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Abstract 

Difford, G.F (2018). Genetic control of methane emission, feed efficiency and 

metagenomics in dairy cattle 

Joint PhD thesis, Aarhus University, Denmark and Wageningen University, the 

Netherlands 

 

The dairy industry faces the challenges of increasing production, remaining 

economically viable whilst simultaneously minimising impacts on the environment. 

The cost of feed is the highest variable cost of milk production, thus, improved feed 

efficiency is a strong wish. However, CH4 is a potent greenhouse gas with an energy 

value estimated as 2 -12% of the gross feed energy intake and thus represents a loss. 

There is, therefore, a need to identify the phenotypic and genetic relationships 

between efficiency of feed utilisation and CH4 production to ensure optimal breeding 

methods of increasing profitability and limiting environmental impact of dairy 

production.  

Feed is degraded and CH4 is produced by rumen microbes and not by the cow. The 

mechanisms which influence the composition of the rumen microbial community 

and how they, in turn, influence the feed efficiency and CH4 production of the host, 

are not well understood.  

Among the possible strategies, selective breeding has the benefit over others by 

being cumulative and persistent over generations. Genetic improvement through 

selection requires that phenotypes are recorded on large numbers of animals. 

Moreover, phenotypes must show variation, a portion of which must be genetic, and 

must have economic or societal value. Understanding the genetic co-variation 

behind and between these measures is crucial to simultaneous breeding for a more 

profitable and climate friendly dairy industry. However, the measurement of CH4 

emissions, feed efficiency and the rumen microbiome under commercial conditions 

on a large scale is not a trivial task. The aim of this PhD project was to develop and 

integrate phenotyping measures for CH4 emission, feed efficiency and the rumen 

microbiome and to investigate their genetic potential for selective breeding.  

Firstly, in Chapter 2, improvements where made to the sniffer method of CH4 breath 

concentration recording in dairy cattle during automatic milking. An algorithm was 

developed to efficiently detect and correct for variable and random drift in time 

series between instruments and to detect when the cow’s head is out of the feed 

bin. Using linear mixed model methodology, repeated measures per cow were used 

to improve precision and control sources of inaccuracy such as sensor drift, 

background gas concentrations and diurnal variation, that were subsequently 

removed. Resultantly, highly repeatable phenotypes where obtained which 



 

 

 

 

demonstrated adequate agreement for the interchangeable use of two instruments. 

In Chapter 3, the ranking of cows under commercial conditions using the sniffer 

method was compared with the “gold standard” respiration chambers. Individual 

level correlations estimated as proxies for genetic correlations revealed a high 

correlation between sniffer-predicted CH4 production and CH4 production in the RC. 

These findings offer a proof of concept that sniffer CH4 phenotypes recorded over a 

week of lactation show substantial promise as large scale indicator traits for CH4 

production using RC.  

In Chapter 4, genetic parameters were estimated between feed intake, milk 

production and CH4 breath concentration from sniffers over the course of the first 

lactation in Holstein cows in Denmark and The Netherlands. Through combining data 

between countries, genetic residual feed intake and breath gas concentrations were 

found to be significantly heritable, demonstrating that genetic improvement of feed 

efficiency and CH4 breath gas concentration is feasible in dairy cattle. The estimated 

genetic correlations from the largest dataset indicated that improved feed efficiency 

will also result in decreased gas emissions. Furthermore, including the breath gas 

concentrations in a multitrait genetic evaluation increased the accuracy of bull 

breeding values for gRFI, demonstrating an indirect economic value of CH4 and CO2 

breath concentration phenotypes.  

In Chapter 5, we estimated the relative abundance of rumen bacteria and archaea 

and found a portion of these to be heritable in dairy cattle. The results demonstrate 

that host additive genetics has an influence on the abundance of some rumen 

bacteria and archaea. We detected significant associations between certain bacterial 

genera and differences in CH4 production of the host cow, further contributing to 

knowledge of the underlying biological mechanisms driving CH4 production of the 

host. We further extended quantitative genetic methods to estimate rumen 

microbial kinships between cows in place of additive genetic relationships. This 

enabled the quantification of variation in host CH4 production explained by the 

rumen microbial composition, expressed in the new term ‘microbiability’, as the 

relative proportion of host variation explained by associated microbes. Crucially the 

microbiability and the heritability of dairy cattle CH4 production were largely 

independent. Thus, selective breeding for reduced CH4 production can be extended 

by methods perturbing the rumen microbiota towards reduced CH4 production.  

In Chapter 6 (the general discussion), the value of method comparisons for 

phenotype development by comparatively quantifying sources of error between 

cheaper alternative methods and intensive gold standard methods was discussed. 

The primary constraint to breeding for improved feed efficiency and CH4 production 

remains the recording of feed intake on a large scale under commercial conditions 



 

 

 

 

and recording of “true” CH4 production. It was proposed that the accuracy of bull 

breeding values for both feed efficiency and CH4 production can be increased 

through the use of sniffer phenotypes in robot milking herds, using individual level 

correlations but a genetic correlation between sniffer phenotypes and RC CH4 

production are still needed. The records required for estimating genetic correlations 

with meaningful standard errors can only be achieved through substantial financial 

investments, development of cheaper alternative methods of phenotype recording 

or international collaborations.  

 

Further to the general discussion, a portion of host phenotypic variation in CH4 

production was found to be associated with the rumen bacterial and archaeal 

composition. However, research is needed to determine if microbial associations are 

causative and methods to direct desired changes in the rumen microbial composition 

are still needed to unlock the potential of this under-exploited resource. The 

methods developed for quantifying the microbial contribution to host phenotypic 

variation will be of value to inform research into complex microbial-associated 

phenotypes, such as diseases and digestion in dairy cattle, other livestock species 

and humans. This thesis therefore contributes to the understanding of the genetic 

variation in feed efficiency, methane emissions and rumen metagenome of dairy 

cows. 

 

  



 

 

 

 

  



 

 

 

 

Resumé 

 

Mælkeproducenterne står over for udfordringer ved at øge produktionen, 

hvorvidt den forbliver økonomisk levedygtig samtidig med at miljøpåvirkningerne 

minimeres. Kostprisen ved foder er den højeste variable omkostning til 

mælkeproduktion, og derfor er forbedret fodereffektivitet et stærkt ønske. Metan 

(CH4) er imidlertid en potent drivhusgas med en energiværdi anslået som 2-12% af 

bruttoenergiindtaget og udgør således et tab. Der er derfor et behov for at 

identificere de fænotypiske og genetiske forhold mellem effektiviteten af 

foderudnyttelse og CH4-produktion for at sikre optimale avlsmetoder til øget 

lønsomhed og begrænse miljøpåvirkning fra mælkeproduktionen. 

Foderet nedbrydes og CH4 produceres af vom-mikrober men ikke af koen 

selv. De mekanismer, der påvirker sammensætningen af det vom-mikrobielle 

samfund, og hvordan de igen påvirker fodereffektiviteten og CH4-produktionen hos 

koen som vært, kendes ikke i tilstrækkeligt omfang. 

Blandt de mulige strategier til at reducere klimaaftrykket har selektiv avl 

fordelene overfor andre ved at være kumulative og permanente over fremtidige 

generationer. Genetisk forbedring gennem udvælgelse kræver, at fænotyper 

registreres på et stort antal dyr. Desuden skal fænotyper vise variation, hvoraf en del 

skal være genetisk og skal have økonomisk eller samfundsmæssig værdi. At forstå 

den genetiske sam-variation bag og mellem disse egenskaber er afgørende for 

samtidig avlsarbejde mod en mere rentabel og klimavenlig mælkeproduktion. Måling 

af CH4-udledninger, fodereffektivitet og vom-mikrobiomet under kommercielle 

forhold i stor skala er imidlertid ikke en triviel opgave. Formålet med dette ph.d.-

projekt var at udvikle og integrere fænotypebestemmelser for CH4-emission, 

fodereffektivitet og vommikrobiomet og undersøge deres genetiske potentiale for 

selektiv avl. Resultaterne heraf er beskrevet i 4 af afhandlingens kapitler.  

For det første, i kapitel 2, blev der foretaget forbedringer i forbindelse med 

sniffermetoden for CH4-åndedrætsmålinger hos køer under automatisk malkning. En 

algoritme blev udviklet til effektivt at finde og korrigere for drift i tidsserier mellem 

instrumenter og at udpege, når koens hoved er ude af fodertruget. Ved hjælp af en 

lineær mixed-model-metode blev gentagne mål pr. ko brugt til at forbedre præcision 

og reducere unøjagtighed, såsom sensordrift, baggrundskoncentrationer og 

døgnvariationer, der efterfølgende blev fjernet. Resultatet, i form af højt gentagelige 

fænotyper blev opnået, hvilket viste en god mulighed for at anvende data indsamlet 

fra to forskellige instrumenter. I kapitel 3 blev rangordningen af køer i private 

besætninger hvor CH4 er målt med sniffermetoden sammenlignet med "den gyldne 

standard" respirationskamre. Korrelationer på individuelt niveau blev beregnet som 



 

 

 

 

erstatning for genetiske korrelationer, og viste en stærk sammenhæng mellem 

sniffer CH4 produktion og CH4 produktion i RC. Disse resultater giver et bevis på, at 

sniffer CH4-fænotyper registreret over en uge med laktation viser et stort potentiale 

som storskala-indikatoregenskaber for CH4-produktion målt ved anvendelse af RC. 

I kapitel 4 blev genetiske parametre beregnet mellem foderoptagelse, 

mælkeproduktion og CH4-åndedræts-koncentration fra sniffere i løbet af den første 

laktation hos Holstein-køer i Danmark og Nederlandene. Ved at kombinere data fra 

begge lande blev genetisk residual foderoptagelse og åndedræts-koncentrationer 

fundet i væsentlig grad arvelige, hvilket viser, at genetisk forbedring af 

fodereffektivitet og CH4-koncentration er mulig hos malkekvæg. De beregnede 

genetiske korrelationer fra det største datasæt viste, at forbedret fodereffektivitet 

også vil resultere i faldende gasemissioner. Derudover øgede gaskoncentrationerne 

i en multiegenskabs-genetisk beregning nøjagtigheden af tyres avlsværdier for gRFI, 

hvilket demonstrerede en indirekte økonomisk værdi af fænotyper af CH4 og CO2-

målinger. 

I kapitel 5 vurderede vi den relative forekomst af vom-bakterier og -arkæer 

og fandt at en del af disse er arvelige hos malkekvæg. Resultaterne viser, at koen 

genetik, når den ses som vært har indflydelse på forekomsten af nogle vombakterier 

og archæer. Vi opdagede væsentlige sammenhænge mellem visse bakterielle 

slægter og forskelle i CH4-produktion fra værts-koen, hvilket yderligere bidrager til 

kendskab til de underliggende biologiske mekanismer, der bestemmer koens CH4-

produktion. Vi videreudviklede de kendte kvantitative genetiske metoder til også at 

omfatte vommens mikrobielle slægtskab mellem køer udover de additivt genetiske 

forhold. Dette muliggjorde kvantificering af variation i værts-CH4-produktion 

forklaret af den vommikrobielle sammensætning udtrykt i den nye betegnelse 

'mikrobiabilitet' som den relative andel af værtsvariation forklaret af tilhørende 

vommikrober. Mikrobiabiliteten og arveligheden af  CH4 produktion var stort set 

uafhængig. Selektiv avl til reduceret CH4-produktion kan således udvides ved 

fremgangsmåder, der påvirker mikrobiomet mod reduceret CH4 produktion. I kapitel 

6 (den generelle diskussion) blev værdien af metode-sammenligninger diskuteret i 

forhold til fænotyper ved kvantificerede fejlkilder hos billigere alternative metoder 

og intensive ”guldstandard” metoder. Den primære begrænsning for avl for 

forbedret fodereffektivitet og CH4 produktion forbliver målinger af foderoptagelsen 

i stor skala under kommercielle forhold og registrering af "sand" CH4 produktion. Det 

blev foreslået, at nøjagtigheden af tyre-avlsværdier for både fodereffektivitet og 

CH4-produktion kan øges ved brug af snifferfænotyper i robotmalkebesætninger ved 

brug af individuelle niveaukorrelationer, men der er stadig brug for en genetisk 

korrelation mellem snifferfænotyper og RC CH4-produktion. De indsatser der kræves 



 

 

 

 

til vurdering af genetiske korrelationer med meningsfulde standardfejl, kan kun 

opnås gennem betydelige finansielle investeringer, udvikling af billigere alternative 

metoder til fænotypemålinger eller internationale samarbejder. I forlængelse af den 

generelle diskussion viste det sig at en del af den fænotypiske variation i CH4-

produktion hænger sammen med vom-bakterielle og arkæiske sammensætning. 

Imidlertid er der behov for yderligere forskning for at bestemme, om mikrobielle 

sammenhænge også er årsags-sammenhængende, og der er behov for metoder til 

at styre ønskede ændringer i den vom-mikrobielle sammenhæng for at udnytte 

potentialet for denne underudnyttede ressource. Metoderne udviklet til 

kvantificering af det mikrobielle bidrag til værts-fænotypisk variation vil være af 

værdi for videre forskning i komplekser mellem mikrobielle fænotyper, såsom 

sygdomme og fordøjelse i mælkekvæg, også hos andre dyrearter og mennesker. 

Denne afhandling bidrager derfor til forståelsen af den genetiske variation i 

fodereffektivitet, metanemissioner og vom-metagenom af malkekøer. 
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1.1 Rational for research 

 

Dairy cattle and other livestock industries face the challenges of increasing 

production, remaining economically viable whilst simultaneously minimising impacts 

on the environment. According to a projection by the FAO, global food production 

needs to increase by approximately 70% to meet the needs of 9.7 billion people by 

2050 (UN, 2015). Milk, being a complete source of fat, protein, lactose, vitamins and 

minerals, must further increase by roughly 80% by 2050 (Steinfeld et al., 2006). The 

natural resources to sustain expansion to meet these demands are finite as seen by 

total global cultivated land remaining largely constant since 1991 (O’Mara, 2012). 

Additionally, increases in milk production are associated with greater greenhouse 

gas emissions like methane and carbon dioxide, as well as greater feed intake.  

Accordingly, research into a more sustainable and profitable dairy industry by 

improving production efficiency whilst limiting environmental impact is becoming 

increasingly relevant to the producer and consumer. Specifically, research to 

mitigate the rising variable costs of feed by increasing feed efficiency and to decrease 

the environmental impact by reducing greenhouse gas (GHG) emissions and nutrient 

losses to the environment (Connor et al., 2013).  

Methane (CH4) is a potent greenhouse gas (GHG) with a climate change 

potential ~32 times greater than carbon dioxide (CO2)(Holmes et al., 2013) and an 

atmospheric half-life of 12 years, which is substantially shorter than CO2 (> 100 

years)(IPCC, 2014). Therefore, reducing CH4 emissions from anthropogenic-related 

sources has been identified as a key area for mitigating climate change with 

immediate effects (Gerber et al., 2013; IPCC, 2014). Livestock accounts for 14.5% of 

anthropogenic-related GHG emission of which enteric CH4 emissions from ruminants 

directly accounts for 5.8% (3). The CH4 produced by dairy cattle and other ruminants 

is a natural by-product of enteric fermentation of high fibre feedstuffs by microbial 

enzymatic activity (Janssen and Kirs, 2008). Enteric fermentation results in the 

production of volatile fatty acids (VFA) (predominantly, acetate, propionate and 

butyrate) which is used as an energy resource by the cow (Moss et al., 2000; Martin 

et al., 2010). The production of acetate and butyrate releases metabolic hydrogen 

which is converted to H2 by hydrogenase-expressing bacterial species, whereas the 

production of propionate consumes H2 (Moss et al., 2000). An accumulation of 

dissolved H2 reduces the efficiency of carbohydrate degradation and microbial 

protein synthesis (McAllister and Newbold, 2008). Hydrogenase-expressing bacteria 

convert metabolic hydrogen from anaerobic fermentation into H2 which is then 

converted to CH4 via methanogenesis and finally leaves the rumen (McAllister and 
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Newbold, 2008). Furthermore, CH4 has a caloric value approximately 2 -12% of the 

gross energy intake (GEI) which represents a net loss of energy to the cow (Johnson 

and Johnson, 1995). Thus, enteric methanogenesis is a pathway for maintaining 

optimal conditions for ruminal fermentation but is also a potential indicator of 

energy loss and consequently production inefficiency.  

Feed plays a crucial role in economic and environmental performances of 

dairy production units, as the cost of feed comprises the largest variable cost of dairy 

production (~44% on average globally), but can be as high as 84% in some countries 

(Hemme et al., 2014). Furthermore, the composition of the feed affects not only the 

price but also the CH4 emitted. The primary income of dairy production is from milk 

and milk prices are volatile often failing to increases with feed prices, a situation over 

which the producer has limited control. A promising strategy to increase profitability 

is to reduce costs through retaining cows, which require less feed (input) to give 

contemporary levels of production (output) (i.e. increase feed efficiency). The 

quantity of feed consumed is directly proportional to the CH4 produced (Yan et al., 

2010). Therefore, cows that require less feed to produce the same level of 

production as their contemporaries are expected to produce less CH4 in absolute 

terms (Waghorn and Hegarty, 2011). However, the organic matter composition of 

the feed, particularly fibre, also affects the CH4 emissions at the individual cow level 

(Hristov et al., 2013) as well as the entire production chain (Møller et al., 2014). 

Empirical studies on digestibility and digesta passage rate have associated deceased 

CH4 yield per kg of milk with reduced diet and poor cell wall digestion (Cabezas-

Garcia et al., 2017), indicating that cows which are poor at extracting energy from 

fibre produce less methane. A greater understanding of the relationships between 

feed intake, feed efficiency and CH4 production is therefore needed to ensure 

concomitant increases in feed efficiency and limiting environmental impact. 

The majority of enzymatic processes within the rumen such as cellulases to 

degrade cellulose and hemicellulose, as well as methyl-coenzyme M reductase to 

produce CH4, are encoded for in the genomes of the microorganisms inhabiting the 

rumen and not the host. The rumen is a highly specialised organ which provides an 

anaerobic environment hospitable to microorganisms and promotes the acquisition 

of commensal microbes. The relationship between ruminant host and rumen 

microbe has evolved over approximately 50 million years, to the extent where host 

cannot survive without the microbes and some of the rumen microbes cannot 

survive outside of the rumen. This partnership has been highly successful, leading to 

ruminants adapting and thriving in some of the harshest and most widely distributed 

environments, on high fibre diets which are mostly indigestible to many other 

domains of life. Increasingly, results are showing that the host may directly or 
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indirectly exert some influence over the rumen microbial composition (Weimer et 

al., 2010; Roehe et al., 2016). Differences in rumen microbial communities have been 

associated with differences in CH4 emissions in sheep (Kamke et al., 2016) and feed 

efficiency in cattle (Hernandez-Sanabria et al., 2010; Hernandez-Sanabria et al., 

2012; Carberry et al., 2012; Jewell et al., 2015). However, how the host and rumen 

microbiota interact to influence host phenotypes is not currently known, thus the 

link between causation and association is still lacking. 

Although dairy cattle production has shown substantial increases in 

efficiency in the preceding decades, through improvements to individual milk yield 

as a result of advances in nutrition, genetics, and animal health, this was achieved in 

the absence of direct information concerning feed efficiency, CH4 emission or the 

rumen microbiome (Capper et al., 2013; Hill et al., 2015). Thus, by considering this 

information it may be possible to further improve efficiency while reducing the 

environmental impact of dairy cattle production. Genetic improvement has the 

benefit of cumulative gains over generations, which are persistent as opposed to 

short-term transient nutritional, or managerial strategies. However, genetic 

improvement requires that phenotypes be recorded on a large number of animals, 

preferably under the commercial conditions in which they are expected to perform. 

Furthermore, the traits of interest must be variable, a portion of the variability be 

heritable and have an economic or societal value. The studies above suggest that 

methane emissions and feed efficiency are linked through feed intake and the 

influence of the host and its rumen microbiome. Should these phenotypes be 

recorded on large numbers of related animals under commercial conditions, genetic 

investigations can determine the potential for breeding for these phenotypes.  

 

1.2 Biological considerations of methane emissions in dairy 

cattle 

 

An understanding of the underlying biology of CH4 emissions in dairy cattle 

precedes that of recording systems and genetic evaluations. The release of CH4 from 

the animal is primarily through three routes: first, through eructation directly from 

the rumen; second, CH4 is absorbed from the rumen and hindgut into the blood and 

exhaled through the lungs and third, CH4 is emitted from the hindgut as flatulence. 

In cattle and in sheep, it has been estimated using radiolabeled CH4, that 

approximately 98% of CH4 is expired through the breath and eructation and only 2% 

from flatulence (Murray et al., 1976). This has implications for the methods of 

measuring CH4 emitted by a cow as, although 98% is expired in the breath and 
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eructation, recording only part of the emission (expiration vs flatulence) is not 

necessarily the same as measuring the entire emission (expiration and flatulence) 

(Muñoz et al., 2012). This is particularly true if there is animal variation in the 

proportions emitted through the three different routes, which could impacted by 

differences in digestibility. 

The rate at which CH4 is emitted changes throughout the day and from day 

to day and as such, the cow is in a continually changing biological state in terms of 

CH4 emission. The within day diurnal variation is affected by the feeding behaviour, 

diet and feeding allowance and pattern (Crompton et al., 2010; Bell et al., 2018). The 

simplest way to avoid diurnal variations in principle is to record CH4 emissions for 

every second of the entire 24 hr period to get the true daily CH4 emission. In practice 

few methods sample or record continually throughout a 24 hr period and thus rely 

on an average estimate which is subject to experimental error. The number of 

measurements and timing of sampling required to obtain a representative sample of 

the daily CH4 emission will vary depending on multiple factors such as feeding time, 

feeding behaviour, feed intake and activity (eating, ruminating etc) (Hegarty, 2013). 

One approach is to sample throughout the day, over multiple consecutive days and 

take an average estimate or moving average (Arthur et al., 2017) or model the time 

of day (Lassen et al., 2012; van Engelen et al., 2018) and in this manner the effects 

of diurnal variations are reduced or removed.  

The rate of CH4 emission also changes from day to day (Grainger et al., 

2007), according to physiological state (growing, lactating and non-lactating) (Ricci 

et al., 2013), within lactation (early, mid, peak and late) (Rischewski et al., 2017), and 

from lactation to lactation. It is important to understand the phenotypic and genetic 

relationships between methane emissions recorded at different points in time during 

an animal’s life to better understand the implications for selection based on CH4 

emission recorded at a particular point in time, in order to optimise recording 

strategies.  

 

1.3 Methods: Evolution of individual methane recording 

methods 

 

Numerous methods of recording CH4 emission on individual dairy cattle in 

vivo are available, each with its own set of advantages, disadvantages and scope of 

application (Hammond et al., 2016a). The gold standard method is indirect 

calorimetry in respiration chambers which has been in use for more than 100 years 

(Krogh, 1916). As the gold standard for CH4 emission and other respiratory gases, 
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respiration chambers (RC) are regarded as the most accurate and precise method 

from which other methods are benchmarked. As will be discussed in detail below, 

RC are costly, time consuming, labour intensive and not necessarily representative 

of all environmental conditions. Not surprisingly, numerous technologies are under 

development which may be cheaper, less invasive, easier to implement, or have a 

wider scope of application than the gold standard method. This is evidenced by 

frequent reviews (e.g. Patra, 2012; Storm et al., 2012; Hammond et al., 2016; Hill et 

al., 2016). However, the relative accuracy, precision and linear association between 

alternative methods and the gold standard needs to be assessed to determine the 

relative value and equivalence or lack thereof, between the gold standard and the 

alternative method (Barnhart et al., 2007).  

All methods measure the CH4 concentration and other gases often using 

infrared (IR) spectroscopy. The gold standard then converts this to CH4 emission rate 

(or flux) in litres or grams per day by recording active air flow during measurement 

(Gardiner et al., 2015). Three main emission phenotypes frequently used in dairy 

cattle are: first, methane production as CH4 emission rate (or flux) in L/d or g/d; 

second, methane yield per unit of feed intake (e.g. CH4 production per kilogram dry 

matter intake (DMI)) and third, methane intensity per unit product (e.g. CH4 

production per kilogram energy corrected milk yield (ECM)). It is clear that the latter 

two phenotypes are the quotient of CH4 production and other phenotypes recorded 

independently of the method recording CH4. Unless otherwise specified, CH4 

emission within this thesis will refer to the first phenotype, the direct measurement 

of methane expressed as CH4 concentration or CH4 production. Different methods of 

recording CH4 emissions have been comprehensively reviewed by Hammond et al., 

(2016) to which the reader is directed for further details. However, a brief summary 

of available methods and considerations directly pertaining to genetic evaluations 

are necessary and further discussed below. 

 

1.3.1 Respiration chambers as the ‘gold standard’ 

Respiration chambers using indirect calorimetry are extremely diverse in 

cost, operation, design and complexity (Global Research Alliance, 2012). The basic 

principle is that animals are confined to airtight or near airtight chambers for a period 

of 24 hours or more. Air is actively circulated through the chamber, the airflow rate 

along with the concentration of gases going into and leaving the chamber are 

recorded. Methane production is determined as the product of airflow rate and the 

difference in methane concentrations between inflowing and outflowing air. Further 

corrections are made for the volume of gases using the known gas densities at 
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standard temperature and pressure as well as humidity. Some respiration chambers 

make further corrections based on recovery tests. 

𝑄𝑐(𝑖) =  ([𝐶𝐻4]𝑀(𝑖) − [𝐶𝐻4]𝐵(𝑖))  ×  𝐶𝑝(𝑖)  ×  𝑄𝑎𝑖𝑟  ×  106   (1) 

 

Where Qc(i) is the CH4 emission in Litres per time point (i), the 

concentration of CH4 measured is denoted by subscript M, the concentration of 

background CH4 is denoted by B, Cp(i) is the fractional capture rate at time i and Qair 

is the volumetric air flow rate in litre per time point (i). Using the temperature and 

atmospheric pressure recorded at time point (i) it is possible to convert CH4 from 

volume to mass using the ideal gas law. Summing Qc(i) over a 24 hour period results 

in CH4 production in litres per day or grams per day is the ideal gas law conversion is 

made. 

Although, respiration chambers are regarded as the gold standard and 

thus, by definition are the most accurate and precise measure of gas production, 

they have two main sources of error which can affect accuracy and precision. These 

are the airflow rate (Qair) or ducting efficiency (Cp) through the chamber and the 

mixing of gases within the chamber, which are jointly reflected in the response time 

(Hammond et al., 2016a). In a joint calibration procedure of respiration chambers in 

the UK, high within- and between-chamber and facility variation was observed, with 

airflow rate and chamber mixing at 15.3% and 3.4%, respectively (Gardiner et al., 

2015). If the absolute accuracy of CH4 release rate of the test gas is known with 

certainty and is constant over time, the recovery rate can be used as a correction 

factor to adjust measurements. In the UK study, after correction for differential 

recovery rates was made, the combined uncertainty between chambers and facilities 

was reduced to 2.1 % (Gardiner et al., 2015). The use of correction factors is 

discouraged and good practice is to identify the source of error and correct it 

(McLean and Tobin, 1987). With some authors calling for the publishing of recovery 

tests pre- and post-experiment as a prerequisite for publication (Gerrits et al., 2018). 

A further factor to consider is that confinement within a chamber can stress 

animals and alter their feeding behaviour resulting in a drop in DMI, the largest driver 

of CH4 emissions; this has led many to question the extrapolation of these results to 

commercial conditions particularly grazing systems (Pinares-Patiño et al., 2013). 

Some developments in respiration chamber methods have led to animal friendly 

chambers constructed from cheaper transparent materials, lowering the cost and 

invasiveness of the method with minimal disruption to the accuracy and precision of 

the measurement and showing no drop in the DMI of cows under confinement 

(Hellwing et al., 2012).  
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The throughput and capital cost of respiration chambers is the biggest 

challenge towards usage in genetic evaluations. Assuming a single day of acclimation 

and 2 consecutive days of recording, a single chamber can record CH4 production on 

120 cows a year. In practice, this is likely to be far less (30-50) a year, as was reported 

in the only large scale genetic evaluation of CH4 emission in 1042 growing angus 

steers and heifers (Donoghue et al., 2016a). This cohort of cattle demonstrates that 

CH4 production is repeatable (t = 0.97) over consecutive days (Donoghue et al., 

2016b), heritable (h2 = 0.27 ± 0.07) (Donoghue et al., 2016a) and achieves moderate 

genomic prediction accuracies of 0.32 ± 0.04 (Hayes et al., 2016). However, no such 

large cohort studies have been reported for dairy cows in RC. 

 

1.3.2 The Sulphur hexafluoride tracer gas technique 

The Sulphur hexafluoride (SF6) technique has been in use for two decades 

and was originally developed to record CH4 emission of animals whilst grazing in 

paddocks or on pasture (Johnson et al., 1994). The principle behind this method is 

that CH4 production can be measured if SF6 gas emission rate from the rumen is 

known and employed as a tracer gas. Small permeation tubes containing SF6 with a 

predetermined release rate are placed into the rumen of test animals. The SF6 gas is 

mixed with the rumen-produced gases and exhaled and eructed through the mouth 

and nostrils. Test animals are fitted with gas sampling apparatus consisting of a 

halter, to support capillary tubing inlets in close proximity to the mouth and nostrils, 

and connected to an evacuated canister under vacuum. Exhaled air is sampled 

continuously through capillary tubing with in-line flow restrictors for 24 hours or 

usually longer. The CH4 and SF6 contained within the canister is determined as a 

batch sampled over single or multiple days using gas chromatography. Daily CH4 

emission is calculated using the ratio of background corrected CH4:SF6 the previously 

determined rate of release from the permeation tubes to give an estimate of CH4 

production (Williams et al., 2011)(eq 2): 

 

𝑅𝐶𝐻4 = 𝑅𝑆𝐹6 ×
[𝐶𝐻4]𝑀− [𝐶𝐻4]𝐵

[𝑆𝐹6]𝑀−⌊𝑆𝐹6⌋𝐵
 ×  

𝑀𝑊𝐶𝐻4

𝑀𝑊𝑆𝐹6
× 1000   (2) 

 

Where RCH4 is the release rate of CH4 in grams per day, RSF6 is the 

predetermined release rate of SF6 tracer gas from the permeation tubes (mg/day). 

The measured concentrations of CH4 and SF6 are given with subscript M, the 

recorded background gas concentrations are given by subscript B and the molecular 

weights are denoted by MW and multiplied by the constant 1000 to obtain units in 

grams per day.  
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The SF6 method has been compared to RC in a number of studies and has 

been found to differ in accuracy in the range of (3 -  8%) which can, in part, be due 

to true method differences and also CH4 emitted as flatulence which is not captured 

by the SF6 method (Grainger et al., 2007; Muñoz et al., 2012). Only a single study has 

compared the precision of the two methods and found the coefficient of variation 

(CV) within animal to be marginally higher with the SF6 (CV = 6.1%) versus RC (CV = 

4.3%), when this is expressed as repeatability (t), the SF6 was slightly less repeatable 

(t = 0.27) than the RC (t = 0.30) (Muñoz et al., 2012). The primary sources of 

inaccuracy and imprecision are variations in the release rate of SF6 from permeation 

tubes which decays over time. One method of correction is to model the rate of 

release using Michaelis-Menten kinetics (Moate et al., 2015). Another source of error 

is the rate of sampling from capillary tubes as flow restrictors. Deighton et al. (2014) 

detected that 16% inaccuracy was due to variation in sampling rate. This lead to the 

development of orifice plate flow controllers to reduce error in sampling flow rates 

(Deighton et al., 2014). The SF6 method is also reliant on accurate estimation of 

background gas concentrations which need to be relatively low in comparison to 

recording concentrations (Berndt et al., 2014). Williams et al. (2011) estimated that 

the method of background estimation can influence the accuracy of the SF6 methods 

by approximately 6% and recommends the use of ‘sentinel’ canisters for sampling 

purely background gas concentrations. Further recommendations are made for 

outdoor, indoor and mixed use of the SF6 methods (Berndt et al., 2014).  

Large-scale genetic evaluation of CH4 emissions in dairy cattle is feasible 

using the SF6 method and is well suited to testing animals under grazing conditions. 

Limitations to the throughput of the method are the numbers of apparatus available 

and the labour and capacity of laboratory facilities recording captured gases in the 

canisters. The minimum recommended recording time is 5-7 consecutive days in 

groups of animals 15 or larger (Berndt et al., 2014) which would culminate in 

approximately 750 cattle per year. Studies have shown the SF6 method to be highly 

repeatable over 5-10 days (t = 0.86) (Arbre et al., 2016). To date, only a single study 

has reported heritability estimates for CH4 production with SF6 (h2 = 0.33 ± 0.15) 

which realised phenotyping on approximately 100 cows per year (Breider et al., 

2018). 

 

1.3.3 The GreenFeed system 

The GreenFeed® (C-Lock Inc., Rapid City, South Dakota, USA) is a patented 

standalone automatic head chamber system where a concentrate feeder is fitted 

with a ventilation hood. During visits to the unit to consume concentrate, the 

exhaled and eructed gases are spot sampled by recording CH4 concentration, head 
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position and airflow rate (Zimmerman, 2011; Huhtanen et al., 2015). A radio 

frequency identification system (RFID) allows for the investigator to control the 

frequency and timing of visits to the unit - for a detailed description see Hristov et 

al. (2015b). Measurements are short (3 – 7 min per visit) and made multiple times a 

day over a period of multiple, consecutive days. Visitation to the unit is voluntary 

and requires training and adaption to the unit. Daily CH4 emissions (g/d) are 

estimated using volumetric airflow rate adjusted to standard temperature and 

pressure in a manner analogous to respiration chambers (Huhtanen et al., 2015; 

Jonker et al., 2016):  

 

𝑄𝑐(𝑖) =  ∑ 𝑉𝑖  × (([𝐶𝐻4]𝑀(𝑖) − [𝐶𝐻4]𝐵(𝑖))  × 
1

𝐶𝑝(𝑖)
 ×  𝑄𝑎𝑖𝑟  ×  106)𝑛

𝑖  / ∑ 𝑉𝑖
𝑛
𝑖  (3) 

 

Where Qc(i) is the CH4 emission in litres per day, the concentration of CH4 

measured is denoted by subscript M, the concentration of background CH4 is 

denoted by B, Vi is the visit time, Cp(i) is the fractional capture rate at time i and Qair 

is the is the volumetric air flow rate in L/(i). The weighted average is found by 

summing the product in parenthesis and visit time (Vi) and dividing my the 

summartion of Vi for all visits of each cow (n). Using the temperature and 

atmospheric pressure recorded at time point (i) or over the period (i – in), it is 

possible to convert CH4 from volume to mass using the ideal gas law.  

The GreenFeed system has been compared to RC and has shown mixed 

results for agreement, with poor concordance (CCC = 0.1) in dairy cattle (Hammond 

et al., 2015) but high concordance in beef cattle (CCC = 0.84) (Velazco et al., 2015). 

In most studies, the accuracy was not significantly different from that of the RC, but 

the GreenFeed had higher variation and was less precise  (Velazco et al., 2015; Jonker 

et al., 2016; Rischewski et al., 2017). Typical sources of imprecision for the 

GreenFeed include the duration and number of visits. In a study optimizing recording 

procedures using the GreenFeed, it was found that setting a minimum visit time 

threshold of 3 minutes and 30 visits per animal showed a significant 72% reduction 

in variance as compared to visits 2 minutes in length (Arthur et al., 2017). Since the 

diurnal variations in CH4 emission vary throughout the day and animals visit the 

GreenFeed voluntarily, the timing and number of visits affect the accuracy and 

precision of the method. Some studies report as few as 1.3 – 2.6 visits per animal per 

day and failed to detect diurnal variation or treatment effects with the GF which 

were detected with other methods (Hammond et al., 2015; Arthur et al., 2017).  

Conversely, other studies report 3.4 – 4.4 visits per animal per day and detected 
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significant treatment and diurnal variations (Jonker et al., 2016; Waghorn et al., 

2016). The number and duration of visits need to be considered when estimating 

daily CH4 production in order to account for diurnal variations. Some studies have 

used weighted average as in equation 3 above (Jonker et al., 2016), whilst others 

have used a moving average (Arbre et al., 2016; Arthur et al., 2017) or modelled 

repeated measures using statistical methods (Arthur et al., 2017). Thus, careful 

control is required of the operator to ensure adequate visitation to the unit and 

timing of the visits to ensure adequate statistical power of the method.  

The capture rate, Cp, is another potential source of error and presumed to 

be 1 in equation 3 above. However, the influence of wind speed is shown to decrease 

the capture efficiency to 85% of static conditions and increase the variability three 

fold (Huhtanen et al., 2015). Hence, recommendations have been made for 

corrections to the capture efficiency for outdoor and potentially indoor use of the 

GreenFeed system (Huhtanen et al., 2015). One of the primary drawbacks of the 

GreenFeed system is that animals need to be trained to visit the unit. Whilst animals 

that have been trained will readily use the unit in subsequent experiments (Velazco 

et al., 2017), some animals will never use the unit (Hammond et al., 2016). This 

animal-instrument interaction has implications for the design and balance of 

treatments and the screening of animals in genetic evaluations.  

