Mycosphaerellaceae revisited

Sandra I. R. Videira

1. Fungal species and genera cannot be accurately identified without DNA sequence data to support their morphological characteristics.
(this thesis)
2. Matrix assisted laser desorption ionization time of flight mass spectrometry (MALDITOF MS) is a valuable tool for identification of fungal species, provided they are cultured under standardized conditions.
(this thesis)
3. The inability to identify cryptic species will prevent effective outcomes in different scientific fields.
4. The quality of biodiversity databases needs to be improved for their optimal use in biological research.
5. Citizen science, the generation of data about nature by citizens, is invaluable for wider sampling and thus plays a major role in the uncovering of hidden biodiversity.
6. Scientific research dependent on precarious workers is not sustainable and will give science a bad image as it is no longer attractive for young talents.

Propositions belonging to the thesis, entitled:

Mycosphaerellaceae revisited

Sandra I.R. Videira

Wageningen, October 16, 2018

Mycosphaerellaceae revisited

Sandra I. R. Videira

Thesis committee

Promotor

Prof. Dr P.W. Crous
Special professor Evolutionary Phytopathology
Wageningen University \& Research

Co-promotors

Prof. Dr P.J.G.M. de Wit
Professor of Phytopathology
Wageningen University \& Research
Dr J.Z. Groenewald
Researcher, Evolutionary Phytopathology
Westerdijk Fungal Biodiversity Institute - KNAW, Utrecht

Other members

Prof. Dr Th.W. Kuyper, Wageningen University \& Research
Dr F.T. Bakker, Wageningen University \& Research
Dr D.K. Aanen, Wageningen University \& Research
Prof. Dr M. Thines, Senckenberg Biodiversity and Climate Centre, Frankfurt am Main, Germany

This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences.

Mycosphaerellaceae revisited

Sandra I. R. Videira

Thesis
submitted in fulfilment of the requirements for the degree of doctor at Wageningen University
by the authority of the Rector Magnificus,
Prof. Dr A.P.J. Mol,
in the presence of the
Thesis Committee appointed by the Academic Board
to be defended in public
on Tuesday 16 October 2018
at 11 a.m. in the Aula.

Sandra I. R. Videira
Mycosphaerellaceae revisited, 590 pages.

PhD thesis, Wageningen University, Wageningen, the Netherlands (2018)
With references, with summary in English
ISBN 978-94-6343-494-2
DOI https://doi.org/10.18174/457603

CONTENTS

Chapter 1 Introduction 7
Chapter 2 Elucidating the Ramularia eucalypti species complex 19
Chapter 3 The rise of Ramularia from the Mycosphaerella labyrinth 45
Chapter 4 All that glitters is not Ramularia 75
Chapter 5 Mycosphaerellaceae - chaos or clarity? 243
Chapter 6 General discussion 539
Appendix References 551
Summary 582
Acknowledgements 586
Curriculum vitae 587
List of publications 588
Education statement 589

Introduction

General Introduction

The Mycosphaerellaceae (Capnodiales, Dothideomycetes) is a genus-rich family that includes thousands of species with diverse lifestyles. Several species are plant pathogens that cause severe damage to crops we depend on for food, feed and fuel, while others are saprobes or mycophilic. Most are considered to be host-specific but a few plurivorous species are known. Multiple species often co-occur in the same lesion which often hinders their identification. Some species are only known by their sexual or asexual morphs, and links between both morphs have been experimentally proven in very few cases. Species identification of fungi is usually based on the morphology of the reproductive structures and the host it was observed on. However, with the introduction of molecular tools, especially DNA sequencing and phylogenetic analysis, a more comprehensive approach has become available for identifying or describing new species. These tools also emphasized the view that dual nomenclature in fungi was superfluous, and the International Code of Nomenclature of algae, fungi and plants (ICN) has since changed accordingly to reflect this fact (Hawksworth et al. 2011, Wingfield et al. 2012). Previous studies based on DNA sequencing supported the hypothesis that Mycosphaerella s. str., based on Mycosphaerella punctiformis ($=$ Ramularia endophylla), should be limited to species with Ramularia asexual morphs, and that the remaining mycosphaerella-like species should be allocated to other genera (Verkley et al. 2004, Crous et al. 2009e). Ramularia is a species-rich genus that includes hyphomycetous species with hyaline conidiophores and conidia with thickened, darkened, and refractive conidial hila and conidiogenous loci. Recent molecular studies indicated that morphological characters were not always phylogenetically informative, and that the generic concept of several asexual genera within the Mycosphaerellaceae warranted revision (Verkley et al. 2004, Kirschner 2009).

Taxonomic history

Mycosphaerella

Mycosphaerella s. lat. (Johanson 1884b) is one of the largest genera of Ascomycetes and includes numerous economically important crop pathogens. Species in Mycosphaerella are characterised by the formation of spherical pseudothecial ascomata that are immersed or superficial in host tissue, with ostiolar periphyses, no interascal tissue at maturity, forming ascospores that are mostly hyaline and predominantly 1 -septate. Based on these simple and highly conserved morphological characters more than 3000 taxa were included in this generic complex since its

Fig. 1. Morphological characteristics of asexual morphs of genera belonging to Mycosphaerellaceae. A. Simple conidiophore, pigmented (Zasmidium schini). B. Branched conidiophore, hyaline (Cercosporella catenulate). C. Synnematous conidiophores, pigmented (Mycovellosiella cajani). D. Geniculatesinuous conidiophore, hyaline (Ramularia bosniaca). E. Intercalary and terminal conidiogenous cells with multiple conidiogenous loci, hyaline (Pseudocercosporidium venezuelanum). F. Intercalary and terminal conidiogenous cells with a single apical conidiogenous locus, hyaline (Pleurovularia polliniae). G. Single conidia, pigmented (Graminopassalora graminis). H. Catenate conidia, hyaline (Ramularia glechomatis). I. Single conidia, acicular, with microconidia, hyaline (Ramulispora sorghi). J. Single conidia, straight and curved, dictyoseptate, pigmented (Pantospora guazumae). K. Conidia with apical elongated beak, septate, slightly verruculose, pigmented (Pseudocercospora cratevicola). L. Single conidia, obovoid, aseptate, smooth, hyaline (Pleurovularia polinae).

introduction (Aptroot 2006, Crous 2009c, Koike et al. 2011). In contrast, the morphology of the asexual genera associated with Mycosphaerella is quite diverse and includes both coelomycete and hyphomycete forms (Crous et al. 2009e). The separation of these genera relied on the variation of morphological characters such as the presence or absence of pigmentation in the conidiogenous structures, arrangement and branching of conidiophores, the conidiogenous cell placement, proliferation and scar type (conidiogenous loci), and conidial formation, shape and septation (Fig. 1). Among those, the scar type and mode of conidiogenesis were considered to be particularly important. However, many difficulties were encountered surrounding the definition of these genera based on intermediate characters, and species that exhibited more than one mode of conidiogenesis (Crous \& Braun 2003).

Early phylogenies based on DNA sequencing of the ITS locus indicated that Mycosphaerella was monophyletic. However, with the introduction of more taxa to the dataset and additional genetic loci, subsequent research showed that it was in fact polyphyletic (Crous et al. 2009d, e). Further research then resulting in members of Mycosphaerella being allocated to different families such as Schizothyriaceae (Batzer et al. 2008), Cladosporiaceae (Schubert et al. 2007, Dugan et al. 2008, Bensch et al. 2010, 2012), Dissoconiaceae, Mycosphaerellaceae and Teratosphaeriaceae (Crous et al. 2009c, Li et al. 2012). From these results it became evident that the mycosphaerella-like morphology had evolved multiple times and a new circumscription of Mycosphaerella was urgently required.

The type species Mycosphaerella punctiformis was epitypified from freshly collected material and its asexual morph described as Ramularia endophylla (Verkley et al. 2004). Phylogenetic analyses based on DNA sequence data of the SSU and ITS regions grouped Mycosphaerella punctiformis within the genus Ramularia in a monophyletic group with high bootstrap support (Verkley et al. 2004, Crous et al. 2007a). Mycosphaerella s. str. was therefore restricted to species with Ramularia asexual morphs, and the remaining mycosphaerella-like species were shown to belong to other genera (Crous et al. 2009e).

The use of dual nomenclature in fungi has been a controversy for many years among mycologists. Having two or more names for the same species hinders research by creating confusion. The widespread use of phylogenetic analyses, based on DNA sequence comparisons, has not only emphasized the existing problems but provided the means to a solution (Taylor 2012). At the eighteenth International Botanical Congress in Melbourne, a revised ICN was put forth that ended the dual nomenclature system (Hawksworth et al. 2011, Wingfield et al. 2012). In pleomorphic fungi, priority should be given to the oldest name, regardless of its sexuality. However, for widely used names, particularly where the asexual morph names replace sexual morph names, additional considerations are needed as specified in ICN Art. 57.2. The name Ramularia (Unger 1833) is older than Mycosphaerella (Johanson 1884b) and, while Mycosphaerella s. lat. represents numerous genera distributed over different families, Mycosphaerella s. str. has Ramularia asexual morphs. Choosing Ramularia over Mycosphaerella requires less name changes since most established connections already have species names in Ramularia. Therefore, the name Ramularia has been selected for this genus and included in a list of protected names (Chapter 2, Wijayawardene et al. 2014).

Ramularia

Ramularia (Unger 1833) is a species-rich genus in the order Capnodiales that includes more than 1000 species with very diverse lifestyles. Most species are phytopathogenic and cause leaf spots, necrosis or chlorosis that lead to early defoliation. Disease symptoms usually develop
under conditions of high relative humidity and low temperatures (e.g. Ramularia beticola). Ramularia species can also be endophytic (e.g. Ramularia endophylla), saprobic or even mycophilic (e.g. Ramularia uredinicola). Endophytic species usually grow symptomless within the leaves and mature in overwintering leaves on the soil, releasing ascospores that can re-infect young leaves in spring. There are only a few mycophilic species described in the genus and they are usually associated with rusts (e.g. Coleosporium and Melampsora).

Ramularia has been monographed by Braun (1995, 1998), who defined Ramularia species as hyphomycetes with hyaline conidiophores and conidia with distinct, thickened, darkened and refractive conidial scars and hila (Fig. 2). The identification of species of Ramularia and allied genera has thus far mainly relied on host taxonomy and morphological characters such as the shape, size and septation of conidia and the type of conidiogenous loci and conidial hila. A particular emphasis has been placed on the type of conidiogenous loci (scar) and hila. Ramularia and allied genera were divided in two main groups: genera with conspicuous conidial scars (i.e. more or less darkened, thickened and refractive) and genera with inconspicuous conidial scars (i.e. not darkened, not thickened and not refractive). Genera with conspicuous conidial scars included Cercosporella, Neoovularia, Phacellium, Pseudodidymaria, Ramularia, and Ramulariopsis, while genera with inconspicuous conidial scars included Neoramularia and Pseudocercosporella. These characters are variable and the conidiogenous loci and conidial hila are difficult to distinguish using light microscopy (Kirshner 2009). In addition, recent molecular studies indicate that these characters were not always phylogenetically informative, and that the generic concept of some genera warranted revision (Verkley et al. 2004, Kirschner 2009).

Ramularia species have mycosphaerella-like sexual morphs but the number of experimentally proven links is small and some species may be true asexual holomorphs (Sivanesan 1984, Braun 1995, Verkley et al. 2004, Crous et al. 2009e, Koike et al. 2011). Currently Ramularia species are accepted as being host-specific, although some exceptions are likely to emerge (Braun 1998).

Cercosporoid fungi

The term Cercosporoid is applied to a non-taxonomic group of fungi that encompasses hyphomycetous cercospora-like fungi as presented in the monograph by Chupp (1954) which followed a very broad generic concept of Cercospora but maintained Passalora as a separate genus. Cercosporoid fungi are mostly defined as dematiaceous hyphomycetes with conidiophores formed singly, in groups (fascicles), synnemata or even sporodochia, having integrated, terminal or intercalary conidiogenous cells. Conidiogenesis is holoblastic and generates amerosporous to scolecosporous conidia, which are solitary or in chains (Braun et al. 2013). In a broader sense, it also encompasses ramularioid fungi that are the hyaline counterparts of cercosporoid fungi, forming conidia singly or in chains. Species in this group are mostly asexual and the ones with a known sexual morph present a mycosphaerella-like morphology, which is characterised by pseudothecial ascomata, with ostiolar periphyses but without interascal tissue, hyaline or slightly pigmented ascospores that are predominantly 1-septate (Barr 1987, Crous et al. 2009c).

The hyphomycetes are characterised by producing solitary conidiophores, fascicles or sporodochia while the coelomycetes are recognised by producing acervuli or pycnidial conidiomata. The coelomycete genera linked to mycosphaerella-like morphs were largely treated by Sutton (1980) and, to a lesser degree, by Nag Raj (1993). The hyphomycete cercosporoid genera were primarily addressed by Chupp (1954), who took a wide approach

and described many cercosporoid fungi in the genus Cercospora. Pollack (1987) followed and built up on Chupp's concept. Deighton (1967, 1974, 1976a, 1979) recognised several genera within Chupp's broad Cercospora concept and introduced new names for them. Crous \& Braun (2003) narrowed down the true cercosporoid fungi to Cercospora, Pseudocercospora, Stenella and Passalora. The hyaline counterparts of Cercospora, including Ramularia and allied genera, were treated by Braun $(1995,1998)$. The separation of these genera relied on the presence or absence of pigmentation in the conidiogenous structures, arrangement and branching of conidiophores, the conidiogenous cell placement, proliferation and scar type (conidiogenous loci), and conidial formation, shape and septation. However, some species present more than one mode of conidiogenesis and intermediate characters that do not clearly fit the definition of these genera (Crous \& Braun 2003).

With the introduction of phylogenetic analyses based on DNA sequences, the genera Cercospora (Groenewald et al. 2013) and Pseudocercospora (Crous et al. 2013a, Nakashima et al. 2016) have been more narrowly defined and their names are now applied to morphologically distinct monophyletic clades based on the respective generic type species. The genus Stenella was allocated to the Teratosphaeriaceae based on the phylogenetic placement of the type species, Stenella araguata, while the stenella-like species remaining in Mycosphaerellaceae were included in the genus Zasmidium (Arzanlou et al. 2007, Braun et al. 2010a, 2013). Although several phylogenetic studies have included species of Zasmidium (Huang et al. 2015) and Passalora (Crous et al. 2009c), a comprehensive phylogenetic analysis of both genera including their respective type species has yet to be performed. Based on the existing studies, the position of several species in different phylogenetic analyses suggest these genera may be paraphyletic, showing that some morphological characters have evolved more than once within the family. Additional accepted cercosporoid genera also have an uncertain status since no suitable type, or ex-type culture, is available (e.g. Distocercospora, Phaeoramularia and Mycovellosiella). These fungi represent a very large heterogeneous group for which the existing monographs are in urgent need of revision (e.g. Braun et al. 2013, 2014, 2015a).

Species concepts and species recognition criteria

The confusion between the concept of a species and the criteria that delimit a particular species has led to the impression that there is no general agreement amongst biologists about what a species is (Queiroz 2007; Hey 2006). The concept of a species is a description of the entity that constitutes a species while the species recognition criteria are the practical standards used to recognise if individuals should be considered members of the same species. In other words, "the species criteria correspond to the different events that occurred during lineage separation

Fig. 2. Morphological characteristics in Ramularia spp. A. Leaf symptoms of sexual morph proliferation (R. vizellae) B. Asci and ascospores (R. vizellae). C. Germinating ascospores (R. vizellae). D. Catenate, cylindrical-fusiform, hyaline, smooth conidia (R. unterseheri). E. Catenate, ellipsoid, hyaline, smooth conidia (R. aplospora) F. Catenate, cylindrical, curved, hyaline, smooth conidia (R. diervillae). G. Catenate, ellipsoid, hyaline, smooth conidia (R. interstitiales). H. Solitary, obovoid, smooth, hyaline conidia (R. maliicola). I. Catenate, cylindrical, straight, smooth, hyaline conidia (Ramularia agastaches). J. Conidiophore curved, emerging from stromata (R. geraniicola). K. Conidiophore curved, emerging from mycelium (R. inaequalis). L-N. Conidiophore geniculate-sinuous, smooth, hyaline (L. R. maliicola, M. R. abscondita, N. R. pusilla). O. Conidiophore straight, pigmented, slightly verruculose (R. weigelae). P. Conidiophore synnematous, pigmented (R. alangiicola).
and divergence, rather than to fundamental differences in what represents a species" (Cai et al. 2011). Based on these definitions, most biologists agree on an Evolutionary Species Concept that is based on the criterion that monophyletic lineages have evolved independently from one another (Queiroz 1998). In fact, most of the species concepts are bound to the species criteria they emphasize (Queiroz 2007; Hey 2006; Taylor et al. 2000). The Biological Species Concept (BSC) emphasizes the criterion of reproductive isolation, the Morphological Species Concept (MSC) emphasizes the criterion of morphological divergence, the Ecological Species Concept (ESC) emphasizes the criterion of adaptation to a particular ecological niche, and the Phylogenetic Species Concept (PSC) emphasizes the criterion of nucleotide divergence between monophyletic lineages (Giraud et al. 2008, Taylor et al. 2000). A single species criterion cannot be universally applied since speciation occurs at a different pace depending on the organism, the events that promoted species diversity do not occur in a chronological order for all organisms and the characteristics of certain organisms may hinder the application of some criteria (Giraud et al. 2008).

The phylogenetic species criterion mostly relies on the phylogenetic analysis of DNA sequences of selected genes or genomes. A single gene analysis may be misleading since it is dependent on the genes having an evolutionary history that reflects that of the entire fungus (Aguileta et al. 2008). Consequently, the use of concordance of multiple gene genealogies has been frequently used in mycology to determine species boundaries. This is known as the Genealogical Concordance Phylogenetic Species Recognition (GCPSR) principle and is an adaptation of the Phylogenetic Species Concept (Taylor et al. 2000). The GCPSR criterion has proved immensely useful in fungi because they often have simple morphologies and it is difficult to demonstrate in vitro crosses (Reynolds 1993, Taylor et al. 2000, Prihastuti et al. 2009, Glienke et al. 2011). Based on GCPSR, some of the previously applied morphological characters that were used to define taxa were found to be non-phylogenetically informative and need to be re-evaluated. An increasing number of cryptic species are being discovered amongst plant pathogenic fungi using the GCPSR principle. Two or more species are considered to be "cryptic" if they are classified as a single species because they are at least superficially morphologically indistinguishable (Bickford et al. 2007). Although the GCPSR has allowed the recognition of many species it is not a panacea for species delimitation and its combination with other types of data has become increasingly used. This trend led to the proposal of the Consolidated Species Concept that weighs a combination of the criteria used on the PSC, MSC and ESC in order to determine which taxa represent separate species (Quaedvlieg et al. 2014).

Despite all the efforts in implementing species recognition criteria based on DNA sequence data, much work remains to be done in order to have a more natural classification system in place. One of the major problems hindering progress is that many species are only known from their morphological descriptions and often they have not been deposited in public culture collections. In addition, only a fraction of the known species has had fragments of their DNA sequenced and used in phylogenetic studies. The implementation of DNA barcoding together with wellcurated databases should improve rapid molecular identification in fungi (Begerow et al. 2010). The ITS was introduced as the official barcode for fungi due to its ease of amplification and its ability to distinguish species across the kingdom (Schoch et al. 2012). However, phylogenies based on ITS sequences have often failed to separate closely related species, and several studies have highlighted the need to use additional phylogenetic markers to achieve accurate species identification (e.g. Bensch et al. 2012, Damm et al. 2012a, b, Quaedvlieg et al. 2012, Phillips et al. 2013, Wikee et al. 2013, Bakhshi et al. 2014). In general, protein-coding genes have higher species resolution power due to their variable intron sequences. In addition, partial sequences
from the mating-type ideomorphs (MAT1-1 and MAT1-2), specifically the alpha box (MAT1-$1-1$) and the high mobility group (MAT1-2-1), have also been found valuable due to their high inter- and low intraspecific variability (Du et al. 2005, Paoletti et al. 2005).

Economic importance

Plant pathogens

Agricultural production must be improved in order to meet the future demand for food, feed and biofuel. An increase in yield can be attained by breeding, improving agricultural practices and reducing the losses caused by weeds, animal pests and pathogens (Oerke \& Dehne 2004). The Mycosphaerellaceae includes several important plant pathogens that cause diseases such as the Sigatoka disease on banana (Arzanlou et al. 2007, Churchill 2010, Chang et al. 2016), angular leaf spot of bean (Crous et al. 2006a), tomato leaf mould (de Wit 2016) and Cercospora leaf spot of olive (Avila et al. 2005) to name but a few. The Sigatoka disease complex, caused by the fungi Pseudocercospora musae (yellow sigatoka), Pseudocercospora eumusae (eumusae leaf spot), and Pseudocercospora fijiensis (black sigatoka), is currently one of the most devastating diseases on banana worldwide. Pseudocercospora fijiensis is able to infect a wider range of cultivars, including those with resistance to P. musae, and can lead to losses of up to 76%. Pseudocercospora eumusae is able to infect banana and plantain cultivars that are resistant to both P. musae and P. fijiensis, causing yield losses of up to 40% (Chang et al. 2016). The tomato leaf mould disease, which is caused by the pathogen Fulvia fulva, affects mostly the leaves but occasionally also stems, blossoms, petioles and fruit (Butler \& Jones 1949, de Wit 1977, 1992, Jones et al. 1997). Fulvia fulva was once a devastating pathogen of tomato that required treatment with agrochemicals, but extensive research led to identification of resistance genes that have been introduced in commercial tomato cultivars by breeders, providing effective disease control (Thomma et al. 2005; de Wit, 2016).

In addition, six species of Mycosphaerellaceae are currently quarantine listed and under EU regulations to promote crop safety and prevent disease spread (Quaedvlieg et al. 2012). These include Pseudocercospora angolensis causing fruit and leaf spot disease on citrus (Kirk 1986, Pretorius et al. 2003), Pseudocercospora pini-densiflorae causing brown needle blight of pine (Deighton 1987, Crous et al. 1990), Sphaerulina musiva causing canker of poplar (Peace 1962, Waterman 1954, Quaedvlieg et al. 2013), Mycosphaerella laricis-leptolepidis causing needle cast of Japanese larch (Peace 1962), Septoria malagutii causing angular leaf spot of potato (Cline \& Rossman 2006) and Lecanosticta acicula causing brown spot needle blight on Pinus spp. (Quaedvlieg et al. 2012).

Most species of Ramularia are phytopathogenic and associated with leaf spots, necrosis or chlorosis. Foliar diseases occur mostly under conditions of high relative humidity and low temperatures. The most important pathogens in this genus are R. collo-cygni and R. beticola that cause severe economic losses to barley and sugar beet crops, respectively. Ramularia collo-cygni is responsible for yield losses of $15-25 \%$ in winter barley in northern European countries and New Zealand (Cromey et al. 2004). Yield losses in sugar beet due to plant pathogens and pests are estimated in general to be 26% with, and more than 80% without using fungicides (Oerke \& Dehne 2004). Currently Ramularia species are accepted as being host-specific. As hostspecific plant pathogens, some species have shown potential as biocontrol agents of invasive species (e.g. Ramularia crupinae, Ramularia destructiva), but no commercial application was formulated or tested thus far.

Post-harvest pathogens

Pathogen infections are responsible for the spoilage of fruits and vegetables during their postharvest handling, storage and distribution. Postharvest pathogens can lay to waste up to 33 \% of the total production of fruit and vegetables worldwide (FAO 2011, OECD 2014, Dukare 2018). Fungal infections caused by species of Alternaria, Aspergillus, Botrytis, Fusarium, Geotrichum, Gloeosporium, Monilinia, Mucor, Penicillium and Rhizopus are of major concern (Barkai-Golan 2001). In addition to spoilage, some species belonging to the genera Alternaria, Aspergillus, Fusarium, and Penicillium pose an additional health hazard since they are able to produce mycotoxins. The control of postharvest fungal infections is usually handled by the use of fungicides applied in the field or after harvest (Vitoratos et al. 2013).

Thus far, no species belonging to Mycosphaerellaceae have been of concern as a postharvest pathogen, until a recent report identified the pathogen Ramularia eucalypti as the causal agent of lenticel rot observed in fruits of apple (Malus malus cv. Ambrosia) and pear (Pyrus communis cv. Conference) in the Piedmont Province in Italy (Gianetti et al. 2012, Giordani et al. 2012). Investigations into the epidemiology showed that apple trees in the orchards had leaf spots caused by R. eucalypti, and symptomless fruits harvested from infected plants exhibited disease symptoms during the subsequent four months of cold storage (Gianetti et al. 2012). Ramularia eucalypti is a recently described species that was isolated from mature Corymbia grandifolia leaves collected in Italy that exhibited severe leaf spotting symptoms (Crous et al. 2007c). Since its description, the species has been reported from a range of different hosts and countries. However, small morphological differences and some heterogenicity on their ITS sequences were observed that lead to the suspicion of this being a species complex. The apple tree orchards in Piedmont are an important crop that in 2011 produced 140000 tons of fruit. In 2013, in the Trentino Alto-Adige province in Italy, apples from Malus domestica cv. Golden Delicious developed the lenticel rot in cold storage and the disease affected $50-60 \%$ of the crop. Due to the importance of this crop and the severe damage caused by this fungus it is important to correctly identify the responsible pathogen and to learn more about its life cycle.

Clinical importance

Filamentous fungal infections that are usually considered of low clinical relevance have increased in the past few years, especially among immunocompromised patients (Cassagne et al. 2011, Lu et al. 2013). Mycoses caused by hyaline, septate fungal hyphae fall under the medical term hyalohyphomycosis and some of the pathogens involved have been demonstrated to be resistant to certain antifungals (Tortorano et al. 2014). Therefore, a fast and accurate diagnosis is critical for patient management in order to determine appropriate treatment.

No species of Mycosphaerellaceae is currently known to be a human pathogen. However, in the Netherlands, Ramularia eucalypti has been isolated not only from different plant hosts but has also been obtained from clinical samples in different hospitals. Small morphological differences and some heterogenicity on their ITS sequences were observed that lead to the suspicion of this being a species complex. Although this is the first time a Ramularia species is associated with human infection, it is not the first time a plant pathogenic fungus has been reported to be able to infect human hosts (Mostert et al. 2006, van Baarlen et al. 2007, Phillips et al. 2013).

In a clinical setting, it is important to accurately and quickly identify the responsible pathogenic agent of a disease. Traditionally, the identification of microbial species is based
on microscopy and biochemical methods that are time consuming and require high levels of expertise. The methods based on DNA sequencing, although still laborious, are faster and produce more reliable results. The most recently developed clinical diagnostic method applied to microorganisms is known as Matrix-Assisted Laser Desorption Ionisation Time of Flight Mass Spectrometry (MALDI-TOF MS). This technique analyses the unique protein fragment peak pattern of a microorganism and compares it with a database of reference main mass spectra (MSPs), therefore providing an identification of that microorganism. The peaks present in the MSP represent mostly ribosomal proteins but structural proteins, cold-shock proteins and others may also be detected. MALDI-TOF MS is a simple, fast and accurate procedure that has been validated in numerous laboratories for the identification of yeasts (Goyer et al. 2012, Kolecka et al. 2013) and bacteria (Seng et al. 2009) from clinical samples. Recently, an effort has been made towards the validation of standardised procedures for routine mould identification (Cassagne et al. 2011, Lau et al. 2013) and dermatophytes (L'Ollivier et al. 2013) from clinical samples. All reports showed that MALDI-TOF MS had a good discriminative power for species separation, effectively decreased the time of identification and improved its accuracy. Furthermore, MALDI-TOF MS has also been used in studies where it was used as a complementary tool for taxonomical discriminatory purposes: Degenkolb et al. (2008) used MALDI-TOF MS in a polyphasic approach to support the description of Trichoderma brevicompactum as a novel species, while Brun et al. (2013) tested this technique to distinguish closely related species of Alternaria.

Outline of thesis

Previous studies on Ramularia and allied genera focused mainly on species associated with specific hosts and consisted of very small sample sizes. With the phylogenies and classifications presented herein, a more robust and understandable taxonomy and nomenclature in Ramularia and allied genera is presented, which will serve as a starting point for research conducted by plant pathologists, breeders and medical mycologists. In addition, a review of the Mycosphaerellaceae based on morphological and phylogenetic analysis is presented in order to address some of the controversial generic circumscriptions presented in literature.

Chapter 1 provides an introduction to the genus Ramularia and the family Mycosphaerellaceae, with an overview of the taxonomic history based on both the morphological and molecular approaches. It further explores the economic importance of some species within the family.

Chapter 2 focuses on the species complex Ramularia eucalypti. Several isolates of R. eucalypti were determined to be somewhat heterogeneous in their morphology and on sequence data of the ITS region. In this study we aimed to resolve this species-complex by applying a polyphasic approach involving morphology, multi-gene phylogeny and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). A multi-gene phylogenetic analysis was performed based on a concatenated alignment containing six partial genes (ITS, actA, tef1- α, gapdh, his3, rpb2) showed significant support for separation of seven species within R. eucalypti s. lat. The Principal Component Analysis (PCA) dendogram based on the Main Mass Spectra (MSPs) of several R. eucalypti s. lat. strains supported three species. Nevertheless, the clinically relevant strains were successfully identified by MALDI-TOF MS.

Chapter 3 describes the reappraisal of the Ramularia endophylla (= Mycosphaerella punctiformis) species complex. A polyphasic approach involving morphology and multigene phylogeny was applied. Eleven partial genes (LSU, ITS, actA, tef1- α, gapdh, his3, rpb2, cmdA, tub2, MAT1-1-1, MAT1-2-1) were targeted for amplification and sequencing for several isolates representing R. endophylla s . lat. and Ramularia species that were previously linked to a Mycosphaerella sexual morph in literature. Based on a combined five-locus dataset (ITS, actA, gapdh, his3, rpb2), both the Bayesian and the maximum parsimony phylogenetic trees showed significant support for three species within the complex. The supported species are nearly indistinguishable based on morphological characteristics alone. A bibliographic review of the proposed links between Ramularia spp. and their purported Mycosphaerella sexual morphs is also presented.

Chapter 4 treats the genus Ramularia and its closest allied genera. Ramularia species have a simple morphology with hyaline conidiophores and conidia with distinct, thickened, darkened, refractive conidiogenous loci and conidial hila. In order to improve the delimitation of Ramularia from allied genera and the circumscription of species within the genus Ramularia, a polyphasic approach based on multilocus DNA sequences, morphological and cultural data were used in this study. Isolates belonging to Ramularia and allied genera were targeted for the amplification and sequencing of 11 partial genes (LSU, ITS, actA, chs-1, cmdA, gapdh, his3, $m c m 7$, rpb2, tub2, tef1- α). The phylogenetic analysis of Ramularia and allied genera based on the concatenated alignment of two genes (LSU, rpb2) showed that Ramularia and Ramulariopsis were monophyletic while Cercosporella and Pseudocercosporella were polyphyletic. Species not congeneric with the ex-type strains of the respective genera were assigned to existing genera or to newly introduced genera. The phylogenetic analysis of Ramularia species based on the concatenated alignment of five genes (ITS, actA, gapdh, rpb2, tef1- α) allowed the circumscription of several species complexes and the description of several new species.

Chapter 5 focuses on a current circumscription of the Mycosphaerellaceae based on phylogenetic data. Several species within the Mycosphaerellaceae have a strong impact on agriculture, horticulture and forestry. Previous studies have focused on the circumscription of a few genera but some remain understudied. In the present study several phylogenetic analyses were performed based on concatenated alignments of two (LSU, rpb2) or three (LSU, rpb2, ITS) genes and using Bayesian, Maximum-Likelihood and Parsimony methods. The resulting trees showed that many well-known genera are paraphyletic and that several synapomorphic characters have evolved more than once within the family. As a consequence, several old generic names including Cercosporidium, Fulvia, Mycovellosiella, Phaeoramularia and Raghnildiana are resurrected, and 32 additional genera are described as new. Based on phylogenetic data 120 genera are now accepted within the family, but many currently accepted genera still remain unresolved pending fresh collections and DNA data.

Chapter 6 discusses the data presented in this thesis. The implications of the performed studies are placed in a broader context, with a focus on the relation between morphology and the new species classification based on molecular tools.

Elucidating the Ramularia eucalypti species complex

S.I.R. Videira ${ }^{1,3}$, J.Z. Groenewald ${ }^{1}$, A. Kolecka ${ }^{1}$, L. van Haren ${ }^{1}$, T. Boekhout ${ }^{1}$, P.W. Crous ${ }^{1,2,3}$

${ }^{1}$ CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
${ }^{2}$ Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa.
${ }^{3}$ Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.

Persoonia 34: 50-64. 2015.

Abstract

The genus Ramularia includes numerous phytopathogenic species, several of which are economically important. Ramularia eucalypti is currently the only species of this genus known to infect Eucalyptus by causing severe leaf-spotting symptoms on this host. However, several isolates identified as R. eucalypti based on morphology and on nrDNA sequence data of the ITS region have recently been isolated from other plant hosts, from environmental samples and also from human clinical specimens. Identification of closely related species based on morphology is often difficult and the ITS region has previously been shown to be unreliable for species level identification in several genera. In this study we aimed to resolve this speciescomplex by applying a polyphasic approach involving morphology, multi-gene phylogeny and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Six partial genes (ITS, actA, tef1- α, his3, gapdh and $r p b 2$) were amplified and sequenced for a total of 44 isolates representing R. eucalypti s.lat. and closely related species. A multi-gene Bayesian phylogenetic analysis and parsimony analysis were performed, and both the resulting trees showed significant support for separation of seven species in R. eucalypti s.lat., including two previously described (R. eucalypti and R. miae), four novel species here described (R. haroldporteri, R. glennii, R. mali and R. plurivora) and one undescribed Ramularia species (sterile). Additionally, Mycosphaerella nyssicola is newly combined in Ramularia as R. nyssicola. Main mass spectra (MSPs) of several R. eucalypti s.lat. strains were generated using MALDI-TOF MS and were compared through a Principal Component Analysis (PCA) dendogram. The PCA dendrogram supported three clades containing R. plurivora, R. glenni / R. mali and R. eucalypti $/ R$. miae. Although the dendrogram separation of species differed from the phylogenetic analysis, the clinically relevant strains were successfully identified by MALDI-TOF MS.

INTRODUCTION

Ramularia (Unger 1833) is a species-rich genus in the order Capnodiales that includes more than 1000 legitimate species names (www.MycoBank.org, acc. Apr. 2014). The genus has been monographed by Braun $(1995,1998)$, who defined Ramularia species as hyphomycetes with hyaline conidiophores and conidia with distinct, thickened, darkened and refractive conidial scars and hila. The sexual morph of Ramularia species belongs to Mycosphaerella (Mycosphaerellaceae) but the number of experimentally proven links is small and some species may be true asexual holomorphs (Sivanesan 1984, Braun 1995, Verkley et al. 2004, Crous et al. 2009e, Koike et al. 2011). Currently Ramularia species are accepted as being host-specific, though some exceptions are likely to emerge (Braun 1998). Most species are phytopathogenic and associated with leaf spots, necrosis or chlorosis, but some species can be saprobic or even hyperparasitic. Foliar diseases occur mostly under conditions of high air humidity and low temperatures and result indirectly in crop loss due to defoliation. The most harmful pathogens in this genus are R. collo-cygni, R. beticola and R. grevilleana that cause severe economic losses in barley, sugarbeet and strawberry crops, respectively. Ramularia eucalypti is a recently described species that was isolated from mature Corymbia grandifolia leaves collected in Italy that exhibited severe leaf spotting symptoms (Crous et al. 2007c). It is currently the only species of the genus known to infect Eucalyptus and Corymbia, since R. pitereka and aggregate species have been reassigned to Quambalaria (Quambalariaceae) (Beer et al. 2006). Over the past few years several isolates have been collected and identified as R. eucalypti based on morphology and on sequence data of the ITS region of the nrDNA operon which has recently been adopted as the universal DNA barcode for fungi (Schoch et al. 2012). However, in several genera of phytopathogenic fungi, ITS phylogenies have often failed to separate closely related species, and a better resolution could only be achieved by using protein-coding loci (Lombard et al. 2010, Cabral et al. 2012, Crous et al. 2013a, Groenewald et al. 2013, Quaedvlieg et al. 2013, Woudenberg et al. 2013). In Italy, R. eucalypti has been reported as an emerging problem on pome fruit in cold storage where it causes lenticel rot in healthy fruits of apple (Malus domestica cv. Ambrosia) and pear (Pyrus communis cv. Conference) (Giordani et al. 2012). Investigations into the epidemiology showed that apple trees in the orchards had leaf spots caused by R. eucalypti, and symptomless fruits harvested from infected plants exhibited disease symptoms during the subsequent four months of cold storage (Gianetti et al. 2012). In the Netherlands, R. eucalypti has been isolated not only from different plant hosts but has also been obtained from clinical specimens in different hospitals. This is the first time a Ramularia species is associated with human infection and little is known of its epidemiology. However, this is not the first time a plant pathogenic fungus has been reported to be able to infect human hosts (Mostert et al. 2006, van Baarlen et al. 2007, Phillips et al. 2013). The number of infections caused by filamentous fungi previously considered of low clinical relevance has increased in the past few years, especially among immunocompromised patients (Cassagne et al. 2011, Lu et al. 2013). Mycoses caused by hyaline, septate fungal hyphae fall under the medical term hyalohyphomycosis and some of the pathogens involved have been demonstrated to be resistant to certain antifungals (Tortorano et al. 2014). Therefore, a fast and accurate diagnosis is critical for patient management in order to determine appropriate treatment. The identification of microbial species is usually based on microscopy and biochemical methods that are time consuming and require high expertise. The DNA sequencing approach gives more reliable and faster results but still remains laborious. Recently, a technique known as Matrix-Assisted Laser Desorption Ionisation Time of Flight

Mass Spectrometry (MALDI-TOF MS) has been revolutionising the clinical diagnostics field. This technique allows the identification of microorganisms by analysing their unique protein peak pattern and comparing it with a database of reference main mass spectra (MSPs). The peaks present in the MSP represent mostly ribosomal proteins but structural proteins, coldshock proteins and others may also be detected. MALDITOF MS is a simple, fast and accurate procedure that has been validated in numerous laboratories for the identification of yeasts (Goyer et al. 2012, Kolecka et al. 2013) and bacteria (Seng et al. 2009) from clinical samples. Recently, an effort has been made towards the validation of standardised procedures for routine mould identification (Cassagne et al. 2011, Lau et al. 2013) and dermatophytes (L'Ollivier et al. 2013) from clinical samples and all reports showed that MALDI-TOF MS had a good discrimination power for species separation, effectively decreased the time of identification and improved its accuracy. Furthermore, MALDI-TOF MS has also been used in studies where it was used as a complementary tool for taxonomical discriminatory purposes: Degenkolb et al. (2008) used MALDITOF MS in a polyphasic approach to support the description of Trichoderma brevicompactum as a novel species and Brun et al. (2013) tested this technique to discriminate closely related species of Alternaria.

In this study we aimed to: i. resolve the R. eucalypti species-complex by applying a polyphasic approach involving morphology, multi-gene phylogeny and MALDI-TOF mass spectrometry; and ii. build an in-house library of MSPs of R. eucalypti s.lat. strains in order to evaluate the taxonomic resolution power of this technique for the identification of the set of clinical isolates within this species complex.

MATERIALS AND METHODS

Fungal strains

The 44 isolates used in this study are maintained in the culture collection of the CBS-KNAW Fungal Biodiversity Centre (CBS), Utrecht, The Netherlands, and the working collection of Pedro Crous (CPC), housed at CBS (Table 1).

DNA extraction, amplification and sequencing

The fungal strains (Table 1) were grown on Malt Extract Agar (MEA), for 7 d at room temperature $\left(20^{\circ} \mathrm{C}\right)$. The mycelium was harvested with a sterile scalpel and the genomic DNA was isolated using the UltraCleanTM Microbial DNA Isolation Kit (MoBio Laboratories, Inc., Solana Beach, CA, USA) following the manufacturers' protocols. Ten partial nuclear genes were initially targeted for PCR amplification and sequencing, namely, 28S nrRNA gene (LSU), internal transcribed spacer regions and intervening 5.8S nrRNA gene (ITS) of the nrDNA operon, actin (actA), translation elongation factor 1- α (tef1- α), histone H3 (his3), glyceraldehyde-3-phosphate dehydrogenase (gapdh), RNA polymerase II second largest subunit (rpb2), calmodulin (cmdA), β-tubulin (tub2) and chitin synthase I (chs-1). The primers employed are listed in Table 2. The PCR amplifications were performed on a GeneAmp PCR System 9700 (Applied Biosystems, Foster City, CA, USA). The PCR mixtures consisted of $1 \mu \mathrm{~L}$ genomic DNA, $1 \times$ GoTaq ${ }^{\circledR}$ Flexi buffer (Promega, Madison, WI, USA), $2 \mu \mathrm{M} \mathrm{MgCl2}$, $40 \mu \mathrm{M}$ of each dNTP, $0.2 \mu \mathrm{M}$ of each primer and 0.5 Unit GoTaq® Flexi DNA polymerase (Promega) in a total volume of $12.5 \mu \mathrm{~L}$. The PCR mixtures for his3, gapdh, rpb2, cmdA, $t u b 2$ and chs- 1 contained $2 \mu \mathrm{~L}$ genomic DNA. The PCR conditions were: initial denaturation
($94^{\circ} \mathrm{C}, 3 \mathrm{~min}$); 35 cycles amplification ($94^{\circ} \mathrm{C}$, 30 s ; annealing (Table 2), $30 \mathrm{~s} ; 72^{\circ} \mathrm{C}, 45 \mathrm{~s}$) and final extension ($72{ }^{\circ} \mathrm{C}$, 5 min). For gapdh and his3, 40 amplification cycles were used. To obtain the partial $r p b 2$, a touchdown PCR protocol was used: initial denaturation $\left(94{ }^{\circ} \mathrm{C}\right.$, $3 \mathrm{~min})$, five amplification cycles $\left(94^{\circ} \mathrm{C}, 45 \mathrm{~s} ; 60^{\circ} \mathrm{C}, 45 \mathrm{~s} ; 72^{\circ} \mathrm{C}, 2 \mathrm{~min}\right)$, five amplification cycles ($94^{\circ} \mathrm{C}, 45 \mathrm{~s} ; 58^{\circ} \mathrm{C}, 45 \mathrm{~s} ; 72^{\circ} \mathrm{C}, 2 \mathrm{~min}$), 30 amplification cycles $\left(94^{\circ} \mathrm{C}, 45 \mathrm{~s} ; 54^{\circ} \mathrm{C}, 45 \mathrm{~s}\right.$; $\left.72^{\circ} \mathrm{C}, 2 \mathrm{~min}\right)$ and a final extension $\left(72^{\circ} \mathrm{C}, 8 \mathrm{~min}\right)$. The resulting fragments were sequenced in both directions using the PCR primers and a BigDye Terminator Cycle Sequencing Kit v. 3.1 (Applied Biosystems Life Technologies, Carlsbad, CA, USA). DNA sequencing amplicons were purified through Sephadex G-50 Superfine columns (Sigma- Aldrich, St. Louis, MO) in MultiScreen HV plates (Millipore, Billerica, MA). Purified sequence reactions were analysed on an Applied Biosystems 3730x1 DNA Analyzer (Life Technologies, Carlsbad, CA, USA). The DNA sequences generated were analysed and consensus sequences were computed using the BioNumerics v. 4.61 software package (Applied Maths, St-Martens-Latem, Belgium).

Phylogenetic analyses

Ramularia nyssicola (CBS 127665) has recently been revised and separated from R. endophylla (= Mycosphaerella punctiformis) (Minnis et al. 2011). Ramularia nyssicola is basal in the genus Ramularia (Videira, unpubl. data) and was therefore considered as an adequate outgroup for the R. eucalypti species complex. The generated sequences for each gene were aligned with MAFFT v. 6.864b (http://mafft.cbrc.jp/alignment/ server/index.html) according to the gene characteristics. The alignments were manually checked and improved where necessary using MEGA v. 5 (Tamura et al. 2011) and were concatenated with Mesquite v. 2.75 (Maddison \& Maddison 2011). In order to check the stability of each species clade a neighbour-joining analysis using the HKY85 substitution model was applied to each gene partition individually using PAUP v. 4.0b10 (Swofford 2003) (data not shown). Alignment gaps were treated as missing data and all characters were unordered and of equal weight. When ties were encountered they were randomly broken. The robustness of the obtained trees was evaluated by 1000 bootstrap replications (Hillis \& Bull 1993). Parsimony and Bayesian analyses were used to estimate phylogenetic relationships for the aligned combined dataset. Parsimony analyses were conducted with PAUP v. 4.0 b 10 (Swofford 2003). Alignment gaps were treated as fifth base and all characters were unordered and of equal weight. The robustness of the obtained trees was evaluated by 1000 bootstrap replications (Hillis \& Bull 1993).

MrModeltest v. 2.2 (Nylander 2004) was used to determine the best nucleotide substitution model settings for each data partition in order to perform a model-optimised Bayesian phylogenetic reconstruction using MrBayes v. 3.2.0 (Ronquist \& Huelsenbeck 2003). The heating chain was set to 0.15 and the Markov Chain Monte Carlo (MCMC) analysis of four chains was started in parallel from a random tree topology and lasted until the average standard deviation of split frequencies reached a value of 0.01 . Burn-in was set to 25% after which the likelihood values were stationary. Trees were saved each 100 generations and the resulting phylogenetic tree was printed with Geneious v. 5.5.4 (Drummond et al. 2011). All new sequences generated in this study were deposited in NCBIs GenBank nucleotide database (www.ncbi.nlm. nih.gov) and the accession numbers of the sequences used for the phylogenetic analyses are detailed in Table 1. The alignment and phylogenetic tree were deposited in TreeBASE (www. TreeBASE.org).
Table 1. Collection details and GenBank accession numbers of isolates included in this study

Species	Accession number(s) ${ }^{1,2}$	Host/isolation source	Country	Collector	GenBank Accession numbers ${ }^{3}$					
					ITS	actA	tefl- α	gapdh	$r p 62$	his3
Ramularia agrimoniae	CPC 11653	Agrimonia pilosa	South Korea	H.-D. Shin	KJ504784	KJ504448	KJ504699	KJ504567	KJ504655	KJ504611
R. calcea	CBS 101612	Symphytum sp.	Germany	G. Arnold	KJ504785	KJ504449	KJ504700	KJ504568	KJ504656	KJ504612
R. collo-cygni	CBS 101181	Hordeum vulgare	Germany	E. Sachs	KJ504786	KJ504450	KJ504701	KJ504569	KJ504657	KJ504613
R. decipiens	CBS 114300	Rumex aquaticus	Sweden	E. Gunnerbeck	KJ504787	KJ504451	KJ504702	KJ504570	KJ504658	KJ504614
R. eucalypti	CBS 155.82	Puccinia sp. on Carex acutiformis	Netherlands	W. Gams \& O. Constantinescu	KJ504789	KJ504453	KJ504704	KJ504572	KJ504660	KJ504616
	CBS 356.69	Malus sylvestris	Netherlands	-	KJ504790	KJ504454	KJ504705	KJ504573	KJ504661	KJ504617
	CBS 101045	Geranium pusillum	Netherlands	H.A. van der Aa	KJ504791	KJ504455	KJ504706	KJ504574	KJ504662	KJ504618
	CBS $120726^{\text {T }}$, CPC 13043	Corymbia grandifolia	Italy	W. Gams	KJ504792	KJ504456	KJ504707	KJ504575	KJ504663	KJ504619
	CBS 120728, CPC 13304	Eucalyptus sp.	Australia	P.W. Crous	KJ504793	KJ504457	KJ504708	KJ504576	KJ504664	KJ504620
	CPC 13044	Corymbia grandifolia	Italy	W. Gams	KJ504794	KJ504458	KJ504709	KJ504577	KJ504665	KJ504621
	CPC 13045	Corymbia grandifolia	Italy	W. Gams	KJ504795	KJ504459	KJ504710	KJ504578	KJ504666	KJ504622
	CPC 16804	Pinus wallichiana	Netherlands	W. Quaedvlieg	KJ504796	KJ504460	KJ504711	KJ504579	KJ504667	KJ504623
	CPC 19187	Phragmites sp.	Netherlands	P.W. Crous	KJ504797	KJ504461	KJ504712	KJ504580	KJ504668	KJ504624
	CPC 19188	Phragmites sp.	Netherlands	P.W. Crous	KJ504798	KJ504462	KJ504713	KJ504581	KJ504669	KJ504625
R. glechomatis	CBS 108979	Glechoma hederacea	Netherlands	G. Verkley	KJ504799	KJ504463	KJ504714	KJ504582	KJ504670	KJ504626
R. glennii	CBS 120727, CPC 13046	Corymbia grandifolia	Italy	W. Gams	KJ504767	KJ504431	KJ504682	-	KJ504638	KJ504594
	CBS 122989, CPC 15195	Human skin	Netherlands	-	KJ504768	KJ504432	KJ504683	KJ504551	KJ504639	KJ504595
	CBS $129441{ }^{\text {T }}$	Human lungs	Netherlands	-	KJ504769	KJ504433	KJ504684	KJ504552	KJ504640	KJ504596
	CPC 13047	Corymbia grandifolia	Italy	W. Gams	KJ504770	KJ504434	KJ504685	KJ504553	KJ504641	KJ504597
	CPC 13048	Corymbia grandifolia	Italy	W. Gams	KJ504771	KJ504435	KJ504686	KJ504554	KJ504642	KJ504598
	CPC 16560	Eucalyptus camaldulensis	Iraq	A. Saadoon	KJ504772	KJ504436	KJ504687	KJ504555	KJ504643	KJ504599

$\frac{\text { his3 }}{}$ KJ504600
KJ504601 KJ504602 KJ504603 \square
8
\vdots
\vdots
\vdots E6st0sf＞
KJ504627 KJ504605 879t0¢「ヤ
KJ504629
KJ504630
KJ504631
KJ504632

KJ504592 | N |
| :--- |
| n |
| ป |
| n |
| |

KJ504606
KJ504607
KJ504608
KJ504609 KJ504610
KJ504633 N柰筑 KJ504646 KJ504776 KJ504440 KJ504691 KJ504559 KJ504647 KJ504777 KJ504441 KJ504692 KJ504560 KJ504648 KJ504637
KJ504800 KJ504464 KJ504715 KJ504583 KJ504671
 KJ504636 Collector uоореея ${ }^{-} \mathrm{V}$ uoopers ${ }^{-} \mathrm{V}$
P．W．Crous
H．－D．Shin suəчाV： $\mathrm{VS} \cap$

South Korea Italy P．W．Crous M．K．Crous \＆ P．W．Crous P．W．Crous ت
Netherlands
Netherlands
 M．K．Crous \＆
South Africa
South Africa flora
Nyssa ogeche x sylva
 CPC 12736 CPC 12737
CPC 12738
СРC 19835 CPC 12206 CBS 118743 ， CPC 12207 CPC 11517

Species

\qquad CPC 16565 CPC 18468 69t8I Ddつ
 CPC 16296 CPC 12543 CBS $12958{ }^{\text {T }}$ ZI0ZI Sgつ CPC 19770
－ Melon in storage Melon in storage てLLEI Sg s6ZI Sタつ nyssicola
\＆ஷ
Apple in storage KJ504584 KJ504672
KJ504585 KJ504673
KJ504586 KJ504674
KJ504804 KJ504468 KJ504719 KJ504587 KJ504675
KJ504588 KJ504676
KJ504779 KJ504443 KJ504694 KJ504562 KJ504650
KJ504780 KJ504444 KJ504695 KJ504563 KJ504651
KJ504564 KJ504652
KJ504782 KJ504446 KJ504697 KJ504565 KJ504653 KJ504783 KJ504447 KJ504698 KJ504566 KJ504654 KJ504806 KJ504470 KJ504721 KJ504589 KJ504677

A．E．Glenn
A．E．Glenn
USA：Athens
USA：Athens KJ504801 KJ504465 KJ504716
KJ504802 KJ504466 KJ504717
KJ504803 KJ504467 KJ504718
KJ504805 KJ504469 KJ504720 KJ504765 KJ504429 KJ504680
South Africa P．W．Crous USA：Mary－R．Olsen
H．－D．Shin
-

KJ504766 KJ504430 KJ504681 KJ504778 KJ504442 KJ504693 KJ504801 KJ504465 M．K．Crous \＆
P．W．Crous South Africa
Wachendorfia thyrsiflora
Wachendorfia thyrsiflora
Gazania rigens var．uni－
Leonotis leonurus CBS 118693，Human skin CBS 118693，Human skin
South Korea
Netherlands
Netherlands
Host/isolation source
\qquad Eucalyptus camaldulensis Rubber of refrigerator Rubber of refrigerator Rubber of refrigerator Unidentified bulb plant
Petasites japonicus
Wachendorfia thyrsiflora CBS $127665{ }^{\text {ET }}$ CBS 118693，Human skin CBS 136.23
 CBS 127665
Human bone marrow Coleosporium plectanthri on Plectranthus excisus

Table 2. (Continued).

Gene	Primer Name	Sequence $\mathbf{5}^{\prime} \rightarrow \mathbf{3} \mathbf{3}^{\prime}$	Annealing temperature (${ }^{\circ} \mathbf{C}$)	Orientation	Reference
his3	CylH3F	AGG TCC ACT GGT GGC AAG	52	Forward	Crous et al. (2004d)
	CylH3R	AGC TGG ATG TCC TTG GAC TG	52	Reverse	Crous et al. (2004d)
ITS	V9G	TTA CGT CCC TGC CCT TTG TA	52	Forward	Hoog \& Gerrits van den Ende (1998)
	ITS4	TCC TCC GCT TAT TGA TAT GC	52	Reverse	White et al. (1990)
LSU	LSU1Fd	GRA TCA GGT AGG RAT ACC CG	52	Forward	Crous et al. (2009a)
	LR5	TCC TGA GGG AAA CTT CG	52	Reverse	Vilgalys \& Hester (1990)
$r p b 2 ~$	RPB2-f5f	GAY GAY MGW GAT CAY TTY GG	$60 \rightarrow 58 \rightarrow 54$	Forward	Liu et al. (1999)
	RPB2-7cR	CCC ATR GCT TGY TTR CCC AT	$60 \rightarrow 58 \rightarrow 54$	Reverse	Liu et al. (1999)
	Rpb2-F1	GGTGTCAGTCARGTGYTGAA	$60 \rightarrow 58 \rightarrow 54$	Forward	This study
	Rpb2-R1	TCC TCN GGV GTC ATG ATR ATC AT	$60 \rightarrow 58 \rightarrow 54$	Reverse	This study
$t e f 1-\alpha$	EF-728F	CAT CGA GAA GTT CGA GAA GG	54	Forward	Carbone \& Kohn (1999)
	EF-2	GGA RGT ACC AGT SAT CAT GTT	54	Reverse	O'Donnell et al. (1998)
	TEF-1R	CTT GAT GAA ATC ACG GTG ACC	54	Reverse	This study

MALDI-TOF MS

Sample preparation

The cultures were prepared according to the method used in the protocol for the construction of the Filamentous fungi v. 1 Library (Bruker Daltonics, Germany) with a few modifications. Falcon tubes (15 mL) containing 7 mL of Saboraud dextrose broth (Difco, REF 238230) were inoculated with the isolates and incubated at $21^{\circ} \mathrm{C}$ for $48-72 \mathrm{~h}$ on a tube rotator SB2 (Stuart). The tubes were centrifuged ($1 \mathrm{~min}, 3000 \mathrm{rpm}$) and 1.5 mL of the sediment was collected into 1.5 mL Eppendorf tubes. These were centrifuged ($3 \mathrm{~min}, 14000 \mathrm{rpm}$), the supernatant was removed and 1 mL of sterile Milli-Q water was added to the pellet followed by vortexing. This washing step was performed twice. The supernatant was removed and 1.2 mL of 70% ethanol was added. The samples were stored up to 5 d at room temperature. The crude protein content was extracted using the Formic Acid/Ethanol sample preparation method (Bruker Daltonics, Germany) with a few modifications. The samples were centrifuged ($3 \mathrm{~min}, 14000 \mathrm{rpm}$), the supernatant was removed and the pellets were air-dried in a laminar flow cabinet for 30 min . The pellets were incubated for $10-20 \mathrm{~min}$ in $20-40 \mu \mathrm{~L}$ of 70% formic acid (FA) (Sigma-Aldrich, Zwijndrecht, The Netherlands), followed by $10-20 \mathrm{~min}$ in $20-40 \mu \mathrm{~L}$ of 100% acetonitrile (ACN) (Fluka) and were then centrifuged ($2 \mathrm{~min}, 14000 \mathrm{rpm}$). The supernatant, now containing the protein crude extract, was immediately used to generate mass spectra.

In-house library and identification

The in-house library of Ramularia comprises 22 reference MSPs, of which 21 were created from strains of R. eucalypti s.lat. and one from a strain of R. vizellae. The reference MSPs were generated with a MALDI Biotyper 3.0 Microflex LT (Bruker Daltonics, Germany) mass spectrometer. For each strain, $1 \mu \mathrm{~L}$ of protein crude extract was deposited on eight spots of a polished steel target plate (Bruker Daltonics, Germany), air-dried and covered with $1 \mu \mathrm{~L}$ of alpha-cyano-4-hydroxycinnamic acid (HCCA) matrix solution (Kolecka et al. 2013). Twenty-four spectra were acquired per isolate using FlexControl v. 2.4 (Bruker Daltonics, Germany). A minimum of 20 high quality spectra were selected with Flex analysis v. 3.3 (Bruker Daltonics, Germany) to create the respective reference MSP entry to be stored in the in-house library. Comparison of the MSPs was performed by Principal Component Analysis (PCA) (Shao et al. 2012) resulting on a distance score-oriented dendrogram (Fig. 1). The library was challenged with the identification of a set of four clinical isolates. The identification of each isolate was performed in duplicate using MALDI Biotyper 3.0 RTC application (Bruker Daltonics, Germany) with the standardised parameters recommended by the manufacturer for routine diagnostics in hospitals (Kolecka et al. 2013). In the automatic identification runs the clinical isolates were compared with reference MSPs selected simultaneously from the BDAL Bruker database (5627 MSPs), the Bruker Filamentous fungi v. 1 Library (365 MSPs) and the Ramularia in-house library (24 MSPs). Identification results were scored as log-values and, according to the manufacturer, classified as follows: secure genus and species identification (>2.0), secure genus identification (1.7-2.0) and no reliable identification (<1.7).

Taxonomy

The 33 isolates belonging to R. eucalypti s.lat. were inoculated on Synthetic Nutrient-poor Agar (SNA) (Crous et al. 2009f) and incubated at $21^{\circ} \mathrm{C}$ for 7 d . Morphology of the strain CBS 118743

Fig. 1. PCA dendrogram based on the measured MSPs.
was also observed and described at $33^{\circ} \mathrm{C}$, because it showed morphological dimorphism at different temperatures. Observations of the conidiogenous structures were performed using a Nikon Eclipse 80i light microscope with differential interference contrast (DIC) illumination (Figs. 4-9). Slides were prepared using the inclined coverslip method (Kawato \& Shinobu 1959, Nugenta et al. 2006) and also with transparent adhesive tape (Titan Ultra Clear Tape, Conglom Inc., Toronto, Canada) (Bensch et al. 2012). Lactic acid (clear) was used as mounting medium for the measurements and Lactophenol cotton blue was used in some preparations to improve the contrast of the naturally hyaline structures. The terminology of morphological structures followed those used for description of Ramularia species by Crous et al. (2011c). The recorded measurements represent the minimum value followed by the 95% confidence interval of 30 individual measurements and the maximum value for both length and width. For colony macromorphology the isolates were inoculated on Potato Dextrose Agar (PDA), Oatmeal Agar (OA) and Malt Extract Agar (MEA) (Crous et al. 2009f), and incubated in the dark at $25^{\circ} \mathrm{C}$. After 14 d , the colony diameter was measured and the colony colour was described according to the mycological colour charts of Rayner (1970). Additionally, for each species, representative strains were selected to be included in a growth study. The isolates were inoculated onto MEA plates in triplicate, and placed in a serial incubator, in the dark, at temperatures ranging from $6-36{ }^{\circ} \mathrm{C}$, with $3{ }^{\circ} \mathrm{C}$ intervals, and also at $40^{\circ} \mathrm{C}$. Measurements of colony diameters were taken after 14 d (Fig. 2). Nomenclatural data was deposited in MycoBank (Crous et al. 2004a).

Fig. 2. Growth measurements of colony diameters (mm) of representative isolates from each clade (Fig. 3) taken from $6-36^{\circ} \mathrm{C}$, with $3^{\circ} \mathrm{C}$ intervals, and also at $40^{\circ} \mathrm{C}$. Lines with the same colour represent strains from the same clade. Different strains within each clade are represented with different symbols. Colony diameters differed with less than 2 mm between replicates and are therefore not supplied with error bars.

RESULTS

DNA amplification and phylogenetic analysis

New primers for the gapdh, tef1- α and $r p b 2$ loci were designed based on a larger dataset of Ramularia and other cercosporoid genera (Videira, unpubl. data) that proved to be effective for species within the genus Ramularia. These primers were used when no amplification was obtained with the standard primers (Table 2).

In the phylogenetic analysis six of the 10 screened loci were used, namely ITS, rpb2, gapdh, actA, tefl $-\alpha$ and his 3 . The LSU sequences obtained were nearly identical to one another and did not provide useful information to resolve the speciescomplex and were therefore not included in the subsequent phylogenetic analyses. The amplification of $c m d A$ and chs- l was not successful for all the isolates and the inclusion of missing data in the alignment would negatively influence the posterior probability and bootstrap support values. The amplification of tub2 often generated multiple PCR products and was only successful for a reduced number of isolates. Although these sequences were excluded from the phylogenetic analyses, they have been deposited in GenBank under accession numbers KJ504473-KJ504495 (TUB), KJ504496KJ504529 (cmdA), KJ504530-KJ504550 (CHS) and KJ504724-KJ504764 (LSU). Neighbourjoining analysis using the HKY85 substitution model was applied to each data partition in order to check the stability and robustness of each species clade (data not shown). The ITS locus did not differentiate species well, supporting only R. eucalypti, R. miae, R. plurivora and Ramularia sp., while most of the isolates formed a basal polytomy. The tree based on the actA gene had a better resolution by additionally segregating strains of R. glennii and R. haroldporteri. The his 3 phylogeny resolved seven species but with very low bootstrap support values. The individual trees based on the rpb2, gapdh and tef1-a loci all supported seven species with high bootstrap support. These genes also suggested a split of R. glennii in two clades but with a low support value and with internal subclades that were not supported either by the geographical origin or by the morphological characteristics of the isolates.

The concatenated alignment contained 33 strains, including the outgroup sequence (R. nyssicola). A representative strain was selected from strains representing the same substrate and country and which shared identical sequences for all loci (Table 1). The final alignment contained a total of 2651 characters divided in 6 partitions containing 665 (rpb2), 486 (ITS), 551 (gapdh), 358 (his3), 177 (actA), 389 (tef1- α) characters, respectively. From the total alignment, 40 characters were excluded from the phylogenetic analysis: 25 characters were artificially introduced as spacers to separate the genes and 15 characters in the gapdh locus (alignment positions 1216-1230, see TreeBASE) represented a longer sequence in the outgroup compared to the ingroup sequences.
The results of the MrModelTest analyses indicated that the ITS partition had fixed (equal) base frequencies, whereas all the other partitions had dirichlet base frequencies. The optimised models for this dataset were $\mathrm{K} 80+\mathrm{I}+\mathrm{G}$ for ITS and GTR $+\mathrm{I}+\mathrm{G}$ for all the other partitions.

The Bayesian analysis generated 1702 trees from which 424 trees were discarded (25% burnin). The 50% majority rule consensus tree (Fig. 3) and posterior probabilities (left numbers) were calculated from the remaining 1278 trees. The alignment contained a total of 933 unique site patterns: 255 (rpb2), 74 (ITS), 210 ((gapdh), 81 (his3), 99 (actA), 214 (tef1- α).

The parsimony analysis generated the maximum limit of 1000 equally most parsimonious trees and the bootstrap support values (right numbers) higher than 75% are displayed (Fig. 3). The gaps in the alignment were treated as fifth base and from the analysed characters 1670 were

Fig. 3. Phylogenetic tree resulting from a Bayesian analysis of the combined 6 -gene sequence alignment. Both Bayesian posterior probabilities (left number) and parsimony bootstrap support values $>75 \%$ (right number) are indicated at the nodes, and the scale bar represents the expected number of changes per site. Branches in a thicker stroke represent the branches present in the strict consensus parsimony tree. Species clades in the R. eucalypti complex are indicated in coloured blocks and species names in black text. Ex-type strains are in bold and indicated with the letter T while ex-epitype strains are indicated with ET. The tree was rooted to R. nyssicola (CBS 127665).
constant, 234 were variable and parsimony-uninformative and 707 were parsimonyinformative. A parsimony consensus tree was calculated from the equally most parsimonious trees and the branches present in the strict consensus tree are mapped with a thicker stroke on the Bayesian tree (Fig. 3). Phylogenetic trees based on the combined dataset and generated with both parsimony and Bayesian analyses (Fig. 3) separated strains into seven well-supported species within this complex: R. eucalypti, R. glennii, R. haroldporteri, R. mali, R. miae, R. plurivora and Ramularia sp. Ramularia eucalypti is no longer the only species of the genus to be found on Eucalyptus with the addition of the newly described R. glennii. The clinical isolates do not cluster in the same clade as R. eucalypti, and are here described as R. glennii and R. plurivora. The species causing the apple and pear fruit damage in storage is a new species as well (R.mali) considering both the branch length and the posterior probability value separating it from the closest species (R. glennii). The clades of R. eucalypti, R. glennii and R. plurivora show some interspecific variability within the evaluated genes, but not strong enough to support further division into additional species.

MALDI-TOF MS

A total of 22 strains from Ramularia were used to create the Ramularia in-house library. Twentyone strains belonged to R. eucalypti s.lat. and one strain of R. vizellae was used as a reference species outside the complex while still within the same genus. It was not always possible to obtain good quality MSPs for all strains (e.g. R. haroldporteri and Ramularia sp.) as the crude protein extraction performed with the current protocol was problematic for a few strains. For the PCA dendrogram 26 MSPs were used in total, including the 22 MSPs from the Ramularia in-house library and four Cladosporium strains from the Bruker Filamentous fungi v. 1 Library that were used as an outgroup (Fig. 1). The distance level presented on the dendrogram is a relative measure of the differences among the MSP peak patterns and three clades can be observed: R. plurivora, R. glennii $/ R$. mali and R. eucalypti $/ R$. miae. The PCA dendogram topology shows a broadly similar topology to the DNA phylogeny but it is unable to separate the species R. glennii from R. mali and R. eucalypti from R. miae, which are closely related. The MALDI-TOF MS identification results of the four clinical isolates confirmed their identity as R. plurivora and R. glenni, respectively, as secure genus and species identification was attained with log-score >2.0. The identification results showed that the top ten identification hits per tested spot per isolate were matching only with MSPs of Ramularia species.

Taxonomy

The multigene analysis resulted in seven well-supported species. Four new species are described, two are redescribed on different cultural media, and one new combination is proposed. Culture growth curves were not consistent among isolates within the same phylogenetic clade (Fig. 2). Lines representing isolates within the same clade are depicted with the same colour, but with different symbols. The optimal growth temperature for the majority of the isolates was $21^{\circ} \mathrm{C}$ and only two isolates, CBS 18468 and CBS 129441, grew better at $18^{\circ} \mathrm{C}$. The isolates within the R. eucalypti clade (blue) reached diameters between 18 and 24 mm while isolates of R. glennii reached 18, 22 and 26 mm , respectively. The isolate CBS 118743 from the R. plurivora clade, isolated from human bone marrow in the Netherlands, presented morphological dimorphism (Fig. 9). The mycelium was filamentous until $27^{\circ} \mathrm{C}$, while from $30^{\circ} \mathrm{C}$ upwards, the morphology switched into an arthroconidial yeast form that was even able to grow at 40

Fig. 4. Ramularia eucalypti (CBS 120726). A. Culture on OA; B. Culture on MEA; C-J. Hypha, conidiophores and conidia. Scale bars $=10 \mu \mathrm{~m}$.
${ }^{\circ} \mathrm{C}$. None of the other isolates within this clade displayed morphological dimorphism and were unable to grow from $30^{\circ} \mathrm{C}$ onwards.

Ramularia eucalypti Crous, Fung. Diversity 26: 174. 2007. MycoBank MB501270. Fig. 4.
Mycelium consisting of septate, branched, smooth to finely verruculose, hyaline, $1-1.5 \mu \mathrm{~m}$ diam hyphae. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, smooth to finely verruculose, terminal and lateral, (6-) $11-13(-20) \times 1(-2) \mu \mathrm{m}$, with $1-3$ apical loci almost flat or short cylindrical; scars thickened, darkened, refractive, $0.5-1 \mu \mathrm{~m}$ diam. Ramoconidia hyaline, smooth to finely verruculose, subcylindrical to fusiform, aseptate, (5-)7-8(-11) \times $(1.5-) 2(-3) \mu \mathrm{m}$. Intercalary conidia hyaline, smooth to finely verruculose, aseptate, fusiform to oval, (4-)5.5-6(-9) $\times(1.5-) 2(-2.5) \mu \mathrm{m}$, in branched chains (-11). Terminal conidia hyaline, smooth to finely verruculose, aseptate, obovoid, (3-)3.5-4(-6) $\times(1-) 1.5-2 \mu \mathrm{~m}$; hila thickened, darkened, refractive, $0.5-1 \mu \mathrm{~m}$ diam.

Culture characteristics: On MEA surface folded, mostly dirty white but with pale greenish grey tones, radially striated with lobate, concave, feathery margin, with fluffy aerial mycelium, reverse isabeline with iron-grey patches and with small buff margin, reaching 22 mm after 2 wk at $25^{\circ} \mathrm{C}$. On OA surface with sparse fluffy aerial mycelium in the centre, rosy-buff with greenish grey patch, low convex, forming a 5 mm ring of media discoloration, reaching 20 mm after 2 wk at $25^{\circ} \mathrm{C}$. On PDA colony flat, radially striated with entire edge, mostly flat aerial mycelium, greenish grey with dirty white thin margin, reverse olivaceous-grey with dirty white margin, reaching 20 mm after 2 wk at $25^{\circ} \mathrm{C}$.

Specimens examined: Australia, Queensland, Cairns, Kuranda, Karoomba River Walk, on leaves of Eucalyptus sp., 19 Aug. 2006, P.W. Crous \& J. Stone, CPC 13304 = CBS 120728. Italy, Norcia, on Corymbia grandifolia, 10 May 2006, W. Gams (holotype CBS H- 19832, ex-type cultures CPC 13043 = CBS 120726, CPC 13044, CPC 13045). The Netherlands, Gelderland, Wageningen, on Phragmites sp., 19 Feb. 2011, P.W. Crous, CPC 19187, CPC

19188; Noord-Holland, Kortenhoef, Kortenhoefse Plassen, associated with Puccinia sp. on Carex acutiformis, Jan. 1982, W. Gams \& O. Constantinescu, CBS 155.82; Anloo, Pinetum Anloo, on Pinus wallichiana, 8 June 2009, W. Quaedvlieg, CPC 16804; unknown location, on Malus sylvestris (cv. Golden Delicious), Mar. 1969, Van der Scheer, CBS 356.69; Baarn, on Geranium pusillum, May 1998, H.A. van der Aa, CBS 101045.

Notes: Currently, R. eucalypti is the only confirmed member of Ramularia known from Eucalyptus since R. pitereka and similar species were allocated to Quambalaria. The specimens examined show that this is a plurivorous species, able to colonise very different hosts like Eucalyptus (Myrtaceae), Pinus (Pinaceae) and Phragmites (Poaceae). Among the examined strains, CBS 356.69 sporulated sparsely and never formed conidial chains longer than two conidia, probably due to the fact that this is an old culture (from 1969), and strain CBS 101045 produced long chains with up to 13 intercalary conidia.

Ramularia glennii Videira \& Crous, sp. nov. MycoBank MB808138. Fig. 5.
Etymology: Named after the collector of one of the isolates, Anthony E. Glenn, a plant pathologist from the Agricultural Research Service of the United States Department of Agriculture (ARS/ USDA), who found it growing in the rubber of the refrigerator where he usually stored the samples related to his Fusarium research.

Mycelium consisting of septate, branched, smooth, hyaline, $1-1.5 \mu \mathrm{~m}$ diam hyphae. Conidiophores reduced to conidiogenous cells. Conidiogenous cells smooth, hyaline, terminal and lateral, $(5-) 13-16(-25) \times 1(-2) \mu \mathrm{m}$, sympodial proliferation with $1-3$ apical loci almost flat or protuberant, cylindrical; scars thickened, darkened, refractive, $0.5-1 \mu \mathrm{~m}$ diam. Ramoconidia hyaline, smooth to finely verruculose, subcylindrical to clavate or oval, $0-1$-septate, hyaline, $(6-) 9-11(-15) \times(2-) 3(-4) \mu \mathrm{m}$. Intercalary conidia hyaline, smooth to finely verruculose, aseptate, fusiform or oval, $(5-) 6.5-8(-12) \times(2-) 2.5(-3) \mu \mathrm{m}$, in branched chains of up to 7 . Terminal conidia, hyaline, smooth to finely verruculose, aseptate, obovoid, (3-)5-5.5(-8) \times $(1.5-) 2(-3) \mu \mathrm{m}$; hila thickened, darkened, refractive, $0.5-1 \mu \mathrm{~m}$ diam.

Culture characteristics: On MEA surface folded, radially striated and sinking into the media, vinaceous-buff, undulate feathery and concave margin, reverse ochreous, reaches 27 mm after 2 wk at $25^{\circ} \mathrm{C}$. On OA surface folded and slightly depressed, rosy-buff, margin undulate and with flat mycelium while fluffy aerial mycelium covers the centre, 5 mm halo around the colony, reaches 22 mm after 2 wk at $25^{\circ} \mathrm{C}$. On PDA surface mostly flat, white, pale mouse-grey in the centre, undulate margins, reverse olivaceous-grey in the centre and buff towards the margin, reaches 24 mm after 2 wk at $25^{\circ} \mathrm{C}$.

Specimens examined: Iraq, Al-Kora, Basrah, on leaves of Eucalyptus camaldulensis, 1 Mar. 2009, A. Saadoon, CPC 16560, CPC 16561, CPC 16565. Italy, Viterbo, on leaves of Corymbia grandifolia, 1 Apr. 2006, W. Gams, CPC 13047 = CBS 120727, CPC 13048. The Netherlands, Rotterdam Maasstad Ziekenhuis (Clara), on human bronchial alveolar lavage, 2011, unknown collector (holotype CBS H-21617, type culture CBS 129441); Rotterdam Maasstad Ziekenhuis (Clara), on human skin tissue, 2008, unknown collector, CBS 122989. USA, Athens, on rubber of refrigerator, Sept. 2010, A. Glenn, CPC 18468, CPC 18469, CPC 18470.

Fig. 5. Ramularia glennii (CBS 129441). A. Culture on OA; B. Culture on MEA; C-F. Hypha, conidiophores and conidia. Scale bars $=10 \mu \mathrm{~m}$.

Notes: The specimens examined were collected from a wide range of substrates worldwide. The multigene phylogeny showed some internal structure that was insufficient to confidently split this group in more than one species. Morphologically, all the strains were similar but strain CBS 129441 had slightly longer ramoconidia than the rest and the isolate CPC 18468 showed an optimal growth rate at $18{ }^{\circ} \mathrm{C}$ instead of $21^{\circ} \mathrm{C}$ (Fig. 2), which may reflect some intraspecific variation.

Ramularia haroldporteri Videira \& Crous, sp. nov. MycoBank MB808136. Fig. 6.
Etymology: Named after Harold Porter, who bequeathed the land in Leopard's Kloof (Gorge in Afrikaans) to the National Botanical Gardens of South Africa, who in turn named this garden in his honour.

Mycelium consisting of septate, branched, smooth to finely verruculose, hyaline, $1-1.5 \mu \mathrm{~m}$ diam hyphae. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, smooth to finely verruculose, terminal and lateral, (7-)10-13(-19) $\times 1(-2) \mu \mathrm{m}$, sympodial proliferation with 1-3 apical loci almost flat or short cylindrical; scars thickened, darkened, refractive, $0.5-1 \mu \mathrm{~m}$ diam. Ramoconidia subcylindrical, oval or ellipsoid, aseptate, hyaline, smooth to finely verruculose, $(5-) 8-9(-13) \times(1.5-) 2 \mu \mathrm{~m}$. Intercalary conidia hyaline, smooth to finely verruculose, aseptate, oval or ellipsoid, $(4-) 5-6(-8) \times(1.5-) 2(-2.5)$ $\mu \mathrm{m}$, in branched chains of up to 8 . Terminal conidia, hyaline, smooth to finely verruculose, aseptate, obovoid, $(2.5-) 3-4(-4.5) \times(1.5-) 2(-2.5) \mu \mathrm{m}$; hila thickened, darkened, refractive, $0.5-1 \mu \mathrm{~m}$ diam.

Culture characteristics: On MEA surface convex, strongly folded, smoke-grey, with undulate and concave margin, flat aerial mycelium, reverse greyish sepia, reaches 18 mm after 2 wk at 25 ${ }^{\circ} \mathrm{C}$. On OA folded with undulate margins, smokegrey, flat aerial mycelium, reaches 15 mm after 2 wk at $25^{\circ} \mathrm{C}$. On PDA surface folded with undulate margins, smoke-grey, flat aerial mycelium, reverse olivaceous-grey, reaches 15 mm after 2 wk at $25^{\circ} \mathrm{C}$.

Fig. 6. Ramularia haroldporteri (CBS 137272). A. Culture on OA; B. Culture on MEA; C-G. Hypha, conidiophores and conidia. Scale bars $=10 \mu \mathrm{~m}$.

Specimen examined: South Africa, Western Cape Province, Betties Bay, Harold Porter Botanical Garden, on leaves of unidentified bulb plant, 14 Jan. 2009, P.W. Crous (holotype CBS H-21616, ex-type culture CPC $16296=$ CBS 137272).

Notes: Ramularia haroldporteri differs from R. miae by producing significantly shorter ramoconidia, intercalary and terminal conidia and by not producing exudate droplets on top of the mycelium. In the individual gene phylogenetic trees, all genes except the ITS separates R. haroldporteri from R. miae.

Ramularia mali Videira \& Crous, sp. nov. MycoBank MB808135. Fig. 7.

Etymology: Named after its occurrence on apple (Malus).
Mycelium consisting of septate, branched, smooth, hyaline, (1-) 1.5(-2) $\mu \mathrm{m}$ diam hyphae. Conidiophores reduced to conidiogenous cells. Conidiogenous cells finely verruculose, hyaline, terminal and lateral, (6.5-)11-13.5(-18) $\times(1-) 1.5(-2) \mu \mathrm{m}$, sympodial proliferation with 1-2 apical loci flattened or protuberant cylindrical; scars thickened, darkened, refractive, $0.5-1 \mu \mathrm{~m}$ diam. Ramoconidia subcylindrical to clavate or fusoid, $0(-1)$-septate, hyaline, finely verruculose, $(5-) 7-9(-16) \times 2(-3) \mu \mathrm{m}$, with $1-2(-3)$ apical loci. Intercalary conidia hyaline, finely verruculose, aseptate, fusoid or ovoid, $5-6(-8) \times 2(-3) \mu \mathrm{m}$, in branched chains of up to 6. Terminal conidia hyaline, finely verruculose, aseptate, obovoid, (3-)4-4.5(-6) $\times(1-) 1.5-2(-$ 2.5) $\mu \mathrm{m}$; hila thickened, darkened, refractive, $0.5-1 \mu \mathrm{~m}$ diam.

Culture characteristics: On MEA surface folded, undulate margin, white greyish, feathery and concave margin, reverse iron-grey with greyish sepia margin, reaches 21 mm after 2 wk at 25 ${ }^{\circ} \mathrm{C}$. On OA surface flat, smooth, entire edge, buff, 3 mm halo around the colony, reaches 18 mm after 2 wk at $25^{\circ} \mathrm{C}$. On PDA surface low convex, white greyish, flat aerial mycelium, slightly undulate margin, reverse iron-grey with rosy-buff patch, reaches 25 mm after 2 wk at $25^{\circ} \mathrm{C}$.

Fig. 7. Ramularia mali (CBS 129581).A. Culture on OA; B. Culture on MEA; C-H.Hypha, conidiophores and conidia. Scale bars $=10 \mu \mathrm{~m}$.

Specimen examined: Italy, Piemont, on Malus domestica fruit in cold storage, May 2011, unknown collector (holotype CBS H-21618, culture extype CBS 129581).

Notes: This species, previously identified as R. eucalypti, is an emerging problem causing a post-harvest disorder in healthy pome fruits in cold storage, namely apple cv. Ambrosia and pear cv. Conference (Giordani et al. 2012). An epidemiological study reports that symptomless fruits harvested from trees showing leaf spot symptoms caused by this pathogen, developed the lenticel rot disease during the subsequent months of cold storage (Gianetti et al. 2012). Ramularia mali differs from R. glennii by forming shorter conidiogenous cells, shorter and thinner ramoconidia and shorter intercalary and terminal conidia.

Ramularia miae Crous, Fungal Planet 3. 2006. MycoBank MB501004. Fig. 8.
Mycelium consisting of septate, branched, smooth to finely verruculose, hyaline, $0.5-1 \mu \mathrm{~m}$ diam hyphae. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, smooth to finely verruculose, terminal and lateral, (5.5-)9-12(-24) $\times 1 \mu \mathrm{~m}$, sympodial proliferation with 1-2 apical loci almost flat or short cylindrical; scars thickened, darkened, refractive, $0.5-1 \mu \mathrm{~m}$ diam. Ramoconidia hyaline, smooth to finely verruculose, subcylindrical to clavate or fusiform, $0-1$-septate, (6-) $9-10(-16) \times(1.5-) 2 \mu \mathrm{~m}$. Intercalary conidia hyaline, smooth to finely verruculose, aseptate, subcylindrical to oval, $(5.5-) 7-8.5(-12.5) \times(1.5-) 2(-$ 3) $\mu \mathrm{m}$, in branched chains of up to 7 . Terminal conidia, hyaline, smooth to finely verruculose, aseptate, obovoid, (4-)5-6(-9) $\times(1.5-) 2(-3) \mu \mathrm{m}$; hila thickened, darkened, refractive, $0.5-1$ $\mu \mathrm{m}$ diam.

Culture characteristics: On MEA surface convex, folded, dirty-white to pale olivaceous-grey, with lobate margin, short fluffy aerial mycelium, reverse iron-grey with small buff margin, reaches 15 mm after 2 wk at $25^{\circ} \mathrm{C}$, produces small droplets of slimy exudate. On OA surface flat or slightly folded with undulate margins, pale olivaceous-grey mycelium, 5 mm halo in the media, producing several droplets of colourless slimy exudates, reaches 15 mm after 2 wk

(CBS 120726).A. Culture on OA; B. Cult
Fig. 8. Ramularia miae (CBS 120726).A. Culture on OA; B. Culture on MEA; C-F. Hypha, conidiophores and conidia. Scale bars $=10 \mu \mathrm{~m}$.
at $25^{\circ} \mathrm{C}$. On PDA surface folded with lobate margins, olivaceous-grey with white-grey patch, producing large droplets of colourless slimy exudates, reaches 15 mm after 2 wk at $25^{\circ} \mathrm{C}$.

Specimens examined: South Africa, Western Cape Province, Betties Bay, Harold Porter Botanical Garden, on Wachendorfia thyrsiflora, Jan. 2006, P.W. Crous \& M.K. Crous (holotype CBS H-19763, ex-type cultures CBS 120121 = CPC 12736, CPC 12737, CPC 12738); Western Cape Province, Kirstenbosch Botanical Garden, on Gazania rigens var. uniflora, 9 Aug. 2011, P.W. Crous, CPC 19835; Kirstenbosch Botanical Garden, on Leonotis leonurus, 30 July 2011, P.W. Crous, CPC 19770.

Notes: Morphologically, R. miae differs from R. eucalypti by having shorter conidiogenous cells and ramoconidia and longer intercalary and terminal conidia. Ramularia miae was first observed causing black leaf spots on Wachendorfia thyrsiflora, a tall evergreen geophyte with bright red roots that belongs to the Bloodwort family (Haemodoraceae). This host is native to South Africa and R. miae is likely to occur wherever it is cultivated. In addition, the specimens examined were isolated from two new hosts native to South Africa: Gazania rigens var. uniflora (Asteraceae), a flowering plant that is cultivated as an ornamental worldwide, and Leonotis leonurus (Lamiaceae), a broadleaf evergreen shrub that is known for its medicinal and slightly psychoactive properties, suggesting a plurivorous Ramularia species.

Ramularia nyssicola (Cooke) Videira \& Crous, comb. nov. MycoBank MB809667
Basionym: Sphaerella nyssicola Cooke as 'nyssaecola'. Hedwigia 17: 40. 1878.
\equiv Mycosphaerella nyssicola (Cooke) F.A. Wolf as 'nyssaecola'. Mycologia 32: 333. 1940.
Specimen examined: USA, Maryland, Prince George's County, Glen Dale, on fallen overwintered leaves of Nyssa ogeche \times sylvatica hybrid, June 2009, R. Olsen, ex-epitype culture CBS 127665.

Notes: Mycosphaerella nyssicola has been recently epitypified from overwintered leaves of Nyssa sylvatica trees freshly collected in Maryland, USA (Minnis et al. 2011). Nyssa sylvatica
or black gum trees (Cornaceae) are cultivated as ornamental plants and M. nyssicola causes leaf spots that reduce their aesthetic appeal and cause early defoliation. The ITS and LSU sequences supported M. nyssicola as a distinct species from R. endophylla ($=$ M. punctiformis), even though they were almost indistinguishable morphologically (Aptroot 2006). Minnis et al. (2011) did not propose a new combination in Ramularia at the time because they did not observe the asexual Ramularia morph, and the name M. nyssicola correctly adhered to the ICBN Art. 59.1. However, the previous Art. 59 has been deleted from the new International Code of Nomenclature for Algae, Fungi and Plants (ICN) and, since January 2013, both asexual and sexual morph names have equal status. We propose a new combination in Ramularia because the name Ramularia (Unger 1833) predates Mycosphaerella (Johanson 1884a), and species of Mycosphaerella s.str. have been shown to be confined to taxa with Ramularia asexual morphs (Crous 2009c), which is also supported by the DNA data generated in this study. Furthermore, the genus Ramularia has recently been monographed (Braun 1995, 1998), while Mycosphaerella (Aptroot 2006) contains an assemblage of more than 40 different genera (Crous 2009e).

Ramularia plurivora Videira \& Crous, sp. nov. MycoBank MB808132. Fig. 9.
Etymology: Named after its wide host range.
Mycelium consisting of septate, branched, smooth, hyaline, (0.5-) $1-1.5 \mu \mathrm{~m}$ diam hyphae. Conidiophores reduced to conidiogenous cells. Conidiogenous cells smooth, hyaline, terminal and lateral, (6-)10-13(-17) $\times(0.5-) 1(-2) \mu \mathrm{m}$, sympodial proliferation with $1-3$ apical loci flattened or protuberant cylindrical; scars thickened, darkened, refractive, $0.5-1 \mu \mathrm{~m}$ diam. Ramoconidia subcylindrical to ellipsoid, $0-1$-septate, hyaline, smooth to finely verruculose, (6-)9-11(-18) \times (1.5-)2 $\mu \mathrm{m}$. Intercalary conidia hyaline, smooth, aseptate, ellipsoid, smooth to finely verruculose, $(6-) 7.5-8(-10.5) \times(1.5-) 2 \mu \mathrm{~m}$, in branched chains (-7). Terminal conidia hyaline, smooth to finely verruculose, aseptate, ellipsoid, (4-)5-6(-9) $\times(1-) 1.5-2 \mu \mathrm{~m}$; hila thickened, darkened, refractive, $0.5-1 \mu \mathrm{~m}$ diam. On MEA, Arthroconidia smooth, bacilliform, oblong with apices

Fig. 9. Ramularia plurivora (CBS 118743). A. Culture on OA; B. Culture on MEA; C, D. Hypha, conidiophores and conidia; E-G. Arthroconidia formed at $33^{\circ} \mathrm{C}$; H. Culture on MEA at $33^{\circ} \mathrm{C}$. Scale bars $=10 \mu \mathrm{~m}$.
rounded or truncate, $0-3$-septate, slightly constricted at the septa, 1 -septate, (3.5-)4.5-5(-7) \times (1-)1.5-2 $\mu \mathrm{m}, 2$-septate, $(6-) 8-9(-12) \times 1.5-2 \mu \mathrm{~m}, 3$-septate, $(8-) 10-11(-13.5) \times(1.5-) 2(-2.5)$ $\mu \mathrm{m}$.

Culture characteristics: On MEA surface dirty white with a greenish grey tinge, folded, radially striated with undulate margins, reverse fuscous black with a buff margin, reaches 25 mm after 2 wk at $25^{\circ} \mathrm{C}$. On OA surface dirty white to light greenish grey, smooth, with entire edge, central area sporulating profusely and outer ring sparse in mycelium, reaches 35 mm after 2 wk at $25^{\circ} \mathrm{C}$. On PDA colonies have a dirty white and greenish grey aspect, low convex, undulate margins, central area sporulating profusely and outer ring sparse in mycelium, reaches 25-35 mm after 2 wk at $25^{\circ} \mathrm{C}$.

Specimens examined: Republic of Korea, on Coleosporium plectanthri on Plectranthus excisus, 2004, H.D. Shin, CPC 11517. The Netherlands, Den Haag, Laboratory of Medical Microbiology, Hospital Leyenburg, from human bone marrow, 2005, holotype CBS H-21619, ex-type culture CBS $118743=$ CPC 12207; Hilversum, Central Biological and Serological Laboratory, on human skin from neck, 20 May 2005, CBS 118693 = CPC 12206; on melon in storage, 1 Jan. 2008, J.H. Houbraken, CPC 16123, CPC 16124.

Notes: The strain CBS 118743 presented temperature-induced morphological dimorphism being filamentous until $27^{\circ} \mathrm{C}$ and an arthroconidial yeast form from $30^{\circ} \mathrm{C}$ up to $40^{\circ} \mathrm{C}$. This temperature-induced dimorphism may be related with the ability to cause disease. Isolates CPC 16123 , CPC 11517, CBS 118693 were not able to grow at $40^{\circ} \mathrm{C}$. However, after a week at 40 ${ }^{\circ} \mathrm{C}$, when transferred back to $21^{\circ} \mathrm{C}$, they were able to grow, meaning they were able to survive at $40^{\circ} \mathrm{C}$ for that period of time.

Ramularia sp.

Culture characteristics: On MEA surface convex, folded, white with very few and small droplets of pale luteous exudates, margin undulate and feathery, reverse umber with ochreous margin, reaching 18 mm after 2 wk at $25^{\circ} \mathrm{C}$. On OA surface convex, white and feathery, margin undulate and without aerial mycelium, 2 mm hazel ring around the colony, reaching 20 mm after 2 wk at $25^{\circ} \mathrm{C}$. On PDA surface convex, white, margin slightly undulate and feathery, reverse dark mouse grey with pale luteus margin, reaching 18 mm after 2 wk at $25^{\circ} \mathrm{C}$; culture sterile.

Specimen examined: Sweden, Uppland, Knovsta, isolated from Epilobium hirsutum L., 22 Sept. 1989, E. Gunnerbeck, CBS 114568.

Notes: This strain was previously identified as R. epilobiana. The type specimen of R. epilobiana was described from Epilobium hirsutum in France, and no ex-type culture is available. The culture CBS 114568 was sterile and we were unable to compare its morphology with that of the type description. However, it is very doubtful that it represents the true R. epilobiana since all species of the R. eucalypti complex have catenate, narrow conidia, and R. epilobiana is characterised by having broadly ellipsoid-ovoid conidia that are formed singly. The DNA sequences obtained from this strain differ significantly from the sequences of the closest strain CBS 129581. Therefore, we rename it as 'Ramularia sp.' and retain it as a potential new species pending the collection of fresh material from the same host and country.

DISCUSSION

Eucalyptus is one of the most important commercially afforested genera cultivated to meet the increasing global demand for wood and paper pulp. Over the years, more than 50 species of the family Mycosphaerellaceae have been described causing diseases on Eucalyptus trees (Quaedvlieg et al. 2014). However, since the introduction of molecular techniques, many wellestablished plant pathogens have been revealed to represent species complexes (Crous \& Groenewald 2005, Groenewald et al. 2005, Damm et al. 2012a, b, Weir et al. 2012). The pathogen R. eucalypti has certainly proved to be no exception.

Using a polyphasic approach involving morphology, multi-gene phylogeny and MALDITOF MS, a total of seven species were accepted within the complex: R. eucalypti, R. glennii, R. haroldporteri, R. mali, R. miae, R. plurivora and one undescribed Ramularia species. Species discrimination was mostly based on the multigene phylogeny since it clearly separated them into stable and strongly supported monophyletic clades while the morphological features and the MALDI-TOF MS PCA dendrogram did not consistently discriminate all species.

Within the clades of R. eucalypti and R. glennii, some phylogenetic structure was observed that was not resolved consistently in all gene trees (data not shown) and, in accordance with the Genealogical Concordance Phylogenetic Species Recognition (GCPSR) concept, the transition from concordance to conflict determined the limit of these species (Taylor et al. 2000). The isolates within these clades have been collected worldwide and the phylogenetic structure observed suggests that the isolates studied may represent populations in the process of divergence. It has been shown that Mycosphaerella populations can be carried within asymptomatic Eucalyptus trees transported and planted across the world and, given time, they have genetically diverged sometimes to the point of being recognised as distinct species (Crous \& Groenewald 2005).

The ITS barcode was not sufficient to achieve species level identification, just like previously reported among other cercosporoid genera, e.g. Cercospora (Groenewald et al. 2013) and Pseudocercospora (Crous et al. 2013a). The need to use secondary barcodes to achieve species identification has been highlighted in several studies in recent years (e.g. Fitzpatrick et al. 2006, Aguileta et al. 2008, Quaedvlieg et al. 2012). Secondary barcodes are usually proteincoding genes since their intron sequences introduce more variability that is valuable for species discrimination. From the five protein-coding genes that were used in this study, any of the partial genes tefl- α, rpb2 or gapdh could be used as a secondary barcode since they all delineate the seven recognised species. However, further studies are necessary to determine which of these loci would be more adequate to discriminate species within the genus Ramularia.

Cultural morphological traits have been used in the past for species discrimination within species complexes in other genera, e.g. Cercospora apii s.lat. (Groenewald et al. 2005). The species in this study (Fig. 2), however, showed few morphological or cultural features that could be consistently and reliably used to identify them. All the strains used in this study were cultures that were deposited in the CBS or CPC fungal collections and no fresh material was collected. Therefore, any features that may exclusively develop in association with the original host or substrate have not been examined.

Although the genus Ramularia is currently accepted as a hostspecific genus this assumption has not been tested experimentally. In the present study, R. haroldporteri and R. mali have been isolated from a single host while R. eucalypti, R. glennii, R. miae and R. plurivora were isolated from multiple hosts, suggesting that both host-specific and plurivorous species may occur in this genus, even within the same species complex. Some species of the Mycosphaerellaceae are
known to have the ability of colonising different hosts in order to disperse further in an attempt to find the host to which they are truly pathogenic (Crous \& Groenewald 2005). This ability makes it more difficult to determine whether they act as true pathogens, are opportunistic and take advantage of an already debilitated host, or if they are simply saprobic.

The pathogen responsible for causing lenticel rot in fruits of apple (Malus malus cv. Ambrosia) and pear (Pyrus communis cv. Conference) in the Piemont Province in Italy (Gianetti et al. 2012, Giordani et al. 2012) is here newly described as R. mali. The apple tree orchards in Piemont are an important crop that in 2011 produced 140000 t of fruit. Healthy apple fruits (Malus domestica cv. Ambrosia) collected from trees with leaf spots caused by R. mali in the orchards, exhibited disease symptoms during the subsequent months of cold storage (Gianetti et al. 2012). Artificial inoculations of healthy apple (Malus domestica cv. Ambrosia) with R. mali also caused the development of symptoms indicating that this is a true pathogen (Giordani et al. 2012). It is thought that the fungus was already present in the country and that the gradual abandonment of the use of broad-spectrum fungicides in the fruit sector allowed the emergence of this pathogen that had passed unnoticed until now. In 2013, in the Trentino Alto-Adige province in Italy, apples from a different cultivar (Malus domestica cv. Golden Delicious), also developed the lenticel rot in cold storage and the disease affected $50-60 \%$ of the crop. In the same year and province, Malus domestica cv. Braeburn and Malus domestica cv. Rosy Glow were also affected. Molecular analysis of these isolates were identical to those of R. eucalypti (Crous et al. 2007c) (100 \% ITS, 99-100 \% LSU) deposited on GenBank. However, artificial inoculation of these isolates on ripe fruits of Malus domestica cv. Golden Delicious did not result in de development of disease symptoms (Lindner 2013). No isolates from this province were available in the present study. Since the ITS barcode is not sufficient for species identification, the mentioned pathogen can be R. eucalypti, R. mali, or a different species. If it is R. mali, it may be a mere opportunist on Malus domestica cv. Golden Delicious and only truly pathogenic to the Ambrosia cultivar. Information on the biology and behaviour of R. mali is still lacking and no preventive measures to control this fungus from spreading have been taken.

The newly described species R. glennii and R. plurivora include strains that were obtained not only from plants but also from human clinical specimens. This is the first time species of the genus Ramularia are reported in association with a human host and little is known about their pathogenicity. Some pathogens are able to infect hosts from different kingdoms (van Baarlen et al. 2007) and other plant pathogens have been reported capable of infecting humans (Mostert et al. 2006, Phillips et al. 2013). The fact that only a limited number of isolates was obtained and no previous report is known about Ramularia species infecting patients support the hypothesis that this is an opportunistic fungus. However, if potential host species are immunocompromised, opportunistic pathogens may turn into aggressive pathogens (van Baarlen et al. 2007). Furthermore, R. plurivora (strain CBS 118743) displayed morphological dimorphism (Fig.9) and was able to grow at $40^{\circ} \mathrm{C}$ (Fig. 2). These characteristics are similar to, for example, Talaromyces marneffei (syn. Penicillium marneffei, Eurotiomycetes) (Vanittanakom et al. 2006, Houbraken \& Samson 2011), a human pathogen known to cause lethal systemic infections in immunocompromised patients. Therefore, further studies are needed to appraise the pathogenicity of R. plurivora in order to determine if measures for its rapid identification, containment and treatment should be taken.

MALDI-TOF MS has become a powerful tool in the clinical microbiology workflow for the identification of bacteria and yeasts (Bader 2013, Lau et al. 2013). The use of MALDI-TOF MS for routine filamentous fungal identification from clinical samples has only recently been standardised and validated for several species (Cassagne et al. 2011, Lau et al. 2013, L'Ollivier
et al. 2013). Filamentous fungi present some challenges when compared to yeast and bacteria. They have thicker cell walls that make the protein extraction more difficult, the presence of cell wall pigments inhibit the ionisation process and sporebased protein extractions result in a low variability of mass spectra peaks (Bader 2013). The use of Sabouraud broth as culture media has been shown to inhibit pigmentation and spore production in most species thus improving the quality of the spectra. Furthermore, filamentous fungi have complex phylogenetic relationships that make their species boundaries more difficult to define. The need to use secondary barcodes to resolve species complexes also challenges the MALDI-TOF MS to perform identifications almost at the level of intraspecies subtyping (Degenkolb et al. 2008, Cassagne et al. 2011, Welker \& Moore 2011, Bader 2013, Brun et al. 2013).
The species in this complex are very closely related and the PCA dendrogram topology (Fig. 1) individualised only three clades containing R. plurivora, R. glennii /R. mali and R. eucalypti / R. miae. The dendrogram represents the relative similarity of the peak patterns and is based on a scoring algorithm that is influenced not only by the available number of MSPs that are representative of each species, but also by the intensity of the peaks. The first parameter can be improved by creating more MSPs from different strains of the same species. However, the second parameter can only be improved by preparing all the samples on the same day, using the same amount of protein and using the same settings on the machine, which is virtually impossible when building a large database. Furthermore, the protocol for the crude protein extraction recommended by the manufacturer still needs to be optimised, since it did not work for all strains in this study.

Nevertheless, the use of MALDI-TOF MS as an identification tool has still proven to be reliable not only in previous studies but also in this one. When the in-house Ramularia library was challenged with the identification of the clinical isolates of R. glenni and R. plurivora, a secure genus and species identification \log-score (>2.0) was attained.

In conclusion, the R. eucalypti species complex has been resolved with the circumscription of the R. eucalypti s.str. and the description of four new species. Ramularia eucalypti and R. glennii are the only species of this genus described so far from the economically important Eucalyptus hosts. Ramularia mali is an important pathogen of apple cv. Ambrosia and may become a serious pathogen on other apple cultivars. For the first time, two Ramularia species, R. glennii and R. plurivora have been reported from clinical specimens and R. plurivora has the potential of becoming an important human pathogen. The identification of the clinical isolates with MALDI-TOF MS was successful and their MSPs should be added to the commercially available Bruker database of MSPs (BDAL). This would promote a fast and accurate identification of these species in clinical laboratories and would contribute to further investigate the epidemiological relationship with the human host.

ACKNOWLEDGEMENTS

This research was supported by the Dutch Ministry of Education, Culture and Science through an endowment of the FES programme 'Making the tree of life work'. This publication was also made possible by NPRP grant 5-298-3-086 from the Qatar National Research Fund (a member of the Qatar Foundation) to Teun Boekhout and Anna Kolecka. We also acknowledge Dr M. Kostzrewa, Bruker Daltonics GmbH, Bremen, Germany for the collaboration on MALDI-TOF MS. The statements herein are solely the responsibility of the authors.

The rise of Ramularia from the Mycosphaerella labyrinth

S.I.R. Videira ${ }^{1,3}$, J.Z. Groenewald ${ }^{1}$, G.J.M. Verkley ${ }^{1}$, U. Braun ${ }^{4}$, P.W. Crous ${ }^{1,2,3}$

${ }^{1}$ CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
${ }^{2}$ Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
${ }^{3}$ Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
${ }^{4}$ Martin-Luther-Universität Halle-Wittenberg, Institut für Biologie, Geobotanik, Herbarium, Neuwerk 21, 06099, Halle (Saale), Germany

Fungal Biology 119: 823 - 843. 2015.

Abstract

In this study we aimed to resolve the Ramularia endophylla species-complex by applying a polyphasic approach involving morphology and multi-gene phylogeny. Eleven partial genes were targeted for amplification and sequencing for a total of 81 isolates representing R. endophylla s. lat. and 32 isolates representing 11 Ramularia species that were previously linked to a Mycosphaerella sexual morph in literature. A Bayesian phylogenetic analysis, as well as a parsimony analysis, was performed on a combined five-locus dataset and the resulting trees showed significant support for three species within the complex, including the previously described R. endophylla and R. vizellae, and one novel species, Ramularia unterseheri. A parsimony analysis was also separately performed with mating-type gene sequences (MAT1-1-1 and MAT1-2-1) and the resulting tree topologies were in accordance with that of the multigene analysis. A bibliographic review of the proposed links between Ramularia spp. and their purported Mycosphaerella sexual morphs is also presented, confirming six connections in Ramularia. In spite of more than 10000 species having been described in Mycosphaerella, the majority is shown to belong to other genera, suggesting that the taxa identified as Mycosphaerella in much of the plant pathology literature needs to be revisited.

INTRODUCTION

Mycosphaerella s. lat. (Johanson 1884b) is one of the largest genera of Ascomycetes and comprises numerous economically important crop pathogens. Over the years more than 10000 species were described in this genus mainly based on host association or simply because their fruiting bodies were spherical (Aptroot 2006; Crous 2009c; Koike et al. 2011). Although the morphology of the sexual morph is relatively uniform, the genus has been associated with more than 40 asexual genera (Crous et al. 2009e) including both coelomycetes and hyphomycetes. Early molecular work based on ITS DNA sequencing indicated that Mycosphaerella was monophyletic, although the subsequent introduction of additional loci and more taxa showed it was polyphyletic (Crous et al. 2009d, e). As a consequence, members of this genus were allocated to different families such as Schizothyriaceae (Batzer et al. 2008), Cladosporiaceae (Schubert et al. 2007; Dugan et al. 2008; Bensch et al. 2010, 2012), Dissoconiaceae, Mycosphaerellaceae and Teratosphaeriaceae (Crous et al. 2009c; Li et al. 2012). From these results it became evident that the mycosphaerella-like morphology had evolved multiple times and a new circumscription of Mycosphaerella was urgently required.

The type species Mycosphaerella punctiformis was epitypified from freshly collected material and its asexual morph described as Ramularia endophylla (Verkley et al. 2004). Phylogenetic analyses based on DNA sequence data of the SSU and ITS regions grouped Mycosphaerella species with Ramularia asexual morphs in a monophyletic group with high bootstrap support (Verkley et al. 2004; Crous et al. 2007a). This partly led to the proposal by Crous et al. (2009e) that Mycosphaerella s. str. should be limited to species with Ramularia asexual morphs, and that the remaining mycosphaerella-like species should be allocated to other genera. In order to halt the unnecessary proliferation of generic names, it was proposed at the time that it would be preferable to not continue using the traditional dual nomenclature system, and that a single generic name should be attributed to each unambiguous phylogenetic lineage such as in the case of the Botriosphaeriaceae (Crous et al. 2006b).

The widespread use of phylogenetic analyses, based on DNA sequence comparisons, has fuelled the idea that dual nomenclature in fungi is superfluous (Taylor 2012). A number of far reaching proposals were accepted at the eighteenth International Botanical Congress in Melbourne, which led to a revised and renamed International Code of Nomenclature for Algae, Fungi, and Plants (ICN), signalling the end of dual nomenclature (Hawksworth et al. 2011; Wingfield et al. 2012). In pleomorphic fungi priority should be given to the oldest name, regardless of its sexuality. However, for widely used names, particularly where the asexual morph names replace sexual morph names, additional considerations are needed as specified in ICN Art. 57.2. The name Ramularia (Unger 1833) is older than Mycosphaerella (Johanson 1884b) and, while Mycosphaerella sensu lato represents numerous genera distributed over different families, Mycosphaerella sensu strictu has Ramularia asexual morphs. Choosing Ramularia over Mycosphaerella requires less name changes since most established connections already have species names in Ramularia. Therefore, the name Ramularia has been selected for this genus and included in a list of protected names (Wijayawardene et al. 2014).

Ramularia includes species that are usually defined as hyphomycetes with hyaline conidiophores and conidia with thickened, darkened, and refractive conidial hila and conidiogenous loci (scars on conidiogenous cells). The structure and colour of conidiogenous loci were considered important characters to define the genus and distinguish it from closely allied genera (Braun 1995, 1998). Recent molecular studies indicate that these characters were not always phylogenetically informative, and that the generic concept of some asexual
genera warranted revision (Verkley et al. 2004; Kirschner 2009). For example, Cercosporella is usually distinguished from Ramularia by bulging, hyaline conidiogenous loci. These characters are variable and difficult to distinguish with light microscopy (Kirshner 2009). A DNA phylogeny based on sequences obtained from the large nuclear ribosomal subunit (LSU) places the type species of Cercosporella (Cercosporella virgaureae) in a sister clade to Ramularia, but Cercosporella centaureicola, for example, clustered within Ramularia sensu stricto. The ultrastructure of conidiogenous loci differed between these genera, with Ramularia having a raised rim with a central dome that is cladosporium-like, while Cercosporella has flat scars in the shape of a truncated cone (Kirschner 2009).

The genus Ramularia includes around 1000 species that vary in lifestyle from phytopathogenic to saprobic, endophytic and even hyperparasitic. Phytopathogenic species cause leaf spots, necrosis or chlorosis that lead to early defoliation and disease symptoms that usually develop under conditions of high air humidity and low temperatures. Endophytic species usually grow symptomless within the leaves and mature in overwintering leaves on the soil, releasing ascospores in spring that can re-infect young leaves in spring. R. endophylla (syn. M. punctiformis) is an endophyte often associated with broad-leaved trees, and has a worldwide distribution (Verkley et al. 2004). Recent DNA sequence comparisons based on sequence obtained from the intergenic nuclear ribosomal spacer region (ITS) has shown that a number of R. endophylla strains collected from several hosts appear to be heterogeneous, indicating the presence of cryptic species (Verkley et al. 2004; Minnis et al. 2011). This applies to Ramularia nyssicola, which is morphologically indistinguishable from R. endophylla, but based on DNA sequence comparisons and host specificity represents a distinct species on Nyssa (Minnis et al. 2011; Videira et al. 2015a).

Identification of closely related species based on morphology is often difficult and the ITS barcode of fungi alone (Schoch et al. 2012) is unreliable for species identification among several cercosporoid genera (e.g. Groenewald et al. 2013; Crous et al. 2013a; Bakhshi et al. 2014). Several studies in recent years have highlighted the need to use additional phylogenetic markers to achieve accurate species identification (e.g. Bensch et al. 2012; Damm et al. 2012a, b; Quaedvlieg et al. 2012; Phillips et al. 2013; Wikee et al. 2013). In general, protein-coding genes have higher species resolution power due to their variable intron sequences. In addition, partial sequences from the mating-type ideomorphs (MAT1-1 and MAT1-2), specifically the alpha box (MAT1-1-1) and the high mobility group (MAT1-2-1), have also been found valuable due to their high interspecific variability and low intraspecific variability (Du et al. 2005; Paoletti et al. 2005). Species delimitation is challenging and guided by several concepts but no strict rule applies. The use of concordance of multiple gene genealogies has been frequently used in mycology to determine species boundaries. This is known as the Genealogical Concordance Phylogenetic Species Recognition (GCPSR) principle and is an adaptation of the Phylogenetic Species Concept (PSC) (Taylor et al. 2000). With the addition of ecological and morphological data to support the multiple gene phylogenies in a polyphasic approach, mycologists have been increasingly relying on the Consolidated Species Concept (CSC) for fungal species delimitation (Quaedvlieg et al. 2014). The aims of this study were to: (i) resolve the variation in the R. endophylla species complex by applying morphology, ecology and multi-gene phylogeny based on five partial genes and partial mating-type locus DNA sequences; (ii) to investigate all purported links between Ramularia and Mycosphaerella in literature, and (iii) provide a platform that will enable a revision of this generic complex.

MATERIALS AND METHODS

Isolates

The isolates included in this study were obtained from the culture collection of the CBS-KNAW Fungal Biodiversity Centre (CBS), Utrecht, the Netherlands, from the working collection of Pedro Crous (CPC), housed at CBS-KNAW, or were freshly isolated from a range of different plant hosts (Table 1). Single-conidia and single-ascospore cultures were obtained using the techniques described for species of Mycosphaerella and its asexual morphs (Crous et al. 1991; Crous 1998). Representative cultures of the new species delineated in this study were deposited in the CBS culture collection.

DNA extraction, amplification and sequencing

Fungal mycelium of strains (Table 1) was harvested with a sterile scalpel and the genomic DNA was isolated using the UltraClean ${ }^{\mathrm{TM}}$ Microbial DNA Isolation Kit (MoBio Laboratories, Solana Beach, CA, USA) following the manufacturers' protocols. Eleven partial nuclear genes were initially targeted for PCR amplification and sequencing: 28S nrRNA gene (LSU), internal transcribed spacer regions and intervening 5.8S nrRNA gene (ITS) of the nrDNA operon, actin (actA), translation elongation factor 1- α (tef1- α), histone H3 (his3), glyceraldehyde-3-phosphate dehydrogenase (gapdh), RNA polymerase II second largest subunit (rpb2), calmodulin (cmdA), β-tubulin (tub2), mating-type gene 1 (MAT1-1-1) and mating-type gene 2 (MAT1-2-1). The primers employed are listed in Table 2. The PCR amplifications were performed on a GeneAmp PCR System 9700 (Applied Biosystems, Foster City, CA, USA). The PCR mixtures consisted of 1 mL genomic DNA, $1 \times$ GoTaq ${ }^{\circledR}$ Flexi buffer (Promega, Madison, WI, USA), $2 \mathrm{mM} \mathrm{MgCl}{ }_{2}$, 40 mM of each dNTP, 0.2 mM of each primer and 0.5 Unit GoTaq® Flexi DNA polymerase (Promega) in a total volume of 12.5 mL . The PCR mixtures for his3, gapdh, rpb2, cmdA and tub2 contained 2 mL genomic DNA. The PCR conditions were: initial denaturation $\left(94^{\circ} \mathrm{C}, 3\right.$ min); 35 cycles amplification ($94^{\circ} \mathrm{C}, 30 \mathrm{~s}$; annealing temperature listed in Table 2, 30 s ; 72 $\left.{ }^{\circ} \mathrm{C}, 45 \mathrm{~s}\right)$, and final extension ($72{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$). For gapdh and his 3,40 amplification cycles were used. To obtain the partial rpb2, a touchdown PCR protocol was used: initial denaturation (94 $\left.{ }^{\circ} \mathrm{C}, 3 \mathrm{~min}\right), 5$ amplification cycles $\left(94^{\circ} \mathrm{C}, 45 \mathrm{~s} ; 60^{\circ} \mathrm{C}, 45 \mathrm{~s} ; 72{ }^{\circ} \mathrm{C}, 2 \mathrm{~min}\right), 5$ amplification cycles ($94{ }^{\circ} \mathrm{C}, 45 \mathrm{~s} ; 58^{\circ} \mathrm{C}, 45 \mathrm{~s} ; 72^{\circ} \mathrm{C}$, 2 min), 30 amplification cycles $\left(94^{\circ} \mathrm{C}, 45 \mathrm{~s} ; 54^{\circ} \mathrm{C}, 45\right.$ s; $72^{\circ} \mathrm{C}, 2 \mathrm{~min}$) and a final extension ($72^{\circ} \mathrm{C}, 8 \mathrm{~min}$). The resulting fragments were sequenced in both directions using the PCR primers and the BigDye Terminator Cycle Sequencing Kit v. 3.1 (Applied Biosystems Life Technologies, Carlsbad, CA, USA). DNA sequencing amplicons were purified through Sephadex G-50 Superfine columns (SigmaeAldrich, St. Louis, MO) in MultiScreen HV plates (Millipore, Billerica, MA). Purified sequence reactions were analysed on an Applied Biosystems 3730xl DNA Analyzer (Life Technologies, Carlsbad, CA, USA). The DNA sequences generated were analysed and consensus sequences were computed using the BioNumerics v. 4.61 software package (Applied Maths, St-Martens-Latem, Belgium).

Phylogenetic analysis

The generated sequences for each gene were aligned with MAFFT v. 7 (Katoh \& Standley 2013) and the alignments were manually checked and improved where necessary using MEGA v. 5 (Tamura et al. 2011). From the strains listed in Table 1, only those with the complete dataset

Species	Culture collection accession number(s) ${ }^{1}$	Host/isolation source	Location	GenBank Accession numbers ${ }^{2}$											
				Collector	LSU	ITS	act A	tef1- α	gapdh	rpb 2	his3	cmd A	tub2	MAT1	MAT2
Ramularia aplospora	CBS 109014	Alchemilla vulgaris, leaf spot	Austria, Ötztal	G. Verkley	KP894107	KP894216	KP894322	KP894432	KP894542	KP894653	KP894764	KP894875	-	KP895037	-
	CBS 109120	Alchemilla vulgaris, leaf spot	Austria, Tirol	G. Verkley	KP894108	KP894217	KP894323	KP894433	KP894543	KP894654	KP894765	KP894876	-	-	KP895066
	CBS 114118; UPSC 2679	Alchemilla vulgaris	Sweden, Uppland	E. Gunnerbeck	KP894109	KP894218	KP894324	KP894434	KP894544	KP894655	KP894766	KP894877	-	-	KP895067
	CBS 545.82	mildew on Alchemilla vulgaris	Germany, Gössweinstein	T. Hijwegen	KP894110	EU402328	KP894325	KP894435	KP894545	KP894656	KP894767	KP894878	KP894965	KP895038	-
Ramularia calcea	CBS 101612	Symphytum sp., leaf spot	Germany, Thüringen	G. Arnold	KP894111	KP894219	KP894326	KP894436	KP894546	KP894657	KP894768	KP894879	KP894966	KP895039	-
	CBS 101613	Symphytum sp., leaf spot	Germany, Thüringen	G. Arnold	KP894112	KP894220	KP894327	KP894437	KP894547	KP894658	KP894769	-	KP894967	KP895040	-
Ramularia endophylla	CBS 101680	Castanea sativa, dead leaf	Netherlands, Utrecht	A. Aptroot	KP894126	KP894233	KP894341	KP894451	KP894561	KP894672	KP894783	KP894887	KP894974	KP895044	-
	CBS 113265 eepTy	Quercus robur, dead leaf	Netherlands, Utrecht	G. Verkley	AY490776	AY490763	KF903461	KF253276	KP894562	KP894673	KP207603	KF253981	KP894975	KP895045	-
	CBS 113868	Quercus robur, living leaf	Netherlands, Utrecht	G. Verkley	KP894127	KP894234	KP894342	KP894452	KP894563	KP894674	KP894784	KP894888	-	KP895046	-
	CBS 113869	Quercus robur, living leaf	Netherlands, Utrecht	G. Verkley	KP894128	KP894235	KP894343	KP894453	KP894564	KP894675	KP894785	KP894889	-	KP895047	-
	CBS 113870	Quercus robur, living leaf	Netherlands, Utrecht	G. Verkley	KP894129	KP894236	KP894344	KP894454	KP894565	KP894676	KP894786	KP894890	KP894976	-	-
	CBS 113871	Quercus robur, fallen leaf	Netherlands, Utrecht	G. Verkley	KP894130	KP894237	KP894345	KP894455	KP894566	KP894677	KP894787	KP894891	KP894977	KP895048	-
	CBS 115299	Quercus robur, living leaf	Netherlands, Utrecht	G. Verkley	KP894131	KP894238	KP894346	KP894456	KP894567	KP894678	KP894788	KP894892	-	KP895049	-
	CBS 115302	Quercus robur, living leaf	Netherlands, Utrecht	-	KP894132	KP894239	KP894347	KP894457	KP894568	KP894679	KP894789	KP894893	KP894978	-	KP895073
	CBS 115303	Quercus robur, living leaf	Netherlands, Utrecht	-	KP894133	KP894240	KP894348	KP894458	KP894569	KP894680	KP894790	KP894894	-	KP895050	-
	CBS 115304	Quercus robur, living leaf	Netherlands, Utrecht	-	KP894134	KP894241	KP894349	KP894459	KP894570	KP894681	KP894791	KP894895	-	-	KP895074
	CBS 115310	Quercus robur, dead leaf	Netherlands, Utrecht	-	KP894135	KP894242	KP894350	KP894460	KP894571	KP894682	KP894792	-	KP894979	KP895051	-
	CBS 115311	Quercus robur, dead leaf	Netherlands, Utrecht	-	KP894136	KP894243	KP894351	KP894461	KP894572	KP894683	KP894793	KP894896	KP894980	KP895052	-
	CBS 117876; CPC 11203	Quercus robur	Netherlands, Utrecht	G. Verkley	KP894137	KP894244	KP894352	KP894462	KP894573	KP894684	KP894794	KP894897	KP894981	KP895053	-

Species	Culture collection accession number(s) ${ }^{1}$	Host/isolation source	Location	Collector	LSU	ITS	act A	tef1- α	gapdh	rpb 2	his3	cmdA	tub2	MAT1	MAT2
Ramularia grevilleana	CBS 117877; CPC 11204	Quercus robur	Netherlands, Utrecht	G. Verkley	KP894138	KP894245	KP894353	KP894463	KP894574	KP894685	KP894795	KP894898	KP894982	-	KP895075
	CBS 942.97	Quercus sp., leaves	Belgium, Namur	A. Aptroot	KP894139	KP894246	KP894354	KP894464	KP894575	EU874860	KP894796	KP894899	KP894983	-	-
	CPC 11503	-	South Korea	H.D. Shin	KP894140	KP894247	KP894355	KP894465	KP894576	KP894686	KP894797	KP894900	KP894984	KP895054	-
	CBS 114732; UPSC 3244	Fragaria ananassa	Sweden, Uppland	E. Gunnerbeck	KP894113	KP894221	KP894328	KP894438	KP894548	KP894659	KP894770	-	KP894968	-	-
Ramularia inaequalis	CBS 259.36	-	Netherlands	-	KP894114	KP894222	KP894329	KP894439	KP894549	KP894660	KP894771	-	-	-	KP895068
	CBS 298.34	-	Netherlands	-	KP894115	KP894223	KP894330	KP894440	KP894550	KP894661	KP894772	KP894880	KP894969	-	-
	CBS 719.84	Fragaria x ananassa 'Tioga'	New Zealand, Auckland	-	KP894116	EU167605	KP894331	KP894441	KP894551	KP894662	KP894773	KP894881	-	-	-
	CBS 250.96	Taraxacum officinale	Canada, Nova Scotia	S. Green	KP894117	KP894224	KP894332	KP894442	KP894552	KP894663	KP894774	KP894882	KP894970	-	KP895069
	CPC 15752	Taraxacum sp.	Mexico, Montecillo	M. de J. YanezMorales	KP894118	KP894225	KP894333	KP894443	KP894553	KP894664	KP894775	-	-	KP895041	-
	CPC 15753	Taraxacum sp.	Mexico, Montecillo	M. de J. YanezMorales	KP894119	KP894226	KP894334	KP894444	KP894554	KP894665	KP894776	KP894883	KP894971	-	-
	CPC 25741; X39	Taraxacum officinale	Netherlands, Utrecht	U. Damm	KP894120	KP894227	KP894335	KP894445	KP894555	KP894666	KP894777	-	-	-	KP895070
	CPC 25742; X40	Taraxacum officinale	Netherlands, Utrecht	U. Damm	KP894121	KP894228	KP894336	KP894446	KP894556	KP894667	KP894778	-	-	-	KP895071
Ramularia lactea	CBS 114442; UPSC 2727	Viola hirta	Sweden, Uppland	E. Gunnerbeck	KP894122	KP894229	KP894337	KP894447	KP894557	KP894668	KP894779	KP894884	KP894972	KP895042	-
	CBS 135.23	Viola odorata	-	-	KP894123	KP894230	KP894338	KP894448	KP894558	KP894669	KP894780	-	KP894973	-	-
Ramularia nyssicola	CBS 127664; AR 4629	Nyssa ogeche x sylvatica hybrid	USA, Maryland	R. Olsen	KP894124	KP894231	KP894339	KP894449	KP894559	KP894670	KP894781	KP894885	-	-	-
	CBS 127665 еерTy; AR 4656; DM 2	Nyssa ogeche x sylvatica hybrid	USA, Maryland	R. Olsen	KJ504724	KJ504765	KJ504429	KJ504680	KJ504548	KJ504636	KJ504592	KJ504496	KJ504473	KP895043	-
Ramularia phacaefrigidae	CBS 234.55 eTy	Phaca frigida	Switzerland, Corveglia	E. Müller	KP894125	KP894232	KP894340	KP894450	KP894560	KP894671	KP894782	KP894886	-	-	KP895072
Ramularia pusilla	CBS 124973; RoKi 3143	Poa annua, leaves	Germany, Frankfurt	R. Kirshner	KP894141	KP894248	KP894356	KP894466	-	KP894687	KP894798	KP894901	-	-	-

Species	Culture collection accession number(s) ${ }^{1}$	Host/isolation source	Location	Collector	GenBank Accession numbers ${ }^{2}$										
					LSU	ITS	act A	tef1- α	gapdh	rpb2	his3	cmd A	tub2	MAT1	MAT2
Ramularia tricherae	CBS 108973	Knautia arvensis, leaf spot	Netherlands, Limburg	G. Verkley	KP894142	KP894249	KP894357	KP894467	KP894577	KP894688	KP894799	KP894902	KP894985	KP895055	-
	CBS 108989	Knautia dipsacifolia, leaf spot	Austria, Ötztal	G. Verkley	KP894143	KP894250	KP894358	KP894468	KP894578	KP894689	KP894800	KP894903	KP894986	-	KP895076
	CBS 108990	Knautia dipsacifolia, leaf spot	Austria, Ötztal	G. Verkley	KP894144	KP894251	KP894359	KP894469	KP894579	KP894690	KP894801	KP894904	-	-	-
	CBS 108994	Knautia arvensis, leaf spot	Netherlands, Limburg	G. Verkley	KP894145	KP894252	KP894360	KP894470	KP894580	KP894691	KP894802	KP894905	KP894987	KP895056	-
	CBS 236.73; CCM F-369	Knautia drymeia	Czechoslovakia	-	KP894146	KP894253	KP894361	KP894471	KP894581	KP894692	KP894803	KP894906	-	KP895057	-
Ramularia unterseheri	CBS 117801; CPC 12091	Fagus sylvatica, dead leaves	Netherlands, Utrecht	G. Verkley	KP894147	KP894254	KP894362	KP894472	KP894582	KP894693	KP894804	KP894907	KP894988	-	-
	CBS 117807; CPC 12095	Fagus sylvatica, dead leaves	Netherlands, Utrecht	G. Verkley	KP894148	KP894255	KP894363	KP894473	KP894583	KP894694	KP894805	KP894908	KP894989	-	KP895077
	CBS 117878; CPC 11206	Acer pseudoplatanus, decaying leaves	Netherlands, Utrecht	G. Verkley	KP894149	KP894256	KP894364	KP894474	KP894584	KP894695	KP894806	KP894909	KP894990	-	-
	CBS 117879; CPC 11207	Acer pseudoplatanus, decaying leaves	Netherlands, Utrecht	G. Verkley	KP894150	KP894257	KP894365	KP894475	KP894585	KP894696	KP894807	KP894910	-	-	-
	CBS 117880; CPC 11209	Tilia sp.	Netherlands, Utrecht	G. Verkley	KP894151	KP894258	KP894366	KP894476	KP894586	KP894697	KP894808	KP894911	KP894991	-	-
	CBS 117881; CPC 11211	Tilia sp.	Netherlands, Utrecht	G. Verkley	KP894152	KP894259	KP894367	KP894477	KP894587	KP894698	KP894809	KP894912	KP894992	-	KP895078
	CBS 124827	Fagus sylvatica, living leaves	Germany, Greifswald	M. Unterseher	KP894153	KP894260	KP894368	KP894478	KP894588	KP894699	KP894810	KP894913	KP894993	-	-
	CBS 124830	Fagus sylvatica, living leaves	Germany, Greifswald	M. Unterseher	KP894154	KP894261	KP894369	KP894479	KP894589	KP894700	KP894811	KP894914	KP894994	-	-
	CBS 124831	Fagus sylvatica, living leaves	Germany, Greifswald	M. Unterseher	KP894155	KP894262	KP894370	KP894480	KP894590	KP894701	KP894812	KP894915	KP894995	-	-
	CBS 124834	Fagus sylvatica, living leaves	Germany, Greifswald	M. Unterseher	KP894156	KP894263	KP894371	KP894481	KP894591	KP894702	KP894813	KP894916	KP894996	-	KP895079
	CBS 124836	Fagus sylvatica, living leaves	Germany, Greifswald	M. Unterseher	KP894157	KP894264	KP894372	KP894482	KP894592	KP894703	KP894814	KP894917	KP894997	-	-
	CBS 124838	Fagus sylvatica, living leaves	Germany, Greifswald	M. Unterseher	KP894158	KP894265	KP894373	KP894483	KP894593	KP894704	KP894815	KP894918	-	-	-

Species	Culture collection accession number(s) ${ }^{1}$	Host/isolation source	Location	Collector	GenBank Accession numbers ${ }^{2}$										
					LSU	ITS	act A	tefl- α	gapdh	rpb 2	his3	cmd A	tub2	MAT1	MAT2
	CBS 124844	Fagus sylvatica, leaf litter	Germany, Greifswald	M. Unterseher	KP894159	KP894266	KP894374	KP894484	KP894594	KP894705	KP894816	KP894919	KP894998	-	-
	CBS 124846	Fagus sylvatica, leaf litter	Germany, Greifswald	M. Unterseher	KP894160	KP894267	KP894375	KP894485	KP894595	KP894706	KP894817	KP894920	KP894999	-	-
	CBS 124852	Fagus sylvatica, leaf litter	Germany, Greifswald	M. Unterseher	KP894161	KP894268	KP894376	KP894486	KP894596	KP894707	KP894818	KP894921	KP895000	-	-
	CBS 124867	Fagus sylvatica, leaf litter	Germany, Greifswald	M. Unterseher	KP894162	KP894269	KP894377	KP894487	KP894597	KP894708	KP894819	KP894922	KP895001	-	KP895080
	CBS 124884 eTy	Fagus sylvatica, leaf litter	Germany, Greifswald	M. Unterseher	KP894163	KP894270	KP894378	KP894488	KP894598	KP894709	KP894820	KP894923	KP895002	-	-
	CBS 130721; DTO 162C2	Room inside castle (probably air sample)	Germany, Munich	-	KP894164	KP894271	KP894379	KP894489	KP894599	KP894710	KP894821	KP894924	-	-	-
	CBS 355.90	Fagus sylvatica, seed	Germany, former west Germany	U. DelfsSiemer	KP894165	KP894272	KP894380	KP894490	KP894600	KP894711	KP894822	-	KP895003	-	-
	CPC 25739; W6	Alnus sp., leaf	Germany, Hesse	W. Quaedvlieg	KP894166	KP894273	KP894381	KP894491	KP894601	KP894712	KP894823	-	-	-	-
	CPC 25740; X2	Fagus sylvatica, decaying leaves	Netherlands, Utrecht	S.I.R. Videira	KP894167	KP894274	KP894382	KP894492	KP894602	KP894713	KP894824	KP894925	KP895004	-	KP895081
Ramularia urticae	CBS 105.26	-	-	-	KP894169	KP894276	KP894384	KP894494	KP894604	KP894715	KP894826	-	-	-	-
	CBS 113974; UPSC 2359	Urtica dioica	Sweden, Uppland	E. Gunnerbeck	KP894168	KP894275	KP894383	KP894493	KP894603	KP894714	KP894825	KP894926	KP895005	-	-
	CBS 162.91	Urtica dioica, leaf spot	Germany, Weimar	G. Arnold	KP894170	KP894277	KP894385	KP894495	KP894605	KP894716	KP894827	-	KP895006	-	-
Ramularia variabilis	CPC 16865	Verbascum sp.	Canada, Ontario	K. Seifert	KP894171	KP894278	KP894386	KP894496	KP894606	KP894717	KP894828	-	KP895007	-	-
	CPC 16866	Verbascum sp.	Canada, Ontario	K. Seifert	KP894172	KP894279	KP894387	KP894497	KP894607	KP894718	KP894829	-	KP895008	-	-
	CPC 25967	Verbascum sp.	Austria, Graz	C. Scheuer	KP894173	KP894280	KP894388	KP894498	KP894608	KP894719	KP894830	-	-	-	-
Ramularia vizellae	CBS 113267	Quercus robur, dead fallen leaves	Netherlands, Utrecht	G. Verkley	KP894174	KP894281	KP894389	KP894499	KP894609	KP894720	KP894831	KP894927	KP895009	-	-
	CBS 115980	Malus sp., dead leaf litter	Netherlands, Gelderland	-	KP894175	KP894282	KP894390	KP894500	KP894610	KP894721	KP894832	-	-	KP895058	-
	CBS 115981	Malus sp., dead leaf litter	Netherlands, Gelderland	-	KP894176	KP894283	KP894391	KP894501	KP894611	KP894722	KP894833	KP894928	KP895010	-	-

Species	Culture collection accession number(s) ${ }^{1}$	Host/isolation source	Location	Collector	GenBank Accession numbers ${ }^{2}$										
					LSU	ITS	act A	tefl- α	gapdh	rpb 2	his3	cmd A	tub2	MAT1	MAT2
	CBS 115982	Malus sp., dead leaf litter	Netherlands, Gelderland	-	KP894177	KP894284	KP894392	KP894502	KP894612	KP894723	KP894834	KP894929	KP895011	-	-
	CBS 115983	Malus sp., dead leaf litter	Netherlands, Gelderland	-	KP894178	KP894285	KP894393	KP894503	KP894613	KP894724	KP894835	KP894930	KP895012	-	KP895082
	CBS 115984	Malus sp., dead leaf litter	Netherlands, Gelderland	-	KP894179	KP894286	KP894394	KP894504	KP894614	KP894725	KP894836	KP894931	KP895013	-	KP895083
	CBS 116015	Malus sp., dead leaf litter	Netherlands, Gelderland	-	KP894180	KP894287	KP894395	KP894505	KP894615	KP894726	KP894837	KP894932	KP895014	-	KP895084
	CBS 116069	Malus sp., dead leaf litter	Netherlands, Gelderland	-	KP894181	KP894288	KP894396	KP894506	KP894616	KP894727	KP894838	KP894933	KP895015	-	KP895085
	CBS 117798; CPC 12088	Carpinus betulus, fruit scales	Netherlands, Utrecht	G. Verkley	KP894182	KP894289	KP894397	KP894507	KP894617	KP894728	KP894839	-	-	-	KP895086
	CBS 117799; CPC 12089	Acer pseudoplatanus, dead leaves	Netherlands, Utrecht	G. Verkley	KP894183	KP894290	KP894398	KP894508	KP894618	KP894729	KP894840	KP894934	KP895016	-	-
	CBS 117802; CPC 12092	Carpinus betulus, dead leaves	Netherlands, Utrecht	G. Verkley	KP894184	KP894291	KP894399	KP894509	KP894619	KP894730	KP894841	KP894935	KP895017	-	-
	CBS 117805; CPC 12094	Aesculus hippocastanum, dead leaves	Netherlands, Utrecht	G. Verkley	KP894185	KP894292	KP894400	KP894510	KP894620	KP894731	KP894842	KP894936	KP895018	-	KP895087
	CBS 117806; CPC 12096	Tilia sp., dead leaves	Netherlands, Utrecht	G. Verkley	KP894186	KP894293	KP894401	KP894511	KP894621	KP894732	KP894843	KP894937	KP895019	-	KP895088
	CBS 117870; CPC 11193	Quercus rubra, deacaying leaves	Netherlands, Utrecht	G. Verkley	KP894187	KP894294	KP894402	KP894512	KP894622	KP894733	KP894844	KP894938	KP895020	-	KP895089
	CBS 117871; CPC 11194	Quercus rubra, deacaying leaves	Netherlands, Utrecht	G. Verkley	KP894188	KP894295	KP894403	KP894513	KP894623	KP894734	KP894845	KP894939	KP895021	-	-
	CBS 117872; CPC 11197	Amelanchier lamarckii	Netherlands, Utrecht	G. Verkley	KP894189	KP894296	KP894404	KP894514	KP894624	KP894735	KP894846	KP894940	KP895022	-	KP895090
	CBS 117873; CPC 11198	Amelanchier lamarckii	Netherlands, Utrecht	G. Verkley	KP894190	KP894297	KP894405	KP894515	KP894625	KP894736	KP894847	KP894941	KP895023	-	-
	CBS 117874; CPC 11200	Aesculus hippocastanum	Netherlands, Utrecht	G. Verkley	KP894191	KP894298	KP894406	KP894516	KP894626	KP894737	KP894848	KP894942	KP895024	-	KP895091
	CBS 117875; CPC 11201	Aesculus hippocastanum	Netherlands, Utrecht	G. Verkley	KP894192	KP894299	KP894407	KP894517	KP894627	KP894738	KP894849	KP894943	KP895025	-	-
	CBS 117882; CPC 11212	Sorbus aucuparia, decaying leaves	Netherlands, Utrecht	G. Verkley	KP894193	KP894300	KP894408	KP894518	KP894628	KP894739	KP894850	KP894944	KP895026	KP895059	-

Table 1. (Continued).

