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Abstract 

 
The aim of this research was to develop and to test different procedures that integrate estimates of single 

nucleotide polymorphism (SNP) effects and associated measures of precision from a foreign SNP Best 

Linear Unbiased Prediction (SNPBLUP), into a domestic SNPBLUP when exchange of genotypes or 

phenotypes is prohibited for whatever reason. In addition to the foreign estimates of SNP effects, 

procedures were developed assuming the availability of associated: 1) prediction error (co)variance 

(PEC) matrix; 2) PEC matrix separately for each chromosome; 3) prediction error variances (PEV) only; 

4) PEV, allele frequencies, and linkage disequilibrium (LD) of foreign training set; and 5) as 4) but with 

LD measured on foreign selection candidates. We tested these approaches with a simulation of two 

historically related populations for a single trait. We confirmed that integrating foreign estimates of SNP 

effects and the associated PEC matrix led to the same direct genomic values for selection candidates as 

the joint SNPBLUP using datasets from both populations. Integrating foreign estimates and PEV only 

led to biased and inaccurate predictions. Procedures based on partial PEC matrices or on LD information 

gave almost as accurate and unbiased predictions as the joint SNPBLUP. Therefore, accurate integration 

of foreign estimates of SNP effects into a domestic SNPBLUP seems possible, even if only PEV and 

some population statistics are available. 
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Introduction 
 

Exchange of genetic material among national 

populations implies comparison of genetic 

evaluations across populations and ultimately 

combination of these evaluations for animals of 

interest. In dairy cattle, these needs were 

(partly) solved with the implementation of a 

multiple across-country evaluation (MACE; 

Schaeffer (1994)) and of a genomic MACE 

(GMACE; VanRaden and Sullivan (2010)). The 

MACE and GMACE combine animal-based 

pseudo-data of sires obtained from national 

genetic and genomic evaluations, respectively. 

Pseudo-data is usually derived from (genomic) 

estimated breeding values ((G)EBV) and 

associated measures of precision (e.g., 

reliability). 

 

Increasing size of genotype datasets and 

exchange of genomic information among 

national evaluations generate several issues, 

such as expensive computations of inverted 

genomic relationship matrices (Fernando et al., 

2016) and violation of underlying assumptions 

of (G)MACE (Liu and Goddard, 2018). 

Possible solutions for these issues could come 

from single nucleotide polymorphism (SNP)-

based models, instead of conventional animal-

based (genomic) models. Therefore, feasibility 

of single-step SNPBLUP (e.g., Fernando et al., 

2016) and of SNP-MACE (Liu and Goddard, 

2018) are currently investigated. Their 

implementations could lead to exchange of 

estimates of SNP effects, in addition to (or 

instead of) GEBV, while exchange of genotypes 

and phenotypes is prohibited for various 

reasons. Therefore, the aim of this research was 

to develop and to test different procedures that 

integrate estimates of SNP effects and 

associated measures of precision from a foreign 

SNPBLUP into a domestic SNPBLUP. 

 

 

Materials and Methods 
 

For deriving procedures that integrate foreign 

estimates of SNP effects into a domestic 
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SNPBLUP, we assume that we have a domestic 

(d) and a foreign (f) dataset, both with animals 

phenotyped and genotyped at the same loci. The 

first part of this section describes (1) domestic 

and foreign SNPBLUP, (2) a joint SNPBLUP, 

(3) an exact integration of foreign estimates of 

SNP effects, and (4) three approximate 

integrations. The second part describes 

simulations used to test and validate the 

different integrations. 

 

 

Domestic and foreign SNPBLUP 

 

A standard genomic model for the domestic and 

foreign SNPBLUP is: 

 

