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A B S T R A C T

New types of phenotyping tools generate large amounts of data on many aspects of plant physiology and
morphology with high spatial and temporal resolution. These new phenotyping data are potentially useful to
improve understanding and prediction of complex traits, like yield, that are characterized by strong environ-
mental context dependencies, i.e., genotype by environment interactions. For an evaluation of the utility of new
phenotyping information, we will look at how this information can be incorporated in different classes of
genotype-to-phenotype (G2P) models. G2P models predict phenotypic traits as functions of genotypic and en-
vironmental inputs. In the last decade, access to high-density single nucleotide polymorphism markers (SNPs)
and sequence information has boosted the development of a class of G2P models called genomic prediction
models that predict phenotypes from genome wide marker profiles. The challenge now is to build G2P models
that incorporate simultaneously extensive genomic information alongside with new phenotypic information.
Beyond the modification of existing G2P models, new G2P paradigms are required. We present candidate G2P
models for the integration of genomic and new phenotyping information and illustrate their use in examples.
Special attention will be given to the modelling of genotype by environment interactions. The G2P models
provide a framework for model based phenotyping and the evaluation of the utility of phenotyping information
in the context of breeding programs.

1. Introduction

A primary objective and problem in plant breeding remains the

improvement of yield. Therefore, the utility of new genotyping and
phenotyping techniques should be evaluated in the light of the addi-
tional genetic gain for yield that can be obtained by the implementation
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of new techniques, where cost-benefit considerations should be made in
relation to the speed and cost of the additional genetic gain. Yield is an
example of a complex trait characterized by the contributions of many
genes with relatively small effects that show strong context de-
pendencies in the form of epistatic and genotype by environment in-
teractions (G×E). These context dependencies complicate the
breeding process [1–3]. Improvement of yield is made in relation to a
target population of environments (TPE), i.e. the set of conditions for
which the genotypes (cultivars, varieties) are bred [3,4]. Across the
TPE, typically the environmental conditions change to an extent that
the phenotypic response curves of individual genotypes, the reaction
norms [5,6], will show divergence, convergence, and intersection,
which is an expression of G×E. Traditional phenotyping strategies
consist of the evaluation of genotypes in a number of trials across a
number of locations for a number of years, called multi-environment
trials (METs). The hope is that the trials in the MET form a re-
presentative sample from the conditions in the TPE and that the MET
provides enough information for identifying and estimating G×E
patterns with enough precision to decide upon a strategy on how to
handle G×E [7,8].

Early onwards it was recognized that expecting METs to contain
informative sets of environmental conditions was not an optimal
strategy for developing adapted genotypes to defined biotic and abiotic
stress conditions. Managed stress trials were introduced to complement
classical location by year METs [8–10]. Furthermore, in many crops,
physiology and physics driven measurement protocols were developed
in attempts to predict the behaviour of genotypes under abiotic stress
conditions [11]. Therefore, many phenotyping techniques were being
used to help the breeding process attain genotypes with superior yields.

However, phenotyping as a separate discipline within plant biology
is a new phenomenon. The rapid development of new phenotyping
technologies has led to an enormous increase in the types and amounts
of phenotypic data that can be monitored and registered. All levels of
biological organisation have become accessible from within the cell up
to the level of the ecosystem, and at spatial and temporal resolutions
that were unthinkable before, with whole new types of processes being
open to study [12,13]. New phenotyping devices occur that can be
classified as: 1) high precision platforms, which are not necessarily high
throughput, for omics, anatomical and functional traits at cell and
organ level, covering short time scales [14,15]; 2) whole-plant field and
controlled environment platforms for plant canopy traits [8,16,17]; 3)
networks of field experiments (METs), with high throughput pheno-
typing techniques across environmental ranges [18,19]. The diversity
and complexity of new phenotypic data types raises the questions of
how to use this information efficiently to increase biological under-
standing of plant systems and of how to improve the accuracy of pre-
diction for complex traits like yield. Should we copy the genomic pre-
diction paradigm and simply include all phenotypic data in our
prediction models without any feature selection? Or, will we do better
by selecting specific features from our phenotyping information, i.e.,
identify those traits that are relevant for better adaptation, as proposed
by [12,20]?

In this paper, we will look at ways to incorporate new phenotyping
data into predictive models for complex traits, where for simplicity of
exposition we will focus on yield. We will describe various model
classes, mainly statistical, but also crop growth models, that provide the
means to evaluate and quantify the utility of new phenotyping in-
formation. We start with a presentation of a classification of phenotypic
trait data according to the amount of modelling the data underwent.
The next two sections, describe statistical models and crop growth
models for predicting phenotypic traits from DNA profiles, environ-
mental information, and additional phenotypic information, together
with some illustrative examples. In these sections, attention will be
given to some promising new G2P models and the role of modelling in
relation to breeding strategies is considered. The last section presents
some challenges ahead.

2. A phenotypic trait hierarchy

2.1. Traditional phenotyping

Within plant breeding and genetics, phenotyping always played an
essential role. To improve phenotypes via interventions at the genetic
level, we need to measure the phenotypes and genotypes precisely and
cost effectively. Furthermore, we need suitable G2P models that allow
us to identify the most important genetic and environmental factors
driving phenotypic variation and to predict the phenotype from genetic
and environmental inputs. For complex traits, G2P models will have to
address explicitly the phenomenon of G×E [19,21,22]. Traditionally,
for the target trait of the breeding process, yield, MET evaluations of
breeding material play an important role, where the included germ-
plasm can consist of segregating offspring populations as well as di-
versity panels. Some popular G2P models for MET data are the fol-
lowing. For genotype i in environment j (trial, year by location
combination) a simple model is = +y μ εij ij ij, where μij stands for the
expectation or mean of genotype i in environment j, while εij represents
a random residual. Roughly, in this model the expectation expresses the
adaptation part of the phenotype of which we think we understand it
well enough to predict it for given genotypes and environments, while
the residual represents a combination of biological instability (to be
modelled by genotype specific stability variances), not modelled phe-
notypic variation (polygenic variation), and experimental error. For the
expectation, we try to find a model that makes the expectation a
function of genotype specific sensitivities to environmental covariables,
where, for notational convenience, we will ignore intercept terms de-
pending on genotypes or environments: =μ μ β z( ; )ij i j , for a single en-
vironmental covariable z with a value zj in environment j to which the
genotype i has a sensitivity βi. Genetic information can be inserted by
making the genotypic sensitivities functions of marker profiles, xi,

= xμ μ β z( ( ); )ij i j . When the phenotypic responses for genotypes to the
environmental covariable are linear, i.e., the reaction norm is linear,
then =μ μ β z( ; )ij i j = β zi j. The formulation = βμ μ z( ; )ij i j allows the
reaction norms also to be non-linear. In the latter case, the genotype can
be characterized by multiple parameters as well, with βi a vector of
parameters determining the form of the reaction norm = βμ μ z( ; )ij i j .

For example, for a logistic dependence, = + − −μij
β
β z z1 exp( ( ))

i

i j
1

2 0
, with β i1

the plateau for the reaction norm of genotype i, β i2 the growth rate, and
z0, or β i3 , the value for which the response reaches half of its maximum.
More flexible formulations are possible by choosing a spline basis for
the environmental covariable z, = ∑s z b h z( ) ( )j v iv v j , with h z( )v j one of
the elements in a set of the B-spline basis functions relevant to en-
vironment j, and biv a genotype specific spline coefficient. Then,

= =μ μ β s z μ Σ b h z( ; ( )) ( ( ))ij i j v iv v j [23,24].
In traditional phenotyping, most resources were spent on METs to

estimate yield itself, the primary trait, but it was not uncommon either
to try to estimate other traits than yield, secondary phenotypes, that
could be used as genotype specific covariables in prediction models for
yield. For example, =μ μ μ z( ; )ij

f f
i
s

j , with μij
f the expectation for the

focus trait (target trait, primary trait, highest order trait), μ a b( ; )f a
function to generate the expectation for the focus trait with a genotypic
input a and an environmental input b, μi

s is the genotype specific ex-
pectation for a secondary trait measured under controlled conditions
and zj is an environmental characterisation. This type of G2P model will
also be suitable to incorporate new phenotyping information. However,
the new secondary phenotyping information has higher spatial and
temporal resolution than the more traditional secondary phenotyping
information, it can come from many biological levels of organization,
and the number of secondary phenotypes can be huge. We will give
examples of such secondary phenotypes below. Therefore, it is not
obvious which secondary phenotypes are useful for predicting yield and
how the secondary phenotypes should enter existing G2P models. In
statistical terms, within a high dimensional regression context, we have
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simultaneously a covariable subset selection problem and a functional
form or transformation problem. Furthermore, our current G2P models
may have to be modified to benefit from the large quantity of secondary
phenotyping information.