Manufacturer specifications recommend 15 to 25 animals per GreenFeed 

unit and 30 or more visits are recommended per animal, which can be achieved in 7-

20 days depending on the frequency of visits (Arthur et al., 2017). If all animals visit 

the unit adequately, throughput per unit is likely to be 750 to 1,300 animals per year. 

Repeatability estimates for CH4 production using the GF system are high (t = 0.77-

0.78) over 7-20 days (Arbre et al., 2016). Despite adequate numbers for genetic 

analysis in beef cattle (n= 616) (Arthur et al., 2017) and dairy cattle (n=713) (Hristov 

et al., 2018), the only heritability estimate reported is from a combined data analysis 

using GF and sniffers with the eructation method on 769 Holstein cows (h2 = 0.26 ± 

0.07) (Biscarini, 2016).  

 

1.3.4 Breath sampling methods: ‘sniffers’ 

‘Sniffers’ or the sniffer method was originally developed for sampling 

hydrocarbon gases such as CH4 from marine liquid samples and using nondispersive 

infrared (NDIR) analysers to detect increasing concentrations near marine 

petroliferous and gas seeps (Dunlap et al., 1960). The term was somewhat 

erroneously applied to the recording of CH4 concentration using NDIR in the breath 

of dairy cattle, to distinguish the method from those discussed above (Pinares-Patiño 

et al., 2013) but is now commonly used and understood. The principle behind sniffers 
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is to sample the breath of individual dairy cows either during automated milking or 

visits to concentrate feeders when the cow’s head is placed in the feed bin in close 

proximity to a gas sensor inlet (Madsen et al., 2010; Garnsworthy et al., 2012; 

Negussie et al., 2016). The appeal of this method is that it can record CH4 

concentrations (and other gases) on many animals, without disrupting animal 

behavior or farm management practices. The method is in formative stages of 

development and as yet, has not standardized protocols or best management 

practices, with a wide variety of experimental setups and sensors in use 

(Garnsworthy et al., 2012; Lassen et al., 2012; Negussie et al., 2016; Pszczola et al., 

2017). Two methods are predominantly used for the conversion or estimation of CH4 

production using sniffer methods, which differ in their sources of error and will be 

discussed below. The first method is the eructation peaks method described in 

Garnsworthy et al. (2012) and the second is the CO2 tracer gas method (Madsen et 

al., 2010). Both methods are short-term sampling methods and are thus subject to 

potential sources of error, such as diurnal variations discussed in the GF system 

above and method specific errors, which will be discussed below.  

The Eructation Peaks method: This method follows a similar approach to 

RC and GF but with very low passive air sampling rates, namely 1 L/min described in 

equation 4 below:  

 

𝑄𝑐 =  (𝑃𝑓  × [𝐶𝐻4]𝐵𝐶 × 
1

𝛿
 ×  𝑄𝑒𝑥) × 57.2 + 252      (4) 

 

Where Qc is the CH4 production in grams per day and Pf is the frequency of 

eructation events. [CH4]BC is the mean background corrected CH4 concentration, 

calculated by taking the integral of CH4 concentration during a peak minus the CH4 

concentration at the start of a peak. The symbol δ is the mean recovery efficiency 

and Qex is the efficiency of breath sampling which is assumed to be 1. The term within 

parenthesis is referred to as the methane emission rate, MERm in Garnsworthy et al. 

(2012). The entire term in parenthesis is multiplied by a regression coefficient 57.2 

and adjusted for the intercept 252 from an orthogonal regression calibration 

function described in Garnsworthy et al. (2012). This method was found to correlate 

well (r = 0.89) with subsequent measurements in the RC for 12 Holstein-Friesian cows 

(Garnsworthy et al., 2012). The concordance between the sniffer and RC using the 

same 12 cows used to generate the calibration equation was high (CCC = 0.88) 

(Garnsworthy et al 2016, personal communication). Although these results suggest 

good agreement between the two methods, in practice, the variability of sniffers 

using the eructation peaks method is far larger (CV = 27 – 67%) (Garnsworthy et al., 
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2012; Bell et al., 2014) than those reported for RC (CV =  3 -34%) (Grainger et al., 

2007; Yan et al., 2010).  

Potential sources of error which can increase variation (imprecision) 

include variable wind conditions and sampling distance due to cow head movement, 

which will influence the recovery efficiency (δ) (Huhtanen et al., 2015; Wu et al., 

2018). Systematic errors which could affect accuracy include variation in cow 

exhalation rate, which will influence the efficiency of breath sampling (Qex) (Wu et 

al., 2018) and inter-barn or inter-sampling point variation in air velocity and 

ventilation, which systematically changes accuracy between locations due to 

changes in recovery efficiency (δ). Furthermore, the calibration function generated 

from 12 cows explained 89% of the variation in CH4 production between cows in the 

RC, with the certainty around the intercept 252 ± 21.4 S.E. and the regression 

coefficient 57.2 ± 9.5 which can affect both accuracy and precision of the method 

(Garnsworthy et al., 2012).  

 

Sniffers using CO2 tracer gas method: The approximation of CH4 production 

using breath concentrations recorded by sniffers follows a similar approach to that 

of the SF6 method above. The ratio of CH4 to CO2 breath concentrations is recorded 

during milking and the predicted CO2 production, based on other animal 

characteristics, is used as a tracer gas. The equation is shown in 5 below: 

 

    

𝑄𝑐 = 𝑃𝐶𝑂2 ×
[𝐶𝐻4]𝑀− [𝐶𝐻4]𝐵

[𝐶𝑂2]𝑀−⌊𝐶𝑂2⌋𝐵
       (5) 

 

 

Where Qc is the estimated CH4 production L/day and PCO2 is the predicted 

CO2 production using a prediction equation (Madsen et al., 2010). The measured 

concentrations of CH4 and CO2 are given with subscript M and the recorded 

background gas concentrations are given by subscript B. Using the temperature and 

atmospheric pressure recorded at measurement, it is possible to convert CH4 from 

volume to mass using the ideal gas law. 

The CO2 ratio method using sniffers installed in concentrate feeders together with a 
prediction equation based on metabolisable energy intake, is shown to be highly 
correlated (r = 0.80) and concordant (CCC = 0.70) with RC in 22 Finnish Ayrshire cows 
(Negussie et al., 2016). Potential sources of error are the same for this method as for 
sniffers using the eructation peak method and short-term spot sampling methods. A 
method specific source of error is the predicted CO2 used as a tracer gas, any cow 
specific bias, inaccuracy or imprecision in this prediction equation will affect the final 
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estimate for CH4 production. In a study using 157 records of Danish Holstein cows 
from multiple experiments and diets it was reported that the predicted CO2 using 
the ECM, BW and days carried calf (DCC) was largely underestimating the 
relationships between CO2 production and ECM (Hellwing et al., 2013). As a result, 
the final estimation of CH4 production showed a high correlation (r = 0.74) but a 
significant systematic drop in accuracy of 147 L CH4/day. A principle shortcoming of 
the current prediction equations for CO2 production as a tracer gas is the 
unaccounted effects of mobilisation of fat particularly in early lactation (Madsen et 
al., 2010). There is a risk that a cow mobilising a substantial amount of body fat will 
have a low measured CH4 to CO2 ratio but an over predicted CO2 production and the 
resultant effects on the estimated CH4 production are not known.  

The greatest advantages of sniffer methods is the high throughput, 

portable and non-invasive nature of the sampling, which is limited only by the 

number of animals visiting the automatic milking station or concentrate feeder. This 

allows for: 1) recording of CH4 under commercial farm conditions without altering 

natural behaviour. 2) Provides the possibility for continuous recording over longer 

periods of time, resulting in full within- and over lactation recording. 3) The cost 

effectiveness of some sniffers offers the possibility for rapid upscaling by 

permanently installing sensors in robotic milking herds and concentrate feeders. A 

single sniffer gas analyser can phenotype 2000 – 3000 cows per year. Lassen and 

Løvendahl (2016) recorded CH4 emission on 3121 cows over two summer periods in 

milking robot herds in Denmark. Methane production using the eructation peak 

method in AMS is repeatable over 7-10 days (t = 0.89)(Bell et al., 2014) and the CO2 

ratio method in AMS milking visit (t = 0.34) (Lassen et al., 2012) and the CO2 ratio 

method using concentrate feeders (t = 0.40-0.46) over lactation (Negussie et al., 

2016). Methane production using the CO2 ratio technique in AMS is shown to be 

heritable for measurements over 7 days (h2 = 0.21 - 0.25)(Lassen and Løvendahl, 

2016; Lassen et al., 2016; Zetouni et al., 2018) and over the entire lactation (h2 = 0.27 

± 0.09) (Pszczola et al., 2017). Furthermore, the direct measurement of CH4 

concentration in AMS per milking is shown to be heritable (h2 = 0.11 ± 0.02) (van 

Engelen et al., 2018). The heritability of CH4 production using the eructation peak 

method and the GF combined was reported as (h2 = 0.26 ± 0.07) (Biscarini, 2016).  

It is clear that all methods have inherent problems, but some methods like 

SF6 and sniffers are more amenable to genetic evaluations in certain production 

systems as is evidence by heritability estimates in literature. Depending on the 

intended use of the method, a balance can be reached between accuracy, precision 

and correlation of a method and the number and duration of visits per cow and the 

number of cows.  
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1.4 Efficiency of feed and energy utilization in dairy cattle  

 

In contrast to CH4 emissions, research into genetic variation in feed 

efficiency of dairy cattle has a long history of research (Mason et al., 1957; Veerkamp 

et al., 1995) but implementation in current breeding indices is limited (Pryce et al., 

2015). This was preceded by research using direct calorimetry to determine energy 

contents of feed, faeces and urine (Kellner, 1909),  as well as indirect calorimetry (i.e. 

respiration chambers) which identified the relationships between heat production 

and gaseous exchange (Brouwer, 1965). This allowed for the quantification of the 

difference between gross energy (GE) (energy indigested in feed) and faecal energy 

into digestible energy (DE). Furthermore, the recording of gas emission (including 

CH4 emission) and urine energy allowed for further partitioning of DE into 

metabolisable energy (ME), which further partitions into net energy for 

maintenance, production and heat increment of feeding. This enables the 

determination of net energy of feeds and the devising of energy requirements of 

animals upon which many of the net energy systems are based (Van Es, 1978; 

Volden, 2011). 

A key finding is that the digestibility of feeds (ratio of ME to DE) is, to a very 

small extent, influenced by between cow differences but, to a large extent, the 

composition of feeds (Cabezas-Garcia et al., 2017). However, variation in the 

partitioning of ME into different biological functions (energy sinks) such as milk 

production, growth, accretion of body fat reserves, maintenance of body tissue, 

activity and reproduction requirements have been observed between cows and diets 

(Bauman et al., 1985; Veerkamp and Emmans, 1995). Detecting a genetic component 

to these partial energy efficiencies is limited due to low throughput of calorimetric 

methods (Korver, 1988; Veerkamp and Emmans, 1995). Directing changes in the 

partial energy efficiencies towards promotion of energy sinks of economic value (i.e. 

milk production) relative to other energy sinks is the very definition of feed 

efficiency. Nonetheless, great improvements in energy partitioning to milk 

production have been realized in dairy cattle through selective breeding for milk 

yield without knowledge of genetic variation in partial efficiencies or feed intake 

phenotypes (Capper et al., 2009). This is due to the ‘dilution of maintenance’ where 

high producing dairy cows partition greater portions of ME to milk production than 

maintenance relative to low yielding cows of comparable size (Bauman et al., 1985; 

Connor et al., 2012). As feed intake and milk yield are highly genetically correlated, 

a biological limitation to improving feed efficiency through selection  is expected, as 

digestibility of feed decreases in cows that consume higher levels of feed (in 
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multiples of maintenance requirements) (Vandehaar et al., 2016). Resultantly, the 

effectiveness of improving feed efficiency by selecting for increased milk yield only 

will be diminished. Therefore, further genetic improvement of feed efficiency 

requires direct measurement of feed intake on larger numbers of related individuals 

under commercial conditions in order to identify cows with high milk yield relative 

to feed intake and other energy sinks. 

 

1.4.1 Recording of individual feed intake  

In practice, feed efficiency is a not a directly observable metric; rather, it is 

feed intake relative or conditional on production traits (Jensen et al., 1992). Not 

surprisingly, with such a broad definition, there is a wide variety of phenotype 

definitions (Berry and Pryce, 2014) but common to all of which is feed intake records. 

Likewise, feed intake phenotypes can vary greatly in dairy cattle. The simplest 

measure is the mass of feed intake (kg/day) converted to DMI (kg/day) to remove 

variation in moisture content of feeds. As the energy contents of feed varies greatly, 

this can be converted to GE (MJ/day) and to DE (MJ/day) based on predicted 

digestibility of feedstuffs but the use of these phenotypes are more limited in genetic 

evaluations (Van Arendonk et al., 1991).  

Recording of DMI was initially conducted by offering individual cattle in tie 

stalls feed at a 5-10% refusal rate and manually weighing refusals periodically 

(Nielsen et al., 2003; Zom et al., 2012). This approach is time- and labour-consuming, 

with limited phenotyping throughput, as well as altered animal behaviour by 

restricting mobility. The gold standard method for recording individual cow DMI is 

with RFID access gates and automatic feed bins which records the mass of feed 

consumed at each visit which is summed for a 24 hour period (Tolkamp and 

Kyriazakis, 1997). This method facilitates recording of group housed animals without 

restrictions to mobility and limited changes to behaviour. Validation experiments 

have found deviations in specificity (cow is not present in feed bin but is detected) 

(87 – 99.8%) and sensitivity (cow is present in feed bin and detected) (99.2 – 99.9%) 

of the RFID transponders (DeVries et al., 2003; Bach et al., 2004; Chizzotti et al., 

2015). Furthermore, differences in accuracies between automated bins and manual 

weighing ranging from 120 – 600 grams a day have been reported (DeVries et al., 

2003; Chapinal et al., 2007; Chizzotti et al., 2015). Additionally, negative values were 

recorded after a cow has visited the feed bin and not consumed any feed as well as 

cows observed pushing feed out of the feed bin (Chapinal et al., 2007) and stealing 

behaviour between cows (Bossen and Weisbjerg, 2009). None of the validation 

studies reported correlations or concordance between methods but on the basis of 

sources of error listed above, deviations from 1 in the ranking of animals are 
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expected. Regardless, automated feed bins have increased throughput of DMI 

recording in research and specialised herds to the point of facilitating multinational 

genetic investigations into DMI (Berry et al., 2014). 

Despite these sources of error, records of DMI on individual cows are highly 

repeatable within lactation (t = 0.66 with a range 0.46 – 0.84) (Sondergaard et al., 

2002; Berry et al., 2014; Tempelman et al., 2015) and over lactation (Veerkamp et 

al., 2013). Furthermore, DMI is heritable (h2 = 0.34.5 with a range 0.11 - 0.58) 

(Koenen and Veerkamp, 1998; Berry et al., 2014) and the heritability varies over 

lactation (Manzanilla Pech et al., 2014; Li et al., 2017). Lastly, DMI is highly genetically 

correlated to milk production (rg  ranging from 0.20 – 0.73) but none of the 

estimated correlations are high enough to suggest indirect selection using milk 

production alone would be sufficient for improving feed efficiency (Spurlock et al., 

2012; Manzanilla Pech et al., 2014).  

 

1.4.2 Metabolic efficiency of lactating dairy cattle  

Calorimetric methods have identified two sources of efficiency: one, 

maintenance efficiency i.e. improving milk production relative to energy required to 

maintain body tissue and two, metabolic efficiency i.e. more efficient partitioning of 

energy toward milk production and other traits of economic and energetic 

importance. As smaller body size has lower maintenance requirements, improving 

maintenance efficiency is readily achieved by the addition of selection against body 

size to a breeding goal, which already selects for improved milk production (Pryce et 

al., 2015). On the other hand, improving metabolic efficiency is more challenging as 

it requires expressing feed intake independent of maintenance requirements and 

other energy sinks.  

The definitions of feed efficiency phenotypes currently under investigation 

can be broadly categorized into ratio- or residual-based traits (Kennedy et al., 1993). 

Inherent deficiencies in ratio traits have been thoroughly discussed elsewhere 

(Veerkamp and Emmans, 1995; Connor et al., 2012) and will only be briefly 

addressed here. Ratio based traits, like gross feed efficiency (milk production/feed 

intake), fail to take into account variation in other energy sinks that are not explicitly 

included in the calculation. Critically, ratio traits are not genetically independent of 

the component traits and are rarely linearly associated with component traits 

(Sutherland, 1965). Ratio traits consequently cannot distinguish between 

maintenance efficiency and metabolic efficiency. Not surprisingly, including biased 

correlations based on non-linear relationships into a selection index results in 

suboptimal or unpredictable response to selection (Gunsett, 1984; Zetouni et al., 

2017; Shirali et al., 2018).  
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Residual based traits are a form of a restricted selection index where DMI 

is phenotypically or genetically independent on production traits or energy sinks 

(Kennedy et al., 1993). The most widely used method of estimating residual feed 

intake is using a phenotypic multiple regression of production traits on DMI and 

extracting the random residuals called phenotypic residual feed intake (RFIp). This 

method, in essence, removes the phenotypic variation between DMI and production 

traits and thus, the phenotypic correlations between DMI and production traits are 

expected to be zero but genetic correlations may deviate from zero (Veerkamp et 

al., 1995; Huttmann et al., 2009; Shirali et al., 2018). Extension to this two-step 

method are the single step RFIp models, which can account for heterogeneity 

between research stations and different dietary rations (Tempelman et al., 2015). 

This phenotype is shown to be repeatable within lactation (t = 0.46 – 0.90) (Connor 

et al., 2013; Tempelman et al., 2015; Byskov et al., 2017) as well as over lactations (t 

= 0.20) (Connor et al., 2013). Furthermore, it is heritable (h2 = 0.02 – 0.25) (Pryce et 

al., 2014; Tempelman et al., 2015) and also changes over lactation (Li et al., 2017). In 

many instances, RFIp remains genetically correlated to energy sinks such as milk 

production (rg = -0.16 – -0.53 )(Veerkamp et al., 1995; Huttmann et al., 2009; de Haas 

et al., 2011; Spurlock et al., 2012) and so careful weighting of RFIp is still required in 

the selection index and makes defining correlations with other traits challenging. 

A method closer to the selection indices used in practice is genetic RFI 

(RFIg) (Kennedy et al., 1993; Lu et al., 2015). In this method, DMI rendered 

genetically independent of component traits, by including DMI and energy sinks such 

as body weight, growth, body composition and milk production in a multi trait model 

the estimated genetic (co)variances can be used to derive a restricted selection index 

(i.e. RFIg). This allows for the partitioning of genetic components of metabolic 

efficiency and maintenance efficiency. This has led to increased focus on DMI directly 

as a means to improve feed efficiency, as selection for decreased DMI is a selection 

index is essentially equivalent to selection for RFIg (Veerkamp et al., 2013). However, 

it is still of interest to researchers to assess the genetic parameters of RFIg to 

ascertain the heritability and genetic correlations with other traits of interest. RFIg 

can be equivalent to RFIp in the special case that the genetic relationships between 

DMI and energy sink traits are identical to that of the phenotypic relationships 

(Kennedy et al., 1993). RFIg is found to repeatable within lactation (t = 0.54) and over 

lactations (t = 0.21), heritable (0.14 – 0.41) and genetically correlated to RFIp (0.93) 

(Lu et al., 2015, 2016). A prerequisite of both RFIp and RFIg is that suitably large 

numbers of animals with records are required to accurately determine the partial 

efficiencies between DMI and energy sink traits. 
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1.5 Metagenomics of the rumen microbiome  

 

The microbes inhabiting the rumen, henceforth referred to as the rumen 

microbiome, have gained considerable research interest in recent years as is 

evidenced by reviews to which the reader is directed (Denman and McSweeney, 

2014; Bickhart and Weimer, 2017; Tapio et al., 2017; Wallace et al., 2017). This is 

because the rumen microbiota form the ‘missing’ link between the host and its diet, 

their being responsible for the degradation of feed into end products like VFAs and 

microbial protein which is utilised by the host and end products like CH4 released 

into the environment (Sutton, 1985; Denman and McSweeney, 2014). Initial 

characterisation of the rumen microbiota was conducted using microscopy and 

culture based techniques which was further stimulated by the development of a 

culture medium of sterile rumen fluid (Hungate, 1947). Culture based techniques 

allow for the classification, functional annotation and genomic sampling of a 

particular organism. Currently, the Hungate1000 project has collected 410 rumen 

bacterial and archaeal pure cultures and have sequenced and catalogued the 

genomes (Seshadri et al., 2018). It is estimated that 10-15% of rumen bacteria, for 

example, are culturable (Morgavi et al., 2012; Denman and McSweeney, 2014).  

The standard for culture independent microbial ecology and diversity is 

sequencing of single genes encoding ribosomal subunits, such as the 16S rRNA gene, 

circumventing the need for laboratory pure culture (Head et al., 1998). Sequencing 

and alignment of variable portions of highly conserved genes such as the 16S and 

18S rRNA can be clustered, based on sequence identity, into operational taxonomic 

units (OTUs) which are indicative of species or strains. This is the most cost effective 

and a high throughput means of genotyping microbial populations (Bickhart and 

Weimer, 2017). The reference sequences of OTUs are then assigned taxonomy 

against open online databases generated from name sequences such as those from 

pure cultures. A limitation on single gene sequence techniques in the rumen is the 

paucity of cultured and functionally annotated microbiota, with as many as 74% of 

OTUs remain unassigned at genus level in some studies (Kong et al., 2010).  In 

addition, full genome sequence studies have found that mesophilic anaerobic 

bacteria (such as those in the rumen) horizontally exchange genes between different 

phyla, exchanging as much as 35% of metabolic genes (Caro-Quintero and 

Konstantinidis, 2014), which cannot be captured by simply sequencing the ribosomal 
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genes. Costlier and thus, lower throughput limiting methods such as metagenomics 

(full genomic sequencing) or metatranscriptomics (full sequencing of transcribe 

rRNA) can overcome some of the limitations to single gene sequencing such as 

redundancies due to horizontal gene transfer (Bickhart and Weimer, 2017; Wallace 

et al., 2017). With decreasing costs of sequencing, these methods may become the 

standard for high throughput genotyping of microbial populations. 

There are potential sources of error in ribotyping studies, for instance, up 

to 100 fold differences in microbial abundances have been detected between 

different DNA extraction methods (Henderson et al., 2013). Differences between 16S 

rRNA abundances have been detected between the fluid, solid and epimural phases 

or rumen contents in some studies (Kong et al., 2010; Henderson et al., 2013) but 

not in others (Ji et al., 2017). Subsequent metagenomic approaches quantified the 

abundance variations at 0.07 – 0.48% between sample positions top, middle and 

bottom of the rumen (Ross et al., 2012). Few differences have been reported 

between communities sampled using rumen oral-esophageal tubing and rumen 

fistula (Henderson et al., 2013), whereas significant differences have been detected 

between oral-oesophageal tubing and non-invasive buccal swabs, although these 

differences explained variation is minimal 0.26% (Kittelmann et al., 2015). A careful 

design of sampling experiments are required to control or mitigate these sources of 

variation and standardised protocols are needed if genetic investigations are the 

primary focus. 

Crucially, the spatial and temporal changes in the OTUs in an animal can be 

associated with biological changes in the animal (Morgavi et al., 2012). This has led 

to some key developments in ruminant microbial ecology: first, that rumen microbial 

composition changes depending on the sampling site, solid, liquid or epimural phase 

(Kong et al., 2010). Second, a core microbiome is present across cows across a broad 

geographical and dietary range (Henderson et al., 2015). Third, that microbial 

communities are host specific, reverting almost completely back to the original 

composition after near complete rumen transfaunation (Weimer et al., 2010). 

Fourth, communities can change in response to host related changes such as age or 

lactating vs non-lactating (Zhu et al., 2017). Finally, that communities can change in 

response to changes in feeding and diet (Tajima et al., 2001).  

 

1.5.1 Associating rumen microbes with the host phenotype  

A fundamental challenge in rumen microbiology is associating differences 

in rumen microbial composition and differences in phenotypes of the host and 

linking this with the biological and functional roles of individual microbes (Bickhart 

and Weimer, 2017). In the case of feed efficiency, early studies have detected 
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significant associations between numerous OTUs, species or higher taxonomic levels 

in dairy cattle (Jami et al., 2014; Jewell et al., 2015; Shabat et al., 2016) and beef 

cattle (Guan et al., 2008; Hernandez-Sanabria et al., 2010; Myer et al., 2015). In the 

case of feed efficiency, direct knowledge of specific biochemical pathways in the 

rumen contributing to differences in host feed efficiency phenotypes are not known. 

Furthermore, taxonomical classifications and functional annotations for many 

rumen microbiota are severely limited, thus linking the functional role of specific 

microbiota with differences in the host phenotype is extremely challenging. In the 

case of CH4 production, the methanogenic pathways in archaea and some bacteria 

are well characterized. Initial results suggested that the abundance of archaea would 

be directly proportional to CH4 production as methanogenesis is the primary 

pathway for ATP synthesis in most archaea (Wallace et al., 2014). Subsequently, 

many studies have not detected associations between archaeal abundance and CH4 

production, but have detected associations with non-methanogenic bacteria (Zhou 

et al., 2011; Danielsson et al., 2017). This could partly be due to the discovery of 

rumen archaea which metabolise methyl containing compounds and alcohol (Leahy 

et al., 2010; Poulsen et al., 2013), or studies demonstrating the same archaeal and 

McrA gene abundance, but differential gene expression in high and low emitting 

sheep (Shi et al., 2014). The mean archaea to bacteria ratio was from sire progeny 

groups was found to rank the same as CH4 emission in 50 crossbred beef steers 

resulting from a two breed rotational cross for Limousin and Angus (steers were 2/3 

and 1/3 of either breed) in respiration chambers (Roehe et al., 2016). Suggestive of 

host additive genetic influence on the microbiome and that bacteria and archaea 

affect host CH4 emission (Roehe et al., 2016). These results indicate that there is 

some host phenotype (P) by rumen microbes interactions (M). 

 

1.5.2 Rumen microbes and diet 

Dietary strategies for CH4 mitigation have been an intense area of research 

and are the subject of frequent review (Hristov et al., 2013; Knapp et al., 2014; Patra, 

2016). These include plant, fungal and macro-algae metabolites, nitrates, nitrooxy 

and halogenated compounds as well as ionophores. Some of these strategies target 

the rumen microbes directly for example by inhibiting protozoa and associated 

archaea serve as hydrogen sinks or are toxic to archaea (Patra, 2016). In the case of 

ionophores reducing methane emissions also resulted in increased feed efficiency in 

dairy cattle (Duffield et al., 2008). The majority of these strategies have temporary 

effects and are not cumulative, but this could be overcome by rotating different 

additives (Klop et al., 2017). The temporary effects of these strategies suggest rapid 

microbial community adaption to substrate perturbation (Makkar and Becker, 1997; 
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Klop et al., 2017). Conversely, 3-nitrooxypropanol is an additive with a narrow 

spectrum of specificity inhibiting the enzyme methyl co-enzyme-M reductase, the 

last step in the methanogenic pathway (Duval and Kindermann, 2012). This 

compound has been shown to persistently reduce CH4 production in daiy cows by 

30% (Hristov et al., 2015a). These results indicate that there is a diet (D) by microbes 

(M) interaction.  

 

1.5.2 Rumen microbes and the host 

The near complete reversion of rumen bacteria to pre-switch composition 

after 95% rumen contents switch between cows was the first evidence of host 

specificity (Weimer et al., 2010). Subsequently, Roehe et al., (2016) sequenced the 

full rumen metagenome of eight crossbred beef steers divergent for CH4 emission 

and detected associations between microbial-host cross talk genes TSTA3 and FucI 

with host feed conversion ratio. Gonzalez-Recio et al. (2018) found significant 

associations between relative abundance of rumen microbiota and the first two 

principal coordinates of a genomic relationships matrix in ten Holstein and 8 Brown 

Swiss cows. A study involving 48 Israeli Holsteins detected potentially heritable 

rumen bacteria with 22 rumen bacterial OTUs with heritability estimates in excess of 

0.7 (Sasson et al., 2017). Although the validity of heritability estimates in such a small 

number of animals can be called into question, these results do indicate some host 

(H) by M interactions.  

This evidence would suggest that differences between cows in complex 

phenotypes (i.e. methane emission and feed efficiency) can be explained by host (H) 

x microbes (M) x diet (D) interactions (Holobiont concept) (Bickhart and Weimer, 

2017). What is needed is substantially larger datasets to determine and quantify the 

relative contribution of host genetics to rumen microbes and their joint contribution 

to host phenotypes in order to identify phenotypes influenced by the collective host 

and microbiome as well as new opportunities for phenotype improvement. Under 

holobiont theory, the collective  unit of host and associated microbes are considered 

to contribute to differences in host phenotypes upon which natural selection and 

random genetic drift can act (Zilber-Rosenberg and Rosenberg, 2008; Rosenberg and 

Zilber-Rosenberg, 2011; Bordenstein and Theis, 2015). There is literature to suggest 

co-evolutionary genomics of binary (host with specific microbe) host-microbes 

interactions, however evidence from complex microbial communities (like the 

rumen microbiome) and the host are lacking. (Yeoman et al., 2011; Bordenstein and 

Theis, 2015). The consequences of ignoring host-microbe interactions when 

breeding for CH4 emissions or feed efficiency could result in selective breeding 

against the every successful symbiosis between ruminant and rumen microbes, 
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leading to suboptimal or unpredictable responses to selection, conversely heritable 

microbes have the potential to further improve breeding from complex traits which 

are under their influence.  

 

1.6 Research Aims:  

 

The main objective of this PhD project is to investigate and contribute to resolving 

the lacking understanding of genetic variation behind methane emission, feed 

efficiency and the rumen microbiome in dairy cattle, by applying integrative and 

multidisciplinary approaches to phenotype recording. To solve this major task, the 

PhD project was divided into two main research areas: 

 

(i) Development and validation of a high throughput non-invasive method 

for recording CH4 emissions under commercial conditions (Chapters 2-

3); and 

(ii) Investigate the genetic relationships between CH4 emissions and the 

interrelations with feed efficiency (Chapter4) and the rumen 

microbiome (Chapter 5). 

 

A total of four papers are presented as chapters in this PhD dissertation (full 

publication list is available in Curriculum Vitae) and the aim of each study is 

presented below. 

Chapter 2 ‘Interchangeability between methane measurements in dairy cows 

assessed by comparing precision and agreement of two non-invasive infrared 

methods’ The aim was to develop and validate a fast and efficient method for 

detecting and correcting fixed and variable shifts in times series. To compare two 

sniffer instruments for CH4 and CO2 breath concentrations in order to identify and 

quantify sources of disagreement and thereafter standardised instruments for joint 

recording.  

[Published] 

Chapter 3 ‘Rapid Communication: Ranking cows’ methane emissions under 

commercial conditions with sniffers versus respiration chambers’ The aim was to 

assess the consistency in ranking of dairy cows for CH4 emission phenotypes 

obtained using sniffers and respiration chambers. 

 [Manuscript draft] 

Chapter 4 ‘Can greenhouse gases in breath be used to genetically improve feed 

efficiency of dairy cows?’ The aim was to estimate genetic parameters for feed intake 
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related traits and greenhouse gas traits in primiparous Holsteins in Denmark and The 

Netherlands. Secondly, assess the use of breath concentration GHG traits as large-

scale indicator traits for improving the accuracy of breeding values for DMI and 

genetic residual feed intake. 

 [Manuscript draft] 

Chapter 5 ‘Host genetics and the rumen microbiome jointly associate with methane 

emissions in dairy cows’ The aim was to detect and quantify associations between 

rumen microbes and CH4 production. To assess the heritability of rumen bacterial 

and archaeal relative abundance   

[Published] 
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Abstract 

In this study we assess the interchangeability and statistical agreement of two 

prevalent instruments from the non-invasive ‘‘sniffer” method and compare 

their precision. Furthermore, we develop and validate an effective algorithm for 

aligning time series data from multiple instruments to remove the effects of 

variable and fixed time shifts from the instrument comparison. The CH4 and CO2 

gas concentrations for both instruments were found to differ for population 

means (P < 0.05) and intra-cow variation (precision) (P < 0.05) and for inter-cow 

variation (P < 0.05). The CH4 and CO2 gas concentrations from both instruments 

can be used interchangeably to increase statistical power for example, in 

genetic evaluations, provided sources of disagreement are corrected through 

calibration and standardisation. Additionally, averaging readings of cows over a 

longer period of time (one week) is an effective noise reduction technique 

which provides phenotypes with considerable inter-cow variation. 
 

 

Key words: Equivalence, Instrument comparison, Interchangeability, Methane, 

Sniffer, Statistical agreement   
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2.1 Introduction 

Methane (CH4) is an abundant and potent greenhouse gas with a 

global warming potential substantially larger than that of carbon dioxide (CO2) 

(IPCC, 2014). Dairy cattle through enteric methanogenesis contribute up to 20% 

of global livestock greenhouse gas emissions (Gerber et al., 2013). Research into 

mitigation strategies such as nutritional additives, housing, vaccination and 

genetic improvement has gained impetus in recent years. The assessment of 

strategies requires accurate and repeatable individual measurements under 

commercial conditions. Multiple instruments and or techniques have been 

developed to measure enteric CH4 intensity and emissions from cattle and other 

ruminants, each with their  own scope of applications, merits and demerits (Hill 

et al., 2016).  No single method is perfect in all aspects and thus in many 

instances a reference method from which to make comparisons is lacking. An 

emerging method for the measurement of CH4 and CO2 concentrations in the 

breath of dairy cattle, which is high throughput, non-invasive and viable in 

commercial conditions, is the ‘‘sniffer” method (Lassen et al., 2012; 

Garnsworthy et al., 2012a). Air is continuously sampled from the concentrate 

bin of automated milking systems (AMS) during individual milking and sample 

gas concentrations recorded. Two prevalent instruments are the Gasmet DX-

4000 (Gasmet; Gasmet Technologies Oy, Helsinki, Finland) (Lassen et al., 2012; 

Haque et al., 2014) and the Guardian NG/Gascard (Guardian Plus; Edinburgh 

Instruments Ltd., Livingston, UK) (Garnsworthy et al., 2012a,b; Bell et al., 

2014a,b). While the techniques and calculations differ, with the former 

employing a prediction equation based on the ratio of the two gas 

concentrations and production traits (Madsen et al., 2010) and the latter 

utilising a scaling factor and methane emission rate (Garnsworthy et al., 2012a), 

both methods rely on gas concentration readings. The cost of non-invasiveness 

is restricting the animal to instrument interface and introducing sources of error 

and imprecision between readings due to air turbulence within the AMS and 

movement of the cows head in the AMS concentrate bin (Huhtanen et al., 

2015). Repeating spot samples over a number of days to obtain a phenotype 

e.g. average gas concentrations over a week, reduces sources of error by a 

function of 1 + t(n - 1)/n where t is the intra-class correlation (repeatability) and 

n the number of records; thus obtaining a representative value cap- able of 

ranking animals (Hegarty, 2013; Hill et al., 2016). No comparative studies have 
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been conducted on the two instruments to determine their equivalence or lack 

thereof. 
Assessing the statistical agreement between instruments is crucial to 

informing the manner in which information from multiple instruments can be 

combined, for example, towards genetic evaluations. When measurements from 

both instruments on large-scale numbers of individuals are available, a genetic 

correlation between methods exceeding 0.8 is suitable to ascertain equivalence for 

genetic evaluations (Robertson, 1959). However, one may wish to establish 

agreement or lack thereof prior to measuring large numbers of individuals. 

According to Barnhart et al. (2007a), methods may disagree due to different 

population means, differing between-subject variances and differing within-subject 

variances. Population means can be corrected through calibrations, but different 

variances either require the more cumbersome instrument variance reduction or 

standardisation techniques (Barnhart et al., 2007a). As Bland and Altman (1999) 

pointed out, the partitioning of the random error variance into within-subject 

variances (imprecision) cannot be done without replicate measurements per subject 

per instrument. Analysing replicate measures on cows from AMS is challenging as 

the number of visits per cow to the AMS (replicates) is variable. Furthermore, time 

has elapsed between measures and thus the underlying biology has changed 

between measures due to factors such as diurnal variation patterns of CH4 and CO2 

concentrations (Lassen et al., 2012). Thus replicate measures per cow must be taken 

simultaneously with each instrument and treated as paired observations i.e. ‘‘linked” 

replicates (Carstensen, 2011). 

Choosing the correct indices to assess agreement must be done with care, 

for instance, despite having been discouraged for decades as being irrelevant and 

misleading, some authors still compute Pearson’s correlation coefficient in method 

comparison studies (Altman and Bland, 1983; Bland and Altman, 1986; Carstensen, 

2011). Even if one of the methods is perfect, it will correlate poorly to a second less 

precise method (Barnhart et al., 2007a). Likewise, unscaled agreement indices such 

as the coefficients of variation within- and between-animals, as well as scaled 

agreement indices such as Lin’s three forms of concordance correlation coefficients 

(CCC) and intra-class correlations coefficients (ICC), are reliant on between-animal 

variance. Therefore, imprecise methods recorded on heterogeneous populations will 

still appear to agree favourably (Barnhart et al., 2007a). An agreement index suited 

to repeated measures with large errors and less reliance on population 

heterogeneity is the coefficient of individual agreement (CIA) (Barnhart et al., 

2007b). Methods are regarded as interchangeable only if individual measurements 
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between instruments are similar to replicated measures within instrument (Barnhart 

et al., 2007a). 

