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Summary  
A better understanding of genomic features influencing the location of meiotic 
crossovers (COs) in plant species is both of fundamental importance and of practical 
relevance for plant breeding. Using CO positions with sufficiently high resolution from 
four plant species (Arabidopsis thaliana, tomato, maize, and rice) we have trained 
machine learning models to predict the susceptibility to CO formation. Our results 
show that CO occurrence within various plant genomes can be predicted by DNA 
sequence and shape features. Several features related to genome content (including 
LTR content) and to genomic accessibility were consistently positively or negatively 
related to COs in all four species. Other features were found as predictive only in 
specific species. Gene-annotation related features were especially predictive for 
maize, whereas in tomato and Arabidopsis propeller twist and helical twist (DNA shape 
features) and AT/TA dinucleotides were found as most important. In rice, high roll 
(another DNA shape feature) and low CA dinucleotide frequency in particular were 
found associated with CO occurrence. The accuracy of our models was sufficient for 
Arabidopsis and rice (AUROC > 0.5) and high for tomato and maize (AUROC>>0.5), 
demonstrating that DNA sequence and shape are predictive for meiotic crossovers 
throughout the plant kingdom. 
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Introduction  
 
Meiosis is essential in most reproducing organisms to halve the number of 
chromosomes, in order to enable the restoration of ploidy levels during fertilization 
(Villeneuve and Hillers, 2001). At the first meiotic division, homologous chromosomes 
(homologs) are segregated. In most eukaryotes, accurate homolog segregation is 
ensured by the formation of at least one recombination event or crossover (CO) 
between the chromatids of homologs. COs represent a reciprocal exchange of genetic 
information between homologs (Mercier et al., 2015). In this way, meiotic crossover 
increases genetic diversity in a population of sexually reproducing eukaryotes. 
Understanding the genomic features influencing the location of COs is of fundamental 
importance for many areas of biology, ranging from chromosome evolution to 
population genetics. Knowledge of the location of COs is also key to plant breeding, 
as breeders are interested in manipulating COs either to introduce favorable genes 
from wild relatives to crops or to silence COs in order to generate stable genetic lines 
of successful crops (Wijnker and de Jong, 2008). However, there are still numerous 
gaps of knowledge with respect to meiotic CO and its genetic determinants in plants.  

The mechanism leading to meiotic crossovers starts with the formation of 
double strand breaks (DSBs) at various chromosomal locations. The DSB distribution 
deviates from uniform in many species including mammals, birds, and plants (Lichten 
and Goldman, 1995; Kauppi et al., 2004, Edlinger & Schlögelhofer 2011, He et al, 
2017; Choi et al., 2018). If DSBs are not repaired immediately by DNA repair 
mechanisms, specific proteins (for example Rad51/Dmc1 in A. thaliana; Edlinger & 
Schlögelhofer 2011) guide one of the loose ends of the DSB to its homologous 
nonsister chromatid to form a double Holliday junction. Depending on how the junction 
is resolved, the resulting chromatids can have a non-crossover (for example, a gene 
conversion) or a crossover. In Arabidopsis, ~4% of the initial DSBs result in COs 
(Mercier et al., 2015). COs are formed through two pathways, ZMM-dependent 
interfering (Class I) and ZMM-independent non-interfering (Class II) pathways. Class 
I COs are inhibited from occurring near other class I COs, while class II COs are 
unconstrained by the presence of adjacent class II COs; between class I and class II 
weak interference has been reported (Anderson et al., 2014; Mercier et al., 2015). In 
the current study we focus on the location of any resulting COs without discriminating 
between Class I or Class II COs.  

It is an intriguing question how conserved or variable the mechanisms 
underlying CO formation be in various plant species. For example, variation exists in 
the mechanisms underlying DSB formation in different plant species (Lambing et al., 
2017). Also, some proteins involved in CO formation have opposing roles in various 
species. One example is that down-regulation of ZYP1/ZEP1 leads to fewer COs in 
Arabidopsis yet to more COs in rice (Lambing et al., 2017). However, a general picture 
on conservation of determinants of CO formation in various plants is still lacking. 
 



4 

The location of COs is known to be correlated with several genomic features. 
In many plant species like tomato, maize, Arabidopsis and rice, COs are observed in 
euchromatic regions where genes are accumulated and are depleted in 
pericentromeric regions (Wu et al., 2003; Sato et al., 2012; Gao et al., 2013; Choi et 
al., 2013; Wijnker et al., 2013; Rodgers-Melnick et al., 2015). More specifically, COs 
occur preferentially upstream of transcription start sites (TSS) i.e. in gene promoters 
in tomato and Arabidopsis (Wijnker et al., 2013; Choi et al., 2013; Demirci et al., 2017; 
de Haas et al., 2017). In addition to their preferential occurrence in promoters, CO 
regions are also rich in particular sequence motifs, including for example, poly-A 
sequence motifs in Arabidopsis and tomato (Demirci et al., 2017; Choi et al., 2013; 
Wijnker et al., 2013). In maize, GC sequences are overrepresented in recombination 
regions (Rodgers-Melnick et al., 2015). Moreover, Mu retrotransposon insertion site 
frequencies are correlated with recombination in maize (Liu et al., 2009). Finally, DNA 
methylation was recently shown to be involved in CO silencing in Arabidopsis (Yelina 
et al., 2015). In this study, we will focus on genomic features rather than epigenetic 
factors.  

To learn about genomic features correlated with CO formation in different 
plants, we take a predictive machine learning approach. There have been some 
previous attempts to predict recombination rate and CO position. In particular, 
Rodgers-Melnick et al. (2015) used several genomic and epigenetic features to 
construct a model to predict crossover density in maize at the megabase scale. 
Machine learning models were successfully used to predict meiotic recombination in 
yeast based on sequences only (Liu et al., 2012). A consistent, simultaneous analysis 
of multiple plant species in order to compare the genomic determinants of COs is 
however lacking. In this study, we apply machine learning to CO datasets from four 
different plant species in order to (i) develop predictive models for the occurrence of 
COs and (ii) to learn about relevant and important features in these species. This 
allows to gain insight into determinants of CO formation throughout the plant kingdom. 
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Results & Discussion 
Comparison of the genomic features correlated with formation of COs requires a 
consistent analysis of multiple plant species. To this end, we pursued a machine 
learning approach, training computational models using available CO datasets 
obtained in populations derived from crossing parental lines. We specifically focused 
on high resolution (less than 2 kb long) crossover regions. The COs were identified 
from either recombinant inbred lines, tetrads or double haploid lines. Such data were 
available for tomato (cross between S. lycopersicum and S. pimpinellifolium), 
Arabidopsis thaliana (cross between Cvi x Ler and Col accessions, and between Col 
and Ler), maize (cross between SK and Zheng58 accessions) and rice (cross between 
PA64s and 93-11). Some general characteristics of the genomes of these four species 
are given in Table S1, and a more extensive description of the CO datasets is given 
in the Methods. Plots comparing transposable element density, gene density, SNP 
density and CO distribution for the four species are provided in Figure 1. 
 
We first developed our predictive model on CO data obtained in tomato. Subsequently, 
we trained similar models for Arabidopsis, maize and rice. We used the crossover 
regions together with their flanking sequences, extending each region to a total length 
of 4 kb. In these regions, we analysed features based on sequence information, 
genome annotation and parental genome sequences. We used these features to 
construct classification (i.e. machine learning) models that predict the probability of 
meiotic recombination for a given sequence. After training such a model with a set of 
known CO regions, it can be applied to predict likely CO sites throughout the genome. 
More importantly, we can analyze how the model learned to perform these predictions: 
to what extent, and in what direction is the probability of CO occurrence influenced by 
the different features, according to the model? In other words, this allows to learn about 
genomic features related with CO frequency in different plants. 
 
CO region prediction in tomato genome 
As input for training a machine learning model both a positive set (regions containing 
COs) and a negative set (regions not containing COs) are needed. We prepared a 
positive set consisting of 4kb-long CO regions from tomato (n = 664) obtained in our 
previous study (Demirci et al., 2017). Because absence of a CO in a given region does 
not automatically imply that a CO could not occur, generating a negative set is not 
straightforward. Therefore we used a random set instead of a negative set. As a first 
strategy to generate a random set, we simply sampled the same number (n = 664) of 
4kb-long regions randomly from the tomato genome, excluding the 664 CO regions.  

