ROC) (Mason and Graham 2002), and selected 
the optimal model using the Akaike Information Criterion (AIC) (Akaike 1998), 
which penalizes the use of additional variables in a model. Finally, the coefficients 
of the variables selected by the landslide susceptibility models and the resulting 
landslide susceptibility maps were compared. 
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Figure 5.3. Flowchart of methods.  

5.3.1 Quantifying landslide path dependency using Ripley’s space-
time K function  

We recently characterized and quantified the existence of spatial-temporal path 
dependency among landslides for the Collazzone study area. The landslide path 
dependency exhibited an exponential decay where landslide susceptibility 
increases immediately after a landslide and decreases to the background 
susceptibility in about two decades (Samia et al. 2017a). The addition of landslide 
path dependency to a slope unit-based landslide susceptibility model did not 
substantially improve in the performance of the landslide susceptibility model 
(Samia et al. 2018).  
 
Our previous quantification required information about the space-time overlap 
among landslide polygons (Samia et al. 2017b; Samia et al. 2017a). The novel aspect 
of the present paper is that we instead quantify landslide path dependency among 
centre points of landslides rather than polygons of landslides. For this 
quantification, we use Ripley’s K Function (Ripley 1976; Diggle et al. 1995). Ripley’s 
K function - which has been used mainly in purely spatial point pattern analysis - 
reflects the degree of spatial clustering of certain events (e.g., landslides (Tonini et 
al. 2014), forest fire (Gavin et al. 2006) , crimes (Levine 2006) and disease outbreak 
(Hinman et al. 2006)). The function determines whether events are clustered, 
dispersed of randomly distributed in the area of interest. In a landslide path 
dependency context, Ripley’s K function is now used in space-time, reflecting the 
degree to which landslides occur clustered, dispersed or randomly distributed in 
space-time.  
 
Ripley’s space-time K function tests whether the number of events that is observed 
in a space-time cylinder around an initial event is equal to what is expected given 
the average point density in space and time (Ripley 1976; Ripley 1977; Diggle et al. 
1995). The space-time cylinder I (h, ∆) is defined as:  
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𝐼(ℎ,∆) (𝑑𝑖𝑗  , 𝑡𝑖𝑗) = {
 1, (𝑑𝑖𝑗 ≤ ℎ 𝑎𝑛𝑑 (𝑡𝑖𝑗 ≤ ∆) ) 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
                                                                   (1) 

 
where h shows the distance increment, ∆ shows the time increment, i and j are 
landslide points, with d and t reflecting the distance and time between these points 
respectively.  
 
 

 
Figure 5.4. Space-time cylinder neighbourhood (Smith 2016) for a landslide event (ei). 

 

Ripley’s K function for one space-time cylinder of h and ∆ is defined as:   

𝐾(ℎ, ∆) =  
1

𝜆𝑠𝑡
∑ 𝐸[𝐼(ℎ,∆) (𝑑𝑖𝑗 , 𝑡𝑖𝑗)]𝑗≠𝑖                                                                                       (2) 

where 𝜆𝑠𝑡 reflects the space-time intensity of the landslides (i.e., the expected 
number of landslides per unit of space-time volume), which is calculated as: 
 

𝜆𝑠𝑡 =  
𝑛

𝑎.( 𝑅)×(𝑡𝑚𝑎𝑥−𝑡𝑚𝑖𝑛) 
                                                                                                              (3) 

 
where n is the number of landslides in the entire inventory, t shows time, and a.(R) 
reflects the size of the area.  

Therefore, the expected Ripley’s space-time K function for all space-time cylinders 
around all landslides is defined as: 

𝐾(ℎ, ∆) =  
1

𝑛.𝜆𝑠𝑡
∑ ∑ 𝐸[𝐼(ℎ,∆) (𝑑𝑖𝑗 , 𝑡𝑖𝑗)]𝑗≠𝑖

𝑛
𝑖=1                                                                              (4) 
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Similarly, the observed Ripley’s space-time K function is calculated from the 
landslide inventory as:  

𝐾(ℎ, ∆) =  
1

𝑛.𝜆̂𝑠𝑡
∑ ∑ 𝐼(ℎ,∆) (𝑑𝑖𝑗 , 𝑡𝑖𝑗)𝑗≠𝑖

𝑛
𝑖=1                                                                                   (5) 

To quantify how strong is that the expected landslides to be at a certain distance ti,j 
and di,j of the previous landslides, the space-time clustering measure was 
calculated as following: 

𝑆𝑝𝑎𝑐𝑒 − 𝑡𝑖𝑚𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
𝐾̂(ℎ,∆)

𝐾(ℎ,∆)
                                                                         (6) 

The space-time clustering measure shows how more likely is that a landslide at a 
certain time and space distance from the previous landslides occur. Space-time 
clustering measure values > 1 indicate clustering and values < 1 indicate dispersion.  

We calculated the space-time clustering measure for w wide range of h , ∆, and then 
fitted an exponential function of h and ∆ to the results. Then, using this exponential 
function, for every pixel in each time slice of the multi-temporal landslide inventory, 
we calculated the space-time clustering measure relative to the all pixels depending 
on when a landslide last time occurred closely to every pixel. Then, we calculated 
two landslide path dependency variables. The first variable reflects the maximum 
value of all space-time clustering measures for all previous landslides near a pixel. 
The second variable is the sum of all space-time clustering measures of all previous 
landslides near a pixel.  

5.3.2 Logistic regression 

Logistic regression is the most frequently used statistical model in landslide 
susceptibility modelling (Reichenbach et al. 2018). In landslide susceptibility 
modelling, relations between presence and absence of landslides as binary target 
(dependent) variable are explained by a set of explanatory (independent) variables 
such as slope, aspect and geology. The statistics and coefficients of the relations are 
used to classify the area of interest to different intensity of susceptibility to 
landslides. In this paper, DEM-derivatives that were used as explanatory variables 
are slope angle, elevation, curvature, northness, eastness, topographic position 
index (TPI), topographic wetness index (TWI), LS factor, vertical distance to 
channel network and relative slope position (Figure 2). Also, the two landslide path 
dependency variables computed by space-time Ripley’s K Function (see section 
5.3.1) were used as extra explanatory variables. The binary target variable is the 
presence and absence of landslides from the multi-temporal landslide inventory.  
 