An additional challenge when comparing instruments with time-stamped 

measurements, is the clock synchronisation problem, where clocks can have fixed 

and variables shifts in time (Ridoux and Veitch, 2007). In the absence of synchronised 

time stamping, as is often the case when comparing readings from multiple 

instruments, it is possible to obtain a misleading result. Even the most precise 

instrument will compare poorly when timestamped by an inaccurate clock. 

The objectives of this paper were: (1) Demonstrate a fast method for 

detecting fixed and variable shifts in time series. (2) Conduct a method comparison 

analysis in the presence of linked and variable number of replicates from each 

instrument. (3) Standardise instrument recordings to achieve satisfactory agreement 

for joint analysis. 

 

2.2 Materials and methods 

 

2.2.1 Design animals and feeding 

Data was recorded over a three week period from end of April to mid May 

2015 at the Danish Cattle Research Centre (DCRC, Foulum, Denmark). A total of 56 

Holstein cows, average body weight 686.6 ± 86.5 kg (mean ± sd), milk production 

38.4 ± 0.34 kg/day roughage dry matter 20.47 ± 4.43 kg/day and concentrates 2.5 ± 

0.28 kg/day were recorded during the experimental period. Cows were of mixed 

parity 44% 1st parity, 35% 2nd parity, 21% 3rd parity at mixed stages of lactation 

36% early, 27% mid and 38% late (14–100 DIM early, 100–200 DIM mid, 200–305 

late). The DCRC barn is a free stall housing system with cubicles. Cows had access to 

an AMS (DeLaval International AB, Tumba, Sweden) where they were provided up to 

3 kg of concentrate a day within the concentrate bin. Cows were offered a TMR 

consisting of corn silage, rapeseed meal and soybean meal ad libitum in 

individualised feeding troughs (RIC-system, Insentec, Marknesse, The Netherlands). 

Data on feed intake (concentrate and roughage), weight and milk production are 

recorded continuously at the DCRC. The study was conducted without altering 

management protocols or feeding schemes conducted at the research centre. Cows 

had free access to AMS with a minimum visit cycle limitation of 4 h, except during 

the two daily automated cleaning cycles. Cows presented for milking on average 2.4 

± 0.86 visits/day (mean ± sd) during the trial period. The data in this study is 

generated on cows performing under typical commercial conditions which are 

representative of a general dairy cattle population in Denmark. 
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2.2.2 Breath sampling analysis  

CH4 and CO2 gas concentrations are routinely analysed at DCRC by using 

infrared gas analysers installed within each AMS (Guardian NG/Gascard, Edinburgh 

Instruments Ltd, Livingston, UK) with a range of 0–1% CH4 and 0–5% CO2 and logged 

with NOVUS FIELD LOGGER software (NOVUS Automation, www.fieldlogger.net). 

The air inlet was custom installed in the upper left rear side of the AMS feed bin so 

as to be aligned with the nostrils of a feeding cow as per the second experiment 

described by Garnsworthy et al. (2012a). Air is sampled continuously at a rate of 1 

L/min through a 4 mm polyurethane tube approximately 3 m in length with an inline 

particulate filter to remove dust and a permeable tube with pressurised 

dehumidified air to remove water vapour before reaching the sensors. The exhaust 

port of the analyser is vented a minimum of 3 m clear of any sampling point. Data is 

logged at 1 s intervals and stored perpetually though the use of remote access. 

Sensors were calibrated prior to the experiment by flushing the sensor inlet with a 

calibration gas containing 0.0% CH4 and 0.0% CO2 to set the lower range and then 

flushed with a calibration gas containing 1.0% CH4 and 3.0% CO2 to set the upper 

range (both gases in synthetic air HiQ 4.0; AGA, Fredericia, Denmark). Sensors were 

installed for the recording of entry and exit times within the same time series as the 

continuous gas concentrations. 

The portable Fourier transformed infrared analyser FTIR (Gasmet DX 4000, 

Gasmet Technologies Oy, Helsinki, Finland) was installed at DCRC as per methods 

used for sampling through-out Denmark (Lassen and Løvendahl, 2016). The inlet was 

installed within the feed bin of the AMS in a manner analogous to the Guardian with 

the exception that the location was in the upper right rear of the bin to mirror and 

the inlet of the Guardian, in order to prevent the differential pumping rates from 

creating turbulence at the inlets. Air was sampled continuously through the integral 

pump at a rate of 4 L/min, starting with an inline particulate filter at the inlet via a 5 

m long hose heated to 180 °C before entering the sensor unit. The exhaust gases 

were vented more than 3 m away from any sampling points. Data was logged 

continuously at 5 s intervals using Calcmet Software and stored on an integral laptop, 

thus the Guardian and Gasmet data was timestamped by different data logger 

software on different servers. The analyser provides reading for the multiple gases 

as well as water vapour, external and internal temperatures, CH4 at a range of 0.0–

0.5% and CO2 at a range of 0.0–5.0% (Teye et al., 2009). Prior to the start of the 

experiment, the inlet pipe heating elements are heated to 180 °C and the sensor 

chamber is flushed out with 100% nitrogen gas for 0 point calibration. The 

identification number (ID) of the cow, start and exit time of the first visit to the AMS 
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after installation and calibration, is recorded to facilitate alignment with AMS data 

and determine initial fixed differences between time series. 

The AMS records cow ID as well as total yield, status of visit, entry and exit 

times. Thus the AMS data is a third time series, time stamped by a separate server. 

Twice daily the AMS enters into an automated cleaning cycle of approximately 30 

min in duration, during which no cow can enter the AMS. The cleaning cycles occur 

between 3:30 and 5:00 as well as 15:50 and 17:00 daily. The values recorded during 

the morning cleaning cycle are used to determine the ambient concentrations 

(Baseline) of CO2 and CH4 for each day. 

 

2.2.3. Algorithm steps for prediction of cow entry times and head 

lifting 

In order to align all three time series datasets to a common time, it was 

first necessary to account and correct for the fixed or variable time shifts between 

the servers used to timestamp the records. Since a cow exhaling into the concentrate 

bin of the AMS is accompanied by sudden and large changes in the concentrations 

of gases recorded by both instruments, it is possible to identify cow entry times in 

the datasets of the two instruments and align with the entry times of the AMS 

dataset. The algorithm used to identify cow entry was undertaken in progressive 

steps in the analysis. Firstly, the algorithm used Holt’s double exponential smoothing 

to establish a time step to time step smoothed value, slope and forecast of CO2 gas 

concentrations for both instruments. Then the detection of cow entry was based 

upon the smoothed value and slope. An added benefit of the algorithm is it enables 

the filtering of data when the cow is deemed (indirectly) to have lifted its head in a 

manner similar to that implemented by Garnsworthy et al. (2012a) and Huhtanen et 

al. (2015). See Appendix A for a detailed description of the algorithm. 

 

2.2.4. Gas concentration variables  

Both the Guardian and the Gasmet series were brought into time alignment 

with the AMS dataset and expanded. The data where the cow’s head is predicted to 

be out of the feed bin was filtered and means of CO2 and CH4 concentrations for 

each AMS visit were calculated for further analysis. Furthermore, the AMS time for 

the start of each visit was converted to 24 h angular radians and modelled in a 

Fourier series approach and ambient gas concentrations from the AMS morning 

cleaning cycles stored (Løvendahl and Bjerring, 2006; Lassen et al., 2012). 
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2.2.5. Statistical analysis 

Gas concentration data from both instruments was transformed by means 

of a natural logarithmic transformation to meet the requirements of normality of 

residuals. Data was analysed using linear mixed effects (LME) models with Kronecker 

product covariance structure in a doubly multivariate set-up (Hamlett et  al., 2004; 

Roy, 2009), by means of the MIXED procedure of SAS with repeated measures linked 

through time (ver. 9,3; SAS Institute  Inc., Cary, NC). A Kenward–Roger correction 

was utilised for computing the correct denominator degrees of freedom of fixed 

effects in the presence of repeated measures (Kenward and Roger, 1997). As the 

number of replicate measures per cow per day can vary from 2 to 5 and may not be 

equal between cows, the number of replications by each method on each cow is 

equal to pi. Therefore, the number of observations on the ith subject ni is 2 pi. The 

LME for the ith cow can be written as: 

 

𝑦𝑖 =  𝛽0 + 𝛽1𝑀𝑖1 + 𝛽2𝑀𝑖2 +  𝛽3𝐷𝑎𝑡𝑒 + ∑[𝑓1𝑔 sin ∅ + 𝑓2𝑔 cos ∅]

3

𝑔=1

+ 𝛽6𝐵𝑎𝑠𝑒

+ 𝑏1𝑖𝑍𝑖1 + 𝑏2𝑖𝑍𝑖2 + 𝜖𝑖  

 

where every method replication response is denoted by subscript i, terms 

Mi1 and Mi2 indicate the instrument each response belongs to. The regression 

coefficients b0 is the intercept, b1 and b2 are the respective fixed effects of 

instruments, b3 is the fixed effect of date of measurement, f1g and f2g are fixed 

regression coefficients of Fourier series linear covariates of the time of day of 

measurement. Symbols ∅ denote the time of day as angular radians. b6 is a fixed 

regression coefficient on the linear covariate of the daily background gas 

concentrations during the morning AMS cleaning cycle. Terms b1i and b2i are random 

effect parameters for each of the two instruments and Zi1 and Zi2 relate responses yi 

to methods. The above equation can be re-written in matrix notation equations for 

further clarification: 

 

𝑦𝑖 = 𝑋𝑖𝛽 +  𝑍𝑖𝑏𝑖 +  𝜖𝑖 

with      𝑏𝑖~ 𝑁𝑚(0, 𝐷)     

and      𝜖𝑖~ 𝑁𝑛𝑖(0, 𝑅𝑖)         
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where (yi) is all the responses of the ith cow, modelled as dependent on 

systematic effects b given design matrix of fixed effects Xi, described for the equation 

above. Random effects of each instrument across cows is given by bi with incidence 

matrix Zi. Variance–covariance matrix D gives between cow variation and variance–

covariance matrix Ri gives within cow sources of variation. 

The method described in detail by Roy (2009) was employed to formally 

test the significance of differences for the between- subject, within-subject and total 

variances of the two instruments by means of log likelihood ratio tests between 

models differing for various combinations of structured or unstructured variance–

co-variance matrices D and Ri. The CIA was calculated as per Barnhart et al. (2007a) 

for comparisons without a reference method. 

Once sources of disagreement were  identified,  the  (yi) responses of the 

Gasmet were calibrated and standardised to that of the Guardian mean and total 

variance for both gases by means of STANDARD procedure in SAS. The 

aforementioned models were re-run to evaluate the effects of calibration and 

standardisation on measurement agreement, the results of which are summarised 

in Table 2.2. Furthermore, the sum of the intercepts, random solutions and residuals 

for each instrument and gas variable was taken as the per visit gas concentration 

corrected for daily background, time of day and date. The corrected per visit gas 

concentrations were then used to calculate the mean corrected gas concentration 

per day and the mean corrected daily concentrations per week. A reduced version 

of the model equation above only including fixed effects of day or week of 

measurement was utilised to estimate means and variances of the averaged gas 

phenotypes, the results of which can be found in Table 2.3 below. 

 

2.3. Results and discussion 

 

2.3.1. Time series alignment  

The alignment algorithm correctly identified a fixed time difference of 1 h 

between the Guardian time series and AMS time series due to inconsistent Daylight 

Saving Time (DST) implementation. Furthermore, a 320 s fixed difference was 

correctly identified between the Gasmet time series and AMS time series as per the 

differences between the start times recorded for the first cow after installation. The 

variable component of time drift between the time series of both instruments, the 

door sensors in the Guardian time series and the AMS time series can be seen in Fig. 

1 below. 
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Figure 2.1 Variable clock drift between instrument time series (Gasmet_Predicted & 

Guardian_Predicted), Guardian door sensors (Guardian Validation) and AMS time in 

seconds. 

For the Guardian, the prediction algorithm correctly identified the variable 

drift with a constant difference of 8 ± 4 s as compared with the door sensors in the 

AMS. The constant difference is attributed to the lag in time between the door 

opening and the first air sample containing the cow’s breath reaching the gas sensor. 

The Gasmet time series drifted approximately 1 s per day whereas the Guardian time 

series drifted approximately 0.2 s per day. For the Guardian time series the detection 

rate of the alignment algorithm was verified at 97% for fixed and constant drift on a 

daily basis as compared to the door sensors. For the Gasmet only the observed 

(fixed) difference between the time series for the first day was possible. The 

alignment algorithm greatly improves the alignment of gas concentration signal with 

the associated cow accounting for fixed time shifts and variable time shifts. Thus the 

algorithm removes a potential source of bias and error from the subsequent 

instrument comparisons. A plot of sample data for CH4 concentrations (PPM) for four 

cow visits from both instruments after alignment can be found in Fig. 2 below. A 

visual inspection of Fig. 2 reveals that whilst visible differences exist between 
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instrument readings, variable and fixed time drift are no longer a contributing factor 

to differences between instruments. 

 
Figure 2.2 CH4 gas signal for multiple cow visits after time alignment Guardian NG 

(Green solid line) Gasmet (Blue dashed line) 

 

2.3.2. Instrument comparison, calibration and standardisation 

The population means and all variance components differed (P < 0.05) for 

both gas concentrations between instruments (Table 2.1). As neither method is the 

reference method, we cannot report which instrument has the most accurate 

population means for either of the gas concentrations reported. The ICC estimates 

are moderate and similar in magnitude for each of the instruments and gas 

concentrations. Furthermore, they are directly comparable with those reported by 

Lassen et al. (2012) for the mean Gasmet gas concentrations on a per visit basis. 

Though discouraged in comparisons studies, we provide the Pearson’s correlation   

coefficients, which were moderate and positive between instruments for both gases. 

Considering that all sources of (dis)agreement differed significantly, it is not 

surprising that the CIA estimates are moderate and low for CH4 and CO2 

concentrations respectively, with the estimate for CO2 being particularly poor and 

worse than for CH4. Based on the criteria for statistical agreement of equivalence of
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Table 2.1 Sources of (dis)agreement for CH4 and CO2 concentrations per AMS visit after common time alignment 

 Methane concentration ln(PPM) Carbon Dioxide concentration ln(PPM) 

 Guardian Gasmet Guardian Gasmet 

Mean ± S.E. 6.808a ± 0.0176 6.564b ± 0.0292 8.478a  ± 0.0371 9.128b ± 0.0239 

Inter-Cow Variation 0.017a  0.045b 0.075a  0.031b 

Intra-Cow Variation 0.026a  0.091b  0.080a  0.035b 

Total Variation 0.042a  0.136b  0.155a  0.066b 

Intra-Class Correlations 0.39a 0.33a        0.48a  0.47a      

Pearson’s Correlation 0.55 0.44 

CIA 0.54 0.18 
a,b estimates with subscripts differ (P<0.05) 
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means and total variability suggested by Roy (2009), and the threshold of 

‘‘good” interchangeability (0.455) defined by Barnhart et al. (2007b), we can see that 

CH4  measures of both instruments can be used interchangeably but the CO2 cannot, 

without further remedy to the sources of disagreement. 

After calibration and standardisation of the Gasmet measurements to 

those of the Guardian it can be seen that the population means, inter-cow variation 

and  total  variation  no  longer  differ  (P > 0.05) (Table 2.2). While lack of a reference 

method precludes inference about the accuracies, inference about precision is 

possible using the intra-cow variation. The intra-cow variation differed (P < 0.05) for 

both CH4 and CO2 between instruments, with the Gasmet having marginally higher 

estimates for both gases. The ICCs and Pearson’s correlations are very similar to 

those computed before calibration and standardisation as they are largely 

unaffected by calibrations and variance scaling. The CIA estimates for CH4 and CO2 

increased substantially with 145% and 356% increases respectively, and were thus 

more similar for CH4 than for CO2. Using the criteria of statistical agreement and 

interchangeability we see that for CH4 and CO2 the  instruments  can  be used 

interchangeably. It will thus be beneficial to combine datasets from both instruments 

in the interests of increasing statistical power. 

The descriptive statistics, ICC and Pearson’s correlations for mean visit 

concentration per day and per week, after standardisation and calibration, are 

contrasted for CH4 and CO2 in Table 2.3 below. The population means do not differ 

for all pairs of gas concentration variables. The ICC estimates increase with each 

increase in time and thus, number of visits used to estimate mean values. The intra-

cow variation decreased as a function of 1 + r(n 1)/n where r  is  the  intra-class  

correlation  and  n  is  the  number  of repeated measures thus, the effect of  noise  

is  reduced while the animal variance remains constant i.e. averaging out 

imprecision. 

The ICC estimates for CH4 and CO2 of the Guardian are in the order of 

magnitude of those reported by Bell et al. (2014b) for a similar phenotype estimated 

on per week of lactation basis. Differences between instruments were expected as 

instruments differed on multiple technical aspects e.g. gas concentration sensitivity 

ranges, differential pumping rates, differential sensitivities to temperature and 

humidity, etc. Moreover the Guardian instrument in this study is dedicated solely to  

measuring CH4 and CO2 intensities, whereas the Gasmet records and transforms IR 

spectra into ten different gases including CH4 and CO2. Auto-correlations between 

flanking spectral regions could be the cause of the marginal increase in imprecision 

observed with the Gasmet instrument. 
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Table 2.2 Sources of (dis)agreement for CH4 and CO2 concentrations per AMS visit after common time alignment, calibration and 
standardization 

 Methane concentration ln(PPM) Carbon Dioxide concentration ln(PPM) 

 Guardian Gasmet Guardian Gasmet 

Mean ± S.E. 6.806a ± 0.0178 6.791a ± 0.0169 8.479a ± 0.0169 8.439a ± 0.0371 

Inter-Cow Variation 0.017a  0.015a  0.074a  0.075a  

Intra-Cow Variation 0.028a  0.031b  0.078a  0.086b  

Total Variation 0.045a  0.046a  0.151a  0.161a  

Intra-Class Correlations 0.38 0.33 0.49 0.46 

Pearson’s Correlation 0.49 0.42 

CIA 0.78 0.65 
a,b estimates with subscripts differ (P<0.05)
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Table 2.2 Average daily and weekly gas concentrations for standardised measurements   

 Methane Concentration Carbon Dioxide Concentration  

 Guardian Gasmet Guardian Gasmet 

Mean Visit per Day Ln(PPM)    

Mean ± S.E. 6.658a ± 0.018 6.641a ± 0.017 8.313 a ± 0.037 8.272 a ± 0.037 

Inter-Cow Variation 0.017 0.016 0.074 0.072 

Intra-Cow Variation 0.012 0.015 0.036 0.050 

Intra-Class correlations  0.58 0.51 0.67 0.58 

Pearson’s correlation 0.45 0.41 

Mean Visit per week Ln(PPM) 

Mean ± S.E. 6.655a ± 0.018 6.642a ± 0.017 8.307a ± 0.037 8.273a ± 0.0371 

Inter-Cow Variation 0.016 0.016 0.074 0.071 

Intra-Cow Variation 0.003 0.005 0.012 0.018 

Intra-Class correlations  0.84 0.77 0.87 0.80 

Pearson’s correlation 0.49 0.42 
a,b estimates with subscripts differ (P<0.05) 
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2.4. Conclusion 

 

We detected fixed and variable shifts in time series between instruments 

and our algorithm was effective in aligning data series to a common clock time on a 

per day basis. Instead of genetic correlations between measurements exceeding 0.8 

or simultaneous measurements with a reference method, we make use of statistical 

agreement and interchangeability to assess equivalence of methods. Measurements 

of CH4 and CO2 from both instruments can be used interchangeably provided sources 

of disagreement are identified and corrected for by means of calibration and 

standardisation. However, simultaneous repeated measures on multiple cows by 

both instruments are required to identify sources of disagreement. The ICC 

estimates show the inter-cow variation is considerable, particularly with 

measurements recorded over a one week period and is encouraging for genetic 

improvement of the phenotype. It is pertinent to note, the phenotypes estimated 

here are gas concentrations and not absolute emissions. Further comparisons 

between techniques which estimate emissions from concentration are required.  
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2.5. Appendix  

 

2.5.1. Algorithm steps for prediction of cow entry times and head 

lifting 

Step 1: Holt’s double exponential smoothing:  

The smoothed value (�̅�𝑡), slope (�̅�𝑡), and forecast (�̅�𝑡+1) of CO2 gas 

concentrations for both instruments for each time point were established: 
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�̅�𝑡 =  𝛼𝑦𝑡 + (1 −  𝛼)(�̅�𝑡−1 + �̅�𝑡−1) 

�̅�𝑡 =  𝛽(�̅�𝑡 −  �̅�𝑡−1) + (1 − 𝛽)�̅�𝑡−1 

�̅�𝑡+1 =  �̅�𝑡 +  �̅�𝑡  

The smoothing factors α and β gives relative weights to new information 

and was determined by means of a grid search though parameter space 0 to 1 to 

increments of 0.1 to minimize the Mean Square Forecast Error (MSFE):  

𝑀𝑆𝐹𝐸 =  ∑(�̅�𝑡 − 𝑦𝑡)2/𝑡

𝑡

𝑖=1

 

Step 2: Deviations from Smoothed Value:  

For each time step, the deviation between the observed CO2 concentration 

and the smoothed value was calculated as the square of the simple difference: 

�̅�𝑡 
2 = (𝑦𝑡 − �̅�𝑡)2 

Step 3: Detection of Cow entry:  

The square deviations of smoothed value were expected to be nearly free 

of diurnal variations and thus reach 0 between cow visits. Therefore square 

deviations exceeding a threshold (δ) indicated a sudden change. A rule was applied 

whereby a reading exceeding the threshold with three past square deviations below 

the threshold, along with three consecutively increasing slope values, was defined 

as the start of a cow entry. 

Step 4: Detection of cow head lifting:  

A second threshold (φ) was defined as the upper 95% confidence interval 

from the ambient CO2 concentrations found during the morning AMS cleaning 

cycles. If the slope increased for three consecutive time steps followed by three 

decreasing time steps, it was defined as a peak. Thus readings must contain peaks 

and the smoothed value exceeding the threshold (φ) to be defined as cow head 

inside the bin.  

Step 5: Calculation of time displacement:  

The time elapsed between each predicted cow entry point and the 

successive predicted entry point was extracted and stored in an n x 2 array, where n 

is the total number of predicted visits. Similarly, the time elapsed between each AMS 

entry time and the successive entry time was extracted and stored in a separate n x 

2 array where n is the number of visits. For both arrays each row was summed and 
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match merged by use of SQL Procedure in SAS with a tolerance of 20 seconds and 

added limitation that matches must have the same date. Three consecutive correctly 

predicted cow entries are required to achieve a match with three consecutive AMS 

cow entry times. The difference between the times of the predicted cow entry and 

the AMS cow entry gives the time displacement between each time series. Time 

displacement estimates are further filtered by narrowing the range of displacement 

to +/- (01:01:00 hours) allowing for clock changes at Daylight Saving Time onset and 

reset. The mean of all displacement estimates for each day are then subtracted from 

the time variable of one of the datasets to bring the time series into ‘common time’ 

and allow merging by time. 

Step 6: Optimization and validation:  

A subset of the data from each instrument was used as a training set to 

optimize thresholds for cow entry prediction. This consisted of the 3:00 to 6:00 

period during which a cleaning cycle occurred and readings are assumed to have 

fallen to ambient barn concentrations, and the 10:00 until 13:00 when many milkings 

follow in quick succession and thus readings between milkings are assumed to not 

always have fallen to ambient levels. If the threshold (δ) is set too high the detection 

rate in the later subset is low. Conversely, if the threshold is too low multiple false 

positives are predicted within each visit. Since the two scenarios are antagonistic, an 

optimization was performed. The α = 0.9, β = 0.1, δ = 500 and φ ranged between 600 

and 1000 for both instruments. 

The Guardian had integral door sensor readings from the gates of the AMS. 

A 2 x n array was constructed as per those above and match merged to the array 

from the AMS dataset. The displacement between the door sensors and AMS was 

then utilized as a known time displacement to validate the algorithm for the 

Guardian dataset only. 
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Abstract 

 

The objective of the study was to assess the ranking of dairy cows using 

individual level correlations for methane (CH4) emission phenotypes on-farm 

using sniffers and in respiration chambers. In total 20 lactating dairy cows, ten 

Danish Holstein and ten Danish Jerseys were recorded for three weeks of 

lactation prior to relocation and acclimation at the respiration chamber (RC) 

facility where they were each recorded on three occasions within the RC. 

Pairwise bivariate linear mixed models were used to determine the individual 

level correlations (rI) between sniffer phenotypes and RC phenotypes as proxies 

for genetic correlations. Despite differences in feeding and management, the 

predicted CH4 production on farm from sniffers correlated well with CH4 

production in the RC (CH4_RC) rI = 0.77 ± 0.18 and the direct CH4 breath 

concentration (CH4_C) correlated nearly as well with CH4_RC rI  = 0.75 ± 0.20. 

The correlations between CH4 emission phenotypes on-farm from sniffers and 

CH4_RC exceeded that of energy corrected milk yield, live weight and dry 

matter intake demonstrating the potential of sniffers measurements as large-

scale indicator traits for CH4 emissions in dairy cattle.  
  

 

Key words: Methane, sniffers, breath concentration, respiration chambers 
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3.1 Introduction 

 

Methane (CH4) is a potent greenhouse gas produced by dairy cattle and 

other ruminants as a natural by-product of fermentation. Research on numerous 

mitigation strategies such as nutritional additives, vaccines, and genetic 

improvement, has gained impetus in recent years (Hill et al., 2016). Whilst a reliable 

and accurate measure of CH4 emission forms the basis of evaluating all of the 

aforementioned strategies, they differ in requirements of accuracy and precision as 

well as the number, frequency and duration of measurement (Hammond et al., 

2016). For instance, genetic evaluations require measurements on large numbers of 

animals under the environmental conditions they are expected to perform (Falconer 

and Mackay, 1996). 

Indirect calorimetry respiration chambers (RC) are the ‘gold standard’ for 

CH4 emission meaning RC are regarded as the most accurate and precise 

measurement from which different instruments or techniques are benchmarked 

(Grainger et al., 2007; Hill et al., 2016). The high accuracy and precision of RC have 

the benefit of detecting relatively small effects of diets and treatments on CH4 

production with small numbers of animals (Patra, 2016). However, the cost for using 

RC are high and labor intensive, and are prohibitive to obtaining measurements on 

large numbers of animals (Grainger et al., 2007; Madsen et al., 2010). Furthermore, 

the effects of confinement within the chamber may alter animal behaviour and are 

not necessarily representative of all production systems like extensive grazing 

systems (Storm et al., 2012), although promising developments have led to 

reductions in costs and reduced stress due to confinement (Hellwing et al., 2012). 

Thus the merit of genetic selection under RC conditions and the expectation of 

reduced CH4 emissions under environmental conditions in which animals are 

expected to perform, have been called into question (Lassen and Løvendahl, 2016). 

A method that has proven well suited to obtaining large numbers of 

records on individual animals under commercial conditions is the high-throughput, 

cost effective, and non-invasive ‘sniffers’ installed in the feed bin of automated 

milking stations (AMS) or concentrate feeders (Garnsworthy et al., 2012; Lassen et 

al., 2012; Negussie et al., 2016). The non-invasiveness is achieved by limiting the 

animal-to-instrument interface, so that the animal is not aware it is being measured 

and measurement does not disrupt farm activities. The disadvantages of this are a 

loss of precision due to variable barn gas dynamics and added noise if head 

movement of the cow and background barn gas levels are not accounted for 

(Huhtanen et al., 2015; Difford et al., 2016; Wu et al., 2018). Furthermore, sniffer 

methods record the concentration of gases in the captured breath of the cow during 
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milking and are thus a spot measure of gas concentrations and not a full 24 hr mass 

flux measure (Huhtanen et al., 2015). Rather they utilise the ratio of measures CH4 

to carbon dioxide (CO2) and predicted CO2 as a tracer gas to approximate CH4 

production in litres per day (Madsen et al., 2010).  

New methods which are cheaper, faster or less invasive are continually 

under development and are of value in situations where the gold standard proves 

expensive or prohibitive to recording on large numbers of animals. From the genetic 

evaluation perspective a new method can replace a gold standard method when 

their genetic correlation exceeds 0.80 (Robertson, 1959). Furthermore, if the genetic 

correlation is moderate to high and the new method is heritable, it can serve as an 

indicator trait (Negussie et al., 2017). However, the number of related animals with 

simultaneous measurements by both methods required to accurately estimate 

genetic correlations with meaningful standard errors, numbers in the order of 

thousands of animals (Visscher, 1998). Should measurements with both methods be 

made on different animals or animals at different points in time the number of 

animals required to accurate estimate genetic correlations will be far higher (Bijma 

and Bastiaansen, 2014). In the case of CH4 emission, the RC constitute a separate 

environment as most other methods cannot be recorded simultaneously within the 

RC and remain representative. Genetic correlations remain elusive, despite calls for 

international collaborations and the need for genetic correlations between different 

methods of recording methane emission in dairy cattle (Pickering et al., 2013). It is 

of interest to researchers and stakeholders to determine the potential difference 

between methods in ranking of animals prior to the investment in thousands of 

records using both methods, particularly when the gold standard is expensive and 

cost limiting. To this end, estimating the repeatability of each method and the 

individual level correlations between methods is of value. The repeatability of a 

method serves as the upper threshold for heritability estimates and individual level 

correlations serve as proxies for genetic correlations, respectively (Falconer and 

Mackay, 1996; Wolak et al., 2012). 

The objective of the present study was to assess the consistency in ranking 

of dairy cows for CH4 emission phenotypes obtained using sniffers and respiration 

chambers.  
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3.2 Materials and methods 

 

3.2.1 Design and animals 

This experiment was designed to compare CH4 measurements obtained by 

the non-invasive sniffer method during AMS milking of cows with the open circuit 

respiration chamber method, which is the intensive and traditional method. The link 

between the two methods was obtained by having 20 cows (ten Holstein and ten 

Jersey) measured first by the sniffer method in a semi-commercial setting and then 

transferred to the respiration chamber facility for repeated measurements during a 

feeding experiment. 

 

3.2.2 Sniffer AMS measurement  

Data on CH4 and CO2 gas concentrations from the breath of individual 

Holstein and Jersey cows recorded during milking at Danish Cattle Research Centre 

(DCRC, Foulum, Denmark), where sniffer sensors were installed in each of the three 

AMS (DeLaval International AB, Tumba, Sweden). The sniffer instrumentation is 

comprised of two sensors, the CH4 sensor (Guardian NG, Edinburgh Instruments Ltd, 

Livingston, UK) and the CO2 sensor (Gascard, Edinburgh Instruments Ltd, Livingston, 

UK).The equipment installation, technical specifications, and calibration procedures 

for the sensors are described elsewhere (Difford et al., 2016). The DCRC barn is a 

free-stall housing system with individual cubicles and two Holstein and one Jersey 

management groups, each with an AMS. Cows were offered TMR with an 

approximate forage to concentrate ratio of (70:30) ad libitum in individualized 

feeding troughs (RIC-system, Insentec, Marknesse, The Netherlands). Cows were 

provided up to 3 kg of concentrate per day (Table 3.1) within the feed bin of the 

AMS, based on levels of production and thus differences in the forage to concentrate 

ratio between cows is to be expected. Cows had free access to AMS and presented 

on average 2.4 ± 0.86 visits/d (mean ± SD) during the period of measurement. Data 

on live weight is recorded 10 times every second during AMS milking and the 

processed as described in (Bossen et al., 2009). Milk production from the AMS and 

fat, protein and lactose percentage estimated from 48 hr periods each week 

(Løvendahl and Bjerring, 2006). The estimated milk components were used to 

correct milk production for fat, protein, and lactose content (ECM) (Sjaunja et al., 

1991).  

Gas concentrations measured in the on-farm AMS was aligned and merged 

with the entrance and exit time for each cow visit to the AMS. Data was omitted 

when the cow’s head was predicted to be outside the feed bin using the algorithm 

described in Difford et al. (2016). The CH4 and CO2 gas concentrations for the 
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morning cleaning cycle, when the AMS is empty of any cow, were taken as the 

ambient barn concentrations for each day, and deducted from the means of each 

cow visit to obtain background corrected gas concentrations. The starting time for 

each visit in the AMS was converted to 24 h angular radians for further modelling of 

diurnal variation in a Fourier series approach (Lassen et al., 2012). The following 

model was used on all available DCRC data, within AMS to obtain daily visits 

corrected for sensor drift, daily variation, and time of day: 

 

yijklm = μ + di + bj +  ∑3k=1(f1ksinθ + f2kcosθ) + Cl + eijklm    (1) 

 

where yijklm is the natural logarithm of background corrected AMS visit 

means of CH4 and CO2; di is the fixed effect of test day i (i = 23 d); bj is the fixed effect 

of the first full day after each calibration j (j = 3); f1k and f2k are the fixed regression 

coefficients of Fourier series linear covariates of the time of day of measurement, 

modelled as harmonic pairs.  The time of day of visit expressed as 24 h angular 

radians is denoted by θ. Term Cl is the random effect parameter for each cow Cl ~ ND 

(0, Iσ2c), and eijklm is the random residuals ~ ND (0, Iσ2e). In order to correct daily AMS 

visit means, the random residuals for each visit are combined with random cow 

solutions, intercept, calibration day, and the regression coefficients f1k and f2k 

multiplied by the angular radian corresponding to 12:00:00 a.m. Further, the CH4 

concentration in parts per million and CO2 in ppm as the average per week of 

lactation, was obtained by taking the corrected means of visits weighted by the 

number of seconds for each visit. The average weekly breath concentrations on CH4 

and CO2 were natural log transformed, here after defined as CH4_C and CO2_C and 

combined with the weekly performance data from DCRC for ECM (ECM_C), LW 

(LW_C), and gestation length (GL). The average daily CH4 production per week of 

lactation (CH4_P; L CH4/d) was calculated using the ratio of CH4_C to CO2_C and the 

equation for CO2 production from heat production units utilizes ECM_C, LW_C, and 

GL (CIGR, 2002) and the conversion from heat production to CO2 to obtain predicted 

CO2 production (CO2_P; L CO2/d) (Pedersen et al., 2008) as suggested by Madsen et 

al. (2010). Data for the 10 Holstein and 10 Jersey cows from the last three weeks 

prior to relocation to the facilities with the RC was retained for further analysis 

together with RC records.  

 

3.2.3 Respiration chamber measurements 

The 10 lactating Holstein cows and 10 lactating Jersey cows were entered 

into a trial which contained two dietary treatments, a control and a high concentrate 

diet with respective forage to concentrate ratios of (68:32) and (39:61) in a cross-
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over design with back-cross (Olijhoek et al., 2018). The trial was divided into three 

periods with blocking consisting of four cows per block (five blocks in total per 

period) with the same cows in each block over periods. Each cow was recorded for 

duration of 3 d in period 1 and 2 d in periods 2 and 3. Methane and CO2 production 

in the RC (CH4_RC and CO2_RC) was calculated from the product of the total flow of 

outgoing air at standard temperature and pressure, and the difference between the 

gas concentrations in the outgoing air and the gas concentrations in the incoming air 

from the barn (background). Methane and CO2 concentration readings from when 

the chambers were opened twice daily for milking were omitted before calculating 

the average CH4 and CO2 production for each cow, during each period. The average 

LW and ECM from the RC visits (LW_RC and ECM_RC) was retained for further 

comparisons. The records from these cows were retained for comparison with sniffer 

measures recorded at DCRC for the same 20 cows as in the RC. 

 

3.2.4 Statistical Analysis 

Pairwise bivariate animal repeatability models were performed to estimate 

the variance components and control for fixed effects for the RC traits and the on-

farm traits. All analyses were performed using DMU version 6 (Madsen and Jensen, 

2014). The model for the RC traits was as follows: 

yijklmn = μ + Bi + Pj + Lk + Dl + Cm + eijklmn     (2) 

Where yijklmn is the trait of interest (CH4_RC, CO2_RC, LW_RC and ECM_RC), 

μ is the intercept, B is the i'th breed (I = 2 levels), P is the j’th period effect (j = 3 

levels), L is the k’th lactation number (k = 3 levels), D is the l’th effect of diet (l = 2 

levels), Cm is the random effect of the m’th cow N(0,σ2c) and e is the random residual 

N(0,Iσ2e).  

The model for the on-farm traits was as follows: 

yijklm = μ + Wi + BRj +  Lk + Cl + eijklm      (3) 

Where yijklm is the trait of interest (CH4_P, CO2_P,CH4_C,CO2_C, LW_C and 

ECM_C), μ is the intercept, W is the i'th week of lactation (I = 2 levels), BR is the j’th 

breed nested within AMS (j = 3 levels), L is the k’th lactation number effect (k = 3 

levels), Cl is the random effect of the l’th cow N(0,C σ2c) and e is the random residual 

N(0,Iσ2e).  

For all pairwise comparisons between RC and on-farm traits it was 

necessary to restrict residual covariance to zero as cows were recorded in different 

environments. Repeatability estimates (t) were obtained from the variance 

components by using the equation (4): 

𝑡 =  
𝜎𝑐

2

(𝜎𝑐
2+𝜎𝑒

2)
       (4) 
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Individual level correlations (rI), were computed as the correlation 

between random cow effects using variance components as shown in equation 4: 

𝑟𝐼 =  
𝜎2

𝑐1,𝑐2

√𝜎2
𝑐1.√𝜎2

𝑐2 
      (5) 

The standard errors of the individual level correlations and repeatability 

estimates where derived using Taylor series approximations.  