To facilitate the development of a new G2P framework that can
incorporate both large quantities of secondary phenotyping information
as well as genomic information and environmental characterizations,
we want to introduce a conceptual classification of new phenotyping
traits. Advanced statistical and crop growth modelling methods will be
required to generalize prediction and inference from the genotypes and
environmental conditions included in METs to a wider set of genotypes
representing the full collection of selection candidates and a wider set
of environmental conditions representing the TPE. Table 1 shows how
raw secondary phenotyping data are elaborated and converted into
genotype specific covariables that enter G2P models for yield. This
conversion consists of a number of discrete modelling steps that
transform large numbers of basic and raw secondary phenotype data
with low predictive power and utility into relatively few genotype
specific parameters with high predictive power.

2.2. Feature extraction

Let us define a typical phenotypic observation or measurement as

y t( )ijr
k

ijrm , for trait =k k n( 1. .. )T , genotype =i i n( 1. .. )g , in environment
=j j n( 1. .. )e , for the r-th replicate =r n( 1. .. )R in environment j, at time

point tijrm = …m n( 1 )Mijrk . The observation y t( )ijr
k

ijrm can be interpreted as
a raw data point. Alternative modelling steps add value to the data and
aggregate information from raw data points into model parameters. The
raw data are null level traits, they are not aggregated over time or
environmental gradients and no value addition by modelling has taken
place. In a sequence of modelling efforts, the raw data are converted
into parameters, higher level traits, that integrate data over time and
environmental gradients to become predictors of complex traits like
yield.

Modern phenotyping devices and techniques can produce large
numbers of variables that each by themselves not necessarily relate in a
one-to-one fashion to phenotypic traits of interest. So an important first
step in phenotyping is to extract from large numbers of variables those
features that are potentially useful for modelling biological and genetic
processes and structures. Imaging has become an important secondary
phenotyping technique that generates large amounts of information of
which only a part will be relevant for phenotypic prediction. There are
several methods to extract the features from images (e.g. Fig. 1). As
images are usually quite noisy, pre-processing and feature-extraction
methods are a key first step to produce phenotypic information with
improved signal to noise ratios that at a later stage may prove to be

Table 1
The modelling process that converts raw data into strongly model dependent predictions, thereby adding value to
data over successive cycles of modelling. Dimensions of input data decrease because data are replaced by in-
tegrative parameters that become increasingly model dependent.

F.A. van Eeuwijk et al. Plant Science xxx (xxxx) xxx–xxx

3



useful for predicting a target trait [25,26].
Strategies to obtain trait information from images might involve

segmentation [27,28], tracking procedures to deal with the problem of
occlusions between plant organs [29] and using signal intensity at
specific wavelengths (or indices derived from these intensities) as a
proxy to plant traits. Common proxies using this approach are the
normalized difference vegetation index (NDVI) to characterize biomass
accumulation dynamics or canopy temperature to identify drought-
tolerant genotypes [18,28,30,31]. An alternative is to identify mor-
phological changes in sequential images (e.g. time to flowering) and
segment specific organs (e.g. spikes) or organ surfaces (e.g. canopy
drought stress [32]).

2.3. Correcting for experimental design factors and spatial variation

The extraction of features from the ample information generated by
new phenotyping devices contains aspects of covariable subset selec-
tion, transformation and noise reduction. The result of this process is a
set of secondary phenotypic traits for which it later on remains to be
shown that they are useful for the prediction of primary traits. A first
modelling step is now to estimate genotype and treatment means cor-
recting for experimental design factors and spatial variation. Such an
analysis is usually done per environment and per trait so that we can
simplify the model to = +y t μ t ε t( ) ( ) ( )ir im i im ir im , with μ t( )i im the geno-
type specific expectation for the trait in its dependence on time, while
ε t( )ir im is a residual. When all genotypes are observed at the same times,
we can write = +y t μ t ε t( ) ( ) ( )ir i ir , where we want to estimate μ t( )i . In
principle, when correcting for design and spatial variation we should
take into account the dependence in time between the observations on
the same genotype and plant, but such an analysis is immediately non-
trivial. Therefore, analyses are often performed per time point.
Effectively we then fit the model = +y μ εir i ir for each time point,
which is equivalent to an analysis of variance, or a mixed model with
autoregressive formulations for the dependence in row and column
directions [33]. A recently proposed alternative is a mixed model with a

two dimensional P-spline basis for spatial variation [34,35]. This spline
approach has the advantage of avoiding the difficult model selection
step. An example using the so-called SpATS model is given in (Fig. 2).
The corresponding R-package SpATS is available on CRAN (https://
cran.r-project.org/package=SpATS), and produces adjusted means
(Best Linear Unbiased Predictions, BLUPs, or Best Linear Unbiased Es-
timates, BLUEs) as well as generalized heritabilities [37]. SpATS is
flexible and user-friendly and performs comparably to more elaborate
spatial models that require for each experiment a model selection
process [34]. The absence of a model selection requirement allows a
fully automatic implementation of this method for the analysis of field
trial and platform experiments, especially convenient for the analysis of
time series of phenotyping data obtained by the use of High Throughput
Phenotyping (HTP) devices. As an example, Fig. 2 shows the Arabi-
dopsis data coming from the Phenovator platform [38] for the light-use
efficiency of PSII of 344 Arabidopsis accessions [39].

2.4. Dynamic modelling of spatially adjusted secondary phenotypes

Adjustment of genotypic and treatment means for experimental
design and spatial variation was done per time point above. The next
step is to model the genotypic means (or treatment means of any type)
as adjusted for experimental design and spatial variation in relation to
time, where these genotypic means are treated as if they were ob-
servations themselves, = +y t μ t ε t( ) ( ) ( )i i i , with y t( )i actually being the
estimated genotypic mean of the previous modelling step (see Section
2.3), which we can write as ≔y t μ( ) ˆi i at time t.

Models for μ t( )i can be parametric, = θμ t μ t( ) ( ; )i i , with θı a para-
meter vector for genotype i that describes the dependence of its dy-
namic phenotype y t( )i on time. Common functions to model trait dy-
namics are the logistic, Gompertz and exponential growth functions
[40–43]. For a logistic relation to time the model would be

= + − −μ t( )i
θ
θ t θ1 exp( ( ))

i
i i

1
2 3

with θ i1 the upper asymptote, θ i2 the growth
rate, and θ i3 the time at which the mid-point is reached [41,44].

Fig. 3 illustrates the dynamics of leaf length of two genotypes that

Fig. 1. Identification of young wheat plants to count plant density per unit area. After objects are isolated and sized from rows, the data are processed to predict
intersecting objects and estimate their number (Liu et al. [26]).
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have been phenotyped over time, with both genotypes grown under
three levels of temperature and two levels of water stress. The leaf
elongation dynamics are summarized by a logistic curve. Genotype G1
is sensitive to temperature (reflected in the three red curves running
clearly apart from each other, Fig. 3A), but less sensitive to water stress
(reflected in the two blue curves running close to each other). In con-
trast, genotype G2 is not sensitive to temperature, but quite sensitive to
water stress. By fitting a logistic curve we can extract slope parameters
(leaf elongation rate) that are at this stage both genotype and en-
vironment specific.

Parametric models for μ t( )i may be too restrictive to capture the
dynamics of traits like canopy temperature, leaf area or senescence. A
more flexible alternative for modelling trait dynamics is offered by P-
splines [23,24]. For example, P-splines were used to model haulm se-
nescence in potato and identify QTLs (Quantitative Trait Locus) for the
genotype-dependent slopes [45]. The use of splines can be extended to
genomic prediction models for incorporating information from canopy
temperature and NDVI over time [46].

In this context of dynamic models for phenotypes, we mention
further the work on function-valued trait models, in which explicit
mathematical functions describe trait dynamics during the growing
season [47]. Genotype specific curve parameters as conditioned by the
environment were modelled in relation to a genetic basis within a
functional mapping framework by [42,48,49].