5.3.3 Landslide susceptibility modelling 

We performed conventional, conventional plus path dependent and purely path 
dependent landslide susceptibility modelling using logistic regression. 
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Conventional landslide susceptibility modelling was performed using only the 
DEM-derivatives as conditioning attributes. In conventional plus path dependent 
landslide susceptibility modelling, DEM-derivatives (Figure 5.2) along with the two 
landslide path dependency variables (see section 5.3.1) were used. For purely path 
dependent landslide susceptibility modelling only the two landslide path 
dependency variables were used. We divided the multi-temporal landslide 
inventory into training and testing datasets based on the non-sequential splitting 
sampling strategy (Samia et al. 2018). The non-sequential selection of time slices 
from the multi-temporal landslide inventory prioritizes an equal range of temporal 
separations between time slices in the training and the testing datasets. For the 
training dataset, the 1st, 2nd, 5th, 6th, 9th, 10th, 13th and 14th time slices from the multi-
temporal landslide inventory (Figure 5.1) were used (covering a period of 63 
years), and for the testing dataset, the 3rd, 4th, 7th, 8th, 11th, 12th, 15th and 16th time 
slices were used (covering a period of 49 years). Note that the 1st time slice in the 
training dataset starts from 1947 – that is because the first time slice in the 
inventory, from 1939, has no known landslide history. The number of pixels with 
landslides was smaller than the number of pixels without landslides in both training 
and testing datasets. Therefore, we randomly selected 5000 pixels with landslides 
and 5000 pixels without landslides to create equal datasets both for training and 
testing. This random selection of pixels was repeated 10 times both in the training 
and testing datasets. After preparation of the 10 training datasets, logistic 
regression was applied to these 10 training datasets. We imposed an entry 
probability of 0.05 and a removal probability of 0.06 to reduce the risk of overfitting 
in the model. To avoid multicollinearity, we allowed only inter-variable correlations 
less than 0.6. The performance of models was assessed using AUC and AIC values. 
To test the models, the 10 training models were applied to the 10 independent 
testing datasets, and the AUC values were computed again. The coefficients of the 
models with highest performance in terms of AUC values, were used to map 
susceptibility to landslides. Finally, we compared the landslide susceptibility maps 
resulting from conventional, conventional plus path dependent and purely path 
dependent susceptibility.  
 

5.4 Results 

5.4.1 Spatial-temporal dynamic of landslide path dependency 

The space-time Ripley’s K Function confirmed the existence of path dependency 
(clustering) among landslides at small spatial and temporal distance. Clustering 
decreased exponentially in space and time (Figure 5.5). The space-time clustering 
measure (eq 6) is high in the space-time vicinity of an earlier landslide. Apparently 
landslide susceptibility increases immediately after occurrence of an earlier 
landslide. The effect remains for a time period of about two decades and a spatial 
distance of about 200 meter. Within this spatial and temporal scales, follow-up 
landslides (Samia et al,2017a, 2017b) possibly occur, and beyond that, the intensity 
of susceptibility decays exponentially.  
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Figure 5.5. Space-time dynamic of landslide path dependency. 

The exponential decay function that was fitted to the space-time clustering data is: 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝑠, 𝑡) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑎  𝑒𝑥𝑝(−0.06𝑡) ∗  𝑒𝑥𝑝(−0.017𝑑)     (7) 

This function shows that the space-time clustering measure decays over temporal 
scale of b (year-1) and spatial scale of d (meter-1). The values of exponential 
coefficients (b = -0.06 ± 0.001 year -1 and d = -0.017 ± 0.004 meter -1) indicate that 
space-time cluster measure values decrease quickly with the increment in the space 
and time scales from an earlier landslide. The residual standard error of the 
exponential function is 0.01 (-), which is satisfactory. 

5.4.2 Model performance 

The performance of landslide susceptibility model was highest in conventional plus 
path-dependency model, both when expressed as AUC values, and when expressed 
as AIC values (Table 5.1). Even the purely path dependent landslide susceptibility 
model constructed with only two landslide path dependency variables performed 
better than the conventional landslide susceptibility model. The conventional 
landslide susceptibility model constructed with DEM-derivatives has the lowest 
model performance in the training and testing datasets. 
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Table 5.1. Area Under Curve (AUC) and Akaike Information Criterion (AIC) values in 
conventional, conventional plus path dependent and path dependent landslide susceptibility 
modelling. 
 

AUC and AIC 
values 

Conventional 
susceptibility 
model 

Conventional plus path 
dependent susceptibility 
model 

Path dependent 
susceptibility 
model 

AUC training 0.672 ± 0.006 0.749 ± 0.002 0.721 ± 0.004 
AIC training 13065 ± 69 12000 ± 94 12469 ± 62 
AUC testing 0.656 ± 0.005 0.718 ± 0.003 0.698 ± 0.004 

 

DEM-derivatives in conventional and conventional plus path dependent 
susceptibility and the two landslide path dependency variables in conventional plus 
path dependent and purely path dependent susceptibility were always significant 
(p < 0.05). These variables were selected in all 10 training datasets in conventional, 
conventional plus path dependent and path dependent landslide susceptibility 
modelling. 

In both 10 training and 10 testing datasets, the contingency tables showed that 
conventional landslide susceptibility model has substantial difference with 
conventional plus path dependent and path dependent landslide susceptibility 
models. The false positive (pixels without landslide but predicted with landslides) 
in both training and testing datasets in conventional susceptibility is more than 
conventional plus path dependent and path dependent susceptibility models. The 
true negative (pixels without landslides and predicted without landslides) is less in 
conventional than conventional plus path dependent and path dependent 
susceptibility models. The variation in the differences is larger in the training 
datasets than the testing datasets. 
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Table 5.2. Contingency tables for conventional, conventional plus path dependent and path 
dependent landslide susceptibility modelling with highlighted differences. 

 Conventional susceptibility 
model 

Conventional plus path 
dependent susceptibility model 

Path dependent 
susceptibility model 

          Observed landslides             Observed landslides          Observed landslides  
 YES NO YES NO YES NO 
Predicted 
landslides in 
training 

Yes 
 
 
No 

32 ± 0.37 
 
 

18 ± 0.37 
 
 

20 ± 0.67 
 
 

30 ± 0.67 

33 ± 0.29 
 
 

17 ± 0.29 
 

14 ± 0.15 
 
 

36 ± 0.15 
 
 

31 ± 0.8 
 
 

19 ± 0.8 
 

13 ± 0.32 
 
 

37 ± 0.32 

Predicted 
landslides in 
testing 

Yes 
 
 
No 

30 ± 0.63 
 
 
 

20 ± 0.63 
 

19 ± 0.78 
 
 
 

31 ± 0.78 
 

27 ± 0.51 
 
 
 

22 ± 0.51 
 

12 ± 0.41 
 
 
 

38 ± 0.41 
 

23 ± 0.24 
 
 
 

27 ± 0.24 
 

12 ± 0.41 
 
 
 

38 ± 0.41 
 

 

5.4.3 Landslide susceptibility maps 

The conventional landslide susceptibility map and its histogram of susceptibility 
levels differs substantially from the conventional plus path dependent and path 
dependent landslide susceptibility maps and histograms (Figure 5.6). This is in 
accordance with considerable differences in the performance of conventional 
susceptibility model with the other two models in terms of AUC and AIC values 
(Table 5.1). The conventional plus path dependent and path dependent landslide 
susceptibility maps and histograms show more similar patterns despite the 
differences in the number of variables implemented in the two models.  
 