 𝐲𝑖 = 𝐗𝑖 𝛃𝑖
∗ + 𝐙𝑖 𝐖𝑖 𝛂𝑖

∗ + 𝐞𝑖
∗,  

 

where 𝐲𝑖  (i = d, f) is a 𝑛𝑜𝑏𝑠,𝑖 × 1 vector of 

phenotypes, 𝛃𝑖
∗ is a 𝑛𝑓,𝑖 × 1 vector of fixed 

effects, 𝛂𝑖
∗ is a 𝑛𝑆𝑁𝑃 × 1 vector of SNP effects, 

and 𝐞𝑖
∗ is the vector 𝑛𝑜𝑏𝑠,𝑖 × 1 of residuals. The 

matrix 𝐗𝑖  is an incidence matrix linking 𝐲𝑖  

with 𝛃𝑖
∗, and the matrix 𝐙𝑖  is an incidence 

matrix linking 𝐲𝑖  with 𝛂𝑖
∗. A 𝑛𝑎𝑛,𝑖 × 𝑛𝑆𝑁𝑃 

matrix 𝐖𝑖  contains SNP genotypes of 𝑛𝑎𝑛,𝑖 

training animals. Without loss of generality, 

SNP genotypes were coded as 0 for 

homozygous aa, 1 for heterozygous aA or Aa, 

and 2 for homozygous AA (Strandén and 

Christensen, 2011). We assume a multivariate 

normal prior distribution for SNP effects with 

mean zero and covariance 𝐈𝜎𝛼𝑖
2 , 

𝛂𝑖
∗~𝑴𝑽𝑵(𝟎, 𝐈𝜎𝛼𝑖

2 ), where 𝐈 is an identity 

matrix, and 𝜎𝛼𝑖
2  is the variance of SNP effects. 

We also assume that residuals are multivariate 

normally distributed with mean zero and 

covariance 𝐑𝑖𝜎𝑒
2, 𝐞𝑖

∗~𝑴𝑽𝑵(𝟎, 𝐑𝑖 𝜎𝑒
2), where 

𝐑𝑖  is a diagonal matrix, and 𝜎𝑒
2 is the residual 

variance. For simplicity and without loss of 

generality, it is assumed in the following 

development that the residual variances are the 

same for all analyses. Variance components 𝜎𝛼𝑖
2  

and 𝜎𝑒
2 are assumed known, and can be 

previously estimated from the data. 

 

Domestic and foreign estimates of SNP 

effects 𝛂𝑖
∗̂ are obtained by solving the following 

system of equations: 

 

[
𝐗𝑖

′𝐑𝑖
−𝟏𝐗𝑖 𝜎𝑒

−2 𝐗𝑖
′𝐑𝑖

−𝟏𝐙𝑖 𝐖𝑖 𝜎𝑒
−2

𝐖𝑖
′𝐙𝑖

′𝐑𝑖
−1𝐗𝑖 𝜎𝑒

−2 𝐖𝑖
′𝐙𝑖

′𝐑𝑖
−1𝐙𝑖 𝐖𝑖 𝜎𝑒

−2 + 𝐈𝜎𝛼𝑖
−2

] [
𝛃𝑖

∗̂

𝛂𝑖
∗̂
] = [

𝐗𝑖
′𝐑𝑖

−𝟏𝐲𝑖 𝜎𝑒
−2

𝐖𝑖
′𝐙𝑖

′𝐑𝑖
−1𝐲𝑖 𝜎𝑒

−2
].  (1) 

 

 

Domestic and foreign direct genomic values 

(DGV) are obtained by 𝐠𝑖
∗̂ = 𝐖𝑖𝛂𝑖

∗̂. 

 

 

Joint SNPBLUP 

 

A standard genomic model for the joint analysis 

of the domestic and foreign datasets is: 

 

[
𝐲𝑑

𝐲𝑓

] = [
𝐗𝑑 𝟎

𝟎 𝐗𝑓

] [
𝛃𝑑

𝛃𝑓

] + [
𝐙𝑑 𝐖𝑑

𝐙𝑓 𝐖𝑓

] 𝛂 +

[
𝐞𝑑

𝐞𝑓

], 

 

 

 

 

 

 

 

where phenotypes from the two datasets are 

modelled with dataset specific fixed effects 

(𝛃𝑑 , 𝛃𝑓 ), but a joint set of SNP effects (𝛂). We 

assume a multivariate normal prior distribution 

for SNP effects with mean zero and covariance 

𝐈𝜎𝛼𝐽
2 , 𝛂~𝑴𝑽𝑵 (𝟎, 𝐈𝜎𝛼𝐽

2 ), where 𝜎𝛼𝐽
2  is the 

variance of SNP effects in the joint SNPBLUP. 