Some phenotypic traits are repeatedly measured over time without
the genotype specific expectation changing over time. This brings us in
the classical repeated measurements situation, = +y t μ ε t( ) ( )i i i , where
for the residual term a correlation structure should be defined that al-
lows for deceasing correlation between time points with increasing
separation [50,51]. For example, repeated measures on NDVI were
analysed by a multi-trait model with a special structure for the auto-
correlation between successive measurements [46].

The curve parameters, θi, represent traits of a higher level or order
than the initial time dependent trait y t( )i . They represent an integration
over time of this lower level trait. New phenotyping technologies fa-
cilitate the characterization of growth and development during the
growing season. High temporal resolution of measurements is achieved
for secondary traits that are at a lower biological organization level
than target or focus traits: leaf and stem size, biomass and disease scores
[52,53]. Modelling the dynamics of such lower and intermediate level
traits fits into a strategy to replace large amounts of data by limited
numbers of genotype specific parameters. These parameters are often
rates, like leaf elongation rate. The estimates for the time dynamics
parameters can once again form the starting point of a new round of

Fig. 2. Raw plot data (A) are adjusted for experimental design factors and
spatial variation (B). The results are adjusted genotypic means (best linear
unbiased estimators, BLUEs) or predictions (best linear unbiased predictors,
BLUPs) per time point and environment (C).

Fig. 3. Modelling the dynamics of phenotypic traits. Spatially adjusted geno-
typic means are modelled in their dependence on time for each environment. A
logistic curve is fitted and genotype specific parameters describing the dy-
namics are extracted. (A) Model formulation for logistic curve. (B) Logistic
curves as fitted for a genotype G1 on the dynamics of leaf length under two
water stress conditions (WS1, WS2) and three temperature stress conditions
(Temp1, Temp2, Temp3). (C) as (B) for a genotype G2. Genotype G1 in (B)
shows a low sensitivity to water stress and a high sensitivity to temperature
stress, whereas G2 in (C) shows a high sensitivity to water stress and a low
sensitivity to temperature stress. (For interpretation of the references to colour
in the text, the reader is referred to the web version of this article.)
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modelling when these parameters are seen as functions of environ-
mental gradients (see next Section 2.5).

2.5. Modelling phenotypes in relation to environmental gradients

In Section 2.4 we estimated genotype specific parameters that
summarized dynamical behaviour of secondary phenotypes. These
parameters were not only genotype specific, but also environment
specific. Assume we have also environmental characterizations for the
conditions under which the curve parameters were estimated, collected
for each experiment or trial in a vector zj. Let the slope for genotype i in
environment j, θ i2 , simply be redefined as a new phenotype, yij. A model
for this phenotype is: = +y μ εij ij ij. When we want to express the de-
pendence of the phenotype, for example the curve parameter from
Section 2.4, on a set of environmental characterizations, we write,

= +β zy μ ε( ; )ij i j ij, with βi genotype specific sensitivities to a set of
environmental characterizations contained in zj. The function μ a b( ; )
generates a genotype and environment specific expectation from a
genotype specific input a and environment specific input b where, for
notational convenience, we will ignore intercept terms depending on
genotypes or environments. In its simplest version, a linear regression
with one environmental characterization, =y β zij i j + εij.

The genotype specific sensitivities of curve parameters, βi, represent
again a higher level of integration of phenotypic information. When we
consider the dependence of curve parameters on environmental con-
ditions, we effectively have integrated across temporal and environ-
mental gradients. Examples of such high level traits are the physiolo-
gical parameters that predict yield across environments [53–55]. In
Fig. 4A and B, they would correspond to the sensitivities of leaf elon-
gation rate (a higher order trait) to temperature and water stress. The
sensitivities to multiple environmental covariables can be incorporated
in a higher level prediction model for yield.

High precision platform and to some extent whole plant platform
measurements aim at the phenotyping of higher-order traits that are
expected to show a reduced complexity for the control of G×E be-
cause, as they represent sensitivities, their nature already embodies the
genotypic response across environmental conditions. The information
on the genetic and environmental controls of higher order traits is ex-
pected to be transferable to field conditions and to help in predicting

yield across the TPE when inserted in appropriate G2P models like
factorial regression models, multi-trait models, and crop growth models
[56,57]. Evaluations of diversity panels on phenotyping platforms can
involve single evaluations at a defined time under controlled environ-
mental conditions. More often these platforms are used to measure time
series on multiple traits measured jointly across a range of environ-
mental conditions, thereby allowing analysis of G×E and calculation
of higher order phenotypic traits [57–59].

2.6. Integrating multiple higher order traits in prediction models for the
target trait

The structure of G×E observed for the target trait in the TPE and
its underlying environmental drivers have a large influence on which
phenotypic traits need to be estimated at various biological levels for a
successful prediction of the target trait across environmental gradients.
When we have an a priori idea of a statistical or physiological predic-
tion model, the structure of such a model can guide us in which sec-
ondary traits to concentrate on for measurements at a phenotyping
platform. As an illustration, we consider a crop growth model (CGM)
that predicts a target trait from small sets of genotype specific inputs
and environmental characterizations [60,61]. The inputs for the CGM
were at the genotypic side, the physiological parameters total leaf
number (TLN, a low level trait), area of largest leaf (AM, a low level
trait), solar radiation use efficiency (RUE, a higher order trait), and
thermal units to physiological maturity (MTU, an intermediate level
trait). For the environmental side of the model, the important inputs
were daily average temperature (Temp) and solar radiation (Rad). The
structure of the CGM was: = y zy μ ( ;ij

f CGM
i
s

j) + εij, with yij
f the focus

trait, yield, for genotype i in environment j, yi
s the input vector of

secondary phenotypes (TLN, AM, RUE, MTU), zj the input vector of
relevant environmental characterizations (Temp, Rad), and μ a b( ;CGM )
the CGM function that converts genotype specific inputs and environ-
mental inputs in to predictions for the target trait.

In the original study [61], only meteorological data from the
weather station Champaign (Illinois) were used to estimate predictions
ŷij

f , whereas for additional calculations we used the information of
another 19 weather stations in Illinois. After the integration over time
and the meteorological characterizations by the CGM, the results of our

Fig. 4. Genotype specific parameters expres-
sing dynamics of leaf length on time as ex-
tracted across different environmental condi-
tions, see Fig. 3, are modelled in relation to
water and temperature stress characterizations.
For leaf elongation rate (trait 1), a two dimen-
sional response surface is fitted. For other
higher order traits (trait 2 and 3) one dimen-
sional reaction norms are fitted as these traits
depend in a simpler way on the environmental
conditions. In the fitted response surface for
leaf elongation rate the yellow points indicate
conditions that were sampled in experiments.
The higher order traits 1, 2 and 3 together de-
termine a response surface for yield, the target
trait. The prediction model for yield has trait 1,
2 and 3 as inputs as well as temperature and
water stress characterizations. (For interpreta-
tion of the references to colour in this figure
legend, the reader is referred to the web version
of this article.)
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calculations show non-linear responses for the target trait, ŷij
f , in rela-

tion to the environmental covariables latitude and longitude (Fig. 5A).
The impression is raised that a suitable statistical model would be

⎜ ⎟= ⎛
⎝

⎞
⎠

+β zy μ ε;i jij
f Stat

ij, with zj is latitude and longitude, and βi the

genotype specific curve parameters that describe the dependence on
latitude and longitude. Both the CGM and statistical prediction model
may produce acceptable accuracies (correlation between observed and
predicted yield). The difference between both approaches may reside in
the robustness of the predictions with respect to the specification of the
training set of environmental conditions.

The simulated heritability in our example was 0.85 per location, as
in the original study [61]. Fig. 5A shows the two-dimensional response
surface for yield in 2012 for one of the parents of the simulated DH
(Double Haploid) population [61], where a mixed model two-dimen-
sional P-spline method was used to fit the spatial trend [62]. Fig. 5B
shows the response curves for four genotypes as function of latitude, for
predictions with the same longitude as Champaign. The (extremely)
early mature genotype (TLN=6) is performing best at the highest
observed latitude, while the other three genotypes show optima at
lower latitudes.