Species	Culture collection accession number(s) ${ }^{1}$	Host/isolation source	Location	Collector	GenBank Accession numbers ${ }^{2}$										
					LSU	ITS	actA	tefl- α	gapdh	rpb 2	his3	cmd A	tub2	MAT1	MAT2
	CBS 117883; CPC 11213	Sorbus aucuparia, decaying leaves	Netherlands, Utrecht	G. Verkley	KP894194	KP894301	KP894409	KP894519	KP894629	KP894740	KP894851	KP894945	KP895027	KP895060	-
	CBS 124861	Fagus sylvatica, leaf litter from 2007	Germany, Greifswald	M. Unterseher	KP894195	KP894302	KP894410	KP894520	KP894630	KP894741	KP894852	KP894946	-	-	KP895092
	CBS 18283	Protea sp., leaves	South Africa	P.W. Crous	JN712567	KJ504808	KJ504472	KJ504723	KJ504591	KJ504679	KJ504635	-	KJ504495	KP895061	-
	CBS 184.97	Acer pseudoplatanus, dead leaves	Netherlands, Utrecht	$\begin{aligned} & \text { H.A. van der } \\ & \text { Aa } \end{aligned}$	KP894196	KP894303	KP894411	KP894521	KP894631	KP894742	KP894853	KP894947	KP895028	KP895062	-
	CBS 185.97	Acer pseudoplatanus, dead leaves	Netherlands, Utrecht	H.A. van der Aa	KP894197	KP894304	KP894412	KP894522	KP894632	KP894743	KP894854	KP894948	KP895029	KP895063	-
	CBS 324.87	Brassica sp., in leaf spot	Netherlands	-	GU214581	GU214581	KP894413	KP894523	KP894633	KP894744	KP894855	KP894949	KP895030	-	KP895093
	CBS 367.64	Malus sylvestris, fruit	France	C. Moreau	KP894198	KP894305	KP894414	KP894524	KP894634	KP894745	KP894856	KP894950	KP895031	-	KP895094
	CBS 369.67	Lotus uliginosus, young leaves	Netherlands, Utrecht	$\begin{aligned} & \text { H.A. van der } \\ & \text { Aa } \end{aligned}$	KP894199	KP894306	KP894415	KP894525	KP894635	KP894746	KP894857	KP894951	-	-	KP895095
	CBS 428.74; IHEM 3995	Phaseolus sp.	Switzerland	-	KP894200	KP894307	KP894416	KP894526	KP894636	KP894747	KP894858	KP894952	KP895032	-	-
	CBS 515.69	Acer pseudoplatanus	Netherlands, Utrecht	H.A. van der Aa	KP894201	AY490759	KP894417	KP894527	KP894637	KP894748	KP894859	KP894953	KP895033	-	KP895096
	CBS 724.79	Tilia sp., overwintering leaf on the ground	Germany, Munchen	A.John	KP894202	KP894308	KP894418	KP894528	KP894638	KP894749	KP894860	KP894954	KP895034	-	KP895097
	CBS 943.97	Quercus sp., leaves	Netherlands	A. Aptroot	KP894203	KP894309	KP894419	KP894529	KP894639	KP894750	KP894861	KP894955	KP895035	-	-
	CPC 15541	Acer campestre	Ukraine, Seversky Donets river	A. Akulov	KP894204	KP894310	KP894420	KP894530	KP894640	KP894751	KP894862	-	-	-	-
	CPC 25728; MP19	Corylus sp.	Netherlands, Utrecht	S.I.R. Videira	KP894205	KP894311	KP894421	KP894531	KP894641	KP894752	KP894863	KP894956	-	-	-
	CPC 25729; MP20	Quercus sp.	Netherlands, Utrecht	S.I.R. Videira	KP894206	KP894312	KP894422	KP894532	KP894642	KP894753	KP894864	KP894957	-	KP895064	-
	CPC 25730; MP21	Carpinus sp.	Netherlands, Utrecht	S.I.R. Videira	KP894207	KP894313	KP894423	KP894533	KP894643	KP894754	KP894865	KP894958	-	-	KP895098
	CPC 25731; MP23	Quercus sp.	Netherlands, Utrecht	S.I.R. Videira	KP894208	KP894314	KP894424	KP894534	KP894644	KP894755	KP894866	KP894959	-	-	KP895099
	CPC 25732; MP24	Fagus sp., decaying leaves	Netherlands, Utrecht	S.I.R. Videira	KP894209	KP894315	KP894425	KP894535	KP894645	KP894756	KP894867	KP894960	-	KP895065	-

Table 1. (Continued).

Species	Culture collection accession number(s) ${ }^{1}$	Host/isolation source	Location	Collector	GenBank Accession numbers ${ }^{2}$										
					LSU	ITS	actA	tefl- α	gapdh	rpb2	his3	cmd A	tub2	MAT1	MAT2
	CPC 25733; W7	Leaf of unidentified plant	Germany, Hesse	W. Quaedvlieg	KP894210	KP894316	KP894426	KP894536	KP894646	KP894757	KP894868	-	-	-	-
	CPC 25734; X1	Fagus sp., decaying leaves	Netherlands, Utrecht	S.I.R. Videira	KP894211	KP894317	KP894427	KP894537	KP894647	KP894758	KP894869	KP894961	KP895036	-	KP895100
	CPC 25735; X3	Fagus sp., decaying leaves	Netherlands, Utrecht	S.I.R. Videira	KP894212	KP894318	KP894428	KP894538	KP894648	KP894759	KP894870	KP894962	-	-	-
	CPC 25738; X31	Sambucus nigra	Austria, Graz	C. Scheuer	KP894215	KP894321	KP894431	KP894541	KP894651	KP894762	KP894873	-	-	-	-
	CPC 25736; X4	Corylus sp., decaying leaves	Netherlands, Utrecht	S.I.R. Videira	KP894213	KP894319	KP894429	KP894539	KP894649	KP894760	KP894871	KP894963	-	-	-
	CPC 25737; X5	Aesculus hipocastanum, decaying leaves	Netherlands, Utrecht	S.I.R. Videira	KP894214	KP894320	KP894430	KP894540	KP894650	KP894761	KP894872	KP894964	-	-	KP895101
Zymoseptoria passerini	CBS 120382 eepTy	Hordeum vulgare	USA, North Dakota	S. Goodwin	JQ739843	JF700877	JF701046	JQ739787	KP894652	KP894763	KP894874	JF701114	JF700978	-	-

${ }^{1}$ AR: Personal culture collection of Amy Rossman; CBS: CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; CCM: Czech Collection of Microorganisms, Masaryk University, Brno, Czech Republic; CPC: Personal culture collection of Pedro Crous, housed at CBS; DTO: Personal culture collection of the Applied and Industrial Mycology, housed at CBS; IHEM: Collection of the Laboratorium voor Microbiologie en Microbiele Genetica, Gent, Belgium; IPO: Research Institute for Plant Protection, Wageningen; RoKI: Personal culture collection of Roland Kirschner; UPSC: Uppsala University Culture Collection of Fungi, Botanical Museum University of Uppsala, Uppsala, Sweden.
${ }^{2}$ LSU: large subunit (28S) of the nrRNA gene operon; ITS: internal transcribed spacers and intervening 5.8S nrDNA; actA: partial actin gene; tefl- α : partial translation elongation factor 1-alpha gene; gapdh: partial glyceraldehyde-3-phosphate dehydrogenase gene; rpb2: partial RNA polymerase II second largest subunit gene; his3: partial histone H3 gene; cmdA: partial calmodulin gene; tub2: partial beta-tubulin gene; MAT1: partial MAT1-1-1 mating type gene; MAT2: partial MAT1-2 mating type gene. eTy: ex-type; eepTy: ex-epitype; "X" represents a DNA sequence that will be submitted to Genbank and "-" a DNA sequence that was not generated.

Reference
Referene \&
Carbone \& Kohn (1999)
Carbone \& Kohn (1999) Groenewald et al. (2013)

O'Donnell \& Cigelnik (1997) Stukenbrock et al. (2012) Glass \& Donaldson (1995) Glass \& Donaldson (1995) Carbone \& Kohn (1999) Carbone \& Kohn (1999) Groenewald et al. (2013) Berbee et al. (1999)
 Crous et al. (2004d) Crous et al. (2004d) Hoog \& Gerrits van White et al. (1990) Crous et al. (2009a) Vilgalys \& Hester (1990) Groenewald et al. (2006) Groenewald et al. (2006) Groenewald et al. (2006) Groenewald et al. (2006) Liu et al. (1999) Liu et al. (1999)

Videira et al. (2015a) Videira et al. (2015a) Carbone \& Kohn (1999) O'Donnell et al. (1998) Videira et al. (2015a)
actA: partial actin gene; tub2: partial beta-tubulin gene; cmdA: partial calmodulin gene; gapdh: partial glyceraldehyde-3-phosphate dehydrogenase gene; his3: partial histone H3 gene; ITS: internal transcribed spacers and intervening 5.8S nrDNA; LSU: large subunit (28S) of the nrRNA gene operon; MAT1: partial MAT1-1-1 mating type gene; MAT2: partial MAT1-2 mating type gene; $r p b 2$: partial RNA polymerase II second largest subunit gene; tef1- α : partial translation elongation factor 1 -alpha gene.
of genes were used in the phylogenetic analyses, with the exception of Ramularia pusilla, which was missing the sequence of gapdh and was considered as missing data in the alignment. Phylogenetic analyses of sequence data consisted of both Neighbour-Joining analysis and parsimony analysis performed with PAUP v. 4.0 b 10 (Swofford 2003) and also a Bayesian analysis performed with MrBayes v. 3.2.1 (Ronquist et al. 2011).

The Neighbour-Joining analysis using the HKY85 substitution model was applied to each gene partition individually. The single gene trees were manually compared in order to check the stability of each species clade and exclude incongruent genes from the multigene analysis (data not shown, individual gene trees deposited on TreeBASE). Alignment gaps were treated as missing data and all characters were unordered and of equal weight. Any ties were broken randomly when encountered. The selected genes for the multigene parsimony and Bayesian analysis were concatenated with Mesquite v. 2.75 (Maddison \& Maddison 2011).

The parsimony analysis was performed on three datasets, namely the concatenated alignment of five genes and the individual alignments of the mating-type sequences (MAT1-1-1 and MAT1-2-1). The analysis used a heuristic search with 100 random taxa additions and the branchswapping algorithm for tree bisection and reconstruction. Alignment gaps were treated as fifth base and all characters were unordered and of equal weight. Branches of zero length were collapsed and all multiple, equally parsimonious trees were saved. The robustness of the trees obtained was evaluated by 1000 bootstrap replications (Hillis \& Bull 1993). Other measures calculated included tree length (TL), consistency index (CI), retention index (RI) and rescaled consistency index (RC). The resulting trees were printed with Geneious v. 7.0.6 (Kearse et al. 2012).

The Bayesian analysis was performed on the combined multigene alignment only. MrModeltest v. 2.2 (Nylander 2004) was used to determine the best nucleotide substitution model settings for each data partition in order to perform a model-optimized Bayesian phylogenetic reconstruction using MrBayes v. 3.2.1 (Ronquist et al. 2011). The heating chain was set to 0.15 and the Markov Chain Monte Carlo (MCMC) analysis of four chains was started in parallel from a random tree topology and lasted until the average standard deviation of split frequencies reached 0.01 . Burn-in was set to 25% after which the likelihood values were stationary. Trees were saved each 250 generations and the resulting phylogenetic tree was printed with Geneious v. 7.0.6 (Kearse et al. 2012). All new sequences generated in this study were deposited in NCBI's GenBank nucleotide database (www.ncbi.nlm.nih.gov) and the accession numbers of the sequences used for the phylogenetic analyses are listed in Table 1. The alignments and respective phylogenetic trees were deposited in TreeBASE (www.treeBASE.org).

Taxonomy

Isolates were cultivated for 7 d at $21^{\circ} \mathrm{C}$. Microscopic observations of the conidiogenous structures were performed using a Nikon Eclipse 80i light microscope with differential interference contrast (DIC) illumination. Slides were prepared using the inclined coverslip method (Kawato \& Shinobu 1959, revised in Nugent et al. 2006) and also transparent adhesive tape (Titan Ultra Clear Tape, Conglom Inc., Toronto, Canada) (Bensch et al. 2012). Clear lactic acid was used as mounting medium for the measurements. The morphological structure terminology followed those used for Ramularia species by Crous et al. (2011c). The recorded measurements represent the minimum value followed by the 95% confidence interval of 30 individual measurements and the maximum value, for both length and width. For culture characterization the isolates were inoculated on 2% potato dextrose agar (PDA), oatmeal agar (OA) and 2% malt extract
agar (MEA) (recipes according to Crous et al. 2009f), and incubated in the dark at $25^{\circ} \mathrm{C}$. After 14 d , the colony diameter was measured and the colony colour described according to the mycological colour charts of Rayner (1970). Nomenclatural novelties and descriptions were deposited in MycoBank (Crous et al. 2004a).

RESULTS

DNA amplification and phylogenetic analysis

Of the 11 loci tested in this study, seven were successfully amplified for most strains (LSU, ITS, actA, tef1- α, his3, gapdh, rpb2). The amplification of $c m d A$ and tub2 often resulted in multiple bands, despite the attempts of protocol optimization and were not used in the multigene analysis. The amplification of the mating-type loci was not successful for all the strains (Table 1) and was particularly challenging for the MAT1-2-1 with the use of the degenerate primers (Table 2) that were reported successful for other Mycosphaerellaceae (Groenewald et al. 2006, 2007). Due to the observed variation of the position of these loci in other species, an attempt was made to amplify the loci using the forward primer for MAT1-1-1 and the reverse primer of MAT1-2-1 and vice-versa. A sequence of approximately 670 bp was obtained for several strains with the combination of the primers MgMfSpMat1-1f1 (MAT1-1-1 forward) and MgMfSpMat12 r 1 (MAT1-2-1 reverse) for which the last portion of approximately 200 bp corresponded to the MAT1-2-1 conserved high mobility group. When sequences of the MAT1-2-1 obtained with the regular primer combination were compared with the ones obtained with the described uncommon combination, they matched exactly. The mating-type genes were not used in the combined analysis since all isolates with a successful sequence had either the MAT1-1-1 or MAT1-2-1 amplicon. In addition, no sequences of MAT1-1-1 were obtained for any of the Ramularia unterseheri strains available in this study. All the obtained sequences were deposited in GenBank (Table 1).

The Neighbour-joining analysis using the HKY85 substitution model used to check the stability and robustness of clades for the individual loci (data not shown) revealed that the both the LSU and ITS locus separated Ramularia endophylla strains in a unique clade but were not able to separate Ramularia vizellae from R. unterseheri (newly described). The single gene trees for actA, his 3 , rpb2 and gapdh could separate three species within the complex, namely R. endophylla, R. vizellae, and R. unterseheri. The partial sequences of tefl- α were very heterogeneous and the resulting phylogenetic tree was not congruent with the other genes. The tefl- α sequences were, therefore, not used in the multigene analysis.

The multigene analysis was based on a concatenated alignment of five loci (ITS, actA, rpb2, gapdh and his3) and contained 114 taxa, of which 81 belonged to the R. endophylla species complex, 32 represented other Ramularia species and the outgroup sequence of Zymoseptoria passerini. The final alignment contained a total of 2618 characters divided in five partitions containing 515 (ITS), 236 (actA), 897 (rpb2), 575 (gapdh) and 375 (his3) characters respectively, including alignment gaps. From the total alignment, 81 characters were excluded from the phylogenetic analysis: 20 characters that were artificially introduced as spacers between the genes; 10 characters (ITS) and 17 characters (gapdh) that represented a longer sequence in the outgroup compared to the ingroup sequences; 20 characters (gapdh) representing a longer intron that only existed for Ramularia nyssicola; 14 characters (actA) representing a repetition in an intron on the strains in Ramularia grevilleana (see alignment in TreeBASE).

The results of the MrModelTest analyses for the multigene dataset indicated that the ITS
partition had fixed (equal) base frequencies, whereas all the other partitions had dirichlet base frequencies. The optimised models for this alignment were SYM + I + G for ITS and GTR $+\mathrm{I}+\mathrm{G}$ for all the other data partitions. The Bayesian analysis of the concatenated five-locus alignment generated 104082 trees from which 26020 trees were discarded (25% burnin). The 50% majority rule consensus tree (Fig. 1) and posterior probabilities (values ≤ 1) were calculated from the remaining 78062 trees. The alignment contained a total of 959 unique site patterns: 100 (ITS), 123 (actA), 413 (rpb2), 209 (gapdh), 114 (his3). The parsimony analysis on the multigene dataset generated 1000 equally most parsimonious trees. From the analysed characters, 1559 were constant, 205 were variable and parsimony-uninformative and 772 were parsimony-informative. A parsimony consensus tree was calculated from the equally most parsimonious trees and the branches were mapped with a thicker stroke on the Bayesian tree (Fig. 1; bootstrap support values >75). The overall parsimony phylogeny supported the same species clades as those presented in the Bayesian phylogeny (Fig. 1). Phylogenetic trees based on the combined dataset (Fig. 1) and generated with both parsimony and Bayesian analyses, separated strains into three well supported species within the original complex: R. endophylla, R. vizellae, and R. unterseheri. The other Ramularia strains represent species that, in literature, have been associated with a Mycosphaerella sexual morph (Table 3). The MAT1-1-1 alignment contained 30 taxa, including the outgroup Cercospora beticola (GenBank DQ192581), and 570 characters, including alignment gaps, from which 175 were constant, 74 were variable and parsimony-uninformative, and 321 were parsimony-informative. The MAT1-2-1 alignment contained 37 taxa, including the outgroup Cercospora beticola (GenBank DQ192582), and 233 characters, including alignment gaps. Of these characters, 67 were constant, 31 were variable and parsimony-uninformative, and 135 were parsimony-informative. Similar trees were obtained with both neighbour-joining and parsimony methods. Two most parsimonious trees were obtained from the MAT-1-1-1 sequence alignment and nine most parsimonious trees were obtained from the MAT1-2-1 sequence alignment. The most parsimonious trees differed slightly in the arrangement of the taxa within the clades of R. vizellae (Fig. 2 and Fig. 3) and of R. unterseheri (Fig. 3) but the global tree topology was identical. The trees obtained for both MAT1-1-1 (Fig. 2) and MAT1-2-1 (Fig. 3) datasets showed that R. endophylla and R. vizellae cluster in separate clades with bootstrap support values of 100% (MAT1-1-1) and 100% and 97% (MAT1-2-1), respectively. In the tree obtained for MAT1-2-1 the clade of R. unterseheri is supported with 98% bootstrap. Strict consensus trees were calculated for each locus and the branches present were depicted in thicker lines (Figs. 2 and 3). The phylogenetic trees obtained from the mating-type sequences are in agreement with the parsimony and Bayesian analyses of the multigene dataset.

Taxonomy

Ramularia endophylla Verkley \& U. Braun, Mycol. Res. 108: 1276 (2004)
Synonyms: Sphaeria punctiformis Pers., Ann. Bot. (Usteri) 11: 26 (1794), non Ramularia punctiformis Sacc. (Saccardo, 1904).
Astoma punctiforme (Pers.) Gray, Nat. Arr. Brit. Pl. (London) 1: 524 (1821)
Sphaerella punctiformis (Pers.) Rabenh., Klotzschii Herb. Viv. Mycol., ed. nov.: no. 264 (1856)
Mycosphaerella punctiformis (Pers.) Starbäck, Bih. Kongl. Svenska Vetensk.-Akad. Handl. 15 (2): 9 (1889)

Diatrype punctiformis (Pers.) Zahlbr., Cat. Lich. Univers. 7: 780 (1931)
For further synonyms, see Tomilin (1979) and Aptroot (2006).

0.1

Fig. 1. Phylogenetic tree resulting from a Bayesian analysis of the combined 5 -gene sequence alignment. Both Bayesianposterior probabilities (left number) and parsimony bootstrap support values $>70 \%$ (right number) are indicated at the nodes; the scale bar represents the expected number of changes per site. Branches depicted in a thicker represent thebranches present in the strict consensus parsimony tree. Strains in bold and marked as 'eTy' are ex-types and those markedas 'eepTy' are ex-epitypes. The tree was rooted to Zymoseptoria passerini (CBS 120382).
Table 3. Relations between Ramularia asexual morphs and their Mycosphaerella sexual morphs reported in literature. References in bold represent the reference where a link was experimentally proven. Asexual morph ${ }^{1}$ $\begin{array}{lll}\text { R. endophylla Verkley \& U. } & \text { M. punctiformis (Pers.) } & \text { R. endophylla } \\ \text { Braun (2004) } & \text { Starbäck (1889) [bas. Sphaeria } & \text { Verkley \& U. }\end{array}$ $\begin{array}{lll}\text { R. endophylla Verkley \& U. } & \begin{array}{l}\text { M. punctiformis } \text { (Pers.) }\end{array} & \text { R. endophylla } \\ \text { Braun (2004) } & \text { Starbäck (1889) [bas. Sphaeria } & \text { Verkley \& U. }\end{array}$ punctiformis Pers. (1794)] Braun (2004) R. grevilleana (Oudem.) Jørst. (1945) (1998)
R. variabilis Fuckel (1870) (2006)
EP
号
ค ค ค Davidiella.

Asexual morph ${ }^{1}$	Sexual morph ${ }^{1}$	Current name	CA ${ }^{2}$	References	Sexual link ${ }^{3}$	Notes
R. evanida (J. G. Kühn) Sacc. (1886)	M. gentianae (Niessl) Lindau (1897) [syn. M. galatea (Sacc.) Jacz. (1917)]	-	N	Petrak (1940a); Tomilin (1979); Braun (1998)	DB	Aptroot (2006) states the type and additional material studied belong to Davidiella.
R. pteridiicola Petr. (1927)	? M. aquilina (Fr.) J. Schröt (1894)	-	N	Petrak (1927); Eriksson 1992); Braun (1998); Aptroot (2006)	DB	Aptroot (2006) studied material from India (IMI 152515) and states it belongs to M. punctiformis.
R. trifolii Jaap (1910)	M. carinthiaca Jaap (1908)	-	N	Jaap (1910); Tomilin (1979); Braun (1998), Aptroot (2006)	DB	Aptroot (2006) studied authentic material, states it is a parasitic species of Davidiella and proposed a new combination Davidiella carinthiaca (Jaap) Aptroot.
Ramularia sp.	M. nawae Hiura \& Ikata (1929)	-	N	Kwon \& Park (2004); Berbegal et al. (2013)	DB	Asexual ramularia-like morph observed but ITS closely related to Phaeopleospora (Mycosphaerellaceae). LSU not available.
R. aplospora Speg. (1879)	M. alchemillicola Vassiljevsky 1925	-	Y	Vasil'evskij \& Karakulin (1937); Tomilin (1979); Braun (1998)	NEP	
R. brunnea Peck (1878)	M. tussilaginis (Rehm) Lindau (1903)	-	N	Wolf (1912); Vasil'evskij \& Karakulin (1937); Tomilin (1979); Braun (1998); Aptroot (2006)	NEP	
R. lactea (Desm.) Sacc. (1882)	M. violae Potebnia 1910	-	Y	Tomilin (1979); Braun (1998)	NEP	
R. obducens Thüm. (1881)	M. pedicularis (P. Karst.) Lind (1913)	-	N	Savile (1968); Braun (1998)	NEP	Aptroot (2006) could not locate the type but after observing other Scandinavian material states that it belongs to section Caterva.
R. onobrychidis Allesch. (1892)	? M. onobrychidis (Hollós) Tomilin (1968)	-	N	Švarcman (1973); Braun (1998)	NEP	Aptroot (2006) states the type may have been destroyed during the war.
R. sambucina Sacc. (1882)	M. ebulina Petr. (1915)	-	N	Petrak (1915); Tomilin (1979); Aptroot (2006)	NEP	Aptroot (2006) states the isotype in L belongs to section Caterva.

Table 3. (Continued).
Asexual morph ${ }^{1} \quad$ Sexual morph ${ }^{1}$
Sexual link ${ }^{3}$ Notes
Aptroot (2006) states the type belongs
to section Caterva
NEP
NEP
NEP
References
Laibach (1921); Braun
(1998); Aptroot (2006)
Tomilin (1979); Braun
(1998)
Tomilin (1979);
Sivanesan (1984); Petrak
(1940b)
${ }^{1}$ bas.: basionym; syn.: synonym.
${ }^{2}$ CA: Cultures of the Ramularia morph available; Y - Yes, N - No
${ }^{3}$ Sexual link; EP - Experimentally Proven; DB - Doubtfull; NEP - Not Experimentally Proven

Fig. 2. The first of two equally most parsimonious trees obtained from the MAT1-1-1 sequence alignment. Bootstrap supportvalues from 1000 replicates are shown at the nodes. The tree was rooted to Cercospora beticola (GenBank DQ192581). TL=912 steps, $\mathrm{CI}=0.760, \mathrm{RI}=0.919, \mathrm{RC}=0.698, \mathrm{HI}=0.240$. Strains in bold and marked as 'eTy' are ex-types and those marked as'eepTy' are ex-epitypes.

Specimens examined: Belgium, Namur, on leaves of Quercus sp., 7 May 1997, A. Aptroot (CBS 942.97). Netherlands, Utrecht, on dead leaves of Castanea sativa, 23 Feb. 1999, A. Aptroot (CBS 101680); on dead leaves of Quercus robur, Apr. 2003, G. Verkley (CBS H-7949, epitype; ex-epitype culture CBS 113265); on living leaf of Quercus robur, G. Verkley (CBS 113868; CBS 113869; CBS 113870); on fallen leaf of Quercus robur, G. Verkley (CBS 113871); on living leaves of Quercus robur, Sep. 2008, G. Verkley (CBS 115299; CBS 115302); on living leaf of Quercus robur, May 2013 (CBS 115303; CBS 115304); on dead leaf of Quercus robur, Aug. 2002, (CBS 115310; CBS 115311); on Quercus robur, G. Verkley (CBS 117876); on Quercus robur, 18 Jun. 2009, G. Verkley (CBS 117877). South Korea, unknown host, 1 Jan. 2004, H.D. Shin (CPC 11503).

Notes: The link between Ramularia endophylla (Verkley et al. 2004) and Mycosphaerella punctiformis (Starbäck 1889), initially described as Sphaeria punctiformis (Persoon 1794), was experimentally proven by Verkley et al. (2004) with morphological and phylogenetic data. Although the oldest epithet among these two names is 'punctiformis' (Persoon 1794), the name Ramularia punctiformis Sacc. (Saccardo, 1904) is already in use. Several possible epithets

Chapter 3

Fig. 3. The first of nine equally most parsimonious trees obtained from the MAT1-2-1 sequence alignment. Bootstrap support values from 1000 replicates are shown at the nodes. The tree was rooted to Cercospora beticola (GenBank DQ192582).TL $=379$ steps, $\mathrm{CI}=0.736, \mathrm{RI}=0.873, \mathrm{RC}=0.643$, HI $=0.264$. Strains in bold and marked as 'eTy' are ex-types and those marked as 'eepTy' are ex-epitypes. The asterisk (*) represents sequences obtained with the primer combination MAT1-1-1 forward and MAT1-2-1 reverse (Table 2) and the caret (^) represents strains obtained with both the usual primer combination MAT1-2-1 forward and reverse and the unusual primer combination MAT1-1-1 forward and MAT1-2-1 reverse (Table 2). Strains without these symbols represent sequences obtained only with the regular primer combination MAT1-2-1 forward and reverse (Table 2).
can be found among the synonyms proposed by Tomilin (1979) and Aptroot (2006). However, these specimens are often in poor state, contain immature perithecia or represent species never collected or observed after their first description (Aptroot 2006). In addition, several type specimens of other Mycosphaerella species have been found to be indistinguishable from M. punctiformis (Aptroot 2006) and the names represent valid epithets in case this material is recollected and prove to be the same species. With the objective to clarify and stabilize
the taxonomy of this species, we propose that the epithet 'endophylla' is conserved since it represents an unequivocally proven link between sexual and asexual stage of this species, both biologically and phylogenetically.

Ramularia grevilleana (Oudem.) Jørst., Meld. Stat. Plantepatol. Inst. 1: 17 (1945)
Basionym: Cylindrosporium grevilleanum Oudem., Arch. Neerl. Sci. Exact. Nat. 8: 392 (1873), asexual morph [Cylindrosporium sp., in Tulasne \& Tulasne (1863: 288)].
Synonyms: Sphaeria fragariae Tul. \& C. Tul., Ann. Sci. Nat., Bot. 5: 112 (1856), nom. illeg., non Schwein. 1832.
Stigmatea fragariae Tul. \& C. Tul., Select. Fung. Carpol. 2: 288 (1863).
Ramularia fragariae Peck, Ann. Rep. N.Y. State Mus. Nat. Hist.32: 43 (1880).
Sphaerella fragariae (Tul. \& C. Tul.) Sacc., Syll. Fung. 1: 505 (1882).
Mycosphaerella fragariae (Tul. \& C. Tul.) Lindau, Nat. Pflanzenfam., Teil 1, 1(1): 424 (1897). Ramularia punctiformis Sacc., Alaska Exp. Crypt.: 16 (1904).
For further synonyms based on asexual morphs, see Braun (1995: 248).
Specimens examined: Sweden, Uppland, Alsike, on Fragaria ananassa, 4 Oct. 1989, E. Gunnerbeck (CBS 114732 = UPSC 3244). Netherlands, unknown district, host, collector and date (CBS 259.36; CBS 298.34). New Zealand, Auckland, on Fragaria \times ananassa 'Tioga' (CBS 719.84).

Notes: This pathogen is known for causing leaf spot disease in strawberry, both cultivated and wild species, and has a worldwide distribution (Braun 1998). The link between Ramularia grevilleana (Jørstad 1945) and Mycosphaerella fragariae (Lindau 1897) was experimentally proven by Dudley (1889) who observed the ascospores germinating within the ascus inside the perithecium, developing into mycelium that grew out through the perithecium wall and ostiolum, and produced conidia. Since then, most authors have treated this link as reliable and both names have appeared together in several publications (Maas 1984; Crous et al. 2000; Braun \& Pennycook 2003; Kirshner 2009). Ramularia grevilleana (Jørstad 1945) was initially described as Cylindrosporium grevilleanum by Oudemans (1873a). The confused nomenclatural history of this asexual morph name, previously attributed to Tulasne \& Tulasne (1863), was discussed and clarified by Braun \& Pennycook (2003). Mycosphaerella fragariae (Lindau 1897) was first described as Sphaeria fragariae (Tulasne 1856), which is a nom. illeg. (homonym). Stigmatea fragariae Tul. \& Tul. (Tulasne \& Tulasne 1863) is the first valid name for this species but a reallocation of this name to Ramularia is not possible because R. fragariae already exists. Cylindrosporium grevilleanum (Oudemans 1873a) is the oldest available epithet among the synonyms and the basionym of the current name Ramularia grevilleana (Jørstad 1945), which is the nomenclaturally correct denomination for this species.

Ramularia phacae-frigidae (E. Müll. \& Wehm.) Videira \& Crous, comb. nov. MycoBank MB812600
Basionym: Mycosphaerella phacae-frigidae E. Müll. \& Wehm., Sydowia 8: 190 (1954).
Specimens examined: Switzerland, Corveglia, above St. Moritz, from Phaca frigida, 20 Jul. 1953, E. Müller (ex-type culture CBS 234.55).

Notes: When Mycoshaerella phacae-frigidae was originally described (Müller \& Wehmeyer
1954), the ascospores were isolated, producing a Ramularia state that was not named at that time. Based on morphological and molecular evidence we propose a new combination for this name in Ramularia. Culture CBS 234.55 was deposited by E. Müller in the CBS culture collection in May 1955 and is from the same host, locality and date as the original material used for the description of M. phacae-frigidae, which indicates that it is an ex-type strain.

Ramularia unterseheri Videira \& Crous, sp. nov. MycoBank MB812599 Fig. 4.

Etymology. Named after Martin Unterseher, whose research focus on biodiversity and ecology of endophytic fungi, and the person who collected most of the strains of this species currently deposited at the CBS-KNAW collection.

Description: Mycelium consisting of septate, branched, smooth, hyaline hyphae, (1-)1.5-2 $\mu \mathrm{m}$ diam. Conidiophores reduced to conidiogenous cells. Conidiogenous cells smooth, hyaline, arising from hyphae, terminal and lateral, (5.5-)11-14(-20) $\times(1.5-) 2 \mu \mathrm{~m}$, sympodially proliferating with 1-3 apical loci, flattened or protuberant, cylindrical; scars thickened, darkened, refractive, $0.5-1 \mu \mathrm{~m}$ diam. Ramoconidia subcylindrical to oval or ovoid, $0-1$-septate, hyaline, smooth, (8-)10-12(-18) $\times(1.5-) 2-2.5(-3) \mu \mathrm{m}$. Intercalary conidia hyaline, smooth, aseptate, oval to ovoid, $(6-) 8-9(-13) \times(2-) 2.5-3 \mu \mathrm{~m}$, in branched chains of up to six conidia. Terminal conidia hyaline, smooth, aseptate, obovoid to oval (3.5-)5-6(-7) $\times(1.5-) 2-2.5(-3)$ $\mu \mathrm{m}$; hila thickened, darkened, refractive, $0.5-1 \mu \mathrm{~m}$ diam.

Culture characteristics: On MEA surface raised, radially striated, with smooth mycelium, rosy

Fig. 4. Ramularia unterseheri. A. Leaf of Fagus sylvatica (CPC 25740); B. Broken ascoma bearing asci with ascospores (CPC25740); C-F. Germinating ascospores (CPC 25740); G-K. Hypha, conidiophores and conidia (CBS 124884). Scale bars $=10 \mu \mathrm{~m}$.
vinaceus, with undulate margins and reverse cinnamon, reaching 10 mm after 2 wk at $25^{\circ} \mathrm{C}$. On OA surface flat, smooth mycelium, with undulate edge, reaching 15 mm after 2 wk at $25^{\circ} \mathrm{C}$. On PDA radially striated, smooth mycelium, rosy buff with undulate margins, reverse cinnamon, reaching 12 mm after 2 wk at $25^{\circ} \mathrm{C}$.

Specimens examined: Germany, Mecklenburg-Vorpommern, Greifswald, Elisenhain, on leaf litter of Fagus sylvatica, 4 Jan. 2008, M. Unterseher (holotype CBS H-22285, ex-type culture CBS 124884), additional collections with same details (CBS 124844, 124846, 124852, CBS 124867); on living leaves from understorey of Fagus sylvatica, 8 Jan. 2008, M. Unterseher (CBS 124826, CBS 124827, CBS 124830, CBS 124831, CBS 124834, CBS 124836, CBS 124838); without locality, on seed of Fagus sylvatica, date unknown, U. Delfs-Siemer (CBS 355.90); Hessen, Schlangenbad, on leaf of Alnus sp., 2012, W. Quaedvlieg (CPC 25739 = W6); Mecklenburg-Vorpommern, Bornhof, on Lupinus sp., U. Feiler 1993 (CBS 588.93); Bavaria, Munich, room inside a castle, May 2011, unknown collector (CBS 130721). Netherlands, Utrecht, Amelisweerd, on dead leaves of Fagus sylvatica, 25 Apr. 2005, G. Verkley (CBS 117801 = CPC 12091); Amersfoort, dead leaves of Fagus sylvatica, 25 Jul. 2005, G. Verkley (CBS 117807 = CPC 12095); Baarn, Baarnsche Bos, on Tilia sp., 26 Apr. 2004, G. Verkley (CBS $117880=$ CPC 11209, CBS $117881=$ CPC 11211); Baarn, decaying leaves of Acer pseudoplatanus, 26 Apr. 2004, G. Verkley (CBS $117878=$ CPC 11206, CBS $117879=$ CPC 11207); Rhijnauwen forest, decaying leaves of Fagus sylvatica, 17 May 2012, S.I.R. Videira $($ CPC $25740=X 2)$.

Notes: Ramularia unterseheri is a plurivorous species that is often found in Fagus sylvatica leaves in Germany and the Netherlands. It differs from R. vizellae by shorter and narrower ramoconidia $[(8-) 10-12(-18) \times(1.5-) 2-2.5(-3) \mu \mathrm{m}$ versus $(8-) 10-12(-23) \times(2.5-) 3-3.5(-5)$ $\mu \mathrm{m}]$ and longer and narrower terminal conidia $[(3.5-) 5-6(-7) \times(1.5-) 2-2.5(-3)$ versus $4-5$ $(-5.5) \times(2-) 3(-3.5) \mu \mathrm{m}]$. It has been previously isolated from dead overwintered leaves as well as from living leaves (Verkley et al. 2004). In this study, a mycosphaerella-like sexual morph was observed (Fig. 4, A-F) in newly collected samples of overwintered leaves in the Netherlands, but the available material was too scarce to provide a description.

Ramularia vizellae Crous, Persoonia 27: 37 (2011) MycoBank MB560566 Fig. 5.

Specimens examined: France, on fruit of Malus sylvestris, C. Moreau (CBS 367.64). Austria, Graz, Innere Ragnitz, on Sambucus nigra, 12 Oct. 2012, C. Scheuer (CPC 25738 = X31). Germany, Mecklenburg-Vorpommern, Greifswald, Elisenhain, on leaf litter from Fagus sylvatica, 4 Jan. 2008, M. Unterseher (CBS 124861); Hessen, Schlangenbad, on leaf of unidentified plant, W. Quaedvlieg (CPC 25733 = W7); Bavaria, München, on overwintering leaves of Tilia sp., Jul. 1979, A. John (CBS 724.79). Netherlands, in leaf spot caused by Mycosphaerella sp. on Brassica sp. (CBS 324.87); Gelderland, Randwijk, on dead leaf litter of Malus sp. (CBS 115980); Randwijk, on dead leaf litter of Malus sp. (CBS 115981, CBS 115982, CBS 115983, CBS 115984, CBS 116015, CBS 116069); Utrecht, Amelisweerd, on dead leaves of Acer pseudoplatanus, 25 Apr. 2005, G. Verkley (CBS $117799=$ CPC 12089); on dead leaves of Carpinus betulus, 25 Apr. 2005, G. Verkley (CBS $117802=$ CPC 12092); Amersfoort, on dead leaves of Tilia sp., 25 Apr. 2005, G. Verkley (CBS 117806 = CPC 12096); Baarn, Park Kasteel Groeneveld, on decaying leaves of Quercus rubra, 26 Apr. 2004, G. Verkley (CBS $117870=$ CPC 11193), on decaying leaves of Quercus rubra, G. Verkley $($ CBS $117871=$

Fig. 5. Ramularia vizellae. A. Leaf of Carpinus sp. (CPC 25730); B, C. Asci bearing ascospores (CPC 25730). D, E. Germinating ascospores (CPC 25730); F-J. Hypha, conidiophores and conidia (F, G. CPC 25729; H. CBS 117871; I, J. CBS 117799). Scale bars $=10 \mu \mathrm{~m}$.

CPC 11194), on Amelanchier lamarckii, 26 Apr. 2004, G. Verkley (CBS $117872=$ CPC 11197, CBS $117873=$ CPC 11198); Lage Vuursche, on Aesculus hippocastanum, G. Verkley (CBS $117874=$ CPC 11200, CBS $117875=$ CPC 11201), on decaying leaves of Sorbus aucuparia, 26 Apr. 2004, G. Verkley (CBS $117882=$ CPC 11212, CBS $117883=$ CPC 11213); garden, Eemnesserweg 90, on dead leaves of Acer pseudoplatanus, 7 May 1996, H.A. van der Aa (CBS 184.97, CBS 185.97), on Acer pseudoplatanus, 15 Oct. 1968, H.A. van der Aa (CBS 515.69); Baarn, ruderal terrain at Drakenburgerweg, on young leaves of Lotus uliginosus, 18 Jun. 1967, H.A. van der Aa (CBS 369.67); Utrecht Botanical Garden, on overwintered leaves of Corylus sp., 21 Apr. 2012, S.I.R. Videira (CPC 25728 = MP19), on overwintered leaves of Quercus sp., 21 Apr. 2012, S.I.R. Videira (CPC $25729=$ MP20), on overwintered leaves of Carpinus sp., 21 Apr. 2012, S.I.R. Videira (CPC $25730=$ MP21), on overwintered leaves of Quercus sp., 21 Apr. 2012, S.I.R. Videira (CPC $25731=$ MP23), on overwintered leaves of Fagus sp., 21 Apr. 2012, S.I.R. Videira (CPC 25732 = MP24); Utrecht Rhijnauwen park, on Aesculus hippocastanum, 25 Apr. 2005, G. Verkley (CBS $117805=$ CPC 12094), on overwintered leaves of Fagus sp., 17 May 2012, S.I.R. Videira (CPC $25734=$ X1, CPC $25735=$ X3), on fruit scales of Carpinus betulus, 25 Apr 2005, G. Verkley (CBS $117798=$ CPC 12088), on overwintered leaves of Corylus sp., 17 May 2012, S.I.R. Videira (CPC $25736=$ X4), on overwintered leaves of Aesculus hipocastanum, 17 May 2012, S.I.R. Videira (CPC 25737 = X5); Soesterberg 'De Stompert', on dead fallen leaves of Quercus robur, G. Verkley (CBS 113267). South Africa, on leaves of Protea sp. in association with Vizella interupta, 2 May 2010, P.W. Crous (ex-type culture CBS $130601=$ CPC 18283). Switzerland, on Phaseolus sp. (CBS $428.74=$ IHEM 3995). Ukraine, Seversky Donets river, NNP Svjatie Gory, on Acer campestre, 21 Jul. 2008, A. Akulov (CPC 15539, CPC 15541).

Notes: This species was recently described from leaves of Protea sp. from South Africa (Crous et al. 2011) in association with lesions caused by Vizella interrupta in what was deemed as either a chance encounter, as sporulation was not observed in the leaf itself, or an indication
that the species was a secondary invader of the diseased leaf tissue. Ramularia vizellae is now known from numerous hosts in many European countries (Fig. 1, Table 1) as well as in South Africa. A mycosphaerella-like sexual morph was observed in freshly collected samples in the Netherlands (Fig. 5, A-E), but a description is not provided due to the scarcity of material examined.

DISCUSSION

Based on the epitypification of Mycosphaerella punctiformis (now Ramularia endophylla) (Verkley et al. 2004), and the molecular characterization of Ramularia pusilla (type species of Ramularia) by Kirschner (2009), the names Mycosphaerella and Ramularia are confirmed as congeneric. This means it is now possible to separate species closely allied to R. endophylla, such as R. nyssicola (Minnis et al. 2011). Based on the multigene phylogeny generated in this study (Fig. 1), the host range and distribution of R. endophylla has been narrowed, since most of the strains were isolated from Quercus leaves collected in the Netherlands, with the exception of one strain collected from Castanea sativa and another strain collected from Korea.

The heterogeneity observed in the ITS sequences in the past was further accentuated when protein coding genes were added to the analysis and both the Bayesian and parsimony analyses based on five genes in the present study split this species complex into three species: R. endophylla, Ramularia vizellae and the newly described species, Ramularia unterseheri. The identification of these closely related species based on morphology alone is difficult, and the ITS barcode alone is insufficient for species level identification. Based on the individual gene trees, each of the partial gene sequences of actA, rpb2 and gapdh are good phylogenetic markers to use in addition to the ITS barcode since they successfully separate the three species.

The new species described in this study, R. unterseheri (Fig. 4), is only known from the Netherlands and Germany, but with a rather broad host range, namely Acer (Sapindaceae), Alnus (Betulaceae), Fagus (Fagaceae) and Tilia (Malvaceae). The intraspecific variation observed in each clade (Fig. 1) is a result of the variation observed in the gene sequences among the strains. The internal structure of this variation was not consistent between different loci and cryptic speciation is unlikely to account for these genetic differences.

In this study, a mycosphaerella-like sexual morph was observed for both R. unterseheri (Fig. 4) and R. vizellae (Fig. 5) in overwintered leaves collected in the Netherlands. In addition, several of the strains of R. unterseheri were isolated from living material as endophytes in the previous work of Verkley et al. (2004). These observations indicate that these species most likely have a life cycle similar to that of R. endophylla but more work needs to be done in order to fully understand these fungal life-cycles. Even though the life-cycle of R. endophylla is well known (Verkley et al. 2004), some questions still remain unanswered, e.g. the role played by the Asteromella spermatial state in the development of the species.

Sexual reproduction plays an important role in the dynamics and fitness of a species by introducing variability through genetic recombination and the mating type genes are essential for the sexual cycle to occur. The similarity of homologous mating-type genes is usually very low except for the high mobility group and the alpha domains (Turgeon 1998). These conserved domains were successfully used to clarify the phylogenetic relationships among closely related species (Du et al. 2005; Paoletti et al. 2005) but were not effective in resolving the Cercospora apii complex (Groenewald et al. 2006). The MAT1-2-1 tree showed that R. vizellae, R. unterseheri and R. endophylla strains cluster in separate well supported clades and the same can be observed in the MAT1-1-1 tree for the strains of R. endophylla and R. vizellae. In this
study, the mating-type loci were effective in the separation of this complex. The complete characterization of the mating-type genes in Ramularia species has not been performed before and the evidence indicates these species are heterothallic since the strains with a MAT1-1-1 sequence did not amplify the MAT1-2-1 locus and vice-versa. However, transitions between heterothallic (self-sterile) and homothallic (self-fertile) sexual cycles are common among fungi and which represents the ancestral state is unknown. Experimentally proven links in literature between Ramularia and Mycosphaerella are limited (Table 3). There are six cases where the authors reported they observed the complete life cycle of the fungus from ascospore to conidia.

Experimentally confirmed links include R. endophylla/M. punctiformis ($=$ R. endophylla) (Verkley et al. 2004), Ramularia grevilleana/Mycosphaerella fragariae ($=$ R. grevilleana) (Oudemans 1873a; Braun 2003), Ramularia variabilis/Mycosphaerella mariae ($=$ R. variabilis) (Arx 1949), and Ramularia inaequalis/Mycosphaerella hieracii ($=$ R. inaequalis) (Klebahn 1918). In the case of Mycosphaerella nyssicola, no Ramularia morph has been observed, but based on molecular evidence the species belongs in Ramularia, and a new combination ($=R$. nyssicola) was made for this species (Videira et al. 2015a). When Mycosphaerella phacaefrigidae was described (Müller \& Wehmeyer 1954), the ascospores that were isolated produced a Ramularia state in culture that was not named at the time, and hence a new combination is introduced for this name in Ramularia (= Ramularia phacae-frigidae).

Sivanesan (1984) reported the links Ramularia gossypi/M. areola, Ramularia nigromaculans/ Mycosphaerella nigromaculans, and Ramularia urticae/Mycosphaerella superflua, among others. Ramularia gossypii has been reassigned to the genus Ramulariopsis (Braun \& Pennycook 1993) and R. nigromaculans has been excluded from Ramularia based on its pigmented conidia (Braun 1998). Ramularia urticae/M. superflua, and at least eight other links (Table 3), have not been experimentally proven, and await further collections and study.

Other existing links have been considered doubtful since Aptroot (2006) examined the herbarium type specimens of some Mycosphaerella that he considered belonged to Davidiella (Table 3). An interesting case is that of Mycosphaerella nawae, a pathogen causing circular leaf spot of persimmon that was originally reported from Japan (Ikata \& Hitomi 1929) but has now spread worldwide (Berbegal et al. 2013). In Korea, a ramularia-like morph was observed (Kwon \& Park 2004) but its importance during the infection processes was not established (Berbegal et al. 2013). Despite its importance as a plant pathogen, no cultures of this species are available in public culture collections. A recent study by Berbegal et al. (2013) generated two ITS sequences (GenBank GQ465767 \& GQ465768) of M. nawae that, when compared with other dothideomyceteous ITS sequences in NCBI's GenBank, places the species near or in Phaeophleospora within the Mycosphaerellaceae (Quaedvlieg et al. 2014). This link is considered doubtful, awaiting further collections of fresh material.

In conclusion, we have shown that the R. endophylla species complex consists of three species, namely R. endophylla, R. vizellae, and a novel species described in this paper, R. unterseheri. We show that R. vizellae has a much wider host range and geographical distribution than originally assumed and observed its sexual stage. In spite of close to 1000 species names in Ramularia, and more than 10000 species that have been described in Mycosphaerella s. lat., the present study could only confirm six connections in Ramularia, and one new combination was proposed to accommodate R. phacae-frigidae. Additional collections of other names in Mycosphaerella may reveal more species that are true members of Ramularia, but presently the majority appears to belong to other genera (Quaedvlieg et al. 2014). In much of the plant pathology literature the name Mycosphaerella has been applied in a broad morphological and non-phylogenetic sense. For these fungi, the term mycosphaerella-like sexual morph is more
appropriate. In accordance with the newly revised ICN code, the generic name Ramularia has been protected over that of Mycosphaerella and will be applied to this genus in the future.

ACKNOWLEDGEMENTS

This research was supported by the Dutch Ministry of Education, Culture and Science through an endowment of the FES programme 'Making the tree of life work'. We would like to thank Dr. Christian Scheuer from the Karl-Franzens-University for collecting the samples of Verbascum sp. from Austria.

All that glitters is not Ramularia

S.I.R. Videira ${ }^{1,2}$, J.Z. Groenewald ${ }^{1}$, U. Braun ${ }^{3}$, H.D. Shin ${ }^{4}$, P.W. Crous ${ }^{1,2,5}$

${ }^{1}$ CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
${ }^{2}$ Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
${ }^{3}$ Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle (Saale), Germany;
${ }^{4}$ Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea;
${ }^{5}$ Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa

Studies in Mycology 83: 49-163. 2016.

Key words: Barcoding, Cercosporoid, Multilocus phylogeny, Mycosphaerella, Plant pathogen.

Abstract

Ramularia is a species-rich genus that harbours plant pathogens responsible for yield losses to many important crops, including barley, sugar beet and strawberry. Species of Ramularia are hyphomycetes with hyaline conidiophores and conidia with distinct, thickened, darkened, refractive conidiogenous loci and conidial hila, and Mycosphaerella sexual morphs. Because of its simple morphology and general lack of DNA data in public databases, several allied genera are frequently confused with Ramularia. In order to improve the delimitation of Ramularia from allied genera and the circumscription of species within the genus Ramularia, a polyphasic approach based on multilocus DNA sequences, morphological and cultural data were used in this study. A total of 420 isolates belonging to Ramularia and allied genera were targeted for the amplification and sequencing of six partial genes. Although Ramularia and Ramulariopsis proved to be monophyletic, Cercosporella and Pseudocercosporella were polyphyletic. Phacellium isolates clustered within the Ramularia clade and the genus is thus tentatively reduced to synonymy under Ramularia. Cercosporella and Pseudocercosporella isolates that were not congeneric with the ex-type strains of the type species of those genera were assigned to existing genera or to the newly introduced genera Teratoramularia and Xenoramularia, respectively. Teratoramularia is a genus with ramularia-like morphology belonging to the Teratosphaeriaceae, and Xenoramularia was introduced to accommodate hyphomycetous species closely related to Zymoseptoria. The genera Apseudocercosporella, Epicoleosporium, Filiella, Fusidiella, Neopseudocercosporella, and Mycosphaerelloides were also newly introduced to accommodate species non-congeneric with their purported types. A total of nine new combinations and 24 new species were introduced in this study.

Taxonomic novelties: New genera: Apseudocercosporella Videira \& Crous, Epicoleosporium Videira \& Crous, Filiella Videira \& Crous, Fusoidiella Videira \& Crous, Mycosphaerelloides Videira \& Crous, Neopseudocercosporella Videira \& Crous, Teratoramularia Videira, H.D. Shin \& Crous, Xenoramularia Videira, H.D. Shin \& Crous; New combinations: Filiella pastinacae (P. Karst.) Videira \& Crous, Fusoidiella depressa (Berk. \& Broome) Videira \& Crous, Mycosphaerelloides madeirae (Crous \& Denman) Videira \& Crous, Neopseudocercosporella brassicae (Chevall.) Videira \& Crous, Neopseudocercosporella capsellae (Ellis \& Everh.) Videira \& Crous, Ramularia cerastiicola (Crous) Videira \& Crous, Ramularia stellariicola (M.J. Park et al.) Videira, H.D. Shin \& Crous, Sphaerulina chaenomelis (Y. Suto) Videira, U. Braun, H.D. Shin \& Crous, Sphaerulina koreana (Crous et al.) Videira, H.D. Shin \& Crous.; New names: Ramularia alangiicola Videira, H.D. Shin \& Crous, Ramularia veronicicola Videira \& Crous; New species: Acrodontium fagicola Videira \& Crous, Acrodontium luzulae Videira \& Crous, Acrodontium pigmentosum Videira \& Crous, Apseudocercosporella trigonotidis Videira, H.D. Shin \& Crous, Cercosporella catenulata Videira \& Crous, Epicoleosporium ramularioides Videira, H.D. Shin \& Crous, Ramularia euonymicola Videira, H.D. Shin, U. Braun \& Crous, Ramularia gaultheriae Videira \& Crous, Ramularia geraniicola Videira \& Crous, Ramularia malicola Videira \& Crous, Ramularia neodeusta Videira \& Crous, Ramularia osterici Videira, H.D. Shin \& Crous, Ramularia rumicicola Videira, H.D. Shin \& Crous, Ramularia trigonotidis Videira, H.D. Shin \& Crous, Ramularia weberiana Videira \& Crous, Ramulariopsis pseudoglycines Videira, Crous \& Braun, Teratoramularia infinita Videira \& Crous, Teratoramularia kirschneriana Videira \& Crous, Teratoramularia persicariae Videira, H.D. Shin \& Crous, Teratoramularia rumicicola Videira, H.D. Shin \& Crous, Xenoramularia arxii Videira \& Crous, Xenoramularia neerlandica Videira \& Crous, Xenoramularia polygonicola Videira, H.D. Shin \& Crous. Typifications: Epitypifications: Cercosporella gossypii Speg., Cylindrosporium heraclei Oudem., Fusoma inaequale Preuss, Ovularia tovarae Sawada, Ramularia acroptili Bremer, Ramularia aplospora

Speg., Ramularia armoraciae Fuckel, Ramularia beticola Fautrey \& Lambotte, Ramularia geranii Fuckel, Ramularia lamii Fuckel var. lamii, Ramularia pusilla Unger, Ramularia vallisumbrosae Cavara, Ramularia variabilis Fuckel; Neotypifications: Crocysporium rubellum Bonord., Ramularia collo-cygni B. Sutton \& J.M. Waller, Lectotypification: Ramularia kriegeriana Bres.

INTRODUCTION

Ramularia (Unger 1833) is a species-rich genus (1 220 names listed in MycoBank, accessed 6 Nov. 2015) that belongs to the family Mycosphaerellaceae in the order Capnodiales. Ramularia species are mostly phytopathogenic and associated with leaf spots, necrosis or chlorosis, but some species can be saprobic or even mycophilic. The genus was monographed by Braun (1995, 1998) who defined Ramularia as genus of hyphomycetous species with hyaline conidiophores and conidia with distinct, thickened, darkened and refractive conidiogenous loci and conidial hila. Ramularia and allied genera were traditionally described based on the colour (hyaline or pigmented) and the structure of conidiophores (simple or branched), the structure of conidiogenous loci and conidial hila (conspicuous or inconspicuous, by being thickened and darkened or not). Genera with hyaline structures and conspicuous conidial loci include Cercosporella, Hawksworthiana, Neoovularia, Phacellium, Pseudodidymaria, Ramularia and Ramulariopsis, while genera with inconspicuous conidial loci include Monodidymaria, Neoramularia and Pseudocercosporella.

Although these morphological characters have been considered important to define these genera, molecular studies have indicated that they are not always phylogenetically informative, and that the generic concepts need to be revised (Crous et al. 2001b, Verkley et al. 2004, Kirschner 2009). The genus Cercosporella was usually distinguished from Ramularia by having bulging and hyaline conidiogenous loci. However, these characters are minute and difficult to observe with light microscopy, resulting in frequent transfers of species between both genera. Based on 28 S nrDNA sequence data the type species of Cercosporella (C. virgaureae) was shown to cluster in a sister clade to Ramularia s. str. (Kirschner 2009), and two additional characters were observed: Cercosporella has flat conidiogenous loci shaped as a truncated cone and produces cup-shaped appressoria. In contrast, Ramularia has conidiogenous loci with a raised rim with a tall central dome and a crater in between (resembling Cladosporium, see Bensch et al. 2012), and does not form appressoria.

Species of Ramularia have Mycosphaerella sexual morphs, but only a few lifecycles have been experimentally proven, and some species may be asexual holomorphs (Braun 1995, 1998, Verkley et al. 2004, Videira et al. 2015b). Mycosphaerella s. lat. species have been associated with more than 30 genera, including both hyphomycetes and coelomycetes (Mycosphaerellaceae) (Crous 2009). Mycosphaerella s. str., however, was shown to be confined to taxa with Ramularia asexual morphs (Verkley et al. 2004, Crous et al. 2009c, Videira et al. 2015b). In agreement with the new rules for naming of pleomorphic fungi in the International Code of Nomenclature for algae, fungi and plants (ICN; Hawksworth 2011, Hawksworth et al. 2011, Wingfield et al. 2012, Crous et al. 2015b), the older name Ramularia was selected over that of Mycosphaerella (see Videira et al. 2015b for more details), and is included in a list of protected generic names (Kirk et al. 2013, Wijayawardene et al. 2014, Rossman et al. 2015).

The genus Ramularia includes important plant pathogens such as R. collo-cygni and R. beticola that cause severe economic losses to barley and sugar beet crops, respectively. Protecting crops from damage by weeds, animal pests and pathogens is a major prerequisite to increase productivity to meet the global increase in demand for food, feed and bioenergy.

Ramularia collo-cygni is responsible for yield losses of 15-25 \% in winter barley in northern European countries and New Zealand (Cromey et al. 2004). Yield losses in sugar beet due to plant pathogens and pests are estimated in general to be 26% with, and more than 80% without, crop protection (Oerke \& Dehne 2004).

As plant pathogens, some cercosporoid species have shown potential as biocontrol agents of weeds, but no commercial application is yet available. Acroptilon repens and Centaurea solstitiales are both invasive weeds in the eastern USA. The fungi Cercosporella acroptili and Cercosporella centaureicola cause significant damage to A. repens and C. solstitiales, respectively (Berner et al. 2005). Crupina vulgaris is an invasive weed of pastures in the western USA that is susceptible to leaf blight caused by Ramularia crupinae. Myrica faya is considered an invasive plant in Hawaii but, in its natural habitat, is susceptible to Ramularia dieback caused by Phacellium rufibasis ($=$ Ramularia destructiva) (Gardner \& Hodges 1990). The necrotrophic fungus Ramularia rubella is also effective against Rumex obtusifolius, an invasive plant of pastures, by causing severe defoliation, shoot and root weight loss (Zaller 2004).

Plant pathogenic fungi are known to produce toxic metabolites that contribute to symptom development in the host. Some phytotoxins induce the formation of reactive oxygen molecules in the plant cells such as superoxide, hydrogen peroxide or hydroxyl radicals that induce oxidative processes of membrane fatty acids. The phytopathogenic species Ramularia rubella was the first species of this genus observed producing rubellin metabolites (Arnone et al. 1986), a photodynamically active anthraquinone derivative (Heiser et al. 2003). More recently, also Ramularia collo-cygni (Miethbauer et al. 2003) and the mycophilic species R. uredinicola (Khodaparast \& Braun 2005) were documented as producing rubellins, with R. rosea also being a candidate for rubellin biosynthesis. Although a few Ramularia species use the photodynamically active rubellins as non-host-specific phytotoxins, most of the species in this genus are unable to produce these compounds (Miethbauer et al. 2006).

Given the importance of the genus Ramularia to agriculture as outlined above, the aims of the present study were: (i) to resolve the phylogenetic placement of Ramularia and allied genera within the order Capnodiales, and (ii) to apply a polyphasic approach based on multilocus DNA sequence, morphological and cultural data to delimit species within the genus Ramularia and allied genera.

MATERIALS AND METHODS

Isolates

Isolates included in this study were obtained from the culture collection of the CBS-KNAW Fungal Biodiversity Centre (CBS), Utrecht, the Netherlands, from the working collection of Pedro Crous (CPC), housed at CBS, or were freshly isolated from a range of different plant hosts (Table 1). Single-conidium and ascospore cultures were obtained using the techniques described for species of Mycosphaerella and its asexual morphs (Crous et al. 1991, Crous 1998). Representative cultures of the new species delineated in this study were deposited in the CBS culture collection.

DNA extraction, amplification and sequencing

Fungal mycelia of strains (Table 1) were harvested with a sterile scalpel and the genomic DNA isolated using the UltraClean ${ }^{\mathrm{TM}}$ Microbial DNA Isolation Kit (MoBio Laboratories, Inc., Solana

Beach, CA, USA) following the manufacturers' protocols. The DNA was initially targeted for the amplification and sequencing of 11 partial nuclear genes: 28S nrRNA gene (LSU), internal transcribed spacer regions and intervening 5.8 S nrRNA gene (ITS) of the nrDNA operon, actin (actA), translation elongation factor 1- α (tef1- α), histone H3 (his3), glyceraldehyde-3-phosphate dehydrogenase (gapdh), RNA polymerase II second largest subunit (rpb2), calmodulin (cmdA), β-tubulin (tub2), chitin-synthase 1 (chs-1) and a gene encoding a minichromosome maintenance protein (mcm 7). The primers employed for PCR amplification of each partial gene region are listed in Table 2, with the respective annealing temperatures used. During the course of this study, new primers were designed to amplify rpb2. The primer positions based on GenBank accession KT216537.1 are: Rpb2-F4 34-56, Rpb2-F1 247-266, Rpb2-R1 937-959. A new forward primer was also designed for the amplification of gapdh and its position based on GenBank accession KJ504580.1 is: Gapdh-F1 14-32. The PCR amplifications were performed on a GeneAmp ${ }^{\text {® }}$ PCR System 9700 (Applied Biosystems, Foster City, CA, USA). The PCR mixtures consisted of $1 \mu \mathrm{~L}$ genomic DNA, $1 \times \mathrm{NH} 4$ reaction buffer (Bioline, Luckenwalde, Germany), $2 \mathrm{mM} \mathrm{MgCl}_{2}$, $40 \mu \mathrm{M}$ of each dNTP, $0.2 \mu \mathrm{M}$ of each primer and 0.5 U Taq DNA polymerase (Bioline) in a total volume of $12.5 \mu \mathrm{~L}$. The PCR mixtures for his3, gapdh, rpb2, cmdA and tub2 contained $2 \mu \mathrm{~L}$ genomic DNA. The general PCR conditions were: initial denaturation ($94^{\circ} \mathrm{C}, 3 \mathrm{~min}$); 35 cycles amplification [denaturation $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$; locus-specific annealing temperature (Table 2), 30 s ; extension $72{ }^{\circ} \mathrm{C}, 45 \mathrm{~s}$, and final extension ($72{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$). For gapdh and his 3,40 amplification cycles were used. To obtain the partial $r p b 2$, a touchdown PCR protocol was used: initial denaturation ($94^{\circ} \mathrm{C}, 3 \mathrm{~min}$), 5 amplification cycles (denaturation $94^{\circ} \mathrm{C}, 45 \mathrm{~s}$; annealing $60^{\circ} \mathrm{C}$, 45 s ; extension $72{ }^{\circ} \mathrm{C}, 2 \mathrm{~min}$), 5 amplification cycles (denaturation $94^{\circ} \mathrm{C}, 45 \mathrm{~s}$; annealing 58 ${ }^{\circ} \mathrm{C}$, 45 s ; extension $72^{\circ} \mathrm{C}, 2 \mathrm{~min}$), 30 amplification cycles (denaturation $94^{\circ} \mathrm{C}, 45 \mathrm{~s}$; annealing $54{ }^{\circ} \mathrm{C}, 45 \mathrm{~s}$; extension $72{ }^{\circ} \mathrm{C}, 2 \mathrm{~min}$) and a final extension ($72{ }^{\circ} \mathrm{C}, 8 \mathrm{~min}$). In a few cases that double bands were obtained in the amplification of gapdh and his 3 , the band of correct size was purified from the agarose gel using the QIAquick ${ }^{\circledR}$ ording to the manufacturer's instructions. These purified samples underwent a second round of PCR amplification following the protocol originally used to amplify that fragment. The amplified DNA fragments were sequenced in both directions using the PCR primers and the BigDye ${ }^{\circledR}$ Terminator v. 3.1 Cycle Sequencing Kit (Applied Biosystems Life Technologies, Carlsbad, CA, USA). DNA sequencing amplicons were purified through Sephadex G-50 Superfine columns (Sigma-Aldrich, St. Louis, MO) in MultiScreen HV plates (Millipore, Billerica, MA). Purified sequence reactions were analysed on an Applied Biosystems 3730xl DNA Analyzer (Life Technologies, Carlsbad, CA, USA). The DNA sequences generated were analysed and consensus sequences were computed using the BioNumerics v. 4.61 software package (Applied Maths, St-Martens-Latem, Belgium).

Phylogenetic analyses

The generated sequences for each gene were aligned with the online version of MAFFT v. 7 (Katoh \& Standley 2013). The alignments were manually checked and improved where necessary using MEGA v. 5 (Tamura et al. 2011) and were concatenated with Mesquite v. 2.75 (Maddison \& Maddison 2011). From the strains listed in Table 1, only those with the complete dataset of genes were used in the subsequent phylogenetic analyses, with the exception of R. pusilla (missing gapdh sequence) and R. primulae (missing rpb2 sequence), in which cases they were considered as missing data in the alignments. The phylogenetic methods used in this study included Neighbour-Joining and Parsimony analyses, both performed with PAUP v. 4.0b10 (Swofford 2003), a Maximum-Likelihood analysis performed with RAxML v. 8

Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	actA	tef1- α	gapdh	rpb2	his3	cmdA	tub2	chs-1
Acrodontium crateriforme	CBS 144.33 ${ }^{\text {T}}$; ATCC 15679; MUCL 15748; MUCL 8978		Associated with Tuberculina maxima	Netherlands	-	KX286952	FN666565	-	-	-	KX288399	-	-	-	-
	CBS 151.58; MUCL 15750		Human sputum	Netherlands	-	KX286953	KX287266	-	-	-	KX288400	-	-	-	-
	CBS 985.70		Fraxinus excelsior	UK, Westmorland	J.C. Frankland	KX286954	KX287267	-	-	-	KX288401	-	-	-	-
	CBS 840.71		Foodstuff	Netherlands	-	KX286955	KX287268	-	-	-	KX288402	-	-	-	-
	CBS 842.71		Citrus sp.	Indonesia, Java	J.H. van Emden	KX286956	KX287269	-	-	-	KX288403	-	-	-	-
	CPC 11509	P. fraxini	Fraxinus rhynchophylla	South Korea	H.D. Shin	GU214682	GU214682	(GU320413)	(GU384425)	-	KX288404	KX288727	KX289011	-	-
	CPC 11519	Pseudocercosporella Agrimonia pilosa sp.		South Korea	H.D. Shin	KX286957	KX287270	KX287558	-	KX288123	KX288405	KX288728	KX289012	-	-
	CPC 25894		Ranunculus sp.	Germany	W. Quaedvlieg	KX286958	KX287271	KX287559	-	KX288124	KX288406	KX288729	-	-	-
	CPC 25895		Betula sp.	Germany	W. Quaedvlieg	KX286959	KX287272	KX287560	-	-	KX288407	KX288730	-	-	-
	CBS 137975; CPC 22172	A. neolitsiae	Neolitsea australiensis	Australia	B.A. Summerell	KJ869184	KJ869127	-	-	-	KX288408	-	-	-	-
A. fagicola	CBS 714.79 ${ }^{\text {r }}$	Acrodontium sp.	Fagus sylvatica	Germany	-	KX286960	-	-	-	-	KX288409	-	-	-	-
A. luzulae	CBS 841.71	A. crateriforme	Puccinia sp., on leaf of Carex sp.	Netherlands	-	KX286961	KX287273	-	-	-	KX288410	-	-	-	-
	CBS 839.71 ${ }^{\text {T }}$	A. crateriforme	Luzula sylvatica	UK, England	-	KX286962	KX287274	-	-	-	KX288411	-	-	-	-
A. pigmentosum	CBS 111111 ${ }^{\text {T }}$	A. griseum	Outdoor air	Finland	S. Haatainen	KX286963	KX287275	-	-	-	KX288412	-	-	-	-
Apseudocercosporella trigonotidis	CPC 10865	Pseudocercosporella sp.	Trigonotis peduncularis	South Korea	H.D. Shin	KX286964	KX287276	KX287561	-	-	KX288413	-	-	-	-
	CBS 131890 ${ }^{\text {T }}$; CPC 10864	Pseudocercosporella sp.	Trigonotis peduncularis	South Korea	H.D. Shin	JQ324972	GU269858	(JQ325029)	(GU384569)	-	KX288414	-	-	-	-
Caryophylloseptoria lychnidis	CBS 109102		Silene pratensis	Austria	G. Verkley	KF251793	KF251289	(KF253598)	(KF253237)	-	KX348048	-	(KF253952)	(KF252771)	-
Caryophylloseptoria pseudolychnidis	CBS 128614; KACC 42904; SMKC 22691		Lychnis cognata	South Korea	-	KF251794	KF251290	(KF253599)	(KF253238)	-	KX348049	-	(KF253953)	(KF252772)	-
Cercospora campi-silii	$\begin{aligned} & \text { CBS 132625; } \\ & \text { CPC } 14585 \end{aligned}$		Impatiens nolitangere	South Korea	H.D. Shin	KX286965	JX143561	(JX143069)	(JX143315)	-	KX288415	(JX142577)	(JX142823)	-	-
Cercospora cf. chenopodii	$\begin{aligned} & \text { CBS 132677; } \\ & \text { CPC } 15599 \end{aligned}$	Ce. chenopodii	Chenopodium sp.	Mexico	M. de Jesús Yáñez-Morales	KX286966	JX143573	(JX143083)	(JX143329)	-	KX288416	(JX142591)	(JX142837)	-	-
	CPC 12450	Pa. dubia	Chenopodium ficifolium	South Korea	H.D. Shin	KX286967	JX143574	(JX143084)	(JX143330)	-	KX288417	(JX142592)	(JX142838)	-	-

Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	actA	tef1- α	gapdh	rpb2	his3	cmdA	tub2	chs-1
Ce. dubia	CPC 15600	Cercosporella sp.	Chenopodium sp.	Mexico	M. de Jesús Yáñez-Morales	KX286968	KX287277	-	-	-	KX288418	-	-	-	-
Ce. sojina	CBS 132615^{NT}; CPC 11353		Glycine soja	South Korea	H.D. Shin	KX286969	JX143659	(JX143173)	(JX143419)	-	KX288419	(JX142681)	(JX142927)	-	-
Ce. sorghi	$\begin{aligned} & \text { CBS 478.92; } \\ & \text { INIFAT } \\ & \text { C91/204 } \end{aligned}$	Ramulispora sorghi	-	-	-	KX286970	KX287278	-	-	-	KX288420	-	-	-	-
Cercospora sp.	CBS 220.31	Pa.personata	-	-	-	KX286971	KX287279	-	-	-	KX288421	-	-	-	-
Cercospora sp.	CPC 11422	Pa. sojina	Glycine soja	South Korea	H.D. Shin	KX286972	KX287280	-	-	-	KX288422	-	-	-	-
Cercosporella dolichandrae	$\begin{aligned} & \text { CBS } \\ & \mathbf{1 3 8 1 0 1}^{\text {¹}} ; \text { CPC } \\ & 22948 \end{aligned}$		Dolichandra unguiscati	South Africa	A. King	KJ869197	KJ869140	KX287562	-	-	KX288423	-	-	-	-
C.catenulata	CBS 355.73 ${ }^{\text {T }}$	R. deusta var. alba	Phaseolus vulgaris	sRwanda	D. Froment	KX286973	KX287281	KX287563	-	-	KX288424	KX288731	KX289013	-	-
C. virgaureae	CPC 11456		Erigeron annuus	South Korea	H.D. Shin	KX286974	-	KX287564	KX287838	KX288125	KX348050	KX288732	KX289014	-	-
	CPC 11457		Erigeron annuus	South Korea	H.D. Shin	KX286975	KX287282	KX287565	KX287839	KX288126	KX288425	KX288733	KX289015	-	-
	CPC 11460		Erigeron annuus	South Korea	H.D. Shin	KX286976	KX287283	KX287566	KX287840	KX288127	KX288426	KX288734	KX289016	-	-
	CPC 11461		Erigeron annuus	South Korea	H.D. Shin	KX286977	KX287284	KX287567	KX287841	-	KX288427	KX288735	KX289017	-	-
	CPC 10286		Erigeron annuus	South Korea	H.D. Shin	KX286978	KX287285	KX287568	KX287842	KX288128	KX288428	KX288736	KX289018	-	-
	CPC 10287		Erigeron annuus	South Korea	H.D. Shin	KX286979	KX287286	KX287569	KX287843	KX288129	KX288429	KX288737	KX289019	-	-
	CPC 10288		Erigeron annuus	South Korea	H.D. Shin	KX286980	KX287287	KX287570	KX287844	-	KX288430	KX288738		-	-
	CBS 113304		Erigeron annuus	-	H.D. Shin	KF251805	GU214658	(KF253610)	(KF253249)	KX288130	KX348051	KX288739	(KF253964)		-
	CPC 19492	Cercosporella sp.	Conyza canadensis	sBrazil	B.S. Vieira	KX286981	KX287288	KX287571	KX287845	KX288131	KX288431	KX288740	KX289020	-	-
Cladosporium cladosporioides	CBS $112388{ }^{\text {NT }}$		Indoor air	Germany	Ch. Traumann	KX286982	HM148003	(HM148490)	(HM148244)	-	KX288432	-	-	-	-
Epicoleosporium ramularioides	CBS 141103 $^{\text {T }}$; CPC 10672	R. coleosporii	Coleosporium phellodendrion Phellodendron amurense	South Korea	H.D. Shin	GU214688	GU214688	-	KX287846	-	KX288433	-	-	-	-
	CPC 10673	R. coleosporii	Coleosporium phellodendrion Phellodendron amurense	South Korea	H.D. Shin	X	KX287289	-	KX287847	-	KX288434	-	-	-	KX289242
Dissoconium aciculare	CBS 204.89		Astragalus sp.	Germany	T. Hijwegen	GU214419	AY725520	-	-	-	KX288435	-	-	-	-
Dothistroma pini	CBS 121005; CMW 24852		Pinus pallasiana	Russia	T.S. Bulgakov	KF251659	KF251155	(JX902075)	(KF253115)	-	KX348052	-	(JX901514)	(KF252653)	-
	CBS 116486		Pinus nigra	USA, Michig	n G. Adams	JX901823	JX901735	(JX902070)	(JX901621)	-	KX348053	-	(JX901509)	(JX902192)	-

(JX901515) (JX902198)	
(KF253972)	(KF252788)
(KF253980)	(KF252803)

3

KX288135	KX288440
KX288136	KX288441
KX288137	KX288442
-	KX348057
KX288138	KX288443
KX288139	KX288444
KX288140	KX288445

(KR232413)-

gapdh	rpb2
-	KX348054
-	KX348055
-	KX348056

KX288741 -
KX288742 -
KX288743 KX
KX289021
KX288132 KX288437
KX288133 KX288438
KX288134 KX288439
$\begin{array}{lll}\text { KX288135 } & \text { KX288440 } \\ \text { KX288136 } & \text { KX288441 } \\ & \\ \text { KX288137 } & \text { KX288442 }\end{array}$
(KF903109)

(KR232411) (KR232409)
$\begin{array}{lllll}\text { KF251808 } & \text { KF251304 } & \text { (KF253613) } & \text { (KF253252) } \\ \text { KX286991 } & \text { KX287293 } & \text { KX287582 } & \text { KX287857 }\end{array}$
KX287857
(KF253614) (KF253253)
KX286992 DQ303091 (KF253616) KX287858 KX286993 KX287294 KX287583 KX287859

 USA, Illinois J. Batzer
USA, Michigan G. Sundin
USA, Missouri J. Batzer

Slovenia	J. Frank
USA, Illinois	J. Batzer
USA, Georgia	M. Wheele
USA, Illinois	J. Batzer

KX287851
KX287852
KX287853

KX288446
KX348058
KX288447
$\begin{array}{lr}\text { - } & \text { KX348059 } \\ - & \text { KX288448 } \\ \text { KX288141 } & \text { KX288449 }\end{array}$
act $A \quad$ tef1- α

$\stackrel{\sim}{n}$
JX901741
or

GU570535
KX287290

KX286986 KX287291
FJ425201
KX286987 KX287292
FJ031989 FJ425196

 KX286989 AY853188 KX286990 AY853189 KR232405 KR232407

Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	act A	tef1- α	gapdh	rpb2	his3	cmd A	tub2	chs-1
Ps. metrosideri	CBS 114294	P. metrosideri	Metrosideros excelsa	New Zealand	-	KX286999	KX287301	-	-	-	KX288456	- -	-	-	-
Ps. myopori	CBS 114644	Cercospora sp.	Myoporum laetum	New Zealand	-	KX287000	KX287302	-	-	-	KX288457	- -	-	-	-
Ps.norchiensis	CBS 120738 ${ }^{\text {T}}$; CPC 13049		Eucalyptus sp.	Italy	W. Gams	GU253780	KF901665	(KF903531)	(GU384464)	-	KX348073	-	(KF902633)	(KF902906)	-
Ps. pistacina	CPC 23118	Pseudocercosporalike sp.	Pistacia vera	Turkey	K. Sarpkaya	KF442674	KF442647	-	KF442637	-	KX348074	- -		(KF442733)	-
Ps. robusta	CBS 111175 ${ }^{\text {² }}$; CMW 5151; CPC 1269		Eucalyptus robur	Malaysia	M.J. Wingfield	KF902020	KF442500	(JX902150)	(JX901694)	-	KX348075	-	(KF902640)	(KF442463)	-
Pseudocercospora sp.	CPC 19535	Cercosporella sp.	Eichhornia azurea	Brazil	D.J. Soares	KX287001	KX287303	-	-	-	KX288458	- -	-	-	-
	CBS 113386	Mycovellosiella sp.	Chromolaena odorata	Guatemala	M.J. Morris	KX287002	DQ676532	-	-	-	KX288459	(DQ676557)		-	-
	CPC 19537	Cercosporella sp.	Eichhornia azurea	Brazil	D.J. Soares	KX287003	KX287304	-	-	-	KX288460	- -	-	-	-
	$\begin{aligned} & \text { CBS 110780; } \\ & \text { CPC } 204 \end{aligned}$	Pseudocercosporella sp.	Syzygium cordatum	South Africa	P.W. Crous	KX287004	KX287305	-	-	-	KX288461	- -	-	-	-
Ps. vitis	CBS 132012; CPC 11595		Vitis vinifera	South Korea	-	KF902011	KF901669	(KF903603)	(GU384541)	-	KX348076	-	(KF902649)	(KF902927)	-
Pseudocercosporella bakeri	CBS 119488; Lynfield 1252		Ipomoea indica	New Zealand	C.F. Hill	KX287005	KX287306	KX287586	KX287862	-	KX288462	- -	-	-	-
	$\begin{aligned} & \text { CBS } \\ & \mathbf{1 2 5 6 8 5} 5^{\text {ET } ; ~ C P C ~} \\ & 17570 \end{aligned}$		Ipomoea aquatica	Laos	P. Phengsintham	GU570553	GU570542	KX287587	KX287863	-	KX288463	KX288752	-	-	-
Ramichloridium apiculatum	CBS 400.76; IMI 088021		Soil	Pakistan	-	EU041851	EU041794	-	-	-	KX348077	- -	-	-	-
	CBS 156.59 ${ }^{\text {T }}$; ATCC 13211; IMI 100716; JCM 6972; MUCL 15753; MUCL 7991; QM 7716		Forest soil	USA, Georgia	-	EU041848	EU041791	-	-	-	-	- -	-	-	-
Ramichloridium sp.	CPC 12310	Pseudocercosporella sp.	Vicia amurensis	South Korea	H.D. Shin	GU214687	GU214687	-	-	-	KX288464	-	-	-	-
Ramularia abscondita	CBS 114727; UPSC 3341		Arctium tomentosum	Sweden	E. Gunnerbeck	KX287006	KX287307	KX287588	KX287864	KX288143	KX288465	KX288753	KX289026	KX289126	-
R. acris	CPC 25898		Ranunculus acris	Netherlands	S.I.R. Videira	KX287007	KX287308	KX287589	KX287865	KX288144	KX288466	KX288754	-	-	-
	CPC 25899		Ranunculus acris	Netherlands	S.I.R. Videira	KX287008	KX287309	KX287590	KX287866	KX288145	KX288467	KX288755	-	-	-
	CPC 25900		?Ranunculussp.	Netherlands	U. Damm	KX287009	KX287310	KX287591	KX287867	KX288146	KX288468	KX288756	-	-	-
	CBS 109794	R. didyma var. didyma	Ranunculus sp.	Netherlands	G. Verkley	KX287010	KX287311	KX287592	KX287868	KX288147	KX288469	KX288757	-	KX289127	-

Table 1.															
Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	act A	tefl- α	gapdh	$r p b 2$	his3	cmdA	tub2	chs-1
R. acroptili	CPC 18723	Ramularia sp.	Cynara cardunculus	USA, California	L. Davenport	KX287011	KX287312	KX287593	KX287869	KX288148	KX288470	KX288758	-	KX289128	-
	CPC 18724	Ramularia sp.	Cynara cardunculus	USA, California	L. Davenport	KX287012	KX287313	KX287594	KX287870	KX288149	KX288471	KX288759	-	KX289129	-
	CBS $\begin{aligned} & \mathbf{1 2 0 2 5 2}^{\mathrm{ET}} ; 98- \\ & 001 \end{aligned}$		Acroptilon repens	Turkey	R. Sobhian	GU214689	GU214689	KX287595	KX287871	KX288150	KX288472	KX288760	KX289027	-	-
	CBS 120253; 04-011	C. centaureicola	Centaurea solstitialis	Greece	D. Berner	EU019257	EU019257	KX287596	KX287872	KX288151	KX288473	KX288761	KX289028	KX289130	-
R. actinidiae	CPC 11674*	Ramularia sp.	Actinidia polygama	South Korea	H.D. Shin	KX287013	KX287314	-	-	-	-	-	-	-	-
	CPC 11675	Ramularia sp.	Actinidia polygama	South Korea	H.D. Shin	KX287014	KX287315	KX287597	KX287873	KX288152	KX288474	KX288762	-	-	-
R. agastaches	CPC 10819	R. lamii	Agastache rugosa	South Korea	H.D. Shin	KX287015	KX287316	KX287598	KX287874	KX288153	KX288475	KX288763	-	KX289131	-
	CPC 10820	R. lamii	Agastache rugosa	South Korea	H.D. Shin	KX287016	KX287317	KX287599	KX287875	KX288154	KX288476	KX288764	KX289029	KX289132	-
	CPC 10821	R. lamii	Agastache rugosa	South Korea	H.D. Shin	KX287017	KX287318	KX287600	KX287876	KX288155	KX288477	KX288765	KX289030	KX289133	-
R. agrimoniae	CPC 11450	Ramularia sp.	Agrimonia pilosa	South Korea	H.D. Shin	KX287018	KX287319	KX287601	KX287877	KX288156	KX288478	KX288766	-	KX289134	-
	CPC 11451	Ramularia sp.	Agrimonia pilosa	South Korea	H.D. Shin	KX287019	KX287320	KX287602	KX287878	KX288157	KX288479	KX288767	-	KX289135	-
	CPC 11452	Ramularia sp.	Agrimonia pilosa	South Korea	H.D. Shin	KX287020	KX287321	KX287603	KX287879	KX288158	KX288480	KX288768	-	KX289136	-
	CPC 11651		Agrimonia pilosa	South Korea	H.D. Shin	KX287021	KX287322	KX287604	KX287880	KX288159	KX288481	KX288769	-	KX289137	KX289243
	CPC 11652		Agrimonia pilosa	South Korea	H.D. Shin	KX287022	KX287323	KX287605	KX287881	KX288160	KX288482	KX288770	-	KX289138	-
	CPC 11653		Agrimonia pilosa	South Korea	H.D. Shin	KJ504743	KJ504784	KJ504448	KJ504699	KJ504567	KJ504655	KJ504611	-	KJ504481	-
R. alangiicola	CPC 10299	Ph. alangii	Alangium platanifolium var. macrophylum	South Korea	H.D. Shin	KX287023	KX287324	-	KX287882	KX288161	KX288483	KX288771	-	-	-
R. aplospora	CBS 545.82 ${ }^{\text {ET }}$	Cladosporium sp.	Mildew on Alchemilla vulgaris	Germany	-	KP894110	EU040238	KP894325	KP894435	KP894545	KP894656	KP894767	KP894878	KP894965	-
	CBS 109120		Alchemilla vulgaris	Austria	G. Verkley	KP894108	KP894217	KP894323	KP894433	KP894543	KP894654	KP894765	KP894876	-	-
	CBS 109121		Alchemilla vulgaris	Austria	G. Verkley	KX287024	KX287325	KX287606	KX287883	KX288162	KX288484	KX288772	KX289031	-	-
	CBS 237.73; CCM F-367		Alchemilla xanthochlora	former Czechoslovakia		KX287025	KX287326	KX287607	KX287884	KX288163	KX288485	KX288773	KX289032	KX289139	-
	CBS 109013		Alchemilla vulgaris	Austria	G. Verkley	KX287026	KX287327	KP894322	KX287885	KX288164	KX288486	KX288774	KX289033	KX289140	-
	CBS 109014		Alchemilla vulgaris	Austria	G. Verkley	KP894107	KP894216	KP894322	KP894432	KP894542	KP894653	KP894764	KP894875	-	-

Table 1. (Con															
Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	actA	tef1- α	gapdh	rpb2	his3	cmd A	tub2	chs-1
	CBS 114118; UPSC 2679		Alchemilla vulgaris	Sweden	E. Gunnerbeck	KP894109	KP894218	KP894324	KP894434	KP894544	KP894655	KP894766	KP894877	-	-
R. archangelicae	CBS 108991		Angelica sylvestri	s Austria	G. Verkley	KX287027	KX287328	KX287608	KX287886	KX288165	KX288487	KX288775	KX289034	-	-
	CBS 108992		Angelica sylvestr	s Austria	G. Verkley	KX287028	KX287329	KX287609	KX287887	KX288166	KX288488	KX288776	KX289035	-	-
	CBS 109011		Angelica sylvestri.	is Austria	G. Verkley	KX287029	KX287330	KX287610	KX287888	KX288167	KX288489	KX288777	KX289036	-	KX289244
	CBS 109012		Angelica sylvestri	s Austria	G. Verkley	KX287030	KX287331	KX287611	KX287889	KX288168	KX288490	KX288778	KX289037	-	KX289245
	CBS 288.49	M. rubella	Angelica sylvestri	s Austria	-	KX287031	AY490767	KX287612	KX287890	KX288169	KX288491	KX288779	KX289038	-	-
R. armoraciae	CBS 241.90 ${ }^{\text {ET }}$		Armoracia rusticana	Germany	S. Petzoldt	KX287032	KX287332	KX287613	KX287891	KX288170	KX288492	KX288780	-	-	-
	CBS 253.28		Armoracia rusticana	Netherlands	-	KX287033	KX287333	KX287614	KX287892	KX288171	KX288493	KX288781	-	KX289141	KX289246
R. asteris	CBS 131.21; ATCC 44003		Aster tripolium	Netherlands	-	KX287034	KX287334	KX287615	KX287893	KX288172	KX288494	KX288782	KX289039	KX289142	-
R. bellunensis	CBS 118417		Argyranthemum frutescens	New Zealand	-	KX287035	KX287335	KX287616	KX287894	KX288173	KX348078	KX288783	-	-	-
	CBS 116.43		Chrysanthemum frutescens	Netherlands	-	KX287036	KX287336	KX287617	KX287895	KX288174	KX288495	KX288784	-	-	-
R. beticola	CPC 30065		Beta vulgaris	Denmark	A.L. Hansen	KX287037	KX287337	KX287618	KX287896	KX288175	KX288496	KX288785	KX289040	-	-
	$\begin{aligned} & \text { CBS 141109 } \\ & \text { CPC } 30066 \end{aligned}$		Beta vulgaris	France	A. Champeil	KX287038	KX287338	KX287619	KX287897	KX288176	KX288497	KX288786	KX289041	-	-
	CPC 30067		Beta vulgaris	Netherlands	S.I.R. Videira	KX287039	KX287339	KX287620	KX287898	KX288177	KX288498	KX288787	KX289042	-	-
	CPC 30063		Beta vulgaris	Netherlands	S.I.R. Videira	KX287040	KX287340	KX287621	KX287899	KX288178	KX288499	KX288788	KX289043	-	-
	CPC 30064		Beta vulgaris	Netherlands	-	KX287041	KX287341	KX287622	KX287900	KX288179	KX288500	KX288789	KX289044	-	-
	CBS 341.29	R. betae	-	Germany	-	KX287042	KX287342	KX287623	KX287901	KX288180	KX288501	KX288790	KX289045	-	-
	CBS 113540; UPSC 1612		Beta vulgaris	Sweden	O. Constantines	uKX287043	KX287343	KX287624	KX287902	KX288181	KX288502	KX288791	KX289046	-	-
	CBS 151.67		Beta vulgaris	Switzerland	-	KX287044	KX287344	KX287625	KX287903	KX288182	KX288503	KX288792	KX289047	-	-
R. bosniaca	$\begin{aligned} & \text { CBS 123880; } \\ & \text { V6024.2 } \end{aligned}$	Ramularia sp.	Scabiosa ochroleuca	Czech Repub	c G. Verkley	KX287045	KX287345	KX287626	KX287904	KX288183	KX288504	KX288793	-	KX289143	-
	$\begin{aligned} & \text { CBS 123881; } \\ & \text { V6024.1 } \end{aligned}$	Ramularia sp.	Scabiosa ochroleuca	Czech Repub	c G. Verkley	KX287046	KX287346	KX287627	KX287905	KX288184	KX288505	KX288794	-	KX289144	-
R. buniadis	CBS 114301; UPSC 2718		Bunias orientalis	Sweden	E. Gunnerbeck	KX287047	KX287347	KX287628	KX287906	KX288185	KX288506	KX288795	KX289048	KX289145	-
R. calcea	CBS 101612		Symphytum sp.	Germany	G. Arnold	KP894111	KP894219	KP894326	KP894436	KP894546	KP894657	KP894768	KP894879	KP894966	-
	CBS 101613		Symphytum sp.	Germany	G. Arnold	KP894112	KP894220	KP894327	KP894437	KP894547	KP894658	KP894769	-	KP894967	-
	CBS 114442; UPSC 2727	R. lactea	Viola hirta	Sweden	E. Gunnerbeck	KP894122	KP894229	KP894337	KP894447	KP894557	KP894668	KP894779	KP894884	KP894972	-
$\underline{\text { R. carneola }}$	CBS 108975		Scrophularia nodosa	Netherlands	G. Verkley	KX287048	KX287348	KX287629	KX287907	KX288186	KX288507	KX288796	KX289049	KX289146	-

Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	actA	tef1- α	gapdh	$r p b 2$	his3	cmdA	tub2	chs-1
	CBS 108976		Scrophularia nodosa	Netherlands	G. Verkley	KX287049	KX287349	KX287630	KX287908	KX288187	KX288508	KX288797	KX289050	KX289147	KX289247
	CBS 108977		Scrophularia nodosa	Netherlands	G. Verkley	KX287050	KX287350	KX287631	KX287909	KX288188	KX288509	KX288798	KX289051	KX289148	-
	CBS 108978		Scrophularia nodosa	Netherlands	G. Verkley	KX287051	KX287351	KX287632	KX287910	KX288189	KX288510	KX288799	KX289052	KX289149	-
	CBS 109847		Scrophularia nodosa	Netherlands	G. Verkley	KX287052	KX287352	KX287633	KX287911	KX288190	KX288511	KX288800	KX289053	KX289150	-
R. cerasticola	$\begin{aligned} & \text { CBS } 115913^{\mathrm{T}} ; \\ & \text { CPC } 11290 \end{aligned}$	M. cerasticola	Cerastium semidecandrum	Netherlands	A. Aptroot	KF251727	KF251224	KX287634	KF253180	KX288191	KX348079	KX288801	-	-	-
R. chamaedryos	CBS 116577; UPSC 2322		Veronica chamaedrys	Sweden	E. Gunnerbeck	KX287053	KX287353	KX287635	KX287912	KX288192	KX288512	KX288802	KX289054	-	-
	CBS 113307	Ramularia sp.	Veronica didyma	South Korea	H.D. Shin	KX287054	KX287354	KX287636	KX287913	KX288193	KX288513	KX288803	-	KX289151	-
	CBS 131773; KACC 42885		Veronica persica	South Korea	$\begin{aligned} & \text { H.D. Shin \& M } \\ & \text { Park } \end{aligned}$	KX287055	KX287355	KX287637	KX287914	KX288194	KX288514	KX288804	-	KX289152	-
	CBS 118794	R. veronicae	Veronica persica	New Zealand	-	KX287056	KX287356	KX287638	KX287915	KX288195	KX288515	KX288805	KX289055	-	-
	CBS 114731; UPSC 3243	R. anagallidis	Veronica anagallis-aquatica	Sweden	E. Gunnerbeck	KX287057	KX287357	KX287639	KX287916	KX288196	KX288516	KX288806	-	-	-
R. chelidonii	CPC 12208		Hylomecon vernalis	South Korea	H.D. Shin	KX287058	KX287358	KX287640	KX287917	KX288197	KX288517	KX288807	KX289056	-	-
	CPC 12209		Hylomecon vernalis	South Korea	H.D. Shin	KX287059	KX287359	KX287641	KX287918	KX288198	KX288518	KX288808	-	-	-
	CBS 113317	Ramularia sp.	Hylomecon vernalis	South Korea	H.D. Shin	KX287060	KX287360	KX287642	KX287919	KX288199	KX288519	KX288809	-	-	-
R. coleosporii	CPC 10653	Ramularia sp.	Coleosporium eupatorii on Eupatorium japonicum	South Korea	H.D. Shin	KX287061	KX287361	-	KX287920	-	KX288520	-	-	-	-
	CPC 10669	Ramularia sp.	Coleosporium eupatorii on Eupatorium japonicum	South Korea	H.D. Shin	KX287062	KX287362	KX287643	KX287921	KX288200	KX288521	KX288810	-	KX289153	-
	CPC 10731	Ramularia sp.	Coleosporium clematidisapiifoliae on Clematis apiifolia	South Korea	H.D. Shin	KX287063	KX287363	KX287644	KX287922	KX288201	KX288522	KX288811	-	KX289154	-
			Coleosporium clematidisapiifoliae on												
	CPC 10732	Ramularia sp.	Clematis apiifolia	South Korea	H.D. Shin	KX287064	KX287364	KX287645	KX287923	KX288202	KX288523	KX288812	-	KX289155	-

Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	actA	tef1- α	gapdh	rpb 2	his3	cmdA	tub2	chs-1
	CPC 10733	Ramularia sp.	Coleosporium clematidisapiifoliae on Clematis apiifolia	South Korea	H.D. Shin	KX287065	KX287365	KX287646	KX287924	KX288203	KX288524	KX288813	-	-	-
	CPC 10746	Ramularia sp.	Coleosporium eupatorii on Eupatorium lindleyanum	South Korea	H.D. Shin	KX287066	KX287366	KX287647	KX287925	KX288204	KX288525	KX288814	-	KX289156	-
	CPC 10747	Ramularia sp.	Coleosporium eupatorii on Eupatorium lindleyanum	South Korea	H.D. Shin	KX287067	KX287367	KX287648	KX287926	KX288205	KX288526	KX288815	-	KX289157	-
	CPC 10748	Ramularia sp.	Coleosporium eupatorii on Eupatorium lindleyanum	South Korea	H.D. Shin	KX287068	KX287368	KX287649	KX287927	KX288206	KX288527	KX288816	-	KX289158	-
	CPC 11516		Coleosporium plectranthi on Plectranthus japonicus	South Korea	H.D. Shin	KX287069	KX287369	KX287650	KX287928	KX288207	KX288528	KX288817	-	KX289159	-
	CBS 131753; KACC 42483		Coleosporium perillae on Perilla frutescens var. japonica	South Korea	H.D. Shin \& M Park	KX287070	KX287370	KX287651	KX287929	KX288208	KX288529	KX288818	-	KX289160	-
	CBS 131754; KACC 43177		Coleosporium asterum on Aster pilosus	South Korea	$\begin{aligned} & \text { H.D. Shin \& } \\ & \text { Park } \end{aligned}$	KX287071	KX287371	KX287652	KX287930	KX288209	KX288530	KX288819	-	KX289161	-
	CBS 131755; KACC 43977		Coleosporium asterum on Aster pilosus	South Korea	H.D. Shin \& M Park	KX287072	KX287372	KX287653	KX287931	KX288210	-	KX288820	-	KX289162	-
	CBS 131756; KACC 43200		Coleosporium clematidisapiifoliae on Clematis apiifolia	South Korea	H.D. Shin \& M Park	KX287073	KX287373	KX287654	KX287932	KX288211	KX288531	KX288821	-	KX289163	-
			Coleosporium horianum on												
	CBS 131757; KACC 43185		Codonopsis lanceolata	South Korea	$\begin{aligned} & \text { H.D. Shin \& } \\ & \text { Park } \end{aligned}$	KX287074	KX287374	KX287655	KX287933	KX288212	KX288532	KX288822	-	-	KX289248
	CBS 131758; KACC 44854		Coleosporium cacaliae on Syneilesis palmata	South Korea	H.D. Shin \& Park	KX287075	KX287375	KX287656	KX287934	KX288213	KX288533	KX288823	-	-	-
			Coleosporium horianum on												
	CBS 131759; KACC 44073		Codonopsis lanceolata	South Korea	$\begin{aligned} & \text { H.D. Shin \& } \\ & \text { Park } \end{aligned}$	KX287076	KX287376	KX287657	KX287935	KX288214	KX288534	KX288824	-	-	-

Species ${ }^{4}$	Culture Previous number ${ }^{1,2}$ name 4	Host	Country	Collector	LSU	ITS	actA	tef1- α	gapdh	rpb2	his3	cmd A	tub2	chs-1
	CBS 131760; KACC 44081	Coleosporium horianum on Codonopsis lanceolata	South Korea	$\begin{aligned} & \text { H.D. Shin \& I } \\ & \text { Park } \end{aligned}$	KX287077	KX287377	KX287658	KX287936	KX288215	KX288535	KX288825	-	KX289164	-
	CBS 131761; KACC 44855	Coleosporium saussureae on Saussurea pulchella	South Korea	$\begin{aligned} & \text { H.D. Shin \& M } \\ & \text { Park } \end{aligned}$	KX287078	KX287378	KX287659	KX287937	KX288216	KX288536	KX288826	-	KX289165	-
	CBS 131762; KACC 44860	Coleosporium sp. on Solidago serotina	South Korea	$\begin{aligned} & \text { H.D. Shin \& M } \\ & \text { Park } \end{aligned}$	KX287079	KX287379	KX287660	KX287938	KX288217	KX288537	KX288827	-	KX289166	-
	CBS 131763; KACC 42484	Coleosporium eupatorii on Eupatorium japonicum	South Korea	$\begin{aligned} & \text { H.D. Shin \& } \\ & \text { Park } \end{aligned}$	KX287080	KX287380	KX287661	KX287939	KX288218	KX288538	KX288828	KX289057	KX289167	KX289249
	CBS 131764; KACC 43182	Coleosporium eupatorii on Eupatorium lindleyanum	South Korea	Park 	KX287081	KX287381	KX287662	KX287940	KX288219	KX288539	KX288829	-	KX289168	-
	CBS 131765; KACC 42635	Coleosporium asterum on Aster pilosus	South Korea	H.D. Shin \& Park	KX287082	KX287382	KX287663	KX287941	KX288220	KX288540	KX288830	-	KX289169	-
	CBS 131766; KACC 43058	Coleosporium clerodendri on Clerodendron trichotomum	South Korea	$\begin{aligned} & \text { H.D. Shin \& } \\ & \text { Park } \end{aligned}$	KX287083	KX287383	KX287664	KX287942	KX288221	KX288541	KX288831	-	KX289170	-
	CBS 131767; KACC 44053	Pileolaria shiraiana on Rhus trichocarpa	South Korea	H.D. Shin \& M.J. Park	KX287084	KX287384	KX287665	KX287943	KX288222	KX288542	KX288832	-	KX289171	-
R. collo-cygni	CBS 101180 ${ }^{\text {NT }}$	Hordeum vulgare	Austria	Züchtungsfirm Saatbau Linz	KX287085	KX287385	KX287666	KX287944	KX288223	KX288543	KX288833	-	KX289172	-
	CBS 101181	Hordeum vulgare	Germany, Bavaria	E. Sachs	KJ504745	KJ504786	KJ504450	KJ504701	KJ504569	KJ504657	KJ504613	KJ504513	KJ504483	-
	CBS 101182	Hordeum vulgare	Germany, Bavaria	E. Sachs	KX287086	KX287386	KX287667	KX287945	KX288224	KX288544	KX288834	KX289058	KX289173	-
	$\begin{aligned} & \text { CBS 119442; } \\ & \text { CPC 12688; } \\ & \text { V22 } \end{aligned}$	Hordeum vulgare	Norway	S. Salamati	KX287087	KX287387	KX287668	KX287946	KX288225	KX288545	KX288835	-	-	-
	$\begin{aligned} & \text { CBS 119441; } \\ & \text { CPC 12690; } \\ & \text { V40 } \end{aligned}$	Hordeum vulgare	Norway	S. Salamati	KX287088	KX287388	KX287669	KX287947	KX288226	KX288546	KX288836	-	-	-
	$\begin{aligned} & \text { CBS 119440; } \\ & \text { CPC 12692; } \\ & \text { V58 } \end{aligned}$	Hordeum vulgare	Norway	S. Salamati	KX287089	KX287389	KX287670	KX287948	KX288227	KX288547	KX288837	KX289059	-	-

Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	actA	tef1- α	gapdh	rpb2	his3	cmdA	tub2	chs-1
	$\begin{aligned} & \text { CBS 119439; } \\ & \text { CPC 12693; } \\ & \text { V74 } \end{aligned}$		Hordeum vulgare	Norway	S. Salamati	KX287090	KX287390	KX287671	KX287949	KX288228	KX288548	KX288838	KX289060	-	-
R. coryli	CBS 117800; CPC 12090	R. endophylla	Corylus avellana	Netherlands	G. Verkley	KX287091	KX287391	KX287672	KX287950	KX288229	KX288549	KX288839	KX289061	-	KX289250
R. cupulariae	CBS 235.73		Inula sp.	former Czechoslovaki	L. Marvanová	KX287092	KX287392	KX287673	KX287951	KX288230	KX288550	KX288840	-	KX289174	-
R. cyclaminicola	CBS 399.51		Cyclamen persicum	USA	-	KX287093	KX287393	KX287674	KX287952	KX288231	KX288551	KX288841	-	-	-
R. cynarae	CPC 18427		Cynara cardunculus	USA, California	S.T. Koike	KX287094	KX287394	KX287675	KX287953	KX288232	KX288552	KX288842	-	KX289175	-
	$\begin{aligned} & \text { CBS 128779; } \\ & \text { CPC } 18725 \end{aligned}$		Carthamus tinctorius	USA, California	S.T. Koike	KX287095	HQ728118	KX287676	KX287954	KX288233	KX288553	KX288843	-	KX289176	-
	$\begin{aligned} & \text { CBS } \\ & \mathbf{1 2 8 9 1 2}^{\text {ET }} ; \text { CPC } \\ & 18426 \end{aligned}$		Cynara cardunculus	USA, California	S.T. Koike	KX287096	HQ728117	KX287677	KX287955	KX288234	KX288554	KX288844	-	KX289177	-
	CBS 114728; UPSC 3248	R. cirsii	Cirsium arvense	Sweden	E. Gunnerbeck	KX287097	KX287395	KX287678	KX287956	KX288235	KX288555	KX288845	-	KX289178	-
	CPC 25896		Carex acutiformis	Netherlands	S.I.R. Videira	KX287098	KX287396	KX287679	KX287957	KX288236	KX288556	KX288846	-	-	-
	CPC 25897		Carduus sp.	Netherlands	S.I.R. Videira	KX287099	KX287397	KX287680	KX287958	KX288237	KX288557	KX288847	-	KX289179	-
	CBS 114729; UPSC 3338	R. cardui	Carduus crispus	Sweden	E. Gunnerbeck	KX287100	KX287398	KX287681	KX287959	KX288238	KX288558	KX288848	-	KX289180	-
R. deusta	$\begin{aligned} & \text { CBS 473.50; } \\ & \text { IMI } 099672 \end{aligned}$	R. deusta f. latifolia	Lathyrus latifolius	Guadeloupe	-	KX287101	KX287399	KX287682	KX287960	KX288239	KX288559	KX288849	KX289062	KX289181	-
R. didyma var. didyma	CBS 114299; UPSC 2746	R. didyma	Ranunculus repens	s Sweden	E. Gunnerbeck	KX287102	KX287400	KX287683	KX287961	KX288240	KX288560	KX288850	-	KX289182	-
	CBS 420.67	R. didyma	Ranunculus repens	SUK, England	-	KX287103	KX287401	KX287684	KX287962	KX288241	KX288561	KX288851	-	KX289183	-
R. diervillae	CBS 431.67*	R. didyma	Ranunculus repens	Luxembourg	-	KX287104	KX287402	KX287685	KX287963	KX288242	-	KX288852	-	-	-
	CPC 16860	Ramularia sp.	Diervilla lonicera	Canada	K.A. Seifert	KX287105	KX287403	KX287686	KX287964	KX288243	KX288562	KX288853	-	KX289184	-
	CPC 16864	Ramularia sp.	Diervilla lonicera	Canada	K.A. Seifert	KX287106	KX287404	KX287687	KX287965	KX288244	KX288563	KX288854	-	KX289185	-
R. digitalis-ambiguae	CPC 16859	Ramularia sp.	Diervilla lonicera	Canada	K.A. Seifert	KX287107	KX287405	KX287688	KX287966	KX288245	KX288564	-	-	KX289186	-
	CPC 16863	Ramularia sp.	Diervilla lonicera	Canada	K.A. Seifert	KX287108	KX287406	KX287689	KX287967	KX288246	KX288565	KX288855	-	KX289187	-
	CBS 434.67	R. variabilis	Digitalis purpurea	Luxembourg	-	KX287109	KX287407	KX287690	KX287968	KX288247	KX288566	KX288856	KX289063	-	-
	CBS 297.37 ${ }^{\text { }}$	R. variabilis	Digitalis sp.	Netherlands	-	KX287110	KX287408	KX287691	KX287969	KX288248	KX288567	KX288857	-	-	-
R. endophylla	CBS 113871		Quercus robur	Netherlands	G. Verkley	KP894130	KP894237	KP894345	KP894455	KP894566	KP894677	KP894787	KP894891	KP894977	-
	CBS 113265 ${ }^{\text {ET }}$		Quercus robur	Netherlands	G. Verkley	AY490776	AY490763	KF903461	KF253276	KP894562	KP894673	KP207603	KF253981	KP894975	-
	CBS 101680		Castanea sativa	Netherlands	A. Aptroot	KP894126	KP894233	KP894341	KP894451	KP894561	KP894672	KP894783	KP894887	KP894974	-
	CBS 115303		Quercus robur	Netherlands	-	KP894133	KP894240	KP894348	KP894458	KP894569	KP894680	KP894790	KP894894	-	-
	CBS 113869		Quercus robur	Netherlands	G. Verkley	KP894128	KP894235	KP894343	KP894453	KP894564	KP894675	KP894785	KP894889	-	-

Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	act A	tef1- α	gapdh	rpb2	his3	cmd A	tub2	chs-1
	CPC 25906		Carex sp.	Netherlands	W. Quaedvlieg	KX287142	KX287440	KX287723	KX288001	KX288280	KX288599	KX288887	-	-	-
	CPC 19854	Ramularia sp.	Feijoa sellowiana	Italy	G. Polizzi	KX287143	KX287441	KX287724	KX288002	KX288281	KX288600	KX288888	KX289082	-	-
	CPC 19026	Ramularia sp.	Phragmites sp.	Netherlands	P.W. Crous	KX287144	KX287442	KX287725	KX288003	KX288282	KX288601	KX288889	-	-	-
	CPC 19027	Ramularia sp.	Phragmites sp.	Netherlands	P.W. Crous	KX287145	KX287443	KX287726	KX288004	KX288283	KX288602	KX288890	KX289083	-	-
	CBS 341.49	R. archangelicae	Angelica sylvestris	Netherlands	-	KX287146	KX287444	KX287727	KX288005	KX288284	KX288603	KX288891	KX289084	KX289197	-
	CPC 25907		Juncus sp.	Netherlands	U. Damm	KX287147	KX287445	KX287728	KX288006	KX288285	KX288604	KX288892	-	-	-
	CPC 20406	Ramularia sp.	Eucalyptus caesia	USA, California	P.W. Crous	KX287148	KX287446	KX287729	KX288007	KX288286	KX288605	KX288893	-	-	-
	CPC 20484	Ramularia sp.	Iris foetidissima	Netherlands	-	KX287149	KX287447	KX287730	KX288008	KX288287	KX288606	KX288894	-	-	-
	CPC 25901		Platanus sp.	Netherlands	S.I.R. Videira	KX287150	KX287448	KX287731	KX288009	KX288288	KX288607	KX288895	KX289085	-	KX289254
	CBS 766.84	R. deusta var. alba	Ulex europaeus	UK, England	-	KX287151	KX287449	KX287732	KX288010	KX288289	KX288608	KX288896	-	KX289198	-
	CBS 159.82	R. sparganii	Sparganium ramosum	Netherlands	W. Gams	KX287152	KX287450	KX287733	KX288011	KX288290	KX288609	KX288897	KX289086	KX289199	-
	CPC 19030	Ramularia sp.	Iris sp.	UK	P.W. Crous	KX287153	KX287451	KX287734	KX288012	KX288291	KX288610	KX288898	KX289087	KX289200	-
	CBS 114117; UPSC 2662	R. butomi	Filipendula vulgaris	Sweden	E. Gunnerbeck	KX287154	KX287452	KX287735	KX288013	KX288292	KX288611	KX288899	KX289088	KX289201	-
	CPC 25904		Potentilla sp.	Netherlands	U. Damm	KX287155	KX287453	KX287736	KX288014	KX288293	KX288612	KX288900	-	-	-
	CBS 113614	Ramularia sp.	Sparganium ramosum	Netherlands	-	KX287156	KX287454	KX287737	KX288015	KX288294	KX288613	KX288901	KX289089	-	-
	CPC 25903		Typha sp.	Netherlands	S.I.R. Videira	KX287157	KX287455	KX287738	KX288016	KX288295	KX288614	KX288902	KX289090	KX289202	-
	CBS 118408	R. hellebori	Helleborus niger	New Zealand	C.F. Hill	KX287158	KX287456	KX287739	KX288017	KX288296	KX288615	KX288903	KX289091	-	-
R. inaequalis	CPC 15815	Cercosporoid sp.	Taraxacum sp.	Mexico	M. de Jesús Yáñez-Morales	KX287159	KX287457	KX287740	KX288018	KX288297	KX288616	KX288904	KX289092	KX289203	-
	CBS 250.96	R. inaequalis	Taraxacum officinale	Canada, Nova Scotia	S. Green	KP894117	KP894224	KP894332	KP894442	KP894552	KP894663	KP894774	KP894882	KP894970	-
	CPC 15752	Ramularia sp.	Taraxacum sp.	Mexico	M. de Jesús Yáñez-Morales	KP894118	KP894225	KP894333	KP894443	KP894553	KP894664	KP894775	-	-	-
	CPC 15753	Ramularia sp.	Taraxacum sp.	Mexico	M. de Jesús Yáñez-Morales	KP894119	KP894226	KP894334	KP894444	KP894554	KP894665	KP894776	KP894883	KP894971	-
	$\begin{aligned} & \text { CBS 141111ET; } \\ & \text { CPC } 25741 \end{aligned}$		Taraxacum officinale	Netherlands	U. Damm	KP894120	KP894227	KP894335	KP894445	KP894555	KP894666	KP894777	-	-	-
	$\begin{aligned} & \text { CPC } 25742 ; \\ & \text { X40 } \end{aligned}$		Corylus avellana	Netherlands	S.I.R. Videira	KP894121	KP894228	KP894336	KP894446	KP894556	KP894667	KP894778	-	-	-
R. interstitialis	CBS 120.68	R. primulae	Primula variabilis	UK	S.A.J. Tarr	KX287160	KX287458	-	-	-	-	-	-	-	-
R. kriegeriana	CPC 10825		Plantago asiatica	South Korea	H.D. Shin	KX287161	KX287459	KX287741	KX288019	KX288298	KX288617	KX288905	-	KX289204	KX289255
	CPC 10826		Plantago asiatica	South Korea	H.D. Shin	KX287162	KX287460	KX287742	KX288020	KX288299	KX288618	KX288906	-	KX289205	KX289256
	CPC 10827		Plantago asiatica	South Korea	H.D. Shin	KX287163	KX287461	KX287743	KX288021	KX288300	KX288619	KX288907	-	KX289206	KX289257

Table 1. (Co															
Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	actA	tef1- α	gapdh	rpb 2	his3	cmdA	tub2	chs-1
R. lamii var. lamii	CBS 108970 ${ }^{\text {ET }}$		Lamium album	Netherlands	G. Verkley	KX287164	KX287462	KX287744	KX288022	KX288301	KX288620	KX288908	KX289093	-	KX289258
	CBS 108971		Lamium album	Netherlands	G. Verkley	KX287165	KX287463	KX287745	KX288023	KX288302	KX288621	KX288909	KX289094	-	-
R. leonuri	CPC 11312	R. lamii var. lamii	Leonurus sibiricus	South Korea	H.D. Shin	KF251835	KF251331	KF253636	KF253178	KX288303	KX348080	KX288910	KF253983	KF252711	-
	CPC 11313	R. lamii var. lamii	Leonurus sibiricus	South Korea	H.D. Shin	KX287166	KX287464	KX287746	KX288024	KX288304	KX288622	KX288911	-	KX289207	-
	CPC 11314	R. lamii var. lamii	Leonurus sibiricus	South Korea	H.D. Shin	KX287167	KX287465	KX287747	KX288025	KX288305	KX288623	KX288912	KX289095	KX289208	-
	CPC 11411	R. lamii var. lamii	Leonurus sibiricus	South Korea	H.D. Shin	KX287168	KX287466	KX287748	KX288026	KX288306	KX288624	KX288913	KX289096	KX289209	-
	CPC 11412	R. lamii var. lamii	Leonurus sibiricus	South Korea	H.D. Shin	KX287169	KX287467	KX287749	KX288027	KX288307	KX288625	KX288914	-	KX289210	-
	CPC 11413	R. lamii var. lamii	Leonurus sibiricus	South Korea	H.D. Shin	KX287170	KX287468	KX287750	KX288028	KX288308	KX288626	KX288915	-	KX289211	-
	$\begin{aligned} & \text { CBS 141112; } \\ & \text { CPC } 14570 \end{aligned}$	R. lamii var. lamii	Leonurus sibiricus	South Korea	H.D. Shin	KX287171	KX287469	KX287751	KX288029	KX288309	KX288627	KX288916	-	KX289212	-
	CPC 14571	R. lamii var. lamii	Leonurus sibiricus	South Korea	H.D. Shin	KX287172	KX287470	KX287752	KX288030	KX288310	KX288628	KX288917	-	KX289213	-
	CPC 14572	R. lamii var. lamii	Leonurus sibiricus	South Korea	H.D. Shin	KX287173	KX287471	KX287753	KX288031	KX288311	KX288629	KX288918	-	KX289214	-
R. lethalis	CBS 141113; CPC 25910		Acer pseudoplatanus	Netherlands	S.I.R. Videira	KX287174	KX287472	KX287754	KX288032	KX288312	KX288630	KX288919	KX289097	-	-
R. ligustrina	CBS 379.52		Ligustrum vulgare		-	KX287175	KX287473	KX287755	KX288033	KX288313	KX288631	KX288920	KX289098	-	-
R. macrospora	CBS 109015		-	-	-	KX287176	KX287474	-	-	-	KX288632	KX288921	-	-	-
R. major	$\begin{aligned} & \text { CBS 141114; } \\ & \text { CPC } 12542 \end{aligned}$		Petasites japonicus	South Korea	H.D. Shin	KX287177	KX287475	KX287756	KX288034	KX288314	KX288633	KX288922	-	KX289215	-
	CPC 12543		Petasites japonicus	South Korea	H.D. Shin	KJ504758	KJ504800	KJ504464	KJ504715	KJ504583	KJ504671	KJ504627	-	KJ504493	-
	CPC 12544		Petasites japonicus	South Korea	H.D. Shin	KX287178	KX287476	KX287757	KX288035	KX288315	KX288634	KX288923	-	KX289216	-
R. mali	CBS 129581 ${ }^{\text {T }}$		Apple in cold storage	Italy	-	KJ504737	KJ504778	KJ504442	KJ504693	KJ504561	KJ504649	KJ504605	KJ504506	KJ504478	KJ504534
R. malicola	$\begin{aligned} & \text { CBS 119227T; } \\ & \text { P5 } \end{aligned}$	Ramularia sp.	Malus sp.	USA, Missouri	J. Batzer	AY598910	AY598873	KX287758	KX288036	KX288316	KX288635	KX288924	KX289099	KX289217	-
R. miae	$\begin{aligned} & \text { CBS 120121T} ; \\ & \text { CPC } 12736 \end{aligned}$		Wachendorfia thyrsifolia	South Africa	M.K. \& P.W. Crous	DQ885902	KJ504801	KJ504465	KJ504716	KJ504584	KJ504672	KJ504628	KJ504525	-	KJ504544
	CPC 21692	Ramularia sp.	Wachendorfia thyrsifolia	South Africa	M.J. Wingfield	KX287179	KX287477	KX287759	KX288037	KX288317	KX288636	KX288925	-	-	-
	CPC 19770	Teratosphaeria sp.	Leonotis leonurus	South Africa	P.W. Crous	KJ504762	KJ504805	KJ504469	KJ504720	KJ504588	KJ504676	KJ504632	KJ504528	-	-
	CPC 19835	Ramularia sp.	Gazania rigens var. uniflora	South Africa	P.W. Crous	KJ504761	KJ504804	KJ504468	KJ504719	KJ504587	KJ504675	KJ504631	KJ504527	-	-
R. neodeusta	CPC 13568	R. deusta var. alba	Lathyrus odoratus	New Zealand	C.F. Hill	KX287180	KX287478	KX287760	KX288038	KX288318	KX288637	KX288926	KX289100	-	-
	$\begin{aligned} & \text { CBS 141115T} ; ~ \\ & \text { CPC } 13567 \end{aligned}$	Ramularia sp.	Vicia faba	New Zealand	C.F. Hill	KX287181	KX287479	KX287761	KX288039	KX288319	KX288638	KX288927	KX289101	-	-
R. helminthiae	CPC 11502	R. inaequalis	Picris hieracioide var. glabrensis	South Korea	H.D. Shin	KX287182	KX287480	KX287762	KX288040	KX288320	KX288639	KX288928	KX289102	-	-