Both conventional plus path dependent and path dependent landslide susceptibility 
maps have more pixels in susceptibility level of 0.2-0.4 (507928 and 325184 pixels 
on average over 16 time slices, respectively) than conventional landslide 
susceptibility map (151635 pixels). The pattern is inverse in the susceptibility level 
of 0.4-0.6 where conventional susceptibility map has more pixels (382289 pixels) 
in compare with conventional plus path dependent and path dependent landslide 
susceptibility maps (190671 and 159725 pixels, respectively). The other 
susceptibility levels (0.-02, 0.6-0.8 and 0.8-1) among the three landslide 
susceptibility maps are not substantially different. The two landslide susceptibility 
models that take landslide path dependency into account predict that more places 
are relatively safe – apparently correctly so (Table 5.2).  
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Figure 5.6. Conventional landslide susceptibility map in the left, the conventional plus path 
dependent landslide susceptibility map (averaged out over 16 time slices) in the middle and 
path dependent landslide susceptibility map (averaged out over 16 time slices) in the right. 
The error bars in conventional plus path dependent and path dependent histograms 
represent standard errors. 

The conventional plus path dependent landslide susceptibility maps change over 
time (Figure 5.7). The changes reflect the decreasing influence of individual earlier 
landslides, and the sudden increase of influence due to new, more recent landslides. 
These changes are seen spatially and temporary in the susceptibility maps. 
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Figure 5.7. Examples of four conventional plus path dependent landslide susceptibility maps 
in the years of 1947, 1981, 2004 and 2014. Zoomed maps show places where there are large 

changes in susceptibility over time.  

The path dependent landslide susceptibility maps constructed only with the two 
landslide path dependency variables also change over time (Figure 5.8). The 
landslide susceptibility maps show only the pure influence of earlier landslides on 
susceptibility to future landslides. The susceptibility of earlier landslides to future 
landslides decreases where distance from earlier landslides in space and time 
increases.  
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Figure 5.8. Examples of four path dependent landslide susceptibility maps in the years of 
1947, 1981, 2004 and 2014. Zoomed maps show the places where there are large changes in 
susceptibility over time.  

5.5 Discussion 

We first focus on the quantification of landslide path dependency and then discuss 
its implementation in time-variant path dependent landslide susceptibility 
modelling. We further discuss the performance of three landslide susceptibility 
models. At the end, the exportability of landslide path dependency and also the 
implication of time-variant path dependent landslide susceptibility in landslide 
hazard and risk assessment will be discussed.  

5.5.1 Spatial-temporal dynamic of landslide path dependency 

The quantified landslide path dependency using Ripley’s space-time K function 
((Ripley 1976; Diggle et al. 1995) (Figure 5.5) indicates an exponential decay 
response in the space-time clustering measures values. The susceptibility is high 
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within about two decade and 200 meter distance from an earlier landslide, and 
beyond these spatial-temporal scales, decays exponentially. This means that 
landslides tend to cluster in the space-time vicinity of an earlier landslide. This is in 
accordance with our previously quantified landslide path dependency using follow-
up landslide fraction in which the period of landslide path dependency was about 
two decades (Samia et al. 2017a). The clustering manifests in the form of spatial 
association among landslides where follow-up landslides occur immediately after 
and close to a previous landslide (Samia et al. 2017b). Where if possible to monitor 
the evolution and map the multi-stages activities of a landslide, the occurrence of 
follow-up landslides could be found either inside the previous landslide, partially 
overlap with previous landslide or touch the border of previous landslides (Samia 
et al. 2017b). In this regard, Samia et al. (2017a) discussed that the size of the initial 
landslide that hits strongly the hillslope plays an important role in the occurrence 
of follow-up landslides, and hence formation of clusters of landslides. Besides that, 
they suggested that changes in hydrology of slope destabilized by a landslide could 
facilitate the occurrence of follow-up and hence clusters of landslides.  
 
The space-time clustering measure also indicates that the susceptibility is dynamic, 
decays exponentially over time and drops to the background susceptibility level. 
Using such a dynamic behaviour in landslide susceptibility, we introduced the 
concept of time-variant landslide susceptibility taking the dynamics of landslide 
path dependency into account (Samia et al. 2017b; Samia et al. 2017a).  
 
In the computation of space-time clustering, x and y were used as geographical 
coordinates. It could be interesting to define x in the downslope direction and y in 
the slope parallel direction. 
 

5.5.2  Effect of landslide path dependency on performance of 
landslide susceptibility models 

We found that taking into account landslide path dependency in a pixel-based 
conventional landslide susceptibility model (only DEM-derivative variables) 
improves the performance of landslide susceptibility model substantially. This is 
reflected in higher AUC and lower AIC values for the conventional plus path 
dependent landslide susceptibility model (Table 5.1). This confirms our main 
hypothesis that adding landslide path dependency improves the performance of 
landslide susceptibility model. This is in accordance with our previous reasoning 
regarding stronger effect of landslide path dependency in a pixel-based landslide 
susceptibility model than a slope unit-based landslide susceptibility model (Samia 
et al. 2018). Landslide path dependency is a local effect in which an earlier landslide 
could increase the local likelihood of follow-up landslide occurrence. Such a local 
effect is apparently more visible at pixel resolution and not at slope unit resolution. 
The strong effect of landslide path dependency on the performance of conventional 
landslide susceptibility model, is also indicated by the significance of the two 
landslide path dependency variables (p < 0.05).  
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More importantly, the purely path dependent landslide susceptibility model made 
by the two landslide path dependency variables performs better than the 
conventional landslide susceptibility model with DEM-derivative variables (Table 
5.1). This is potentially interesting in two aspects: on the one hand, using purely 
DEM-derivatives may not lead to landslide susceptibility model with acceptable 
results (Table 5.1). On the other hand, the landslide inventory itself can be used to 
map susceptibility to landsliding without using conditioning attributes (DEM-
derivatives, geology and land use) that have been conventionally used in landslide 
susceptibility modelling (Varnes 1984; Guzzetti et al. 2005). Therefore, in data-
scarce landslide prone areas, only with temporal mapping of landslides (either with 
point or polygon format) covering a period about two decades close by landslides 
activities, the path dependent landslide susceptibility can be modelled with reliable 
results (Table 5.1).  
 

5.5.3 Temporal validity of susceptibility levels in landslide 
susceptibility maps 

Landslide susceptibility maps are usually classified into five levels of susceptibility 
to landslide occurrence. In conventional landslide susceptibility map (Figure 5.6 
right), the intensity of different susceptibility levels remains constant over time 
since the DEM-derivatives used in the model are mono-temporal. Therefore, the 
temporal validity of susceptibility levels is not known.  
 
In conventional plus path dependent and purely path dependent landslide 
susceptibility maps (Figure 5.7-5.8), the intensity of different susceptibility levels 
is time-variant, and changes over time representing the observed exponential 
decay in susceptibility. The changes are in the places where landslides have already 
occurred mainly in susceptibility levels ranging from 0.6 to 1. This suggests that the 
part of area located in the high susceptibility levels could switch to the low 
susceptibility levels (0 to 0.6) after two decades. From practical point of view, the 
path dependent landslide susceptibility maps should be updated after every 
landslide event, and in such a cases these maps would be very valid in land use 
planning.   
 