2.7. A reference framework for evaluating the prospects of secondary
phenotyping information for improving the prediction of target traits

In earlier sections, we have introduced a number of G2P models that
predict target traits from genotype specific and environmental inputs.
Furthermore, a number of these models offered possibilities for in-
corporating secondary phenotyping information. Within the framework
of a G2P model the contribution of secondary phenotyping to prediction
of the target trait can be assessed in a number of ways. In later sections,
a number of examples will be given of possible improvements by the
introduction of secondary phenotyping information into G2P models.
The situation we envision for our modelling purposes is the following:
We have at our disposal a set of field experiments for a target trait that
belong to a MET that is supposed to represent the TPE. The target trait
is estimated only once, at harvest, and no dynamical information is
available for the target trait. We have measurements with phenotyping
tools in one or more trials of the MET as well as on possible pheno-
typing platforms. With respect to secondary phenotyping, we may want
to compare different technologies as well as sampling and measurement
schemes.

For statistical G2P models, and ignoring the time dependency of the
focus or target trait, we can think of observations for genotype i in
environment j,yij

f , and we want to predict yield from genetic and en-
vironmental information, as well as from secondary phenotyping in-
formation:

= +x z yy μ G E P ε( ( ), ( ), ( ))ij
f

i j ij
s

ij
f

in which x z yμ G E P( ( ), ( ), ( ))i j ij
s is a function that generates the ex-

pectation for the target phenotype on the basis of three arguments: 1) a
genotype related function, G(.), working on genotype specific genetic
information, which can include marker information (SNPs, sequence
profile), contained in the input vector xi; 2) an environment related
function, E(.), working on environment specific information contained
in the vector zj consisting of summaries for meteorological, soil and
management variables; 3) a phenotype related function P(.) working on
secondary phenotypic information, yij

s, with ∈s S, the set of secondary
phenotypes, in which each phenotype can be genotype specific or, more
often, can depend on a combination of genotype and environment
(Figs. 3–5).

In many statistical-genetic G2P models, the functions G(.) and E(.)
are simply identity functions and a dependence on higher order traits is
absent, while the function x z yμ G E P( ( ), ( ), ( ))i j ij

s is a multiplication of
genotypic and environmental information. For example,

x z yμ G E P( ( ), ( ), ( ))i j ij
s = x zμ G E( ( ), ( ))i j = =μ x z θx z( ; )ji i j, with xi a

count for the number of minor alleles for a marker in a QTL or candi-
date gene (between 0 and 2), and zj an environmental covariable like
the average temperature in a critical developmental stage, and θ is the
QTL allele substitution effect that scales with the environment
[19,21,22,63–65]. Traditional G2P models need to be generalized to
accommodate secondary phenotypic information. Various options will
be discussed in the remainder of this paper.

Traditional statistical models for MET data do not contain dyna-
mical aspects, developmental time is not explicitly present in such
models. In contrast, CGMs have the dynamics of development as the
core of their model formulation. One possible mathematical-statistical
description of a CGM is as follows. Assume we consider yield as the
focus trait, f, for genotype i in environment j at time Tj (harvest time in
environment j, taken to be the same for all genotypes):

F∫= +∈ ∈[ ( ) ( ) ]y x y x zy T t dt ε( ) ( ) ; ( , ( ))ij
f

j
T s S

i
s S

i j ij
f

0

j
P I

In a crop growth model, yield depends on two sets of underlying or
component traits: 1) physiological parameters that are functions of DNA
variation, represented by a SNP vector, xi, that have no environmental and
no time dependence, ∈y x( ( ))s S

iP , with the secondary phenotypes, denoted
by s, belonging to the set SP set of physiological parameters; 2) intermediate

Fig. 5. A response surface and four response curves for yield in maize. (A) The
response surface for a parent of a bi-parental cross obtained from crop growth
simulations using inputs from 20 weather station locations in Illinois for season
2012, with a heritability of 0.85 per location. (B) For the longitude indicated by
the dotted vertical red line in (A) four genotypes are compared for their de-
pendence of yield on latitude; the two parents of a bi-parental cross, plus two
offspring lines showing extreme values for the trait total leaf number (TLN).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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traits with G×E that are SNP, environment and time dependent,
∈y x z t( ( , ( )))s S

i jI with SI the set of intermediate traits. The environment
dependence of the intermediate traits is expressed by a dependence on a
vector of time varying environmental variables, z t( )j . So, the focus trait is
typically evaluated at a single time point at the end of the growing season,
at harvest time, t=Tj, and is a dynamical function F∫ dt[[;]]T

0
j integrating

over time, with as arguments physiological parameters, intermediate traits,
and environmental information. We add an error term εij

f as a simple way
of introducing some stochasticity into the system.

For physiological parameters, SP, think of resource capture (e.g., leaf
angle, root architecture), conversion efficiency (e.g., radiation use ef-
ficiency, water use efficiency) and biomass allocation to yield (e.g.,
harvest index). For environmental variables, think of the amount of
resource (e.g., solar radiation, water, nutrients) and conditions as
temperature and CO2 [3,20,66,67]. The combination of CGMs for yield
with QTL or genomic prediction models for component traits is de-
scribed in multiple papers [53,61,68–74]. The attraction of such G2P
models is that they in theory allow to predict phenotypes for combi-
nations of new genotypes and environments from marker profiles and
environmental characterizations.

In the case of statistical models, for the estimation of parameters, a
loss function can be defined on the discrepancy between observations
on the primary trait for MET data representing the TPE and the pre-
dictions of the G2P model [75]. A loss function puts weights on the
discrepancies ( −y ŷ )ij ij

during the estimation of model parameters. The
choice of loss function determines the estimation and inference proce-
dure including the model building. A well-known loss function is least
squares, where parameters are estimated to minimize −y y( ˆ )ij ij

2. An al-
ternative estimation and inference procedure is based on maximization
of (residual) maximum likelihood [76]. Given a G2P model for a pri-
mary trait and an inference procedure we can investigate to which
extent the insertion of secondary phenotyping information itself or
features extracted from secondary information into the G2P model
leads to a smaller residual variance or higher likelihood.

Another popular way of assessing the quality of secondary pheno-
typing information is by the correlation between observed and pre-
dicted primary trait values, i.e. corr y y( ; ˆ )ij ij

, where this correlation is
often calculated as part of a cross validation process. Utility of pheno-
typing information can then be established by inspecting these corre-
lations for different G2P models. This cross validation approach can be
applied to both statistical and crop growth models.

For CGMs, genotype specific information on a number of physiolo-
gical parameters may be required that can be difficult to obtain.
Phenotyping platforms may then produce direct estimates for such
parameters or approximations to such parameters. In such cases, the
contribution of secondary phenotyping to genetic gain may be less
straightforward to assess. In general, any correlation of secondary
phenotypes to genotype specific inputs for G2P models will contribute
to genetic gain, where higher level phenotypes will be more useful than
lower level phenotypes because they are closer to the target trait, their
phenotypic distance to the target trait is smaller [77]. Just like any
correlation of secondary traits with G2P inputs will be useful, so will
QTLs that are shared between secondary traits and G2P inputs.

In the remainder of this paper, with respect to G2P models to consider,
we will focus on linear mixed models (LMMs) and crop growth models
(CGMs), although we will also address Bayesian approaches. We will de-
scribe G2P models for a primary trait like yield and illustrate how these
models help in assessing the usefulness of phenotyping strategies.

3. Statistical G2P models

3.1. A correlated response framework connecting measurements on plant
platforms and field observations

Consider the simple case that a secondary trait is measured on a

precision or whole-plant platform, ys, to serve as an estimate for a si-
milar and/or related trait in the field, y f . For example, consider a
higher order trait such as a genotype specific physiological parameter
that expresses the sensitivity to a certain environmental condition or
factor and that we can estimate earlier, easier, more precisely or more
cheaply under controlled conditions. We want to use the platform es-
timate to predict a similar and/or related environmental sensitivity for
fields belonging to the TPE, where the TPE can be represented by a
series of experiments belonging to a MET.

The singularity of the platform and the field trait is a convenient
opportunity to apply classical quantitative genetic theory on correlated
responses as a framework to assess the utility of phenotyping.
Realistically, the single trait on the platform may be a higher order
secondary trait, a function of platform traits like a genotype specific
summary across multiple measuring times or environments, a principal
component calculated from a set of platform traits, or a selection index
calculated to maximize the selection response for a trait in the field/
TPE. The single trait in the TPE can again be a function of a number of
field traits, i.e. a summary statistic like a genotypic mean, a sensitivity
to an environmental gradient, or a selection index calculated from the
experiments in a MET.