Table 1. (Con															
Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	act A	tef 1- α	gapdh	$r p b 2$	his3	cmdA	tub2	chs-1
	CPC 11504	R. inaequalis	Picris hieracioides var. glabrensis	South Korea	H.D. Shin	KX287183	KX287481	KX287763	KX288041	KX288321	KX288640	KX288929	KX289103	-	-
	CBS 118418	R. inaequalis	Picris echioides	New Zealand	-	KX287184	KX287482	KX287764	KX288042	KX288322	KX288641	KX288930	KX289104	KX289218	-
R. nyssicola	$\begin{aligned} & \text { CBS } \\ & \mathbf{1 2 7 6 6 5}{ }^{\text {ET }} ; \text { AR } \\ & 4656 ; \text { DM } 2 \end{aligned}$		Nyssa ogeche \times sylvatica hybrid	USA, Maryland	dR. Olsen	KJ504724	KJ504765	KJ504429	KJ504680	KJ504548	KJ504636	KJ504592	KJ504496	KJ504473	-
	CBS 127664; AR 4629	M. nyssicola	Nyssa ogeche \times sylvatica hybrid	USA, Maryland	dR. Olsen	KP894124	KP894231	KP894339	KP894449	KP894559	KP894670	KP894781	KP894885	-	-
R. osterici	CBS 141116 ${ }^{\text {T }}$; CPC 10750	R. archangelicae	Ostericum koreanum	South Korea	H.D. Shin	KX287185	KX287483	KX287765	KX288043	KX288323	KX288642	KX288931	KX289105	-	-
	CPC 10751	R. archangelicae	Ostericum koreanum	South Korea	H.D. Shin	KX287186	KX287484	KX287766	KX288044	KX288324	KX288643	KX288932	KX289106	-	-
	CPC 10752	R. archangelicae	Ostericum koreanum	South Korea	H.D. Shin	KX287187	KX287485	KX287767	KX288045	KX288325	KX288644	KX288933	KX289107	-	-
R. parietariae	CBS 123730; V6019.1		Parietaria officinalis	Czech Republic	c G. Verkley	KX287188	KX287486	KX287768	KX288046	KX288326	KX288645	KX288934	KX289108	-	-
	$\begin{aligned} & \text { CBS 123731; } \\ & \text { V6019.2 } \end{aligned}$		Parietaria officinalis	Czech Republic	c G. Verkley	KX287189	KX287487	KX287769	KX288047	KX288327	KX288646	KX288935	KX289109	-	-
R. phacae-frigidae	CBS 234.55 ${ }^{\text { }}$	M. phacae-frigidae	Phaca frigida	Switzerland	E. Müller	KP894125	KP894232	KP894340	KP894450	KP894560	KP894671	KP894782	KP894886	-	-
R. plurivora	CBS 118743 ${ }^{\text {T }}$; CPC 12207		Human bone marrow	Netherlands	-	KJ504739	KJ504780	KJ504444	KJ504695	KJ504563	KJ504651	KJ504607	KJ504508	KJ504479	KJ504536
	CPC 16123	Cladosporium-like sp.	Melon in storage	Netherlands	J.H. Houbraken	KJ504741	KJ504782	KJ504446	KJ504697	KJ504565	KJ504653	KJ504609	KJ504510	-	KJ504538
	CBS 118693; CPC 12206		Human skin	Netherlands	-	KJ504738	KJ504779	KJ504443	KJ504694	KJ504562	KJ504650	KJ504606	KJ504507	-	-
	CPC 16124	Cladosporium-like sp.	Melon in storage	Netherlands	J.H. Houbraken	KJ504742	KJ504783	KJ504447	KJ504698	KJ504566	KJ504654	KJ504610	KJ504511	-	-
R. pratensis var. pratensis	CBS 122105; RoKi 3045	R. pratensis	Rumex sp.	Taiwan	R. Kirschner \& C.-J. Chen	KX287190	KX287488	KX287770	KX288048	KX288328	KX288647	KX288936	KX289110	-	-
	CPC 16868	Ramularia sp.	Verbascum sp.	Canada	K.A. Seifert	KX287191	KX287489	KX287771	KX288049	KX288329	KX288648	KX288937	-	-	KX289259
	CPC 19448	Ramularia sp.	Prunus domestica	-	-	KX287192	KX287490	KX287772	KX288050	KX288330	KX288649	KX288938	-	KX289219	-
R. proteae	CBS 112161 ${ }^{\text {T }}$; CPC 3075		Protea longifolia	Australia, Tasmania	A. Macfadyen	EU707899	EU707899	-	-	-	KX288650	KX288939	-	-	-
R. pusilla	CBS $124973{ }^{\text {ET }}$; RoKi 3143		Poa annиа	Germany	R. Kirschner	KP894141	KP894248	KP894356	KP894466	-	KP894687	KP894798	KP894901	-	-
R. rhabdospora	CBS 312.92		-	Germany	S. Petzoldt	KX287193	KX287491	KX287773	KX288051	KX288331	KX288651	KX288940	-	KX289220	-
	CBS 118415		Plantago lanceolata	New Zealand	-	KX287194	KX287492	KX287774	KX288052	KX288332	KX288652	KX288941	-	-	-

Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	actA	tef1- α	gapdh	rpb 2	his3	cmdA	tub2	chs-1
R. rubella	CPC 15748	Ramularia sp.	Rumex sp.	Mexico	M. de Jesús Yáñez-Morales	KX287195	KX287493	KX287775	KX288053	KX288333	KX288653	KX288942	-	-	-
	CPC 15749	Ramularia sp.	Rumex sp.	Mexico	M. de Jesús Yáñez-Morales	KX287196	KX287494	KX287776	KX288054	KX288334	KX288654	KX288943	-	KX289221	-
	CPC 15750	Ramularia sp.	Rumex sp.	Mexico	M. de Jesús Yáñez-Morales	KX287197	KX287495	KX287777	KX288055	KX288335	KX288655	KX288944	-	KX289222	-
	CBS 120161		Rumex obtusifoliusNew Zealand		-	KX287198	KX287496	KX287778	KX288056	KX288336	KX288656	KX288945	KX289111	-	-
	CBS 114440; UPSC 2857		Rumex longifolius	Sweden	E. Gunnerbeck	KX287199	KX287497	KX287779	KX288057	KX288337	KX288657	KX288946	KX289112	-	KX289260
	CPC 19471	Cercosporella sp.	Prunus sp.	Netherlands	W. Quaedvlieg	KX287200	KX287498	KX287780	KX288058	KX288338	KX288658	KX288947	KX289113	-	-
	CPC 19472	Cercosporella sp.	Prunus sp.	Netherlands	W. Quaedvlieg	KX287201	KX287499	KX287781	KX288059	KX288339	KX288659	KX288948	-	-	-
	CPC 15821	Ramularia sp.	Rumex sp.	Mexico	M. de Jesús Yáñez-Morales	KX287202	KX287500	KX287782	KX288060	KX288340	KX288660	KX288949	KX289114	KX289223	-
	$\begin{aligned} & \text { CBS 1411177 }{ }^{\text {NT } ; ~} \\ & \text { CPC } 25911 \end{aligned}$		Rumex sp.	Netherlands	U. Damm	KX287203	KX287501	KX287783	KX288061	KX288341	KX288661	KX288950	-	-	-
R. rufibasis	CBS 114567; UPSC 3339	Ph.rufibasis	Myrica gale	Sweden	E. Gunnerbeck	KX287204	KX287502	KX287784	KX288062	KX288342	KX288662	KX288951	-	KX289224	-
R. rumicicola	CBS 141118 ${ }^{\mathrm{T}}$; CPC 11294	R. pratensis var. pratensis	Rumex crispus	South Korea	H.D. Shin	KF902111	KF901756	KF903599	KX288063	KX288343	KX348081	KX288952	-	(KF902946)	-
	CPC 11295	R. pratensis var. pratensis	Rumex crispus	South Korea	H.D. Shin	KX287205	KX287503	KX287785	KX288064	KX288344	KX288663	KX288953	KX289115	-	KX289261
	CPC 11296	R. pratensis var. pratensis	Rumex crispus	South Korea	H.D. Shin	KX287206	KX287504	KX287786	KX288065	KX288345	KX288664	KX288954	-	-	-
R. rumicis	CBS 114300; UPSC 2724	R. decipiens	Rumex aquaticus	Sweden	E. Gunnerbeck	KJ504746	KJ504787	KJ504451	KJ504702	KJ504570	KJ504658	KJ504614	KJ504514	-	KJ504539
Ramularia sp. A	CBS 114566; UPSC 3340		Geranium pusillum	Sweden	E. Gunnerbeck	KX287207	KX287505	KX287787	KX288066	KX288346	KX288665	KX288955	KX289116	-	-
Ramularia sp. B	CBS 114568; UPSC 3246	Ramularia sp.	Epilobium hirsutum	Sweden	E. Gunnerbeck	KJ504747	KJ504788	KJ504452	KJ504703	KJ504571	KJ504659	KJ504615	KJ504515	-	KJ504540
Ramularia sp. C	CBS 299.49		Symphytum officinale	Netherlands	-	KX287208	KX287506	KX287788	KX288067	KX288347	KX288666	KX288956	-	-	-
Ramularia sp. D	CBS 135.23	R. lactea	Viola odorata	-	-	KP894123	KP894230	KP894338	KP894448	KP894558	KP894669	KP894780	-	KP894973	-
Ramularia sp. E	CPC 14767	Ramularia sp.	Hydrangea serrata South Korea		H.D. Shin	KX287209	KX287507	KX287789	KX288068	KX288348	KX288667	KX288957	-	-	-
	CPC 14768	Ramularia sp.	Hydrangea serrataSouth Korea		H.D. Shin	KX287210	KX287508	KX287790	KX288069	KX288349	KX288668	KX288958	-	-	-
	CPC 14769	Ramularia sp.	Hydrangea serrata South Korea		H.D. Shin	KX287211	KX287509	KX287791	KX288070	KX288350	KX288669	KX288959	-	-	-
	CPC 14832	Ramularia sp.	Hydrangea serrata South Korea		H.D. Shin	KX287212	KX287510	KX287792	KX288071	KX288351	KX288670	KX288960	-	-	-
	CPC 14833	Ramularia sp.	Hydrangea serrata South Korea		H.D. Shin	KX287213	KX287511	KX287793	KX288072	KX288352	KX288671	KX288961	-	-	-
	CPC 14834	Ramularia sp.	Hydrangea serrata South Korea		H.D. Shin	KX287214	KX287512	KX287794	KX288073	KX288353	KX288672	KX288962		-	-

Table 1. (Con															
Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	act A	tef $1-\alpha$	gapdh	$r p b 2$	his3	cmdA	tub2	chs-1
R. sphaeroidea	CBS 112891; CPC 5242		Vicia villosa subsp. varia	USA, California	S.T. Koike	KX287215	AY352584	KX287795	KX288074	KX288354	KX288673	KX288963	KX289117	-	-
R. stellariicola	CPC 11298	Cercosporella sp.	Stellaria aquatica	South Korea	H.D. Shin	KX287216	KX287513	KX287796	KX288075	KX288355	KX288674	KX288964	-	-	-
	CBS 130592 ${ }^{\text {T }}$; CPC 11297; KACC 42363	P. stellariicola	Stellaria aquatica	South Korea	H.D. Shin \& M Park	GU214693	GU214693	KX287797	KX288076	KX288356	KX288675	KX288965	KX289118	-	-
R. stellenboschensis	CBS 130600 ${ }^{\text {T }}$; CPC 18294		Protea sp., with Vizella interupta	South Africa	P.W. Crous	JN712566	JN712499	KX287798	-	KX288357	KX288676	KX288966	-	-	-
R. tovarae	CBS 113305 ${ }^{\text {ET }}$	Ramularia sp.	Polygonum filiforme	South Korea	H.D. Shin	KJ504764	KJ504807	KJ504471	KJ504722	KJ504590	KJ504678	KJ504634	KJ504529	KJ504494	-
R. tricherae	CBS 108973		Knautia arvensis	Netherlands	G. Verkley	KP894142	KP894249	KP894357	KP894467	KP894577	KP894688	KP894799	KP894902	KP894985	-
	CBS 108974		Knautia arvensis	Netherlands	G. Verkley	KX287217	KX287514	KX287799	KX288077	KX288358	KX288677	KX288967	KX289119	KX289225	KX289262
	CBS 108994		Knautia arvensis	Netherlands	G. Verkley	KP894145	KP894252	KP894360	KP894470	KP894580	KP894691	KP894802	KP894905	KP894987	-
	CBS 108995		Knautia arvensis	Netherlands	G. Verkley	KX287218	KX287515	KX287800	KX288078	KX288359	KX288678	KX288968	KX289120	KX289226	-
	CBS 108989		Knautia dipsacifolia	Austria	G. Verkley	KP894143	KP894250	KP894358	KP894468	KP894578	KP894689	KP894800	KP894903	KP894986	-
	CBS 108990		Knautia dipsacifolia	Austria	G. Verkley	KP894144	KP894251	KP894359	KP894469	KP894579	KP894690	KP894801	KP894904	-	-
	CBS 236.73; CCM F-369		Knautia drymeia	former Czechoslovakia		KP894146	KP894253	KP894361	KP894471	KP894581	KP894692	KP894803	KP894906	-	-
R. trigonotidis	CBS 141119 ${ }^{\text {T }}$, CPC 14764	Ramularia sp.	Trigonotis nakaii	South Korea	H.D. Shin	KX287219	KX287516	KX287801	KX288079	KX288360	KX288679	KX288969	-	-	-
	CPC 14765	Ramularia sp.	Trigonotis nakaii	South Korea	H.D. Shin	KX287220	KX287517	KX287802	KX288080	KX288361	KX288680	KX288970	-	-	-
	CPC 14766	Ramularia sp.	Trigonotis nakaii	South Korea	H.D. Shin	KX287221	KX287518	KX287803	KX288081	KX288362	KX288681	KX288971	-	-	-
R. trollii	CBS 109118	P. trollii	Trollius europaeus	Austria	G. Verkley	KX287222	KX287519	KX287804	KX288082	KX288363	KX288682	KX288972	-	KX289227	-
	CBS 109119	P. trollii	Trollius europaeus	Austria	G. Verkley	KX287223	KX287520	KX287805	KX288083	KX288364	KX288683	KX288973	-	-	-
R. unterseheri	CBS 124846	R. endophylla	Fagus sylvatica	Germany	M. Unterseher	KP894160	KP894267	KP894375	KP894485	KP894595	KP894706	KP894817	KP894920	KP894999	-
	CBS 124838; li-26.4	R. endophylla	Fagus sylvatica	Germany	M. Unterseher	KP894158	KP894265	KP894373	KP894483	KP894593	KP894704	KP894815	KP894918	-	-
	CBS 130721	R. endophylla	Room inside a castle	Germany	-	KP894164	KP894271	KP894379	KP894489	KP894599	KP894710	KP894821	KP894924	-	-
	CBS 117879; CPC 11207	R. endophylla	Acer pseudoplatanus	Netherlands	G. Verkley	KP894150	KP894257	KP894365	KP894475	KP894585	KP894696	KP894807	KP894910	-	-
	CBS $124884^{\text {T }}$	R. endophylla	Fagus sylvatica	Germany	M. Unterseher	KP894163	KP894270	KP894378	KP894488	KP894598	KP894709	KP894820	KP894923	KP895002	-
R. uredinicola	CBS 141120^{T}, CPC 11852		Melampsora sp. on Salix babylonia	Iran	S.A. Khodaparas	KX287224	KX287521	KX287806	KX288084	KX288365	KX288684	KX288974	-	KX289228	-
	CBS 179.68	R. uredinis	Melampsora sp. on Populus sp.	Italy	-	KX287225	KX287522	KX287807	KX288085	KX288366	KX288685	KX288975	-	-	-

Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	actA	tef1- α	gapdh	rpb2	his3	cmd A	tub2	chs-1
	CPC 12491	Ramularia sp.	Melampsora sp. Salix sp.	South Korea	H.D. Shin	KX287226	KX287523	KX287808	KX288086	KX288367	KX288686	KX288976	-	KX289229	-
	CPC 12492	Ramularia sp.	Melampsora sp. Salix sp.	South Korea	H.D. Shin	KX287227	KX287524	KX287809	KX288087	KX288368	KX288687	KX288977	-	KX289230	-
	CPC 12493	Ramularia sp.	Melampsora sp. on Salix sp.	South Korea	H.D. Shin	KX287228	KX287525	KX287810	KX288088	KX288369	KX288688	KX288978	-	KX289231	-
	CPC 11481	Ramularia sp.	Melampsora sp. on Salix sp.	South Korea	H.D. Shin	KX287229	KX287526	KX287811	KX288089	KX288370	KX288689	KX288979	-	KX289232	-
	CPC 11482	Ramularia sp.	Melampsora sp. on Salix sp.	South Korea	H.D. Shin	KX287230	KX287527	KX287812	KX288090	KX288371	KX288690	KX288980	-	KX289233	-
	CBS 131769; KACC 42535		Melampsora sp. on Salix gracilistyla	South Korea	$\begin{aligned} & \text { H.D. Shin \& M } \\ & \text { Park } \end{aligned}$	KX287231	KX287528	KX287813	KX288091	KX288372	KX288691	KX288981	-	KX289234	-
	CBS 131770; KACC 44864		Melampsora sp. on Populus alba \times glandulosa	South Korea	$\begin{aligned} & \text { H.D. Shin \& M } \\ & \text { Park } \end{aligned}$	KX287232	KX287529	KX287814	KX288092	KX288373	KX288692	KX288982	-	KX289235	-
	CBS 131771; KACC 44215		Melampsora sp. on Salix koreensis	South Korea	$\begin{aligned} & \text { H.D. Shin \& M } \\ & \text { Park } \end{aligned}$	KX287233	KX287530	KX287815	KX288093	KX288374	KX288693	KX288983	-	KX289236	-
	CBS 131772; KACC 44218		Melampsora sp. o Salix matsudana for. tortuosa	South Korea	$\begin{aligned} & \text { H.D. Shin \& M } \\ & \text { Park } \end{aligned}$	KX287234	KX287531	KX287816	KX288094	KX288375	-	KX288984	-	KX289237	-
R. urticae	CBS 105.26	An. pulmonalis	-	-	-	KP894169	KP894276	KP894384	KP894494	KP894604	KP894715	KP894826	-	-	-
	CBS 113974; UPSC 2359		Urtica dioica	Sweden	E. Gunnerbeck	KP894168	KP894275	KP894383	KP894493	KP894603	KP894714	KP894825	KP894926	KP895005	-
	CBS 162.91	Ramulariopsis sp.	Urtica dioica	Germany, Thüringen	G. Arnold	KP894170	KP894277	KP894385	KP894495	KP894605	KP894716	KP894827	-	KP895006	-
	CPC 14807	Ramularia sp.	Aconitum pseudolaeve var.erectum	South Korea	H.D. Shin	KX287235	KX287532	KX287817	KX288095	KX288376	KX288694	KX288985	-	-	-
R. valerianae var. valerianae	CBS 109122		Valeriana sp.	Austria	G. Verkley	KX287237	KX287534	KX287818	KX288096	-	KX288696	KX288986	-	-	-
	CBS 109123		Valeriana sp.	Austria	G. Verkley	KX287238	KX287535	KX287819	KX288097	KX288377	KX288697	KX288987	-	KX289238	-
R. vallisumbrosae	CBS 271.38		Narcissus cv. Victoria	UK, England	-	KX287239	KX287536	KX287820	KX288098	KX288378	KX288698	KX288988	KX289121	KX289239	-
	CBS 272.38 ${ }^{\text {ET }}$		Narcissus cv. Golden Spur	UK, England	-	KX287240	KX287537	KX287821	KX288099	KX288379	KX288699	KX288989	KX289122	KX289240	-
R. variabilis	CPC 16865	Ramularia sp.	Verbascum sp.	Canada	K.A. Seifert	KP894171	KP894278	KP894386	KP894496	KP894606	KP894717	KP894828	-	KP895007	-
	CPC 16866	Ramularia sp.	Verbascum sp.	Canada	K.A. Seifert	KP894172	KP894279	KP894387	KP894497	KP894607	KP894718	KP894829	-	KP895008	-
	CBS $141121^{\text {ET }}$ CPC 25967		Verbascum sp.	Germany	C. Scheuer	KP894173	KP894280	KP894388	KP894498	KP894608	KP894719	KP894830	-	-	-
R. veronicicola	CBS 113981; UPSC 2320	Ph. veronicae	Veronica spicata	Sweden	E. Gunnerbeck	KX287241	KX287538	KX287822	KX288100	KX288380	KX288700	KX288990		KX289241	-

Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	actA	tef1- α	gapdh	rpb 2	his3	cmd A	tub2	chs-1
R. vizellae	CBS 130601 $^{\text {T }}$; CPC 18283		Protea sp., in association with Vizella interupta	South Africa	P.W. Crous	JN712567	KJ504808	KJ504472	KJ504723	KJ504591	KJ504679	KJ504635	-	KJ504495	-
	CBS 117798; CPC 12088	R. endophylla	Carpinus betulus	Netherlands	G. Verkley	KP894182	KP894289	KP894397	KP894507	KP894617	KP894728	KP894839	-	-	-
	CBS 115981	R. endophylla	Malus dead leaf litter	Netherlands	-	KP894176	KP894283	KP894391	KP894501	KP894611	KP894722	KP894833	KP894928	KP895010	-
	CBS 115982	R. endophylla	Malus dead leaf litter	Netherlands	-	KP894177	KP894284	KP894392	KP894502	KP894612	KP894723	KP894834	KP894929	KP895011	-
	$\begin{aligned} & \text { CBS 117871; } \\ & \text { CPC } 11194 \end{aligned}$	R. endophylla	Quercus rubra	Netherlands	G. Verkley	KP894188	KP894295	KP894403	KP894513	KP894623	KP894734	KP894845	KP894939	KP895021	-
	$\begin{aligned} & \text { CBS 117872; } \\ & \text { CPC } 11197 \end{aligned}$	R. endophylla	Amelanchier lamarckii	Netherlands	G. Verkley	KP894189	KP894296	KP894404	KP894514	KP894624	KP894735	KP894846	KP894940	KP895022	-
R. weberiana	CBS 136.23 ${ }^{\text {T }}$	R. pratensis	-	-	-	KJ504763	KJ504806	KJ504470	KJ504721	KJ504589	KJ504677	KJ504633	-	-	KJ504547
R. weigelae	CBS 113309	Phaeoramularia weigecola	Weigela subsessili	sSouth Korea	H.D. Shin	KX287242	KX287539	-	KX288101	-	KX288701	-	-	-	-
	$\begin{aligned} & \text { CBS } \\ & \text { 141099 } \end{aligned}$														
Ramulariopsis gossypii	25909		Gossypium sp.	Brazil	-	KX287243	KX287540	KX287823	KX288102	KX288381	KX288702	KX288991	-	-	-
Rp. pseudoglycines	CPC 20036	Rp. gossypii	Gossypium barbadense	Togo	M. Piatek	KX287244	KX287541	KX287824	KX288103	-	KX288703	KX288992	KX289123	-	-
	CPC 18241	Rp. gossypii	Gossypium sp.	Brazil	-	KX287245	KX287542	KX287825	KX288104	-	KX288704	KX288993	KX289124	-	-
	$\begin{aligned} & \text { CBS 141100T; } \\ & \text { CPC } 18242 \end{aligned}$	Rp. gossypii	Gossypium sp.	Brazil	-	KX287246	KX287543	KX287826	KX288105	-	KX288705	KX288994	-	-	-
Readeriella angustia	CBS 124998; CPC 13618		Eucalyptus delegatensis	Australia, Tasmania	B.A. Summerell	KF902113	KF901758	(KF903567)	(KF903245)	-	KX348082	-	(KF902668)	(KF902949)	-
Re.eucalyptigena	$\begin{aligned} & \text { CBS 124999T; } \\ & \text { CPC } 13026 \end{aligned}$		Eucalyptus dives	Australia, New South Wales	B.A. Summerell	KF901868	KF901546	(KF903568)	(KF903254)	-	KX348083	-	(KF902676)	(KF902957)	-
Re. menaiensis	CBS 125003 ${ }^{\text {T }}$; CPC 14447		Eucalyptus oblonga	Australia, New South Wales	B.A. Summerell	KF901870	KF901548	(KF903572)	(KF903256)	-	KX348084	-	(KF902678)	(KF902959)	-
Re.pseudocallista	$\begin{aligned} & \text { CBS 125001T} \text {; } \\ & \text { CPC } 13599 \end{aligned}$		Eucalyptus prominula	Australia, New South Wales	B.A. Summerell	KF901861	KF901539	(KF903570)	(KF903239)	-	KX348085	-	(KF902664)	(KF902943)	-
Re. tasmanica	CBS 125002 ${ }^{\text {T }}$; CPC 13631		Eucalyptus delegatensis	Australia, Tasmania	B.A. Summerell	KF902116	KF901761	(KF903656)	(KF903264)	-	KX348086	-	(KF902687)	(KF902967)	-
Septoria cerastii	$\begin{aligned} & \text { CBS 132028; } \\ & \text { CPC } 12343 \end{aligned}$		Cerastium holosteoides var. hallaisanense	South Korea	H.D. Shin	GU253869	KF251366	(KF253670)	(KF253313)	-	KX348087	-	(KF254018)	(KF252838)	-
S. dysentericae	CBS 131892; CPC 12328		Inula britannica var. chinensis	South Korea	H.D. Shin	GU253866	KF251406	(KF253710)	(KF253353)	-	KX348088	-	(KF254058)	(KF252877)	-
S. lamiicola	$\begin{aligned} & \text { CBS 123882; } \\ & \text { V6020.2 } \end{aligned}$		Lamium sp.	Czech Republi	c G. Verkley	KF251951	KF251447	(KF253751)	(KF253395)	-	KX348089	-	(KF254099)	(KF252919)	-

Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	actA	tef1- α	gapdh	rpb 2	his3	cmd A	tub2	chs-1
S. leucanthemi	CBS 353.58; BBA 8504; IMI 091322		Chrysanthemum maximum	Germany, Hamburg	R. Schneider	KF251962	KF251458	(KF253762)	(KF253406)	-	KX348090	-	(KF254110)	(KF252930)	-
S. lycopersici	CBS 128654; KACC 42519; SMKC 22002		Lycopersicum esculentum	South Korea	-	KF251966	KF251462	(KF253766)	(KF253410)	-	KX348091	-	(KF254114)	(KF252934)	-
S. paridis	CBS 109110		Paris quadrifolia	Austria	G. Verkley	KF251995	KF251490	(KF253794)	(KF253439)	-	KX348092	-	(KF254143)	(KF252960)	-
Sphaerulina chaenomelis	$\begin{aligned} & \text { CBS 131897; } \\ & \text { CPC 14795 } \end{aligned}$	P. chaenomellis	Chaenomeles speciosa	South Korea	H.D. Shin	GU253834	GU269817	(GU320520)	(GU384530)	-	KX288706	-	-	-	-
Sp. berberidis	CBS 324.52	M. berberidis	Berberis vulgaris	Switzerland	E. Müller	KF252106	KF251601	(KF253903)	(KF253548)	-	KX348093	-	(KF254253)	(KF253067)	-
Sp. betulae	CBS 128597; KACC 43119; SMKC 23059		Betula schmidtii	South Korea	-	KF252109	KF251604	(KF253906)	(KF253551)	-	KX348094	-	(KF254256)	(KF253070)	-
Sp. Gei	CBS 128632; KACC 44051; SMKC 23686		Geum japonicum	South Korea	-	KF252120	KF251615	(KF253917)	(KF253562)	-	KX348095	-	(KF254267)	(KF253081)	-
Sp. koreana	$\begin{aligned} & \text { CBS 135462T; } \\ & \text { CPC } 11414 \end{aligned}$	P. koreana	Vicia amurensis	South Korea	H.D. Shin	GU214683	GU269852	(GU320556)	(GU384564)	-	KX288707	-	-	-	-
	CBS 131898; CPC 11415	Sp. viciae	Vicia amurensis	South Korea	H.D. Shin	KF252144	KF251639	(KF253940)	(KF253586)	-	KX348096	-	(KF254291)	(KF253101)	-
Sphaerulina sp.	CPC 13566		Haloragis erecta	New Zealand	C.F. Hill	KX287247	-	-	-	-	KX288708	-	-	-	-
Sp. tirolensis	CBS 109018 ${ }^{\text {T }}$		Rubus idaeus	Austria	G. Verkley	KF252143	KF251638	(KF253939)	(KF253585)	-	KX348097	-	(KF254290)	(KF253100)	-
Stromatoseptoria castaneicola	CBS 102322		Castanea sativa	Netherlands	G. Verkley	KF251774	KF251271	-	(KF253219)	-	KX348098	-	-	(KF252752)	-
	CBS 102377		Castanea sativa	Netherlands	G. Verkley	KF251775	KF251272	-	(KF253220)	-	KX348099	-	-	(KF252753)	-
Teratoramularia infinita	CBS 120815	Cercosporella sp.	Thladiantha punctata	Taiwan	R. Kirschner \& C.-J. Chen	KX287248	KX287544	KX287827	KX288106	KX288382	KX288709	KX288995	-	-	-
	CBS 141104^{T}; CPC 19488	Cercosporella sp.	Conyza canadensi	s Brazil	-	KX287249	KX287545	KX287828	KX288107	KX288383	KX288710		KX289125	-	-
Tr. persicariae	CPC 11408	Ramularia sp.	Persicaria nepalensis	South Korea	H.D. Shin	KX287250	KX287546	KX287829	KX288108	KX288384	KX288711	KX288996	-	-	-
	CPC 11409	Ramularia sp.	Persicaria nepalensis	South Korea	H.D. Shin	KX287251	KX287547	KX287830	KX288109	KX288385	KX288712	KX288997	-	-	-
	CBS 141105 ${ }^{\text {T }}$; CPC 11410	Ramularia sp.	Persicaria nepalensis	South Korea	H.D. Shin	KX287252	KX287548	KX287831	KX288110	KX288386	KX288713	KX288998	-	-	-
	CBS 195.27	R. anomala	Fagopyrum esculentum	-	-	KX287253	-	-	KX288111	KX288387	KX288714	KX288999	-	-	-
Tr. rumicicola	CPC 14652	R. pratensis var. pratensis	Rumex crispus	South Korea	H.D. Shin	KX287254	KX287549	-	KX288112	KX288388	KX288715	KX289000	-	-	-

Table 1. (Cont															
Species ${ }^{4}$	Culture number ${ }^{1,2}$	Previous name ${ }^{4}$	Host	Country	Collector	LSU	ITS	act A	tef1- α	gapdh	$r p b 2$	his3	$\operatorname{cmd} A$	tub2	chs-1
	CBS 141106 ${ }^{\text {T }}$; CPC 14653	R. pratensis var. pratensis	Rumex crispus	South Korea	H.D. Shin	KX287255	KX287550	-	KX288113	KX288389	KX288716	KX289001	-	-	-
	CPC 14654	R. pratensis var. pratensis	Rumex crispus	South Korea	H.D. Shin	KX287256	KX287551	-	KX288114	KX288390	KX288717	KX289002	-	-	-
Tr. kirschneriana	CBS 113093 ${ }^{\text {T }}$; RoKi 1144	Ph. paspali	Setaria palmifolia	Taiwan	R. Kirschner \& C.-J. Chen	GQ852627	GU214669	KX287832	KX288115	KX288391	KX288718	KX289003	-	-	-
Tr. biformis	CBS 124578 ${ }^{\text {T }}$; MUCC 693		Eucalyptus globulus	Australia, Queensland	G. Whyte	KF901887	KF901564	(KF903551)	(KF903287)	-	KX348100	-	(KF902703)	(KF902987)	-
Tr. cryptica	CBS 111663; CPC 1558		-	-	-	KF901823	KF901506	(KF903449)	(KF903300)	-	KX348101	-	(KF902715)	(KF902999)	-
Tr. eucalypti	CPC 12552	Phaeophleospora eucalypti	Eucalyptus nitens	Australia	C. Mohammed	KF901900	KF901576	(KF903619)	(KF903303)	-	KX348102	-	(KF902718)	(KF903002)	-
Tr. gauchensis	CBS 119465; CMW 17545		Eucalyptus grandis	Uruguay	M.J. Wingfield	KF902145	KF901787	(KF903509)	(KF903312)	-	KX348103	-	(KF902726)	(KF903010)	-
Tr. molleriana	CBS 118359; CMW 11560		Eucalyptus globulus	Australia, Tasmania	-	KF902120	KF901764	(KF903490)	(KF903327)	-	KX348104	-	(KF902740)	(KF903024)	-
Uwebraunia australiensis	CBS 120729; CPC 13282	U. australiensis	Eucalyptus platyphylla	Australia, Queensland	P.W. Crous	KF442553	EF394854	-	(JQ622129)	-	KX348105	-	-	(KF442475)	-
U. commune	CPC 12397	M. lateralis	Eucalyptus globulus	Australia	I. Smith	KF251740	KF251237	-	(KF253190)	-	KX348106	-	-	(KF252724)	-
U. musae	$\begin{aligned} & \text { CBS 122453; } \\ & \text { X1021 } \end{aligned}$		Musa acuminata cv. Nendran	India	I. Buddenhagen	JQ739816	EU514225	(EU514296)	-	-	KX348107	(EU514349)		-	-
	$\begin{aligned} & \text { CBS 122454; } \\ & \text { X1022 } \end{aligned}$		Musa acuminata cv. Grande Naine	Indonesia	I. Buddenhagen	KX287257	EU514226	(EU514297)	-	-	KX288719	(EU514350)		-	-
Xenoramularia arxii	CBS 342.49 ${ }^{\text {T }}$	R. aromatica	Acorus calamus	Netherlands	J.A. von Arx	KX287258	KX287552	KX287833	KX288116	KX288392	KX288720	KX289004	-	-	-
X. neerlandica	CBS 113615	Pseudocercospore sp.	Sparganium ramosum	Netherlands	-	KX287259	KX287553	KX287834	KX288117	KX288393	KX288721	KX289005	-	-	-
	CBS 141101 ${ }^{\text {T }}$; CPC 18377	Pseudocercospore sp.	Iris pseudacorus	Netherlands	P.W. Crous	KX287260	KX287554	KX287835	KX288118	KX288394	KX288722	KX289006	-	-	-
	CPC 18378	Pseudocercospore sp.	Iris pseudacorus	Netherlands	P.W. Crous	KX287261	-	KX287836	KX288119	KX288395	KX348108	KX289007	-	-	-
X. polygonicola	CBS 141102 ${ }^{\text {T }}$; CPC 10852	Ramularia sp.	Polygonum sp.	South Korea	H.D. Shin	GU214695	GU214695	KX287837	KX288120	KX288396	KX288723	KX289008	-	-	-
	CPC 10853	Ramularia sp.	Polygonum sp.	South Korea	H.D. Shin	KX287262	KX287555	-	KX288121	KX288397	KX288724	KX289009	-	-	-
	CPC 10854	Ramularia sp.	Polygonum sp.	South Korea	H.D. Shin	KX287263	KX287556	-	KX288122	KX288398	KX288725	KX289010	-	-	-
Z. brevis	CBS 128853 ${ }^{\text {T }}$; CPC 18106; no. 8 S		Phalaris minor	Iran	M. Razavi	JQ739833	JF700867	(JF701036)	(JQ739777)	-	KX348109	-	(JF701104)	(JF700968)	-

Species ${ }^{4}$	Culture Previous number ${ }^{1,2}$ name 4	Host	Country	Collector	LSU	ITS	actA	tef $1-\alpha$	gapdh	rpb2	his3	cmd A	tub2	chs-1
Z. halophila	CBS 128854 ${ }^{\text {T }}$; CPC 18105; IRAN1483C; GLS1	Hordeum glaucum		M. Razavi	KF252150	KF251645	(KF253946)	(KF253592)	-	KX348110	-	(KF254297)	(JF700977)	-
Z. passerinii	$\begin{aligned} & \text { CBS } \\ & \mathbf{1 2 0 3 8 2}^{\text {ET }} ; \text { P } 83 \end{aligned}$	Hordeum vulgare	USA, North Dakota	S. Goodwin	JQ739843	JF700877	(JF701046)	(JQ739787)	(KP894652)	KP894763	(KP894874)	(JF701114)	(JF700978)	-
Z. tritici	CPC 18116 Septoria sp.	Avena sp.	Iran	Amir	KX287264	JF700884	(JF701053)	-	-	KX348111	-	(JF701121)	(JF700985)	-
	$\begin{aligned} & \text { CBS } 115943^{\mathrm{ET}} ; \\ & \text { IPO } 323 \quad \text { M. graminicola } \end{aligned}$	Triticum aestivum	Netherlands	R. Daamen	GU214436	AF181692	(JF701061)	-	-	KX348112	-	(JF701129)	(JF700993)	-
Z. verkleyi	CBS $133618^{\text { }}$	Poa annua	Netherlands	S.I.R. Videira	KF442686	KC005781	-	-	-	KX348113	-	-	-	-
	CBS 136761	Poa annua	Netherlands	U. Damm	KX287265	KX287557	-	-	-	KX288726	-	-	-	-

[^0]Table 2. Details of primers used and/or developed for this study for the PCR amplification and sequencing of different loci

Locus ${ }^{1}$	Primer Name	Sequence 5' \rightarrow 3'	Annealing temperature $\left({ }^{\circ} \mathrm{C}\right)$	Orientation	Reference
act A	ACT-2Rd	ARR TCR CGD CCR GCC ATG TC	55	Reverse	Groenewald et al. (2013)
	ACT-512F	ATG TGC AAG GCC GGT TTC GC	55	Forward	Carbone \& Kohn (1999)
	ACT-783R	TAC GAG TCC TTC TGG CCC AT	55	Reverse	Carbone \& Kohn (1999)
chs-1	CHS-354R	TGG AAG AAC CAT CTG TGA GAG TTG	52	Reverse	Carbone \& Kohn (1999)
	CHS-79F	TGG GGC AAG GAT GCT TGG AAG AAG	52	Forward	Carbone \& Kohn (1999)
cmdA	CAL-228F	GAG TTC AAG GAG GCC TTC TCC C	58	Forward	Carbone \& Kohn (1999)
	CAL-737R	CAT CTT TCT GGC CAT CAT GG	58	Reverse	Carbone \& Kohn (1999)
	Cal2Rd	TGR TCN GCC TCD CGG ATC ATC TC	58	Reverse	Groenewald et al. (2013)
gapdh	Gapdh-F1	ATY GTC TTC CGC AAY GCGT	56	Forward	This study
	gpd1	CAA CGG CTT CGG TCG CAT TG	58	Forward	Berbee et al. (1999)
	gpd2	GCC AAG CAG TTG GTT GTG C	58	Reverse	Berbee et al. (1999)
his 3	CylH3F	AGG TCC ACT GGT GGC AAG	52	Forward	Crous et al. (2004d)
	CylH3R	AGC TGG ATG TCC TTG GAC TG	52	Reverse	Crous et al. (2004d)
ITS	ITS4	TCC TCC GCT TAT TGA TAT GC	52	Reverse	White et al. (1990)
	V9G	TTA CGT CCC TGC CCT TTG TA	52	Forward	Hoog \& Gerrits van den Ende (1998)
LSU	LR5	TCC TGA GGG AAA CTT CG	52	Reverse	Vilgalys \& Hester (1990)
	LSU1Fd	GRA TCA GGT AGG RAT ACC CG	52	Forward	Crous et al. (2009c)
mcm 7	Mcm7-1348rev	GAY TTD GCI ACI CCI GGR TCW CCC AT	56	Reverse	Schmitt et al. (2009)
	Mcm7-709for	ACI MGI GTI TCV GAY GTH AAR CC	56	Forward	Schmitt et al. (2009)
rpb2	RPB2-5f2	GGG GWG AYC AGA AGA AGG C	$60 \rightarrow 58 \rightarrow 54$	Forward	Sung et al. (2007)
	RPB2-7cR	CCC ATR GCT TGY TTR CCC AT	$60 \rightarrow 58 \rightarrow 54$	Reverse	Liu et al. (1999)
	Rpb2-F1	GGTGTCAGTCARGTGYTGAA	$60 \rightarrow 58 \rightarrow 54$	Forward	This study
	Rpb2-F4	GAY YTB GCI GGI CCI YTI ATG GC	$60 \rightarrow 58 \rightarrow 54$	Forward	This study
	RPB2-f5f	GAY GAY MGW Gat Cay TTY GG	$60 \rightarrow 58 \rightarrow 54$	Forward	Liu et al. (1999)
	Rpb2-R1	TCC TCN GGV GTC ATG ATR ATC AT	$60 \rightarrow 58 \rightarrow 54$	Reverse	This study
tefl $-\alpha$	EF-2	GGA RGT ACC AGT SAT CAT GTT	54	Reverse	O'Donnell et al. (1998)
	EF1-728F	CAT CGA GAA GTT CGA GAA GG	54	Forward	Carbone \& Kohn (1999)
	TEF-1R	CTT GAT GAA ATC ACG GTG ACC	54	Reverse	Videira et al. (2015a)
tub2	Bt-2a	GGT AAC CAA ATC GGT GCT GCT TTC	52	Forward	Glass \& Donaldson (1995)
	Bt-2b	ACC CTC AGT GTA GTG ACC CTT GGC	52	Reverse	Glass \& Donaldson (1995)

Table 2. Details of primers used and/or developed for this study for the PCR amplification and sequencing of different loci.

Locus ${ }^{\mathbf{1}}$	Primer Name	Sequence 5' $\rightarrow \mathbf{3}$,	$\begin{array}{l}\text { Annealing } \\ \text { temperature }\left({ }^{\circ} \mathbf{C}\right)\end{array}$	Orientation	Reference
T1 β-Sandy-R	AAC ATG CGT GAG ATT GTA AGT	52	Forward	O'Donnell \& Cigelnik (1997)	Reverse

(Stamatakis 2014) and a Bayesian analysis performed with MrBayes v. 3.2 (Ronquist et al. 2011). The Neighbour-Joining analysis using the HKY85 substitution model was applied to each gene partition individually in order to manually check the congruency among the genes (data not shown, trees deposited in TreeBASE S19315). Alignment gaps were treated as missing data and all characters were unordered and of equal weight. Any ties were broken randomly when encountered. For parsimony analysis, alignment gaps were treated as fifth character state and all characters were unordered and of unequal weight. Maximum parsimony analysis was performed in PAUP using the heuristic search option with 100 random taxon additions and tree bisection and reconnection (TBR) as the branch-swapping algorithm. Branches of zero length were collapsed and all multiple, equally most parsimonious trees were saved. The robustness of the trees obtained was evaluated by 1000 bootstrap replications (Hillis \& Bull 1993). Other measures calculated included tree length (TL), consistency index (CI), retention index (RI) and rescaled consistency index (RC). MrModeltest v. 2.2 (Nylander 2004) was used to determine the best nucleotide substitution model settings for each data partition in order to perform a modeloptimised Bayesian phylogenetic reconstruction. The Markov Chain Monte Carlo (MCMC) analysis of four chains started in parallel from a random tree topology, the heat parameter was set at 0.1 and trees were saved every 100 (overview phylogeny) or 1000 (Ramularia species phylogeny) generations until the average standard deviation of split frequencies reached 0.01 (stop value). Burn-in was set to 25% after which the likelihood values were considered to be stationary. The Maximum-Likelihood analysis used the GTRGAMMA model and included 1000 bootstrap replicates. All resulting trees were printed with Geneious v. 7.0.6 (Kearse et al. 2012). All new sequences generated in this study were deposited in NCBI's GenBank nucleotide database (www.ncbi.nlm.nih.gov) and the accession numbers are listed in Table 1. The alignments and respective phylogenetic trees were deposited in TreeBASE S19315 (www. TreeBASE.org).

Kimura-2-parameter values

To evaluate the ability of each gene for species resolution, inter- and intra-specific distance matrixes were calculated based on each gene's individual alignment using MEGA v. 5 (Tamura et al. 2011). Single strain species were excluded from the analyses. The matrixes were generated using the Kimura-2-parameter model, with substitutions including transitions and transversions, using uniform rates among sites and treating gaps as complete deletion. The obtained distance values were sorted into frequency distribution bins using Microsoft Excel 2007. The frequency distribution mean was calculated according to the formula $\mathrm{x}=\Sigma(\mathrm{f} . \mathrm{b}) / \Sigma(\mathrm{f})$, in which the " f " is the frequency and " b " is the bin. The distance between the mean of the inter- and intraspecific distance distributions represents the barcoding gap (Hebert et al. 2003).

Taxonomy

Isolates were cultivated for $7-15 \mathrm{~d}$ at $21^{\circ} \mathrm{C}$ in a regular day/night regime. Morphological observations of reproductive structures were determined using a Nikon Eclipse 80i compound microscope with differential interference contrast (DIC) illumination. Slides were prepared using the inclined coverslip method (Kawato \& Shinobu 1959, revised in Nugent et al. 2006) and also transparent adhesive tape (Titan Ultra Clear Tape, Conglom Inc., Toronto, Canada) (Bensch et al. 2012). Clear lactic acid was used as mounting medium for microscopic observations of structures in vivo while Shear's solution was used for structures from herbarium material. The
morphological structure terminology followed those used for Ramularia species by Crous et al. (2011c). The observed isolates were cultivated on synthetic nutrient-poor agar (SNA) for the observation and measurement of conidiogenous structures (recipes according to Crous et al. 2009f). The recorded measurements represent the minimum value followed by the 95% confidence interval of 30 individual measurements and the maximum value, for both length and width. For culture characterisation the isolates were inoculated on 2% potato dextrose agar (PDA), oatmeal agar (OA) and 2% malt extract agar (MEA) (recipes according to Crous et al. 2009f), and incubated in the dark at $25^{\circ} \mathrm{C}$. After 14 d , the colony diameter was measured and the colony colour described according to the mycological colour charts of Rayner (1970). Nomenclatural novelties and descriptions were deposited in MycoBank (Crous et al. 2004a).

RESULTS

The PCR amplification and sequencing of actA, gapdh, his3, ITS, LSU, rpb2 and tef1- α was successful for most of the isolates included in this study. The amplification of cmdA and tub2 often resulted in multiple bands, despite the attempts of protocol optimisation, and were therefore excluded from the phylogenetic analysis. The amplification of the partial genes chs1 and $m \mathrm{~cm} 7$ was unsuccessful for most of the strains tested and were therefore not targeted for the complete dataset. The amplification of gapdh and his 3 of a few isolates resulted in double bands from which the band with the correct size was subsequently purified from the agarose gel and re-amplified using the same primers to obtain a single band. All the obtained sequences were deposited in GenBank (Table 1). The individual gene trees based on NeighbourJoining analysis using the HKY85 substitution model (data not shown, available in TreeBASE S19315) showed that: 1) ITS was able to discriminate several clades but some species could not be distinguished; 2) actA, gapdh, rpb2 and tef1- α each supported the same general species clades and were suitable to use in a multigene analysis, and 3) the his 3 phylogenetic tree was not congruent with the other genes trees and these sequences were therefore not used in the multigene analysis. Based on the his 3 gene, clades were split apart and closely related species based on the other gene trees were positioned far apart (e.g. Fig. 2, clades 19-20, 21, 23-25).

Fig. 1. Phylogenetic tree resulting from a Bayesian analysis on the combined alignment of LSU and $r p b 2$. Bayesian posterior probabilities ($\leq 1 ; \mathrm{BPP}$), maximum likelihood bootstrap support values ($\geq 80 \%$; MLBS) and parsimony bootstrap support values ($\geq 80 \%$; PBS) are indicated at the nodes (BPP/MLBS/PBS). Values of BPP/MLBS/PBS equal to $1 / 100 / 100$ were replaced with a hash (\#). The scale bar represents the expected number of changes per site. Branches in a thicker stroke represent the branches present in the strict consensus parsimony tree. Species names are written in black text, host names in green and country of origin in brown. In the species names, in descending order on the tree, the genus is abbreviated as: $N .=$ Neopseudocercosporella; $F .=$ Fusoidiella; Fi. $=$ Filiella; A. $=$ Apseudocercosporella; Ne. = Neocercospora; C. = Cercospora; S. = Septoria; Sp. = Sphaerulina; Ca. $=$ Caryophylloseptoria; Ce $=$ Cercosporella; $R .=$ Ramulariopsis; $P .=$ Pseudocercospora; Pa $=$ Pallidocercospora; Ra. $=$ Ramularia; $X .=$ Xenoramularia; Z. $=$ Zymoseptoria; $D .=$ Dothistroma; St. $=$ Stromatoseptoria; Ps. $=$ Pseudocercosporella; M. $=$ Microcyclosporella; $M y$. $=$ Mycosphaerelloides; E. $=$ Epicoleosporium; U. = Uwebrawnia; Di. $=$ Dissoconium; Ram. $=$ Ramichloridium; Ac. $=$ Acrodontium; Par. $=$ Parapenidiella; T. $=$ Teratosphaeria; $R .=$ Readeriella; Te.$=$ Teratoramularia. Genus clades are delimited in coloured blocks, with genus names and clade numbers indicated to the right of the tree together with the family they belong to. Type strains are represented in bold. The tree was rooted to Cladosporium cladosporioides (CBS 112388).

Fig. 1. (Continued).

Fig. 1. (Continued).

LSU \& rpb2 phylogeny: The concatenated alignment of two loci (LSU and rpb2) was used to build a phylogeny that resolved the phylogenetic position of Ramularia and allied genera known from culture within the Dissoconiaceae, Mycosphaerellaceae and Teratosphaeriaceae. A strain of Cladosporium cladosporioides (CBS 112388) was used as outgroup. Based on the results of MrModelTest the Bayesian (BA) analysis was performed with the GTR $+\mathrm{I}+\mathrm{G}$ substitution model, with inverse gamma rates and with dirichlet base frequencies for both genes (LSU and rpb2). The alignment contained a total of 625 unique site patterns: 200 (LSU) and 425 (rpb2). The analysis generated 9222 trees from which 6918 were sampled and 2304 were discarded (25% burnin) and the consensus tree is depicted in Fig. 1. The MaximumLikelihood (ML) analysis detected 625 distinct patterns and reached a final ML optimisation likelihood of -31995.929951 . The bootstrap support values from the best-scoring tree were mapped on the Bayesian tree as the second value in the tree nodes (Fig. 1; bootstrap values $\geq 80 \%$). The Parsimony (PA) analysis generated the maximum of 1000 equally most parsimonious trees. From the total of 1367 characters analysed, 745 were constant, 62 were variable and parsimony-uninformative and 560 were parsimony-informative. The robustness of the trees obtained was evaluated by 1000 bootstrap replications. The bootstrap support values were mapped on the Bayesian tree as the third value in the tree nodes (Fig. 1, bootstrap values $\geq 80 \%$). A parsimony strict consensus tree was calculated from the equally most parsimonious trees and the branches were mapped with a thicker stroke on the Bayesian tree (Fig. 1). The additional parameters calculated were $\mathrm{TL}=7149, \mathrm{CI}=0.167, \mathrm{RI}=0.793, \mathrm{RC}=0.132$.

The phylogenetic trees generated using the three phylogenetic methods separated the strains into the same genus clades (Fig. 1). Clades I to XXII belong to Mycosphaerellaceae, clades XXIII to XXV to Dissoconiaceae and clades XXVI to XXX to Teratosphaeriaceae. Within these families we observed well-known and highly supported clades (Bayesian posterior probability/Maximum Likelihood bootstrap support/Parsimony bootstrap support) such as Cercospora (clade VI, 1/100/100), Septoria (clade VII, 1/97/100), Sphaerulina (clade VIII, 1/100/ 100), Caryophylloseptoria (clade IX, 1/100/100), Cercosporella (clade X, 0.99/86/-), Ramulariopsis (clade XI, 1/99/93), Pseudocercospora (clade XII, 1/89/94), Pallidocercospora (clade XIII, 1/100/100), Ramularia (clade XIV, 1/100/100), Zymoseptoria (clade XVI, 0.92/-/-), Dothistroma (clade XVII, 1/100/99), Stromatoseptoria (clade XVIII, 1/100/100), Pseudocercosporella (clade XIX, 1/100/100), Microcyclosporella (clade XX, 1/98/100), Uwebraunia (clade XXIII, 1/100/99), Ramichloridium (clade XXV, 1/100/99), Acrodontium (clade XXVI, 1/99/100), Parapenidiella (clade XXVII, 1/100/100), Teratosphaeria (clade XXVIII, 1/100/100) and Readeriella (clade XXIX, 1/100/100). In this phylogeny, the genera Neocercospora (clade V) and Dissoconium (clade
XXIV) are represented as single lineages (Fig. 1). Additional distinct clades with high support values were observed and are described as new genera in the Taxonomy section below, namely, Neopseudocercosporella (clade I, 1/100/100), Apseudocercosporella (clade IV, 1/100/100), Xenoramularia (clade XV, 0.57/-), Mycosphaerelloides (clade XXI, 1/100/100), Epicoleosporium (clade XXII, 1/100/100) and Teratoramularia (clade XXX, 1/100/98). The genera Fusoidiella (clade II) and Filiella (clade III) are represented as single lineages and are described as new genera based on both molecular and morphological differences.

Multigene phylogeny of Ramularia s. str.: The concatenated alignment of five loci was used to build a phylogeny that revealed the species diversity within the genus Ramularia for species known from culture. A strain of Zymoseptoria halophila (CBS 128854) was used as outgroup. The final alignment included 300 taxa and contained 2689 characters (including alignment gaps) divided into five partitions: 664 (rpb2), 529 (ITS), 263 (actA), 633 (gapdh) and 580 (tef1- α) characters respectively. The five characters artificially introduced as spacers between partitions were excluded from the phylogenetic analysis (see alignment in TreeBASE S19315). The following characters were also excluded as ambiguously aligned regions: 1 053-1 059 (ITS), 1 391-1 400 (actA), 1545-1 560 and 1 686-1 720 (gapdh), 2 255-2 276, $2369-2376$ and 2 426-2 506 (tefl- α). Based on the results of MrModelTest the Bayesian analysis was performed with the GTR $+\mathrm{I}+\mathrm{G}$ substitution model, with inverse gamma rates and with dirichlet base frequencies for actA, gapdh and rpb2. The ITS partition was analysed with a SYM $+\mathrm{I}+\mathrm{G}$ substitution model with fixed frequencies and with inverse gamma rates while the tefl- α partition was analysed with the $\mathrm{HKY}+\mathrm{I}+\mathrm{G}$ substitution model with inverse gamma rates and with dirichlet base frequencies. The alignment contained a total of 1476 unique site patterns: 374 (rpb2), 178 (ITS), 191 (actA), 354 (gapdh), and 379 (tefl- α). The analysis generated 17232 trees from which 12924 were sampled and 4308 were discarded (25% burnin) and the final tree is depicted in Fig. 2. The Maximum Likelihood analysis using the GTRGAMMA model detected 1415 distinct patterns and reached a final ML optimisation likelihood of -62205.001171. The bootstrap support values from the best-scoring tree were mapped on the Bayesian tree as the second value in the tree nodes (Fig. 2; bootstrap values $\geq 80 \%$). The parsimony analysis generated the maximum of 1000 equally most parsimonious trees. From the 2499 characters analysed, 1068 were constant, 182 were variable and parsimony-

Fig. 2. Phylogenetic tree resulting from a Bayesian analysis on the combined alignment of five genes (rpb2, ITS, actA, gapdh, tef1- α). Bayesian posterior probabilities ($\leq 1 \mathrm{BPP}$), maximum likelihood bootstrap support values ($\geq 80 \%$; MLBS) and parsimony bootstrap support values ($\geq 80 \%$; PBS) are indicated at the nodes (BPP/MLBS/PBS). Values of BPP/MLBS/PBS equal to $1 / 100 / 100$ were replaced with a hash (\#). The scale bar represents the expected number of changes per site. Branches in a thicker stroke represent the branches present in the strict consensus parsimony tree. Species clades are delimited in coloured blocks, where strain numbers are written in black, host names in blue and country of origin in brown. The current species name and clade number are indicated to the right of the tree. Type strains are represented in bold. The tree was rooted to Zymoseptoria halophila (CBS 128854).

Chapter 4

Fig. 2. (Continued).

Fig. 2. (Continued).

Fig. 2. (Continued).

Fig. 2. (Continued).
uninformative and 1249 were parsimony-informative. The robustness of the trees obtained was evaluated by 1000 bootstrap replications. The bootstrap support values were mapped on the Bayesian tree as the third value in the tree nodes (Fig. 2, bootstrap values $\geq 80 \%$). A consensus parsimony tree was calculated from the equally most parsimonious trees and the branches were mapped with a thicker stroke on the Bayesian tree (Fig. 2). The additional parameters calculated were $\mathrm{TL}=14589, \mathrm{CI}=0.213, \mathrm{RI}=0.827$ and $\mathrm{RC}=0.176$.

The phylogenetic trees based on the multigene dataset (Fig. 2) that were generated with BA, ML and PA separated the strains into similar species clades. The phylogeny distributed the species into three main clades, and the position of single species clades varied with each gene and each phylogenetic method. The tree depicted a total of 86 clades, of which 30 are single lineages (clades $4,6,11,12,14,18,22,25,26,33,34,36,37,39,43,44,48,51,62-64,69,73$, $75,77,80,82-84,88$), 20clades represent new species (clades $1,5,7,15,20,24,25,44,51,56$, $58,70,76,77,80,83,84,88$), and 12 clades contained good candidates for epitypification for existing species (clades $3,16,27,38-40,48,50,52,67,78,79$). These are discussed in further detail in the Taxonomy section below.

Kimura-2-parameter values: The individual loci showed varying degrees of effectiveness in their ability to separate species (Fig. 3). In these datasets, rpb2 and gapdh showed the best barcode gap distances between the inter- and intraspecific distances, followed by actA, tefl- α and his3. The ITS lacked a significant barcode gap, which indicates that this gene performs

Fig. 3. Frequency distribution graph of the Kimura-2-parameter distance test for the five individual gene loci (actaA; gapdh; ITS; rpb2; tef1- α). Barcoding gap calculated based on the frequency distributions. Percentage of overlap between the inter- and intra-specific distances based on the frequency distributions.
poorly for species resolution in the genus Ramularia. The gapdh and rpb2 also showed the lowest overlap between the intra- and interspecific distances, followed by tefl- α, actA and ITS, respectively. A good barcode should be easily amplifiable by PCR, have a large barcode gap and a small overlap between intra- and interspecific distances (Schoch et al. 2012, Stielow et al. 2015). Based on these characteristics, both rpb2 and actA make good secondary barcode loci for Ramularia species.

Taxonomy

In this study we applied the Consolidated Species Concept (Quaedvlieg et al. 2014), a polyphasic approach combining the concordance of multiple gene genealogies with morphological and ecological information to improve fungal species delimitation. The genera mapped in Fig. 1 are discussed by clade order followed by a section describing and illustrating the allied genera of Ramularia for which only herbarium specimens were available. The species of Ramularia resolved in Fig. 2 are discussed in alphabetical order in a third section to which a few important species not known from culture but of phytopathological importance were added.

Clade I: Neopseudocercosporella Videira \& Crous, gen. nov. MycoBank MB816820.
Etymology: Named after the similarity with Pseudocercosporella.
Phytopathogenic, causing leaf spots. Mycelium internal, hyaline, septate, branched, stromata almost absent to well-developed. Ascomata pseudothecial, mycosphaerelloid, single to aggregated, black, immersed, becoming erumpent, globose, with an apical ostiole; wall of medium brown textura angularis. Asci aparaphysate, fasciculate, bitunicate, subsessile, obovoid to narrowly ellipsoid. Ascospores, straight to fusoid-ellipsoid, hyaline, guttulate, thin-walled, with subobtuse ends, medianly 1 -septate. Conidiophores solitary or grouped, erumpent through the cuticle or emerging through stomata, hyaline, sometimes faintly pigmented, smooth, simple, straight, slightly curved or geniculate-sinuous, usually aseptate, i.e. reduced to conidiogenous cells, thin-walled, smooth. Conidiogenous cells hyaline, subcylindrical to geniculate-sinuous, with inconspicuous conidiogenous loci, unthickened, neither darkened nor refractive, mostly truncate. Conidia solitary, hyaline or rarely slightly pigmented, thin-walled, smooth, straight to flexuous, subcylindrical to obclavate, with apex obtuse to subacute and base truncate, sometimes somewhat obconically, one- to multiseptate, hilum not thickened or darkened.

Type species: Neopseudocercosporella capsellae (Ellis \& Everh.) Videira \& Crous.

Notes: This genus currently accommodates two species, Neopseudocercosporella capsellae (syn. Pseudocercosporella capsellae/Mycosphaerella capsellae) and Neopseudocercosporella brassicae (syn. Mycosphaerella brassicicola) (Fig. 1, clade I; Fig. 4) which are not congeneric with the type species of Pseudocercosporella. Both are considered as important pathogens of Brassica species, especially in the Brassica oleraceae group that includes broccoli, cauliflower and Brussel sprouts, and have been reported worldwide. Neopseudocercosporella capsellae is the causative agent of White Leaf Spot disease while Neopseudocercosporella brassicae causes Ringspot disease. In literature, these pathogens are usually distinguished based on their disease symptoms, morphology of their ascospores, and culture characteristics (Inman et al. 1991). Both pathogens cause symptoms on leaves, stems and pods. The lesions caused by N. capsellae are round to angular and tan to light grey while the lesions caused by N. brassicae expand in a pattern of concentric rings with shades of grey. The ascomata, asci and ascospores of N. capsellae and N. brassicae are very similar in size and shape. The ascospores in both species are 1 -septate and not constricted at the septa but the ascospores of N. brassicae typically have one cell that is broader than the other while in N. capsellae they are of similar size and shape. In culture, N. capsellae isolates produced spermogonia and conidia and also secreted a pink pigment into the media, while N. brassicae isolates produced no spermogonia, conidia or pigment. The similarity between these two diseases is high and White Leaf Spot disease was previously misdiagnosed as Ringspot in Canada, since both diseases produce slate grey lesions with spermogonia and pseudothecia on stems and pods (Rimmer et al. 2007). The character used to distinguish these two species that is most emphasised in literature is their ascospore morphology (Inman et al. 1991, Rimmer et al. 2007). The production of pigment into the media should be considered a poor character to distinguish these species since it has been observed that, among a large number of isolates of N. capsellae, only a small percentage could produce pigment and this ability was highly dependant on the media used (Gunasinghe et al. 2016). Although these are economically important fungi, only a few isolates are available in culture collections and mostly of N. capsellae. The sequences of five gene regions of strains deposited in the culture collection as N. capsellae and N. brassicae used in
this study showed only 6-8 unique nucleotide differences in a concatenated alignment containing about 3000 nucleotides. None of these are from ex-type cultures or specimens and only N. capsellae ITS and LSU sequences were available on GenBank for comparison. Based on molecular data there is a distinct possibility that these two species might be synonymous but for now we prefer to keep them separate pending the recollection of fresh material. Neopseudocercosporella capsellae has a predominantly asexual life cycle and the sexual morph is produced at the end of the season to enable survival. Neopseudocercosporella brassicae has no recorded asexual morph other than spermatogonia in vivo. Ascomata can be produced all year round and the fungus is homothallic, meaning ascomata can be produced without the need for two complementary mating types (Rimmer et al. 2007).

Neopseudocercosporella brassicae (Chevall.) Videira \& Crous, comb. nov. MycoBank MB817145.
Basionym: Asteroma brassicae Chevall., Fl. g,en. env. (Paris) 1:
449. 1826.
\equiv Asteromella brassicae (Chevall.) Boerema \& Kesteren, Persoonia 3: 18. 1964.
= Sphaeria brassicicola Duby, as "brassicaecola", Bot. gall., Edn 2 (Paris) 2: 712. 1830.
\equiv Depazea brassicicola (Duby) Klotzsch, in Klotzsch, Herb. Viv. Mycol.: no. 1142. 1848.
\equiv Mycosphaerella brassicicola (Duby) Lindau, in Engler \& Prantl, Nat. Pflanzenfam. 1(1): 424. 1897.
\equiv Sphaerella brassicicola (Duby) Ces. \& De Not., Comment. Soc. Crittog. Ital. 1(4): 238. 1863.
= Dothidea brassicae Desm., Ann. Sci. Nat., Bot., ser. 2 17: 113. 1842.
= Phyllosticta brassicicola Grove, J. Roy. Hort. Soc. 40: 76. 1914.
Specimens examined: Denmark, on Brassica oleraceae, date and collector unknown, isol. and dep. by C.A. Jörgensen, Feb. 1932, culture CBS 228.32. Netherlands, Berlikum, on Brassica oleraceae var. acephala subvar. sabelica, date and collector unknown, isol. and dep. by F. Quak, Nov. 1953, culture CBS 267.53. Germany, Schleswig-Holstein, Marne, on Brassica oleracea, date and collector unknown, isol. by W. Zornbach, Aug. 1986, dep. by W. Zornbach, Mar.1988, culture CBS 173.88.

Substrate and distribution: On various Brassica oleraceae subspecies and varieties (Brussels sprouts, broccoli, cauliflower and cabbage) and other cruciferous species such as oilseedrape, rutabanga and kale.

Notes: Boerema \& van Kesteren (1964) addressed the nomenclatural history of Mycosphaerella brassicicola. Mycosphaerella brassicicola (1897) is based on Sphaeria brassicicola (1830) from Brassica oleraceae from France, Germany, Italy and Belgium. It is hereby transferred to the genus Neopseudocercosporella. Although the isolates used in this study match this host and localities, they were unfortunately sterile in culture (Fig. 1, clade I). Fresh cultures need to be collected from plants exhibiting typical disease symptoms and included in a molecular phylogeny.

Neopseudocercosporella capsellae (Ellis \& Everh.) Videira \& Crous, comb. nov. MycoBank MB817119. Fig. 4.
Basionym: Cylindrosporium capsellae Ellis \& Everh., J. Mycol. 3(11): 130. 1887.
\equiv Cercoseptoria capsellae (Ellis \& Everh.) H.C. Greene, Trans. Wisconsin Acad. Sci. 47: 127. 1959.

Fig. 4. Neopseudocercosporella capsellae (A-D. CPC 14774; E-I. CPC 12518; J-N. CPC 11677). A, E. Leaf spot symptoms on hosts. B-D, F. Conidiogenous cell and conidia from herbarium material. G, H, J, K, L. Conidiogenous cells and conidia from culture. I, M, N. Conidia from culture. Scale bars $=10 \mu \mathrm{~m}$.
\equiv Pseudocercosporella capsellae (Ellis \& Everh.) Deighton, Mycol. Pap. 133: 42. 1973.
\equiv Cercoseptoria capsellae (Ellis \& Everh.) Arx, Proc. Kon. Ned. Akad. Wetensch. C 86(1): 35. 1983.
= Mycosphaerella capsellae A.J. Inman \& Sivan., Mycol. Res. 95: 1339. 1991.
For additional synonyms see Braun (1995) or MycoBank.
Description in vivo: See Braun (1995).
Specimens examined: South Korea, Hongcheon, on Capsella bursa-pastoris, 4 Nov. 2005, H.D. Shin, culture CPC 12519; on Draba nemorosa, 30 Oct. 2004, H.D. Shin, culture CBS 135464 = CPC 11677; Inje, on Trigonotis peduncularis, 14 Sep. 2003, H.D. Shin, culture CPC 10865; Namyangju, on Raphanus sativus, 22 Oct. 2007, H.D. Shin, culture CBS $131896=$ CPC 14773. New Zealand, Auckland, Mt. Albert, on Brassica sp., unknown date and collector, isol. C.F. Hill, Jul. 2005, culture CBS 118412. Unknown country, on Brassica sp., unknown date and collector, isol. R. Evans, 28 Aug. 2002, cultures CBS 112032, CBS 112033. USA, Columbia,

Missouri, Boone Co., on Capsella bursa-pastoris, May 1887, Galloway 253 (holotype NY 883641, isotype BPI 399944).

Substrate and distribution: Various cruciferous species (Brassicaceae), circumglobal (host list and detailed distribution see Braun 1995).

Notes: Pseudocercosporella capsellae (1973) is based on Cylindrosporium capsellae (1887) from Capsella bursa-pastoris from the USA (Columbia, Missouri). It is hereby combined in the new genus Neopseudocercosporella. Neopseudocercosporella capsellae causes White Leaf Spot disease, an important disease of cruciferous species worldwide (Fig. 1, Clade I; Fig. 4). The strains CPC 12518 and CPS 12519 were isolated from this host but originated from South Korea. Mycosphaerella capsellae (1991) is described from Brassica napus in the UK and linked to Pseudocercosporella capsellae. The isolates CBS 112032 and 112033 are listed from the UK but with Brassica sp. as host and were deposited by R. Evans who also at approximately the same time deposited IMI 389562, which is listed in the IMI database as being from Brassica napus. Based on ITS and partial LSU, an isolate from ATCC (38562 from Brassica rapa, USA, California; GenBank JX499036) which is listed in ATCC as Pseudocercosporella capsellae, also belongs to this clade. Unfortunately no other sequences were available for this isolate. Fresh cultures need to be collected from plants exhibiting typical disease symptoms and included in a molecular phylogeny.

Clade II: Fusoidiella Videira \& Crous, gen. nov. MycoBank MB816818.
Etymology: Named after the fusiform-shaped conidia of the type species.
Phytopathogenic, causing small yellow to olivaceous green spots on leaves. Mycelium internal. Conidiophores aggregated in dense fascicles, arising through stomata, aseptate, i.e. usually reduced to conidiogenous cells, smooth, brown, subcylindrical to clavate, straight to curved due to thickening of the wall on one side, not geniculate, one to multiple conidiogenous loci located laterally or apically, loci conspicuous, thickened and broad, areolate, darkened and refractive. Conidia solitary, smooth, light brown, thin-walled, fusiform to obclavate-fusiform, straight to somewhat curved, septate, not constricted at the septa, apex obtuse and base truncate, hilum flattened, thickened, darkened and refractive.

Type species: Fusoidiella depressa (Berk. \& Broome) Videira \& Crous.

Notes: The morphology of the type species is quite unique and different from the closest phylogenetic species, Neopseudocercosporella capsellae. Fusoidiella depressa forms a single lineage in the phylogenetic analysis (Fig. 1, clade II).

Fusoidiella depressa (Berk. \& Broome) Videira \& Crous, comb. nov. MycoBank MB817146. Fig. 5.
Basionym: Cladosporium depressum Berk. \& Broome, Ann. Mag. Nat. Hist. 7: 99, t. 5: 8. 1851.
\equiv Passalora depressa (Berk. \& Broome) Sacc., Nuovo Giorn. Bot. Ital. 8(2): 187. 1876.
\equiv Fusicladium depressum (Berk. \& Broome) Roum., Fungi Sel. Gall. Exs.: No. 86. 1879.
\equiv Cercospora depressa (Berk. \& Broome) Vassiljevsky, Fungi imperfecti Parasitici. I. Hyphomycetes: 385. 1937.

Fig. 5. Fusoidiella depressa (CBS 141335). A-H. Observations from herbarium material. A. Leaf spot symptoms on the host. B-D. Conidia. E. Conidia and conidiophores. F-H. Conidiophores. Scale bars $=$ $10 \mu \mathrm{~m}$.
\equiv Cercosporidium depressum (Berk. \& Broome) Deighton, Mycol. Pap. 112: 37. 1967. For additional synonyms see Deighton (1967), Crous \& Braun (2003) and MycoBank.

Specimen examined: South Korea, Bonghwa, on Angelica gigas, 18 Oct. 2007, H.D. Shin, KUS-F23064 = CBS H-22632, culture CBS 141335 = CPC 14915.

Notes: The specimen studied here (KUS-F23064) was initially identified as Passalora depressa and both the symptoms on the host and morphological characters (Fig. 5) are similar to those described from the authentic specimen (herb. K(M) 29181, on Angelica sylvestris, Great Britain; Deighton 1967). The conidiophores of the herbarium specimen observed are slightly smaller [(10.5-)20-23(-29) $\times(3-) 4-5(-6) \mu \mathrm{m}]$ than those described for the type $[20-70(-120)$ $\times 4-8 \mu \mathrm{~m}]$. Similarly, the observed conidia were also slightly smaller [(17.5-)32-38(-47) \times $(4.5-) 5-6(-8) \mu \mathrm{m}]$ than those described for the type $[20-78 \times 6.5-11 \mu \mathrm{~m}]$. This species forms a single lineage in the phylogenetic analysis (Fig. 1, clade II). Fresh collections of Passalora depressa on Angelica sylvestris from the UK are required to facilitate an epitypification, and to fix the application of the name.

Clade III: Filiella Videira \& Crous, gen. nov. MycoBank MB816823.
Etymology: Named after the filiform-shaped conidia of the type species.
Phytopathogenic. Mycelium internal, hyaline, septate, branched, forming well-developed stromata composed of swollen hyphae. Conidiophores emerging in dense fascicles, through the cuticle or through stomata, subcylindrical, straight to flexuous, geniculate-sinuous, aseptate, i.e. usually reduced to conidiogenous cells, rarely 1 -septate near the base, hyaline to pale yellow
at the base, thin-walled, smooth, with inconspicuous conidiogenous loci, unthickened, neither darkened nor refractive. Conidia solitary, acicular, subcylindrical, filiform, narrowly obclavate, hyaline, discretely septate, thin-walled, smooth, apex subacute, base truncate, hila unthickened, not darkened (adapted from Braun 1993).

Type species: Filiella pastinacae (P. Karst.) Videira \& Crous.
Notes: This monotypic genus (Fig. 1, Clade III) was established to accommodate Pseudocercosporella pastinacae, since it is not congeneric with Pseudocercosporella s. str. based on P. bakeri (Fig. 1, clade XIX). This species is represented by a single lineage in the phylogenetic analysis (Fig. 1, clade III). It is closely related to Neopseudocercosporella and Fusoidiella, but can be distinguished by the acicular-filiform conidia instead of the subcylindrical conidia of N. capsellae, or pigmented, fusiform conidia of F. depressa.

Filiella pastinacae (P. Karst.) Videira \& Crous, comb. nov. MycoBank MB817147.
Basionym: Cercosporella pastinacae P. Karst., Hedwigia 23: 63. 1884.
\equiv Ramularia pastinacae (P. Karst.) Lindr. \& Vestergr., Acta Soc. Fauna Fl. Fenn. 22(1): 8. 1902.
\equiv Pseudocercosporella pastinacae (P. Karst.) U. Braun, Nova Hedwigia 56(3-4): 444. 1993.
= Phyllosticta umbellatarum Rabenh., Fungi Eur. Exs., Cent. XII: no. 1262. 1869.
= Phloeospora laserpitii Bres., Fungi trident. 2(8-10): 45. 1892.
= Cylindrosporium septatum Romell, Syll. Fung. 10: 503. 1892.
For additional synonyms see Braun (1995) and MycoBank.
Specimens examined: Germany, Dresden, on Pastinaca sativa, 1866, Rabenh., Fungi Eur. Exs. 1262 (neotype, designated in Braun 1995, HAL). Sweden, Uppland, Uppsala Näs, Vreta, on Laserpitium latifolium, 2 Jun. 1988, K. \& L. Holm, culture CBS 114116.

Substrate and distribution: On Angelica, Apium, Archangelica, Astrantia, Eremodaucus, Heracleum, Laserpitium, Libanotis, Pastinaca, and other hosts (Apiaceae); Caucasus, Central Asia, Europe, N. America and S. Africa (see Braun 1995).

Notes: Cercosporella pastinacae was transferred to Pseudocercosporella by Braun (1993). It was originally described on Pastinaca sativa from Finland. The type material was not preserved and a neotype specimen on Pastinaca sativa from Germany was selected (Braun 1995; neotype in HAL). This species is known for causing cercosporoid leaf blight of parsnip that is characterised by the formation of yellow-brown spots on leaves and petioles that later become necrotic and lead to plant defoliation. Filiella pastinacae (= P. pastinacae) is often found in mixed infections with R. heraclei ($=$ R. pastinacae-sativa) and they have been often confused. Filiela pastinacae also infects celery, and Angelica species and seeds contaminated with this pathogen must be discarded. The disease has been reported from Europe and Central Asia (Braun 1995) and is susceptible to various fungicides (Davis \& Raid 2002). This species is represented by a single lineage in the phylogenetic analyses (Fig. 1, clade III).

Clade IV: Apseudocercosporella Videira \& Crous, gen. nov. MycoBank MB816816.
Etymology: Named after the similarity with the genus Pseudocercosporella.

Phytopathogenic. Mycelium composed of hyaline, septate, branched, thin-walled, smooth hyphae. Conidiophores arising from hyphae, simple, and occasionally branched, straight and subcylindrical to flexuous, geniculate-sinuous, septate or aseptate, hyaline, thin-walled, smooth. Conidiogenous cells integrated, terminal or conidiophores often reduced to conidiogenous cells, subcylindrical to geniculate-sinuous, conidiogenous loci slightly thickened and darkened. Conidia formed singly, filiform, or subcylindrical, hyaline, thin-walled, smooth, septate or aseptate, base more or less truncate, hilum slightly thickened and darkened.

Type species: Apseudocercosporella trigonotidis Videira, H.D. Shin \& Crous.
Notes: This monotypic genus (Fig. 1, Clade IV) was established to accommodate a pseudocercosporella-like species, since it is not congeneric with Pseudocercosporella s. str. based on P. bakeri (Fig. 1, clade XIX). This genus clade is highly supported in the phylogenetic analysis (Fig. 1, clade IV, 1/100/100). It is closely related to Filiella and Neopseudocercosporella, but can be distinguished by the conidial hila and conidiogenous loci that are slightly thickened and darkened instead of inconspicuous.

Apseudocercosporella trigonotidis Videira, H.D. Shin \& Crous, sp. nov. MycoBank MB816845. Fig. 6.

Etymology: Named after the host on which it was observed, Trigonotis.
Mycelium composed of hyaline, septate, branched, hyphae, 1-2 $\mu \mathrm{m}$ diam. Conidiophores arising from hyphae, simple, occasionally branched, straight and subcylindrical to flexuous, geniculatesinuous, $(5.5-) 11-16(-32) \times 1-1.5 \mu \mathrm{~m}$, aseptate to $1(-2)$-septate, hyaline, thin-walled, smooth. Conidiogenous cells integrated, terminal or conidiophores often reduced to conidiogenous cells, subcylindrical to geniculate-sinuous, (4-)6.5-8(-13) $\times 1-2 \mu \mathrm{~m}$; conidiogenous loci slightly thickened and darkened, $1-2 \mu \mathrm{~m}$ diam. Conidia formed singly, filiform, or subcylindrical, (11-) $19-22(-30) \times 1 \mu \mathrm{~m}$, hyaline, thin-walled, smooth, aseptate or $1-4$-septate, apex obtuse, base more or less truncate, $1 \mu \mathrm{~m}$ diam, hilum slightly thickened and darkened.

Culture characteristics: On MEA, 32 mm diam, surface low convex, smooth, white with a greyish tinge, with margins undulate, colony reverse ochraceous; on OA, 20 mm diam, surface flat, white, sparse aerial mycelium in the colony centre, fluffy, with margins crenate, colony reverse buff; on PDA, 29 mm diam, surface low convex, white, sparse aerial mycelium in the colony centre, fluffy, with margins entire, colony reverse buff.

Specimen examined: South Korea, Jeju, on Trigonotis peduncularis, 12 Nov. 2003, H.D. Shin (holotype KUS-F20054, isotype CBS H-22515, culture ex-type CBS 131890 = CPC 10864); idem. CPC 10865.

Notes: Apseudocercosporella is the first cercosporoid species isolated from Trigonotis. It differs from the closest species in the phylogenetic tree (Fig. 1) by the slightly darkened conidiogenous loci and hila (Fig. 6). The clade is highly supported by BA and ML phylogenetic analysis (Fig. 1 , clade IV, $1 / 100 / 100$).

Fig. 6. Apseudocercosporella trigonotidis (CPC 10865). A-D. Observations from herbarium material. E-G. Structures formed in culture. A. Leaf spot symptoms on the host. B, C, E-G. Conidiophores, conidiogenous cells and conidia. D. Conidium. Scale bars $=10 \mu \mathrm{~m}$.

Clade V: Neocercospora M. Bakhhshi et al., Phytotaxa 213: 28. 2015.
Note: See Bakhshi et al. (2015a).
Clade VI: Cercospora Fresen. ex Fuckel, Fungi Rhen. Exs., Fasc. II: no. 117, 1863.
Note: See Groenewald et al. (2013), Bakhshi et al. (2015b) and Braun et al. (2015b).
Clade VII: Septoria Sacc., Syll. Fung. 3: 474. 1884.
Note: See Verkley et al. (2013) and Quaedvlieg et al. (2013).
Clade VIII: Sphaerulina Sacc., Michelia 1(4): 399. 1878.
Note: See Quaedvlieg et al. (2013).
Sphaerulina chaenomelis (Y. Suto) Videira, U. Braun, H.D. Shin \& Crous, comb. nov. MycoBank MB817148.
Basionym: Cercosporella chaenomelis Y. Suto, Mycoscience 40: 513. 1999.
\equiv Pseudocercosporella chaenomelis (Y. Suto) C. Nakash. et al., Stud. Mycol. 75: 70. 2013.
Specimens examined: Japan, Mie Pref., Tsu, on leaves of Chaenomeles sinensis, 29 Oct. 2011, C. Nakashima (epitype TFM: FPH-8101, culture ex-epitype CBS 132131 = MUCC 1510). South Korea, Kimhae, on Chaenomeles speciosa, 14 Nov. 2007, H.D. Shin, CBS H-20844 = KUS-F23225, culture CBS $131897=$ CPC 14795.

Notes: Chaenomeles sinensis is a deciduous tree native to China that is planted as ornamental in Japan. It is susceptible to a leaf spot disease commonly called frosty mildew caused by Cercosporella chaenomelis (Horie \& Kobayashi 1982). Disease symptoms include large coalescing leaf spots, the development of white tufts of conidiophores on the lower surfaces, and tree defoliation. This species has been linked to the sexual morph Mycosphaerella chaenomelis (Suto 1999) that forms ascomata on fallen overwintered leaves providing inoculum for new infections. Crous et al. (2013a) considered that the fungus would be better placed in Pseudocercosporella due to the hyaline conidia with unthickened conidial hila and proposed a new combination in that genus. Based on DNA sequence data from the ITS and actA gene regions, strains from Japan and South Korea are identical (Crous et al. 2013a, unpubl. data). Pseudocercosporella chaenomelis is morphologically comparable only with Pseudocercosporella gei, known on Geum spp. in North America and the Far East of Russia (Braun 1995). In this study, based on LSU and rpb2, this species falls in the Sphaerulina clade (Fig. 1, clade VIII), and a new combination is therefore proposed. In the genus Sphaerulina, there is also Sphaerulina gei, on Geum japonicum from South Korea, and one could speculate that Pseudocercosporella gei may be a synonym of the latter, but no molecular data are presently available for this species, which could of course also be a different fungus.

Sphaerulina koreana (Crous et al.) Videira, H.D. Shin \& Crous, comb. nov. MycoBank MB817149.
Basionym: Pseudocercosporella koreana Crous et al., Stud. Mycol. 75: 71. 2013 (2012).
= Sphaerulina viciae Quaedvl. et al., Stud. Mycol. 75: 348. 2013.
Specimen examined: South Korea, Hoengseong, on Vicia amurensis, 4 Aug. 2004, H.D. Shin (holotype CBS H-20845, isotypes HAL 1850 F, KUS-F20554, culture ex-type CBS $135462=$ CPC 11414; CPC 11415).

Notes: This isolate was described as a new species in two different papers in the same journal volume (Studies in Mycology 75). The name Pseudocercosporella koreana (Crous et al. 2013a) was published online earlier than the name Sphaerulina viciae (Quaedvlieg et al. 2013). Therefore, the name Pseudocercosporella koreana is retained as basionym with Sphaerulina viciae as later synonym.

Clade IX: Caryophylloseptoria Verkley et al., Stud. Mycol. 75: 233. 2013.
Note: See Verkley et al. (2013) and Quaedvlieg et al. (2013).
Clade X: Cercosporella Sacc., Michelia 2(6): 20. 1880.
Phytopathogenic, mostly causing leaf spots. Hyphae restricted to intercellular spaces and forming cup- or bowl-shaped appresoria, $7-17 \mu \mathrm{~m}$ diam that attach to walls of mesophyll cells. Conidiophores emerging through stomata or erumpent through the cuticle, straight, subcylindrical to geniculate-sinuous, hyaline, sometimes lightly pigmented near the base, more or less thinwalled and smooth. Conidiogenous cells integrated, terminal, polyblastic, sympodial, mostly conspicuously geniculate, conidiogenous loci conspicuous, hyaline but refractive, thickened and raised in the shape of a truncated cone (ultrastructure). Conidia formed singly, hyaline, subcylindrical to obclavate, sometimes fusiform, 1- to multi-septate, usually thin-walled and
smooth, apex obtuse, base often rounded to truncate or obconically truncate, hilum thickened, not darkened but refractive. Description adapted from Braun (1995) and Kirschner (2009).

Type species: Cercosporella virgaureae (Thüm.) Allesch. [= Cercosporella cana (Sacc.) Sacc. (designated by Deighton 1973)].

Notes: Cercosporella species are phytopathogenic and mostly cause leaf spots. The genus was first described by Saccardo (1880a) on Solidago virgaurea, Austria, and was later redescribed by Deighton (1973). Species with consistently internal mycelium in vivo are allocated to Cercosporella subgen. Cercosporella (type species C. virgaureae) and species with superficial mycelium in vivo to Cercosporella subgen. Pseudovellosiella (type species C. crataevae) (Braun 1995). Morphologically, Cercosporella differs from Ramularia by producing cupshaped appressoria and by having flat conidial loci in the shape of a truncated cone (Kirschner 2009). Conidiogenous loci of Ramularia spp. have a raised rim with a central dome that is cladosporium-like and does not produce appressoria. A representative of the type species of the genus, C. virgaureae, was recently recollected but unfortunately not deposited in a culture collection (Kirschner 2009). A LSU sequence retrieved from the Cercosporella strain clustered in a sister clade to Ramularia (Kirschner 2009, this study). The LSU sequence of this isolate (GenBank EU710894) is 100% identical to the LSU sequence of the South Korean isolates used in this study (Fig. 1, clade X). The recently described species C. dolichandrae belongs to Cercosporella as currently circumscribed (Crous et al. 2014a). A first report of the leaf spot disease caused by Cercosporella pfaffiae on Brazilian Ginseng was published, with the closest match on LSU data (GenBank JQ990330) being Cercosporella virgaureae (CBS 113304; GenBank GU214658) (Machado et al. 2012), but due to the lack of an $r p b 2$ sequence it was not included in the phylogeny created in this study. There are a total of 50 species described in the genus Cercosporella (Braun 1995, Seifert et al. 2011) but very few are available as cultures, and many are not congeneric with Cercosporella s. str. (e.g. Fig. 1, clades XII, XIV, XXX). A particularly important species cited in literature is Cercosporella rubi (G. Winter) Plakidas (\equiv Fusisporium rubi G. Winter), the causal agent of the Blackberry rosette disease, a major disease of blackberries in the Southeastern USA. It infects the axillary buds and induces them to germinate as leafy bunches called rosettes. The disease causes reduced yield, poor quality fruit and in severe cases, cane death (Ellis \& Converse 1991). Braun (1995) re-examined type material of this species and described and discussed this fungus under "Excluded, doubtful and insufficiently known species". Unfortunately no cultures of this species were available for study.

Cercosporella catenulata Videira \& Crous, sp. nov. MycoBank MB816846. Fig. 7.
Etymology: Named after the unusual production of short conidial chains.
Mycelium composed of hyaline, septate, branched hyphae, 1-2 $\mu \mathrm{m}$ diam. Conidiophores arising from hyphae, simple or branched, straight and subcylindrical to flexuous or geniculate-sinuous, (8.5-)37-50(-77) $\times(1-) 1.5-2 \mu \mathrm{~m}, 2-6$-septate, hyaline, thin-walled, smooth. Conidiogenous cells integrated, terminal or lateral, subcylindrical to geniculate-sinuous, (4-)8.5-10.5(-15) \times (1-)1.5(-2) $\mu \mathrm{m}$, with a single to multiple conidiogenous loci, conspicuous, thickened but not darkened. Conidia hyaline, smooth, formed singly or in very short chains, aseptate but rarely 1 -septate, with hila thickened but not darkened, $1 \mu \mathrm{~m}$ diam. Ramoconidia fusoid, (5-)9-11(-15)

Fig. 7. Cercosporella catenulata (CBS 355.73). A-H. Structures observed in culture. A, B, D, E, H. Conidiophores, conidiogenous cells and conidia. C, F. Conidia. G. Conidiophore. Scale bars $=10 \mu \mathrm{~m}$.
$\times 2-2.5(-3) \mu \mathrm{m}$, with two apical hila. Intercalary conidia fusoid, $(7-) 9.5-11(-14) \times 2-2.5(-3)$ $\mu \mathrm{m}$, in branched chains of up to two conidia. Terminal conidia fusoid to obovoid, (3.5-)6-7.5($12) \times 2-2.5(-3) \mu \mathrm{m}$.

Culture characteristics: On MEA, 5 mm diam, surface raised, erumpent aerial mycelium, buff, with margins undulate, colony reverse hazel; on $\mathrm{OA}, 5 \mathrm{~mm}$ diam, surface low convex, erumpent aerial mycelium, buff, with margins crenate, feathery, colony reverse hazel; on PDA, 11 mm diam, surface convex, erumpent aerial mycelium, rosy buff, with margins entire and with sparse mycelium, colony reverse honey in the centre and buff at the margin.

Specimen examined: Rwanda, Rubona, on leaves of Phaseolus vulgaris, 10 Jan. 1973, D. Froment (holotype CBS H-17715, culture ex-type CBS 355.73).

Substrate and distribution: Only known from the type host and location.
Notes: Cercosporella catenulata is an unusual member of the genus, since it produces catenate conidia (Fig. 7). This species is represented by a single lineage in the phylogenetic analysis (Fig. 1, clade X).

Cercosporella virgaureae (Thüm.) Allesch., Hedwigia 34: 286. 1895. Fig. 8.
Basionym: Ramularia virgaureae Thüm., Fungi Austr. Exs., Cent. 11: no. 1072. 1874.
\equiv Ovularia virgaureae (Thüm.) Sacc., Syll. Fung. 4: 142. 1886.
\equiv Cylindrosporium virgaureae (Thüm.) J. Schröt., Krypt.-Fl. Schlesien 3-2(10): 489. 1897.
\equiv Cercospora virgaureae (Thüm.) Oudem., Ned. Kruidk. Arch. 2: 315. 1901.
For additional synonyms see Braun (1995) or MycoBank.

Fig. 8. Cercosporella virgaureae (CPC 11461). A. Leaf spot symptoms on the host in herbarium material. B-F. Structures observed in culture. B-D. Conidiophores and conidiogenous cells. E, F. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Description in vivo: See Braun (1995).
Specimens examined: Austria, Krems, on Solidago virgaurea, 1871 [Thüm., Fungi Austr. Exs. 1072] (lectotype K). Brazil, Guimarania, Minas Gerais, on Conyza canadensis, unknown date, B.S. Vieira, culture CPC 19492. South Korea, Jinju, on Erigeron annuus, 1 Jul. 2004, H.D. Shin, cultures CPC 11456, CPC 11457, CPC 11460, CPC 11461; Namyangju, on Erigeron annuus, 9 Oct. 2002, H.D. Shin, cultures CPC 10286-10288; Chuncheon, on Erigeron annuus, 21 May 2003, H.D. Shin, culture CBS 113304.

Notes: Cercosporella virgaureae has a nearly circumglobal distribution and has been isolated from several hosts in the Asteraceae (Braun 1995), although it was originally described on Solidago virgaurea, Austria. Deighton (1973) reduced numerous Cercosporella species to synonymy with C. virgaureae. Kirschner (2009) collected representative strains of the type species of Ramularia (R. pusilla) and Cercosporella (C. virgaureae) and compared them based on LSU sequences, light microscopy and scanning electron microscopy, confirming them to represent two separate genera. The phylogenetic analysis in this study also supports the separation of Cercosporella (Fig. 1, clade X) from Ramularia (Fig. 1, clade XIV).

Clade XI: Ramulariopsis Speg., Anales Mus. Nac. Hist. Nat. Buenos Aires 20(13): 421 [ser. 3, 13]. 1910. Fig. 9.

Phytopathogenic on vascular plants and usually forming leaf spots. Mycelium internal. Conidiophores fasciculate, arising through stomata or erumpent, hyaline, septate, thin-walled, smooth, simple or often branched. Conidiogenous cells integrated, terminal, intercalary as well as pleurogenous (as short nodulose protuberances or subcylindrical branchlets), polyblastic, sympodial, with thickened and darkened conidiogenous loci. Conidia catenate, in simple as well as branched chains, ellipsoid-ovoid, subcylindrical-fusiform, $0-1$ - to multi-euseptate, thinwalled, hyaline, with thickened and darkened hila; conidialsecession schizolytic. Description adapted from Braun (1998).

Type species: Ramulariopsis cnidoscoli Speg.

Fig. 9. Ramulariopsis cnidoscoli (LPS herbarium No12.850, type specimen). A-C. Conidiophores. D-F, H, I. Conidia. G. Conidiogenous cell. Scale bars $=10 \mu \mathrm{~m}$.

Specimen examined: Argentina, Salta, Or'an, on Cnidoscolus vitifolius var. cnicodendron (= C. cnicodendron), Apr. 1905, C. Spegazzini (lectotype, designated by Deighton 1972, LPS 12.850) (Fig. 9).

Notes: Ramulariopsis species have frequently branched conidiophores with integrated, terminal, intercalary and pleurogenous conidiogenous cells with thickened and darkened conidiogenous loci. The conidia are catenate in simple or branched chains. Ramularia is very similar to the present genus, but differs in having simple conidiophores with consistently terminal conidiogenous cells. Ramulariopsis was described by Spegazzini (1910) and emended by Deighton (1972). The type species, R. cnidoscoli, was collected on Cnidoscolus vitifolius in Argentina, and is only known from herbarium material (Fig. 9). This genus currently accommodates four species (Seifert et al. 2011) that are phytopathogenic, and usually cause leaf spots (Braun 1998). The most widespread and economically important species is R. gossypii, known to be the causal agent of areolate mildew of cotton.

Ramulariopsis gossypii (Speg.) U. Braun, Nova Hedwigia 56: 432. 1993. Fig. 10.
Basionym: Cercosporella gossypii Speg., Anales Soc. Ci. Argent. 22(4): 208. 1886.
\equiv Ramularia gossypii (Speg.) Cif., Quad. Lab. Crittog. Ist. Bot. Univ. Pavia 19: 124. 1962.
\equiv Septocylindrium gossypii (Speg.) Subram., Hyphomycetes (New Delhi): 309. 1971.
= Ramularia areola G.F. Atk., Bot. Gaz. 15: 168. 1890.
$=$ Mycosphaerella areola Ehrlich \& F.A. Wolf, Phytopathology 22: 238. 1932.
Description in vivo: See Braun (1998: 314).
Mycelium composed of hyaline, septate, branched hyphae, 1-3 $\mu \mathrm{m}$ diam. Conidiophores hyaline, thin-walled, smooth, erect, subcylindrical to geniculate-sinuous, simple or sometimes

Fig. 10. Ramulariopsis gossypii (CBS 141099). A, C, D. Observations from herbarium material. B, E-H. Structures formed in culture. A. Leaf spot symptoms on the host. B, E. Conidiophores and conidia. C, D. Conidiophores. F-H. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
branching from the base to the apex, septate, (18-)27-35(-46) $\times(1.5-) 2-3 \mu \mathrm{~m}$. Conidiogenous cells hyaline, smooth, integrated, terminal or pleurogenous, formed as short lateral branchlets, subcylindrical to geniculate-sinuous, $(15-) 17-19(-20) \times(2-) 2.5-3 \mu \mathrm{~m}$, with conidiogenous loci slightly thickened and darkened. Ramoconidia hyaline, thin-walled, smooth, subcylindricalfusiform, $0-3$-septate, (12-)16-19(-23) $\times(1.5-) 2-3(-4) \mu \mathrm{m}$. Intercalary conidia hyaline, smooth, fusiform, $0-3$-septate, (7.5-)11.5-13(-17) $\times(1.5-) 2-3 \mu \mathrm{~m}$. Terminal conidia hyaline, smooth, catenate, $0-1$-septate, fusiform, obovoid, (3-)9-11(-16) $\times(1-) 2-3(-4) \mu$ m, hila slightly thickened and darkened.

Culture characteristics: On MEA, 8 mm diam, surface raised, lumpy, hairy, iron-grey and olivaceous grey, with margins crenate, convex, colony reverse iron-grey and olivaceous grey; on $\mathrm{OA}, 8 \mathrm{~mm}$ diam, surface irregular, patches with pale olivaceous grey erumpent mycelium and others naked and iron-grey, with margins undulate, with sparse mycelium and hazel, colony reverse olivaceous grey; on PDA, 8 mm diam, surface raised, lumpy, hairy in the centre with iron-grey and pale olivaceous grey patches, with margins crenate and convex, colony reverse olivaceous grey.

Specimens examined: Brazil, Paraguari, on Gossypium sp., May 1883, Balansa 3856 (lectotype, designated in Braun (1998), LPS). Brazil, on Gossypium sp., Oct. 2000, collector unknown (epitype designated here CBS H-22535, MBT204824, culture ex-epitype CBS $141099=$ CPC 25909).

Notes: Ramulariopsis gossypii is the causal agent of a major disease of cotton known as cotton areolate mildew. In countries like Madagascar and India, yield losses due to the disease can
reach up to 60% of the crop (Kirkpatrick \& Rothrock 2001). In Brazil it was considered a minor disease but the expansion of the cultivated area on cotton and the introduction of susceptible varieties increased the disease incidence and yield losses now reach 30% of crop production (Lima et al. 2010). Ramulariopsis gossypii was originally described on Gossypium sp. from Brazil (lectotype in LPS) but the species has a worldwide distribution wherever cotton is cultivated (Braun 1998). Therefore, strain CPC 25909, which is from the same host and country and conforms to the morphological description of this species (Fig. 10), is herewith designated as epitype. This species is represented by a single lineage in the phylogenetic analysis (Fig. 1, clade XI).

Ramulariopsis pseudoglycines Videira, Crous \& Braun, sp. nov. MycoBank MB816926. Fig.

 11.Etymology: Named after its morphological similarity to the species Ramulariopsis glycines.
Mycelium composed of hyaline, septate, branched, hyphae, 1.5-3 $\mu \mathrm{m}$ diam. Conidiophores hyaline, thin-walled, smooth, erect, subcylindrical to geniculate-sinuous, simple or sometimes branching from the base to the apex, septate, (67-)121-175(-226) $\times 2 \mu \mathrm{~m}$. Conidiogenous cells hyaline, smooth, terminal or formed as short lateral branchlets, subcylindrical to geniculatesinuous, sometimes integrated in the mycelium, pleurogenous, $(14-) 21-25(-33) \times(1.5-) 2(-3)$ $\mu \mathrm{m}$, with conidiogenous loci slightly thickened and darkened. Ramoconidia hyaline, smooth, $0-3$-septate, (9-)14-17(-21) $\times(2-) 2.5-3 \mu \mathrm{~m}$. Intercalary conidia hyaline, smooth, fusiform, $0-2$-septate, $(7-) 12-15(-23) \times(1.5-) 2-3(-3.5) \mu \mathrm{m}$. Terminal conidia hyaline, smooth, catenate, aseptate, fusiform to obovoid, (4.5-)6.5-8(-12) $\times(2-) 2.5-3 \mu \mathrm{~m}$; hila slightly thickened and darkened.

Fig. 11. Ramulariopsis pseudoglycines (CBS 141100). A-D. Observations from herbarium material. E-G. Structures formed in culture. A. Leaf spot symptoms on the host. B-G. Conidiophores, conidiogenous cells and conidia. Scale bars $=10 \mu \mathrm{~m}$.

Culture characteristics: On MEA, 10 mm diam, surface raised, lumpy, smooth, pale olivaceous grey with whitish areas, with margins undulate and fimbriate, colony reverse iron-grey; on OA, 10 mm diam, surface low convex, smooth, smoke grey in the centre and a pale olivaceous margin, with margins entire, colony reverse iron-grey; on PDA, 10 mm diam, surface low convex, lumpy, olivaceous grey with pale olivaceous grey patches, with margins undulate, colony reverse olivaceous grey.

Specimens examined: Brazil, on Gossypium sp., 2000, unknown collector (holotype CBS H-22546, culture ex-type CBS $141100=$ CPC 18242); idem. CPC 18241. Togo, Kara region, on Gossypium barbadense, 31 Oct. 2011, M. Piatek, culture CPC 20036.

Notes: These strains were initially identified as R. gossypii but observations of the conidiogenous structures in culture and in the herbarium specimen revealed this species to have very long conidiophores, rather similar to Ramulariopsis glycines but much longer(Fig. 11). Ramulariopsis glycines, however, was originally described from Glycine javanica, Zambia, and has not been previously reported on Gossypium from Brazil (Braun 1998). This species clade is highly supported by the phylogenetic analysis (Fig. 1, clade XI, 1/100/100).

Clade XII: Pseudocercospora Speg., Anales Mus. Nac. Buenos Aires, Ser. 3, 20: 437. 1910.
Notes: Pseudocercospora was established by Spegazzini (1910) to accommodate species that produce pigmented conidiophores and conidia with neither thickened nor darkened conidiogenous loci and conidial hila (Braun 1995, Crous et al. 2013a). The genus was based on the type species P. vitis, a foliar pathogen of grapevines, but also includes species that are endophytes or saprobes. The generic circumscription of Pseudocercospora has been emended in recent years due to the publication of DNA sequence data of various gene regions (Crous et al. 2000, 2001b, 2013a). Based on these studies the genera Cercostigmina, Phaeoisariopsis and Pseudophaeoramularia have been reduced to synonymy under Pseudocercospora and the name Pseudocercospora was conserved over Stigmina, which represented an older generic name (Braun \& Crous 2006).

Clade XIII: Pallidocercospora Crous, Stud. Mycol. 75: 73. 2013.
Note: See Crous et al. (2013a).
Clade XIV: Ramularia Unger, Exanth. Pflanzen (Wien): 169. 1833. emend. U. Braun (nom. cons.).
= Didymaria Corda, Icon. fung. (Prague) 5: 9. 1842.
\equiv Septocylindrium Bonord. ex Sacc., Michelia 2: 15. 1880.
$=$ Acrotheca Fuckel, Jahrb. Vereins Naturk. Herzogth. Nassau 15: 43. 1860.
= Phacellium Bonord., in Rabenh., Fungi Eur. Exs., Edn. 2, ser. 2: no. 288. 1860.
$=$ Ovularia Sacc., Michelia 2: 17. 1880.
$=$ Ophiocladium Cav., Z. Pflanzenkrankh. 3: 26. 1893.
$=$ Pseudovularia Speg., Anales Mus. Nac. Buenos Aires, Ser. 3, 20: 418. 1910.
For additional synonyms see Braun (1998).
Mostly phytopathogenic (leaf spots, chlorosis or necrosis), sometimes saprobic or mycophilic.

Conidiophores individual or synnematous, sometimes forming small to sporodochial caespituli, emerging through stomata or through the cuticle, straight, subcylindrical to geniculate-sinuous, continuous or septate, hyaline or in some species with a faintly reddish tinge, occasionally branched, thin-walled, usually smooth but rarely rough. Conidiogenous cells integrated, terminal, polyblastic, sympodially elongating, straight to geniculate-sinuous, conidiogenous loci conspicuously thickened, darkened and refractive, coronate (cladosporoid). Conidia consistently solitary or in simple or branched chains, solitary conidia $0-1$-septate, catenate conidia aseptate to multiseptate (mostly 1-4 eusepta), hyaline, in a few species with a faintly reddish tinge, usually ellipsoid-ovoid, cylindrical-fusiform, rarely filiform, occasionally constricted at the septa, thin-walled, smooth to verruculose-echinulate, hila distinct, slightly to conspicuously thickened, darkened, refractive; conidial secession schizolytic.

Type species: Ramularia pusilla Unger.

Notes: The genus Ramularia was described by Unger (1833) to include two species R. pusilla and R. didyma, of which R. pusilla on Poa nemoralis, Austria, was later designated as lectotype (Unger 1836). The confused taxonomic history of Ramularia has been addressed by several authors (Hughes 1949, Braun 1988, Sutton \& Waller 1988), and the genus was monographed by Braun $(1995,1998)$. Ramularia species are usually described as hyphomycetes with hyaline conidiophores and conidia with distinct, thickened, darkened and refractive conidial loci and hila. Braun (1998) divided the genus Ramularia in two morphologically circumscribed subgenera, one with conidia consistently solitary (Ramularia subgen. Ramularia) and another with catenate conidia (Ramularia subgen. Septocylindrium, type species R. septata). Within Ramularia subgen. Ramularia, two sections were established, one with conidiogenous cells straight to geniculous-sinuous (Sect. Ramularia, type Ramularia pusilla) and one with conidiogenous cells strongly curved like a swan's neck (Sect. Ophiocladium, type species R. collo-cygni).

Ramularia species are phytopathogenic and mostly cause leaf spots but they can also be endophytic, saprobic and mycophilic. There are about 325 species accepted in this genus (Braun 1998, or MycoBank) of which only six have thus far been experimentally linked to a Mycosphaerella sexual morph (Videira et al. 2015b). Currently Ramularia is accepted as being a host-specific genus of phytopathogenic fungi (Braun 1998), although some exceptions are known (e.g. R. vizellae, Videira et al. 2015b).

Phacellium was described by Bonorden (1861) and currently includes 27 species (Braun 1998, Seifert et al. 2011 or MycoBank). The type species, Ph. alborosellum (Fig. 12) was described from Cerastium holosteoides in France and is characterised by forming synnematous conidiomata that can be hyaline or slightly pigmented. The Phacellium strains in this study cluster within Ramularia (Fig. 1, clade XIV; Fig. 2, clade 64, clade 82) and a new Ramularia species that forms synnemata is described (Fig. 2, clade 76). These results support the hypothesis that, as in Pseudocercospora, synnematous conidiophores is a feature that is unreliable at generic level. Therefore, the genus Phacellium is tentatively synonymised with Ramularia until the exact phylogenetic position of its type species becomes known.

Clade XV: Xenoramularia Videira, H.D. Shin \& Crous, gen. nov. MycoBank MB816822.
Etymology: Named after its morphological similarity to the genus Ramularia, composed of xeno- (xenos, Greek for strange) and the latter genus name.

Fig. 12. Phacellium alborosellum (PC herbarium PC0084649, type specimen). A. Disease symptom on host leaf. B, C. Synnematous conidiophores, conidiogenous cells and conidia. D-G. Single and multiseptate conidia. Scale bars $=10 \mu \mathrm{~m}$.

Phytopathogenic, causing leaf spots. Mycelium composed of hyaline, septate, branched hyphae. Conidiophores hyaline to pigmented, solitary, simple, straight or slightly curved, often reduced to conidiogenous cells, thin-walled, smooth. Conidiogenous cells hyaline, integrated in the mycelium or terminal in the conidiophores, subcylindrical to geniculate-sinuous, with one or multiple thickened but not darkened conidiogenous loci. Conidia hyaline, thin-walled, smooth, formed singly or catenate, aseptate or 1-septate, subcylindrical, apex obtuse to subacute, base truncate; hila thickened but not darkened.

Type species: Xenoramularia polygonicola Videira, H.D. Shin \& Crous.

Notes: The genus Xenoramularia (Fig. 1, clade XV, 0.59/-/-) is very close to Zymoseptoria (Fig. 1, clade XVI, 0.92/-/-) and their individual support by the phylogeny is low but they are maintained apart due to morphological differences. Morphologically Xenoramularia is similar to Ramularia but can be distinguished by the following set of characters: it tends to have reduced conidiophores that are mostly solitary (always solitary in culture, rarely with weakly developed fascicles on host tissue), hyaline, but at times somewhat pigmented, and conidial hila and conidiogenous loci that are thickened, but not darkened and refractive as in Ramularia.

Xenoramularia arxii Videira \& Crous, sp. nov. MycoBank MB816927. Fig. 13.
Etymology: Named after Josef Adolf von Arx, who collected this species.

Fig. 13. Xenoramularia arxii (CBS 342.49). A-E. Conidiogenous cells and conidia formed in culture. Scale bars $=10 \mu \mathrm{~m}$.

Mycelium consisting of hyaline, septate, branched hyphae, $1-3 \mu \mathrm{~m}$ diam. Conidiophores reduced to conidiogenous cells. Conidiogenous cells integrated in the mycelium, hyaline, thin-walled, smooth, subcylindrical, (4-)8-10(-14) $\times 1.5-2 \mu \mathrm{~m}$, with single or multiple conidiogenous loci that are thickened but not darkened. Conidia formed singly, aseptate or 1-septate, hyaline, thinwalled, smooth, subcylindrical, with a rounded apex and an acute base, (5-)9-12(-21) $\times(1.5-$ $) 2(-3) \mu \mathrm{m}$; hila thickened but not darkened.

Culture characteristics: On MEA, 47 mm diam, surface raised, smooth mycelium, white with buff tinge with margins entire and feathery, colony reverse iron grey in the centre and ochreous towards the margin; on OA, 45 mm diam, surface flat, feathery white mycelium in the centre becoming sparse and hazel towards the margin, margin undulate, almost naked, colony reverse hazel; on PDA, 50 mm diam, surface low convex, centre white turning pale olivaceous grey and erumpent towards the margin, with margin olivaceous grey and sparse mycelium, colony reverse olivaceous black in the centre and olivaceous towards the buff margin.

Specimen examined: Netherlands, Utrecht Prov., Baarn, Eemufer, on leaf spot of Acorus calamus, 5 Sep. 1949, J.A. von Arx (holotype CBS H-4925, culture ex-type CBS 342.49).

Notes: Xenoramularia arxii (Fig. 13) forms a basal single lineage to other taxa in the genus (Fig. 1, clade XV), but is retained in Xenoramularia as it is morphologically similar. For a morphological comparison see notes under X. polygonicola.

Xenoramularia neerlandica Videira \& Crous, sp. nov. MycoBank MB816928. Fig. 14.
Etymology: Named after the country from where it was collected, the Netherlands.

Fig. 14. Xenoramularia neerlandica (CBS 113615). A-G. Structures formed in culture. A, C-G. Conidiogenous cells and conidia. B. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Mycelium consisting of hyaline, septate, branched, hyphae, 0.5-1 $\mu \mathrm{m}$ diam. Conidiophores reduced to conidiogenous cells. Conidiogenous cells integrated in the mycelium, hyaline, thinwalled, smooth, subcylindrical, ($8-$)11-13.5(-16) $\times(1-) 1.5(-2) \mu \mathrm{m}$, with single or multiple conidiogenous loci that are thickened but not darkened. Conidia formed singly or catenate and ramoconidia scarce. Ramoconidia hyaline, thin-walled, smooth, aseptate or 1 -septate, subcylindrical to fusiform, (9-)13.5-18(-23) $\times(0.5-) 1(-1.5) \mu \mathrm{m}$. Intercalary conidia hyaline, smooth, aseptate or 1 -septate, subcylindrical to fusiform, (7-)10-12(-19) $\times(0.5-) 1 \mu \mathrm{~m}$. Terminal conidia hyaline, smooth, aseptate or 1-septate, subcylindrical to fusiform, (3-)11-$17(-32) \times(0.5-) 1(-2) \mu \mathrm{m}$; hila thickened but not darkened.

Culture characteristics: On MEA, 20 mm diam, surface raised, smooth, white with pale grey and olivaceous grey tinge, margins undulate, colony reverse olivaceous grey; on OA, 22 mm diam, surface with fluffy mycelium pale grey and olivaceous grey, margins undulate and with sparse aerial mycelium, reverse iron-grey; on PDA, 18 mm diam, surface flat, smooth aerial mycelium, centre white turning pale olivaceous grey towards the margin, margin undulate with sparse mycelium, reverse olivaceous grey.

Specimens examined: Netherlands, Utrecht Prov., Breukelen, on Sparganium ramosum, Sep. 2003, W. Gams, culture CBS 113615; Utrecht, De Uithof, on Iris pseudacorus, 26 Jun. 2006, P.W. Crous (holotype CBS H-22540, culture ex-type CBS $141101=$ CPC 18377); idem. CPC 18378.

Notes: Xenoramularia neerlandica (Fig. 14) is highly supported in the phylogenetic analysis (Fig. 1, clade XV, 1/100/100). For morphological comparison with the other species in this genus see notes under X. polygonicola.

Xenoramularia polygonicola Videira, H.D. Shin \& Crous, sp. nov. MycoBank MB 816929. Fig. 15.

Etymology: Named after the host genus from which it was described, Polygonum.
Mycelium consisting of hyaline, septate, branched, hyphae, 0.5-1 $\mu \mathrm{m}$ diam. Conidiophores hyaline, thin-walled, smooth, solitary, simple, sometimes branched, straight to slightly curved, sometimes reduced to conidiogenous cells, (13.5-)23-29(-42) $\times(0.5-) 1 \mu \mathrm{~m}$. Conidiogenous cells integrated in the mycelium, lateral or terminal in the conidiophores, subcylindrical to geniculatesinuous, $(6.5-) 9-11(-17) \times(0.5-) 1 \mu \mathrm{~m}$, with conidiogenous loci thickened but not darkened. Conidia formed singly or catenate, but no ramoconidia were observed. Intercalary conidia hyaline, smooth, subcylindrical, aseptate or 1-septate, (6-)8.5-11(-16) $\times(0.5-) 1 \mu \mathrm{~m}$. Terminal conidia hyaline, smooth, formed singly or catenate, aseptate or 1 -septate, subcylindrical, apex obtuse to subacute, base truncate, $(4-) 6.5-8(-11) \times(0.5-) 1 \mu \mathrm{~m}$; hila thickened but not darkened.

Culture characteristics: On MEA, 8 mm diam, surface raised, lumpy, smooth mycelium, pale olivaceous grey, with margins undulate, buff, convex, colony reverse iron grey; on $\mathrm{OA}, 8 \mathrm{~mm}$ diam, surface flat, smooth mycelium, pale olivaceous grey, with margins entire, with sparse aerial mycelium, colony reverse olivaceous grey; on PDA, 10 mm diam, surface low convex, smooth, grey olivaceous, radially striated and cutting into the agar, with margins undulate, convex and buff, colony reverse olivaceous grey.

Specimens examined: South Korea, Pyeongchang, on Polygonum sp., 20 Sep. 2003, H.D. Shin (holotype KUS-F19688, isotype CBS H-22541, culture ex-type CBS 141102 = CPC 10852); idem. CPC 10853, CPC 10854.

Notes: The species X. polygonicola is highly supported in the phylogenetic analysis (Fig. 1, clade XV, 1/100/100). Xenoramularia polygonicola (Fig. 15) forms conidiophores while X. arxii (Fig. 13) and X. neerlandica (Fig. 14) have conidiophores reduced to conidiogenous cells. Xenoramularia polygonicola and X. arxii do not produce ramoconidia and in X. neerlandica they were rarely observed. Xenoramularia polygonicola and X. neerlandica produce both single and catenate conidia while X. arxii produces only single, wider conidia.

Clade XVI: Zymoseptoria Quaedvl. \& Crous, Persoonia 26: 64. 2011.
Note: See Quaedvlieg et al. (2011) and Stukenbrock et al. (2012).
Clade XVII: Dothistroma Hulbary, Bull. Illinois Nat. Hist. Surv. 21: 235. 1941.
Note: See Barnes et al. (2004).
Clade XVIII: Stromatoseptoria Quaedvl., Verkley \& Crous, Stud. Mycol. 75: 353. 2013.
Note: See Quaedvlieg et al. (2013).
Clade XIX: Pseudocercosporella Deighton, Mycol. Pap. 133: 38. 1973.
Colonies in vivo. Mycelium consisting of hyaline to pale brown, septate and smooth hyphae. Conidiophores solitary to fasciculate, emerging through stomata or through the cuticle, arising from inner hyphae or from stromata, sometimes arising from superficial hyphae or forming subglobose sporodochia, aseptate or septate, straight and subcylindrical to geniculate-sinuous, rarely branched, mostly hyaline but occasionally faintly pigmented, thin-walled, mostly more or less smooth. Conidiogenous cells integrated, terminal or conidiophores reduced to conidiogenous cells, mono- to polyblastic, sympodial; conidiogenous loci inconspicuous, unthickened and hyaline. Conidia formed singly, subcylindrical, filiform to obclavate, 1- multieuseptate, hyaline, thin-walled, mostly smooth, apex obtuse to subacute, base subtruncate, hilum unthickened, not darkened nor refractive. Adapted from Frank et al. (2010).

Type species: Pseudocercosporella bakeri (Syd. \& P. Syd.) Deighton (= Pseudocercosporella ipomoeae Deighton).

Notes: Pseudocercosporella was described by Deighton (1973), and is characterised by solitary conidia, rarely in chains, with unthickened, inconspicuous conidial loci (Braun 1995). Braun (1990) confined Pseudocercosporella to species with solitary conidia and the species with catenate conidia were transferred to Thedgonia. However, the conidial ontogeny in Thedgonia is thallic (i.e. conidia form in disarticulating chains) while the species in question had polyblastic conidiogenesis and conidia in acropetal chains (Crous et al. 2009a). Braun (1995) placed these species back in Pseudocercosporella under a different subgenus: Pseudocercosporella subgen. Pseudocercocatenella (type: Pseudocercosporella dioscoriae). Braun (1995) also established another subgenus based on morphology to include species with superficial secondary mycelium and solitary conidiophores: Pseudocercosporella subgen. Cercovellosiella (type: Pseudocercosporella crataegi). The type species Pseudocercosporella bakeri ($=$ P. ipomoea) has recently been epitypified (on Ipomoeae sp., Philippines, ex-epitype
culture CBS 125685; Frank et al. 2010) and forms a single species clade (Fig. 1, clade XIX) that clusters close to Dothistroma (Fig. 1, clade XVII) and Stromatoseptoria (Fig. 1, clade XVIII). The pseudocercosporella-like morphology is polyphyletic (see Frank et al. 2010, Crous et al. 2011c, 2012a), and new taxonomically useful morphological features will need to be found to delineate all the genera presently accommodated in other clades.

Clade XX: Microcyclosporella J. Frank et al., Persoonia 24: 101. 2010.
Mycelium consisting of pale brown, smooth to finely verruculose, branched, septate hyphae, sometimes covered in a mucoid layer. Conidiophores mostly reduced to conidiogenous cells. Conidiogenous cells integrated in hyphae, cylindrical to doliiform, pale brown to hyaline if occurring in yeast-like sectors of colonies, thin-walled, smooth, mono- or polyblastic, proliferating sympodially; conidiogenous loci lateral, inconspicuous, truncate, unthickened, not darkened. Conidia hyaline, thin-walled, smooth, subcylindrical to narrowly obclavate or narrowly fusoid with acutely rounded apex and obconically truncate base, guttulate, 0-6 transversely septate; microcyclic conidiation common. Adapted from Frank et al. (2010).

Type species: Microcyclosporella mali J. Frank, Schroers \& Crous.

Specimens examined: Slovenia, Senozeti, Dolsko, on fruit surface Malus domestica, 7 Aug. 2007, J. Frank (holotype CBS H-20413, culture ex-type 300-07 = CBS 126136 = CPC 16184). USA, Georgia, Ellijay, on Malus sp., 29 Aug. 2005, M. Wheeler, culture CBS 125654; Illinois, Chester, on unknown host, Sep. 2000, J. Batzer, culture CBS 119461; Illinois Rockford, Illinois, on unknown host, Sep. 2000, J. Batzer, culture CBS 118960; Michigan, Fennville, on Malus sp., 1 Sep. 2005, G. Sundin, culture CBS 125653; Missouri, New Franklin, on unknown host, Sep. 2000, J. Batzer, culture CBS 118969; Ohio, Wooster on Malus sp., 5 Sep. 2005, M. Ellis, culture CBS 125651.

Notes: Microcyclosporella was described by Frank et al. (2010) to accommodate species with hyaline conidiophores and long scolecosporous conidia with inconspicuous conidiogenous loci and unthickened, non-pigmented hila, resembling Pseudocercosporella, but also displaying microcyclic conidiation. More work needs to be done in this genus since the variation observed in the phylogeny (Fig. 1, clade XX) indicates that more than one species may be present.

Clade XXI: Mycosphaerelloides Videira \& Crous, gen. nov. MycoBank MB816819.
Etymology: Named after the morphological similarity to the genus Mycosphaerella.
Ascomata pseudothecial, single, black, immersed, becoming erumpent, globose, apical ostiole, wall with medium brown textura angularis. Asci aparaphysate, fasciculate, bitunicate, subsessile, obovoid to narrowly ellipsoid. Ascospores, straight to fusoid-ellipsoid, hyaline, guttulate, thin-walled, with sub-obtuse ends, medianly 1 -septate, widest in the middle of the apical cell. Ascospore germination from both ends, with germ tubes parallel to the long axis of the spore. Mycelium consisting of smooth, branched, septate, pale to medium brown hyphae.

Conidiomata fasciculate, medium brown. Conidiophores arising from mycelium or from the upper cells of a brown stroma, pale to medium brown, smooth, unbranched or branched, sub-
cylindrical, straight to variously curved. Conidiogenous cells terminal or lateral, solitary, pale brown, smooth, proliferating sympodially or percurrently; conidiogenous loci inconspicuous. Conidia smooth, subcylindrical, multiseptate; hila neither thickened nor darkened-refractive. Adapted from Crous et al. (2004b).

Type species: Mycosphaerelloides madeirae (Crous \& Denman) Videira \& Crous.
Notes: The strains in this genus represent a mycosphaerella-like species lacking a ramularialike asexual morph, and also not being congeneric with Ramularia based on R. pusilla (Fig. 1, clade XIV). This monotypic genus is highly supported by the phylogenetic analysis (Fig. 1, clade XXI, 1/100/100).

Mycosphaerelloides madeirae (Crous \& Denman) Videira \& Crous, comb. nov. MycoBank MB817150.
Basionym: Mycosphaerella madeirae Crous \& Denman, Stud. Mycol. 50: 204. 2004.

Specimens examined: Portugal, Madeira, Party Farm, on leaves of Eucalyptus globulus, Apr. 2000, S. Denman (holotype CBS H-9898, culture ex-type CBS 112895 = CPC 3745); idem. CBS $112301=$ CPC 3747. Netherlands, Utrecht, Soest, endophytic on green leaves of Quercus robur, 2002, G. Verkley, cultures CBS 115936, CBS 116068, CBS 116066.

Notes: Mycosphaerelloides madeirae was isolated from Eucalyptus globulus collected in Madeira (Portugal), and is very similar to M. heimioides (Crous 1998), but can be distinguished by its ascospore germination pattern as well as its cultural characteristics.

Clade XXII: Epicoleosporium Videira \& Crous, gen. nov. MycoBank MB816817.

Etymology: Named after the host its type species was isolated from, Coleosporium.
Colonies growing on uredinia of Coleosporium, mycophilic. Mycelium superficial, consisting of hyaline, septate, thin-walled, smooth hyphae. Conidiophores hyaline, loose, straight, subcylindrical, unbranched, septate, thin-walled, smooth. Conidiogenous cells hyaline, terminal in the conidiophore, cylindrical-oblong, proliferation sympodial, with conspicuous conidiogenous loci, thickened, darkened and refractive. Conidia hyaline, smooth, solitary or in short chains, cylindrical-oblong, clavate, obovate, aseptate, thin-walled, smooth, with hila thickened, darkened and refractive.

Type species: Epicoleosporium ramularioides Videira, H.D. Shin \& Crous.
Notes: This monotypic genus is highly supported by the phylogenetic analysis (Fig. 1, clade XXII, $1 / 100 / 100$) and represents a mycophilic species that is ramularia-like in its morphology but is not congeneric with Ramularia based on R. pusilla (Fig. 1, clade XIV).

Epicoleosporium ramularioides Videira, H.D. Shin \& Crous, sp. nov. MycoBank MB816847. Fig. 16.

Etymology: Named after its morphological similarity with the genus Ramularia.

Fig. 16. Epicoleosporium ramularioides (CBS 141103). A-F. Observations from herbarium material. G, H. Structures formed in culture. A. Leaf spot symptoms on host. B. Conidiophores. C, D, F-H. Conidiophore and conidia. E. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Colonies on uredinia of Coleosporium, mycophilic, whitish. Mycelium superficial, consisting of hyaline, septate, thin-walled, smooth hyphae, $1.5-2 \mu \mathrm{~m}$ diam. Conidiophores hyaline, loose, erect, straight, subcylindrical, unbranched, (37-)65-83(-129) $\times 2-3 \mu \mathrm{~m}$, septate, thin-walled, smooth. Conidiogenous cells hyaline, integrated, terminal on the conidiophore, cylindrical-oblong, (9-)11-13(-15) $\times 1.5-2(-2.5) \mu \mathrm{m}$, conidiogenous loci thickened, darkened and refractive, $1 \mu \mathrm{~m}$ diam. Conidia hyaline, thin-walled, smooth, solitary or in short chains, cylindrical-oblong, clavate, obovate, aseptate, (6-)10-13(-21) $\times(2.5-) 3-4(-5) \mu \mathrm{m}$, apex obtuse, base obtuse to slightly elongated, with hila thickened, darkened and refractive, $1 \mu \mathrm{~m}$ diam.

Specimens examined: South Korea, Pyeongchang, on Coleosporium phellodendri on leaves of Phellodendron amurense, 4 Sep. 2003, H.D. Shin (holotype KUS-F19603, isotype CBS H-22542, culture ex-type CBS $141103=$ CPC 10672); idem. CPC 10673.

Notes: Epicoleosporium ramularioides is morphologically ramularia-like (Fig. 16) and represents another addition to the list of known mycophilic cercosporoid species. It differs from R. coleosporii that produces conidiophores occasionally branched, longer and wider [(20-)30-$200(-270) \times 3-6 \mu \mathrm{~m}]$. In addition, the conidia of R. coleospori are catenate, ellipsoid-ovoid, smooth to rough, longer and wider [8-35(-45) $\times 3-8 \mu \mathrm{~m}]$ and $0-1(-3)$-septate (Braun 1998). The development of the conidial structures of E. ramularioides in culture is unusual (Fig. 16).

Clade XXIII: Uwebraunia Crous \& M.J. Wingf., Mycologia 88: 446. 1996.
Note: See Crous and Wingfield (1996) and Li et al. (2012).

Clade XXIV: Dissoconium de Hoog et al., Proc. Kon. Ned. Akad. Wetensch. C 86(2): 198. 1983.

Note: See Crous et al. (1999), Jackson et al. (2004) and Li et al. (2012).
Clade XXV: Ramichloridium Stahel ex de Hoog, Stud. Mycol. 15: 59. 1977.
Note: See Arzanlou et al. (2007).
Clade XXVI: Acrodontium de Hoog, Stud. Mycol. 1: 23. 1972.
Saprobic or mycophilic. Mycelium consisting of subhyaline, brownish or olivaceous, smooth, thin-walled, septate hyphae. Conidiophores when present arising from hyphae, erect or procumbent, sometimes thick-walled and dark brown at the base, paler brown towards the apex, branched verticillately or dichotomously. Conidiogenous cells integrated, terminal in conidiophores and often forming whorls or conidiophores reduced to conidiogenous cells, arising from hyphae, basal part flask-shaped or elongate, tapering towards the tip forming a sympodial denticulate rachis, straight to flexuous. Conidia formed singly, hyaline or pigmented, smooth, subglobose to fusiform, with an apiculate base. Adapted from Hoog (1972).

Type species: Acrodontium crateriforme (J.F.H. Beyma) de Hoog.
Notes: The genus Acrodontium was introduced by Hoog (1972), and currently accommodates 10 species varying in lifestyle from saprobic to mycophilic (Seifert et al. 2011). Acrodontium species have conidiogenous cells that bear conidia on a sympodially proliferating rachis, straight or slightly flexuous, bearing alternating denticles at regular intervals (Hoog 1972). According to the present study, the type species of the genus, A. crateriforme (CBS 144.33), belongs to the Teratosphaeriaceae (Fig. 1, clade XXVI, 1/100/100). The LSU sequences of isolates belonging to A. antarcticum, A. abietis, A. griseum, A. hydnicola, A. salmoneum, A. simplex and A. virelum currently housed in the CBS collection (data not shown) place them in different orders (e.g. Sordariomycetes and Leotiomycetes) and will not be treated here.

Acrodontium crateriforme (J.F.H. Beyma) de Hoog, Stud. Mycol. 1: 26. 1972. Fig. 17.
Basionym: Chloridium crateriforme J.F.H. Beyma, Zentralbl. Bakteriol., 2 Abt., 89: 241. 1933. \equiv Tritirachium crateriforme (J.F.H. Beyma) Matsush., Icon. microfung. Matsush. lect.: 160. 1975.
= Acrodontium neolitseae Crous \& Summerell, Persoonia 32: 209. 2014.
Description in vitro: See de Hoog (1972: 26)
Specimens examined: Australia, Nightcap National Park, on Neolitsea australiensis, 9 Mar. 2013, B. Summerell, culture CBS $137975=$ CPC 22172. Germany, Hesse, Schlangenbad, on leaves of Betula sp., 2012, W. Quaedvlieg, culture CPC 25895; on leaves of Ranunculus sp., 2012, W. Quaedvlieg, culture CPC 25894. Java, Tjibodas Hortus Botanicus, on leaf of Citrus sp., 1969, J.H. van Emden, culture CBS 842.71. South Korea, Hoengseong, on Agrimonia pilosa, 21 Ago. 2004, H.D. Shin, culture CPC 11519; Hongcheon, on Fraxinus chinensis subsp. rhynchophylla (\equiv F. rhynchophylla), 11 Aug. 2004, H.D. Shin, culture CPC 11509. Netherlands,

Fig. 17. Acrodontium crateriforme (CBS 144.33).A-E. Structures formed in culture.A-D. Conidiophores, conidiogenous cells and conidia. E. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
on foodstuff, unknown collector and date, isol. M. van Schothorst, dep. RIV, Bilthoven, Oct. 1971, culture CBS 840.71; Baarn, isolated from sputum, unknown collector and date, isol. G.A. de Vries, dep. Jul. 1958, culture CBS 151.58; Baarn, associated with Tuberculina maxima, unknown collector and date, isol. H.A. Diddens, dep. F.H. van Beyma, Jun. 1933 (culture extype CBS $144.33=$ ATCC $15679=$ MUCL $15748=$ MUCL 8978). UK, Westmorland, Meathop Wood, on living leaflet of Fraxinus excelsior, unknown date, J.C. Frankland, culture CBS 985.70.