5.5.4 Exportability of space-time dynamic of landslide path 
dependency 

In landslide prone areas where landslides are continuously monitored and mapped 
in the form of polygon-based multi-temporal inventory, the landslide path 
dependency can be quantified based on geographical overlap among landslides, and 
hence used in landslide susceptibility modelling (Samia et al. 2017a; Samia et al. 
2018). However, polygon-based multi-temporal landslide inventories are rare to 
our best of knowledge, and hence geographical overlap among landslides cannot 
often be computed. In this paper, we proposed using space-time Ripley’s K Function 
to compute landslide path dependency in areas where point-based multi-temporal 
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landslide inventories are available. Using such inventories, our space-time 
clustering measure (eq 6) can be used to quantify path dependency among 
landslides. In our study area, landslides turned out to cluster within 20 years in the 
vicinity of an earlier landslide with an exponential decay beyond these 
spatiotemporal scales (Figure 5.5).  
 
In landslide prone areas with the similar landscape to our study area, the 
parameters of our space-time clustering measure (eq 7), the two landslide path 
dependency variables and the actual susceptibility model can be used in landslide 
susceptibility modelling. In other different landslide prone areas, the theory of 
landslide path dependency should be explored, and in case of existence of landslide 
path dependency, landslide path dependency should be quantified and 
implemented in landslide susceptibility modelling. This has be further studied in 
areas with point or polygon based multi-temporal landslide inventories (e.g., 
(Schlögel et al. 2011)). 

5.5.5 Implications of path dependent landslide susceptibility 
modelling in landslide hazard and risk assessment 

We have already modified the definition of conventional landslide susceptibility 
modelling (Varnes 1984; Guzzetti et al. 2005) using spatial temporal dynamics of 
landslide path dependency (Samia et al. 2017b; Samia et al. 2017a) as following:  
 

𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑠,𝑡 = 

𝑓(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑠 , 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑝𝑎𝑡ℎ 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦𝑠,𝑡)                                                    (8) 

Both conventional plus path dependent and path dependent landslide susceptibility 
models turned out to perform better than conventional landslide susceptibility 
model (Table 5.1). In both models, availability of a temporal component - reflecting 
the exponential decay of landslide path dependency – indicates that landslide 
susceptibility is a dynamic concept. This could challenge further the way that 
landslide hazard and risk assessments were perceived.  

In landslide hazard assessment, landslide susceptibility as a proxy of ‘where 
landslides occur’ is combined with the temporal probability of triggers (mainly 
rainfall) to determine ‘when landslides occur’ (Guzzetti et al. 2006a). Our proposed 
path dependent landslide susceptibility (eq 8) suggests that the space-time 
dynamics of landslide path dependency need to be considered in combination with 
temporal information of landslide triggers in the assessment of landslide hazard. 
According to the space-time dynamics of landslide path dependency (Figure 5.5), 
immediately after a landslide susceptibility is raised (in the probability levels from 
0.6-1), and if intense rainfall occurs, the likelihood of further follow-up landslides 
could increase further . After a decadal time that an earlier landslide has occurred, 
the landslide deposit will be possibly more stable, and hence the rainfall may have 
less influence on an earlier landslide to experience a new follow-up landslide. We 
believe that the same exponential decay response could be observed when path 
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dependent landslide susceptibility is used as the input of landslide hazard 
assessment.  

 

Figure 5.9. Example of the implication of path dependent landslide susceptibility modelling 
in landslide hazard. When susceptibility is low, the hazard is also low and large rainfall 
events are needed to trigger new landslides. Then, when susceptibility is high, the hazard is 
also high and small rainfall events are needed to trigger new landslides.  

The effect of our proposed path dependent landslide susceptibility on landslide 
hazard, may also influence on landslide risk assessment. Landslide susceptibility as 
a component of landslide hazard, is also the initial step towards landslide risk 
assessment (Varnes 1984; Guzzetti 2000; Crozier and Glade 2005; Van Westen et 
al. 2006): 

𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑟𝑖𝑠𝑘 = 

𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 ℎ𝑎𝑧𝑎𝑟𝑑 × 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘            (9) 

According to space-time dynamics of landslide path dependency (Figure 5.5), the 
susceptibility after occurrence of a landslide decreases over time. In this context, 
vulnerability of elements at risk (e.g., buildings and roads) at the time of landslide 
occurrence is high, could stay high within about 10 years (due to the possibility of 
occurring follow-up landslides in the vicinity of initial landslide (Samia et al. 2017b; 
Samia et al. 2017a)), and after that may decrease. This has to be further studied in 
a landslide risk assessment using path dependent landslide susceptibility in 
combination with landslide triggers information. Such an landslide risk assessment 
could help decision makers and land use planners in short-term planning of regions 
susceptible to landsliding.  
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5.6 Conclusions 

We quantified landslide path dependency using space-time Ripley’s K Function in a 
point-based multi-temporal landslide inventory in Collazzone study area in Italy. 
We computed then the measure of space-time clustering reflecting spatial and 
temporal distances of every pixel from a landslide. We found that space-time 
clustering measure follows an exponential decay response indicating high degree 
of clustering among landslides within a temporal scale of 10 years and a spatial 
distance of 200m. We added such an exponential decay effects of landslide path 
dependency into landslide susceptibility modelling. We constructed three landslide 
susceptibility models: a conventional landslide susceptibility with DEM-
derivatives, a conventional plus path dependent susceptibility with DEM-
derivatives and landslide path dependency variables, and a purely path dependent 
landslide susceptibility with only landslide path dependency variables. We found 
that considering landslide path dependency improves the performance of landslide 
susceptibility model. Both conventional plus path dependent and path dependent 
landslides susceptibility models perform better than conventional landslide 
susceptibility model. Taking into accounting landslide path dependency effects in 
landslide susceptibility make the landslide susceptibility model time-variant where 
susceptibility changes over time. We stress that landslide susceptibility modelling 
should take the effect of landslide path dependency into account since it provides 
an estimation of temporal validation of different probability levels in landslide 
susceptibility map. We proposed that taking into account the time-variant path 
dependent landslide susceptibility may improve landslide hazard and risk 
assessment. 
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6.1 Main results 

The overall objective of this PhD thesis is to assess the effect of landslides on 
susceptibility of future landslides. To achieve this objective, four research questions 
have been formulated and discussed in chapters 2 - 5 respectively. First, the main 
results of each research question will be summarized, after which a reflection on 
the results and implications is presented. Next, recommendations for further 
research are proposed. 

6.1.1 What are the indications of landslides following previous 
landslides? 

Monitoring, documenting and multi-temporal mapping of landslides support 
exploring multi-stage evolutionary activities of landslides. Using a detailed multi-
temporal landslide inventory for the Collazzone area (Italy), I used spatial overlap 
as an indication for landslides following previous landslides (Chapter 2). In our 
study area, there is a considerable amount of overlap among landslides. In fact, the 
values of the overlap index (Chapter 2)- reflecting the spatial overlap between 
landslides over time – is high for time slices within a decade of each other. This 
indicates that the history of landslides positively affects the future susceptibility. 
Such a landslide path dependency effect leads to the occurrence of follow-up 
landslides that are spatially associated with previous landslides. In addition, follow-
up landslides have different size, shape and frequency-area statistics than non-
follow-up landslides. 