We also assume that residuals are multivariate 

normally distributed, specifically  

 

[
𝐞𝑑

𝐞𝑓

] ~𝑴𝑽𝑵 ([
𝟎
𝟎

] , [
𝐑𝑑 𝟎
𝟎 𝐑𝑓

] 𝜎𝑒
2). 
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Joint estimates of SNP effects �̂� are obtained by 

solving the following system of equations: 

 

 

 

[

𝐗𝑑
′ 𝐑𝑑

−1𝐗𝑑 𝜎𝑒
−2 𝟎 𝐗𝑑

′ 𝐑𝑑
−1𝐙𝑑 𝐖𝑑 𝜎𝑒

−2

𝟎 𝐗𝑓
′ 𝐑𝑓

−1𝐗𝑓 𝜎𝑒
−2 𝐗𝑓

′ 𝐑𝑓
−1𝐙𝑓 𝐖𝑓 𝜎𝑒

−2

𝐖𝑑
′ 𝐙𝑑

′ 𝐑𝑑
−1𝐗𝑑 𝜎𝑒

−2 𝐖𝑓
′𝐙𝑓

′ 𝐑𝑓
−1𝐗𝑓 𝜎𝑒

−2 𝐖𝑑
′ 𝐙𝑑

′ 𝐑𝑑
−1𝐙𝑑 𝐖𝑑 𝜎𝑒

−2 + 𝐖𝑓
′𝐙𝑓

′ 𝐑𝑓
−1𝐙𝑓 𝐖𝑓 𝜎𝑒

−2 + 𝐈𝜎𝛼𝐽
−2

] [

𝛃𝑑
̂

𝛃𝑓
̂

�̂�

] =

[

𝐗𝑑
′ 𝐑𝑑

−1𝐲𝑑 𝜎𝑒
−2

𝐗𝑓
′ 𝐑𝑓

−1𝐲𝑓 𝜎𝑒
−2

𝐖𝑑
′ 𝐙𝑑

′ 𝐑𝑑
−1𝐲𝑑 𝜎𝑒

−2 + 𝐖𝑓
′𝐙𝑓

′ 𝐑𝑓
−1𝐲𝑓 𝜎𝑒

−2

].                  (2) 

 

Joint DGV for domestic and foreign animals 

are obtained by 𝐠 �̂� = 𝐖𝑖�̂� (i = d, f). 

 
 

Exact integration 

 

Integration of foreign estimates of SNP effects, 

𝛂𝑓
∗̂ , into a domestic SNPBLUP can be 

performed by means of absorbing equations 

corresponding to the foreign dataset in the joint 

system of equations (2). After some algebra, we 

get the following system of equations that 

performs an exact integration of foreign 

estimates of SNP effects into a domestic 

SNPBLUP: 

 

 

[
𝐗𝑑

′ 𝐑𝑑
−1𝐗𝑑 𝜎𝑒

−2 𝐗𝑑
′ 𝐑𝑑

−1𝐙𝑑 𝐖𝑑 𝜎𝑒
−2

𝐖𝑑
′ 𝐙𝑑

′ 𝐑𝑑
−1𝐗𝑑 𝜎𝑒

−2 𝐖𝑑
′ 𝐙𝑑

′ 𝐑𝑑
−1𝐙𝑑 𝐖𝑑 𝜎𝑒

−2 + (𝑷𝑬𝑪(𝛂𝑓
∗̂))

−𝟏
− 𝐈𝜎𝛼𝑓

−2 + 𝐈𝜎𝛼𝐽
−2

] [𝛃𝑑
̂

�̂�
] =

[
𝐗𝑑

′ 𝐑𝑑
−1𝐲𝑑 𝜎𝑒

−2

𝐖𝑑
′ 𝐙𝑑

′ 𝐑𝑑
−1𝐲𝑑 𝜎𝑒

−2 + (𝑷𝑬𝑪(𝛂𝑓
∗̂))

−𝟏
𝛂𝑓

∗̂
],                (3) 

 

where 𝑷𝑬𝑪(𝛂𝑓
∗̂) = (𝐖𝑓

′𝐙𝑓
′ 𝐌𝑓 𝐙𝑓 𝐖𝑓 𝜎𝑒

−2 +

𝐈𝜎𝛼f
−2)

−𝟏
 is the prediction error covariance 

(PEC) matrix associated with the foreign 

estimates of SNP effects 𝛂𝑓
∗̂ , with 𝐌𝑓 = 𝐑𝑓

−1 −

𝐑𝑓
−1𝐗𝑓(𝐗𝑓

′ 𝐑𝑓
−1𝐗𝑓)

−1
𝐗𝑓

′ 𝐑𝑓
−1 being an 

absorption matrix for foreign fixed effects. 