Notes: The recently described species A. neolitseae (CPC 22172) is 100% identical to A. crateriforme on LSU but differs on 3 nucleotides on ITS and 7 nucleotides on rpb2. The morphological description of A. neolitseae also fits with A. crateriforme (Fig. 17) since this taxon can sometimes have slightly pigmented conidiophores and conidia. At the time A. neolitsiae was described, the ITS BLAST resulted in a 99% similarity to a strain identified as Pseudocercosporella fraxini (GenBank GU214682; CPC 11509) and Acrodontium crateriforme (GenBank FN666566), which we show here to represent the same species (Fig. 1, clade XXVI). Since the strain CPC 11509 was not used in a morphological study before two scenarios are possible, namely that the fungus isolated from the specimen was the wrong one or that the culture was contaminated previous to storage and is no longer P. fraxini but A. crateriforme. The phylogenetic analysis strongly supports this species clade (Fig. 1, clade XXVI, 1/100/ 100).

Acrodontium fagicola Videira \& Crous, sp. nov. MycoBank MB817151. Fig. 18.

Etymology: Named after the host genus Fagus, from which it was collected.
Mycelium hyaline, consisting of septate, branched, smooth, $1-1.5 \mu$ m diam hyphae. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, thin-walled, smooth, subulate to slightly ampulliform, sometimes with a transverse septum, straight to flexuous, proliferating sympodially and forming a rachis in the upper part, (16.5-)31-38(-61) $\times(1-) 1.5-2 \mu \mathrm{~m}$, with

Fig. 18. Acrodontium fagicola (CBS 714.79). A-F. Conidiophores, conidiogenous cells and conidia formed in culture. Scale bars $=10 \mu \mathrm{~m}$.
multiple conidiogenous loci slightly thickened but not darkened. Conidia hyaline, thin-walled, smooth, solitary, ellipsoid with obtuse apex, (2-)2.5-3 $\times 1.5-2 \mu \mathrm{~m}$; hilum slightly thickened but not darkened.

Culture characteristics: On MEA, 10 mm diam, surface raised, smooth, with erumpent aerial mycelium, olivaceous, margins undulate, reverse sepia; on OA, 11 mm diam, surface raised, smooth, with erumpent aerial mycelium, olivaceous and sepia, margins undulate, reverse umber; on PDA, 10 mm diam, surface flat, smooth, with erumpent aerial mycelium, olivaceous and sepia, margins entire, reverse sepia.

Specimen examined: Germany, on Fagus sylvatica, isol. G. Arnold, Oct. 1978, dep. G. Arnold, Dec. 1979 (holotype CBS H-8534, culture ex-type CBS 714.79).

Note: This species is represented by a single lineage in the phylogenetic analysis (Fig. 1, clade XXVI) and differs from A. crateriforme by having longer conidiogenous cells and smaller conidia (Fig. 18).

Acrodontium luzulae Videira \& Crous, sp. nov. MycoBank MB816844. Fig. 19.
Etymology: Named after the host genus Luzula, from which the ex-type strain was collected.
Mycelium consisting of hyaline, septate, branched, smooth, $1-2 \mu \mathrm{~m}$ diam hyphae. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, thin-walled, smooth, elongate ampulliform, straight to flexuous, proliferating sympodially and forming a rachis in the upper part, (23-)44-56(-98) $\times(1.5-) 2(-3) \mu \mathrm{m}$, with multiple conidiogenous loci slightly thickened

Fig. 19. Acrodontium luzulae (CBS 839.71). A-F. Structures formed in culture. A. Conidiogenous loci in the rachis. B-F. Conidiophores, conidiogenous cells and conidia. Scale bars $=10 \mu \mathrm{~m}$.
but not darkened. Conidia hyaline, thin-walled, smooth, solitary, ellipsoid with obtuse apex, $(2.5-) 3-4(-5) \times(1-) 2(-2.5) \mu \mathrm{m}$, hilum slightly thickened but not darkened.

Culture characteristics: On MEA, 10 mm diam, surface flat, smooth, with sparse erumpent aerial mycelium, buff, margins entire, reverse umber; on OA, 10 mm diam, surface flat, smooth, greyish sepia, margins undulate, reverse fawn; on PDA, 10 mm diam, surface flat, smooth, with sparse erumpent aerial mycelium, buff, margins entire, reverse sepia.

Specimens examined: England, Devon, East Lyn River, on dead leaf of Luzula sylvatica, unknown collector and date, isol. W. Gams, Sep. 1971, dep. Nov. 1971, (holotype CBS H-8529, culture ex-type CBS 839.71). Netherlands, Beerze, near Campina, on leaf of Carex sp., unknown collector and date, isol. W. Gams, Apr. 1968, dep. Nov. 1971, culture CBS 841.71.

Notes: Although initially identified as A. crateriforme, these strains are not conspecific with the type species, and the phylogenetic analysis strongly supports this clade (Fig. 1, clade XXVI, 1/97/100). Morphologically it differs from A. pigmentosum by having longer conidiogenous cells and conidia (Fig. 19).

Acrodontium pigmentosum Videira \& Crous, sp. nov. MycoBank MB817152. Fig. 20.
Etymology: Named after its pigmented mycelium.
Mycelium consisting of hyaline to slightly olivaceous, septate, branched, thin-walled, smooth hyphae, $0.8-1.5 \mu \mathrm{~m}$ diam. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, thinwalled, smooth, subulate, sometimes with a transverse septum, arising from the mycelium or from a

Fig. 20. Acrodontium pigmentosum (CBS 111111). A-G. Conidiophores, conidiogenous cells and conidia formed in culture. Scale bars $=10 \mu \mathrm{~m}$.
subtending cell in groups of two, straight to flexuous, proliferating sympodially and forming a rachis in the upper part, $(9.5-) 15.5-19(-31) \times(1-) 1.5-2 \mu \mathrm{~m}$, with multiple conidiogenous loci slightly thickened but not darkened. Conidia hyaline, thin-walled, smooth, solitary, subglobose to broadly ellipsoidal, $2-3 \times 1-2 \mu \mathrm{~m}$, hilum slightly thickened but not darkened.

Culture characteristics: On MEA, 8 mm diam, surface raised, smooth, with erumpent aerial mycelium, smoke-grey, margins entire, reverse iron grey; on OA, 11 mm diam, surface raised, smooth, with erumpent aerial mycelium, greyish sepia, margins undulate, reverse fuscous black; on PDA, 10 mm diam, surface flat, smooth, with erumpent aerial mycelium, olivaceous and greyish sepia, margins entire, reverse olivaceous black.

Specimen examined: Finland, from outdoor air, unknown date, S. Haatainen (holotype CBS H-22637, culture ex-type CBS 111111).

Notes: Initially identified as A. griseum, the micro- and macro- morphology of A. pigmentosum differs significantly from A. griseum by not forming markedly differentiated conidiophores with a thick stalk, smooth and thick-walled, bearing multiple brown conidiogenous cells in side branches and also by not forming olivaceous conidia (Hoog 1972). This species is represented by a single lineage in the phylogenetic analysis (Fig. 1, clade XXVI) and differs from the closest species, A. fagicola by having wider conidiogenous cells, larger conidiophores and pigmented mycelium (Fig. 20), as well as 47 nucleotides in rpb2, and 5 in LSU.

Clade XXVII: Parapenidiella Crous \& Summerell, Persoonia 29: 185. 2012.
Note: See Crous et al. (2012a).

Clade XXVIII: Teratosphaeria Syd. \& P. Syd., Ann. Mycol. 10: 39. 1912.
Note: See Crous et al. (2009d) and Quaedvlieg et al. (2014).
Clade XXIX: Readeriella Syd. \& P. Syd., Ann. Mycol. 6: 484. 1908.
Note: See Crous et al. (2009d).
Clade XXX: Teratoramularia Videira, H.D. Shin \& Crous, gen. nov. MycoBank MB816821.

Etymology: Composed of Terato- from Teratosphaeriaceae and Ramularia.

Mycelium consisting of smooth, branched, septate, hyaline hyphae, or swollen pale to brown hyphae. Conidiophores at times synnematal, but mostly reduced to conidiogenous cells or consisting of one supporting cell and conidiogenous cell. Conidiogenous cells hyaline, thin-walled, smooth, terminal or lateral, subcylindrical, straight, proliferating sympodially; conidiogenous loci conspicuous, thickened and darkened. Conidia are catenate, forming ramoconidia, intercalary conidia and terminal conidia. Conidia (type I) hyaline, thin-walled, smooth, subcylindrical, long, aseptate to 1 -septate, with conspicuous hila, thickened and darkened. Conidia (type II), sometimes formed, brown, multiseptate, constricted at the septa, with thickened and darkened hila, germinating to form pigmented mycelium.

Type species: Teratoramularia persicariae Videira, H.D. Shin \& Crous.
Notes: This is the first time that the ramularia-like morphology is observed outside the Mycosphaerellaceae. Like in Ramularia, species of Teratoramularia produce catenate, hyaline conidia with conspicuous hila, but differ by having conidiophores mostly reduced to conidiogenous cells, and by producing very long intercalary conidia and ramoconidia that usually appear immediately next to the conidiogenous cell. In addition, on OA, sometimes pigmented mycelium as well as conidia are observed, that are brown, multiseptate and constricted at their septa. The pigmented conidia were not observed in association with the hosts in the herbarium material. The phylogenetic analysis strongly supports this genus clade (Fig. 1, clade XXX, 1/100/98).

Teratoramularia infinita Videira \& Crous, sp. nov. MycoBank MB817153. Fig. 21.

Etymology: The epithet "infinita" indicates its ability to infect a wide host range.
Mycelium consisting of hyaline, septate, branched, thin-walled, smooth, $1-1.5 \mu \mathrm{~m}$ diam hyphae. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, thin-walled, smooth, integrated in hyphae, cylindrical-oblong, (6.5-)11.5-14(-19) $\times 1-1.5(-2) \mu \mathrm{m}$, with 1 thickened and darkened apical locus, $1 \mu \mathrm{~m}$ diam. Conidia are catenate, forming ramoconidia, intercalary conidia and terminal conidia. Conidia (type I) hyaline, thin-walled, smooth, aseptate, hila thickened and darkened, $1 \mu \mathrm{~m}$ diam; ramoconidia subcylindrical to fusiform, (4.5-)8.5-$11(-17) \times(1-) 1.5-2 \mu \mathrm{~m}$, with two apical hila; intercalary conidia, subcylindrical to fusiform, sometimes curved, (5-)10-14.5(-25.5) $\times(1-) 1.5-2 \mu \mathrm{~m}$, in chains of up to 11 conidia; terminal conidia obovoid, (3-)4(-6) $\times(1-) 1.5-2 \mu \mathrm{~m}$. Conidia (type II) not observed.

Fig. 21. Teratoramularia infinita (CBS 120815). A-H. Conidiophores, conidiogenous cells and conidia observed in culture. Scale bars $=10 \mu \mathrm{~m}$.

Culture characteristics: On MEA, 18 mm diam, surface raised, folded, smooth, pale grey, with margins crenate, convex, underneath olivaceous grey; on OA, 14 mm diam, surface flat, smooth, pale olivaceous grey, with margins undulate, with sparse olivaceous grey mycelium, reverse iron-grey; on PDA, 15 mm diam, surface, smooth, pale olivaceous grey, with margins crenate, reverse olivaceous grey.

Specimens examined: Brazil, on Conyza canadensis, 2000, unknown collector (holotype CBS H-22536, culture ex-type CBS $141104=$ CPC 19488). Taiwan, Chiayi, Meishan, Taixingcun, on living leaves of Thladiantha punctata, unknown date, R. Kirschner \& C.-J. Chen, culture CBS 120815.

Notes: The two strains in this clade have been isolated from two very distinct hosts, Conyza canadensis (Asteraceae) and Thladiantha punctata (Cucurbitaceae), and from two very distinct locations, Brazil and Taiwan, respectively. Nevertheless, they are identical on five genes suggesting this species has a wide host range and distribution. The phylogeny supports their separation from the closest neighbour, T. rumicicola (Fig. 1, clade XXX, 1/ 100/100) from which it also differs morphologically by producing longer conidiogenous cells, shorter and slightly narrower ramoconidia and terminal conidia (Fig. 21).

Teratoramularia persicariae Videira, H.D. Shin \& Crous, sp. nov. MycoBank MB817154. Fig. 22.

Etymology: Named after the host genus Persicaria, from which the ex-type strain of this taxon was collected.

Fig. 22. Teratoramularia persicariae (CBS 141105). A-D. Observations from herbarium material. E-J. Structures formed in culture. A. Leaf spot symptoms on the host. B, C. Conidiophores and conidiogenous cells. D-H. Conidiophores, conidiogenous cells and conidia. H, J. Pigmented conidiogenous structures developed on OA culture medium. Scale bars $=10 \mu \mathrm{~m}$.

Mycelium consisting of hyaline, septate, branched, thin-walled, smooth, $1-2 \mu \mathrm{~m}$ diam hyphae, but on OA also brown, pigmented hyphae are formed. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, thin-walled, smooth, integrated in hyphae, cylindricaloblong, (4.5-)9-11(-15) $\times(1-) 1.5(-2) \mu \mathrm{m}$, with one thickened and darkened conidiogenous locus, $1 \mu \mathrm{~m}$ diam. Conidia are catenate, forming ramoconidia, intercalary conidia and terminal conidia. Conidia (type 1) hyaline, thin-walled, smooth, aseptate, with hila thickened and darkened, $1 \mu \mathrm{~m}$ diam; ramoconidia subcylindrical to fusiform, (9.5-)17-20(-30) $\times(1.5-) 2(-$ 2.5) $\mu \mathrm{m}$, with 2 apical hila; intercalary conidia subcylindrical to fusiform, sometimes curved, (8.5-)14-18(-30) $\times(1-) 1.5-2(-2.5) \mu \mathrm{m}$, in chains of up to eight conidia; terminal conidia hyaline, smooth, aseptate, subcylindrical, (3-)7-8(-10) $\times(1.5-) 2(-3) \mu \mathrm{m}$. Conidia (type II) not observed.

Culture characteristics: On MEA, 15 mm diam, surface smooth, raised, lumpy, olivaceous grey with buff and white patches, with margins crenate and convex, reverse iron-grey with ochreous patches; on OA, 10 mm diam, surface concave, smooth, pale olivaceous grey, with margins raised, undulate, with sparse aerial mycelium, reverse olivaceous grey; on PDA, 13 mm diam, surface smooth, lumpy, irregular, iron-grey with pale vinaceous patches, margins undulate, reverse rosy buff and olivaceous grey.

Specimens examined: South Korea, Hongcheon, on Persicaria nepalensis, 29 Jul. 2004, H.D. Shin (holotype KUS-F20536, isotype CBS H-22537, culture ex-type CBS $141105=$ CPC 11410); idem. CPC 11408, CPC 11409. Unknown country, on leaf spot of Fagopyrum esculentum, isol. and dep. M.W. Gardner, Jul. 1927, culture CBS 195.27.

Notes: The host species, Persicaria nepalensis, is distributed worldwide but a broader sampling is required to show whether the fungal species follows this distribution. The phylogenetic analysis supports the separation of Teratoramularia persicariae from T. rumicicola (Fig. 1, clade XXX, 0.99/95) and, morphologically, T. persicariae (Fig. 22) produces longer conidia than T. rumicicola.

Teratoramularia rumicicola Videira, H.D. Shin \& Crous, sp. nov. MycoBank MB817155. Fig. 23.

Etymology: Named after the host genus Rumex, from which it was collected.
Mycelium consisting of hyaline, septate, branched, thin-walled, smooth, $1-2 \mu \mathrm{~m}$ diam hyphae. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, thin-walled, smooth, integrated in hyphae, cylindrical-oblong, (5-)10-12.5(-16.5) $\times(1-) 1.5(-2) \mu \mathrm{m}$, with 1 thickened and darkened apical locus, $1 \mu \mathrm{~m}$ diam. Conidia are catenate, forming ramoconidia, intercalary conidia and terminal conidia. Conidia (type I) hyaline, thin-walled, smooth, catenate, aseptate or occasionally 1 -septate, with hila conspicuous, thickened and darkened, $1 \mu \mathrm{~m}$ diam; ramoconidia subcylindrical to fusiform, (8.5-)12-15(-23) $\times(1.5-) 2(-2.5) \mu \mathrm{m}$, with 2 apical hila; intercalary conidia subcylindrical, sometimes slightly curved, (6.5-)10-13(-20) $\times(1.5-$)2(-2.5) $\mu \mathrm{m}$, in chains of up to five conidia; terminal conidia subcylindrical to obovoid, (3-)5.5-$6(-8) \times(1.5-) 2(-3) \mu \mathrm{m}$. Conidia (type II) brown, smooth, catenate, $1-4$-septate, constricted at the septa, $(5-) 11.5-14.5(-18.5) \times(2-) 2.5-3 \mu \mathrm{~m}$, with hila thickened and darkened.

Culture characteristics: On MEA, 20 mm diam, surface raised, strongly folded, smooth, white with greyish tinge in the centre, with margins crenate, convex, olivaceous grey, reverse iron-

Fig. 23. Teratoramularia rumicicola (CBS 141106). A-B. Observations from herbarium material. C-I. Structures formed in culture. B. Conidia. C-G. Conidiophores, con- idiogenous cells and conidia. H, I. Pigmented conidiogenous structures and conidia formed on OA culture medium. Scale bars $=10 \mu \mathrm{~m}$.
grey; on OA, 15 mm diam, surface flat, smooth, pale olivaceous grey, with margins undulate, with sparse olivaceous grey mycelium, reverse iron-grey; on PDA, 16 mm diam, surface with smooth and folded portions, pale olivaceous grey, with margins crenate and smoke grey, reverse olivaceous grey.

Specimens examined: South Korea, Jecheon, on Rumex crispus, 19 Oct. 2007, H.D. Shin (holotype KUS-F23080, isotype CBS H-22538, culture ex-type CBS 141106 = CPC 14653); idem. CPC 14652, CPC 14654.

Notes: A total of seven Ramularia species have been described from Rumex worldwide (Braun 1998) and two of these species form filiform, long conidia, i.e. R. pseudodecipiens and R. pratensis. Ramularia pseudodecipiens is only known from the type collection in the USA (Wyoming), has larger conidia [(10-)25-45(-55) $\times 2-5 \mu \mathrm{~m}]$ that are consistently septate and, although sometimes constricted at the septa, they are always hyaline. Ramularia pratensis has a worldwide distribution and produces conidia of approximately the same size, (6-)8-25(-35) $\times(1.5-) 2-4(-5) \mu \mathrm{m}$, but they are never constricted at the septa or pigmented. In addition, the conidiophores in T. rumicicola (Fig. 23) were consistently reduced to conidiogenous cells while both R. pseudodecipiens and R. pratensis produce long conidiophores. The phylogenetic analysis supports this species clade (Fig. 1, clade XXX, 1/100/100).

Teratoramularia kirschneriana Videira \& Crous, sp. nov. MycoBank MB817156. Fig. 24.
Etymology: Named after the mycologist Roland Kirschner, who has contributed greatly to our knowledge of cercosporoid fungi.

Mycelium consisting of hyaline, septate, branched, thin-walled, smooth, $0.5-1.5 \mu \mathrm{~m}$ diam hyphae. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, smooth, integrated in hyphae, cylindrical-oblong, (13.5-)14-15(-16) $\times 1(-1.5) \mu \mathrm{m}$, with 1 thickened and darkened apical locus, $1 \mu \mathrm{~m}$ diam. Conidia are catenate, forming ramoconidia, intercalary conidia and terminal conidia. Conidia (type I) hyaline, thin-walled, smooth, aseptate, hila thickened and darkened, $1 \mu \mathrm{~m}$ diam.; ramoconidia subcylindrical to fusiform, (7-)8.5-10(-15) $\times(1-) 1.5-2 \mu \mathrm{~m}$, with two apical hila; intercalary conidia, fusiform, $(6-) 8-10(-17) \times(1-) 1.5-2$ $\mu \mathrm{m}$, in chains of up to five conidia; terminal conidia, fusiform to obovoid, (3.5-)5-6(-7) \times (1-)1.5-2 $\mu \mathrm{m}$. Conidia(type II) not observed.

Culture characteristics: On MEA, 16 mm diam, surface folded, smooth, pale grey, with margins crenate, convex, colony reverse iron-grey; on OA, 15 mm diam, surface flat, smooth, pale grey, with margins undulate, colony reverse iron-grey; on PDA, 13 mm diam, surface smooth, pale grey, with margins crenate, colony reverse iron-grey.

Specimen examined: Taiwan, Tahsuehshan, on leaves of Setaria palmifolia, 13 Apr. 2002, R. Kirschner \& C.-J. Chen (holotype TNM No. F0016568, isotype CBS H-22539, culture ex-type CBS 113093).

Notes: The strain representing this species was originally identified as Phacellium paspali. The characteristic Phacellium synnemata are sometimes also formed in culture. This species is represented by a single basal lineage in the Teratoramularia clade in the phylogenetic analysis
(Fig. 1, clade XXX). Morphologically (Fig. 24), it is nearly impossible to distinguish it from the closest sister species T. infinita.

Fig. 24. Teratoramularia kirschneriana (CBS 113093). A-G. Structures formed in culture. A, C-G. Conidiogenous cells and conidia. B. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Fig. 25. Hawksworthiana peltigericola (herbarium Paul Diederich). A-I. Observations from herbarium material. A, D. Conidiogenous structures developing on the host. B, C. Conidia. E, H, I. Conidiophores and conidia. F, G. Conidiophores. Scale bars $=10 \mu \mathrm{~m}$.

Genera allied to Ramularia lacking cultures

Hawksworthiana U. Braun, Int. J. Mycol. Lichenol. 3: 276. 1988. Fig. 25.
Lichenicolous, forming gall-like deformations. Mycelium consisting of hyaline, septate, sparsely branched, thin-walled hyphae. Conidiophores reduced to the conidiogenous cells, erumpent, usually ampulliform but sometimes subcylindrical, aseptate, hyaline, thin-walled, mono- or polyblastic, sympodial, conidiogenous loci conspicuous, thickened and darkened. Conidia formed singly, acrogenous, oblong-clavate to subcylindrical, hyaline, thin-walled, smooth, aseptate or 1-septate, hilum conspicuous, thickened and darkened.

Type species: Hawksworthiana peltigericola (D. Hawksw.) U. Braun.
Specimens examined: Luxembourg, on lichen Peltigera rufescens, 7 May 2008, P. Diederich. Scotland, Isle of Mull, Killiemore, on Peltigera polydactyla, 16 Jun. 1979, Clark (holotype K(M) IMI 239715a).

Notes: Hawksworthiana is monotypic and was described based on H. peltigericola on a specimen of Peltigera polydactyla from the Isle of Mull in Scotland. It forms gall-like deformations on lichens of the genus Peltigera, and has been reported from Europe and North America. Hawksworthiana differs from Ramularia by its lichenicolous habit and morphological characters such as the wide ampulliform conidiogenous cells, the conidiogenous loci and hila are not refractive, the absence of stroma-like structures and the symptoms caused on the host (Fig. 25). All attempts to culture this fungus from fresh collections have thus far proven unsuccessful.

Monodidymaria U. Braun, Nova Hedwigia 58: 195. 1994. Fig. 26.
Phytopathogenic, causing leaf spots. Mycelium consisting of hyaline, septate, branched, thin-walled hyphae; stromata absent or small. Conidiophores macronematous, solitary or in fascicles, arising from internal hyphae or hyphal aggregations, emerging through stomata or erumpent through the cuticle, filiform and straight or flexuous to sinuous, but not geniculate, usually aseptate, thin-walled, hyaline and smooth, sometimes reduced to conidiogenous cells. Conidiogenous cells integrated, terminal, monophialidic. Conidia formed singly, ellipsoidovoid, obovoid, subcylindrical, fusoid or subclavate, aseptate or $1(-3)$-septate, hyaline, thinwalled, smooth to rough, base rounded to truncate.

Type species: Monodidymaria canadensis (Ellis \& Everh.) U. Braun.
Specimens examined: Canada, Ontario, London, on Carex conoidea, Aug. 1890, Dearness (lectotype NY 01293230, syntypes NY 01293231, 01293232 and 01293233).

Notes: While Ramularia has polyblastic, sympodial and cicatrised conidiogenous cells, Monodidymaria has monophialidic conidiogenous cells (Fig. 26). This character excludes Monodidymaria from the Cercosporella/Ramularia complex, but due to their common taxonomical history, they are still studied together. Monodidymaria is in fact morphologically more similar to Cephalosporiopsis, but the latter genus comprises saprobic soil hyphomycetes and its taxonomic status is not yet certain (Braun 1998). As a consequence, the genus is

Fig. 26. Monodidymaria canadensis (NY herbarium, 01293230, lectotype specimen). A. Leaf spot lesion on the host. B-E, I. Conidia. F-H. Conidiophores. Scale bars $=10 \mu \mathrm{~m}$.
maintained until more data is available to clarify its taxonomic position (Braun 1998). Five species are known to belong in this genus and were isolated from several hosts (Chenopodium, Equisetum, Scirpus and Vitex) from Asia, Europe, North and South America (Braun 1998, Seifert et al. 2011).

Neoovularia U. Braun, Nova Hedwigia 54: 473. 1992. Fig. 27.
Phytopathogenic, causing leaf spots. Caespituli amphigenous, whitish to pink or ochraceous. Mycelium consisting of hyaline to faintly pigmented, septate, branched, thin-walled hyphae forming well-developed stromata. Conidiophores arising from stromata, emerging through stomata or erumpent through the cuticle, often forming sporodochia, subcylindrical, subclavate, simple, thin-walled, smooth, hyaline or lightly pigmented, continuous or septate. Conidiogenous cells integrated, terminal, straight to moderately geniculate-sinuous, polyblastic and sympodial, conidiogenous loci numerous, conspicuous, bulging, papilla-like, but not thickened and darkened, at most slightly refractive. Conidia formed singly, subglobose, obovoid, ellipsoid, aseptate, hyaline to faintly pigmented, thin-walled, smooth to verruculose; basal hilum not thickened or darkened; conidial secession schizolytic. Adapted from Braun (1998).

Type species: Neoovularia nomuriana (Sacc.) U. Braun.
Specimens examined: Hungary, Sükösd, on leaves of Astragalus cicer, Sep. 1913, leg. F. Greinich, det. G. Moesz., Flora Hungarica exsiccata 106, cent. II, Fungi 16, M-0177904. Japan, Mino Prov., Kawanyemura, on Astragalus sinicus, May 1912, leg. K. Hara, com. P. Sydow, Kabát et Bubák: Fungi Imperfecti exsiccati 835, M-0177907; Kikotaru, on Astragalus sinicus, 1903, Nomura (holotype PAD). Russia, Ufa, Jabalakly, on leaves of Astragali cicer, 29 Jun. 1910, leg. Serebrianikow, Tranzschel et Serebrianikow Mycotheca Rossica 195, M-0177906, M-0177905.

Notes: Neoovularia species are characterised by having unthickened but bulging and refractive conidiogenous loci, and by producing single, subglobose conidia with unthickened but refractive hila (Fig. 27). There are six species described in this genus that are phytopathogenic

Fig. 27. Neovularia nomuriana (M-0177907). A. Leaf spot lesion on the host. B, E, F. Conidiophores and conidia. C, D. Conidiogenous cells. G, H. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
and cause distinct lesions on leaves and stems (Braun 1998). They have been observed from hosts belonging to four different families (Asteraceae, Fabaceae, Lamiaceae and Malvaceae) and located in Europe, Asia, Caucasus and N. America.

Neoramularia U. Braun, Nova Hedwigia 53: 291. 1991. Fig. 28.
Phytopathogenic, causing leaf spots. Mycelium consisting of hyaline or subhyaline, septate, branched, thin-walled hyphae forming stromata or not. Conidiophores macronematous, usually in large fascicles, sometimes forming sporodochial and basistromatic conidiomata, emerging through stomata or erumpent through the cuticle, straight, subcylindrical to geniculate-sinuous, simple, hyaline or faintly pigmented, continuous or septate, thin-walled, smooth or occasionally rough. Conidiogenous cells integrated, terminal, polyblastic, percurrent and sympodial, conidiogenous loci inconspicuous, not thickened or darkened. Conidia solitary or catenate, ellipsoid-ovoid, sub-cylindrical or fusoid, hyaline or slightly pigmented, aseptate to 3 -septate, thin-walled, smooth or almost so, hila unthickened and hyaline, conidial secession schizolytic.

Type species: Neoramularia eurotiae (Gamalizk.) U. Braun [= N. kochiae (Woron.) U. Braun].
Specimen examined: Russia, Central Tien-Shan, 5 Jun. 1958, Gamalitzkaja (holotype of Ramularia eurotiae LE 41968).

Notes: The genus Neoramularia was introduced by Braun (1991) to include species with inconspicuous, unthickened, hyaline conidiogenous loci and hila. The circumscription

Fig. 28. Neoramularia eurotiae (No. 41968, LE herbarium, holotype of Ramularia eurotiae). A-K. Observations from herbarium material. A. Leaf spot symptoms on the host. B-D, G. Conidiogenous cells and conidia. E, F, H-K. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
of Neoramularia was later modified to include species forming catenate conidia such as Neoramularia esfandiarii (Braun 1992). Ten species are currently known in this genus and have been isolated from different hosts in Asia, Europe and North America (Braun 1998, Seifert et al. 2011). The type species is known from Kochia sp., Azerbaijan, and a photoplate based on the holotype of R. eurotia, a synonym of Neoramularia kochiae is presented (Fig. 28).

Pseudodidymaria U. Braun, Cryptog. Bot. 4: 110. 1993. Fig. 29.
Phytopathogenic, causing leaf spots. Mycelium consisting of hyaline or faintly pigmented, septate, thin-walled and branched hyphae, forming well developed stromata. Conidiomata basistromatic and sporodochial. Conidiophores arranged in palisade-like fascicles, subcylindrical, subclavate, straight to flexuous, sinuous, rarely septate, hyaline to faintly pigmented, thin-walled, smooth, sometimes reduced to conidiogenous cells. Conidiogenous cells integrated, terminal, polyblastic, sympodial, conidiogenous loci bulging, unthickened or with a thickened rim, not darkened but refractive. Conidia formed singly, ellipsoid-obovoid, subclavate, aseptate to 2 -septate, base rounded to broadly truncate, hyaline to faintly pigmented, thin-walled, smooth to verruculose, hilum unthickened, not darkened but refractive, conidial secession schizolytic.

Type species: Pseudodidymaria wyethiae (Ellis \& Everh.) U. Braun.
Specimens examined: USA, California, Santa Rosa, on leaves of Wyethia glabra, 25 May 1894, WC Blasdale (lectotype NY 01087025, isolectotypes NY 01087026, 01087027, 01087028).

Notes: Pseudodydimaria was established to accommodate Didymaria wyethiae, since it did

Fig. 29. Pseudodidymaria wyethiae (NY herbarium 01087025 , lectotype specimen). A. Leaf spot lesion on the host. B, C. Conidiogenous cells and conidia. D-G. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
not fit comfortably with the description of Ramularia, Pseudocercosporidium or Neoovularia. Pseudocercosporidium differs by having very long, branched conidiophores, formed singly or loosely grouped. Neoovularia differs by having aseptate, subglobose to ovoid conidia with narrow, darkened, refractive hila. Two species are currently known to belong to this genus, P. wyethiae (Fig. 29) and P. clematidis, reported from North America (Braun 1998).

Tretovularia Deighton, Trans. Brit. Mycol. Soc. 82: 743. 1984. Fig. 30.
Phytopathogenic, causing leaf spots. Mycelium consisting of hyaline, septate, branched, thinwalled hyphae; stromata absent or small. Conidiophores macronematous, growing singly or in fascicles, arising from internal hyphae or stromata, emerging through stomata, subcylindrical to sinuous, fertile part usually strongly geniculate-sinuous, hyaline, continuous or sometimes septate, thin-walled, smooth. Conidiogenous cells integrated, terminal, sometimes becoming intercalary, polytretic, indeterminate, proliferation sympodial, conidiogenous loci are minute pores located in small shoulders that are later covered by a colourless cap. Conidia solitary, subglobose, broad ellipsoid-ovoid, pyriform, aseptate, hyaline, base rounded or with a small protrusion.

Type species: Tretovularia villiana (Magnus) Deighton.
Specimen examined: Germany, Unterfranken, Hassfurt near Nürnberg, on Vicia cassubica, Sep. 1898, A. Vill [Allesch. \& Schn., Fungi bavar. 691], ex-herb. P. Magnus acc. 1918 (holotype HBG).

Fig. 30. Tretovularia viliana (holotype, HBG). A. Leaf spot lesion on the host. B, F, G. Conidiogenous cells and conidia. C-E. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Notes: This monotypic genus was established to accommodate Ovularia villiana (Fig. 30), a phytopathogenic species that forms polytretic conidiogenous cells with sympodial proliferation, a characteristic very different from Ramularia and other similar genera.

Ramularia sensu stricto

Ramularia abscondita (Fautrey \& F. Lamb.) U. Braun, Int. J. Mycol. Lichenol. 3: 280. 1988. Fig. 31.
Basionym: Ovularia abscondita Fautrey \& F. Lamb., Rev. Mycol. (Toulouse) 18: 144. 1896.
= Ramularia filaris f. lappae Sacc., Syll. Fung. 4: 210. 1886.
= Ramularia filaris var. lappae Bres., Hedwigia 36: 200. 1896.
\equiv Ramularia lappae (Bres.) Ferraris, Fl. Ital. Crypt., Fungi 1(6): 837. 1913.
Mycelium consisting of hyaline, septate, branched, smooth, $1-2 \mu \mathrm{~m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, septate, cylindrical-oblong, straight to geniculatesinuous, unbranched, ($10-$)15.5-20.5(-44.5) $\times(1.5-) 2 \mu \mathrm{~m}$, or reduced to conidiogenous cells. Conidiogenous cells integrated in the mycelium or terminal on the conidiophore, cylindrical-oblong to geniculate-sinuous, $(7-) 11-14(-22.5) \times(1-) 1.5-2(-3) \mu \mathrm{m}$, with multiple conidiogenous loci almost flat to protuberant, thickened, darkened and refractive. Conidia hyaline, thin-walled, smooth to slightly verruculose, catenate, with hila thickened, darkened and refractive. Ramoconidia cylindrical-oblong, clavate, sometimes curved, oval, (5.5-)8-9.5(-15) $\times 2-2.5(-3) \mu \mathrm{m}$, aseptate, with $2-3$ apical hila. Intercalary conidia cylindrical-oblong, oval, ellipsoid, aseptate, $(4.5-) 6.5-7(-10) \times 2(-2.5) \mu \mathrm{m}$, in branched chains of up to five conidia.

Fig. 31. Ramularia abscondita (CBS 114727). A-J. Structures formed in culture. A, C, E, G. Conidia. B, D, F, I, J. Conidiophores, conidiogenous cells and conidia. H. Conidiophore. Scale bars $=10 \mu \mathrm{~m}$.

Terminal conidia obovoid, aseptate, (4-)5(-6) $\times(1.5-) 2-2.5 \mu \mathrm{~m}($ on SNA, CBS 114727).
Culture characteristics: On MEA, 8 mm diam, surface raised, fluffy aerial mycelium, dirty white, with margins undulate, colony reverse ochreous; on OA, 8 mm diam, surface raised, folded, fluffy aerial mycelium, white, margins undulate, colony reverse buff; on PDA, 8 mm diam, surface raised, folded, fluffy aerial mycelium pale grey, with margins undulate, colony reverse buff.

Description in vivo: See Braun (1998: 84).
Specimens examined: France, Viserny, Côte-d'Or, on Arctium lappa, 1896, Fautrey [Roum., Fungi Sel. Gall. Exs. 7245] (lectotype, designated in Braun 1998, PC). Sweden, Uppland, Dalby, on leaves of Arctium tomentosum, 20 Sep. 1990, E. Gunnerbeck, culture CBS 114727.

Substrate and distribution: On Arctium spp. (Asteraceae); Caucasus, Central Asia, Europe.
Notes: Ramularia abscondita was originally described on Arctium lappa from France (lectotype in PC). It has a wide geographical distribution but has only been isolated from hosts belonging to the genus Arctium (Asteraceae), a plants genus commonly known as thistle burdock. Burdock root was used as bittering agent of beer before the introduction of hop and is very much used in Asian cuisine. Ramularia abscondita has been reported on Arctium tomentosum from Sweden (Braun 1998). The morphological description of this strain (Fig. 31) differs from the one in literature (Braun 1998) based on collections in vivo by having longer conidiophores and narrower conidiophores and conidia. These differences may be related to the fungus growing in culture and not being associated with its host. This strain forms a single lineage in the phylogenetic analysis (Fig. 2, clade 43) but will be tentatively considered as a good representative of this
species until material from the type host and location is collected and cultured.
Ramularia acris Lindr., Acta Soc. Fauna Fl. Fenn. 22(1): 14. 1902.
= Septocylindrium ranunculi Peck, Rep. (Annual) New York State Mus. Nat. Hist. 34: 46. 1881.
$=$ Ramularia aequivoca f. ranunculi-acris C. Massal., Atti Mem. Accad. Agric. Sci. Art. Verona: 156. 1902.
= Ramularia aequivoca var. andrei M. Morelet, Bull. Soc. Sci. Nat. Archéol. Toulon Var: 9. 1967.

Description in vivo: See Braun (1998: 234).
Specimens examined: Netherlands, Gelderland Prov., Wageningen, on living leaves of Ranunculus acris, Aug. 2012, S.I.R. Videira, cultures CBS 141107 = CPC 25899 and CPC 25898; Utrecht Prov., Utrecht, Rhijnauwen, on living leaves of ?Ranunculus sp., May 2013, U. Damm, culture CPC 25900; Zeeland Prov., Borsele, Vladijk near Nisse, on Ranunculus sp., 27 Aug. 2001, G. Verkley, culture CBS 109794.

Substrate and distribution: On Ranunculus (Ranunculaceae); Asia, Europe and N. America.
Notes: The strains in this clade were previously identified as R. didyma. Authentic strains of R. didyma cluster in clade 72 (Fig. 2) and, besides R. didyma, R. acris is also common on Ranunculus acris. Since the strains were sterile in culture and no herbarium specimens were preserved, the morphological characters could not be compared with the description available in literature. The strains in this clade cluster in a highly supported clade (Fig. 2, clade 7, 1/100/100) and are tentatively treated as R. acris.

Ramularia acroptili Bremer, Sydowia 2: 315. 1984.
\equiv Cercosporella acroptilli (Bremer) U. Braun, Nova Hedwigia 56: 439. 1993.
= Cercosporella centaureicola D. Berner et al., Mycologia 97: 1122. 2006.
Description in vivo: See Braun (1995: 72).

Specimens examined: Greece, Macedonia region, Kozani, on leaves of Centaurea solstitialis, 28 Apr. 2004, D. Berner, culture CBS 120253 = BPI 844247. Turkey, Ankara, on Acroptilon repens, 14 Jul 1947, Bremer [Reliquiae Petrakianae 363] (lectotype W, No. 11177); near Isparta, on Acroptilon repens, 1 Sep. 1997, R. Sobhian (epitype designated here BPI 745883, MBT130827, culture ex-epitype CBS 120252). USA, California, on Cynara cardunculus, Oct. 2010, L. Davenport, cultures CPC 18723, CPC 18724.

Substrate and distribution: On Acroptilon repens, Centaurea solstitiales and Cynara cardunculus (Asteraceae); Central Asia, Europe and N. America.

Notes: Russian knapweed (Acroptilon repens) and yellow starthistle (Centaurea solstitialis) are invasive weeds in the western USA. Berner et al. (2005) studied two potential biological control agents for these weeds namely Cercosporella acroptili for A. repens, and a morphologically similar Cercosporella sp. on Centaurea solstitialis. The culture of Cercosporella acroptili (CBS 120252) from the same host and country as the type (Acroptilon repens, Turkey) was compared with the herbarium type material and found to be identical.

Both Cercosporella acroptili (CBS 120252) and Cercosporella sp. (CBS 120253) were morphologically cryptic, the infection symptoms were phenotypically similar and the ITS sequences were 99% similar with only 3 base pairs difference. Pathogenicity tests showed they were only pathogenic to their respective hosts, growth studies showed some culture morphology differences, and that they were vegetatively incompatible (Berner et al. 2006). At the time, the combination of these minor differences in morphology, pathogenicity, growth and genetics (ITS sequences) between C. acroptili and Cercosporella sp. were found sufficient to describe the new species as Cercosporella centaureicola (CBS 120253). However, previous studies have shown that a strain isolated from one host that was not able to colonise the other host did not necessarily mean they were different species; they can be the same species with different physiological specialisations to the host in which case a forma specialis is usually proposed (Macedo et al. 2013). In this study, the strains CBS 120252 and CBS 120253 show minimal nucleotide differences for the six genes amplified: 0 (LSU), 5 (ITS), 3 (rpb2), 2 (actA), 2 (gapdh) and 5 (tef1- α). We propose that this is the same species and synonymise Cercosporella centaureicola and C. acroptili under R. acroptili, since this is the older name. These strains fall in the Ramularia clade (Fig. 1, clade XIV, $1 / 100$) and cluster in a highly supported clade based on BA, ML and PA phylogenetic analysis (Fig. 2, clade 2, 1/100).

Ramularia actinidiae Ablak., Bot. Mater. Otd. Sporov. Rast. Bot. Inst. Komarova Akad. Nauk S.S.S.R. 13: 244. 1960. Fig. 32.

Mycelium consisting of hyaline, septate, branched, smooth, 1-2 $\mu \mathrm{m}$ diam hyphae. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, thin-walled, smooth, intermediate in the mycelium, cylindrical-oblong, (6-)11.5-15(-20) $\times(1.5-) 2(-$ 3) $\mu \mathrm{m}$, with one conidiogenous locus, almost flat to protuberant, thickened, darkened and refractive. Conidia hyaline, thin-walled, smooth, catenate, with hila thickened, darkened and refractive. Ramoconidia subcylindrical, fusoid, (15-) 18-20(-28) $\times(1.5-) 2-3 \mu \mathrm{~m}$, $0-1$-septate, with two apical hila. Intercalary conidia subcylindrical, fusoid, $0-1$-septate, slightly narrower at the septa, (11-)17-20(-27) $\times 2-3 \mu \mathrm{~m}$, in branched chains of up to four conidia. Terminal conidia subcylindrical, obovoid, aseptate, (7-)10-12.5(-20) $\times(1.5-) 2(-3)$ $\mu \mathrm{m}$ (on SNA).

Culture characteristics: On MEA, 17 mm diam, surface convex, pale olivaceous grey, smooth flat mycelium, radially striated close to the margin, margins white and lobate, colony reverse olivaceous grey with a buff margin and radially striated; on $\mathrm{OA}, 15 \mathrm{~mm}$ diam, surface flat, short and uniform aerial mycelium, livid vinaceous in the centre and smoke-grey towards margin, with margins olivaceous grey, undulate and with scarce aerial mycelium, colony reverse irongrey; on PDA, 18 mm diam, surface low convex, short and uniform aerial mycelium, pale olivaceous grey, with margins undulate, feathery, white, colony reverse iron-grey.

Description in vivo: See Braun (1998: 46).
Specimen examined: South Korea, Yangpyeong, on Actinidia polygama, 24 Oct. 2004, H.D. Shin, KUS-F20880, CBS H-22543, cultures CBS 141108 = CPC 11675, and CPC 11674.

Substrate and distribution: On Actinidia polygama; Russia and South Korea.

Fig. 32. Ramularia actinidiae (CBS 141108). A-F. Observations from herbarium material. G-I. Structures formed in culture. A. Leaf spot lesion on the host. B, D, F, H, I. Conidiophores and conidia. C, E, G. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Notes: The description of R. actinidiae available in literature includes greyish caespituli, conidiophores, hyaline, simple, $20-40 \mu \mathrm{~m}$ long, conidia cylindrical, aseptate, $10.5-17 \times 3 \mu \mathrm{~m}$. The specimen observed has short conidiophores (12-)19-23(-35) $\times(1.5)-2-2.5(-3) \mu \mathrm{m}$ and conidial dimensions matching the ones in culture (5-)10-12(-21) $\times(1.5-) 2(-3) \mu \mathrm{m}$. Ramularia actinidiae was originally described on Actinidia polygama from Russia. Braun (1998) commented on this species being insufficiently known, and that the type material was not available for study. The strain used in this study is from a different location to that of R. actinidiae but the description of the morphology is quite similar (Fig. 32). It forms a single lineage supported by the Bayesian multigene analysis (Fig. 2, clade 77) and is tentatively maintained as Ramularia actinidiae until fresh material from the same location and host as the type has been recollected (Actinidia polygama, Russia).

Ramularia agastaches Sawada, Bull. Gov. Forest Exp. Sta., Meguro 105: 85. 1958. Fig. 33.
Mycelium consisting of hyaline, septate, branched, smooth, 1-2 $\mu \mathrm{m}$ diam hyphae. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, thin-walled, smooth, terminal or intermediate in the mycelium, cylindrical-oblong, (8.5-)11-13(-16) $\times 1.5-2(-2.5) \mu \mathrm{m}$, with one or two conidiogenous loci, thickened, darkened and refractive. Conidia hyaline, thin-walled, smooth, catenate, with hila thickened, darkened and refractive. Ramoconidia subcylindrical, clavate, ovoid, $(11-) 15-18(-27) \times(2.5-) 3-3.5(-4) \mu \mathrm{m}, 0-1$-septate, with two apical hila. Intercalary conidia subcylindrical, $0-1$-septate, (11-)13.5-15.5(-21) $\times 3(-4) \mu \mathrm{m}$, in branched chains of up to six conidia. Terminal conidia subcylindrical, obovoid, aseptate, (4-)8-10(-13)

Fig. 33. Ramularia agastaches (CPC 10820). A-C. Observations from herbarium material. D-H. Structures formed in culture. A. Leaf spot symptoms on the host. B, G, H. Conidiophores, conidiogenous cells and conidia. C, D, F. Conidia. E. Conidiophore. Scale bars $=10 \mu \mathrm{~m}$.
$\times(2-) 3(-4) \mu \mathrm{m}$ (on SNA).
Culture characteristics: On MEA, 12 mm diam, surface raised, strongly folded, pale olivaceous grey, smooth, with margins crenate, reverse olivaceous grey; on OA, 10 mm diam, surface convex, pale olivaceous grey, fluffy aerial mycelium, with margins undulate, reverse olivaceous grey; on PDA, 10 mm diam, surface raised, pale olivaceous grey with white patches, fluffy aerial mycelium, with margins undulate, reverse rosy buff with olivaceous grey patches.

Specimen examined: South Korea, Hoengseong, on Agastache rugosa, 10 Oct. 2003, H.D. Shin, KUS-F19865, cultures CPC 10819-10821.

Substrate and distribution: On Agastache rugosa, East Asia (Japan, South Korea).
Notes: Ramularia agastaches was originally described on Agastache rugosa from Japan and was synonymised with R. lamii var. lamii by Braun (1998) who was not able to examine the type specimen. The strains in this clade were previously identified as R. lamii, which is now restricted to species in clade 67 (Fig. 2). The strains in this clade form a highly supported clade by all three methods of phylogenetic analysis (Fig. 2, clade 46, 1/100/100). Morphologically (Fig. 33) the description does not match that of R. lamii available in literature (Braun 1998).

Ramularia agrimoniae Sacc., Malpighia 10: 277. 1896.
Leaf spots almost absent to subcircular, pale to brownish occasionally with reddish border. Mycelium consisting of hyaline, branched, smooth, septate hyphae, sometimes forming small stromata internally. Conidiophores in loose fascicles arising from stromata, through stomata, or
solitary arising from secondary hyphae, straight, subcylindrical to geniculate-sinuous, simple, $4-30 \times 1.5-4 \mu \mathrm{~m}, 0-1(-2)$-septate, hyaline, thin-walled, smooth; conidiogenous loci slightly thickened and darkened. Conidia formed in chains, occasionally branched, ellipsoid-ovoid, fusiform, subcylindrical, $6-19.5 \times 1.5-3.5(-5) \mu \mathrm{m}, 0-1$-septate, hyaline, thin-walled, smooth to faintly rough, ends obtuse to subacute; hila minute, slightly thickened and darkened. Adapted from Braun (1998).

Specimens examined: South Korea, Hoengseong, on Agrimonia pilosa, 4 Aug. 2004, H.D. Shin, KUS-F20540, cultures CPC 11450-11452, CPC 11651-11653. Russia, Siberia, Paseka, on Agrimonia sp., 19 Jun., herb. Saccardo (holotype PAD).

Substrate and distribution: On Agrimonia spp. (Rosaceae), Asia, Caucasus, Europe.
Note: Ramularia agrimoniae was originally described on Agrimonia sp. from Siberia, Russia. Despite the reported distribution of this species across Europe and Asia, the available strains in this study all originate from South Korea (Fig. 2, clade 8, 1/100/100).

Ramularia alangiicola Videira, H.D. Shin \& Crous, nom. nov. MycoBank MB817157. Fig. 34.

Basionym: Phacellium alangii H.D. Shin \& J.D. Kim, Mycotaxon 81:341. 2002, non Ramularia alangii Hasija, 1962.

Mycelium consisting of hyaline, septate, branched, smooth, 1-2 $\mu \mathrm{m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, septate, cylindrical-oblong, straight, unbranched, (11-)24.5-$35.5(-67) \times(1.5-) 2(-3) \mu \mathrm{m}$, or reduced to conidiogenous cells. Conidiogenous cells integrated in the mycelium or terminal on the conidiophore, cylindrical-oblong, (6-)11-15.5(-27) $\times(1.5-$)2(-3) $\mu \mathrm{m}$, with $1-2$ conidiogenous loci almost flat to protuberant, thickened, darkened and refractive. Conidia hyaline, thin-walled, smooth to slightly verruculose, catenate, aseptate, with hila thickened, darkened and refractive. Ramoconidia cylindrical-oblong to clavate, (10-)12.5-$14(-19) \times(1.5-) 2(-2.5) \mu \mathrm{m}$, with $2-3$ apical hila. Intercalary conidia cylindrical-oblong, (8.5$) 11-12(-16) \times(1.5-) 2(-2.5) \mu \mathrm{m}$, in branched chains of up to five conidia. Terminal conidia obovoid, (6-)8.5-9.5(-11.5) $\times(1.5-) 2 \mu \mathrm{~m}$.

Specimens examined: South Korea, Chuncheon, on leaves of Alangium platanifolium var. macrophyllum, 11 Oct. 2002, H.D. Shin, KUS-F19227, culture CPC 10299; Chuncheon, on living leaves of Alangium platanifolium var. macrophyllum, 29 Sep. 2000, H.D. Shin (holotype KUS-F17673, isotype HAL 1656 F).

Substrate and distribution: Only known from the type collection.
Notes: Phacellium alangii was originally described on Alangium platanifolium var. macrophyllum from South Korea (holotype in KUS). In vivo, this species produced long and septate conidiophores grouped in synnemata ($90-340 \times 20-50 \mu \mathrm{~m}$) and conidia solitary or in short chains ($5-42 \times 2-5 \mu \mathrm{~m}$) (Shin \& Kim 2002). At the time it was described (Shin \& Kim 2002), it was compared with Ramularia alangii but found different since the later has short and aseptate conidiophores ($10-35 \times 3-6.5 \mu \mathrm{~m}$) and longer and wider catenate conidia ($20-45 \times$ $3-4.5 \mu \mathrm{~m}$). Ramularia alangii was only known from the type location (on Alangium salviifolium

Fig. 34. Ramularia alangiicola (CPC 10299). A, C. Observations from herbarium material. B, D-G. Structures formed in culture. A. Leaf spot symptoms on the host. B, C, D. Conidiophores and conidia. E-G. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
[= A. lamarckii] from India) and this fact, together with the morphological differences, supported Phacellium alangii as a new species. In the herbarium specimen from which isolate CPC 10299 was derived, we observed that the conidiophores grow in synnemata that are hyaline to pale brown (Fig. 34, C). In culture, the synnemata were not observed, the conidiophores and conidia were shorter and narrower than the ones described in the original publication (Shin \& Kim 2002). Since the species formed a distinct single lineage in the Ramularia clade (Fig. 1, clade XIV) and the production of synnemata is no longer considered a reliable character to separate Ramularia from Phacelium, a new combination is proposed. Because the epithet "alangii" is already occupied in Ramularia for a different species, the new epithet "alangiicola" is introduced.

Ramularia aplospora Speg., Dec. Mycol. Ital. no. 105. 1879. Fig. 35.
\equiv Ovularia aplospora (Speg.) Magnus, Hedwigia 44: 17. 1904.
= Ramularia schroeteri J.G. Kühn, Hedwigia 20: 147. 1881.
\equiv Ovularia schroeteri (J.G. Kühn) Sacc., Syll. Fung. 4: 140. 1886.
Mycelium consisting of hyaline, septate, branched, smooth, $1-2 \mu \mathrm{~m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, $1-3(-5)$-septate, cylindrical-oblong, straight and apically geniculate-sinuous, unbranched (22-)40-60(-135) $\times(1-) 2(-3) \mu \mathrm{m}$. Conidiogenous cells terminal in conidiophores, cylindrical-oblong to sinuous, narrower at the top, (10.5-)19-$24(-40) \times(1-) 1.5-2(-2.5) \mu \mathrm{m}$, with multiple conidiogenous loci almost flat to protuberant in a terminal and lateral position, thickened, darkened, refractive. Conidia hyaline, thinwalled, smooth to slightly verruculose, catenate, with hila thickened, darkened and refractive. Ramoconidia ellipsoidal to oval, (8.5-)10-11(-13) $\times(3.5-) 5-6(-7) \mu \mathrm{m}$, aseptate, with 2 apical

Fig. 35. Ramularia aplospora (CBS 545.82).A-F. Structures formed in culture. A-C, E, F. Conidiophores, conidiogenous cells and conidia. D. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
hila. Intercalary conidia ellipsoidal to oval, $0-1$-septate, ($8-$) $10-11(-14) \times(4-) 5-5.5(-7) \mu \mathrm{m}$, in branched chains of up to five conidia. Terminal conidia ellipsoidal to obovoid, aseptate, (5.5-)7.5-8.5(-11) $\times(3.5-) 4.5-5.5(-6.5) \mu \mathrm{m}$.

Culture characteristics: On MEA, 20 mm diam, surface low convex, smooth, greenish grey, producing small droplets of hyaline exudate on top of the mycelium, radially striated with margins undulate and concave, colony reverse olivaceous grey, broken radially; on OA, 16 mm diam, surface low convex, smooth, pale olivaceous grey producing small droplets of hyaline exudate on top of the mycelium, with margins with an entire edge and with sparse buff mycelium, with a discolouration halo in the media around the colony margins, colony reverse buff and olivaceous grey; on PDA, 18 mm diam, surface low convex, smooth, grey olivaceous, margins feathery with an entire edge, colony reverse olivaceous grey.

Description in vivo: See Braun (1998: 242).
Specimens examined: Austria, Tirol, Ober Inntal, Samnaum Gruppe, Lazidalm near Serfaus, on leaf spot from Alchemilla vulgaris, 8 Aug. 2000, G. Verkley, cultures CBS 109120, CBS 109121; Ötztal, Hoch-Sölden, on leaf spot from Alchemilla vulgaris, 25 Jul. 2000, G. Verkley, cultures CBS 109013, CBS 109014. Former Czechoslovakia, on Alchemilla xanthochlora, unknown collector and date, isol. L. Marvanová, Nov. 1972, dep. L. Marvanová, Jan. 1973, culture CBS 237.73. Germany, Gössweinstein, Ober-Franken, on Alchemilla vulgaris, unknown collector and date, isol. T. Hijwegen, 3 Aug. 1982, dep. T. Hijwegen, Oct. 1982 (epitype, designated here, CBS H-1743, MBT204828, culture ex-epitype CBS 545.82). Italy, on Alchemilla vulgaris L., Speg., Decad. Mycol. Ital. 105 (lectotype designated in Braun 1998, PAD). Sweden, Uppland, Haga, Årtopet, on Alchemilla vulgaris, 14 Aug. 1988, E. Gunnerbeck, culture CBS 114118.

Substrate and distribution: On Alchemilla and Aphanes (Rosaceae); Asia, Caucasus, Europe. Notes: In literature, R. aplospora is linked to the sexual morph named Mycosphaerella alchemillicola (Vassiljevsky 1925, Braun 1998), but experimental proof is still lacking (Videira et al. 2015b). The strain CBS 545.82 has previously been indicated as the type strain of the latter (Crous et al. 2007c) but this was not formally proposed. Therefore, and since the morphological characteristics are in agreement with the original description (Fig. 35), we formally designate CBS 545.82 as the ex-epitype strain of R. aplospora. This species formed a highly supported clade (Fig. 2, clade 27, 1/100/100). Ramularia aplospora is the only species in this genus known from the host Alchemilla (Rosaceae). Alchemilla plants are herbaceous perennials commonly known as "lady's mantle" and highly appreciated in gardens for their flowers and foliage (Hawke 2004).

Ramularia archangelicae Lindr., Acta Soc. Fauna Fl. Fenn. 23: 22. 1902. Fig. 36.
= Ramularia angelicae Höhn., Hedwigia 42: 178. 1903.
$=$ Cylindrosporium vaccarianum Sacc., Nuovo Giorn. Bot. Ital., N.S., 24: 41. 1917.
= Ramularia grantii Dearn., Mycologia 21: 326. 1929.
= Septocylindrium angelicae Katsuki, Kyushu Agric. Res. 6: 42. 1953.
Mycelium consisting of hyaline, septate, branched, smooth, $0.5-2 \mu \mathrm{~m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, septate, straight, cylindrical-oblong, unbranched, $(11.5-) 26.5-36(-46.5) \times 1.5-2(-2.5) \mu \mathrm{m}$ or reduced to conidiogenous cells. Conidiogenous cells integrated in mycelium or terminal in conidiophores, cylindrical-oblong, (5.5-)9.5-12(-16) $\times(1-) 1.5-2 \mu \mathrm{~m}$, with $1-2$ apical conidiogenous loci, almost flat to short cylindrical thickened, darkened, refractive. Conidia hyaline, thin-walled, smooth, with hila thickened, darkened and refractive. Ramoconidia subcylindrical to clavate, (15-)22-25(-

Fig. 36. Ramularia archangelicae (CBS 108991).A-F. Structures formed in culture. A-C. Conidiophores, conidiogenous cells and conidia. D, F. Conidia. E. Conidiogenous cell and conidia. Scale bars $=10 \mu \mathrm{~m}$.
$35) \times(1.5-) 2-2.5(-3) \mu \mathrm{m}, 0-3$-septate, with $2-3$ apical hila. Intercalary conidia aseptate or $0-1(-2)$-septate, subcylindrical, sometimes curved, (14-)18-22(-37) $\times(1.5-) 2(-2.5) \mu \mathrm{m}$, in branched chains of up to seven conidia. Terminal conidia aseptate, subcylindrical to obovoid, $(6-) 10-12(-16) \times 1.5-2(-2.5) \mu \mathrm{m}$, hila thickened, darkened, refractive.

Culture characteristics: On MEA, 13 mm diam, surface raised, folded, smooth, light smoke grey with pale vinaceous tinge with margins undulate, convex, feathery, colony reverse brick and with dark vinaceous patches; on OA, 16 mm diam, surface low convex, fluffy aerial mycelium, dirty white to smoke-grey, with margins crenate, producing a brick coloured pigment imbued in the agar forming a 13 mm band surrounding the colony, colony reverse dark vinaceous centre; on PDA, 16 mm diam, surface flat, smooth, pale smoke-grey with pale vinaceous tinge, forming tiny droplets of pale vinaceous exudate, with margins undulate, colony reverse pale vinaceous centre turning lighter shade towards the margin. Strains CBS 108992 and CBS 288.49 did not produce any pigment.

Description in vivo: See Braun (1998: 55).
Specimens examined: Austria, Ötztal, Ötz near Habichen, on leaf spot of Angelica sylvestris, 24 Jul. 2000, G. Verkley, cultures CBS 108991, CBS 108992, CBS 109011, CBS 109012; on stem of Angelica sylvestris, unknown collector and date, isol. and dep. J.A. von Arx, Jun. 1949, culture CBS 288.49. Sweden, Lapponia Lulensis, Sarvestjakko, on Angelica archangelica, 12 Aug. 1900 [Verstergr., Micromyc. Rar. Sel. Praec. Scand. 549] (neotype, designated in Braun 1998, B).

Substrate and distribution: On Angelica (Apiaceae); Asia, Europe, North America.
Notes: This species was described from Argelica archangelica collected in Sweden (neotype at B). The representative strains of this species cluster in a clade highly supported by BA and ML phylogenetic analyses (Fig. 2, clade 19, 1/100/100). Morphologically, the structures observed in culture (Fig. 36) are slightly narrower than those described in literature based on material in vivo (Braun 1998) but similar in all other characters. The strain CBS 288.49 was initially identified as Mycosphaerella rubella, and the type of this species was isolated from Angelica sylvestris from Germany. However, there is no evidence in literature of a link between these sexual and asexual names, and further studies are necessary to evaluate whether these species are conspecific.

Ramularia armoraciae Fuckel, Jahrb. Nassauischen Vereins Naturk. 23-24: 361"1869" (1870) emend. U. Braun (1998). Fig. 37.
\equiv Ovularia armoraciae (Fuckel) Massee, Brit. Fung.-Fl. 3: 321: 1893.
\equiv Cylindrospora armoraciae (Fuckel) J. Schröt., in Cohn, Krypt.-Fl. Schlesien, 3.2(4): 485: 1897.
\equiv Entylomella armoraciae (Fuckel) Cif., Ann. Mycol. 26: 17. 1928.
$=$ Ramularia matronalis Sacc., Michelia 2(6): 123. 1880.
= Ramularia cochleariae Cooke, Grevillea 11(60): 155. 1883.
= Ramularia hesperidis Svavul. \& Sandu, Mem. Sect. Şti. Acad. Română, Ser. 3, 15: 477. 1940.
For additional synonyms see Braun (1998).
Mycelium consisting of hyaline, septate, branched, smooth, 1.5-3 $\mu \mathrm{m}$ diam hyphae.

Fig. 37. Ramularia armoraciae (CBS 241.90). A-G. Structures formed in culture. A, C-E, G. Conidiophores, conidiogenous cells and conidia. B, F. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Conidiophores hyaline, thin-walled, smooth, erect, septate, straight, cylindrical-oblong, geniculate-sinuous, unbranched, (12-)20-29(-41) $\times(1.5-) 2(-3) \mu$ m or reduced to conidiogenous cells. Conidiogenous cells integrated in mycelium or terminal in conidiophores, cylindricaloblong, geniculate-sinuous, $(2-) 12-17(-30) \times(1-) 1.5-2.0(-3) \mu \mathrm{m}$, with one to multiple apical conidiogenous loci, almost flat or slightly protuberant, thickened, darkened and refractive. Conidia hyaline, thin-walled, smooth, catenate, aseptate, with hila thickened, darkened and refractive. Ramoconidia subcylindrical to clavate, (10.5-)13-14.5(-18.5) $\times(2.5-) 3(-4) \mu \mathrm{m}$, with two apical hila. Intercalary conidia fusoid, ovoid, ellipsoid, (8-)10.5-12(-16) $\times(2.5-)$ $3-3.5(-4) \mu \mathrm{m}$, in branched chains of up to ten conidia. Terminal conidia obovoid, (5-)7-8(-10) $\times(2-) 3-3.5(-4) \mu \mathrm{m}$ (on SNA).

Culture characteristics: On MEA, 13 mm diam, surface irregular, raised, smooth, white, with margins crenate feathery and olivaceous green, colony reverse olivaceous green; on OA, 14 mm diam, surface flat, smooth, with sparse aerial mycelium, white with olivaceous green patches, with margin irregular, with sparse aerial mycelium, colony reverse iron-grey; on PDA, 13 mm diam, surface flat, smooth, white with pale olivaceous grey patches, margins undulate, colony reverse olivaceous grey.

Description in vivo: See Braun (1998: 120).
Specimens examined: Germany, on Armoracia rusticana [Fuckel, Fungi Rhen. Exs. 133; lectotype, designated in Braun (1998), HAL]; on Armoracia rusticana, S. Petzoldt, unknown date (epitype designated here, CBS H-22518, MBT204829, culture ex-epitype CBS 241.90). Netherlands, on Armoracia rusticana, unknown collector and date, isol. and dep. A.L. Houwink, Nov. 1928, culture CBS 253.28.

Substrate and distribution: On various crucifers (Brassicaceae); Asia, Caucasus, Europe, Africa (Kenya), N. America.

Notes: Ramularia armoraciae was first described on Armoracia rusticana from Germany (lectotype in HAL). Strain CBS 241.90 originates from the same country and was isolated from the same host as the holotype, and is therefore chosen as ex-epitype (Fig. 37). Phylogenetically, this species is highly supported by the BA and ML analysis (Fig. 2, clade 55).

Ramularia asteris (W. Phillips \& Plowr.) Bubák, in Kabát \& Bubák, Fungi Imperf. Exs., Fasc. 8, no. 388. 1906.
Basionym: Fusidium asteris W. Phillips \& Plowr., Grevillea 6: 23. 1877.
= Ramularia rudbeckiae Peck, Rep. (Annual) New York State Mus. Nat. Hist. 34: 47. 1881.
$=$ R. macrospora var. asteris Trel., Preliminary list of the parasitic fungi of Winsconsin: 13. 1884.
= Ramularia asteris-tripolii Jaap, Verh. Bot. Vereins Prov. Brandenburg 50: 48. 1908.
= R. serotina var. stomaticola U. Braun, Nova Hedwigia 58: 199. 1994.
For additional synonyms see Braun (1998) or MycoBank.
Description in vivo: See Braun (1998: 259).
Specimens examined: Netherlands, on Aster tripolium, unknown collector and date, isol. v.d. Molen, dep. Oct. 1921, culture CBS 131.21. UK, Kings Lynn, on Aster tripolium, 10/5, Plowright (holotype K).

Substrate and distribution: On Aster, Galatella, Grindelia, Heteropappus, Rudbeckia, Solidago (Asteraceae); Asia, Europe, N. America.

Notes: Ramularia asteris was first observed on Aster tripolium from England (holotype in K). There are specimens of Ramularia asteris with narrow conidia $(3-5 \mu \mathrm{~m})$ that are referred to as R. asteris var. asteris, and broader conidia ($5-7 \mu \mathrm{~m}$) that are usually referred to as R. asteris var. latispora (Braun 1998). Only one isolate was available in this study (CBS 131.21) and it forms a single lineage (Fig. 2, clade 11). The culture was unfortunately sterile and no morphological observations could be made.

Ramularia bellunensis Speg., Michelia 1(5): 475. 1879.
Description in vivo: See Braun (1998: 95).
Specimens examined: Italy, Belluno, on Tanacetum parthenium, Oct. 1878, Spegazzini [lectotype, designated in Braun (1998), PAD]. Netherlands, on Argyranthemum frutescens (\equiv Chrysanthemum frutescens), unknown collector and date, isol. H.C. Koning, dep. Dutch Plant Protection Services, Jan. 1943, culture CBS 116.43. New Zealand, Auckland, Grey Lynn, on A. frutescens, unknown collector and date, isol. C.F. Hill, Jun. 2005, dep. C.F. Hill, culture CBS 118417.

Substrate and distribution: On Argyranthemum, Chrysanthemum, Leucanthemum, Tanacetum

(Asteraceae); Africa, Asia, Caucasus, Europe.

Notes: Ramularia bellunensis was described in 1879 from Tanacetum parthenium, from Italy [lectotype, designated in Braun (1998), in PAD]. This species is represented in a single lineage (Fig. 2, clade 75). This is a new report for the Netherlands and New Zealand, as well as a first report on the host Argyranthemum frutescens (Braun 1998). Although strain CBS 118417 is not in the phylogenetic trees, it is identical to CBS 116.43, except on one nucleotide in gapdh and one nucleotide in tefl- α. It was not included because at the time the trees were prepared we did not possess all the gene sequences. No ex-type strain of this species is available, and collections on Tanacetum from Italy are required to resolve its identity.

Ramularia beticola Fautrey \& Lambotte, Rev. Mycol. (Toulouse) 19: 54. 1897. Fig. 38.
= Ramularia betae Rostr., Bot. Tidskr. 22: 272. 1898 (1899).
Mycelium consisting of hyaline, septate, branched, smooth, 1-2 $\mu \mathrm{m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, 1-2(-4)-septate, straight to sinuous, cylindrical-oblong, unbranched (19.5-)43-58(-83) $\times 2-2.5(-3) \mu$ morreduced to conidiogenous cells. Conidiogenous cells integrated in mycelium or terminal in conidiophores, cylindrical-oblong and narrower at the top, (7-)16.5-20(-30) $\times 2-2.5(-3) \mu \mathrm{m}$, with $1-4$ apical conidiogenous loci, almost flat or protuberant, thickened, darkened and refractive. Conidia hyaline, thin-walled, smooth to slightly verruculose, catenate, with hila thickened, darkened and refractive. Ramoconidia subcylindrical to clavate, ($8-) 12-14.5(-22) \times 3-4 \mu \mathrm{~m}, 0-1$-septate, with two apical hila. Intercalary conidia subcylindrical, sometimes curved, ovoid, $0-1$-septate, (8.5-)10.5-12.5(-20) $\times(2.5-) 3(-4) \mu \mathrm{m}$, in branched chains of up to eight conidia. Terminal conidia subcylindrical to obovoid, aseptate, $(3.5-) 6.5-8(-11) \times(2-) 3(-5) \mu \mathrm{m}($ on SNA).

Fig. 38. Ramularia beticola (CBS 141109). A. Observations from herbarium material. B-H. Structures formed in culture. A. Leaf spot symptoms on the host. B, G, H. Conidiophores and conidiogenous cells. C, D, I. Conidiophores, conidiogenous cells and conidia. E, F. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Culture characteristics: On MEA, 13 mm diam, surface irregular, raised, smooth, white, with margins crenate feathery and olivaceous green, colony reverse olivaceous green; on OA, 14 mm diam, surface flat, smooth, with sparse aerial mycelium white with olivaceous green patches, with margin irregular, with sparse aerial mycelium, colony reverse iron-grey; on PDA, 13 mm diam, surface flat, smooth, with white to pale olivaceous grey patches, margins undulate, colony reverse olivaceous grey.

Description in vivo: See Braun (1998: 136).
Specimens examined: Denmark, Holeby, on leaf spot on Beta vulgaris, 2011, A.L. Hansen, culture CPC 30065; Jungshoved, on leaf spot on Beta vulgaris, 2011, A.L. Hansen, culture CPC 30653. France, Dumont, on Beta vulgaris L., 1896, Fautrey [Roum., Fungi Sel. Exs. 7261; lectotype, designated in Braun (1998), PC]; Fresney-l'Évêque, on leaf spot on Beta vulgaris, 2011, A. Champeil, epitype designated here CBS H-22519, MBT204830, culture CBS 141109 = CPC 30066). Germany, Bonn, on unknown host, unknown collector and date, isol. and dep. H.A. Diddens, Jan. 1929, culture CBS 341.29. Netherlands, Groningen, leaf spot on Beta vulgaris, 2011, S.I.R. Videira, culture CPC 30067; Steenbergen, leaf spot on Beta vulgaris, 2011, S.I.R. Videira, cultures CPC 30063, CPC 30064. Switzerland, Nyon, on Beta vulgaris, unknown collector and date, isol. B. Lieberherr, dep. R. Corbaz, Feb. 1967, culture CBS 151.67.

Substrate and distribution: On Beta (Chenopodiaceae); Asia, Europe, North America.

Notes: Ramularia beticola (Fig. 38) is the causal organism of Ramularia leaf spot disease in sugar beet, table beet and fodder beet. The fungus forms pale brown leaf spots and affected leaves turn yellow, become necrotic and die. The impact of Ramularia leaf spot disease can vary significantly from season to season. Conditions of high humidity, moderate temperature $\left(17-20^{\circ} \mathrm{C}\right)$, high plant density and sulphur deficiency usually increase disease intensity and damage. It has been reported from North America (Oregon, Washington, California and Colorado), Europe (Ireland, UK, the Scandinavian countries, Belgium, France, Germany) and Russia (Harveson et al. 2009). Worldwide, yield losses in sugar beet due to plant pathogens and pests are estimated in general to be 26% with, and more than 80% without crop protection (Oerke \& Dehne 2004). In the Netherlands, in spite of crop protection measures, the yield losses due to pests and diseases for top growers were 37.1 and 16.7% on sandy and clay soils respectively (Hanse et al. 2011). When treatments are applied timely, programmes of disease control in Denmark increased sugar yield by 10%. Thus far, R. beticola has not shown signs of developing resistance to either strobilurin or triazol fungicides, but it remains important to apply fungicides efficiently by following monitoring programmes and respecting the recommended thresholds (www.FRAC.info) (Thach et al. 2013). Ramularia beticola was described on Beta vulgaris from France in 1896. The strains used in this study clustered together in a single and highly supported clade (Fig. 2, clade 52, 1/100/100).

Ramularia bosniaca Bubák, Österr. Bot. Z. 53: 49. 1903. Fig. 39.
= Ramularia scabiosae Rostr. ex Lind, Danish Fungi: 511. 1913.
= Ramularia scabiosae Jaap, Ann. Mycol. 15: 122. 1917.
Mycelium consisting of hyaline, septate, branched, smooth, $1-3 \mu \mathrm{~m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, 1-2(-4)-septate, straight to geniculate-sinuous, cylindrical-

Fig. 39. Ramularia bosniaca (CBS 123880). A-H. Structures formed in culture. A, F. Conidia. B, G. Conidiophores. C, D, E, H. Conidiophores and conidia. Scale bars $=10 \mu \mathrm{~m}$.
oblong, unbranched, $(20-) 41-60(-119) \times 2-2.5(-3) \mu \mathrm{m}$ or reduced to conidiogenous cells. Conidiogenous cells integrated in mycelium or terminal in conidiophores, cylindrical-oblong and narrower at the top, geniculate-sinuous, (14-)19-23(-35) $\times 2-2.5(-3) \mu \mathrm{m}$, with nidiogenous loci, almost flat or protuberant, thickened, darkened and refractive. Conidia hyaline, thinwalled, smooth, solitary or catenate, aseptate, with hila thickened, darkened and refractive. Ramoconidia subcylindrical to ovoid, $(7.5-) 10-11(-14) \times(3-) 4-4.5(-5) \mu \mathrm{m}$, with two apical hila. Intercalary conidia ovoid, $0-1$-septate, (8-)9.5-0.5(-13) $\times(3-) 4-5(-7) \mu \mathrm{m}$, in branched chains of up to four conidia. Terminal conidia obovoid, (5-)7-8(-10) $\times(2.5-) 4(-5) \mu \mathrm{m}$ (on SNA).

Culture characteristics: On MEA, 13 mm diam, surface irregular, raised, smooth, white, with margins crenate, feathery and olivaceous green, colony reverse olivaceous green; on OA, 14 mm diam, surface flat, smooth, with sparse aerial mycelium white with olivaceous green patches, with margin irregular, with sparse aerial mycelium, colony reverse iron-grey; on PDA, 13 mm diam, surface flat, smooth, with white with pale olivaceous grey patches, margins undulate, colony reverse olivaceous grey.

Description in vivo: See Braun (1998: 143).
Specimen examined: Czech Republic, Moravia, Pavlov, forest around the ruin, leaf spot on Scabiosa ochroleuca, 18 Nov. 2008, G. Verkley, cultures CBS 123880, CBS 123881.

Substrate and distribution: On Scabiosa (Dipsacaceae); Central Asia, Caucasus, Europe.
Notes: Ramularia bosniaca was originally described on the host Scabiosa columbaria in Bosnia
(holotype BPI 416442 [the neotype designated in Braun (1998), BPI 416443, is obsolete since holotype material has been traced in BPI]) and is the only species of Ramularia known to infect Scabiosa (Braun 1998). Ramularia bosniaca has been reported from several European countries but this is the first time it is reported from the Czech Republic. The description of these collections fit that of R. bosniaca (Braun 1998), except that conidia were shorter than 28 $\mu \mathrm{m}$ (Fig. 39). Additional collections from Montenegro may well reveal the strains from the Czech Republic to represent a new species. The phylogenetic analysis provides good support to this species clade (Fig. 2, clade 60, 1/100/100).

Ramularia buniadis Vestergr., Jahreskat. Wiener Kryptog. Tauschanst.: 4. 1897.

Specimens examined: Sweden, Uppsala, Skottsbacke, X. 1897 [Vestergr., Micromyc. Rar. Sel. Praec. Scad. 73; lectotype, designated in Braun (1998), S-F57272]. Sweden, Uppland, Haga, Årtopet, on Bunias orientalis, 16 Sep. 1988, E. Gunnerbeck, culture CBS $114301=$ UPSC 2718.

Substrate and distribution: On Bunias orientalis (Brassicaceae); Caucasus, Europe.
Notes: This species was described on Bunias orientalis collected in Sweden (lectotype in S). Ramularia buniadis (among other names) was synonymised with R. armoraciae, but since R. armoraciae clusters in clade 55 (Fig. 2), the name R. buniadis is again resurrected for this isolate (Fig. 2, clade 48). Although this isolate could be considered a good representative for epitypification, it is sterile in culture and no herbarium material of the CBS isolate was preserved.

Ramularia calcea Ces., in Rabenhorst, Klotzschii Herb. Viv. Mycol., Ed. 1, Cent. 17: no. 1681, Dresden 1852, emend. U. Braun (1998). Fig. 40.
= Hormodendrum farinosum Bonord., Bot. Zeitung 19: 196. 1861.
= Ovularia symphyti-cordati SVavul. \& Sandu, Hedwigia 73: 107. 1933.
= Ramularia trachystemonis Siemaszko, Mat. Mikol. Fitopatol. Ross., I, 3: 39. 1915.
= Ramularia noneae Lobik, Bolez. Rast. 17: 190. 1928.
For additional synonyms see Braun (1998).

Mycelium consisting of hyaline, septate, branched, smooth, $0.5-1.5 \mu \mathrm{~m}$ diam hyphae. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, thin-walled, smooth, intermediate in the mycelium, cylindrical-oblong, (5.5-)10.5-13(-17) $\times 1-1.5(-2)$ $\mu \mathrm{m}$, with one or two conidiogenous loci, almost flat to protuberant, thickened, darkened and refractive, $1 \mu \mathrm{~m}$ diam. Conidia hyaline, thin-walled, smooth, catenate, with hila thickened, darkened and refractive. Ramoconidia cylindrical-oblong to oval, (7-)9.5-12(-23) \times (1.5-)2(-2.5) $\mu \mathrm{m}, 0-1$-septate, with 2-4 apical hila. Intercalary conidia cylindrical-oblong, ellipsoid or fusoid, aseptate, $(4.5-) 7-8(-11) \times(1.5-) 2(-2.5) \mu \mathrm{m}$, in branched chains of up to seven conidia. Terminal conidia obovoid, aseptate, (3-)4-4.5(-6) $\times(1-) 1.5-2 \mu \mathrm{~m}$ (on SNA, CBS 101613).

Culture characteristics: On MEA, 17 mm diam, surface raised, folded, erumpent aerial mycelium, vinaceous-buff, with margins lobate, convex, feathery, colony reverse brownvinaceous and fawn margin; on OA, 15 mm diam, surface raised, folded, erumpent aerial mycelium, vinaceous-buff, with margins undulate, rosy-vinaceous and no aerial mycelium,

Fig. 40. Ramularia calcea (CBS 101613). A-I. Structures formed in culture. A, E, I. Conidia. B, F. Conidiophore reduced to conidiogenous cell. C, D, G, H. Conidiophore and conidia. Leaf spot symptoms on the host. Scale bars $=10 \mu \mathrm{~m}$.
colony surrounded by a 0.5 cm discoloured halo, colony reverse vinaceous; on PDA, 14 mm diam, surface greyish lilac, erumpent, convex, with margins pale vinaceous, undulate, colony surrounded by pale vinaceous pigment diffusing into the media, colony reverse vinaceous.

Description in vivo: See Braun (1998: 112).
Specimens examined: Germany, Thüringen, Weimar, brown leaf spot on Symphytum sp., 1999, G. Arnold, cultures CBS 101612, CBS 101613. Italy, Vercellis, 1851, Cesatis [Rabenh., Klotzschii Herb. Viv. Mycol. 1681; lectotype, designated in Braun (1998), HAL]. Sweden, Uppland, Vassunda, on Viola hirta, 11 Sep. 1988, E. Gunnerbeck, culture CBS 114442.

Substrate and distribution: On Nonea, Symphytum, and Trachystemon spp. (Boraginaceae); Asia, Caucasus, Europe.

Notes: Ramularia calcea is a species with a wide distribution within Europe that was originally described on Symphytum officinale from Italy. Morphologically, the strains in this clade have conidiophores reduced to conidiogenous cells and narrower conidia (Fig. 40) than the in vivo description of R. calcea found in literature (Braun 1998), in which the conidiophores are small and sometimes deeply forked $[10-80 \times(2-) 3-6(-7) \mu \mathrm{m}]$, and conidia are wider [(5-)8-24($26.5) \times(2.5-) 3-7(-8) \mu \mathrm{m}]$. Unfortunately, the herbarium specimen from which the culture was retrieved was not preserved which made it impossible to assess the morphological characters of this species on host tissue. The clade formed by these two strains is highly supported by the phylogenetic analysis (Fig. 2, clade 42). Strain CBS 299.49 (Fig. 2, clade 36) is also under the name R. calcea in the CBS database, but since this is sterile it will be treated as Ramularia sp. C.

Therefore, the correct phylogenetic placement of this species remains unresolved until material from the type host and location is recollected. Ramularia calcea has been reported on Symphytum officinale in both Germany and the Netherlands, among other countries. The morphological characteristics of CBS 114442 are identical to CBS 102612 and 102613, therefore, until more collections become available, these strains will be treated as R. calcea here.

Ramularia carneola (Sacc.) Nannf., in Lundell \& Nannf., Fungi Exs. Suec., Fasc. XXXIXLX, Sched.: 25. 1950.
Basionym: Ovularia carneola Sacc., Fungi ital. Del., Tab. 975. 1881.
= Ovularia duplex Sacc., Fungi ital. Del., Tab. 876. 1881.
= Ramularia scrophulariae Fautery \& Roum., Revue Mycol. (Toulouse): 81. 1891.
$=$ R. nicolai Bubák, Sitzungsber. Königl. Böhm. Ges. Wiss. Prag: 19. 1903.
$=$ R. borghettiana C. Massal., Malpighia 25: 14. 1912.
$=$ R. nodosa Tho, Novosti Sist. Nizsh. Rast. 9: 204. 1972.
Description in vivo: See Braun (1998: 264).
Specimens examined: France, Rouen, on Scrophularia nodosa, Letendre, herb. Saccardo (holotype PAD). Netherlands, Utrecht Prov., Baarn, de Hooge Vuursche, leaf spot on Scrophularia nodosa, 22 Jun. 2000, G. Verkley, cultures CBS 108975-108978; Goedereede, Kwade Hoek nature reserve parking, leaf spot on Scrophularia nodosa, 13 Sep. 2001, G. Verkley, culture CBS 109847.

Substrate and distribution: On Scrophularia (Scrophulariaceae); Asia, Caucasus, Armenia, Europe, N. America.

Notes: Ramularia carneola is a pathogen of Scrophularia spp. that are commonly known as figworts. It was first described on Scrophularia nodosa from France (holotype in PAD). Although R. carneola has a broad geographical distribution, this is the first record for the Netherlands. The strains of this species cluster together in a clade highly supported by the BA and ML phylogenetic analyses (Fig. 2, clade 49, 1/100).

Ramularia cerastiicola (Crous) Videira \& Crous, comb. nov. MycoBank MB816933. Basionym: Mycosphaerella cerastiicola Crous, IMA Fungus 2: 55. 2011.

Specimen examined: Netherlands, Flevoland, on Cerastium semidecandrum, 2 May 2004, A. Aptroot (holotype CBS H-20549, culture ex-type CBS 115913 = CPC 11290).

Notes: When this species was initially described, both the ITS and LSU sequences placed it within the genus Ramularia but the cryptic nature of the asexual morph, with its septoria- to pseudocercosporella-like morphology, baffled the researchers (Crous et al. 2011c). Based on all three phylogenetic analyses performed on the five-gene alignment, this species forms a single lineage (Fig. 2, clade 14) closely related to Ramularia stellariicola.

Ramularia chamaedryos (Lindr.) Gunnerb., Svensk Bot. Tidskr. 61: 135. 1967. Fig. 41.
Basionym: Ovularia chamaedryos Lindr., Acta Soc. Fauna Fl. Fenn. 23: 7. 1902.
= ? Ramularia veronicae Fuckel, Jahrb. Nassauischen Vereins Naturk. 23-24: 361. 1869. (1870)

Fig. 41. Ramularia chamaedryos (CBS 116577). A-G. Conidiophores, conidiogenous cells and conidia formed in culture. Scale bars $=10 \mu \mathrm{~m}$.
\equiv Ovularia veronicae (Fuckel) Sacc., Fungi ital. Del., t. 974. 1881.
$=$?Ramularia beccabungae Fautrey, Revue Mycol. (Toulouse) 14: 10. 1892.
Mycelium consisting of hyaline, septate, branched, smooth, $1-2 \mu \mathrm{~m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, septate, straight, cylindrical-oblong, unbranched, (24.5) $60-92(-230) \times 1.5-2(-3) \mu \mathrm{m}$ or reduced to conidiogenous cells. Conidiogenous cells integrated in mycelium or terminal in conidiophores, cylindrical-oblong, geniculate-sinuous, (14-)20-26(-44) $\times 2-3 \mu \mathrm{~m}$, with 1-4 apical conidiogenous loci, almost flat or protuberant, thickened, darkened and refractive. Conidia hyaline, thin-walled, smooth, aseptate, catenate, with hila thickened, darkened and refractive. Ramoconidia subcylindrical, clavate, ovoid, (9.5) $15-19(-31.5) \times(3-) 3.5-4(-5) \mu \mathrm{m}$, with two apical hila. Intercalary conidia subcylindrical, fusoid, ovoid, (9-) $11-13(-22) \times(3-) 3.5-4(-4.5) \mu \mathrm{m}$, in branched chains of up to five conidia. Terminal conidia obovoid, (6.5-)8-9(-11) $\times(3.5-) 4(-5) \mu \mathrm{m}$ (on SNA, CBS 116577).

Culture characteristics: On MEA, 8 mm diam, surface smooth, smoke-grey, with margins undulate, feathery and olivaceous grey, colony reverse olivaceous grey; on OA, 10 mm diam. Surface smooth, with fuffy aerial mycelium, light grey with olivaceous green patches, with margin irregular, with sparse aerial mycelium, colony reverse iron-grey; on PDA, 9 mm diam, surface smooth, buff to smoke-grey, margins crenate, colony reverse olivaceous.

Description in vivo: See Braun (1998: 258).
Specimens examined: Latvia, Vidzeme, on Veronica chamaedrys, 1936, Smarods [neotype, designated in Braun (1998), JE]. Sweden, Uppland, Uppsala Näs parish, Vängelstra, on Veronica chamaedrys, 29 Sep. 1986, E. Gunnerbeck, culture CBS 116577. New Zealand, Auckland, St.

Johns, on Veronica persica, unknown collector and date, isol. C.F. Hill, Oct. 2005, dep. C.F. Hill, culture CBS 118794. South Korea, Samcheok, on Veronica didyma, 8 May 2003, H.D. Shin, KUS-F19441, culture CBS 113307; Taean, on Veronica persica, 17 Apr. 2007, H.D. Shin \& M.J. Park, KUS-F22542, culture CBS 131773 = KACC 42885. Sweden, Uppland, Knivsta, on Veronica anagallis-aquatica, 22 Sep. 1989, E. Gunnerbeck, culture CBS 114731.

Substrate and distribution: On Veronica (Scrophulariaceae); Europe, Korea, New Zealand.
Notes: The description of CBS 116577 fits the morphology of R. chamaedryos. Ramularia veronicae and R. beccabungae are similar, but differ in vivo in having septate conidia. Ramularia chamaedryos is only known from Veronica chamaedryos (Scrophulariaceae) and was originally described from Finland [type not preserved, neotype designated in Braun (1998), in JE]. Ramularia veronicae is known from several Veronica spp. worldwide with the exception of Australia and Antartica. Ramularia beccabungae has been described from several Veronica spp. in Europe and Asia. Some Ramularia species have been shown to be plurivorous while others can be seen as host specific. Phylogeny based on five partial gene sequences places sequences retrieved from Ramularia on Veronica chamaedrys (as ?R. chamaedryos), V. persica (as ?R. veronicae, but not the type host) and V. anagallis-aquatica (as ?R. beccabungae) in the same clade (Fig. 2, clade 61, 1/100/100), suggesting that a single species is involved. However, this assumption is still vague and unproven since the description of the sporulation in vitro is only based on a culture of R. chamaedryos on Veronica chamaedrys (Fig. 41). Sporulating cultures of R. veronicae and R. beccabungae based on isolations from the type hosts are necessary for comparison and to evaluate and explain possible differences in the conidial septation between in vivo and in vitro material. Therefore, a final taxonomic conclusion is not yet possible.

Ramularia chelidonii (Jacz.) Karak., Fungi Imperfecti Parasitici. I. Hyphomycetes: 123. 1937. Basionym: Didymaria chelidonii Jacz., Fungi Ross. Exs. 349. 1899.
= Ramularia hylomeconis Naumov, Bull. Trimestriel Soc. Mycol. France 30: 80. 1914.
Description in vivo: See Braun (1998: 197).
Specimens examined: Russia, Far East, Amur, near Radde Station, on Hylomecon japonica (\equiv Chelidonium japonicum), 28 May/9 Jun. 1895, Komarov [Jacz. et al., Fungi Ross. Exs. 349; lectotype, designated in Braun (1998), LE 40741]. South Korea, Hongcheon, on Hylomecon vernalis, 6 Jun. 2005, H.D. Shin, KUS-F21198, cultures CPC 12208, CPC 12209; Yangpyeong, on Hylomecon vernalis, 4 Jun. 2003, H.D. Shin, KUS-F19550, culture CBS 113317.

Substrate and distribution: On Chelidonium and Hylomecon (Papaveraceae); Asia, Caucasus, Europe (Ukraine).

Notes: Ramularia chelidonii was originally described on Chelidonium japonicum from Russia (lectotype in LE). The strains of R. chelidonii used in this study cluster in a highly supported clade (Fig. 2, clade 71, 1/100/100). This is the first report of this species from South Korea and on Hylomecon.

Ramularia coleosporii Sacc., Michelia 2(6): 170. 1880.
\equiv Cylindrosporium coleosporii (Sacc.) J. Schröt., Krypt.-Fl. Schlesien, Pilze, 3.2(4): 493. 1897.
= Ramularia clerodendri Sawada, Rep. Dept. Agric. Gov. Res. Inst. Formosa 87: 71. 1944, nom. inval.
$=$ R. fagarae Sawada, Rep. Dept. Agric. Gov. Res. Inst. Formosa 87: 72. 1944, nom. inval.
Description in vivo: See Braun (1998: 39).
Specimens examined: France, Lyon, on Coleosporium melampyri on Melampyrum nemorosum, Sep. 1879, Therry [Thüm., Mycoth. Univ. 1566; lectotype, designated in Braun (1998), HAL]. South Korea, Hongcheon, on Coleosporium horianum on Codonopsis lanceolata, 9 Oct. 2007, H.D. Shin \& M.J. Park, culture CBS $131757=$ KACC 43185; same location, date and collectors, on Coleosporium eupatorii on Eupatorium lindleyanum, culture CBS $131764=$ KACC 43182; Incheon, on Coleosporium sp. on Solidago gigantea, 24 Sep. 2009, H.D. Shin \& M.J. Park, culture CBS 131762 = KACC 44860; Inje, on Coleosporium asterum on Aster pilosus, 3 Oct. 2008, H.D. Shin \& M.J. Park, culture CBS $131755=$ KACC 43977; Jinju, on Coleosporium horianum on Codonopsis lanceolata, 13 Oct. 2008, H.D. Shin \& M.J. Park, culture CBS 131759 = KACC 44073; Jecheon, on Coleosporium clematidis-apiifoliae on Clematis apiifolia, 19 Oct. 2007, H.D. Shin \& M.J. Park, culture CBS 131756 = KACC 43200; Namyangju, on Coleosporium perillae on Perilla frutescens var. japonica, 21 Aug. 2006, H.D. Shin \& M.J. Park, culture CBS 131753 = KACC 42483; Pocheon, on Coleosporium asterum on Aster pilosus, 22 Sep. 2006, H.D. Shin \& M.J. Park, culture CBS 131765 = KACC 42635; Pocheon, on Coleosporium eupatorii on Eupatorium japonicum, 2 Sep. 2003, H.D. Shin, culture CPC 10669; Pocheon, on Coleosporium eupatorii on Eupatorium japonicum, 20 Aug. 2006, H.D. Shin \& M.J. Park, culture CBS 131763 = KACC 42484; Pocheon, on Aster ageratoides, 23 Oct. 2002, H.D. Shin, culture CPC 10085; Pyeongchang, on Coleosporium clematidis-apiifoliae on Clematis apiifolia, 20 Sep. 2003, H.D. Shin, cultures CPC 10731-10733; Pyeongchang, on Pileolaria shiraiana on Rhus trichocarpa, 22 Sep. 2008, H.D. Shin \& M.J. Park, culture CBS 131767 = KACC 44053; Pyeongchang, on Coleosporium eupatorii on Eupatorium lindleyanum, 20 Sep. 2003, H.D. Shin, cultures CPC 10746-10748; Pyeongchang, on Coleosporium cacaliae on Syneilesis palmata, 14 Sep. 2009, H.D. Shin \& M.J. Park, culture CBS 131758 = KACC 44854; same location, date and collectors, on Coleosporium saussureae on Saussurea pulchella, culture CBS 131761 $=$ KACC 44855; Seoul, on Coleosporium clerodendri on Clerodendron trichotomum, 2 Sep. 2007, H.D. Shin \& M.J. Park, culture CBS 131766 = KACC 43058; Suwon, on Coleosporium asterum on Aster pilosus, 1 Oct. 2007, H.D. Shin \& M.J. Park, culture CBS 131754 = KACC 43177; Ulleung, on Coleosporium horianum on Codonopsis lanceolata, 21 Oct. 2008, H.D. Shin \& M.J. Park, culture CBS $131760=$ KACC 44081; Pocheon, on Coleosporium eupatorii on Eupatorium japonicum, 2 Sep. 2003, H.D. Shin, culture CPC 10653; Pyeongchang, on Coleosporium phellodendri on Phellodendron amurense, 4 Sep. 2003, H.D. Shin, cultures CPC 10672, CPC 10673; Hoengseong, on Coleosporium plectranthi on Plectranthus japonicus, 21 Aug. 2004, H.D. Shin, culture CPC 11516.

Substrate and distribution: Mycophilic on Chrysomyxa, Coleosporium (Coleosporiaceae, Pucciniales), Pileolaria (Pileolariaceae, Pucciniales); Asia, Europe, N. America (USA), West Indies (Puerto Rico).

Notes: Only six species of Ramularia have been classified as mycophilic (R. butomi, R. coleosporii, R. cylindriopsis, R. dichosciadii, R. uredinearum, and R. uredines). Ķirulis (1942) stated that R. coleosporii does not parasitise Coleosporium directly but that it is confined to the
weakened tissue around the sori and that it is unrelated to other foliicolous species on the same hosts. Braun (1998) hypothesised that R. coleosporii could be a separate species or a collective species composed of various races since on some hosts there are morphologically similar phytopathogenic species and in other hosts this species was morphologically distinguishable from other phytopathogenic species. Ramularia coleosporii was originally described parasitising Coleosporium melampyri on Melampyrum nemorosum from France (lectotype in HAL). All the strains of R. coleosporii used in this study cluster together in the same clade (Fig. 2, clade 66, $1 / 100 / 100$) and are clearly separated from the other Ramularia spp., supporting the hypothesis that this is indeed a unique species. They were, however, all collected from South Korea, and a few isolates from other countries should be analysed to determine if it is a global species. It was the first time that this species was observed in association with the host Pileoaria shiraiana. To determine if R. coleosporii is truly mycophilic more studies need to be done to understand the biology and ecology of this species.

Ramularia collo-cygni B. Sutton \& J.M. Waller, Trans. Brit. Mycol. Soc. 90: 57. 1988.
\equiv Ophiocladium hordei Cav., Z. Pflanzenkr. 3: 26. 1893.
\equiv Ovularia hordei (Cav.) R. Sprague, Mycologia 38: 63. 1946.
\equiv Ramularia hordeicola U. Braun, Int. J. Mycol. Lichenol. 3 (2-3): 281. 1988.
For additional synonyms see Braun (1998) or MycoBank.
Description in vivo: See Braun (1998: 202).
Specimens examined: Austria, Reichersberg am Inn, on Hordeum vulgare, unknown date, Züchtungsfirma Saatbau Linz (neotype designated here: CBS H-22641, MBT371836, culture ex-neotype CBS 101180). Germany, Bavaria, Aspachhof, Uffenheim, on Hordeum vulgare, 1998, E. Sachs, CBS H-17711, cultures CBS 101181, CBS 101182. Norway, Central Norway, on Hordeum vulgare, unknown date, S. Salamati, cultures CBS $119439=$ CPC 12693, CBS $119440=$ CPC 12692, CBS $119441=$ CPC 12690, CBS $119442=$ CPC 12688.

Substrate and distribution: On Bromus, Festuca, Glyceria, Leucopoa, Lolium, Phalaris, and Triticale (Poaceae) and Cannabis (Cannabaceae); Europe, N. America (Canada, Mexico, USA), S. America (Chile, Colombia), Asia (Japan, Russia), Australia and New Zealand.

Notes: Ramularia collo-cygni was originally isolated from the host Hordeum vulgare collected in Italy, but the type specimen is presumed missing (Braun 1998). The strains used in this study cluster together in a highly supported clade (Fig. 2, clade 38, 1/100/100) and a strain isolated from the same host that was collected in Austria is designated as neotype. Ramularia collocygni is the causal agent of Ramularia leaf spot disease on barley, a disease that has been known for more than 100 years but of which the importance has only been recognised in the last 30 years. The disease has been reported worldwide and on various cereals and grasses. On barley, the symptoms appear late in the season as reddish brown necrotic spots that lead to premature leaf senescence and subsequent grain yield loss. Environmental conditions such as temperature and humidity are key factors in activating the production of rubellin, a non-host specific toxin, by the fungus. The development of molecular diagnostic tools has improved the detection of the pathogen in plant tissue and seeds before symptom development. Vertical transmission of the fungus in barley has been confirmed (Havis et al. 2015) and further evidence points to the existence of an endophytic life-style that shifts towards necrotrophy depending on plant
health. Population studies using simple-sequence repeat markers and sequence analyses of housekeeping genes revealed a high genetic diversity in R. collo-cygni isolates (Piotrowska 2014, Havis et al. 2015). A high level of genotypic diversity is usually indicative of sexual recombination, but the sexual morph of R. collo-cygni is yet to be identified. Control of the disease can be accomplished by timely fungicide application between the Zadoks growth stages (ZGS) 30 and ZGS 49, well before the symptoms develop that usually happens at stage ZGS 70. Ramularia collo-cygni has lost sensitivity to strobilurin-based fungicides due to the development of the G143A point mutation in the cytochrome b gene, which is now prevalent in most populations. The introduction of a new generation of SDHI fungicide has brought some leverage in disease control, but the rapid evolutionary potential displayed by this fungus suggests it can adapt to new control strategies quickly. Despite all the research performed so far several questions still need to be addressed to fully understand the biology of this species in order to develop appropriate control measures (Havis et al. 2015). Ramularia collo-cygni also causes Tan Leaf Spot on turfgrass. Turfgrasses are used to control water and wind erosion of soil, and are used as ornamental plants and as ground cover of playing fields in many sports. The disease has been reported from Australia, Japan, New Zealand and North America (Smiley et al. 1983).

Ramularia coryli Chevassut, in Braun, Monograph Cercosporella, Ramularia Allied Genera (Phytopath. Hyphom.) 2: 140. 1998.

Description in vivo: See Braun (1998: 140).
Specimen examined: Netherlands, Utrecht, Rhijnauwen, on dead leaves of Corylus avellana, G. Verkley, 25 Apr. 2005, culture CBS $117800=$ CPC 12090.

Substrate and distribution: On Corylus avellana; Europe (France, Netherlands).
Notes: Ramularia coryli was originally described on Coryllus avellana from France, and is currently the only Ramularia species known to infect this host (Braun 1998). The strain used in this study forms a single lineage (Fig. 2, clade 83), and is positioned on a very long branch, which supports this species as unique. Unfortunately, this strain proved to be sterile, and thus we could not compare it morphologically. This clade is for now maintained as representative of R. coryli until fresh material is collected and more information becomes available.

Ramularia cupulariae Pass., Hedwigia 15: 107. 1876.
= Ovularia inulae Sacc., Fungi ital., Tab. 971. 1881.
\equiv Ramularia inulae (Sacc.) Höhn., in Kab. \& Bub., Fungi Imperf. Exs. no. 389. 1906.
= Ovularia inulae f. major Brunaud, Actes Soc. Linn. Bordeaux 1890: 46. 1890.
= Ramularia inulae-britannicae Allesch., in Jaap, Abh. Bot. Ver. Prov. Brandenb. 47: 98. 1905.
$=$ R. codonocephali Annaliev, Novosti Sist. Nizsh. Rast. 15: 74. 1978.

Description in vivo: See Braun (1998: 81).
Specimens examined: Former Czechoslovakia, on Inula sp., unknown date, L. Marvanová, culture CBS 235.73. Italy, Vigheffio near Parma, Oct. 1874, Passerini [Rahenh., Fungi Eur. Exs. 2065; lectotype, designated in Braun (1998), HAL].

Substrate and distribution: On Carpesium, Codonocephalum, Inula, and Pulicaria (Asteraceae); Asia, Caucasus, Europe.

Notes: Two varieties are known for this species, R. cupulariae var. cupulariae (lectotype on Inula viscosa, Italy, in HAL) and R. cupulariae var. britannicae (holotype on Inula britannica, Germany, in HBG). Specimens of var. britannicae have very long and filiform conidiophores $(20-100 \times 2.5-5 \mu \mathrm{~m})$ when compared to var. cupulariae $(5-30 \times 2-5 \mu \mathrm{~m})$. This species has been reported from four different host genera within the family Asteraceae (Carpesium, Codonocephalum, Inula and Pulicaria) from Asia, Caucasus and Europe. The strain used in this study forms a single lineage (Fig. 2, clade 6).

Ramularia cyclaminicola Trel., Trans. Illinois Acad. Sci. 9: 145. 1916.
= Cladosporium cyclaminis Massey \& Tilford, Phytopathology 22(1): 19. 1932.
Description in vivo: See Braun (1998: 226).
Specimen examined: USA, on stunted Cyclamen persicum, unknown collector and date, isolated and deposited by K.F. Baker, 1951, culture CBS 399.51; Illinois, Urbana, University, north greenhouse, 14 Jan. 1914, Trelease (holotype ILL 14246).

Substrate and distribution: On Cyclamen (Primulaceae); N. America.
Notes: Ramularia cyclaminicola causes both a leaf spot disease and a stunt or wilt through systemic invasion of vascular tissue in Cyclamen persicum. Cyclamen plants, grown for their flowers, were imported into America from Germany and the Netherlands. No disease was reported from these countries and it is likely that R. cyclaminicola is native to North America, perhaps infecting other members of the Primulaceae (Baker et al. 1950). The disease may be confused with a physiological problem or with Fusarium wilt or Phialophora wilt, and was more common in the first half of the $20^{\text {th }}$ century than it is today (Daughtrey et al. 1995). Ramularia cyclaminicola was originally described on Cyclamen persicum from Illinois, USA (holotype in ILL). In the present study, Ramularia cyclaminicola is represented by a single lineage (Fig. 2, clade 18). Strain CBS 399.51 was isolated by Baker and deposited at CBS in 1951, which means this is likely an authentic strain of this species.

Ramularia cynarae Sacc., Michelia 1: 536. 1879.
= R. cardui P. Karst, Meddeland. Soc. Fauna Fl. Fenn. 14: 109. 1888.
= R. cirsii Allesch., Ber. Bayr. Bot. Ges. 2: 18. 1892.
$=$ R. jurineae Holl'os, Ann. Hist.-Nat. Mus. Natl. Hung. 5: 467. 1907.
$=$ R. carthami Zaprom., Bolez. Rast. 15(3): 142. 1926, and Mater. Mikofl. Sredn. Azii I: 32. 1926.

For additional synonyms see Braun (1998) or MycoBank.
Description in vivo: See Braun (1998: 101).
Specimens examined: France, Saintes, Brunaud, herb. Saccardo (holotype PAD). Netherlands, Gelderland Prov., Hoge Veluwe Nat. Park, on Carduus sp., 2012, S.I.R. Videira culture CPC

25897; Nijmegen, on Carex acutiformis, Jul. 2012, S.I.R. Videira, culture CPC 25896. Sweden, Uppland, Haga, Årtopet, on Cirsium arvense, 4 Oct. 1989, E. Gunnerbeck, culture CBS 114728; Uppland, Dalby, on leaves of Carduus crispus, 29 Aug. 1989, E. Gunnerbeck, culture CBS 114729. USA, California, Monterey County, Castrovill, on leaves of Cynara cardunculus, 10 Aug. 2010, S.T. Koike (epitype CBS H-20514, culture ex-epitype CBS 128912 = CPC 18426); idem. CPC 18427; California Santa Clara County, Morgan Hill, on leaves of Carthamus tinctorius, 19 Oct. 2010, S.T. Koike, cultures CBS 128779 = CPC 18725, CPC 18726.

Substrate and distribution: On Carduus, Carthamus, Cirsium, Cousinia, Cynara, Echinops, Jurinea, Onopordum, Saussurea, and Silybum (Asteraceae); worldwide.

Notes: Ramularia cynarae was originally described on Cynara scolymus from France (holotype in PAD), but the species has a wide host range within the Asteraceae (Braun 1998). This species was epitypified by Koike et al. (2011), who reported the pathogen R. cynarae as the causal agent of leaf spot symptoms on Carthamus tinctorius (spineless safflower) in California, USA. Spineless safflower is grown as commercial cut flower crops in coastal California. The isolates collected from both Cynara and Carthamus were identical in morphology and ITS sequences (GenBank HQ728117, HQ728118). This supports the hypothesis that R. cynarae has a broad host range on Asteraceae hosts instead of being a species complex. Ramularia carthami was previously reported from agronomic safflower grown for oil production in Northern California (Hostert et al. 2006). The ITS sequence of this isolate (DQ466083) is 100% similar to the ITS sequence of the R. cynarae ex-epitype culture (CBS 128912), indicating that these are likely the same species. In this study, strains of R. cynarae clustered in a highly supported clade (Fig. 2, clade 9, 1/100/100). Some internal variation was observed and the transition from concordance to conflict determined the phylogenetic limit of this species (Taylor et al. 2000). This intraspecific variation may be the reason that this species is able to colonise a broad host range or indicate that it is undergoing sexual reproduction, as can be observed with R. vizellae (Videira et al. 2015b).

Ramularia deusta (Fuckel) Karak. var. deusta, Fungi Imperfecti Parasitici. I. Hyphomycetes: 116. 1937.

Basionym: Scolicotrichum deustum Fuckel, Jahrb. Nassauischen Vereins Naturk. 23-24: 357. 1870

Description in vivo: See Braun (1998: 156).
Specimens examined: Germany, near Eberbach, on Lathyrus linifolius [Fuckel, Fungi Rhen. Exs. 2206; lectotype, designated in Braun (1998), HAL]. Guadeloupe, on Lathyrus latifolius, unknown collector and date, dep. K.F. Baker \& W.C. Snyder, Oct. 1950, culture CBS 473.50.

Host and distribution: On Lathyrus (Fabaceae); Asia, Europe, N. and S. America, New Zealand.
Notes: Ramularia deusta is distributed worldwide in temperate and subtropical climates on nine species of Lathyrus, including the cultivated sweet pea (L. odoratus) and perennial pea (L. latifolius). The first pathological study was conducted in England on sweet pea (Dowson 1924), and since then it has been reported from several countries around the world. The economical impact of this disease was considered minor on this crop (Baker et al. 1950). Two physiological
forms were recognised by Baker et al. (1950) from collections in California, R. deusta f. odorati as pathogenic on the host Lathyrus odoratus, and R. deusta f . latifolii as pathogenic on the host L. latifolius. Braun (1998) divided Ramularia deusta into three varieties. Ramularia deusta var. alba (on Lathyrus odoratus, Denmark, holotype in B) has whitish caespituli while R. deusta var. deusta (on Lathyrus linifolius, Germany, lectotype in HAL) has yellowish ochraceous or pink to reddish caespituli. Ramularia deusta var. lathyrimaritimi (on Lathyrus maritimus, Sweden, holotype in BPI) has longer and mostly septate conidia (15-30 $\times 2.5-5 \mu \mathrm{~m}$), while R. deusta var. deusta has shorter and mostly aseptate conidia, (5-)8-20(-23) $\times 2.5-5 \mu \mathrm{~m}$. Although R. deusta f. odorati was synonymised under R. deusta var. alba (Braun 1998), R. deusta f. latifolii does not appear as synonym of any of the other varieties and should, therefore, be considered as a synonym of R. deusta var. deusta. The strain used in this study (CBS 473,50; Fig. 2, clade 62) was previously identified as R. deusta f. latifolii and was deposited by Baker and Snyder in 1950, which makes it an authentic strain and a reliable representative of the species Ramularia deusta var. deusta until fresh material from the same location and host as the type material is recollected.

Ramularia didyma Unger var. didyma, Exanth. Pfl.: 169. 1833.
\equiv Didymaria ungeri Corda, Icon. fung. (Prague) 1:32. 1837.
\equiv D. didyma (Unger) Pond, Amer. Naturalist 23: 163. 1889.
= Fusisporium aequivocum Ces., Bot. Zeitung (Berlin) 15: 43.1857.
\equiv Ramularia aequivoca (Ces.) Sacc., Fungi ital. Del., Tab.: 994. 1881.
= Ramularia ovularioides H.C. Greene, Trans. Wisconsin Acad. Sci. 38: 246.1946 (1947).
For additional synonyms see Braun (1998).
Description in vivo: See Braun (1998: 239).

Specimens examined: Luxembourg, Kantenbach, on leaf spot on Ranunculus repens, unknown collector and date, isol. L. Marvanová, 25 Sep. 1967, dep. L. Marvanová, Oct. 1967, culture CBS 431.67. Sweden, Uppland, Haga par., Årtopet, on Ranunculus repens, 23 Oct. 1988, E. Gunnerbeck, culture CBS 114299 = UPSC 2746. UK, South West England, Exeter, on leaf spot from Ranunculus repens, unknown collector and date, isol. S.A.J. Tarr, 30 Apr. 1967, dep. S.A.J. Tarr, Sep. 1967, culture CBS 420.67.

Substrate and distribution: On Anemone and Ranunculus (Ranunculaceae); Asia, Caucasus, Europe, N. and S. America, New Zealand.

Notes: There are three varieties of this species, namely R. didyma var. didyma [neotype on Ranunculus nemorosus, Switzerland, designated in von Arx (1983), in ZT], R. didyma var. exigua (holotype on Ranunculus uncinatus, USA, Oregon, WSP) and R. didyma var. pulsatillae [neotype on Pulsatilla pratensis, Denmark, designated in Braun (1998), in C]. While R. didyma var. didyma conidiophores emerge through stromata and form catenate conidia, R. didyma var. exigua exhibits conidiophores erumpent through the cuticle, and R. didyma var. pulsatillae frequently forms solitary conidia. Ramularia didyma var. didyma has a wider distribution than the other two varieties (Braun 1998). Ramularia didyma was identified as the causal agent of leaf spotting symptoms on Persian buttercups (Ranunculus asiaticus) in USA, California. These are colourful, cool-season perennials or annuals grown for the flowers and bulbs. Introduction of this pathogen into commercial production fields could cause significant economic loss (Blomquist
\& Warfield 2011). The ITS sequence (GenBank HQ442297) generated at that time is 100% similar to the ITS sequence of the strains in this clade. Based on phylogenetic analyses in this study, this species forms a highly supported clade (Fig. 2, clade 72, 1/100/100). The morphology could not be observed since the cultures were sterile and no herbarium materials corresponding to the strains were preserved. This clade is tentatively maintained as a representative of this species until fresh material from the type host and location is recollected.

Ramularia diervillae Peck, Rep. (Annual) New York State Mus. Nat. Hist. 38: 99. 1885. Fig. 42.
= Ramularia umbrosa Davis, Trans. Brit. Mycol. Soc. 19: 714. 1919.
Mycelium consisting of hyaline, septate, branched, smooth, $1-2 \mu \mathrm{~m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, $1-2$-septate, cylindrical-oblong, straight to sinuous, unbranched, (10-)26.5-35(-54) $\times(1-) 1.5-2(-3) \mu \mathrm{m}$, or reduced to conidiogenous cells, terminal on conidiophores or intermediate in the mycelium, cylindrical-oblong, narrower at the top, $(5.5-) 14.5-19(-29) \times 1.5-2(-3) \mu \mathrm{m}$, with one or two conidiogenous loci almost flat to protuberant; conidiogenous loci thickened, darkened and refractive. Conidia hyaline, thinwalled, smooth, catenate, with hila thickened, darkened and refractive. Ramoconidia cylindricaloblong, sometimes sinuous or curved, (9.5-)14-17(-26.5) $\times(1.5-) 2-2.5(-3) \mu \mathrm{m}, 0-1$-septate, with 2 apical hila. Intercalary conidia cylindrical-oblong, fusoid, sometimes curved, aseptate, $(8-) 11-13(-19.5) \times(1.5-) 2(-3) \mu \mathrm{m}$, in branched chains of up to seven conidia. Terminal conidia cylindrical-oblong to obovoid, aseptate, $(5-) 7-8(-11) \times(1.5-) 2(-2.5) \mu \mathrm{m}$. Sporulating on SNA.

Culture characteristics: On MEA, 11 mm diam, surface raised, folded, with sparse aerial mycelium, smooth, rosy buff, with margins crenate and convex, colony reverse cinnamon with

Fig. 42. Ramularia diervillae (CPC 16859). A-C. Observations from herbarium material. D-I. Structures formed in culture. A. Leaf spot symptoms on the host. B, E. Conidiophores. C, D. Conidia. F-I. Conidiophores and conidia. Scale bars $=10 \mu \mathrm{~m}$.
olivaceous grey patches; on OA, 9 mm diam, surface smooth, low convex, white with pale olivaceous grey tinge, with margins undulate, colony reverse fawn; on PDA, 10 mm diam, surface low convex, pale olivaceous grey, smooth, producing tiny transparent exudate droplets, with margins lobate, colony reverse olivaceous grey with a buff margin.

Description in vivo: See Braun (1998: 130).
Specimens examined: Canada, Quebec, La Peche, Lac Bernard, on Diervilla lonicera, 5 Jul. 2009, K.A. Seifert, cultures CPC 16859, CPC 16860, CPC 16863, CPC 16864. USA, New York, Adirondack Mt., on Diervilla lonicera, Peck (holotype NYS).

Substrate and distribution: On Diervilla (Caprifoliaceae); N. America (Canada, USA).

Notes: Ramularia diervilla was originally described on Diervilla lonicera from New York, USA (holotype in NYS), and is the only species of Ramularia known to infect this host. Although it has been previously reported from North America, this is the first report from Canada. This species formed a highly supported clade (Fig. 2, clade 41, 1/100/100). Braun (1998) reported that when associated with its host, R. diervilla produces simple, straight to geniculate-sinuous conidiophores, $5-25 \times 1.5-3.5 \mu \mathrm{~m}$, and catenate, cylindrical-fusiform conidia, $5-25(-30) \times 1.5-4 \mu \mathrm{~m}$. The conidiophores described in culture are longer and the conidia are slightly narrower than what is described in vivo (Fig. 42). In the herbarium specimen corresponding to the isolate CPC 16859, the conidiophores are shorter than in culture $[(25-) 28-30(-33) \times(1.5-) 2(-3) \mu \mathrm{m}]$ but more similar to the description provided by Braun (1998), while the conidial dimensions [(4-)8-9(-12) $\times(1.5-) 2(-3) \mu \mathrm{m}]$ are smaller than in culture, but still narrower than in Braun (1998). The cultures and specimens represented in this clade are considered here as representative material of the species until collections from the type location are examined.

Ramularia digitalis-ambiguae Arx, Sydowia 3: 93. 1949.
= Mycosphaerella digitalis-ambiguae Arx, Sydowia 3: 92. 1949.
= Asteromella digitalis-ambiguae Arx, Sydowia 3: 94. 1949.
Specimens examined: Luxembourg, Kantenbach, on leaf spot on Digitalis purpurea, unknown collector and date, isol. L. Marvanová, 25 Sep. 1967, dep. L. Marvanová, Oct. 1967, culture CBS 434.67. Netherlands, on Digitalis sp., unknown collector and date, isol. F. Hespe, dep. Jul. 1937, culture ex-type CBS 297.37.

Notes: Although these isolates were originally identified as R. variabilis, the latter species clusters in clade 50 (Fig. 2; 1/100/ 100), in contrast to the Digitalis isolates (Fig. 2, clade $58,1 / 100 / 100$), which clearly represents a different species. Since collections of Ramularia on Digitalis and Verbascum spp. are in vivo morphologically barely distinguishable, Braun (1998) assigned them to a single species, R. variabilis, and reduced Mycosphaerella digitalisambiguae and Ramularia digitalis-ambiguae to synonym under R. variabilis. Although not yet phylogenetically proven, R. digitalis-ambiguae is available for the Digitalis Ramularia and can at least tentatively be used for this taxon until sporulating cultures retrieved from Ramularia lesions on Digitalis ambigua and D. purpurea are available for comparison. The connection of Mycosphaerella digitalis-ambiguae and the two syn-asexual morphs, Ramularia digitalis-
ambiguae and Asteromella digitalis-ambiguae, has only been observed in vivo (Arx 1949), but not yet verified in vitro or by means of molecular methods. Aptroot (2006) referred to the strong morphological similarity between M. digitalis-ambiguae and the saprobic M. subradians (Fr.: Fr.) J. Schröt. Mycosphaerella digitalis (Ferraris) Tomilin (\equiv Sphaerella digitalis Ferraris; Ferraris 1902: 451, and plate X, fig. II), on dry stems of Digitalis lutea, described from North Italy, is quite distinct from M. digitalis-ambiguae, differing in having much larger asci, $60 \times$ $20-21 \mu \mathrm{~m}$, and longer, wider ascospores, $18-10 \times 5-6 \mu \mathrm{~m}$ without constrictions at the septa (vs . asci $32-42 \times 7-9 \mu \mathrm{~m}$, ascospores $11-15 \times 3.5-4.5 \mu \mathrm{~m}$, constricted at the septa in M. digitalisambiguae).

Ramularia endophylla Verkley \& U. Braun, Mycol. Res. 108: 1276. 2004.
= Sphaeria punctiformis Pers., Ann. Bot. (Usteri) 11: 26. 1794, non Ramularia punctiformis Sacc., 1904.
\equiv Mycosphaerella punctiformis (Pers.) Starbäck, Bih. Kong1. Svenska Vetensk.-Akad. Handl., Afd. 3, 15(no. 9): 163. 1889.
For additional synonyms see Verkley et al. (2004).
Specimens examined: Netherlands, Utrecht Prov., Baarn, Groeneveld, on dead leaves of Castanea sativa, 23 Feb. 1999, A. Aptroot, culture CBS 101680; De Stompert, Soest, on fallen leaves of Quercus robur, G. Verkley, culture CBS 113871; same location, on dead fallen leaves of Quercus robur, Apr. 2003, G. Verkley (holotype CBS H-7949, culture ex-epitype CBS 113265, previously Mycosphaerella punctiformis); same location, on green leaf (endophytic) of Quercus robur, unknown collector and date, isol. G. Verkley, Aug. 2002, CBS 115302, CBS 115303; same location, on living leaves (endophytic) of Quercus robur, G. Verkley, CBS 113869.

Substrate and distribution: On Quercus and Castanea (Fagaceae); Europe (Belgium, Netherlands), Asia (South Korea).

Notes: See Verkley et al. (2004) and Videira et al. (2015b). The phylogenetic analyses provide high support for this species clade (Fig. 2, clade 87, 1/100/100). The host range and distribution of this species is insufficiently known and only those of existing strains were considered above.

Ramularia eucalypti Crous, Fungal Diversity 26: 174. 2007.
Specimens examined: Australia, Queensland, Cairns, Kuranda, Karoomba River Walk, on leaves of Eucalyptus sp., 19 Aug. 2006, P.W. Crous, culture CBS 120728 = CPC 13304. Italy, Norcia, on Corymbia grandifolia, 10 May 2006, W. Gams (holotype CBS H-19832, ex-type culture CBS 120726 = CPC 13043). Netherlands, Gelderland, Wageningen, Phragmites sp., 19 Feb. 2011, P.W. Crous, culture CPC 19188.

Substrate and distribution: On Carex (Cyperaceae), Corymbia and Eucalyptus (Myrtaceae), Geranium (Geraniaceae), Malus (Rosaceae), Phragmites (Poaceae), and Pinus spp. (Pinaceae); Australia and Europe.

Notes: See Crous et al. (2007c), Videira et al. (2015a). The phylogenetic analyses provide high support for this species clade (Fig. 2, clade 31, 1/100/100).

Ramularia euonymicola Videira, H.D. Shin, U. Braun \& Crous, sp. nov. MycoBank MB816848. Fig. 43.

Etymology: Named after the host genus from which it was isolated, Euonymus (inhabitant of Euопутия).

In planta: Leaf spots subcircular to irregular, white to ochraceous. Caespituli emerging through stomata, hyaline to buff. Conidiophores hyaline, thin-walled, slightly verruculose, erect, fasciculate, septate, cylindrical-oblong, straight to sinuous, unbranched, (31-)48.5-56($73) \times(2.5-) 3-3.5(-4.5) \mu \mathrm{m}$. Conidiogenous cells hyaline, slightly verruculose, terminal or intermediate in the conidiophore, cylindrical-oblong or geniculate-sinuous, (8-)13-16(-27) \times $2-3(-4.5) \mu \mathrm{m}$, with one or two conidiogenous loci almost flat to protuberant; conidiogenous loci thickened, darkened and refractive. Conidia hyaline, thin-walled, slightly verruculose, solitary or in short chains, rarely branched, cylindrical-oblong to obovate, (1-)3-4-septate, (20.5-)30-$35.5(-51) \times(3-) 3.5-4(-5) \mu \mathrm{m}$ with hila thickened, darkened and refractive.

Specimen examined: South Korea, Hongcheon, on Euonymus alatus, 16 May 2003, H.D. Shin, (holotype KUS-F19467, isotypes HAL 1869 F and CBS H-22520, culture ex-type CBS 113308).

Substrate and distribution: On Euonymus alatus (Celastraceae); Asia (South Korea).
Notes: Presently only Ramularia celastri has been described from Euonymus alatus (USA). It was described as having simple and straight to geniculate-sinuous conidiophores measuring $10-40(-60) \times 1.5-4.5(-5.5) \mu \mathrm{m}$, and catenate conidia that are fusiform to subcylindrical,

Fig. 43. Ramularia euonymicola (CBS 113308). A-I. Observations from herbarium material. A. Leaf spot symptoms on the host. B, C, F, I. Conidiophores and conidiogenous cells. D. Conidiogenous cell and conidia. E, G, H. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
$0-2(-3)$-septate, $8-35 \times 2-4.5 \mu \mathrm{~m}$ (Braun 1998). Ramularia euonymicola was collected in South Korea and differs from R. celastri by producing slightly longer conidiophores and much longer conidia that are often 3-4-septate (Fig. 43). This species is represented by a single lineage in the phylogenetic analyses (Fig. 2, clade 73).

Ramularia gaultheriae Videira \& Crous, sp. nov. MycoBank MB817158. Fig. 44.

Etymology: Named after the host genus from which it was isolated, Gaultheria.
Mycelium hyaline, septate, branched. Conidiophores and conidiogenous cells scarce and insufficient for complete description. Conidia hyaline, smooth to slightly verruculose, catenate, consistently aseptate, ellipsoid-ovoid, subcylindrical, obovoid (4-)5.5-6.5(-11) $\times(1.5-) 2-$ $2.5(-3.5) \mu \mathrm{m}$.

Sterile in culture/in vitro. Ramularia gaultheriae (Fig. 2, clade 88), differs from its closest phylogenetic neighbour, R. endophylla (Fig. 2, clade 87), by unique allelles in five loci based on alignments of the separate loci deposited in TreeBASE as Study S19315: rpb2 positions 3(C), 15(C), 24(G), 33(C), 48(T), 69(C), 78(C), 87(T), 96(T), 99(C), 102(A), 108(G), 138(T), 157(T), 195(C), 196(C), 198(C), 204(C), 219(T), 234(C), 240(A), 249(C), 252(T), 261(A), 291(T), 297(G), 318(A), 324(T), 330(A), 333(C), 336(A), 339(A), 342(T), 345(C), 346(C), 366(C), 369(T), 372(A), 393(A), 402(T), 409(C), 420(C), 429(T), 453(A), 468(C), 471(T), 472(T), 474(C), 475(G), 477(T), 480(C), 483(C), 487(G), 495(C), 498(C), 500(A), 504(A), 511(A), $516(\mathrm{~A}), 522(\mathrm{~T}), 525(\mathrm{~A}), 531(\mathrm{~T}), 537(\mathrm{~A}), 541(\mathrm{~T}), 543(\mathrm{~A}), 549(\mathrm{C}), 552(\mathrm{C}), 555(\mathrm{C}), 558(\mathrm{~T})$, 559(A), 564(C), 570(G), 573(G), 577(A), 578(A), 583(C), 585(A), 606(C), 607(T), 613(G), 614(G), $627(\mathrm{C}), 630(\mathrm{~A}), 639(\mathrm{~T}), 642(\mathrm{C}), 645(\mathrm{~A}), 654(\mathrm{~A})$; ITS positions $33(\mathrm{~T}), 45(\mathrm{~A}), 46(\mathrm{G})$, 48(A), 49(A), 50(T), 76(G), 81(A), 421(C), 422(T), 423(T), 425(A), 427(T), 428 insertion (C), 429(A), 430(A), 431(T), 465(A), 466(A), 478(A), 479(A), 480(A); actA positions 31(T), 34(C), $47(\mathrm{G}), 49(\mathrm{C}), 50(\mathrm{~T}), 62(\mathrm{C}), 63(\mathrm{~T}), 68(\mathrm{C}), 69(\mathrm{~T}), 71(\mathrm{C}), 72(\mathrm{G}), 73(\mathrm{G}), 82(\mathrm{G}), 83(\mathrm{C}), 87(\mathrm{C})$, 88(A), 95(G), 98(T), 101(A), 104(G), 105(C), 107(T), 115(C), 118(A), 138(C), 165(T), 166(A), 168(T), 175(T), 177(T), 178(C), 179(A), 180(T), 182(T), 185(A), 186(C), 187 insertion (T), 209(A), $210(\mathrm{C}), 212(\mathrm{G}), 214(\mathrm{G}), 218(\mathrm{C}), 220(\mathrm{~A}), 245(\mathrm{~A})$; gapdh positions $17(\mathrm{C}), 18(\mathrm{~T}), 19(\mathrm{C})$, 21(T), 54-58 insertion (ATGTG), 59(G), 61(T), 64(G), 65(A), 93(T), 94(G), 99(T), 101(G), 107(A), 108(C), 109(A), 111(A), 119(A), 120(C), 121(A), 122(G), 124(A), 156(C), 158(C), 161(T), 207(C), 208(A), 209(G), 210(C), 212(T), 257(C), 259(T), 263(A), 269(G), 271(A), 272(T), 282(C), 284(T), 287(A), 288(C), 289(C), 290(T), 297(C), 298(A), 301(G), 303(C), 304(C), 308(C), 309(A), 310 insertion (A), 311(T), 312(C), 313(C), 353(T), 389(C), 404(C), 405(A), 411(G), 442(A), 449(A), 461(T), 521(C), 557(C), 566(C), 569(C), 575(T), 587(C), 593(T), 617(T); tefl- α positions $15(\mathrm{C}), 16(\mathrm{~T}), 22(\mathrm{G}), 23(\mathrm{C}), 24(\mathrm{~T}), 25-26$ insertion (CC), 59(T), 69(C), 72(G), 78(C), 95(C), 96(A), 107(G), 183(T), 196(C), 205(C), 223(T), 225(A), 233(T), 243(T), 275(C), 277(A), 284(T), 286(T), 294(G), 296(C), 303-304 insertion (GC), 305(G), 313(A), 315(G), 316(T), 399(C), 401(G), 402(C), 404(G), 405(A), 408(A), 410(G), 412(T), 413 insertion (T), 423(A), 424(A), 425(A), 427(T), 429(T), 430(G), 431(C), 444(C).