Let us assume that the trait as measured on the platform will consist
of an intercept, genetic part and an error part, = + +y μ G εi

s
i
s

i
s

i
s, si-

milarly so for the trait in the field/MET/TPE, = + +y μ G εi
f

i
f

i
f

i
f . We

assume that the TPE is known and the field experiments in the MET
represent a random draw from the TPE, so experiments are exchange-
able and G×E is a source of error variation, and no repeatable inter-
actions can be identified. For the latter case, a regression approach is
more suitable than a correlation approach.

We may want to select genotypes on superior performances in the
platform response, anticipating that the correlated selection response
for the field trait will be larger than when selecting directly on the field
response itself. Using indirect selection response theory we can say that
this approach makes sense when the genetic correlation between plat-
form and field, ρ s f( , ) is high, i.e., the same genetic basis is involved, and
the heritability on the platform, = = +h s V

V
V

V V
2, Gs

ys
Gs

Gs εs
, is higher than the

heritability in the field, = +h f V

V V
2, G f

G f ε f
. More precisely, when the con-

dition is fulfilled that >ρ h hs f s f2,( , ) 2, 2, it makes sense to select on the
platform representation of the trait in place of the field trait itself. The
heritability at the platform may be higher because the conditions at the
platform can be better controlled or more replicates can be taken, hence
the error variance, Vεs, is smaller than the error variance in the field,
V ε f . Additionally, the genetic variance at the platform, VGs, can be in-
creased by choosing environmental conditions that are more strongly
discriminating between genotypes and it is larger than the genetic
variance in the field,V G f . The genetic correlation between platform and
field depends on the extent to which the conditions in the field induce
the same genes or QTLs to be expressed as on the platform, where the
sign of the QTL effects should coincide and the magnitude of the effects
should be proportional between platform and field.

For a full evaluation of correlated responses versus direct responses,
economic considerations for measurements on platforms and fields
should be included as well [160]. In that case, a selection index with
economic weights is recommended. For example, economic weighting
coefficients were included for the combination of several primary traits
for sugar cane (biomass yield, sugar and fibre content) [78,79]. The
index can also consider traits (e.g. physiological measurements) that do
not have a direct economic impact, but correlate with economically
important traits. In sugarcane for example, it was found that across
diverse genotypes, the secondary phenotype mid-season plant stomatal
conductance was highly correlated with total biomass yield, and this
trait could be used as a proxy during the earlier stages of selection when
genotype numbers are high, and plots are small, such that biomass yield
per se is not reliable [80]. (Although the secondary trait is here not
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measured on a platform but in the field, the logic of correlated response
remains valid.)

When multiple measurements of the same trait under different en-
vironmental conditions are taken on the platform and the field, the
framework can be extended to include G×E in either or both of
platform and field [161]. For that situation, the expressions for the
heritabilities and the genetic correlation need to be modified. If we
assume that repeated platform and field experiments can be interpreted
as coming from a specific distribution of platforms, respectively, field
experiments, then the error variances for platform and field in the ex-
pressions above should be replaced by +V

n
V

n n
GEs

es
εs

es r s
, with VGEs the

genotype by experiment interaction (G×E) variance for repeated ex-
periments at the platform, nes the number of experiments at the plat-
form, Vεs is now the intra block variance for the platform (assuming a
randomized complete blocks design was used), and nr s the number of
replicates per platform experiment. Similar quantities can be defined
for the field. Depending on the magnitude of the genotype by experi-
ment interactions and the intra block errors, one can balance the
number of experiments and replicates per experiment to find an effi-
cient allocation of resources in which the platform heritability reaches a
certain desired value. Whether this number of experiments and re-
plicates is feasible will depend on additional information known to the
breeder, where economic arguments will play an important role.

The size of the error variance is thus largely under control of the
breeder. This is to a lesser extent the case for the value of the genetic
variance and the correlation between platform and field. The magni-
tude of these genetic parameters will depend on the timing of mea-
surement and the method of measurement on platform and field as well
as on the environmental conditions up to the measurements [81].

3.2. Illustrative examples of a correlated response framework for high
precision and whole-plant platforms to predict phenotypes in the field

Grain yield in maize depends on the ability of leaves and silks to
maintain growth under fluctuating environmental conditions, espe-
cially under drought. Characterizing growth of leaves and silks under a
range of environmental conditions in the field is a difficult task.
Platforms have the advantages of facilitating more frequent and de-
tailed measurements and also offer larger possibilities of controlling the
environmental conditions than field experiments. For that reason, they
are an interesting alternative to characterize relevant traits for drought
adaptation in maize. For example, platform phenotypes have been used
to estimate leaf elongation rate per unit of thermal time and the slope of
leaf elongation to evaporative demand and soil water status [52]. QTLs
of maximum leaf elongation rate on the platform co-located with QTLs
of the anthesis-silking interval in well-watered fields, with alleles con-
ferring high leaf elongation rate conferring a low anthesis-silking in-
terval. The QTLs of the response of leaf elongation rate to water deficit
at the platform co-located with QTLs of anthesis-silking interval in
water deficit fields. For these QTLs, the allele conferring a larger an-
thesis-silking interval in the field (hence a reduced silk elongation rate)
was also the one leading to a smaller leaf elongation rate on the plat-
form. This suggested that common genetic mechanisms are shared be-
tween the growth of reproductive organs in the field and leaf growth on
the platform. These conclusions were further supported by a metaQTL
analysis in which QTLs for maximum leaf elongation rate on the plat-
form co-located with QTLs involved in the growth of shoots, roots, but
also reproductive organs in controlled conditions and fields [82,83].
Further, the sensitivity of leaf growth to soil water deficit at the phe-
notyping platform was related to the sensitivity of maize grain number
to soil water deficit around flowering time in the field [84]. A more
detailed characterization of the sensitivity of leaf growth to environ-
mental conditions was demonstrated and a model to predict leaf area in
the field, as a function of leaf length and width and their respective
sensitivities to intercepted light and evaporative demand was proposed

[57]. Platform and field data were used to calculate the genotypic
sensitivity of leaf elongation to evaporative demand and of leaf width to
intercepted radiation, respectively. The advantage of combining plat-
form and field data is that the platform allowed a larger temporal re-
solution in the phenotypic and environmental measurements (leaf
elongation rate, air temperature, air humidity and leaf temperature
were measured every 15min) and it also allowed to impose more
specific levels of water limitation (and soil water potential higher than
−0.05MPa via automatic irrigation). The response of leaf elongation
rate (leaf 6) to leaf-to-air vapour pressure deficit was estimated by using
data at the time step of 15min during daily peaks of vapour pressure
deficit. The model for the sensitivities of leaf elongation to evaporative
demand and of leaf width to intercepted radiation were tested in an
external data set, a network of 15 field experiments. The model to
predict leaf length and width resulted in an accurate prediction of in-
dividual leaf area in the whole field dataset (R2= 0.62). QTL allelic
effects underlying leaf width and length were smaller in the platform
than in the field, but they were clearly correlated between platform and
field experiments. Thus, although there was G×E between platform
and field experiments, the correlated QTL effects would still allow to
use platform data to improve selection for leaf area in field conditions
[57].

Another example of the use of indirect selection for field conditions
based on traits measured in controlled conditions is the following: nine
early vigour characteristics of wheat F2:4 plants grown in trays were
evaluated to improve biomass production in the field for F2:6 plants
[85]. Tray performance was a good predictor of field performance for
leaf breadth and length, leaf area, and plant biomass. Genetic correla-
tion between a trait measured on the trays and in the field was highest
for early biomass (r= 0.61), suggesting that early biomass measured on
the trays was a good predictor for early biomass in the field. Other traits
measured on the trays that showed a moderate to high genetic corre-
lation with field biomass were plant leaf area (r= 0.59), length of leaf 2
(r= 0.43), length of leaf 3 (r= 0.41) and mean leaf breadth (r= 0.40).
The most promising for indirect selection were mean leaf breadth and
breadth of leaf 2, with a relative gain from indirect selection that was
61 and 60% of the gain to be obtained from directly selecting for bio-
mass in the field. Although plant leaf area on the tray showed a larger
genetic correlation with field biomass than mean leaf breadth and
breadth of leaf 2, it had a lower heritability ( =H 0.30plant leaf area

2 ,
=H 0.82mean leaf breadth

2 , and =H 0.76breadth leaf 2
2 ) reducing its potential to

be used for indirect selection (relative gain from indirect selection for
leaf area on the tray was 55%). This example illustrates the importance
of jointly considering the magnitude of genetic correlations between
traits measured on the platforms and those in the field and trait herit-
ability to assess the potential of traits to aid selection for early biomass
in the field. One aspect that would need to be further assessed in this
study [85] is whether selection for early biomass is indeed correlated to
yield at the end of the growing season. Only if the correlation between
early biomass and yield is reasonably large, it would be advantageous
to use early biomass measured in the trays as early selection trait. In the
previous example, all phenotyping was done by hand, which is a time-
consuming process. However, thanks to imaging technologies, the ap-
proach could be scaled up to a breeding programme. For example, the
dynamics of early growth for individual plants grown in greenhouse
trays could be characterized with multi-view images [86]. Examples
presented above are summarized in Table 2.