 

3.3 Results and discussion 

 

The descriptive statistics for on-farm phenotypes and RC phenotypes can 

be found in Table 3.1. The CH4 and CO2 phenotypes followed a similar trend where 

the predicted mass flux phenotypes CH4_P and CO2_P were closer to that of RC mass 

flux phenotypes CH4_RC and CO2_RC but with lower means, higher variability and 

consequently higher coefficients of variation (CV). The breath concentration 

phenotypes were then further from the means of the RC and predicted mass flux 

phenotypes with lower means and higher variability and CV. All CH4 and CO2 

phenotypes where moderately to highly repeatable ranging from t = 0.53 for CH4_C 

to t = 0.87 for CO2_P. Live weight and ECM were retained as control variables to 

ensure that the RC environment was not considerably different from that of the on-

farm environment for these production traits. The means, SD and CV for LW and ECM 

were compared across environments with similar descriptive statistics and 

repeatability estimates for example LW_C and LW_RC had similar means 568.2 vs 

564.5 kg and repeatability t=0.93 and t=0.98, respectively. Recognizing that in the 

case of the on-farm phenotypes, they are an average of many measurements from 

the AMS over a full week of lactation whereas RC phenotypes are the average of 

measurements over a 2 – 3 d period in the RC. 

The individual level correlations between on-farm phenotypes and RC 

phenotypes are reported in Table 3.2. For the control phenotypes, ECM and LW the 

individual level correlations (rI) between on-farm AMS and RC were close to unity 

0.86 ± 0.15 and 0.92 ± 0.04 respectively. These results indicate very similar ranking 

of cows across environments and that the effect of confinement within the RC was 

likely small. Many authors have reported that confinement within RC alters behavior 

and can induce stress resulting in a drop in feed intake (Beauchemin and McGinn, 

2006; Llonch et al., 2016). However, the RC in the present study were constructed 

from transparent polycarbonate to reduce costs and increase cow welfare, as 

supported by a study describing that these RC provoked no drop in DMI, when 

comparing before and during measurement in the RC (Hellwing et al., 2012).   
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Table 3.1. Descriptive statistics for on farm measurements and respiration chamber 

measurements. 

 Unit Mean SD CV (%) t1 

On farm2     

CH4_P L/d 573 73.9 12.9 0.58 ± 0.11 

CO2_P L/d 6771 578.7 8.5 0.87 ± 0.11 

CH4_C ppm 410 137.0 33.4 0.53 ± 0.11 

CO2_C ppm 5746 1791.7 31.2 0.56 ± 0.12 

CH4/CO2_C ppm/ppm 0.071 0.009 12.7 0.38 ± 0.13 

ECM_C Kg/d 38.1 5.93 18.1 0.71 ± 0.08 

LW_C Kg 568.2 57.3 10.1 0.93 ± 0.02 

DMI_C Kg/d 22.2 4.9  21.5 0.73 ± 0.07 

Respiration Chamber3     

CH4_RC L/d 521 56 10.7 0.61 ± 0.12 

CO2_RC L/d 6538 702.3 10.7 0.72 ± 0.10 

CH4/CO2_RC L/L 0.081 0.006 7.7 0.57 ± 0.14 

ECM_RC Kg/d 28.3  5.6 19.8 0.65 ± 0.12 

LW_RC Kg 564.5 62.3 11.0 0.98 ± 0.01 
1t = repeatability intraclass correlation coefficient. 2On farm phenotypes: 

CH4_P = predicted methane production; CO2_P = predicted carbon dioxide 

production; CH4_C = methane breath concentration; CO2_C = carbon dioxide breath 

concentration; CH4/CO2_C = ratio of methane to carbon dioxide breath 

concentration; ECM_C = Energy corrected milk yield; LW_C = live weight; DMI_C = 

dry matter intake. 3Respiration chamber phenotypes: CH4_RC = methane 

production; CO2_RC = carbon dioxide production; CH4/CO2_RC = ratio of methane 

to carbon dioxide production; ECM_RC = energy corrected milk yield; LW_RC = live 

weight. 
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Table 3.2 Individual level correlations between on farm phenotypes and respiration chamber phenotypes 

 Respiration chamber2 

On farm1 CH4_RC CO2_RC CH4/CO2_RC ECM_RC LW_RC 

CH4_P 0.77 ± 0.18 0.63 ± 0.10 0.70 ± 0.24 0.68 ± 0.21 -0.09 ± 0.29 

CO2_P 0.74 ± 0.13 0.79 ± 0.14 0.41 ± 0.29 0.58 ± 0.22 0.20 ± 0.27 

CH4_C 0.75 ± 0.20 0.80 ± 0.16 0.03 ± 0.39 0.21 ± 0.35 0.60 ± 0.22 

CO2_C 0.62 ± 0.24 0.76 ± 0.18 -0.35 ± 0.38 0.06 ± 0.40 0.69 ± 0.18 

CH4/CO2_C 0.60 ± 0.27 0.29 ± 0.37 0.83 ± 0.23 0.68 ± 0.23 -0.66 ± 0.24 

ECM_C 0.66 ± 0.20 0.54 ± 0.23 0.52 ± 0.26 0.86 ± 0.15 -0.14 ± 0.27 

LW_C 0.54 ± 0.22 0.68 ± 0.16 -0.32 ± 0.33 -0.24 ± 0.28 0.92 ± 0.04 

DMI_C 0.70 ± 0.17 0.64 ± 0.18 0.18 ± 0.33 0.33 ± 0.26 0.39 ± 0.22 
1On farm phenotypes: CH4_P = predicted methane production; CO2_P = predicted carbon dioxide production; CH4_C = 

methane breath concentration; CO2_C = carbon dioxide breath concentration; CH4/CO2_C = ratio of methane to carbon dioxide 

breath concentration; ECM_C = Energy corrected milk yield; LW_C = live weight; DMI_C = dry matter intake. 2Respiration chamber 

phenotypes: CH4_RC = methane production; CO2_RC = carbon dioxide production; CH4/CO2_RC = ratio of methane to carbon dioxide 

production; ECM_RC = energy corrected milk yield; LW_RC = live weight. 
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The predicted mass flux phenotype CH4_P showed the highest rI of any on-

farm phenotype with CH4_RC 0.77 ± 0.18 which approaches the threshold of 0.80 

for no significant re-ranking, however the standard errors thereof are large. This 

finding agrees with that of Hellwing et al (2013), who compared CH4 production 

calculated from the ratio of CH4 to CO2 measured within the RC and predicted CO2 

production to CH4 production measured in the RC for 157 cow measurements in 8 

feeding experiments and found an R2 of 55% which would corresponds to a 

correlation of 0.74. The performance of CH4_P is reliant on the accuracy of 

prediction of CO2_P as a tracer gas, the rI between predicted mass flux (CO2_P) and 

actual measured CO2 production (CO2_RC) was in a similar order of magnitude rI = 

0.79 ± 0.14 to that of CH4_P and CH4_RC. A criticism of this CO2 prediction equation 

is that the metabolizable energy (ME) efficiency and mobilization of body tissues is 

not taken into account, which runs the risk of over predicting CO2 production of 

efficient cows (increased LW and ECM at a fixed level of intake) and under predicting 

CO2 production of inefficient cows (Madsen et al., 2010; Huhtanen et al., 2015). It 

may be possible to improve the rI between CH4_P and CH4_RC through improving 

the prediction accuracy of CO2_RC by taking into account ME utilization. For instance 

Negussie et al (2016) compared CH4_P predicted from the ratio of CH4 to CO2 

concentration in the breath of 20 lactating Nordic Red cattle in concentrate feeders 

and CO2_P predicted from metabolizable energy intake and found CH4_P to have a 

high concordance correlation coefficient 0.70 and phenotypic correlation 0.80 with 

CH4_RC.  

Since all prediction equations have some level of inherent error and traits 

used in the prediction of CO2_P, e.g. ECM_C, are already in the breeding goal, there 

is interest in assessing value of directly measured traits like CH4_C and CO2_C with 

RC traits. In this instance CH4_C ranked animals comparatively well with CH4_RC rI = 

0.75 ± 0.20 as compared to CH4_P and CH4_RC rI = 0.77 ± 0.18 and exceeded that of 

both commercial control variables ECM_C, LW_C and DMI_C, which are routinely 

used to predicted CH4 production (Ramin and Huhtanen, 2013).  

A number of authors have labelled breath gas concentration measures as 

imprecise (Huhtanen et al., 2015; Goopy et al., 2016; Wu et al., 2018) and this may 

be the case as seen by the lower repeatability estimates of CH4_C and CO2_C and 

the increased CV as compared to other phenotypes. However, the aforementioned 

studies often compare mass flux CH4 production (g/day) to CH4 breath 

concentrations using the coefficient of determination (R2) with the expectation that 

a deviation of R2 from unity (1.0) indicates imprecision. However, the R2 metric 

reflects a combination of between cow variation and residual error (imprecision), 

recognizing that CH4_C is a separate, by likely correlated trait deviations of R2 from 
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1.0 are to be expected regardless of imprecision. In the present study, we made use 

of individual level correlations which have been corrected for non-genetic effects 

which can inflate between subject variability (i.e. parity, diet, lactation stage, breed) 

and thus phenotypic correlations. Furthermore, repeated measures per cow allows 

for partitioning and removal of residual variance (imprecision) which can bias 

phenotypic correlations downwards (Adolph and Hardin, 2007; Dingemanse and 

Dochtermann, 2013). Thus individual level correlations are one-step closer to genetic 

correlations as compared to phenotypic correlations and the coefficient of 

determination and are not attenuated by imprecision (Bakdash and Marusich, 2017). 

 

3.4 Conclusions 

 

Methane emission traits derived from breath gas measurements during 

milking correlated the highest with methane production in respiration chambers, 

exceeding that of live weight, energy corrected milk yield and dry matter intake. 

However, breath gas phenotypes did not exceed a correlation of 0.80 with CH4 

production in the RC and thus have potential to serve as large-scale indicator traits 

of CH4 production. Whilst individual level correlations can serve as a proxy for 

genetic correlations, genetic correlations between RC phenotypes and breath gas 

phenotypes are still needed for effective use in genetic selection indices. Given the 

difficulties in acquiring suitably large numbers of cows in RC, the most feasible 

current way to achieve this is through international collaborations and incorporation 

of genomic information.  
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Abstract 

 

There is considerable interest in improving feed utilization of dairy cattle whilst 

limiting losses to the environment (i.e. greenhouse gases (GHG)). In order to breed 

for feed efficient or climate friendly cattle, it is first necessary to obtain accurate 

estimates of genetic parameters and correlations of feed intake, greenhouse gases 

and production traits. Reducing dry matter take (DMI) whilst maintaining production 

has high economic value to farmers, but DMI is costly to record and thus limited to 

small research or nucleus herds. Conversely, enteric methane (CH4) currently has no 

economic value, and is also costly to record and is limited to small experimental 

trials. However, breath gas concentrations of methane (CH4c) and carbon dioxide 

(CO2c) are relatively cheap and have a high throughput under commercial conditions 

by installing sniffers into automated milking stations. The objective of this study was 

to combine DMI records from Denmark (DNK) and The Netherlands (NLD) and assess 

the genetic correlations with body weight (BW), fat and protein corrected milk yield 

(FPCM) and GHG related traits: CH4c and CO2c. Secondly, to assess the genetic 

potential for reducing DMI whilst maintaining FPCM and BW, and the added benefits 

of using CH4c and CO2c as indicators. Feed intake data was available on 812 

primiparous cows in DNK and 2112 in NLD. Furthermore, CH4c and CO2c records 

were available on 478 primiparous cows in DNK and 660 in NLD. Genetic parameters 

were estimated using full trait animal models for DNK, NLD and combined from both 

countries. A restricted selection index for reducing DMI whilst maintaining FPCM and 

BW (genetic residual feed intake, gRFI) was heritable in and over both countries (DNK 

= 0.15, NLD = 0.17, Combined = 0.14), and genetically correlated to DMI (DNK = 0.21, 

NLD = 0.74, Combined = 0.64), but uncorrelated to FPCM and BW. The greenhouse 

gas related traits were heritable e.g. CH4c (DNK = 0.26, NLD = 0.16, Combined = 0.22), 

and moderately genetically correlated to DMI (DNK = 0.58, NLD = 0.29, Combined = 

0.41). The relatively cheap GHG related traits showed considerable potential to 

improve the accuracy of breeding values of the highly valuable breeding goal traits 

feed intake and feed efficiency.  

 

 

Key words: Breath concentration, Feed efficiency, Methane, Sniffers 
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4.1 Introduction 

 

The dairy industry faces major challenges to remain profitable whilst 

maintaining environmental sustainability (for instance mitigating greenhouse gas 

emissions like methane (CH4) and carbon dioxide (CO2)). Feed plays a crucial role in 

economic and environmental performances of dairy production units, as feed 

constitutes the highest variable cost of production (Hemme et al., 2014). Feed 

composition affects not only CH4 emissions at an individual cow level (Hristov et al., 

2013), but the entire dairy production chain as well (Møller et al., 2014). The primary 

income from milk is volatile as milk prices often fail to increase with feed prices 

(Hemme et al., 2014). A promising way to increase profitability is to reduce feed costs 

through reducing feed intake and improving or maintaining production in the 

breeding objective (Veerkamp, 1998; de Haas et al., 2012). In other words, 

identifying cows that require less feed to give the same levels of production as 

contemporaries. 

However, feed efficiency is not a directly observable trait, rather it is a 

combination of multiple traits including feed intake and production. Feed efficiency 

is thus defined as feed intake conditional on a combination of production traits or 

energy sinks (e.g. fat and protein correct milk (FPCM), body weight (BW), etc.) 

(Jensen et al., 1992). The most prevalent feed intake trait is dry matter intake (DMI), 

as this accounts for differences in moisture content of feeds and is the most 

prevalent across countries (Berry et al., 2014). The recording of DMI is labor 

intensive, expensive and limited to small research or nucleus herds, resultantly the 

reliability of sire breeding values are low (de Haas et al., 2012). This could in principle 

be overcome by including heritable and  correlated predictor traits measured on a 

large scale in commercial and research herds in conjunction with accurate small scale 

research and contract herds with DMI recording (Berry and Crowley, 2013; 

Manzanilla-Pech et al., 2016; Wallén et al., 2017).  

Identifying the cows that genetically require lower feed intake whilst giving 

the same levels of production as contemporaries is challenging, as DMI is highly 

genetically correlated to production traits like FPCM and BW (Manzanilla Pech et al., 

2014). Resultantly, selection for decreased DMI is expected to have correlated 

reductions is FPCM and BW, which would simultaneously decrease feed costs and 

income from milk production. Feed efficiency traits like feed conversion ratio (FCE = 

FPCM/DMI) and residual feed intake (RFI), fare no better as both retain genetic 

correlations with production traits (Manafiazar et al., 2015). Following a restricted 

selection index approach (Kennedy et al., 1993) defined genetic residual feed intake 

(gRFI) as DMI genetically independent of FPCM and BW, which overcomes the 
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inherent deficiencies of ratio or phenotypic regression residual definitions of feed 

efficiency (Lu et al., 2015). However, the desirable statistical properties of gRFI can 

also hinder its uptake, since sufficiently large numbers of records on animals are 

required to accurately estimate the genetic correlation between DMI, FPCM and BW, 

which are likely only achievable through international collaborations (Berry et al., 

2014). Furthermore, FPCM and BW can no longer serve as large-scale indicators of 

gRFI outside of their use as indicators of DMI, as they are genetically uncorrelated to 

gRFI. Given the difficulties in obtaining DMI records on large numbers of cows, there 

is a need for other easily recorded large scale traits genetically correlated to gRFI 

that are independent of FPCM and BW. 

Studies using the intensive gold standard respiration chambers have shown 

high phenotypic correlations between mass fluxes of the greenhouse gas traits 

(GHG), CH4 and CO2 with DMI (Yan et al., 2010). Furthermore, the calorie value of 

CH4 has been estimated as 2% - 12% of the gross energy intake of the cow (Johnson 

and Johnson, 1995). This has led to numerous prediction equations employing DMI 

and feed components to predict CH4 production (Ellis et al., 2007; Ramin and 

Huhtanen, 2013), and genetic and genomic parameters for predicted CH4 emission 

from DMI or metabolisable energy intake (de Haas et al., 2011; Negussie et al., 2014). 

Furthermore, predicted methane emission was found to be favorably genetically 

correlated to phenotypic RFI (de Haas et al., 2011). Thus turning this idea around, 

GHG traits like CH4 production could potentially serve as indicator traits for DMI and 

gRFI. However, respiration chambers (RC) have high capital and labor costs and have 

mostly proven prohibitive to large scale genetic evaluations, with the largest studies 

using RC reaching approximately 1000 individuals in growing beef or sheep breeds 

(Pinares-Patiño et al., 2013; Donoghue et al., 2016). Furthermore, confinement 

within the RC is known to impact natural animal behavior and can cause a drop in 

DMI, leading many to question the extrapolation of these results to intensive 

commercial and grazing systems (Pinares-Patiño and Clark, 2008). Thus, the potential 

of GHG traits recorded using RC as indicator traits remains limited. 

Recently, a cost effective, non-invasive and high through put method of 

recording methane (CH4c) and carbon dioxide concentrations (CO2c) in the breath 

of individual cattle under commercial conditions, whilst milking in the automated 

milking stations (AMS) (Garnsworthy et al., 2012a; Lassen et al., 2012) or concentrate 

feeders has emerged, collectively known as sniffers (Negussie et al., 2016). Since 

sniffers record gas concentrations and not mass fluxes, researchers have used scaling 

factors and calibrations (Garnsworthy et al., 2012b) or predicted CO2 as a tracer gas 

to approximate CH4 mass fluxes (Madsen et al., 2010). These approximations have 

been shown to be heritable, genetically correlated with FPCM and BW and have good 
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concordance with RC (Garnsworthy et al., 2012b; Lassen and Løvendahl, 2016; 

Negussie et al., 2016). The direct measures CH4c and CO2c have recently been 

reported as lowly heritable 0.11 and 0.12, respectively (van Engelen et al., 2018). 

However, the genetic correlations of CH4c and CO2c with feed intake and production 

traits are currently not known and their potential as indicator traits for DMI or gRFI 

is under-exploited. 

The aims of this study were to estimate genetic parameters for feed intake 

related traits and greenhouse gas related traits in primiparous Holsteins in Denmark 

(DNK) and The Netherlands (NLD). Secondly, assess the use of breath concentration 

GHG traits as large-scale indicator traits for improving the accuracy of breeding 

values for DMI and gRFI. 

 

4.2 Materials and Methods 

 

4.2.1 Design and animals 

Data on individual DMI, BW and FPCM as well as CH4c and CO2c was 

collected repeatedly over lactation in primiparous Danish Holstein and Dutch 

Holstein Friesian cows. Both countries have recorded DMI, BW and FPCM in indoor 

research herds over the last few decades, with numerous nutritional trials of various 

total mixed ration (TMR) feeds and expressed these as weekly averages for genetic 

evaluations. More recently, both countries have installed non-invasive sniffers in 

AMS at the research stations and in commercial herds for the repeated recording of 

CH4c and CO2c, expressed as weekly averages. The commercial herds were included 

to improve the representativeness of genetic parameters estimated and 

convergence of multitrait animal models as these herds had CH4c, CO2c, FPCM and 

BW. The data collection, editing and analysis is presented below. 

 

4.2.2 Data Collection and Editing: Feed intake traits 

Denmark. A total of 29,084 weekly averaged records for DMI, BW and milk 

yield (MY) were available on 812 primiparous Danish Holstein cows which calved 

from 1995 - 2015. Cows that calved between 1995 to 2000 were located at 

Ammitsbøl Skovgaard research herd (Skovgaard, Vejle, Denmark), from November 

2001 until present the cows were relocated to the Danish Cattle Research Center 

(DCRC; Foulum, Denmark), as previously reported (Li et al., 2017). The Skovgaard 

barn was a tie stall system, with milking conducted twice daily and proportional 

samples drawn to estimate milk fat, protein and lactose content. Body weight 

measurements taken once a week until 3 months after calving at which point they 

were weighed fortnightly. Cows were fed manually 3 – 5 times a day to allow for 5% 
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refusal and individual refusals recorded to determine feed intake, weekly samples of 

feed were taken to estimate dry matter content of the rations. The DCRC barn is a 

loose housing system where cows have free access to ad libitum feed in individual 

automated feed bins (RIC system, Insentec B.V., Marknesse, the Netherlands). Cows 

also had access to automatic milking stations (AMS; DeLaval AB, Tumba, Sweden) 

where they were offered up to 3kg of concentrate a day within the integral AMS feed 

bins. The AMS was fitted with a weighing platform (Danvaegt, Hinnerup, Denmark) 

to record BW at each milking and a device delivering and recording the amounts of 

concentrates and refusals.   

Cows were entered into numerous nutritional trials at DCRC and have 

remained on a largely unchanged control TMR diet in between trials, which consists 

of rolled barley, corn silage, grass clover silage, rapeseed meal, and soybean meal. 

The DM contents of the TMR and concentrates were determined from regular 

analysis and combined with averaged weekly feed intake to obtain DMI per cow per 

week of lactation. Although multiple trials calculated, energy contents of specific 

feed treatments, energy intake was largely unavailable for the majority of cows. The 

diets within a specific treatment are expected to be the same, whilst dietary 

differences between treatment levels are expected. Furthermore, the dietary 

composition of the control diets can be expected to change with the influences of 

year and seasons on feed ingredients (Nielsen et al., 2003). Thus, an experiment by 

treatment interaction term was created which corresponds to the experimental trial 

and specific treatment in the case of nutritional experiments and a year by season 

variable for the control diet. This method of modelling the changes in ration is 

consistent with modelling longitudinal intake data in other internal genetic 

evaluations such as the global dry matter initiative (gDMI) (Berry et al., 2014).  

When combining the data from Skovgaard where milking was conducted 

twice daily and DCRC where milking was voluntary in AMS, the 3 d moving average 

approach described by ICAR (2016) was employed. In this approach daily MY is 

obtained from, the sum of yield over 3 d divided by milking intervals and multiplied 

by 24 h. Milk composition was determined from every milking over a consecutive 48 

h period each week using CombiFoss (Foss, Hillerød, Denmark) operated by Eurofins 

(Vejen, Denmark). Composition data from each milking were used to calculate yields 

of fat and protein which were smoothed by the moving average method to obtain 

daily yields. The calculated yields were averaged per week to get weekly records on 

the same time scale as DMI records. The DCRC records for BW, MY and DMI where 

filtered to remove weekly averages where more than two days records were missing. 

Cows which had less than 5 weekly records during their first lactation or an age of 

calving greater than 36 months were omitted. Although many of the experimental 
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treatments were carefully blocked and balanced, these trials often included 

multiparous cows which were not the focus of the present study. Thus, a filter of a 

minimum of 5 cows per experimental treatment was added to ensure adequate 

degrees of freedom for effect estimation. The records after editing are summarized 

in Table 4.1 with datasets DNK1 and DNK2 corresponding to Skovgaard and DCRC, 

respectively. 

 The Netherlands. In total 47,356 weekly averaged records for DMI, BW 

and milk yield (MY) were included in analysis on 2112 primiparous Dutch Holstein 

cows which calved from 1986 - 2015. The Dutch data was comprised of multiple 

nutritional experiments conducted at  multiple locations in The Netherlands (e.g. 

Aver Heino; Bosma Zathe, Ureterp; Cranendonck, Soerendonk; ‘t Gen, Lelystad; 

Minderhoudhoeve, Swifterbant; Waiboerhoeve Dairy unit 2, 3, Lelystad; Zegveld 

farm, Zegveld; Hoorn, Lelystad; New Waiboerhoeve, Lelystad; Dairy Campus, 

Lelystad). Data from these farms has been classified into four datasets (NLD1, NLD2, 

NLD3 and NLD4) based on previous studies which have described data collection (see 

Table 4.1) (Veerkamp et al., 2000; Beerda et al., 2007; Zom et al., 2012; van Knegsel 

et al., 2014). All herds made use of indoor housing and offered TMR that primarily 

consisted of grass silage, fresh grass, dehydrated grass, corn, corn silage, cereal, 

concentrates or beet pulp. 

Differences in the recording method and frequencies exist between 

datasets and within datasets through time and will be mentioned briefly. Milking was 

conducted twice daily for most herds, with the exception of one herd (n=50) where 

cows were milked three times a day and the AMS herds where milking frequency is 

based on voluntary milking.  

Initially, dry matter intake was recorded manually at 1, 2, 3 or 5 times per 

week depending on the experiment (Veerkamp et al., 2000; Beerda et al., 2007; Zom 

et al., 2012). Later, feed intake was recorded using individual automated feed bins 

(RIC system, Insentec B.V., Marknesse, the Netherlands). Feed was offered to 

achieve a 10% refusal rate, with offered feed recorded automatically but refusals 

recorded manually (Zom et al., 2012). In general, BW was recorded either daily, three 

times a week using automatic weighing platforms or in the AMS integral automatic 

weighing platforms. Cows were entered into numerous nutritional trials, where the 

diets within treatments are expected to be the same but differ between trial 

treatments. The DM composition of diets was used to calculate DMI, but the specific 

dietary composition and energy of many diets were not available. Fat and protein 

contents of milk were estimated at minimum once per week in all datasets. Data 

editing steps included only retaining cows with a Holstein breed percentage of 75% 
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or greater, minimum of 5 observations per experimental treatment and 5 records 

per cow and calved no later than 36 months of age. 

Fat and protein corrected milk yield was calculated for both Denmark and 

The Netherlands using a single standardization equation of 4.0% fat and 3.3% protein 

as recommended in (FAO, 2010) using the FPCM (kg) = (0.337*milk yield kg) + 

(11.6*fat yield kg) + (5.999*protein yield) (CVB, 2008).  

 

4.2.2 Data Collection and Editing: Greenhouse gas traits 

Denmark. Data on the CH4c and CO2c of individual Holsteins cows during 

milking was available on 267 primiparous cows at DCRC from mid 2013 – November 

2016, with simultaneous DMI, FPCM and BW records. The non-dispersive infrared 

(NDIR) CH4 sensor (Guardian NG, Edinburgh Instruments Ltd, Livingston, UK) and the 

NDIR CO2 sensor (Gascard, Edinburgh Instruments Ltd, Livingston, UK) were installed 

in each of the AMS. The equipment installation, technical specifications, and 

calibration procedures for the sensors are described elsewhere (Difford et al., 2016). 

The time stamped AMS visit data and breath gas concentration time series on a 1 

second basis were merged using a time alignment algorithm (Difford et al., 2016). 

Gas data from AMS milkings shorter than 300s and marked as incomplete or 

interrupted by the AMS were removed. A cow head-lifting algorithm was used to 

filter out gas readings when the cow’s head is predicted to be outside of the feed bin 

(Difford et al., 2016). The ambient barn concentrations of CH4c and CO2c were 

estimated once daily during the morning cleaning cycle of the AMS when the AMS is 

free of cows and subtracted from the mean CH4c and CO2c of each milking for that 

day.  

Greenhouse gas measurements were also taken in two commercial herds 

in Denmark from November 2015 until March 2016 as part of the REMRUM project. 

A portable set of four NDIR sensors as above and one portable Fourier transform 

infrared (FTIR) Gasmet DX-4000 (Gasmet; Gasmet Technologies Oy, Helsinki, 

Finland), which registers gas concentrations on a 5 s basis. The use of the FTIR 

equipment in commercial herds is described elsewhere (Lassen and Løvendahl, 

2016). The data from commercial herds was handled the same as the research herd 

described above. Sensors were installed in AMS (Astronaut A3, Lely Industries, NV, 

Maassluis, the Netherlands) equipped with weighing platforms. The milk 

components were taken from the national recording scheme (RYK, Skejby, Denmark) 

and cow fat and protein corrected milk yield (FPCM) (CVB, 2008; FAO, 2010) was 

estimated as in the Dutch population. 

Data from the research and commercial herds were filtered to only include 

weekly averages where a maximum of 3 days were missing within each week of 
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measurement and each cow had a minimum of 3 weekly measurements (Table 4.1). 

The effect of contemporary group and AMS are by necessity confounded at DCRC 

and are thus also confounded with the experiment by treatment interaction 

described for the feed intake traits. The commercial herds maintained the same diet 

whilst gases were recorded; a variable of year by season by AMS group nested within 

herd was used in place of the experiment by treatment term used in the research 

herds. Similarly, gas traits were filtered to ensure each experiment by treatment 

interaction term had at least 5 cows and a minimum of 5 weekly records per cow. 

The dataset from DCRC corresponding to DNK2 and commercial herds corresponding 

to DNK3 (Table 4.1). 

The Netherlands. Data on the CH4c and CO2c breath gas concentrations of 

individual Holstein cows during milking was available on 277 primiparous cows at 

Dairy Campus Lelystad (NLD4) from October 2013 – November 2016, with 

simultaneous FPCM and BW records. The grouping of animals at NLD4 is such that 

the two AMS groups do not have automatic feed bins. Thus cows are tested for 70d 

for DMI and then moved to the AMS groups where gas recording takes place, no 

simultaneous records for DMI and gases are available in The Netherlands. The FTIR 

sensor inlet was installed in the integral feed bins of two AMS (Astronaut A3, Lely 

Industries, NV, Maassluis, the Netherlands), where gases were drawn from each of 

the AMS on alternating days. The time stamped AMS visit data and breath gas 

concentration time series on a 5 second basis were merged. The air sampled for the 

first 20 seconds of each visit was discarded to ensure no carryover of gas readings 

from the previous cow’s milking. Data from milkings that lasted shorter than 120 

seconds and data collected after 600 seconds of the start of the milking were 

excluded. As well as data from milkings marked as error by the AMS were excluded. 

The ambient barn concentrations of CH4c and CO2c were estimated once daily 

during the morning cleaning cycle of the AMS when the AMS is free of cows and 

subtracted from the mean CH4c and CO2c of each milking for that day. After editing 

5904 weekly average records were available on 277 primiparous Holstein cows 

corresponding to dataset NLD4 (Table 4.1). 

Data on the CH4c and CO2c on 382 primiparous Dutch Holstein Friesian 

cows from 11 commercial herds over November 2013 – March 2016 as part of the 

TiFN project ‘Reduced methane emission of dairy cows’ (NLD5) (Table 4.1). Four 

portable NDIR sensors (SenseAir LPL 113 CH4/CO2, Rise Acreo, Stockholm, Sweden) 

were installed in the integral feed bin of AMS (Lely, Astronaut A4, Lely Industries NV, 

Maassluis, the Netherlands) which record CH4c and CO2c twice per second. The 

sampling strategies, installation and phenotype calculation has been descried 

elsewhere (van Engelen et al., 2018). Briefly, the time series data was aligned to the 
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AMS data by a function which maximizes the CH4c and CO2c during visits and 

minimizes CH4c and CO2c between visits. Visits which failed to exceed 90 seconds in 

length were excluded. The background concentrations for CH4c was assumed to be 

0 ppm and CO2c 400ppm, these values were subtracted from the mean of 10 

minimum recordings per visit and subtracted from the mean of the visit to 

approximate a background corrected CH4c and CO2c mean per milking. The CH4c 

and CO2c per milking were combined with the MY per milking. Where possible the 

mean BW per milking was retained, however the majority of AMS were not equipped 

with integral weighing platforms so BW was not available from all locations. Records 

on milk components during the sampling periods for each herd were acquired from 

the cooperative cattle improvement organization CRV (Arnhem, the Netherlands) to 

estimate FPCM.  

Data from the research and commercial herds were filtered to only include 

weekly averages where a maximum of 3 days were missing within each week of 

measurement and each cow had a minimum of 3 weekly measurements (Table 4.1). 

The effect of contemporary group and AMS were by necessity confounded at Dairy 

Campus and are thus confounded with the experiment by treatment interaction 

described for the feed intake traits. The commercial herds maintained the same diet 

whilst gases were recorded; a variable of year by season by AMS group nested within 

herd was used in place of the experiment by treatment term used in the research 

herds. Similarly, gas traits were filtered to ensure each experiment by treatment 

interaction term had at least 5 cows and a minimum of 5 weekly records per cow 

(Table 4.1).   

 

 

4.2.3 Data Collection and Editing: Pedigrees 

Pedigree information of all animals was traced back to founder 

generations, by extracting the Danish and Dutch pedigrees from the Nordic Cattle 

Genetic Evaluation Database (NAV, Skejby, Denmark) and the cooperative cattle 

improvement organization CRV (Arnhem, the Netherlands). Pedigrees were merged 

and all aliases in the pedigree were removed through the use of the Interbull 

identification cross-reference tables and manual curation of the pedigree. Non-

informative individuals in the pedigrees were removed with the DMU Trace program 

(Madsen, 2012). The total pedigree file consisted of 16,592 animals with a DNK 

pedigree of 9774 animals and NLD pedigree of 8042 animals. A total of 1074 sires 

were in common between the two pedigrees.  
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Table 4.1. Description of available phenotypic records of dry matter intake (DMI), fat 
and protein corrected milk (FPCM), body weight (BW), methane breath 
concentration (CH4c) and carbon dioxide breath concentration (CO2c) for first parity 
Holstein Friesian cows in Denmark and The Netherlands. 
 Denmark The Netherlands 

Data set DNK1 DNK2 DNK3 NLD1 NLD2 NLD3 NLD4 NLD5 

# of 
experiments 

2 24 1 13 1 3 61 1 

# of rations 2 112 2 47 27 27 268 10 

# locations 1 1 2 1 1 2 9 10 
# of cows with1: 
DMI 109 703 0 195 491 393 1,033 0 

FPCM 108 702 267 193 474 362 1,183 362 
BW 111 702 267 195 490 361 1,217 101 
CH4c 0 211 267 0 0 0 277 382 

CO2c 0 211 267 0 0 0 277 382 
Total 111 703 267 195 491 393 1,220 382 
         

# weekly records for1: 
DMI 4,090 24,99

4 
0 4,105 11,08

6 
9,270 15,731 0 

FPCM 3,472 23,85
3 

790 2,503 10,47
6 

9,141 19,679 668 

BW 2,813 24,81
2 

800 3,925 10,46
0 

8,875 21,935 679 

CH4c 0 5,212 800 0 0 0 5,904 2,496 

CO2c 0 5,212 800 0 0 0 5,904 2,496 
Total 4,355 25,37

1 
800 4,105 11,08

6 
9,270 22,895 2,496 

         
Weeks in 
lactation 

1 – 44  1 - 44 1 - 44 1 - 44 1 - 44 1 - 44 1 - 44 1 - 44 

Gas recording 
period 

N/A 2013-
2016 

2014 - 
2016 

N/A N/A N/A 2013-
2016 

2014-
2016 

DMI recording 1997-
2001 

2002-
2016 

N/A 1991 
- 
2004 

1991 
–
2005  

1991 
- 
1998 

1990- 
2016 

N/A 

Published Nielse
n et al 
2003 

Li et al 
2016 

Unpub
lished 

Beer
da et 
al 
2007 

Veer
kamp 
et al. 
2000 

Unpu
blish
ed 

Zom et 
al 2012 

Van 
Engelen 
et al 
2018 

1DMI = Dry matter intake; FPCM = fat and protein corrected milk yield; BW = body 
weight; CH4c = methane breath concentration and CO2c = carbon dioxide breath 
concentration. 
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4.2.4 Statistical Analysis 

 

Cows had multiple records for CH4c and CO2c per day made at different 

times per day. The starting time for each visit in the AMS was converted to 24 h 

angular radians for further modelling of diurnal variation in a Fourier series approach 

(Lassen et al., 2012). A pre-correction model within AMS group for all herds in all 

countries was used to estimate the daily breath gas concentration free of the effects 

of diurnal variation, sensor drift after calibration and test day variation between 

calibrations: 

yijklm = μ + di + bj +  ∑3
k=1(f1ksinθ + f2kcosθ) + cl + eijklm     (1) 

where yijklm is the natural logarithm of background corrected AMS visit 

means of CH4c and CO2c; di is the fixed effect of test day i; bj is the fixed effect of 

the first full day after each calibration j; f1k and f2k are the fixed regression coefficients 

of Fourier series linear covariates of the time of day of measurement, modelled as 

harmonic pairs. Here θ denotes the time of day of visit expressed as 24 h angular 

radians. Term cl is the random effect parameters for each cow cl ~ ND (0, σ2
c), and 

eijklm is the random residuals ~ ND (0, Iσ2e). In order to correct daily AMS visit means, 

the random residuals for each visit were summed with random cow solutions, 

intercept, calibration day, and the regression coefficients f1k and f2k multiplied by the 

angular radian corresponding to 12:00:00 a.m. Further, the CH4c and the CO2c in 

natural log transformed parts per million as the average per week of lactation was 

obtained by taking the corrected means of visits weighted by the number of seconds 

for each visit where the cow head was positioned correctly in the feed bin.  