 

 

Approximate integrations 

 

Exact integration requires the inverse of PEC 

matrix from the foreign SNPBLUP, 

(𝑷𝑬𝑪(𝛂𝑓
∗̂))

−1
, which might not be available. 

We propose here three different approximations 

to overcome this. 

 

First, (𝑷𝑬𝑪(𝛂𝑓
∗̂))

−1
 can be approximated 

with the inverse of the PEC matrix associated 

with each chromosome. This approximation 

ignores off-diagonal elements among 

chromosomes, which could be assumed to be 

close to 0 (Yang et al., 2012). However, similar 

to 𝑷𝑬𝑪(𝛂𝑓
∗̂), obtaining PEC matrix for each 

chromosome (or any other subset of the 

genome) separately could be still challenging 

compared to obtaining only the prediction error 

variance (PEV) matrix 𝑷𝑬𝑽(𝛂𝑓
∗̂). 

 

Second, (𝑷𝑬𝑪(𝛂𝑓
∗̂))

−1
 can be approximated 

with the inverse of 𝑷𝑬𝑽(𝛂𝑓
∗̂), that is 

(𝑷𝑬𝑽(𝛂𝑓
∗̂))

−1
. This approximation would be 

accurate if (𝑷𝑬𝑪(𝛂𝑓
∗̂))

−1
 has (close to) zero 

off-diagonal elements, which is dependent on 

the characteristics of genotypes in the foreign 

dataset (e.g., allele frequencies, linkage 

disequilibrium (LD), and population/family 

structure). 

  

Third, (𝑷𝑬𝑪(𝛂𝑓
∗̂))

−1
 can be approximated 

from 𝑷𝑬𝑽(𝛂𝑓
∗̂), residual and SNP variances, 

allele frequencies and LD of the foreign training 

set. Assuming Hardy-Weinberg equilibrium 

and one record per foreign training animal (i.e., 
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𝐙𝑓 = 𝐈), it can be shown that the product 

𝐖𝑓
′𝐙𝑓

′ 𝐙𝑓 𝐖𝑓  can be approximated as: 

 

𝐖𝑓
′𝐙𝑓

′ 𝐙𝑓 𝐖𝑓 = 𝐖𝑓
′𝐖𝑓

≈ 𝑛𝑎𝑛,𝑓(4𝐩𝐩′ + 𝐕𝐂𝐕) 

 

where 𝑛𝑎𝑛,𝑓 is the number of foreign training 

animals, 𝐩 is a 𝑛𝑆𝑁𝑃 × 1 vector of allele 

frequencies in the foreign training set, 𝐕 is a 

𝑛𝑆𝑁𝑃 × 𝑛𝑆𝑁𝑃 diagonal matrix with the j-th 

diagonal element being equal to 

√2𝐩𝑗(𝟏 − 𝐩𝑗), and 𝐂 is a 𝑛𝑆𝑁𝑃 × 𝑛𝑆𝑁𝑃 matrix 

of pairwise correlations (LD) between 

genotypes at SNP loci in the foreign training set. 

From the approximation of 𝐖𝑓
′𝐙𝑓

′ 𝐙𝑓 𝐖𝑓 , and 

by relaxing the assumption of one record per 

animal, (𝑷𝑬𝑪(𝛂𝑓
∗̂))