Each positive and each random sample was represented by 62 features based 
on sequence, genome annotation and parental genome sequence variation. 
Sequence-based features included dinucleotide frequencies and DNA shape features: 
minor groove width, propeller twist, helical twist, and roll. Propeller twist describes how 
one base in a base-pair is rotated about the long axis of the base-pair relative to the 
other base; helix twist is the angle between two adjacent base-pairs as they twist in a 
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DNA helix structure; and roll is the angle between two consecutive base-pairs rolling 
over each other (Chiu et al., 2016). These DNA shape features were predicted using 
a model trained on experimental DNA structures (Methods). The values predicted for 
each nucleotide were averaged over a (positive  or random) region to obtain a single 
value for each region. DNA shape features have recently been shown to be helpful for 
predicting e.g. binding of proteins to DNA, where these features showed improved 
performance compared to using more simple representations of the DNA sequence 
(Mathelier et al., 2016). Genome annotation features described repeat elements, gene 
elements and (eu)chromatin state. The latter was defined as described previously 
(Demirci et al., 2017) based on results from cytogenetic analyses of pachytene 
chromosomes, which display long continuous stretches of less condensed 
euchromatin in chromosome arms flanked by highly condensed heterochromatin at 
the telomere ends and centromeres.  Finally, features based on parental genome 
information included SNPs and INDELs between the parental genomes. Additional 
information on the exact definition of these features is provided in the Experimental 
Procedures. To assess the discriminative power of features, we initially applied a t-
test to compare the means of each individual feature in the positive and in the random 
set. This indicated that 43 out of 62 features were significantly discriminative (Table 
S2).  

The t-test analyzed whether each single feature on its own displayed different 
values in the CO set compared to the random set. To investigate the discriminative 
power of features when they are combined, we constructed a classification model 
which uses all features together. Different types of classifiers were tested to find the 
best performing model. In particular, we trained a decision tree, a random forest and 
a logistic regression classifier. The performances of the prediction models are 
visualized using receiver operator characteristic (ROC) curves in Figure 2a. The 
random forest classifier was the best performing model, in terms of the area under the 
ROC curve (AUROC = 0.92). Note that performance is calculated using regions not 
used for training the model, in order to prevent over-optimistic performance estimates. 

We subsequently analyzed the importance of each feature according to the 
random forest model (Figure 2b, Table S3). This revealed that whether a region is in 
euchromatin or not is the most contributing feature (with a positive association, i.e. a 
region in euchromatin is more likely to be a CO region); euchromatin is defined here 
as in (Demirci et al., 2017). Additional important features included DNA shape features 
(positive or negative association, depending on the feature), LTR repeat elements 
(negatively associated, i.e. a region containing LTR repeats is less likely to be a CO 
region) and the length of INDELs between the two parental genomes (positively 
associated). The strong contribution of euchromatin presence to CO prediction fits 
expectation, since CO regions are known to accumulate in euchromatic regions 
(Sherman and Stack, 1995; Demirci et al., 2017). However, the strong contribution of 
euchromatin in our model may overshadow the effect of other features: effectively, the 
model has learned to discriminate between euchromatin and heterochromatin. In order 
to find the most relevant features for CO prediction within euchromatin, we 



7 

subsequently followed a second strategy to generate a random set, focussing on the 
euchromatic regions of the tomato genome. 
 
 
CO region prediction in euchromatic regions of tomato genome 
To focus on the prediction of CO regions inside tomato euchromatin, we generated an 
alternative random set: instead of sampling from the whole genome, the regions were 
sampled randomly from euchromatic regions only. With this new random dataset and 
the same positive dataset as above, we again constructed three predictive models 
using a decision tree, a random forest and logistic regression. Similar to the results 
obtained with the first random set, the best performing classifier was the random forest 
classifier, although performance decreased slightly (AUROC = 0.86, Figure 2c) 
reflecting an increased difficulty of the prediction problem. As indicated by the AUROC, 
we could clearly discriminate CO regions from randomly chosen regions in 
euchromatin. Compared to the results obtained above, the order of most contributing 
features changed drastically (compare Figure 2b and 2d). Top features now are gene 
density-related features (gene, exon and CDS coverage), DNA shape, sequence-
related features, and distance to transcription start site (TSS) (Figure 2d). This change 
in feature order, together with the high performance of the model inside euchromatic 
regions suggests, that not only the (eu)chromatin state but also local sequence 
properties influence the occurrence of crossovers. It is particularly revealing that 
features related to gene density (gene, exon, CDS) constitute the top 3 (Figure 2d). 
This is in line with existing knowledge on the preference of COs in tomato to be located 
near genes (Demirci et al., 2017). However, similar to the strong influence of 
euchromatin found above, we now have features describing high-level annotation 
which strongly influence the prediction model. In order to further reveal more local 
sequence properties that influence COs in gene-rich regions, we devised a third and 
final strategy to generate a random set. 
 
CO region prediction in tomato gene-rich regions  
Given the important role of gene annotation related features in the prediction model 
found above, we used a third sampling strategy which takes the gene distribution of 
the tomato genome into account. This new sampling strategy also largely distinguishes 
euchromatin versus heterochromatin, as euchromatin is more gene rich; moreover, 
genic regions in heterochromatin where CO potentially could occur are also taken into 
account. Briefly, this strategy involved construction of an estimate for whole genome 
gene density, followed by selection of random regions by sampling from this density. 
In doing so, the experimental COs were used to find the best value of the bandwidth 
parameter of the gene density estimation. This procedure ensures that, similar to the 
positive cases (experimental CO regions), the random cases will preferentially, but not 
exclusively, occur in gene-rich regions. Further details of this sampling strategy are 
described in the Experimental Procedures section. 

We constructed three classification models using the same three classifiers with 
the new random set and the same positive set. Similar to previous trials, the best 
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performing classifier was the random forest classifier (Figure 2e), again with a slightly 
lower performance than before (AUROC = 0.79). In this model, the most relevant 
features related to DNA shape, sequence, LTR repeats, distance to TSS and parental 
sequence differences (Figure 2f). In particular, it revealed local DNA properties as 
predictive: the two most important features were the DNA shape features propeller 
twist and helical twist. Since the second (euchromatin-based) and third (gene-density 
based) sampling strategies both focus mostly on genic areas, we expect that feature 
importances for both strategies are correlated. To test this, we compared the feature 
orders obtained by the random forest classifier following the two sampling strategies 
by Spearman’s rank correlation test. The test showed significant positive correlation 
between the importance scores for the features obtained with these two sampling 
strategies (Spearman’s rho = 0.91, p-value << 0.001). Hence, as expected, out of all 
features, similar features were selected as important for predicting CO regions in 
euchromatin (second sampling strategy) and in gene-rich regions (final sampling 
strategy). 

We were interested whether this robust behaviour of predictive features was 
also present between the three different classifiers (decision tree, random forest and 
logistic regression) trained using the sampling strategy based on gene-rich regions. 
Such robustness would give credibility to the obtained set of predictive features. To 
investigate this, we compared the feature importances between the three classifiers 
by Spearman’s rank correlation test; we also included the significance order of 
features obtained from the t-test. As summarized in Table 1, even the lowest 
correlation was significant and positive (rho = 0.44 ; p-value < 0.001). Given that some 
of the features are related to each other, this correlation between feature importance 
scores might be an underestimate. It could be strongly influenced by the correlation 
between features: out of two features which are highly correlated, one may be ranked 
highly by one classifier and the other by another classifier. Note that the correlation 
between different features describes whether the feature values display similar trends 
in our dataset. Above we analyzed the correlation between feature importance scores, 
obtained for the same feature with different prediction models. The correlation 
between feature importance scores could be lowered by correlation between the 
feature values; to test this, we clustered all features, and labeled them with their cluster 
membership (Figure S1, Table S4). Subsequently we run the Spearman correlation 
test for feature importance on cluster ranks (where each cluster was ranked with the 
rank from its most important feature). As expected, the correlation between the cluster 
ranks of the features between the different classifiers increased and resulted in a 
minimum rho value of 0.56 (p < 0.001). The analysis of feature importance thus 
showed that the ranking of features is robust to the choice of sampling strategy and 
classifier.  
 