Specimen examined: Italy, on healthy leaf of Gaultheria shallon, unknown collector and date, isol. and dep. O. Petrini, May 1980, (holotype CBS H-17765, ex-type culture CBS 299.80).

Substrate and distribution: On Gaultheria shallon (Ericaceae); Europe (Italy).

Fig. 44. Ramularia gaultheriae (CBS 299.80). A-F. Observations from herbarium material. B, D. Conidiophore reduced to conidiogenous cell. C, E, F. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Notes: The strain used in this study forms a single lineage (Fig. 2, clade 88), basal to R. endophylla, and is positioned on a very long branch, which supports this species as unique. No Ramularia species is currently known from Gaultheria. Unfortunately, the culture was sterile and the herbarium material is an old dried culture on which some conidiophores and conidiogenous cells could be observed but were not sufficient to warrant a full description. (Fig. 44), so the molecular differences based on the sequence data are also provided.

Ramularia gei (A.G. Eliasson) Lindr., Acta Soc. Fauna Fl. Fenn. 23: 26. 1902.
Basionym: Ovularia gei A.G. Eliasson, Bih. Kongl. Svenska Vetensk.-Akad. Handl. 22(12): 19. 1897.
\equiv Ramularia gei (A.G. Eliasson) Höhn., Ann. Mycol. 2: 57. 1904, homonym!
$=$ Ramularia gei (Fuckel) Lindau, in Rabenh., Krypt.-Fl., 2. Aufl., 1 Bd., Pilze IX. Abt., Fungi Imperfecti, Hyphomycetes: 766. 1920, homonym!
\equiv Pseudocercospora gei (Fuckel) Y.-L. Guo \& X.-J. Liu, Acta Mycol. Sin.: 344. 1986.
$=$ Acrotheca gei Fuckel, Jahrb. Nassauischen Vereins Naturk. 15: 43. 1860.
For additional synonyms see Braun (1998).
Description in vivo: See Braun (1998: 246).
Specimens examined: Netherlands, Baarn, Loenen, Overholland, on Geum urbanum, 12 Apr. 1969, J.A. von Arx, CBS H-4927, culture CBS 344.49. Sweden, Uppland, Danmark par., Bergsbrunna, on Geum sp., 25 Sep. 1986, E. Gunnerbeck, culture CBS 113977; near Uppsala, on Geum urbanum, 4 Sep. 1895, Eliasson (holotype S-F-58091).

Substrate and distribution: On Geum (Rosaceae); Asia, Caucasus, Europe, Iceland, N. America.
Notes: Ramularia gei was originally described on Geum urbanum from Sweden (holotype in S). The similarities between Acrotheca gei and Ramularia gei were discussed by Hughes (1953b) and those between R. gei and R. submodesta were pointed out by Höhnel (1904). The strains included here form a highly supported clade (Fig. 2, clade 74, 1/100/100), but were sterile in culture and the herbarium specimen is depauperate.

Ramularia geranii Fuckel, Jahrb. Nassauischen Vereins Naturk. 23-24: 361. 1870. Fig. 45.

Fig. 45. Ramularia geranii (CBS 160.24). A-G. Structures formed in culture. A. Conidiophore, conidiogenous cell and conidia. B-G. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
= Fusidium geranii Westend., Bull. Acad. Belg. 18: 413. 1851.
\equiv Cylindrospora geranii (Westend.) J. Schröt., Krypt.-Fl. Schlesien 3.2(4): 486. 1897.
For additional synonyms see Braun (1998) or MycoBank.
Mycelium consisting of hyaline, septate, branched, smooth, 1.5-3 $\mu \mathrm{m}$ diam hyphae. Conidiophores hyaline, thin-walled, erect, septate, straight to geniculate-sinuous, cylindrical-oblong, unbranched, (65-) $82-100(-150) \times 2-2.5(-3) \mu \mathrm{m}$ or reduced to conidiogenous cells, hyaline, smooth, integrated in mycelium or terminal in conidiophores, cylindrical-oblong, (14.5-)19-22(-28) $\times 2-3 \mu \mathrm{~m}$, with one apical conidiogenous locus, thickened and darkened. Conidia hyaline, thin-walled, smooth, with hila thickened and darkened. Ramoconidia subcylindrical to clavate, 1-4-septate, (23-)28-$30(-35) \times(3-) 4-4.5(-5) \mu \mathrm{m}$, with $2-3$ conidiogenous apical hila. Intercalary conidia, $0-3$-septate, subcylindrical to clavate, straight or slightly curved, narrower at the centre and broader at the apices, $(17-) 22-25(-30) \times(2.5-) 3.5-4(-5) \mu \mathrm{m}$, in chains of up to five conidia. Terminal conidia $0-1$-septate, obovoid, clavate, phalangoid, (11-)15.5-18(-25) $\times(3-) 4(-5) \mu \mathrm{m}$.

Culture characteristics: On MEA, 11 mm diam, surface rosy vinaceous to pale vinaceous grey, strongly folded, raised with margins crenate, colony reverse cinamon with iron grey patches. On OA, 10 mm diam, surface rosy buff, flat, sparse aerial mycelium with margins undulate and sparse aerial mycelium, colony reverse rosy buff with brown vinaceous patches. On PDA, 11 mm diam, surface folded, rosy buff to pale olivaceous grey, raised, with margins undulate, concave, colony reverse olivaceous.

Description in vivo: See Braun (1998: 164).
Specimens examined: France, on Geranium pyrenaicum, collector and date unknown, isol. and
dep. C. Killian, Jun. 1924, culture CBS 159.24; on Geranium sylvaticum, unknown date, C. Killian (epitype designated here CBS H-17726, MBT371838, culture ex-epitype CBS 160.24). Poland, on Geranium pusillum [Schneider, Herb. Schles. Pilze 898; neotype, designated in Braun (1998), HAL].

Substrate and distribution: On Erodium and Geranium (Geraniaceae); Asia, Caucasus, Europe, N. America.

Notes: Two varieties are known for Ramularia geranii, R. geranii var. geranii (on Geranium pusillum, Poland, neotype in HAL) and R. geranii var. erodii (on Erodium cicutarium, Germany, neotype in B). The latter differs from the first by having long slender conidia with up to four septa. They are distributed in the northern hemisphere and R. gerani var. gerani has also been reported from Erodium. The strains representing Ramularia geranii in this study clustered separately with CBS 259.24 and CBS 160.20 forming one clade (Fig. 2, clade 3) and CBS 114566 forming a single lineage on a long branch (Fig. 2, clade 4). The strains CBS 159.24 and CBS 160.24 produce very large conidia fitting with the original description and were isolated from the same host genus, but from a different species and country. Strain CBS 114566 was isolated from the same host as the type but from a different European country. Unfortunately it was sterile and morphological comparison with the original description was not possible. Strains CBS 159.24 and CBS 160.24 (Fig. 2, in clade 3, 1/100/100; Fig. 45) are considered good representatives of R. geranii both morphologically and phylogenetically, and CBS 160.24 is therefore chosen as ex-epitype. The strain CBS 114566 appears as R. geranii in the CBS database but it is not conspecific with the species in this clade and will be treated as a Ramularia sp . A for the time being.

Ramularia geraniicola Videira \& Crous, sp. nov. MycoBank MB816849. Fig. 46.
Etymology: Named after the host genus, Geranium, from which it was collected.
Mycelium consisting of hyaline, septate, branched, smooth, 1-2.5 $\mu \mathrm{m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, emerging from hyphae or dark hyphal spherical aggregates, erect, $1-2(-4)$-septate, straight to sinuous, cylindrical-oblong, unbranched (22.5-)35.5-44(-66.5) $\times(1.5-) 2-3(-4) \mu \mathrm{m}$ or reduced to conidiogenous cells. Conidiogenous cells, integrated, cylindrical-oblong and narrower at the top, geniculate-sinuous, (12-)18-22(-33) \times $2-2.5(-3) \mu \mathrm{m}$, with $1-4$ apical conidiogenous loci, almost flat or protuberant; conidiogenous loci thickened, darkened and refractive. Conidia hyaline, thin-walled, smooth, catenate, with hila thickened, darkened and refractive. Ramoconidia subcylindrical to clavate, (10-)13.5-16($22.5) \times(2-) 3(-4) \mu \mathrm{m}, 0-1$-septate, with two apical hila. Intercalary conidia subcylindrical, fusoid, $0-1$-septate, (8.5-)12.5-14.5(-21.5) $\times(2.5-) 3(-4) \mu \mathrm{m}$, in branched chains of up to eight conidia. Terminal conidia subcylindrical to obovoid, aseptate, (3-)6.5-8.5(-13) $\times(2-) 2.5-3(-$ 3.5) $\mu \mathrm{m}$ (on SNA).

Culture characteristics: On MEA, 15 mm diam, raised, folded, smooth, radially striated, olivaceous grey, with margins pale olivaceous grey and lobate, colony reverse olivaceous grey; on OA, 13 mm diam, flat, sparse aerial mycelium, smooth, olivaceous grey with some tufts pale olivaceous grey, with margins with sparse aerial mycelium and entire edge, colony reverse olivaceous grey; on PDA, 16 mm diam, flat, olivaceous grey, fluffy aerial mycelium,

Fig. 46. Ramularia geraniicola (CBS 141110). A-F. Conidiophores, conidiogenous cells and conidia formed in culture. Scale bars $=10 \mu \mathrm{~m}$.
pale olivaceous grey, with margins undulate, colony reverse olivaceous grey and buff margin.
Specimen examined: Netherlands, Utrecht, Rhijnauwen, on Geranium sp., May 2013, U. Damm (holotype CBS H-22521, culture ex-type CBS $141110=$ CPC 25912).

Substrate and distribution: On Geranium sp. (Geraniaceae); Europe (Netherlands).
Notes: Two Ramularia species (R. geranii var. geranii, R. pseudogeranii) and two ramularialike species (Phacellium geranii and Pseudocercosporella magnusiana) have thus far been described from Geranium (Braun 1998). Ramularia geranii var. geranii produces conidia that are smooth to verruculose, ellipsoid-ovoid to fusiform, $0-3$-septate and $10-40(-55) \times(2-) 2.5-$ $6(-7) \mu \mathrm{m}$. Ramularia pseudogeranii produces solitary obovoid conidia, $14-25 \times 6-12 \mu \mathrm{~m}$. The synnematous Phacellium geranii produces catenate conidia, ellipsoid-ovoid to fusoid, $12-28 \times 4-7 \mu \mathrm{~m}$. Pseudocercosporella magnusiana produces solitary conidia, subcylindricalfiliform to acicular (30-)40-100(-120) $\mu \mathrm{m}, 2-8$-septate, with hyaline, unthickened hilum. The morphological characters of R. geraniicola (Fig. 46) are also distinct from the closest species, R. variabilis that produces shorter conidiophores and narrower fusiform to obovoid conidia (Fig. 2, clade 50). Ramularia geraniicola has unique morphological characters and forms a single lineage in the phylogenetic analysis (Fig. 2, clade 51).

Ramularia glechomatis U. Braun, Nova Hedwigia 56: 426. 1993. Fig. 47.
= Fusisporium calceum Desm., Ann. Sci. Nat., Bot., 2 Sér., 17: 95. 1842.
\equiv Cylindrospora calcea (Desm.) J. Schröt., in Cohn, Krypt.-Fl. Schles. 3.2(4): 491. 1897.
For additional synonyms see Braun (1998) or MycoBank.
Mycelium consisting of hyaline, septate, branched, smooth, 1-2 $\mu \mathrm{m}$ diam hyphae. Conidiophores

Fig. 47. Ramularia glechomatis (CBS 108980). A-G. Structures formed in culture. A, C, E. Conidia. B, F, G. Conidiophores, conidiogenous cells and conidia. D. Conidiophore. Scale bars $=10 \mu \mathrm{~m}$.
hyaline, smooth, thin-walled, erect, septate, cylindrical-oblong, straight to sinuous, unbranched $(15-) 28-36(-61) \times(1.5-) 2 \mu \mathrm{~m}$, or reduced to conidiogenous cells, terminal in conidiophores or intermediate in the mycelium, cylindrical-oblong to geniculate-sinuous, (4-)11-13(-18) \times $1.5-2(-3) \mu \mathrm{m}$, with up to three protuberant conidiogenous loci; conidiogenious loci thickened, darkened and refractive. Conidia hyaline, thin-walled, slightly verruculose, catenate, with hila thickened, darkened and refractive. Ramoconidia cylindrical-oblong, (8-)11-13(-17) $\times 2(-3)$ $\mu \mathrm{m}, 0-1$-septate, with two apical hila. Intercalary conidia cylindrical-oblong, fusoid, aseptate, (6.5-)8.5-10(-14) $\times 2(-3) \mu \mathrm{m}$, in branched chains of up to seven conidia. Terminal conidia cylindrical-oblong to obovoid, aseptate, (3-)5-6.5(-9) $\times(1-) 2(-3) \mu \mathrm{m}$ (on SNA).

Culture characteristics: On MEA, 10 mm diam, surface raised, smooth, white with a greyish tinge, with margins lobate, colony reverse iron-grey; on OA, 12 mm diam, surface flat, smooth, pale grey, with margins entire, colony reverse iron-grey; on PDA, 11 mm diam, surface flat, smooth, white with greyish patches, with margins entire, colony reverse iron-grey.

Description in vivo: See Braun (1998: 180).
Specimens examined: Germany, Brandenburg, Nedlitz near Potsdam, on Glechoma hederacea, 7 Sep. 1919 [Sydow, Mycoth. Germ. 1757] (holotype JE). Netherlands, Utrecht Prov., Baarn, de Hooge Vuursche, on leaf spot on G. hederacea, 22 Jun. 2000, G. Verkley, cultures CBS 108979, CBS 108980; Utrecht Prov., Nieuwersluis, Overholland, on leaf spot on Glechoma hederacea, unknown collector and date, isol. and dep. J.A. von Arx, Nov. 1949, culture CBS 343.49 .

Substrate and distribution: On Glechoma hederacea (Lamiaceae); Asia, Caucasus, Europe.

Notes: Ramularia glechomatis was originally described on Glechoma hederaceae from Germany (holotype in JE) but it has been reported on this host from almost all countries in Europe including the Netherlands (Braun 1998). The strains used in this study cluster in a highly supported clade (Fig. 2, clade 45, 1/100/100). Morphologically, they are similar to the description available in literature (Braun 1998) except for producing narrower conidia, but our observations are based on cultures on SNA (Fig. 47).

Ramularia glennii Videira \& Crous, Persoonia 34: 55. 2015.

Specimens examined: Iraq, Al-Kora, Basrah, on leaves of Eucalyptus camaldulensis, 1 Mar. 2009, A. Saadoon, cultures CPC 16560, CPC 16565. Italy, Viterbo, on leaves of Corymbia grandifolia, 1 Apr. 2006, W. Gams, culture CBS 120727 = CPC 13047. Netherlands, on human bronchial alveolar lavage, Rotterdam, Maasstad Ziekenhuis (Clara), on human bronchial alveolar lavage, 2011, unknown collector, dep. A. van Duin (holotype CBS H-21617, ex-type culture CBS 129441); Rotterdam Maasstad Ziekenhuis (Clara), on human skin tissue, 29 April 2008, unknown collector, dep. H. Naaktgeboren, culture CBS 122989. USA, Athens, on rubber of refrigerator, Sep. 2010, A. Glenn, culture CPC 18468.

Substrate and distribution: On Corymbia grandifolia and Eucalyptus camaldulensis (Myrtaceae), human and environmental samples; Western Asia (Iraq), Europe, USA.

Notes: See Videira et al. (2015a). The phylogenetic analyses provide good support for this species clade (Fig. 2, clade 32, 1/ 100/96).

Ramularia grevilleana (Oudem.) Jørst., Meld. Stat. Plantepatol. Inst. 1: 17. 1945, emend. U. Braun, A monograph of Cercosporella, Ramularia and allied genera (Phytopathogenic Hyphomycetes) 2: 68. 1998.
Basionym: Cylindrosporium grevilleanum Oudem., Arch. Néerl. Sci. Exact. Nat. 8: 392. 1873. $=$ Cylindrosporium sp., in Tul. \& C. Tul., Select. fung. carpol. 2: 288. 1863.
$=$ Mycosphaerella fragariae (Tul. \& C. Tul.) Lindau, in Engler \& Prantl, Nat. Pflanzenfam., ed.1, Sphaeriales, 1(1): 424. 1897.
= Ramularia tulasnei Sacc., Michelia 1: 536. 1879, nom. superfl.!
= Ramularia fragariae Peck, Annual Rep. (Annual) New York State Mus. Nat. Hist. 32: 43. 1879. $=$ R. modesta Sacc., Fungi ital. Del., Tab. 999. 1881.
For additional synonyms see Braun (1998) or MycoBank.

Description in vivo: See Braun (1998: 248).
Specimens examined: Netherlands, unknown host, date and collector, isol. Moll, dep. Oct. 1934, cultures CBS 298.34; unknown host, date and collector, isol. van Egmond, dep. Aug. 1936, CBS 259.36; Heemstede, on Fragaria vesca, Jul. 1872, Oudemans [lectotype, designated by Braun \& Pennycook (2003), L 371868]. New Zealand, Auckland, on Fragaria sp., unknown date and collector, isol. and dep. W.F. Hartill, Dec. 1983, culture CBS 719.84. Sweden, Uppland, Alsike, on Fragaria ananassa, 4 Oct. 1989, E. Gunnerbeck, culture CBS 114732.

Substrate and distribution: On Duchesnea, Fragaria, Horkelia, Potentilla, and Waldsteinia
(Rosaceae); almost circumglobal.
Notes: The valid publication of Cylindrosporium grevilleanum, the basionym of Ramularia grevilleana, dates back to Oudemans (1873b). A detailed discussion of the complicated nomenclature of this species and its lectotypification has been published by Braun \& Pennycook (2003). The phylogenetic analyses provide high support for this species clade (Fig. 2, clade 28, 1/100/100). Ramularia grevilleana causes Ramularia leaf spot disease of strawberry and other hosts of the Rosaceae. The most conspicuous symptoms are leaf lesions but symptoms can also develop on fruits, calyxes, fruit trusses, petioles and stolons. It occurs worldwide on cultivated varieties as well as wild strawberry species. In earlier years, the economic impact of the disease was so great that Ramularia leaf spot was considered the most important strawberry disease. With increased emphasis on the development and use of resistant cultivars, Ramularia leaf spot disease, although still an important foliar disease is now of less concern (Maas 1984). The link between the sexual morph Mycosphaerella fragariae and the asexual morph R. grevilleana has been experimentally proven (Dudley 1889).

Ramularia haroldporteri Videira \& Crous, Persoonia 34: 58. 2015.
Specimen examined: South Africa, unidentified bulb plant, 14 Jan. 2009, P.W. Crous (holotype CBS H-21616, ex-type cultures CBS $137272=$ CPC 16296, CPC16297).

Substrate and distribution: Thus far only known from South Africa.
Notes: See Videira et al. (2015a). The phylogenetic analyses provide high support for this species clade (Fig. 2, clade 30, 1/ 100/100).

Ramularia helminthiae Bremer \& Petr., Sydowia 1: 259. 1947. Fig. 48
= Ramularia helminthiae T.M. Achundov, Novosti Sist. Nizsh. Rast. 20: 59. 1983, nom. illeg.
Mycelium consisting of hyaline, septate, branched, smooth, 1-3 $\mu \mathrm{m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, $1-3$-septate, straight to flexuous, cylindrical-oblong, unbranched (19-)41-53(-82) $\times(1.5-) 2-2.5(-3) \mu \mathrm{m}$ or reduced to conidiogenous cells. Conidiogenous cells integrated in mycelium or terminal on conidiophores, cylindrical-oblong, (15-)21.5-25.5(-36) $\times 2.0-2.5(-3) \mu \mathrm{m}$, with $1-2$ apical conidiogenous loci almost flat to short cylindrical, thickened, darkened, refractive. Conidia hyaline, thin-walled, smooth to slightly verruculose, with hila thickened, darkened and refractive. Ramoconidia subcylindrical to clavate, (14-)21-27(-44) $\times(2.5-) 3-3.5(-4) \mu \mathrm{m}, 0-3$-septate, with $2-3$ apical hila. Intercalary conidia hyaline, smooth, $0-3$-septate, subcylindrical with apices rounded and broader, (14-) $19-25(-50) \times(2.5-) 3-4(-4.5) \mu \mathrm{m}$, in branched chains of up to four conidia. Terminal conidia aseptate, subcylindrical to obovoid, (5.5-)13-16.5(-25.5) $\times(2-) 3-3.5(-4.5) \mu \mathrm{m}$.

Culture characteristics: On MEA, 15 mm diam, surface raised, folded, smooth mycelium, smoke-grey with olivaceous tinge, with small buff droplets, with margins lobate, convex, feathery, colony reverse olivaceous grey and ochraceous patches; on OA, 15 mm diam, surface low convex, smooth mycelium, white, with margins buff, naked, undulate, colony reverse rosybuff; on PDA, 20 mm diam, surface low convex, smooth mycelium, white with greyish tinge with margins undulate, feathery, colony reverse rosy-buff and iron-grey patches.

Fig. 48. Ramularia helminthiae (CPC 11504). A, D, E. Observations from herbarium material. B, C, F, G. Structures formed in culture. A. Leaf spots on the host. D, F, G. Conidiophores and conidia. B, C, E. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Specimens examined: Azerbaijan, Talysh, district Massalli, Kyzylagadzh, on Helminthotheca echioides (\equiv Picris echioides), 2 Jun. 1974, T.M. Achundov (isotype of R. helminthiae T.M. Achundov LE 41974). South Korea, Hongcheon, on Picris hieracioides var. glabrescens, 9 Jul. 2004, H.D. Shin, KUS-F20442, culture CPC 11502, CPC 11504. New Zealand, Auckland, Mt. Albert, on H. echioides, unknown collector and date, isol. C.F. Hill, Jul. 2005, det. C.F. Hill, culture CBS 118418. Turkey, Adana, Terliksiz, on H. echioides, 8 Jun. 1943, G. Karel [lectotype of R. helminthiae Bremer \& Petr., designated in Braun (1998),W 15449].

Notes: These strains were initially identified as R. inaequalis, but this species clusters in clade 40 (Fig. 2). Several names have been synonymised with R. inaequalis that refer to species isolated from different hosts and locations. These need to be recollected and re-examined since it appears that R. inaequalis is a species complex. Helminthotheca echioides is of Mediterranean origin, but now with a widespread, almost cosmopolitan neophytic distribution. The descriptions of both species named R. helminthiae are from the neophytic area of the host, but the origin of the species concerned is probably Mediterranean as well. A sporulating culture based on material collected on H. echioides in Turkey or adjacent countries should serve as epitype for this species, but is not yet available. Therefore, the name R. helminthiae is only tentatively used for the present strains until appropriate cultures will be available. Ramularia helminthiae (Fig. 48) is supported as distinct from other included species by the phylogenetic analyses (Fig. 2, clade 5, 1/100/100). The strain CBS 118418 did not sporulate in culture.

Ramularia heraclei (Oudem.) Sacc., Fungi ital. Del., Tab. 1008. 1881, emend. U. Braun, A monograph of Cercosporella, Ramularia and allied genera (Phytopathogenic Hyphomycetes) 2: 68. 1998. Fig. 49.

Fig. 49. Ramularia heraclei (CBS 108972, CBS 108988). A-K. Observations from herbarium material A-F. CBS 108972. G-K. CBS 108988. A, G. Leaf spot symptoms on the host. B, H. Conidiophores, conidiogenous cells and conidia. F, K. Conidiogenous cells. C-E, I-J. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Basionym: Cylindrosporium heraclei Oudem., Arch. Néerl. Sci. Exact. Nat. 8: 383. 1873.
$=$ Ramularia cicutae P. Karst., Hedwigia 23: 7. 1884.
$=$ R. levistici Oudem., Ned. Kruidk. Arch., 2 ser., IV: 540. 1886.
$=$ R. pastinacae Bubák, Sitzungsber. Königl. Böhm. Ges. Wiss., Math.-nat. K1., 1903: 19. 1903.
$=$ R. coriandri Moesz \& Smarods, Magyar Bot. Lapok 1/12: 37. 1930.
For additional synonymies see Braun (1998).
Description in vivo: See Braun (1998: 58).
Specimens examined: Austria, Ötztal, Ötz near Habichen, on leaf spot of Heracleum sp., 24 Jul. 2000, G. Verkley, cultures CBS 108987, CBS 108988. Netherlands, Bloemendaal, on Heracleum sphondylium, Aug. 1871, Oudemans [lectotype, designated in Braun (1998), in L]; Limburg Prov., Gerendal, on leaf spot of Heracleum sphondylium, 28 Jun. 2000, G. Verkley (epitype designated here CBS H-22638, MBT371839, culture ex-epitype CBS 108969); idem. CBS 108972. South Korea, Yangpyeong, on Heracleum moellendorffii, 24 Jun. 2004, H.D. Shin, cultures CPC 11505-11507. Sweden, Uppland, Danemora par., Andersby, on Heracleum sphondylium, 31 Aug. 1987, E. Gunnerbeck, culture CBS 113976 = UPSC 2344. Unknown country, on Pastinaca sativa, unknown collector and date, isol. and dep. J.E.V. Smith, Apr. 1923, culture CBS 194.25.

Substrate and distribution: On Apium, Cicuta, Conium, Coriandrum, Hansenia, Heracleum, Levisticum, Malabaila, and Pastinaca (Apiaceae); Asia, Africa, Caucasus, Europe, New Zealand, N. America and West Indies.

Notes: Ramularia heraclei was originally described on Heracleum sphondylium from the

Netherlands (lectotype in L). Strains of Ramularia heraclei used in this study formed two sister clades that are both highly supported in the multigene phylogeny (Fig. 2, clade 78, 1/100/100). In literature (Braun 1998), the description of this species is quite broad including conidiophores in fascicles or forming crustose-like layers, erect and simple, cylindrical to geniculate-sinuous and variable in length, $5-80(-110) \times 2-6 \mu \mathrm{~m}$ and conidia which are catenate, $0-3$-septate, smooth to verruculose, $(8-) 10-35(-45) \times 2-6 \mu \mathrm{~m}$. The herbarium material corresponding to strain CBS 108972 has short conidiophores, (5-)12-17(-20) $\times 2-3 \mu \mathrm{~m}$ and conidia which are catenate, verruculose, $0-1$-septate, (6-)11-14(-25) $\times(2-) 3(-6) \mu \mathrm{m}$. The herbarium material corresponding to the strain CBS 108988 has longer conidiophores, $(29-) 49-59(-82) \times 2-3 \mu \mathrm{~m}$ and longer conidia, catenate, smooth to slightly verruculose, ($0-$)1-3-septate and (6.5-)15.5-$20(-36) \times(2.5-) 3.5-4(-6) \mu \mathrm{m}$. They both fit the morphological description in literature and strain CBS 108969, which was collected from the Netherlands and isolated from Heracleum sphondylium, the same location and host as the type species, and is herewith designated as epitype (Fig. 49). The morphology of Ramularia collections from hosts of Apiaceae that are preserved in herbaria are difficult to distinguish and several names were synonymised with R. heraclei (Braun 1998). The variation in morphology and the phylogeny indicate that this may be a species complex that needs further study and comparison with collections from other apiaceous hosts.

Ramularia hieracii-umbellati A.G. Eliasson, Svensk. Bot. Tidskr. 9: 412. 1915. Fig. 50.
In planta: Leaf spots rectangular, following the leaf nerves, yellowish to brown. Caespituli emerging through stomata, hyaline to buff. Conidiophores hyaline, thin-walled, smooth, erect, septate, cylindrical-oblong, straight to geniculate-sinuous, rarely branched, (14-)27-32(-41.5) $\times(2-) 3(-4) \mu \mathrm{m}$. Conidiogenous cells terminal or intermediate in the conidiophore, cylindricaloblong or geniculate-sinuous, $(7-) 10-13(-22) \times(2-) 3(-4) \mu \mathrm{m}$, with multiple conidiogenous loci almost flat to protuberant, thickened, darkened and refractive. Conidia hyaline, thin-walled, smooth, solitary or in short chains unbranched, cylindrical-oblong to obovate, (0-)1-2-septate, $(8-) 15-20(-25) \times(2-) 2.5-3 \mu \mathrm{~m}$ with hila thickened, darkened and refractive.

Culture characteristics: On MEA, 13 mm diam, surface raised, olivaceous grey fluffy aerial mycelium, droplets of iron-grey, margins undulate, convex, feathery, colony reverse undulate, convex, feathery, iron-grey; on OA, 15 mm diam, surface low convex, smooth, pale olivaceous grey, with margins with entire edge, colony reverse olivaceous grey; on PDA, 14 mm diam, surface raised, greenish grey, with olivaceous grey droplets exudate, radially striated, with margins lobate, convex, feathery, colony reverse iron-grey.

Specimens examined: South Korea, Pocheon, on Hieracium umbellatum, 2 Sep. 2003, H.D. Shin, KUS-F19596, cultures CPC 10690-10692; Pyeongchang, on Hieracium umbellatum, 4 Sep. 2003, H.D. Shin, KUS-F19601, cultures CPC 10788, CPC 10789; Sweden, Smolandiae, Lofthammer, on Hieracium umbellatum, 12 Jul. 1912, A.G. Eliasson (holotype UPS).

Substrate and distribution: On Hieracium umbellatum (Asteraceae); Asia (South Korea), Europe (Sweden).

Notes: Previously identified as Ramularia inaequalis these strains in fact represent a separate species (Fig. 50), since they do not cluster together with the type of R. inaequalis (Fig. 2, clade

Fig. 50. Ramularia hieracii-umbelati (CPC 10690). A-H. Observations from herbarium material. A. Leaf spot symptoms on the host. B. Conidia. C-H. Conidiophores and conidiogenous cells. Scale bars $=10 \mu \mathrm{~m}$.
40). The morphology agrees well with R. hieracii-umbellati described on Hieracium umbellatum from Sweden. Cultures and sequences based on collections from Sweden are not available for comparison, but since the Korean material might belong to this species, we prefer to apply the latter name, at least tentatively. Hieracium umbellatum is a widespread circumpolar species. Strains of R. hieracii-umbellati form a highly supported clade (Fig. 2, clade 56, 1/100/100). Ramularia hieracii-umbellati formed a sister clade to R. rhabdospora, but the latter produces wider conidiophores $[10-50(-115) \times 2-8 \mu \mathrm{~m}]$ and larger catenate conidia $[(10-) 15-40(-50) \times$ $3-7 \mu \mathrm{~m}$], echinulate, ellipsoid-ovoid to cylindrical, and 0-3(-4)-septate (Braun 1998).

Ramularia hydrangeae-macrophyllae U. Braun \& C.F. Hill, Australas. Mycol. 27: 53. 2008. Fig. 51.

In planta: Leaf spots variable, from angular-irregular speckles to large brown leaf blotches. Mycelium internal and external but lacking stromata. Conidiophores arising from internal hyphae, emerging through stomata or from superficial hyphae, straight, simple, thin-walled, smooth, subcylindrical to moderately geniculous-sinuous, $4-35 \times 1.5-3.5 \mu \mathrm{~m}, 0-1$-septate, or reduced to conidiogenous cells, 4-20 $\mu \mathrm{m}$ long; conidiogenous loci conspicuous, thickened and darkened. Conidia catenate, sometimes in branched chains, ellipsoid-ovoid to fusiform-subcylindrical, $4-18 \times 1.5-2.5 \mu \mathrm{~m}, 0-1$-septate, hyaline, thin-walled, smooth to verruculose, hila thickened and darkened. Description adapted from Braun \& Hill (2008). Ascomata pseudothecial, single, brown, immersed, becoming erumpent, globose, apical ostiole. Asci aparaphysate, fasciculate, bitunicate, subsessile, obovoid to narrowly ellipsoid. Ascospores, straight to fusoid-ellipsoid, hyaline, thin-walled, with subobtuse ends, medianly 1 -septate, symmetrical or with one side slightly larger than the other, sometimes slightly constricted at the septa, $(4.5-) 5-6(-7.5) \times$ (1-)1.5-2(-2.5) $\mu \mathrm{m}$.

Fig. 51. Ramularia hydrangeae-macrophyllae (CPC 25902). A-D. Observations from herbarium material. E-H. Structures formed in culture. A. Leaf spot symptoms on the host. B, C. Asci and ascospores. D. Ascospores. E, F. Germinating ascospores. G, H. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Specimens examined: Italy, Grancarlo, on Feijoa sellowiana, unknown date, G. Polizzi, culture CPC 19854. Netherlands, Flevoland Prov., Lelystad, Hollandse Hout, on Platanus sp., Apr. 2012, S.I.R. Videira, culture CPC 25901; same prov., Kortenhoefse Plassen, on a dead leaf of Sparganium ramosum, Jan. 1982, W. Gams, culture CBS 159.82; Utrecht prov., Bilthoven, on Phragmites sp., 6 Jan. 2011, P.W. Crous, cultures CPC 19026, CPC 19027; Breukelen, on Sparganium ramosum, unknown collector and date, isol. W. Gams, Sep. 2003, culture CBS 113614; Houten, on Typha sp., Jul. 2012, S.I.R. Videira, cultures CPC 25903; Nieuwersluis, Overholland, from leaf spot on Angelica sylvestris, unknown collector and date, dep. Nov. 1949, culture CBS 341.49; Utrecht, Botanical Garden, on Aesculus hippocastanum, Apr. 2012, S.I.R. Videira, cultures CPC 25902; Utrecht, Botanical Garden, on Iris foetidissima, collector and date unknown, culture CPC 20484; Utrecht, on Juncus sp., May 2013 U. Damm, culture CPC 25907; Utrecht, on Potentilla sp., Oct. 2012, U. Damm, cultures CPC 25904; Utrecht, on Laurus sp., May 2013, W. Quaedvlieg, culture CPC 25908; Veenendaal, on Carex sp., May 2013, W. Quaedvlieg, cultures CPC 25905, CPC 25906; New Zealand, Auckland, Grey Lynn, on Helleborus niger, 1 May 2005, C.F. Hill, culture CBS 118408; Mt. Albert, Rurangi Road, on the underside of the leaf of Hydrangea macrophylla, 2 Jul. 2007, C.F. Hill (holotype HAL 2103 F, culture ex-type CBS 122273); Grafton, Park Road, The Auckland Domain, on dead leaves of Iris \times hollandica hybrid, 28 Oct. 2007, C.F. Hill, culture CBS $122625=$ CPC 14811; Grey Lynn, Great North Road, Western Springs, on leaf lesion from Iris sp., 23 Sep. 2007, C.F. Hill, culture CBS 122272; Grey Lynn, on Ligularia clivorum, unknown collector and date, isol. C.F. Hill, 13 Jun. 2005, dep. C.F. Hill, culture CBS 118410. Sweden, Uppland, Dalby par., Jerusalem, on Filipendula vulgaris, 12 Jul. 1988, E. Gunnerbeck, culture CBS 114117. UK, England, Basingstoke, Upton Grey, Weston Road, on Iris sp., 25 Dec. 2010, P.W. Crous, culture

CPC 19030; Exeter, endophyte on Ulex europaeus, unknown collector and date, isol. and dep. J. Fisher, Nov. 1984, culture CBS 766.84. USA, California, Walnut Creek, Ruth Bancroft Botanical Garden, on Eucalyptus caesia, 20 Mar. 2012, P.W. Crous, culture CPC 20406.

Substrate and distribution: Aesculus (Sapindaceae), Angelica (Apiaceae), Carex (Cyperaceae), Eucalyptus, Feijoa (Myrtaceae), Filipendula, Potentilla (Rosaceae), Helleborus (Ranunculaceae), Hydrangea (Hydrangeaceae), Iris (Iridaceae), Laurus (Lauraceae), Ligularia (Asteraceae), Phragmites (Poaceae), Platanus (Platanaceae), Sparganium, Typha (Typhaceae), and Ulex spp. (Fabaceae); Europe, N. America, New Zealand.

Notes: The species epithet of Ramularia hydrangeae-macrophyllae reflects the name of the host on which it was first observed, Hydrangea macrophylla, from New Zealand (holotype in HAL). Within this clade the phylogenetic structure was not resolved consistently in all gene trees (data not shown; Fig. 2, clade 21) and, in accordance with the Genealogical Concordance Phylogenetic Species Recognition (GCPSR) concept, the transition from concordance to conflict determined the limit of these species (Taylor et al. 2000). Ramularia sparganii was described from Sparganium emersum from Sweden (holotype in C) and has not been reported from the Netherlands (Braun 1998). The species produces conidiophores that are subcylindrical to geniculate-sinuous, $5-40(-60) \times 1-3 \mu \mathrm{~m}$, catenate conidia, smooth, ellipsoid-fusoid, $0-1$-septate, $8-30(-33) \times 1.5-3 \mu \mathrm{~m}$ and with minute hila. The strain CBS 159.82 was possibly misidentified based on the host but was sterile in culture and morphological characters were not observed. Ramularia hellebori was described from Helleborus foetidus from Germany (lectotype in HAL), and was firstly reported from New Zealand on Helleborus orientalis (Braun \& Hill 2002) and later on Helleborus niger (CBS 118408) (Braun et al. 2006), but no ex-type culture was designated. This species description includes conidiophores that are subcylindrical to geniculate sinuous, $10-45 \times 1.5-5 \mu \mathrm{~m}$, conidia catenate, ellipsoid-ovoid to fusiform, verruculose, $0-1$-septate, $6-20(-30) \times 2-4 \mu \mathrm{~m}$ and minute hila. Ramularia rollandii was described from Iris pseudacorus from France (lectotype in PC) and the species was reported from New Zealand on an Iris \times hollandica hybrid (CBS 122625) (Braun \& Hill 2008), but no ex-type culture is known. This species produces conidiophores that are cylindrical to geniculatesinuous, apically minutely subdenticulate, $5-15(-20) \times 2-3 \mu \mathrm{~m}$, conidia solitary or in short chains, smooth to faintly verruculose, filiform to acicular, $15-40(-60) \times 1-2 \mu \mathrm{~m}, 1-4$-septate, with minute hila. Ramularia butomi is mycophilic and was originally described overgrowing ascomycetous stromata on dead leaves of Butomus umbellatus in Sweden (lectotype in B), but the strain CBS 114117 is not documented as hyperparasite in the database. This species produces conidiophores that are simple, subcylindrical to geniculate-sinuous, $8-60 \times 1-4 \mu \mathrm{~m}$, conidia catenate, narrowly ellipsoid-ovoid to subcylindrical-fusiform, (5-)8-16(-24) $\times(1.5-$)2-3(-4) $\mu \mathrm{m}, 0-1(-2)$-septate, verruculose and with minute hila. Ramularia deusta var. alba is not reported from Ulex and the representative clade for this species has been designated in this study (Fig. 2, clade 62). All the species mentioned above have in common that the conidia are catenate and slightly verruculose to verruculose, with minute hila, but size and septation vary among them. It is necessary to collect fresh material from the type location and host for further observations. The only ex-type culture present in this clade is that of Ramularia hydrangeae-macrophyllae (CBS 122273) (Braun \& Hill 2008), and in accordance with the GCPST concept, we accept that name for this clade. This species, now with a broad host range and wide geographical distribution, forms a highly supported clade (Fig. 2, clade 21, $1 / 100 / 100$). Similar intraspecific variation, wide host range and geographical distribution have
been observed before for Ramularia vizellae (Videira et al. 2015b; Fig. 2, clade 85). Strains CPC 25901 and CPC 25902 were isolated using the method developed for single ascospore isolation for Mycosphaerella (Crous et al. 1991, Crous 1998), which means this species has a sexual morph (Fig. 51).

Ramularia hydrangeicola J.H. Park \& H.D. Shin, Mycotaxon 131: 97. 2016
Specimens examined: South Korea, Yangpyeong, on Hydrangea serrata, 18 Oct. 2007, H.D. Shin, holotype KUS-F23039, ex-type culture KACC43597; idem. cultures CPC 14767-14769; Jeju, on Hydrangea serrata, 2 Nov., H.D. Shin, KUS-F23141, cultures CPC 14832-14834.

Substrate and distribution: Only known from South Korea.
Notes: This species has been recently described (Park \& Shin 2016) and is only known from South Korea. Until now, only two Ramularia species were known to infect Hydrangea hosts, R. hydrangeae Y.L. Guo \& U. Braun (on Hydrangea bretschneideri, China, holotype in HMAS) and Ramularia hydrangeae-macrophyllae U. Braun \& C.F. Hill (on Hydrangea-macrophylla, New Zealand, holotype in HAL). The isolates of Ramularia hydrangeicola cluster in a highly supported clade (Fig. 2, clade 70, 1/100/100) and are not conspecific with R. hydrangeaemacrophyllae (Fig. 2, clade 21).

Ramularia inaequalis (Preuss) U. Braun, Monogr. Cercosporella, Ramularia and Allied Genera (Phytopath. Hyphom.) 2: 68. 1998. Fig. 52.
Basionym: Fusoma inaequale Preuss, Linnaea 26: 706. 1855. 1853.
= Ramularia lineola Peck, Rep. (Annual) New York State Mus. Nat. Hist. 32: 43. 1879.
$=$ R. traxaci P. Karst., Hedwigia 23: 7. 1884.
For additional synonyms see Braun (1998).
Mycelium consisting of hyaline, septate, branched, smooth, $1-2 \mu \mathrm{~m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, $1-2$-septate, cylindrical-oblong, straight to sinuous, unbranched $(25-) 40-50(-70) \times(1.5-) 2-2.5(-3) \mu \mathrm{m}$, or reduced to conidiogenous cells. Conidiogenous cells terminal on conidiophores or intermediate in the mycelium, cylindricaloblong, (7.5-)16.5-20(-28) $\times(1.5-) 2(-2.5) \mu \mathrm{m}$, with one conidiogenous locus almost flat to protuberant, thickened, darkened and refractive. Conidia catenate, hyaline, thin-walled, smooth with hila thickened, darkened and refractive. Ramoconidia cylindrical-oblong, sometimes with the apices broader than the centre, (14.5-)18-20.5(-27) $\times(1.5-) 2-2.5(-3) \mu \mathrm{m}, 0-1(-3)$-septate, with two apical hila. Intercalary conidia cylindrical-oblong, fusoid or clavate, $0-1$-septate, slightly narrower at the septa, $(10.5-) 14-16.5(-26.5) \times(1.5-) 2(-2.5) \mu \mathrm{m}$, in branched chains of up to five conidia. Terminal conidia cylindrical-oblong to obovoid, aseptate, (5.5-)10.5-13($19) \times(1-) 1.5-2(-3) \mu \mathrm{m}$.

Culture characteristics: On MEA, 25 mm diam, surface with convex centre, smooth, with rosybuff centre turning buff and white towards the raised margin, undulate and feathery, colony reverse olivaceous grey in the centre and ochreous margin; on OA, 25 mm diam, surface flat, smooth, white with a greyish tinge, with margins undulate, naked, buff, colony reverse olivaceous grey centre and cinnamon towards the margin; on PDA, 22 mm diam, surface flat, short and uniform aerial mycelium, pale olivaceous grey, margins naked, entire, buff, colony

Fig. 52. Ramularia inaequalis (CPC 15752). A-G. Structures formed in culture. A, B, D, F, G. Conidiophores and conidia. C, E. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
reverse olivaceous grey centre and buff margin.
Specimens examined: Austria, Krems, on Taraxacum officinale, 1870 [Thüm, Fungi Austr. Exs. 888; neotype, designated in Braun (1998), in HAL]. Canada, Nova Scotia, Truro, on Taraxacum officinale, unknown date, S. Green, culture CBS 250.96. Mexico, Montecillo, on Taraxacum sp., 1 Oct. 2008, M. de Jesús Yáñez-Morales, culture CPC 15815; Montecillo, on Taraxacum sp., 22 Sep. 2008, M. de Jesús Yáñez-Morales, cultures CPC 15752, CPC 15753. Netherlands, Utrecht, Rhijnauwen, on Taraxacum officinale, May 2013, U. Damm, (epitype designated here: CBS H-22544, MBT204826, culture ex-epitype CBS 141111 = CPC 25741); idem. CPC 25742.

Substrate and distribution: On Andryala, Cichorium, Crepis, Hedypnois, Hieracium, Hyoseris, Hypochoeris, ?Lactuca, Leontodon, Picris, Reichardia, Rhagadiolus, Scorzonera, Sonchus, Taraxacum, and Tolpis (Asteraceae); circumglobal.

Notes: Braun (1998) synonymised several names with R. inaequalis since the specimens available on numerous hosts belonging to the Asteraceae were morphologically very uniform. Ramularia inaequalis was originally described on Taraxacum officinale from Austria (neotype in HAL) but it is a commonly reported species worldwide and in a wide range of hosts. The strains originally identified as R. inaequalis used in this study fell in three different clades (Fig. 2, clades 5, 40 and 56). Only in clade 40 (Fig. 2) are strains collected from Europe that were suitable for epitypification (Fig. 52); the other strains are tentatively considered as R. hieraciiumbellati (Fig. 2, clade 56) and as R. helminthiae (Fig. 2, clade 5). The clade representing R. inaequalis is highly supported (Fig. 2, clade 40, 1/100/100). Ramularia inaequalis has a very wide host range and distribution.

Ramularia interstitialis (Berk. \& Broome) Gunnerb. \& Constant., Thunbergia 15: 50. 1991. Fig. 53.
Basionym: Peronospora interstitialis Berk. \& Broome, Ann. Mag. Nat. Hist. 15: 34. 1875.
\equiv Ovularia interstitialis (Berk. \& Broome) Massee, British Fungus-Flora 3: 322. 1893.
= Ramularia primulana P. Karst., Hedwigia 23 (1): 7. 1884.
$=$ Ovularia corcellensis Sacc. \& Berl., Atti Ist. Veneto Sci. Lett. Arti 3: 731. 1885.
Mycelium hyaline, septate, branched. Conidiophores and conidiogenous cells scarce and insufficient for complete description. Conidia hyaline, smooth to slightly verruculose, catenate, branching chains, consistently aseptate, ellipsoid-ovoid, occasionally subcylindrical, obovoid (3.5-)6-8(-20) $\times(2.5-) 3.5-4(-5) \mu \mathrm{m}$.

Description in vivo: See Braun (1998: 225).
Specimen examined: UK, Southwestern England, Exeter, on Primula vulgaris \times vernalis, S.A.J. Tarr, CBS H-17746, culture CBS 120.68.

Substrate and distribution: On Primula (Primulaceae); Europe.

Notes: Two species have been described from hosts of the genus Primula, Ramularia primulae and R. interstitialis, that have a broad distribution in Europe. Ramularia primulae produces catenate conidia, ($8-$) $10-35(-40) \times 3-6 \mu \mathrm{~m}$, that are $0-2(-3)$-septate. Ramularia interstitialis produces very distinctive conidiophores, erect or decumbent to repent, long and strongly geniculate-sinuous, the conidia are produced singly, occasionally in short chains, are aseptate and $(6-) 8-16(-21) \times(4-) 5-8(-10) \mu \mathrm{m}$. In the observed specimen (Fig. 53), the conidiogenous structures observed were too scarce for a proper analysis and the conidia were slightly narrower than in the description of R. interstitialis found in literature (Braun 1998). However, the name is tentatively used for this isolate pending the collection of fresh material since in vitro measurement can vary when compared to in vivo. The strain used in this study originated from the UK and falls in the Ramularia clade (Fig. 1, clade XIV), but was not used in the multigene phylogeny because it was not possible to amplify the partial genes of gapdh and $r p b 2$.

Fig. 53. Ramularia interstitialis (CBS 120.68). A-F. Observations from herbarium material. B-F. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Ramularia kriegeriana Bres., Hedwigia 39: 328. 1900.
= Ramularia plantaginis Ellis \& G. Martin, Amer. Naturalist 16: 1003. 1882, nom. illeg., non R. plantaginis Peck, 1880.

Specimens examined: Germany, Saxony, Königstein, Pfaffendorf, on Plantago major, 17 Jul. 1895 [Krieger, Fungi Saxon Exs. 1630; lectotype of R. kriegeriana, designated in Braun (1998), in JE]. South Korea, Hoengseong, on Plantago asiatica, 10 Oct. 2003, H.D. Shin, KUS-F19845, culture CPC 10825-10827. USA, Kentucky, Lexington, on Plantago major, Jul. 1882, Kellerman s.n.; type of R. plantaginis Ellis \& G. Martin, in BPI 418612.

Substrate and distribution: On Plantago spp. (Plantaginaceae); Asia, Europe, N. America.
Notes: Braun (1998) used the name Ramularia plantaginis Ellis \& G. Martin for Ramularia on Plantago major and other species characterised by verruculose conidia. This was based on the wrong assumption that R. plantaginis Peck was also published in 1882, which is, however, not correct since the latter name was published in 1880, which makes R. plantaginis Ellis \& G. Martin an illegitimate homonym. Thus, R. kriegeriana is the oldest valid name for this fungus. This species has previously been reported from South Korea on Plantago asiatica, and is known from several Plantago species in Asia, Europe and N. America, including P. asiatica from China (Braun 1998). The strains in this study cluster together in a highly supported clade (Fig. 2, clade $65,1 / 100 / 100$) although a collection from Germany is required to fix the application of this name. Plantago asiatica is phylogenetically close to P. major, the principal host of Ramularia kriegeriana. The two species belong in Plantago subgen. Plantago, in contrast to P. lanceolata, the principal host of R. rhabdospora, which belongs in subgen. Psyllium (Rønsted et al. 2002).

Ramularia lamii Fuckel var. lamii, Jahrb. Nassauischen Vereins Naturk. 23-24: 361. 1870. Fig. 54.
\equiv Ovularia lamii (Fuckel) Sacc., Syll. ung. 6: 144. 1886.
For additional synonyms see Braun (1998).
Mycelium consisting of hyaline, septate, branched, smooth, $1-3 \mu \mathrm{~m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, septate, straight to geniculate-sinuous, cylindrical-oblong, unbranched, $(8-) 10-50(-80) \times 1.5-2(-3) \mu \mathrm{m}$ or reduced to conidiogenous cells. Conidiogenous cells integrated in mycelium or terminal on conidiophores, cylindrical-oblong, (7.5-)18.5-$24.5(-33) \times 1.5-2(-2.5) \mu \mathrm{m}$, with $1-3$ apical conidiogenous loci almost flat, thickened, darkened and refractive. Conidia hyaline, thin-walled, smooth, catenate, with hila thickened, darkened and refractive. Ramoconidia subcylindrical to clavate, sometimes with broader apexes and narrower at the centre, $(9-) 14-18(-28) \times(2.5-) 3-3.5(-4) \mu \mathrm{m}, 0-1$-septate, with two apical hila. Intercalary conidia subcylindrical, sometimes slightly curved, ovoid, (8.5-)11.5-13(-19) $\times(2.5-) 3(-4) \mu \mathrm{m}$, in branched chains of up to six conidia. Terminal conidia obovoid, aseptate, $(4.5-) 7-8(-11.5) \times(2-) 2.5-3(-5) \mu \mathrm{m}$ (on SNA, CBS 108971).

Culture characteristics: On MEA surface strongly folded, rosy-buff with smoke-grey areas, low convex with margins concave and crenate, colony reverse fawn to cinnamon, folded, grows 1.7 mm after 2 wk at $25^{\circ} \mathrm{C}$. On OA surface flat, aerial mycelium white with a rose tinge raised in the centre, produces a transparent exudate, with margins undulate, sparse aerial mycelium,

Fig. 54. Ramularia lamii var. lamii (CBS 108971). A-E. Structures formed in culture. A, E. Conidia. B-D. Conidiophores, conidiogenous cells and conidia. Scale bars $=10 \mu \mathrm{~m}$.
rosy-buff, colony reverse saffron, grows 1.8 mm after 2 wk at $25^{\circ} \mathrm{C}$. On PDA, surface low convex, white with a light grey tinge, fluffy, with margins slightly undulate, colony reverse salmon with olivaceous grey patches, grows 1.8 mm after 2 wk at $25^{\circ} \mathrm{C}$.

Specimens examined: Germany, on Lamium album [Fuckel, Fungi Rhen. Exs. 136; lectotype, designated in Braun (1998), in HAL]. Netherlands, Utrecht Prov., Baarn, de Hooge Vuursche, leaf spot of Lamium album, 22 Jun. 2000, G. Verkley (epitype designated here CBS H-22639, MBT371840, culture ex-epitype CBS 108970); idem. CBS 108971.

Description in vivo: See Braun (1998: 183).
Substrate and distribution: on Lamium (Lamiaceae); Asia, Caucasus, Europe, N. Africa, N. America.

Notes: There are two varieties of R. lamii, namely R lamii var. lamii (on Lamium album, Germany, lectotype in HAL), and R. lamii var. minor (on Prunella vulgaris, USA, Winsconsin, holotype in NY). The latter variety has smaller conidiophores and smaller and narrower conidia. Strains originally identified as R. lamii appeared in three distinct clades in the phylogeny (Fig. 2, clades 1,46 and 67) showing that more than one species is present in this complex. The strains in clade 67 (Fig. 2) were collected in the Netherlands and are morphologically good representatives of R. lamii (Fig. 54), and are therefore designated as ex-epitype strains, whereas the other strains are assigned to R. leonuri and R. agastaches, respectively. All three phylogenetic analyses provided high support to this species clade (Fig. 2, clade 67, 1/100/100).

Ramularia leonuri Sorokīn, Trudy Obshch. Estestvoisp. Imp. Kazansk. Univ. 2: 30. 1872. Fig.

Fig. 55. Ramularia leonuri (CPC 11314). A-D. Observations from herbarium material. E-G. Structures formed in culture. A. Leaf spot symptoms on the host. B, E. Conidia. C, D. Conidiophores and conidiogenous cells. F, G. Conidiophores and conidia. Scale bars $=10 \mu \mathrm{~m}$.
55.
\equiv Ramularia sorokinii Sacc. \& Syd., Syll. fung. 14: 1065. 1899, nom. illeg. (superfl.).
= Ramularia leonuri Sacc. \& Penz., Michelia 2: 638. 1882.
Mycelium consisting of hyaline, septate, branched, smooth, $1-1.5 \mu \mathrm{~m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, $1-3$-septate, straight, cylindrical-oblong, unbranched, $(11.5-) 20-25.5(-28) \times 1.5-2 \mu \mathrm{~m}$ or reduced to conidiogenous cells. Conidiogenous cells integrated in mycelium, cylindrical-oblong, (4-)11-15(-19) $\times 1-2(-3) \mu \mathrm{m}$, with one conidiogenous locus, thickened and darkened. Conidia hyaline, thin-walled, smooth, catenate, with hila thickened and darkened. Ramoconidia subcylindrical to clavate, aseptate to 1 -septate and narrower at the septa, $(18-) 21-23.5(-28) \times(2-) 2.5-3 \mu \mathrm{~m}$, with two conidiogenous apical hila. Intercalary conidia, aseptate to 1 -septate, subcylindrical, sometimes curved, (14.5-)18.5-$21(-28) \times(1.5-) 2.5-3(-3.5) \mu \mathrm{m}$, in chains of up to five conidia. Terminal conidia, aseptate, subcylindrical to obovoid, (6.5-)13-15(-25) $\times(2-) 2.5-3(-4) \mu \mathrm{m}$.

Culture characteristics: On MEA, 27 mm diam, surface smooth, low convex, radially striated, cracking in the centre, with entire margins, convex and feathery, colony reverse iron-grey with ochreous margin; on OA, 20 mm diam, surface flat, fluffy uniform, white with buff tinge, with margins buff and with no aerial mycelium, undulate, colony reverse buff; on PDA, 25 mm diam, surface concave, smooth and white, margins entire, feathery and low convex, colony reverse olivaceous grey and buff.

Specimens examined: France, Rouen, on Leonurus cardiaca, Letendre, herb. Saccardo (holotype of R. leonuri Sacc. \& Syd. PAD); Russia, Jaroslavl, Bernichino, on Leonurus cardiaca, 22

Aug. 1909, Serebrianikov [Tranz. \& Serebr., Mycoth. Ross. 48; neotype of R. leonuri Sorokīn, designated in Braun (1998), in LE 200619]; South Korea, Hongcheon, on Leonurus sibiricus, 9 Oct. 2007, H.D. Shin, KUS-F22992, CBS H-22522, culture CBS 141112 = CPC 14570; idem. CPC 14571, CPC 14572; Jinju, on Leonurus sibiricus, 14 May 2004, H.D. Shin, KUS-F20195, cultures CPC 11312-11314; Yangpyeong, on Leonurus sibiricus, 23 Jul. 2004, H.D. Shin, KUS-F20502, cultures CPC 11411-11413.

Notes: Ramularia leonuri on Leonurus cardiaca, reduced to synonymy under R. lamii var. lamii by Braun (1998), is morphologically indistinguishable from the Korean material on L. sibirica. Therefore, we prefer to apply this name to this collection, at least tentatively, although cultures of R. leonuri from France and Russia are not yet available for comparison. The R. leonuri clade was highly supported by phylogenetic analyses (Fig. 2, Clade 1, 1/100/100) and is currently known only from South Korea. These strains were previously identified as R. lamii var. lamii but the type of R. lamii clusters in a different clade (Fig. 2, clade 67). Ramularia leonuri and Ramularia lamii var. lamii are morphologically very similar but R. leonuri produces shorter conidiophores, smaller conidiogenous cells and longer terminal conidia (Fig. 55).

Ramularia lethalis Ellis \& Everh., Proc. Acad. Nat. Sci. Philadelphia 43: 86. 1891. Fig. 56.
Mycelium consisting of hyaline, septate, branched, smooth, 1-2 $\mu \mathrm{m}$ diam hyphae. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, thin-walled, smooth, integrated in mycelium, cylindrical-oblong to geniculate-sinuous, $(6-) 10-12(-15) \times 1-2 \mu \mathrm{~m}$, with $1-3$ apical conidiogenous loci almost flat to protuberant, thickened and darkened. Conidia hyaline, thin-walled, smooth to verruculose, catenate, mostly aseptate and rarely 1 -septate, with hila thickened and darkened. Ramoconidia subcylindrical to ellipsoid, (4-)6-7(-12) $\times(1.5-) 2.5-3$

Fig. 56. Ramularia lethalis (CBS 141113). A-I. Structures formed in culture. A, F. Conidiophores reduced to conidiogenous cells and conidia. B-E, G, H, I. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
$\mu \mathrm{m}$, with $2-3$ conidiogenous apical hila. Intercalary conidia, fusoid-ellipsoid, (4-)5(-6.5) \times $(1.5-) 2-3 \mu \mathrm{~m}$, in chains of up to three conidia. Terminal conidia, aseptate, ellipsoid-obovoid, (2-)3-4 $\times(1-) 2-2.5 \mu \mathrm{~m}$.

Culture characteristics: On MEA, 8 mm diam, surface raised, irregular, mycelium smooth and white, with entire margin, convex and feathery, colony reverse ochraceous; on OA, 10 mm diam, surface raised, irregular, mycelium smooth, white with buff tinge, margins undulate, colony reverse buff; on PDA, 9 mm diam, surface smooth, mycelium flat and white, entire margins, colony reverse buff with olivaceous patches.

Description in vivo: See Braun (1998: 46).
Specimens examined: Netherlands, Utrecht, Hollandse Hout, on leaves of Acer pseudoplatanus, 5 Apr. 2012, S.I.R. Videira, cultures CBS 141113 = CPC 25910. Canada, Ontario, London, on Acer rubrum, Oct. 1890, Dearness [Ellis \& Everh., N. Amer. Fungi 2596; lectotype, designated in Braun (1998), in NY 830534].

Substrate and distribution: On Acer; Caucasus, Europe (the Netherlands) and North America.
Notes: Three species of Ramularia are known from Acer, namely R. lethalis, R. unterseheri and R. vizellae. Ramularia lethalis (Fig. 56) was originally described on Acer rubrum from Canada (lectotype in NY). The strain used in this study forms a single lineage and is positioned in a very long branch, which supports this species as unique (Fig. 2, clade 84). Morphological characters of the isolate used in this study agree with the description of R. lethalis from literature (Braun 1998). This is a first report of this pathogen in Europe and on Acer pseudoplatanus.

Ramularia ligustrina Maubl., Bull. Trimestriel Soc. Mycol. France 22: 70. 1906.
Specimen examined: Italy, Torino, on living leaf of Ligustrum vulgare, unknown collector and date, isol. and dep. M. Ribaldi, Oct. 1952, culture CBS 379.52.

Substrate and distribution: On Ligustrum vulgare; Caucasus (Armenia), Europe (Bulgaria, France, Germany, Italy and Moldova).

Notes: Ramularia ligustrina was described as a pathogen on Ligustrum vulgare in France, but was considered doubtful by Braun (1998) since type material or other collections agreeing with the description could not be traced. The species is insufficiently known but the name is tentatively accepted here given its distinct phylogeny (Fig. 2, clade 69), pending further collections.

Ramularia macrospora Fresen., Beitr. Mykol. 3: 88. 1863.
\equiv Cylindrosporium macrosporum (Fresen.) J. Schröt., Krypt.-Fl. Schlesien 3.2(4): 490. 1897.
= Scolicotrichum ochraceum Fuckel, Fungi Rhen. Exs., Cent. 22: no. 2108. 1868.
= Ramularia prismatocarpi Oudem., Ned. Kruidk. Arch. 3: 155. 1877.
$=$ Cercospora phyteumatis A.B. Frank, Krankh. Pfl., 1. Aufl.: 601. 1880.
= Ramularia adenophorae Moesz, Bot. Közlem. 35 (1-2): 67. 1938.
= Ramularia rapunculoidis Nannf., in Lundell \& Nannfeldt, Fungi Exs. Suec. 39-40: 31. 1950.
For additional synonyms see (Braun 1998)

Description in vivo: See Braun (1998: 125).
Specimen examined: Austria, Ötztal, Sölden, Hoch-Sölden, alt. 1800 m., on leafspots of Phyteuma betonicifolium, 25 Jul. 2000, G. Verkley, No. 1011.1, cultures CBS 109015, 109016.

Substrate and distribution: On Adenophora, Asyneuma, Campanula, Gadellia, Legousia, and Phyteuma (Campanulaceae), Aristolochia punjabensis (Aristolochiaceae); Asia, Caucasus, Europe, N. America, Pakistan.

Notes: Ramularia macrospora was described as a pathogen on Campanula pyramidalis from Germany (iconotype Pl. XI, figs 29-32). The strains used in this study cluster in the Ramularia clade (Fig. 1, clade XIV) but were not used in the multigene analysis because it was not possible to amplify and sequence the tefl- α partial gene. Although R. macrospora is usually associated with members of the Campanulaceae (Braun 1998), it was recently observed infecting a host from the Aristolociaceae (Mukhtar et al. 2012).

Ramularia major (Unger) U. Braun, Nova Hedwigia 47: 340. 1988.
Basionym: Cylindrospora major Unger, Exanth. Pfl.: 168: 1833.
= Fusidium petasitidis Pass., in Thüm., Mycoth. Univ. 1473. 1879.
= Ramularia cervina Speg., Dec. Mycol. Ital.: 107. 1879.
\equiv Cylindrospora cervina (Speg.) J. Schöt., in Cohn, Krypt.-Fl. Schlesien 3.2(4): 488. 1897.
$=$ R. variegata Ellis \& Holw., in Arth., Rep. Bot. Minnesota: 34. 1886.
$=$ R. petasitis-tomentosae Săvul. \& Sandu, Hedwigia 73: 121. 1933.
For additional synonyms see Braun (1998) or MycoBank.
Description in vivo: See Braun (1998: 86).
Specimens examined: Germany, Thuringia, Erfurt, on Petasites hybridus, 7 Oct. 1910, Diedicke [neotype, designated in Braun (1998), in JE]. South Korea, Chuncheon, on Petasites japonicus, 25 Oct. 2005, H.D. Shin, KUS-F21578, CBS H-22523, cultures CBS 141114 = CPC 12542; idem. CPC 12543, CPC 12544.

Substrate and distribution: On Adenostyles, Homogyne, and Petasites (Asteraceae); Asia, Caucasus, Europe, N. America.

Notes: Ramularia major was originally described on Petasites hybridus from Germany (neotype in JE) and is a common pathogen associated with a few related hosts of the family Asteraceae worldwide (Braun 1998). The strains used in this study form a highly supported clade (Fig. 2 , clade $10,1 / 100 / 100$), which is tentatively maintained as representative of the species until material from the type host and location are recollected and examined.

Ramularia mali Videira \& Crous, Persoonia 34: 58. 2015.
Specimen examined: Italy, Piemont, on Malus domestica fruit in cold storage, May 2011, unknown collector, dep. R. Piemonte \& G. Michelatti (holotype CBS H-21618, culture ex-type CBS 129581).

Substrate and distribution: Thus far only known from the type collection.
Notes: See Videira et al. (2015a). This species formed a single lineage (Fig. 2, clade 33) basal to the R. glenii clade (Fig. 2, clade 32). In a single lineage next to R. mali we can observe Ramularia sp. B, which is sterile in culture and could not be described.

Ramularia malicola Videira \& Crous, sp. nov. MycoBank MB816850. Fig. 57.
Etymology: Named after the host it was isolated from, Malus.
Mycelium consisting of hyaline, septate, branched, smooth, 2-4 $\mu \mathrm{m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, multiseptate, straight, cylindrical-oblong, unbranched, (45-) $100-120(-158) \times(2.5-) 4-5(-6) \mu \mathrm{m}$ or reduced to conidiogenous cells. Conidiogenous cells integrated in mycelium, cylindrical-oblong, (16.5-)25-32(-42) $\times(3-) 4(-5) \mu \mathrm{m}$, with one apical conidiogenous locus, thickened and darkened. Conidia formed singly, hyaline, thinwalled, smooth, aseptate, ellipsoid, obovoid, (11-)21-27(-40) $\times(4.5-) 6-7(-8) \mu \mathrm{m}$, with hila thickened and darkened.

Culture characteristics: On MEA, 15 mm diam, surface raised and strongly folded, rosyvinaceous with erumpent white mycelium, with small ochreous droplets, with margins crenate, colony reverse ochreous; on OA, 10 mm diam, surface raised, folded, rosy-vinaceous with erumpent white mycelium, with margins crenate, feathery, colony reverse brick; on PDA, 15 mm diam, surface raised and strongly folded, rosy-vinaceous with erumpent white mycelium, with small buff droplets, with margins crenate, colony reverse ochreous.

Fig. 57. Ramularia maliicola (CBS 119227). A-H. Structures formed in culture. A-D. Conidiophores and conidia. E-G. Conidia. H. Conidiogenous cells. Scale bars $=10 \mu \mathrm{~m}$.

Specimen examined: USA, Missouri, New Franklin, on Malus sp., Sep. 2000, J. Batzer (holotype CBS H-22524, ex-type culture CBS 119227).

Note: Ramularia malicola formed a single lineage (Fig. 2, clade 80) that is sister to R. rubella (Fig. 2, clade 79). This species is morphologically similar to R. rubella but differs by forming wider conidia (Fig. 57). Ramularia malicola was first isolated in a study related to sooty blotch and flyspeck on apple in the USA (Batzer et al. 2005). It was present in samples collected from two orchards and caused punctate symptoms on the fruit. It was described as Ramularia sp. P5 based on the morphological characteristics that included hyaline, single-celled, ovulariatype conidia, irregular in shape, $5.2-14.5 \times 1.5-7 \mu \mathrm{~m}$ (CLA media), produced on brown conidiophores that had dendritic branches with a single central basal cell. In this study, the conidiophores observed were always hyaline but a different culture medium was used to that of Batzer et al. (2005).

Ramularia miae Crous, Fungal Planet No. 3. 2006.

Specimens examined: South Africa, on Wachendorfia thyrsiflora, 4 Jan. 2006, M.K. Crous \& P.W. Crous (holotype CBS H-19763, ex-type culture CBS $120121=$ CPC 12736), idem. cultures CPC 12737, CPC 12738; on Gazania rigens var. uniflora, 9 Aug. 2011, P.W. Crous, culture CPC 19835; on Leonotis leonurus, 30 Jul. 2011, P.W. Crous, culture CPC 19770; on Wachendorfia thyrsiflora, 28 Oct. 2012, M.J. Wingfield, culture CPC 21692.

Substrate and distribution: On Gazania rigens var. uniflora (Asteraceae), Leonotis leonurus (Lamiaceae) and Wachendorfia thyrsiflora (Haemodoraceae); South Africa.

Notes: See Crous and Groenewald (2006) and Videira et al. (2015a). The phylogenetic analyses provide high support for this species clade (Fig. 2, clade 29, 1/100/100).

Ramularia neodeusta Videira \& Crous, sp. nov. MycoBank MB817159.

Etymology: Named after its morphological similarity to Ramularia deusta.

Cultures sterile. Ramularia neodeusta (Fig. 2, clade 15), differs from its closest phylogenetic neighbour, R. vallisumbrosae (Fig. 2, clade 16), by unique allelles in five loci based on alignments of the separate loci deposited in TreeBASE as Study S19315: rpb2 positions 12(C), 15(A), $27(\mathrm{G}), 39(\mathrm{~A}), 45(\mathrm{G}), 54(\mathrm{C}), 63(\mathrm{G}), 75(\mathrm{~A}), 87(\mathrm{~A}), 99(\mathrm{C}), 120(\mathrm{G}), 135(\mathrm{C}), 150(\mathrm{C}), 151(\mathrm{~T})$, $165(\mathrm{C}), 168(\mathrm{~T}), 171(\mathrm{~T}), 186(\mathrm{G}), 189(\mathrm{C}), 195(\mathrm{~T}), 201(\mathrm{G}), 204(\mathrm{~T}), 234(\mathrm{C}), 240(\mathrm{G}), 246(\mathrm{C})$, 252(C), 253(T), 264(A), 285(T), 297(G), 303(G), 318(C), 321(G), 324(C), 327(A), 330(G), 333(A), 336(A), 354(A), 357(A), 363(G), 375(G), 378(C), 387(T), 405(G), 411(T), 420(T), 441(G), 447(G), 456(T), 468(T), 478(G), 480(G), 483(C), 489(C), 492(T), 499(T), 504(C), $505(\mathrm{~A}), 507(\mathrm{~T}), 511(\mathrm{G}), 519(\mathrm{G}), 524(\mathrm{~A}), 532(\mathrm{C}), 540(\mathrm{C}), 546(\mathrm{~A}), 570(\mathrm{~A}), 576(\mathrm{~T}), 582(\mathrm{G})$, $591(\mathrm{C}), 597(\mathrm{~A}), 630(\mathrm{~A}), 639(\mathrm{~T}), 642(\mathrm{~A}), 651(\mathrm{~A})$; ITS positions $77(\mathrm{~A}), 81(\mathrm{~T}), 82(\mathrm{C}), 108(\mathrm{G})$, 109(A), 110-111 deletion (TC), 342(A), 419(A), 420(G), 472(G), $500(\mathrm{C}) ;$ actA positions $19(\mathrm{~T})$, 31(G), 34(T), 49(C), 59(C), 61(A), 62(T), 63-67 insertion (GAGCA), 68(G), 69(C), 73(C), 8283 deletion (AC), 86-88 deletion (CGA) 95(A), 96(G), 98(A), 99(A), 101(C), 108(T), 115(T), $116(\mathrm{~T}), 121(\mathrm{~A}), 122(\mathrm{~T}), 153(\mathrm{C}), 164(\mathrm{C}), 167(\mathrm{~T}), 182(\mathrm{~T}), 186(\mathrm{~T}), 208(\mathrm{C}), 210(\mathrm{~A}), 211(\mathrm{~T})$, 233(A), 238(C); gapdh positions $13(\mathrm{G}), 18(\mathrm{~A}), 30(\mathrm{C}), 39(\mathrm{~A}), 41(\mathrm{~A}), 42(\mathrm{C}), 44(\mathrm{G}), 47(\mathrm{G})$,

49(C), 60(G), 65(A), 66(G), 68(C), 101(G), 106(A), 113 deletion (C), 114(C), 116(G), 131(C), 140(C), 167(C), 200(C), 206(T), 207(C), 208(G), 210(T), 258(T), 259(C), 260(C), 262-263 insertion (TA), 264(C), 265 insertion (A), 267 insertion (G), 268(A), 269(A), 270(T), 271(A), 281(G), 282(G), 284(C), 286(C), 287(C), 288(G), 290(T), 292(C), 298(T), 299(T), 305(T), 307(T), 308(C), 313 deletion (G), 314(C), 315(C), 374(C), 389(C), 431(T), 449(A), 455(C), 506(T), 548(C), 554(C), 566(T), 584(T), 593(T), 614(C), 623(T), 626(T); tef1- α positions 14(T), 15(T), 16(T), 20(T), 22(C), 23(C), 24(T), 26 deletion (C), 27(T), 29 deletion (T), 45 deletion (CTC), 48(A), 49(C), 52(A), 57(G), 58(C), 86(C), 95(A), 99(T), 107(A), 129(T), 145(T), 178 deletion (T), 195(C), 212(T), 226-228 insertion (TAA), 232(A), 241(A), 242(A), 247(T), 255(C), 256(C), 257(A), 269(A), 271(T), 291(C), 292(C), 294(A), 304(T), 307-310 insertion (CTAT), 311(G), 313(A), 316(C), 398(T), 400(C), 401(T), 404(A), 406(C), 407(A), 409(A), 410(C), 411-424 insertion (TTCTCAACAAACTT), 427(T), 431(A), 432(A), 434(T), 447(C), 448(A), 450(T), 455(C), 578(T).

Specimens examined: New Zealand, on leaf of Vicia faba, 25 Oct. 2005, C.F. Hill (holotype CBS H-22525, culture ex-type CBS 141115 = CPC 13567); on leaf of Lathyrus odoratus, 23 Oct. 2005, C.F. Hill, culture CPC 13568.

Notes: This strain was initially identified as R. deusta var. alba, a species that was previously reported from New Zealand on Lathyrus pratensis and L. latifolius. However, an authentic strain of R. deusta can be found in clade 62 (Fig. 2). Therefore, the strains in this clade represent a new species that is highly supported (Fig. 2, clade 15, 1/100/100). Unfortunately the strains were sterile and therefore a molecular description is provided.

Ramularia nyssicola (Cooke) Videira \& Crous, Persoonia 34: 60. 2015.
Basionym: Sphaerella nyssicola Cooke, Hedwigia 17: 40. 1878.
\equiv Mycosphaerella nyssicola (Cooke) F.A. Wolf, Mycologia 32: 333. 1940.
Description: See Minnis et al. (2011b).
Specimens examined: USA, Maryland, Prince George's County, Glen Dale, on overwintered leaves Nyssa ogeche \times sylvatica hybrid, R.T. Olsen, culture CBS 127664; same location, substrate and collector, 18 Jun. 2009 (epitype BPI 880897, AR 4656, culture ex-epitype CBS 127665).

Substrate and distribution: On Nyssa (Cornaceae); N. America (eastern USA).

Notes: See Minnis et al. (2011b), who designated an epitype for the species, and Videira et al. (2015a) who reassigned the species to the genus Ramularia. The phylogenetic analyses provide high support to this species clade (Fig. 2, clade 81, 1/100/100).

Ramularia osterici Videira, H.D. Shin \& Crous, sp. nov. MycoBank MB816851. Fig. 58.

Etymology: Named after the host genus on which it occurs, Ostericum.
Mycelium consisting of hyaline, septate, branched, smooth, 1-2.5 $\mu \mathrm{m}$ diam hyphae. Conidiophores hyaline, erect, 1-3(-5)-septate, straight, cylindrical-oblong, unbranched (13-)

Fig. 58. Ramularia osterici (CPC 10751). A, B. Observations from herbarium material. C-G. Structures formed in culture. A. Leaf spot symptoms on the host. B-D, F, G. Conidiophores, conidiogenous cells and conidia. E. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
$34-51(-140) \times(1.5-) 2-2.5(-3) \mu \mathrm{m}$ or reduced to conidiogenous cells. Conidiogenous cells hyaline, smooth, integrated in mycelium or terminal in conidiophores, cylindrical-oblong, (10-) 17.5-21(-30) $\times(2-) 2.5-3(-4) \mu \mathrm{m}$, with one apical conidiogenous locus, almost flat, thickened, darkened, refractive. Conidia hyaline, smooth, catenate, with hila thickened, darkened, refractive. Ramoconidia subcylindrical, clavate, with broader apices and narrower centre, $(10-) 14.5-17.5(-30) \times(2-) 3(-4) \mu \mathrm{m}, 0-1$-septate, with two apical hila. Intercalary conidia subcylindrical, fusoid, sometimes curved, $0-1$-septate, $(9.5-) 12.5-14(-18) \times(2.5-) 3(-$ 4) $\mu \mathrm{m}$, in branched chains of up to eight conidia. Terminal conidia subcylindrical to obovoid, $(4.5-) 8-9.5(-14.5) \times(2-) 2.5-3(-3.5) \mu \mathrm{m}$.

Culture characteristics: On MEA, 10 mm diam, surface raised, strongly folded, smooth, pale smoke-grey with margins undulate, colony reverse iron-grey; on OA, 13 mm diam, surface convex, fluffy aerial mycelium, white to buff, with margins undulate, colony reverse buff; on PDA, 14 mm diam, surface raised, folded, with fluffy aerial mycelium white to buff, with margins undulate, colony reverse buff with iron-grey patches.

Specimens examined: South Korea, Pyeongchang, on Ostericum grosseserratum (\equiv Angelica grosseserrata, $=$ Ostericum koreanum), 20 Sep. 2003, H.D. Shin (holotype KUS-F19687, isotype CBS H-22545, culture ex-type CBS $141116=$ CPC 10750); idem. CPC 10751, CPC 10752.

Substrate and distribution: On Ostericum (Apiaceae); Asia (South Korea).
Notes: Ramularia osterici is morphologically similar to R. archangelicae, but with shorter and broader ramoconidia, intercalary and terminal conidia (Fig. 58), and it does not produce any
pigment in culture. Strains CBS 108991 (R. archangelicae) and CPC 10751 (R. osterici) are identical based on their ITS sequences but differ in several nucleotides in the other six genes amplified: 1 (LSU), 24 (actA), 32 (gapdh), 45 (tefl- α), 25 (his 3), 26 (cmdA). The R. osterici clade is highly supported (Fig. 2, clade 20, 1/100/100). This is the first Ramularia species described on Ostericum (Apiaceae).

Ramularia parietariae Pass., in Rabenh., Fungi Eur. Exs., Ed. nov., Ser. sec., Cent. 2 (resp. Cent. 21), no. 2066: 1876.
\equiv Cylindrospora parietariae (Pass.) J. Schröt., in Cohn, Krypt.-Fl. Schlesien 3.2(4): 493: 1897.
$=$ Ramularia parietariae var. minor Bub ak, Bull. Herb. Boiss., 2 S er., 6: 486. 1906.

Description in vivo: See Braun (1998: 274).
Specimens examined: Czech Republic, Moravia, Pavlov, forest around the ruin, on leaf spot on Parietaria officinalis, 18 Sep. 2008, G. Verkley, cultures CBS 123730, CBS 123731. Italy, Parma, Gajone, on Parietaria officinalis, Oct. 1874, Passerini [Rabenh., Fungi Eur. Exs. 2066; lectotype, designated in Braun (1998), in HAL].

Substrate and distribution: On Parietaria (Urticaceae); Central Asia, Caucasus, Europe, Israel, N. Africa, N. America.

Notes: Ramularia parietariae was originally described on Parietaria officinalis from Italy (lectotype in HAL), but it is also pathogenic to other species of the genus Parietaria. Phylogenetic analyses showed that these strains cluster together in a highly supported clade (Fig. 2, clade 47, $1 / 100 / 100$).

Ramularia phacae-frigidae (E. Müll. \& Wehm.) Videira \& Crous, Fungal Biol. 119: 836. 2015. Basionym: Mycosphaerella phacae-frigidae E. Müll. \& Wehm., Sydowia 8: 190. 1954.

Specimen examined: Switzerland, Corveglia, above St. Moritz, on dead leaves of Phaca frigida, 20 Jul. 1953, E. Müller (holotype in ZT, ex-type culture CBS 234.55).

Substrate and distribution: On Phaca frigida (Fabaceae), Europe (Switzerland).
Notes: Ramularia phacae-frigidae was originally described as Mycosphaerella phacaefrigidae, a pathogen infecting Phaca frigida from Helvetia (holotype in ZT). Although Müller \& Wehmeyer (1954) mentioned the presence of Ramularia and Asteromella morphs in his description of Mycosphaerella phacae-frigidae, he refrained from naming them. The allocation to Ramularia was based on the phylogenetic position of the ex-type culture (Videira et al. 2015b), which in this study is located in clade 63 (Fig. 2).

Ramularia plurivora Videira \& Crous, Persoonia 34: 60. 2015.
Description: Videira et al. (2015a).
Specimens examined: Netherlands, Den Haag, Laboratory of Medical Microbiology, Hospital Leyenburg, from human bone marrow, 2005 (holotype CBS H-21619, culture ex-type CBS

118743 = CPC 12207); Hilversum, Central Biological and Serological Laboratory, on human skin from neck, 20 May 2005, culture CBS 118693 = CPC 12206; on melon in storage, 1 Jan. 2008, J.H. Houbraken, culture CPC 16123, CPC 16124. South Korea, on Coleosporium plectranthi on Plectranthus excisus, 2004, H.D. Shin, CPC 11517.

Substrate and distribution: On human samples, on Cucumis sp., on Coleosporium plectranthi on Plectranthus excisus; in Europe (Netherlands) and East Asia (South Korea).

Notes: See Videira et al. (2015a). Phylogenetic analyses provided high support for this species clade (Fig. 2, clade 35, 1/100/100).

Ramularia pratensis Sacc. var. pratensis, Fungi ital. Del., Tab. 998. 1881, and Michelia 2: 550. 1882 emend. U. Braun, 1998. Fig. 59.
= Ramularia rhei Allesch., Hedwigia 35: 34. 1896.
= Ovularia rumicis A. G. Eliasson, Bih. Kungl. Svenska Vetenskapsakad. Handl. 22, Afd. 3, 12: 18. 1897.
= Ramularia rumicis-crispi Sawada, Rep. Dept. Agric. Gov. Res. Inst. Formosa 85: 89. 1943.
= Ramularia oxyriae-digynae Gjaerum, Norweg. J. Bot. 18: 110. 1971.
Mycelium consisting of hyaline, septate, branched, smooth, 1-2 $\mu \mathrm{m}$ diam hyphae. Conidiophores reduced to conidiogenous cells, hyaline, thin-walled, smooth, integrated in mycelium or terminal in conidiophores, cylindrical-oblong and narrower at the top, (5.5-)12-15(-27) $\times(1.5-) 2(-3) \mu \mathrm{m}$, with 1-2 apical conidiogenous loci almost flat to short cylindrical; conidiogenous loci thickened, darkened, refractive, $1 \mu \mathrm{~m}$ diam. Ramoconidia hyaline, thin-walled, smooth, subcylindrical to

Fig. 59. Ramularia pratensis var. pratensis (CBS 122105). A-C. Observations from herbarium material. D-H. Structures formed in culture. A. Leaf spot symptoms on the host. B. Conidiogenous cells and conidia. D, G, H. Conidiophores, conidiogenous cells and conidia. C, E, F. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
obclavate, (5-)8.5-11(-19) $\times(2-) 2.5-3(-4) \mu \mathrm{m}$, aseptate to $1-3$-septate, with $2-3$ apical hila. Intercalary conidia hyaline, smooth, aseptate or $1-3$-septate, subcylindrical with apices rounded and broader, $(5-) 7-8(-11.5) \times 2-2.5(-3) \mu \mathrm{m}$, in branched chains of up to seven conidia. Terminal conidia, hyaline, smooth, aseptate, obovoid, (3-)4.5-5(-6) $\times 2-2.5(-3) \mu \mathrm{m}$, hila thickened, darkened, refractive, $1 \mu \mathrm{~m}$ diam.

Culture characteristics: On MEA, 18 mm diam, surface low convex, folded, fluffy aerial mycelium, pale olivaceous grey and dirty white, with margins undulate, convex, feathery, colony reverse iron-grey and buff margin; on OA, 30 mm diam, surface flat, smooth aerial mycelium, dirty white, transparent exudate small droplets, margins with entire edge with no aerial mycelium, colony reverse violet slate; on PDA, 30 mm diam, surface flat, fluffy aerial mycelium, pale olivaceous grey and olivaceous grey, with margins crenate, with sparse aerial mycelium, colony reverse slate blue with buff margin.

Description in vivo: See Braun (1998: 123).
Specimens examined: Canada, Stittsville, Ontario, on Verbascum sp., 12 Jul. 2009, K.A. Seifert, culture CPC 16868. Italy, Padova, on Rumex acetosa, herb. Saccardo (holotype PAD); Taiwan, Hualian County, Hehuanshan, on living leaves of Rumex sp., 3 Apr. 2007, R. Kirschner \& C.J. Chen, culture CBS 122105. Unknown country, unknown collection details, culture CPC 19448.

Substrate and distribution: On Oxyria, Rheum, and Rumex (Polygonaceae), and Verbascum (Scrophulariaceae); Asia, Caucasus, Europe, N. and S. America.

Notes: Two varieties of Ramularia pratensis have been described, R. pratensis var. pratensis (on numerous Rumex species) with broader conidia, (6-)8-25(-35) $\times(1.5-) 2-4(-5) \mu \mathrm{m}$), and R. pratensis var. angustiformis (Rumex acetosella, USA, holotype in NY) with very narrow conidia, $10-35 \times 1.5-2 \mu \mathrm{~m}$. It is the first time R. pratensis var. pratensis is reported from the host Verbascum (Scrophulariaceae). Ramularia rhei, currently a synonym of R. pratensis var. pratensis, has been reported as the causal agent of rhubarb leaf and petiole spot disease in the UK (Zhao et al. 2002). Rhubarb (Rheum rhaponticum) is a perennial crop that that is largely grown in northern Europe, the USA and Canada. Rhubarb petioles are mainly used in domestic food and in processed products such as jams, syrups and wine (Foust \& Marshall 1991). Since the disease is not yet a problem of economic importance to rhubarb production in Europe, little research and investigation have been conducted on its biology and epidemiology, besides the work of Zhao et al. (2006) comparing the effect of temperature on conidial germination. This species clade is highly supported by the phylogenetic analyses (Fig. 2, clade 23, 1/100/100), and the strain CBS 122105 is considered a good representative of the species based on its morphological characters (Fig. 59).

Ramularia proteae Crous \& Summerell, Austral. Pl. Pathol. 29: 277. 2000.
Specimen examined: Australia, Tasmania, on Protea longifolia, Aug. 1999, A. Macfadyen (holotype DAR 74883, culture ex-type CBS 112161 = CPC 3075).

Substrate and distribution: Thus far only known from the type location.

Notes: Ramularia proteae was the first Ramularia species reported from a Protea host. It was observed causing a leaf spot disease on P. longifolia in Tasmania (Crous et al. 2000). Ramularia proteae is morphologically similar to R. stellenboschensis, described from South Africa but with smaller and fusoid conidia. This species clusters very close to R. stellenbochensis in the phylogenetic analyses (Fig. 1, clade XIV) and was not included in the multigene phylogeny because it was not possible to amplify the tefl- α partial gene.

Ramularia pusilla Unger, Exanth. Pfl.: 169. 1833. Fig. 60.
\equiv Caeoma pusilla (Unger) Bonord., Handb. Mykol.: 41. 1851.
\equiv Ovularia pusilla (Unger) Sacc., Syll. Fung. 4: 140. 1886.
= Ramularia pulchella Ces., Bot. Zeitung (Berlin) 11: 238. 1853.
For additional synonyms see Braun (1998) or MycoBank.
Mycelium consisting of hyaline, septate, branched, smooth, $0.5-1 \mu \mathrm{~m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, 1-3-septate, cylindrical-oblong, straight and apically geniculate-sinuous, unbranched (7.5-)37-50(-96) $\times(1-) 2(-3) \mu \mathrm{m}$. Conidiogenous cells terminal on conidiophores, cylindrical-oblong to geniculate-sinuous, narrower at the top, (6.0-)19-23(-37) $\times(1-) 2(-3) \mu \mathrm{m}$, with multiple conidiogenous loci almost flat to protuberant and in a terminal or lateral position, thickened, darkened, refractive. Conidia formed singly, hyaline, thin-walled, smooth to verruculose, aseptate, ellipsoidal to obovoid, (5-)8-10(-15) \times (3-)5-6(-8) $\mu \mathrm{m}$, hila thickened, darkened, refractive. Sporulating on SNA.

Culture characteristics: On MEA, 12 mm diam, surface raised, with white fluffy mycelium with a rosy-buff tinge, margins lobate, feathery and convex, colony reverse buff; on OA, 15 mm diam, surface wavy, smooth, with white to buff aerial mycelium, margins entire, colony

Fig. 60. Ramularia pusilla (CBS 124973). A-H. Structures formed in culture. A-C, F. Conidiophores and conidia. D, G. Conidia. E, H. Conidiophores. Scale bars $=10 \mu \mathrm{~m}$.
reverse fawn; on PDA, 12 mm diam, surface flat, smooth, with fluffy white to buff mycelium, with margins entire, colony reverse buff.

Description in vivo: See Braun (1998: 205).

Specimens examined: Austria, on Poa nemoralis, Unger, Exanth. Pfl., Pl. II, fig. 12, lectotype (iconotype, see Braun 1998). Germany, Frankfurt am Main, Botanical Garden, on leaves of Роа аппиа, 25 Feb. 2008, R. Kirschner (epitype designated here CBS H-22527, MBT204832, culture ex-epitype CBS 124973).

Substrate and distribution: Agropyrum, Agrostis, Alopecurus, Anthoxanthum, Arctagrostis, Arrhenatherum, Bromus, Calamagrostis, Cinna, Cynosurus, Dactylis, Deschampsia, Elymus, Eremopyrum, Festuca, Glyceria, Helictotrichon, Hierochlöe, Hordeum, Lolium, Melica, Muhlenbergia, Phalaris, Phleum, Poa, Puccinellia, Trisetum, Triticum, Vulpia, and other undetermined grasses (Poaceae), almost circumglobal.

Notes: Ramularia pusilla is the type species of the genus Ramularia and has a broad host range within the family Poaceae and a worldwide distribution (Braun 1998). Two varieties of Ramularia pusilla are known, R. pusilla var. pusilla (on Poa nemoralis, Austria, iconotype) with conidiophores in small fascicles of 2-6, and R. pusilla var. baldingerae (on Phalaris arundinacea, Sweden, holotype in UPS), forming large tufts of conidiophores of 5-20. Strain CBS 124973 was examined by means of morphology and LSU sequence data in a previous study (Kirschner 2009), and was considered to be a good representative of the type species of the genus. In this study this strain forms a single lineage (Fig. 1, clade XIV; Fig. 2, clade 39) and is closely related to R. collo-cygni. The existing type material of this species consists of the original illustration (iconotype) since the original type material was not preserved and appropriate material for a neotypification could not be traced (Braun 1998). We hereby designate the strain CBS 124973 as ex-epitype culture of R. pusilla (Fig. 60).

Ramularia rhabdospora (Berk. \& Broome) Nannf., Fungi Exs. Suec. Fasc. 39-40, Sched.: 32. 1950.

Basionym: Cylindrosporium rhabdosporum Berk. \& Broome, Ann. Mag. Nat. Hist. 15: 34. 1875.
= Ramularia plantaginis Peck, Rep. (Annual) New York State Mus. Nat. Hist. 32: 43. 1879 (1880).
\equiv Ramularia peckii Sacc. \& P. Syd., Syll. Fung. 14: 1065. 1899, nom. illeg. (superfl.). For additional synonyms see Braun (1998) or MycoBank.

Description in vivo: See Braun (1998: 197).
Specimens examined: Germany, on unknown host, unknown date, S. Petzoldt, culture CBS 312.92. New Zealand, Auckland, Grey Lynn, on Plantago lanceolata, unknown collector and date, isol. C.F. Hill, Jul. 2005, dep. C.F. Hill, culture CBS 118415. UK, Glamis, on Plantago lanceolata, Berkeley (holotype K).

Substrate and distribution: On Plantago (Plantaginaceae); Asia, Caucasus, Europe, N. and S. America, New Zealand.

Notes: Ramularia rhabdospora was originally described on Plantago lanceolata from England (holotype in K) but has since been reported from several other countries (Braun 1998). Two species have been described from the host Plantago, R. rhabdospora and R. kriegeriana. Traditionally, these species are distinguished by the ornamentation of the conidia that is echinulate in R. rhabdospora and verruculose in R. kriegeriana, which is correlated with the phylogenetic affinity of the host species. Plantago lanceolata, the principal host of R. rhabdospora belongs in Plantago subgen. Psyllium, and P. major, the principal host of R. kriegeriana, is a species of Plantago subgen. Plantago (Rønsted et al. 2002). Phylogenetically, these two strains cluster apart, with R. rhabdospora in clade 57 and R. kriegeriana in clade 65 (Fig. 2) and are morphologically easily distinguishable.

Ramularia rubella (Bonord.) Nannf., in Lundell \& Nannf., Fungi Exs.. Suec., Fasc. 39-40: 33. 1950. Fig. 61.

Basionym: Crocysporium rubellum Bonord., Bot. Zeitung (Berlin) 19: 201. 1861.
\equiv Ovullaria rubella (Bonord.) Sacc., Syll. Fung. 4: 145. 1886.
= Oidium monosporium Westend., Bull. Soc. Roy. Bot. Belgique 2: 252. 1863.
= Ramularia obovata Fuckel, Hedwigia. 5: 50. 1866.
= Ramularia circumfusa Ellis \& Everh., Proc. Acad. Nat. Sci. Philadelphia 47: 437. 1895.
For additional synonyms see Braun (1998).
Mycelium consisting of hyaline, septate, branched, smooth to verruculose, $1.5-3 \mu \mathrm{~m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth to verruculose, erect, multiseptate, cylindricaloblong, straight, unbranched (31-)73-115(-282) $\times(2-) 2.5-3(-5) \mu \mathrm{m}$. Conidiogenous cells terminal on conidiophores, cylindrical-oblong, 16-40 $\times 2-3 \mu \mathrm{~m}$, with one conidiogenous locus, almost flat and in a terminal or lateral position thickened, darkened, refractive. Conidia formed singly, hyaline, thin-walled, smooth to verruculose, mostly aseptate and rarely 1 -septate, ellipsoid to obovoid, (15-)26-35(-54) $\times(5-) 6-7(-9) \mu \mathrm{m}$; hila thickened, darkened, refractive.

Culture characteristics: On MEA, 7 mm diam, surface raised, irregular, with flat mycelium, white, with undulate margins and colony reverse olivaceous; on $\mathrm{OA}, 8 \mathrm{~mm}$ diam, surface raised in the centre and flattening towards the edge, smooth rosy-buff mycelium, radially striated, producing tiny droplets of exudate in the centre, with undulate edge and colony reverse ochraceous; on PDA, 9 mm diam, surface raised, irregular, smooth mycelium, white to rosybuff, producing tiny droplets of exudate, with crenate margins, colony reverse iron-grey.

Description in vivo: See Braun (1998: 210).
Specimens examined: Germany, Guestphalia, On Rumex aquaticus, Bonorden, holotype not preserved]. Luxembourg, Kantenbach, on leaf spot on Rumex obtusifolius, unknown collector and date, isol. L. Marvanová, 25 Sep. 1967, dep. L. Marvanová, Oct. 1967, culture CBS 433.67. Mexico, Montecillo, on Rumex sp., 22 Sep. 2008, M. de Jesús Yáñez-Morales, cultures CPC 15748-15750; Montecillo, on Rumex sp., 1 Oct. 2008, M. de Jesús Yáñez-Morales, culture CPC 15821. Netherlands, Utrecht, on Rumex sp., May 2013, U. Damm, (neotype designated here, herbarium CBS H-22528, MBT204835, culture ex-neotype CBS 141117 = CPC 25911); Gelderland Prov., Wageningen, on Prunus sp., 23 May 2011, W. Quaedvlieg, cultures CPC 19471, CPC 19472. New Zealand, Auckland, Mt. Albert, on Rumex obtusifolius, unknown collector and date, isol. C.F. Hill, Jul. 2005, dep. C.F. Hill, culture CBS 120161. Sweden,

Fig. 61. Ramularia rubella (CBS 120161). A-J. Structures formed in culture. A, D. Conidiophore and conidia. B, C, F. Conidiophores. E, G-J. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Uppland, Haga, Årtopet, on Rumex longifolius, 16 Sep. 1988, E. Gunnerbeck, culture CBS 114440.

Substrate and distribution: On Polygonum s. lat. and Rumex (Polygonaceae); almost circumglobal.

Notes: Ramularia rubella was originally described on Rumex aquaticus from Germany, but it has a wide geographical distribution in association with the host Rumex, while it is very rarely observed infecting Polygonum s. lat. (Braun 1998). As a necrotroph, Ramularia rubella shows promise as a biological control agent against Rumex obtusifolius by causing severe defoliation, shoot and root weight loss (Huber-Meinicke et al. 1989). The available strains form a highly supported clade based on the employed phylogenetic methods (Fig. 2, clade 79, 1/100/100). The morphological description of the isolates (Fig. 61) in this clade is in agreement with the one presented in literature (Braun 1998), except the conidiophores were reduced to conidiogenous cells in culture. Because of the long, solitary conidia and sometimes broad conidiogenous loci and hila, some of the strains were initially confused with Cercosporella.

Ramularia rufibasis (Berk. \& Broome) Gunnerb. \& Constant., Thunbergia 15: 77. 1991.
Basionym: Peronospora rufibasis Berk. \& Broome, Ann. Mag. Nat. Hist. 15: 34. 1875.
\equiv Ovularia rufibasis (Berk. \& Broome) Massee, Brit. fung.-fl. 3: 322. 1893.
\equiv Phacellium rufibasis (Berk. \& Broome) U. Braun, Nova Hedwigia 54: 471. 1992.
$=$ Ramularia destructiva W. Phillips \& Plowr., Grevillea 6(37): 22. 1877.
$=$ Ovularia monilioides Ellis \& G. Martin, Amer. Naturalist 19: 76. 1885.
Description in vivo: See Braun (1998: 328).

Specimens examined: Sweden, Uppland, Järlåsa, on leaves of Myrica gale, 17 Sep. 1990, E. Gunnerbeck, culture CBS 114567. UK, Glamis, on Myrica gale, herb. Berkeley (holotype of Peronospora rufibasis in K); King's Lynn, on Myrica gale, May 1876, Plowright [Rabenh., Fungi. Eur. Exs. 2267; lectotype of Ramularia destructiva, designated in Braun (1998), in HAL]. USA, Massachusetts, Magnolia, Myrica gale, Jun. 1884, C.H. Clarke [lectotype of Ovularia monilioides, designated in Braun (1998), in NY 938246].

Substrate and distribution: On Comptonia and Myrica (Myricaceae); Asia, Canary Islands, Europe, N. America)

Notes: Ramularia destructiva, described on Myrica gale from England (holotype in K), was reassigned to the genus Phacellium as Phacellium rufibasis (Braun 1992) due to the production of synnematous conidiophores. The genus Phacellium is now considered a synonym of Ramularia as the production of synnemata was deemed as an unreliable character to separate these two genera. The strain used in this study clusters within the genus Ramularia (Fig. 1, clade XIV), and formed a single lineage (Fig. 2, clade 82) basal to R. nyssicola (clade 81), but positioned on a very long branch, which supports this species as unique. Unfortunately, the strain was sterile in culture and morphological data could not be evaluated. This lineage is for now maintained as a representative of R. rufibasis, until fresh material is collected and more information becomes available. This species causes the Ramularia dieback disease of Myrica faya in its natural habitat, affecting young shoots and causing leaf spots (Gardner \& Hodges 1990). Myrica faya is considered an invasive plant in Hawaii and this pathogen represents a potentially good biocontrol agent, but no studies for field applications have been conducted thus far.

Ramularia rumicicola Videira, H.D. Shin \& Crous, sp. nov. MycoBank MB816852. Fig. 62.
Etymology: Named after the host genus from which it was collected, Rumex.
Mycelium consisting of hyaline, septate, branched, smooth, 1-2 $\mu \mathrm{m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, septate, straight, cylindrical-oblong, unbranched, (11.5$) 33.5-50(-74) \times(1.5-) 2(-3) \mu \mathrm{m}$ or reduced to conidiogenous cells. Conidiogenous cells integrated in mycelium or terminal in conidiophores, cylindrical-oblong to geniculate-sinuous, (8-)10.5-13(-18) $\times(1.5-) 2(-3) \mu \mathrm{m}$, with $1-2$ apical conidiogenous loci, thickened, darkened, refractive. Conidia hyaline, thin-walled, smooth, catenate, with hila thickened, darkened and refractive. Ramoconidia subcylindrical, (8.5-)13.5-16(-20) $\times 2-2.5(-3) \mu \mathrm{m}, 0-1$-septate, with 2-3 apical hila. Intercalary conidia subcylindrical to fusoid, $0-1$-septate, (7.5-)11-13(-19) \times $2-2.5(-3) \mu \mathrm{m}$, in branched chains of up to seven conidia. Terminal conidia subcylindrical to obovoid, aseptate, $(5-) 7.5-9(-13) \times 2-2.5(-3) \mu \mathrm{m}$.

Culture characteristics: On MEA, 30 mm diam, surface concave, radially striated, smooth mycelium, white with greyish tinge, with margins undulate and feathery, colony reverse iron grey; on OA, 35 mm diam, surface flat and buff with a purplish grey centre except for a slice of white and grey olivaceous fluffy mycelium, margins entire, colony reverse buff with iron grey centre; on PDA, 40 mm diam, surface flat with short hairy mycelium, dark grey olivaceous, with margins entire, sparse in mycelium and feathery, colony reverse iron grey at the centre and grey olivaceous margin.

Fig. 62. Ramularia rumicicola (CBS 141118). A-D. Observations from herbarium material. E-H. Structures formed in culture. A. Leaf spot symptoms on the host. B, C, E, F. Conidiophores and conidia. D. Conidiophores and conidiogenous cells. G. Conidia. H. Conidiogenous cell and conidia. Scale bars $=10 \mu \mathrm{~m}$.

Specimen examined: South Korea, Jinju, on Rumex crispus, 14 May 2004, H.D. Shin (holotype KUS-F20194, isotype CBS H-22529, culture ex-type CBS 141118 = CPC 11294); idem. CPC 11295, CPC 11296.

Notes: Ramularia rumicicola formed a highly supported clade (Fig. 2, clade 24, 1/100/100). It differs from R. pratensis by having larger ramo-, intercalary and terminal conidia, and by culture characteristics (Fig. 62).

Ramularia rumicis Kalchbr. \& Cooke, Grevillea 8: 23. 1880.
= Ramularia decipiens Ellis \& Everh., J. Mycol. 1: 70. 1885.
Description in vivo: See Braun (1998: 216).
Specimens examined: South Africa, Cape, Somerset-East, on Rumex obtusifolius, MacOwan 1180 [lectotype, designated in Braun (1998), in B]. Sweden, Uppland, Dalby, Jerusalem, on Rumex aquaticus, 7 Sep. 1988, E. Gunnerbeck, culture CBS 114300.

Substrate and distribution: On Rumex (Polygonaceae); Asia, Caucasus, Europe, Africa, N. America.

Notes: Ramularia rumicis was originally described on Rumex obtusifolius from South Africa (lectotype in B) and has a very wide geographical distribution (Braun 1998). This species forms a single lineage (Fig. 2, clade 26). In literature (Braun 1998), a total of seven Ramularia
species, including four varieties, have been described from Rumex. Ramularia rubella (Fig. 2, clade 79) and R. pratensis var. pratensis (Fig. 2, clade 23) have a circumglobal distribution. Ramularia bulgarica (on Rumex alpinus, Bulgaria, holotype in BPI) is only known from Europe. Ramularia occidentalis var. occidentalis (on Rumex britannica, lectotype in NY), Ramularia pseudodecipiens (on Rumex venosus, holotype in NY) and R. pratensis var. angustifolia (on Rumex acetosella, holotype in NY) are only known from the USA. Braun (1998) stated that R. bulgarica is closely related to R. pratensis but no culture was available for this study.

Ramularia sp. D Fig. 63

Mycelium consisting of hyaline, septate, branched, smooth, $1-2 \mu \mathrm{~m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, septate, cylindrical-oblong, straight, unbranched (44-)71-$92(-129) \times 2 \mu \mathrm{~m}$, or reduced to conidiogenous cells. Conidiogenous cells integrated in the mycelium or terminal in the conidiophore, cylindrical-oblong, (24-)26.5-30(-35) $\times 2(-2.5)$ $\mu \mathrm{m}$, with one conidiogenous locus almost flat, thickened, darkened and refractive. Conidia hyaline, thin-walled, smooth, catenate, aseptate, with hila thickened, darkened and refractive. Ramoconidia cylindrical-oblong, sometimes curved, (16-)21-24(-34) $\times(1.5-) 2(-3) \mu \mathrm{m}$, with two protruding apical hila. Intercalary conidia cylindrical-oblong, apical apex sometimes curved, (14-)20-22(-30) $\times(1.5-) 2(-3) \mu \mathrm{m}$, in branched chains of up to five conidia. Terminal conidia cylindrical-obovoid, (7.5-)14-16(-22) $\times(1.4-) 2-2.5 \mu \mathrm{~m}$ (on SNA, CBS 135.23).

Culture characteristics: On MEA, 10 mm diam, surface raised, fluffy aerial mycelium, whitebuff, with margins lobate, colony reverse ochreous; on OA, 12 mm diam, surface flat, ochreous, with sparse white aerial mycelium, margins lobate, colony reverse cinnamon; on PDA, 11 mm diam, surface flat, fluffy white aerial mycelium, with margins lobate, colony reverse buff.

Fig. 63. Ramularia sp. D (CBS 135.23). A-F. Structures formed in culture. A, B, E. Conidia. C, D, F. Conidiophores, conidiogenous cells and conidia. Scale bars $=10 \mu \mathrm{~m}$.

Specimen examined: Unknown country, on Viola odorata, unknown collector and date, isol. and dep. L. Solberg, May 1923, culture CBS 135.23.

Notes: Although this isolate was originally identified as R. lactea, the morphological characteristics of this strain (Fig. 63) do not match with that of the original description of R. lactea (Braun 1998). Ramularia lactea has shorter conidiophores ($5-50 \times 1.5-4 \mu \mathrm{~m}$), and smooth to verruculose conidia (5-)8-18(-25) $\times(1.5-) 2-5(-6) \mu \mathrm{m}$. Three other Ramularia species have been described from Viola, namely R. coleosporii (Fig. 2, clade 66), R. agrestis and R. biflorae. Ramularia agrestis var. agrestis, R. agrestis var. deflectans and R. biflorae all produce septate conidia that are longer and wider than Ramularia sp. D. Ramularia sp. D (Fig. 2, clade 44) formed a single lineage closely related to R. abscondita. Although we suspect this culture to represent a new species, more material of other taxa occurring on Viola is required to make a suitable comparison.

Ramularia sphaeroidea Sacc., Michelia 1: 130. 1878. emend. U. Braun (1998: 151).
\equiv Ovularia sphaeroidea (Sacc.) Sacc., Fungi ital. Del., Tab. 979. 1881.
$=$ Ramularia viciae A.B. Frank, Krankh. Pfl., 1. Aufl.: 600. 1880.
= Peronospora exigua W.G. Smith, Diseases of Field and Garden Crops: 13. 1884.
= Ovularia lotophaga Ellis \& Everh., Proc. Acad. Nat. Sci. Phil. 47: 432. 1895.
= Pseudovularia trifolii Speg., Anales Mus. Nac. Hist. Nat. Buenos Aires 20: 418. 1910.
For additional synonyms see Braun (1998) or MycoBank.
Description in vivo: See Braun (1998: 151).
Specimens examined: Germany, Berlin, Spandau, on Lotus uliginosus, Jul. 1875, Magnus (holotype PAD). USA, California, on Vicia villosa subsp. varia, Apr. 2002, S.T. Koike, culture CBS 112891.

Substrate and distribution: On Chesneya, Glycyrrhiza, Lotus, Trifolium, and Vicia (Fabaceae); Central Asia, Caucasus, Europe, N. and S. America, Australia, New Zealand.

Notes: Ramularia sphaeroidea was originally described on Lotus uliginosus from Germany (holotype in PAD), but it is able to infect other hosts from Fabaceae worldwide. Vetches (Vicia spp.) are planted alone or in combination with other plants as cover crops in vegetable production areas in California. From 2001 to 2003, purple vetches (V. benhalensis) and lana woollypod vetches (V. villosa subsp. varia) in the Salinas Valley (Monterey county, California) developed a foliar disease. Based on morphological and molecular (ITS) data (CBS 112891, GenBank AY352584), the fungus was identified as Ramularia sphaeroidea. Pathogenicity was confirmed by spraying healthy plants with a conidial suspension in water (Koike et al. 2004). This strain formed a single lineage (Fig. 2, clade 12), but positioned on a long branch, which supports this species as unique. This clade is tentatively maintained as representative of the species until material from the type host and location are recollected and examined.

Ramularia stellariicola (M.J. Park et al.) Videira, H.D. Shin \& Crous, comb. nov. MycoBank MB817160
Basionym: Pseudocercosporella stellariicola M.J. Park et al., Mycotaxon 119: 270. 2012.

Specimen examined: South Korea, Namyangju, Korea University, on Stellaria aquatica, 3 May 2006, H.D. Shin \& M.J. Park (holotype KUS-F21740, culture ex-type KACC 42363 = CBS $130592=$ CPC 11297, CPC 11298).

Substrate and distribution: On Stellaria aquatica (Caryophyllaceae); Asia (South Korea).
Notes: At the time Pseudocercosporella stellariicola was described the ITS sequence placed it within the genus Ramularia, but morphologically it was better accommodated in Pseudocercosporella. However, this species is not congeneric with the type of Pseudocercosporella, P. bakeri (Fig. 1, clade XIX). Therefore, we propose a new combination in Ramularia. This species clusters in a highly supported clade (Fig. 2, clade 13, 1/ 100/100). No sexual morph of this species is known. Although it formed a sister clade to "Mycosphaerella cerastiicola", the latter species displays a cryptic septoria-like to pseudocercosporella-like asexual morph and differs in several nucleotides in the seven genes amplified: 2 (LSU), 9 (rpb2), 10 (ITS), 5 (actA), 9 (gapdh), 5 (tefl- α), 11 (his3). These taxa are maintained as separate species until further studies are conducted.

Ramularia stellenboschensis Crous, Persoonia 27: 37. 2011.
Specimen examined: South Africa, Western Cape Province, Stellenbosch, J.S. Marais Botanical Garden, on leaves of Protea sp., associated with leaf spots of Vizella interrupta, 6 May 2010, P.W. Crous (holotype CBS H-20678, cultures ex-type CBS $130600=$ CPC 18294).

Substrate and distribution: On Protea sp. (Proteaceae); Africa (South Africa).
Notes: Protea species are very popular due to their brightly coloured and textured flowers and fungal pathogens that damage the blooms are highly undesirable. Ramularia stellenboschensis was the first species of Ramularia described from Proteaceae in South Africa. This species formed a single lineage (Fig. 2, clade 22), but positioned in a long branch, basal to R. hydrangeaemacrophyllae (clade 21). It is closely related to R. proteae (Fig. 1, clade XIV) but differs from it by forming larger sudcylindrical conidia and by several nucleotides among the seven genes amplified: 16 (rpb2), 4 (ITS), 9 (actA), 12 (gapdh), 14 (tub2), 2 (his 3), 20 (cmdA).

Ramularia tovarae (Sawada) U. Braun, Internat. J. Mycol. Lichenol. 3: 283. 1988. Basionym: Ovularia tovarae Sawada, Bull. Gov. Forest. Exp. Stat. Tokyo 105: 83. 1958.

Description in vivo: See Braun (1998: 212).
Specimens examined: Japan, on Polygonum filiforme [Antenoron filiforme, Tovara filiforme] (Polygonaceae), syntypes, 26 May 1948, 16 Jun 1948 and 7 Nov. 1947, Sawada (not seen!). South Korea, Hongcheon, on Antenoron filiforme (\equiv Polygonum filiforme), 16 May 2003, H.D. Shin, KUS-F19471 (epitype designated here, MBT204827, HAL 1849 F, culture ex-epitype CBS 113305).

Substrate and distribution: Thus far only known from East Asia (Japan and South Korea), on Polygonum filiforme (Polygonaceae).

Notes: Ramularia tovarae was originally described on Polygonum filiforme from Japan and its distribution was limited to the type location. The only strain available representative of this species formed a single lineage (Fig. 2, clade 37), but positioned on a long branch that supports this species as unique. Although the strain did not sporulate in culture, the morphology observed in vivo corresponded to that described in literature (Braun 1998). Therefore, this specimen is considered as a good representative of the species and, despite being originary from South Korea, it is hereby designated as epitype.

Ramularia tricherae Lindr., Acta Soc. Fauna Fl. Fenn. 23: 38. 1902.
= Ramularia succisae var. knautiae C. Massal., Nuovo Giorn. Bot. Ital. 21: 169. 1889.
三 Ramularia knautiae (C. Massal.) Bubák, Österr. Bot. Z. 53: 50. 1903.
= Ovularia tricherae Vestergr., Bot. Not. 1899: 169. 1899.
= Ramularia knautiae var. arvensis C. Massal., Malpighia 20: 169. 1906.
Description in vivo: See Braun (1998: 144).
Specimens examined: Austria, Ötztal, Ötz near Habichen, on leaf spot on Knautia dipsacifolia, 24 Jul. 2000, G. Verkley, culture CBS 108989, CBS 108990. Former Czechoslovakia, on Knautia drymeia, unknown collector and date, isol. L. Marvanová, Nov. 1972, dep. L. Marvanová, Jan. 1973, culture CBS 236.73. Netherlands, Limburg Prov., Gerendal, on leaf spot on Knautia arvensis, 28 Jun. 2000, G. Verkley, cultures CBS 108973, CBS 108974, CBS 108994, CBS 108995.

Substrate and distribution: On Knautia (Dipsacaceae); Caucasus, Europe.

Notes: Ramularia tricherae was originally described on Knautia arvensis from Finland [syntypes not seen by Braun (1998)] and has been reported from many European countries. In literature, this species is associated with the sexual morph Sphaerella sylvatica Sacc. \& Speg. (Saccardo 1878) [syn. Mycosphaerella scabiosae Tomilin (Tomilin 1971)] but this connection has not been experimentally proven (Laibach 1921, Braun 1998, Aptroot 2006, Videira et al. 2015b). Phylogenetic analyses provided high support for this species clade (Fig. 2, clade 59, 1/ 100/100).

Ramularia trigonotidis Videira, H.D. Shin \& Crous, sp. nov. MycoBank MB816853. Fig. 64.
Etymology: Named after the host genus from which it was collected, Trigonotis.
Mycelium consisting of hyaline, septate, branched, smooth, $1-2 \mu \mathrm{~m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, septate, straight, cylindrical-oblong, geniculatesinuous, unbranched, $(16-) 36-48(-94) \times(1.5-) 2(-3) \mu \mathrm{m}$, or reduced to conidiogenous cells. Conidiogenous cells terminal in conidiophores or intermediate in the mycelium, cylindricaloblong, (7-)13-16.5(-31) $\times(1.5-) 2(-3) \mu \mathrm{m}$, with one conidiogenous locus, almost flat to protuberant, thickened, darkened and refractive. Conidia hyaline, thin-walled, smooth, aseptate, catenate, with hila thickened, darkened and refractive. Ramoconidia subcylindrical, $(12-) 15-17(-25) \times(2-) 2.5-3(-4) \mu \mathrm{m}, 0-1$-septate, with two flat to protruding apical hila. Intercalary conidia subcylindrical, sometimes curved, (11-)14.5-16(-18) $\times(2-) 2.5-3(-3.5)$ $\mu \mathrm{m}$, in branched chains of up to five conidia. Terminal conidia cylindrical-oblong to ovoid, (4.5-)10.5-12.5(-16) $\times(2-) 2.5-3(-4) \mu \mathrm{m}$ (on SNA).

Fig. 64. Ramularia trigonotidis (CPC 14765). A-H. Structures formed in culture. A, C-E. Conidia. B. Conidiophore. F-H. Conidiophores, conidiogenous cells and conidia. Scale bars $=10 \mu \mathrm{~m}$.

Culture characteristics: On MEA, 13 mm diam, surface convex, smooth, smoke grey with a rosy tinge, with margins undulate, white, convex, feathery, colony reverse iron grey; on OA, 9 mm diam, surface convex, fluffy aerial mycelium, white in centre pale vinaceous towards the edges, margins olivaceous grey, feathery, colony reverse olivaceous grey; on PDA, 12 mm diam, surface
convex, pale vinaceous grey, smooth and uniform, with margins undulate, feathery, hazel, colony reverse brown vinaceous and buff at margin.

Specimens examined: South Korea, Hoengseong, on Trigonotis radicans subsp. sericea (= T. nakaii), 15 Oct. 2007, H.D. Shin (holotype KUS-F23007, isotype CBS H-22530, culture extype CBS $141119=$ CPC 14764); idem. CPC 14765, CPC 14766.

Substrate and distribution: On Trigonotis radicans subsp. sericea (Boraginaceae); Asia (South Korea).

Notes: Ramularia trigonotidis (Fig. 64) is the first species of Ramularia described on Trigonotis, and the available strains form a highly supported clade (Fig. 2, clade 76, 1/100/100). In the phylogeny it is closely related to R. actinidiae (Fig. 2, clade 77), but the latter species produces conidiophores that are reduced to conidiogenous cells, and subcylindrical to fusoid conidia that are slightly narrower.

Ramularia trollii Iwanoff, Trudy Imp. S.-Peterburgsk. Obshch. Estestvoisp., Vyp. 3, Otd. Bot. 30(3): 12. 1900. Fig. 65.
= Didymaria trollii Jacz., Bull. Soc. Imp. Naturalistes Moscou, n.s., 3: 435. 1898.

Fig. 65. Ramularia trollii (CBS 109118). A-E. Observations from herbarium material. F-G. Structures formed in culture. A. Leaf spot symptoms on the host. B, C, E. Conidiophores and conidia. D, F, G. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Description in vivo: See Braun (1998: 233).
Specimens examined: Austria, Tirol, Ober Inntal, Serfaus, Komperdell Alm near Kölnerhaus, on leaf spot on Trollius europaeus, 10 Aug. 2000, G. Verkley, cultures CBS 109118, CBS 109119. Russia, Prov. Vjatka, Distr. Kotelnitsh, on Trollius europaeus, 19 Jul 1921, Chochjakov, ex herb. Vjatskogo Obl. Mus. 78 [neotype, designated in Braun (1998), in LEP].

Substrate and distribution: On Trollius (Ranunculaceae); Europe, Asia.
Notes: The type material of R. trollii was not preserved and a neotype was proposed by Braun (1998) on the host Trollius europaeus from Russia (neotype in LEP). Thus far it has only been reported infecting Trollius hosts and is known from Asia and several European countries (Braun 1998). The representative isolates of this species clustered within the Ramularia clade (Fig. 1, clade XIV) and formed a highly supported clade based on the multigene phylogeny (Fig. 2, clade $17,1 / 100 / 100$). These strains were originally identified as Pseudocercosporella trollii but they produce catenate conidia with conspicuous hila that are consistent with the R. trollii description from literature (Braun 1998) (Fig. 65).

Ramularia unterseheri Videira \& Crous, Fungal Biology 119: 836. 2015.
Specimens examined: Germany, Greifswald, Elisenhain, on leaf litter of Fagus sylvatica, 4 Jan. 2008, M. Unterseher (holotype CBSH-22285, culture ex-type CBS 124884); Greifswald, Elisenhain, on living leaves from the understorey of Fagus sylvatica, 8 Jan. 2008, M. Unterseher, cultures CBS 124826, CBS 124838; Munich, in room inside a castle, May 2011, unknown collector, dep. A.

Klein-Vehne, culture CBS 130721. Netherlands, Utrecht Prov., Baarn, on decaying leaves of Acer pseudoplatanus, 26 Apr. 2004, G. Verkley, culture CBS 117879 = CPC 11207.

Substrate and distribution: On Fagus (Fagaceae) and Acer (Sapindaceae); Europe (Germany, Netherlands).

Notes: See Videira et al. (2015b). The phylogenetic analyses places all the representatives of this species in one clade (Fig. 2, clade 86) closely related to R. vizellae.

Ramularia uredinicola Khodap. \& U. Braun, Mycotaxon 91: 358. 2005.
Specimens examined: Iran, Guilan Prov., on Melampsora sp. on Salix babylonica, 3 Jul 2004, S.A. Khodaparast (holotype IRAN 12316 F, isotype CBS H-22531, culture ex-type CBS $141120=$ CPC 11852). Italy, Roma, on leaf Melampsora sp. on Populus sp., unknown collector and date, isol. and dep. G. Magnani, Mar. 1968, culture CBS 179.68. South Korea, Hoengseong, on Melampsora sp. on Salix sp., 21 Aug. 2004, H.D. Shin, culture CPC 11481, CPC 11482; Hoengseong, on Melampsora sp. on Salix gracilistyla, 22 Jun. 2006, H.D. Shin \& M.J. Park, culture CBS 131769 = KACC 42535; Hongcheon, on Melampsora sp. on Populus alba \times glandulosa, 18 Oct. 2009, H.D. Shin \& M.J. Park, culture CBS $131770=$ KACC 44864; Hongcheon, on Melampsora sp. on Salix pierotii ($=$ S. koreensis), 26 Oct. 2008, H.D. Shin \& M.J. Park, culture CBS 131771 = KACC 44215; Suwon, on Melampsora sp. on Salix matsudana cv. Tortuosa, 30 Oct. 2008, H.D. Shin, M.J. Park, culture CBS 131772 = KACC 44218.

Substrate and distribution: Hyperparasite of Melampsora sp.; Asia (Iran, South Korea), Europe (Italy).

Notes: Ramularia uredinicola and R. rosea are closely related species (Khodaparast \& Braun 2005) that form reddish or pink caespituli with age, probably due to the production of rubellins (Arnone et al. 1986, Miethbauer et al. 2003). However, they can be distinguished based on morphology and have different lifestyles. Ramularia uredinicola is mycophilic and has longer and branched conidiophores, while R. rosea causes leaf spots on leaves. Ramularia uredinis is also mycophilic but the caespitulli do not turn reddish with age and the conidiophores are shorter and unbranched. Ramularia coleosporii and R. uredinearum are also mycophilic, but the caespitulli are always hyaline (Braun 1998, Khodaparast \& Braun 2005). The strains used in this study from South Korea clustered in a highly supported clade (Fig. 2, clade 68, 1/100/100).

Ramularia urticae Ces., in Rabenh., Herb. Viv. Mycol., Cent. XVII, no. 1680. 1852.
\equiv Cylindrospora urticae (Ces.) J. Schröt., in Cohn, Krypt.-Fl. Schlesien 3.2(4): 492: 1897.
\equiv Septocylindrium urticae (Ces.) Subram., Hyphomycetes: 310: 1971.
$=$ Sphaerella superflua Fuckel, Jahrb. Nassauischen Vereins Naturk. 23-24: 102. 1870 (18691870).
\equiv Mycosphaerella superflua (Fuckel) Petr., Ann. Mycol. 38: 235. 1940.

Description in vivo: See Braun (1998: 273).
Specimens examined: Germany, Weimar, Belvedere, leaf spot on Urtica dioica, 8 Oct. 1990, G. Arnold, culture CBS 162.91. Italy, Vercellis, on Urtica dioica, 1851, Cesati [Rabenh., Herb.

Viv. Mycol. 1680; lectotype, designated in Braun (1998), in HAL]. South Korea, Hoengseong, on Aconitum pseudo-laeve var. erectum, 15 Oct. 2007, H.D. Shin, culture CPC 14807. Sweden, Uppland, Haga par., Årtopet, on Urtica dioica, 29 Sep. 1987, E. Gunnerbeck, culture CBS 113974. Unknown country, on unknown host, unknown collector and date, dep. P. Redaelli, Mar. 1926, culture CBS 105.26.

Substrate and distribution: On Urtica (Urticaceae); Asia Caucasus, Europe, N. America.
Notes: Ramularia urticae was originally described on Urtica dioica from Italy (lectotype in HAL). It has a broad geographical distribution but it is thus far only known from the host Urtica. Since the morphological characters of the strains CBS 105.26 and CPC 14807 were not observed, and they clustered close to strains of R. urticae in a well-supported clade (Fig. 2 , clade $53,1 / 94 / 91$), they are tentatively considered as the same species. However, we refrain to expand the host range and geographical distribution of the species until further evidence is available.

Ramularia valerianae (Speg.) Sacc. var. valerianae, Fungi ital. Del., Tab. 1007. 1881.
Basionym: Cylindrosporium valerianae Speg., Michelia 1: 475. 1879.
= Ramularia valerianae var. valerianae-montanae Săvul. \& Sandu, Hedwigia 73: 120. 1933.
= Ramularia eamesii Dearn \& House, Bull. New York State Mus. Nat. Hist. 233-234: 39. 1920.
= Ramularia basarabica Săvul. \& Sandu, Hedwigia 73: 120. 1933.
Description in vivo: See Braun (1998: 276).
Specimens examined: Austria, Tirol, Ötztal, Horlachtal near Umhausen, forest near Stuibenfalle, on leaf spot on Valeriana sp., 3 Aug. 2000, G. Verkley, cultures CBS 109123, CBS 109122. Italy, Conegliano, on Valeriana officinalis, herb. Saccardo (holotype PAD).

Substrate and distribution: On Valeriana (Valerianaceae), Asia, Caucasus, Europe, N. America.
Notes: Two varieties of R. valerianae have been described thus far, R. valerianae var. centranthi (type on Centranthus ruber, France) and R. valerianae var. valerianae (on Valeriana officinalis, Italy, holotypus in PAD). They differ in the type of lesions they form on plant hosts that are angular-irregular, sometimes vein delimited, pale greenish to reddish brown in R. valerianae var. valerianae and subcircular to irregular, pale brown with greyish white centre and purple brown margins in R. valerianae var. centranthi. Ramularia valerianae var. valerianae also produces longer and wider conidia $[(8-) 10-50(-55) \times(-1.5) 2-5.5(-7) \mu \mathrm{m}]$ than R. valerianae var. centranthi $[(6-) 12-35 \times 2-4 \mu \mathrm{~m}]$. Strains of this species cluster in a highly supported clade (Fig. 2, clade 54, 1/100/100). Unfortunately these strains proved to be sterile in culture.

Ramularia vallisumbrosae Cavara, Rev. Mycol. (Toulouse) 21: 101. 1899.
= Ramularia narcissi Chittenden, Gard. Chron. 39: 277. 1906.
= Ramularia ucrainica Petr., Ann. Mycol. 19 (1-2): 78. 1921.
Description in vivo: See Braun (1998: 48).
Specimens examined: Italy, Vallombrosa, Orto botanico, on Narcissus sp., 1899, Cavara
[lectotype, designated in Braun (1998), PAD]. UK, Southwestern England, Cornwall, on Narcissus var. Victoria, unknown collector and date, isol. P.H. Gregory, dep. A. Beaumont, May 1938, culture CBS 271.38; Scilly Island, on Narcissus var. Golden Spur, unknown collector and date, isol. P.H. Gregory, Apr. 1938, dep. P.H. Gregory, Dec. 1938 (epitype designated here CBS H-22532, MBT204833, culture ex-epitype CBS 272.38).

Substrate and distribution: On Leucojum, Narcissus, and Pancratium (Amaryllidaceae); Europe, N. America.

Notes: Ramularia vallisumbrosae is the causal agent of white mould disease on leaves of daffodils (Narcissus cultivars) in commercial plantations in England and Scotland. The disease is not believed to be bulb-borne (Moore 1979), but poses a serious threat in these regions causing early defoliage die-down and associated reductions in bulb yield (O'Neill et al. 2002). This species formed a highly supported clade (Fig. 1, clade XIV; Fig. 2, clade 16, 1/100/100).

Ramularia variabilis Fuckel, Jahrb. Nassauischen Vereins Naturk. 23-24: 361. 1870. Fig. 66. \equiv Ovularia variabile (Fuckel) E. Bommer \& M. Rousseau, Bull. Soc. Roy. Bot. Belgique 23(1): 274. 1884.