−𝟏
=

𝐖𝑓
′𝐙𝑓

′ 𝐌𝑓 𝐙𝑓 𝐖𝑓 𝜎𝑒
−2 + 𝐈𝜎𝛼𝑓

−2 can be 

approximated with 𝚲𝑓(4𝐩𝐩′ + 𝐕𝐂𝐕)𝚲𝑓𝜎𝑒
−2 +

𝐈𝜎𝛼𝑓
−2 where 𝚲𝑓 is a 𝑛𝑆𝑁𝑃 × 𝑛𝑆𝑁𝑃 diagonal 

matrix with the squared j-th diagonal element 

representing the effective number of records for 

the j-th SNP. The diagonal matrix 𝚲𝑓 can be 

estimated by solving the nonlinear system of 

equations 𝑑𝑖𝑎𝑔 (( 𝚲𝑓(4𝐩𝐩′ + 𝐕𝐂𝐕)𝚲𝑓𝜎𝑒
−2 +

𝐈𝜎𝛼𝑓
−2)

−1
) = 𝑷𝑬𝑽(𝛂𝑓

∗̂) through a fixed-point 

iteration algorithm detailed in Appendix. It is 

worth noting that this algorithm requires the 

inversion of a 𝑛𝑆𝑁𝑃 × 𝑛𝑆𝑁𝑃 dense matrix (step 

4) at each iteration. This computational cost can 

be reduced by performing the algorithm with a 

limited number, let say 2000, of consecutive 

SNPs. 

 

In practice, the matrix 𝐂 for the foreign 

training set could be unknown, and can be 

approximated by using a reference panel that 

includes, for example, available genotypes of 

selection candidates related with the foreign 

training population (Yang et al., 2012). 

 
 

Simulations 

 

We tested the developed methods with 

simulated data for two populations and a single 

trait. The data was simulated in 5 replicates with 

the AlphaSim program, which uses coalescent 

method for simulation of base population 

chromosomes and gene drop method for 

simulation of chromosome inheritance within a 

pedigreed population (Hickey and Gorjanc, 

2012; Faux et al., 2016). 

 

A diploid genome was simulated with 30 

chromosomes, each 108 base pairs long. 

Coalescent mutation and recombination rate per 

base pair were set to 10-8, while effective 

population size was modelled in line with the 

values reported by MacLeod et al. (2013). 

Effective population size of the pedigree base 

was set to 100. For each chromosome, 100 SNP 

loci per chromosome (3000 per genome) were 

sampled to serve as causal loci. The allele 

substitution effect of causal loci was sampled 

from normal distribution with mean zero and 

variance 1/3000. The effects were used to 

simulate a complex trait with additive genetic 

architecture. In addition, 2000 loci per 

chromosome (60 000 per genome) were 

selected to serve as markers with the restriction 

of having minor allele frequency above 0.05.  

  

The domestic and foreign populations were 

ancestrally related through the common base 

population, but otherwise maintained 

independently, i.e., there was no migration 

between the populations. Each population was 

initiated with 10 000 founders (half males and 

half females) and maintained for 7 generations 

with constant size. For creating the next 

generation, 25 males were selected on true 

breeding value (TBV), and all 5000 females 

were used as parents. 

  

For every animal in the domestic population, 

an own phenotype was simulated as the sum of 

TBV and residual sampled from normal 

distribution with mean zero and residual 

variance scaled relative to variance of TBV in 

the base population such that heritability was 

0.3. 

  

For every animal in the foreign population, 

an own phenotype was simulated as the sum of 

TBV and the mean of 𝑛𝑤𝑒𝑖𝑔ℎ𝑡 residuals. Each 

residual was sampled from a normal 

distribution with mean zero and residual 

variance scaled relative to variance of TBV in 

the base population such that heritability was 
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0.3. The weight 𝑛𝑤𝑒𝑖𝑔ℎ𝑡 was sampled from a 

geometric distribution with a probability of 

0.15, augmented by 1. The average 𝑛𝑤𝑒𝑖𝑔ℎ𝑡 was 

6.6. These simulated weighted phenotypes 

mimic (daughter) yield deviations, deregressed 

proofs, or repeated records. 

 

For satisfying the assumption of identical 

residual variance across all evaluations, 

domestic and foreign phenotype records were 

divided by the square root of the corresponding 

residual variance, such that 𝜎𝑒
2 = 1. 

 

 

Analysis 

 

The aim was to validate the exact integration of 

foreign estimates of SNP effects into a domestic 

SNPBLUP, and to test the different 

approximations. For each population, 5000 

animals from generation 1 to 6 were randomly 

sampled to generate a training population. All 

the 10 000 animals of generation 7 were 

considered as selection candidates. We assumed 

that variance components were known and 

equal to true variances. We also assumed that 

allele frequencies of the foreign training set 

were known at the domestic level. 