Factors related to crossovers in tomato  
As described above, we generated machine learning models predicting the likelihood 
of CO formation based on DNA sequence and shape features. In a next step, we 
aimed at obtaining insight into genomic determinants of CO formation by analyzing 
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how the models make these predictions. This is reflected in the feature importance 
scores (Figure 2); to interpret these, we also made use of the feature values in CO 
regions and random regions (Figure S2; Table S5). In particular, we observed that the 
most important features (Figure 2) could be grouped into those related to genomic 
content and those related to genome accessibility.  

Two features related to genomic content are euchromatin (Figure 2b) and gene 
content of a region (Figure 2d) which are strongly positively correlated with the 
occurrence of CO regions in the first two predictive models. A third feature related to 
genome content is the presence of LTR repeat regions: according to the final model, 
the probability of a CO increases with decreasing occurrence of LTR repeats (Figure 
2f). These three genomic features are related to each other, as LTR regions are 
preferentially positioned in the pericentromeric regions of the chromosomes where 
gene density is lower and the DNA is condensed into tightly packed heterochromatin 
(Sherman and Stack, 1995; Jouffroy et al., 2016). 
  Among the features important for discriminating CO regions from non-CO 
regions, there were three features related to the accessibility of genomic regions. First, 
we found a negative correlation between distance to TSS and the occurrence of CO 
regions (Figure 2d and 2f). The distribution of TSS distances is shifted towards 
somewhat more negative values for CO regions compared to random regions. This 
implies that, compared to randomly chosen regions, CO regions on average are more 
often found upstream of the TSS, i.e. in promoter regions. Since promoters contain 
nucleosome depleted regions (Hartley and Madhani, 2009) and are accessible to 
transcription factor binding, it is likely that they are also accessible to the recombination 
machinery during the DSB formation stage, as was found in yeast (Pan et al., 2011) 
and Arabidopsis (Choi et al., 2018). Moreover, AA/TT/TA/AT dinucleotide frequencies 
are positively correlated and predictive for CO regions (Figure 2f). This finding could 
be related to the enrichment of TATAT, poly-A and poly-T sequence motifs found in 
CO regions in tomato (Demirci et al., 2017) and in Arabidopsis (Wijnker et al., 2013; 
Choi et al., 2013). Similar to the role of promoters, it has been suggested that specific 
sequence motifs associated with CO occurrence indicate regions of open chromatin 
(Shilo et al., 2015) which might be explained by the exclusion of nucleosomes, leading 
to high double strand break levels (Choi et al., 2018). Thirdly, we found a relation 
between mean propeller twist angle (a DNA structural property) and CO regions 
(Figure 2f): a higher absolute value of propeller twist angle makes a region more likely 
to be a CO region. Importantly, in yeast a higher absolute propeller twist angle 
correlates with a lower nucleosome occupancy (Gan et al., 2012). A higher absolute 
propeller twist angle between particular base pairs could render the DNA more rigid, 
making the DNA harder to bend around e.g. histones (El Hassan and Calladine, 1996). 
Overall, our results indicate the relevance of genome accessibility for CO formation: 
nucleosome depletion could render genomic regions more accessible to the 
recombination machinery. 

In addition to features related to genomic content and features related to 
genome accessibility, the genetic diversity between contributing parental sources is 
also suggested to be relevant by the model. In particular, the model showed a positive 
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relation for the number of homozygous SNPs and length of INDELs between parental 
genomes with CO region presence (Figure 2f). However, care should be taken when 
interpreting correlations between SNP rates and CO rates: since CO regions are 
defined by SNPs, it is likely that there is a bias in favor of positive correlation.  
 
CO prediction in Arabidopsis, maize and rice  
The results obtained for tomato indicate that it is possible to analyze genomic 
determinants of CO formation using the set of sequence- and annotation-based 
features. To investigate the role of these features in other plant species, we 
constructed prediction models for maize, Arabidopsis and rice. For these three 
species, we obtained CO regions with sufficient resolution needed for training the 
models (Wijnker et al., 2013; Li et al., 2015; Si et al., 2015). We prepared positive sets 
as 4kb-long regions around CO positions from rice (n = 468), maize (n = 63) and 
Arabidopsis (n = 159), respectively. We sampled the same number of 4kb-long regions 
as in the positive set for each species, using the gene-density based sampling strategy 
as described above. We prepared the same features as for tomato, except for the 
parental sequence based features. In addition, there are small differences in feature 
sets between the species as different genomes have different repeat content. 

We initially tested the individual discriminative power of features by t-test. This 
yielded 15 significant features among 59 features for Arabidopsis, 13 significant 
features among 64 features for rice, 7 significant features among 55 features for maize 
and 28 significant features among 56 features for tomato with p-values < 0.05 (Table 
S6). For tomato, the number of significant features was lower than what was found 
above when using a random set from the whole genome. This is caused by the fact 
that it is more difficult to discriminate between CO regions and random regions which 
are both sampled from gene-rich areas in the genome. Given the smaller number of 
COs available for Arabidopsis, rice and maize, it is also not surprising that fewer 
features were found significant in these species compared to tomato. Subsequently, 
we trained a random forest classifier for each of the three species separately. To 
compare these three models in a fair way with the tomato model, we also trained a 
model for tomato without the parental sequence based features. According to the 
performance results given in Table 2, CO sites are well predictable for both models of 
tomato and maize (AUROC >> 0.5) and reasonably predictable for Arabidopsis and 
rice (AUROC > 0.5). The difference in predictive power is not dependent on the 
number of COs in our training set: tomato has the most data and maize the least, while 
in both CO is easier to predict than in Arabidopsis and rice. 

To obtain additional validation for the models, we followed two strategies. One 
was to obtain a set of true negative cases from pericentromeric regions. Reassuringly, 
as shown in Table 2, accuracy obtained by applying the models to these regions was 
again quite decent for Arabidopsis and rice (66%-76% correct) and in particular high 
for tomato and maize (>90% correct). The second strategy was specific for 
Arabidopsis, for which we used a genome-wide set of recombination rates (Choi et al., 
2013). As expected, CO regions in our dataset showed clearly higher rates compared 
to random regions (Figure S3A; p-value based on t-test: 10-9). The recombination rate 
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for CO regions correctly predicted by the model was similar to the rate for CO regions 
not correctly predicted by the model (Figure S3B). Strikingly however, recombination 
rates for random regions predicted by our model to be CO regions were clearly higher 
than rates for random regions predicted to be random regions (Figure S3B; p-value 
based on t-test: 10-7). This provides clear validation for our model, because it 
demonstrates that for a set of randomly chosen genome regions, the model 
discriminates between regions with low and with high recombination rate. 

 
Factors related to crossovers in Arabidopsis, maize and rice 
We further investigated whether similar features are important for CO prediction in the 
four different species (a complete overview of feature importance values is given in 
Figure S4). We compared the order of feature importances between species with 
Spearman’s correlation test, as shown in Figure 3. On the one hand this revealed that 
tomato and maize displayed only a modest non-significant correlation, whereas on the 
other hand, all other pairs of species displayed positive significant correlations. The 
highest correlation was observed between tomato and Arabidopsis, for which very 
similar features were important to predict CO regions.  

To identify common and species-specific features we selected the top ten most 
contributing features of each species’ CO prediction model. Features contributing to 
the top ten in at least one species are displayed in Figure 4, showing their importance 
and their influence on the likelihood of COs. Note that features reported in Figure 4 
are not necessarily the same as those reported as the result of the t-test in Table S6. 
This is because the t-test considers each feature separately, whereas the random 
forest uses combinations of features, and then orders the features individually based 
on their contribution to the model. In addition, for tomato there are small differences 
between the features shown in Figure 2f and those shown in Figure 4, as the latter 
includes only features relevant for all four species. 