3.3. A multi-trait prediction framework for yield using high throughput
phenotyping information

HTP devices in the forms of sensors, drones, and unmanned aerial
vehicles generate high dimensional secondary phenotypic data for ex-
periments that are part of METs representing the TPE. The HTP in-
formation is used to approximate yield related traits and components
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over the growing season. The HTP information is introduced in the form
of additional traits alongside yield in multi-trait G2P models.

A multi-trait mixed model for genotype i and trait k can be defined
as follows = + +y μ G εi

k
i
k

i
k

i
k, with μi

k the fixed intercept for trait k,
and Gi

k the random trait-specific genetic effect for genotype i and trait
k, while εi

k is a residual. The random genetic effects Gi
k will have a

multivariate normal matrix distribution with mean zero and variance-
covariance matrix (VCOV) Σ : ∼ ΣG MVN 0{ } ( , )i

k [159]. The VCOV for
the genetic effects, Σ , has a special structure that can be interpreted as a
product of a VCOV defined on the genotypes, ΣG, where pedigree and/
or marker information determine correlations between genotypes, and
another VCOV defining the genetic variances and correlations between
traits, ΣT , where each trait has its unique genetic variance and each pair
of traits has its unique genetic correlation. The above multi-trait model
is customarily turned into a genomic prediction model by defining the
matrix ΣG in terms of similarities between marker profiles of genotypes
[87].

The multi-trait model above can be generalized to multiple en-
vironments: = + +y μ G εij

k
ij
k

ij
k

ij
k with intercept μij

k and a random genetic

effectGij
k and a residual εij

k. The VCOV for the genetic effects has a multi-
variate normal distribution with zero mean and will have to represent
the trait by environment variances and correlations. In the context of
genomic prediction models for multi-environment data with G×E,
VCOV structures for the environments have been described [88,89].
The VCOV for environments can be based on similarity in environ-
mental characterization between environments, a generalization of the
fixed factorial regression models, see next section, like in [89,90] and
[91]. For the simultaneous modelling of VCOV structures for genotypes,
environments and traits, see [92].

For the identification of multi-trait and multi-environment mixed
models one can use log-likelihood ratio tests to compare different VCOV
structures for Gi

k or Gij
k (see [93]) where the differences relate to how to

combine pedigree and marker information for the genotypes in ΣG

[94–96], which traits to include alongside yield in ΣT , and how to ef-
ficiently represent the relations between environments in a VCOV for
environments, ΣE , and/or which environmental characterizations to
use to calculate environmental correlations [89]. To test the utility of
secondary phenotyping information, log-likelihood ratio tests can
compare the fit of multi-trait models with differing sets of secondary
traits. See also [97]. If these tests cannot be applied, because the VCOV
models are not nested, then information criteria like AIC or BIC may be
used [98,99]. Of course, models can also look at the predictive ability of

models with different sets of secondary phenotypes.
The most common multi-trait prediction scenario considers yield

and basic phenotypes measured simultaneously at the end of the
growing season (e.g. [100,101]). A second (and less explored) scenario
combines information from yield measured at harvest with low level
phenotypes measured over multiple time points during the growing
season, or with higher order traits that summarize the response of low
level traits over time. Incorporating the genotype specific responses
during the growing season into a prediction model provides a better
insight in the traits underlying adaptation to particular growing con-
ditions [8,72,102].

3.4. Illustrative examples of multi-trait prediction to incorporate high
precision and whole-plant platforms

One example for multi-trait prediction is the use of aerial mea-
surements of canopy temperature, and green and red NDVI as sec-
ondary phenotypes to increase accuracy for grain yield in wheat [30].
In [30], single trait predictions were compared with multi-trait pre-
dictions across environments differing for the level of drought and
temperature stress. In this example, prediction accuracy for yield in-
creased by 70%, averaged across environments. The benefit from
modelling multiple traits simultaneously was similar for all environ-
mental conditions.

An important issue to be considered when doing multi-trait pre-
diction in multiple environments is to which extent those secondary
phenotypes are related to phenology. Correcting for days to heading
improved single-trait prediction accuracies across environments, sug-
gesting that the G×E variance for grain yield corrected for days to
heading is lower than that of uncorrected grain yield [30]. For both
within- and across-environment prediction, correcting for days to
heading reduced the genetic correlations between grain yield and the
secondary traits, which in turn reduced the accuracy gained from in-
cluding secondary trait data. A strategy to take full advantage of sec-
ondary trait data while avoiding indirect selection on a phenological
trait may be to include data on the phenological trait in a multivariate
prediction model alongside with any available secondary traits, and
then use the multivariate BLUPs to calculate a selection index with
yield and the phenological trait weighted appropriately [30].

Table 2
Examples of correlated response framework for high precision and whole-plant platforms to predict phenotypes in the field.

Platform Link Field Ref

QTLs of maximum leaf elongation rate Co-location QTLs of anthesis-silking interval in well watered fields [52]
QTLs of response of leaf elongation rate to water deficiency Co-location QTLs of anthesis-silking interval in water deficient

fields
Conclusion: growth of reproductive organs in the field and leaf growth on platform share genetic basis

QTLs for maximum leaf elongation rate Co-location QTLs involved in the growth of shoots, roots,
reproductive organs

[82,83]

Sensitivity of maize leaf growth to soil water deficit Correlation Sensitivity of maize grain number to soil water deficit
around flowering time

[84]

Genotypic sensitivity of leaf elongation to evaporative demand and of
leaf width to intercepted radiation

Predictive model with genotype-specific
parameters

Predict individual leaf area in a network of field trials. [57]

Allelic effects underlying leaf width and length Correlation Allelic effects underlying leaf width and length
Conclusion: although there was GxE between platform and field experiments, correlation of QTL effects allows the use of platform data for improving leaf area in field

conditions

Biomass, plant leaf area, length of leaf 2 and 3, leaf breadth Correlation and indirect selection Biomass [85]
Conclusion: genetic correlation between a platform and field trait needs to be considered together with the heritability for those traits to arrive at a valid assessment of

the potential for selection on a platform for field conditions (early biomass)
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3.5. Factorial regression incorporating platform traits for prediction of yield
in the field

In a factorial regression approach that uses platform data to predict field
performance, we have to assume, for statistical reasons, that platform traits
are measured without error, which in practice means little error, and can
therefore be used as genotypic covariables in factorial regression models to
predict yield in the field. Typically on a platform, a set of genotypes is
measured and the secondary phenotypes become genotype specific covari-
ables. However, by a smart use of platforms to measure development-re-
lated traits, it is also possible to define genotype and environment specific
covariables (see example below). The prediction models can be of different
classes. Simplest are regression models in which either genotype or geno-
type by environment specific covariables are introduced to predict a target
trait. The complexity of the factorial regression model depends on the
number and type of genotypic and environmental covariables that are in-
cluded in the fixed part of the model and the assumptions that are made
with respect to the structuring of the random residual.

A simple statistical model for the value of a primary field trait (yield)
for genotype i in environment j is: = + + +y μ g ge εij

f
j
f

i
f

ij
f

ij
f , with μj

f a

fixed environmental intercept, gi
f a fixed genetic main effect, geij

f
fixed

G×E, and εij
f a random residual, which can be structured in various

ways. To start, for the G×E term, the purpose will be to identify
genotypic covariables that can be combined with environmental covari-
ables and leave a proportionality constant to be estimated,

= ∑ +∈ ∈ xge θ y z δ( )ij
f

c C d D cd i c
s

jd
e

ij
f

, , with xy ( )i c
s a genotype specific pre-

dictor measured at the phenotyping platform with a genetic basis con-
tained in xi, zjd

e an environmental characterization, and θcd a scaling
constant for the product xy z( )i c

s
jd
e that requires estimation. Lastly, δij

f re-
presents a lack of fit term. The full sets of genotypic and environmental
covariables are denoted by C and D, respectively. Although the genotype
specific platform traits can be related to their genetic basis by fitting a
QTL or genomic prediction model this extra step of modelling is optional
in that the field trait can be predicted directly from the platform traits at
the phenotypic level as well as from their predictions from a genetic
model. The use of a genetic model for the platform traits allows extending
the selection set of genotypes by predicting platform trait values for non-
phenotyped genotypes (at the platform). The genotypic and environ-
mental covariables can include quadratic and cross product terms as well
to allow the fitting of response surfaces. Another useful generalization is
to allow the covariables to be expressed with respect to a spline basis.

