

Genetic diversity in and relationships between Dutch horse populations

A. Schurink^{*,1,2}, M. Shrestha^{1,3}, S. Eriksson³, M. Bosse¹, H. Bovenhuis¹, J.K. Oldenbroek², J.J. Windig^{1,2} S.J. Hiemstra², W. Back^{4,5}, A.M. Johansson³ and B.J. Ducro¹

Aim

Investigate the genetic make-up of nine horse populations in the Netherlands

- → increase our understanding of their evolutionary history
- → provide valuable information on how to best conserve or improve these populations

Conclusions

- Genetic diversity and most quantified relationships were in agreement with their history and classifications
- Runs of homozygosity (ROHs) aid in understanding breeding history
- Future research to identify populations with unique genes and significant contribution to genetic diversity

Results

- Distinct clusters except for four Dutch warmblood populations
- Largest differentiation from other populations for Shetland ponies and Friesian horses

Component 1 (8.8%)

Figure 1 – Relationships within and between populations

- Limited inbreeding in open populations e.g. Gelder horses
- Many long ROHs within a population represents inbreeding of recent origin in e.g. Shetland ponies
 Short ROHs and limited inbreeding in Icelandic horses, an ancient population with past inbreeding

Gelder horse – one of the investigated Dutch warmblood horse populations

Materials and methods

- 50k genotype data from nine populations with about 20 horses per population (n = 184)
- Parameters estimated using PLINK software v1.9 (Purcell, 2007)

Table 1 – Mean ROH characteristics per population (SE in superscript)

population	inbreeding	number	length, Mb
Belgian draft horse	10.13.1	36.36.8	6.25.5
Friesian horse	22.34.5	74.39.5	6.75.4
Gelder horse	5.9 ^{2.8}	22.27.0	6.05.1
Groningen horse	6.2 ^{2.3}	25.57.7	5.54.0
Harness horse	9.74.1	28.08.9	7.86.8
Icelandic horse	4.12.7	15.16.7	6.16.0
KWPN sport horse	5.32.4	22.26.7	5.44.2
Lipizzaner horse	9.0 ^{2.5}	31.75.6	6.4 ^{4.9}
Shetland pony	14.46.6	45.38.9	7.27.7
across populations	9.7 ^{6.4}	33.518.1	6.55.8

ROHs were segments of at least 50 consecutive homozygous SNPs; inbreeding being the proportion of the genome that was homozygous based on ROHs

*Corresponding author: <u>anouk.schurink@wur.nl</u> ¹Wageningen University & Research, Animal Breeding and Genomics, the Netherlands ²Wageningen University & Research, Centre for Genetic Resources, the Netherlands ³Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Sweden ⁴Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands ⁵Department of Surgery and Anaesthesiology of Domestic Animals, Ghent University, Belgium