Univariate repeatability mixed models were conducted by use of Proc 

Mixed in SAS (SAS 9.3, SAS Institute Inc.) where significance of fixed effects was 

tested using Kenward-Roger correction for the correct denominator degrees of 

freedom, for all traits within country. The residuals were tested for deviations from 

normality by means of Kolmogorov–Smirnov normality tests and severe violations 

were detected for CH4c and CO2c which were best remedied by a natural log 

transformation. The means and variances of CH4c and CO2c from different 

measuring equipment and AMS models (DeLaval and Lely A3 and A4 Astronauts) 

differed significantly. Based on the results of a pilot study combining data from 

multiple measuring equipment is was decided to standardize CH4c and CO2c within 

equipment and country to a mean of zero and standard deviation of one (Difford et 

al., 2016). 

A five trait multi-trait analysis was performed to estimate the variance 

components and the heritability within each country and in a combined country 

dataset i.e., DMI, FPCM, BW, CH4c and CO2c. All analyses were performed using 
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DMU version 6 (Madsen and Jensen, 2014). The model used in the Danish dataset 

was as follows: 

yijklm = μ + Wi + ETCj +  al + pel + eijklm      (2) 

Where yijklm is the trait of interest (DMI, BW, FPCM, CH4c or CO2c), μ is the 

intercept, W is the ith week of lactation, ETC is the jth experiment by treatment 

contemporary group effect, al is the random additive effect of the lth animal N(0,A 

σ2
a) where A is the pedigree derived numerator relationship matrix, pe is the 

permanent environmental effect distributed following N(0,Iσ2
pe) and e is the random 

residual N(0,Iσ2
e). For the feed intake traits (DMI, BW and FPCM) the linear covariate 

age at first calving was significant and was included in model 2 as a fixed regression.  

For the Dutch data it was necessary to place added restrictions on the 

permanent environmental covariance and residual covariance between CH4c, CO2c 

and DMI as these were recorded at different time points such that they were 

undefined:  

Var [
𝐚𝑫𝑴𝑰

𝐚𝐆𝐇𝐆
] = [

𝐀𝛔𝐚𝐃𝐌𝐈
𝟐 𝐀𝛔𝐚𝐃𝐌𝐈𝐚𝐆𝐇𝐆

𝐀𝛔𝐚𝐆𝐇𝐆𝐚𝐃𝐌𝐈 𝐀𝛔𝐚𝐆𝐇𝐆
𝟐 ],  

Var (pe) = PE = [
𝛔𝐩𝐞𝐅𝐈

𝟐 𝟎

𝟎 𝛔𝒑𝐞𝐆𝐇𝐆
𝟐 ], 

Var (e) = R = [
𝛔𝐞𝑭𝑰

𝟐 𝟎

𝟎 𝛔𝐆𝐇𝐆
𝟐

], 

 

For the combined dataset the models described in (2) above were then run 

without placing any restrictions on the covariances between CH4c, CO2c and DMI.   

Feed efficiency. The 5 x 5 variance covariance matrices estimated from the 

Danish, Dutch and combined country dataset were used to estimate genetic residual 

feed intake (gRFI) as per (Kennedy et al., 1993; Shirali et al., 2017). In which �̂� and �̂� 

are 5 x 5 additive genetic and phenotypic variance covariance matrices, respectively, 

for feed intake traits (FI), i.e. DMI, FPCM, BW, green house gas traits (GHG) i.e. CH4c 

and CO2c. Firstly, the multivariate genetic partial regression coefficients �̂�1 and �̂�2 of 

FPCM and BW on DMI are estimated respectively. The partial genetic regression 

coefficients were computed using genetic variance covariance matrices as 

�̂�𝐷𝑀𝐼|𝐹𝑃𝐶𝑀,𝐵𝑊| = �̂�𝐷𝑀𝐼|𝐹𝑃𝐶𝑀,𝐵𝑊|�̂�
−𝟏

𝐹𝑃𝐶𝑀,𝐵𝑊 in which �̂�𝐹𝑃𝐶𝑀,𝐵𝑊 is a 2 x 2 genetic 

variance covariance matrix of FPCM and BW, �̂�𝐷𝑀𝐼|𝐹𝑃𝐶𝑀,𝐵𝑊|is a 1 x 2 covariance 

vector of FPCM and BW on DMI, resulting in a 1 x 2 vector of genetic partial 

regression coefficients. 
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The genetic RFI which has DMI genetically orthogonal of FPCM and BW 

estimated using genetic partial regression coefficients computed above in the 

following covariance function: 

𝐵 = 

[
 
 
 
 
 
𝐼𝐷𝑀𝐼 0 0 0 0
0 𝐼𝐹𝑃𝐶𝑀 0 0 0
0 0 𝐼𝐵𝑊 0 0
0 0 0 𝐼𝐶𝐻4𝑐 0
0 0 0 0 𝐼𝐶𝑂2𝑐

𝐼𝐷𝑀𝐼 −�̂�1 −�̂�2 0 0 ]
 
 
 
 
 

 

 

Thus B is a 6 x 5 identify matrix which is pre- and post multiplied on the 5 x 

5 �̂� and �̂� matrices (i.e.𝐵�̂�𝐵′) to obtain a 6 x 6 genetic and phenotypic variance 

covariance matrices including the newly computed gRFI which has the favorable 

properties of being genetically uncorrelated to FPCM and BW i.e. �̂�𝑅𝐹𝐼|𝐹𝑃𝐶𝑀,𝐵𝑊| =

 �̂�𝐷𝑀𝐼|𝐹𝑃𝐶𝑀,𝐵𝑊| − �̂�𝐷𝑀𝐼|𝐹𝑃𝐶𝑀,𝐵𝑊|�̂�𝐹𝑃𝐶𝑀,𝐵𝑊 = 0.  

 

4.2.5 Selection index calculations 

 

Selection index theory was used to evaluate different recording strategies 

with FI and GHG trait combinations (I) on the selection goals (H) defined by DMI or 

RFI for bulls with daughter records by calculating selection accuracy (rH,I) (Falconer 

and Mackay, 1996):  

𝑟𝐻,𝐼 = √
𝒃′𝑷𝒃

𝒗′𝑮𝒗
  

Where, rH,I is the accuracy of the index, b is the 6 x 1 vector of weighing 

factors for each of the records used in making selection decisions. P is the 6 x 6 matrix 

of phenotypic (co)variance among records of each trait; v is the 6 x 1 vector of 

relative economic values and G is the genetic (co)variance matrix among traits. To 

focus on recording strategies for RFI or DMI, we arbitrarily assigned a value of one 

to the respective selection goal and zero to all other traits in v. As there is a large 

disparity in the throughput of different traits, combinations were evaluated 

assuming bulls had 100 daughters with single average weekly records of CH4c, CO2c, 

BW and ECM (a realistic assumption in AMS herds) and 10 daughters with single 

weekly average DMI records (a realistic assumption with research and nucleus herds) 

using the excel macro of  (van der Werf, 2017).  

 

 

4.3 Results 
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4.3.1 Descriptive statistics 

Descriptive statistics of FI related and GHG related traits for DNK and NLD 

are shown in Table 4.2. The averages for FI related traits were marginally higher for 

DNK than for NLD with DMI 19.5 kg/d in DNK and 18.8 kg/d in NLD, FPCM was 28.9 

kg/d in DNK and 28.3 kg/d in NLD and BW was larger 604.2 kg in DNK than in NLD 

556.6. The GHG traits were likewise comparable between the countries, with CH4c 

higher in NLD and 5.9 ln(ppm/d) than DNK 5.6 ln(ppm/d). Whilst, CO2c was higher in 

DNK 8.5 ln(ppm/d) compared with 8.3 ln(ppm/d) in NLD.  

 

4.3.2 Genetic parameters 

The estimated genetic variances, heritability and repeatability for Danish, 

Dutch and the combined datasets are shown in Table 4.3. In general, all estimates 

were higher for traits in DNK as compared to NLD and the combined country dataset, 

FI related traits had higher heritability and repeatability than GHG related traits.  

Feed intake related traits. Estimated heritability for DMI was 0.41 in DNK, 

0.21 in NLD and 0.29 in the combined datasets with SE ranging from 0.03 to 0.06. 

The repeatability of DMI was more consistent with 0.64 in DNK and 0.59 in NLD and 

the combined dataset. Heritability estimates for FPCM followed a similar pattern as 

DMI across datasets with the highest estimate in DNK of 0.48, lowest in NLD 0.20 and 

intermediate in the combined dataset 0.35. Body weight was the most heritable trait 

in all datasets with 0.57 in DNK, 0.49 in NLD and 0.45 in the combined dataset.  

Greenhouse gas related traits. The h2 estimates of CH4c and CO2c were 

similar within and across datasets. The heritability of CH4c was highest in DNK 0.26, 

followed by the combined dataset 0.22 and NLD 0.16. Similarly, heritability of CO2c 

was 0.23 in DNK and the combined dataset and 0.15 in NLD. The SE of h2 was reduced 

in the combined country data (0.06) such that the 95% confidence intervals for h2 of 

CH4c and CO2c did not include zero. Both weekly average CH4c and CO2c were highly 

repeatable in DNK 0.72 and 0.73, in NLD 0.67 and 0.61 and in the combined dataset 

0.69 and 0.70, respectively. 
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Table 4.2. Descriptive statistics (No. of weekly records, mean value, standard deviation (sd), minimum (min), maximum (max)) of feed 
intake related traits and greenhouse gas related traits for each country. 

Trait1 Unit 

Denmark The Netherlands 

No. 
weekly 
records 

mean sd min max No. 
weekly 
records 

mean sd min max 

DMI kg/d 24,994 19.5 3.1 6.6 37.2 39,464 18.8 3.2 5.0 31.9 

FPCM kg/d 23,906 28.9 5.8 3.0 53.0 41,454 28.3 5.0 2.9 54.8 

BW kg 24,908 604.2 64.9 387.0 869.0 44,649 556.6 56.9 321.8 851.6 

CH4c Ln(ppm) 4888 5.6 0.49 3.4 7.1 8400 5.9 0.36 3.2 7.4 

CO2c Ln(ppm) 4888 8.5 0.30 7.4 9.68 8400 8.3 0.42 6.5 9.3 

1DMI = Dry matter intake; FPCM = fat and protein corrected milk yield; BW = body weight; CH4c = natural logarithm of methane 
breath concentration and CO2c = natural logarithm of carbon dioxide breath concentration. 
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Genetic Residual Feed Intake. For gRFI, the genetic partial regression 

coefficients of FPCM and BW on DMI differed between the countries with 0.403 and 

0.03 in NLD and 0.211 and 0.016 for DNK, respectively. However the relative ratio of 

regression coefficents was similar across countries. Thus the h2 of gRFI was similar in 

DNK (h2 = 0.15 ± 0.04) to NLD (h2 = 0.17 ± 0.04) (Table 4.3). In all datasets the 

heritability of gRFI is lower than that of DMI and significant from zero. The estimates 

of G and P from the combined country increased certainty around the resulting 

regression coefficients of 0.295 and 0.017 for FPCM and BW on DMI respectively and 

a low but significant heritability (h2 = 0.14 ± 0.03) (Table 4.3). 

 

4.3.3 Genetic and phenotypic correlations 

Genetic and phenotypic correlations between FI related traits and GHG 

related traits within DNK, NLD and the combined dataset are presented in Table 4.4. 

In general, the genetic correlations between FI traits and GHG traits were similar in 

all datasets with the exception of gRFI as is discussed below. Furthermore, the 

standard errors of genetic correlations were far larger in DNK than in NLD and 

substantially reduced in the combined country dataset, following a trend of increases 

in numbers of cows.  

Feed Intake related traits. DMI was highly genetically and phenotypically 

correlated with FPCM and moderately with BW. With genetic correlations for FPCM 

in DNK (rg = 0.79 ± 0.05), NLD (rg = 0.68 ± 0.05) and combined (rg = 0.67 ± 0.05). 

Genetic correlations between DMI and BW were somewhat different across datasets 

with (0.09 ± 0.16) in DNK and (0.38 ± 0.07) and combined (0.39 ± 0.07), although the 

magnitude of standard errors is limiting inferences into differences. Genetic 

correlations between FPCM and BW ranged from negative (-0.51 ± 0.17) in DNK close 

to zero in NLD and in the combined dataset (-0.05 ± 0.08). Whilst phenotypic 

correlations between FPCM and BW were very similar ranging from (-0.02 ± 0.05) in 

DNK to (0.08 ± 0.02) in NLD.  

Greenhouse Gas related traits. The genetic correlations between GHG 

traits and FI traits were very similar for both countries. DMI was moderately 

genetically correlated to CH4c, ranging from 0.29 in NLD to 0.58 in DNK, similarly for 

CO2c estimates ranging from 0.34 in the combined dataset to 0.42 in NLD. The GHG 

traits also showed similar patterns for genetic correlations with FPCM and BW in 

both countries, where genetic correlations were positive with FPCM ranging from 

(0.24 – 0.54) and low with BW ranging from (-0.13 – 0.00). The genetic and 

phenotypic correlations between CH4c and CO2c were consistently very high with rg 

ranging from 0.95 in DNK and NLD to 0.96 in the combined dataset. 
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Table 4.3. Estimated genetic (σ2
a) and phenotypic (σ2

p) variances, heritability (h2) and repeatability of weekly averages (t2) with 
corresponding standard errors (se) in parenthesis from within country and combined country multitrait models.  

 Denmark The Netherlands Combined Country 

Trait1 σ2
a h2 (se) t2 (se) σ2

a h2 (se)  t2 (se) σ2
a h2 (se) t2 (se) 

DMI 2.38 0.41(0.06) 0.64(0.02) 1.08 0.21(0.04) 0.59(0.01) 1.63 0.29(0.03) 0.59(0.01) 

FPCM 18.87 0.48(0.07) 0.82(0.01) 3.73 0.20(0.02)  0.76(0.01) 8.57 0.35(0.01) 0.73(0.01) 

BW 1220.0 0.57(0.13) 0.89(0.01) 107 0.49(0.00) 0.86(0.00) 1162.7 0.45(0.00) 0.86(0.01) 

CH4c 0.25 0.26(0.11) 0.72(0.02) 0.10 0.16(0.16) 0.67(0.01) 0.24 0.22(0.06)  0.69(0.01) 

CO2c 0.23 0.23(0.12) 0.73(0.02) 0.11 0.15(0.15) 0.61(0.02) 0.23 0.23(0.06) 0.70(0.01) 

gRFI 0.86 0.15(0.04) 0.72(0.02) 0.60 0.17(0.03) 0.43(0.01) 0.53 0.14(0.03) 0.48(0.01) 

1DMI = Dry matter intake; FPCM = fat and protein corrected milk yield; BW = body weight; CH4c = natural logarithm of methane 
breath concentration and CO2c = natural logarithm of carbon dioxide breath concentration. 
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Genetic Residual Feed Intake. Within and across countries gRFI was 

genetically uncorrelated to FPCM and BW (Table 4.4). However, in DNK the genetic 

correlation between DMI and gRFI was far smaller (rg = 0.21 ± 0.61) than in The 

Netherlands (rg = 0.74 ±.06). The genetic correlations between gRFI and GHG traits 

were negative in Denmark with (rg = -0.17 ± 0.85) and (rg = -0.22 ± 0.95) between 

CH4c and CO2c with gRFI respectively. Similarly, in The Netherlands (rg = -0.52 ± 0.32) 

and (rg = -0.44 ± 0.32) for CH4c and CO2c with gRFI respectively. In the combined 

country dataset gRFI remained genetically uncorrelated to FPCM (rg = 0.05 ± 0.09) 

and BW (rg = 0.00 ± 0.09). Whilst a strong positive genetic correlation with a 

substantially reduced standard error persisted with DMI (rg = 0.64 ± 0.04) (Table 4.4). 

In the combined dataset the genetic correlations between both CH4c and CO2c with 

gRFI were positive (rg = 0.33 ± 0.15) and (rg = 0.32 ± 0.15). 

 

4.3.3 Prediction accuracy of selection indices for DMI and gRFI 

The accuracy of bull selection goals for DMI or gRFI based on the combined 

country estimated G and P (co)variance matrices for several recording strategies for 

daughters using different combinations of FI and GHG traits are presented in Table 

4.5. For both DMI and gRFI indices, including DMI daughter records gave higher 

accuracies than indices including only GHG or FPCM and BW. For DMI, accuracy with 

GHG traits was lower (0.43) than FPCM and BW (0.75) although, the accuracy of 

FPCM, BW and GHG traits (0.78) was comparable to the same index including DMI 

(0.83). Conversely, for accuracy of gRFI the contribution of FPCM and BW was 

negligible (0.05) as compared to the modest contributions of GHG traits (0.30). 

Furthermore, the accuracy of gRFI based on DMI and GHG traits (0.47) exceed the 

accuracy of DMI alone (0.42) and was equivalent to DMI, FPCM and BW (0.47). The 

highest accuracy for gRFI (0.53) was achieved using all recoding traits including DMI.
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Table 4.4. Genetic (below diagonal) and phenoypic (above diagonal) correlations 
between feed intake-related traits1, greenhouse as related traits2 and feed efficiency 
restricted indices3, with corresponding standard errors in parenthesis for Denmark, 
The Netherlands and the combined dataset. 

Traits Denmark 

DMI FPCM BW gRFI CH4c CO2c 

DMI  0.56 (0.02) 0.30 (0.05) 0.20 (0.03) 0.35 (0.05) 0.23 (0.05) 

FPCM 0.79 (0.05)  -0.02 (0.05) -0.47 (0.02) 0.31 (0.05) 0.17 (0.05) 

BW 0.09 (0.16) -0.51 (0.17)  -0.41 (0.02) 0.12 (0.06) 0.09 (0.06) 

gRFI 0.21 (0.64) 0.002 (0.58) 0.004 

(0.71) 
 -0.06 (0.04) 0.04 (0.04) 

CH4c 0.58 (0.19) 0.54 (0.20) 0.00 (0.26) -0.17 (0.85)  0.91 (0.00) 

CO2c 0.36 (0.23) 0.37 (0.20) -0.02 (0.28) -0.22 (0.95) 0.95 (0.04)  

 The Netherlands 

DMI  0.47 (0.01) 0.31 (0.02) 0.85 (0.00) -0.02 (0.08) -0.01 (0.08) 

FPCM 0.68 (0.05)  0.08 (0.02) 0.06 (0.02) 0.11 (0.03) 0.11 (0.03) 

BW 0.38 (0.07) -0.05 (0.08)  -0.06 (0.02) 0.06 (0.04) 0.08 (0.03) 

gRFI 0.74 (0.06) 0.00 (0.15) 0.00 (0.11)  -0.09 (0.09) -0.10 (0.09) 

CH4c 0.29 (0.14) 0.24 (0.13) -0.13 (0.14) -0.52 (0.32)  0.87 (0.00) 

CO2c 0.42 (0.14) 0.35 (0.12) -0.12 (0.13) -0.44 (0.32) 0.95 (0.02)  

 Combined Dataset 

DMI  0.59 (0.01) 0.29 (0.02) 0.72 (0.01) 0.29 (0.03) 0.22 (0.03) 

FPCM 0.67 (0.05)  0.05 (0.02) -0.11 (0.01) 0.20 (0.03) 0.14 (0.03) 
BW 0.39 (0.07) -0.05 (0.08)  -0.07 (0.02) 0.03 (0.04) 0.03 (0.04) 
gRFI 0.64 (0.04) 0.05 (0.09) 0.00 (0.09)  0.20 (0.03) 0.16 (0.04) 
CH4c 0.41 (0.12) 0.35 (0.11) -0.06 (0.11) 0.33 (0.15)  0.92 (0.00) 
CO2c 0.34 (0.12) 0.27 (0.11) -0.08 (0.11) 0.32 (0.15) 0.96 (0.00)  

1Feed intake-related traits: DMI = dry matter intake; fat and protein corrected milk 
yield = FPCM; and body weight = BW. 2Greenhouse gas related traits: natural 
logarithm of methane breath concentration = CH4c; and natural logarithm of carbon 
dioxide breath concentration = CO2c. 3Feed efficiency restricted indices: genetic 
residual feed intake = gRFI. 
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4.4 Discussion 

 

4.4.1 Genetic parameters 

Feed intake related traits. Investigations into the FI related traits DMI, 

FPCM and BW; have been an area of intense research in both countries with both 

being members of international collaborative consortia like gDMI (Berry et al., 2014). 

The heritability estimate for DMI (0.41) was slightly higher than reported previously 

for Nordic Holsteins (0.20 – 0.40) by Li et al. (2016). However, Li et al. (2016) 

estimated h2 for 1 – 24 weeks of lactation with an increasing trend from 0.20 to 0.40, 

whilst we reported entire lactation h2 from weeks 1-44. Similarly, the h2 estimate for 

DMI in NLD was within the lower range of reported values from previous studies 

(0.15 – 0.41) (Koenen and Veerkamp, 1998; Vallimont et al., 2010). In the present 

study, parameters are estimated over the course of the entire first lactation, 

recognizing that previous findings from both populations demonstrate that the 

genetic parameters of DMI, FPCM and BW change over the course of lactation 

(Manzanilla Pech et al., 2014; Li et al., 2016). The genetic correlations between both 

countries have been estimated as close to unity (0.80 – 0.99) (de Haas et al., 2012), 

indicating the potential to estimate parameters jointly over the two populations. 

Indeed, for the combined population DMI had (h2 = 0.29 ± 0.03) comparable to a 

large study with over 10,000 animals from 9 countries in the gDMI consortium (Berry 

et al., 2014).  

The h2 estimates for BW are well within the reported ranges in DNK for 

multiparous Nordic cattle breeds (0.52 – 0.77) (Sondergaard et al., 2002; Sloniewski 

et al., 2005) and primiparous Dutch Holstein Friesian cows (0.22 – 0.74) (Koenen and 

Veerkamp, 1998; Manzanilla Pech et al., 2014). Similarly, h2 estimates for FPCM were 

within range of previous findings in NLD (0.22 – 0.43) (Manzanilla Pech et al., 2014). 

However, the h2 estimate for FPCM was larger than those reported for ECM in DNK 

(0.27- 0.39) (Sondergaard et al., 2002; Lassen and Løvendahl, 2016). Recognizing that 

the two trait definitions differ due to different linear combinations of milk yield, fat 

yield and protein yield, with FPCM 1.9% MY, 64.7% fat yield and 33.4% protein yield 

(CVB, 2008) and ECM 1.2% MY, 60.5% fat yield and, 38.2% protein yield (Sjaunja et 

al., 1991). The choice of FPCM was driven by need to make findings of this study 

comparable to international research efforts for GHG mitigation (FAO, 2010).  

Greenhouse gas related traits. The h2 estimates of CH4c and CO2c were 

consistent across datasets with estimates in the combined country dataset of 0.22 

and 0.23, both significant from 0, respectively. These are substantially larger than 

those reported for primi- and multiparous Dutch Holsteins Friesians in commercial 
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herds CH4c (h2 = 0.11 ± 0.02) and CO2c (h2 = 0.12 ± 0.02) (van Engelen et al., 2018), 

of which the primiparous cows are part of this study. However, the estimates of (van 

Engelen et al., 2018) are based on the mean CH4c and CO2c per milking, whilst the 

present study makes use of an average per week of lactation and thus far more 

repeated measures per animal as was shown to be an effective error reduction 

technique with sniffers (Difford et al., 2016). The present estimates are also larger 

than the ratio of CH4c to CO2c (CH4c/CO2c) in multiparous Danish Holstein (h2 = 0.16 

± 0.04) (Lassen and Løvendahl, 2016) and Dutch Holstein Friesians cows (h2 = 0.03 ± 

0.01) (van Engelen et al., 2018). Although CH4c and CO2c are short term breath 

concentration measures, the h2 estimates are comparable to that of 24 hr total mass 

flux CH4 production from respiration chambers in over 1000 growing Aberdeen 

Angus (h2 = 0.22 ± 0.06) (Donoghue et al., 2016) and 1225 dual purpose mixed and 

composite sheep (h2 = 0.29 ± 0.05) using portable accumulation chambers (Pinares-

Patiño et al., 2013). 

 

4.4.2 Genetic correlations  

Feed Intake related traits. DMI was highly genetically and phenotypically 

correlated with FPCM and moderately with BW. With genetic correlations for FPCM 

in DNK (rg = 0.79 ± 0.05), NLD (rg = 0.68 ± 0.05) and combined (rg = 0.67 ± 0.05) in 

range of estimates in repeatability model studies (0.57 – 0.86) (Huttmann et al., 

2009; Manzanilla Pech et al., 2014; Manzanilla-Pech et al., 2016). Genetic 

correlations between DMI and BW were somewhat different across datasets with 

(0.09 ± 0.16) in DNK and (0.38 ± 0.07) and combined (0.39 ± 0.07), although the 

magnitude of standard errors is limiting inferences into differences, the estimates 

were close to the ranges reported in literature (0.17 – 0.45) (Huttmann et al., 2009; 

Manzanilla-Pech et al., 2016). Genetic correlations between FPCM and BW ranged 

from negative (-0.51 ± 0.17) in DNK close to zero in NLD and in the combined dataset 

(-0.05 ± 0.08) falling within ranges of estimates in literature (ECM and FPCM)  (-0.36 

– 0.04) (Huttmann et al., 2009; Manzanilla Pech et al., 2014; Lassen and Løvendahl, 

2016). 

Greenhouse gas related traits. These are the first reported genetic 

correlations for breath gas concentration measures and FI related traits which makes 

comparisons and validations from literature challenging. Recently, genetic 

correlations have been reported for CH4 production using the SF6 method in 314 

multiparous Australian Holsteins under grazing conditions (Breider et al., 2018). The 

genetic correlations between CH4c and mass flux CH4 production is not currently 

known and would be of value to assess the merit of CH4c as an indicator trait for CH4 
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production. The phenotypic correlation between CH4c and a mass flux of CH4 

production is unlikely to be unity, based on R2 values from comparisons of using the 

artificial reference cow or GreenFeed (C-Lock Inc, SD, USA) (Huhtanen et al., 2015; 

Wu et al., 2018). However, it is likely positive and in the range of (rp = 0.29 – 0.97) 

depending on extraneous factors like cow muzzle position from the sniffer inlet and 

wind speed (Huhtanen et al., 2015; Wu et al., 2018). Moreover, the correlation 

between CH4 production and FI related traits can provide some insight into the 

expected nature of CH4c and FI traits. Breider et al (2018) found CH4 production to 

be moderate genetically correlated to DMI (rg = 0.34 ± 0.22), MY (rg = 0.26 ± 0.27) 

and BW (rg = 0.42 ± 0.16). Similarly, (Lassen and Løvendahl, 2016) reported genetic 

correlations between the ratio of CH4c/CO2c with ECM of (rg = 0.04 ± 0.06) and (rg = 

-0.12 ± 0.08) with BW in multiparous Danish Holsteins. Supporting the notion that 

genetic correlations between FI related traits and CH4c are in the expected range.  

 Interestingly, the genetic and phenotypic correlations between CH4c and 

CO2c were close to unity with (0.95 and 0.91, in DNK respectively and 0.95 and 0.87 

in NLD). Studies using the intensive gold standard method have reported phenotypic 

correlations as high as 0.96 between mass flux CH4 production and CO2 production 

(Aubry and Yan, 2015), however no studies have reported genetic correlations 

between these traits. With such high genetic correlations between the two gases, it 

is imperative that these results are confirmed in future studies, preferably employing 

as alternative methods of gas measurement to ensure these correlations are not an 

artifact of the gas sampling method. 

 

4.4.3 The relationship between GHG traits and feed efficiency 

Both GHG traits had weak to moderate negative genetic correlations with 

gRFI in DNK and NLD datasets with large SE (Table 4.4). In DNK, 478 primiparous cows 

had repeated weekly records for GHG traits, 44% of which had full lactation 

concurrent records for GHG traits and FI traits. In NLD 660 primiparous cows had 

repeated weekly records for GHG traits for part of lactation, 42% of which had DMI 

records in the first 70 days in milk, resultantly no cows had concurrent GHG and FI 

traits. Combining the two datasets greatly reduced the standard errors on genetic 

correlations between GHG and FI traits, likely due to having larger numbers of cows 

with full lactation concurrent records with DMI and GHG traits. Interestingly, in the 

combined county dataset moderate positive genetic correlations between gRFI and 

CH4c (rg = 0.33 ± 0.15) and CO2c (rg = 0.32 ± 0.15) which were significant from zero.  

The relationship between CH4 emission and feed efficiency is a hotly 

contended topic, with inconsistent results between phenotypic RFI and CH4 
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production. Positive phenotypic correlations (rp = 0.10 – 0.56) between residual 

energy intake and CH4 production predicted from energy intake and the ratio of CH4c 

/ CO2c from sniffers in concentrate feeders were reported for 412 lactating Nordic 

red cattle in a long term study (Negussie et al., 2014). Similarly, a study using the 

GreenFeed system found efficient phenotypic RFI groups to have significantly 

reduced DMI, CH4 and CO2 production as compared to inefficient RFI groups 

(Hailemariam et al., 2016). To date only a single genetic correlation of (rg = 0.72) 

between CH4 production predicted from gross energy intake and phenotypic RFI has 

been reported (de Haas et al., 2011). Breider et al (2018) investigated the responses 

to selection in DMI, MY, BW and CH4 production from SF6, using restricted selection 

indices in Australian Holsteins on pasture. However, the index for reducing DMI and 

restricting MY and BW (gRFI) showed a correlated increase in CH4 production, 

indicating genetically feed efficient cows produce more CH4 production. However, 

using the estimated parameters from Breider et al (2018) and the methods described 

in Kennedy et al (1993) it is possible to estimated genetic correlation between gRFI 

and CH4 production which was small rg = -0.004 (Breider et al., 2018).  

The inconsistencies in identifying the genetic correlation between GHG 

traits and feed efficiency in the aforementioned studies could be due to differences 

in environment and diet (grazing vs TMR), trait definitions (gRFI vs phenotypic RFI) 

and CH4 emission (CH4 production vs CH4c) as well as CH4 measurement methods 

(Sniffers, GreenFeed and SF6). Within the present study however, the differences in 

genetic correlations between gRFI and GHG traits within countries and the combined 

dataset are due to the uncertainty around estimating gRFI and GHG traits due to 

limited concurrent full lactation records within country, as genetic correlations 

between FI traits and GHG traits did not differ substantial from the within country 

estimates. From the findings in the present study genetic improvement in gRFI will 

likely have favorable correlated responses in CH4c and CO2c, but far larger studies 

are needed to obtain more accurate estimates. Moreover, the genetic correlation 

between CH4c recorded during milking and full 24hr mass flux CH4 production is not 

currently known (Pickering et al., 2013). Should the genetic correlation between 

CH4c and CO2c traits prove to be positive with mass flux CH4 production, there is 

scope to use breath gas concentration measures as large scale indicator traits for 

reducing CH4 emissions in dairy cattle. The findings of these studies and the relative 

instability of gRFI within countries highlights the difficulties in estimating feed 

efficiency in small research or nucleus herds and this impacts the certainty around 

correlations with CH4 emissions. However, they do suggest that reducing DMI whilst 
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maintain FPCM and BW is feasible and will likely result in decreases in CH4c and CH4 

production.  

 

4.4.5 Defining feed efficiency as a restricted selection index 

Kennedy et al (1993) demonstrated that defining genetic partial regression 

coefficients of energy sinks (gRFI) derived from multi-trait analyses could overcome 

the limitations of missing data and lactation stage bias inherent in RFI by defining 

gRFI as the portion of DMI breeding values that are genetically independent of 

energy sinks. This multi-trait approach has further advantages of allowing extension 

to random regression models over lactation (Lu et al., 2015; Moraes et al., 2015; 

Shirali et al., 2015), and extended to horizontal modelling which allows for 

adjustment of traits measured infrequently for example traits recorded during the 

dry periods (Shirali et al., 2017). However, this method assumes that the genetic (G) 

and phenotypic (P) (co)variance matrices are estimated without error, which is rarely 

true in practice and thus the partial genetic regression coefficients can be biased.  

Estimating G and P and subsequently gRFI within country was challenging 

as cows with records for DMI were limiting, particularly in DNK with 812 primiparous 

cows with DMI records, as compared to NLN with near triple this number. Combining 

datasets reduced the uncertainty around genetic correlations between gRFI and FI 

related traits. Despite the near unity genetic correlation in DMI in the two countries 

(de Haas et al., 2012), the possible presence of genotype by environment interaction 

between the two countries for gRFI and the possible introduction of bias to estimates 

from unknown extraneous factors in spatial and temporal data with additive genetics 

cannot be discounted. Neither country had sufficient numbers of cows with DMI 

records to estimate gRFI within country with high levels of certainty. The combined 

dataset allowed for estimation of feed efficiency (gRFI), which remained genetically 

uncorrelated to FPCM (rg = 0.05 ± 0.09) and BW (rg = 0.00 ± 0.09) but highly correlated 

to DMI (rg = 0.64 ± 0.04). Thus selecting for improved (reduced) gRFI will have a 

correlated reduction in DMI and likely have little to no unfavorable correlated 

genetic responses in FPCM and BW. Thus, it is feasible to select for reduced DMI 

without reducing FPCM and BW, effectively breeding for cows that require less feed 

to maintain production levels of contemporaries.  

Prediction accuracy of selection indices for DMI and gRFI. When assessing 

the potential of a large scale indicator trait to a scarcely recorded and expensive goal 

trait, it is important to not only account for the genetic correlations but also the value 

of increased numbers of records of the indicator trait. The accuracy of selection 

indices for DMI and gRFI were assessed for bulls using different combinations of FI 
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and GHG traits based on the estimated combined country genetic and phenotypic 

(co)variances and numbers of daughters with single weekly averaged records. For 

DMI, including GHG traits had limited gains as compared to including FPCM and BW. 

However, for accuracy of gRFI the contribution of FPCM and BW was negligible (0.05) 

as compared to the modest contributions of GHG traits (0.30). The addition of DMI 

records to GHG traits increased accuracy further (0.47) and the highest accuracy of 

gRFI was achieved recording all traits (0.53). Similarly, Manzanilla-Pech et al (2016) 

evaluated the accuracy of selection indices for DMI and RFI using conformation traits 

(stature, chest width and body depth) along with BW and milk energy output in the 

USA and NLD Holstein populations. The bull accuracies for DMI using conformation 

traits were 0.43 in NLD and 0.63 in USA and further increased to 0.79 in NLD and 0.97 

in USA with the addition of BW and milk energy output (Manzanilla-Pech et al., 

2016). Although, Manzanilla-Pech et al (2016) predicted bull EBVs for phenotypic RFI, 

thus some genetic correlations between RFI and component traits remain, the 

maximum accuracies obtained using all available traits were low for NLD 0.17 but 

substantial for USA 0.97, the discrepancy likely due to differences in genetic 

correlations between RFI and predictor traits. In the present study, gRFI remained 

largely genetically uncorrelated to BW and FPCM which resulted in low accuracies of 

bull EBVs only using these traits (0.05), however, only using GHG traits increase 

accuracies 6 fold to 0.30 demonstrating the value of these traits as indicators of feed 

efficiency. In a recent study, Zetouni et al (2018) found modest correlations (-0.20 – 

0.01) between stature, chest width and body depth) and CH4 production predicted 

from the ratio of CH4c/CO2c and production traits, indicating CH4c and CO2c are 

likely not co-explaining the same genetic variation in DMI and RFI as body 

conformation traits. Given these findings, the achieved accuracy of bull EBVs for gRFI 

in the present study maybe be further increased by the addition of body 

conformation traits.   
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Table 4.5. Selection accuracies for bulls for dry matter intake (DMI) and genetic 
residual feed intake (gRFI) using differing recording schemes with feed intake related 
traits1 and greenhouse gas related traits2. 

Selection Indices* Accuracy (DMI) Accuracy (gRFI) 

DMI10 0.66 0.42 
CH4c100 + CO2c100 0.43 0.30 
BW100 + FPCM100  0.75 0.05 
DMI10 + CH4c100 + CO2c100 0.70 0.47 
DMI10 + BW100 + FPCM100 0.81 0.47 
BW100 + FPCM100 + CH4c100 + CO2c100 0.78 0.31 
DMI10 + BW100 + FPCM100 + CH4c100 + 
CO2c100 

0.83 0.53 

*Subscripts denote the number of daughters with a single weekly average record for 
a given trait within a selection index. 1Feed intake-related traits: DMI = dry matter 
intake; fat and protein corrected milk yield = FPCM; and body weight = BW. 
2Greenhouse gas related traits: natural logarithm of methane breath concentration 
= CH4c; and natural logarithm of carbon dioxide breath concentration = CO2c. 

 

Implications. GHG traits, FPCM and BW show considerable potential as 

indicator traits for improving the accuracy of bull EBVs for DMI or gRFI. However, 

these indicator traits are no substitution for DMI traits, which remain the most costly 

and limiting trait. In a simulation study Wallén et al., (2017) estimated that 

genotyped contract herds with 4000 primiparous cows per year phenotype for RFI 

was feasible for a national breeding scheme giving genomic reference population 

accuracies comparable to progeny testing schemes with 250 daughter per sire. In the 

context of the present study; collating data from multiple research herds in DNK and 

NLD, over a period of three decades approached 3000 primiparous cows with DMI 

records. Resultantly, historical and geographical structure within the dataset which 

could potentially bias the estimation of genetic and phenotypic variation covariance 

matrices on which gRFI is estimated. This potential problem would be circumvented 

if suitably large numbers of cows are recorded over lactation for DMI and GHG traits 

concurrently each year under commercial conditions. By installing sniffer sensors in 

commercial AMS herds which had integral weighing scales, it was possible to obtain 

records on over 1000 primiparous cows with GHG traits, BW and FPCM in a tenth of 

the time it took to obtain 3000 primiparous cows with DMI records. This 

demonstrates a proof of concept as to how these predictor traits can readily be 

generated on a large scale under commercial conditions and can supplement DMI 

records recorded on a small scale in contract herds. Recent, promising developments 

in 3D camera technologies for measuring feed intake under commercial conditions 
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could further supplement availability of DMI and GHG data over lactation, but are 

still under development (Lassen et al., 2018). Furthermore, should the genetic 

correlation between CH4c and mass flux CH4 production using accurate and intensive 

methods be positive and there is an economic incentive to reduce CH4 emission, 

there is scope for CH4c to act as a large scale indicator trait for genetic selection of 

climate friendly cows.  