三Cylindrosporium variabilis (Fuckel) J. Schröt., Krypt.-Fl. Schlesien 3.2(4): 490. 1897.
\equiv Entylomella variabilis (Fuckel) Cif., Ann. Mycol. 26 (1-2): 17. 1928.
$=$ Sphaerella mariae Sacc. \& E. Bommer, Bull. Soc. Roy. Bot. Belgique 25(1): 173. 1886
\equiv Mycosphaerella mariae (Sacc. \& E. Bommer) Lindau, Hilfsb. Sammeln Ascomyc.: 37. 1903.
Mycelium consisting of hyaline, septate, branched, smooth, 1-2 $\mu \mathrm{m}$ diam hyphae. Conidiophores hyaline, thin-walled, smooth, erect, 1-2-septate, cylindrical-oblong, straight to sinuous, unbranched,

Fig. 66. Ramularia variabilis (CBS 141121). A, C, D. Observations from herbarium material. B, E-H. Structures formed in culture. A. Leaf spot symptoms on the host. B, D, E. Conidia. C, G. Conidiogenous cells and conidia. F, H. Conidiophores and conidia. Scale bars $=10 \mu \mathrm{~m}$.
(10-)26.5-35(-54) $\times(1-) 1.5-2(-3) \mu \mathrm{m}$, or reduced to conidiogenous cells. Conidiogenous cells terminal in conidiophores or intermediate in the mycelium, cylindrical-oblong, (5.5-)14.5-19($29) \times 1.5-2(-3) \mu \mathrm{m}$, with $1-3$ conidiogenous loci almost flat to cylindrical-protuberant, thickened, darkened and refractive. Conidia hyaline, thin-walled, smooth to slightly verruculose, catenate, with hila thickened, darkened and refractive. Ramoconidia fusiform, (9.5-)14-17(-26.5) $\times(1.5-$)2-2.5(-3) $\mu \mathrm{m}, 0-1$-septate, with $2-3$ apical hila. Intercalary conidia fusiform to oval, aseptate, (8-)11-13(-19.5) $\times(1.5-) 2(-3) \mu \mathrm{m}$, in branched chains of up to five conidia. Terminal conidia obovoid, aseptate, (5-)7-8(-11) $\times(1.5-) 2(-2.5) \mu \mathrm{m}$ (on SNA).

Culture characteristics: On MEA, 11 mm diam, surface raised, folded, with sparse aerial mycelium, smooth, rosy-buff, with margins crenate and convex, colony reverse cinnamon with olivaceous grey patches; on OA, 9 mm diam, surface smooth, low convex, white with pale olivaceous grey tinge, with margins undulate, colony reverse fawn; on PDA, 10 mm diam, surface low convex, pale olivaceous grey, smooth, producing tiny transparent exudate droplets, with margins lobate, colony reverse olivaceous grey with a buff margin.

Description in vivo: See Braun (1998: 263).
Specimens examined: Austria, Graz, on Verbascum sp., Oct. 2012, C. Scheuer (epitype designated here CBS H-22533, MBT204834, culture ex-epitype CBS $141121=$ CPC 25967). Canada, Stittsville, Ontario, on Verbascum sp., K.A. Seifert, 12 Jul. 2009, cultures CPC 16865, CPC 16866. Germany, on Verbascum thapsus [Fuckel, Fungi Rhen. Exs. 135; lectotype, designated in Braun (1998), in HAL].

Substrate and distribution: On Digitalis, Verbascum (Scrophulariaceae); Asia, Caucasus, Europe, N. America.

Notes: Ramularia variabilis has a broad geographical distribution and has been reported to infect plants from the genera Digitalis and Verbascum. In this study, the strains isolated from Digitalis and Verbascum were separated into distinct clades (Fig. 2), namely clades 50 and 58, respectively, clearly suggesting that two different species are involved (see Ramularia digitalisambiguae). Strain CPC 25967 was isolated from the same host and from a neighbouring country as the type, and is morphologically a good representative of this species (Fig. 66). All three phylogenetic methods applied to this dataset gave high support to this clade (Fig. 2, clade 50, $1 / 100 / 100$). This species has been experimentally linked to the sexual morph Mycosphaerella mariae (Sacc. \& Bommer) Lindau (Arx 1949; Videira et al. 2015b).

Ramularia veronicicola Videira \& Crous, nom. nov. MycoBank MB817161.
Basionym: Stysanus veronicae Pass., Hedwigia 16(6): 123. 1877 (1876), non Ramularia veronicae Fuckel, 1870.
\equiv Isariopsis veronicae (Pass.) Savile, Canad. J. Bot. 46: 465. 1968.
\equiv Phacellium veronicae (Pass.) U. Braun, Nova Hedwigia 50: 511. 1990.

Description in vivo: See Braun (1998: 337).
Specimens examined: Italy, Parma, botanical garden, on Veronica longifolia, 1875/76, Passerini [Rabenh., Fungi Eur. Exs. 2268; lectotype, designated in Braun (1998), HAL]. Sweden,

Uppland, Danmark par., Bergsbrunna, on Veronica spicata, 25 Sep. 1987, E. Gunnerbeck, culture CBS 113981.

Substrate and distribution: On Veronica (Scrophulariaceae); Europe, N. America.
Notes: Previously named Phacellium veronicae, this species was originally isolated on Veronica longifolia from Italy (lectotype in HAL). Based on phylogenetic analyses in this study, strain CBS 113981 clustered within the Ramularia clade (Fig. 1, clade XIV) and formed a single lineage (Fig. 2, clade 64) in the multigene phylogeny. Since Phacellium is now considered a synonym of Ramularia, a new combination is proposed. Because the epithet "veronicae" is already occupied in Ramularia for a different species (Fig. 2, clade 64) the new epithet "veroniciola" is introduced. Ramularia veroniciola is the causative agent of leaf spot disease on Veronica species that are perennial plants used as ornamentals. The pathogen causes brown roundish spots and develops conidiophores aggregated in synnemata. This species has been observed in several European countries and also in North America (Canada) (Braun 1998). It has recently been reported from China infecting V. sibirica and, although the disease incidence was low, it may become significant with the increase of the cultivated area (Bai et al. 2013; ITS sequence GenBank HE995799). During recent field surveys in Hungary, the disease incidence affecting V. spicata and V. spuria varied between $90-100 \%$, and reached a severity between $30-60 \%$ (Horvát et al. 2015; ITS sequences GenBank HQ690097 and JQ920427). The ITS sequence of the isolate CBS 113981 is identical to GenBank JQ920427, and differs from GenBank HQ690097 in 1 nucleotide and from GenBank HE995799 in 10 nucleotides. Unfortunately this strain did not sporulate in culture, and the corresponding herbarium specimen was not preserved.

Ramularia vizellae Crous, Persoonia 27: 37. 2011.

Specimens examined: Netherlands, Gelderland, Randwijk, on dead leaf litter from Malus sp., unknown collector and date, isol. G. Verkley, 26 Jun 2004, cultures CBS 115981, CBS 115982; Utrecht, Rhijnawen forest, on fruit scales of Carpinus betulus, 25 Apr. 2005, G. Verkley, culture CBS 117798; Utrecht Prov., Baarn, Park Groeneveld, on decaying leaves of Quercus rubra, collection date unknown, G. Verkley, culture CBS 117871; Utrecht Prov., Baarn, Park Kasteel Groeneveld, on Amelanchier lamarckii, 26 Apr. 2004, G. Verkley, culture CBS 117872. South Africa, Western Cape Prov., Hermanus Fernkloof Nature Reserve, on leaves of Protea sp., in association with Vizella interupta, 2 May 2010, P.W. Crous (holotype CBS H-20679, culture ex-type CBS $130601=$ CPC 18283).

Substrate and distribution: On Lotus, Phaseolus (Fabaceae), Acer, Aesculus (Sapindaceae), Protea (Proteaceae), Carpinus, Corylus (Betulaceae), Fagus, Quercus (Fagaceae), Amelanchier, Malus (Rosaceae), Brassica (Brassicaceae), and Tilia spp. (Malvaceae); Europe (France, Germany, Netherlands, Switzerland, Germany), South Africa.

Notes: See Videira et al. (2015b). The phylogenetic analyses provide high support to this species clade (Fig. 2, clade 85, 1/ 100/99).

Ramularia weberiana Videira \& Crous, sp. nov. MycoBank MB817162.
Etymology: Named after the depositor of the strain, A. Weber.

Culture sterile. Ramularia weberiana (Fig. 2, clade 25), differs from its closest phylogenetic neighbour, R. rumicicola (Fig. 2, clade 24), by unique allelles in five loci based on alignments of the separate loci deposited in TreeBASE as Study S19315: rpb2 positions 15(C), 57(G), 63(C), 102(A), 117(G), 196(C), 228(C), 249(T), 267(A), 327(C), 330(G), 348(T), 357(T), 358(C), 378(T), 402(T), 414(T), 435(C), 445(T), 459(T), 493(A), 519(A), 531(T), 588(T), 591(C), 594(T), 606(T), 615(T), 627(G), 633(C), 636(C), 654(G), 657(G); ITS positions 33(G), 47(A), 167(T); actA positions 83(T), 96(C), 98(T), 121(A), 164(A), 166(A), 185(T), 186(C), 211(C), 212(C); gapdh positions 14(A), 29 deletion (C), 38(G), 39(T), 43(A), 45(C), 120(T), 131(A), 132(T), 158(T), 167(T), 185(C), 208(C), 257(A), 258(T), 259(A), 260(C), 262(A), 281(T), 286(G), 287(T), 289(T), 291(A), 293-295 insertion (CCA), 315(A), 347(T), 380(T), 431(C), 438(T), 440(T), 446(T), 479(C), 524(C), 572(C), 593(T); tef1- α positions 8(T), 15(T), 17(C), 18(T), 48(C), 56(T), 59(T), 145(C), 196(C), 233(G), 248(C), 284(C), 286(T), 289(T), 290(T), 294(A), 295(C), 296(T), 401(C), 409(A), 425(T), 430(A), 578(T).

Specimen examined: Unknown country, on unknown host, unknown collector and date, isol. and dep. by A. Weber, Aug. 1923 (holotype CBS H-22534, culture ex-type CBS 136.23).

Notes: The strain in this clade represents a new species that is clearly distinct from other species based on the phylogenetic analyses (Fig. 2, clade 25). Unfortunately this strain did not sporulate in culture and a comparison with the descriptions available in literature was not possible.

Ramularia weigelae Speg. (as weigeliae), Michelia 1(5): 475. 1879. Fig. 67.
\equiv Phaeoramularia weigelicola H.D. Shin \& U. Braun, Mycotaxon 58: 163. 1996.
\equiv Passalora weigelicola (H.D. Shin \& U. Braun) U. Braun \& Crous, Mycosphaerella and its anamorphs: 1. Names published in Cercospora and Passalora: 475. 2003.

Fig. 67. Ramularia weigelae (CBS 113309). A-C. Observations from herbarium material. D-I. Structures formed in culture. A. Leaf spot symptoms on the host. B, D, E, G-I. Conidiophores and conidia. C, F. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Description in vivo: See Braun (1998: 389).
Specimen examined: South Korea, on Weigela subsessilis, 4 Jun. 2003, H.D. Shin, KUS-F19549, culture CBS 113309.

Substrate and distribution: On Weigela (Diervillaceae); Asia, Europe.
Notes: Ramularia weigelae was originally described on Weigela florida from Italy (holotype). Braun (1998) stated that the type material of R. weigelae is probably not preserved but a specimen collected from South Korea corresponded to the description of the species. Since the conidiophores were pigmented, the species was transferred to Phaeoramularia as P. weigelicola. However, isolate CBS 113309 (Fig. 67), previously identified as Phaeoramularia weigelicola, clustered within the genus Ramularia (Fig. 1, clade XIV). The strain was not used in the multigene analysis since it lacked the $r p b 2$ partial gene sequence at the time the tree was run.

Important phytopathogenic Ramularia species lacking cultures in this study

Ramularia cercosporelloides U. Braun \& Crous, Monogr. Cercosporella, Ramularia Allied Genera (Phytopath. Hyphom.) 2: 419. 1998.
\equiv Cercosporella carthami Murashk., Izv. Zapadno-Sibirsk. Otd. Russk. Geogr. Obshch 5: 4. 1926.

Description in vivo: See Braun (1998: 419).

Substrate and distribution: On Carthamus (Asteraceae), Asia, Caucasus, Europe.

Notes: The type material of this species, on Carthamus tinctorius from Russia (near Omsk), could not be traced by Braun (1998) and the placement of the species in the genus Ramularia was based on the observation of a fresh specimen from the Netherlands on Carthamus tinctorius that is currently deposited in HAL. Some studies point to this pathogen as the causative agent of leaf spot disease on safflower in Sonora, Mexico, leading to severe yield losses on this crop. Morphological identification followed by pathogenicity tests of the isolates was performed by Huerta-Espino et al. (2006). However, in a more recent study (Quintana-Obregón et al., 2013), isolates of the false mildew of safflower collected from the field were morphologically identified as R. cercosporelloides but, based on DNA sequences of the LSU and ITS regions, they were similar to Cercosporella acroptili (= Ramularia acroptili). Other studies point to R. carthami (now R. cynarae) as the causative agent (Montoya-Coronado et al. 2008, Borbon-Garcia et al. 2011). More work needs to be done to understand which fungus is causing the disease.

Ramularia oryzae Deighton \& D.E. Shaw, Trans. Brit. Mycol. Soc. 43: 516. 1960. \equiv Mycovellosiella oryzae (Deighton \& D.E. Shaw) Deighton, Mycol. Pap. 144: 25. 1979.

Description in vivo: See Braun (1998: 201).
Substrate and distribution: On Oryza (Poaceae); Asia and Africa.
Notes: Ramularia oryzae was described on Oryza sativa from Papua New Guinea [holotype in K(IMI)] and has been reported from Asia and Africa (Braun 1998). White leaf streak, caused
by Mycovellosiella oryzae (= Ramularia oryzae) was observed in Louisiana, USA, in 1996, developing on leaves of the rice cultivar Lemont. Pathogenicity tests were performed on the rice cultivars Lemont and Cypress by spraying a conidial suspension onto leaves at boot stage. Many elongated lesions were produced 3-4 wk after inoculation. With the same method, 45 other cultivars were tested. Most of the cultivars grown in southern US were moderately susceptible to susceptible. Foreign cultivars tested (BR-7, BR-11, Cica-4, Cica-7 to Cica-9, Oryzica Ilanos, Rax clear, Tequing, and Tetep) were resistant. As symptoms of both white leaf streak and narrow brown leaf spot were observed on the same leaf it is possible that the disease was present but not identified separately because of the similarity of the symptoms of the two diseases. At present it appears to be a minor problem for rice cultivation in Louisiana. White leaf streak has previously been reported from Papua New Guinea on cultivated Oryza sativa, and from the Solomon Islands, Sabah, Nigeria, and Sierra Leone on cultivated O. glabberima, and on wild perennial rice O. berthii (Webster \& Gunnell 1992, Shahjahan et al. 1998, Zhou et al. 2010).

Ramularia phaseoli (O.A. Drumm.) Deighton, Trans. Brit. Mycol. Soc. 50: 125. 1967.
Basionym: Ovularia phaseoli O.A. Drumm., Revista Ceres 6(33): 169. 1945.
\equiv Mycovellosiella phaseoli (O.A. Drumm.) Deighton, Mycol. Pap. 137: 70. 1974.
= Ramularia phaseolina Petr., Sydowia 4(1-6): 584. 1950.
Description in vivo: See Braun (1998: 128).
Substrate and distribution: Asia, Africa, S. America on Glycine and Phaseolus (Fabaceae).
Notes: Ramularia phaseoli is a pathogen that was first observed on Phaseolus vulgaris from Brazil (lectotype in CUP). This species is the causative agent of floury leaf spot disease on leaves of dry beans. Leaf spots usually appear first on older leaves, progresses to new foliage, and a severe infection may cause plant defoliation. Conidiophores and conidia develop mostly on the lower surface of the leaf in white, floury mats. It is among the more serious diseases of common bean at relatively high altitudes in the tropics and has been reported from Eastern and Central Africa, Europe, Malaysia, Papua New Guinea, South and Central America. It is usually controlled with chemical sprays with benomyl and thiophanate methyl and by rotation with non-host crops such as cereals and corn (Schwartz et al. 2005).

Ramularia primulae Thüm., Oesterr. Bot. Z. 28(5): 147. 1878.
\equiv Cylindrosporium primulae (Thüm.) J. Schröt., Krypt.-Fl. Schlesien 3.2(4): 492. 1897.
Description in vivo: See Braun (1998: 228).
Substrate and distribution: On Primula (Primulaceae); Asia, Caucasus, Europe, N. and S. America, Australia, New Zealand.

Notes: Ramularia primulae was originally described on Primula elatior from Germany (neotype in PAD), but it has a worldwide distribution and has been reported infecting other species of the genus Primula (Braun 1998). This species is responsible for the Ramularia leaf spot disease on Primula spp. It is able to infect both Primula \times pruhonicensis (polyanthus) and P. malacoides (fairy primrose) leaves creating tan or brown leaf spots that may be accompanied by chlorosis.

Conidiophores and conidia develop preferentially on the lower surface of lesions forming white spore masses under humid conditions. It is a disease mainly prevalent in the USA, but easily controlled by removing infected plants from the general population and keeping the seedlings away from older plants to avoid inoculum transfer (Daughtrey et al. 1995).

DISCUSSION

The genera covered in the present study include species with very diverse lifestyles that sometimes have a negative impact on the crops we depend on for food, feed and bioenergy. Although some species may cause significant yield losses, none of them are included in plant protection quarantine lists. The identification of species of Ramularia and allied genera has thus far mainly relied on host taxonomy and morphological characters such as the shape, size and septation of conidia and the type of conidiogenous loci and conidial hila. Reliable identification of these species based on morphological characters alone is difficult since their morphology is rather reduced. In order to improve the identification of cryptic species, the use of DNA phylogenetic markers, also known as DNA barcoding, is becoming an increasingly popular tool (Crous et al. 2009c, 2013a, Groenewald et al. 2013, Verkley et al. 2013).

The present study provides a broad phylogenetic overview of Ramularia and allied genera, thereby establishing a foundation of reference sequences in public databases that can be used for species identification, and at the same time promote further research. The phylogenetic analysis of Ramularia allied genera generally provided good resolution with maximum to high bootstrap and posterior probability values for almost all terminal nodes and several of the deeper nodes. Phylogenetic support based on three different methods facilitated the resolution of several genera based on their type species, such as Ramularia and Ramulariopsis. The genus Ramularia proved to be polyphyletic, and not monophyletic as previously thought, and the species non-congeneric with the type R. pusilla were assigned to the new genera Xenoramularia, Epicoleosporium and Teratoramularia. This was also the first time species with a ramularia-like morphology were observed in the Teratosphaeriaceae, which renders morphology-based identifications more difficult, and underlines the necessity of molecular data for accurate identification. The genus Cercosporella, although not epitypified, was analysed in two different studies (Kirschner 2009; present study), and based on its phylogenetic position and morphology, is considered to be reliably represented by the species used in this study. The phylogenetic position of Pseudocercosporella was reiterated as confined to its type species, P. bakeri, and the pseudocercosporella-like species not congeneric with the type were reassigned to new or existing genera such as Apseudocercosporella, Filiella, Microcyclosporella, Neopseudocercosporella, Pseudocercospora, Ramularia and Sphaerulina. An isolate previously identified as representative of Pseudocercosporella fraxinea was found to belong to the genus Acrodontium, typified by A. crateriforme, which prompted a short review of this genus, with the eventual description of three new species.

Although many more genera allied to Ramularia are treated in literature, most have not yet been preserved in culture, such as Hawksworthiana, Neoovularia, Neoramularia, Monodidymaria, Pseudodidymaria and Tretovularia. These genera need to be recollected, cultured and compared by means of DNA sequence analysis. In order to facilitate their identification, photoplates of their type specimens or representative species were produced in this study. The relationship between these genera and Ramularia is based on morphological characters but their phylogenetic position is still unknown and they may even not belong to the Mycosphaerellaceae. One example of this relates to the genus Thedgonia that was morphologically related to Pseudocercosporella,
and later found to belong to Helotiales (Crous et al. 2013a). Ramularia and allied genera are much undersampled and are frequently described without culture or DNA sequence data. In the last 15 years, among the 41 novel Ramularia names released on MycoBank, only 13 included cultures and DNA sequence data while the rest relied only on morphological descriptions based on herbarium specimens.

The present study includes the largest number of Ramularia isolates and species ever subjected to DNA sequence analysis. Combined with a recent classic monograph of the genus (Braun 1998), it provides powerful tools to better understand and promote further research on these species. The phylogenetic overview of the species belonging to Ramularia generally provided good resolution with maximum to high bootstrap and posterior probability values for almost all terminal nodes, while several of the deeper nodes were only supported by the Bayesian analysis. Several species were morphologically and molecularly characterised, two new combinations and two new names were proposed, nine new species were described, and 12 species epitypified. The type species of Ramularia, R. pusilla, was epitypified providing a reliable phylogenetic anchor for this genus. The Ramularia species analysed in this study generally agree with the concept presented in literature (Braun 1998), which regards them as being host-specific. Of the 88 taxa subjected to analysis 39 were found to occur in only one host genus, a number that rises to 60 when the single lineages are also considered. With the phylogeny we observed that some species previously thought to have a broad host range and geographical distribution were in fact different species (e.g. R. lamii var. lamii, R. agastaches, R. leonuri). While some species are reported to have a broad host range in literature (Braun 1998), this was not observed in the phylogeny, which could be due to undersampling (e.g. R. asteris, R. belunensis, R. collo-cygni, R. grevilleana, R. heraclei, R. inaequalis, R. macrospora, R. pusilla and R. sphaeroidea). Only six of the 88 taxa analysed proved to have a broad host range (e.g. R. cynarae, R. hydrangeae-macrophyllae, R. vizellae, R. unterseheri, R. glennii and R. eucalypti). The clades representing R. hydrangeae-macrophyllae, R. vizellae, R. endophylla, R. unterseheri and R. cynarae show some intraspecific variation in the genes investigated. Among these, only R. cynarae has not been observed to develop a sexual morph. Although in literature 20 connections between asexual and sexual morphs are reported for Ramularia species alone, only seven have been proven thus far, including the newly observed R. hydrangeaemacrophyllae. Sexual reproduction is known to introduce variability in the genes and this may explain the variation observed. The gene regions used in this study were selected based on their extensive use in fungal phylogenetic studies. They have proved suitable to explore phylogenetic relationships within and between genera of the Mycosphaerellaceae (Crous et al. 2013a, Groenewald et al. 2013, Verkley et al. 2013). Based on the individual genes, ITS was able to discriminate 58% of the species while tefl-a recognised 62%, actA 72%, gapdh 76% and $r p b 284 \%$. The K2P results show that the ITS barcode has a lower ability to discriminate species than protein-coding genes, since it displayed the smallest barcode gap and highest overlap percentage of inter-intra specific distances among all genes. The gapdh, with its big barcode gap and low overlap would be a good candidate for a secondary barcode gene, but its amplification proved to be challenging. The rpb2 gene displayed the widest barcode gap of all genes, but it had a relatively higher overlap percentage when compared to the other genes. Nevertheless, it was able to discriminate 84% of the Ramularia species studied here, and the amplification of rpb2 with the primers developed in this study was successful for all the isolates. The best statistical support for each genus was obtained using $r p b 2$, therefore this locus should in future be more extensively used to determine relations within Mycosphaerellaceae. A recent publication on fungal barcoding genes recommends tefl- α as a secondary universal DNA
barcode for the fungal kingdom (Stielow et al. 2015). However, the fragment amplified by the primers used in that study is different from the fragment amplified in this study, and therefore cannot be compared directly.

Genomic studies of Ramularia species are presently unavailable but the amplification of the complete genome of two Ramularia species, R. endophylla (Grigoriev et al. 2013) and R. collocygni (Havis et al. 2015), are underway. They are likely to provide valuable insights into the genetic diversity of these species, their biological cycles and their hability to produce secondary metabolites that influence pathogenesis. Ramularia collo-cygni, R. rubella and R. uredinicola are able to produce a non-host specific phytotoxin, rubellin. They appear quite separate in the phylogenetic analysis suggesting this is a trait that evolved multiple times and is not confined to a single lineage. In this study, the species R. archangelicae and R. calcea have been observed to produce pigments of pink and brick colours, respectively, that diffused into the culture media, suggesting these species may also be able to produce rubellins. Besides the rubellins, no other secondary metabolites have been attributed to Ramularia and allied genera species, which indicates this is a fairly unexplored research line in this group of agricultural important species.

The present study includes several taxa that are of major concern for agriculture such as Neopseudocercosporella capsellae and N. brassicicola (Brassica spp.), Ramulariopsis gossypii (cotton), Ramularia collo-cygni (barley) and Ramularia beticola (sugar beet), since they affect important crops planted worldwide. We believe that this study serves as a backbone for future studies on the taxonomy of Ramularia and allied genera. Although many important species have been reliably identified and epitypified, many puzzles remain unsolved (e.g. the identity of R. cercosporelloides). More than 1000 names are known in Ramularia alone and this study covered only 88 taxa, which means many species still need to be recollected and characterised based on their DNA sequence data. With the reference cultures that this study has now made available to the community, further genomic research on the more important agricultural pathogens may shed some light on the mechanisms driving their evolution, and allow the development of more appropriate control measures.

ACKNOWLEDGEMENTS

This study was financially supported by the "Fonds Economische Structuurversterking (FES)", Dutch Ministry of Education, Culture and Science grant BEK/BPR-2009/137964-U, "Making the Tree of Life Work". We thank the CBS technical staff, Arien van Iperen, IJda Vlug and Trix Merkx (cultures), Marjan Vermaas (photographic plates), and Mieke Starink-Willemse (partial DNA isolation, amplification and sequencing) for their assistance. We would like to thank Dr Christian Scheuer from the Karl-Franzens-University, Dr Bram Hanse from IRS-Institute of Sugar Beet Research, Dr. Agn'es Champeil from the ITB-Institut Technique de la Betterave, Dr Anne Lisbet Hansen from NBR-Nordic Beet Research and our colleagues Dr Ulrike Damm and Dr William Quaedvlieg for several freshly collected specimens used in this study. A special thank you is due to our colleague Dr Gerard Verkley, who over the years collected several specimens that were preserved both in herbaria and in culture and were very important for this study. We would also like to thank all the other mycologists who deposited their specimens in the CBS and CPC collection over the years and made this work possible. We would like to thank the curators and staff of the HBG, K, LPS, M, NY and PC herbaria for all the specimens sent for study.

Mycosphaerellaceae - chaos or clarity?

S.I.R. Videira ${ }^{1,2}$, J.Z. Groenewald ${ }^{1}$, C. Nakashima ${ }^{3}$, U. Braun ${ }^{4}$, R.W. Barreto ${ }^{5}$, P.J.G.M. de Wit², and P.W. Crous ${ }^{1,2}$

[^1]Studies in Mycology 87: 275-421. 2017.

Key words: Multi-gene phylogeny, Mycosphaerella, Plant pathogen, Taxonomy.

Abstract

The Mycosphaerellaceae represent thousands of fungal species that are associated with diseases on a wide range of plant hosts. Understanding and stabilising the taxonomy of genera and species of Mycosphaerellaceae is therefore of the utmost importance given their impact on agriculture, horticulture and forestry. Based on previous molecular studies, several phylogenetic and morphologically distinct genera within the Mycosphaerellaceae have been delimited. In this study a multigene phylogenetic analysis (LSU, ITS and rpb2) was performed based on 415 isolates representing 297 taxa and incorporating ex-type strains where available. The main aim of this study was to resolve the phylogenetic relationships among the genera currently recognised within the family, and to clarify the position of the cercosporoid fungi among them. Based on these results many well-known genera are shown to be paraphyletic, with several synapomorphic characters that have evolved more than once within the family. As a consequence, several old generic names including Cercosporidium, Fulvia, Mycovellosiella, Phaeoramularia and Raghnildiana are resurrected, and 32 additional genera are described as new. Based on phylogenetic data 120 genera are now accepted within the family, but many currently accepted cercosporoid genera still remain unresolved pending fresh collections and DNA data. The present study provides a phylogenetic framework for future taxonomic work within the Mycosphaerellaceae.

Taxonomic novelties: New genera: Australosphaerella Videira \& Crous, Brunswickiella Videira \& Crous, Catenulocercospora C. Nakash., Videira \& Crous, Cercoramularia Videira, H.D. Shin, C. Nakash. \& Crous, Chuppomyces Videira \& Crous, Clarohilum Videira \& Crous, Collarispora Videira \& Crous, Coremiopassalora U. Braun, C. Nakash., Videira \& Crous, Deightonomyces Videira \& Crous, Devonomyces Videira \& Crous, Distocercosporaster Videira, H.D. Shin, C. Nakash. \& Crous, Distomycovellosiella U. Braun, C. Nakash., Videira \& Crous, Exopassalora Videira \& Crous, Exutisphaerella Videira \& Crous, Graminopassalora U. Braun, C. Nakash., Videira \& Crous, Hyalocercosporidium Videira \& Crous, Hyalozasmidium U. Braun, C. Nakash., Videira \& Crous, Madagascaromyces U. Braun, C. Nakash., Videira \& Crous, Micronematomyces U. Braun, C. Nakash., Videira \& Crous, Neocercosporidium Videira \& Crous, Neophloeospora Videira \& Crous, Nothopassalora U. Braun, C. Nakash., Videira \& Crous, Nothopericoniella Videira \& Crous, Nothophaeocryptopus Videira, C. Nakash., U. Braun, Crous, Pachyramichloridium Videira \& Crous, Paracercosporidium Videira \& Crous, Paramycovellosiella Videira, H.D. Shin \& Crous, Parapallidocercospora Videira, Crous, U. Braun, C. Nakash., Pleopassalora Videira \& Crous, Pleuropassalora U. Braun, C. Nakash., Videira \& Crous, Pluripassalora Videira \& Crous, Pseudopericoniella Videira \& Crous, Pseudophaeophleospora U. Braun, C. Nakash., Videira \& Crous, Pseudozasmidium Videira \& Crous, Rhachisphaerella Videira \& Crous, Rosisphaerella Videira \& Crous, Sultanimyces Videira \& Crous, Virosphaerella Videira \& Crous, Xenosonderhenioides Videira \& Crous. New species: Cercoramularia koreana Videira, H.D. Shin, C. Nakash. \& Crous, Hyalocercosporidium desmodii Videira \& Crous, Hyalozasmidium sideroxyli U. Braun, C. Nakash., Videira \& Crous, Neoceratosperma legnephoricola U. Braun, C. Nakash., Videira \& Crous, Neoceratosperma haldinae U. Braun, C. Nakash., Videira \& Crous, Ramulispora sorghiphila U. Braun, C. Nakash., Videira \& Crous, Zasmidium elaeocarpi U. Braun, C. Nakash., Videira \& Crous, Zasmidium grevilleae U. Braun, C. Nakash., Videira \& Crous, Zasmidium hakeae U. Braun, C. Nakash., Videira \& Crous, Zasmidium eucalypticola U. Braun, C. Nakash., Videira \& Crous, Zasmidium schini U. Braun, C. Nakash., Videira \& Crous, Xenosonderhenioides indonesiana C. Nakash., Videira \& Crous. New combinations: Amycosphaerella keniensis (Crous \& T.A. Cout.) Videira \& Crous, Australosphaerella nootherensis (Carnegie) Videira \& Crous,

Brunswickiella parsonsiae (Crous \& Summerell) Videira \& Crous, Chuppomyces handelii (Bubák) U. Braun, C. Nakash., Videira \& Crous, Catenulocercospora fusimaculans (G.F. Atk.) C. Nakash., Videira \& Crous, Cercosporidium californicum (S.T. Koike \& Crous) Videira \& Crous, Clarohilum henningsii (Allesch.) Videira \& Crous, Clypeosphaerella calotropidis (Ellis \& Everh.) Videira \& Crous, Coremiopassalora eucalypti (Crous \& Alfenas) U. Braun, C. Nakash., Videira \& Crous, Coremiopassalora leptophlebae (Crous et al.) U. Braun, C. Nakash., Videira \& Crous, Collarispora valgourgensis (Crous) Videira \& Crous, Deightonomyces daleae (Ellis \& Kellerm.) Videira \& Crous, Devonomyces endophyticus (Crous \& H. Sm. Ter) Videira \& Crous, Distocercosporaster dioscoreae (Ellis \& G. Martin) Videira, H.D. Shin, C. Nakash. \& Crous, Distomycovellosiella brachycarpa (Syd.) U. Braun, C. Nakash., Videira \& Crous, Exopassalora zambiae (Crous \& T.A. Cout.) Videira \& Crous, Exutisphaerella laricina (R. Hartig) Videira \& Crous, Fusoidiella anethi (Pers.) Videira \& Crous, Graminopassalora graminis (Fuckel) U. Braun, C. Nakash., Videira \& Crous, Hyalozasmidium aerohyalinosporum (Crous \& Summerell) Videira \& Crous, Madagascaromyces intermedius (Crous \& M.J. Wingf.) Videira \& Crous, Micronematomyces caribensis (Crous \& Den Breeÿen) U. Braun, C. Nakash., Videira \& Crous, Micronematomyces chromolaenae (Crous \& Den Breeÿen) U. Braun, C. Nakash., Videira \& Crous, Neocercosporidium smilacis (Thüm.) U. Braun, C. Nakash., Videira \& Crous, Neophloeospora maculans (Bérenger) Videira \& Crous, Nothopassalora personata (Berk. \& M.A. Curtis) U. Braun, C. Nakash., Videira \& Crous, Nothopericoniella perseaemacranthae (Hosag. \& U. Braun) Videira \& Crous, Nothophaeocryptopus gaeumannii (T. Rohde) Videira, C. Nakash., U. Braun, Crous, Pachyramichloridium pini (de Hoog \& Rahman) U. Braun, C. Nakash., Videira \& Crous, Paracercosporidium microsorum (Sacc.) U. Braun, C. Nakash., Videira \& Crous, Paracercosporidium tiliae (Peck) U. Braun, C. Nakash., Videira \& Crous, Paramycosphaerella wachendorfiae (Crous) Videira \& Crous, Paramycovellosiella passaloroides (G. Winter) Videira, H.D. Shin \& Crous, Parapallidocercospora colombiensis (Crous et al.) Videira \& Crous, Parapallidocercospora thailandica (Crous et al.) Videira \& Crous, Phaeocercospora juniperina (Georgescu \& Badea) U. Braun, C. Nakash., Videira \& Crous, Pleopassalora perplexa (Beilharz et al.) Videira \& Crous, Pleuropassalora armatae (Crous \& A.R. Wood) U. Braun, C. Nakash., Videira \& Crous, Pluripassalora bougainvilleae (Munt.-Cvetk.) U. Braun, C. Nakash., Videira \& Crous, Pseudocercospora convoluta (Crous \& Den Breeÿen) U. Braun, C. Nakash., Videira \& Crous, Pseudocercospora nodosa (Constant.) U. Braun, C. Nakash., Videira \& Crous, Pseudocercospora zambiensis (Deighton) Crous \& U. Braun, Pseudopericoniella levispora (Arzanlou, W. Gams \& Crous) Videira \& Crous, Pseudophaeophleospora atkinsonii (Syd.) U. Braun, C. Nakash., Videira \& Crous, Pseudophaeophleosporastonei(Crous)U.Braun, C.Nakash.,Videira\&Crous, Pseudozasmidium eucalypti (Crous \& Summerell) Videira \& Crous, Pseudozasmidium nabiacense (Crous \& Carnegie) Videira \& Crous, Pseudozasmidium parkii (Crous \& Alfenas) Videira \& Crous, Pseudozasmidium vietnamense (Barber \& T.I. Burgess) Videira \& Crous, Ragnhildiana ampelopsidis (Peck) U. Braun, C. Nakash., Videira \& Crous, Ragnhildiana diffusa (Heald \& F.A. Wolf) Videira \& Crous, Ragnhildiana ferruginea (Fuckel) U. Braun, C. Nakash., Videira \& Crous, Ragnhildiana gnaphaliaceae (Cooke) Videira, H.D. Shin, C. Nakash. \& Crous, Ragnhildiana perfoliati (Ellis \& Everh.) U. Braun, C. Nakash., Videira \& Crous, Ragnhildiana pseudotithoniae (Crous \& Cheew.) U. Braun, C. Nakash., Videira \& Crous, Rhachisphaerella mozambica (Arzanlou \& Crous) Videira \& Crous, Rosisphaerella rosicola (Pass.) U. Braun, C. Nakash., Videira \& Crous, Sultanimyces vitiphyllus (Speschnew) Videira \& Crous, Utrechtiana roumeguerei (Cavara) Videira \& Crous, Virosphaerella irregularis (Cheew. et al.) Videira \& Crous, Virosphaerella pseudomarksii (Cheew. et al.) Videira \& Crous, Zasmidium arcuatum
(Arzanlou et al.) Videira \& Crous, Zasmidium biverticillatum (Arzanlou \& Crous) Videira \& Crous, Zasmidium cerophilum (Tubaki) U. Braun, C. Nakash., Videira \& Crous, Zasmidium daviesiae (Cooke \& Massee) U. Braun, C. Nakash., Videira \& Crous, Zasmidium gupoyu (R. Kirschner) U. Braun, C. Nakash., Videira \& Crous, Zasmidium iteae (R. Kirschner) U. Braun, C. Nakash., Videira \& Crous, Zasmidium proteacearum (D.E. Shaw \& Alcorn) U. Braun, C. Nakash. \& Crous, Zasmidium pseudotsugae (V.A.M. Mill. \& Bonar) Videira \& Crous, Zasmidium pseudovespa (Carnegie) U. Braun, C. Nakash., Videira \& Crous, Zasmidium strelitziae (Arzanlou et al.) Videira \& Crous, Zasmidium tsugae (Dearn.) Videira \& Crous, Zasmidium velutinum (G. Winter) Videira \& Crous. New names and their replaced synonyms: Exosporium livistonicola U. Braun, Videira \& Crous for Distocercospora livistonae U. Braun \& C.F. Hill, Pseudocercospora platanigena Videira \& Crous for Stigmella platani Fuckel, non Pseudocercospora platani (J.M. Yen) J.M. Yen 1979, Zasmidium musae-banksii Videira \& Crous for Ramichloridium australiense Arzanlou \& Crous, non Zasmidium australiense (J.L. Mulder) U. Braun \& Crous 2013, Zasmidium musigenum Videira \& Crous for Veronaea musae Stahel ex M.B. Ellis, non Zasmidium musae (Arzanlou \& Crous) Crous \& U. Braun 2010. Epitypes: Cercospora brachycarpa Syd., Cercospora smilacis Thüm., Cercospora gomphrenicola Speg., Cercospora microsora Sacc., Cercospora tiliae Peck, Cladosporium bacilligerum Mont. \& Fr., Cladosporium chaetomium Cooke, Cladosporium fulvum Cooke, Cladosporium lonicericola Yong H. He \& Z.Y. Zhang, Cladosporium personatum Berk. \& M.A. Curtis, Clasterosporium degenerans Syd. \& P. Syd., Cryptosporium acicola Thüm., Helicoma fasciculatum Berk. \& M.A. Curtis., Isariopsis griseola Sacc., Septoria martiniana Sacc. Neotypes: Cercospora cajani Henn., Cercospora mangiferae Koord., Sphaerella laricina R. Hartig. Lectotypes (basionyms): Adelopus gaeumannii T. Rohde, Biharia vangueriae Thirum. \& Mishra, Cercospora desmodii Ellis \& Kellerm., Cercospora ferruginea Fuckel, Cercospora gnaphaliacea Cooke, Cercospora rosicola Pass., Cercosporidium helleri Earle, Cercospora henningsii Allesch., Cladosporium fulvum Cooke, Cladosporium bacilligerum Mont. \& Fr., Cercospora microsora Sacc., Cercospora henningsii Allesch., Coryneum vitiphyllum Speschnew, Cryptosporium acicola Thüm., Isariopsis griseola Sacc., Scolicotrichum roumeguerei Briosi \& Cavara, Sphaerella araneosa Rehm, Stictosepta cupularis Petr., Stigmella platani Fuckel, Tapeinosporium viride Bonord.

INTRODUCTION

Fungi within the Dothideomycetes have a global distribution and occur in diverse habitats, ranging from marine to freshwater or terrestrial. They are mainly characterised by having bitunicate asci, often with fissitunicate dehiscence. The Dothideomycetes currently includes more than 25 orders, 100 families and over 1500 genera (Schoch et al. 2009, Hyde et al. 2013, Trakunyingcharoen et al. 2014, Crous et al. 2015a, c, van Nieuwenhuijzen et al. 2016, Bezerra et al. 2017). Among them, the order Capnodiales includes nine families, one of which is Mycosphaerellaceae.

Members of Mycosphaerellaceae are able to colonise diverse niches and vary in lifestyle from pathogens to endophytes, saprobes, epiphytes and fungicolous species. Some important plant pathogens in this family include the species associated with Sigatoka disease on banana (Arzanlou et al. 2007, Churchill 2010, Chang et al. 2016), angular leaf spot of bean (Crous et al. 2006a), tomato leaf mould (de Wit 2016) and Cercospora leaf spot of olive (A,vila et al. 2005).

In addition, several members of Mycosphaerellaceae are quarantine regulated (Quaedvlieg et al. 2012) such as Pseudocercospora angolensis causing fruit and leaf spot disease on citrus (Kirk 1986, Pretorius et al. 2003), Pseudocercospora pini-densiflorae causing brown needle blight of pine (Deighton 1987, Crous et al. 1990), Sphaerulina musiva causing canker of poplar (Peace 1962, Waterman 1954, Quaedvlieg et al. 2013), Mycosphaerella laricis-leptolepidis causing needle cast of Japanese larch (Peace 1962), Septoria malagutii causing angular leaf spot of potato (Cline \& Rossman 2006), Lecanosticta acicula causing brown spot needle blight on Pinus spp. (Quaedvlieg et al. 2012) and Dothistroma spp. causing red band disease of pine (Evans 1984, Barnes et al. 2004, 2016). In order to facilitate plant host invasion some species are known to produce fungal toxins such as dothistromin (Bradshaw 2004, Bradshaw \& Zhang 2006) and cercosporin (Chen et al. 2007) or secrete proteinaceous effectors suppressing host defence responses and facilitating biotrophic growth (Wit 2016). The potential ability of endophytic species as sources of natural products important in medicine and agriculture is known among taxa of several families (Strobel \& Daisy 2003, Aly et al. 2012, Gond et al. 2014), but is thus far unknown among species within the Mycosphaerellaceae. No species of Mycosphaerellaceae has hitherto been reported as a human pathogen although, in a rare occurrence, a species of Ramularia (R. plurivora) reportedly obtained from bone marrow has shown the ability to grow above $37^{\circ} \mathrm{C}$ by changing its filamentous morphology into an arthroconidial yeast (Videira et al. 2015a).

As initially circumscribed Mycosphaerellaceae was polyphyletic (Crous et al. 2007, 2009a, e) and was later, therefore, split into several families, namely Schizothyriaceae (Batzer et al. 2008), Cladosporiaceae (Schubert et al. 2007, Dugan et al. 2008, Bensch et al. 2012, 2015), Dissoconiaceae and Teratosphaeriaceae (Crous et al. 2009b, Li et al. 2012, Quaedvlieg et al. 2014). From these results, it became evident that the mycosphaerella-like morphology has evolved multiple times and a new circumscription of Mycosphaerella was urgently required. Approximately 56 genera have until now been recognised in Mycosphaerellaceae (Wijayawardene et al. 2014), although the mycosphaerella-like sexual morphs are usually morphologically conserved, and hence these genera are chiefly distinguished based on the morphology of their asexual morphs (Crous et al. 2009e). In addition, if one includes all genera that are currently synonymised based on the similarity of morphological characters, a total of 118 generic names can be accounted for in the Mycosphaerellaceae (Braun 1995, 1998, Crous \& Braun 2003, Seifert et al. 2011). Mycosphaerella s. str. has Ramularia asexual morphs, which is also the name now applied to members of this genus, while Mycosphaerella s. lat.
represents numerous genera distributed over different families. The name Ramularia (1833) is older than Mycosphaerella (1884) and choosing Ramularia over Mycosphaerella required less name changes since most established connections already had species names in Ramularia. Based on the one fungus = one name initiative (Wingfield et al. 2012, Crous et al. 2015b) the name Ramularia was selected over Mycosphaerella and included in a list of protected names (Wijayawardene et al. 2014, Rossman et al. 2015, Videira et al. 2015a, b).

Many asexual morphs linked to mycosphaerella-like sexual morphs are cercosporoid in morphology. Cercosporoid fungi are mostly defined as dematiaceous hyphomycetes with conidiophores formed singly, in groups (fascicles), synnemata or even sporodochia, having integrated, terminal or intercalary conidiogenous cells. Conidiogenesis is holoblastic and generates amerosporous to scolecosporous conidia, which are solitary or in chains (Braun et al. 2013). In a broader sense, it also includes ramularioid fungi that are the hyaline counterparts of cercosporoid fungi, forming conidia singly or in chains. Species in this group are mostly asexual with a relation to mycosphaerella-like sexual morphs, which are characterised by pseudothecial ascomata, with ostiolar periphyses but without interascal tissue, hyaline or slightly pigmented ascospores that are predominantly 1-septate (Barr 1987, Crous et al. 2009c).

Four genera were initially recognised as true cercosporoid genera, namely Cercospora, Passalora, Pseudocercospora, and Stenella (Crous \& Braun 2003). The genus Stenella was allocated to the Teratosphaeriaceae based on the phylogenetic placement of the type species, Stenella araguata, while the stenella-like species remaining in Mycosphaerellaceae were included in the genus Zasmidium (Arzanlou et al. 2007, Braun et al. 2010a, 2013). Currently, the recognised cercosporoid and ramularioid fungi include the latter four and a large assortment of genera that are cercospora-, passalora-, pseudocercospora-, pseudocercosporella-, ramulariaand zasmidium-like in morphology.

These fungi represent a very large heterogeneous group for which the existing monographs (Chupp 1954, Braun 1995, 1998, Crous \& Braun 2003) are in urgent need of revision (e.g. Braun et al. 2013, 2014, 2015a). With the introduction of phylogenetic analyses based on DNA sequences, the Mycosphaerellaceae has been more narrowly defined with names of asexual genera now being used to identify morphologically distinct monophyletic clades, e.g. Cercospora (Groenewald et al. 2013), Pseudocercospora (Crous et al. 2013a, Nakashima et al. 2016), Ramularia (Videira et al. 2016), and Zymoseptoria (Quaedvlieg et al. 2011). However, several genera appear to be paraphyletic, showing that some morphological characters have evolved more than once within the family (e.g. Passalora and Zasmidium). Several accepted cercosporoid genera also have an uncertain status since no suitable type, or ex-type culture, is available (e.g. Distocercospora, Phaeoramularia and Mycovellosiella). Understanding and stabilising the taxonomy of cercosporoid fungi, most of which are plant pathogens, is urgent, given their impact on agriculture, horticulture and forestry. In the present study, we compiled a multigene phylogenetic analysis based on LSU, ITS and rpb2 DNA sequence data, including 415 isolates representing 297 taxa that we have managed to cultivate since this project started in the year 2000. We include ex-type strains when available. Several old generic names are resurrected based on the type species having been recollected, and new genera are described for monophyletic clades where necessary.

MATERIALS AND METHODS

Isolates

The isolates included in this study were obtained from the culture collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands, which houses the CBS culture collection, and from the working collection of Pedro Crous (CPC), housed at the Westerdijk Institute, or were freshly isolated from a range of different plant hosts (Table 1). Single-conidial and ascospore cultures were obtained using the techniques described for species of Mycosphaerella and associated asexual morphs (Crous et al. 1991, Crous 1998). Representative cultures of the new species described in this study were deposited in the CBS culture collection.

DNA extraction, amplification and sequencing

Fungal mycelium of strains (Table 1) was harvested with a sterile scalpel and the genomic DNA was isolated using the UltraClean Microbial DNA Isolation Kit (MoBio Laboratories, Inc., Solana Beach, CA, USA) following the manufacturers' protocols. Three partial nuclear genes were targeted for PCR amplification and sequencing: 28S nrRNA gene (LSU), internal transcribed spacer regions and intervening 5.8S nrRNA gene (ITS) of the nrDNA operon, RNA polymerase II second largest subunit (rpb2). The primers employed are listed in Table 2, with the respective annealing temperatures used. The PCR amplifications were performed on a GeneAmp PCR System 9700 (Applied Biosystems, Foster City, CA, USA). The PCR mixtures consisted of $1 \mu \mathrm{~L}$ genomic DNA, $1 \times \mathrm{NH}_{4}$ reaction buffer (Bioline, Luckenwalde, Germany), $2 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 40 \mu \mathrm{M}$ of each dNTP, $0.2 \mu \mathrm{M}$ of each primer and 0.5 U Taq DNA polymerase (Bioline) in a total volume of $12.5 \mu \mathrm{~L}$. The PCR mixture for $r p b 2$ contained $2 \mu \mathrm{~L}$ genomic DNA. The general PCR conditions were: initial denaturation $\left(94^{\circ} \mathrm{C}, 3 \mathrm{~min}\right)$; 35 cycles amplification [denaturation $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$; locus-specific annealing temperature (Table 2), 30 s ; extension $72^{\circ} \mathrm{C}$, 45 s], and final extension ($72^{\circ} \mathrm{C}, 5 \mathrm{~min}$). To obtain the partial rpb 2 , a touchdown PCR protocol was used: initial denaturation ($94^{\circ} \mathrm{C}, 3 \mathrm{~min}$), 5 amplification cycles (denaturation $94^{\circ} \mathrm{C}, 45 \mathrm{~s}$; annealing $60^{\circ} \mathrm{C}, 45 \mathrm{~s}$; extension $72^{\circ} \mathrm{C}, 1 \mathrm{~min}$), 5 amplification cycles (denaturation $94^{\circ} \mathrm{C}, 45$ s; annealing $58^{\circ} \mathrm{C}, 45 \mathrm{~s}$; extension $72^{\circ} \mathrm{C}, 1 \mathrm{~min}$), 30 amplification cycles (denaturation $94^{\circ} \mathrm{C}$, 45 s ; annealing $54^{\circ} \mathrm{C}, 45 \mathrm{~s}$; extension $\left.72^{\circ} \mathrm{C}, 1 \mathrm{~min}\right)$ and a final extension $\left(72^{\circ} \mathrm{C}, 8 \mathrm{~min}\right)$. The resulting fragments were sequenced in both directions using the PCR primers and the BigDye Terminator Cycle Sequencing Kit v. 3.1 (Applied Biosystems Life Technologies, Carlsbad, CA, USA). DNA sequencing amplicons were purified through Sephadex G-50 Superfine columns (Sigma-Aldrich, St. Louis, MO, USA) in MultiScreen HV plates (Millipore, Billerica, MA, USA). Purified sequence reactions were analysed on an Applied Biosystems 3730xl DNA Analyzer (Life Technologies, Carlsbad, CA, USA). The DNA sequences generated were analysed and consensus sequences were computed using the BioNumerics v. 4.61 software package (Applied Maths, St-Martens-Latem, Belgium).

Phylogenetic analysis

The generated sequences for each gene were aligned with the online version of MAFFT v. 7 (Katoh \& Standley 2013). The alignments were manually checked and improved where necessary using MEGAv. 5 (Tamura et al. 2011) and were concatenated with Mesquite v. 2.75 (Maddison \& Maddison 2011). From the strains listed in Table 1, only those with the complete dataset of

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{\mathbf{3}}$	ITS ${ }^{4}$	$r p b 2^{5}$
Cladosporiaceae								
Cladosporium allicinum	-	CBS 188.53 = IFO 5267	-	Japan	-	MF951115	KT600367	MF951411
Cladosporium cf. subtilissimum	Fusicladium effusum	$\begin{aligned} & \text { CBS } 172.52=\text { ATCC } \\ & 11320 \end{aligned}$	Carya illinoensis	USA	-	EF679390	EF679390	MF951412
C. cladosporioides	-	CBS 112388 ${ }^{\text {NT }}$	Air	Germany	Ch. Trautmann	KX286982	HM148003	KX288432
C. ramotenellum	Fusicladium subsessile	$\begin{aligned} & \text { CBS } 133.29=\text { ATCC } \\ & 36970 \end{aligned}$	Populus tremuloides	-		MF951116	MF951281	MF951413
Cladosporium sp. A	Fusicladium carpophillum	$\begin{aligned} & \text { CBS } 145.33=\text { ATCC } \\ & 12117 \end{aligned}$	Prunus persica	USA: Wisconsin	-	MF951117	MF951282	MF951414
Cladosporium sp. B Dissoconiaceae	Fusicladium pomi	CBS 179.47	-	Portugal	-	MF951118	MF951283	MF951415
Ramichloridium apiculatum	Chloridium apiculatum	$\begin{aligned} & \text { CBS } 156.5^{\mathrm{T}}=\text { ATCC } \\ & \text { 13211 = IMI 100716 } \\ & =\text { JCM } 6972=\text { MUCL } \\ & \text { 15753 = MUCL } 7991= \\ & \text { QM } 7716 \end{aligned}$	Forest soil	USA: Georgia	-	EU041848	EU041791	MF951416
	Rhinocladiella indica	$\begin{aligned} & \text { CBS } 400.76=\text { IMI } \\ & 088021 \end{aligned}$	Soil	Pakistan	-	EU041851	EU041794	KX348077
R. luteum	-	$\begin{aligned} & \text { CBS 132088 }{ }^{\mathrm{T}}=\text { CPC } \\ & 18961=\text { ZXR-SD-2 } \end{aligned}$	Malus domestica	China	G.Y. Sun, Oct. 2006	JQ622099	EU329730	MF951417
Uwebraunia australiensis	Dissoconium australiensis	$\begin{aligned} & \text { CBS } 120729=\text { CPC } \\ & 13282 \end{aligned}$	Eucalyptus platyphylla	Australia: Queensland	P.W. Crous, 26 Aug. 2006	KF442553	KF442513	KX348105
U. dekkeri	Mycosphaerella lateralis	$\begin{aligned} & \text { CBS } 110748=\text { CMW } \\ & 14906=\text { CPC } 825 \end{aligned}$	Eucalyptus grandis	South Africa: Northern Province	G. Kemp, Oct. 1994	KF442534	KF442495	MF951418
U. musae	Dissoconium musae	CBS $122453=\mathrm{X} 1021$	Musa acuminata cv. Nendran (Plantain) AAB	India	I. Buddenhagen, 28 Feb. 2005	JQ739816	EU514225	KX348107
Dothioraceae								
Cylindroseptoria ceratoniae Mycosphaerellaceae	Septoria ceratoniae	$\begin{aligned} & \text { CBS } 477.69^{\mathrm{T}}=\mathrm{H} . \mathrm{A} \\ & 1731 \end{aligned}$	Ceratonia siliqua	Spain: Mallorca	H.A. van der Aa, 24 May 1969	KF251655	KF251151	MF951419

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{3}$	ITS ${ }^{4}$	$r p 2^{5}$
Acervuloseptoria ziziphicola	Acervuloseptoria ziziphicola	$\begin{aligned} & \text { CBS 138009 }=\text { CPC } \\ & 23707 \end{aligned}$	Ziziphus mucronata	South Africa: Northern Cape	$\begin{aligned} & \text { J. Roux, Sep. } \\ & 2013 \end{aligned}$	KJ869221	KJ869164	MF951425
Amycosphaerella africana	Mycosphaerella africana	CBS 680.95 ${ }^{\text { }}=$ CPC 796	Eucalyptus viminalis	South Africa: Western Cape	P.W. Crous, Oct. 1994	KF902048	KF901701	MF951426
	Mycosphaerella aurantia	$\begin{aligned} & \text { CBS 110500 }{ }^{\text {T of Mycosphacerlla }} \\ & \text { aurantia }=\text { CMW } 14460 \end{aligned}$	Eucalyptus globulus	Australia: Western Australia	A. Maxwell, 1 May 2000	KF901837	AY725531	MF951427
	Mycosphaerella ellipsoidea	$\begin{aligned} & \text { CBS 110843 }{ }^{\text {Tof } \text { of Myospsphacerella }}=\text { CPC } 850 \end{aligned}$	Eucalyptus cladocalyx	South Africa: Western Cape	P.W. Crous, 7 Nov. 1994	GQ852602	AY725545	MF951431
	Mycosphaerella buckinghamiae	$\begin{aligned} & \text { CBS 111996 }{ }^{\text {T of Mycosphacerlla }} \\ & \text { buckinghamiae }=\text { CPC } 3006 \end{aligned}$	Buckinghamia sp.	Australia: New South Wales	P.W. Crous \& B. Summerell, Aug. 1999	MF951124	EU707855	MF951430
	Mycosphaerella africana	$\begin{aligned} & \text { CBS } 116154^{\mathrm{T}}=\text { CMW } \\ & 4945=\text { CPC } 794 \end{aligned}$	Eucalyptus viminalis	South Africa	P.W. Crous, Oct. 1994	GQ852601	KF901700	MF951429
	Mycosphaerella gregaria	$\begin{aligned} & \text { CBS } \mathbf{1 3 4 9 2 2 7}_{\text {Mycosphaerella gregaria }}^{\mathrm{T}}=\mathrm{DAR} \\ & 72368 \end{aligned}$	Eucalyptus grandis	Australia: Victoria	A.J. Carnegie, 11 Nov. 1990	MF951125	MF951289	MF951432
	Mycosphaerella aurantia	CPC 12678	Dracaena draco	New Zealand	M. Braithwaite, 1 Mar. 2004	MF951123	MF951288	MF951428
A. keniensis	Mycosphaerella keniensis	$\begin{aligned} & \text { CBS 111001 }{ }^{\mathrm{T}}=\mathrm{CPC} \\ & 1084=\text { CMW } 5147 \end{aligned}$	Eucalyptus grandis litter	Kenya	M.J. Wingfield, May 1995	GQ852610	MF951290	MF951433
	Mycosphaerella mozambica	$\begin{aligned} & \text { CBS } 121391=\text { UQ } 438 \\ & =\text { X884 } \end{aligned}$	Musa sp.	Australia	-	MF951126	EU514258	MF951434
Amycosphaerella sp.	Crinipellis perniciosa	CBS 441.80	Theobroma cacao	Brazil	H.C. Evans	MF951127	MF951291	MF951435
Annellosympodiella juniperi	-	$\begin{aligned} & \text { CBS 137992 } \\ & 23276 \end{aligned}$	Juniperus procera	Ethiopia	P.W. Crous \& A. Assefa, 25 Jun. 2013	KJ869204	KJ869204	MF951436
Apseudocercosporella trigonotidis	Pseudocercosporella sp.	$\begin{aligned} & \text { CBS 131890 } \\ & 10864 \end{aligned}$	Trigonotis peduncularis	Republic of Korea	$\text { H.D.. Shin, } 12$ $\text { Nov. } 2003$	JQ324972	GU269858	KX288414
Asperisporium caricae	-	CBS 130298 ${ }^{\text {ET }}$	Carica papaya	Brazil	C. Weight, 16 Apr. 2010	MF951128	JN190955	MF951437

Table 1. (Continued).								
Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{\mathbf{3}}$	ITS ${ }^{4}$	$r p b 2^{5}$
	Asperisporium sp.	CPC 22691	Carica papaya	Brazil	A.C. Alfenas, Mar. 2013	MF951129	MF951292	MF951438
Asperisporium caricicola	-	CBS 139998 ${ }^{\text {T }}=\mathrm{CPC}$ 24348 = TSU:MUMH 11477	Carica papaya	Republic of Fiji	C. Nakashima, 10 Sep. 2013	KR611891	KR611869	MF951439
Australosphaerella nootherensis	Mycosphaerella nootherensis	CBS 130522 ${ }^{\text {T }}$	Corymbia intermedia	Australia: Queensland	A.J. Carnegie, 11 Aug. 2008	KF901835	MF951293	MF951440
Brunneosphaerella jonkershoekensis	-	CPC 13902 ${ }^{\text {ET }}$	Protea repens	South Africa: Western Cape	P.W. Crous, Apr. 2007	JN712503	JN712439	MF951441
B. nitidae	-	$\begin{aligned} & \text { CBS } 130595^{\mathrm{T}}=\mathrm{CPC} \\ & 15231 \end{aligned}$	Protea nitida leaf litter	South Africa: Western Cape	L. Mostert, 12 Apr. 2008	GU214396	GU214625	MF951442
B. protearum	-	$\begin{aligned} & \text { CBS } \mathbf{1 3 0 5 9 7}^{\mathrm{ET}}=\mathrm{CPC} \\ & 16338 \end{aligned}$	Protea sp.	South Africa: Western Cape	P.W. Crous, 13 Jan. 2009	GU214397	GU214626	MF951443
Brunswickiella parsonsiae	-	$\begin{aligned} & \text { CBS 137979 } \\ & 22537 \end{aligned}$	Parsonsia straminea	Australia	B.A. Summerell, 9 Mar. 2013	KJ869188	KJ869131	MF951593
Caryophylloseptoria lychnidis	-	CBS 109099	Silene pratensis	Austria	G. Verkley, 4 Aug. 2000	KF251791	KF251287	MF951444
	-	CBS 109102	Silene pratensis	Austria	G. Verkley, 4 Aug. 2000	KF251793	KF251289	MF951445
C. pseudolychnidis	-	$\begin{aligned} & \text { CBS } 128614=\text { KACC } \\ & 42904=\text { SMKC } 22691 \end{aligned}$	Lychnis cognata	Republic of Korea	-	KF251794	KF251290	KX348049
	-	$\begin{aligned} & \text { CBS } 128630^{\mathrm{T}}=\mathrm{KACC} \\ & 43866=\text { SMKC } 23519 \end{aligned}$	Lychnis cognata	Republic of Korea	-	KF251795	KF251291	MF951446
C. silenes	Septoria silenes	CBS 109103	Silene nutans	Austria	G. Verkley, 3 Aug. 2000	KF251797	KF251293	MF951447
C. spergulae	-	CBS 109010 ${ }^{\text {ET }}$	Spergula morisonii	Netherlands	A. Aptroot, 13 Jun. 2000	KF251798	KF251294	MF951448
"Septoria" gladioli	-	CBS 353.29	-	Netherlands	-	KF251932	KF251428	MF951449
Catenulocercospora fusimaculans	Passalora fusimaculans	CPC 17277	Agrostis sp.	Thailand	P. Pheng, 15 Sep. 2009	KF251817	KF251313	MF951450
Cercoramularia koreana	Phaeoramularia sp.	$\begin{aligned} & \text { CBS } \mathbf{1 4 2 1 7 5}^{\mathrm{T}}=\mathrm{CPC} \\ & 10709 \end{aligned}$	Styrax japonicus	Republic of Korea	$\begin{aligned} & \text { H.D.. Shin, } 17 \\ & \text { Sep. } 2003 \end{aligned}$	MF951132	MF951296	MF951453

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{3}$	ITS ${ }^{4}$	$r p b 2^{5}$
	Phaeoramularia sp.	CPC 10639	Styrax japonicus	Republic of Korea	H.D.. Shin, 2003	MF951130	MF951294	MF951451
	Phaeoramularia sp.	CPC 10641	Styrax japonicus	Republic of Korea	H.D.. Shin, 2003	MF951131	MF951295	MF951452
Cercospora apii	-	$\begin{aligned} & \text { CBS } \mathbf{1 1 6 4 5 5}^{\mathrm{ET}}=\mathrm{CPC} \\ & 11556 \end{aligned}$	Apium graveolens	Germany	K. Schrameyer, 10 Aug. 2004	MF951133	AY840519	-
C. armoraciae	-	$\begin{aligned} & \text { CBS } 538.71=\text { IMI } \\ & 161109=\text { CPC } 5090 \end{aligned}$	Berteroa incana	Romania	O. Constantinescu, 4 Sep. 1969	MF951134	JX143547	MF951454
C. beticola	-	CPC 18813	Beta vulgaris	USA: California	S.T. Koike, 1 Nov. 2010	MF951135	JX143556	MF951455
C. campi-silii	-	$\begin{aligned} & \text { CBS } 132625=\text { CPC } \\ & 14585 \end{aligned}$	Impatiens nolitangere	Republic of Korea	$\begin{aligned} & \text { H.D.. Shin, } 29 \\ & \text { Sep. } 2007 \end{aligned}$	KX286965	JX143561	KX288415
C. capsici	-	$\begin{aligned} & \text { CBS } 132622=\text { CPC } \\ & 14520 \end{aligned}$	Capsicum annuum	Republic of Korea	H.D.. Shin, 29 Aug. 2005	MF951136	JX143568	MF951456
Cercospora cf. chenopodii	Passalora dubia	CBS 126.29	-	-	-	MF951139	MF951299	MF951459
	Passalora dubia	CBS 256.67	Atriplex hortensis	Romania		MF951140	MF951300	MF951460
	Passalora dubia	$\begin{aligned} & \text { CBS } 543.71=\text { BUCM } \\ & 2006 \end{aligned}$	Atriplex oblongifolia	Romania	O. Constantinescu \& G. Negrean, 13 Jul. 1970	MF951141	MF951301	MF951461
	Passalora dubia	$\begin{aligned} & \text { CBS } 123192=\text { CPC } \\ & 15387 \end{aligned}$	Chenopodium album	New Zealand	C.F. Hill, 2 Mar. 2008	MF951138	MF951298	MF951458
	-	CPC 10303	Chenopodium ficifolium	Republic of Korea	H.D.. Shin, 3 Oct. 2002	MF951137	MF951297	MF951457
	-	CPC 12450	Chenopodium ficifolium	Republic of Korea	$\begin{aligned} & \text { H.D.. Shin, } 27 \\ & \text { Oct. } 2005 \end{aligned}$	KX286967	JX143574	KX288417
C. euphorbiaesieboldianae	-	CBS 113306 ${ }^{\text {T }}$	Euphorbia sieboldiana	Republic of Korea	H.D.. Shin, 8 May 2003	MF951142	JX143593	MF951462
C. fagopyri	-	$\begin{aligned} & \text { CBS } \mathbf{1 3 2 6 2 3}^{\mathrm{NT}}=\mathrm{CPC} \\ & 14541 \end{aligned}$	Fagopyrum esculentum	Republic of Korea	H.D.. Shin	MF951143	JX143594	MF951463

$\boldsymbol{\pi}$

Table 1. (Continued).								
Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{\mathbf{3}}$	ITS ${ }^{4}$	$r p b 2^{5}$
C. janseana	Passalora janseana	$\begin{aligned} & \text { CBS } 145.37=\text { IMI } \\ & 303642 \end{aligned}$	-	USA	-	KF251818	KF251314	MF951464
C. lactucae-sativae	-	CPC 10082	Ixeris chinensis subsp. strigosa (三 Ixeris strigosa)	Republic of Korea	H.D.. Shin, 11 Oct. 2002	MF951144	JX143622	MF951465
C. senecionis-walkeri	-	$\begin{aligned} & \text { CBS } 132636=\text { CPC } \\ & 19196 \end{aligned}$	Senecio walkeri	Laos	P. Phengsintham, 20 Feb. 2010	MF951145	JX143649	MF951466
C. sojina	Passalora personata	CBS 220.31	-	Italy	-	KX286971	KX287279	KX288421
	-	$\begin{aligned} & \text { CBS } 132018=\text { CPC } \\ & 12322 \end{aligned}$	Glycine soja	Republic of Korea	$\begin{aligned} & \text { H.D.. Shin, } 20 \\ & \text { Jul. } 2004 \end{aligned}$	GU214655	GU214655	MF951467
	-	$\begin{aligned} & \text { CBS } \mathbf{1 3 2 6 1 5}^{\mathrm{NT}}=\mathrm{CPC} \\ & 11353 \end{aligned}$	Glycine soja	Republic of Korea	$\begin{aligned} & \text { H.D.. Shin, } 20 \\ & \text { Jul. } 2004 \end{aligned}$	KX286969	JX143659	KX288419
	-	CPC 11422	Glycine soja	Republic of Korea	H.D.. Shin	KX286972	KX287280	KX288422
Cercospora sp.	Passalora dulcamarae	$\begin{aligned} & \text { CBS } 544.71=\text { BUCM } \\ & 2008 \end{aligned}$	Solanum dulcamara	Romania	O. Constantinescu \& G. Negrean, 14 Oct. 1970	MF951146	MF951302	MF951468
C. zeina	-	$\begin{aligned} & \text { CBS 118820 } \\ & 11995 \end{aligned}$	Zea mays	South Africa: KwaZulu-Natal	P. Caldwell, 2005	MF951147	DQ185081	MF951469
Cercosporella catenulata	Ramularia deusta var. alba	CBS 355.73 ${ }^{\text {T }}$	Phaseolus vulgaris	Rwanda	D. Froment, 10 Jan. 1973	KX286973	KX287281	KX288424
C. dolichandrae	-	$\begin{aligned} & \text { CBS 138101 } \\ & 22948 \end{aligned}$	Dolichandra unguiscati	South Africa: KwaZulu-Natal	A. King, 15 Nov. 2011	KJ869197	KJ869140	KX288423
C. virgaureae	Cercosporella vergaweae	CBS 113304	Erigeron annuus	Republic of Korea	H.D.. Shin, 21 May 2003	KF251805	GU214658	KX348051
	-	CPC 10286	Erigeron annuus	Republic of Korea	H.D.. Shin, 9 Oct. 2002	KX286978	KX287285	KX288428
	-	CPC 11456	Erigeron annuus	Republic of Korea	H.D.. Shin, 1 Jul. 2004	KX286974	MF951303	KX348050
	-	CPC 11457	Erigeron annuus	Republic of Korea	H.D.. Shin, 1 Jul. 2004	KX286975	KX287282	KX288425

Table 1. (Continued).								
Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	$\mathbf{L S U}{ }^{\mathbf{3}}$	ITS ${ }^{4}$	$r p b 2^{5}$
Cercosporidium californicum	-	CPC 11460	Erigeron annuus	Republic of Korea	H.D.. Shin, 1 Jul. 2004	KX286976	KX287283	KX288426
	Passalora californica	$\begin{aligned} & \text { CBS 128857 } \\ & 18389 \end{aligned}$	Asclepias fascicularis	USA: California	S.T Koike, 19 Jul. 2010	MF951148	HQ728115	MF951470
	Passalora californica	CPC 18390	Asclepias fascicularis	USA: California	S.T Koike, 19 Jul. 2010	MF951149	MF951304	MF951471
C. chaetomium	Passalora sp.	$\begin{aligned} & \text { CBS } \mathbf{1 4 2 1 7 7}^{\mathrm{ET}}=\mathrm{CPC} \\ & 18624 \end{aligned}$	Euphorbia sp.	Canada	P.W. Crous \& K. Seifert, 28 Sep. 2010	MF951151	MF951306	MF951474
C. miurae	Passalora miurae	$\begin{aligned} & \text { CBS } 142235=\text { CPC } \\ & 14628 \end{aligned}$	Metaplexis japonica	Republic of Korea	H.D.. Shin, 1 Oct. 2007	MF951150	MF951305	MF951472
	Passalora miurae	CPC 14643	Metaplexis japonica	Republic of Korea	H.D.. Shin, 22 Sep. 2007	KJ633268	KJ633264	MF951473
Chuppomyces handelii	Mycosphaerella handelii	CBS 113302	Rhododendron sp.	Netherlands	P.W. Crous \& U. Braun, 2002	GU214437	EU167581	MF951475
Clarohilum henningsii	Passalora henningsii	CPC 17314	Manihot esculenta	Laos	P. Pheng, 5 May 2006	MF951152	MF951307	MF951476
Clypeosphaerella calotropidis	Passalora calotropidis	CBS 129.30	Calotropis procera	Egypt	-	MF951153	MF951308	MF951477
C. quasiparkii	Mycosphaerella quasiparki	$\begin{aligned} & \text { CBS 123243 } \\ & 15409 \end{aligned}$	Eucalyptus sp .	Thailand	P. Suwannawong, Jul. 2007	KF902128	KF901771	MF951478
Collarispora valgourgensis	Passalora sp.	$\begin{aligned} & \text { CBS } 125311=\text { CS2 } \\ & \text { OH3 gH1c } \end{aligned}$	Malus sp .	USA: Ohio	M. Ellis, 29 Sep. 2005	MF951154	MF951309	MF951480
	Mycosphaerella valgourgensis	$\begin{aligned} & \text { CBS 129531 }{ }^{\mathrm{T}}=\text { CPC } \\ & 18385 \end{aligned}$	Yисca sp .	France	P.W. Crous, 15 Jul. 2010	JF951175	JF951152	MF951479
Coremiopassalora eucalypti	Passalora eucalypti	CBS 111306 ${ }^{\text {T of } \text { Mycovellosiella }}$ eucalypti $=$ CPC $1455=$ CMW 14907	Eucalyptus saligna	Brazil	P.W. Crous \& A.C. Alfenas, Jun. 1995	GU253860	GU269845	MF951481
	Passalora eucalypti	$\begin{aligned} & \text { CBS } 111318=\text { CPC } \\ & 1457 \end{aligned}$	Eucalyptus saligna	Brazil	P.W. Crous \& A.C. Alfenas, Jun. 1995	GU253860	GU269845	MF951482

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	$\mathbf{L S U}^{3}$	ITS ${ }^{4}$	$r p 2^{5}$
C. leptophlebae	Passalora leptophlebiae	$\begin{aligned} & \text { CBS 129524 }{ }^{\mathrm{T}}=\text { CPC } \\ & 18480 \end{aligned}$	Eucalyptus leptophleba	Brazil	P.W. Crous, A.C. Alfenas, R. Alfenas \& O.L. Pereira, 23 Aug. 2010	KF901939	MF951310	MF951483
Cytostagonospora martiniana	Septoria sp.	$\begin{aligned} & \text { CBS } \mathbf{1 3 5 1 0 2}^{\mathrm{ET}}=\mathrm{CPC} \\ & 17727 \end{aligned}$	Acacia pycnantha	Australia: Victoria	P.W. Crous, 21 Oct. 2009	KF251657	KF251153	MF951484
Deightonomyces daleae	Passalora daleae	CBS 113031	Dalea spinosa	Mexico	L.B. Sparrius, Apr. 2003	MF951155	EU040236	MF951485
Devonomyces endophyticus	Phaeophleospora gregaria	$\begin{aligned} & \text { CBS } 110501=\text { CMW } \\ & 14462 \end{aligned}$	Eucalyptus globulus	Australia: Western Australia	A. Maxwell, 15 Dec. 2000	EU167580	EU167580	MF951589
	Phaeophleospora gregaria	$\begin{aligned} & \text { CBS } 111167=\text { CPC } \\ & 1225 \end{aligned}$	Eucalyptus cladocalyx	South Africa: Western Cape	A.R. Wood, 22 Sep. 1995	KF902058	KF901711	MF951588
	Mycosphaerella endophytica	$\begin{aligned} & \text { CBS 114662 }{ }^{\text {endophyyica }}=\text { of Mycosphacerlla } \\ & \text { CPC } 1193 \end{aligned}$	Eucalyptus sp.	South Africa: Western Cape	P.W. Crous, Jun. 1995	KF902060	KF901713	MF951590
	Mycosphaerella pseudoellipsoidea	$\begin{aligned} & \text { CBS } 114709=\text { CMW } \\ & 9099 \end{aligned}$	Eucalyptus nitens	South Africa	-	EU167585	EU167585	MF951591
	Stenella sp.	CPC 15580	Hakea undulata	Australia	A.R. Wood, 2 Aug. 2008	MF951212	MF951357	MF951592
Distocercospora pachyderma	-	$\begin{aligned} & \text { CBS } 138247^{\mathrm{ET}}=\mathrm{CPC} \\ & 24144 \end{aligned}$	Dioscorea sp.	Japan	C. Nakashima \& K. Motohashi, 13 Sep. 2010	MF951156	MF951311	MF951486
Distocercosporaster dioscoriae	Passalora dioscoreae	$\begin{aligned} & \text { CBS } 135460=\text { CPC } \\ & 10855 \end{aligned}$	Dioscorea tokoro	Republic of Korea	$\text { H.D.. Shin, } 16$ $\text { Oct. } 2003$	GU214665	GU214665	MF951488
	Passalora dioscoreae	$\begin{aligned} & \text { CBS } 135463=\text { CPC } \\ & 11513 \end{aligned}$	Dioscorea tenuipes	Republic of Korea	H.D.. Shin, 2003	KF251815	KF251311	MF951489
	Passalora dioscoreae	KACC 44723	Dioscorea sp.	Republic of Korea	H.D.. Shin	MF951157	MF951312	MF951487
Distomycovellosiella brachycarpa	Passalora brachycarpa	CBS 114855	-	New Zealand	-	MF951159	MF951314	MF951491
	Passalora brachycarpa	CBS 115124	Solanum mauritianum	New Zealand	-	GU214664	GU214664	MF951492

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{\mathbf{3}}$	ITS ${ }^{4}$	$r p b 2^{5}$
Dothistroma pini	Mycovellosiella brachycarpa	$\begin{aligned} & \text { CBS } 142178^{\text {ET }}=\mathrm{CPC} \\ & 18381 \end{aligned}$	Solanum mauritianum	South Africa: KwaZulu-Natal	A.R. Wood, 6 Jul. 2010	MF951158	MF951313	MF951490
	-	CBS 116486	Pinus nigra	USA: Michigan	G. Adams, 2001	JX901823	JX901735	KX348053
	-	$\begin{aligned} & \text { CBS } 121005=\text { CMW } \\ & 24852 \end{aligned}$	Pinus pallasiana	Russia	T.S. Bulgakov, 8 Oct. 2006	KF251659	KF251155	KX348052
D. septosporum	-	$\begin{aligned} & \text { CBS } 128782=\mathrm{CPC} \\ & 16798 \end{aligned}$	Pinus mugo 'Rostrata'	Netherlands	W. Quaedvlieg, 1 Jun. 2009	JX901829	JX901741	KX348054
	-	$\begin{aligned} & \text { CBS } 128783=\text { CPC } \\ & 16799 \end{aligned}$	Pinus mugo 'Rostrata'	Netherlands	W. Quaedvlieg, 1 Jun. 2009	JF700938	JX901742	MF951493
Epicoleosporium ramularioides	-	$\begin{aligned} & \text { CBS 141103 } \\ & 10672 \end{aligned}$	Coleosporium phellodendri on leaves of Phellodendron amurense	Republic of Korea	H.D.. Shin, 4 Sep. 2003	GU214688	GU214688	KX288433
	-	CPC 10673	Coleosporium phellodendri on leaves of Phellodendron amurense	Republic of Korea	H.D.. Shin, 4 Sep. 2003	MF951160	KX287289	KX288434
Exosporium livistonae	Passalora sp.	$\begin{aligned} & \text { CBS } \mathbf{1 3 1 3 1 3}^{\mathrm{T}}=\mathrm{CPC} \\ & 19357 \end{aligned}$	Livistona benthamii	Australia: Northern Territory	P.W. Crous \& B.A. Summerell, 25 Apr. 2011	JQ044446	JQ044427	MF951494
E. livistonicola	-	MUCC 190	Livistona chinensis	Japan	T. Kobayashi \& Y. Ono, 27 Feb. 2003	MF951161	MF951315	MF951495
Exutisphaerella laricina	Mycosphaerella laricina	CBS 326.52 ${ }^{\text {NT }}$	Larix decidua	Switzerland	-	GU253693	GU269643	MF951496
Filiella pastinacae	Pseudocercosporella pastinacae	$\begin{aligned} & \text { CBS } 114116=\text { UPSC } \\ & 2633 \end{aligned}$	Laserpitium latifolium	Sweden	K. \& L. Holm, 2 Jun. 1988	KF251832	KF251328	KX348056
Fulvia fulva	Passalora fulva	$\begin{aligned} & \text { CBS } 120.46=\mathrm{VKM} \\ & \mathrm{~F}-3053 \end{aligned}$	Solanum lycopersicum	Switzerland	-	MF951162	MF951316	MF951497

Family and Current name	Previous name (if different)	Culture accession number(s) $)^{1,2}$	Substrate	Country	Collector, Collection date	$\mathbf{L S U}^{\mathbf{3}}$	ITS ${ }^{4}$	$r p b 2^{5}$
Fusoidiella anethi	Passalora fulva	$\begin{aligned} & \text { CBS 142314 } \\ & 13652 \end{aligned}$	Solanum lycopersicum	Cuba	B. Summerell, 2006	MF951163	MF951317	MF951498
	Passalora puncta	CBS 296.32	-	Italy	-	MF951164	MF951318	MF951499
	Passalora puncta	CBS 117584	Foeniculum vulgare	New Zealand	-	MF951165	MF951319	MF951500
F. depressa	Passalora depressa	$\begin{aligned} & \text { CBS } 141335=\text { CPC } \\ & 14915 \end{aligned}$	Angelica gigas	Republic of Korea	H.D.. Shin, 18 Oct. 2007	KF251813	KF251309	KX348055
Genus A: "Passalora" vaginae	Passalora vaginae	$\begin{aligned} & \text { CBS } 140.34=\text { DSM } \\ & 1148=\text { IMI } 303641 \end{aligned}$	Saccharum officinarum	Taiwan	-	MF951166	MF951320	-
Graminopassalora graminis	Passalora graminis	CBS 113303	Alopecurus aequalis var. amurensis	Republic of Korea	$\begin{aligned} & \text { H.D.. Shin, } 24 \\ & \text { May } 2003 \end{aligned}$	GU214666	GU214666	MF951502
	Cercosporidium graminis	$\begin{aligned} & \text { MAFF } 510604=\text { MUCC } \\ & 1429 \end{aligned}$	Dactylis glomerata	Japan	N. Nishihara, -	MF951167	MF951321	MF951501
Hyalinozasmidium aerohyalinosporum	Zasmidium aerohyalinosporum	$\begin{aligned} & \text { CBS 125011T of Zasmidium } \\ & \text { aerohyalinosporum }=\text { CPC } \\ & 14636 \end{aligned}$	Eucalyptus tectifica	Australia: New South Wales	B.A. Summerell, 23 Sep. 2007	KF901930	GQ852839	MF951504
H. sideroxyli	Zasmidium sp.	$\begin{aligned} & \text { CBS 142191 } \\ & 23462 \end{aligned}$	Sideroxylon inerme	South Africa: Eastern Cape	A.R. Wood, 8 May 2013	MF951169	MF951323	MF951505
Hyalocercosporidium desmodii	Passalora sp.	$\begin{aligned} & \text { CBS 142179 } \\ & 19483 \end{aligned}$	Desmodium tortuosum	Brazil: Minas Gerais	R.W. Barreto, 2 Aug. 2009	MF951168	MF951322	MF951503
Lecanosticta acicola	-	$\begin{aligned} & \text { CBS } 871.95=\mathrm{MPFN} \\ & 314 \end{aligned}$	Pinus radiata	France	M. Morelet, Apr. 1995	GU214663	GU214663	MF951506
	-	CBS $133791^{\text {ET }}=$ WPF13.12	Pinus strobus	USA: New Hampshire	B. Ostrofsky, 15 Jun. 2011	KC013017	KC012999	MF951507
L. brevispora	-	$\begin{aligned} & \text { CBS 133601 } \\ & 18092 \end{aligned}$	Pinus sp.	Mexico	M. de Jesús Yáñez-Morales, 24 Oct. 2009	KF902021	JX901763	MF951508
L. longispora	-	$\begin{aligned} & \text { CBS 133602 } \\ & 17940 \end{aligned}$	Pinus sp.	Mexico	M. de Jesús Yáñez-Morales \& C. MéndezInocencio, 24 Oct. 2009	JX901858	JX901766	MF951510

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	$\mathbf{L S U}^{3}$	ITS ${ }^{4}$	$r p 2^{5}$
Madagascaromyces intermedius	-	CPC 17941	Pinus sp.	Mexico	M. de Jesús Yáñez-Morales \& C. MéndezInocencio, 24 Oct. 2009	KF902022	JX901766	MF951509
	Passalora intermedia	$\begin{aligned} & \text { CBS 124154 }{ }^{\mathrm{T}}=\text { CPC } \\ & 15745 \end{aligned}$	Eucalyptus camaldulensis	Madagascar	M.J. Wingfield, Aug. 2007	FJ790297	FJ790267	MF951511
	Stenella sp.	CPC 15719	Eucalyptus camaldulensis	Madagascar	M.J. Wingfield, Oct. 2007	MF951170	FJ790251	MF951512
Microcyclosporella mali	-	$\begin{aligned} & \text { CBS 125651 = RH1 = } \\ & \text { OH1 34D2a } \end{aligned}$	Malus sp.	USA: Ohio	M. Ellis, 5 Sep. 2005	FJ031989	FJ425196	KX288442
	-	$\begin{aligned} & \text { CBS } 125653=\text { RH6 }= \\ & \text { MI3 20F1a } \end{aligned}$	Malus sp.	USA: Michigan	G. Sundin, 1 Sep. 2005	FJ031994	FJ425201	KX288440
	-	$\begin{aligned} & \text { CBS } 126132=\mathrm{CPC} \\ & 16180 \end{aligned}$	Malus domestica	Slovenia	$\text { J. Frank, } 17 \text { Oct. }$ 2007	MF951171	MF951324	MF951513
	-	$\begin{aligned} & \text { CBS 126136 } \\ & 16184 \end{aligned}$	Malus domestica	Slovenia	J. Frank, 7 Aug. 2007	GU570547	GU570535	KX288436
Micronematomyces caribensis	Passalora caribensis	$\begin{aligned} & \text { CBS } 113374=\text { MJM } \\ & 1545=\text { C } 481 \end{aligned}$	Chromolaena odorata	Jamaica	M.J. Morris	MF951172	DQ676512	MF951514
	Passalora caribensis	$\begin{aligned} & \text { CBS } 113375=\text { MJM } \\ & 1543=\text { C } 482 \end{aligned}$	Chromolaena odorata	Jamaica	M.J. Morris	MF951173	DQ676513	MF951515
	Passalora caribensis	$\begin{aligned} & \text { CBS } 113376=\text { MJM } \\ & 1539=\text { C487 } \end{aligned}$	Chromolaena odorata	Cuba	S. Neser, 28 Oct. 1997	MF951174	DQ676514	MF951516
	Passalora perfoliati	$\begin{aligned} & \text { CBS } 113378=\text { MJM } \\ & 1552=\text { C494 } \end{aligned}$	Chromolaena odorata	Jamaica	M.J. Morris, 1 Nov. 1997	MF951178	DQ676520	MF951520
	Passalora perfoliati	$\begin{aligned} & \text { CBS } 113379=\text { MJM } \\ & 1544=\text { C495 } \end{aligned}$	Chromolaena odorata	Jamaica	$\begin{aligned} & \text { M.J. Morris, } 30 \\ & \text { Oct. } 1997 \end{aligned}$	MF951177	DQ676521	MF951519
	Passalora caribensis	$\begin{aligned} & \text { CBS 113380 }^{\mathrm{T}}=\mathrm{MJM} \\ & 1550=\text { C498 } \end{aligned}$	Chromolaena odorata	Jamaica	M.J. Morris, 31 Oct. 1997	MF951175	DQ676515	MF951517
	Passalora caribensis	$\begin{aligned} & \text { CBS } 113381=\text { MJM } \\ & 1549=\text { C500 } \end{aligned}$	Chromolaena odorata	Jamaica	M.J. Morris, 30 Oct. 1997	MF951176	DQ676516	MF951518

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{3}$	ITS ${ }^{4}$	$r p b 2^{5}$
M. chromolaenae	Septoria chromolaenae	$\begin{aligned} & \text { CBS } 113371=\text { MJM } \\ & 1490=\text { C450 } \end{aligned}$	Chromolaena odorata	Mexico	M.J. Morris, 12 Oct. 1997	MF951179	DQ676517	MF951521
	Septoria chromolaenae	$\begin{aligned} & \text { CBS } \mathbf{1 1 3 6 1 1}{ }^{\mathrm{T}}=\text { MJM } \\ & 1498=\text { C452 } \end{aligned}$	Chromolaena odorata	Mexico	M.J. Morris, 12 Oct. 1997	MF951180	DQ676518	MF951522
Miuraea degenerans	Miuraea degenerans	MAFF $239265^{\text {ET }}=$ MUCC 1514	Prunus mume	Japan	T. Kobayashi, Sep. 2003	MF951181	MF951325	MF951523
M. persica	Miuraea persica	$\begin{aligned} & \text { CBS } 131935=\text { CPC } \\ & 10828 \end{aligned}$	Prunus armeniaca	Republic of Korea	H.D.. Shin, 7 Oct. 2003	JQ324939	GU269844	MF951524
Mycodiella sumatrensis	Mycosphaerella sumatrensis	$\begin{aligned} & \text { CBS } 118501=\text { CPC } \\ & 11175 \end{aligned}$	Eucalyptus sp.	Indonesia	M.J. Wingfield, Feb. 2004	JX901872	DQ303049	MF951525
Mycosphaerelloides madeirae	Mycosphaerella madeirae	$\begin{aligned} & \text { CBS 112895} \\ & 3745=\text { CPW } 14458 \end{aligned}$	Eucalyptus globulus	Portugal	S. Denman, Apr. 2000	KF902017	AY725553	KX348057
	Mycosphaerella madeirae	CBS 116066	Quercus robur	Netherlands	-	KX286989	AY853188	KX288444
	Mycosphaerella madeirae	CBS 116068	Quercus robur	Netherlands	$-$	KX286990	AY853189	KX288445
Mycovellosiella cajani	Passalora sp.	$\begin{aligned} & \text { CBS } 113998=\text { CPC } \\ & 5335 \end{aligned}$	Cajanus cajan	South Africa: Mpumalanga	L. van Jaarsveld, 17 May 2002	KF251819	KF251315	MF951527
	Passalora sp.	$\begin{aligned} & \text { CBS } 113999=\text { CPC } \\ & 5339 \end{aligned}$	Cajanus cajan	South Africa: Mpumalanga	L. van Jaarsveld, 17 May 2002	KF251820	KF251316	MF951528
	Passalora sp.	$\begin{aligned} & \text { CBS } 114275=\mathrm{CPC} \\ & 5334 \end{aligned}$	Cajanus cajan	South Africa: Mpumalanga	L. van Jaarsveld, 17 May 2002	KF251821	KF251317	MF951529
	-	$\begin{aligned} & \text { CBS } 142174^{\mathrm{NT}}=\mathrm{CPC} \\ & 30580=\text { RWB } 2071 \end{aligned}$	Cajanus cajan	Brazil	R.W. Barreto, 2016	MF951182	MF951326	MF951526
Neoceratosperma cyatheae	Passalora sp.	CPC 18580	Cyathea delgadii	Brazil: Rio de Janeiro	R.W. Barreto, 11 Jul. 2009	KT037580	KT037539	MF951530
N. eucalypti	-	$\begin{aligned} & \text { CBS 137998 } \\ & 23465 \end{aligned}$	Eucalyptus sp.	Thailand	R. Cheewangkoon, Sep. 2013	KJ869210	KJ869153	MF951531
N. haldinae	Passalora haldinae	$\begin{aligned} & \text { CBS 142190 } \\ & 19202 \end{aligned}$	Haldina cordifolia	Laos	P. Pheng	MF951184	MF951328	MF951533
N. legnophoricola	Stenella sp.	$\begin{aligned} & \text { CBS 142189 } \\ & 16411 \end{aligned}$	Legnephora moorei	Australia: New South Wales	B. Summerell, Mar. 2009	MF951183	MF951327	MF951532

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	$\mathbf{L S U}^{3}$	ITS ${ }^{4}$	$r p b 2^{5}$
N. yunnanensis	Xenomycosphaerella yunnanensis	CBS 119975 ${ }^{\text {T }}=$ CMW $23443=$ MUCC $410=$ PAB 05.05 B2	Eucalyptus urophylla	China	B. Dell, May 2005	KF901962	KF901628	MF951534
Neocercospora ammicola	-	$\begin{aligned} & \text { CBS } \mathbf{1 3 6 4 5 0}^{\mathrm{T}}=\mathrm{CCTU} \\ & 1186 \end{aligned}$	Ammi majus	Iran	M. Arzanlou, Sep. 2012	KR232405	KR232407	KX288446
Neocercosporidium smilacis	Passalora smilacis	CBS 556.71	Smilax aspera	Italy	W. Gams, 18 May 1971	KJ633269	KJ633265	MF951535
	Passalora sp.	CBS 122888 ${ }^{\text {ET }}$	Smilax aspera	Portugal	G. Verkley, 23 Jan. 2008	MF951185	MF951329	MF951536
	Passalora sp.	CBS 122889	Smilax aspera	Portugal	G. Verkley, 23 Jan. 2008	MF951186	MF951330	MF951537
	Passalora sp.	CBS 122890	Smilax aspera	Portugal	G. Verkley, 23 Jan. 2008	MF951187	MF951331	MF951538
	Passalora sp.	CBS 123352	Smilax aspera	Portugal	G. Verkley, 23 Jan. 2008	MF951188	MF951332	MF951539
	Passalora sp.	CBS 123353	Smilax aspera	Portugal	G. Verkley, 23 Jan. 2008	MF951189	MF951333	MF951540
	Passalora sp.	CPC 19342	Smilax sp.	Italy	W. Gams, 30 Apr. 2011	MF951190	MF951334	MF951541
Neodeightoniella phragmiticola	-	$\begin{aligned} & \text { CBS } 136418^{\mathrm{T}}=\mathrm{CPC} \\ & 22059 \end{aligned}$	Phragmites australis	South Africa: Free State	W.J. Swart, 31 Jan. 2013	KF777224	KF777171	MF951543
	-	CPC 22057	Phragmites australis	South Africa: Free State	W.J. Swart, 31 Jan. 2013	KF777223	KF777170	MF951542
	-	CPC 22061	Phragmites australis	South Africa: Free State	W.J. Swart, 31 Jan. 2013	KF777225	KF777172	MF951544
Neomycosphaerella pseudopentameridis	-	$\begin{aligned} & \text { CBS 136407 } \\ & 21126 \end{aligned}$	Pseudopentameris macrantha	South Africa: Western Cape	P.W. Crous, 22 Jul. 2012	KF777226	KF777173	MF951545
Neopenidiella nectandrae	Cladosporium ferrugineum	$\begin{aligned} & \text { CBS 734.87 }{ }_{\text {ferrugineum }}^{\text {T }}=\text { ATCC Cladosporium } \\ & =\text { INIFAT } 87 / 45 \end{aligned}$	Nectandra coriacea	Cuba	R.F. Castañeda \& G. Arnold, 24 Jan. 1987	KF901982	MF951335	MF951546

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{3}$	ITS ${ }^{4}$	$r p b 2^{5}$
Neophloeospora maculans	Phloeospora maculans	CBS 115123	Morus alba	New Zealand	-	GU214670	GU214670	MF951547
Neopseudocercosporella brassicicola	Mycosphaerella brassicicola	CBS 163.26	-	-	-	MF951192	MF951337	MF951548
	Mycosphaerella brassicicola	CBS 228.32	Brassica oleracea	Denmark	-	KF251808	KF251304	KX348058
	Mycosphaerella brassicicola	CBS 267.53	Brassica oleracea var. acephala subvar. sabelica	Netherlands	-	KF251809	KF251305	KX348059
N. capsellae	Pseudocercosporella capsellae	CBS $112032=$ HJS 601	Brassica sp .	-	-	KF251824	KF251320	KX348060
	Pseudocercosporella capsellae	CBS $112033=$ HJS 600	Brassica sp .	-	-	KF251810	KF251306	KX348061
	Pseudocercosporella capsellae	CBS 118412	Brassica sp .	New Zealand	-	MF951193	MF951338	MF951549
	Pseudocercosporella capsellae	$\begin{aligned} & \text { MAFF } 237605=\text { MUCC } \\ & 1254 \end{aligned}$	Brassica rapa var. oleifera	Japan	K. Kishi,-	MF951194	MF951339	MF951550
Neoseptoria caricis	-	CBS $135097{ }^{\text {T }}=\mathrm{S} 653$	Carex acutiformis	Netherlands	W. Quaedvlieg, Aug. 2012	KF251663	KF251159	MF951551
Nothopassalora personata	Mycosphaerella berkeleyii	CBS 222.38 ${ }^{\text {IT of }}$ Mycosphaerella berkeleyii	Arachis hypogaea	USA: Georgia	W.A. Jenkins, 23 Jun. 1937	MF951234	MF951373	MF951631
	Passalora sp.	$\begin{aligned} & \text { CBS 142236 } \\ & 19466 \end{aligned}$	Arachis hypogaea	Australia: Northern Territory	P.W. Crous, 30 Apr. 2011	MF951235	MF951374	MF951632
Nothopericoniella persea-macranthae	Periconiella perseamacranthae	$\begin{aligned} & \text { CBS } 122097=\mathrm{RoKi} \\ & 2995 \end{aligned}$	Machilus zihoensis	Taiwan	R. Kirschner \& C.-J. Chen, 18 Mar. 2007	GU452682	MF951354	MF951583
	Periconiella perseamacranthae	$\begin{aligned} & \text { CBS } 122282=\text { RoKi } \\ & 3030 \end{aligned}$	Unidentified Lauraceae	Taiwan	R. Kirschner \& C.-J. Chen, 1 Apr. 2007	GU452681	MF951355	MF951584
Nothophaeocryptopus gaeumannii	Adelopus balsamicola f. douglasii	CBS 244.38	-	Austria	-	MF951191	MF951336	GU357766

Table 1. (Continued).								
Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	$\mathbf{L S U}{ }^{\mathbf{3}}$	ITS ${ }^{4}$	$r p b 2^{5}$
	Adelopus gaeumannii	CBS 267.37	Pseudotsuga menziesii	Germany	-	EF114698	EU700365	GU357770
Pachyramichloridium pini	Ramichloridium pini	$\begin{aligned} & \text { CBS } \mathbf{4 6 1 . 8 2}^{\mathrm{T}}=\mathrm{MUCL} \\ & 28942 \end{aligned}$	Pinus contorta	UK: Scotland	-	EU041859	EU041802	MF951552
Pallidocercospora acaciigena	Mycosphaerella acaciigena	$\begin{aligned} & \text { CBS 112515 } \\ & 3837 \end{aligned}$	Acacia mangium	Venezuela	M.J. Wingfield, May 2000	KF902166	KF901805	KX348062
P.crystallina	-	$\begin{aligned} & \text { CBS } 111045=\text { CPC } \\ & 1179 \end{aligned}$	Eucalyptus grandis litter	South Africa: KwaZulu-Natal	M.J. Wingfield, 22 Jun. 1995	KF442659	KF901704	KX348063
	Passalora sp.	CPC 14140	Eucalyptus sp.	China	X. Zhao, 1 Mar. 2007	MF951195	MF951340	MF951553
P. heimii	-	$\begin{aligned} & \text { CBS } 110682^{\mathrm{T}}=\mathrm{CPC} \\ & 760 \end{aligned}$	Eucalyptus sp .	Madagascar	P.W. Crous, 16 Apr. 1994	GQ852604	KF901671	MF951554
	-	CPC 11716	-	Brazil	A.C. Alfenas, Jan. 2004	KF901937	KF901612	KX348064
P. heimioides	Mycosphaerella heimioides	CBS 111190 ${ }^{\text {T of Mycosphaerella }}$ heimioides $=$ CMW $3046=$ CPC 1312	Eucalyptus sp.	Indonesia	M.J. Wingfield, 12 Mar. 1996	GQ852607	KF901659	MF951555
P. irregulariramosa	Mycosphaerella irregulariramosa	$\begin{aligned} & \text { CBS } 1111211^{\mathrm{T}}=\mathrm{CPC} \\ & 1362 \end{aligned}$	Eucalyptus saligna	South Africa: Northern Province	M.J. Wingfield, Mar. 1996	KF902053	KX287297	KX348065
P. konae	Mycosphaerella konae	$\begin{aligned} & \text { CBS } 1111028^{\mathrm{T}}=\mathrm{CPC} \\ & 2125 \end{aligned}$	Leucadendron cv. 'Safari Sunset'	USA: Hawaii	P.W. Crous \& M.E. Palm, 17 Nov. 1998	KF902158	KF901798	KX348066
Pantospora guazumae	-	CBS 130299 ${ }^{\text {ET }}$	Guazuma ulmifolia	Mexico	J. Moore, 12 Feb. 2009	MF951196	JN190956	MF951556
Paracercospora egenula	-	CBS 485.81	-	India	-	MF951197	GU269699	MF951558
	-	$\begin{aligned} & \text { CBS } 132030=\text { CPC } \\ & 12537 \end{aligned}$	Solanum melongena	Republic of Korea	H.D.. Shin, 26 Oct. 2005	GU253738	GU269698	MF951557
Paracercosporidium microsorum	Mycosphaerella microsora	CBS 254.67	Tilia tomentosa	Romania	O. Constantinescu, 16 Jun. 1965	MF951198	MF951341	MF951559

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{3}$	ITS ${ }^{4}$	$r p 2^{5}$
Paramycosphaerella sp. A	Mycosphaerella colombiensis	$\begin{aligned} & \text { CBS } 118825=\text { CMW } \\ & 10904 \end{aligned}$	Musa cv. Grand Naine	South Africa	K. Surridge	MF951204	MF951347	MF951574
	Mycosphaerella colombiensis	$\begin{aligned} & \text { CBS } 118849=\text { CMW } \\ & 10902 \end{aligned}$	Musa cv. Williams	South Africa	K. Surridge	MF951205	MF951348	MF951575
Paramycosphaerella sp.B	Colletogloeum sp.	CBS 118968 = CUF2d	Malus sp.	USA: Illinois	$\begin{aligned} & \text { J. Batzer, Sep. } \\ & 2000 \end{aligned}$	MF951206	MF951349	MF951576
	Colletogloeum sp.	$\begin{aligned} & \text { CBS } 125300=\text { NY1 } \\ & 3.2 \text { F1c } \end{aligned}$	Malus sp.	USA: New York	D. Rosenberger , 30 Oct. 2005	MF951207	MF951350	MF951577
P. wachendorfiae	Mycosphaerella wachendorfiae	$\begin{aligned} & \text { CBS 129579 } \\ & 18338 \end{aligned}$	Wachendorfia thyrsifolia	South Africa	K.L. Crous \& P.W. Crous, 2 May 2010	JF951163	JF951143	MF951578
Paramycovellosiella passaloroides	Mycovellosiella passaloroides	CPC 10770	Amorpha fruticosa	Republic of Korea	$\begin{aligned} & \text { H.D.. Shin, } 23 \\ & \text { Oct. } 2002 \end{aligned}$	MF951209	MF951352	MF951580
	Mycovellosiella passaloroides	CPC 14694	Amorpha fruticosa	Republic of Korea	$\begin{aligned} & \text { H.D.. Shin, } 30 \\ & \text { Oct. } 2007 \end{aligned}$	MF951208	MF951351	MF951579
Parapallidocercospora colombiensis	Mycosphaerella colombiensis	$\begin{aligned} & \text { CBS } \mathbf{1 1 0 9 6 8}^{\mathrm{T}}=\text { CPC } \\ & 1105 \end{aligned}$	Eucalyptus urophylla	Colombia	M.J. Wingfield, May 1995	KF901969	AY752148	MF951581
P. thailandica	Pallidocercospora thailandica	$\begin{aligned} & \text { CBS } 120723=\text { CPC } \\ & 13478 \end{aligned}$	Eucalyptus calmadulensis	Thailand	W. Himaman, Oct. 2006	KF442667	MF951353	MF951582
Passalora bacilligera	-	$\begin{aligned} & \text { CBS } \mathbf{1 3 1 5 4 7}^{\mathrm{ET}}=\text { CPC } \\ & 19944 \end{aligned}$	Alnus glutinosa	Poland	D. Karasinski, 20 Sep. 2011	MF951210	MF951356	MF951585
Phaeocercospora colophospermi	-	$\begin{aligned} & \text { CBS 132687 } \\ & 19812 \end{aligned}$	Colophospermum mopane	South Africa: Mpumalanga	P.W. Crous, 11 Jul. 2011	JX069854	JX069870	MF951586
P. juniperina	Passalora juniperina	$\begin{aligned} & \text { CBS } 142238=\text { CPC } \\ & 11258 \end{aligned}$	Juniperus virginiana	USA: North Carolina	C.S. Hodges, 1 Mar. 2004	MF951211	GU214667	MF951587
Phaeophloeospora eugeniae	-	$\begin{aligned} & \text { CBS } 142184=\text { CPC } \\ & 15143 \end{aligned}$	Eugenia unifora	Brazil	A.C. Alfenas, 1 Mar. 2008	FJ493206	FJ493188	MF951594
	-	CPC 15159	Eugenia uniflora	Brazil	A.C. Alfenas, 1 Apr. 2008	FJ493207	FJ493189	MF951595
Phaeoramularia capsicicola	-	CBS 156.62	Capsicum annuum	Italy	-	KJ633267	KJ633263	-
	Passalora sp.	CBS $113382=$ C460	Chromolaena odorata	USA	M.J. Morris	MF951213	DQ676522	MF951596

5

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{3}$	ITS ${ }^{4}$	$r p b 2^{5}$
P. gomphrenicola	Passalora sp.	CBS 113384 = C499	Chromolaena odorata	Jamaica	M.J. Morris	MF951214	DQ676524	MF951597
	Phaeoramularia gomphrenicola	$\begin{aligned} & \text { CBS } \mathbf{1 4 2 1 8 2} \mathbf{2 E T}^{\mathrm{ET}}=\mathrm{CPC} \\ & 23248=\text { COAD } 570 \end{aligned}$	Pfaffia glomerata	Brazil	R. Barreto, 29 Oct. 2012	MF951216	MF951359	MF951599
	Phaeoramularia gomphrenicola	CPC $23249=$ COAD571	Pfaffia glomerata	Brazil	R. Barreto	MF951215	MF951358	MF951598
Phloeospora ulmi	-	CBS 613.81	Ulmus sp.	Austria	H.A. van der Aa, 21 Sep. 1981	GU253842	GU269825	MF951601
	-	CBS 101564	Ulmus sp.	Netherlands	H.A. van der Aa, 26 Aug. 1998	KF251703	KF251200	MF951602
	-	CBS 109835	Ulmus sp.	Netherlands	G. Verkley, 27 Aug. 2001	KF251704	KF251201	MF951600
Pleopassalora perplexa	Passalora perplexa	$\begin{aligned} & \text { CBS } \mathbf{1 1 6 3 6 3}^{\mathrm{T}}=\mathrm{CPC} \\ & 11147 \end{aligned}$	Acacia crassicarpa	Indonesia	M.J. Wingfield, Feb. 2004	MF951220	AY752162	MF951606
	Passalora perplexa	$\begin{aligned} & \text { CBS } 116364=\text { CPC } \\ & 11150 \end{aligned}$	Acacia crassicarpa	Indonesia	M.J. Wingfield, Feb. 2004	GU214459	AY752163	MF951607
	Passalora acaciae	CPC 11152	Acacia crassicarpa	Indonesia	M.J. Wingfield, 1 Mar. 2004	MF951217	MF951360	MF951603
	Passalora perplexa	CPC 12168	Acacia sp .	Indonesia	M.J. Wingfield, 1 May 2005	MF951218	MF951361	MF951604
	Passalora perplexa	CPC 12170	Acacia sp .	Indonesia	M.J. Wingfield, 1 May 2005	MF951219	MF951362	MF951605
"Passalora" sp. 1	Passalora loranthicola	CBS $122466=\mathrm{X} 138$	Citrus sp.	USA: Florida	R. C. Ploetz	MF951221	EU514280	MF951608
Pleuropassalora armatae	Passalora armatae	$\begin{aligned} & \text { CBS } \mathbf{1 2 5 4 2 0}^{\mathrm{T}}=\mathrm{CPC} \\ & 15419 \end{aligned}$	Dalbergia armata	South Africa: KwaZulu-Natal	A.R Wood, 28 May 2008	GU214456	GU214640	MF951609
	Passalora sp.	CPC 15420	Dalbergia armata	South Africa	A.R Wood, 28 May 2008	MF951222	MF951363	MF951610
	Passalora sp.	CPC 17084	Dalbergia obovata	South Africa	A.R. Wood, 15 Jun. 2009	MF951223	MF951364	MF951611
Pluripassalora bougainvilleae	Passalora sp.	$\begin{aligned} & \text { CBS } 142237=\mathrm{CPC} \\ & 19327 \end{aligned}$	Bougainvillea sp.	Australia: Northern Territory	P.W. Crous, 30 Apr. 2011	MF951224	MF951365	MF951612

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	$\mathbf{L S U}{ }^{\mathbf{3}}$	ITS ${ }^{4}$	$r p b 2^{5}$
Polyphialoseptoria tabebuiae-serratifolia	-	$\begin{aligned} & \text { CBS } 112650^{\text {T}}=\text { CPC } \\ & 3944 \end{aligned}$	Tabebuia serratifolia	Brazil	A.C. Alfenas, 1999	KF251716	KF251213	MF951613
P. terminaliae	-	$\begin{aligned} & \text { CBS 135106 } \\ & \text { }=\text { CPC } \\ & 19611 \end{aligned}$	Terminalia catappa	Brazil	R.W. Barreto, 18 May 2010	KF251717	KF251214	MF951615
	-	$\begin{aligned} & \text { CBS } 135475=\text { CPC } \\ & 19487 \end{aligned}$	Terminalia catappa	Brazil	R.W. Barreto, 18 May 2010	KF251718	KF251215	MF951614
Pseudocercospora catappae	-	$\begin{aligned} & \text { MAFF } 238312=\text { MUCC } \\ & 1109 \end{aligned}$	Terminalia catappa	Japan	T. Kobayashi \& C. Nakashima, 18 Nov. 1999	MF951225	MF951366	MF951616
P. dingleyae	Pseudocercosporella dingleyae	CBS 114645 ${ }^{\text {T }}$	Haloragis erecta	New Zealand	C.F. Hill, 21 Jan. 2001	KX286997	KX287299	KX288454
P. convoluta	Passalora convoluta	$\begin{aligned} & \text { CBS 113377 }{ }^{\mathrm{T}}=\mathrm{MJM} \\ & 1533=\mathrm{C} 488 \end{aligned}$	Chromolaena odorata	Costa Rica	M.J. Morris, 15 Oct. 1997	MF951226	DQ676519	MF951617
P. cratevicola	Prathigada cratevicola	MUCC 1088	Crataeva falcata	Japan	S. Uematsu \& C. Nakashima, -	MF951233	MF951372	-
P. eucalyptorum	-	CBS $\mathbf{1 1 4 8 6 6}^{\text { }}=$ CPC 11	Eucalyptus nitens	South Africa: Western Cape	P.W. Crous, Aug. 1988	JQ739817	KF901720	MF951618
P. flavomarginata	-	$\begin{aligned} & \text { CBS } 124990=\text { CPC } \\ & 13492 \end{aligned}$	Eucalyptus camaldulensis	Thailand	W. Himaman, Oct. 2006	GU253817	GU269799	MF951619
P. fori	-	$\begin{aligned} & \text { CBS } 113286=\text { CMW } \\ & 9096=\text { BOT } 1290 \end{aligned}$	Eucalyptus sp.	South Africa	J. Roux	KF902068	KF901721	KX348072
P. macadamiae	-	CBS 133432 ${ }^{\text {ET }}$	Macadamia integrifolia	Australia: Queensland	O.A. Akinsanmi, 12 Nov. 2011	KX286998	KX287300	KX288455
P. metrosideri	Pseudocercosporella metrosideri	CBS 114294	Metrosideros excelsa	New Zealand	C.F. Hill, 17 Oct. 2003	KX286999	KX287301	KX288456
P. nodosa	Passalora nodosa	CBS 554.71 ${ }^{\text {T }}$	Psoralea bituminosa	Romania	O. Constantinescu, 23 Sep. 1966	MF951227	MF951367	MF951620
P. norchiensis	Pseudocercospora schizolobii	$\begin{aligned} & \text { CBS 120738 } \\ & 13049 \end{aligned}$	Eucalyptus sp.	Italy	W. Gams, Apr. 2005	GU253780	GU269753	KX348073
P. pistacina	Pseudocercospora pistacina	CPC 23118	Pistacia vera	Turkey	K. Sarpkaya, 2010	KF442674	KF442647	KX348074

Family and Current name	Previous name (if different)	Culture accession number(s) $)^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{3}$	ITS ${ }^{4}$	$r p 2^{5}$
P. prunicola	-	$\begin{aligned} & \text { CBS } 132107=\text { CPC } \\ & 14511 \end{aligned}$	Prunus yedoensis	Republic of Korea	H.D.. Shin, 2 Oct. 2007	GU253723	GU269676	MF951621
P. punctata	-	$\begin{aligned} & \text { CBS } 132116=\text { CPC } \\ & 14734 \end{aligned}$	Syzygium sp.	Madagascar	P.W. Crous, 1 Oct. 2007	GU253791	GU269765	MF951622
P. robusta	-	$\begin{aligned} & \text { CBS } \mathbf{1 1 1 1 7 5}^{\mathrm{T}}=\text { CPC } \\ & 1269=\text { CMW } 5151 \end{aligned}$	Eucalyptus robusta	Malaysia	M.J. Wingfield, May 1995	KF442539	DQ303081	MF951623
P. sambucigena	-	$\begin{aligned} & \text { CBS } 126000^{\mathrm{ET}}=\text { CPC } \\ & 14397 \end{aligned}$	Sambucus nigra	Netherlands	P.W. Crous, 29 Aug. 2007	GU253823	GU269805	MF951624
Pseudocercospora sp. A	Passalora robiniae	CBS 277.39	Robinia pseudoacacia	USA	-	MF951230	MF951369	MF951627
Pseudocercospora sp. B	Tandonella cubensis	$\begin{aligned} & \text { CBS } 500.92=\text { INIFAT } \\ & \text { C } 92 / 43-3 \end{aligned}$	Bauhinia cumanensis	Cuba	R.F. Castañeda	MF951232	MF951371	MF951629
Pseudocercospora sp. C	Passalora bolleana	$\begin{aligned} & \text { CBS } 541.71=\text { IMI } \\ & 161111 \end{aligned}$	Ficus carica	Romania	O. Constantinescu	MF951229	MF951368	MF951626
	Passalora sp.	CPC 14819	Ficus carica	Republic of Korea	$\text { H.D.. Shin, } 14$ $\text { Nov. } 2007$	MF951231	MF951370	MF951628
Pseudocercospora sp. D	-	$\begin{aligned} & \text { CBS } 113386=\mathrm{MJM} \\ & 1511=\text { C469 } \end{aligned}$	Chromolaena odorata	Guatemala	M.J. Morris	MF951228	DQ676532	MF951625
Pseudocercospora sp. E	Cercosporella sp.	CPC 19537	Eichhornia azurea	Brazil	D.J. Soares, 30 Apr. 2005	KX287003	KX287304	KX288460
P. vitis	-	$\begin{aligned} & \text { CBS } 132012=\text { CPC } \\ & 11595 \end{aligned}$	Vitis vinifera	Republic of Korea	$\begin{aligned} & \text { H.D.. Shin, } 30 \\ & \text { Sep. } 2004 \end{aligned}$	GU214483	GU269829	KX348076
P. zambiae	Neopseudocercospora terminaliae	$\begin{aligned} & \text { CBS 136423 } \\ & 22686 \end{aligned}$	Terminalia sp.	Zambia	M. van der Bank, 24 Feb. 2013	KF777228	KF777175	MF951630
Pseudocercosporella bakeri	-	CBS 119488	Ipomoea indica	New Zealand	C.F. Hill	KX287005	KX287306	KX288462
	-	$\begin{aligned} & \text { CBS 125685 } \\ & 17570 \end{aligned}$	Ipomoea aquatica	Laos	P. Phengsintham, 8 Sep. 2009	KX287005	KX287306	KX288462
Pseudopericoniella levispora	Periconiella levispora	CBS 873.73 ${ }^{\text {T }}$	Turpinia pomifera	Sri Lanka	W. Gams, Jan. 1973	EU041837	EU041780	MF951633
Pseudopericoniella sp.	Mycosphaerella rosigena	CBS 330.51	Rosa sp.	Netherlands	-	GU214413	GU214632	MF951634
Pseudophaeophleospora atkinsonii	Phaeophleospora atkinsonii	$\begin{aligned} & \text { CBS } 124565=\text { ICMP } \\ & 17860 \end{aligned}$	Hebe sp.	New Zealand	-	MF951236	GU214643	MF951635

Family and Current name	Previous name (if different)	Culture accession number(s) $)^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{3}$	ITS ${ }^{4}$	$r p b 2^{5}$
P. stonei	Phaeophleospora stonei	$\begin{aligned} & \text { CBS 120830 } \\ & 13330 \end{aligned}$	Eucalyptus sp.	Australia: Queensland	P.W. Crous \& J. Stone, 19 Aug. 2006	FJ493210	EF394856	MF951636
Pseudozasmidium eucalypti	Zasmidium eucalypti	$\begin{aligned} & \text { CBS 121101 }{ }^{\mathrm{T}}=\text { CPC } \\ & 13302 \end{aligned}$	Eucalyptus tereticornis	Australia: Queensland	P.W. Crous, 26 Aug. 2006	KF901931	KF901606	MF951637
P. nabiacense	Zasmidium nabiacense	$\begin{aligned} & \text { CBS 125010 } \\ & 12748 \end{aligned}$	Eucalyptus sp .	Australia	A.J. Carnegie, 30 Nov. 2005	KF901933	GQ852841	MF951638
P. parkii	Zasmidium parkii	CBS 387.92 ${ }^{\text {T }}=$ CPC 353	Eucalyptus grandis	Brazil	M.J. Wingfield, 24 Feb. 1990	GU214448	KF901785	-
P. vietnamense	Paramycosphaerella vietnamensis	$\begin{aligned} & \text { CBS 119974 }{ }^{\mathrm{T}}=\text { CMW } \\ & 23441=\text { MUCC } 66= \\ & \text { VTN1 } \end{aligned}$	Eucalyptus grandis	Vietnam	T.I. Burgess, 6 Jul. 2004	JF700944	DQ632675	MF951639
Ragnhildiana ampelopsidis	Passalora ampelopsis	$\begin{aligned} & \text { CBS } 249.67=\mathrm{IMI} \\ & 124968 \end{aligned}$	Parthenocissus tricuspidata	Romania	-	MF951238	AY293063	MF951641
R. diffusa	Sirosporium diffusum	CBS 106.14	Carya illinoinensis	USA: Georgia	-, 29 Aug. 1911	MF951239	MF951375	MF951642
R. ferruginea	Passalora ferruginea	$\begin{aligned} & \text { CBS } 255.67 \text { = IMI } \\ & 124973 \end{aligned}$	Artemisia vulgaris	Romania	-	MF951241	MF951377	MF951644
	Passalora ferruginea	CBS 546.71	Artemisia vulgaris	Romania	-	MF951242	MF951378	MF951645
	Mycovellosiella ferruginea	CPC 10075	Artemisia sylvatica	Republic of Korea	$\begin{aligned} & \text { H.D.. Shin, } 23 \\ & \text { Oct. } 2002 \end{aligned}$	MF951240	MF951376	MF951643
R. gnaphaliaceae	Passalora gnaphaliaceae	$\begin{aligned} & \text { CBS } 142181=\text { CPC } \\ & 12517 \end{aligned}$	Gnaphalium affine	Republic of Korea	H.D.. Shin, May 2005	MF951243	MF951379	MF951646
R. perfoliati	Passalora sp.	$\begin{aligned} & \text { CBS } 113613=\mathrm{MJM} \\ & 1506=\text { C486 } \end{aligned}$	Ageratina adenophora	Guatemala	M.J. Morris	MF951246	DQ676525	MF951650
	Passalora assamensis	CBS 115119	-	New Zealand	-	MF951244	MF951380	MF951648
	Passalora ageratinae	$\begin{aligned} & \text { CBS 125419 }=\text { CPC } \\ & 15365 \end{aligned}$	Ageratina adenophora	South Africa: KwaZulu-Natal	A.R Wood, 28 May 2008	GU214453	GU214639	MF951647
	Passalora perfoliata	$\begin{aligned} & \text { CBS } 142180=\text { CPC } \\ & 17321 \end{aligned}$	Chromolaena sp.	Laos	P. Pheng, 17 Jun. 2006	MF951245	MF951381	MF951649
	Phaeoramularia sp.	CPC 15366	Ageratina adenophora	South Africa: KwaZulu-Natal	A.R Wood, 28 May 2008	MF951247	MF951382	MF951651

Family and Current name	Previous name (if different)	Culture accession number(s) $)^{1,2}$	Substrate	Country	Collector, Collection date	$\mathbf{L S U}^{\mathbf{3}}$	ITS ${ }^{4}$	$r p b 2^{5}$
R. pseudotithoniae	Passalora pseudotithoniae	$\begin{aligned} & \text { CBS 136442 } \\ & 21688 \end{aligned}$	Tithonia diversifolia	Thailand	P.W. Crous, 5 Nov. 2012	KF777231	KF777179	MF951652
Ramularia carneola	-	CBS 108975	Scrophularia nodosa	Netherlands	$\begin{aligned} & \text { G. Verkley, } 22 \\ & \text { Jun. } 2000 \end{aligned}$	KX287048	KX287348	KX288507
R. cynarae	$-$	$\begin{aligned} & \text { CBS 128912 } \\ & 18426 \end{aligned}$	Cynara cardunculus	USA: California	S.T Koike, 10 Aug. 2010	KX287096	HQ728117	KX288554
R. endophylla	Mycosphaerella punctiformis	CBS 113265 ${ }^{\text {ET }}$	Quercus robur	Netherlands	G. Verkley, Apr. 2003	AY490776	AY490763	KP894673
R. hydrangeaemacrophyllae	-	CBS $122273^{\text {T }}$	Hydrangea macrophylla	New Zealand	C.F. Hill, 2 Jul. 2007	KX287135	KX287433	KX288592
R. nyssicola	-	$\begin{aligned} & \text { CBS } \mathbf{1 2 7 6 6 5} 5^{\mathrm{ET}}=\mathrm{AR} \\ & 4656=\mathrm{DM} 2 \end{aligned}$	Nyssa ogeche \times sylvatica	USA: Maryland	R. Olsen, 18 Jun. 2009	KJ504724	KJ504765	KJ504636
R. plurivora	-	$\begin{aligned} & \text { CBS } 118743^{\mathrm{T}}=\mathrm{CPC} \\ & 12207 \end{aligned}$	Human bone marrow	Netherlands	-	KJ504739	KJ504780	KJ504651
R. pusilla	-	$\begin{aligned} & \text { CBS } 124973 ~^{\mathrm{ET}}=\mathrm{RoKi} \\ & 3143 \end{aligned}$	Poa annua	Germany	R. Kirschner, 25 Feb. 2008	KP894141	KP894248	KP894687
R. stellariicola	Pseudocercosporella stellariicola	$\begin{aligned} & \text { CBS } \mathbf{1 3 0 5 9 2}^{\mathrm{T}}=\mathrm{CPC} \\ & 11297=\mathrm{KACC} 42363 \end{aligned}$	Stellaria aquatica	Republic of Korea	 M.J. Park, 3 May 2006	GU214693	GU214693	KX288675
R. stellenboschensis	-	$\begin{aligned} & \text { CBS 130600 } \\ & 18294 \end{aligned}$	Protea sp.	South Africa	P.W. Crous, 6 May 2010	JN712566	JN712499	KX288676
Ramulariopsis gossypii	-	$\begin{aligned} & \text { CBS 141099 } \\ & 25909=\mathrm{XT}=\mathrm{CPC} \end{aligned}$	Gossypium sp.	Brazil	-	KX287243	KX287540	KX288702
R. pseudoglycines	-	$\begin{aligned} & \text { CBS 141100 } \\ & 18242 \end{aligned}$	Gossypium sp.	Brazil	-, 2000	KX287246	KX287543	KX288705
Ramulispora sorghi	-	CPC 18241	Gossypium sp.	Brazil	-	KX287245	KX287542	KX288704
	-	CPC 20036	Gossypium barbadense	Togo	M. Piatek	KX287244	KX287541	KX288703
	Cercospora sorghi	CBS $110578=$ CPC 905	Sorghum bicolor	South Africa: KwaZulu-Natal	D. Nowell, Mar. 1995	GQ852653	MF951383	MF951653
	Cercospora sorghi	$\begin{aligned} & \text { CBS } 111032=\text { CPC } 899 \\ & =\text { IMI } 153076 \end{aligned}$	Sorghum bicolor	South Africa: KwaZulu-Natal	D. Nowell, Mar. 1995	MF951248	MF951384	MF951654

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{3}$	ITS ${ }^{4}$	$r p 2^{5}$
	Cercospora sorghi	CBS $115522=$ CPC 902	Sorghum bicolor	South Africa: KwaZulu-Natal	D. Nowell, Mar. 1995	MF951249	MF951385	MF951655
R. sorghiphila	Ramulispora sorghi	$\begin{aligned} & \text { CBS 255.82 }{ }^{\mathrm{T}}=\text { IMI } \\ & 153077 \end{aligned}$	-	India	-, Oct. 1969	MF951250	MF951386	MF951656
Rhachisphaerella mozambica	Mycosphaerella mozambica	CBS 122464 ${ }^{\text {T }}=\mathrm{X} 34$	Musa acuminata	Mozambique	A. Viljoen, 2003	MF951237	EU514257	MF951640
Rosisphaerella rosicola	Passalora rosicola	$\begin{aligned} & \text { CBS } 138.35=\text { ATCC } \\ & 52313 \end{aligned}$	-	USA	-	MF951252	MF951388	MF951658
	Passalora rosicola	$\begin{aligned} & \text { CBS } 142183=\text { CPC } \\ & 12548 \end{aligned}$	Rosa hybrid	USA: North Carolina	$\begin{aligned} & \text { C.S. Hodges, } \\ & 2005 \end{aligned}$	MF951251	MF951387	MF951657
Ruptoseptoria unedonis	Ruptoseptoria unedonis	CBS 755.70	Arbutus unedo	Croatia	J.A. von Arx, Jul. 1970	KF251732	KF251229	MF951659
Scolecostigmina mangiferae	Scolecostigmina mangiferae	$\begin{aligned} & \text { CBS } \mathbf{1 2 5 4 6 7}^{\mathrm{NT}}=\text { CPC } \\ & 17351 \end{aligned}$	Mangifera indica	Australia	P.W. Crous \& R.G. Shivas, 10 Aug. 2009	GU253877	GU269870	MF951660
Septoria chrysanthemella	-	$\begin{aligned} & \text { CBS } 128617=\text { KACC } \\ & 43086=\text { SMKC } 22860 \end{aligned}$	Chrysanthemum morifolium	Republic of Korea	-	KF251882	KF251378	MF951661
S. cucurbitacearum	-	CBS 178.77	Cucurbita maxima	New Zealand	-	KF251903	KF251399	MF951662
S. lycopersici	-	$\begin{aligned} & \text { CBS } 128654=\text { KACC } \\ & 42519=\text { SMKC } 22002 \end{aligned}$	Lycopersicon esculentum	Republic of Korea	-	KF251966	KF251462	KX348091
S. protearum	-	$\begin{aligned} & \text { CBS } 135477=\text { CPC } \\ & 19675 \end{aligned}$	Zantedeschia aethiopica	South Africa: Mpumalanga	P.W. Crous, 15 Jul. 2011	KF252029	KF251524	MF951663
	-	CPC 19691	Zantedeschia aethiopica	South Africa	P.W. Crous, 15 Jul. 2011	KF252030	KF251525	MF951664
Septoria sp. A	-	$\begin{aligned} & \text { CBS } 135472=\text { CPC } \\ & 19304 \end{aligned}$	Vigna unguiculata subsp. sesquipedalis	Austria	P.W. Crous, Apr. 2011	KF252063	KF251558	MF951665
Septoria sp. B	-	$\begin{aligned} & \text { CBS } 135474=\text { CPC } \\ & 19485 \end{aligned}$	Conyza canadensis	Brazil	R.W. Barreto	KF252064	KF251559	MF951666
Septoria sp. C	-	$\begin{aligned} & \text { CBS } 135479=\text { CPC } \\ & 19793 \end{aligned}$	Syzygium cordatum	South Africa	P.W. Crous, 16 Jul. 2011	KF252066	KF251561	MF951667