  

The following SNPBLUP were performed: 

a) a separate SNPBLUP for each 

population (i.e., system of equations 

(1)); 

b) a joint SNPBLUP (i.e., system of 

equations (2)); 

c) a combined SNPBLUP with an exact 

integration of foreign estimates of SNP 

effects (i.e., system of equations (3)); 

d) the same as c) but approximating the 

PEC matrix with a partial PEC matrix 

where PEC between loci on different 

chromosomes were set to zero; 

e) the same as c), but approximating the 

PEC matrix with a PEV matrix where 

PEC between loci was set to zero; 

f) the same as c), but approximating the 

PEC matrix with PEV, allele 

frequencies, and pairwise correlations 

among all SNPs of the foreign training 

set. The algorithm for estimating 

effective number of records per SNP 

was performed on subsets of 2000 

consecutive SNPs; 

g) the same as f), but with pairwise 

correlations among all SNPs computed 

from foreign selection candidates 

instead of the training data. 

Analysis of the different integrations of 

foreign estimates was performed by comparing 

DGV of selection candidates obtained from the 

different SNPBLUP. The joint SNPBLUP was 

considered as the reference, because it uses both 

domestic and foreign information. If integration 

was fully accurate, no difference should be 

detected in DGV of selection candidates 

obtained from the joint SNPBLUP and the 

SNPBLUP with integration. This can be 

observed by (a) a Pearson correlation between 

joint DGV and DGV with integration equal to 

1, (b) a regression coefficient of joint DGV on 

DGV with integration equal to 1, and (c) a mean 

square error (MSE) of DGV with integration, 

computed as mean of the squared difference 

between DGV with integration and joint DGV, 

equal to 0. These three parameters were used for 

comparison, and were computed for 10 000 

selection candidates of each population 

separately. 

 

 

Results & Discussion 
 

Accuracies of DGV without integration and 

joint DGV 

 

Accuracies, that is Pearson correlations 

between TBV and DGV, of DGV without 

integration and joint DGV are in Table 1. 

Analyzing jointly both domestic and foreign 

datasets increased accuracy of DGV of 

domestic selection candidates by 15 absolute 

points, and accuracy of DGV of foreign 

selection candidates by 4 absolute points. The 

lower improvement for foreign candidates can 

be explained by a higher baseline amount of 

information in the foreign evaluation. 

 

Table 1. Accuracies of DGV without 

integration and joint DGV for domestic and 

foreign selection candidates. Results are 

averaged across the five replicates (SE between 

brackets). 

SNPBLUP Domestic Foreign 

Separate 0.47 (0.01) 0.63 (0.01) 
Joint 0.62 (0.01) 0.67 (0.01) 
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Comparison of different integrations 

 

The developed procedure enabled integration of 

estimates of SNP effects and associated 

measures of precision into a domestic 

SNPBLUP. Table 2 compares DGV without 

and with integration to joint DGV for domestic 

and foreign selection candidates. The exact 

integration of foreign estimates, that is by 

means of the PEC matrix, led to the same DGV 

for both domestic and foreign selection 

candidates as with the joint SNPBLUP, as 

shown by correlations and regression 

coefficients of 1, and MSE close to 0. Non-zero 

MSE could be explained by rounding errors 

(Table 2). For comparison, correlations 

between joint DGV and DGV without 

integration were 0.79 and 0.94 for domestic and 

foreign selection candidates, respectively. 

Corresponding regression coefficients were 

0.92 and >0.99, and corresponding MSE were 

0.20 and 0.06 (Table 2). 