 

4.4 Conclusion 

 

This study showed significant genetic variation for the concentration of 

methane and carbon dioxide in the breath of lactating Holstein cattle. Furthermore, 

a restricted selection index approach demonstrated genetic variation for more feed 

efficient cows with reduced DMI but little to no decreases in FPCM and BW. The 

genetic correlations between GHG traits, FI traits and feed efficiency open up the 

possibility for GHG traits as large scale indicator traits for feed efficiency.  
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Abstract 

Background. Cattle and other ruminants produce large quantities of methane (~110 

million metric tonnes per annum), which is a potent greenhouse gas affecting global 

climate change. Methane (CH4) is a natural by-product of gastro-enteric microbial 

fermentation of feedstuffs in the rumen and contributes to 6% of total CH4 emissions 

from anthropogenic-related sources. The extent to which the host genome and 

rumen microbiome influence CH4 emission is not yet well known. 

Results. This study confirms individual variation in CH4 production was influenced by 

individual host (cow) genotype, as well as the host’s rumen microbiome 

composition. Abundance of a small proportion of bacteria and archaea taxa were 

influenced to a limited extent by the host’s genotype and certain taxa were 

associated with CH4 emissions. However, the cumulative effect of all bacteria and 

archaea on CH4 production was 13%, the host genetics (heritability) was 21% and the 

two are largely independent.  

Conclusion. This study demonstrates variation in CH4 emission is likely not 

modulated through cow genetic effects on the rumen microbiome. Therefore, the 

rumen microbiome and cow genome could be targeted independently, by breeding 

low methane-emitting cows and in parallel, by investigating possible strategies that 

target changes in the rumen microbiome to reduce CH4 emissions in the cattle 

industry.  

 

 

Key words: Host microbe interaction, Methane emission, Microbiability, 

Ruminotypes  
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5.1 Introduction 

 

Methane (CH4) is a potent greenhouse gas (GHG) with a climate change 

potential ~32 times greater than carbon dioxide (CO2)(Holmes et al., 2013) and an 

atmospheric half-life of 12 years, which is substantially shorter than CO2 (> 100 years) 

(IPCC, 2014). Therefore, reducing CH4 emissions from anthropogenic-related sources 

has been identified as a key area for mitigating climate change with immediate 

effects (Gerber et al., 2013; IPCC, 2014). Livestock accounts for 14.5% of 

anthropogenic-related GHG emissions and enteric CH4 emissions from ruminants 

accounts for 5.8% (Gerber et al., 2013). Furthermore, CH4 emissions from livestock 

is predicted to markedly increase due to an expected doubling in the global milk and 

meat demand by 2050 (Alexandratos et al., 2006).  

Ruminants, the most widespread livestock species, can digest a wide 

variety of high fiber feedstuffs due to the distinct microbiome in their rumen. 

Methane is a natural by-product of gastro-enteric fermentation of high fiber plant 

biomass by microbial enzymatic activity in the rumen (Hill et al., 2016). Bacteria, 

protozoa, and fungi in the rumen produce CO2 and hydrogen (H2), which are 

converted to CH4, primarily by archaea known as methanogens. Approximately 99% 

of CH4 emitted from cattle is released in the breath by eructation and 

respiration(Janssen and Kirs, 2008). The emission of CH4 is also a crucial pathway for 

maintaining H2 balance and ruminal pH, as the optimal conditions for anaerobic 

fermentation by the rumen microbial community is limited to a narrow range of 

partial pressure of H2 and pH (McAllister and Newbold, 2008).  Hydrogenase-

expressing bacteria convert metabolic hydrogen from anaerobic fermentation into 

H2 which is then converted to CH4 via methanogenesis (McAllister and Newbold, 

2008). Furthermore, emitted CH4 has a caloric value and represents a 2-12% net loss 

of a cow’s gross energy intake (Johnson and Johnson, 1995; Yan et al., 2010).  

Consequently, cattle and other ruminants with increased efficiency to digest high 

fiber feedstuffs but reduced CH4 production could in principal benefit the global 

climate and concurrently improve the profitability and sustainability of cattle 

production.    

Mitigation to decrease CH4 production by cattle to date has been largely 

unsuccessful, as the available measures are temporary and not cumulative. Large 

international research approaches target the rumen microbial communities through 

feed additives (chemical or biological), feed formulations, and anti-methanogen 

vaccines (Moss et al., 2000). However, rumen microbial species rapid adaptation to 

changes in the substrate results in resistance to treatments and CH4 production 

returns to pre-treatment levels (Hristov et al., 2013). Conversely, rumen 



5 Host and rumen microbiome 

 

134 

 

transplantation studies (transfaunation) show that the rumen bacterial community 

recovered to near pre-transfaunation composition after a short period of time 

(Weimer et al., 2010). This indicated the existence of a degree of host influence on 

rumen microbial composition(Weimer et al., 2010). Host genotype in cattle was 

reported to explain inter-animal differences in CH4 production (Donoghue et al., 

2016; Lassen and Løvendahl, 2016) and the rumen microbial community influenced 

CH4 production (Roehe et al., 2016). However, empirical evidence linking the host’s 

genetic influence over the rumen microbial community and CH4 production is rather 

limited (Roehe et al., 2016).  

A promising strategy is genetic selection for low CH4 emitting cows, as it is 

sustainable, persistent, and cumulative over subsequent generations. Whether the 

host influences the rumen microbial community, and consequently CH4 production, 

or the two interact to affect CH4 production is currently unknown. If reduced CH4 

production in cows is a consequence of poor symbiosis with rumen microbes and 

thus fiber digestibility, there is a risk selection for reduced CH4 production will act 

against the very symbiosis which has aided ruminants and rumen microbes’ 

coexistence. Thus, the extent to which the rumen microbiome is under the host 

genetic influence needs elucidation. If host genetics impose a strong influence on 

rumen microbial composition, traits influenced by rumen microbes could be 

improved by using rumen microbial composition as indicator traits in selection. 

However, should host genetics impose a strong influence on rumen microbial 

composition and selection for CH4 production proceed without cognizance of rumen 

microbial composition, there is a risk of unfavorable correlated responses in rumen 

microbial composition.  

We hypothesized that: 1) the relative composition of the microbiome in 

the rumen is heritable i.e. controlled by host genome and 2) variation in methane 

emission from rumen is influenced by both the cow genome and rumen microbial 

content.  

 

5.2 Materials and Methods 

 

5.2.1 Experimental design 

All handling of animals was conducted according to a protocol approved by 

The Animal Experiments Inspectorate, Danish Veterinary and Food Administration, 

Ministry of Environment and Food of Denmark (Approval number 2016-15-0201-

00959). 

Methane emissions from 750 lactating Holstein cows in five commercial 

herds were recorded using a portable Fourier Transform Infrared unit (FTIR; Gasmet 
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DX-4000, Gasmet Technologies, Helsinki, Finland)(Lassen et al., 2012; Lassen and 

Løvendahl, 2016) and one research herd using a permanently installed non-

dispersive infrared (NDIR; Guardian NG/Gascard Edinburgh Instruments Ltd., 

Livingston, UK) (Difford et al., 2016a). Briefly, the FTIR and NDIR equipment were 

installed within the feed bins of automated milking systems (AMS) in each 

commercial herd with the FTIR for seven consecutive days and the NDIR were 

permanently placed in the research herd. The FTIR and NDIR device inlets were 

installed in the AMS feed bins and methane (CH4) and carbon dioxide (CO2) gas 

concentrations (ppm) sampled continuously every 5 s and 1 s, respectively(Lassen et 

al., 2012; Difford et al., 2016a). Cows were milked individually in the AMS and milked 

on average (18.2 ± 3.4) times during the seven-day period, for durations ranging from 

five minutes to 12.2 minutes. Mean CH4 and CO2 gas concentrations were corrected 

for environmental factors, including diurnal variation and day to day differences 

using a linear mixed model following (Difford et al., 2016a) to approximate daily 

averages. Measurement stability was assessed by model repeatability and used as 

data quality control. All herds practiced indoor feeding strategies with ad libitum 

access to feed and water. A total mixed ration (TMR) was provided, consisting 

primarily of rolled barley, corn silage, grass clover silage, rapeseed meal, soybean 

meal and up to 3 kg of concentrate supplement given during milking. Although all 

commercial herds employed a standardized TMR recipe, ingredient-specific 

differences among farms were expected to contribute to differences in TMR dietary 

values over herds.  

Weekly mean values for milk yield and body weight were combined with 

weekly gas concentrations, as described in (Lassen et al., 2012) and applied to predict 

cow heat production(CIGR, 2002). During each week of CH4 and CO2 recording at 

different herds, milk samples were collected to estimate milk fat and protein 

percentages. Cow fat and protein corrected milk yield (FPCM) was estimated 

following the national recording scheme (RYK, Skejby, Denmark) (Sjaunja et al., 

1991). Methane production (L/day) was estimated using the CH4 to CO2 ratio and 

predicted CO2 emission (Pedersen et al., 2008) from the conversion of cow heat 

production units to CO2 production, following (Madsen et al., 2010a) and then 

converted to (g/d) using CH4 density at standard temperature and pressure. 

Holstein cow pedigree records were traced in the Danish national database 

(NAV, Skejby, Denmark) as far back as 1926 to construct a pedigree-based 

relationship matrix for the quantitative genetic analysis.  

 

5.2.2 Sampling rumen liquid fraction 
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Immediately following the CH4 recording period, rumen content samples 

were drawn from individual cows by oral insertion of the probe “Flora Rumen Scoop” 

(Geishauser et al., 2012). Approximately 40 mL of the liquid fraction containing 

particulate matter was drawn from the rumen using this method. Trained 

technicians conducted the sampling to ensure correct probe insertion into the rumen 

following a previously established protocol (Geishauser et al., 2012), recognizing that 

the location of the flora rumen scoop may differ somewhat from sampling to 

sampling. The entire “Flora Rumen Scoop” was rinsed vigorously between animal 

sampling to minimize cross-contamination. Samples were labeled, immediately 

placed on ice, and transferred to the laboratory within two hours for further 

processing. Each 40 mL sample was mixed vigorously, a subsample of 1.2 mL rumen 

fluid was collected, and transferred to a 1.5 mL vial, then snap frozen in liquid 

nitrogen, before storing at -80 ℃, until shipped on dry ice to a commercial 

sequencing company (GATC Biotech, Constance, Germany) for analysis.  

 

5.2.3 DNA extraction, bacterial and archaeal 16S rRNA gene 

amplification, and sequencing 

DNA extraction, sequencing library construction and sequencing were 

conducted by GATC Biotech (Constance, Germany). Rumen samples were defrosted 

at 4 °C overnight and vortexed until homogenous. A representative sample (500 µl) 

containing rumen liquid and solids was used for DNA isolation using the Qiagen 

QIAamp stool kit (Valencia, United States of America) following the manufacturer’s 

instructions, modified for the larger sample size(Johnson et al., 2005). 

Two primer sets were used to create 16S rRNA libraries, one set for all 

bacteria and one set for all archaea. Universal bacterial 16S rRNA gene primers 

(covering the V1-V3 variable regions) 27F: 5’-AGAGTTTGATCCTGGCTCAG-3’ and 

534R: 5’-ATTACCGCGGCTGCTGG-3’ were used to generate the bacterial amplicon 

libraries (expected amplicon size 508 bp)(Ward et al., 2012). Universal archaeal 16S 

rRNA gene primers (covering the V4-V6 variable regions) S-D-Arch-0519-a-S-15 5’-

CAGCMGCCGCGGTAA-3’ and S-D-Arch-1041-a-A-18 5’-GGCCATGCACCWCCTCTC-3’ 

were used to generate the archaeal amplicon libraries (expected amplicon size 542 

bp) (Klindworth et al., 2013). Following protocols standardized by GATC Biotech, PCR 

amplifications were conducted with GoTaq Green polymerase (Promega, Madison, 

USA) with 30 PCR cycles and a 60 °C annealing temperature for the archaeal amplicon 

libraries and 25 PCR cycles with a 60 °C annealing temperature for the bacterial 

amplicon libraries. The 16S rRNA amplicons were purified using the Axyprep 

Fragment Select bead purification system (Axygen Biosciences, New York, USA), 

according to the manufacturer’s instructions. The size and purity of the PCR product 
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was verified on a Fragment Analyzer using a High Sensitivity NGS Fragment Analysis 

Kit (Advanced Analytical Technologies, Ankeny, USA). Multiplex indices and Illumina 

overhang adapters were added to both amplicon libraries in a second PCR 

amplification round (six cycles), followed by Fragment Analyzer analysis to confirm 

the correct size of the amplicons (Advanced Analytical Technologies, Ankeny, USA). 

Ninety-six libraries were pooled in equimolar concentrations and sequenced with an 

Illumina sequencing instrument using the 300 bp paired-end read mode, according 

to the manufacturer’s specifications. Approximately half the samples were run using 

the illumina MiSeq platform and half with the HiSeq platform. The 300 bp paired end 

protocol was adapted to HiSeq by GATC Biotech. The specific samples entered into 

sequencing batches within each sequencing platform were recorded for subsequent 

significance testing to examine possible differences between sequencing batches 

and sequencing platforms in statistical analyses.   

 

5.2.4 Bacterial and archaeal 16S rRNA gene sequence processing and 

OTU table construction. 

Bacterial and archaeal sequence reads underwent quality control, 

processing and were clustered into operational taxonomic units (OTUs) using the 

LotuS pipeline (Hildebrand et al., 2014) with the following options: Sequence 

truncation length and minimum sequence length after barcode and primer removal 

was 230 bp. Minimum average sequence quality score was 27, the maximum number 

of ambiguous bases was 0, maximum homonucleotide run was set to 8. Sequences 

were filtered away if any of the 50 bp segments in a sequence had average scores 

below 25 or if the expected number of errors exceeded 2.5 in the binomial error 

model. The low-quality sequence ends were trimmed by applying a sliding window 

quality filter with a width of 20 bp and a minimum average quality score within the 

window of 25. Sequences were truncated if the probabilistic accumulated error 

exceeded 0.75. The reads were de-replicated and sequences with a minimum of 10 

replicates were retained for OTU clustering within the Lotus pipeline. Sequence pairs 

were merged with Flash (Magoč and Salzberg, 2011) and clustered into OTUs based 

on sequence similarity (97%) with UPARSE(Edgar, 2013) and chimeric sequences 

removed with UCHIME reference-based chimera detection (Edgar et al., 2011). 

Representative sequences from each OTU were aligned with ClustalO (Sievers et al., 

2011) and a phylogenetic tree built with FastTree2(Price et al., 2010). Representative 

sequences, the OTU table, and phylogenetic trees were transferred to QIIME (version 

1.9.0)(Caporaso et al., 2010), where further analyses were performed. Taxonomy 

was assigned to each OTU using the RDP classifier with a confidence level of 

0.8(Wang et al., 2007) using greengenes (gg_13_8_otus) as the reference database. 
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Unclassified OTUs and OTUs classified to non-target kingdoms were filtered from the 

OTU tables, i.e. only OTUs classified as k_Bacteria were maintained for the bacterial 

primer set and similarly OTUs classified as k_Archaea maintained for the archaeal 

primer set. Finally, samples with < 50,000 sequences were removed and OTUs 

containing < 10 sequences were filtered out of the OTU table. 

 

5.2.5 Statistical models: Additive Genetic Variance Estimation 

The linear mixed model utilized to estimate additive genetic variance is as 

follows: 

 yijkl = μ + hj + pk + b1(diml) + b2( e-0.065 x diml) + ai + eijkl    (1) 

 

where yijklm is the observed phenotype, e.g. methane emission in 

grams/day; μ is the model intercept; hj is the herd fixed effect (j = 6 levels); pk is the 

parity fixed effect (k = 4 levels); b1 is days in milk fixed regression coefficient (dim l= 

1- 350); and b2 is the Wilmink term fixed regression coefficient generated on dim to 

account for non-linearity in early lactation (Wilmink, 1987). Term ai is individual 

animal random additive genetic effects ∼ NID(0, Aσ2
a), where σ2

a is the additive 

genetic variance and A is the pedigree derived numerator relationship matrix (i = 750 

animals); and eijkl is the random residual ∼ NID(0, σ2
e), where σ2

e is the error variance. 

The additive host genetic effects on relative rumen bacterial and archaeal abundance 

was estimated applying the same general equation as model 1 above, with the 

addition of the sequencing batch fixed effects nested within the sequencing 

platforms (11 levels). The analyses were performed using the DMU software 

(Madsen et al., 2010b).  

 

5.2.6 Statistical models: Rumen Microbial Variance Estimation 

The relationship among cows based on their similarity in rumen 

microbiome composition was estimated by constructing a microbial relationship 

matrix (M) inspired by Ross et al. (2012), where a metagenomic relationship matrix 

was created from a vector of aligned rumen microbial contig sequences. The matrix 

was computed as a variance-covariance matrix from rumen bacterial and archaeal 

abundance as follows:  

𝑴 =  
𝑿𝑿′

𝑛
    (2) 

where X is the matrix of natural log transformed bacterial and archaeal 

relative abundance for all animals and n is the number of bacterial and archaeal OTUs 

within the population. Matrix X is derived from OTU tables after filtering out OTUs, 

which were absent from more than 50% of the samples and were homogeneous. The 

matrix X was subsequently scaled and centered within sequencing instrument 
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(Miseq or Hiseq) to account for differences between instruments and recombined 

into a single matrix prior to the calculation of M. 

The variance explained by microbial composition was estimated employing 

models similar to equation 1, where the random effect of mi was fit separately and 

jointly with ai, i.e. random additive genetic effects. Term mi is the rumen microbial 

effect for the ith animal ∼ NID(0,Mσ2
m), where σ2

m is the rumen microbial variance 

and M is the microbial relationship matrix, described in (2), i = 750 animals. 

 

5.2.6 Association between rumen bacterial and archaeal OTU’s and 

host methane emission 

The association between the relative abundance of each bacterial and 

archaeal OTU abundance with host methane production was conducted using linear 

mixed model analyses as proposed by Yu et al. (2006), with the exception that OTU 

effects were estimated in place of allele substitution effects for genetic variants, as 

performed in genetic association analysis. The significance threshold was calculated 

using a Benjamini Hochberg false discovery rate correction for multiple testing. 

There were 189 archaeal and 3894 bacterial OTUs tested, and the microbiome wide 

significant threshold at FDR of 15% was in -log10(P) scale 2.17. 

 

5.2.7 Microbial Community Analysis 

A principal coordinate analysis (PoCA) was conducted to investigate 

similarities or dissimilarities using a distance matrix from the archaeal and bacterial 

rumen community composition. The Bray-Curtis coefficient was employed 

separately for the archaeal and bacterial OTU tables to create sample-summary 

matrices, which were further explored using non-metric multidimensional scaling 

(NMDS)(Bray and Curtis, 1957). The effects of environmental and genetic parameter 

effects on community structures were evaluated using the following model: 

yijkl = μ + sbj + pk + b1(diml) + b2(e-0.065 x diml) + ai + eijkl    (3) 

where yijklm is the observed phenotype, e.g. PCoA 1 and PCoA2 for bacteria 

or archaea; μ is the model intercept; sbj is the sequencing batch run fixed effect 

nested within the sequencing platform (j = 11 levels);  pk , b1, diml, b2 , ai , and eijkl are 

as described in equation (1). Additive genetic effects of host could not be detected 

from the bacterial and archaeal community structures for PCoA 2 and only herd 

environmental effects were significant. The distribution of a priori defined high and 

low emitters along PCoA1 was tested for bacterial and archaeal community 

structures, respectively by means of Mann-Whitney tests.   

5.3 Results 
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5.3.1 Variation in methane emission and its heritability in lactating 

dairy cattle 

Methane concentration in the exhalation-breath of 750 lactating Holstein 

dairy cows from farmer herds in Denmark was measured individually during 

automated machine milking for one week. Within-week methane measurements 

had a high repeatability coefficient of 0.70 ± 0.02 (estimate ± SE). Estimated average 

daily methane emission was 395.8 ± 63.5 g/d (mean ± SD), which was consistent with 

reports from the literature(Lassen et al., 2016). Considerable variation in estimated 

CH4 emission among cows was observed. The top 10% methane emitting cows 

(519.28 ± 28.5 g/d) had a 41% mean difference from the low 10% emitting cows 

(303.8 ± 11.9 g/d) (Supplemental Fig S5.1). Results from linear mixed model with 

pedigree records indicated methane emission was moderately heritable, 0.19 ± 0.09 

(heritability coefficient, h2 ± S.E), which was consistent with previous findings in 

lactating Holstein cows in Denmark (Lassen and Løvendahl, 2016). 

 

5.3.2 Rumen bacterial and archaeal community composition 

We identified 3,894 bacterial operational taxonomic units (OTUs, ≥ 97% 

identity) and 189 archaeal OTUs, which were present in a minimum of 50% of the 

cow samples (50% threshold maximizes the variation in a binary trait i.e. presence or 

absence). Taxonomic classification revealed generic bacterial and archaeal 

composition. The predominant bacterial phylum found was Bacteroidetes 72.2% ± 

6.5 (mean ± SD), followed by Firmicutes (18.3% ± 5.6) and Tenericutes (2.8% ± 1.0). 

Absconditabacteria, Spirochaetes, Fibrobacteres, and Proteobacteria each 

comprised less than 2%, and another 20 phyla constituted 1% of all sequence reads. 

The archaeal community was dominated by two families, 

Methanobacteriaceae and Methanomassiliicoccaceae (35% ± 22.1) of the orders 

Methanobacteriales (64.2% ± 22.2; mean ± SD) and the recently proposed order 

Methanomassiliicoccales and class Thermoplasmata (Iino et al., 2013), respectively. 

The remaining archaeal community was comprised of 10 families, which were low in 

abundance, cumulatively accounting for less than 1% of all archaeal sequence reads.  

 

5.3.3 Additive genetic variance estimates of rumen microbiota 

OTU abundance and OTU abundance collapsed at genus and family levels 

were used as microbial phenotypes. The heritability thereof was estimated using a 

linear mixed model with pedigree records (known as ‘animal models’), which 

partitions total variance into additive genetic and environmental 

variance(Henderson, 1975). We calculated 95% confidence intervals for OTU h2 

estimates and found for 6% of bacterial and 12% of archaeal OTUs, the estimates 
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were significantly higher than zero (P < 0.05), ranging from 16 - 44% (Fig. 5.1) and 18 

- 33% (Fig. 5.2), respectively. Due to the high number of independent tests, we 

calculated false discovery rate (FDR) corrected P - values for h2 estimates with a FDR 

threshold of 15% (Supplementary Table 5.1).  

Heritability of bacterial and archaeal abundance was further estimated at 

the genus level. In total eight bacterial genera out of 144 showed significant h2 

estimates ranging from 0.17 to 0.25 (Table 5.1). Only a single archaeal genus, 

Methanobrevibacter, had a h2 estimate significantly different from zero (0.22 ± 0.09). 

However, Methanosphaera and Methanomicrococcus might also be under host 

additive genetic control with heritability estimates approaching significance 

thresholds (Table 5.1). 

 

 

 
Figure 5.1 Phylogeny of 3,894 rumen bacterial OTU. Branch lengths represent 

substitution number per site calculated by FastTree2(81). Heritability estimates (h2) 

for each OTU abundance are plotted with a horizontal bar and colored by taxonomic 

group classification. 
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Figure 5.2 Phylogeny of 189 rumen archaeal OTU abundance. Branch lengths 

represent substitution number per site calculated by FastTree2(81). Heritability 

estimates (h2) for each OTU abundance is plotted with a horizontal bar and colored 

by taxonomic group classification.  

 

5.3.4 Association between microbiota abundance and methane 

production 

Associations between relative bacterial and archaeal OTUs, genera 

abundance, and host CH4 emissions were tested, while simultaneously controlling 

for environmental factors and familial structures common in livestock due to 

relatedness among study samples (Yu et al., 2006; Tsilimigras and Fodor, 2016). The 

OTU or genera log-transformed abundance present in > 50% of cows were fit as an 

explanatory variable in a linear mixed model for CH4 production. Numerous 

significant OTUs were detected but failed to pass the threshold for multiple testing 

(FDR  0.15) (Supplementary Table 5.1). This was a hypothesis-generating analysis 

and not directed at specific hypothesis testing therefore we reported the significance 

and FDR corrected values (Supplementary Table 5.1). Seven genera in total were 

detected, which exceeded the significance threshold at FDR of 15%. The -log10 P-

values are plotted in Figure 5.3.  

 



5 Host and rumen microbiome 

 

143 

 

Table 5.1 Estimated heritability (h2) and P-value for the relative abundances of 

bacterial and archaeal genera. 

Genus Relative 

abundance 

(%) 

h2± SE 95% Confidence 

Interval 

P-value 

Bacteria     

Paludibacter 0.01 0.25 ± 0.10 (0.05 – 0.45) 0.015 

Unclassified 

Spirochaetaceae 

0.01  0.25 ± 0.09 (0.04 – 0.41) 0.08 

R4-45b 0.01 0.23 ± 0.09 (0.05 – 0.41) 0.014 

F16 0.8 0.22 ± 0.09 (0.04 – 0.40) 0.018 

Unclassified 

Endomicrobia 

0.04 0.21 ± 0.09 (0.02 – 0.40) 0.027 

Unclassified 

Victivallaceae 

0.08 0.20 ± 0.09 (0.01 – 0.39) 0.36 

Unclassified 

Proteobacteria 

0.02 0.19 ± 0.09 (0.01 – 0.37) 0.042 

Sporobacter 0.01 0.17 ± 0.08 (0.00 – 0.34) 0.046 

Archaea     

Methanobrevibacter 55.8 0.22 ± 0.09 (0.04 – 0.42) 0.02 

Methanosphaera 8.1 0.18 ± 0.10 (-0.00 – 0.36) 0.055 

Methanomicrococcus 0.7 0.18 ± 0.09 (-0.02 – 0.38) 0.08 
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Figure 5.3. Manhattan plot of rumen bacterial and archaeal genera associations with 

methane emissions (g/day) colored by heritability (h2) estimates. Color gradient 

indicates genera h2 with light blue (h2 = 0) ranging to dark blue (h2 = 0.30). The y-axis 

is -log10(P) for association tests. The horizontal line represents the Benjamini-

Hochberg FDR 15% for multiple testing significance thresholds. Genera above the 

threshold are a) Unclassified BS11 group; b) Sporobacter; c) Unclassified 

Victivallaceae; d) Unclassified Lentisphaeria; e) Unclassified Alphaproteobacteria; f) 

Unclassified Rickettsiales; and g) Sphaerochaeta. 

 

5.3.6 Variation in methane emission attributed to cows’ additive 

genetics and rumen microbiome 

The relative proportion of variation in CH4 emissions due to rumen 

microbial composition and host additive genetic components was estimated 

individually and jointly using linear mixed models. Likelihood ratio tests revealed that 

fitting either random effect of rumen microbial composition or individual cow’s 

polygenic component fitted the data significantly better than the null model i.e. 

including only fixed effects (P < 0.001). The model fitting both random effects 

(microbial composition and polygenic component) was significantly better (P < 

0.001) than models including only one random effect. The proportion of variance in 

CH4 production explained by the microbiome, here defined as microbiability (m2), 

was calculated in analogy to the heritability (h2)(Difford et al., 2016b; Camarinha-
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silva et al., 2017). The contrast between the two intra-class correlation coefficients 

h2 and m2 with their respective standard errors for all models are depicted in Figure 

5.5. The m2 of CH4 emission estimated individually was 0.15 ± 0.08 (estimate ± S.E) 

and the h2 estimated individually was 0.19 ± 0.09. Simultaneous estimates of both 

effects indicated slightly lower microbiability (0.13 ± 0.08), whereas h2 exhibited a 

corresponding increase (0.21 ± 0.09) as compared to the preceding models fitting 

only one of the random effects. The combined microbial abundance and additive 

genetic effects were responsible for ~ 34% of the total phenotypic variation in CH4 

emissions.  

 

5.4 Discussion 

 

5.4.1 Additive genetic variation in methane emissions and bacterial 

and archaeal taxa abundance 

The results of this study show that estimated CH4 emissions from a dairy 

cow were partially under the influence of host (cow’s) additive genetics, which 

explained 19% of the total variation. Of the rumen bacterial OTUs, a modest ~ 6% 

were associated with host additive genetics exhibiting significant heritability 

estimates (16 - 44%) (Fig. 5.1). Similarly, only ~ 12% of archaeal OTU abundance was 

influenced by host additive genetics, with heritability estimates ranging from 18 - 

33% (Fig. 5.2). However, bacterial and archaeal heritability estimates failed to pass 

the threshold for multiple testing. Our test was conservative as a large number of 

taxa were analyzed with many OTUs having little or no influence by the host genome. 

Studies with larger sample sizes would give more reliable estimates of the 

heritabilities, especially for lower heritable OTUs. The h2 estimates observed in this 

study were consistent with findings of intestinal microbiota in mice (Leamy et al., 

2014; Org et al., 2015) and humans (Goodrich et al., 2014, 2016) and confirm that 

the majority of variation in rumen microbial abundance is due to factors other than 

host additive genetics (Rothschild et al., 2017).  Interestingly, the patterns of h2 with 

phylogeny differed between the bacteria and the archaea (Fig.5.1 and Fig.5.2). 

Heritable OTUs were distributed throughout the bacterial microbiome whereas 

archaea showed increased heritability within the Thermoplasmatales. This highlights 

the value of collating phylogeny with heritability estimates to focus research into 

possible mechanisms which predispose differential relative abundance of certain 

taxa across genetically related cows. The method employed to sample rumen 

contents is high-throughput and less invasive than surgical procedures, making it 

better suited to sampling large numbers of cows under commercial farm conditions. 

Large sample size is critical in genetic evaluations. However, it is important to note 
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that the floral rumen scoop is inserted into an undefined portion of the rumen and 

likely samples the liquid phase. Recognizing that rumen microbial communities differ 

between liquid, solid and epimural phases (Kong et al., 2010), studies testing the 

repeatability and representativeness of sampling are needed.  

 

5.4.2 Associating rumen microbial taxa abundance with CH4 

emissions 

We utilized linear mixed model analysis to test for associations between 

bacterial and archaeal OTUs, genera and families with estimated CH4 emissions, 

while concurrently accounting for effects such as parity, lactation stage, herd of 

origin and familial structure from the pedigree. Several bacterial genera associated 

with CH4 emission were detected. Out of these, four were found either to be affected 

by methane inhibitors or related to H2 production and other methanogenesis 

substrates. Three were moderately heritable (0.17 – 0.25) (Supplementary Table 

5.1). One of the identified bacteria, Sporobacter, with a mean relative abundance of 

0.01% (Ruminococcaceae, Clostridiales, Firmicutes), belongs to a group with only a 

single cultured representative, Sporobacter termitidis, isolated from the intestine of 

wood-feeding termites (Nasutitemes lujae), also known for producing large amounts 

of CH4. However, when this isolate was co-cultured with an archaea species, 

Methanospirillum hungatei, CH4 was not produced. S. termitidis was found to 

generate acetate and methylsulfides, but not H2 or CO2, therefore interspecies H2 

transfer did not occur and facilitate CH4 production (Grech-Mora et al., 1996). The 

recent discovery and proposed archaeal order Methanomassiliicoccales species 

found to utilize methylsulfides and H2 in methanogenesis(Borrel et al., 2014), 

provides a possible mechanism for methylsulfide producers to contribute to CH4 

production when H2 producers are present. Methanomassilicoccales was prevalent 

in our samples (mean relative abundance 35%); therefore, Sporobacter could 

potentially be contributing to CH4 production via a similar pathway.  

We also detected Sphaerochaeta with a mean relative abundance of 

0.01%, associated with estimated CH4 production. Genomes from cultured 

Sphaerochaeta isolates revealed acetate, formate, ethanol, H2, and CO2 were 

potential fermentation end products (Caro-Quintero et al., 2012), many of which are 

methanogenic archaea substrates (Knapp et al., 2014). Furthermore, seed extracts 

from Perilla frutescens (Lamiaceae), a medicinal herb, decreased CH4 production in 

vitro from rumen samples of lactating dairy cows and decreased Sphaerochaeta 

abundance(Wang et al., 2016). Interestingly, Caro-Quintero et al. (2012) reported up 

to 40% of the genes from Spaerochaeta species were exchanged with members of 

Clostridiales (Firmicutes) and this inter-order-species horizontal gene transfer was 
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most extensive in mesophilic anaerobic bacteria, such as the conditions found in 

termite and ruminant guts (Caro-Quintero and Konstantinidis, 2014). Here 16S rRNA 

gene sequencing is used as a proxy for metabolic activity but cannot account for 

inter-order-species horizontal gene transfer. Therefore, full metagenome sequence 

may have an advantage over the 16S rRNA gene to describe rumen microbial 

contents. 

One bacterial genus detected in the present study, which is positively 

associated with estimated CH4 production, is classified in the yet uncultured BS11 gut 

group of the Bacteroidales (mean relative abundance 1.4%). The relative abundance 

of the BS11 group reportedly decreased concomitantly with CH4 production by 

dietary methanogenic inhibitors, such as P. frutescens seed extract, mentioned 

previously(Wang et al., 2016), monesin and essential oil supplementation in dairy 

cattle (Boadi et al., 2004; Schären et al., 2017), and bromochloromethane in 

Japanese goats (Denman et al., 2015). Thus, supporting our finding of a positive 

association between BS11 and CH4 production. Solden et al. (2016) employed 

metagenomics sequencing and shotgun proteomics approaches to phylogenetically 

and metabolically resolve the BS11 gut group. They resolved two genera within the 

group and both exhibited multiple pathways to ferment hemicellulose, a capability 

previously unknown for BS11. The resulting fermentation end products included 

acetate, butyrate, propionate, CO2, H2 (Solden et al., 2016) the latter two being 

methanogenesis substrates. Genes encoding ‘fucose sensing’ pathways were found 

for only one of the proposed BS11 genera, offering a possible mechanism for 

interaction between genes in the BS11 group and the host (Roehe et al., 2016). 

However, further studies are needed to elucidate the links between CH4 inhibitors, 

host genes and CH4 production.  

Due to the absence of cultured rumen bacteria isolates, an understanding 

of the metabolic function in many bacterial genera remains in its infancy. However, 

from the isolates discussed above, results suggested CH4 emissions depend on 

abundance of bacterial taxa that produce substrates for methanogenesis, such as H2. 

Remarkably, associations between archaeal relative abundance and estimated CH4 

production were not detected in the present study, despite the knowledge that 

archaea are directly responsible for CH4 production. A meta-transcriptome study in 

sheep found archaeal transcription pathways and not simply abundance, 

contributed to inter-animal differences in CH4 production (Shi et al., 2014). This study 

was congruent with conclusions reached in two recent reviews, which examined 

results from dairy cattle and other ruminant studies employing 16S rRNA (Tapio et 

al., 2017) and ‘meta-omics’ approaches (Wallace et al., 2017), where bacteria 



5 Host and rumen microbiome 

 

148 

 

abundance produced and utilized H2 or stabilized pH, which affected CH4 emissions 

and feed efficiency and archaeal activity matched substrate availability.  