Family and Current name	Previous name (if different)	Culture accession number(s) $)^{1,2}$	Substrate	Country	Collector, Collection date	$\mathbf{L S U}^{\mathbf{3}}$	ITS ${ }^{4}$	$r p b 2^{5}$
S. urticae	-	CBS 102375 ${ }^{\text {ET }}$	Urtica dioica	Netherlands	H.A. van der Aa \& G. Verkley, 14 Oct. 1999	JN940675	KF251583	MF951668
"Sirosporium" celtidis	-	CBS 158.25	Celtis australis	Algeria	C. Killian, Nov. 1923	MF951253	MF951389	MF951669
	-	CBS 238.48	-	Portugal	-	MF951254	MF951390	MF951670
	-	CBS 289.50	Celtis australis	Italy	V. Mezzetti, Aug. 1949	MF951255	MF951391	MF951671
Sonderhenia eucalypticola	-	$\begin{aligned} & \text { CBS } 112502=\text { CPC } \\ & 3749 \end{aligned}$	Eucalyptus sp.	Portugal: Madeira	-	KF902019	KF901677	MF951672
S. eucalyptorum	Mycosphaerella swartii	CBS 120220	Eucalyptus coccifera	Australia: Tasmania	C. Mohammed, Jan. 2006	DQ923536	DQ923536	MF951673
Sphaerulina aceris	Sphaerulina aceris	CBS 652.85	Acer pseudoplatanus	Netherlands	H.A. van der Aa, 23 Jul. 1985	MF951258	MF951394	MF951676
S. berberidis	Mycosphaerella berberidis	CBS 324.52	Berberis vulgaris	Switzerland	E. Müller, 2 Jun. 1951	KF252106	KF251601	KX348093
S. betulae	-	$\begin{aligned} & \text { CBS } 128597=\text { KACC } \\ & 43119=\text { SMKC } 23059 \end{aligned}$	Betula schmidtii	Republic of Korea	-	KF252109	KF251604	KX348094
S. chaenomelis	Pseudocercosporella chaenomelis	$\begin{aligned} & \text { CBS } 131897=\text { CPC } \\ & 14795 \end{aligned}$	Chaenomeles speciosa	Republic of Korea	H.D.. Shin, 14 Nov. 2007	GU253834	GU269817	KX288706
	Pseudocercosporella chaenomelis	CBS 132131 ${ }^{\text {ET of }}$ Pseudocercosporella chaenomelis $=$ MUCC 1510	Chaenomeles sinensis	Japan	C. Nakashima, 29 Oct 2011	MF951259	JQ793663	MF951677
S. gei	-	$\begin{aligned} & \text { CBS } 128632=\text { KACC } \\ & 44051=\text { SMKC } 23686 \end{aligned}$	Geum japonicum	Republic of Korea	-	KF252120	KF251615	KX348095
S. koreana	Sphaerulina viciae	$\begin{aligned} & \text { CBS 131898 } \\ & \text { viciae }=\text { CPC Sphaerulina } 11415 \end{aligned}$	Vicia amurensis	Republic of Korea	H.D.. Shin	KF252144	KF251639	KX348096
	Pseudocercosporella koreana	CBS 135462 $^{\text {T of }}$ Pseudocercosporella koreana $=\mathrm{CPC}$ 11414	Vicia amurensis	Republic of Korea	H.D.. Shin	GU214683	GU269852	KX288707
S. populicola	-	CBS 100042	Populus trichocarpa	USA: Washington	-	KF252131	KF251626	MF951678
S. quercicola	-	CBS 115016	Quercus robur	Netherlands	-	KF252133	KF251628	MF951679

Table 1. (Continued).								
Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{3}$	ITS ${ }^{4}$	$r p 2^{5}$
S. tirolensis	-	CBS 109018 ${ }^{\text {T }}$	Rubus idaeus	Austria	G. Verkley	KF252143	KF251638	MF951680
"Mycosphaerella" grossulariae	Mycosphaerella grossulariae	CBS 235.37	Ribes nigrum	Netherlands	M.S.J. Ledeboer	MF951256	MF951392	MF951674
"Mycosphaerella" harthensis	Mycosphaerella harthensis	CBS 325.52	Betula sp.	Switzerland	-	MF951257	MF951393	MF951675
Stromatoseptoria castaneicola	-	CBS 102322	Castanea sativa	Netherlands	G. Verkley, 29 Aug. 1999	KF251774	KF251271	MF951681
	-	CBS 102377	Castanea sativa	Netherlands	G. Verkley, 9 Sep. 1999	KF251775	KF251272	MF951682
Sultanimyces vitiphylus	Asperisporium vitiphyllum	CBS 206.48	Vitis sp.	South Africa	S.J. du Plessis, 1948	MF951260	MF951395	MF951683
Trochophora fasciculata	Trocophora simplex	$\begin{aligned} & \text { CBS } 124744=\text { SMKC } \\ & 21713 \end{aligned}$	Daphniphyllum macropodum	Republic of Korea	$\begin{aligned} & \text { H.D.. Shin, } 29 \\ & \text { Oct. } 2005 \end{aligned}$	GU253880	GU269872	MF951684
Uwemyces elaeidis	-	CPUwZC-01	Elaeis oleifera	Colombia	G.A. Sarria, May 2013	KX228356	KX22829	KX228371
Virosphaerella irregularis	Mycosphaerella irregulari	$\begin{aligned} & \operatorname{CBS} \mathbf{1 2 3 2 4 2}^{\mathrm{T}}=\mathrm{CPC} \\ & 15408 \end{aligned}$	Eucalyptus sp.	Thailand	R. Cheewangkoon, Jul. 2007	KF901769	KF902126	MF951685
V. pseudomarksii	Mycosphaerella pseudomarksii	$\begin{aligned} & \text { CBS 123241 }{ }^{\mathrm{T}}=\text { CPC } \\ & 15410 \end{aligned}$	Eucalyptus sp.	Thailand	R. Cheewangkoon, Jun. 2007	KF902127	KF901770	MF951686
Xenomycosphaerella elongata	-	$\begin{aligned} & \text { CBS 120735 } \\ & 13378 \end{aligned}$	Eucalyptus calmadulensis \times urophylla	Venezuela	M.J. Wingfield, Oct. 2006	JF700942	EF394833	MF951687
Xenoramularia arxii		CBS 342.49 ${ }^{\text {T }}$	Acorus calamus	Netherlands	$\begin{aligned} & \text { J.A. von Arx, } 5 \\ & \text { Sep. } 1949 \end{aligned}$	KX287258	KX287552	KX288720
X. neerlandica	-	CBS 113615	Sparganium ramosum	Netherlands	-	KX287259	KX287553	KX288721
	-	$\begin{aligned} & \text { CBS 141101 }{ }^{\mathrm{T}}=\text { CPC } \\ & 18377 \end{aligned}$	Iris pseudacorus	Netherlands	$\text { P.W. Crous, } 26$ $\text { Jun. } 2010$	KX287260	KX287554	KX288722
X. polygonicola	-	$\begin{aligned} & \text { CBS 141102 }{ }^{\mathrm{T}}=\text { CPC } \\ & 10852 \end{aligned}$	Polygonum sp.	Republic of Korea	$\begin{aligned} & \text { H.D.. Shin, } 20 \\ & \text { Sep. } 2003 \end{aligned}$	GU214695	GU214695	KX288723

Family and Current name	Previous name (if different)	Culture accession number(s) $)^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{3}$	ITS ${ }^{4}$	$r p 2^{5}$
	-	CPC 10853	Polygonum sp.	Republic of Korea	$\begin{aligned} & \text { H.D.. Shin, } 20 \\ & \text { Sep. } 2003 \end{aligned}$	KX287262	KX287555	KX288724
Xenosonderhenia eucalypti	-	$\begin{aligned} & \text { CBS 138858 } \\ & 24247 \end{aligned}$	Eucalyptus urophylla	Mozambique	M.J. Wingfield, 2 Feb. 2014	KP004485	KP004457	MF951688
Xenosonderhenioides indonesiana	Passalora sp.	$\begin{aligned} & \text { CBS 142239 } \\ & 15066 \end{aligned}$	Eucalyptus sp.	Indonesia	M.J. Wingfield, 26 Mar. 2008	MF951261	MF951396	MF951689
Zasmidium angulare	-	$\begin{aligned} & \text { CBS 132094 }{ }^{\mathrm{T}}=\text { CPC } \\ & 19042=\mathrm{GA} 227 \mathrm{~B} 1 \mathrm{a} \end{aligned}$	Malus domestica	USA: Georgia	M. Wheeler, Aug. 2005	JQ622096	JQ622088	MF951690
Z. anthuriicola	-	CBS 118742 ${ }^{\text { }}$	Anthurium sp.	Thailand	C.F. Hill, 3 Aug. 2005	FJ839662	FJ839626	MF951691
Z. arcuatum	Periconiella arcuata	CBS $113477^{\text { }}$	Ischyrolepsis subverticillata	South Africa: Western Cape	$\begin{aligned} & \text { S. Lee, } 1 \text { May } \\ & 2001 \end{aligned}$	EU041836	EU041779	MF951692
Z. aucklandicum	Stenella aucklandica	CPC 13569	Geniostoma rupestre	New Zealand	C.F. Hill, 15 Oct. 2005	MF951280	MF951409	MF951733
Z. biverticillatum	Ramichloridium biverticillatum	CBS 335.36	Musa sapientum	-	-	EU041853	EU041796	-
Z. cellare	-	$\begin{aligned} & \text { CBS } \mathbf{1 4 6 . 3 6}^{\mathrm{NT}}=\text { ATCC } \\ & \text { 36951 }=\text { IFO } 4862= \\ & \text { IMI } 044943=\text { LCP } \\ & 52.402=\text { LSHB BB274 } \\ & =\text { MUCL } 10089 \end{aligned}$	Wall in wine cellar	-	-	EU041878	EU041821	MF951693
	-	CBS 892.85	Wall in wine cellar	Germany	M. Schlag, Aug. 1985	MF951262	MF951397	KT356875
Z. cerophillum	Ramichloridium cerophilum	$\begin{aligned} & \text { CBS 103.59T of Acrotheca } \\ & \text { cerophila }=\text { MUCL } 10034 \end{aligned}$	Sasa sp.	Japan	-, May 1955	GU214485	EU041798	MF951694
Z. citri-griseum	-	$\begin{aligned} & \text { CBS } 122455=\text { CPC } \\ & 15289=\text { X126 } \end{aligned}$	Citrus sp.	USA: Florida	$\begin{aligned} & \text { R.C. Ploetz, } \\ & 2003 \end{aligned}$	KF902151	KF901792	MF951695
	-	CPC 13467	Eucalyptus sp.	Thailand	W. Himaman, 2006	KF251729	KF251226	MF951697
	-	CPC 15291	Citrus sp.	USA: Florida	$\begin{aligned} & \text { R.C. Ploetz, } \\ & 2003 \end{aligned}$	KF902152	KF901793	MF951696
Z. daviesiae	Verrucisporota daviesiae	$\begin{aligned} & \text { CBS } 116002=\text { VPRI } \\ & 31767 \end{aligned}$	Daviesia latifolia	Australia: Victoria	V. \& R. Beilharz, 30 Dec. 2003	FJ839669	FJ839633	MF951698

Table 1. (Continued).								
Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{3}$	ITS ${ }^{4}$	$r p b 2^{5}$
Z. elaeocarpi	Stenella sp.	$\begin{aligned} & \text { CBS } 142187^{\mathrm{T}}=\mathrm{CPC} \\ & 16642 \end{aligned}$	Elaeocarpus kirtonii	Australia: New South Wales	B. Summerell, 1 Mar. 2009	MF951263	MF951398	MF951699
	Stenella sp.	CPC 16640	Elaeocarpus kirtonii	Australia: New South Wales	B. Summerell, 1 Mar. 2009	MF951264	MF951399	MF951700
Z. eucalypticola	Stenella sp.	$\begin{aligned} & \text { CBS } \mathbf{1 4 2 1 8 6}^{\mathrm{T}}=\mathrm{CPC} \\ & 15149 \end{aligned}$	Eucalyptus sp.	Brazil	A.C. Alfenas, 1 Mar. 2008	MF951265	MF951400	MF951701
Z. eucalyptorum	-	$\begin{aligned} & \text { CBS 118500 } \\ & 11174 \end{aligned}$	Eucalyptus urophylla	Indonesia: Sumatra	M.J. Wingfield, Mar. 2004	MF951266	KF901652	MF951702
Z. fructicola	-	$\begin{aligned} & \text { CBS } \mathbf{1 3 9 6 2 5} 5^{\text {T }}=\text { CPC } \\ & 24487=\text { ZJUM } 80 \end{aligned}$	Citrus reticulata	China	X.H. Wang, Jan. 2010	KP895922	KP896052	MF951703
Z. fructigenum	-	$\begin{aligned} & \text { CBS } \mathbf{1 3 9 6 2 6}^{\mathrm{T}}=\text { CPC } \\ & 24471=\text { ZJUM } 36 \end{aligned}$	Citrus paradisi \times Citrus sp.	China	L. Zhu, Nov. 2009	KP895926	KP896056	MF951704
Z. grevilleae	Verrucisporota grevilleae	$\begin{aligned} & \text { CBS 124107 } \\ & 14761 \end{aligned}$	Grevillea decurrens	Australia: Northern Territory	B. Summerell, 22 Sep. 2007	FJ839670	FJ839634	MF951705
Z. gupoyu	Parastenella gupoyu	$\begin{aligned} & \text { CBS } 122099=\text { RoKi } \\ & 3022 \end{aligned}$	Alocasia odora	Taiwan	R. Kirschner \& C.-J. Chen, 31 Mar. 2007	MF951267	MF951401	MF951706
Z. hakeae	Stenella sp.	$\begin{aligned} & \text { CBS 142185 } \\ & 15577 \end{aligned}$	Hakea undulata	Australia: Western Australia	A.R. Wood, 2 Aug. 2008	MF951268	MF951402	MF951707
	Stenella sp.	CPC 15583	Hakea undulata	Australia: Western Australia	A.R. Wood, 2 Aug. 2008	MF951269	MF951403	MF951708
	Stenella sp.	CPC 17213	Leaves in shop (Loma tea)	Australia: Queensland	P.W. Crous, 13 Jul. 2009	MF951270	MF951404	MF951709
Z. indonesianum	-	$\begin{aligned} & \text { CBS 139627 } \\ & 15300 \end{aligned}$	Citrus sp.	Indonesia	M. Arzanlou, 2004	KF902086	KF901739	MF951710
Z. iteae	Stenella iteae	$\begin{aligned} & \text { CBS } \mathbf{1 1 3 0 9 4}^{\mathrm{T}}=\mathrm{RoKi} \\ & 1279 \end{aligned}$	Itea parvifolia	Taiwan	R. Kirschner \& C.-J. Chen, 2 Jun. 2002	MF951271	MF951405	MF951711

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	$\mathbf{L S U}^{\mathbf{3}}$	ITS ${ }^{4}$	$r p b 2^{5}$
Z. lonicericola	-	CBS $125008^{\text {ET of }}$ Cladosporium lonicericola $=\mathrm{CPC}$ 11671	Lonicera japonica	Republic of Korea	$\begin{aligned} & \text { H.D.. Shin, } 30 \\ & \text { Oct. } 2004 \end{aligned}$	KF251787	KF251283	MF951712
Z. musae	Stenella musae	$\begin{aligned} & \text { CBS } 121384=\text { CIRAD } \\ & 41=\text { X } 877 \end{aligned}$	Musa sp.	France: Martinique	-	MF951272	EU514292	MF951713
	Stenella musae	CBS $122476=\mathrm{X} 47$	Musa sp.	Netherlands Antilles: Windward Islands	E. Reid, 2003	MF951273	EU514288	MF951714
	Stenella musae	CBS $122478=\mathrm{X} 70$	Musa sp.	Netherlands Antilles: Windward Islands	E. Reid, 2003	MF951274	EU514290	MF951715
Z. musae-banksii	Ramichloridium australiensis	CBS 121710 ${ }^{\text {T }}=\mathrm{X} 1100$	Musa banksii	Australia: Queensland	P.W. Crous \& B. Summerell, Aug. 2006	EU041852	EU041795	MF951716
Z. musicola	Stenella musicola	CBS 122479 ${ }^{\text {T }}=\mathrm{X} 1019$	Musa cv. Grand Nain	India	I.W. Buddenhagen, 23 Feb. 2005	MF951275	EU514294	MF951717
Z. musigenum	Ramichloridium musae	$\begin{aligned} & \text { CBS } 190.63=\text { MUCL } \\ & 9557 \end{aligned}$	Musa sapientum	-	-	EU041857	EU041800	MF951718
Z. nocoxi	-	$\begin{aligned} & \text { CBS 125009 } \\ & 14044 \end{aligned}$	Twig debris of unknown host	USA: Virginia	P.W. Crous, 14 May 2007	KF251788	KF251284	MF951719
Z. pitospori	Stenella pittospori	$\begin{aligned} & \text { CBS } 122274=\text { ICMP } \\ & 17098 \end{aligned}$	Pittosporum tenuifolium	New Zealand	C.F. Hill, 15 Jul. 2007	MF951276	MF951406	MF951720
Z. proteacearum	Verrucisporota proteacearum	$\begin{aligned} & \text { CBS } 116003=\text { VPRI } \\ & 31812 \end{aligned}$	Grevillea sp.	Australia: Queensland	J.L. Alcorn, 3 Feb. 2004	FJ839671	FJ839635	MF951721
Z. pseudoparkii	-	$\begin{aligned} & \text { CBS } 110988=\text { CPC } \\ & 1090 \end{aligned}$	Eucalyptus grandis	Colombia	M.J. Wingfield, May 1995	KF901975	DQ303021	MF951722
	-	$\begin{aligned} & \text { CBS 110999 }=\text { CPC } \\ & 1087 \end{aligned}$	Eucalyptus sp.	Colombia	M.J. Wingfield, 1995	JF700965	DQ303023	MF951723
Z. pseudotsugae	Rasutoria pseudotsugae	rapssd	Pseudotsuga menziesii	USA: Oregon	-	EF114704	EF114687	-

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	$\mathbf{L S U}^{3}$	ITS ${ }^{4}$	$r p 2^{5}$
Z. pseudovespa	Mycosphaerella pseudovespa	CBS 121159 ${ }^{\text {T }}=$ AC0466	Eucalyptus biturbinata	Australia: New South Wales	A.J. Carnegie, 14 Apr. 2005	KF901836	MF951407	MF951724
Z. queenslandicum	Stenella queenslandica	CBS 122475 ${ }^{\text {T }}=\mathrm{X} 1084$	Musa banksii	Australia: Queensland	P.W. Crous, 1 Aug. 2006	MF951277	EU514295	MF951725
Z. scaevolicola	-	$\begin{aligned} & \text { CBS 127009 } \\ & 17344 \end{aligned}$	Scaevola taccada	Australia: Queensland	R.G. Shivas \& P.W. Crous, 8 Aug. 2009	KF251789	KF251285	MF951726
Z. schini	Stenella sp.	$\begin{aligned} & \text { CBS 142188 }=\text { CPC } \\ & 19516 \end{aligned}$	Schinus terebinthifolius	Brazil	A.B.V. Faria, 1 Sep. 2005	MF951278	MF951408	MF951727
Zasmidium sp.	Mycosphaerella sp.	$\begin{aligned} & \text { CBS } 118494=\text { CPC } \\ & 11004 \end{aligned}$	Eucalyptus sp.	Colombia	M.J. Wingfield, 2004	MF951279	DQ303039	MF951728
Z. strelitziae	Ramichloridium strelitziae	CBS 121711 ${ }^{\text {T }}=\mathrm{X} 1029$	Strelitzia sp.	South Africa: KwaZulu-Natal	W. Gams \& H. Glen, 5 Feb. 2005	EU041860	EU041803	MF951729
Z. syzygii	-	$\begin{aligned} & \text { CBS 133580 } \\ & \text { Th792 }=\text { CPC } \end{aligned}$	Syzigium cordatum	South Africa: Mpumalanga	P.W. Crous, M.K. Crous, M. Crous \& K.L. Crous, 16 Jul. 2011	KC005798	KC005777	MF951730
Z. tsugae	Rasutoria tsugae	ratstk	Tsuga heterophylla	USA: Oregon	-	EF114705	EF114688	-
Z. velutinum	Periconiella velutina	$\begin{aligned} & \text { CBS } \mathbf{1 0 1 9 4 8}^{\mathrm{ET}}=\mathrm{CPC} \\ & 2262 \end{aligned}$	Brabejum stellatifolium	South Africa	$\begin{aligned} & \text { J.E. Taylor, } 21 \\ & \text { Jan. } 1999 \end{aligned}$	EU041838	EU041781	MF951731
Z. xenoparkii	Stenella xenoparkii	$\begin{aligned} & \text { CBS } 111185^{\mathrm{T}}=\mathrm{CPC} \end{aligned}$	Eucalyptus grandis	Indonesia	M.J. Wingfield, Mar. 1996	JF700966	DQ303028	MF951732
Zymoseptoria brevis	-	$\begin{aligned} & \text { CBS } \mathbf{1 2 8 8 5 3}^{\mathrm{T}}=\text { CPC } \\ & 18106 \end{aligned}$	Phalaris minor	Iran	M. Razavi	JQ739833	JF700867	KX348109
Z. halophila	-	$\begin{aligned} & \text { CBS } \mathbf{1 2 8 8 5 4}^{\mathrm{T}}=\text { CPC } \\ & 18105=\text { IRAN1483C } \end{aligned}$	Hordeum glaucum	Iran	M. Razavi, 25 Apr. 2007	KF252150	KF251645	KX348110
Z. passerini	-	CBS 120382 ${ }^{\text {ET }}$	Hordeum vulgare	USA: North Dakota	S. Goodwin	JQ739843	JF700877	KP894763
Z. tritici	-	$\begin{aligned} & \text { CBS } \mathbf{1 1 5 9 4 3}^{\mathrm{ET}}=\mathrm{IPO} \\ & 323 \end{aligned}$	Triticum aestivum	Netherlands	R. Daamen, 6 May 1981	GU214436	AF181692	KX348112

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	$\mathbf{L S U}^{3}$	ITS ${ }^{4}$	$r p 2^{5}$
Phaeothecoidiellaceae								
Exopassalora sp.	Passalora sp.	CBS $118964=$ GTF1 ${ }^{\text {a }}$	Malus sp.	USA: Illinois	J. Batzer, Sep. 2000	MF951119	MF951284	MF951420
E. zambiae	Passalora zambiae	$\begin{aligned} & \text { CBS } \mathbf{1 1 2 9 7 1}{ }^{\mathrm{T}}=\text { CMW } \\ & 14782=\text { CPC } 1227 \end{aligned}$	Eucalyptus globulus	Zambia	T. Coutinho, 21 Aug. 1995	EU019273	AY725523	MF951421
Houjia pomigena	-	$\begin{aligned} & \text { CBS 125224 }{ }^{\mathrm{T}}=\text { CPC } \\ & 16109=\text { CMG UIF2b } \end{aligned}$	Malus sp.	USA: Illinois	M. Gleason, Sep. 2000	MF951120	MF951285	MF951422
Phaeothecoidiella missouriensis	-	$\begin{aligned} & \text { CBS } \mathbf{1 2 5 2 2 2}{ }^{\mathrm{T}}=\text { CPC } \\ & 16116=\text { CMG AHE7c } \end{aligned}$	Malus sp.	USA: Missouri	M. Gleason, Sep. 2000	MF951121	MF951286	MF951423
Sporidesmajora pennsylvaniensis	-	$\begin{aligned} & \text { CBS } \mathbf{1 2 5 2 2 9}^{\mathrm{T}}=\text { CPC } \\ & \text { 16112 = CMG PA1- } \\ & \text { 9F1a } \end{aligned}$	Malus sp.	USA: Pennsylvania	J.W. Travis, Sep. 2005	MF951122	MF951287	MF951424
Schizothyriaceae								
Schizothyrium pomi	Schizothyrium pomi	CBS 228.57	-	Italy	-	EF134947	EF134947	MF951734
	Schizothyrium pomi	CBS 486.50	Polygonum sachalinense	Netherlands	-	EF134948	EF134948	MF951735
Teratosphaeriaceae								
Acrodontium crateriforme	Chloridium crateriforme	$\begin{aligned} & \text { CBS } \mathbf{1 4 4 . 3 3} 3^{\mathrm{T}}=\text { ATCC } \\ & 15679=\text { MUCL } 15748= \\ & \text { MUCL } 8978 \end{aligned}$	Associated with Tuberculina maxima	Netherlands	-	KX286952	MF951410	KX288399
Batcheloromyces proteae	-	$\begin{aligned} & \text { CBS } \mathbf{1 1 0 6 9 6}^{\text {ET }}=\mathrm{CPC} \\ & 1518=\text { CPC } 18701 \end{aligned}$	Protea cynaroides	South Africa: Western Cape	L. Viljoen, 30 Aug. 1996	EU019247	JF746163	MF951736
B. sedgefieldii	-	$\begin{aligned} & \text { CBS 112119 } \\ & 3026=\text { JT } 851 \end{aligned}$	Protea repens	South Africa: Western Cape	J.E. Taylor, 10 Aug. 1999	KF937222	EU707893	MF951737
Myrtapenidiella corymbia	Penidiella corymbia	$\begin{aligned} & \text { CBS 124769 } \\ & 14640 \end{aligned}$	Corymbia foelscheana	Australia: Northern Territory	B.A. Summerell, 22 Sep. 2007	KF901838	GQ303286	MF951738
Parapenidiella pseudotasmaniensis	-	$\begin{aligned} & \text { CBS 124991 } \\ & 12400 \end{aligned}$	Eucalyptus globulus	Australia: Victoria	I.W. Smith, Sep. 2005	KF901844	KF901522	KX348067
P. tasmaniensis	-	$\begin{aligned} & \text { CBS } 111687^{\mathrm{T}}=\text { CMW } \\ & 14780=\text { CPC } 1555 \end{aligned}$	Eucalyptus nitens	Australia: Tasmania	M.J. Wingfield, 21 Nov. 1996	GU214452	KF901521	MF951739

Family and Current name	Previous name (if different)	Culture accession number(s) ${ }^{1,2}$	Substrate	Country	Collector, Collection date	LSU ${ }^{3}$	ITS ${ }^{4}$	$r p b 2^{5}$
Pseudoteratosphaeria flexuosa	Mycosphaerella flexuosa	CBS $110743=$ CPC 673	Eucalyptus globulus	Colombia	M.J. Wingfield, 6 Jul. 1993	KF902098	DQ302955	MF951740
Readeriella nontingens	Readeriella nontingens	CPC 14444	Eucalyptus oblonga	Australia: New South Wales	B. Summerell, 23 Sep. 2007	GQ852663	GQ852786	MF951741
Stenella araguata	-	CBS 105.75 ${ }^{\text {T of Cladosporium }}$ castellanii	Man, tinea nigra	Venezuela	-	EU019250	EU019250	MF951742
Teratosphaeria stellenboschiana	-	$\begin{aligned} & \text { CBS } 125215=\text { CPC } \\ & 13764 \end{aligned}$	Eucalyptus punctata	South Africa: Gauteng	P.W. Crous, 28 Feb. 2007	KF937247	KF901733	MF951743

${ }^{1}$ Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CCTU: Culture Collection of Tabriz University, Tabriz, East Azarbaijan, Iran; CMG: Personal collection of Mark Gleason, Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA; CMW: Culture Collection of the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; COAD: Coleção Octávio de Almeida Drumond (COAD), housed at the Universidade Federal de Viçosa, Viçosa, Brazil; CPC: Culture collection of Pedro Crous, housed at the Westerdijk Institute; DAOM: Plant Research Institute, Department of Agriculture (Mycology), Ottawa, Canada; DSM: Deutsche Sammlung von Mikrorrganismen und Zellkulturen GmbH, Braunschweig, Germany; HJS: Personal culture collection of Hans-Josef Schroers, Agricultural institute of Slovenia, Ljubljana, Slovenia; ICMP = PDDCC: International Collection of Micro-organisms from Plants, Landcare Research, Private Bag 92170, Auckland, New Zealand; IFO: Institute for Fermentation, Osaka, Japan; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, United Kingdom; INIFAT: Alexander Humboldt Institute for Basic Research in Tropical Agriculture, Ciudad de La Habana, Cuba; JCM: Japan Collection of Microorganism, RIKEN BioResource Center, Japan; KACC: Korean Agricultural Culture Collection, National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon, Republic of Korea; LCP: Laboratory of Cryptogamy, National Museum of Natural History, Paris, France; LSHB: London School of Hygiene \& Tropical Medicine, London, UK; MAFF: Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki, Japan; MPFN: Culture collection at the Laboratoire de Pathologie Forestière, INRA, Centre de Recherches de Nancy, 54280
 Louvain-la-Neuve, Belgium; MUMH: Mycological Herbarium in TSU, Mie University, Tsu, Mie, Japan; QM: Quartermaster Research and Development Center, U.S. Army, Massachusetts, USA; RoKI: Personal culture collection of Roland Kirschner, Department of Life Sciences, National Central University, Taoyuan City, Taiwan; RWB: Personal collection of Robert Barreto, Departmento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Brazil; SMKC: Culture collection of the Division of Environmental Science and Ecological Engineering, Korea University, Republic of Korea; VKM: All-Russian Collection of Microorganisms, Russian Academy of Sciences, Institute of Biochemistry and Physiology of Microorganisms, 142292 Pushchino, Moscow Region, Russia; X: Personal collection of Mahdi Arzanlou, Tabriz University, Tabriz, East Azarbaijan, Iran; ZJUM: Culture collection at Zhejiang University, China.
${ }^{2}$ Status of the strains: (T) ex-type, (ET) ex-epitype, (NT) ex-neotype, (IT) ex-isotype. GenBank accession numbers for LSU: large subunit (28S) of the nrRNA gene operon.
${ }^{4}$ GenBank accession numbers for ITS: internal transcribed spacers and intervening 5.8S nrDNA.
${ }^{5}$ GenBank accession numbers for rpb2: partial RNA polymerase II second largest subunit gene;
Table 2. Details of primers used for amplification and sequencing in this study.

Locus $^{\mathbf{1}}$	Primer Name	Primer sequence (5' $\rightarrow \mathbf{3}^{\prime}$)	Annealing temperature $\left({ }^{\circ} \mathbf{C}\right)$	Orientation	Reference
ITS	V9G	TTA CGT CCC TGC CCT TTG TA	52	Forward	Hoog \& Gerrits van den Ende (1998)
	ITS4	TCC TCC GCT TAT TGA TAT GC	52	Reverse	White et al. (1990)
LSU	LSU1Fd	GRA TCA GGT AGG RAT ACC CG	52	Forward	Crous et al. (2009c)
	LR5	TCC TGA GGG AAA CTT CG	52	Reverse	Vilgalys \& Hester (1990)
rpb2	fRPB2-5F	GAY GAY MGW GAT CAY TTY GG	$60 \rightarrow 58 \rightarrow 54$	Forward	Liu et al. (1999)
	RPB2-5F2	GGG GWG AYC AGA AGA AGG C	$60 \rightarrow 58 \rightarrow 54$	Forward	Sung et al. (2007)
	Rpb2-F1	GGT GTC AGT CAR GTG YTG AA	$60 \rightarrow 58 \rightarrow 54$	Forward	Videira et al. (2015a)
	Rpb2-F4	GAY YTB GCI GGI CCI YTI ATG GC	$60 \rightarrow 58 \rightarrow 54$	Forward	Videira et al. (2016)
	Rpb2-F5	GCN ACI GGI AAY TGG GG	$60 \rightarrow 58 \rightarrow 54$	Forward	This study
	Rpb2-F6	AAR GCI GGT GTI AGY CAR GT	$60 \rightarrow 58 \rightarrow 54$	Forward	This study
	fRPB2-7cR	CCC ATR GCT TGY TTR CCC AT	$60 \rightarrow 58 \rightarrow 54$	Reverse	Liu et al. (1999)
	Rpb2-R1	TCC TCN GGV GTC ATG ATR ATC AT	$60 \rightarrow 58 \rightarrow 54$	Reverse	Videira et al. (2015a)
	Rpb2-R3	ATC ATN GMN GGR TGR ATY TC	$60 \rightarrow 58 \rightarrow 54$	Reverse	This study

[^2]genes were used in the subsequent phylogenetic analyses, with the exception of Cercospora apii (CBS 116455), "Passalora vaginae" (CBS 140.34), Phaeoramularia capsicicola (CBS 156.62), Prathigada (MUCC 1088), Rasutoria pseudotsugae (rapssd), Rasutoria tsugae (ratstk), Zasmidium biverticillatum (CBS 335.36) and Zasmidium parki (CBS 387.92), which were missing the $r p b 2$ sequence; in those cases, the missing sequences were treated as missing data in the alignments.

The phylogenetic methods used in this study included a Bayesian analysis performed with MrBayes v. 3.2 (Ronquist et al. 2012), a Maximum-Likelihood analysis performed with RAxML v. 7.2.6 (Stamatakis \& Alachiotis 2010) and a Parsimony analysis performed with PAUP v. 4.0b10 (Swofford 2003). The phylogenetic analyses were individually applied to four datasets: dataset 1 consisted of a concatenated alignment of LSU and $r p b 2$ sequences from representative strains of most genera currently known to belong in the Mycosphaerellaceae, and from closely related families; datasets 2 to 4 were based on three major clades observed in dataset 1 and consisted of concatenated alignments of LSU, rpb2 and ITS sequences. MrModeltest v. 2.2 (Nylander 2004) was used to determine the best nucleotide substitution model settings for each data partition in order to perform a model-optimised Bayesian phylogenetic reconstruction. The Markov Chain Monte Carlo (MCMC) analysis of four chains started in parallel from a random tree topology, the heat parameter was set at 0.15 and trees were saved every 200 generations until the average standard deviation of split frequencies reached 0.01 (stop value). Burn-in was set to 25% after which the likelihood values were stationary. The Maximum Likelihood phylogenies performed with RAxML executed 1000 rapid bootstrap inferences using the GAMMA model and the GTR substitution matrix and produced the best-score maximumlikelihood tree. In the Maximum Parsimony analysis, alignment gaps were treated as fifth character state and all characters were unordered and of unequal weight. A heuristic search option with 100 random taxon additions and tree bisection and reconnection (TBR) as the branch-swapping algorithm was used. Branches of zero length were collapsed and all multiple, equally most parsimonious trees were saved. The robustness of the trees obtained was evaluated by 1000 bootstrap replications (Hillis \& Bull 1993). Other measures calculated included tree length (TL), consistency index (CI), retention index (RI) and rescaled consistency index (RC).

All resulting trees were printed with Geneious v. 7.0.6 (http://www.geneious.com, Kearse et al. 2012). All new sequences generated in this study were deposited in NCBI's GenBank nucleotide database (www.ncbi.nlm.nih.gov) and the accession numbers are listed in Table 1 (GenBank accessions MF951115-MF951743). The alignments and respective phylogenetic trees were deposited in TreeBASE, study number 21537.

Taxonomy

Isolates were cultivated for $15-30 \mathrm{~d}$ at $21{ }^{\circ} \mathrm{C}$ in a 12 h day/night regime. Morphological observations of reproductive structures were determined using a Nikon Eclipse 80i compound microscope with differential interference contrast (DIC) illumination. Slides were prepared using the inclined coverslip method (Kawato \& Shinobu 1959, revised in Nugent et al. 2006) and also transparent adhesive tape (Titan Ultra Clear Tape, Conglom Inc., Toronto, Canada) (Bensch et al. 2012). Clear lactic acid was used as mounting medium for microscopic observations of both in vivo and herbarium specimens. The observed isolates were cultivated in synthetic nutrientpoor agar (SNA), V8-juice agar (V8), malt extract agar (MEA) or oatmeal agar (OA) media to produce conidiogenous structures (recipes according to Crous et al. 2009f). The recorded conidial and ascospore measurements represent the minimum and maximum value of 30 individual
measurements, for both length and width. For Scanning Electron Microscopy (SEM) observations, dried herbarium specimens were cut into small pieces and mycelial discs were incubated on MEA (Crous et al. 2009f). Both materials were fixed with OsO4 gas at room temperature for 12 h and then coated with gold using an ion-sputter (model E-1010, Hitachi, Tokyo, Japan). Specimens were observed with a SEM (S-4000, Hitachi) at $10-15 \mathrm{kV}$ accelerating voltage. Nomenclatural novelties and descriptions were deposited in MycoBank (Crous et al. 2004a).

RESULTS

DNA amplification

The partial amplification of LSU and ITS was successful for all isolates (Table 1). The partial amplification of $r p b 2$ was difficult with the primer combination fRPB2-f5F and fRPB2-7cR (Liu et al. 1999), but more successful using the forward primer RPB2-5F2 (Sung et al. 2007). Among the used primers, the most successful combination was Rpb2-F4 (Videira et al. 2016) and fRPB2-7cR (Liu et al. 1999). The remaining primers designed in this study were used only in a small number of isolates for which the previously mentioned combinations failed to amplify the gene.

LSU \& rpb2 phylogeny: Dataset 1 consisted of a concatenated alignment of two loci (LSU, rpb2) that contained 262 taxa representing several genera known from culture belonging to the Mycosphaerellaceae. A strain of Cylindroseptoria ceratoniae (CBS 477.69; Dothideaceae) was used as outgroup. The final alignment contained a total of 1471 characters divided in two partitions containing 750 (LSU) and 716 (rpb2) characters respectively, including alignment gaps. From the total alignment five characters that were artificially introduced as spacer between the genes were excluded from the phylogenetic analyses (see alignment in TreeBASE). MrModelTest determined that the Bayesian analysis for both genes (LSU, rpb2) should use dirichlet base frequencies and the GTR $+\mathrm{I}+\mathrm{G}$ model. The Bayesian analyses of the concatenated two-locus alignment generated 65562 trees from which 16390 trees were discarded (25% burnin). The posterior probability values (PP) were calculated from the remaining 49172 trees (Fig. 1 ; first value: $\mathrm{PP} \leq 1$ shown). The alignment contained a total of 811 unique site patterns: 291 (LSU) and 520 (rpb2). The Maximum Likelihood analysis detected 810 distinct patterns and reached a final optimization likelihood of -66911.187183 . The bootstrap support values (MLBS) from the best-scoring tree were mapped on the Bayesian tree as the second value in the tree

Fig. 1. Phylogenetic tree (50% majority rule consensus) resulting from a Bayesian analysis of the combined LSU and rpb2 sequence alignment (dataset 1). Bayesian posterior probabilities (PP), maximum likelihood bootstrap support values ($\geq 90 \%$; ML-BS) and maximum parsimony bootstrap support values ($\geq 90 \%$; MP-BS) are indicated at the nodes (PP/ML-BS/MP-BS; a hash (\#) symbol denotes fully-supported branches and the scale bar represents the expected number of changes per site. Branches in a thicker stroke represent the branches present in the strict consensus parsimony tree. Genera clades are delimited in coloured boxes, with the genus name and clade number indicated to the right. All taxa names are written in black, ex-type strains are represented in bold, novel genera denoted with an asterisk (*) and resurrected genera with a circumflex (${ }^{\wedge}$). A vertical bar is used to the right of the coloured boxes and encompasses all genera within their respective families. The family name Mycosphaerellaceae is unabbreviated while the rest are abbreviated as follows: $D=$ Dissoconiaceae, P $=$ Phaeothecoidiellaceae, $S=$ Schizothyriaceae, $T=$ Teratosphaeriaceae, $C=$ Cladosporiaceae. The tree was rooted to Cylindroseptoria ceratoniae (CBS 477.69).

Fig. 1. (Continued).

Fig. 1. (Continued).
nodes (Fig. 1; ML-BS $\geq 90 \%$ shown). The Maximum Parsimony (MP) analyses generated the maximum of 1000 equally most parsimonious trees and the bootstrap support values (MP-BS) were mapped on the Bayesian tree as the third value (Fig. 1; MP-BS $\geq 90 \%$ shown). From the analysed characters, 691 were constant, 100 were variable and parsimony-uninformative and 675 were parsimony-informative. A parsimony consensus tree was calculated from the equally most parsimonious trees and the branches were mapped with a thicker stroke on the Bayesian tree (Fig. 1; Length $=16678, \mathrm{CI}=0.094, \mathrm{RI}=0.647, \mathrm{RC}=0.061, \mathrm{HI}=0.906$). The overall parsimony phylogeny supported the same species clades as those presented in the Bayesian phylogeny (Fig. 1). Likewise, the ML analyses of dataset 1 (Fig. 1) separated the strains into the same genus clades as with Bayesian analyses.

Seven families are represented in the tree (Fig. 1): Mycosphaerellaceae (clades 1-94), Dissoconiaceae (clades 95, 96), Phaeothecoidiellaceae (clades 97-100), Schizothyriaceae (clade 101), Teratosphaeriaceae (clades 102-107), Cladosporiaceae (clade 108) and the single strain used as outgroup belonging to the Dothideaceae. The genera included in the Cladosporiaceae (C), Dissoconiaceae (D), Phaeothecoidiellaceae (P) and Teratosphaeriaceae (T) were used to provide an overview of the phylogenetic position of the Mycosphaerellaceae. In addition, some currently include genera that were once considered part of Mycosphaerellaceae, namely Ramichloridium (clade 95), currently in Dissoconiaceae (D), and Stenella (clade 105), presently in Teratosphaeriaceae (T).

LSU, rpb2 and ITS phylogenies (Datasets 2-4): For these analyses, DNA sequence data from LSU, rpb2 and ITS were combined in three datasets (datasets 2-4) corresponding to three large clades from the overview tree with varying outgroup settings. Datasets $2-4$ were analysed with the same three phylogenetic methods applied to Dataset 1 . The results of the MrModeltest analysis indicated the same priors for the Bayesian analysis for all three partitions (LSU, rpb2 and ITS), as for Dataset 1.

Dataset 2 consisted of clades $1-37$ of Fig. 1 with additional taxa, included a total of 166 taxa and used Schizothyrium pomi (CBS 486.50) as outgroup. The final alignment contained a total of 2113 characters divided in three partitions containing 749 (LSU), 766 (rpb2), 588 (ITS) characters respectively, including alignment gaps. From the total alignment, 10 characters previously introduced as spacers between the genes were excluded from the phylogenetic analysis. The Bayesian analysis generated 33282 trees from which 8320 trees were discarded (25% burnin). The posterior probability values were calculated from the remaining 24962 trees (Fig. 2; first value: PP ≤ 1 shown). The alignment contained a total of 988 unique site patterns: 173 (LSU), 496 (rpb2) and 343 (ITS). The Maximum Likelihood analysis detected 984 distinct patterns and reached a final ML optimization likelihood of -43958.897307. The bootstrap support values from the best-scoring tree were mapped on the Bayesian tree as the second value in the tree nodes (Fig. 2; ML-BS $\geq 90 \%$ shown). The Maximum Parsimony analysis generated the maximum of 1000 equally most parsimonious trees and the bootstrap support values were mapped on the Bayesian tree as the third value (Fig. 2; MP-BS $\geq 90 \%$ shown). From the 2103 characters, 1147 were constant, 148 were variable and parsimonyuninformative and 809 were parsimony-informative. A parsimony consensus tree was calculated from the equally most parsimonious trees and the branches were mapped with a thicker stroke on the Bayesian tree (Fig. 2; Length $=10381, \mathrm{CI}=0.174, \mathrm{RI}=0.717, \mathrm{RC}=0.125, \mathrm{HI}=0.826$).

The phylogenetic trees based on dataset 2 (Fig. 2) that were generated with Bayesian and maximum likelihood methods, separated strains into the same generic clades. The phylogenetic trees generated using parsimony differed slightly in the clade order (data not shown, trees deposited on TreeBASE). Twenty-two genera represent stable genera since they maintain their positions in the present analysis as they displayed in previous phylogenetic studies, and most of them are based on their respective ex-type cultures: Cercospora (clade 1), Ramulispora (clade 2), Neodeightoniella (clade 4), Neopseudocercosporella (clade 5), Fusoidiella (clade 6), Filiella (clade 7), Neocercospora (clade 8), Apseudocercosporella (clade 9), Septoria (clade 11), Phloeospora (clade 14), Caryophylloseptoria (clade 16), Neoseptoria (clade 17), Ramulariopsis (clade 19), Uwemyces (clade 25), Clypeosphaerella (clade 26), Pallidocercospora (clade

Fig. 2. Phylogenetic tree (50% majority rule consensus) resulting from a Bayesian analysis of the combined LSU, rpb2 and ITS sequence alignment (dataset 2 ; representing clades $1-37$ of Fig. 1). Bayesian posterior probabilities (PP), maximum likelihood bootstrap support values ($\geq 90 \%$; ML-BS) and maximum parsimony bootstrap support values ($\geq 90 \%$; MP-BS) are indicated at the nodes (PP/ ML-BS/MP-BS) and the scale bar represents the expected number of changes per site. Branches in a thicker stroke represent the branches present in the strict consensus parsimony tree. Genera clades are delimited in coloured boxes, with the genus name and clade number are indicated to the right. All taxa names are written in black, ex-type species strains are represented in bold, novel genera with an asterisk $\left(^{*}\right)$ and resurrected genera with a circumflex (${ }^{\wedge}$). A vertical bar is used to the right of the coloured boxes and encompass all genera within their respective family, the Mycosphaerellaceae. The tree was rooted to Schizothyrium pomi (CBS 486.50).
$\stackrel{\circ}{\circ}$

Fig. 2. (Continued).

Fig. 3. Phylogenetic tree (50% majority rule consensus) resulting from a Bayesian analysis of the combined LSU, rpb2 and ITS sequence alignment (dataset 3; representing clades 38-66, 79, 84 and 92-94 of Fig. 1). Bayesian posterior probabilities (PP), maximum likelihood bootstrap support values ($\geq 90 \%$; ML-BS) and maximum parsimony bootstrap support values ($\geq 90 \%$ MP-BS) are indicated at the nodes (PP/ML-BS/MP-BS) and the scale bar represents the expected number of changes per site. Branches in a thicker stroke represent the branches present in the strict consensus parsimony tree. Genera clades are delimited in coloured boxes, with the genus name and clade number indicated to the right. All taxa names are written in black, ex-type strains are represented in bold, novel genera with an asterisk $\left({ }^{*}\right)$ and resurrected genera with a circumflex $\left({ }^{\circ}\right)$. A vertical bar is used to the right of the coloured boxes and encompass all genera within their respective family, the Mycosphaerellaceae. The tree was rooted to Schizothyrium (CBS 228.57).

Fig. 3. (Continued).
28), Nothophaeocryptopus (clade 29), Scolecostigmina (clade 30), Trochophora (clade 32), Sonderhenia (clade 34), Ramularia (clade 35), Zymoseptoria (clade 36), and Xenoramularia (clade 37). Three clades have good candidates for epitypification: Mycovellosiella (clade 10), Passalora (clade 22), and Distocercospora (clade 27). Three clades have multiple type species and need to be addressed: Cercosporella and Acervuloseptoria (clade 18), Sphaerulina and Miuraea (clade 12), Pseudocercospora and Neopseudocercospora (clade 23). Seven distinct clades include species that are assigned to new genera: Cercoramularia (clade 13), Distocercosporaster (clade 15), Pleuropassalora (clade 20), Graminopassalora (clade 21), Coremiopassalora (clade 24), Parapallidocercospora (clade 31), Pseudophaeophleospora (clade 33).

Dataset 3 consisted of clades 38-66 of Fig. 1 with additional taxa, included a total of 111 taxa and used Schizothyrium pomi (CBS 486.50) as outgroup. In addition, a total of 7 strains
representing 7 taxa from dataset 4 were used for context. The final alignment contained in all 2 067 characters divided in three partitions containing 729 (LSU), 779 (rpb2), 548 (ITS) characters respectively, including alignment gaps. From the complete alignment, 10 characters previously introduced as spacers between the genes were excluded from the phylogenetic analysis. The Bayesian analysis generated 8242 trees of which 2060 trees were discarded (25% burnin). The posterior probability values were calculated from the remaining 6182 trees (Fig. 3; first value: $\mathrm{PP} \leq 1 \%$ shown). The alignment contained a total of 824 unique site patterns: 125 (LSU), 478 (rpb2) and 233 (ITS). The Maximum-Likelihood analysis detected 821 distinct patterns and reached a final ML optimization likelihood of -23304.617065 . The bootstrap support values from the best-scoring tree were mapped on the Bayesian tree as the second value in the tree nodes (Fig. 3; ML-BS $\geq 90 \%$ shown). The Maximum Parsimony analysis generated the maximum 1000 equally most parsimonious trees and the bootstrap support values were mapped on the Bayesian tree as the third value (Fig. 3, MP-BS $\geq 90 \%$ shown). From the 2057 characters, 1227 were constant, 175 were variable and parsimony-uninformative and 655 were parsimony-informative. A parsimony consensus tree was calculated from the equally most parsimonious trees and the branches were mapped with a thicker stroke on the Bayesian tree (Fig. 3; Length $=4806, \mathrm{CI}=0.309, \mathrm{RI}=0.734, \mathrm{RC}=0.227 ; \mathrm{HI}=0.691$). The phylogenetic trees based on dataset 3 (Fig. 3) that were generated with Bayesian and maximum likelihood methods, separated strains into the same generic clades. The phylogenetic trees generated using parsimony differed slightly in the clade order (data not shown, trees deposited on TreeBASE). Eight genera represent stable genera since they maintain their positions in the present analysis as they displayed in previous phylogenetic studies, and most of them are based on their respective type strain: Amycosphaerella (clade 8), Pseudocercosporella (clade 10), Paracercospora (clade 11), Pantospora (clade 12), Asperisporium (clade 13), Dothistroma (clade 20), Stromatoseptoria (clade 22), and Phaeocercospora (clade 28). Two clades have good candidates for epitypification: Fulvia (clade 23) and Phaeoramularia (clade 25). Eighteen clades have species belonging to Passalora s. lat. that are reassigned into new genera: Neocercosporidium (clade 1), Sultanimyces (clade 2), Paracercosporidium (clade 3), Parasirosporium (clade 4), Cercosporidium (clade 5), Paramycovellosiella (clade 7), Distomycovellosiella (clade 9), Nothopassalora (clade 14), Phanerohilum (clade 15), Pluripassalora (clade 16), Micronematomyces (clade 17), Rhachisphaerella (clade 18), Neophloeospora (clade 19), Hyalocercosporidium (clade 21), Deightonomyces (clade 26), Pleopassalora (clade 27), Rosisphaerella (clade 29), and Exutisphaerella (clade 30). Four clades have species belonging to Passalora s. lat. that are reassigned into resurrected genera: Cercosporidium (clade 5), Fulvia (clade 23), Ragnhildiana (clade 24), and Phaeoramularia (clade 25).

Dataset 4 consisted of clades 66-108 of Fig. 1, which included a total of 147 taxa and used Cylindroseptoria ceratoniae (CBS 477.69) as outgroup. In addition, the final alignment contained a total of 2121 characters divided in three partitions containing 767 (LSU), 761 (rpb2), 583 (ITS) characters respectively, including alignment gaps. From the total alignment 26 characters were excluded: 10 characters that were previously introduced as spacers between the genes and 16 characters from the ITS that existed only for the outgroup. The Bayesian analysis generated 26202 trees from which 6550 trees were discarded (25% burnin). The posterior probability values were calculated from the remaining 19652 trees (Fig. 4; first value: $\mathrm{PP} \leq 1$ shown). The alignment contained altogether 1209 unique site patterns: 262 (LSU), 557 (rpb2) and 390 (ITS). The Maximum-Likelihood analysis detected 1187 distinct patterns and reached a final ML optimization likelihood of -57749.224872 . The bootstrap support values from the best-scoring tree were mapped on the Bayesian tree as the third value in the tree nodes

Fig. 4. Phylogenetic tree (50% majority rule consensus) resulting from a Bayesian analysis of the combined LSU, rpb2 and ITS sequence alignment (dataset 4; representing clades 67-99 of Fig. 1). Bayesian posterior probabilities (PP), maximum likelihood bootstrap support values ($\geq 90 \%$; ML-BS) and maximum parsimony bootstrap support values ($\geq 90 \%$; MP-BS) are indicated at the nodes (PP/ML-BS/MP-BS) and the scale bar represents the expected number of changes per site. Branches in a thicker stroke represent the branches present in the strict consensus parsimony tree. Genera clades are delimited in coloured boxes, with the genus name and clade number indicated to the right. All taxa names are written in black, ex-type strains are represented in bold, novel genera with an asterisk (*) and resurrected genera with a circumflex (${ }^{\wedge}$). A vertical bar is used to the right of the coloured boxes and encompass all genera within their respective families. The family name Mycosphaerellaceae is unnabreviated while the rest are abbreviated as follows: $D=$ Dissoconiaceae, $P=$ Phaeothecoidiellaceae, $S=$ Schizothyriaceae, $T=$ Teratosphaeriaceae, $C=$ Cladosporiaceae. The tree was rooted to Cylindroseptoria ceratoniae (CBS 477.69).
(Fig. 4; ML-BS ≥ 90 \% shown). The Maximum Parsimony analysis generated the maximum of 1000 equally most parsimonious trees and the bootstrap support values were mapped on the Bayesian tree as the third value (Fig. 4, MP-BS ≥ 90 \% shown). From the 2094 characters, 936 were constant, 127 were variable and parsimony-uninformative and 1031 were parsimonyinformative. A parsimony consensus tree was calculated from the equally most parsimonious trees and the branches were mapped with a thicker stroke on the Bayesian tree (Fig. 4; Length $=14343, \mathrm{CI}=0.177, \mathrm{RI}=0.666, \mathrm{RC}=0.118, \mathrm{HI}=0.823$).

The phylogenetic trees based on dataset 4 (Fig. 4) that were generated with Bayesian and maximum likelihood methods, separated strains into the same generic clades. The phylogenetic trees generated using parsimony differed slightly in the clade order (data not shown, trees deposited on TreeBASE). Seven families are represented in the tree: Mycosphaerellaceae (clades 1-29), Schizothyriaceae (S), Dissoconiaceae (D), Phaeothecoidiellaceae (P), Teratosphaeriaceae (T), Cladosporiaceae (C) and the single strain used as outgroup belonging to the Dothideaceae. Within the Phaeothecoidiellaceae, a new genus is described, namely Exopassalora (clade 31). Within the Mycosphaerellaceae, seventeen genera are stable since they maintain their positions in the present analysis as they displayed in previous phylogenetic studies, and most of them are based on their respective type strain: Annellosympodiella (clade 3), Neopenidiella (clade 4), Phaeophleospora (clade 5), Lecanosticta (clade 6), Neoceratosperma (clade 7), Xenomycosphaerella (clade 8), Xenosonderhenia (clade 9), Polyphialoseptoria (clade 11), Mycodiella (clade 12), Ruptoseptoria (clade 14), Paramycosphaerella (clade 17), Brunneosphaerella (clade 18), Neomycosphaerella (clade 20), Microcyclosporella (clade 23), Mycosphaerelloides (clade 24), Epicoleosporium (clade 25), and Exosporium (clade 29). The genus Zasmidium (clade 1) is redefined as a broader genus and includes species previously belonging to Ramichloridium, Rasutoria, and Periconiella (see also Fig. 5). Eleven clades represent new genera: Nothopericoniella (clade 2), Xenosonderhenioides (clade 10), Chuppomyces (clade 13), Pachyramichloridium (clade 15), Australosphaerella (clade 16), Madagascaromyces (clade 19), Hyalozasmidium (clade 21), Pseudopericoniella (clade 22), Mucosphaerella (clade 26), Pseudozasmidium (clade 27), Saccharosporium (clade 28). The genera Ramichloridium (clade 30) and Stenella (clade 32) cluster outside Mycosphaerellaceae, in the families Dissoconiaceae (D) and Teratosphaeriaceae (T), respectively.

Fig. 4. (Continued).

Taxonomy

The taxonomy section is organized in two parts. The first part is organised by clade number based on the tree depicted in Fig. 1 and covers in detail the genera described in the Mycosphaerellaceae for which cultures were available. Untreated taxa whose names are placed under inverted commas are discussed with the genus they were included in, and occur in a coloured box in the trees. The discussed species have a link to the photoplates and trees where they appear. An extra section referring to the genera with uncertain affinity associated with Mycosphaerellaceae can
be found at the end of this section. Information about the host and origin of the type specimen is provided along with the most recent reference for a description or illustration in order to motivate the recollection of the species with phylogenetic positions still undetermined. Due to the large number of taxa discussed throughout this manuscript, the taxon names are written in full.

CLADES 1-94: Mycosphaerellaceae

Mycosphaerellaceae Lindau, Nat. Pflanzenfam., Teil I, 1(1): 421. 1897.
Basionym: Sphaerellaceae Nitschke, Verh. Naturhist. Vereins Preuss. Rheinl. 26: 74. 1869, nom. illeg. (Art. 18.3 and 57.1), non Sphaerellaceae (algae).
Synonyms: Ramularieae Sacc., Syll. Fung. 4: 188. 1886.
Septocylindrieae Sacc., Syll. Fung. 4: 188. 1886.
Cercosporaceae Nann., Repert. mic. uomo 4: 507. 1934.
Cercosporellaceae Nann., Repert. mic. uomo 4: 473. 1934.
Ramulariaceae (Sacc.) Nann., Repert. mic. uomo 4: 472. 1934.
Septocylindriaceae (Sacc.) Nann., Repert. mic. uomo 4: 188. 1934.
Septoriaceae W.B. Cooke, Revta Biol. (Lisboa) 12(12): 298. 1983.

Clade 1: Neopseudocercosporella

Neopseudocercosporella Videira \& Crous, Stud. Mycol. 83: 80. 2016.
Description (from Videira et al. 2016): Phytopathogenic, causing leaf spots. Mycelium internal, hyaline, septate, branched, stromata almost absent to well-developed. Ascomata pseudothecial, mycosphaerella-like, single to aggregated, black, immersed, becoming erumpent, globose, with apical ostiole; wall of medium brown textura angularis. Asci aparaphysate, fasciculate, bitunicate, subsessile, obovoid to narrowly ellipsoid. Ascospores, straight to fusoid-ellipsoid, hyaline, guttulate, thin-walled, with subobtuse ends, medianly 1-septate. Conidiophores solitary or grouped, erumpent through the cuticle or emerging through stomata, hyaline, sometimes faintly pigmented, smooth, simple, straight, slightly curved or geniculate-sinuous, usually aseptate, i.e. reduced to conidiogenous cells, thin-walled, smooth. Conidiogenous cells hyaline, subcylindrical to geniculate-sinuous, with inconspicuous conidiogenous loci, unthickened, neither darkened nor refractive, mostly truncate. Conidia solitary, hyaline or rarely slightly pigmented, thin-walled, smooth, straight to flexuous, subcylindrical to obclavate, with apex obtuse to subacute and base truncate, sometimes somewhat obconically, one- to multiseptate, hilum not thickened or darkened.

Type species: Neopseudocercosporella capsellae (Ellis \& Everh.) Videira \& Crous (三 Cylindrosporium capsellae Ellis \& Everh.).

Neopseudocercosporella capsellae (Ellis \& Everh.) Videira \& Crous, Stud. Mycol. 83: 86. 2016.

Basionym: Cylindrosporium capsellae Ellis \& Everh., J. Mycol. 3(11): 130. 1887.
Synonyms: Cercoseptoria capsellae (Ellis \& Everh.) H.C. Greene, Trans. Wisconsin Acad. Sci. 47: 127. 1959.
Pseudocercosporella capsellae (Ellis \& Everh.) Deighton, Mycol. Pap. 133: 42. 1973.

For additional synonyms see Braun (1995) or MycoBank.
Descriptions and illustrations: Braun (1995), Videira et al. (2016).
Materials examined: Japan, Miyazaki, on Brassica rapa var. oleifera, unknown date, K. Kishi, culture MAFF 237605 = MUCC 1254. New Zealand, Auckland, Mt. Albert, on Brassica sp., unknown date and collector, isol. C.F. Hill, Jul. 2005, culture CBS 118412. Republic of Korea, Hongcheon, on Capsella bursa-pastoris, 4 Nov. 2005, H.D. Shin, culture CPC 12519; on Draba nemorosa, 30 Oct. 2004, H.D. Shin, culture CBS $135464=$ CPC 11677; Namyangju, on Raphanus sativus, 22 Oct. 2007, H.D. Shin, culture CBS $131896=$ CPC 14773. Unknown country, on Brassica sp., unknown date and collector, isol. R. Evans, 28 Aug. 2002, cultures CBS 112032 = HJS 601, CBS 112033 = HJS 600. USA, Columbia, Missouri, Boone Co., on Capsella bursa-pastoris, May 1887, Galloway 253 (holotype NY 883641, isotype BPI 399944).

Notes: The genus Neopseudocercosporella was recently established to accommodate two species that were initially placed in Pseudocercosporella, but were not congeneric with the type species Pseudocercosporella bakeri (Videira et al. 2016). Both Neopseudocercosporella capsellae and Neopseudocercosporella brassicae are considered important pathogens of Brassica spp. (e.g. broccoli, cauliflower, Brussels sprout, etc.) and have been reported worldwide. In literature, these pathogens are usually distinguished based on their disease symptoms, morphology of their ascospores, and culture characteristics (Inman et al. 1991). However, based on the DNA similarities of the currently available strains (Fig. 1, clade 1; Fig. 2, clade 5), these species are so similar that more research is required in order to fully understand their identity and biology (Videira et al. 2016).

Fig. 5. Phylogenetic tree (50% majority rule consensus) resulting from a Bayesian analysis of the combined LSU, rpb2 and ITS sequence alignment of the strains in the clades 1-6 from Fig. 4 (clades 6772 of Fig. 1). Bayesian posterior probabilities (PP) and maximum parsimony bootstrap support values ($\geq 90 \%$; MP-BS) are indicated at the nodes (PP/MP-BS) and the scale bar represents the expected number of changes per site. Branches in a thicker stroke represent the branches present in the strict consensus parsimony tree. Genera clades are delimited in dark and light blue boxes, with the genus name indicated to the right. The genus name Zasmidium is unnabreviated while the rest are abbreviated as follows: $N T=$ Nothopericoniella,$A N=$ Annellosimpodiella,$N P=$ Neopenidiella,$D V=$ Devonomyces, $P H=$ Phaeophleospora, $C Y=$ Cytostagonospora, $L E=$ Lecanosticta, $B R=$ Brunswickiella. All taxa names are written in black, ex-type strains are represented in bold and novel genera with an asterisk (*). The dark and light pink coloured boxes, numbered with roman numerals to the right, represent a possible phylogenetic division of the genus Zasmidium based on branch support and/or taxonomic history. Within the pink boxes, the generic name of Zasmidium was abbreviated $(Z .=$ Zasmidium $)$ and a grid representing morphological charaters respective of each taxon is displayed to the right of the taxa and should be interpreted as: S - only sexual morph described (filled hexagon); CP - conidiophores unbranched (filled star), conidiophores branched (empty star); CC - conidiogenous cell terminal (filled square), conidiogenous cell terminal forming rachis (filled square with letter R in white), conidiogenous cell terminal and intercalary (empty square), conidiogenous cell terminal and intercalary forming rachis (empty square with letter R in black); CA - conidia long ($>30 \mu \mathrm{~m}$ average; full circle), conidia short ($<30 \mu \mathrm{~m}$ average; empty circle), single (full triangle), catenate (empty triangle). The tree was rooted to Teratosphaeria stellenboschiana (CPC 13764).

Clade 2: Fusoidiella

Fusoidiella Videira \& Crous, Stud. Mycol. 83: 87. 2016.
Description: Phytopathogenic, causing small yellow to olivaceous green spots on leaves. Mycelium internal. Conidiophores aggregated in dense fascicles, arising through stomata, aseptate, i.e. usually reduced to conidiogenous cells, smooth, brown, subcylindrical to clavate, straight to curved due to thickening of the wall on one side, not geniculate, one to multiple conidiogenous loci located laterally or apically, loci conspicuous, thickened and broad, areolate, darkened and refractive. Conidia solitary, smooth to rough, hyaline to pale brown, thin- to thickwalled, fusiform to obclavate-fusiform, straight to somewhat curved, septate, not constricted at the septa, apex obtuse and base truncate, hilum flattened, thickened, darkened and refractive.

Type species: Fusoidiella depressa (Berk. \& Broome) Videira \& Crous (\equiv Cladosporium depressum Berk. \& Broome).

Fusoidiella anethi (Pers.) Videira \& Crous, comb. nov. MycoBank MB822818.
Basionym: Sphaeria anethi Pers., Observ. mycol. 1: 67. 1796.
Synonyms: Dothidea anethi (Pers.) Fr., Summa veg. Scand., Sectio Post. 2: 387. 1849.
Azosma punctum Lacroix, Pl. Cryptog. France, Ed. 2, Fasc. XVI, no. 757. 1860.
Mycosphaerella anethi (Pers.) Petr., Ann. Mycol. 25: 229. 1927.
Cercosporidium punctum (Lacroix) Deighton, Mycol. Pap. 112: 48. 1967. Passalora punctum (Lacroix) Petzoldt (as "puncta") Nova Hedwigia, Beih. 87: 192. 1987. For additional synonyms see Deighton (1967) or MycoBank.

Descriptions and illustrations: Deighton (1967) and Crous \& Braun (2003).
Materials examined: Italy, unknown host, collector and date, isol. M. Curzi, culture CBS 296.32. New Zealand, Auckland, St. John's, on Foeniculum vulgare, unknown collector and date, isol. C.F. Hill (1099-B), Dec. 2004, culture CBS 117584.

Notes: This species is the pathogenic agent responsible for cercosporoid leaf blight on Foeniculum (fennel), Petroselinum (parsley) and Anethum (dill) (Davis \& Raid 2002). The taxonomic history of this species is complex and has been addressed by multiple authors (Deighton 1967, Arx 1987, Srivastava 1994, Crous \& Braun 2003, Nakashima et al. 2011). Morphologically the isolates obtained from all three hosts appear to be identical but some varieties may be present. The connection between the sexual morph Mycosphaerella anethi and the asexual morph Passalora punctum has been experimentally proven by Petzoldt (1989, 1990). The disease has a worldwide distribution (Africa, Asia, Europe, the Middle East, North America) but this is the first time an isolate was reported from New Zealand. The two strains form a well-supported clade within Fusoidiella represented in both phylogenetic trees (Fig. 1 clade 2; Fig. 2, clade 6).

Fusoidiella depressa (Berk. \& Broome) Videira \& Crous, Stud. Mycol. 83: 88. 2016. Basionym: Cladosporium depressum Berk. \& Broome, Ann. Mag. Nat. Hist. 7: 99, t. 5: 8. 1851. Synonyms: Passalora depressa (Berk. \& Broome) Sacc., Nuovo Giorn. Bot. Ital. 8(2): 187. 1876.

Cercosporidium depressum (Berk. \& Broome) Deighton, Mycol. Pap. 112: 37. 1967. For additional synonyms see Deighton (1967), Crous \& Braun (2003) and MycoBank.

Descriptions and illustrations: Deighton (1967), Crous \& Braun (2003) and Videira et al. (2016).

Material examined: Republic of Korea, Bonghwa, on Angelica gigas, 18 Oct. 2007, H.D. Shin, KUS-F23064 = CBS H-22632, culture CBS $141335=$ CPC 14915.

Notes: The genus Fusoidiella was recently established to accommodate Passalora depressa, a species that is not congeneric with Passalora s. str. as defined by the type species Passalora bacilligera. The type species has fusiform conidia that are morphologically very different from the closest phylogenetic species, Neopseudocercosporella capsellae, and fits the description of the authentic specimen (IMI 29181, on Angelica sylvestris, Great Britain; Deighton 1967) (Videira et al. 2016). Based on the phylogenetic analysis the present strains cluster in a wellsupported clade by all three phylogenetic methods employed (Fig. 1 clade 2; Fig. 2, clade 6).

Clade 3: Filiella

Filiella Videira \& Crous, Stud. Mycol. 83: 88. 2016.
Description (from Videira et al. 2016): Phytopathogenic. Mycelium internal, hyphae hyaline, septate, branched, forming well-developed stromata composed of swollen hyphae. Conidiophores emerging in dense fascicles from stromata, through the cuticle or through stomata, subcylindrical, straight to flexuous, geniculate-sinuous, aseptate, i.e. usually reduced to conidiogenous cells, rarely 1 -septate near the base, hyaline to pale yellow at the base, thinwalled, smooth, with inconspicuous conidiogenous loci, unthickened, neither darkened nor refractive. Conidia solitary, acicular, subcylindrical, filiform, narrowly obclavate, hyaline, discretely septate, thin-walled, smooth, apex subacute, base truncate, hila unthickened, not darkened.

Type species: Filiella pastinacae (P. Karst.) Videira \& Crous (三 Cercosporella pastinacae P. Karst.).

Filiella pastinacae (P. Karst.) Videira \& Crous, Stud. Mycol. 83: 88. 2016.
Basionym: Cercosporella pastinacae P. Karst., Hedwigia 23: 63. 1884.
Synonyms: Ramularia pastinacae (P. Karst.) Lindr. \& Vestergr., Acta Soc. Fauna Fl. Fenn. 22(1): 8. 1902.
Pseudocercosporella pastinacae (P. Karst.) U. Braun, Nova Hedwigia 56(3-4): 444. 1993.
For additional synonyms see Braun (1995) and MycoBank.
Description and illustration: Videira et al. (2016).
Materials examined: Finland, Mustalia, on Pastinaca sativa, 7 Jul. 1867, P. Karsten (holotype H 3921). Germany, Dresden, on Pastinaca sativa, 1866, Rabenh., Fungi Eur. Exs. 1262 (HAL, erroneously designated as "neotype" in Braun 1995). Sweden, Uppland, Uppsala Näs, Vreta, on Laserpitium latifolium, 2 Jun. 1988, K. \& L. Holm, culture CBS 114116 = UPSC 2633.

Notes: This monotypic genus was recently established to accommodate Pseudocercosporella pastinacae, since it was not congeneric with Pseudocercosporella s. str. based on Pseudocercosporella bakeri (Videira et al. 2016). This genus is represented by a single-strain lineage in the phylogenetic analyses (Fig. 1, clade 3; Fig. 2, clade 7), and it is closely related to Neopseudocercosporella and Fusoidiella. Morphologically, it can be distinguished by producing acicular-filiform conidia instead of the subcylindrical conidia of Neopseudocercosporella capsellae, or pigmented, fusiform conidia of Fusoidiella depressa. Braun's (1995) designation of a neotype, based on the assumption that the holotype was not preserved, is now obsolete since holotype material of Cercosporella pastinacae has recently been traced at H. The holotype material has been re-examined by U . Braun and found to represent the present species.

Clade 4: Apseudocercosporella

Apseudocercosporella Videira \& Crous, Stud. Mycol. 83: 89. 2016.
Description (from Videira et al. 2016): Phytopathogenic. Mycelium composed of hyaline, septate, branched, thin-walled, smooth hyphae. Conidiophores arising from hyphae, simple, and occasionally branched, straight and subcylindrical to flexuous, geniculate-sinuous, septate or aseptate, hyaline, thin-walled, smooth. Conidiogenous cells integrated, terminal or conidiophores often reduced to conidiogenous cells, subcylindrical to geniculate-sinuous conidiogenous loci slightly thickened and darkened. Conidia formed singly, filiform, or subcylindrical, hyaline, thin-walled, smooth, septate or aseptate, base more or less truncate, hilum slightly thickened and darkened.

Type species: Apseudocercosporella trigonotidis Videira et al.
Apseudocercosporella trigonotidis Videira et al., Stud. Mycol. 83: 89. 2016.
Description and illustration: Videira et al. (2016).
Material examined: Republic of Korea, Jeju, on Trigonotis peduncularis, 12 Nov. 2003, H.D. Shin (holotype KUS-F 20054, isotype CBS H-22515, culture ex-isotype CBS 131890 = CPC 10864); idem., culture CPC 10865.

Notes:This monotypic genuswas recently established to accommodate apseudocercosporella-like species that was not congeneric with Pseudocercosporella s. str. based on Pseudocercosporella bakeri. Phylogenetically, this genus is closely related to Filiella and Neopseudocercosporella (Fig. 1, clade 4; Fig. 2, clade 9). Morphologically, it can be distinguished by the conidial hila and conidiogenous loci that are slightly thickened and darkened instead of inconspicuous.

Clade 5: Neocercospora

Neocercospora M. Bakhshi et al., Phytotaxa 213: 28. 2015.
Description (from Bakhshi et al. 2015a): Foliicolous and caulicolous, phytopathogenic. Mycelium internal. Stromata substomatal, weakly to moderately developed, brown. Caespituli amphigenous, punctiform, brown. Conidiophores aggregated in loose to moderately dense fascicles, arising
from the upper cells of sub-stomatal to intraepidermal brown stromata; conidiophores aseptate, reduced to conidiogenous cells. Conidiogenous cells unbranched, pale brown to brown, smooth, subcylindrical to cone-shaped, wider at the base, uni- to multilocal, sympodial, sub-denticulate; loci conspicuous, thickened, darkened, somewhat refractive, apical or formed on shoulders caused by geniculation. Conidia solitary or catenate, in unbranched chains, hyaline, smooth, guttulate or not, cylindrical, subcylindrical to obclavate-cylindrical, straight to slightly curved, septate; hilum flattened, moderately thickened, darkened and somewhat refractive.

Type species: Neocercospora ammicola M. Bakhshi et al.

Neocercospora ammicola M. Bakhshi et al., Phytotaxa 213: 28. 2015.
Description and illustration: Bakhshi et al. (2015a).
Material examined: Iran, West Azerbeijan, Khoy, Firouragh, on leaves and stems of Ammi majus, Sep. 2012, M. Arzanlou (holotype IRAN 16461 F, culture ex-type CCTU 1186 = CBS 136450).

Notes: The monotypic genus Neocercospora was recently introduced by Bakhshi et al. (2015a) to accommodate a cercospora-like species that is not congeneric with Cercospora s. str. based on Cercospora apii. The most distinctive characteristics are the conidiophores reduced to conidiogenous cells and conidia that can occur in chains. Phylogenetically, this genus forms a single lineage (Fig. 1, clade 5; Fig. 2, clade 8) closely related to Filiella and Neopseudocercosporella.

Clade 6: Septoria

Septoria Sacc., Syll. Fung. 3: 474. 1884.
Description (from Quaedvlieg et al. 2013): Mycelium in vitro slow-growing, pale brown, septate, in vivo immersed. Conidiomata pycnidial, immersed, separate or aggregated (but not confluent), globose, papillate (or not), brown, wall of thin, pale brown textura angularis, inner layer of flattened, hyaline textura angularis, frequently somewhat darker and more thick-walled around the ostiole. Ostiole single, circular, central. Conidiophores reduced to conidiogenous cells. Conidiogenous cells holoblastic, either determinate or indeterminate, proliferating sympodially and/or percurrently, hyaline, smooth, ampulliform, doliiform or lageniform to short cylindrical, without thickened loci. Conidia hyaline, multiseptate, filiform, solitary, smooth, often constricted at septa. Sexual morphs are mycosphaerella-like.

Type species: Septoria cytisi Desm.
Septoria cytisi Desm., Ann. Sci. Nat., Bot., Sér. 3, 8: 24. 1847.
Description and illustration: Quaedvlieg et al. (2013).
Material examined: Slovakia, on leaves of Laburnum anagyroides, 1884, J.A. Baeumler, BPI USO 378994.

Notes: Septoria represents a genus of plant pathogenic fungi with a wide geographic distribution, commonly associated with leaf spots and stem cankers of a broad range of plant hosts. Following a proposal accepted by the International Code of Nomenclature for algae, fungi, and plants (ICN), the generic name Septoria Sacc. was conserved over the older synonym Septaria Fr. (original spelling). Septoria s. str. was circumscribed when Quaedvlieg et al. (2011) managed to obtain sequence data of both ITS (GenBank accession JF700932) and LSU (GenBank accession JF700954) from a Septoria cytisi fungarium specimen (BPI USO 378994). Phylogenetically, Septoria forms a well-supported clade (Fig. 1, clade 6; Fig. 2, clade 11) closely related to Mycovellosiella and Neocercospora.

Clade 7: Mycovellosiella

Mycovellosiella Rangel, Arch. Jard. Bot. Rio de Janeiro 2: 71. 1917.
Synonym: Vellosiella Rangel, Bol. Agric. (São Paulo) 16: 151. 1915, non Baill. 1887.
Description: Phytopathogenic, causing leaf spots. Colonies effuse, greyish olivaceous to olivaceous brown. Stroma absent or poorly developed. Mycelium pale to moderately deep olivaceous, septate, branched, smooth, stromata absent or small; superficial hyphae arising from internal hyphae or stromatic hyphal aggregations, usually emerging through stomata. Conidiophores macronematous, mononematous, solitary, arising from superficial hyphae or in small to medium fascicles, erect, tangled or forming loose ropes resembling synnemata, straight to flexuous, simple or branched, subcylindrical to geniculate-sinuous, thin-walled, continuous to septate, smooth, subhyaline to pigmented. Conidiogenous cells integrated, terminal, intercalary or pleurogenous, straight to geniculate-sinuous, polyblastic, sympodial, with conidiogenous loci thickened, darkened and often protuberant. Conidia solitary to catenate, sometimes in branched chains, ellipsoid-ovoid, subcylindrical-fusiform, obclavate, straight or curved, aseptate or multiseptate (euseptate), sub-hyaline to pigmented, smooth to slightly verruculose, ends obtuse, rounded, truncate or pointed; hila thickened and darkened; conidial secession schizolytic.

Type species: Mycovellosiella cajani (Henn.) Rangel ex Trotter (三 Cercospora cajani Henn.).
Mycovellosiella cajani (Henn.) Rangel ex Trotter, Syll. Fung. 25: 942. 1931. Fig. 6.
Basionym: Cercospora cajani Henn., Hedwigia 41: 309. 1902.
Synonyms: Vellosiella cajani (Henn.) Rangel, Bol. Agric. (São Paulo) 16(2): 145. 1915.
Passalora cajani (Henn.) U. Braun \& Crous, in Crous \& Braun, CBS Biodiversity Ser. 1: 93. 2003.

Description in vivo and illustrations: Deighton (1974), Seifert et al. (2011).
Description in vitro (MEA; CBS 114275): Mycelium hyaline to brown, irregular in width, 1.5-3 $\mu \mathrm{m}$. Conidiophores hyaline to brown, smooth, simple or branched, geniculate-sinuous, irregular in width, $10-50 \times 2.5-5(-7.5) \mu \mathrm{m}$. Conidiogenous cells integrated, apical, intercalary, pale brown, rarely hyaline, polyblastic, simple or branched, proliferating sympodially, integrated, sometimes reduced to hyphal loci, aseptate, with thickened, darkened and rim-like loci at the apex and shoulders, $1.5-2.5 \mu \mathrm{~m}$ diam. Conidia cylindrical to ellipsoidal, pale brown, solitary to catenate, in single or branched chains, conically truncate at both ends or basal end, rounded at

Fig. 6. Mycovellosiella cajani (CBS 114275). A-E. Observations in vivo. F-K. Observations in vitro. A, B. Leaf spot symptoms on the host. C, D, G-I. Conidiophores, conidiogenous cells and conidia. E, J-K. Catenate conidia. F. Culture on V8. Scale bars $=10 \mu \mathrm{~m}$.
the apex when solitary, $7-25 \times 3-7.5 \mu \mathrm{~m}$, aseptate, with darkened, thickened, and rim-like loci at the both ends or basal end, $1.5-2.5 \mu \mathrm{~m}$ diam.

Materials examined: Brazil, Minas Gerais, Viçosa, on Cajanus cajan, 2016, R.W. Barreto (neotype designated here CBS H-22940, MBT378566, culture ex-neotype CBS $142174=$ CPC $30580=$ RB 2071A); idem. CPC $31579=$ RB 2071B. South Africa, Mpumalanga, Nelspruit, on Cajanus cajan, 17 May 2002, L. van Jaarsveld, cultures CBS $113998=$ CPC 5335, CBS $113999=$ CPC 5339, CBS $114275=$ CPC 5334.

Notes: The type species of Mycovellosiella, Mycovellosiella cajani, was described from leaves of Cajanus indicus (syn. Cajanus cajan), on May 1901 (Puttemans 237) in Brazil (Hennings 1902), but the type material is not preserved in B and could not be located elsewhere. Deighton (1974) examined numerous specimens deposited in IMI and TAI and concluded that two varieties could be distinguished: Mycovellosiella cajani var. cajani (conidia 0-3-septate and $10-35 \mu \mathrm{~m}$ long; South America, West Indies, Mauritius and Africa) and Mycovellosiella cajani var. indica (conidia 0-9-septate $10-129 \mu \mathrm{~m}$ long; India, Pakistan, Bangladesh and Burma). In this study, we obtained a freshly collected sample of Cajanus cajan from Brazil and cultured this fungus. This strain is phylogenetically identical to those from South Africa (Fig. 1, clade 7, Fig. 2, clade 10) and the morphology is identical to the descriptions available in the literature (Deighton 1974, Braun 1998), and therefore the specimen is hereby designated as neotype. Mycovellosiella cajani is the causative agent of leaf spot disease of pigeon pea worldwide and,
when defoliation occurs before flowering and podding, it causes severe yield losses (up to 85 $\%$ in eastern Africa) (Reddy et al. 2012). Mycovellosiella, based on phylogenetic data, is a monotypic genus but with more collections new species may emerge. Previous morphological descriptions of Mycovellosiella s. lat. (Deighton 1974, Braun 1998) can no longer be applied to this genus in its current circumscription and the application of this generic name depends on the availability of corresponding phylogenetic data. Mycovellosiella was previously distinguished from Passalora and Phaeoramularia by the formation of superficial mycelium with solitary conidiophores formed in vivo, but these traits are phylogenetically and taxonomically not significant and appear unreliable. Without detailed knowledge of the phylogenetic affinity, species with mycovellosiella-like morphology should tentatively be maintained in or assigned to Passalora s. lat.

Clade 8: Miuraea and Sphaerulina

Miuraea Hara, Byochugai-hoten: 260 \& 779. 1948, emend.
Unconfirmed synonyms: Rhopaloconidium Petr. (1952), Hyalodictys Subram. (1962).
Description (adapted from Braun 1995): Leaf spot pathogen of vascular plants. Mycelium hyaline to lightly pigmented, septate, branched, emerging through stomata, thin-walled. Conidiophores little differentiated, semi-macronematous, mononematous, short, sometimes reduced to a conidiogenous cell integrated in the hyphae, with small lateral peg-like protuberances, occasionally subfasciculate and arising from stromatic hyphal aggregations. Conidiogenesis holoblastic, monoblastic, determinate, occasionally polyblastic, proliferation sympodial or percurrent; conidiogenous loci more or less truncate, unthickened or slightly thickened, not darkened. Conidia solitary or catenate, ellipsoid-ovoid, subcylindrical-vermiform, obclavate, subclavate, sometimes somewhat asymmetrical, eu- or distoseptate, pluriseptate, septa transverse, oblique to longitudinal, hyaline to faintly pigmented, thin-walled, old conidia often slightly to moderately thick-walled, hila rounded to truncate, unthickened or slightly thickened, not darkened, conidial secession schizolytic.

Type species: Miuraea degenerans (Syd. \& P. Syd.) Hara (三 Clasterosporium degenerans Syd. \& P. Syd.).

Miuraea degenerans (Syd. \& P. Syd.) Hara, Byochugai-hoten: 260, 1948. Fig. 7.
Basionym: Clasterosporium degenerans Syd. \& P. Syd., Ann. Mycol. 12(2): 164. 1914.
Description in vivo: Braun (1995).
Description in vitro (on MEA; MAFF 239265): Mycelium hyaline, later blackish, aggregated with white-floccose aerial hyphae. Conidiophores short, reduced to conidiogenous cells, hyaline to pale brown, $47-71 \times 2-5 \mu \mathrm{~m}$. Conidiogenous cells determinate, proliferating sympodially and/or percurrently, holoblastic, with slightly thickened loci. Conidia solitary or catenate, oblong to obclavate, hyaline to pale, $10-23 \times 6-9 \mu \mathrm{~m}, 2-6$-eu- or distoseptate, rounded or conically truncate, slightly thickened or unthickened at the base.

Materials examined: Japan, Ibaragi, on Prunus mume, Sep. 2003, T. Kobayashi (epitype designated here TSU MUMH11567, MBT376838, culture ex-type MAFF 239265 = MUCC

Fig. 7. Miuraea degenerans (MUCC 1514).A-D. Observations in vitro.A. Culture on MEA. B. Olivaceous conidia and short conidiophore. C. Hyaline (left) and pigmented (right) conidia. D. Microcyclic conidia. E-G. Conidiophores and conidia observed using SEM. Scale bars $=10 \mu \mathrm{~m}$.
1514); Mutsu (= Aomori), on Prunus mume, 1 Nov. 1913, M. Miura (holotype S F41753). Republic of Korea, Chuncheon, on Prunus armeniaca, 7 Oct. 2003, H.D. Shin, CBS H-20840, cultures CBS $131935=$ CPC 10828.

Notes: Miuraea degenerans and Miuraea persica are well-known as the causal agents of white mildew or frosty mildew of Prunus spp. in far-east Asian countries. In the present study, the sequences of both Miuraea persicae (sexual morph: Mycosphaerella pruni-persicae) and Miuraea degenerans are quite similar; however, comparison of ITS sequences of several collections identified as either Miuraea degenerans or Miuraea persica show a limited number of nucleotide differences (data not shown), and pending more collections and multigene data we refrain from synonomising these two species. Subramanian's (1962) description of Miuraea degenerans includes Miuraea persicae, but Braun (1995) considers them different species based on the conidial characteristics that are generally longer, with less longitudinal septa and only occasionally constricted at septa in Miuraea persica, while the conidia of Miuraea degenerans are generally broader, with more longitudinal septa and often constricted at septa. Based on the phylogenetic analysis, Miuraea strains cluster among Sphaerulina species and none of the three phylogenetic methods applied provided strong support for their separation (Fig. 1, clade 8; Fig. 2, clade 12). The introduction of more strains of Miuraea species in the future may provide support to the separation of these genera into two independent clades. Morphologically Miuraea is considered intermediate between Pseudocercospora and Pseudocercosporella (Braun 1995), which are hyphomycete genera, while Sphaerulina is a coelomycete genus. Miuraea asiminae, was recently reallocated to Pseudocercospora (Braun \& Crous 2008).

Sphaerulina Sacc., Michelia 1(4): 399. 1878.
Unconfirmed synonyms: Ophiocarpella Theiss. \& Syd. (1915), Sphaerialea Sousa da Câmara (1926).

Description (adapted from Quaedvlieg et al. 2013): Ascomata pseudothecial, immersed, subepidermal, erumpent at the apex, single to clustered, globose, papillate. Ostiole central, with hyaline periphyses; wall of textura angularis, composed of 2-4 layers of brown cells. Hamathecium dissolving at maturity. Asci bitunicate, fissitunicate, clustered, cylindrical to obclavate, rounded at apex, with or without a shallow apical chamber, short-stipitate or sessile, with 8 bi- to triseriate ascospores. Ascospores subcylindrical to fusiform, rounded at ends, slightly tapered, straight or slightly curved, 1-3-septate, with a primary septum nearly median, hyaline, smooth, without sheath or appendages.

Type species: Sphaerulina myriadea (DC.) Sacc. (\equiv Sphaeria myriadea DC.).
Sphaerulina myriadea (DC.) Sacc., Michelia 1(4): 399. 1878.
Basionym: Sphaeria myriadea DC., in de Candolle \& Lamarck, Fl. franç., Edn 3 (Paris) 5/6: 145. 1815.

Description and illustration: Crous et al. (2011d).
Materials examined: Germany, Driesen, Lasch, Rabenhorst, Fungi Eur. Exs. no. 149 (L). Japan, Aomori, Tsugaru, Kidukuri, Bense-marsh, on leaves of Quercus dentata, 21 Apr. 2007, K. Tanaka 2243, HHUF 29940, single ascospore culture CBS 124646 = JCM 15565. UK, on leaves of Quercus robur, J.E. Vize, Microfungi Brit. Ex. No. 195, IMI 57186, (= K(M) 167735). USA, California, Sequoia National Park. alt. 2590 m, on leaves of Castanopsis sempervirens, 18 Jun. 1931, H.E. Parks, BPI 623686; Lake Co., Hoberg's Resort, on leaves of Quercus kelloggii, 15 May 1943, V. Miller, BPI 623707; Maryland, Marlboro, on leaves of Quercus alba, 26 Apr. 1929, C.L. Shear, BPI 623705; Texas, Houston, on leaves of Q. alba, 8 Apr. 1869, H.W. Ravenel, BPI 623704.

Notes: The genus Sphaerulina was traditionally separated from Mycosphaerella based on ascospore septation, a trait that was unreliable to infer phylogenetic relatedness (Crous et al. 2003, Crous et al. 2011d). The currently available strains of Sphaerulina myriadea were isolated from several hosts belonging to the Fagaceae originating from various locations. These strains were treated in a previous study where the authors proposed that Sphaerulina myriadea was a species complex and therefore refrained from designating an epitype pending the collection of authentic European material on Quercus from France (Crous et al. 2011d). The genus Sphaerulina was previously found to be phylogenetically close to Septoria (Quaedvlieg et al. 2013, Verkley et al. 2013). In this work, Sphaerulina and Miuraea strains cluster together and none of the three phylogenetic methods applied provided strong support for their separation (Fig. 1, clade 8; Fig. 2, clade 12).

Species clustering in the Sphaerulina clade that need further material to be collected before a formal combination into Sphaerulina can be proposed:

Mycosphaerella grossulariae (Fr.) Lindau, in Engler \& Prantl, Nat. Pflanzenfam., Teil I, 1(1): 424. 1897.

Material examined: Netherlands, leaf spot on Ribes nigrum, col. M.S.J. Ledeboer, isol. H.A. Diddens, dep. 1937, culture CBS 235.37.

Notes: The type of Mycosphaerella grossulariae was described from Ribes grossularia collected in Sweden (Aptroot 2006). Tomilin (1979) linked this species to two asexual morphs, Phyllosticta grossulariae and Septoria ribis. According to Eriksson (1992), it is morphologically indistinguishable from Pleospora herbarum (=Stemphylium). The present species is represented by a single strain in the phylogenetic analysis performed (Fig. 2, clade 12). This species needs to be recollected and its phylogenetic position resolved.

Mycosphaerella harthensis (Auersw.) Mig., Krypt.-Fl. Deutschl., Österr. Schweiz, Pilze Vol 10, Theil 3(1): 289. 1912.

Material examined: Switzerland, dead leaves of Betula sp., unknown collector and date, isol. E. Müller, 7 Jun. 1952, culture CBS 325.52.

Notes: The type of Mycosphaerella harthensis was described llected in Germany and the specimen is probably not preserved (Aptroot 2006). The culture CBS 325.52 is currently sterile. The present species is represented by a single strain in the phylogenetic analysis performed (Fig. 2, clade 12). This species needs to be recollected and neotypified.

Clade 9: Cercoramularia

Cercoramularia Videira, H.D. Shin, C. Nakash. \& Crous, gen. nov. MycoBank MB822581.
Etymology: With cercosporidium-like conidiophores and ramularia-like conidia.
Description: Mycelium hyaline to brown. Conidiophores brown to pale brown, emerging from brown hyphae or swollen hyphal cells, smooth, euseptate, straight to geniculate-sinuous, simple or branched, sometimes reduced to conidiogenous cell. Conidiogenous cells integrated, terminal, hyaline to pale brown, monoblastic or proliferating sympodially, with thickened, darkened and refractive conidiogenous loci. Conidia hyaline to pale brown, euseptate, solitary or catenate, holoblastic, fusiform, rounded at the apex when solitary.

Type species: Cercoramularia koreana Videira et al.
Cercoramularia koreana Videira, H.D. Shin, C. Nakash. \& Crous, sp. nov. MycoBank MB822710. Fig. 8.

Etymology: In honour of the country it was collected from, Republic of Korea.
Description in vivo (CBS H-22941; herb. spec. CPC 10709): Leaf spots small, irregular, $4-10 \mathrm{~mm}$ diam, brown to dark brown, distinct. Stromata absent to small, brown, globose. Conidiophores in loose fascicles of 2-12, dark brown, septate, geniculate-sinuous, $23-78 \times$ $2.5-9 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal, polyblastic, proliferating sympodially, with thickened, darkened, refractive and rim-like loci at the apex and shoulders, $1.6-2.5 \mu \mathrm{~m}$ diam. Conidia hyaline, solitary or catenate in branched chains, obclavate, cylindrical to filiform, 20$62 \times 2.5 \mu \mathrm{~m}, 2-5$-septate, with thickened and darkened rim-like hila, $1.6-2.5 \mu \mathrm{~m}$ diam, rounded at the apex when solitary. Description in vitro (SNA; CPC 10639): Mycelium hyaline to brown, $2-2.5 \mu \mathrm{~m}$ diam, with swollen brown cells. Conidiophores pale brown to brown, emerging

Fig. 8. Cercoramularia koreana (CPC 10709). A-E. Observations in vivo. A, B. Leaf spot symptoms on the host. C, D. Conidiophores, conidiogenous cells and conidia. E. Catenate conidia. F-L. Observations in vitro. F. Culture on OA. G. Conidiophore and conidiogenous cell. H. Conidiophore, conidiogenous cell and conidium. I, J. Conidiogenous cell and catenate conidia. K, L. Catenate conidia. Scale bars = $10 \mu \mathrm{~m}$.
from brown hyphae or swollen hyphal cells, smooth, straight to geniculous-sinuous, simple or branched, euseptate, $12.5-100 \times 2.5-3 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal, hyaline to pale brown, monoblastic or polyblastic, proliferating sympodially, with thickened, darkened and refractive loci, 1.8-2.8 $\mu \mathrm{m}$ diam. Conidia hyaline to pale brown, solitary or in chains up to six conidia, fusiform, rounded at the apex when solitary, 1 -euseptate, $27-105 \times 3-3.7 \mu \mathrm{~m}$.

Materials examined: Republic of Korea, Seoul, on leaves of Styrax japonica, 17 Sep. 2003, H.D. Shin (holotype CBS H-22941, ex-type culture CBS 142175 = CPC 10709); same location and host, 2003, H.D. Shin, cultures CPC 10639-10641.

Notes: This genus is represented by a single species that is phylogenetically close to Phloeospora and Sphaerulina (Fig. 1, clade 9; Fig. 2, Clade 13). Cercoramularia koreana causes leaf spot symptoms on Styrax japonica, a small tree from the Styracaceae family commonly planted as ornamental.

Clade 10: Phloeospora

Phloeospora Wallr., Fl. Crypt. Germ. 2: 176. 1833.
Synonyms: Septoria Fr., Syst. Orb. Veg. 1: 119. 1825.
Helicobolus Wallr., Fl. Crypt. Germ. 2: 751. 1833.
Phloeochora Höhn., Ber. Deutsch. Bot. Ges. 35: 252. 1917.

Description (from Quaedvlieg et al. 2013): Mycelium immersed, septate, hyaline. Conidiomata acervular, subepidermal, circular, discrete or confluent, composed of hyaline to pale brown, thinwalled textura angularis; dehiscence irregular. Conidiophores reduced to conidiogenous cells or with one or two supporting cells, branched at base or not. Conidiogenous cells holoblastic, annellidic, occasionally also sympodial, discrete, indeterminate hyaline, smooth, cylindrical, with several apical inconspicuous annellations, formed from the upper cells of the acervuli. Conidia solitary, hyaline, septate, smooth, guttulate or not, cylindrical, curved, attenuated towards the apices, apex obtuse to sub-obtuse, base truncate, with minute marginal frill.

Type species: Phloeospora ulmi (Fr.) Wallr. (\equiv Septoria ulmi Fr.).
Phloeospora ulmi (Fr.) Wallr., Fl. Crypt. Germ. 2: 177. 1833.
Basionym: Septoria ulmi Fr. [as 'Septaria'], Novit. Fl. Svec. 5(cont.): 78. 1819.
Synonyms: Septogloeum ulmi (Fr.) Died., Krypt. Fl. Brandenburg (Leipzig) 9: 836. 1915.
Cylindrosporium ulmi (Fr.) Vassiljevsky, Fungi Imperfecti Parasitici 2: 580. 1950.
Mycosphaerella ulmi Kleb., Z. PflKrankh. 12: 257. 1902.
Sphaerella ulmi (Kleb.) Sacc. \& D. Sacc., Syll. Fung. (Abellini) 17: 642. 1905.
Description and illustration: Quaedvlieg et al. (2013).
Materials examined: Austria, Innsbruck, near Hungerburg, on leaves of Ulmus sp., 21 Sep. 1981, H.A. van der Aa, CBS H-14740, CBS H-14861, culture CBS 613.81; Innsbruck, road to Hungerburg, on leaves of Ulmus glabra, 20 Oct. 1996, W. Gams, culture CBS 344.97. Netherlands, Baarn, garden of CBS, Oosterstraat 1, on leaves of Ulmus sp., 26 Aug. 1998, H.A. van der Aa, CBS H-14739, culture CBS 101564; community of Borsele, Schouwersweel near Lisse, on Ulmus sp., 27 Aug. 2001, G. Verkley, culture CBS 109835.

Notes: The generic synonymy has been discussed by Sutton (1977) and the type species described and illustrated by Sutton \& Pollack (1974). Phloeospora is based on the type species Phloeospora ulmi, isolated from Ulmus glabra in Europe, but a type specimen could not be located. It can be morphologically distinguished from Septoria by the production of conidia in acervuli, whereas conidiomata in the latter genus are pycnidial. A recent phylogenetic analysis performed to delimit Septoria and allied genera confirmed that Phloeospora (based on Phloeospora ulmi) clusters close to, but separate from Septoria s. str. (Quaedvlieg et al. 2013). This separation is also observed in the phylogenetic analyses performed in this study (Fig. 1, clade 10; Fig. 2, clade 14). The known sexual morphs linked to Phloeospora resemble the concepts of Mycosphaerella, Didymella and Sphaerulina supporting the idea that this genus is heterogenous and in need of revision (Verkley \& Priest 2000). In this study, we observed that the strain currently known as Phloeospora maculans is not congeneric with Phloeospora ulmi.

Clade 11: Cercospora

Cercospora Fresen. ex Fuckel, Hedwigia 2(15): 91.1863 and Fungi Rhen. Exs., Fasc. II: no. 117. 1863, nom. cons. prop.

Unconfirmed synonyms: Virgasporium Cooke (1875), Cercosporina Speg. (1910).

Description (adapted from Braun et al. 2013): Mostly plant pathogenic but also saprobic, usually causing distinct lesions (leaf spots) but sometimes symptomless. Mycelium internal and only rarely external, hyphae usually pigmented but occasionally hyaline, branched, septate, thinwalled, smooth, rarely faintly verruculose. Stromata lacking to well-developed, substomatal, intra-epidermal or immersed, mostly pigmented, composed of textura angulata or globosa. Conidiophores mono- and macro-nematous, solitary or fasciculate, rarely in sporodochial conidiomata, emerging through stomata or erumpent, erect, continuous to multi-septate, hyaline (subgen. Hyalocercospora) to pigmented, pale olivaceous to dark brown (subgen. Cercospora), wall smooth to slightly rough, thin to moderately thick, sometimes reduced to conidiogenous cells. Conidiogenous cells integrated, terminal or intercalary, usually polyblastic but sometimes monoblastic, proliferation sympodial, rarely percurrent, conidiogenous loci (scars) conspicuous, thickened and darkened-refractive, planate with minute central pore. Conidia solitary, rarely in short chains, mostly scolecosporous, obclavate-cylindrical, acicular, filiform and multieuseptate, rarely amero- to phragmosporous, broadly ellipsoid-ovoid to broadly obclavatecylindrical, but always hyaline or subhyaline, thin-walled, smooth or almost so, hila thickened and darkened, conidial secession schizolytic.

Type species: Cercospora apii Fresen. (typ. cons. prop.)
Cercospora apii Fresen., Beitr. Mykol. 3: 91. 1863.
Description: Groenewald et al. (2005).
Materials examined: Austria, Wien, on Beta vulgaris, Jun. 1931, E.W. Schmidt, culture CBS 121.31 = CPC 5073; on Apium sp., 28 Aug. 2003, Institut fur Pflanzengesundheit, culture CBS 114416 = CPC 10925. Germany, Oestrich, garden, on Apium graveolens, Fuckel, Fungi Rhen. Exs. 117 (lectotype selected by Groenewald et al. 2005: HAL); Landwirtschaftsamt, Heilbron, on Apium graveolens, 10 Aug. 2004, K. Schrameyer (epitype designated by Groenewald et al. 2005: preserved as metabolically inactive culture CBS $116455=$ CPC 11556); idem. CBS $116504=$ CPC 11579, CBS $116507=$ CPC 11582. For complete list of existing strains see Groenewald et al. (2013).

Notes: The genus Cercospora contains numerous important plant pathogenic fungi from a diverse range of hosts. The modern taxonomy of this complex began with Chupp (1954) who included all variants in a broadly circumscribed Cercospora. This concept was continuously revised and narrowed by several authors over the years (Deighton 1976a, 1979, Arx 1983, Braun 1995, Crous \& Braun 2003). Recent studies based on multi-gene phylogenies have helped to circumscribe Cercospora and to identify new species. No single locus has yet been found as an ideal DNA barcode for the genus, and species identification needs to be based on a combination of gene loci and morphological characters (Groenewald et al. 2013, Bakhshi et al. 2015a, b). The type species of Cercospora, Cercospora depazeoides (=Cercospora penicillata) (see Braun 1995: 41), is a common, widespread cercosporoid fungus on elderberry. Re-examinations of type material and numerous other collections revealed that this species is conspecific with Pseudocercospora sambucigena (Braun et al. 2015a), which is a proven species of Pseudocercospora (Crous et al. 2013a). Therefore, Cercospora would formally become the oldest available name for Pseudocercospora, which would be reduced to synonymy with Cercospora. This would be an unpleasant situation with enormous consequences and name changes, which should be avoided.

Therefore, a proposal to conserve Cercospora with Cercospora apii as conserved type was recently published (Braun \& Crous 2016), which will help to maintain the application of the name Cercospora in the common, generally accepted circumscription.

Cercospora janseana (Racib.) O. Constant., Cryptog. Mycol. 3: 63. 1982.
Basionym: Napicladium janseanum Racib., Parasitische Algen und Pilze Javas 2: 41. 1900.
Synonyms: Passalora janseana (Racib.) U. Braun, Schlechtendalia 5: 39. 2000.
Cercospora oryzae Miyake, Bot Mag. Tokyo 23 (267): 139. 1909.
Sphaerulina oryzina Hara, Diseases of the rice plant (Japan): 144. 1918.
Cercospora oryzae var. rufipogonis R.A. Singh \& Pavgi, Sydowia 21: 176. "1967" 1968.

Description and illustration: Chupp (1954), Braun et al. (2015a).
Material examined: USA, unknown collector and date, isol. E.C. Tullis, Aug. 1937, culture CBS $145.37=$ IMI 303642.

Notes: The present species is represented by a single strain in the phylogenetic analysis performed (Fig. 2, clade 1). See Braun et al. (2015a).

Species clustering in the Cercospora clade that need further material to be collected before its status as species of Cercospora can be confirmed:

Passalora dulcamarae (Peck) U. Braun \& Crous, CBS Biodiversity Ser. 1: 167. 2003. Basionym: Ramularia dulcamarae Peck, Rep. (Annual) New York State Mus. Nat. Hist. 33: 30. 1880.

Synonyms: Cercospora dulcamarae (Peck) Ellis \& Everh., J. Mycol. 1(4): 55. 1885.
Mycovellosiella dulcamarae (Peck) U. Braun, Mycotaxon 48: 284. 1993.
Cercospora dulcamaricola Hollós, Ann. Hist. Nat. Mus. Natl. Hung. 4: 370. 1906.
Description and illustration: Chupp (1954).
Materials examined: Romania, Distr. Constanta, Hagieni, on Solanum dulcamara, 14 Oct. 1970, O. Constantinescu \& G. Negrean, CBS H-9831, CBS H-9832, culture CBS 544.71 = BUCM 2008.

Notes: Ramularia dulcamarae was described on Solanum dulcamara collected in the USA (New York, Oneida, Verona) and the herbarium specimen is deposited in NYS. The present strain is currently sterile and forms a single strain lineage in the phylogenetic analyses (Fig. 2, clade 1).

Clade 12: Ramulispora

Ramulispora Miura, Bull. S. Manchur. Railway Co. Agr. Exp. Sta. Kunchuling 11: 43. 1920.
Description (adapted from Braun 1995): Graminicolous, causing leaf spots, necrosis, foot-rot, and seedling blight. Mycelium hyaline to faintly pigmented, smooth, septate, branched; stromata absent to well-developed, substomatal to intra-epidermal, hyaline to pigmented. Conidiophores semi-macronematous or macronematous, mononematous, solitary or fasciculate, arising from
inner hyphae or stromata, erumpent through the cuticle or emerging through stomata, simple, rarely branched, continuous or sparsely septate, often reduced to conidiogenous cell, straight, subcylindrical to geniculate-sinuous, smooth, hyaline or subhyaline, rarely faintly pigmented. Conidiogenous cells directly arising from hyphae or stromata or integrated, terminal, subcylindrical to geniculate, monoblastic to polyblastic, sympodial, rarely percurrent, with inconspicuous, unthickened, hyaline conidiogenous loci. Conidia solitary, scolecosporous, acicular, subcylindrical, filiform, narrowly obclavate, sometimes with lateral branchlets (microcyclic conidiation), continuous or septate (branchlets mainly produced under humid conditions and in culture when grown on wet, poor media under lights, sometimes developing into secondary conidia which are detached), hyaline, euseptate, multi-septate, smooth, apex blunt to acute, base rounded to truncate, hilum unthickened, hyaline, conidial secession schizolytic.

Type species: Ramulispora sorghi (Ellis \& Everh.) L.S. Olive \& Lefebvre (\equiv Septorella sorghi Ellis \& Everh.).

Ramulispora sorghi (Ellis \& Everh.) L.S. Olive \& Lefebvre, Phytopathology 36: 198. 1946. Fig. 9.
Basionym: Septorella sorghi Ellis \& Everh., J. Mycol. 9: 164. 1903.
Synonym: Ramulispora andropogonis Miura, Bull. S. Manchur. Railway Co. Agr. Exp. Sta. Kunchuling: 43. 1920.

Description in vivo and illustrations: Braun (1995).
Description in vitro (SNA, CBS 110578): Mycelium composed of hyaline, smooth, septate, branched hyphae, $1.5 \mu \mathrm{~m}$ wide. Stromata absent to small, pseudoparenchymatous, brown. Conidiophores, conidiogenous cells and conidia hyaline and smooth. Conidiophores solitary or in fascicles, subcylindrical-filiform, sometimes geniculate-sinuous, simple, septate, sometimes reduced to conidiogenous cell, (10-)12-13(-15) $\times 1.5(-2) \mu \mathrm{m}$. Conidiogenous cells terminal, monoblastic or polypblastic, with unthickened and non-refractive loci. Conidia formed singly, filiform, acicular, straight to curved, (11-)39-52(-79.5) $\times 1.5-2(-3) \mu \mathrm{m}, 4-9$-septate, hyaline, smooth, with subacute apex and truncate base, frequently with 1-2 lateral branches.

Materials examined: South Africa, KwaZulu-Natal Province, on Sorghum bicolor, Mar. 1995,

Fig. 9. Ramulispora sorghi (CBS 110578). A-F. Observations in vitro. A. Culture on OA. B-F. Conidiophore, conidiogenous cell and conidia. Scale bars $=10 \mu \mathrm{~m}$.
coll. D. Nowell, cultures CBS $110578=$ CPC 905, CBS $111032=$ IMI $153076=$ CPC 899, CBS $115522=$ CPC 902.

Notes: The genus Ramulispora includes pathogens of gramineous plants (Arx 1983, Braun 1995) and is typified by Ramulispora sorghi, the causative agent of sorghum sooty stripe disease (Crous et al. 2003, Crous et al. 2009e). It produces numerous microsclerotia on the leaf surface and forms sporodochia with hyaline, transversely euseptate, scolecosporous conidia. A total of 14 species of Ramulispora are known (MycoBank), but without cultures and molecular analyses, their correct phylogenetic position remains unclear. The type species of Ramulispora, Ramulispora sorghi, was described from the host Sorghum halepense, from Tuskeege (Alabama, USA) but a type specimen could not be located. The cultures included in this study were isolated from sorghum from the KwaZulu-Natal Province of South Africa, where the pathogen was associated with a severe outbreak of sooty leaf stripe (Mchau et al. 1996). In a more recent study on the disease, Brady et al. (2011) concluded that differences in disease severity was host genotype-dependent and not due to genetic differences in the local pathogen population. The ITS sequence fragments of Ramulispora sorghi obtained from Kansas (HQ400740-HQ400745) were 100% identical to those sequences from South Africa (Mchau et al. 1996) which is consistent with the concept that reproduction in Ramulispora sorghi is asexual in the field (Brady et al. 2011). Phylogenetically, Ramulispora forms a well-supported clade (Fig. 1, clade 12; Fig. 2, clade 2), being closely related to Neodeightoniella.

Ramulispora sorghiphila U. Braun, C. Nakash., Videira \& Crous, sp. nov. MycoBank MB822717. Fig. 10.

Etymology: Composed of the name of the host genus and the Greek adjectival suffix -philum (loving).

Description in vitro (on V8; CBS 255.82): Mycelium composed of hyaline, smooth, septate, branched hyphae, 2-2.5 $\mu \mathrm{m}$ wide. Conidiophores micro- to macronematous, sinuous to geniculous-sinuous, hyaline to pale brown, branched, $30-110 \times 2-2.5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal, mono- or polyblastic, proliferating sympodially or percurrently, smooth to verruculose, with unthickened and non-refractive loci. Conidia solitary, rarely catenate,

Fig. 10. Ramulispora sorghiphila (CBS 255.82). A-F. Observations in vitro. A. Culture on V8. B. Stromata. C. Conidiophore and conidia. D-F. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
holoblastic, hyaline, filiform, $70-250 \times 2-2.5 \mu \mathrm{~m}$, unthickened and truncate at the base, 2-12 septate.

Materials examined: India, on Sorghum vulgare, Oct. 1969, unknown collector, isol. by G.S. Rawla in 1971, dep. by H.I. Nirenberg in 1982 (holotype IMI 153077, culture ex-type CBS 255.82).

Notes: Differs from Ramulispora sorghi by producing much longer conidiophores and conidia. It is similar to Ramulispora sorghicola by producing very long conidia in culture that are commonly branched but differs by forming sclerotia in culture and not producing conidia in flesh-coloured gelatinous masses. Ramulispora sorghiphila forms a single strain lineage within the Ramulispora genus clade (Fig. 1, clade 12; Fig. 2, clade 2).

Clade 13: Catenulocercospora

Catenulocercospora C. Nakash., Videira \& Crous, gen. nov. MycoBank MB822580.
Etymology: Derived from the similarities to the genus Cercospora and the catenulate nature of the conidia.

Description: Phytopathogenic, forming brown rectangular leaf spots. Caespituli amphigenous, mainly hypophyllous, hyaline. Mycelium internal, hyaline. Stromata small to developed, brown, globose. Conidiophores pale brown at the base and turning hyaline towards the apex, septate, straight to geniculate-sinuous. Conidiogenous cells integrated, mono- or polyblastic, with darkened, thickened and refractive rim-like conidiogenous loci. Conidia hyaline, solitary or catenate in branched chains, rounded at the apex when solitary, obclavate or cylindrical to filiform, septate, with rim-like hila that are thickened, darkened and refractive.

Type species: Catenulocercospora fusimaculans (G.F. Atk.) C. Nakash. et al. (三 Cercospora fusimaculans G.F. Atk.).

Catenulocercospora fusimaculans (G.F. Atk.) C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822745. Fig. 11.
Basionym: Cercospora fusimaculans G.F. Atk., J. Elisha Mitchell Sci. Soc. 8(2): 50. 1892.
Synonyms: Phaeoramularia fusimaculans (G.F. Atk.) X.J. Liu \& Y.L. Guo, Acta Phytopathol. Sin. 12 (4): 9. 1982.
Passalora fusimaculans (G.F. Atk.) U. Braun \& Crous, in Crous \& Braun, Mycosphaerella and Anam.: 192. 2003.
For additional synonyms see Crous \& Braun 2003, Braun et al. (2015a) or MycoBank.
Descriptions in vivo and illustrations: Ellis (1976), Hsieh \& Goh (1990).
Description in vivo (CPC 17277): Leaf spots formed as small streaks, rectangular, $2-6 \times 0.5-$ 1 mm , pale brown to dark brown, distinct. Caespituli amphigenous, mainly hypophyllous, white. Mycelium internal, hyphae hyaline, $2.5 \mu \mathrm{~m}$ diam. Stromata small to developed, brown, globose, $27-71 \mu \mathrm{~m}$ diam. Conidiophores in loose fascicles of $2-12$, hyaline to pale brown, paler towards the apex, septate, tapered towards the apex, straight to geniculate-sinuous, 23-78

Fig. 11. Catenulocercospora fusimaculans (CPC 17277). A-E. Observations in vivo. A. Leaf spot symptoms on the host. B. Conidia sporulating on the lesion. C, D. Conidiophores, conidiogenous cells and conidia. E. Single and catenate conidia. F-J. Observations in vitro. F. Culture on OA. G-I. Conidiophores, conidiogenous cells and conidia. J. Catenate conidia. Scale bars $=10 \mu \mathrm{~m}$.
$\times 2.5-9 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal, polyblastic, proliferating sympodially, with conidiogenous loci rim-like, thickened, darkened and refractive and located at the apex and shoulders, 1.6-2.5 $\mu \mathrm{m}$ diam. Conidia hyaline, smooth, solitary or catenate, ocasionaly in branched chains, long-obclavate, cylindrical to filiform, $20-62 \times 2.5 \mu \mathrm{~m}, 2-5$-septate, with thickened and darkened rim-like hila, 1.6-2.5 $\mu \mathrm{m}$ diam.

Description in vitro (on V8; CPC 17277): Mycelium hyaline to pale brown, smooth to rough, delicate, uniform in width, $2.5 \mu \mathrm{~m}$ diam. Conidiophores micronematous, hyaline to pale brown, smooth to verruculose, simple, cylindrical, straight to geniculate-sinuous, $10-100 \times 2.5-5 \mu \mathrm{~m}$. Conidiogenous cells integrated, apical, mono- or polyblastic, proliferating sympodially, with conidiogenous loci thickened, darkened and refractive, $1.5 \mu \mathrm{~m}$ diam. Conidia hyaline, smooth, solitary or catenate, occasionaly in branched chains, long-obclavate, cylindrical to filiform, rounded at the apex when solitary, 17-109 $\times 2-3.5 \mu \mathrm{~m}, 1-7$-septate, hila thickened, darkened and refractive, $1.5 \mu \mathrm{~m}$ diam.

Materials examined: Thailand, on Agrostis sp., 15 Sep. 2009, coll. P. Phen, culture CPC 17277. USA, Alabama, Lee County, Auburn, on Panicum dichotomum, 15 Aug. 1891, B.M. Duggar, det. G.F. Atkinson (lectotype designated by Braun et al. 2015a: CUP-A-002054\#1(AL); isolectotypes CUP-A-2945\#2(AL), CUP-A-2945\#3(AL)).

Notes: The description of the observed specimen is consistent with the one in literature for the species Cercospora fusimaculans (Ellis 1976). The species Cercospora fusimaculans was
recently lectotypified and the species Cercospora agrostidis removed from its synonyms list and tentatively considered a different species. Cercospora fusimaculans, despite the catenate conidia, was tentatively maintained as a Cercospora species (Braun et al. 2015a). Phylogenetically, the observed strain forms a single-strain lineage closely related to Ramulispora (Fig. 1, clade 13; Fig. 2, clade 3), but morphologically they are quite distinct from each other (Fig. 11). Therefore, a new genus was introduced to accommodate this species which has a worldwide distribution and affects numerous grass hosts (Poaceae) (Braun et al. 2015a). Despite its distribution and host range, it appears to be a mild pathogen susceptible to timely fungicide applications (Smiley 1983).

Clade 14: Neodeightoniella

Neodeightoniella Crous \& W.J. Swart, Persoonia 31: 211. 2013.
Description (from Crous et al. 2013b): Foliicolous, plant pathogenic. Conidiophores fasciculate, 3-6, arising from a weakly developed brown stroma composed of a few brown cells, amphigenous. Conidiophores erect, brown, unbranched, finely roughened, straight to slightly flexuous, subcylindrical, septate. Conidiogenous cells terminal and integrated, subcylindrical, brown, finely roughened; conidiogenous loci terminal and lateral on conidiogenous cells, darkened, thickened, protruding, tretic with central pore. Conidia solitary, pale brown, surface finely roughened, fusoid-ellipsoid, straight or gently curved, 1-septate; apical cell globose, with prominent mucoid cap; basal cell funnel-shaped, widest two thirds from basal hilum, tapering prominently to truncate hilum, thickened, darkened, with central pore.

Type species: Neodeightoniella phragmiticola Crous \& W.J. Swart.
Neodeightoniella phragmiticola Crous \& W.J. Swart, Persoonia 31: 211. 2013.
Description and illustration: Crous et al. (2013b).
Materials examined: South Africa, Free State, Bultfontein, on leaves of Phragmites australis, 31 Jan. 2013, W.J. Swart (holotype CBS H-21427, culture ex-type CBS 136418 = CPC 22059); idem., cultures CPC 22057, CPC 22061.

Notes: Neodeightoniella resembles the genus Deightoniella (based on Deightoniella africana, on Imperata sp., West Africa), in having pale brown, fusoid-ellipsoid, unequally 1-septate conidia arising from brown conidiophores. It is distinct in that conidiophores do not undergo percurrent rejuvenation (seen as nodal swellings in the type of Deightoniella), have prominent apical and lateral conidiogenous loci on the conidiogenous cells, conidia have a prominent mucoid cap, and conidiophores are arranged in fascicles. The genus Deightoniella presently contains a heterogeneous assemblage of taxa, but the type species, Deightoniella africana, probably belongs to the Pyriculariaceae (Klaubauf et al. 2014). Phylogenetically, Neodeightoniella belongs to the Mycosphaerellaceae and is closely related to Ramulispora (Fig. 1, clade 14; Fig. 2, clade 4).

Clade 15: Distocercosporaster

Distocercosporaster Videira, H.D. Shin, C. Nakash. \& Crous, gen. nov. MycoBank MB822587.
Etymology: Name composed of the hitherto known genus Distocercospora + -aster (Latin substantival suffix indicating incomplete resemblance).

Description: Foliicolous, plant pathogenic. Mycelium internal, substomatal stromata formed of subhyaline to brown swollen hyphal cells. Conidiophores in small to moderately large fascicles, arising from stromata, through stomata, erect, straight, subcylindrical to geniculate-sinuous, unbranched, pale olivaceous to olivaceous brown, thin-walled, smooth, septate, sometimes reduced to conidiogenous cells. Conidiogenous cells integrated, terminal, with rim-like conidiogenous loci, thickened and darkened. Conidia hyaline to pale olivaceous, thin-walled, smooth to rough, solitary or catenate, in simple or occasionally branched chains, subcylindrical to obclavate-cylindrical, rarely subclavate, apex obtuse, subobtuse to truncate, base short obconically truncate, straight to curved, eu- or distoseptate, hila thickened and darkened.

Type species: Distocercosporaster dioscoreae (Ellis \& G. Martin) Videira, H.D. Shin, C. Nakash. \& Crous (\equiv Cercospora dioscoreae Ellis \& G. Martin).

Distocercosporaster dioscoreae (Ellis \& G. Martin) Videira, H.D. Shin, C. Nakash. \& Crous, comb. nov. MycoBank MB822755. Fig. 12.
Basionym: Cercospora dioscoreae Ellis \& G. Martin, Amer. Naturalist 16: 1003. 1882.

Fig. 12. Distocercosporaster dioscoreae (CPC 11513). A-E. Observations in vivo. A, B. Leaf spot symptoms on the host. C, D. Conidiophores, conidiogenous cells and conidia. E. Catenate conidia. F-L. Observations in vitro. F. Culture on V8. G. Conidiophore and conidiogenous cell. H. Conidiophore, conidiogenous cell, single and catenate conidia. I, J. Catenate conidia. Scale bars $=10 \mu \mathrm{~m}$.

Synonyms: Phaeoramularia dioscoreae (Ellis \& G. Martin) Deighton, More Dematiaceous Hyphomycetes: 319. 1976.
Cercospora nubilosa Ellis \& Everh., J. Mycol. 4 (11): 115. 1888.
Cercospora tokoroi Togashi, Bull. Imp. Coll. Agric. (Morioka): 46. 1936.
Passalora dioscoreae (Ellis \& G. Martin) U. Braun \& Crous, CBS Biodiversity Ser. 1: 162. 2003.

Description in vivo and illustrations: Ellis (1976), Pons \& Sutton (1988), Guo et al. (2003), Braun et al. (2014).

Description in vitro (on SNA; CPC 11513): Mycelium pale brown to dark brown. Conidiophores micronematous to macronematous, smooth, pale to pale brown, sinuous, irregular in width, $2.5-5(-10) \mu \mathrm{m}$, branched. Conidiogenous cells apical, intercalary, polyblastic, proliferating sympodially, often branched, integrated, with thickened and darkened, rim-like conidiogenous loci, 2-2.5 $\mu \mathrm{m}$ diam. Conidia smooth, hyaline to pale brown, single or often catenate, in sigle or branched chains, holoblastic, long-obovoid when single, cylindrical to obclavate when catenate, conical truncate at both ends, straight to strongly sinuous, $12-120 \times 3-7.5 \mu \mathrm{~m}, 0-5-\mathrm{eu}$ - or distoseptate and occasionally constricted at septa, with hila rim-like, thickened and darkened, $2-2.5 \mu \mathrm{~m}$ diam.

Materials examined: Republic of Korea, on Dioscorea tokoro, 16 Oct. 2003, H.D. Shin, culture CBS $135460=$ CPC 10855; on Dioscorea tenuipes, 2003, H.D. Shin, culture CBS $135463=$ CPC 11513; on Dioscorea sp., date unknown, H.D. Shin, culture KACC 44723. USA, Pennsylvania, Delaware Co., on Dioscorea villosa, 1 Aug. 1882, W. Trimble (holotype NY 838293, isotype IMI 256891).

Notes: The genus Distocercosporaster is newly introduced to accommodate the species Passalora dioscoreae which is not congeneric with Passalora as defined by the type Passalora bacilligera. The existing strains form a well-supported clade in the phylogenetic analyses (Fig. 1 clade 15; Fig. 2, clade 15). Although the examined strains were collected in the Republic of Korea and the type material is originally from the USA, the observed morphology is consistent with the descriptions found in literature (Braun et al. 2014) and, therefore, these are considered good representatives of this species. Several species of cercosporoid genera have been described from hosts belonging to the plant genus Dioscorea (Crous \& Braun 2003, Braun et al. 2014). The genus Distocercosporaster differs from the genus Distocercospora, in vivo, by forming stromata composed of subhyaline to brown swollen hyphal cells, rather short conidiophores with rim-like and distinctly thickened conidiogenous loci on terminal conidiogenous cells, and frequently catenate conidia.

Clade 16: Caryophylloseptoria

Caryophylloseptoria Verkley et al., Stud. Mycol. 75: 233. 2013.
Description (from Verkley et al. 2013): Conidiomata pycnidial, epiphyllous or predominantly epiphyllous, globose to subglobose, or slightly depressed, with a central ostiolum; wall composed of textura angularis or globulosa-angularis. Conidiogenous cells hyaline, holoblastic, proliferating percurrently one to multiple times with indistinct annellations, or (in addition)
proliferating sympodially. Conidia cylindrical, straight, curved or flexuous, multiseptate, not or somewhat constricted around the septa, hyaline, contents with several oil-droplets and granular material in each cell.

Type species: Caryophylloseptoria lychnidis (Desm.) Verkley et al. (\equiv Septoria lychnidis Desm.).

Caryophylloseptoria lychnidis (Desm.) Verkley et al., Stud. Mycol. 75: 234. 2013. Basionym: Septoria lychnidis Desm., Ann. Sci. Nat., Bot., Sér. 3, 11(2): 347. 1849.
For extended synonymy see Shin \& Sameva (2004).
Materials examined: Austria, Tirol, Inntal, S of Telfs (W of Innsbruck), along road 171, on living leaves of Silene latifolia subsp. alba (= Melandrium album), 4 Aug. 2000, G. Verkley, CBS H-21161, cultures CBS 109098, CBS 109102; idem., G. Verkley 1048, CBS H-21162, cultures CBS 109099, CBS 109101. Netherlands, Hilversum, on living leaves of Silene dioica (= Melandrium rubrum), 22 Jun. 1985, H.A. van der Aa 9524, CBS H-18112.

Notes: The genus Caryophylloseptoria was recently established to accommodate four septorialike species infecting hosts belonging to the Caryophyllaceae in Europe and the Republic of Korea (Verkley et al. 2013). The type species, Caryophylloseptoria lychnidis, was originally described from Silene dioica (\equiv Lychnis dioica) from France. It has been reported from several species of Silene and the conidial size given by various authors differs considerably (Verkley et al. 2013). In this study, the Caryophylloseptoria strains form a well-supported clade in the phylogeny (Fig. 1, clade 16; Fig. 2 clade 16), closely related to Neoseptoria.

Clade 17: Neoseptoria

Neoseptoria Quaedvlieg et al., Stud. Mycol. 75: 352. 2013.
Description (from Quaedvlieg et al. 2013): Foliicolous. Conidiomata black, immersed, subepidermal, pycnidial, subglobose with central ostiole, exuding creamy conidial mass; wall of 2-3 layers of brown textura angularis. Conidiophores $0-2$-septate, subcylindrical, hyaline to pale brown at base, smooth, straight to geniculate-sinuous. Conidiogenous cells phialidic, hyaline, smooth, aggregated, lining the inner cavity, subcylindrical to ampulliform, straight to geniculate-sinuous; proliferating several times percurrently near apex, rarely sympodially. Conidia scolecosporous, hyaline, smooth, flexuous, rarely straight, granular, thin-walled, narrowly obclavate, apex subobtuse, base long obconically truncate, tapering to a truncate hilum, 3- to multi-septate.

Type species: Neoseptoria caricis Quaedvlieg et al.
Neoseptoria caricis Quaedvlieg et al., Stud. Mycol. 75: 352. 2013.
Description and illustration: Quaedvlieg et al. (2013).
Material examined: Netherlands, on leaves of Carex acutiformis, Aug. 2012, W. Quaedvlieg (holotype CBS H-21293, ex-type culture CBS $135097=$ S653).

Notes: Neoseptoria is a monotypic genus that is morphologically similar to Septoria but differs in having conidiogenous cells that are mono- to polyphialidic and proliferate percurrently at the apex. In the phylogenetic analyses, it is represented by a single-strain lineage closely related to Caryophylloseptoria (Fig. 1, clade 17; Fig. 2, clade 17).

Clade 18: Acervuloseptoria and Cercosporella

Acervuloseptoria Crous \& Jol. Roux, Persoonia 32: 275. 2014.
Description (from Crous et al. 2014a): Plant pathogenic, foliicolous. Conidiomata black, amphigenous, exuding a creamy-white conidial cirrhus, subepidermal, erumpent, multilocular, with upper layer breaking open irregularly and leaving conidioma to have acervular appearance; wall of 3-6 layers of brown textura angularis to textura intricata, basal layers pale brown, roof of conidioma dark brown; in culture conidiomata acervular with elements of conidiomatal roof remaining like brown strands along the sides of conidioma. Conidiophores subcylindrical, straight to once geniculate, pale brown, verruculose, septate, branched or not. Conidiogenous cells terminal and lateral, subcylindrical, pale brown to subhyaline, verruculose to smooth, proliferating sympodially and percurrently. Conidia narrowly obclavate to subcylindrical, flexuous, guttulate, smooth, hyaline, apex subacutely rounded, base obconically truncate, septate.

Type species: Acervuloseptoria ziziphicola Crous \& Jol. Roux.
Acervuloseptoria ziziphicola Crous \& Jol. Roux, Persoonia 32: 275. 2014.
Description and illustration: Crous et al. (2014a).
Materials examined: South Africa, Northern Cape, Richtersveld National Park, Potjiespram Rest Camp, on leaf spots of Ziziphus mucronata, Sep. 2013, J. Roux (holotype CBS H-21723, culture ex-type CPC 23707 = CBS 138009).

Notes: Acervuloseptoria differs from Septoria and allied genera (Quaedvlieg et al. 2013) in the peculiar conidiomatal morphology, with black, erumpent conidiomata, from which the top layer disintegrates, leaving a conidiomatal body that appears acervular (Crous et al. 2014a, $2015 \mathrm{c})$. The conidiophores are also slightly pigmented and verruculose in their lower part. Phylogenetically, Acervuloseptoria is represented by a single-strain lineage that is closely related to Cercosporella and Ramulariopsis (Fig. 1, clade 18; Fig. 2, clade 18). However, its phylogenetic position is not yet clear since it clustered near Cercosporella in dataset 1 (Fig. 1, clade 18) but clustered among the Cercosporella species when using dataset 2 (Fig. 2, clade 18). In the single-gene Bayesian trees of dataset 2 (data not shown), Acervuloseptoria ziziphicola clusters outside both the Cercosporella and the Ramulariopsis clade with high posterior probability value for $\operatorname{LSU}(\mathrm{PP}=0.94)$, with a low support in the case of ITS $(P P=0.54)$. In the single-gene Bayesian tree of rpb2, Acervuloseptoria ziziphicola sits in a highly supported polytomy ($\mathrm{PP}=$ 0.84) including the Cercosporella strains. In both the RAxML and PAUP analyses of dataset 2, Acervuloseptoria ziziphicola appears as a single-strain lineage sister to both Cercosporella and Ramulariopsis. The genus Acervuloseptoria currently includes an additional species, Acervuloseptoria capensis (Crous et al. 2015c). The differences in morphology are significant
enough for retaining Acervuloseptoria (a coelomycete) as distinct from Cercosporella (a hyphomycete), pending further collections. The situation of Acervuloseptoria ziziphicola is reminiscent of Pseudocercospora pistacina, which after much debate was placed in the genus Pseudocercospora, although it had pycnidial conidiomata (Crous et al. 2013a).