Interestingly, Figure 4 shows there is a large group consisting of the DNA shape 
feature helix twist, AT, TA, AA and TT dinucleotide frequencies, that are predicted to 
have a positive effect in all four studied species, with higher feature values indicating 
a higher likelihood to be a CO region. Similarly, another group consisting of the DNA 
shape feature propeller twist, and GG, GA, TC, CC and AG dinucleotide frequencies 
has a negative effect in all four studied species. In addition, the LTR/Gypsy feature 
has a negative relation to COs in three of the four species: CO regions are not favored 
near LTR repeats in maize, tomato and rice. For Arabidopsis the LTR/Gypsy feature 
is not relevant, since LTR repeats to a large extent are absent from the Arabidopsis 
genome (The Arabidopsis Genome Initiative, 2000). 

These two groups of conserved features, which are consistently positively or 
negatively related to CO in all four species, can be broadly related to genome content 
and genome accessibility as found above for tomato. In particular, the importance of 
genomic content is reflected in the negative correlation of CO regions with the 
occurrence of LTR/Gypsy repeats. The negative correlation between recombination 
and transposon occurrence along chromosome arms has recently been reviewed 
(Lambing et al., 2017); transposon content increases towards the centromere while 
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the recombination rate decreases towards the centromere. Several other features 
conserved between species are related to genome accessibility. CO regions are 
positively correlated with AT/TA/AA/TT dinucleotide frequencies and propeller twist 
absolute angles. As discussed above, the nucleosome occupancy of these regions is 
expected to be low. This suggests that COs tend to localize in regions of open 
chromatin that are accessible for the recombination machinery.  

In addition to these features that are invariant between species, a more 
species-specific role was observed for other features. The most important features 
found in maize were gene-annotation related features like exon, CDS and 3’UTR, 
whereas in tomato and Arabidopsis propeller twist, helical twist and AT/TA 
dinucleotides were most important. This difference could partially relate to the 
observation of CO regions in maize preferentially in 5’UTRs and 3’UTRs (Li et al., 
2015), and in tomato and Arabidopsis primarily in promoters (Wijnker et al., 2013; Choi 
et al., 2013; Demirci et al., 2017). Furthermore, in rice, high roll (a DNA shape feature) 
and low CA dinucleotide frequency in particular favored the occurrence of COs. Two 
additional features with a species-specific role were Minor Groove Width (MGW) and 
the distance to TSS. MGW has a negative relation to COs in Arabidopsis and tomato 
and a positive (albeit non-significant) relation in maize and rice. MGW can strongly 
influence the binding of proteins to DNA (Rohs et al., 2009). As described in the 
Introduction, some knowledge exists on different effects of CO regulators on CO 
formation in different plant species. The potential influence of MGW on binding of such 
CO regulator suggests a possible explanation for why the relation between MGW and 
CO formation is positive in some species and negative in others: higher MGW would 
have the same effect on binding of the protein in all species, which subsequently would 
have a differential effect on CO formation. As for distance to TSS, this feature again 
hints at the importance of genome accessibility. CO regions are localized upstream of 
the TSS (i.e. in promoter regions) in tomato, rice and Arabidopsis, while they are 
located downstream of TSS (i.e. at 3’ UTR ends of genes and gene bodies) in maize. 
Even though CO regions localize at different ends of genes, apparently these positions 
are associated with nucleosome depleted regions (Bell et al., 2011) rendering them 
accessible to the recombination machinery.  

Conclusions 
We present the first comprehensive application of machine learning to predict CO 
regions throughout the plant kingdom. CO regions are reasonably predictable in 
Arabidopsis and rice and can be predicted with high accuracy in tomato and maize. A 
few different factors might influence the predictive power. One is that we focus on 
prediction of COs in gene-rich regions to be able to find local features, which inevitably 
means losing predictive power as the difference between random and CO regions gets 
smaller. The second reason is that there is no proper negative dataset to compare; 
irrespective of the way we sample, some regions in the random dataset may actually 
be prone to CO formation. 
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Our results indicate conservation and variation of genomic features influencing CO 
formation throughout the plant kingdom. We found two main groups of conserved 
features important for predicting CO regions in all four species: genome content and 
genome accessibility. CO regions are more likely to lie in euchromatic, gene-rich 
chromosomal regions, be A/T rich, have high absolute propeller twist angles and be 
depleted of LTR repeats. This could well relate to nucleosome depletion, leading to 
accessibility by the recombination machinery. In addition to these general rules, we 
observed that in Arabidopsis, rice and tomato, CO regions are often found in 5’ UTR 
ends of genes while in maize CO regions are more prevalent in 3’ UTR ends of genes. 
Yet, in general, in Arabidopsis, rice, tomato and maize, CO regions localize around 
the UTR ends of genes which suggests that gene regulatory regions are involved in 
the crossover mechanism.  

In addition to these gross similarities between species, our results also indicate 
the importance of species-specific aspects of CO formation. One example is that minor 
groove width is negatively related to CO formation in tomato and Arabidopsis and 
positively related in rice and maize. Our findings that both conserved and species 
specific genomic features are correlated with COs might be related to the differential 
effect that proteins have on CO formation. For example, PRDM9 has a specific role in 
CO formation in human and mouse (Myers et al., 2010; Edlinger and Schlögelhofer, 
2011). Similarly, PCH2/CRC1 and ZYP1/ZEP1 seem to have a differential effect on 
CO formation in Arabidopsis and rice (Lambing et al., 2017). The finding that DNA 
shape features are important according to our prediction models could be related to 
interactions of such proteins with DNA, given that DNA shape is known to be relevant 
for protein-DNA interactions (Mathelier et al., 2016). The characteristics of the (spatial) 
interaction between such proteins and their DNA targets is relatively unknown and in 
our opinion calls for more detailed studies, involving for example ChIPseq technology. 

Generally speaking, our results indicate the importance of both conservation 
and variation of features influencing COs in various plant species. Our work lays the 
ground for a comprehensive analysis of features underlying crossover formation in 
plants. Using additional high resolution datasets, as well as additional relevant 
features such as epigenetic modifications, will be the next step in order to understand 
CO regions better. This will be of fundamental biological relevance and will provide 
further opportunities for application in plant breeding. 
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Experimental Procedures 
 
Dataset preparation 
Sequences for positive (CO regions) and negative cases were prepared for tomato, 
rice, thale cress (Arabidopsis thaliana) and maize by using the corresponding genome 
information.  
For tomato, 1015 CO positions were obtained from Demirci et al. (2017). CO events 
were detected in an F6 generation of interspecies recombinant inbred lines (RILs). 
Parental lines of the RILs were S. lycopersicum Moneymaker and S. pimpinellifolium. 
The reference genome Solanum lycopersicum Heinz version SL2.50 was used. The 
genome sequence and gene annotation files (ITAG2.4 gene models and ITAG2.4 
repeats aggressive files in gff3 format) were obtained from https://solgenomics.net.  
For rice, 1287 CO positions were obtained from Si et al. (2015). CO events were 
detected in F2 lines grown in different environmental conditions; the parental lines 
were PA64s (a hybrid between O. sativa indica and javanica) and 93-11 (O. sativa 
indica group). The reference genome Oryza sativa Nipponbare version IRGSP-1.0 
was used. The genome sequence and gene annotation files were obtained from 
http://rapdb.dna.affrc.go.jp/download/irgsp1.html.  
For Arabidopsis, 191 CO positions in total were obtained from tetrads and double 
haploids of Arabidopsis thaliana (Wijnker et al. 2013). The parental lines of tetrads 
were Cvi X Ler and Col accessions of A. thaliana. The parental lines of double haploids 
were Col and Ler accessions. The reference genome version TAIR 10 genome 
sequence and gene annotation (gff3) were obtained from arabidopsis.org.  
For maize, 924 CO positions from tetrads were obtained from Li et al. (2015). The 
parental lines of tetrads were SK and Zheng58 accessions of Zea mays. The reference 
genome B73 RefGen v3 (aka AGPv3) genome sequences and the gene annotation 
file were downloaded from Ensembl Genomes release 21 
(ftp://ftp.ensemblgenomes.org/pub/plants/release-21/fasta/zea_mays/). 
 