 

5.4.3 Associating rumen community structure with methane 

emissions 

The combined effects of the bacterial and archaeal community structure 

(beta diversity) on estimated CH4 emissions were investigated by conducting PCoA 

on the archaeal and bacterial communities, which revealed 2-3 clusters for archaea 

(Fig. 4a) and two clusters for bacteria (Fig. 4b). Beta diversity is a non-parametric 

distance measure used in microbiology and ecology to assess the differences 

between environments or samples (in this case cows) as opposed to alpha diversity 

which takes into account the diversity within cows. Clusters of a similar nature were 

first reported in intestinal bacterial community types in humans (Wu et al., 2011; 

Arumugam et al., 2013), chimpanzees (Moeller et al., 2012), mice (Hildebrand et al., 

2013) and pigs (Ramayo-Caldas et al., 2016), referred to as “enterotypes”, and found 

associated with specific host phenotypes. This concept was extended to sheep 

rumen bacterial communities and referred to as “ruminotypes”(Kittelmann et al., 

2014). The ruminotypes observed herein followed a continuous gradient and did not 

form discrete clusters, which is consistent with the latest findings in microbiome 

stratification (Knights et al., 2014). Importantly, we found that animal and farm 

factors like herd of origin, parity and lactation stage, as well as technical factors, i.e. 

sequencing batch, contributed to the observed variation and stratification in 

ruminotypes. Similar findings were reported in rumen bacterial richness at different 

lactation stages and over different parities (Jewell et al., 2015), suggesting later 

parities (higher parity cows are older) decreased bacterial richness and increased 

production (Lima et al., 2015). We detected a moderate heritable genetic 

component acting along PCo1 axis, with h2 of 20% for bacterial and 39% for archaea, 

when controlling for lactation stage and parity, demonstrating the first evidence of 

host additive genetic influence on rumen bacterial and archaeal community 

structure (beta diversity). All the above-mentioned factors contribute to microbiome 

structure and associations with host phenotypes.  
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Figure 5.4 Principal coordinate analysis (PCoA) of rumen bacterial community diversity (a) and archaeal community diversity (b) based 

on 16S rRNA amplicon sequencing contrasting 10% highest methane emitters (orange), 10% lowest methane emitters (blue), and 

80% intermediate emitters (grey). Distribution of high and low emitters along PCo1 showed significant differences (P < 0.001) for 

both figures. 
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An association was detected between the highest and lowest CH4 emitters 

and bacterial and archaeal ruminotypes along PCo1, however, ruminotype cluster 

memberships were not exclusive to high and low emitters. This suggested ruminal 

bacterial and archaeal community structure provided a modest contribution to CH4 

emission. Kittelmann et al. (2014) surveyed microbial community composition in 

multiple sheep cohorts with low and high CH4 yield (methane emission per kg dry 

matter intake, CH4/DMI). A ruminotype “S” associated with low CH4 yield and 

enriched with Sharpea azabuensis was reported. A follow up study in sheep also 

found low CH4 yielding sheep to be associated with ruminotype “S”, enriched with 

Sharpea spp. It was hypothesized a smaller rumen size and higher turnover rate 

promoted faster growing bacteria, such as Sharpea, which favor hetero-fermentative 

growth on soluble sugars, resulting in lower H2 production and subsequently 

decreased CH4 formation by hydrogenotrophic methanogens (Kamke et al., 2016). 

Smuts et al. (1995)  reported passage rate (and consequently turnover rate) in sheep 

was heritable, indicating a possible mechanism for host genetics to influence 

ruminotypes. Methane emission phenotypes differed between the sheep and the 

present study. Kittelmann et al. (2014) assessed the amount of CH4 production per 

unit of DMI but not CH4 production directly. DMI measurements are not currently 

recorded on dairy cattle under commercial farms due to the high costs and 

therefore, CH4 emissions in the present study could not be corrected for feed intake. 

In light of the differences in phenotype definitions and similarities in ruminotypes 

between studies, it would be of interest in future work to obtain DMI records on 

cows and test if the ruminotypes observed show an increased relationship with CH4 

yield.  The heritability estimates for PCo1 and PCo2 indicates these measures could 

potentially be used as indicator traits in genetic selection should they be highly 

correlated to a trait of interest, however PCo1 and PCo2 (beta diversity) does not 

account for the total rumen microbial variation within and between individuals.  

The method employed to measure CH4 production in the present study is 

high throughput and non-invasive, making it practically viable for measuring large 

numbers of animals under commercial farm conditions. However, the cost trade off 

of this method is that it makes use of milk yield and body weight in the estimation of 

CH4 production. Validation of this method with the ‘gold standard method’ (climate 

respiration chambers) has yielded highly correlated (r= 0.8 – 0.89) and concordant 

(concordance correlation coefficient = 0.84) results in dairy cattle (Garnsworthy et 

al., 2012; Negussie et al., 2016). However, the effects of body weight and milk yield 

on estimation of CH4 cannot be discounted and further research into the 

relationships between these variables and the rumen microbiome would be of value. 
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5.4.4 Quantifying variation in CH4 due to cow additive genetic effects 

and rumen microbiome  

In this study, we quantified the combined effects of all rumen bacterial and 

archaeal OTUs simultaneously on estimated host CH4 emissions using a microbial 

relationship matrix among cows. This is a parametric approach similar to assessing 

both alpha and beta diversity, as total rumen microbial variation within and between 

individuals is taken into account simultaneously. We expressed the combined effects 

as the variance ratio due to microbial composition to the total variance in estimated 

CH4 emissions (m2, microbiability), an analogy to h2. Estimated CH4 emissions had 

15% m2, indicating the combined rumen bacteria and archaea abundance of dairy 

cattle was associated with a considerable amount of variation in estimated CH4 

emissions among animals. Ross et al. (2012) first proposed the generation of 

metagenomic relationship matrices in dairy cattle and reported a CH4 emission 

prediction accuracy of 0.47, explaining 22% of the total variation in CH4 production 

(Ross et al., 2013). However, Ross et al. (2013) did not have sufficient data to 

estimate h2 or microbiability (m2) in CH4 production. A study with 207 pigs employing 

16S rRNA sequencing of gut microbes, found eight of the 49 bacterial genera to be 

heritable and estimated m2 and h2 for feed intake (m2 = 0.16, h2=0.42), daily gain (m2 

= 0.28, h2=0.11) and feed conversion ratio (m2 = 0.21, h2=0.19) (Camarinha-silva et 

al., 2017). Only daily gain had higher h2 compared with m2. These findings suggest 

agreement with holobiont theory, where variation in the genome and microbiome 

can cause variation in some complex traits, on which artificial, natural selection and 

genetic drift can act (Zilber-Rosenberg and Rosenberg, 2008; Bordenstein and Theis, 

2015). However, the aforementioned study did not have adequate numbers of 

animals to estimate m2 and h2 simultaneously to assess the relative interactions 

between additive genetics and the microbiome. Thus, it was unable to assess if host 

additive genetics co-influences the microbiome and variation in phenotypes.  

In contrast, we estimated m2 and h2 concurrently to examine the shared 

information between the two effects. Microbiability of estimated CH4 production 

decreased by two percentage points to 13% and h2 exhibited a corresponding 

increase from 19 to 21%. This result indicated host genetic effects do interact with 

the microbial community composition but are not the primary mechanism for host 

genetic effects on estimated CH4 emissions. A possible explanation for the negligible 

amount of shared influence between the two relationship matrices might be the 

small percentage of heritable bacterial and archaeal OTUs. This implies that the 

rumen bacterial and archaeal communities affected estimated host CH4 emissions 

independently and host genetics influenced a small portion of these bacteria and 
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archaea. The combined host additive genetics and rumen microbial community 

composition explained ~ 34% of the total variance in estimated CH4 emissions in 

dairy cattle. Thus, breeding for low CH4 production can be expected to result in 

limited correlated genetic responses to shape the rumen microbiome and breeding 

can likely proceed without taking cognizance of the rumen microbiome for this trait. 

However, larger studies estimating genetic correlations between rumen microbiota 

and CH4 emissions and better functional annotation of rumen microbiota are needed 

to confirm this. 

 
Figure 5.5. Proportion of variance in CH4 explained by different sources (Intra-class 

correlation coefficients, ICC) due to additive genetic effects (heritability) and rumen 

microbe content (microbiability), with respective standard errors when fit separately 

or jointly. 

 

Microbiability estimates can be used as a tool for quantifying the 

cumulative effects of microbial abundance on phenotypes, e.g. complex diseases and 

quantitative traits. However, further research is required to elucidate the biological 

mechanisms shaping microbiability. For example, animal factors known to affect CH4 

production and rumen microbial populations, such as passage rates or individual 

differences in feed intake might influence microbiability estimates. Human intestinal 

microbiome studies finds that numerous disease phenotypes are associated with 

microbial richness, species abundance, and microbial community structure (Le 

Chatelier et al., 2013; Falcony et al., 2016). Subsequent work using stool consistency 

and opaque markers as proxies for colonic transit time found all three metrics and 

disease phenotypes are partially confounded with colonic transit time (Roager et al., 
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2016; Vandeputte et al., 2016). Similarly, in sheep studies, low CH4 yielding sheep 

are associated with lower retention time and smaller rumens (Goopy et al., 2014), 

relationships with specific rumen microbial clusters (Kittelmann et al., 2014) and 

different bacterial and archaeal species (Kamke et al., 2016). Therefore, studies are 

needed to determine if microbial differences among subjects associated with 

phenotypic differences are causative or are consequences of unknown extraneous 

factors. It is also necessary to clarify the mechanisms which allow rumen microbes 

to be passed on to successive generations, to assess the efficacy of perturbations of 

the rumen microbiome such as probiotics and rumen transplants aimed at desired 

changes to the rumen microbiome and associated changes in phenotypes (Bickhart 

and Weimer, 2017). Regardless of the underlying biology, quantifying the relative 

contribution of rumen microbes and additive genetics to complex phenotypes helps 

characterize whether the host genome and microbiome are acting jointly as a 

holobiont and highlights the merits of targeting microorganisms to achieve a specific 

change in a phenotype or selective breeding. Furthermore, providing additional 

information, such as relative abundance of rumen fungi and protozoa, or ‘meta-

omics’, including meta-transcriptomics or meta-proteomics data can be readily 

adopted and incorporated into this methodology, offering insights into economically 

important livestock and disease traits in humans.   

 

5.4 Conclusion 

 

Methane production by dairy cows is not only influenced by factors such as 

feed intake and composition among others, but also the cow’s individual genetic 

composition and rumen microbial composition. Each cow’s additive genetic effects 

influence a modest amount of variation in the abundance of a small percentage of 

rumen bacterial and archaeal taxa, and thereby contribute to variation in rumen 

microbiome composition and function. We detected associations between CH4 

emissions and rumen bacteria abundance, which are known to produce 

methanogenesis substrates, suggesting bacteria driven CH4 production pathways. 

Although we detected a heritable component to ruminotypes, the association to CH4 

production was weak. Concurrently, host additive genetic effects and rumen 

microbes contributed to inter-animal differences in CH4 production, however 

negligible interaction was observed between microbiability and heritability. 

Consequently, cow additive genetic effects on CH4 emissions were largely 

unmodulated by cow additive genetic effects on rumen bacteria and archaea 

abundance. Strategies to reduce CH4 emissions in ruminants can be optimized by a 
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multifaceted approach, for instance, selective breeding to unlock host’s genetic 

potential and strategies which may effect desired changes in the rumen microbiota 

like rumen transplantation, and probiotics. 
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6.1 Overview 

 

The main research area of this PhD project is to investigate the genetic 

variation contributing to methane emission, feed efficiency and the rumen 

microbiome. The use of multidisciplinary approaches such as method comparison, 

quantitative genetics and microbiology was proposed to better understand the 

genetic basis of the abovementioned fields.  

The following general discussion is organised into several sections. The first section 

is dedicated to the discussion of the primary findings of Chapter 2 – 3 on the 

development, comparison and performance of sniffers for CH4 emission recording. 

The second section is dedicated to the findings of Chapter 4, where we investigate 

the use of sniffers for CH4 evaluation in practice and their genetic correlations to feed 

efficiency. Lastly, the findings of Chapter 5 investigated genetic variation in rumen 

microbial abundance, and integrating this information into better understanding 

biology and genetic basis of CH4 production. At the end of the chapter, conclusions 

are drawn and some recommendations for future research are made. 

  

6.2 Development of non-invasive sniffer methane 

phenotypes  

 

The use of sniffers for recording breath gas concentrations and estimating 

CH4 production is, like other methods, under continuous development. For genetic 

evaluations, defining the genetic correlation between the alternative method and 

the gold standard is crucial to evaluating the relative merit of the alternative method. 

This can be seen by the breeders equation where response to selection in the gold 

standard (Rgs) is a function of the heritability of the alternative method h2
A, their 

genetic correlation rg and intensity of selection (I) (Rgs = I.hA.rg). If the genetic 

correlation is suitably high (rg > 0.80)(Robertson, 1959), and the alternative method 

is as heritable or higher, the alternative method can replace the gold standard. If the 

genetic correlation is moderate rg > |0.3|, it may still be useful as an indicator trait. 

However, measurements using both methods on 103-104 related individuals are 

needed to estimate a genetic correlation with meaningful standard errors (Visscher, 

1998). Even larger numbers are required if measurements are made on different 

animals or animals at different points in time, or environments (Bijma and 

Bastiaansen, 2014). The high cost, limited throughput and time or invasiveness of 

the gold standard drives the need for alternative methods. Other ways of assessing 

the merit of an alternative method are therefore needed prior to the investment in 

recording thousands of animals usually required for estimating genetic correlations. 
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Text Box 1. Accuracy and precision of phenotypes and random solutions 

The statistical terms accuracy and precision are not synonymous at 

the phenotypic level (measurement) and genetic level (random solutions), see 

Barnhart et al, (2007a) for a discussion of definitions on agreement with 

continuous measurements. Phenotypic accuracy is a measure of ‘systematic 

error’ (also commonly called mean or intercept bias) and is the fixed 

difference between what is measured by a method and the known or ‘true 

value’. The gold standard method is taken to be the method, which measures 

the ‘true value’ with the least systematic error, and by definition is the most 

accurate method. Precision is a measure of the ‘random error’ and is the 

closeness of multiple measurements taken using the same method on a 

subject under the conditions the ‘true value’ has not changed or the change in 

‘true values’ is accounted for statistically or by careful design. The phenotypic 

variance of measurements can then be decomposed into the between-subject 

variation (σ2
b) (the variation between ‘true values’ in a population) and the 

within-subject variation (σ2
e) (the random error or residual variation around 

‘true values’). An alternative method can therefore be more precise than the 

gold standard method if the residual error of the alternative method is smaller 

than that of the gold standard. Precision cannot be determined in the absence 

of repeated measures per subject. The repeatability (t) of a method under the 

conditions of assessing precision described above, is a metric for comparing 

precision between methods. Defined as the ratio of between-subject variation 

to the total subject variation (t = σ2
b/(σ2

b + σ2
e). The accuracy of random 

solutions such as estimated ‘true values’ from repeated measures per subject 

or estimated breeding values from records on relatives is the correlation 

between the true random solutions and estimated random solution from a 

linear mixed model. This definition is somewhat confusingly similar to 

precision of phenotypes as is seen by the equation for random solution 

accuracy ray = σ2
b / √( σb (t + (1- t)/n).σ2

y) see Mrode, R., 2003 for proofs and 

extension to estimated breeding values. From this equation, it can be seen 

that the accuracy of random solutions are directly proportional to the 

repeatability or phenotypic precision and increases as the number of records 

per individual (n) increases.   
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Instrument or method comparison and validation studies, which identify 

and quantify phenotypic sources of (dis)agreement such as accuracy, precision and 

correlation (Barnhart et al., 2007a) are a viable first step. Knowledge of sources of 

(dis)agreement is indispensable as it facilitates further corrective steps, continued 

development of the method and informs the scope of the usage prior to investment 

in recording thousands of animals.  

Precision can only be assessed if repeated measures are made per 

individual, which allows for partitioning of variance into between- and within-subject 

variance (precision). This facilitates the estimation of individual level correlations 

using between-subject (co)variances. Importantly, the repeatability serves as the 

upper threshold for heritability estimates and individual level correlations between 

methods serve as proxies for genetic correlations (Wolak et al., 2012; Dingemanse 

and Dochtermann, 2013).  

The accuracy of a method refers to measurements being close to the ‘true 

value’ of interest, a prerequisite of which is the gold standard, which is assumed to 

record the ‘true value’ (Hartnack, 2014). In the case of CH4 emission, this is indirect 

calorimetry in RC. In the general introduction, we challenge the recording of the ‘true 

value’ of CH4 emissions from dairy cattle, as it changes within day and from day to 

day. Furthermore, the RC often compare poorly within and between research 

facilities (Gardiner et al., 2015) and animal behaviour changes due to confinement 

within RC can change the true value of CH4 emission due to changes in feed intake 

and may not necessarily be representative of the true value of CH4 emission under 

grazing conditions (Pinares-Patiño et al., 2013). Regardless of the shortcomings of 

the RC method, assessment of method accuracy cannot be conducted without 

defining a gold standard. Precision is the variability between repeated measures on 

the same subject, thus, it is a measure of the random error (precision) of a method 

(ISO, 1994). Repeatability is the ratio of between subject variance to the total 

variance and used as a metric for precision but also the correlation between 

repeated measures of the same method. To this end, the repeatability of a method 

can be informative because if a method is not repeatable, it will not agree with 

another method (Hanneman, 2008).  
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A prerequisite of method agreement is a positive linear association 

between measurements from each method. The most common metric for assessing 

linear associations is correlation, or Pearson’s product-moment correlation. 

However, a high correlation (r = 1) does not ensure perfect agreement as it fails to 

take into account differences in accuracy (µ1 ≠ µ2) or precision (σ2
e1 ≠ σ2

e2) (Altman 

and Bland, 1983). Conversely, measurements of two methods can have the same 

means (accuracy µ1 = µ2) and the same magnitude precision (σ2
e1 = σ2

e2) but have no 

linear association (r = 0), thus high accuracy and precision is meaningless. 

Furthermore, accuracy, precision and correlation are interrelated facets of 

agreement. For instance, as imprecision increases, the statistical power to detect 

significant differences in accuracy decreases. Moreover, the correlation between 

Text Box 2. Correlations at phenotypic, individual and genetic levels 

Pearson’s product moment correlation is a popular method for 

assessing the linear association between two measurements. This metric 

assumes independence of error between measurements. In the case of single 

measurements per subject with two methods the phenotypic correlation is 

the ratio of covariance the product of standard deviations of each method (rp 

= σ2
p1,p2/(σp1.σp2). However, if multiple measurements are taken per subject, 

as is the case when assessing precision, then the random errors on each 

subject are likely not independent. In this case, partitioning the variation into 

between- (σ2
b) and within-subject variation (σ2

e) can account for non-

independence. To this end, the  individual level correlations is more 

appropriate, as this estimates the correlation between estimated random 

subject solutions for each method RI = σ2
b1,b2 /(σb1.σb2). In the case that one or 

both methods are measured with imprecision (t < 1) and the random errors 

are not correlated between methods, then rp in the presence of repeated 

measures is biased downwards and a bias predictor of the correlation 

between ‘true values’. In the case of genetic correlations, the genetic 

relationships between individuals also affects the independence of measures. 

For repeated measures, the between-subject variation is further partitioned 

into additive genetic variation (σ2
a) and permanent environmental variation 

(σ2
pe) which includes non-additive genetics, maternal, common environmental 

and learned effects etc. If the permanent environmental variation is the same 

sign as the genetic variation (not always the case), then the individual level 

correlation is a better predictor of the genetic correlations than phenotypic 

correlations.  
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two variables is biased downwards in the presence of repeated measurements when 

one or both methods is measured with error (i.e. t < 1) (Spearman, 1904; Adolph and 

Hardin, 2007). The implications are that method comparison studies must use 

repeated measures per subject per method to estimate precision, but must also 

account for the attenuating effects of random error on the phenotypic correlation 

by estimating the individual level correlations. This is readily done in bivariate linear 

mixed effect models, commonly known in genetics as bivariate repeatability animal 

models (Hamlett et al., 2004; Roy, 2009; Downs and Dochtermann, 2014). 

Text Box 3. Assessing agreement with CCC and CIA 

Agreement between measurements from two methods requires that 

all three facets of (dis)agreement: accuracy, precision and correlation are 

assessed. Failing to assess all three facets can lead to miss-leading 

conclusions. Scaled agreement indices such as the concordance correlation 

coefficient (CCC) and the coefficient of Individual agreement (CIA) summarise 

all three facets into a single value ranging from 0 – 1, where 0 indicates no 

agreement and 1 indicates full agreement (Barnhart et al., 2007b). The CCC for 

repeated measures is: 

CCC = (2.σb1.σb2.rI)/( 2σb1.σb2 + (µ1 - µ2)2 + (σb1 - σb2)2 + σ2
e1 + σ2

e2) 

 

The CIA can only be estimated for repeated measures as: 

CIA = (2.σ2
e1.σ2

e2)/( 2(1-rI)σb1.σb2 + (µ1 - µ2)2 + (σb1 - σb2)2 + σ2
e1 + σ2

e2) 

 

In general for both CCC and CIA, as the individual level correlations increase 

and difference in means (µ1 - µ2) (accuracy), differences in the between 

subject variation (σb1 - σb2) decrease, the resulting agreement increases. 

However, for the CCC as the between subject variation increases so too does 

the CCC. As the between subject variation in population specific, comparing 

methods on a heterogeneous population may inflate the CCC between 

methods. Conversely, for the CIA, if one or both of the methods has higher 

imprecision (i.e. within-subject variation increases σ2
e1 + σ2

e2), the CIA maybe 

inflated. The two metrics are therefore complementary in assessing method 

agreement. Using the threshold of bioequivalence from the Food and Drug 

Administration, the threshold for good agreement with CIA > 0.455 and CIA > 

0.80 for excellent agreement (Barnhart et al .,2007b). McBride, G.B. (2005) 

suggested a threshold of CCC < 0.90 as poor, 0.95 < CCC < 0.99 as substantial 

and CCC > 0.99 as almost perfect.  
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A prerequisite of genetic and many other studies is the individual 

identification of cows for linking phenotypic information to familial relationship 

information (Falconer and Mackay, 1996). To this end, it is useful to know the 

sensitivity, or the true positive identification rate (where the cow is measured by 

sniffers and identified) and specificity, or the true negative identification rate (where 

the cow is not being measured and not identified). In Chapter 2, we developed and 

validated a time alignment algorithm and detected a systematic time series 

difference of 1 hour and 1 minute and a constant drift of two seconds per day 

between the digital clocks time stamping the gas recording and the AMS visitation. 

The 1 hour systematic time difference was due to inconsistent application of daylight 

saving time, which would result in a specificity of 50% and sensitivity of 50% over a 

1 year period. After the application of the time alignment algorithm, both metrics 

where restored to 100% during the recording period. To the best of our knowledge, 

this potentially large source of error has not been reported elsewhere in CH4 

recording or the integration of time series in other automated recording devices 

including AMS, feed bins and activity recording devices. Sensitivity and specificity 

assessments are needed before method comparisons can proceed because 

inaccurate subject identification will result in poor comparisons, regardless of the 

methods compared. 

 

6.2.1 Predicting CH4 production from sniffers with the CO2 ratio 

method  

In Chapter 3, we compare CH4 emissions using sniffers with subsequent 

measurements in RC for 10 Danish Holstein and 10 Danish Jersey cows, with the 

express purpose of assessing individual level correlations. Although time elapsed 

between the two methods, as well as a change in diet (underlying biology of the ‘true 

values’ will have changed), we can still compare the accuracy of the two methods, 

recognising the limitations of our study will cause an underestimation of agreement.  

The CH4 production estimated from sniffers using the CO2 ratio method 

differed significantly (P<0.05) by an overestimation of 9.9% corresponding to 52 L 

CH4/day. Negussie et al. (2016) compared 21 Nordic red cows in the RC, with 

estimated CH4 production, using a sniffer installed in a concentrate feeder and 

predicted CO2 tracer gas from estimated metabolisable energy intake and found a 

non-significant 6% under prediction of 36.4 L/day. In the case of the comparison in 

Chapter 3, we cannot determine the cause of inaccuracy due to the confounding 

effects of diet and time but together with the results of Negussie et al. (2016), we 

can infer that sniffer methods using the CO2 ratio method are less accurate (6 – 10%) 

or potentially as accurate as the RC. 
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Comparing sub-components of the sniffer CO2 ratio method for accuracy, 

the predicted CO2 tracer gas in Chapter 3 is 3.5% higher than recorded CO2 

production in the RC and not significantly different (P>0.05). In a study evaluating 

the accuracy of the predicted CH4 production using CO2 tracer gas against measured 

CH4 production in the RC, Hellwing et al. (2013) found a significant systematic 

difference in accuracy of 16.6% or 96 L/day under prediction in 157 records on 

lactating Danish Holstein cows in 8 experiments covering 30 experimental diets. 

Similarly, a study comparing predicted CH4 production from predicted CO2 tracer gas 

and recorded CO2 tracer gas in the RC, a non-significant under prediction of 3.9% or 

5.8 L/day was observed in Dexter Heifers (Haque et al., 2017). From the findings of 

these studies, it appears that the prediction of CO2 tracer gas contributes a negligible 

amount of deviations from accuracy across a range of breeds and diets. Differences 

due to the predicted CO2 tracer gas were systematic and can be corrected for by the 

addition of a constant correction factor or through statistical modelling. However, 

prediction equations based on the relationship between CO2 production and other 

phenotypes, such as milk production, can change over generations due to genetic 

selection and thus requires periodic re-evaluation. Furthermore, the prediction 

equations for CO2 production, described in Madsen et al. (2010), do not take into 

account mobilization of body reserves and thus remain a potential source of bias, 

particularly in early lactation.  

The recorded ratio of CH4 to CO2 in the AMS was however, 12% under that 

of the recorded ratio in the RC (P>0.01) (Chapter 3). In a comparison study using the 

GF system with or without active airflow (similar to sniffers), Huhtanen et al. (2015) 

found that the recorded ratio of CH4:CO2 production (mass flux measure) 

inconsistently differed from that of the ratio of CH4:CO2 concentration 

(concentration measure ‘sniffer’). In the first experiment, a standard GF concentrate 

feeder system was used and the ratio of CH4:CO2 concentration under-recorded 

significantly as compared to the ratio of CH4:CO2 production (P<0.001) by 1.3% in 

Nordic red cattle (Huhtanen et al., 2015). However, in the second experiment, the 

GF system was retrofitted to AMS and significantly over-recorded as compared to 

the ratio of CH4:CO2 production (P<0.001) by 7.8% in Holstein Friesian cows 

(Huhtanen et al., 2015). Unfortunately, it is not possible to quantify from these 

studies whether one or both gases is contributing to the inaccuracy. From these 

studies, it is clear that deviations in the accuracy of the CH4:CO2 ratio will have 

consequences for the accuracy of predicted CH4 production. Further work is required 

to ascertain the direct causes of inaccuracy due to partial confounders such as breed, 

installation device, sensor and diet. Particularly if the deviation in the CH4:CO2 is due 

to inaccuracy of the sensor for CH4, CO2 or both. This point is illustrated by the 
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findings in Chapter 2, where significant differences between CH4 and CO2 

concentrations were detected using two different sniffer sensors in the same AMS 

feed bin.  

As is reported in Chapter 3, the repeatability of average weekly predicted 

CH4 production (t = 0.58 ± 0.11) is not significantly different to subsequent average 

daily CH4 production in the RC (t = 0.61 ± 0.12). However, it is important to note that 

the time window is larger for the predicted CH4 production as compared to the RC, 

which is shown in Chapter 2, to reducing residual error and thus increasing 

repeatability. The implications of this finding are that, in order to achieve adequate 

precision using sniffers, a longer recording period is required.  

The correlation between predicted CH4 production and recorded CH4 

production in Chapter 3 yielded individual level correlations of 0.77 ± 0.18 and similar 

ranking. In the comparisons of Negussie et al., (2016), a phenotypic correlation of 

0.80 was back calculated from the CCC estimated between the two methods. In the 

correlation between sniffer using the eructation peak method and RC, CH4 

production was 0.89 (Garnsworthy et al., 2012). Although, deviating from unity, 

these correlations are substantial when placed in context of other methods of 

recording CH4 production. For instance, an individual level correlation of 0.81 

between CH4 production from SF6 and RC in beef heifers (McGinn et al., 2006), and 

a phenotypic correlation of 0.83 in Holstein x Norwegian red (Muñoz et al., 2012). 

Comparisons from the GF compared to RC have yielded phenotypic correlations of -

0.6 – 0.24 in dairy cattle (Garnett, 2012; Hammond et al., 2015), but considerably 

higher in shorthorn cattle (0.85) (Velazco et al., 2015). Phenotypic correlations 

between SF6 and GF have been reported in the range of 0.4 – 0.77 in dairy cattle 

(Hammond et al., 2015; Hristov et al., 2016). These results place the correlation 

between the sniffer method using CO2 ratio and RC well within the range of more 

accepted methods.  

Assessing the agreement through calculating the CCC and the CIA, scales 

the correlation between the methods based on the deviations from accuracy and 

precision. Both metrics have inherent shortcomings, which can be overcome by 

reporting both simultaneously, something which is rarely done in literature. The CCC 

is population specific and thus influenced by population heterogeneity, which can 

result in inflation when a highly heterogeneous population is measured with both 

methods (Barnhart et al., 2007b). The CIA is less influenced by population 

heterogeneity, but evaluates agreement relative to imprecision, thus a method with 

a low repeatability can have an inflated CIA (Barnhart et al., 2007b; Haber et al., 

2010). From the comparison in Chapter 3 we find a (CCC = 0.56) and (CIA = 0.11), 

which indicates some agreement between methods, but the sniffer method using 
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CO2 tracer gas is not equivalent to the RC. However, it is important to note that the 

time elapsed between measurements and the change in diets in the results from 

Chapter 3 will bias these metrics downwards. In the study of Negussie et al. (2017), 

the concordance between methods was CCC = 0.65 – 0.93, but in the absence of 

repeated measures from the RC it was not possible to calculate the CIA. Studies 

comparing SF6 and RC found the CCC ranging from 0.10 (Garnett, 2012) to 0.68 

(Muñoz et al., 2012) in dairy cattle and CCC = 0.79 in beef heifers (McGinn et al., 

2006), GF and RC CCC = 0.10 and the GF and SF6 CCC = 0.60 (Hammond et al., 2015). 

None of the studies reported on precision, within-cow coefficient of variation or 

repeatability and, thus, it was not possible to calculate the CIA to determine if high 

CCC values are due to population heterogeneity or true method agreement. What is 

clear from these findings is that there is some agreement between different methods 

but none of the methods agree sufficiently well with the RC at the phenotype level 

to be deemed equivalent. It is also clear that the sniffer method performs 

comparably, and in some cases, better than the SF6 and GF methods reported. The 

implications of this are that if the intended purpose of the methods are to quantify 

individual cow CH4 production for comparing for instance two feed additive or for 

taxing farmers, then none of the alternative methods agree suitably well at the 

phenotype level to replace the RC (see Text Box 3). 

If the intended purpose of a method is genetic evaluations, then the 

genetic correlation between methods is the most informative for assessing how best 

to incorporate an alternative method into a selection index. However, individual 

level correlations, when methods are imprecise (i.e. t < 0.80), or single measure 

phenotypic correlations, when precision is high (i.e. t > 0.80), from carefully 

controlled method comparison studies are good indicators of the sign and 

magnitude of genetic correlations (see Text Box 2), but at a fraction of the cost. This 

point is illustrated in sheep where portable accumulation chambers (PAC) are a 

short-term total emission flux method alternative to RC. In earlier studies, Goopy et 

al. (2011) compared the two methods in 39 sheep, by measuring for 22 hours in the 

RC and then measuring 1 and 2 hours immediately after, in the PAC. The phenotypic 

correlation between methods was reported as 0.67 (from supplementary material 

on 13 sheep we find CCC = 0.32). In a subsequent genetic study on 3601 lambs with 

4733 records in PAC and 8655 in RC, Jonker et al., (2018) found a genetic correlation 

of 0.67 ± 0.11 for CH4 production between methods. In this case, the method 

comparison on 39 sheep and the genetic evaluation on 3601 sheep both show that 

PAC is not equivalent to the RC, but is a highly correlated but separate trait. 

Importantly, Jonker et al. (2018) did not report individual level correlations, but they 

did report phenotypic correlations in the presence of repeated measurements, 
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which were substantially lower rp = 0.27 ± 0.02 and a biased predictor of the genetic 

correlation due to attenuating effects of permanent environments and residual 

error. To this end, the individual level correlations found in Chapter 3 (0.77 ± 0.11) 

are very promising as proxies for genetic correlations between sniffers with the CO2 

ratio methods and RC.  

 

6.2.2 Using CH4 breath concentrations directly  

The use of predicted CO2 tracer gas poses some challenges for practical 

implementation in genetic evaluations, as predicted CH4 production is a linear 

combination of ECM and BW, both of which are heritable traits and genetically 

correlated to CH4 production (Lassen and Løvendahl, 2016). Moreover, ECM is 

heavily under selection. For this reason, the direct measurement of CH4 

concentration is attractive as a potential indicator trait. Garnsworthy et al. (2012) 

proposed the use of CH4 concentration from sniffers installed in the AMS with a gas 

recovery correction factor to approximate CH4 production and found this to be highly 

correlated (0.89) with CH4 production in RC for 12 Holstein Friesians. Methane 

breath concentration is a separate but likely correlated phenotype to CH4 production 

in the RC and, thus, evaluating agreement outside of individual level or genetic 

correlations is of limited use.  

As the RC records the concentration of gases, it is possible to install 

alternative methods within the RC and make method comparisons for discerning 

sources of error. However, the RC are under very stable and high rates of airflow, if 

the airflow rate is constant and recovery rates are 1, the correlation between 

background corrected CH4 concentration in the RC and CH4 production from the RC 

will be 1. This means that comparing CH4 concentration from alternative methods 

installed within the RC are, in effect, sensor comparisons and will not reflect the 

realized correlations between CH4 breath concentration under variable conditions 

on farm and CH4 production in the RC. However, these comparisons do give an 

impression of the effects of variable head movement on the sniffer methods under 

controlled atmospheric conditions. 

As an unpublished sub-experiment of Chapter 3, we installed the sniffer 

instrument directly into the feed bin of the RC for 19 days, culminating in 2-3 

measuring days on 5 Holstein and 4 Jersey cows. The objective of this comparison 

was to assess the performance of the CH4 and CO2 sensor under the carefully 

controlled conditions of the RC. Data was analysed using the models in Chapters 2-

3, the results of which are presented in table 6.1 below: 
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Table 6.1 Sources of (dis)agreement1 between sniffer sensors and RC sensors for daily CH4 and CO2 concentrations 

Measure2 Mean (SE) CV% σB
2 σW

2 Rep rp CCC CIA 

CH4 sniffer 220a (17.4) 1.7 2,014a 202a 0.90a 
   

CH4 RC 214a (12.9) 1.6 1,408b 183a 0.87a 0.95 0.93 0.52 

CO2 sniffer 2733a (195) 22.6 310,579a 69,408a 0.82a 
   

CO2 RC 2562a (118) 14.1 120,927b 10,135b 0.92b 0.8 0.66 0.56 
1Sources  of (dis)agreement:  CV%  =  coefficient  of  variation  %,  σW

2  =  Inter-cow  variance,  σB
2  = Intra-cow variance i.e. 

precision, Rep = repeatability indicates the ratio of  inter cow variation to total variation, not to be confused with repeatability 

coefficient used in agreement studies, rp  = Pearson’s  correlations  coefficient, CCC  =  Lin’s  concordance  correlation  coefficient, 

CIA = Coefficient of individual agreement.2 Gas concentrations in ppm. Superscripts denoted significant differences between 

methods.  
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From this sensor comparison, we find high agreement for both CH4 and CO2 

sensors and no detectable difference in accuracy for both gases and precision for 

CH4. However, the CO2 sensor from the sniffer was significantly less precise than the 

CO2 sensor from the RC. This validation study gives a high level of confidence in the 

performance of the sniffer sensors under stable and controlled conditions. Based on 

the high phenotypic correlations, CCC and CIA of CH4 (rp = 0.95, CCC = 0.93 and CIA 

= 0.52), and that the correlation between CH4 concentration and CH4 production in 

the RC is ~1, one might incorrectly conclude that sniffer breath concentrations are 

the same trait as mass flux. Interestingly, for both sensor comparisons, the sniffer 

gave significantly higher between-animal variations, indicating differential animal to 

sensor interaction. The RC sensor samples from the inflowing and outflowing air and 

does not interact with the cow, but the sniffer was installed inside the feed bin of 

the RC. The larger between-animal variation between the two sensor sets could be 

due to variation in the distance from the cow head to the sniffer sensor sampling 

point or the exhalation and eructation rate between cows. Due to the constant 

airflow rates within the RC, it is unlikely due to variable air velocity.  

The effects of cow head movement, variable proximity to the sensor 

sample inlet and  dilution due to exhalation rate and air velocity have been assessed 

under controlled and barn conditions in two studies using dummy cows, the results 

of which are summarised in Table 6.2 below (Huhtanen et al., 2015; Wu et al., 2018). 

Huhtanen et al., (2015) released a known amount of CO2 with an exhalation rate 

controlled using a foot pump and recorded the response using the GF as a flux or 

sniffer (GF study). Wu et al. (2018) used the artificial reference cow (ARC), a cylinder 

and piston system which controls exhalation rate, temperature and a mass flow 

controller for releasing known amounts of CH4 at differing levels (Wu et al., 2015) 

and recorded the response using a sniffer (Gasmet as used in Chapter 2) (ARC study). 

Both studies found that under controlled conditions, without variable air movement, 

cow head movement and exhalation rate, the captured fraction of gas (CFG) (relative 

difference in accuracy) was 100% (no difference in accuracy) and the CV less than 

that of RC 12% (an indicator of precision). However, when the distance from sensor 

sampling inlet to exhalation point was increased to 30 cm, the CFG decreased to 78% 

and 62% and the CV increased to 29.8% and 8.8% in the GF and ARC study, 

respectively. In general, from Table 6.2, it can be seen that air velocity in the feed 

bin increased from 0.09 to 0.24 m/s which further decreased the CFG from 26 to 35 

and increased the CV from 17.1 to 26.9 %, respectively. Cow head movement had 

limited effects on CFG (102-109%) but increased the CV (10.4 - 20 %). Increasing 

exhalation rate systematically decreased CFG but had limited effects on CV. 
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Table 6.2: Effects of variable muzzle position, head movement, exhalation rate and air velocity on the captured fraction of gas (CFG) 

and coefficient of variation (CV) in GF study Huhtanen et al. 2015 and ARC study Wu et al. 2018. 