These results show that there is indeed path dependency among landslides 
reflecting the multi-stage activities of landslides. This means that landslides leave 
legacies in the environment which lead to an increased probability of occurrence of 
follow-up landslides. Although external triggers are important in the occurrence of 
landslides, the legacy of landslides could enhance chances of follow-up landslides 
in combination with external triggers. The short-term positive effect of landslide 
path dependency on the future susceptibility indicates that intensity of 
susceptibility is dynamic and changes over time. This suggests that landslide 
susceptibility can no longer be seen as a purely spatial concept (Guzzetti et al. 2005) 
but needs to consider the dynamic effect of landslide path dependency into account. 

6.1.2 What are the characteristic spatial temporal scales in landslide 
path dependency? 

In Chapter 2, spatial overlap was found as an indication of landslide path 
dependency. This was further used to quantify the strength and duration of 
landslide path dependency in polygon-based (in Chapter 3), and point-based (in 
Chapter 5) multi-temporal landslide inventories. 
 
 In Chapter 3, follow-up landslide fraction - reflecting relative number of follow-up 
landslides over time – was used to quantify the effect of landslide path dependency. 
The results indicated that the effect of landslide path dependency is strong after an 
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initial landslide over a period of 10 years and decays exponentially over time. 
Susceptibility was found to increase by a factor of about 15 immediately after a 
landslides, reflecting the positive and strong effect of a previous landslide on 
susceptibility. This strength tended to decrease to 25% of the background 
susceptibility after 10 years, and was practically absent after 40 years.  
 
In Chapter 5, space-time Ripley’s K Function – reflecting the degree of clustering –
was used to quantify the strength and duration of space-time clustering between 
landslides. The results confirmed the findings mentioned above, and indicated that 
landslides tend to cluster in a decadal period and in 200 meter vicinity of a previous 
landslides.  

The findings related to the second research question confirm that landslide 
susceptibility is not a pure spatial concept (Guzzetti et al. 2005). Instead it is time-
variant and should take landslide path dependency effect into account. 
Furthermore, a decadal positive effect of landslide path dependency on future 
susceptibility in the vicinity of a previous landslide, proposes a decadal time frame 
for temporal validity of susceptible levels in landslide susceptibility maps. For 
about a decade after its occurrence, a large previous landslide could destabilize a 
hillslope, trigger the occurrence of follow-up landslides, and hence form clusters of 
landslides that may otherwise not have happened. 

6.1.3 Can we predict the occurrence of future landslides as a function 
of properties of previous landslides? 

In chapter 3, the differences between two geometric (size and shape) and nine 
topographical properties (DEM-derivatives) of landslides experiencing follow-up 
landslides and landslides not experiencing follow-up landslides were compared 
using one-way analysis of variance. In our study area, larger and rounder landslides 
in wet places appeared more likely than others to experience follow-up landslides.  
Among topographical properties, the values of Topographic Wetness Index (TWI), 
vertical distance to the channel network, the relative slope position and absolute 
profile curvature differed statistically between landslides with and without follow-
up landslides. The higher value of TWI indicated the positive effect of humidity in 
the occurrence of follow-up landslides. Such an effect was also confirmed in a field 
exploration of landslides in the study area with the formation of small ponds on and 
in the landslide deposits.  
 
Area Under Curve (AUC) values reflect model accuracy and rage between 0.5 ( 
random performance) to 1 (perfect performance). A combination of geometric and 
topographic properties, was found to predict the occurrence of follow-up landslides 
with AUC value of 0.64. This was slightly better than using merely geometric 
properties or topographic properties with AUC values of 0.60 and 0.57, 
respectively.  

In summary, combination of geometric and topographic properties of landslides 
could be used to predict the occurrence of follow-up landslides with acceptable 
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model performance. The results also suggest that only the geometric properties of 
landslides could be used for prediction of follow-up landslides leading to similar 
model performance when using topographic properties. This emphasizes the needs 
for precise mapping and documenting of landslides in order to have accurate 
information regarding the geometrical properties of landslides. However, and with 
the respect to the low values of AUC, the prediction of occurrence of follow-up 
landslides remains a challenging task.  

6.1.4 Does including landslide path dependency improve landslide 
susceptibility modelling? 

At slope unit scale: no substantial improvement 
 
In chapter 4, two landslides path dependency variables were computed: spatial 
probability that an earlier landslide will cause a follow-up landslide and 
susceptibility temporal decay.  
 
Adding these variables into a large set of conditioning attributes conventionally 
being used in landslide susceptibility modelling, did not improve model 
performance considerably. This was reflected in the similar model performance 
between conventional and conventional plus path dependent landslide 
susceptibility models (AUC of 0.775 and 0.773 respectively), and similar patterns 
in their associated landslide susceptibility maps.  
 
However, the use of only the two landslide path dependency variables in landslide 
susceptibility modelling indicated an acceptable model performance (AUC = 0.688). 
Besides that, the resulted landslide susceptibility map was found to be substantially 
different from conventional and conventional plus path dependent landslide 
susceptibility maps.  
 
All in all, these findings indicate that landslide path dependency is a local effect in 
which previous landslides positively effects on the future susceptibility. 
Considering such a local effect may not be effective to improve the performance of 
landslide susceptibility model with coarse mapping units such as slope unit. 
Apparently, in landslide susceptibility model using coarse mapping units, the 
conditioning attributes take most of the variations by the model, and hence the 
predictive value of landslide path dependency could be trivial.  
 
Moreover, landslide susceptibility modelling can apparently be performed using 
only landslide path dependency. This can be considered as a simple, time and cost 
efficient landslide susceptibility modelling approach in the scarce-data landslide 
prone areas. With this, the needs of using large sets of environmental information 
that are traditionally used in landslide susceptibility modelling (Guzzetti et al. 
2005), can be avoided. Such environmental information may not be available or 

difficult to obtain in landslide prone areas. Our path dependent landslide 

susceptibility modelling suggests that landslide path dependency can simply be 
derived from multi-temporal landslide inventory, and used in landslide 
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susceptibility modelling leading to acceptable model performance and results. 
However, in case of availability of environmental information, adding landslide 
path dependency could lead to very reliable landslide susceptibility modelling and 
map. 
 

At pixel scale: substantial improvement 

In Chapter 5, two landslide path dependency variables from point-based multi-
temporal landslide inventory were computed reflecting the degree of space-time 
clustering measure for every pixel.  
 
Adding these variables along with DEM-derivatives into landslide susceptibility 
model improved the performance of landslide model substantially (AUC = 0.749). 
It was also found that a purely landslide susceptibility model constructed with two 
landslide path dependency variables performed better (AUC = 0.721) than a 
landslide susceptibility model constructed by DEM-derivatives (AUC = 0.672). In 
addition, landslide susceptibility maps taking the effect of landslide path 
dependency into account indicated similar patterns in the susceptibility levels. 
However, landslide susceptibility maps with landslide path dependency effect were 
substantially different than landslide susceptibility map without landslide path 
dependency effect.  
 