Repeats for rice, Arabidopsis and maize genomes were inferred using RepeatMasker 
(Smit et al., 2013-2015) together with its dependencies Tandem Repeat Finder 
(Benson, 1999) and NCBI blastn programs. As repeat database, Genetic Information 
Research Institute Repbase Update database (Bao et al., 2015) was used. 
For positive data set preparation, CO sites smaller than 2 kb were selected and 
extended to 4kb from their midpoint. After this step, the number of CO regions was 
749 for tomato, 485 for rice, 69 for maize and 161 for Arabidopsis. For cases where 
CO regions overlapped, one of the two overlapping regions was randomly removed 
when the overlap was more than 25%, i.e. more than 1 kb. Moreover, CO regions were 
filtered if they overlapped with gaps in the reference genome. After filtering, the 
number of CO regions was 664 for tomato, 468 for rice, 63 for maize and 159 for 
Arabidopsis. 
 
 

https://solgenomics.net/
http://rapdb.dna.affrc.go.jp/download/irgsp1.html
http://ftp.ensemblgenomes.org/pub/plants/release-21/fasta/zea_mays/


15 

 
Sampling random cases from euchromatin or whole genome in tomato  
We randomly selected 664 non-overlapping regions from tomato euchromatin 
excluding CO regions and assembly gaps (i.e. N bases). Euchromatic region positions 
were previously calculated in Demirci et al. (2017). To sample these random regions, 
the bedtools version 2.25.0 (Quinlan and Hall, 2010) shuffle function was used with 
the ‘chrom’ option, which protects the distribution of sequences among chromosomes. 
For example, if 10 sequences were present in chromosome 1 in the positive set, 10 
sequences will be randomly selected on that chromosome for the random set. The 
same procedure was used to sample from the whole genome. 
 
Sampling random cases from gene-dense regions 
First, we generated a whole genome gene density estimate using a kernel density 
procedure (scikit-learn version 0.18 (Pedregosa et al., 2011), Python 3.5.2 (Python 
Software Foundation, https://www.python.org/)). We used the center position of every 
gene from the corresponding species annotation as a representation of the genes. The 
value of the kernel bandwidth was chosen such that the density would optimize the 
probability of the experimental CO distribution: the maximum log likelihood of the 
experimental CO distribution was found using a grid of 1000 different bandwidths, 
ranging from 1,000 to 1,000,000 with increments of 1000. The optimum bandwidths 
obtained were 36,000, 7,000, 171,000 and 54,000 for tomato, maize, rice and 
Arabidopsis, respectively. Then, to generate the negative set, for each chromosome, 
n regions were randomly sampled, where n is the number of CO regions in that 
chromosome in the positive set. Then, the candidate regions were filtered for the 
presence of gaps (N’s), overlaps between each other and overlaps with any region in 
the positive set. If any of the initial candidates failed to pass the filtering, a new 
candidate was sampled from the distribution and the same filtering was applied. This 
process was repeated until n candidate negative regions passed all the filtering steps.  
 
Feature preparation 
For the positive and negative cases, the following features were calculated: 
 
(i) Features derived from sequence information: 
Dinucleotide frequencies: for each of the 16 possible dinucleotides, the following 
calculation was performed:  
 
FAA = nAA / ( l-1) 
 
where FAA indicates the frequency of dinucleotide AA, nAA is the number of 
occurrences of AA in the given sequence, and l is the length of the sequence. 
 
CTT and CCN motifs: as motifs, we used TCTTCTTC (Wijnker et al., 2013) and 
CCNCCNCCN (Shilo et al., 2015). Motif absence or presence in a region was 
described with a binary feature (motif presence), and the number of times a motif 

https://www.python.org/
https://www.python.org/
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occurred in a region was described in the feature motif occurrence. Finally, motif 
search scores were obtained with FIMO (Grant et al., 2011); in case of multiple 
occurrences of a given motif in a region, the following score was used to represent 
repetitive motifs:  
 
score = (“motif score” / “motif length”) * “total length”   
 
where “total length” means the total length of sequences covered by the motif. 
 
The DNA structural features: helix twist angle, propeller twist angle, minor groove 
width (MGW) and Roll were estimated for each nucleotide position in each region using 
the DNAshapeR algorithm (Chiu et al., 2016). This approach predicts these structural 
properties for a given sequence using a model trained on experimental DNA structures 
(Zhou et al., 2013): (i) propeller twist angle is a negative value which measures the 
perpendicular twist between two paired bases from different strands; (ii) helix twist 
angle is a positive angle between two adjacent base-pairs as they twist in a DNA helix 
structure; (iii) minor Groove Width (MGW) is the width of the DNA minor groove in 
armstrong (Å); (iv) roll angle is the angle between two consecutive base-pairs rolling 
over each other, which can be positive or negative. The values predicted for each 
nucleotide were averaged over a (positive  or random) region to obtain a single value 
for each region. In addition, we calculated the minimum and maximum values 
estimated for each DNA structural feature for each region.  
 
(ii) Features derived from genome annotation information: 
The distance from the centre of sequences to the nearest transcription start site (TSS) 
was calculated as described in Demirci et al. (2017). Briefly, the directed distance from 
the closest TSS position was calculated with the bedtools version 2.25.0 closest 
function; a negative value means that the midpoint of a sequence lies upstream of the 
TSS. Since the 5’ UTR regions were incomplete in the tomato genome annotation, we 
used mRNA start positions as TSS. For rice, maize and Arabidopsis 5’ UTR regions 
were used.  
 
The coding region fraction was calculated for each region. The gene elements which 
overlap with the regions were extracted by the bedtools version 2.25.0 intersect 
function from gene annotation files (ITAG 2.4 gene models file for tomato, IRGSP-1.0 
representative locus and transcripts exon files for rice, TAIR 10 genes for arabidopsis, 
AGPv3.21 annotation file for maize). Subsequently, for each region, the total length of 
exonic regions was divided by the length of the region and reported as the coding 
region fraction of that region.  
 
For each region, the transposon family fractions were calculated in a similar way as 
coding region fractions. Repeats which overlap with the regions were extracted by the 
bedtools version 2.25.0 intersect function from the repeat annotation files (ITAG 2.4 
annotation repeat file ITAG2.4_repeats_aggressive.gff3 for tomato and repeat 
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annotation files generated by RepeatMasker (see above) for other species). Then, for 
each region, the overlap fractions were calculated for all defined repeat families: the 
total length of the annotated repeats was divided by the length of the region. Repeat 
families were excluded as features if they were not present in any region in the dataset 
of each species. For tomato, in addition, eu(chromatin) state was used as a feature in 
the first model (sampling from the whole genome); it was assigned as described in 
Demirci et al. (2017). 
 
(iii) Features derived from parental genome information: 
Sequence divergence between parental genomes for a given region was calculated 
from VCF files of tomato parental genomes (S. lycopersicum Moneymaker and S. 
pimpinellifolium). The fastq files were downloaded from European Nucleotide Archive 
(ENA, http://www.ebi.ac.uk/ena) for S. pimpinellifolium (SAMEA2625653) under 
project number PRJEB6659 (Aflitos et al., 2015) and for S. lycopersicum Moneymaker 
(SAMEA2340764) under the project number PRJEB5235 (Aflitos et al., 2014). These 
were mapped to the Solanum lycopersicum Heinz version SL2.50 reference genome 
and variants were called with the same settings as described in Aflitos et al. (2014). 
From the resulting variant VCF files for each parental genome, containing SNPs w.r.t. 
the reference genome, SNPs were compared to each other and homozygous SNPs 
having the same alternative alleles in the two parents, i.e. identical variants w.r.t. the 
reference, were removed. The remaining SNPs from the two genomes were combined 
to obtain parental SNPs and analysed to calculate the total number of SNPs, 
heterozygous SNPs and homozygous SNPs present in the regions as three separate 
features. In a similar way, INDELs with different lengths in the parental genomes were 
analysed to calculate the number of INDEL positions and the total length of differential 
INDEL lengths for each region. All five features from SNPs and INDELs were reported 
as a fraction of each analysed region.  
 