Muzzle 
position (cm) 

Tidal 
Volume (L) 

Breath 
(Breath/min) 

Head 
movement 

Sampling  
(L/min) 

Exhalation  
(L/min)  

Air velocity 
(m/s) 

CFG 
(%) 

CV 
(%) 

Study 

0 3.5 30 static 1 111 0 100 9.8 GF  
30 3.5 30 static 1 111 0 78 29.8 GF 
0 4.4 30 static 4 132 0 100 NA ARC  
30 4.4 30 static 4 132 0 62 8.8 ARC 
0 3.5 30 static 1 111 6 33 28.9 GF 
30 3.5 30 static 1 111 6 13 4 GF  
30 4.4 30 static 4 132 0.09 35 17.1 ARC 
30 4.4 30 static 4 132 0.24 26 26.9 ARC 
NA 3.5 30 Moving1 1 111 0 102 20 GF  
NA 3.5 30 Moving2 1 111 0 109 10.4 GF  
30 4.4 30 Moving3 4 132 0.09-0.024 24.8 25 ARC  
0 3.5 60 static 1 141 0 100 12 GF 
30 3.5 60 static 1 141 0 48 33.1 GF 
0 4.7 60 static 1 282 0 93 11.1 GF 
30 4.7 60 static 1 282 0 48 33.2 GF 
0 4.4 30 static 4 174 0 62 NA ARC  
0 3.8 25.1 static 4 95 0 95 NA ARC  
0 5 34.9 static 4 174 0 36 NA ARC  
0 4.18 28.5 static 4 120 0 74 NA ARC  
0 4.62 31.5 static 4 145 0 54 NA ARC  

1 side to side movement;2 up and down movement;3 combined uncertainty based on direct observation of 20 cows 76% in feed bin, 

16% out of feed bin and 8% above feed bin.  
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Key to these findings are that increases in CV are due to increased random 

error (i.e. imprecision) and decreased systematic error (i.e. accuracy) and a decrease 

in CFG reflects a systematic error. Random errors caused by variable muzzle distance, 

air velocity and head movements can be reduced through the partitioning of 

variance into between-subject variance and within-subject variation. Systematic 

errors can be accounted for through statistical modelling, for example, including air 

velocity as a linear covariate or through a correction factor if compared to a gold 

standard. However, cow level systematic differences such as head lifting, which was 

reported by Huhtanen et al. (2015) to be highly repeatable (0.74 – 0.82), or 

exhalation rate, which results in systematic differences between cows independent 

of CH4 production (Wu et al., 2018), cannot be accounted for through statistical 

measures. All of these sources of error will reduce the correlation between CH4 

concentration and CH4 production from the high value we report in Table 6.1 (rp = 

0.95) and under the controlled conditions in Wu et al., (2018) (R2 = 0.97, rp = 0.99). 

What can be seen from the R2 reported under barn conditions in these studies is that 

the phenotypic correlation in the presence of repeated measures is, in practice, in 

the range of (0.30 - 0.61). Unfortunately, neither study reported individual level 

correlations between CH4 production and CH4 breath concentration, so it is not 

possible to determine the correlation between CH4 production and CH4 breath 

concentration when random and systematic errors are accounted for in the best 

fitting statistical model.   

In Chapter 2 we developed a cow head lifting algorithm which filters out 

data when the gas concentrations are no longer significantly different from 

background gas concentrations and no longer changing dynamically. This is a 

prediction of when the cow head has left the feed bin, but cannot account for the 

variation of muzzle position within the feed bin. We installed an NDIR gas sensor 

(sampling rate 1 L/min), comparable to that of Huhtanen et al., (2015), and a FTIR 

gas sensor (sampling rate 4 L/min), same as that of Wu et al. (2018), in a single feed 

bin of an AMS, applied the time alignment and cow head lifting algorithm and 

compared instruments. Significant systematic differences were observed in the 

means between instruments for both gases, likely due to differences in CFG due to 

different sampling rates. This systematic difference was corrected for by calibrating 

one of the instruments onto the other. We furthermore, modelled the repeated 

measurements per day and per week to remove associated random error. In the case 

of CH4 concentration, the intra-cow variation or imprecision decreased by more than 

50% in both instruments from per visit to per day and more than 80% from per visit 
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to per week. The repeatability estimates correspondingly increased from t = 0.38 – 

0.33 per AMS visit, to t = 0.58 – 0.51 per day and t = 0.84 – 0.77 per week for the 

NDIR and FTIR, respectively. These results show how increasing the number of 

records per cow can be an effective noise reduction method. However, the means 

remained largely unchanged and thus, systematic differences (i.e. decreased CFG) 

cannot be remedied through repeated measures. In principle, if we had run 

concentration recovery tests over each day of the experiment, it may have been 

possible to correct the drop in accuracy due to low and variable capture fractions, 

but repeatable cow factors like exhalation rates, would remain a source of bias. 

Regardless, the values of CH4 and CO2 breath concentrations per visit agreed 

sufficiently for interchangeable use (CIA = 0.78 and CIA = 0.65). Regrettably, we did 

not report the CCC or individual level correlations in Chapter2, these were rI = 0.70 

and  CCC = 0.69 per visit for CH4 concentration. The individual level correlations from 

Chapter 3 for weekly CH4 concentrations where slightly lower than CH4 production 

(0.75 ± 0.20). Although the standard errors thereof are large, the correlation still 

indicates that CH4 breath concentrations are a good candidate as a large scale 

indicator trait for CH4 production in the RC.   

 

 

6.2.3 Genetic variation in sniffer methane phenotypes 

Sniffer methane phenotypes have been dismissed off hand by many 

authors for the great variation (implied imprecision), inaccuracy or deviations in 

linear association from flux methods (Huhtanen et al., 2015; Goopy et al., 2016; 

Hammond et al., 2016; Hristov et al., 2018). For example, in their review Hammond 

et al. (2016) stated ‘…the need for high throughput methodology, e.g. for screening 

large numbers of animals for genomic studies, does not in itself justify the use of 

methods that are inaccurate, imprecise, or biased.’. Whilst the accuracy of the 

breeding values starts with the accuracy and precision of the phenotype, the validity 

of this statement is not absolute when applied to the specific use of sniffer CH4 

phenotypes as large scale indicator traits for genetic evaluations. As demonstrated 

in Chapters 1-2, random bias or imprecision can be overcome through repeated 

measurements (see Text Box 1) and systematic bias or inaccuracy is of lesser 

importance as breeding values are centred (expressed relative to the base 

population with a mean of 0). As will be discussed below, slope or correlation bias 

(deviation from unity in linear association with the gold standard) can still be of use 
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in a selection index, provided there is a linear genetic correlation significant from 

zero. 

In Chapter 4, we find significant heritability estimates of CH4 (h2 = 0.16 – 

0.26) and CO2 (h2 = 0.15 – 0.23) from repeated weekly records of breath 

concentrations in first parity cows in Denmark and The Netherlands. In Chapter 5 we 

report a heritability of 0.19 ± 0.09 for CH4 production using the CO2 ratio method 

from single weekly records of multiparous Danish Holstein cows, in line with the 

findings of others using this method (h2 = 0.21 – 0.25) (Lassen and Løvendahl, 2016; 

Zetouni et al., 2018). Using the individual level correlations estimated in Chapter 3, 

it is possible to estimate accuracy of breeding values for a bull with multiple daughter 

records (Figure 6.1). From Figure 6.1, it can be seen that the accuracy of bull EBVs 

fast approached 0.7 as the number of daughters with records exceeds 100, which is 

practically feasible with the high throughput of sniffers installed in robotic milking 

herds. This assumes CH4 production in the RC is as heritable in lactating Holsteins on 

commercial mixed ration or grazing Holsteins using the SF6 method 0.33 (0.15) 

(Breider et al., 2018) and our individual level correlations are reasonable predictors 

of the genetic correlations between sniffer and RC CH4 emission. The resulting co-

heritability (hx.hy.rxy) is 0.19 using predicted CH4 production and 0.21 using CH4 

breath concentrations, indicating considerable potential for sniffer CH4 phenotypes 

as large-scale indicator traits. In this instance, the slope or correlation bias which 

results in individual level correlations between sniffer phenotypes and RC CH4 

production deviating from 1, does not preclude the use of sniffer phenotypes for 

breeding. However, this only demonstrates a proof of concept. Accurate estimates 

of genetic correlations between CH4 production in the RC and sniffer phenotypes, as 

well as all other traits currently included in the selection index, are needed before 

implementation can proceed with any certainty. Recording thousands of cows in RC 

requires a substantial financial investment and the largest deterrent is that CH4 

production currently has no economic value, inhibiting the bio-economical modelling 

required to gauge the cost returns expected from selective breeding. This could be 

remedied by international collaborations to form a RC genomic reference 

population. Niu et al. (2018) recently collated RC data on 5,233 lactating dairy cattle, 

68% of which are Holstein for phenotypic prediction equations, had all these cows 

been genotyped it would be feasible to estimate genetics correlations between the 

RC and other methods on genotyped Holstein populations.  
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Figure 6.1. Accuracy of bull estimated breeding value (EBV) for CH4 production in the 

RC (h2 = 0.33), based on weekly averaged records for predicted CH4 production from 

sniffers (h2 = 0.19) (dark grey squares), CH4 breath concentration (h2 = 0.22) (light 

gray triangles) or both (black circles). Assuming rg ~ rI and rI = 0.77 for CH4 in RC and 

CH4 production from sniffers and rI = 0.75 for CH4 production in the RC and CH4 

concentration from sniffers. 

 

 

6.3 Genetic variation in feed efficiency of lactating cows 

Unlike CH4 emission, optimising feed utilisation in dairy cattle has a high 

economic value, but recording individual feed intake is challenging and costly and, 

thus, limits throughput to small research and specialised contract herds (Berry et al., 

2014). As feed efficiency is not a directly observable animal metric, measuring feed 

efficiency relies on recording the feed intake and energy sinks and combining these 

into a single metric or index. In animal breeding, it has long been known that the 

most efficient index is a selection index based on genetic (co)variances and economic 
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weights (Hazel, 1943). The implications of this are that appropriate weighting of DMI 

and energy sinks in the breeding goal will result in a genetic feed efficiency sub index, 

which requires records on 104-105 animals (Veerkamp et al., 2013). However, for 

research purposes, a feed efficiency dependent variable is needed to determine the 

correlations between feed efficiency and other traits, as well as gauge responses to 

different interventions. 

In its simplest form, feed efficiency can be defined as RFI, where DMI is 

regressed on multiple energy sinks in a multiple regression model and the resulting 

random residuals (RFI) are the feed efficiency phenotype analysed in an animal 

model (two-step RFI)(Koch et al., 1963). This method requires suitably large numbers 

of simultaneous records of DMI and energy sinks to accurately estimate the 

phenotypic regression coefficients. An extension of this model is to include the 

random additive genetic effects of animal directly into the multiple regression (single 

step RFI), which has been shown to be genetically correlated to two step RFI (0.80 – 

0.991) (Savietto et al., 2014; Tempelman et al., 2015). An advantage of both methods 

is that heterogeneity in regression coefficients due to different diets or stages of 

lactation, can be accounted for by including a regression by diet or lactation stage 

interaction term (Tempelman et al., 2015; Li et al., 2017). A disadvantage of both 

methods is that by defining phenotypic correlation coefficients, RFI is phenotypically 

independent of energy sinks, but genetic correlations remain and, thus, correlations 

to other traits are not representative (Huttmann et al., 2009; Spurlock et al., 2012). 

A further disadvantage of the single step model is that we cannot estimate genetic 

correlations between single step RFI and DMI in a multitrait model due to collinearity 

problems, making estimating the correlated response to selection for DMI 

impossible.  

Kennedy et al. (1993) demonstrated a method using selection indices for 

estimating regression coefficients from (co)variances, post-hoc from multitrait 

models, which include DMI and energy sinks. By defining a restricted gains index of 

DMI conditional on the genetic (co)variances with energy sinks, it was possible to 

define RFI genetically independent of energy sinks (RFIg). Under the specific set of 

circumstances where the genetic partial regression coefficients are equivalent to the 

phenotypic partial regression coefficients, RFIg will be equivalent to phenotypic RFI 

models. A further advantage of this approach is that sparsely recorded energy sinks 

are not excluded from the model analyses. A disadvantage is that large numbers of 

records are required to accurately estimate genetic (co)variances. Furthermore, 

heterogeneity of partial regression coefficients  due to different rations cannot be 
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estimated outside of the more cumbersome hierarchical Bayesian structural 

equation modelling (Lu et al., 2016).  

In Chapter 4, we estimate gRFI for first parity lactating Holstein cattle in 

Denmark (h2 0.15 ± 0.04) and The Netherlands (h2 0.17 ± 0.03) and the combined 

country dataset (h2 0.15 ± 0.04), confirming that gRFI is significantly heritable (Lu et 

al., 2015). However, defining gRFI in Denmark with 813 cows, with 29084 weekly 

records, was challenging, as can be seen from the standard errors on the genetic 

correlations with component traits DMI (0.21 ± 0.64), ECM (0.002 ± 0.58) and live 

weight (0.004 + 0.71). The Netherlands had 2112 first parity cows with 39,464 

average weekly records for DMI, which reduced the uncertainty around the genetic 

correlations with DMI (0.74 ± 0.06), ECM (0.00 ± 0.15) and live weight (0.00 ± 0.11). 

Whilst, historical data, different experimental rations and different lactation stages 

can contribute to the heterogeneity of genetic partial regression coefficients and, 

thus, the standard errors of genetic correlations, these are two of the largest DMI 

datasets in the world at present. This implies that to define gRFI in practice, 

substantially larger numbers of cows are required to obtain more current and 

homogenous data. These results do lend confidence to the notion that breeding for 

increased metabolic efficiency is possible in lactating dairy cattle and these 

parameters can be utilized to estimate the cost benefit of large scale recording of 

DMI under commercial conditions. An important consideration is that we only 

estimate gRFI as a measure of metabolic efficiency during the first lactation, 

recognising that the productive life of cows spans multiple lactations and the life 

time efficiency spans lactating, growing and dry periods. In this respect, a 

considerable portion of the cow’s life span is largely ignored; considerable efforts are 

required to define feed efficiency during all lifetime stages to truly increase the 

profitability and sustainability of the dairy industry. Regardless, metabolic efficiency 

during the first lactation is a logical first step in this progression.   

To this end, new developments in the field of image analysis technology, 

providing an opportunity for the volumetric analysis of feed intake on dairy cows 

under commercial barn conditions, are promising. This technology is still under 

development, however, initial results show image analysis individual identification 

of cows show a sensitivity of 95% and specificity of 95% (Thomasen et al., 2017), 

which are comparable to current automated feeding systems reviewed in the 

general introduction. In a pilot study conducted over 14 days in a commercial Jersey 

barn in Denmark, Lassen et al. (2018) was able to obtain daily DMI (t = 0.65) and 

weekly averaged DMI (t = 0.84), which are directly comparable to those found in 
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Danish Jerseys used in automated feed bins in a research barn (Li et al., 2016). 

Although further validation of this technology is required, it poses a significant 

opportunity to increase the throughput of feed intake recording and, thus, feed 

efficiency throughout a cow’s life.  

 

6.3.1 The relationship between Feed efficiency and CH4 emissions  

As CH4 emission currently has no economic value but, is estimated to 

constitute a loss of energy from the cow (2-12%) of gross energy intake (Johnson and 

Johnson, 1995), many have suggested that improving feed efficiency will 

concomitantly improve CH4 emissions (Beauchemin et al., 2008; Waghorn and 

Hegarty, 2011; Lassen and Løvendahl, 2016). It follows that, since CH4 production in 

the RC is directly proportional to DMI (Yan et al., 2010), breeding cows which eat less 

DMI, for contemporary levels of ECM and BW (the very definition of feed efficiency), 

will reduce CH4 production. A counter argument is that increased diet digestibility 

(D) reflects the inherent ability of ruminants to transform ingested feed into 

metabolisable energy. Digestibility has been shown to be repeatable (t = 0.28 – 0.37) 

in dairy cattle (Huhtanen et al., 2015; Cabezas-Garcia et al., 2017). However 

empirical modelling evidence shows that D is a function of rate of digestion (kd) and 

rate of passage (kp): D = kd/ (kd + kp). Since kd is feed, specific and independent of 

the animal, only kp can influence digestibility. It follows that decreasing kp, will 

increase D, increasing feed efficiency but also increasing CH4 emissions. 

Furthermore, studies in sheep divergent for CH4 yield (CH4/DMI), show that high 

emitters had significantly higher digestibility (Pinares-Patiño et al., 2011). 

Unfortunately, the authors did not compare CH4 production in absolute terms and 

instead chose a ratio trait as their response variable. 

As has been discussed previously herein, adequate high throughput 

phenotyping of traits required for estimating feed efficiency and CH4 production with 

the RC is challenging. As a result, inconsistent definitions of feed efficiency are used, 

often with alternative methods of recording CH4 emissions on a small scale at the 

phenotypic level. Furthermore, feed efficiency phenotypes and CH4 emission 

phenotypes are often expressed as ratios, the limitations of ratios in terms of their 

non-linear relationships between the actual ratio and it’s component traits and the 

narrow range of parameters where these correlations are linear are discussed 

elsewhere (Sutherland, 1965; Veerkamp and Emmans, 1995). Not surprisingly, 

defining the relationship between feed efficiency and CH4 emissions in dairy cattle 

has been inconsistent. A favourable phenotypic correlation was detected between 
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RFI and CH4 production (rp = -0.55) in Angus cattle on pasture using the GF (Velazco 

et al., 2017). No relationships where detected between RFI, CH4 yield of CH4 intensity 

in lactating Holstein, Simmental and Jerseys cows fed forage diets in the RC (Münger 

and Kreuzer, 2008). No differences in CH4 production or CH4 yield was detected on 

non-lactating Holstein-Friesians divergent for RFI, fed alfalfa cubes in the RC 

(Waghorn and Hegarty, 2011). Unfavourable relationships were found between RFI 

and CH4 production in beef heifers on feedlot, recorded using RC (Montanholi et al., 

2016). However, all of these studies had limited numbers of cows (16 - 39). 

Studies using CH4 production estimated from metabolisable energy intake 

yielded favourable correlations between feed efficiency and CH4 production. de Haas 

et al., (2011) estimated CH4 production from MEI in 665 first parity Holstein-Friesian 

cows and found RFI to be favourably correlated both phenotypically (rp = 0.72) and 

genetically (rg = 0.38) to RFI. In 429 lactating Nordic red cattle, CH4 production was 

estimated using sniffers and the CO2 ratio method, with predicted CO2 tracer gas 

estimated from MEI, and found that the phenotypic correlation between residual 

energy intake (REI) (similar to RFI except energy intake is used in place of DMI) and 

CH4 production was favourable (rp = 0.60) (Negussie et al., 2014). In the same study, 

the ratio of ECM/EI was also favourably correlated (rp = -0.62), both ratio and residual 

traits indicating that more efficient cows will produce less CH4 in absolute terms. 

However, the phenotypic correlation between REI and CH4 yield (rp = 0.38) indicates 

that more efficient animals produce more CH4 production per kilogram of energy 

intake. This finding could potentially reconcile the two opposing arguments about 

feed efficiency and CH4 emissions, where more efficient animals produce less total 

CH4, but more CH4 per unit of feed intake through increased digestion. However far 

larger studies are required to confirm this on a genetic level. For instance, Breider et 

al (2018) estimated genetic parameters for DMI, MY, BW and CH4 production (SF6 

method) in 314 Holstein cows on pasture. The restricted gains index for decreasing 

DMI, whilst maintaining MY and BW (definition of gRFI) showed a predicted 

correlated increase in CH4 production. In Chapter 4, we applied the methods 

described by Kennedy et al. (1993) and found rg = -0.004 between gRFI and CH4 

production.  

In Chapter 4, we estimated genetic parameters for gRFI and CH4 

concentration from the sniffers directly, but found non-significant negative genetic 

correlations in Denmark (rg = -0.17 ± 0.85) and The Netherlands (-0.52 ± 0.32). This 

could, in part, be due to difficulties in acquiring adequate numbers of cows to define 

gRFI and estimate genetic correlations with CH4 concentration. However, in the 
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combined population dataset we found a significant favourable genetic correlation 

(rg = 0.33 ± 0.15). The change of sign from positive to negative in the genetic 

correlation in combined population could be due to increased numbers of records. 

It could, however, also be an artefact of population heterogeneity in genetic partial 

regression coefficients or other unknown factors, like genotype by environment 

interactions. Further work is needed to validate these results, either through 

alternative modelling strategies for RFI, or increased within country records for both 

traits. In the absence of a genetic correlation between CH4 concentration and CH4 

production in the RC, it is not possible to infer the relationship between gRFI and CH4 

production. What is clear, regardless of the sign of the genetic correlations, is that 

from their magnitude in all datasets, CH4 concentration is a potential large-scale 

indicator trait for gRFI. Therefore, there is an economic incentive to record CH4 

concentrations until a genetic correlation with CH4 production using the gold 

standard method is forthcoming.   

 

6.4 Genetic variation in the rumen microbiome of lactating 

cows 

In Chapter 5, we investigated both the genetic variation in rumen bacteria 

and archaea relative abundance and composition to assess the level of host genetic 

control on the rumen microbiome. At the individual OTU level, we identified 3,894 

bacteria and 189 archaea present in at least 50% of the cows. From these, 4083 

animals models were run and we found 6% of the rumen bacteria were significantly 

heritable (h2 0.16 – 0.44) and 12% of the archaeal OTUs were significantly heritable 

(h2 0.18 – 0.33). These results provide evidence from a good-sized cohort of cattle 

for host additive genetic effects on the rumen microbiome. However, the number of 

significantly heritable OTUs is alarmingly close to what would be expected under the 

null hypothesis. Although, it is not common practice for heritability estimates, we set 

a false discovery rate of 15% and none of the OTUs tested, passed this. This could, in 

part, be due to the sheer number of OTUs tested, many of whom are not heritable 

and are, relatively speaking, low number of cows (n=750). 

There are limited heritability estimates for rumen microbes from which to 

draw comparisons. Sasson et al., (2017) assessed the heritability of relative 

abundance of rumen bacteria in 47 genotyped Holsteins, and found 22 out of 85255 

OTUS to be significantly heritable (h2 >0.70). These estimates are considerably higher 

than our own, however, heritability estimates are notoriously biased in small 

numbers of cows. The same authors reported in their supplementary material a 
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significant heritability of 1 for DMI and RFI, 0 from milk yield (Sasson et al., 2017). 

Conversely, there is a wealth of literature on heritability of gut microbes in 

monogastrics. In 412 pairs of humans twins, Goodrich et al. (2014) found 5.3% of 909 

OTUs to be significantly heritable (h2 0.20 – 0.35), and in a follow up study with 1126 

pairs of twins, 8.8% of 945 OTUs where found to be significantly heritable (h2 0.15-

0.42) (Goodrich et al., 2016). From these results, the authors conclude that human 

genetics shape the gut microbiota. In a study with 207 pigs, Camarinha-silva et al., 

(2017) found 8 genera out of 49 to be significantly heritable (h2 0.32 – 0.52). Although 

the gastro-intestinal tract of monogastrics and ruminants are vastly different, these 

results together do suggest that a portion of the gut microbiota are heritable and, 

are thus, influenced by host genetic composition. In both cases, the host is heavily 

reliant on the activity of microbes for the derivation of energy from feed, a crucial 

requirement for survival. It is, thus, in the host’s best interest to provide an 

environment suitable for microbes which fulfil key digestive processes. As discussed 

by Shapira, (2016), evolutionary processes rarely leave biological pathways essential 

to survival up to chance.  

The variation in the rumen microbiome can be partitioned into other 

sources of host variation, other than additive genetics. If repeated measures are 

available, it is possible to partition phenotypic variation into permanent 

environmental effects of host (also called general environment) and residual 

variation (also called special environment)(Falconer and Mackay, 1996). If repeated 

measures are made over very short periods of time, such that underlying biology has 

not changed, then the residual variation is ‘method imprecision’, as discussed in 

previous sections of this thesis. The permanent environment includes host additive 

genetics, non-additive genetics, maternal effects, common environmental effects 

and other host traits, like learnt behaviour. The permanent environment expressed 

as a proportion of the total variation is the repeatability, as mentioned in previous 

sections of this thesis. In a subset of 57 cows from Chapter 5, we had repeated rumen 

samples 122 days apart, on the same diet, and ran repeatability animal models at 

the genus level (Zhu, 2016). We combined this with the genus level heritability 

estimates reported in Chapter 5 for comparison in Figures 6.2-6.3 below. 

Importantly, the repeatability estimates are a measure of persistence of ranking 

between cows through time, which had considerable range (t = 0 – 0.80). A 

proportion of genera 11.2% were not repeatable (t = 0), indicating the host explains 

no variation in their abundance and 12% has t < 0.50, indicating more than 50% of 

the variation in their abundance was explained by host.  
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Figure 6.2 Intraclass correlations coefficients for rumen genera, repeatability (Grey) 

for 5 repeat sampled Holsteins and Heritability (Black) for 750 single sampled 

Holsteins.  

From Figure 6.3 there is a general positive trend between magnitude of 

repeatability and heritability, although for some genera they were repeatable but 

not genetic and vice versa this is partly due to the smaller sample size with repeated 

measurements as t = 0 and h2 < 0 is not possible in practice. Similar results were 

reported for human gut microbiota using the intra class correlation coefficient (ICC) 

between pairs of dizygotic and monozygotic twins and heritability estimates 

(Goodrich et al., 2014, 2016). This ICC between identical twins is equivalent to the 

repeatability from repeated measures, however, the ICC between dizygotic twins 

reflects shared common and maternal effects (the difference between ICC for 

monozygotic twins and dizygotic twins is half the additive genetics). Together, these 

results indicate that the host does influence the abundance of certain rumen 

microbiota and that additive genetics is one of the contributing host effects. Further 

work and samples from larger numbers of cows are required to assess the effects of 

maternal and common environmental effects.  
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Figure 6.3 Repeatability of rumen genera in 57 Holsteins cows against the heritability 

of rumen genera in 750 Holstein cows.   

 

6.4.1 Genetic variation in rumen bacterial and archaeal abundance 

Some authors have subsequently challenged the notion that the relatively 

small proportion of heritable microbes can truly shape the entire community 

composition. For instance, Rothschild et al. (2017) weighted the heritability 

estimates of Goodrich et al. (2016a) by their relative abundance to estimate 

heritability of the entire microbiome and found 1.9% - 8.1%, depending on the use 

of a false discovery rate threshold for heritability estimates.  For our dataset, the 

respective weighted average heritability of the rumen bacteria and archaea from 

Chapter 5 was 10.9%. However, simply weighting the heritability by relative 

abundance assumes all microbiota are of equal functional importance and do not 

interact with each other.  

Examining microbial community composition through multidimensional 

scaling, such as principal coordinate analysis or beta diversity, has identified 

stratified clusters in humans referred to as ‘enterotypes’ (Arumugam et al., 2013) 

and ruminants referred to as ‘ruminotypes’ (Kittelmann et al., 2014). Diversity 
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estimates are used in microbial ecology to assess the diversity within samples (alpha 

diversity) and between samples (Beta diversity). These clusters found using beta 

diversity, are thought to represent altered host-microbial states (Arumugam et al., 

2013) and in the case of sheep, one of the clusters was associated with smaller 

rumen size, high rumen passage rate and lower CH4 emissions (Kittelmann et al., 

2014). In Chapter 5, we investigated ruminotypes in 750 Holstein cattle and found 

clustering, which was partly explained by non-genetic host parameters, like lactation 

stage and parity, technical factors, like sequence batch and environmental variables, 

like herd. However, the largest sources of variation was additive genetics (h2 0.20 – 

0.39). These findings suggest that host additive genetics influences the rumen 

microbial communities to a larger extent than was suggested using the average 

heritability. It is important to note that clustering methods are data set specific and 

are, thus, affected by population and environmental heterogeneity. In our study, the 

herds were selected partly for similar management and dietary regimes, as well as 

breed uniformity (Danish Holsteins), to minimize these potential sources of 

variation. In the UK, in the human twins dataset, Goodrich et al., (2016) investigated 

different alpha and beta diversity metrics and found strong correlations between 

heritable microbiota, as well as host SNPs with diversity measures, indicating 

heritable microbes and host genetics influences community structures. Conversely, 

in a study with 1142 genotyped individuals in Israel from diverse genetic 

backgrounds (grandparents originating from 72 different countries), Rothchild et al, 

(2017) failed to detect a heritable component to gut microbial diversity estimates or 

significantly associated SNPs. Thus, it is important to consider the genetic and 

environmental heterogeneity when assessing their relative contributions to 

microbial communities, as both sources are associated with microbial variations.   

 

6.4.2 Genetic variation in rumen bacterial and archaeal community 

composition 

As genetic variation in CH4 production and rumen microbes is detected in 

Chapter 5 and methanogenic archaea and bacteria are directly responsible for CH4 

production, a logical progression is to investigate associations between rumen 

microbiota and CH4 production. We ran a microbiome wide association study 

(MWAS) for OTUs and genera against CH4 production, whilst simultaneously 

controlling for familial relationships and non-genetic factors, and found eight genera 

to exceed an FDR threshold of 15%. Of these eight, four were found to be affected 

by methane inhibitors or be associated with the production of methanogenic 
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substrates; none were archaea, further strengthening the hypothesis that bacteria 

drive CH4 production through methanogenic substrate production. Of the eight, 

three were found to be moderately heritable (h2 0.17 – 0.20), a positive indicator 

that breeding or rumen microbial abundance could result in changes to CH4 

production, but genetic correlations from larger datasets are required to confirm 

this. Single OTU or genera associations fail to capture the complexity of microbial 

communities, so we also investigated associations between community structure 

and CH4 production and found the first principal component of both bacterial and 

archaeal beta diversity significantly associated with CH4 production, indicating there 

is an optimal rumen microbial community composition for CH4 production.  

Due to the moderate heritability estimates of rumen microbiota and CH4 

production, as well as the detection of heritable and non-heritable rumen microbiota 

associated with CH4 production, it was necessary to quantify the relative 

contributions of rumen microbiota and host genetics to variation in CH4 production 

simultaneously. To do this, we create a microbial kinship matrix, analogous to 

genomic or pedigree relationship matrices used in the estimation of heritability. We 

defined microbiability (m2) as the proportion of phenotypic variance due to rumen 

microbial kinship, in analogy to heritability. As with heritability, microbiability is 

narrow sense, in that it does not account for microbe-microbe interactions or 

microbe-environment interactions. In Chapter 5, we found significant microbiability 

of CH4 production (m2 = 0.15) comparable to that of heritability (h2 = 0.19). Crucially, 

when comparing these two sources of variation, first separately and then jointly, we 

found minor changes to the estimates, indicating that in the case of CH4 production, 

the two sources are largely independent. This implies that selection for microbes 

associated with CH4 production may have limited impact, as the majority of the 

variation in m2 is due to rumen microbiota less influence by the host genetics and 

vice versa. This also opens up the possibility for a largely under exploited source in 

host variation.  

 

6.4.3 Prospective for using rumen microbiota to obtain desired 

changes in the host phenotype 

It is proposed in the general introduction that the successful symbiosis due 

to coevolution of ruminant and rumen microbiome suggests that both be viewed 

together as a single unit (i.e. as a holobiont). It was discussed how ignorance of the 

microbial contribution to host phenotypes can result in suboptimal or unpredictable 

response, as was seen by rapid microbial adaption to methanogenic inhibiting 



6 General discussion 

 

 

 

192 

 

 

additives. For traits of interest, we propose determining the microbiability through 

the use of microbial relationship matrices derived from OTUs, full metagenomic or 

transcriptomic sequences to quantify the microbial association with host phenotypic 

variation. If a trait of interest is not associated with the microbiome, further 

exploration of the rumen microbiome is not needed. However if a trait of interest is 

associated with the rumen microbiome it is necessary to determine the relative 

independence from diet or the host additive genetics. Particularly, the genetic 

correlations between associated microbiota and the host trait of interest to ensure 

unwanted correlated responses to selection in the rumen microbiome are not 

realized. Conversely, if genetic correlations are sufficiently greater than 0 there is a 

potential to incorporate rumen microbial phenotypes into the selection index as 

indicator traits to improve the accuracy of selection and thus the response.   

By estimating the microbiability we determined that differences in the 

rumen microbiome are associated with differences in the host CH4 production. 

Furthermore, some of the specific rumen microbiota are likely under the influence 

of host additive genetics, but to a large extent the two are independent. In the case 

of CH4 production where the two sources are largely independent, selective breeding 

is one method to reduce CH4 emissions but this will not fully exploit the variation 

observed due to the rumen microbiome and will take generations to illicit a 

response. Better understanding of whether microbiability is causative or merely co-

associated with differences in the host CH4 production and other traits are needed. 

One potential method is to inoculate cows with poor microbial estimated values 

(random solutions from microbiability models) with the rumen contents of cows 

which have favourable microbial estimated values and assess the response in host 

CH4 production. Inoculation of cattle with the cud of healthy donor cows has long 

been an effective and rapid treatment of cows with digestive or metabolic disorders 

(DePeters and George, 2014). This is an example of using rumen microbiota to affect 

a desired change to the host cow phenotype. Recent work with repeated inoculation 

of beef heifers with bison rumen contents altered the rumen microbiome and 

metabolic activity eliciting increased protein and nitrogen retention on a 

nutritionally poor straw diet (Ribeiro et al., 2017). Another example is the discovery 

of Synergistes jonesii in goats which conveys the ability of the host to degrade the 

otherwise toxic pyridinediol compounds from the fodder plant Leucaena 

leucocephala, which was successfully conveyed to Australian beef cattle and sheep 

(Graham et al., 2013). Both of these examples demonstrate the rapid adaption of 
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host to dietary changes acquired through the incorporation of beneficial microbes 

into the rumen community. 

 

6.5 Conclusions and Recommendations:  

 

The aims of this thesis where to improve and validate the high throughput 

non-invasive sniffer method of recording CH4 emissions under commercial 

conditions. Furthermore, to investigate the genetic relationships between CH4 

emission, feed efficiency and the rumen microbiome. Through instrument 

comparisons and validation, sources of error in sniffer CH4 emission phenotypes 

were identified and where possible corrected. The resulting CH4 production and CH4 

breath concentration phenotypes were found to be significantly heritable but were 

low-moderately in agreement at the phenotypic level with RC CH4 production. 

However, the individual level correlations (as proxies for genetic correlations) 

between sniffer CH4 emission phenotypes were high (0.75 – 0.77) demonstrating the 

value of sniffer CH4 emission phenotypes as large scale indicator traits in a selection 

index for reduced RC CH4 production.  

Feed efficiency was found to be significantly heritable in first parity 

Holsteins in Denmark and The Netherlands. Furthermore favourable genetic 

correlations where estimated between CH4 breath concentration and feed 

efficiency, to this sniffer CH4 emission phenotypes can be of use as large scale 

indicator traits. A proportion of the relative abundance of the rumen bacteria and 

archaea where found to be heritable, demonstrating the host additive genetics can 

influence the rumen microbiome. Some heritable bacterial genera where found to 

be significantly associated with CH4 production, but the majority of variation in CH4 

production explained by rumen microbial composition was largely independent of 

host additive genetics. The aims of this thesis were largely met; however, caveats 

and future research considerations remain.  

The first priority for improving the profitability and sustainability of the 

dairy industry is the development of a life-time metabolic and maintenance 

efficiency index. The single most limiting factor to breeding for more feed efficient 

cattle is an accurate, precise, non-invasive, cost effective and high throughput 

method of recording feed intake in dairy cattle under commercial conditions. Small 

research studies have demonstrated proof of concept in genetic variation for 

metabolic and maintenance efficiency during lactation. Until methane production 

has a direct economic or societal value, its value to the farmer will lie in being an 
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indicator trait for feed intake and feed efficiency. To this end, the sniffer method 

shows considerable promise, but any further development to the method that 

increases accuracy and precision without compromising through put and non-

invasiveness, will be of value to improving accuracy of EBVs. Should CH4 production 

get an economic or societal value, obtaining genetic correlations with meaningful 

standard errors between RC and sniffers will be crucial to their use as a large scale 

indicator trait for CH4 production. Simulations show combining genomic information 

with feed efficiency records (and likely CH4 production as well) on 4000 cows a year 

will yield adequate genomic prediction accuracies to obtain genetic responses for 

these traits (Wallén et al., 2017). With considerable investment, these numbers are 

achievable in the RC, which will yield meaningful genetic correlations between feed 

intake, efficiency, production traits and CH4 production within the RC and other traits 

under commercial conditions like sniffer breath concentration measures. The first 

breeding company to publish EBVS for these traits will have a competitive advantage 

which must be considered in cost benefit analyses.   

Further work is needed in linking rumen microbial associations to 

causation. Whilst some rumen microbes are heritable their cost and throughput 

limits their use as indicator traits for already costly and limiting breeding goal traits 

like CH4 production and feed efficiency. Estimating microbiability and estimated 

microbial values for host phenotypes is the first step to identifying desirable rumen 

microbial communities associated with host phenotypes. However, validation of 

transmittable desired changes to host phenotypes through transfaunation and 

inoculation is still required. This could be investigated by in vitro batch fermentation 

studies before attempting in vivo investigations. Should improved feed efficiency 

and CH4 production prove transmittable through inoculation with rumen contents 

from donor animals this could open up new possibilities for directing rapid changes 

to host phenotypes using quantitative genetics methods to identify optimal 

microbial communities. 
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