These findings indicate that pixel-based landslide susceptibility models could be 
improved significantly by implementing landslide path dependency effect. In such 
fine resolution mapping units, the local effects of path dependency are better 
captured than DEM-derivatives by the model, and hence improve the performance 
of susceptibility models. The results also suggest that combination of landslide path 
dependency with DEM-derivatives leads to high model performance in pixel-based 
landslide susceptibility models. This reduces the need for difficult to obtain and 
update conditioning attributes such as geology and land use traditionally being 
used in landslide susceptibility modelling.  
 
Considering the importance of landslide path dependency in improving 
performance of landslide susceptibility models, I stress the need for regular multi-
temporal monitoring and mapping of landslides. Also, the type of presenting 
landslides in the landslide inventories could be point or polygon but the time of 
mapping or preferably occurrence of landslides should be specified.  
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6.2 Reflection  

The main scientific contributions to the field of landslide susceptibility modelling 
include quantifying landslide path dependency (Chapter 2, 3 and 5) and 
modification of the purely spatial concept of landslide susceptibility modelling with 
introducing time-variant path dependent landslide modelling (Chapter 2, 3, and 5). 
For the first time, the path dependent response among landslides - reflecting the 
evolutionary activities of landslides - was quantified using polygon- and point-
based multi-temporal landslide inventories (Chapter 2, 3, and 5). Using this 
information, we demonstrated the intensity of susceptibility is not time-invariant 
but changes over a decadal time scale. Besides that, implementing the effect of 
landslide path dependency in landslide susceptibility modelling not only improved 
the performance of the model but made landslide susceptibility model and map 
dynamic and time-variant (Chapter 4 and 5). The following sections reflect on key 
aspects of landslide path dependency and modelling of landslide susceptibility, 
mapping of landslide inventory, and discuss the further implications and 
opportunities in landslide studies. 

6.2.1 Role of landslide path dependency in the evolutionary process 
of landsliding 

This thesis introduced a new time-related landslide path dependency effect as a 
factor contributing to the susceptibility of follow-up landslides. The inspiration and 
motivation of this work originates from the ‘path dependency’ concept within 
complexity theory (Phillips 2006). Landslides occur in susceptible hydro-socio-
geomorphological systems with complex interactions among external triggers (e.g., 
rainfall and earthquake), human interventions and the conditioning attributes of 
hillslopes. In such a system with complex interactions among different triggers, 
prediction of landslide occurrence is a difficult task. In this thesis, I found that there 
is path dependency among landslides, and that means that the history of landslides 
partly determines the future susceptibility to landslide occurrence. Such a path 
dependency view was already used as a key assumption in landslide susceptibility 
modelling: ‘past and present are the keys for the future’ (Varnes 1984; Carrara et 
al. 1991). However, this assumption did not consider the effects of landslides 
themselves on the susceptibility of future landslides. In this context, landslide path 
dependency indicates that landslides increase the susceptibility to future landslides 
within a short period of time through their legacies in the environment - whatever 
these may be. The dynamics of landslide path dependency show that susceptibility 
of a landslide to a new follow-up landslide is high in a decade with exponential 
decay response over time (Chapter 2, 3 and 5). In the decadal strong effect of 
landslide path dependency, the cause of follow-up landslides may not be totally 
external (rainfall) but previous landslides could facilitate the occurrence of follow-
up landslides, and hence form clusters of landslides through weakening materials 
and changing slope hydrology (Chapter 3).  

This kind of landslide path dependency was not mentioned before but there are 
findings indicating that old large deep-seated landslide and earthflow keep on 
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reactivating over several decades (Parise 2003; Van Den Eeckhaut et al. 2009; 
Booth et al. 2018). We speculate that the mechanisms behind long-term activities 
of such landslides might be related to the mechanisms underlying the decadal 
positive strong effect of landslide path dependency on follow-up landslides 
occurrence despite the differences in the type, duration and size between these 
landslides. Land use changes and human interventions in the body of old-deep 
seated landslides, changes in surface water and its infiltration through high 
permeability zones in landslides deposits, and internal mass distribution within the 
deposits of landslides have been found to be the mechanisms for such long-term 
activates of landslides. Moreover, the exponential decay in the positive effect of 
landslide path dependency on occurrence of follow-up landslides could be 
attributed to recovery of vegetation growth and ground strength in landslides 
affected areas (Lin et al. 2007; Marc et al. 2015). Therefore, such path dependent 
view and attention to the legacy of previous landslides, in combination with 
external triggers contribute to better understanding of multi-stage activities in 
landslides, and hence the evolution of hillslopes.  

6.2.2 Dynamic path dependent landslide susceptibility modelling 

Traditionally, landslide susceptibility has been a spatial concept reflecting ‘where 
landslides occur’, assessed as a function of distribution of landslides and 
conditioning attributes (Guzzetti et al. 1999; Guzzetti et al. 2005). This thesis has 
shown that landslide susceptibility beside the traditional spatial components, has a 
time-related landslide path dependency component (Chapter 2). Such a component 
was found to be a positive factor in enhancing susceptibility over a period of a 
decade with exponential decay response over time (Chapter 3 and 5). 

In our study area, consideration of landslide path dependency component 
improved the performance of landslide susceptibility model and provided dynamic 
time-variant path landslide susceptibility model (Chapter 4 and 5). The effect of 
landslide path dependency was substantially strong on the performance of pixel-
based landslide susceptibility modelling (Chapter 5) in comparison to trivial impact 
on the performance of slope unit-based landslide susceptibility modelling (Chapter 
4). Given that landslide path dependency is the local effect of landslides on 
landslides, consideration of such an effect can be stronger to improve the 
performance of pixel-based rather than slope unit-based landslide susceptibility 
modelling.  

Besides that, the exponential decay response in landslide path dependency adds an 
important consideration on temporal validity of susceptibility levels presented in 
landslide susceptibility maps. The susceptibility levels in landslide susceptibility 
maps have always been considered to be valid for an indefinite period of time. This 
thesis has shown that (Chapter 3 and 5) that intensity of susceptibility is dynamic 
reflecting the exponential decay response in landslide path dependency. 
Considering such a dynamic temporal effect in landslide susceptibility modelling, 
could shift susceptibility levels when landslide susceptibility maps are updated 
over time. This needs monitoring and multi-temporal mapping of landslides in 
order to reflect landslide path dependency effect in landslide susceptibility maps. 
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This consideration is simpler in comparison to the time and cost demanding 
updating of dynamic landslide causal factors (e.g., lands use) and updating landslide 
inventory maps (Meusburger and Alewell 2009).  