Features were scaled individually by subtracting the mean and dividing by the 
standard deviation. The scaled features were used in later steps unless otherwise 
stated. To cluster features, the absolute value of Pearson correlation between features 
was converted to a dissimilarity matrix using the equation: 
 
D = 1 - abs(rho) 
 
where D is the distance and rho is Pearson correlation coefficient.  
 
Based on the dissimilarity matrix, we performed hierarchical clustering with the hclust 
function in R using complete linkage. After manual inspection a threshold of 0.4 was 
applied to define clusters.  
 
To inspect the role of individual features, we performed a t-test on non-scaled feature 
data using scipy 0.17.0 (Jones et al., 2001). p-values were Benjamini-Hochberg 
corrected using the multiple test function in statsmodels version 0.8.0 (Seabold and 

http://www.ebi.ac.uk/ena
http://www.ebi.ac.uk/ena/data/view/SAMEA2625653
http://www.ebi.ac.uk/ena/data/view/SAMEA2340764
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Perktold, 2010). To visualize and detect the most significant features, the p-values 
were log-transformed.  
 
Comparative genomic analysis 
For each species, we used the above mentioned genome annotation files for 
transposable element (TE) density and gene density graphs. For CO density, we used 
the filtered set of CO regions which were used as positive set to build the models. For 
SNP density, we used the parental marker set if provided by the original study (for 
tomato, Arabidopsis and rice); if not provided (in the case of maize), we identified the 
differential SNPs between parental genomes. To do so, raw sequence datasets of 
parental genomes Zheng58 (accession no SRR449340, SRR449342 and 
SRR449343) and SK (accession no SRR1585475) were downloaded from the 
European Nucleotide Archive (https://www.ebi.ac.uk/ena). After trimming with 
Trimmomatic v0.36 (Bolger et al., 2014), reads were mapped to the reference genome 
AGPv3 by bowtie2 version 2.2.6 (Langmead and Salzberg, 2012) with fast mapping 
option, PCR duplicates were removed, and SNPs for each parent were called by 
samtools version 0.1.19 (Li et al., 2009) and bcftools version 0.1.19 (Li, 2011). SNPs 
having coverage less than 4 or more than 100 were filtered by bcftools. Finally, we 
reported the homozygous SNPs between parental genomes. Centromere information 
was obtained as follows: for Arabidopsis, we used Table S26 from Ziolkowski et al. 
(2017); for maize, we used 1 Mb flanking region of CRM repeats as identified by 
Repeatmasker; for tomato, we used Data S1 in Demirci et al. 2017; for rice, we inferred 
the approximate locations from Si et al.’s study (2015), Figure 3. Counts for different 
elements (COs, TEs, genes, SNPs) were obtained in 1Mb bins across all 
chromosomes for a given species. 
 
Classifiers 
Decision tree classifier: We used the decision tree classifier algorithm implemented in 
scikit-learn v0.18 with the Gini impurity criterion to split the nodes. To prevent 
overfitting, the minimum number of samples on each leaf was set to 5 and the rest of 
the settings was left as default.  
Random forest classifier: the random forest algorithm implemented in scikit-learn was 
used with 1000 trees in the forest. The remaining settings were kept at their defaults, 
with the number of features used at each split in each tree equal to the square root of 
the number of features, and the Gini criterion for splitting nodes. 
Logistic Regression: the logistic regression algorithm implemented in scikit-learn was 
applied. To optimize the regularization factor C, necessary to prevent overfitting, we 
used cross-validation over 10 different values in the range of 1x10-4 to 1x104. After the 
prediction model was built, we used the absolute values of the coefficients to 
determine the feature importances.  
 
 
 
Comparison of feature importances 
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Spearman rank correlation was calculated between feature importances from different 
classifiers and different species. The resulting rho value per pair of feature 
importances and the corresponding p-value were reported to assess the similarity of 
the order of two feature importances.  
 
(Cor)relation of the features to CO prediction 
To determine if the predictive features have a positive or negative relation on the CO 
prediction, the mean value of a feature in the random set was subtracted from the 
mean value of a feature in the positive set. A positive sign means that higher values 
of that feature favor CO regions, and vice versa.  
 
Evaluation of the performance of classifiers 
The regions which include COs were defined as positive cases, whereas negative 
cases are the randomly selected regions. By comparing the prediction for a given case 
with its real label (CO or random), the following four values can be obtained: FP, the 
number of false positives (random cases predicted as CO); TP, the number of true 
positives (CO cases predicted as CO); FN, the number of false negatives (CO cases 
predicted as random); and TN, the number of true negatives (random cases predicted 
as random). To evaluate the performance of each predictor, we used the following 
evaluation metrics based on the values of FP, TP, FN and TN: 
(i) The AUROC is the area under the Receiver Operator Characteristic (ROC) curve, 
which visualizes the True Positive Rate (TPR) versus the False Positive Rate (FPR). 
Here,  
TPR = TP / (TP + FN), probability of detection of COs; 
FPR = FP / (TN + FP), probability of wrongly predicting a random case as CO. 
(ii) Precision measures how many of the CO regions were correct among the cases 
predicted to be CO: Precision = TP / (TP + FP)  
(iii) Recall measures how many of the experimental CO regions were correctly 
predicted to be CO: Recall = TP / (TP + FN), which is identical to the TPR. 
(iv) Accuracy measures how many of the instances are correctly predicted.  
 
Validation of prediction models 
We used 10-fold cross-validation to validate the prediction model. The dataset was 
randomly split into 10 parts, which in 10 iterations each serve as a test set for a model 
trained on the remaining 9 parts. The performance evaluation metrics are reported as 
average and standard deviation over the 10 test sets. 
To obtain additional validation on independent data, for the prediction models trained 
on CO regions and random regions obtained from gene-rich areas in the four species, 
a negative set was generated by sampling from pericentromeric regions. The same 
number of regions as in the positive set (CO regions) was sampled from 
pericentromeric regions (excluding assembly gaps) with the same method as above 
(bedtools shuffle algorithm). The pericentromeric region locations were obtained as 
follows: for Arabidopsis, we used Table S26 from Ziolkowski et al. (2017); for maize, 
we used 20 Mb flanking regions of CRM repeats as identified by Repeatmasker 
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(excluding the CRM repeats); for tomato, we used heterochromatin regions defined in 
Data S1 in Demirci et al. (2017); for rice, we used cold spot regions defined in Si et 
al.’s study (2015), Table S4. Features were constructed for these regions in the same 
way as described above. To estimate the accuracy of the models, it was assessed for 
how many of the pericentromeric regions the models predicted that these regions 
would not be CO regions.  
In addition, for Arabidopsis, we used a genome-wide set of recombination rates (Choi 
et al., 2013) for validation. For each genome region used in our Arabidopsis model, a 
single  recombination rate was obtained by averaging the values provided by Choi et 
al. The distributions of these values were obtained separately for CO regions vs. 
random regions, and for both types of regions separately based on whether the model 
predicted a region to be a CO region or a random region. 
 
The scripts used for the analyses are available on https://github.com/sdemirci/predCO. 
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Figure S2. Histograms of features. 
 
Figure S3. Arabidopsis recombination rate for CO regions and random regions.  
 
Figure S4. Features used in the random forest model in four species. 
 
Table S1: Genome information of the studied species. 
 
Table S2: t-test results of tomato features. 
 
Table S3: Feature importances based on random forest in tomato. 
 
Table S4: Cluster membership of the features in tomato. 
 
Table S5: Feature means in random and positive regions. 
 
Table S6:  p-values of t-test on the features in maize, rice and Arabidopsis and tomato. 
 