The approximation of the field response G×E model term by
products of platform genotypic covariables and field environmental
characterization covariables can equally be applied to the total of
genotype dependent terms as follows:

+gi
f = ∑ +∈ ∈ xge θ y z δ( )ij

f
c C d D cd i c

s
jd
e

ij
f

, .
For the fitting of predictive models of the above types, linear mixed

models, penalized regressions and Bayesian approaches are required
that allow for the modelling of the residual terms δij

f and εij
f with gen-

eral variance-covariance structures allowing for kinship relationships
between genotypes and heterogeneity of variance and correlation for
environments. An important problem is the selection of predictive
genotypic and environmental covariables in variable selection proce-
dures. For penalized regression the choice of penalties requires atten-
tion, which translates to the choice of priors in the Bayesian context.
The complicating issue is the simultaneous selection or penalization of
information in the genotypic and environmental direction.

Selection of predictive environmental covariables becomes even more
difficult - yet even more vital - when considering high-frequency data
obtained from sensors. Weather stations and soil moisture probes report
environmental conditions throughout the growing season, on a daily,
hourly, or even more frequent basis. These characterizations potentially
can be incorporated as environmental covariables after variable selection
or as principal components after dimensionality reduction, but then the
G×E interactions at any given time point of observation will be lost.

3.6. Illustrative examples of factorial regression incorporating platform
information

To build factorial regression models for prediction of yield in the
TPE, a platform may be used to estimate genotype specific phenologies.
Subsequently, for individual genotypes the time spent in different
phenological stages can be calculated. The next step is to calculate
summary statistics for environmental variables like minimum, max-
imum and average temperature, rainfall, radiation, and further vari-
ables for each genotype in each developmental stage. The assigned
value for an environmental covariable in environment j for a genotype i
in a particular growth stage depends on the beginning and end time of
that growth stage for that genotype in that environment. Therefore, the
covariable should be indexed by genotype, i, and environment, j, as well
as the covariable itself, d: zijd. G×E can be modelled in terms of such
genotype specific environmental covariables as = ∑ ∈ xge β z( )ij d D i d ijd,
with the genotypic sensitivities, xβ ( )i d, being a (possible) function of a
SNP profile. In maize, the progression of phenological stages closely
follows thermal time, with a nearly constant leaf appearance rate [102].
Thermal time based on meristem temperature can be used to calculate
leaf stages at the platform and in the field, provided that the leaf
emission rates are the same. Leaf stages correspond to developmental
stages of the ear [103] and can be used to define phenological periods.
So, measuring leaf appearance on the platform allows to define the
length of phenological stages in the field and to calculate the environ-
mental conditions working at a particular genotype in a field experi-
ment. In that way, environmental covariables can be calculated that are
genotype and environment specific. With respect to those covariables,
genotypic sensitivities are estimated. For the maize panel, three en-
vironmental covariables could be identified that explained a substantial
part of the G×E [19]. These sensitivities could successfully be pre-
dicted from marker profiles in a genomic prediction. Therefore, the
G×E in this example could be predicted from marker data and en-
vironmental covariables by using a factorial regression model. The
platform served to estimate the length of genotype specific phenological
stages and environmental characterizations.

3.7. Structural equations and network models

Structural equation models (SEMs) are an alternative class of sta-
tistical models describing the relations between primary traits and
secondary traits [104]. In their simplest form, SEMs describe functional
relations among traits in a single environment and at a single time
point. The response for genotype i and trait k is then modelled as

= + ∑ +∈y μ λ y εi
k k

v pa k v
k

i
v

i
k

( ) , where μk is a trait specific intercept,
pa v( ) is the set of parents of trait k (i.e. the traits affecting trait k), and
the λv

k ’s are path coefficients, describing the strength of the relations.
In the classical SEM literature [105], the functional relations are linear
and the errors Normal, but generalizations are possible [106]. See e.g.
[107] for a non-linear example in rice. SEMs are conceptually similar to
factorial regression and crop growth models (in the sense that a primary
trait is modelled in terms of component traits), but are more suitable for
modelling additional levels of biological variation: the components can
in turn depend on metabolites, methylation, proteins, gene expression,
etc. The main advantage of structural models over regression models is
the ability to predict the behaviour of the system after an intervention
(i.e. selection decision), which mathematically is defined as a change in
one or several of the structural equations. This property makes SEMs a
tool for ideoptype design, helping breeders to define a selection
strategy.

While SEMs rely on functional relations specified beforehand,
methods for causal inference aim to learn relations between traits from
observational data, which is of particular interest for traits that are only
partially understood [108]. The earliest causal inference methods such
as the PC-algorithm learn relations by estimating and comparing all the
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relevant conditional (in)dependencies between variables [109]. Under
certain assumptions (notably the absence of feedback loops and latent
variables) this gives the partially directed graph that is most consistent
with the data.

In the context of G2P models, causal inference methods have been
used to model relations between traits at several biological levels and
QTLs [110–117], or between random genetic effects [118,119]. Several
causal inference methods have also been used to estimate causal effects
among yeast traits, outperforming regression approaches [120,121].

More recent causal inference approaches rely on invariance or time-
course data [122,123]. Although longitudinal networks have shown
promise in other fields [124], their value has not yet been assessed in
the context of plant breeding, making them worthwhile for exploration
in future research. Another important open question is the extension to
structural models for multiple environments. Variation in genetic cor-
relations between traits across environmental conditions is an im-
portant form of G×E [92,125,126]. Network models could make such
changes visible in a biologically meaningful way.

4. Crop growth models as G2P models

4.1. A crop growth modelling framework aiming at prediction

The G2P models in Section 3 are all static, the time dimension
proper to growth and development can only be incorporated in a lim-
ited and somewhat artificial way. Crop growth models (CGMs) present
a class of G2P models that integrate genetic and environmental vari-
ables in a natural way over time [53,61,127,128]. This solves several
problems. First, the need for dimensionality reduction or variable se-
lection of environmental covariables is eliminated. Second, the inter-
action of the crop with the environment across time is automatically
accounted for. This essentially eliminates the need to correct for flow-
ering time, as phenology is incorporated into the model. Finally, it takes
advantage of previously determined biological interactions and ob-
servations of plant growth and development to estimate the target (such
as yield) from a set of higher order traits [129]. The higher order traits
used to parameterize the CGM for the target trait may exhibit higher
heritability and stability across environments than the target trait itself,
and therefore selection on those secondary traits may be more efficient
than selection on the target trait itself, as long as the physiological
processes are properly modelled [129].

In Section 2.7, we described a CGM for a target trait f for genotype i
in environment j as follows

F∫= +∈ ∈y x y x zy T t dt ε( ) [ ( ( )); ( ( , ( )))]ij
f

j
T s S

i
s S

i j ij
f

0

j
P I

The target trait, yield, depends on physiological parameters without
environment and time dependence, ∈y x( ( ))s S

iP , and intermediate traits
with G×E that are environment and time dependent, ∈y x z t( ( , ( )))s S

i jI .
The time varying environmental covariables, z t( )j determine the en-
vironment dependence of the intermediate traits. The secondary traits
are functions of SNP variation via the argument xi, the SNP profile. The
target trait is evaluated at the end of the growing season, for t = Tj. The
dynamical function F∫ dt[[;]]T

0
j integrates physiological and inter-

mediate traits over time,
For most commonly used models, the time dimension is expressed at

a daily time step, although hourly time steps have been recently pro-
posed for sugar cane [130] and potato [131]. Therefore, most CGMs are
not continuous time but discrete time models. Models combining pro-
cesses occurring at different times scales and with facilities for feedback
loops between physiological parameters and intermediate traits can
generate reproducible emergent properties at plant level [12,55].