Another positive aspect of landslide path dependency is the ability to model 
landslide susceptibility properly without the need of environmental data which is 
traditionally being used in landslide susceptibility modelling. In our study area, a 
pixel-based landslide susceptibility model constructed only with landslide path 
dependency performed better than pixel-based landslide susceptibility model 
constructed with DEM-derivatives (Chapter 5). This adds an important 
consideration into the simplicity of landslide susceptibility modelling by only using 
landslide path dependency derived from landslide inventories. This can be 
considered in the preparation of landslide susceptibility maps in data-scarce 
landslide prone areas where conditioning attributes (e.g., land use and geology) and 
DEM-derivatives are not available or difficult to obtain. However, in the case of 
availability of these data, and combination with landslide path dependency, this 
could lead to more reliable landslide susceptibility models and maps.  
 
In landslide prone areas similar to Collazzone study area, the parameters of our 
landslide path dependency (Chapter 3 and 5) can directly be used to compute 
landslide path dependency variables to be implemented in landslide susceptibility 
modelling. In other landslide prone areas, landslide path dependency can be 
characterized and quantified with our two developed measures, follow-up 
landslide fraction (Chapter 3) and space-time clustering measure (Chapter 5).  

6.3 Implications of landslide path dependency  

In this section, I will discuss the possible wider implications of landslide path 
dependency, with respect to multi-temporal mapping, hazard and risk assessment 
and regional planning. 

6.3.1 Multi-temporal monitoring and mapping of landslides 

I stress the importance of accurate monitoring and multi-temporal mapping of 
landslides in order to explore the effect of landslide path dependency on future 
landslides (Chapter 2 and 3). In mapping of landslides, the attention has been given 
more to the spatial distribution of landslides presented in several landslide 
inventories worldwide. However, only a few – to the best of our knowledge - 
landslide inventories have given the attention to the time of landslide occurrence 
or mapping (Guzzetti et al. 2006; Schlögel et al. 2011).  
 
In my thesis, I demonstrated that landslides affect future landslide susceptibility for 
about a decade (Chapter 3 and 5). To assess such an effect, polygon-based or point-
based multi-temporal landslide inventories are essential. In polygon-based multi-
temporal landslide inventories, landslide path dependency could be computed 
using our proposed follow-up landslide fraction (ρ) presented in Chapter 3. In 
point-based multi-temporal landslide inventories, our proposed space-time 
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clustering measure (Chapter 5) derived from space-time Ripley’s K Function, could 
be used to computed landslide path dependency effect. Such inventories should 
contain time of mapping or occurrence of landslides over a period between 10 to 
20 years given a decadal positive effect of landslide path dependency.  

Multi-temporal landslide inventories are rare; beside the unique Collazzone 
dataset, I am aware of only 1 other in Maily-Say valley in Kyrgyzstan (Schlögel et al. 
2011). I expect that, with increasing availability of high resolution remote sensing 
imagery, more multi-temporal landslide inventories will be prepared in the coming 
decade. 

6.3.2 Impact of landslide path dependency on landslide hazard and 
risk assessment 

Landslide susceptibility is the key element towards the assessment of landslide 
hazard and risk (Martha et al. 2013). The new dynamic path dependent landslide 
susceptibility which has been found in Chapter 2, 3 and 5, could influence on the 
ways that landslide hazard have been assessed so far. In landslide hazard, a 
combination of landslide susceptibility with the temporal information of landslide 
triggers (rainfall) are used to estimate spatial and temporal probabilities of 
landslide occurrence (Guzzetti et al. 1999). The landslide susceptibility used in 
landslide hazard, has been so far static without taking the landslide path 
dependency effect into account. Considering dynamic path dependent landslide 
susceptibility in combination with temporal information of landslide triggers may 
lead to different assessment of landslide hazard. As a potential consequence, in the 
decadal positive effect of landslides on future landslide susceptibility, less rainfall 
could even further increase the likelihood of follow-up landslide occurrence. 
Opposite to this, when the effect of landslide path dependency decreases, more 
intense or prolonged rainfall are needed for future landslides to occur. In other 
words, recent landsliding may increase susceptibility and thus balance a period of 
low rainfall, or make a period of high rainfall worse. 
 
The traditional way of landslide risk assessment is a function of landslide hazard, 
vulnerability and the value of exposed elements at risk (Van Westen et al. 2006). 
This way of landslide risk assessment could be influenced by time-variant path 
dependent landslide susceptibility implemented in landslide hazard. Besides that, 
the vulnerability of elements (e.g., roads and buildings at risk) as a component of 
landslide risk could be also dynamic by taking time-variant path dependent 
susceptibility into account.  
 
In the decadal positive effect of previous landslides on future susceptibility where 
the likelihood of occurrence of follow-up landslides is high, the vulnerability of 
elements could even further increase. Conversely, when the effect of previous 
landslides decreases, the vulnerability of elements could drop to the background 
vulnerability level. Such dynamic behaviours of landslide path dependency and its 
possible effect on vulnerability needs to be considered in the land risk mitigation 
strategies.  
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6.3.3 Operational implication of landslide path dependency in land 
use planning 

Regional development planning contains land and resources allocation at regional 
levels, project design and implementation like building infrastructures and new 
residential areas at local community level or site-specific areas (De Graff et al. 
2012). Such a planning with global climate change and increasing number of 
population leading to the intensive use of land and environment, needs to take the 
destructive effects of landslides into account. In this context, landslide 
susceptibility maps play a key role for decision makers and awareness of societies 
living in landslide prone areas. Our landslide susceptibility maps can be simply 
produced using landslide path dependency and DEM-derivatives in data-scarce 
areas (Chapter 5). The resulted landslide susceptibility maps can be 
understandable by societies, useful for decision makers and land use planners to 
avoid or mitigate the negative impacts of landslides.  

Our modified landslide susceptibility modelling (Chapter 2) includes static 
consideration of conditioning attributes changing over space and the dynamic 
landslide path dependency effect changing over space and time. These static and 
dynamic components of landslide susceptibility may complicate land use planning 
since landslide susceptibility maps need to be updated in areas with ongoing 
dependencies among landslides. In such areas, and for long-term land use planning, 
the static component of landslide susceptibility could be more useful for the 
preparation of landslide susceptibility maps. In this context, landslides 
susceptibility maps can be provided with the relations between conditioning 
attributes and landslides distribution. However, the dynamic component of 
landslide susceptibility needs to be considered in short-term land use planning and 
investment such as putting irrigation systems. Besides that, taking dynamics of 
landslide path dependency into account could contribute to the short-term 
prevention and mitigation strategies to avoid further possible occurrence of follow-
up landslides. 

6.4 Future research  

Based on the findings of this thesis, I provide an outlook on possible future research 
topics below: 

1. The mechanisms behind the dynamics of landslide path dependency 
should be further studied in order to understand multi-stage activates in 
landslides. The dynamics of landslide path dependency showed that 
susceptibility remains high after occurrence of a landslide for about a 
decade with an exponential decay response over time. Understanding the 
reason for such a dynamic response in landslide path dependency could 
contribute to better prediction of future landslide occurrence. In this 
respect, properties of landslides deposits, depth of sliding planes, changes 
in water content, bulk density and sediment compaction in deposits of 
landslides should be investigated in the field, The findings can be used in 
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physically-based landslide susceptibility modelling to assess potential 
further instability of landslides using infinite slope stability model. Besides 
that, regular multi-temporal monitoring and mapping of landslides and 
their legacies should also be studied. To this aim, multi-temporal remote 
sensing imagery, interferometric techniques, LIDAR and Unmanned Aerial 
Vehicle (UAV) can be used. These tools and techniques provide valuable 
information to assess the legacy of landslides on hillslopes by monitoring 
changes in land cover, morphology of hillslopes and comparison of 
topographic parameters using multi-temporal DEM before and after 
landslides occurrence.  