  



22 

References   
  
Aflitos, S.A., Sanchez-Perez, G., Ridder, D. de, Fransz, P., Schranz, M.E., Jong, 
H. de and Peters, S.A. (2015) Introgression browser: high-throughput whole-genome 
SNP visualization. Plant J., 82, 174–182. 
Aflitos, S., Schijlen, E., Jong, H. de, et al. (2014) Exploring genetic variation in the 
tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J., 
80, 136–148. 
Anderson, L.K., Lohmiller, L.D., Tang, X., et al. (2014) Combined fluorescent and 
electron microscopic imaging unveils the specific properties of two classes of meiotic 
crossovers. Proc. Natl. Acad. Sci., 111, 13415–13420. 
Bao, W., Kojima, K.K. and Kohany, O. (2015) Repbase Update, a database of 
repetitive elements in eukaryotic genomes. Mob. DNA, 6, 11. 
Bell, O., Tiwari, V.K., Thomä, N.H. and Schübeler, D. (2011) Determinants and 
dynamics of genome accessibility. Nat. Rev. Genet., 12, 554–564. 
Benson, G. (1999) Tandem repeats finder: a program to analyze DNA sequences. 
Nucleic Acids Res., 27, 573–80.        
Bolger, A.M., Lohse, M. and Usadel, B. (2014) Trimmomatic: a flexible trimmer for 
Illumina sequence data. Bioinformatics, 30, 2114. 
Chiu, T.-P., Comoglio, F., Zhou, T., Yang, L., Paro, R. and Rohs, R. (2016) 
DNAshapeR: an R/Bioconductor package for DNA shape prediction and feature 
encoding. Bioinformatics, 32, 1211–3. 
Choi, K., Zhao, X., Kelly, K. a, et al. (2013) Arabidopsis meiotic crossover hot spots 
overlap with H2A.Z nucleosomes at gene promoters. Nat. Genet., 45, 1327–36. 
Choi, K., Zhao, X., Tock, A.J., et al. (2018) Nucleosomes and DNA methylation 
shape meiotic DSB frequency in Arabidopsis transposons and gene regulatory 
regions. Genome Res., 28, 532-546. 
Demirci, S., Dijk, A.D.J. van, Sanchez Perez, G., Aflitos, S.A., Ridder, D. de and 
Peters, S.A. (2017) Distribution, position and genomic characteristics of crossovers in 
tomato recombinant inbred lines derived from an interspecific cross between Solanum 
lycopersicum and Solanum pimpinellifolium. Plant J., 89, 554–564.   
Edlinger, B. and Schlögelhofer, P. (2011) Have a break: Determinants of meiotic 
DNA double strand break (DSB) formation and processing in plants. J. Exp. Bot., 62, 
1545–1563. 
Gan, Y., Guan, J., Zhou, S. and Zhang, W. (2012) Structural features based genome-
wide characterization and prediction of nucleosome organization. BMC Bioinformatics, 
13, 49. 
Gao, Z.-Y., Zhao, S.-C., He, W.-M., et al. (2013) Dissecting yield-associated loci in 
super hybrid rice by resequencing recombinant inbred lines and improving parental 
genome sequences. Proc. Natl. Acad. Sci. U. S. A., 110, 14492–7. 
        



23 

Grant, C.E., Bailey, T.L. and Noble, W.S. (2011) FIMO: scanning for occurrences of 
a given motif. Bioinformatics, 27, 1017–1018. 
Haas, L.S. de, Koopmans, R., Lelivelt, C.L.C., Ursem, R., Dirks, R. and 
Velikkakam James, G. (2017) Low-coverage resequencing detects meiotic 
recombination pattern and features in tomato RILs. DNA Res., 3, 1213–6. 
Hartley, P.D. and Madhani, H.D. (2009) Mechanisms that Specify Promoter 
Nucleosome Location and Identity. Cell, 137, 445–458. 
Hassan, M.A. El and Calladine, C.R. (1996) Propeller-Twisting of Base-pairs and the 
Conformational Mobility of Dinucleotide Steps in DNA. J. Mol. Biol., 259, 95–103.  
He, Y., Wang, M., Dukowic-Schulze, S., et al. (2017) Genomic features shaping the 
landscape of meiotic double-strand-break hotspots in maize. Proc. Natl. Acad. Sci., 
114, 12231–12236. 
Jones, E., Oliphant, T., Peterson, P., et al. (2001-) SciPy: Open Source Scientific 
Tools for Python. Available at http://www.scipy.org. 
Jouffroy, O., Saha, S., Mueller, L., et al. (2016) Comprehensive repeatome 
annotation reveals strong potential impact of repetitive elements on tomato ripening. 
BMC Genomics, 17, 624.   
Kauppi, L., Jeffreys, A.J. and Keeney, S. (2004) Where the crossovers are: 
recombination distributions in mammals. Nat. Rev. Genet., 5, 413–424. 
Lambing, C., Franklin, F.C.H. and Wang, C.-J.R. (2017) Understanding and 
Manipulating Meiotic Recombination in Plants. Plant Physiol., 173, 1530–1542.    
Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. 
Nat. Methods, 9, 357–359.  
Li, H. (2011) A statistical framework for SNP calling, mutation discovery, association 
mapping and population genetical parameter estimation from sequencing data. 
Bioinformatics, 27, 2987. 
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., 
Abecasis, G. and Durbin, R. (2009) The Sequence Alignment/Map format and 
SAMtools. Bioinformatics, 25, 2078–2079. 
Li, X., Li, L. and Yan, J. (2015) Dissecting meiotic recombination based on tetrad 
analysis by single-microspore sequencing in maize. Nat. Commun., 6, 6648.     
Lichten, M. and Goldman, A.S. (1995) Meiotic recombination hotspots. Annu. Rev. 
Genet., 29, 423–44. 
Liu, G., Liu, J., Cui, X. and Cai, L. (2012) Sequence-dependent prediction of 
recombination hotspots in Saccharomyces cerevisiae. J. Theor. Biol., 293, 49–54. 
Liu, S., Yeh, C.-T., Ji, T., Ying, K., Wu, H., Tang, H.M., Fu, Y., Nettleton, D. and 
Schnable, P.S. (2009) Mu transposon insertion sites and meiotic recombination 
events co-localize with epigenetic marks for open chromatin across the maize 
genome. PLoS Genet., 5, e1000733. 
Mathelier, A., Xin, B., Chiu, T.P., Yang, L., Rohs, R., Wasserman, W.W. (2016) 
DNA Shape Features Improve Transcription Factor Binding Site Predictions In Vivo. 
Cell Syst., 3, 278-286. 



24 

Mercier, R., Mézard, C., Jenczewski, E., Macaisne, N. and Grelon, M. (2015) The 
Molecular Biology of Meiosis in Plants. Annu. Rev. Plant Biol, 66, 297–327.  
Myers, S., Bowden, R., Tumian, A., Bontrop, R.E., Freeman, C., MacFie, T.S., 
McVean, G. and Donnelly, P. (2010) Drive Against Hotspot Motifs in Primates 
Implicates the PRDM9 Gene in Meiotic Recombination. Science, 327, 876–879. 
Pan, J., Sasaki, M., Kniewel, R., et al. (2011) A hierarchical combination of factors 
shapes the genome-wide topography of yeast meiotic recombination initiation. Cell, 
144, 719–731. 
Pedregosa, F., Varoquaux, G., Gramfort, A., et al. (2011) Scikit-learn: Machine 
Learning in Python. J. Mach. Learn. Res., 12, 2825–2830.  
Python Software Foundation. The Python Language Reference, version 3.5.2. 
Available at https://docs.python.org/3.5/reference/index.html. 
Quinlan, A.R. and Hall, I.M. (2010) BEDTools: a flexible suite of utilities for comparing 
genomic features. Bioinformatics, 26, 841–2. 
Rodgers-Melnick, E., Bradbury, P.J., Elshire, R.J., Glaubitz, J.C., Acharya, C.B., 
Mitchell, S.E., Li, C., Li, Y. and Buckler, E.S. (2015) Recombination in diverse maize 
is stable, predictable, and associated with genetic load. Proc. Natl. Acad. Sci. U. S. A., 
112, 3823–8. 
Rohs, R., West, S.M., Sosinsky, A., Liu, P., Mann, R.S. and Honig, B. (2009) The 
role of DNA shape in protein–DNA recognition. Nature, 461, 1248–1253. 
Sato, S., Tabata, S., Hirakawa, H., et al. (2012) The tomato genome sequence 
provides insights into fleshy fruit evolution. Nature, 485, 635–641. 
Seabold, S., and Perktold, J. (2010) Statsmodels: Econometric and statistical 
modeling with python. Proceedings of the 9th Python in Science Conference. 57-61. 
Sherman, J.D. and Stack, S.M. (1995) Two-Dimensional Spreads of Synaptonemal 
Complexes from Solanaceous Plants. VI. High-Resolution Recombination Nodule 
Map for Tomato (Lycopersicon esculentum). Genetics, 141, 683–708. 
Shilo, S., Melamed-Bessudo, C., Dorone, Y., Barkai, N. and Levy, A.A. (2015) DNA 
Crossover Motifs Associated with Epigenetic Modifications Delineate Open Chromatin 
Regions in Arabidopsis. Plant Cell, 27, 2427–36. 
Si, W., Yuan, Y., Huang, J., et al. (2015) Widely distributed hot and cold spots in 
meiotic recombination as shown by the sequencing of rice F 2 plants. New Phytol., 
206, 1491–1502.  
Smit, AFA, Hubley, R & Green, P. (2013-2015) RepeatMasker Open-4.0. 
<http://www.repeatmasker.org>.  
The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the 
flowering plant Arabidopsis thaliana. Nature, 408, 796–815. 
Villeneuve, A.M. and Hillers, K.J. (2001) Whence meiosis? Cell, 106, 647-650. 
Wijnker, E. and Jong, H. de (2008) Managing meiotic recombination in plant 
breeding. Trends Plant Sci., 13, 640–6. 
Wijnker, E., Velikkakam James, G., Ding, J., et al. (2013) The genomic landscape 
of meiotic crossovers and gene conversions in Arabidopsis thaliana. Elife, 2, e01426. 