For the estimation of parameters in CGMs, Bayesian approaches are
attractive [132,133]. Bayesian approaches have powerful capability to
optimize multiple parameters in a nonlinear and complex model and to
quantify the uncertainty in estimated parameters and predictions. Good

demonstrations of Bayesian approaches in the integration of CGMs and
genomic prediction models are [61,134,135]. The Bayesian framework
enables information sharing between genotypes, which can contribute
to the improvement of prediction accuracy. Moreover, the integration
may enable the dissection of a target trait that has a nonlinear re-
lationship to genome-wide markers into component traits which are
controlled in a purely linear way [61]. Another advantage of Bayesian
approaches is the possibility to use expert knowledge of breeders and/
or historical experimental data as prior information.

Modelling can also be useful to evaluate the design of phenotyping
strategies and the efficiency of resource allocation. Key design issues
concern the number and type of environments to include in METs and
the number and type of genotypes and traits that can be phenotyped.
Other relevant design issues are how to choose the selection intensity
on individual traits to arrive at the realisation of an ideotype, and how
frequent and how precise phenotyping methods needs to be to increase
prediction accuracy.

4.2. Construction of a training set of environments

When G×E is present in the TPE, the choice of which environments
to use for phenotyping becomes crucial to obtain high prediction ac-
curacies, as the environments used for training should represent well
the environmental conditions in which future varieties will be grown
[91]. The structure of G×E has a large influence on whether it is
convenient to obtain field phenotyping information from METs (relying
on the natural year-to-year variation to represent the range of en-
vironmental conditions relevant to the TPE), or whether it is necessary
to use managed stress environments to ensure that all relevant levels of
environmental variation are covered. The choice for one or the other
strategy will depend on how well locations in an average year represent
the whole range of environmental conditions and on the estimated year-
to-year variation [8,136,137].

Crop growth models offer a valuable tool to characterize the G×E
structure and to separate repeatable from non-repeatable G×E com-
ponents. For example, the crop growth model APSIM was used to
classify environments according to their water-deficit patterns [138]
and to give an impression of the repeatability of a given water-deficit
pattern at a given location, across years. The APSIM model has also
been used to define the drought patterns of maize in Europe [139].
These results were used to develop a detailed QTL model with en-
vironment dependent QTL expression. Combining the drought patterns
with temperature variation resulted into six different environmental
scenarios that were introduced as a classifying factor in a multi-en-
vironment QTL model [19]. Such an approach allows to identify the
most likely water-stress scenario in a particular location and the QTL-
alleles that should be selected. The CGM output can also be used to
develop statistical criteria to optimize METs to increase prediction ac-
curacy for the target trait [140] or to characterize genotype-by-en-
vironment-by-management interactions, helping breeders, physiolo-
gists and agronomists to better understand the drivers of genotype
adaptation [129,141].

4.3. Construction of a training set of genotypes

The parametrization of statistical and crop growth models requires
intensive phenotyping efforts. In place of measuring expensive phy-
siological traits on all genotypes of a selection set, one can try to esti-
mate these parameters on a reduced training set of genotypes and then
predict the parameters for the total of the selection set of genotypes by
QTL or genomic prediction models. For the construction of a training
set of genotypes that well represent the selection set, a diversity ana-
lysis based on molecular markers is useful. See [142–144] for examples
of strategies to select genotypes for the training set. Alternatively, and
relying only on phenotypic data, principal components analysis of
morpho-physiological traits can be used to identify an appropriate
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training set for estimating growth model parameters. For an example in
sweet potato germplasm and utilisation of radiation, see [145].

4.4. Ideotype construction and identification of selection targets

Once the major environment types encountered in the TPE are
identified and characterized, it is appropriate to identify which traits
are more likely to improve adaptation to a specific environment. Traits
differ in their influence on grain yield and this influence might change
from one environment type to the next. CGMs offer the opportunity to
evaluate the effect of explicitly breeding to modify specific traits un-
derlying yield, allowing breeders to design an ideotype that is best
adapted to each environment type [77,129,141]. Most of the suitable
CGMs are structural models, considering the resource capture and al-
location, without taking into account the spatial arrangement and
geometry of each plant organ. There is another class of models (the
functional-structural plant models, FSPM), which incorporate the 3-D
spatial arrangement of plant organs by explicitly modelling plant ar-
chitecture [146–150].

The mechanistic model GECROS has been used to evaluate the im-
pact of increased photosynthesis on rice biomass production [151]. The
GECROS model considers the relationships between traits at different
levels of organization over time, enabling to upscale from a basic pro-
cess as photosynthesis to its effects at a whole crop level. A similar CGM
aiming to scale up from photosynthesis to canopy level is the Diurnal
Canopy Photosynthesis Simulator (DCaPS), implemented as a web-ap-
plication [152]. The DCaPS package allows to assess likely canopy-level
consequences of changes in photosynthetic properties, connecting
photosynthesis with crop growth and development.

Virtual phenotyping using a functional-structural plant modelling
approach can help to support the decision cycle of plant performance
analysis by integrating different traits into a spatial-temporal whole
plant simulation [146–150]. For example, an optimization procedure
was applied to the functional–structural plant model MAppleT to
evaluate which parameter combinations would allow to identify the
trait combinations leading to the optimal phenotypes for the target trait
[153].

4.5. Evaluating the impact of phenotyping schedule on prediction accuracy

The approach to characterize G× E using CGM [138,154,155]
can be extended by combining the APSIM model with knowledge
from quantitative genetics, simulating an explicit genetic basis for
the APSIM parameters that are segregating in the population [156].
Such an approach would simulate trait dynamics across environ-
ments, characterizing G× E patterns and the change of trait corre-
lations over time. For example, a wheat diversity panel segregating
for 12 parameters of APSIM-wheat over 84 environments in the
Australian wheat belt was simulated [156] (a subset of the en-
vironments shown in [138,157]). The output of these simulations
allowed to evaluate the potential of biomass measured during the
growing season to improve yield predictions with a multi-trait
genomic prediction model. A further opportunity offered by the
combination of statistical genetic models and CGMs is the evaluation
of the impact of phenotyping frequency and the size of measurement
error on trait heritability and prediction accuracy for the target trait.
In such a way, an approach that combines CGMs like APSIM-wheat
with a quantitative genetic basis potentially allows to evaluate
phenotyping and selection strategies across environments.

5. Challenges ahead

This paper has discussed a number of G2P modelling approaches to
take into consideration the different sources of phenotypic information
and their underlying G×E structure. Unfortunately, the fast im-
plementation of phenotyping technologies has not necessarily been

accompanied by a proportional implementation of facilities for data
storage and data interoperability. In the same manner, protocols for the
design of experiments specifically in phenotyping platforms are not yet
applied satisfactorily everywhere. In this regard, European initiatives as
EMPHASIS (https://www.plant-phenotyping.org/Data_Policy) and
EPPN2020 (https://eppn2020.plant-phenotyping.eu/) will play a central
role in the successful implementation and dissemination of phenotyping
technologies into breeding programmes by standardizing the pheno-
typing designs, phenotyping/envirotyping protocols and data storage.

Throughout this paper, we have discussed a number of G2P models
that can be used to predict phenotypes across environments and will
help to obtain a larger response to selection. Although the central role
of G2P models for genetic gain is not under discussion, little will be
gained from these models, without their implementation in an effective
pipeline that facilitates the integration of data pre-processing, predic-
tion and decision support tools [158]. This aspect of an effective im-
plementation of G2P models is still at an early stage, but its develop-
ment promises to play a central role in the years to come.

6. Concluding remarks

• Additional phenotyping can be done at growth chambers, platforms,
managed environment trials or a sample of (field) multi-environ-
ment trials.

• Genotype-to-phenotype modelling (G2P) plays a central role in en-
abling breeders to combine the different sources of phenotypic and
genotypic information and assisting them in the design of pheno-
typing strategies.

• Modelling steps involve image pre-processing, correcting for spatial
trends within each trial (low level traits), dynamical modelling of
genotypic responses within environments against time thereby
producing intermediate order traits, modelling dynamics parameters
in their dependence on environmental gradients and calculate sen-
sitivities (higher order traits), and combining the information of
multiple higher order traits with environmental data to predict the
target trait.

• G2P models for the target trait from underlying component traits
involve statistical models like multi-trait models, factorial regres-
sion models, and crop growth models.

• Design issues that can be addressed with G2P models involve the
decision of which environments and genotypes to use for pheno-
typing, which traits to prioritize in which environment type (ideo-
type design) and what kind of phenotyping schedule to use in terms
of measurement frequency and precision to increase prediction ac-
curacy for the target trait.
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