  

Approximate integrations based on partial 

PEC matrices or LD information gave almost as 

accurate and unbiased DGV as the exact 

integration for both domestic and foreign 

selection candidates. This is shown in Table 2, 

and demonstrates that integration of estimates 

of SNP effects into a SNPBLUP can be 

performed accurately without availability of the 

full PEC matrix, or of genotypes and 

phenotypes of the foreign training set. These 

two features are interesting because computing 

the exact PEC matrix, or even exchanging it 

between evaluations, could be challenging, and 

because all genotypes (and phenotypes) of the 

training set are usually unknown and 

unavailable for a third party. However, 

genotypes of animals related with a foreign 

population might be available locally, and could 

be used for approximating PEC, as 

demonstrated by the results of integration using 

LD information computed from selection 

candidates (Table 2). For such an 

approximation, only estimates of SNP effects, 

associated PEV, and allele frequencies of a 

foreign training population need to be 

exchanged. 

  

An approximate integration based on PEV 

only led to biased DGV with integration. 

Regression coefficients were lower than 0.90 

for both domestic and foreign selection 

candidates, even if correlation for domestic 

DGV increased by 18 absolute points (Table 2). 

Using only PEV, that is ignoring PEC, usually 

gives satisfying results when integrating 

conventional EBV (Legarra et al., 2007; 

VanRaden  et  al.,  2014),   mainly   because   the 

animal least-squares part of the mixed model 

equations of a foreign evaluation (i.e., 

𝐙𝑓
′ 𝐑𝑓

−1𝐙𝑓 ) can be accurately approximated by a 

diagonal matrix. For SNPBLUP, the 

corresponding marker least-squares part (i.e., 

𝐖𝑓
′𝐙𝑓

′ 𝐑𝑓
−1𝐙𝑓 𝐖𝑓 ) is dense. Therefore, off-

diagonal elements, or PEC, should not be 

ignored when integrating estimates of SNP 

effects. 

 

 

Potential of the developed procedure 

 

The proposed procedure was developed under 

simple assumptions, such as datasets from only 

two populations, SNP genotypes at the same 

loci, and the same residual variances for all 

SNPBLUP. These assumptions can be easily 

removed by extending the developed procedure 

to multi-trait and multi-population analyses. 

The SNP-MACE (Liu and Goddard, 2018) is an 

example of such an extension. It is also worth 

noting that the integration of SNP effects is 

similar to the integration of conventional EBV. 

Therefore, procedures developed for the 

integration of EBV for traits with different 

variance components, measurement 

units/scales, or trait definitions should be easily 

adapted for the integration of SNP effects, by 

taking PEC into account if necessary. 

  

Future research is needed to extend the 

developed procedure to single-step SNPBLUP 

(e.g., Fernando et al., 2016). Indeed, unlike this 

study, single-step SNPBLUP considers data of 

genotyped and non-genotyped animals and, 

potentially, a residual polygenic effect. 

 

 

Conclusions 
 

The developed procedure accurately integrated 

estimates of SNP effects from a foreign 

SNPBLUP into a domestic SNPBLUP. 

Therefore, the developed procedure led to DGV 

as accurate and unbiased as with a joint 

SNPBLUP that uses all available datasets. We 
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also showed that accurate integration of 

estimates of SNP effects was possible when  

 

only PEV and some population statistics were 

available. 

Table 2. Comparison of DGV without or with integration to joint DGV for domestic and foreign 

selection candidates. Results are averaged across the five replicates (SE between brackets)1. 

Type of integration 

 

Domestic population Foreign population 

r b MSE r b MSE 

No integration 0.79 

(0.00) 

0.92 

(0.01) 

0.203 

(0.060) 

0.94 

(0.00) 

>0.99 

(0.01) 

0.055 

(0.023) 

PEC 1.00 

(0.00) 

1.00 

(0.00) 

0.001 

(0.000) 

1.00 

(0.00) 

1.00 

(0.00) 

0.001 

(0.000) 

PEC per chromosome 0.99 

(0.00) 

0.99 

(0.00) 

0.009 

(0.002) 

0.98 

(0.00) 

0.97 

(0.00) 

0.018 

(0.008) 

PEV 0.97 

(0.00) 

0.90 

(0.01) 

0.021 

(0.005) 

0.95 

(0.01) 

0.86 

(0.01) 

0.043 

(0.012) 

PEV + LD of the foreign 

training set 

>0.99 

(0.00) 

0.98 

(0.00) 

0.026 

(0.013) 

>0.99 

(0.00) 

0.98 

(0.00) 

0.027 

(0.015) 

PEV + LD from foreign 

selection candidates 

0.99 

(0.00) 