http://www.python.org/
http://www.python.org/


25 

Wu, J., Mizuno, H., Hayashi-Tsugane, M., et al. (2003) Physical maps and 
recombination frequency of six rice chromosomes. Plant J., 36, 720–730. 
Yelina, N.E., Lambing, C., Hardcastle, T.J., Zhao, X., Santos, B. and Henderson, 
I.R. (2015) DNA methylation epigenetically silences crossover hot spots and controls 
chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev., 29, 
2183–202.  
Zhou, T., Yang, L., Lu, Y., Dror, I., Dantas Machado, A.C., Ghane, T., Felice, R. Di 
and Rohs, R. (2013) DNAshape: a method for the high-throughput prediction of DNA 
structural features on a genomic scale. Nucleic Acids Res., 41, W56–W62. 
Ziolkowski, P.A., Underwood, C.J., Lambing, C., et al. (2017) Natural variation and 
dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. 
Genes Dev., 31, 306–317. 
  



26 

Legends 
 
Figure 1. Distribution of genomic elements (genes, repeats, COs and SNPs) for (a) 
Arabidopsis, (b) tomato, (c) rice and (d) maize. The number of nucleotides covered per kb by 
the different genomic elements is given in 1Mb bins for the different chromosomes (indicated 
with numbers on the horizontal axes).  Dashed lines indicate centromere locations.  
 
Figure 2. Crossover (CO) prediction in tomato. (a, c, e) Assessment of prediction performance 
with receiver operator characteristic (ROC) curves for models trained on (a) whole genome, 
(c) euchromatin and (e) gene-rich regions. FPR: False Positive Rate, TPR: True Positive Rate, 
DT: Decision tree, LR: Logistic regression, RF: Random forest. Values between brackets 
indicate AUROC. Dashed line indicates performance of a random predictor, with AUROC 
equal to 0.5; the higher the AUROC, the better the predictor. (b, d, f) The top 10 most important 
features (ordered from left to right) according to the random forest classifier using (b) whole 
genome, (d) euchromatin and (f) gene-rich regions. The higher the Gini index, the more 
important the feature, i.e. the bigger its role in determining the CO prediction. The color of the 
bar for each feature indicates its positive (red) or negative (blue) relation to the occurrence of 
CO regions. The DNA shape features given here are mean angular values.  

 
Figure 3. Correlation (Spearman’s correlation coefficient rho) between the order of feature 
importances for crossover prediction in tomato, Arabidopsis, rice and maize. Significance is 
given as *** p <0.001; ** p <0.01.  
 
Figure 4. Features (vertical axis) contributing to the top ten most important features in at least 
one of the species (horizontal axis). Color represents the relation of features to CO prediction 
(red: positive, blue: negative); intensity represents feature importance. The color-coded full 
set of features for each species is given in Figure S4.  
 
Table 1. Spearman correlation coefficients (rho) between the feature importances of 
classifiers in tomato gene-rich regions. 
 
Table 2. Performance statistics of random forest model for tomato, rice, maize and 
Arabidopsis.   
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Tables 
 
 
Table 1. Spearman correlation coefficients (rho) between the feature importances of 
classifiers in tomato gene-rich regions. 

 t-test Decision Tree Logistic 
Regression 

Random Forest 

t-test - 0.44*** 0.46*** 0.70*** 

Decision Tree 0.57*** - 0.46*** 0.75*** 

Logistic 
Regression 

0.56*** 0.59*** - 0.50*** 

Random Forest 0.62*** 0.84*** 0.59*** - 

P-values: *** p < 0.001. Underlined values (above diagonal) are between the order of individual 
feature importances; italic values (below diagonal) are between the order of importances of 
feature clusters. 
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Table 2. Performance statistics of random forest model for tomato, rice, maize and 
Arabidopsis.   

 

 tomato tomatoa Arabidopsis rice maize 

AUROCb 0.79 (s= 0.04) 0.77 (s= 0.03) 0.63 (s= 0.08) 0.67 (s= 0.05) 0.72 (s= 0.14) 

recallb 0.82 (s= 0.03) 0.82 (s= 0.03) 0.64 (s= 0.09) 0.68 (s= 0.08) 0.76 (s= 0.10) 

precisionb 0.69 (s= 0.04) 0.67 (s= 0.03) 0.58 (s= 0.06) 0.60 (s= 0.05) 0.70 (s= 0.12) 

accuracyc 0.95 0.94 0.66 0.76 0.92 

 

a. Tomato dataset without the features from parental genome sequence.     
b. AUROC, recall and precision are calculated with ten-fold cross-validation using the positive 
set consisting of experimental CO regions and the random set obtained by sampling from  
gene-rich regions. Values are mean values obtained with ten-fold cross-validation; s = 
standard deviation. 
c. Accuracy values are calculated on the pericentromeric regions dataset after training with the 
positive set and the random set.  
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Figures 
 
 

 
Figure 1. Distribution of genomic elements (genes, repeats, COs and SNPs) for (a) 
Arabidopsis, (b) tomato, (c) rice and (d) maize. The number of nucleotides covered per kb by 
the different genomic elements is given in 1Mb bins for the different chromosomes (indicated 
with numbers on the horizontal axes).  Dashed lines indicate centromere locations.  
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Figure 2. Crossover (CO) prediction in tomato. (a, c, e) Assessment of prediction performance 
with receiver operator characteristic (ROC) curves for models trained on (a) whole genome, 
(c) euchromatin and (e) gene-rich regions. FPR: False Positive Rate, TPR: True Positive Rate, 
DT: Decision tree, LR: Logistic regression, RF: Random forest. Values between brackets 
indicate AUROC. Dashed line indicates performance of a random predictor, with AUROC 
equal to 0.5; the higher the AUROC, the better the predictor. (b, d, f) The top 10 most important 
features (ordered from left to right) according to the random forest classifier using (b) whole 
genome, (d) euchromatin and (f) gene-rich regions. The higher the Gini index, the more 
important the feature, i.e. the bigger its role in determining the CO prediction. The color of the 
bar for each feature indicates its positive (red) or negative (blue) relation to the occurrence of 
CO regions. The DNA shape features given here are mean angular values.  
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Figure 3. Correlation (Spearman’s correlation coefficient rho) between the order of feature 
importances for crossover prediction in tomato, Arabidopsis, rice and maize. Significance is 
given as *** p <0.001; ** p <0.01.  
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Figure 4. Features (vertical axis) contributing to the top ten most important features in at least 
one of the species (horizontal axis). Color represents the relation of features to CO prediction 
(red: positive, blue: negative); intensity represents feature importance. The color-coded full 
set of features for each species is given in Figure S4.  
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