2. I used logistic regression as a reference statistically-based model to 
implement the effect of landslide path dependency on landslide 
susceptibility modelling. Given the variety of quantitative approaches 
being used in landslide susceptibility modelling, it could be worth to 
include the effect of landslide path dependency in some other statistical 
approaches. The findings can be compared with the results of our logistic 
regression-based path dependent landslide susceptibility modelling. 

3. I believe that our path dependent thinking and view on landsliding and its 
effect on landslide susceptibility is generic. However, the existence and 
dynamic of landslide path dependency in other landslide prone areas 
should be investigated and compared with the dynamics of our landslide 
path dependency. Similar path dependency dynamics in several landslide 
prone areas would stimulate the global attention of landslide path 
dependency view and its impact on landslide susceptibility modelling. 

4. The optimal method of implementing dynamic path dependent landslide 
susceptibility as the input in landslide hazard and risk assessment could be 
the subject of further research. In this context, the results can be compared 
with the results of landslide hazard and risk assessment where static 
traditional landslide susceptibility are used as the input.  
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Summary 

Landslides susceptibility modelling is a crucial step towards the assessment of 
landslide hazard and risk aiming at reducing the casualties, economic losses and 
environmental damages of landslides. Over the last decades, landslide 
susceptibility modelling has been a field of research for many researchers to try 
different new data integration techniques and approaches. In this context, 
developments of commercial, open source GIS and statistical software and 
availability of environmental data have facilitated landslide susceptibility 
modelling using variety quantitative approaches. In these approaches, relations 
between distribution of landslides and environmental factors are explored using 
the assumption that future landslides will more likely occur under environmental 
conditions leading to the occurrence of landslides in the past. This thesis focuses on 
a fundamentally different viewpoint: the effects of landslides on susceptibility of 
future landslides. In a sense that landslides will change the likelihood of the 
occurrence of future landslides through their effects on the environment. This is 
called landslide path dependency in this thesis. Exploring such an effect needs 
landslides to be documented and mapped regularly to ensure that multi-stage 
activities of landslides are properly monitored. Different indexes and methods are 
developed and evaluated to: (i) explore whether landslides following previous 
landslides, (ii) compare differences between landslides that follow landslides and 
landslides that do not, (iii) quantify the spatiotemporal scales of landslide path 
dependency, and (iv) assess the impacts of landslide path dependency on slope 
unit-based and pixel-based landslide susceptibility modelling. 

After introducing the general objective of the thesis in Chapter 1, Chapter 2 
explores the indications of path dependency among landslides in a multi-temporal 
landslide inventory from the Collazzone study area in Umbria in central Italy. 
Spatial overlap was used as an index to explore landslide path dependency effect. 
Differences in size, shape and parameters of power-law distribution were 
compared between landslides that follow previous landslides and landslides that 
do not. The overlap index among landslide was found to remain high for about a 
decade and decreases significantly over time. Follow-up landslides were larger and 
more elongated than non-follow-up landslides. Power-law behaviour was found in 
both follow-up landslides and no-follow-up landslides. A modified time-variant 
landslide susceptibility was proposed reflecting the spatiotemporal effects of 
landslide path dependency. 

In Chapter 3, the strength and duration of landslide path dependency was 
quantified using the follow-up landslide fraction. This showed that susceptibility 
for a new follow-up landslide increased by a factor of 15 immediately after a 
landslide, and that this extra susceptibility decayed exponentially over time. 
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Geometric and topographic properties of landslides with and without follow-up 
landslides were compared and based on that, the occurrence of follow-up landslides 
was predicted by logistic regression. Larger and rounder landslides were found to 
facilitate the occurrence of follow-up landslides. Also, landslides in wetter places 
and in lower slope positions are more likely to cause follow-up landslides. Field 
exploration of landslides also revealed that changes in slope hydrology can 
contribute to the occurrence of follow-up landslides. A combination of geometric 
and topographic properties of landslides predicted the occurrence of follow-up 
landslide acceptably well. Including the geometry of landslides leads to a better 
performance of models predicting follow-up landslide as compared to the situation 
when only topographic properties were used. 

In Chapter 4, the landslide path dependency effect was implemented in slope unit-
based landslide susceptibility modelling. Three models were developed using 
logistic regression: (i) a conventional landslide susceptibility model constructed 
with 51 conditioning attributes, (ii) a conventional plus path dependent landslide 
susceptibility model constructed with 51 conditioning attributes plus two landslide 
path dependency variables and (iii) path dependent landslide susceptibility model 
constructed only with two landslide path dependency variables. The conventional 
plus path dependent susceptibility had slightly better model performance than 
conventional susceptibility but the differences in their performances were not 
statistically significant. The resulting landslide susceptibility maps were similar 
except for slight differences in a few slope units.  

In Chapter 5, landslide path dependency was quantified in a point-based multi-
temporal landslide inventory. Ripley’s space-time K Function was used to quantify 
the degree of clustering among landslides. The resulted clustering measure 
revealed that landslides tend to cluster in 200 meter distance from a previous 
landslide in the time scale of a decade with an exponential decay over time. Such an 
effect was implemented in a pixel-based landslide susceptibility modelling. Again, 
three models were developed using logistic regression : (i) a conventional landslide 
susceptibility constructed with Digital Elevation Model-derivatives, (ii) a 
conventional plus path dependent landslide susceptibility with DEM-derivatives 
and two landslide path dependency variables and (iii) path dependent landslide 
susceptibility only with two landslide path dependency variables. Model 
performance of conventional landslide susceptibility improved considerably with 
adding landslide path dependency effects. In fact, even the purely path dependent 
landslide susceptibility model performed better than the conventional landslide 
susceptibility model.  

Chapter 6 summarizes the main finding of the thesis, concludes the thesis, and 
provides additional implications and prospects for future research. By quantifying 
the spatiotemporal landslide path dependency, the effects of landslides on future 
susceptibility can now be considered in landslide susceptibility modelling. Such an 
effect provides an underlying concept towards the dynamic time-variant landslide 
susceptibility modelling. In this context, multi-temporal landslide inventory was 
therefore able to provide valuable information to monitor the multi-stage activities 



 

of landslides. However, the work presented only explores landslide path 
dependency in the Collazzone study area in Italy, future research should focus on 
the existence and quantification of landslide path dependency in other landslide 
prone areas. This needs further regular monitoring and multi-temporal mapping of 
landslides. The advance in high spatial and temporal resolutions of remote sensing 
imagery could facilitate preparation of multi-temporal landslide inventories the 
coming decades.       
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