0.96 

(0.00) 

0.035 

(0.016) 

0.98 

(0.00) 

0.99 

(0.00) 

0.031 

(0.011) 
1 r = Pearson correlation between joint DGV and DGV without or with integration; b = regression coefficient of 

joint DGV on DGV without or with integration; MSE = mean squared error of DGV without or with integration. 
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Appendix: Estimation of the effective 

number of records per SNP 
 

Here we detail the algorithm for computing the 

effective number of records per SNP from 

linkage-disequilibrium, allele frequencies, and 

prediction error variances of estimates of SNP 

effects 𝛂𝑓
∗̂  (𝑷𝑬𝑽(𝛂𝑓

∗̂)) of the foreign dataset. 

We assume that an unknown 𝑛𝑆𝑁𝑃 × 𝑛𝑆𝑁𝑃 

diagonal matrix 𝚲𝑓 exists such that: 

 

𝑷𝑬𝑪(𝛂𝑓
∗̂) ≈ (𝚲𝑓𝚿𝚲𝑓𝜎𝑒

−2 + 𝐈𝜎𝛼𝑓
−2)

−𝟏
 

 

where the squared j-th diagonal element of 𝚲𝑓 

represents the effective number of records for 

the j-th SNP, and 𝚿 = 4𝐩𝐩′ + 𝐕𝐂𝐕 with 𝐩 

being a 𝑛𝑆𝑁𝑃 × 1 vector of allele frequencies in 

the   foreign   dataset,   𝐕  being  a   𝑛𝑆𝑁𝑃 × 𝑛𝑆𝑁𝑃  

diagonal matrix with  the  j-th  diagonal  element  

 

 

being equal to √2𝐩𝑗(𝟏 − 𝐩𝑗), and 𝐂 being a 

𝑛𝑆𝑁𝑃 × 𝑛𝑆𝑁𝑃 matrix of pairwise correlations 

between genotypes at SNP loci.  

 

The diagonal matrix 𝚲𝑓 can be estimated by 

solving the nonlinear system of equations: 

 

𝑑𝑖𝑎𝑔 (( 𝚲𝑓𝚿𝚲𝑓𝜎𝑒
−2 + 𝐈𝜎𝛼𝑓

−2)
−𝟏

) = 𝑷𝑬𝑽(𝛂𝑓
∗̂)  

 

through a fixed-point iteration algorithm 

(Burden and Faires, 2011) as follows: 

 

1) 𝐐0 = (𝐏0−𝟏
− 𝐈𝜎𝛼𝑓

−2) ∗

(𝑑𝑖𝑎𝑔(𝚿)𝜎𝑒
−2)−𝟏 

where 𝐏0 is a diagonal matrix with the 

j-th diagonal element equal to the PEV 

of the j-th SNP; 

2) 𝚲𝑓
0 = √𝐐0 

3) 𝑘 = 1 

4) 𝐏𝑘 = 𝑑𝑖𝑎𝑔 ((𝚲𝑓
𝑘−1𝚿𝚲𝑓

𝑘−1𝜎𝑒
−2 +

𝐈𝜎𝛼𝑓
−2)

−1
) 

5) 𝐇 = (𝐏𝑘−𝟏
− 𝐈𝜎𝛼𝑓

−2) ∗

(𝑑𝑖𝑎𝑔(𝚿)𝜎𝑒
−2)−1 

6) 𝐒𝑘 = 𝐐0 − 𝐇 

7) If trace of 𝐒𝑘 is not sufficiently small 

a. 𝐐𝑘 = 𝐐𝑘−1 + 𝐇 

b. If any diagonal element in 𝐐𝑘 

is negative, set it to 0 

c. 𝚲𝑓
𝑘 = √𝐐𝑘 

d. 𝑘 = 𝑘 + 1 
e. Repeat from 4 

8) 𝚲𝑓
𝑘 = √𝐐𝑘 

It is worth noting that this algorithm is 

similar to algorithms proposed by Misztal and 

Wiggans (1988) and Vandenplas and Gengler 

(2012) to estimate effective number of records 

free of contributions from relatives. The j-th 

diagonal element of 𝐐𝑘 can therefore be 

considered as the effective number of records 

for the j-th SNP. 

 