Cercosporella Sacc., Michelia 2(6): 20. 1880.
Description (from Videira et al. 2016): Phytopathogenic, mostly causing leaf spots. Hyphae restricted to intercellular spaces and forming cup- or bowl-shaped appressoria, 7-17 $\mu \mathrm{m}$ diam that attach to walls of mesophyll cells. Conidiophores emerging through stomata or erumpent through the cuticle, straight, subcylindrical to geniculate-sinuous, hyaline, sometimes lightly pigmented near the base, more or less thin-walled and smooth. Conidiogenous cells integrated, terminal, polyblastic, sympodial, mostly conspicuously geniculate, conidiogenous loci conspicuous, hyaline but refractive, thickened and raised in the shape of a truncated cone (ultrastructure). Conidia formed singly, hyaline, subcylindrical to obclavate, sometimes fusiform, 1- to multi-septate, usually thin-walled and smooth, apex obtuse, base often rounded to truncate or obconically truncate, hilum thickened, not darkened but refractive. Description adapted from Braun (1995) and Kirschner (2009).

Type species: Cercosporella virgaureae (Thüm.) Allesch (三 Ramularia virgaureae Thüm.).
Cercosporella virgaureae (Thüm.) Allesch., Hedwigia 34: 286. 1895.
Basionym: Ramularia virgaureae Thüm., Fungi Austr. Exs., Cent. 11: no. 1072. 1874.
Synonyms: Cylindrosporium virgaureae (Thüm.) J. Schröt., in Cohn, Krypt.-Fl. Schles. 3: 489. 1897.

Cercosporella cana (Sacc.) Sacc., Michelia 2(6): 20. 1880.
For additional synonymy see Braun (1995) or MycoBank.
Descriptions and illustrations: Braun (1995), Kirschner (2009), Videira et al. (2016).
Materials examined: Austria, Krems, on Solidago virgaurea, 1871 [Thüm., Fungi Austr. Exs. 1072] (lectotype K, designated by Deighton 1973). Brazil, Guimarania, Minas Gerais, on Conyza canadensis, unknown date, B.S. Vieira, culture CPC 19492. Republic of Korea, Jinju, on Erigeron annuus, 1 Jul. 2004, H.D. Shin, cultures CPC 11456, CPC 11457, CPC 11460, CPC 11461; Namyangju, on Erigeron annuus, 9 Oct. 2002, H.D. Shin, cultures CPC 10286-10288; Chuncheon, on Erigeron annuus, 21 May 2003, H.D. Shin, culture CBS 113304.

Notes: The taxonomic confusion between Cercosporella and Ramularia has been addressed by several authors (Braun 1995, 1998, Kirschner 2009, Videira et al. 2016). Cercosporella and Ramularia are phylogenetically distinct since the LSU sequences of freshly collected isolates of the type species of both genera clustered separately (Kirschner 2009). A later study using. Both LSU and rpb2 sequences corroborated these results (Videira et al. 2016). Morphologically, Cercosporella can be distinguished from Ramularia by forming an appressorium structure to adhere to the plant cells and by having a distinct ultrastructure of conidiogenous scars that is flat like a truncate cone. The type species, Cercosporella virgaureae, was described from the host Solidago virgaureae collected in Austria. Although the currently available strains of this species are of Brazilean and Korean origin, their morphology is identical to the descriptions
available in literature (Braun 1995) and their LSU sequence is 100% identical to that of a freshly collected isolate of Cercosporella virgaureae from Germany (GenBank EU710894) (Kirschner 2009). Two new species of Cercosporella have recently been introduced, namely Cercosporella dolichandrae (Crous et al. 2014a) and Cercosporella catenulata (Videira et al. 2016), that cluster together with Cercosporella virgaureae (Fig. 1, clade 18; Fig. 2, clade 18).

Clade 19: Ramulariopsis

Ramulariopsis Speg., Anales Mus. Nac. Buenos Aires 20(13): 421 [ser. 3, 13]. 1910.
Description (from Braun 1998): Parasitic on vascular plants, foliicolous, usually forming leaf spots. Mycelium internal, septate, branched, hyaline or almost so, smooth; stromata absent to well-developed, immersed, hyaline to faintly pigmented. Caespituli amphigenous, whitish. Conidiophores macronematous, mononematous, fasciculate, arising from internal hyphae or stromata, through stomata or erumpent, hyaline, septate, smooth, simple or branched. Conidiogenous cells integrated, terminal, intercalary as well as pleurogenous (as short nodulose protuberances or subcylindrical branchlets), polyblastic, sympodial, with cicatrized, thickened and darkened loci. Conidia catenate, in simple as well as branched chains, ellipsoid-ovoid, subcylindrical-fusiform, $0-1$ - to multi-euseptate, hyaline, with thickened and darkened hila. Conidial secession schizolytic.

Type species: Ramulariopsis cnidoscoli Speg.
Ramulariopsis cnidoscoli Speg., Anales Mus. Nac. Buenos Aires 20: 422. 1911.
Descriptions and illustrations: Braun (1998), Videira et al. (2016).
Material examined: Argentina, Salta, Orán, on Cnidoscolus vitifolius var. cnicodendron, Apr. 1905, C. Spegazzini (lectotype, designated by Deighton, 1972, LPS 12.851).

Notes: Ramulariopsis was described by Spegazzini (1910) and emended by Deighton (1972). Ramulariopsis differs from Ramularia by producing conidiophores that are frequently branched and conidiogenous cells that are often intercalary or pleurogenous. The type species, Ramulariopsis cnidoscoli, was collected on Cnidoscolus vitifolius in Argentina, and is thus far only known from herbarium material. Five species are currently recognised in this genus (Braun 1998) but only two are known from culture, namely Ramulariopsis gossypii and Ramulariopsis pseudoglycines (Videira et al. 2016). Phylogenetically, these two species cluster in a well-supported clade closely related to Cercosporella (Fig. 1, clade 19; Fig. 2, clade 19). Unfortunatelly, it is still unproven whether Ramulariopsis gossypii is congeneric with Ramulariopsis cnidoscoli. Morphologically, there are slight differences in the structure of the conidiogenous loci between the two species: the loci in Ramulariopsis gossypii are conspicuously thickened and darkened, whereas in Ramulariopsis cnidoscoli these structures are less conspicuous.

Clade 20: Pleuropassalora

Pleuropassalora U. Braun, C. Nakash., Videira \& Crous, gen. nov. MycoBank MB822610.

Etymology: Derived from the sporulating arrangement, pleurosporous + its resembling genus, Passalora.

Description: Phytopathogenic. Mycelium internal, smooth, branched, pale brown. Caespituli hypophyllous, fasciculate to synnematous, arising from a pale brown stroma. Conidiophores subcylindrical, unbranched, flexuous, guttulate, pale to medium brown, smooth, septate. Conidiogenous cells terminal, subcylindrical, guttulate, pale to medium brown, finely verruculose, becoming slightly swollen, appearing clavate, with multiple conidiogenous loci, round, darkened, thickened, refractive, prominent, proliferation sympodial. Conidia solitary, pale to medium brown, smooth to finely verruculose, granular to guttulate, thin-walled, ellipsoidal to obovoid, obpyriform, wider basal cell and apical cell elongating into a beak, transversely multiseptate, hilum thickened, darkened and refractive.

Type species: Pleuropassalora armatae (Crous \& A.R. Wood) U. Braun et al. (\equiv Passalora armatae Crous \& A.R. Wood).

Pleuropassalora armatae (Crous \& A.R. Wood) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822777.
Basionym: Passalora armatae Crous \& A.R. Wood, Stud. Mycol. 64: 35. 2009.
Description in vivo and illustrations: Crous et al. (2009c).
Description in vitro (on SNA; CBS 125420): Mycelium composed of hyaline to pale hyphae, uniform in width, $2-2.5 \mu \mathrm{~m}$. Conidiophores semimacronematous to macronematous, pale brown to pale olivaceous brown, multiseptate, straight or mildly curved, smooth, 200-740 $\times 3.8-7.5$ $\mu \mathrm{m}$. Conidiogenous cells integrated, terminal, cylindrical, straight or slightly curved, polyblastic, proliferating sympodially without geniculation, with numerous lateral conidiogenous loci, rimlike, thickened and darkened, $2-2.5 \mu \mathrm{~m}$. Conidia subhyaline to pale brown, holoblastic, solitary, acropleurogenous, obpyriform with a beak-shape at the apex, obclavate or ellipsoidal, 25-45× $10-12.5 \mu \mathrm{~m}, 1-3$-euseptate, not constricted at septa, with distinctly protuberant, thickened, and refractive hilum, 2-2.5 $\mu \mathrm{m}$ diam.

Materials examined: South Africa, KwaZulu-Natal Province, South Coast, Mpenjati Nature Reserve, between Ramsgate and Port Edward, on leaves of Dalbergia armata, 28 May 2008, A.R. Wood (holotype CBS H-20337, culture ex-type CBS $125420=$ CPC 15419); idem. cultures CPC 15420, CPC 15421; Kloof Nature Reserve area, on Dalbergia obovata, 15 Jun. 2009, A. Wood, herb. 7/7/ 2009 (4), culture CPC 17084.

Notes: This genus is proposed in order to accommodate the species Passalora armatae that is not congeneric with Passalora as defined by the type Passalora bacilligera. Pleuropassalora is a monotypic genus that forms a well-supported clade in this study (Fig. 1, clade 20; Fig. 2, clade 20). At the time it was described (Crous et al. 2009c), it was observed that, when in culture, conidia remain attached to conidiogenous cells, giving conidiophores the appearance of small tufts which is very characteristic, but not observed in Passalora s. str.

Clade 21: Graminopassalora

Graminopassalora U. Braun, C. Nakash., Videira \& Crous, gen. nov. MycoBank MB822591.
Etymology: Derived from the host family $($ Poaceae $=$ Gramineae $)$ and similarity to the genus Passalora.

Description: Plant pathogenic, causing leaf spotting symptoms. Mycelium internal, forming stromata of variable shape and size, usually well-developed, substomatal to immersed, brown. Conidiophores in small to very large fascicles, arising from stromata, through stomata or erumpent, erect, subcylindrical, straight to curved, sinuous, slightly geniculate, unbranched, septate, pale to dark brown, thin-walled, smooth to rough-walled, sometimes reduced to conidiogenous cells. Conidiogenous cells integrated, terminal, with a single to several conspicuous conidiogenous loci, circular in outline, thickened and darkened, usually barely protuberant. Conidia formed singly, ellipsoid-ovoid, obovoid, short obclavate, $0-3$-septate, occasionally slightly constricted at the septa, subhyaline to pale brownish, thin-walled, smooth to rough-walled, hila rounded, thickened and darkened.

Type species: Graminopassalora graminis (Fuckel) U. Braun, C. Nakash., Videira \& Crous (\equiv Scolicotrichum graminis Fuckel).

Graminopassalora graminis (Fuckel) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822760. Fig. 13.
Basionym: Scolicotrichum graminis Fuckel, Hedwigia 2(15): 134. 1863.
Synonym: Passalora graminis (Fuckel) Höhn., Zentrabl. Bakteriol., 2. Abt., 60: 6. 1923.
For additional synonyms see Braun et al. (2015a).
Description and illustrations: Braun et al. (2015a).
Materials examined: Germany, Rheinland-Pfalz: Mt. Rabenkopf, on grass leaves (exact identity unclear), Fuckel, Fungi Rhen. Exs. 130 (lectotype designated by Braun et al. 2015a, HAL; isolectotypes: Fuckel, Fungi Rhen. Exs. 130, e.g. FH, G). Japan, Chiba, on Dactylis

Fig. 13. Graminopassalora graminis (CBS 113303). A-D. Observations in vivo. A, B. Leaf spot symptoms on the host. C. Conidiophores. D. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
glomerata, N. Nishihara, culture MAFF510604 = MUCC 1429. Republic of Korea, Yangyang, on Alopecurus aequalis var. amurensis, 24 May 2003, H.D. Shin, culture CBS 113303.

Notes: The genus Graminopassalora is newly introduced to accommodate Passalora graminis, which is not congeneric with the type of Passalora as defined by the type Passalora bacilligera (Fig. 1, clade 35; Fig. 2, clade 22). The lectotype of Passalora graminis was described from grass leaves of uncertain identity originating from Germany. Passalora graminis is considered a widespread pathogen able to infect a wide range of grass hosts (Poaceae). The existing collections on various hosts are morphologically uniform suggesting this is a single plurivorous species, but more detailed analyses including an ex-type strain are required to ascertain this hypothesis. In this study, two Asian isolates isolated from different hosts were also analysed. Their morphology is identical to the description available in literature (Braun et al. 2015a) and they are deemed as good representatives of this species. These isolates formed a well-supported clade by all three phylogenetic methods employed (Fig. 1, clade 21; Fig. 2, clade 21).

Clade 22: Pallidocercospora

Pallidocercospora Crous, Stud. Mycol. 75: 73. 2013.
Description (from Crous et al. 2013a): Foliicolous, phytopathogenic, causing discrete leaf spots. Ascomata single, black, immersed, globose, glabrous; wall of 3-4 layers of medium brown textura angularis. Asci fasciculate, bitunicate, aparaphysate, subsessile, 8 -spored, ellipsoid to obclavate or cylindrical, straight or curved, numerous. Ascospores 2- to multi-seriate, oblique, overlapping, straight ellipsoidal to obovoid, hyaline, smooth, 1 -septate. Mycelium predominantly immersed, consisting of olivaceous brown hyphae, smooth, branched, septate, $2-4 \mu \mathrm{~m}$ diam. Conidiophores in vivo fasciculate, or occurring singly on superficial mycelium as lateral projections, unbranched or branched, septate, cylindrical, straight to geniculate-sinuous, olivaceous brown. Conidiogenous cells integrated, terminal, cylindrical, straight to geniculatesinuous, olivaceous brown, proliferating sympodially or percurrently, with unthickened loci, not darker than the surrounding conidiogenous cell. Conidia solitary, straight to irregularly curved, guttulate, pale olivaceous to olivaceous brown, subcylindrical to narrowly obclavate, multi-septate; hila neither thickened nor darkened.

Type species: Pallidocercospora heimii (Crous) Crous (三 Pseudocercospora heimii Crous).
Pallidocercospora heimii (Crous) Crous, Stud. Mycol. 75: 74. 2013.
Basionym: Pseudocercospora heimii Crous, S. African Forest. J. 172: 4. 1995.
Synonyms: Mycosphaerella heimii Crous, S. African Forest. J. 172: 2. 1995.
Mycosphaerella heimii Bouriquet, Encycl. Mycol. 12: 418. 1946, nom. nud.
Description and illustration: Crous et al. (2013a).
Materials examined: Brazil, Bahia, Teixeira de Freitas, on leaves of Eucalyptus sp., 2004, A.C. Alfenas, culture CPC 11716. Madagascar, Moramanga, on leaves of Eucalyptus sp., 16 Apr. 1994, P.W. Crous (PREM 51749, holotype of sexual morph; PREM 51748, holotype of asexual morph, cultures ex-type CPC 760-761 = CBS 110682).

Notes: The genus Pallidocercospora was established to accommodate the species previously belonging to the Mycosphaerella heimii complex.Pallidocercospora species are morphologically similar to Pseudocercospora s. str. but can be distinguished by the pale olivaceous and smooth conidia and the red crystals they form when cultivated in agar (Crous et al. 2013a). The strains used in this study clustered in a well-supported clade by all three phylogenetic methods employed (Fig. 1, clade 22; Fig. 2, clade 28). At the time this genus was introduced (Crous et al. 2013a), the authors observed two pseudocercospora-like species clustering in the same clade, namely Pseudocercospora thailandica (foliar pathogen of Acacia; Crous et al. 2004c) and Pseudocercospora colombiensis (foliar pathogen of Eucalyptus; Crous 1998), also with mycosphaerella-like sexual morphs. Morphologically, Pseudocercospora thailandica and Pseudocercospora colombiensis were indistinguishable from Pseudocercospora species. In that study (Crous et al. 2013a), the multigene phylogeny strongly supported the clade that included Pallidocercospora, Trochophora, Scolecostigmina and the two mentioned species, but poorly supported their separation, despite their strikingly different morphologies. Based on the morphological differences and poor phylogenetic support, the authors refrained from proposing a formal combination of Pseudocercospora thailandica and Pseudocercospora colombiensis into Pallidocercospora at the time (Crous et al. 2013a). In a recent study, a formal proposal for the combination of these two species into Pallidocercospora was presented on the basis of a multigene phylogeny based on a LSU and ITS alignment (Hyde et al. 2016). In this study, with the introduction of a wider range of species sequences and the rpb2 gene, we find good support for the separation of these two species into their own clade.

Clade 23: Nothophaeocryptopus

Nothophaeocryptopus Videira, C. Nakash. \& Crous, gen. nov. MycoBank MB822698.
Etymology: From the greek notho-, meaning false, and the similarity to the genus Phaeocryptopus.
Description: Phytopathogenic. Mycelium internal and superficial, pseudothecia, internal and superficial, emerging through stomata on the lower surface of leaves, black. Ascospores hyaline, ellipsoidal with obtuse ends, 1 -septate, slightly constricted at the septa, the basal cell slightly narrower and tapering toward its base. Germinating ascospores develop germ hyphae from polar ends of both cells.

Type species: Nothophaeocryptopus gaeumannii (T. Rohde) Videira et al. (三 Adelopus gaeumannii T. Rohde).

Nothophaeocryptopus gaeumannii (T. Rohde) Videira, C. Nakash., U. Braun \& Crous, comb. nov. MycoBank MB822768.
Basionym: Adelopus gaeumannii T. Rohde, Silva: 51. 1936.
Synonyms: Adelopus balsamicola f. douglasii J. Steiner, Z. Pflanzenkrankh. 47: 184. 1937. Phaeocryptopus gaeumannii (T. Rohde) Petr., Ann. Mycol. 36(1): 22. 1938.

Description (adapted from Stone et al. 2008): Ascomata pseudothecial, internal, emerging from stomata, on the lower surface of living leaves and dead leaves, less than 0.1 mm diam, black. Superficial, radiating hyphae emerging from developing ascocarps, spreading across the needle surface and re-entering the needle through unoccupied stomata. Ascospores hyaline, ellipsoidal
with obtuse ends, 1 -septate, slightly constricted at the septa, the basal cell slightly narrower and tapering toward its base, $11-17 \times 4-5 \mu \mathrm{~m}$. Germinating ascospores develop germ hyphae from polar ends of both cells. Germinating hyphae initially hyaline, becoming pale olive brown when up to $20 \mu \mathrm{~m}$ long, then becoming dark brown to black.

Materials examined: Austria, unknown host, date and collector, isol. H. Steiner, dep. in 1938, culture CBS 244.38. Germany, on needles of Pseudotsuga menziesii, unknown date and collector, isol. T. Rohde, deposited in 1937 (lectotype designated here, MBT378568, preserved as metabolically inactive culture CBS 267.37).

Notes: The genus Nothophaeocryptopus is introduced to accommodate the species Phaeocryptopus gaeumannii which is not congeneric with the type of Phaeocryptopus, Phaeocryptopus nudus (Dothideales). The systematic position of Phaeocryptopus gaeumannii was originally determined based on a phylogeny of combined LSU and SSU sequences that placed it within the Mycosphaerellaceae (Capnodiales), followed by a phylogeny of ITS sequences that placed it in the Mycosphaerella heimii complex (Winton et al. 2007). In this study, the phylogenetic results agreed with the previous results of Winton et al. (2007), placing this species in a well-supported clade (Fig. 1, clade 23; Fig. 2, clade 29), closely related with Pallidocercospora. Nothophaeocryptopus gaeumannii is the causal agent of Swiss needle cast disease on Pseudotsuga menziesii (Douglas-fir). The disease symptoms include severe defoliation that leads to reduced height and diameter growth. Publications by Rohde (1937) and Steiner (1937) provided the first insights into the pathogen life-cycle and how it differed from Phaeocryptopus nudus. Although Nothophaeocryptopus gaeumannii grows well on artificial culture media, it behaves as an obligate parasite, reproducing only on living needles of Pseudotsuga menziezii, and no asexual morph has been observed thus far (Stone et al. 2008). Isolates of Nothophaeocryptopus gaeumannii also have been observed to produce diffusing red pigments in culture (Winton et al. 2007), which is a feature also observed in Pallidocercospora.

Clade 24: Scolecostigmina

Scolecostigmina U. Braun, New Zealand J. Bot. 37: 323. 1999.
Description (from Braun et al. 1999): Foliicolous, phytopathogenic, associated with leaf spots. Mycelium immersed, consisting of septate, branched, pigmented hyphae. Sporodochia immersed to erumpent; stromata subglobose to applanate, composed of brown, angular to subglobose cells. Conidiophores numerous, densely aggregated, arising from a stroma, subcylindrical or somewhat tapered towards the apex, occasionally ampulliform, continuous or septate, pigmented, wall somewhat thickened, usually verruculose. Conidiogenous cells integrated, terminal or at times conidiophores reduced to conidiogenous cells, holoblastic, proliferating percurrently via conspicuous annellations. Conidia solitary, scolecosporous, usually subcylindrical-obclavate, transversely pluriseptate, occasionally with few longitudinal or oblique septa, euseptate, rarely with few intermixed distosepta, thick-walled, pigmented, dark, smooth to verrucose, apex obtuse to subacute, base truncate or obconically truncate, hila unthickened, not darkened; secession schizolytic.

Type species: Scolecostigmina mangiferae (Koord.) U. Braun \& Mouch. (\equiv Cercospora mangiferae Koord.).

Scolecostigmina mangiferae (Koord.) U. Braun \& Mouch., New Zealand J. Bot. 37: 323. 1999. Basionym: Cercospora mangiferae Koord., Verh. Kon. Ned. Akad. Wetensch., Afd. Natuurk., Tweede Sect. 13(4): 236. 1907.
Synonyms: Stigmina mangiferae (Koord.) M.B. Ellis, Mycol. Pap. 72: 49. 1959.
Sciniatosporium mangiferae (Koord.) Morgan-Jones, Canad. J. Bot. 49: 999. 1971.
Descriptions and illustrations: Ellis (1959), Crous et al. (2013a).
Materials examined: Australia, Queensland, Mareeba, $\mathrm{S} 16^{\circ} 58075.500 \mathrm{E} 145^{\circ} 20060.800$ on leaves of Mangifera indica, 10 Aug. 2009, P.W. Crous \& R.G. Shivas (neotype designated here CBS H-20846, MBT378567, ex-neotype culture CBS 125467 = CPC 17351); idem. CPC 17352. New Caledonia, Port Laguerre (Ec. Agr.), on Mangifera indica, 20 Nov. 1959, Bugnicourt, NC $59.061 \mathrm{a}, \mathrm{b}$ (PC).

Notes: The genus Scolecostigmina was introduced by Braun et al. (1999) to accommodate foliicolous stigmina-like hyphomycetes such as the type species Scolecostigmina mangiferae, characterised by producing sporodochial conidiomata with firm stromata, verruculose conidiophores and conidiogenous cells with conspicuous coarse annellations and scolecosporous, pluriseptate, thick-walled conidia. The type material of Cercospora mangiferae could not be traced (Indonesia, Java, on leaves of Mangifera indica, 21 Sep. 1905; Koorders 1907), but various other collections have been examined (Braun et al. 1999). Therefore, we propose the specimen CBS H-20846 as neotype and the strain CBS $125467=$ CPC 17351 as ex-neotype culture. In this study, Scolecostigmina is represented by a single-train lineage in the phylogenetic analysis (Fig. 1, clade 24; Fig. 2, clade 30) and is closely related to Trochophora and Pallidocercospora. Numerous other morphologically similar species assigned to Scolecostigmina are hitherto not known in culture and the affinity of the species concerned to Scolecostigmina mangiferae remains to be proven. Therefore, they are currently only tentatively retained in Scolecostigmina.

Clade 25: Parapallidocercospora

Parapallidocercospora Videira, Crous, U. Braun, C. Nakash., gen. nov. MycoBank MB822604.
Etymology: Similar to the genus Pallidocercospora.
Description: Plant pathogenic. Leaf spots amphigenous, irregular to subcircular. Ascomata pseudothecial, predominantly hypophyllous, black, subglobose to globose, with apical ostiole, walls of 2-3 layers of medium brown textura angularis. Asci fasciculate, bitunicate, subsessile, cylindrical to narrowly ellipsoidal, straight or slightly incurved. Ascospores bi- to multiseriate, overlapping, hyaline, guttulate, thin-walled, straight to slightly curved, fusoid-ellipsoidal, obovoid, medianly 1 -septate, not constricted at septum or only slightly constricted, tapering toward both ends but more prominently toward the base. Spermogonia intermixed with the ascomata or with the asexual morph, hyaline and rod-shaped. Mycelium internal and external, hyphae light brown, septate, branched, smooth. Conidiophores arising from superficial mycelium, from the upper cells of a brown stroma; conidiophores light brown, smooth, aseptate or septate, subcylindrical, straight to variously curved, unbranched. Conidiogenous cells terminal, unbranched, light brown, smooth, tapering to flat-tipped apical loci, proliferating sympodially, rarely percurrently near apex. Conidia solitary, light brown, smooth to finely
verruculose, septate, guttulate, narrowly obclavate or subcylindrical, tapering towards the base, straight to curved.

Type species: Parapallidocercospora colombiensis (Crous et al.) Videira \& Crous (\equiv Pseudocercospora colombiensis Crous \& M.J. Wingf.).

Parapallidocercospora colombiensis (Crous \& M.J. Wingf.) Videira \& Crous, comb. nov. MycoBank MB822774.
Basionym: Pseudocercospora colombiensis Crous \& M.J. Wingf., Mycol. Mem. 21: 42. 1998. Synonym: Mycosphaerella colombiensis Crous \& M.J. Wingf., Mycol. Mem. 21: 41. 1998.

Description and illustration: Crous (1998).
Materials examined: Colombia, Pinal Farm, on leaves of Eucalyptus urophylla, May 1995, M.J. Wingfield (holotype PREM 54397, ex-type culture CBS 110968 = CPC 1105).

Notes: The genus Parapallidocercospora is hereby introduced in order to accommodate two species, Pseudocercospora colombiensis (foliar pathogen of Eucalyptus; Crous 1998), and Pseudocercospora thailandica (foliar pathogen of Acacia; Crous et al. 2004c). Morphologically, these taxa appear typical members of Pseudocercospora s. str. and are difficult to identify without the use of DNA sequence data. In this study both species clustered in a well-supported clade in the phylogenetic analyses (Fig. 1, clade 25; Fig. 2, clade 31) and are closely related to Pallidocercospora, Scolecostigmina and Trochophora.

Parapallidocercospora thailandica (Crous, Himaman \& M.J. Wingfield) Videira \& Crous, comb. nov. MycoBank MB822775.
Basionym: Mycosphaerella thailandica Crous et al., Stud. Mycol. 50: 465. 2004.
Synonyms: Pseudocercospora thailandica Crous et al., Stud. Mycol. 50: 465. 2004.
Pallidocercospora thailandica (Crous et al.) Phook. et al., Fungal Diversity 80: 21. 2016.
Descriptions and illustrations: Crous et al. (2004c), Hyde et al. (2016).
Materials examined: Thailand, Chachoengsao Prov., Sanamchaikhet, on leaves of Acacia mangium, 28 May 2003, K. Pongpanich (holotype CBS H-9875, of both M. thailandica and P. thailandica, cultures ex-type CBS $116367=$ CPC10547-10549); Thatakiab District, on living leaves of Eucalyptus camaldulensis, Oct. 2006, W. Himaman, culture CBS 120723 = CPC 13478.

Note: See notes on Parapallidocercospora colombiensis and Pallidocercospora.

Clade 26: Trochophora

Trochophora R.T. Moore, Mycologia 47: 90. 1955.
Description (from Crous et al. 2013a): Foliicolous, but pathogenicity unproven. Colonies hypophyllous, medium to dark brown, consisting of fasciculate conidiophores or numerous synnemata. Stroma absent, but with a superficial network of hyphae linking the various
synnemata. Conidiophores fasciculate to synnematous, mostly unbranched and straight, or with $1-2$ short branches, straight or curved, cylindrical, individual conidiophores tightly aggregated, but separating near the apex, pale to medium brown, smooth. Conidiogenous cells polyblastic, integrated, terminal, determinate to sympodial, with visible unthickened loci, clavate. Conidia solitary, terminal or lateral on conidiogenous cells, prominently curved to helicoid, pale to medium brown, smooth, transversely euseptate with a darkened, thickened band at the septa.

Type species: Trochophora fasciculata (Berk. \& M.A. Curtis) Goos (\equiv Helicoma fasciculatum Berk. \& M.A. Curtis).

Trochophora fasciculata (Berk. \& M.A. Curtis) Goos, Mycologia 78: 759. 1986.
Basionym: Helicoma fasciculatum Berk. \& M.A. Curtis, Proc. Amer. Acad. Arts Sci. 4: 127. 1858.

Synonyms: Helicosporium fasciculatum (Berk. \& M.A. Curtis) Sacc., Syll. Fung. 4: 560. 1886. Helicomyces fasciculatus (Berk. \& M.A. Curtis) Pound \& Clem., Minn. Bot. Stud. 9: 658. 1896. Helicostilbe simplex Petch, Ann. Royal Bot. Gard. Peradeniya 7: 321. 1922.
Trochophora simplex (Petch) R.T. Moore, Mycologia 47: 90. 1955.
Description and illustrations: Ellis (1971), Zhao et al. (2007), Crous et al. (2013a).
Materials examined: India, Sri Lanka, on Daphniphyllum glaucescens, collector unknown, Apr. 1917 (holotype of Helicostilbe simplex, IMI 87262). Japan, under side of dead leaves, date unknown, C. Wright 142 (holotype of Helicoma fasciculatum, NY 00945981); Shimane, Matsue, on Daphniphyllum macropodum, 26 Apr. 2008, C. Nakashima \& I. Araki (epitype designated here TSU MUMH11134, MBT377074, ex-epitype culture MUCC 952). Republic of Korea, Jeju, Halla arboretum, on leaves of Daphniphyllum macropodum, 29 Oct. 2005, H.D. Shin, KACC 42362 = CBS H-20847, culture CBS 124744 = SMKC 21713; Pusan, on leaves of Daphniphyllum macropodum, 13 Nov. 2002, H.D. Shin, KUS-F19414, cultures CPC 10280-10282.

Notes: The genus Trochophora is currently monotypic based on Trochophora fasciculata, a pathogen of Daphniphyllum shrubs and trees in several Asian countries (Zhao et al. 2007). Based on the LSU sequence, the phylogenetic position has been shown to be closely related to Pallidocercospora and Scolecostigmina (Crous et al. 2013a). The phylogenetic results in this study, with the addition of rpb2 and ITS sequences, agreed with the previous observations (Fig. 1, clade 26; Fig. 2, clade 32). Despite the low support, the distinctive morphology observed in Trochophora justifies that it is retained as separate, pending more collections to be added to this clade.

Clade 27: Pseudophaeophleospora

Pseudophaeophleospora C. Nakash., Videira \& Crous, gen. nov. MycoBank MB822700.
Etymology: Composed of 'pseudo' (resembling but not equalling) + the similar genus, Phaeophleospora.

Description (adapted from Crous et al. 2007c and Wu et al. 1996): Phytopathogenic. Conidiomata amphigenous, globose, wall with up to four layers of dark brown textura angularis, subepidermal,
scattered, rarely aggregated, with a central ostiole from where conidia exude in a cirrhus. Conidiophores absent or reduced to only two cells. Conidiogenous cells pale brown, smooth to finely verruculose, ampulliform to doliiform, subcylindrical, proliferating percurrently near apex. Conidia formed singly, pale to dark brown, smooth to slightly verruculose, guttulate, subcylindrical to narrowly obclavate, slightly fusiform, straight, multiseptate, with apical cell tapering into an obtuse apex, widest at basal septum and tapering to a subtruncate base, hilum flattened with minute marginal frill.

Type species: Pseudophaeophleospora stonei (Crous) C. Nakash. et al. (三 Phaeophleospora stonei Crous).

Pseudophaeophleospora atkinsonii (Syd.) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822781.
Basionym: Scoleciasis atkinsonii Syd., Annls. Mycol. 22(3-6): 312. 1924.
Synonyms: Phaeophleospora atkinsonii (Syd.) Pennycook \& McKenzie, Mycotaxon 82: 145. 2002.

Septoria exotica sensu Grove, Brit. Leaf-fung. 1: 415. 1935.
Kirramyces hebes W.P. Wu, B. Sutton \& Gange, Mycol. Res. 100: 1208. 1996.
Phaeophleospora hebes (W.P. Wu, B. Sutton \& Gange) Crous, F.A. Ferreira \& B. Sutton, S. Afr. J. Bot. 63: 113. 1997.

Description and illustration: Wu et al. (1996).
Materials examined: New Zealand, Wellington, York Bay, on Hebe stricta var. atkinsonii, Oct. 1920, E.H. Atkinson (holotype PDD 968); St Johns, Morrin Road, Auckland University Campus, on Hebe sp., unkown date and collector, isol. C.F. Hill, 27 Jan. 2009, PDD 95173, cultures ICMP $17860=$ CBS 124565; Grey Lynn, Western Springs Park, Jan. 2007, C.F. Hill, PDD 95176, culture ICMP $17862=$ CBS 124566.

Notes: Despite the repeated attempts to induce the available cultures to sporulate on different types of agar medium, no reproductive structures characteristic of this species were formed. This species is transferred to Pseudophaeophleospora based on phylogenetic inference (Fig. 1, clade 27; Fig. 2, clade 33). According to Wu et al. (1996), the conidiophores are reduced to conidiogenous cells that are pale brown, and the conidia are obclavate to cylindrical, which correlate with the type species of Pseudophaeophleospora.

Pseudophaeophleospora stonei (Crous) C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822782.
Basionym: Phaeophleospora stonei Crous, Fungal Diversity 26: 169. 2007.
Description and illustration: Crous et al. (2007c).

Description in vitro (on V8; CBS 13330): Mycelium composed of hyaline to pale blackish brown hyphae, uniform in width, $2-2.5 \mu \mathrm{~m}$ diam. Conidiomata absent. Conidiophores micronematous to macronematous, emerging from hyphae, sometimes reduced to conidiogenous cells, pale blackish brown, $10-25 \times 2.5-3.8 \mu \mathrm{~m}$. Conidiogenous cells apical, intercalary, integrated, sometimes reduced to hyphae, proliferating percurrently, with unthickened loci, 2-2.5 $\mu \mathrm{m}$
diam. Conidia solitary, pale blackish brown, smooth, holoblastic, schizolytic, cylindrical to short obclavate, rounded at the apex, $15-32.5 \times 3.5-7.5 \mu \mathrm{~m}, 1-4$-septate, with unthickened and truncate hilum at the base.

Materials examined: Australia, Queensland, Cairns, Kuranda, Karoomba River Walk, S 16° 490 08.800, E $145^{\circ} 38024.700$, on leaves of Eucalyptus sp., 19 Aug. 2006, P.W. Crous \& J. Stone (holotype CBS H-19835, culture ex-type CBS 120830 = CPC 13330); idem. CPC 13331, CPC 13332.

Notes: The genus Phaeophloeospora, based on the ITS sequence of its type species Phaeophloeospora eugeniae, belongs to Mycosphaerellaceae (Crous et al. 2001a, b). Since the ITS sequence of Phaeophloeospora stonei did not cluster with the type of Phaeophleospora, the genus was considered polyphyletic (Crous et al. 2007c). In the present study, the phylogenetic analysis performed based on the sequences of LSU, rpb2 and ITS agrees with the previous work and the strain of Pseudophaeophleospora stonei forms a single strain lineage (Fig. 1, clade 27; Fig. 2, clade 33) that is closely related to Pseudophaeophleospora atkinsonii. The species Phaeophloeospora concentrica (not included in this study), a pathogen of Protea spp., clusters close to Brunneosphaerella (Crous et al. 2009c). Morphologically, Pseudophaeophleospora is very similar to Phaeophleospora, and the two genera can only safely be distinguished by means of DNA data.

Clade 28: Sonderhenia

Sonderhenia H.J. Swart \& J. Walker, Trans. Brit. Mycol. Soc. 90: 640. 1988.
Description (from Crous 1998): Foliicolous, phytopathogenic, causing discrete leaf spots. Leaf spots amphigenous, round to confluent and irregular, surrounded by a purple border when young, which becomes dark red to brown and raised with age. Ascomata pseudothecial, amphigenous, on one side of each lesion, often 1-3, intermingled with conidiomata, immersed, black, punctiform, globose to subglobose; apical ostiole substomatal; wall olive brown, of 3-4 layers of textura angularis, subhymenium of 1-2 layers of hyaline cells. Asci fasciculate, bitunicate, subsessile, 8 -spored, ovoid to obclavate, straight to incurved. Ascospores $2-3$-seriate, hyaline, guttulate, straight or slightly curved, fusiform, 1 -septate, widest just above median septum, slightly constricted at septum. Conidiomata pycnidial, amphigenous, subepidermal with central non-projecting ostiole, scattered, black, globose; wall of 2-3 layers of brown cells. Conidiogenous cells minute, olivaceous, proliferating enteroblastically and percurrently, lining the inner pyenidial wall layer. Conidia ellipsoidal to cylindrical or ovoid, straight or bent, brown, 3-distoseptate, not constricted, verruculose, apex obtuse, base truncate with marginal frill.

Type species: Sonderhenia eucalyptorum (Hansf.) H.J. Swart \& J. Walker (三 Hendersonia eucalyptorum Hansf.).

Sonderhenia eucalyptorum (Hansf.) H.J. Swart \& J. Walker, Trans. Brit. Mycol. Soc. 90: 640. 1988.

Basionym: Hendersonia eucalyptorum Hansf., Proc. Linn. Soc. N.S.W. 79(3-4): 135. 1954. Synonym (sexual morph): Mycosphaerella swartii R.F. Park \& Keane, Trans. Brit. Mycol. Soc. 83: 99. 1984.

Descriptions and illustrations: Swart \& Walker (1988), Crous (1998).
Materials examined: Australia, Mt. Gambier, on leaves of Eucalyptus leucoxylon, 9 Dec. 1982, R.F. Park (holotype of Mycosphaerella swartii DAR 45719, isotype IMI 280474, sexual morph); Clare, on leaves of E. leucoxylon, Aug. 1922, T. Osborne (holotype of Hendersonia eucalyptorum, K(M) 137253, WARI 2007, asexual morph); Tasmania, on leaves of Eucalyptus coccifera, Jan. 2006, C. Mohammed, cultures CBS 120220 = CPC 12553, CPC 12554-12555.

Notes: Sonderhenia includes taxa with mycosphaerella-like sexual morphs and pycnidial asexual morphs. The brown conidiogenous cells proliferate percurrently and give rise to brown conidia that are transversely distoseptate. Only two species, Sonderhenia eucalypticola and Sonderhenia eucalyptorum are presently known (Crous et al. 2013a), and they cluster together in a wellsupported clade (Fig. 1, clade 28; Fig. 2, clade 34) closely related to Pseudophaeophleospora.

Clade 29: Pseudocercospora, Neopseudocercospora and pseudocercospora-like

Pseudocercospora Speg., Anales Mus. Nac. Hist. Nat. Buenos Aires, Ser. 3, 20: 437. 1910. Synonym: Neopseudocercospora Crous, Persoonia 31: 219. 2013. Additional synonyms: See Crous \& Braun (2003), Braun et al. (2013), Crous et al. (2013a).

Description (from Crous et al. 2013a): Foliicolous, chiefly phytopathogenic, but also endophytic; commonly associated with leaf spots, but also occurring on fruits. Mycelium internal and external, consisting of smooth, septate, subhyaline to brown branched hyphae. Stroma absent to well-developed. Conidiophores in vivo arranged in loose to dense fascicles, sometimes forming distinct synnemata or sporodochia, emerging through stomata or erumpent through the cuticle, often arising from substomatal or subcuticular to intraepidermal stromata, or occurring singly on superficial hyphae, short to long, septate or continuous, i.e. conidiophores may be reduced to conidiogenous cells, simple to branched and straight to geniculate-sinuous, subhyaline, pale to dark olivaceous to brown, smooth to finely verruculose. Conidiogenous cells integrated, terminal, occasionally intercalary, polyblastic, sympodial, or monoblastic, proliferating percurrently via inconspicuous or darkened, irregular annellations, subhyaline, olivaceous, pale to dark brown, with inconspicous, or only thickened along the rim, or flat, and unthickened or almost so but refractive or even slightly darkened-refractive loci, but never pronounced. Conidia solitary, rarely in simple chains or disarticulating, subhyaline, olivaceous, pale to dark brown, usually scolecosporous, i.e. obclavate-cylindrical, filiform, acicular, and transversely multi-euseptate, occasionally also with oblique to longitudinal septa, conidia rarely amero- to phragmosporous, short subcylindrical or ellipsoidal-ovoid, aseptate or only with few septa, apex subacute to obtuse, base obconically truncate to truncate, or bluntly rounded, with or without a minute marginal frill, straight to curved, rarely sigmoid, smooth to finely verruculose; hila usually unthickened, not darkened, at most somewhat refractive, occasionally slightly thickened along the rim, or rarely flat, unthickened or almost so, but slightly refractive or even slightly darkened-refractive, but never pronounced.

Type species: Pseudocercospora vitis (Lév.) Speg. (三 Septonema vitis Lév.).
Pseudocercospora dingleyae U. Braun \& C.F. Hill (as ‘dingleyii’), Mycol. Progress 1(1): 23. 2002.

Replaced synonym: Cercospora haloragis Dingley, New Zealand J. Agric. Res. 8(4): 913. 1965, non Pseudocercospora haloragidis (Hansf.) U. Braun 1995.

Materials examined: New Zealand, Auckland, Piha, White's Stream, on Haloragis erecta 31 Jan. 1954, J.M. Dingley (holotype PDD 20086); Auckland, Grey Lynn, Western Springs, on Haloragis erecta, 21 Jan. 2001, C.F. Hill 367, HAL 3239 F, PDD 73036, culture CBS 114645.

Note: The present name was introduced by Braun \& Hill (2002) for the species Cercospora haloragidis which had unthickened and undarkened conidiogenous loci and hila, a characteristic of Pseudocercospora.

Pseudocercospora convoluta (Crous \& Breeÿen) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822778.
Basionym: Passalora convoluta Crous \& Den Breeÿen, Fungal Diversity 23: 96. 2006.
Description and illustrations: Den Breeÿen et al. (2006).
Materials examined: Costa Rica, San Isidro between San José and Golfito, on leaves of Chromolaena odorata, 15 Oct. 1997, M.J. Morris (holotype CBS H-19752, ex-type culture CBS $113377=$ MJM $1533=$ C488).

Notes: The phylogenetic analysis in this study showed that this species clustered within the Pseudocercospora clade (Fig. 1, clade 29; Fig. 2, clade 23). Although in the original description of the species the loci and hila were described as 'darkened, thickened and refractive' (Breeÿen et al. 2006), observation of the type specimen and culture led to the conclusion that these are within the acceptable range of this genus.

Pseudocercospora metrosideri U. Braun, Fungal Diversity 8: 44. 2001.
Material examined: New Zealand, Auckland, on Metrosideros excelsa, 17 Oct. 2003, C.F. Hill 929, culture CBS 114294.

Note: The present strain was introduced by Braun \& Hill (2004) and, although the conidia were shorter and narrower than average, they were still within the range from the original description by Braun (2001).

Pseudocercospora nodosa (Constant.) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822779.
Basionym: Cercospora nodosa Constant., Mycotaxon 3: 122. 1975.
Synonym: Passalora nodosa (Constant.) L.G. Br. \& Morgan-Jones, Mycotaxon 4: 303. 1976.
Description and illustration: Brown \& Morgan-Jones (1976).
Materials examined: Romania, Bucuresti, on Psoralea bituminosa, 23 Sep. 1966, O. Constantinescu (holotype BUCM 41472, ex-type culture CBS 554.71, wrongly cited as "555.71" in protologue).

Notes: Based on the phylogenetic analyses in this study, this species clustered within Pseudocercospora (Fig. 1, clade 29; Fig. 2, clade 23). Although we did not study the holotype specimen, we examined the ex-type culture. When Constantinescu (1975) proposed this species, his detailed line drawings illustrated "thin", discrete conidial scars (loci)". In addition, Brown \& Morgan-Jones (1976), who observed the holotype, mentioned that the thin scars, swollen conidiophore apices and basal conidial cells were indicative of its placement in Passalora. However, these characters are also typical characters of Pseudocercospora.

Pseudocercospora vitis (Lév.) Speg., Anales Mus. Nac. Hist. Nat. Buenos Aires 20(13): 438. 1910.

Basionym: Septonema vitis Lév., Ann. Sci. Nat., Bot., Sér. 3, 9: 261. 1848.
For additional synonyms see MycoBank.
Description and illustrations: Deighton (1976a).
Materials examined: Republic of Korea, Namyangju, on Vitis vinifera, 30 Sep. 2004, H.D. Shin, CBS H-20848, CBS 132012 = CPC 11595; on V. vinifera, 1 Oct. 2007, H.D. Shin, cultures CBS $132112=$ CPC 14661.

Notes: Type material of Septonema vitis is not preserved, as already noted by Harvey \& Wenham (1972), and the designation of a neotype is required, but fresh collections from the type host and location are necessary (France, Bordeaux, on Vitis vinifera). Pseudocercospora is a large cosmopolitan genus of plant pathogenic fungi that is commonly associated with leaf spots and blights on a wide range of plant hosts. Species occur in arid as well as wet environments and in a wide range of climates. The phylogenetic placement of Pseudocercospora has previously been determined and many new species have since been described (Crous et al. 2013a). In this study, the Pseudocercospora clade is well-supported by the phylogenetic analysis (Fig. 1, clade 29; Fig. 2, clade 23) and Pseudocercospora pistacina is basal to the clade. In addition, the type species of Neocercospora, Neocercospora zambiae, is observed to cluster within the Pseudocercospora clade and, therefore, Sutton's reallocation of Sporidesmium zambiense to Pseudocercospora is resurrected as current name.

Pseudocercospora zambiensis (Deighton) B. Sutton, Mycopathologia 125: 61. 1994.
Basionym: Sporidesmium zambiense Deighton, Mycol. Pap. 117: 27. 1969.
Synonyms: Repetophragma zambiense (Deighton) Subram., Proc. Indian Acad. Sci., B, 58: 185. 1992. Neopseudocercospora terminaliae Crous, Persoonia 31: 219. 2013.
Neopseudocercospora zambiensis (Deighton) Crous \& U. Braun, IMA Fungus 5: 204. 2014.
Descriptions and illustrations: Crous et al. (2013a), Braun et al. (2014).
Materials examined: Zambia, on Terminalia sp., 24 Feb. 2013, M. van der Bank (holotype of Neopseudocercospora terminaliae CBS H-21431, culture ex-type CBS $136423=$ CPC 22686); idem., culture CPC 22685.

Notes: When Neopseudocercospora was described (Crous et al. 2013a) the phylogenetic analysis performed placed it close to zasmidium-like species based on LSU and ITS sequences. In the present study, when the $r p b 2$ gene is introduced in the phylogenetic analysis,

Neopseudocercospora clusters within the genus Pseudocercospora (Fig. 1, clade 29; Fig. 2, clade 23). Conidiogenous cells and conidia of Neopseudocercospora are similar to those of Pseudocercospora in being unthickened and non-pigmented. However, unlike most Pseudocercospora species, it produces solitary conidiophores with conidiogenous cells that proliferate percurrently and conidia with longitudinal septa (sporidesmium-like) (Crous et al. 2013a, Braun et al. 2014).

Species clustering in the Pseudocercospora clade that need further material to be collected before a formal combination into Pseudocercospora can be proposed:

Passalora bolleana (Thüm.) U. Braun, Mycotaxon 55: 228. 1995.
Basionym: Septosporium bolleanum Thüm., Oesterr. Bot. Z. 27 (1): 12.1877.
Synonyms: Cercospora bolleana (Thüm.) Speg., Michelia 1(5): 475. 1879.
Pseudocercospora bolleana (Thüm.) Sivan., The Bitunicate Ascomycetes and their anamorphs: 206. 1984.

For additional synonyms see MycoBank.
Descriptions and illustrations: Ellis (1976), Sivanesan (1984).
Materials examined: Romania, on Ficus carica, 21 Oct. 1970, O. Constantinescu, culture CBS 541.71. Republic of Korea, on F. carica, 14 Nov. 2007, H.D. Shin, culture CPC 14819.

Notes: "Passalora bolleana" is widely distributed throughout the world and is known as a typical species of Passalora s. lat. The conidial loci of "Passalora bolleana" are conspicuous, almost unthickened to slightly thickened and somewhat darkened. The present strains, since they cluster in the Pseudocercospora clade, will be treated as Pseudocercospora sp. until more information is available (Table 1).

Passalora robiniae (Shear) S. Hughes, Canad. J. Bot. 31: 572. 1953.
Basionym: Fusicladium robiniae Shear, Bull. Torrey Bot. Club 29: 452. 1902.
Synonyms: Camptomeris robiniae (Shear) Cif., Mycopathol. Mycol. Appl. 6: 25. 1951.
Phaeoisariopsis robiniae (Shear) Deighton, in Ellis, More Dematiaceous Hyphomycetes: 234. 1976.

For additional synonyms see MycoBank.
Description and illustration: Hughes (1953a), Ellis (1976).
Material examined: USA, on Robinia pseudoacacia, unknown date and collector, isol. and dep. R.W. Davidson, deposited in 1939, culture CBS 277.39.

Notes: The type specimen of Fusicladium robiniae can be found in BPI, together with several isotypes. The specimen from which the culture CBS 277.39 was isolated is likely BPI 424556, based on the specimen metadata agreeing with the culture metadata (USA, Tennessee, Gatlinburg, Great Smoky Mountains National Park, Robinia pseudoacacia, 21 Aug. 1939, R.W. Davidson). Unfortunately, we were unable to study any of the previously mentioned specimens and the examined strain refused to sporulate on various media. Hughes (1953a) redescribed Passalora robiniae, which typically forms 1(-2)-septate conidia, the lower cell being wider
than the upper one. The present strain, since it clusters in the Pseudocercospora clade, will be treated as Pseudocercospora sp. until more information is available (Table 1).

Clade 30: Clypeosphaerella

Clypeosphaerella Guatimosim et al., Persoonia 37: 121. 2016, emend.
Description: Phytopathogenic. Ascomata pseudothecial, epiphyllous, solitary, subcuticular to erumpent, globose, walls of 2-3 layers of brown to dark brown textura angularis, ostiole central. Asci bitunicate, aparaphysate, fasciculate, subsessile, 8 -spored, obpyriform to ovoid, hyaline, smooth. Ascospores inordinate, overlapping, fusoid, straight, 1 -septate, slightly constricted at the septum, biguttulate, hyaline, thin-walled, smooth; germinating at both ends, remaining hyaline, germ tubes following the main axis of the spore. Conidiophores fasciculate, pale olivaceous, septate, usually curved, rarely branched, geniculate at the apex, conidiogenous cells with conidiogenous loci (scars) thickened and darkened. Conidia solitary, pale brown to olivaceous brown, cylindrical to obclavate, obconic base, bluntly rounded tip, septate, sometimes constricted at the septa, hilum at the base thickened and darkened.

Type species: Clypeosphaerella sticheri Guatimosim et al.
Clypeosphaerella calotropidis (Ellis \& Everh.) Videira \& Crous, comb. nov. MycoBank MB822749.
Basionym: Cercospora calotropidis Ellis \& Everh., Rep. (Annual) Missouri Bot. Gard.: 120. 1898.

Synonyms: Phaeoramularia calotropidis (Ellis \& Everh.) Kamal, A.S. Moses \& R. Chaudhary, Mycol. Res. 94: 716. 1990.
Pseudocercospora calotropidis (Ellis \& Everh.) Haldar \& J.B. Ray, J. Mycopathol. Res. 39(1): 43. 2001.

Passalora calotropidis (Ellis \& Everh.) U. Braun, Schlechtendalia 5: 60. 2000.
For additional synonyms see Crous \& Braun (2003) and MycoBank.
Descriptions and illustrations: Chupp (1954), Ellis (1976), Wilkinson et al. (2005).
Material examined: Egypt, on Calotropis procera, unknown date and collector, culture CBS 129.30.

Notes: Braun (2000) transferred Cercospora calotropidis to the genus Passalora based on the observation of numerous specimens, including the type specimen (Bahamas, Fortune Island (Long Cay), on Calotropis procera, Nov. 1890, A.S. Hitchcock, BPI 433953, 433956, NY, IMI 7752, slide). The isolate of Cercospora calotropidis used in our study was sterile and the specimen was unfortunately not preserved. The strain used in the present study has an ITS sequence that is 99% similar to GenBank AY303969, a Passalora calotropidis strain used by Wilkinson et al. (2005). In Wilkinson et al. (2005), the isolate's morphology has similar diagnostic characters to those of Passalora calotropidis (Braun 2000) and the phylogenetic analysis based on ITS placed the species in a single-strain lineage closely related to Pseudocercospora. In the present study, based on a multigene analysis, the strain CBS 129.30 clusters in Clypeosphaerella (Fig. 1, clade 30; Fig. 2, clade 26), which is closely related to Pseudocercospora. Based on a BLAST comparison against the alignment, the
present species shares $97 \%(425 / 438)$ similarity based on ITS and $96 \%(733 / 763)$ similarity based on rpb2 with Clypeosphaerella quasiparkii CBS 123243. Similar values of percentage similarity can be observed, for example, between Zymoseptoria brevis and Zymoseptoria tritici. Therefore, proposing a new genus to include this species would be unreasonable. The main issue is that the previously described species in this genus, Clypeosphaerella sticheri and Clypeosphaerella quasiparki, are only known by their sexual morph and Passalora calotropidis is only known from its asexual morph. Nevertheless, based on the molecular similarities, we propose a tentative combination of the present species in Clypeosphaerella until further morphological studies can be performed.

Clypeosphaerella quasiparkii (Cheew. et al.) Guatimosim et al., Persoonia 37: 121. 2016. Basionym: Mycosphaerella quasiparkii Cheew. et al., Persoonia 21: 85. 2008.

Description and illustration: Cheew. et al. (2008).
Material examined: Thailand, Burirum, on leaves of Eucalyptus sp., Jul. 2007, P. Suwannawong (holotype CBS H-20132, culture ex-type CBS 123243 = CPC 15409); idem., cultures CPC 15433, CPC 15434.

Note: Clypeosphaerella sticheri is similar to Clypeosphaerella quasiparki but produces smaller ascospores that germinate in a type D pattern (Crous 1998, Guatimosim et al. 2016).

Clypeosphaerella sticheri Guatimosim et al., Persoonia 37: 121. 2016.
Description and illustration: Guatimosim et al. (2016).
Materials examined: Brazil, Rio de Janeiro, Nova Friburgo, Fazenda Barreto II, Riograndina, ruderal, on fronds of Sticherus bifidus, 11 Feb. 2014, R.W. Barreto (holotype CBS H-22088, isotype VIC 42607, culture ex-type CPC 24705); Minas Gerais, Araponga, Parque Estadual da Serra do Brigadeiro, path to Pico do Pato, Atlantic rainforest, on fronds of S. bifidus, 21 Feb. 2014, E. Guatimosim, CBS H-22089, VIC 42516, culture CPC 24733.

Notes: Morphologically, the genus Clypeosphaerella is reminiscent of Mycosphaerella s. lat. (sexual morph) but differs by having the thicker upper wall of the ascomata resembling a pseudoclypeus. The phylogenetic analyses in this study places Clypeosphaerella in a wellsupported clade (Fig. 1, clade 30; Fig. 2, clade 26) closely related to Distocercospora.

Clade 31: Distocercospora

Distocercospora N. Pons \& B. Sutton, Mycol. Pap. 160: 60. 1988.
Description (from Braun et al. 2013): Foliicolous, plant pathogenic, leaf spotting hyphomycetes (asexual morphs), sexual morphs unknown. Mycelium in vivo internal; hyphae branched, septate, subhyaline to pigmented, thin-walled, smooth. Stromata lacking to well-developed, pigmented, textura angulata to textura globosa. Conidiophores macronematous, mononematous, simple to branched, often strongly branched, septate, pigmented, thin-walled, smooth to rough-walled. Conidiogenous cells integrated, terminal, occasionally intercalary, proliferation sympodial, conidiogenous loci conspicuous, almost unthickened to somewhat thickened and darkened. Conidia
formed singly, rarely in short chains, scolecosporous, mostly obclavate to cylindrical, with a single to several transverse distosepta or a mixture of eu- and distosepta, subhyaline to pigmented, wall smooth to rough, hila somewhat thickened and darkened, conidial secession schizolytic.

Type species: Distocercospora pachyderma (Syd. \& P. Syd.) N. Pons \& B. Sutton (三 Cercospora pachyderma Syd. \& P. Syd.).

Distocercospora pachyderma (Syd. \& P. Syd.) N. Pons \& B. Sutton, Mycol. Pap. 160: 60. 1988. Fig. 14.

Basionym: Cercospora pachyderma Syd. \& P. Syd., Ann. Mycol. 12: 203. 1914.
Synonyms: Cercosporina pachyderma (Syd. \& P. Syd.) Sacc., Syll. Fung. 25: 900. 1931. Cercospora dioscoreae-bulbiferae J.M. Yen \& Gilles, Cah. Maboké 9: 105. 1973.

Description and illustration: Braun et al. (2014).
Description in vivo (on V8; CPC 24144): Mycelia composed of hyaline to pale olivaceous, uniform in width, $2.5-3.8 \mu \mathrm{~m}$, often forming large brown swollen cells, up to $10 \mu \mathrm{~m}$ in size. Conidiophores micro- or macronematous, pale olivaceous, arising from hyphae or swelling cells, smooth, septate, irregular in width, $2.5-7 \mu \mathrm{~m}$, straight or geniculate, $50-165 \times 2.5-7.5$ $\mu \mathrm{m}$. Conidiogenous cells integrated, apical, polyblastic, proliferating percurrently following

Fig. 14. Distocercospora pachyderma (CBS 138247). A-E. Observations in vivo. A, B. Leaf spot symptoms on the host. C. Conidiophores and conidiogenous cells. D. Conidiophores, conidiogenous cells and conidia. E. Conidia. F-J. Observations in vitro. F. Culture on OA. G. Conidiophores erect and emerging from hyphae. H-I. Conidiophore, conidiogenous cell and conidia. J. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
sympodial sporulation, with darkened, rim-like and thickened loci, 1.25-2.5 $\mu \mathrm{m}$ diam. Conidia solitary, rarely catenate, hyaline to pale olivaceous brown, cylindrical to obclavate, straight, apex rounded and often elongated (beak-like), base long obconically truncate, $28-55 \times 2.5-7.5$ $\mu \mathrm{m}, 2-3-\mathrm{eu}$ - or distoseptate, hila thickened, darkened and refractive.

Materials examined: Japan, Iwate, Morioka, Koma, on Dioscorea sp., 13 Sep. 2010, C. Nakashima \& K. Motohashi (epitype designated by Braun et al. 2014, TSU MUMH11476, isotype CBS H-21733, ex-epitype culture CBS 138247 = CPC 24144); Ibaragi, on Dioscorea sp., T. Kobayashi, slide specimen MUCC-PL-185. Fiji, Taveuni, Tabakau, on Dioscorea bulbifera, 22 Dec. 2002, E.H.C. McKenzie, PDD 77375. Philippines, Prov. Laguna, Luzon, Morong Valley, on Dioscorea alata, 9 Nov. 1913, M. B. Raimundo, C.F. Baker 2051 (neotype S F37683); Luzon, Los Banos, on Dioscorea alata, Nov. 1913, C.F. Baker 522 (topotypes: B; BPI 439183, BPI 439184; IMI 256649, S F37682).

Notes: Morphologically, Distocercospora is similar to Passalora with almost unthickened to somewhat thickened, darkened loci and hila and pigmented conidia, but differs in having conidia with a mixture of eu- and distosepta (Fig. 14). The formation of distoseptate conidia occasionally occurs in other genera (e.g. in Pseudocercospora cryptomeriicola) (Nakashima et al. 2007), and may have gone undetected among other cercosporoid fungi due to the difficulty in observing such septa in taxa with thin walls (Braun et al. 2013). The meaning of distoseptation (= pseudoseptation) as character at generic level within the cercosporoid fungi is still unclear (Braun et al. 2015a). Morphologically, the genus Distocercospora was evidently characterised by the mode of proliferation of its conidiophores, which are composed of two distinct layers. During proliferation of its conidiogenous cells, first the outer layer of conidiophore is broken by the percurrent proliferation of the inner layer, and secondly, many conidia are formed sympodially. At this point, septa of conidiophores and most of the conidia of Distocercospora pachyderma show the pseudoseptation. The cultures and molecular data based on the type species of Distocercospora (Distocercospora pachyderma) used in this study showed that this species clusters within the Mycosphaerellaceae in a separate clade supported by all the phylogenetic analyses performed (Fig. 1, clade 31; Fig. 2, clade 27). These results support Distocercospora as a separate genus, distinguished from Passalora s. str.

Clade 32: Uwemyces

Uwemyces Hern.-Restr., G.A. Sarria \& Crous, Persoonia 36: 455. 2016.
Description (from Crous et al. 2016b): Mycelium immersed and superficial, hyphae branched, septate, hyaline and brown, smooth-walled. Conidiophores fasciculate, simple, dark brown at the base and subhyaline at the apex. Conidiogenous cells cylindrical, sympodial, polytretic, with dark conidiogenous loci, terminal and intercalary, brown. Conidia solitary, straight or curved, cylindrical to obclavate, pale brown to brown, apex subhyaline, verruculose-walled, with a thick, dark brown, truncate scar at the base, septate. Sexual morph unknown.

Type species: Uwemyces elaeidis (Steyaert) M. Hern.-Restr. et al. (三 Cercospora elaeidis Steyaert).

Uwemyces elaeidis (Steyaert) M. Hern.-Restr. et al. Persoonia 36: 455. 2016.
Basionym: Cercospora elaeidis Steyaert, Bull. Soc. R. Bot. Belg., 80: 35. 1948; as "elaedis". Synonym: Pseudospiropes elaeidis (Steyaert) Deighton, Trans. Brit. Mycol. Soc. 85: 739. 1985.

Descriptions and illustrations: Ellis (1976), Deighton (1985), Braun et al. (2014), Crous et al. (2016b).

Material examined: Colombia, Barrancabermeja, CENIPALMA, on leaves of Elaeis oleifera, May 2013, coll. G.A. Sarria, culture CPUwZC-01.

Notes: The taxonomic position of Cercospora elaedis was recently discussed by Braun et al. (2014). This species has a wide distribution and seems to be restricted to Elaeis guineensis, (Arecaceae). Phylogenetically, this species is represented by a single-strain lineage closely related to Distocercospora (Fig. 1, clade 31) or to Coremiopassalora (Fig. 2, clade 24). The type material of Cercospora elaeidis (Democratic Republic of the Congo, on Elaeis guineensis) could not be traced and the species needs to be neotypified (Braun et al. 2014). The present strain is unsuitable for neotypification due to its geographical origin (Crous et al. 2016b).

Clade 33: Coremiopassalora

Coremiopassalora U. Braun, C. Nakash., Videira \& Crous, gen. nov. MycoBank MB822585.
Etymology: Derived from the arrangement of conidiophores, coremium + resembling the genus Passalora.

Differs from the genus Passalora by synnematous conidiophores and catenate, hyaline to pale olivaceous conidia with distinct, slightly thickened and not darkened loci.

Type species: Coremiopassalora eucalypti (Crous \& Alfenas) U. Braun et al. (三 Mycovellosiella eucalypti Crous \& Alfenas).

Coremiopassalora eucalypti (Crous \& Alfenas) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822750
Basionym: Mycovellosiella eucalypti Crous \& Alfenas, Mycol. Mem. 21: 105. 1998.
Synonym: Passalora eucalypti (Crous \& Alfenas) Crous \& U. Braun, in Crous \& Braun, CBS Biodiversity Ser. 1: 452. 2003.

Description and illustration: Crous (1998).
Description in vitro (on V8; CBS 111318): Mycelium composed of hyaline to pale brown, delicate hyphae, uniform in width, $2.5 \mu \mathrm{~m}$, often showing a synnematous or cushion-shaped arrangement. Conidiophores straight to sinuous or geniculate, solitary to tightly fasciculate, sometimes appearing as synnemata, simple, $10-33 \times 2-2.5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal, polyblastic, proliferating sympodially, conidiogenous loci at the apex and shoulders, protruding and conically truncate, slightly thickened and refractive, $1-2 \mu \mathrm{~m}$ diam. Conidia catenate, occurring in unbranched or branched chains, hyaline, cylindrical, sometimes obclavate,
obconically truncate at both ends, $8-40 \times 2-2.5 \mu \mathrm{~m}, 0-1$-septate, sometimes constricted at the centre, hila thickened but not darkened, $1-2 \mu \mathrm{~m}$ diam.

Materials examined: Brazil, São Paulo, on leaves of Eucalyptus saligna, Jun. 1995, P.W. Crous \& A.C. Alfenas (holotype PREM 55302, culture ex-type CBS $111306=$ CPC 1455); idem., CBS 111318 = CPC 1457; Suzano, on leaves of Eucalyptus saligna, 8 Aug. 1996, P.W. Crous, culture CBS $111306=$ CPC 1455.

Note: The genus Coremiopassalora (Fig. 1 clade 33; Fig. 2, clade 24) includes two species that morphologically can be characterised as Passalora s. lat., but phylogenetically are not congeneric with the type Passalora bacilligera (Fig. 1 clade 34; Fig. 2, clade 22).

Coremiopassalora leptophlebae (Crous et al.) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822751.
Basionym: Passalora leptophlebae Crous et al. (as "leptophlebiae"), Persoonia 26: 131. 2011.
Description and illustrations: Crous et al. (2011a).
Material examined: Brazil, Minas Gerais, Viçosa, University Forestry Nursery, on leaves of Eucalyptus leptophleba, 23 Aug. 2010, P.W. Crous, A.C. Alfenas, R. Alfenas \& O.L. Pereira (holotype CBS H-20585, culture ex-type CBS $129524=$ CPC 18480).

Notes: Coremiopassalora leptophlebae is the second species in this genus (Fig. 1, clade 33; Fig. 2, clade 24). The host range and geographic distribution of this taxon are thus far restricted to the type collection.

Clade 34: Passalora

Passalora Fr., Summa Veg. Scand. 2: 500. 1849, emend.
Description: Hyphomycetous, phytopathogenic. Mycelium internal, consisting of hyaline, branched, septate hyphae. Stromata absent or small. Conidiophores emerging through stomata, in fascicles, unbranched or branched, straight to flexuous, at times with a single basal septum, usually up to 3 -septate, medium brown, somewhat swollen in the conidiogenous region. Conidiogenous cells integrated, terminal, with flat, somewhat thickened and darkened loci. Conidia solitary, olivaceous to pale brown, thin-walled, smooth, straight or gently curved, mostly didymosporous, constricted at septum, with somewhat thickened, darkened and refractive hila.

Type species: Passalora bacilligera (Mont. \& Fr.) Mont. \& Fr. (三 Cladosporium bacilligerum Mont. \& Fr.).

Passalora bacilligera (Mont. \& Fr.) Mont. \& Fr., in Montagne, Sylloge generum specierumque cryptogamarum: 305. 1856. Fig. 15.
Basionym: Cladosporium bacilligerum Mont. \& Fr., in Montagne, Ann. Sci. Nat., Bot., Sér. 2, 6: 31. 1836.

Fig. 15. Passalora bacilligera (CBS 131547). A-G. Observations in vivo. A, B. Leaf spot symptoms on the host. C-E. Conidiophores and conidiogenous cells. F. Conidiogenous cell and conidium. G. Single conidia. Scale bars $=10 \mu \mathrm{~m}$.

Description in vivo (CBS H-20777): Leaf spots absent or yellowish green, angular, 1-2 mm diam, delimited by leaf veins. Caespituli hypophyllous, olivaceous to pale brown. Mycelium internal, consisting of hyaline, branched, septate, 1-2 $\mu \mathrm{m}$ diam hyphae. Stromata absent or only formed as small aggregations of a few swollen substomatal hyphal cells. Conidiophores medium brown, arising from stomata, in fascicles of up to 12 , unbranched or occasionally branched, straight to flexuous, usually up to 3-septate, occasionally with a single basal septum, $40-180 \times 3-3.5 \mu \mathrm{~m}$, geniculate at the apex. Conidiogenous cells integrated, terminal, somewhat swollen, 3-6.5 $\mu \mathrm{m}$ in width, polyblastic, proliferating sympodially, with conidiogenous loci flat, somewhat thickened and darkened, $1-2 \mu \mathrm{~m}$ diam. Conidia solitary, olivaceous to pale brown, thin-walled, smooth, straight or gently curved, basal cell ellipsoid-doliiform and obconical truncate without protruding, apical cell narrowly long-ellipsoid to subcylindrical, 21-68 \times $4.5-8.5 \mu \mathrm{~m},(0-) 1(-3)$-euseptate, constricted at basal septum, with hilum somewhat thickened, darkened and refractive, $1.5-2 \mu \mathrm{~m}$ diam.

Description in vitro (on V8; CBS 131547): Mycelium composed of hyaline to pale olivaceous brown, delicate hyphae, $2-2.5 \mu \mathrm{~m}$ width. Conidiophores macronematous, pale olivaceous brown to brown, simple or branched, straight to sinuous, smooth, paler towards the apex, 25-300 \times $2.5-3.3 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal, proliferating sympodially, polyblastic, conidiogenous loci located on the shoulders and the apex, slightly thickened and darkened, 2.5 $\mu \mathrm{m}$ diam. Conidia solitary, pale olivaceous brown to brown, cylindrical to obclavate, obconical truncate at the base, rounded or pointed at the apex, 13-37.5 $\times 2.5-5 \mu \mathrm{~m},(0-) 1$-euseptate, constricted at the septum, hilum slightly thickened, darkened and refractive, $2.5 \mu \mathrm{~m}$ diam.

Material examined: Poland, Hwozna Protected Area, Bialowieza National Park, on Alnus glutinosa, 20 Sep. 2011, D. Karasinski (epitype designated here CBS H-20777, MBT378570,
ex-epitype culture CBS 131547). France, Lyon, on Alnus glutinosa, 1828, Montagne 568 (lectotype designated here, Montagne 568, Ann. Sci. Nat., Bot., Sér. 2, 6: pl. 12, fig. 5. 1836, original illustration, MycoBank, MBT378569).

Notes: Passalora was the first genus introduced for cercosporoid hyphomycetes (Fries 1849) and a review of the taxonomical history of the genus has recently been published by Braun et al. (2013). In one of the most comprehensive examinations on this generic complex, Crous \& Braun (2003) concluded that various genera (e.g. Mycovellosiella, Phaeoramularia, Fulvia) should be merged under the oldest name Passalora. After this revision Passalora included cercosporoid species with solitary, fasciculate to synnematous conidiophores and conidia formed singly or in chains, but in all cases with conspicuous (thickened and darkened) conidiogenous loci (scars) and mostly non-scolecosporous, pigmented conidia. This new concept was also supported by first molecular sequence analyses (Crous et al. 2000, 2001b). However, with the addition of more species and more phylogenetic markers, Passalora s. lat. has proven to be para- or polyphyletic (Thomma et al. 2005, Crous et al. 2009b, d, 2013a). In addition, the type species has not been subjected to DNA sequence analyses before, and the passalora-like clades distributed throughout the Mycosphaerellaceae are not clearly connected with morphological groups within Passalora (e.g. mycovellosiella-like). In this study, we propose a good candidate for the epitypification of the type species of Passalora (CBS 131547). Phylogenetically, this strain forms a single species clade in all phylogenetic analyses performed (Fig. 1, clade 34; Fig. 2, clade 22), but without a strong link to other genera. With the additional epitypification of the type species of Fulvia (Fulvia fulva; Fig. 1, clade 59), Mycovellosiella (Mycovellosiella cajani; Fig. 1, clade 7) and Phaeoramularia (Phaeoramularia gomphrenicola; Fig. 1, clade 61), these names are resurrected and applied to different monophyletic clades and are no longer regarded as synonyms of Passalora s. str. The value of features such as mycelium internal and/or external, conidia solitary or in chains, remains doubtful and barely applicable for the discrimination of cercosporoid genera. Morphologically, Passalora s. str. is rather different from common passalora-like species (Fig. 15), in having sparsely septate, flexuous conidiophores, and predominantly smooth, olivaceous, $1-2$-septate conidia constricted at the basal septum, with somewhat to distinctly thickened, darkened, and refractive loci. The placement of the hundreds of passalora-like species that are not known from their DNA is not yet possible, and these would for the interim have to be retained in Passalora s. lat. as a wide, morphologically circumscribed genus, pending cultures and re sults of DNA sequence analyses.

Clade 35: Zymoseptoria

Zymoseptoria Quaedvlieg \& Crous, Persoonia 26: 64. 2011.
Description (from Quaedvlieg et al. 2011): Conidiomata pycnidial, semi-immersed to erumpent, dark brown to black, subglobose, with central ostiole; wall of 3-4 layers of brown textura angularis. Conidiophores hyaline, smooth, 1-2-septate, or reduced to conidiogenous cells, lining the inner cavity. Conidiogenous cells tightly aggregated, ampulliform to doliiform or subcylindrical, phialidic with periclinal thickening, or with 2-3 inconspicuous, percurrent proliferations at apex. Type I conidia solitary, hyaline, smooth, guttulate, narrowly cylindrical to subulate, tapering towards acutely rounded apex, with bluntly rounded to truncate base, transversely euseptate, with unthickened and colourless hila. On OA and PDA aerial hyphae disarticulate into phragmospores (Type II conidia), that again give rise to Type I conidia via
microcyclic conidiation; yeast-like growth and microcyclic conidiation (Type III conidia) common on agar media.

Type species: Zymoseptoria tritici (Desm.) Quaedvlieg \& Crous (三 Septoria tritici Desm.).
Zymoseptoria tritici (Desm.) Quaedvlieg \& Crous, Persoonia 26: 67. 2011.
Basionym: Septoria tritici Desm., Ann. Sci. Nat., Bot., Ser. 2, 17: 107. 1842.
Description and illustration: Quaedvlieg et al. (2011).
Materials examined: France, on Triticum sp. (holotype of Septoria tritici; PC). Germany, Oestrich, on Triticum repens, Fuckel, Fungi Rhen. Exs. no. 1578 (isotype of Mycosphaerella graminicola, L). Netherlands, Brabant West, on Triticum aestivum, coll. R. Daamen, 6 May 1981, isol. as single conidium, W. Veenbaas, 810507/1, 7 May 1981 (epitype designated by Quaedvlieg et al. 2011, CBS H-20545, including sexual morph material on Triticum leaf of heterothallic mating IPO 323 (MAT 1-1) \times IPO 94269 (MAT 1-2), culture ex-epitype IPO 323 $=$ CBS 115943).

Notes: Zymoseptoria was introduced to include septoria-like species from graminaceous hosts that did not cluster with the type of Septoria s. str. in the phylogenetic analysis (Quaedvlieg et al. 2011). In addition, Zymoseptoria is morphologically distinct from Septoria by its yeast-like growth in culture, and by producing up to three different conidial types (Type I-pycnidial conidia; Type II-phragmospores on aerial hyphae; Type III— yeast-like growth proliferating via microcyclic conidiation). In the phylogenetic analyses in the present study, Zymoseptoria species cluster within the Mycosphaerellaceae (Fig. 1, clade 35; Fig. 2, clade 36) and close to Ramularia, as observed in previous studies (Quaedvlieg et al. 2013, Stukenbrock et al. 2012, Videira et al. 2016). Zymoseptoria currently comprises seven species including Zymoseptoria tritici, the causal agent of septoria tritici blotch on wheat, and Zymoseptoria passerinii, the causal agent of septoria speckled leaf blotch of barley, which are important crop pathogens responsible for severe yield losses (Stukenbrock et al. 2012).

Clade 36: Xenoramularia

Xenoramularia Videira et al., Stud. Mycol. 83: 96. 2016.
Description (from Videira et al. 2016): Phytopathogenic, causing leaf spots. Mycelium composed of hyaline, septate, branched hyphae. Conidiophores hyaline to pigmented, solitary, simple, straight or slightly curved, often reduced to conidiogenous cells, thin-walled, smooth. Conidiogenous cells hyaline, integrated in the mycelium or terminal in the conidiophores, subcylindrical to geniculate-sinuous, with one or multiple thickened but not darkened conidiogenous loci. Conidia hyaline, thin-walled, smooth, formed singly or catenate, aseptate or 1-septate, subcylindrical, apex obtuse to subacute, base truncate; hila thickened but not darkened.

Type species: Xenoramularia polygonicola Videira et al.

Xenoramularia polygonicola Videira et al., Stud. Mycol. 83: 98. 2016.
Description and illustration: Videira et al. (2016).
Materials examined: Republic of Korea, Pyeongchang, on Polygonum sp., 20 Sep. 2003, H.D. Shin (holotype KUS F19688, isotype CBS H-22541, culture ex-type CBS $141102=$ CPC 10852); idem., cultures CPC 10853, CPC 10854.

Notes: The genus Xenoramularia was recently introduced in the Mycosphaerellaceae to accommodate a group of species that was phylogenetically closely related to Zymoseptoria and Ramularia (Videira et al. 2016) but morphologically distinct. The phylogeny in the present work agrees with the previous results (Fig. 1, clade 36; Fig. 2, clade 37). Xenoramularia can be morphologically distinguished from Ramularia by having conidiogenous loci that are thickened, but not darkened and refractive and differs from Zymoseptoria by not forming acervular conidiomata and producing only one type of conidia.

Clade 37: Ramularia

Ramularia Unger, Exanth. Pflanzen (Wien): 169. 1833. emend. U. Braun (nom. cons.). Synonyms: Didymaria Corda, Icon. fung. (Prague) 5: 9. 1842.
Phacellium Bonord., in Rabenh., Fungi Eur. Exs., Edn. 2, Ser. 2: no. 288. 1860.
Acrotheca Fuckel, Jahrb. Vereins Naturk. Herzogth. Nassau 15: 43. 1860.
Septocylindrium Bonord. ex Sacc., Michelia 2: 15. 1880.
Ovularia Sacc., Michelia 2: 17. 1880.
Mycosphaerella Johanson, Öfvers. Kongl Vetensk-Akad. Förh,. 41(9): 163. 1884, s. str.
Ophiocladium Cav., Z. Pflanzenkrankh. 3: 26. 1893.
Pseudovularia Speg., Anales Mus. Nac. Buenos Aires, Ser. 3, 20: 418. 1910.
For additional synonyms see Braun (1998) or Videira et al. (2016).
Description (from Videira et al. 2016): Mostly phytopathogenic (leaf spots, chlorosis or necrosis), sometimes saprobic or mycophilic. Conidiophores individual or synnematous, sometimes forming small to sporodochial caespituli, emerging through stomata or through the cuticle, straight, subcylindrical to geniculate-sinuous, continuous or septate, hyaline or in some species with a faintly reddish tinge, occasionally branched, thin-walled, usually smooth but rarely rough. Conidiogenous cells integrated, terminal, polyblastic, sympodially elongating, straight to geniculate-sinuous, conidiogenous loci conspicuously thickened, darkened and refractive, coronate (cladosporoid). Conidia consistently solitary or in simple or branched chains, solitary conidia $0-1$-septate, catenate conidia aseptate to multiseptate (mostly 1-4 eusepta), hyaline, in a few species with a faintly reddish tinge, usually ellipsoid-ovoid, cylindrical-fusiform, rarely filiform, occasionally constricted at the septa, thin-walled, smooth to verruculose-echinulate, hila distinct, slightly to conspicuously thickened, darkened, refractive; conidial secession schizolytic.

Type species: Ramularia pusilla Unger.

Ramularia pusilla Unger, Exanth. Pflanzen: 169. 1833.
Synonyms: Caeoma pusilla (Unger) Bonord., Handb. Mykol.: 41. 1851.

Ovularia pusilla (Unger) Sacc., Syll. Fung. 4: 140. 1886.
Ramularia pulchella Ces., Bot. Zeitung (Berlin) 11: 238. 1853.
For additional synonyms see Braun (1998), Braun et al. (2015a) or MycoBank.
Descriptions and illustrations: Braun (1998), Kirschner (2009), Braun et al. (2015a), Videira et al. (2016).

Materials examined: Austria, on Poa nemoralis, Unger, Exanth. Pfl., Pl. II, fig. 12, (lectotype [iconotype] see Braun 1998). Germany, Frankfurt am Main, Botanical Garden, on leaves of Poa annua, 25 Feb. 2008, R. Kirschner (epitype designated by Videira et al. 2016, CBS $\mathrm{H}-22527$, culture ex-epitype CBS $124973=$ RoKi 3143).

Notes: Species of Ramularia are phytopathogenic and mostly cause leaf spots but they can also be endophytic, saprobic and mycophilic. There are about 325 species accepted in this genus (Braun 1998) of which only six have thus far been experimentally linked to a Mycosphaerella sexual morph (Videira et al. 2015b). Currently Ramularia is accepted as being a host-specific genus of phytopathogenic fungi (Braun 1998), although some exceptions are known (e.g. Ramularia vizellae, Videira et al. 2015b). Ramularia pusilla is the type species of the genus Ramularia and has a broad host range within the family Poaceae and a worldwide distribution (Braun 1998). Phylogenetically, species of Ramularia s. str. cluster in a well-supported clade (Fig. 1, clade 37; Fig. 2, clade 35) as observed in a previous study (Videira et al. 2016).

Clade 38: Paracercosporidium

Paracercosporidium Videira \& Crous, gen. nov. MycoBank MB822601.
Etymology: Morphologically similar to Cercosporidium.
Description: Phytopatogenic. Mycelium internal, hyaline, smooth. Stromata small, composed of few dark brown cells, or medium in size, mainly hypophyllous, substomatal, dark brown. Conidiophores loosely fasciculate, emerging from stromata, pale to dark brown, paler towards the apex, thin- to thick-walled, cylindrical, mildly to strongly geniculate, simple or branched. Conidiogenous cells integrated, terminal or intercalary, polyblastic, proliferating sympodially, with rim-like conidiogenous loci, thickened and darkened, located at the shoulders and apex. Conidia solitary, hyaline to pale olivaceous brown, thick-walled, cylindrical to obclavate, rounded at the apex, usually tapering towards the base, sometimes swollen at the base or truncate, hila rim-like, darkened and refractive.

Type species: Paracercosporidium microsorum (Sacc.) U. Braun et al. (\equiv Cercospora microsora Sacc.).

Paracercosporidium microsorum (Sacc.) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822819. Fig. 16.
Basionym: Cercospora microsora Sacc., Michelia 2(6): 128. 1880.
Synonyms: Passalora microsora (Sacc.) U. Braun, Mycotaxon 55: 233. 1995.
Cercospora microsora var. tiliae-platyphyllae Roum., Rev. Mycol. 16: 109. 1894.
Cercospora exitiosa Syd. \& P. Syd., Ann. Mycol. 4(6): 485. 1907.

Fig. 16. Paracercosporidium microsorum (CPC 15550). A-E. Observations in vivo. A, B. Leaf spot symptoms on the host. C, D. Conidiophores, conidiogenous cells and conidia. E. Conidia. F-I. Observations in vitro. F. Culture on OA. G, H. Conidiophore, conidiogenous cells and conidia. I. Conidiogenous cells and conidia. Scale bars $=10 \mu \mathrm{~m}$.

Cercospora zahariadii Svavul. \& Sandu, Hedwigia 75: 226. 1935.
Mycosphaerella microsora Syd. \& P. Syd., Ann. Mycol. 38: 465. 1940.
Sphaerella microsora (Syd. \& P. Syd.) Sandu, Ciuperci Pyrenomycetes-Sphaeriales din România: 135. 1971.

Description in vivo: Leaf spots scattered, amphigenous, dark brown, later bown with dark brown border, irregular to angular, vein-limited, $1-3 \mathrm{~mm}$ in size. Caespituli amphigenous, pale brown, effuse. Mycelium internal, hyphae hyaline, smooth. Stromata small, composed of few dark brown cells, or medium in size and up to $40 \mu \mathrm{~m}$ diam, amphigenous, mainly hypophyllous, substomatal, dark brown. Conidiophores loosely fasciculate, emerging from upper part of stromata, dark brown to pale, paler towards the apex, thick-walled, cylindrical, well-geniculate due to sympodial proliferation, $20-98 \times 5-6.5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal or intercalary, polyblastic, proliferating sympodially, with conidiogenous loci rim-like, darkened and thickened, located at the shoulders and apex, $1.5-2.5 \mu \mathrm{~m}$ diam. Conidia solitary, hyaline to pale olivaceous brown, thick-walled, cylindrical to obclavate, obconicaly truncate and thickened at the base, rounded at the apex, 24-66 $\times 5-7.5 \mu \mathrm{~m}, 1-5$-septate, hila thickened and darkened, $1.5-2.5 \mu \mathrm{~m}$ diam.

Description in vitro (on SNA; CPC 15550): Mycelium composed of hyaline to pale brown hyphae, uniform in width, smooth, $1.5-2 \mu \mathrm{~m}$. Conidiophores macronematous, pale to pale brown,
smooth, straight to well-geniculate due to sympodial proliferation, simple or branched, 25-90 $\times 3-5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal or intercalary, proliferating sympodially, mono- or polyblastic, with rim-like conidiogenous loci, thickened, darkened and refractive, located on the shoulders and the apex, $2-2.5 \mu \mathrm{~m}$ diam. Conidia solitary, hyaline to pale brown, cylindrical to obclavate, obconically truncate at the base, rounded at the apex, $1-53 \times 3-5 \mu \mathrm{~m}$, indistinctly 1-6-euseptate, hilum slightly thickened, darkened and refractive, $2-2.5 \mu \mathrm{~m}$ diam.

Materials examined: Czech Republic, Moravia, Veltice, Forest of Rendez Vous, leaf spot on Tilia sp., 16 Sep. 2008, G. Verkley, culture CBS 123735. Netherlands, Z. Flevoland, Zeewolde, Hulkesteynse bos, old leaves of Tilia cordata (after hibernation), 1 Apr. 1998, H.A. van der Aa No. 12451, culture CBS 101017; same location, leaf spot of Tilia cordata, 19 Oct. 1997, H.A. van der Aa No. 12409, culture CBS 100352. Romania, Bucuresti, on Tilia tomentosa, isol. O. Constantinescu, 16 Jun. 1965, culture CBS 254.67; Bucuresti, Mogosoaia, on Tilia platyphyllos, 8 Oct. 1969, O. Constantinescu, CBS H-9853, culture CBS 552.71 = BUCM 2014. Ukraine, Donetsk, Svjatie Gory, vicinities of Svjatogorsk, National Nature Park, floodplain forest on the left bank of Seversky Donets river, on Tilia cordata, 18 Jul. 2008, A. Akulov (epitype designated here CBS H-22942, MBT378695, ex-epitype culture CBS 142176 = CPC 15550); [lectotype designated here, MycoBank, MBT378694, PAD, Letendre sin. num.; see notes below].

Notes: The genus Paracercosporidium is hereby introduced to accommodate two species from the host Tilia that, due to the obclavate-like morphology of their conidia, were previously placed in Passalora but cluster apart from the type species Passalora bacilligera in a well-supported clade (Fig. 1, clade 38; Fig. 3, clade 3). In literature, only two species of passalora-like fungi have been described from the host Tilia, namely Passalora microsora and Passalora tiliae (Y.L. Guo \& X.J. Liu) U. Braun \& Crous (\equiv Tandonella tiliae Y.L. Guo \& X.J. Liu). While the latteris only known from China, the first has a worldwide distribution (Crous \& Braun 2003). In the description of Passalora microsora, the size of the conidiophores, $10-40 \times 2-3.5(-5)$ $\mu \mathrm{m}$, and conidia ($20-60 \times 2.5-4 \mu \mathrm{~m}$, rarely $80 \times 5 \mu \mathrm{~m}$, as large as $100 \times 6 \mu \mathrm{~m}$) of observed specimens can vary significantly (Chupp 1954). Based on the phylogenetic analyses, two clades representing two species can be observed, one including strains from Europe and the other with strains from Canada, for which the name Cercospora tiliae, based on type material on Tilia americana collected in Vermont, USA, is available. Morphologically, these two species are quite similar, but differ in vivo as in Paracercosporidium microsorum (Fig. 16) conidiophores are shorter and once abruptly geniculate, while Paracercosporidium tiliae (Fig. 17) has longer conidiophores which are strongly geniculate. The DNA sequences representative of each species clade differ one base pair on LSU, three base pairs on ITS and 21 base pairs on rpb2. According to Klebahn (1918), Passalora microsora is the asexual morph of Mycosphaerella millegrana. However, Sydow (1940) stated that this species is not the asexual morph of Mycosphaerella millegrana and described the true sexual morph as Mycosphaerella microsora (Tomilin 1979). The epitypification requires the citation of the type. However, the typification needs a detailed discussion and clarification. Chupp (1954: 565) mentioned: "No definite type given. Saccardo states it is common on Tilia europaea and Tilia americana in Europe and America." This is not correct and, although not mentioned by Chupp (1.c.), undoubtedly refers to Saccardo (1886). Saccardo (1880b) described this species in a paper dealing with specimens collected by P. Brunaud, Abb. Letendre, A. Malbranche, and J. Therry in Roumeguère's under no. 1041, so that specimens collected in France by the persons concerned represent potential syntypes. However,
the number cited in Saccardo (1880b) does not refer to "Roum., Fungi Sel. Gall. Exs. 1041" which is a collection of Torula herbarum f. solani-pseudocapsici. A collection of Cercospora microsora was issued as "Roum., Fungi Sel. Gall. Exs. 2062" [France, Parc du Grand-Quévilly (Seine-Inf.), on Tilia \times europaea, Automne 1881, Rev. Abb. Letendre (e.g. BPI, FH, PC, PAD)] containing a copy of Saccardo's original description, but this gathering cannot be considered original material since it had been collected in 1881, i.e. one year after Saccardo's original publication. However, there is a sample in Saccardo's herbarium collected by Letendre that can be designated as lectotype.

Paracercosporidium tiliae (Peck) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822772. Fig. 17.
Basionym: Cercospora tiliae Peck, Bot. Gaz. 6(10): 277. 1881.
Description in vivo: Leaf spots scattered, amphigenous, dark brown, irregular to angular, vein-limited, $1-3 \mathrm{~mm}$ in size. Caespituli amphigenous, pale brown, effuse. Mycelium internal, hyaline, smooth. Stromata composed of a few dark brown cells, up to $30 \mu \mathrm{~m}$ diam, amphigenous, mainly hypophyllous, substomatal. Conidiophores emerging from upper part of stromata in dense fascicles, pale brown, thick-walled, cylindrical, straight or slightly curved, 35-85 $\times 3-4$ $\mu \mathrm{m}$. Conidiogenous cells integrated, polyblastic, terminal, proliferating sympodially, with rimlike conidiogenous loci, thickened and darkened, located at the shoulders and apex, 1.5-2.6 $\mu \mathrm{m}$ diam. Conidia single, hyaline to pale olivaceous, cylindrical to obclavate, obconicaly truncate at the base, rounded at the apex, thick-walled, $15.5-54 \times 2-4 \mu \mathrm{~m}, 1-5$-septate, $1.5-2 \mu \mathrm{~m}$ diam.

Fig. 17. Paracercosporidium tiliae (CBS 112734). A-E. Observations in vivo. A, B. Leaf spot symptoms on the host. C. Conidiophores. D. Conidiophores, conidiogenous cells and conidia. E. Conidia. F-J. Observations in vitro. F. Culture on V8. G, H. Conidiophore, conidiogenous cell and conidia. I. Conidiophore. J. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Description in vitro (on SNA; CPC 112734): Mycelium hyaline, hyphae uniform in width, smooth, $1.5-2 \mu \mathrm{~m}$. Conidiophores macronematous, pale to pale brown, smooth, straight to well-geniculate due to sympodial proliferation, $35-87 \times 2.5-3.5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal or intercalary, proliferating sympodially, mono- or polyblastic, with rimlike conidiogenous loci, thickened, darkened and refractive, located on the shoulders and the apex, 2-2.5 $\mu \mathrm{m}$ diam. Conidia solitary, hyaline to pale, cylindrical to obclavate, $15-40 \times 2-3$ $\mu \mathrm{m}$, indistinctly $1-6$-euseptate, obconically truncate at the base, with slightly thickened and refractive hilum, $1.5-2 \mu \mathrm{~m}$ diam.

Materials examined: Canada, Ottawa, on Tilia americana, 30 Aug. 2000, K.A. Seifert (epitype designated here CBS H-22943, MBT378600, ex-epitype culture CBS 112734 = CPC 3952); idem. culture CBS 115526 = CPC 3953. USA, Vermont, Charlotte, on Tilia americana, June 1881, C.G. Pringle (holotype NYS-F-3187).

Note: See notes under Paracercosporidium microsora.

Clade 39: "Sirosporium"

Sirosporium celtidis (Biv.) M.B. Ellis, Mycol. Pap. 87: 4. 1963.
Basionym: Monilia celtidis Biv., Stirp. Rar. Sicilia 3: 18. 1815.
Synonyms: Gyrocerus celtis (Biv.) Mont. \& Ces., Syll. Gen. Sp. Crypt.: 308. 1856.
Helicoceras celtidis (Biv.) Linder, Ann. Missouri Bot. Gard. 18: 3. 1931.
For additional synonyms see MycoBank.
Descriptions and illustrations: Chupp (1954), Ellis (1971).
Materials examined: Algeria, on Celtis australis, Nov. 1923, C. Killian, dep. 1925, culture CBS 158.25. Italy, Rome, on C. australis, Aug. 1949, V. Mezzetti, dep. 1950, culture CBS 289.50. Portugal, unknown host, date and collector, dep. Estação Agronómica Nacional (Sacavém), 1948, culture CBS 238.48.

Notes: The species Sirosporium celtidis is based on Monilia celtidis, which was described from the host Celtis australis, probably from Sicily (Italy), although it is not clearly stated in the original publication, and the herbarium specimen could not be located. The species has previously been reported from Algeria, India, Israel, Italy, Japan, Morocco, Portugal, Taiwan and Turkey (Crous \& Braun 2003). The cultures observed in this study are presently sterile, but at the time they were collected, the strains CBS 158.25 and CBS 289.50, were subjected to a thorough morphological characterisation (Killian 1925, Mezzetti 1950). The morphological description agrees with more recent treatments of the genus Sirosporium (Chupp 1954, Ellis 1971). Sirosporium celtidis differs from the type of Sirosporium, Sirosporium antenniforme, by producing conidiophores with thin walls and producing longer and narrower conidia that only rarely show $1-2$ longitudinal septa (Ellis 1971). Since there are no cultures available of Sirosporium antenniforme, the precise phylogenetic position of the genus remains unresolved. The present strains cluster in a well supported clade in the pylogenetic analyses (Fig. 1, clade 39; Fig. 3, clade 4).

Clade 40: Cercosporidium

Cercosporidium Earle, Muhlenbergia 1: 16. 1901, emend.
Description: Foliicolous. Mycelium internal, hyaline to pale olivaceous brown, or dark brown. Stromata small to developed, olivaceous brown to brown. Conidiophores solitary or in fascicles, micro- to macronematous, sometimes irregular in width, very pale to olivaceous brown, smooth to rough, simple or branched, straight to geniculate-sinuous, sometimes reduced to conidiogenous cells. Conidiogenous cells terminal, proliferation sympodial or percurrent, mono- or polyblastic, with conidiogenous loci slightly to distinctly thickened and darkened. Conidia solitary in vivo, rarely catenate in vitro, hyaline to pale olivaceous, smooth to verruculose, thick-walled, cylindrical, ovoid, obovoid or obclavate, straight or slightly curved, slightly thickened, truncate or short obconical truncate at the base, broadly rounded or beak-like at the apex, euseptate, hilum thickened, darkened and refractive.

Type species: Scolicotrichum euphorbiae Tracy \& Earle (= Cercosporidium chaetomium (Cooke) Deighton; 三 Cladosporium chaetomium Cooke).

Cercosporidium californicum (S.T. Koike \& Crous) Videira \& Crous, comb. nov. MycoBank MB822747. Fig. 18.
Basionym: Passalora californica S.T. Koike \& Crous, IMA Fungus 2: 8. 2011.
Description (adapted from Koike et al. 2011): Phytopathogenic, causing black and irregular leaf spots. Stroma amphigenous, globose, brown, $10-30 \mu \mathrm{~m}$ long and $30-100 \mu \mathrm{~m}$ wide. Conidiophores arising from stroma in dense sporodochia, brown, verruculose, subcylindrical, mostly straight, at times geniculate-sinuous, $15-25 \times 3-8 \mu \mathrm{~m}$, occasionally up to $100 \mu \mathrm{~m}$ long and $4-5 \mu \mathrm{~m}$ wide, frequently reduced to conidiogenous cells. Conidiogenous cells terminal, integrated, brown, verruculose, subcylindrical, straight or geniculate-sinuous, usually $10-15$ $\times 4-6 \mu \mathrm{~m}$, occasionally $15-35 \times 4-5 \mu \mathrm{~m}$, conidiogenous loci apical and lateral, thickened, darkened and refractive, $1-1.5 \mu \mathrm{~m}$ diam. Conidia solitary, brown, verruculose, guttulate, obclavate to subcylindrical, apex obtusely rounded, base obconically truncate, (32-)55-95($180) \times(4-) 5-6 \mu \mathrm{~m},(1-) 3-5(-9)$-septate, hilum darkened, thickened and refractive, $2 \mu \mathrm{~m}$ diam.

Materials examined: USA, California, Santa Clara County, on leaves of Asclepias fascicularis, 19 Jul. 2010, S.T. Koike (holotype CBS H-20512, ex-type cultures CBS 128857 = CPC 18389); idem. cultures CPC 18390, CPC 18391.

Notes: Including Cercosporidium californicum (Fig. 18), several passalora-like species are known from the host genus Asclepias, namely Passalora clavata var. clavata, Passalora clavata var. hansenii, Passalora venturioides and Passalora elaeochroma (Braun \& Mel'nik 1997, Koike et al. 2011). Unfortunately, no cultures of the previous species were available for this study and their phylogenetic position will remain unknown until they are recollected and their DNA analysed. In a phylogenetic analysis based on LSU data, Cercosporidium californicum was described (as Passalora californica) as closely related to Passalora arachidis (as Mycosphaerella arachidis) (Koike et al. 2011). In this study, the phylogenetic analyses place Cercosporidium californicum strains in a well-supported clade closely related to Cercosporidium miurae (Fig. 1, clade 40; Fig. 3, clade 5).

Fig. 18. Cercosporidium californicum (CBS 128857). A-D. Observations in vivo. A. Leaf spot symptoms on the host. B. Conidiophores, conidiogenous cells and conidia. C. Conidiophores and conidiogenous cells. D. Conidia. E-J. Observations in vitro. E. Culture on V8. F. Mycelium producing red pigment inside the cells and outside. G, I. Conidiophore, conidiogenous cell and conidia. H, J. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Cercosporidium chaetomium (Cooke) Deighton, Mycol. Pap. 112: 27. 1967. Fig. 19.
Basionym: Cladosporium chaetomium Cooke, Grevillea 17(83): 66. 1889.
Synonyms: Scolicotrichum euphorbiae Tracy \& Earle, Bull. Torrey Bot. Club 23(5): 209. 1896. Pyricularia euphorbiae (Tracy \& Earle) G.F. Atk., Bull. Cornell Univ. (Science) 3(1): 40. 1897. Passalora chaetomium (Cooke) Arx, Proc. K. Ned. Akad. Wet., Ser. C, Biol. Med. Sci. 86(1): 44. 1983.

For additional synonyms see MycoBank.
Description in vivo (CBS H-22944): Phytopathogenic, causing small leaf spots, brown to reddish brown with purplish brown border, circular to subcircular, $2-3 \mathrm{~mm}$ diam. Caespituli amphigenous, olivaceous, effuse. Mycelium internal, hyaline, pale to pale olivaceous brown, or dark brown. Stromata amphigenous, substomatal, epidermal, olivaceous brown to brown, small to well developed, 15-90 $\mu \mathrm{m}$ diam. Conidiophores erumpent through the cuticule, or emerging from stomata, solitary or in dense fascicles, smooth, thick-walled, very pale to olivaceous brown, paler towards the apex, simple, cylindrical, straight, sinuous to geniculate, irregular in width, $17-45 \times 3.5-8 \mu \mathrm{~m}$, sometimes reduced to conidiogenous cells. Conidiogenous cells terminal, proliferating sympodially or percurrently, polyblastic, with rim-like conidiogenous loci, slightly thickened and darkened, located on the shoulders and apex, $2-3 \mu \mathrm{~m}$ diam. Conidia solitary, hyaline to pale olivaceous, smooth to verruculose, thick-walled, ovoid, cylindrical,

Fig. 19. Cercosporidium chaetomium (CBS 142177). A-D. Observations in vivo. A. Leaf spot symptoms on the host. B. Conidiophores, conidiogenous cells and conidia. C. Conidiophores and conidiogenous cells. D. Single conidia. E-J. Observations in vitro. E. Culture on OA. F. Conidiophore and conidiogenous cell. G-J. Conidiophore, conidiogenous cell and conidia. Scale bars $=10 \mu \mathrm{~m}$.
straight or slightly curved, base obconically truncate, apex broadly rounded or beak-shaped, $26-48 \times 3.5-5 \mu \mathrm{~m}, 0-3$-euseptate, hila slightly thickened and darkened, $2-3 \mu \mathrm{~m}$ diam.

Description in vitro (on V8; CPC 18624): Mycelium hyaline to pale olivaceous brown, smooth to rough, uniform to variable in width, $2-3 \mu \mathrm{~m}$, sometimes constricted at septa. Conidiophores micro- or macronematous, straight or mildly sinuous, simple or branched, pale to pale olivaceous brown, 2.5-250 $\times 2.5-5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal and intercalary, proliferating sympodially, mono- or polyblastic, with conidiogenous loci slightly thickened and darkened, 2-2.5 $\mu \mathrm{m}$ diam. Conidia solitary or catenate, hyaline to pale olivaceous brown, smooth to rough, cylindrical to obclavate, long-obconically truncate at the base, rounded or beak-like at the apex, $10-75 \times 2.5-5 \mu \mathrm{~m}$, indistinctly $0-5$-euseptate, slightly constricted at septa, hila slightly thickened and darkened, $2-2.5 \mu \mathrm{~m}$ diam.

Materials examined: Canada, Ontario, Guelph, on Euphorbia sp., 28 Sep. 2010, P.W. Crous \& K.A. Seifert (epitype designated here CBS H-22944, MBT378571, ex-epitype culture CBS 142177 = CPC 18624). USA, New Jersey, Newfield, on leaves of Euphorbia sp., J.B. Ellis No. 2289 (holotype K; isotype IMI 118400).

Notes: Several researchers have discussed the taxonomic position of the genus Cercosporidium to date (Deighton 1967, Ellis 1971, Arx 1983, Braun 1995, Baker et al. 2000, Crous \& Braun

Fig. 20. Cercosporidium helleri (NY00945740). A-E. Observations in vivo. A. Leaf spot symptoms on the host. B, D. Conidiophores, conidiogenous cells and conidia. C. Partial conidiophore, conidiogenous cell and conidia. E. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

2003, Braun et al. 2013). The genus was described by Earle (1901: 16) who designated Scoletotrichum euphorbiae as type of the genus ["As the type of this genus I take the species published as Scoletotrichum (?) euphorbiae Tracy \& Earle, Bull. Torr. Bot. Club, 23: 209, also as Piricularia euphorbiae (T. \& E.) Atkinson, Bull. Cornell univ. 3: 40"]). Deighton (1967) stated that although Earle (1901) designated Scoletotrichum euphorbiae as the type species of Cercosporidium, he did not validly publish the combination in the genus. Deighton (1967) published a revised description of the genus and introduced a combination of the older name Cladosporium chaetomium into Cercosporidium. Subsequent authors followed this treatment (Baker et al. 2000, Crous \& Braun 2003). However, Braun et al. (2013) cited Cercosporidium helleri Earle (Fig. 20), described on Sphenoclea zeylanica from Puerto Rico [lectotype (designated here), MBT378572, Puerto Rico, near Añasco, 6 Feb. 1900, A.A. Heller, Plants of Porto Rico 4537 (NY00945749); isolectotypes e.g. in BPI, CHRB, CUP, F, FH, MSC, NEB, NY, UC], as type species of Cercosporidium. Cercosporidium helleri was described as a new species on the same page as the genus was introduced (Earle 1901) and represents the only species in the original publication with description and with a name affiliated with Cercosporidium, which was the source of the error in the type citation in Braun et al. (2013). The status of the genus Cercosporidium was extensively debated over the years with some authors defending Cercosporidium as a synonym of Passalora (Arx 1983, Castañeda \& Braun 1989, Braun 1995), while other authors (Pons \& Sutton 1996, Baker et al. 2000) defended Cercosporidium as a recognisably distinct genus (for extensive arguments see Baker et al. 2000). From the results of exhaustive phylogenetic analyses and morphological observations of passalora-like fungi in this study, the genus Cercosporidium is resurrected here (Fig 1, clade 40; Fig. 3, clade 5), typified by Scolicotrichum euphorbiae (= Cercosporidium chaetomium), with a well-developed stroma, and geniculate-sinuous conidiophores with rim-like conidial loci, conidia solitary, subcylindrical to obclavate, pale coloured, relatively thick-walled, smooth to verruculose surface, and darkened hila (Fig. 19).

Cercosporidium miurae (Syd. \& P. Syd.) X.J. Liu \& Y.L. Guo, Acta Mycol. Sinica 1(2): 98. 1982. Fig. 21.

Basionym: Cercospora miurae Syd. \& P. Syd., Ann. Mycol. 11: 117. 1913.
Synonyms: Cercosporiopsis miurae (Syd. \& P. Syd.) Miura, Flora of Manchuria and East Mongolia. Part III. Cryptogams, fungi 3: 533. 1928.
Passalora miurae (Syd. \& P. Syd.) U. Braun \& H.D. Shin, Mycotaxon 49: 354. 1993.

Fig. 21. Cercosporidium miurae (CPC 14628). A-E. Observations in vitro. A. Culture on V8. B-D. Conidiophore, conidiogenous cell and conidia. E. Single conidia. Scale bars $=10 \mu \mathrm{~m}$.

Passalora miurae (Syd. \& P. Syd.) Poonam Srivast., J. Living World 1(2): 117. 1994.
Description in vivo: Leaf spots indistinct, yellowish brown, $1-5 \mathrm{~mm}$. Mycelium internal, hyaline to pale brown, smooth. Caespituli hypophyllous, effuse. Stromata lacking or small, composed of few brown cells, stomatal. Conidiophores emerging through the stroma, brown, thickwalled, smooth to rough, often rugged by the forming of numerous loci, straight, flexuous or geniculate, branched, $15-250 \times 5 \mu \mathrm{~m}$. Conidiogenous cells intercalary and terminal, proliferating sympodially, polyblastic, with rim-like conidiogenous loci, thickened and darkened, located on the apex or shoulders, $2-2.5 \mu \mathrm{~m}$ diam. Conidia solitary, pale brown, thick-walled, smooth to rough, obovoid, obclavate, cylindrical, straight to sharply curved, base obconicaly truncate, apex rounded or beak-like, 15-60 $\times 5-10 \mu \mathrm{~m}, 1-3$-septate, hilum slightly thickened and darkened, $2-2.5 \mu \mathrm{~m}$ diam.

Description in vivo (on OA; CPC 14628): Mycelium hyaline to brown, uniform in width, 2.5 $\mu \mathrm{m}$ diam. Conidiophores micro- or macronematous, pale brown to pale olivaceous brown, smooth to rough, septate, straight, geniculate-sinuous, $25-180 \times 2.5-3.8 \mu \mathrm{~m}$. Conidiogenous cells integrated, apical and intercalary, mono- or polyblastic, proliferating sympodially, with conidiogenous loci slightly thickened and darkened, $1-2.5 \mu \mathrm{~m}$ diam. Conidia solitary, pale brown to pale olivaceous brown, finely verruculose, ovoid, cylindrical, apex broadly rounded, base obconically truncate, $20-28 \times 3.8-10 \mu \mathrm{~m}, 1-3$-euseptate, occasionally constricted at septa, hilum slightly thickened loci and darkened, $1-2.5 \mu \mathrm{~m}$ diam.

Materials examined: Japan, Hokkaido, Sapporo, Yamahana, on Cynanchum caudatum, 15 Sep. 1907, M. Miura (holotype S F37417; isotype NIAES C-268); Iwate, on Cynanchum caudatum, 25 Sep. 1926, K. Togashi, CNS 426. Republic of Korea, on Metaplexis japonica, 1 Oct. 2007, H.D. Shin, CBS H-22945, culture CBS $142235=$ CPC 14628; on Metaplexis japonica, 22 Sep. 2007, H.D. Shin, culture CPC 14643.

Notes: The type species of Cercosporidium miurae was described from Cynanchum caudatum collected in Japan. The morphology of observed specimens and cultures (Fig. 21), originating from Metaplexis japonica, are in agreement with the description available in literature (Chupp 1954), and in line with the Cercosporidium generic description. Both host genera belong to the
family Asclepiadaceae. In the phylogenetic analyses, the two available strains cluster in a clade well-supported by all three phylogenetic methods employed (Fig. 1, clade 40; Fig. 3, clade 5).

Clade 41: Collarispora

Collarispora Videira \& Crous, gen. nov. MycoBank MB822584.
Etymology: Producing conidia with marginal frill.
Description: Phytopathogenic, causing leaf spots. Ascostromata amphigenous, black, erumpent through epidermis, thick-walled, composed of several layers of textura angularis, ostiole central, periphysate. Asci fasciculate, ellipsoid, straight to incurved, bitunicate, 8 -spored, with apical chamber. Ascospores hyaline, smooth, fusoid-ellipsoidal, medianly 1 -septate, guttulate, slightly incurved, widest just above septum, tapering towards both acutely rounded ends, thick-walled; ascospores germinate from both ends, germ tubes parallel to the long axis of the spore, lateral branches also developing, becoming constricted at median septum, but remaining hyaline. Mycelium consisting of hyaline, smooth, septate and branched hyphae. Conidiogenous cells terminal on hyphae, hyaline, subcylindrical, smooth, conidiogenous loci not thickened nor darkened. Conidia solitary, subcylindrical to narrowly obclavate, straight to flexuous, apex obtuse, base truncate, multiseptate, hila not thickened nor darkened, with visible marginal frill; with age conidia tend to become pale olivaceous and finely verruculose.

Type species: Collarispora valgourgensis (Crous) Videira \& Crous (三 Mycosphaerella valgourgensis Crous).

Collarispora valgourgensis (Crous) Videira \& Crous, comb. nov. MycoBank MB822752. Basionym: Mycosphaerella valgourgensis Crous, Persoonia 26: 151. 2011.

Description and illustration: Crous et al. (2011a).
Materials examined: France, Ardeche, Valgourge, Domaine Le Fraysse, N4435.4690 E00407.7100, on leaves of Yucca sp., 15 Jul. 2010, P.W. Crous (holotype CBS H-20593, culture ex-type CBS 129531 = CPC 18385). USA, Ohio, Columbus, on Malus sp., 29 Sep. 2005, M. Ellis, culture CBS 125311.

Notes: Collarispora valgourgensis was described based on both the sexual morph, which is mycosphaerella-like, and the asexual morph, which is pseudocercospora-like (Crous et al. 2011a, as Mycosphaerella valgourgensis). However, the asexual morph differed from Pseudocercospora by producing subcylindrical to narrowly obclavate conidia that are initially hyaline but later become pale brown and verruculose, with a basal marginal frill. The phylogenetic analyses place this strain in a well-supported clade (Fig. 1, clade 41; Fig. 3, clade 6) that is closely related to Cercosporidium as presently defined. According to Deighton (1967) and the morphological review presented in this study, the conidia in Cercosporidium can be narrowly obclavate and verruculose, but a basal marginal frill has not been observed. In a supplementary phylogenetic analysis performed using a smaller dataset (sequences in dataset 3 corresponding to Fig. 3, clades 1-15), this clade separates from the Cercospordium clade. Based on a BLAST comparison against the alignment, Collarispora valgourgensis CBS 129531 is $100 \%(473 / 473)$
identical to Amycosphaerella sp. CBS 111001 based on ITS and $92 \%(718 / 780)$ identical to Cercosporidium chaetomium CPC 18624 based on rpb2. The morphological differences and the instability of the phylogenetic position of these strains indicate that it is rather better to introduce this species into a new genus than combine it into Cercosporidium.

Clade 42: Neocercosporidium

Neocercosporidium Videira \& Crous, gen. nov. MycoBank MB822596.
Description: Phytopathogenic. Caespituli amphigenous, punctiform, scattered to dense, dark brown to blackish. Mycelium both internal and external, hyphae branched, septate, subhyaline to medium olivaceous brown, thin-walled, smooth. Stromata well-developed, substomatal to intraepidermal, immersed, brown to dark brown. Conidiophores arising from stromata, occasionally from superficial hyphae, in small to large and loose to dense fascicles, when dense almost coremioid, rarely solitary, smooth, olivaceous to dark olivaceous brown throughout or paler at the tips, thin-walled, erect, straight, subcylindrical to strongly geniculate-sinuous, simple or occasionally branched, sometimes reduced to conidiogenous cells. Conidiogenous cells integrated, terminal, proliferating sympodially, occasionally percurrently, conidiogenous loci minute but slightly thickened, darkened and refractive, front view resembling minute circles. Conidia solitary, subhyaline to pale olivaceous or brownish, smooth, thin-walled, multi-septate, obclavate-cylindrical, apex obtuse to subobtuse, base rounded to short obconically truncate, hila slightly thickened, darkened and refractive.

Type species: Neocercosporidium smilacis (Thüm.) U. Braun et al.
Neocercosporidium smilacis (Thüm.) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822765. Fig. 22.
Basionym: Cercospora smilacis Thüm., Contrib. Fl. Mycol. Lusit. 2: 14. 1879.
Synonyms: Passalora smilacis (Thüm.) U. Braun, Arnoldia 14: 30. 1997.
Cercospora smilacina Sacc., Michelia 2(7): 364. 1881.
Cercospora smilacis var. asperae Gonz. Frag., Trab. Mus. Nac. Ci. Nat., Ser. Bot. 9: 66. 1916.
Descriptions and illustrations: Ellis (1976), Braun et al. (2014).
Description in vitro (on SNA; CPC 19342): Mycelium hyaline to pale brown, $2.5-3 \mu \mathrm{~m}$ diam. Conidiophores emerging from hyphae or bunching large brown cells, micro- or macronematous, pale to pale olivaceous brown, multiseptate, cylindrical, straight to slightly curved, geniculatesinuous at the apex, often bearing microcyclic conidia, $7.5-125 \times 3.5-5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal, intercalary, mono- or polyblastic, proliferating sympodially, apex conically truncate, with conidiogenous loci thickened, darkened and protruding, 1.5-2.5 $\mu \mathrm{m}$ diam. Conidia solitary, subhyaline to pale olivaceous brown, often undergoing microcyclic sporulation, obclavate to long cylindrical, base obconically truncate, apex rounded and longbeak shaped, $32-120 \times 3.5-5 \mu \mathrm{~m}, 7-10$-euseptate, hilum thickened, darkened and refractive, $1.5-2.5 \mu \mathrm{~m}$ diam.

Materials examined: Italy, Sardinia, Monte Ferru, on Smilax aspera, 18 May 1971, W. Gams, CBS H-9864, culture CBS 556.71; Lazio, Viterbo, Selva del Lamone, Il sentiero dei Briganti,

Fig. 22. Neocercosporidium smilacis (CPC 19342). A-F. Observations in vitro. A. Culture on V8. B-D. Conidiophore, conidiogenous cell and conidia. E. Conidiogenous cell and conidia. F. Single conidia. Scale bars $=10 \mu \mathrm{~m}$.
on Smilax sp., 30 Apr. 2011, W. Gams, culture CPC 19342. Portugal, Algarve, Carvoeiro, leaf spot on Smilax aspera, 23 Jan. 2008, G. Verkley (epitype designated here MBT378573, CBS 122888, preserved as metabolically inactive); idem. cultures CBS 122889, CBS 122890, CBS 123352, CBS 123353); Coimbra, on Smilax aspera [mauritanica], May 1879, F. Moller, (lectotype designated by Braun et al. 2014, BPI 441368; topotypes [Thüm., Mycoth. Univ. 1670] BPI 441367, 441368, CUP 41239, HAL, LEP).

Notes: Braun et al. (2014) enumerated the cercosporoid species on Smilaceae hosts and provided an identification key for those genera. Cercospora smilacis was allocated to Passalora s. lat. due to its cylindrical-obclavate pigmented conidia and conspicuous conidiogenous loci that look like minute circles in front view (Fig. 22). Passalora s. str. has more prominently obclavate conidia that are single and 1-septate (Fig. 15). The strains used in this study cluster apart from the Passalora type species in a clade well-supported by all the phylogenetic analyses (Fig. 1, clade 42; Fig. 3, clade 1). Based on a BLAST comparison against the alignment, Neocercosporidium smilacis CPC 19342 shares 96 \% (455/476) similarity with Paramycovellosiella passaloroides CPC 14694 based on ITS and $91 \%(706 / 780)$ similarity with Paracercosporidium tiliae CBS 115526 based on rpb2.

Clade 43: Sultanimyces

Sultanimyces Videira \& Crous, gen. nov. MycoBank MB822704.
Etymology: Based on "Sultana" (a race of white wine grape) and -myces (fungus).
Description: Phytopathogenic. Caespituli hypophyllous, punctiform, dark brown. Mycelium internal, hyphae almost hyaline. Stroma substomatal, composed of densely packed pale
olivaceous hyphae. Conidiophores in fascicles, emerging from stromata, pale to deep olivaceous, straight, smooth. Conidiogenous cells polyblastic, integrated, terminal, more or less clavate, usually continuous above basal septum but sometimes septate and swollen at the base, conidiogenous loci conspicuous and slightly protruding. Conidia solitary, pale to moderate olivaceous, ellipsoid, fusiform, subcylindrical or obclavate, straight, smooth to verruculose, aseptate but usually septate, median septum usually thicker, sometimes slightly constricted at median septum, with conspicuous and slightly protruding hila.

Type species: Sultanimyces vitiphyllus (Speschnew) Videira \& Crous (\equiv Coryneum vitiphyllum Speschnew).

Sultanimyces vitiphyllus (Speschnew) Videira \& Crous, comb. nov. MycoBank MB822802. Basionym: Coryneum vitiphyllum Speschnew, Trudy Tiflissk. Bot. Sada 5: 177. 1901. Synonyms: Cercospora roesleri f. vitiphylla (Speschnew) Elenkin, Bolez. Rast.: 68. 1909. Scolicotrichum vitiphyllum (Speschnew) Karak. \& Vassiljevsky, Fungi imperfecti Parasitici. I. Hyphomycetes: 215. 1937.
Cercospora vitiphylla (Speschnew) Barbarin, Ezeg. Sved o Boleznj. Povrezden. Kul't. Dikorast. Polezn. Rast. VII-VIII: 351. 1911-1912.
Asperisporium vitiphyllum (Speschnew) Deighton, Mycol. Pap. 138: 184. 1975.
Exosporium sultanae du Plessis, Ann. Univ. Stellenbosch, Reeks A, 24: 19. 1946.
Stigmina esfandiarii Petr., Sydowia 4(1-6): 35. 1950.
Description in vivo (adapted from Sutton 1975 and Ellis 1976): Caespituli hypophyllous, punctiform, dark brown, spread over light brown lesion. Mycelium internal, hyphae almost hyaline, $2.5-3.5 \mu \mathrm{~m}$. Stroma substomatal, $40-50 \mu \mathrm{~m}$ high, composed of densely packed, pale olivaceous hyphae about $4 \mu \mathrm{~m}$ wide. Conidiophores in dense fascicles, emerging from stromata, pale to deep olivaceous, straight, smooth, up to $30 \times 5-7 \mu \mathrm{~m}$. Conidiogenous cells polyblastic, integrated, terminal, more or less clavate, usually continuous above basal septum but sometimes 1-3-septate and swollen at the base (up to $9 \mu \mathrm{~m}$), conidiogenous loci conspicuous and slightly protruding, about $2 \mu \mathrm{~m}$. Conidia pale to moderate olivaceous, ellipsoid, fusiform, subcylindrical or obclavate, straight, smooth to verruculose, 13-34 $\times 5.5-8 \mu \mathrm{~m}$ (Sutton 1975) or $15-28 \times 7-10 \mu \mathrm{~m}$ (Ellis 1976), mostly 1-3-septate, rarely 5 -septate, median septum usually thicker, sometimes slightly constricted at median septum, with hila conspicuous and slightly protruding.

Materials examined: Uzbekistan, Samarkand (Buaki, Fusayne), on living leaves of Vitis vinifera, unknown collector and date (lectotype [iconotype] designated here MBT378577, tab. 2, Figs. 20-26 in Speschnew 1901). South Africa, Northern Cape Province, Kenhardt district, on Vitis sp. (Sultana vines), 1948, isol. and dep. S.J. du Plessis, culture CBS 206.48.

Notes: Coryneum vitiphyllum was transferred to the genus Asperisporium based on the polyblastic conidiogenous cells with conspicuous scars and euseptate, verrucose conidia with conspicuous hila. A culture of Exosporium sultanae isolated by du Plessis, who described the species (Plessis 1946), was analysed and found to be sterile. The strain CBS 206.48 (Fig. 1, clade 43; Fig. 3, clade 2) is not congeneric with the type species of the genus Asperisporium, Asperisporium caricae (Fig. 1, clade 43; Fig. 3, clade 13). Conidiophores of Asperisporium caricae also emerge from dark stromata, are densely arranged and have polyblastic conidiogenous
cells, but conidia are shorter and wider ($14-22 \times 8-13 \mu \mathrm{~m}$), mostly ellipsoid and typically 1 -septate (Minnis et al. 2011a). The phylogenetic position of Asperisporium vitiphyllum, among cercosporidium-like species with which it shares few characters (e.g. multiseptate conidia), and apart from Asperisporium caricae, is suggestive that this type of morphology emerged more than once within the Mycosphaerellaceae. Based on a BLAST comparison against the alignment, Sultanimyces vitiphyllus CBS 206.48 shares 95 \% (448/474) similarity based on ITS and $91 \%(711 / 780)$ similarity based on $r p b 2$ with with Paracercosporidium tiliae CBS 115526. Therefore, based on phylogenetic differences and distinctive morphological characters, the new monotypic genus Sultanimyces is hereby introduced to accommodate this species.

Clade 44: Paramycovellosiella

Paramycovellosiella Videira, H.D. Shin \& Crous, gen. nov. MycoBank MB822603.
Etymology: Derived from "Para" (similar to) + resembling the genus Mycovellosiella.
Description: Phytopathogenic. Caespituli hypophyllous, occasionally epiphyllous. Mycelium internal and external, olivaceous brown to olivaceous, septate, branched. Stromata lacking or rudimentary, composed only of a few brown swollen hyphal cells. Conidiophores in loose fascicles, emerging through stomata or as lateral branches of external hyphae, pale olivaceous brown throughout or paler at the apex, continuous or septate, straight to geniculate. Conidiogenous cells integrated, terminal or intercalary, pale olivaceous brown, smooth, mono- or polyblastic, determinated or proliferating sympodially, conidiogenous loci small, thickened and darkened, located on apex or shoulders. Conidia solitary or catenate, cylindrical, clavate, obclavate, straight to mildly curved, subhyaline to pale olivaceous brown, aseptate to multiseptate, nonconstricted at the septa, hila small, thickened, darkened and slightly protuberant, basal (terminal conidia) or at both ends (intercalary conidia and ramoconidia).

Type species: Paramycovellosiella passaloroides (G. Winter) Videira, H.D. Shin \& Crous (\equiv Cercospora passaloroides G. Winter).

Paramycovellosiella passaloroides (G. Winter) Videira, H.D. Shin \& Crous, comb. nov. MycoBank MB822820. Fig. 23.
Basionym: Cercospora passaloroides G. Winter, Hedwigia 22: 71. 1883.
Synonyms: Cylindrosporium passaloroides (G. Winter) J.C. Gilman \& W.A. Archer, Iowa St. Coll. J. Sci. 3: 334. 1929.
Mycovellosiella passaloroides (G. Winter) J.K. Bai \& M.Y. Cheng, Acta Mycol. Sin. 11: 120. 1992.

Passalora passaloroides (G. Winter) U. Braun \& Crous, in Crous \& Braun, CBS Biodiversity Ser.: 309. 2003.

Descriptions and illustrations: Chupp (1954), Shin \& Kim (2001).
Description in vitro (on V8; CPC 14694): Mycelium hyaline to pale, hyphae smooth, uniform in width, (1-)2(-3) $\mu \mathrm{m}$ diam. Conidiophores micronematous, erect, simple, straight, pale olivaceous, (30-)79-110(-230) $\times(2.5-) 3-4(-5) ~ \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal or intercalary, pale olivaceous, smooth, determinate or proliferating sympodially, mono- or

Fig. 23. Paramycovellosiella passaloroides (CPC 14694). A-J. Observations in vitro. A. Culture on SNA. B, G. Conidiophore, conidiogenous cell and conidia. C, D, E. Conidiogenous cell and conidia. F, H. Single and catenate conidia. I. Culture on V8 supplemented with banana leaf promoted the development of black spermogonia and spermatia whitish in mass. J. Hyaline spermatia. Scale bars $=10 \mu \mathrm{~m}$.
polyblastic, with conidiogenous loci small, thickened, darkened and protruding, 1-1.5 $\mu \mathrm{m}$ diam. Conidia catenate (in vivo usually solitary), in single or double chains, pale olivaceous, smooth to verruculose, cylindrical to obclavate, straight to slightly curved, base rounded or obconically truncate, sometimes swollen, apex rounded, sometimes beak-like or swollen, variable in width, (11.5-)20-27(-43.5) $\times(3.5-) 4.5-5(-6) \mu \mathrm{m}, 1-2(-4)$-septate, with hila small, thickened, darkened and refractive. Spermogonia formed on the surface of sterilized banana leaf placed on the medium surface, pycnidial, globose, apical ostiole, black. Spermatia hyaline, whitish in mass, smooth-walled, ellipsoid to subcylindrical, with rounded ends, aseptate, 2-4 $\times 2 \mu \mathrm{~m}$.

Materials examined: Republic of Korea, Pyeongchang, on Amorpha fructicosa, 29 Sep. 2003, H.D. Shin, culture CPC 10770; on Amorpha fructicosa, 30 Oct. 2007, H.D. Shin, culture CPC 14694.

Notes: The genus Paramycovellosiella is established to accommodate a mycovellosiella-like species that is not congeneric (Fig. 1, clade 44; Fig. 3, clade 7) with the type of Mycovellosiella, Mycovellosiella cajani, as it is circumscribed in this study (Fig. 1, clade 7; Fig. 2, clade 10). Morphologically it is almost indistinguishable from Mycovellosiella. It can be distinguished from the most closely related genera, Cercosporidium, Paracercosporidium and Neocercosporidium, by forming catenate conidia (Fig. 23). The type specimen of Cercospora passaloroides (USA, Illinois, on Amorpha canescens, A.B. Seymour) could not be located and is likely not preserved (Chupp 1954).

Clade 45: Amycosphaerella

Amycosphaerella Quaedvlieg \& Crous, Persoonia 33: 22. 2014.
Description (from Quaedvlieg et al. 2014): Foliicolous, plant pathogenic. Ascomata pseudothecial, amphigenous, solitary, black, subepidermal, globose, with central apical ostioles, becoming papillate; walls of 2-3 layers of medium brown textura angularis, subhymenium of 1-2 layers of hyaline cells. Asci obovoid to broadly ellipsoidal, straight or incurved, 8-spored. Ascospores bi- to triseriate, overlapping, hyaline, guttulate, straight, fusoid-ellipsoidal with obtuse ends, widest in middle of apical cells, medianly 1 -septate, tapering toward both ends, but more prominently toward base.

Type species: Amycosphaerella africana (Crous \& M.J. Wingf.) Quaedvlieg \& Crous (三 Mycosphaerella africana Crous \& M.J. Wingf.).

Amycosphaerella africana (Crous \& M.J. Wingf.) Quaedvlieg \& Crous, Persoonia 33: 23. 2014.

Basionym: Mycosphaerella africana Crous \& M.J. Wingf., Mycologia 88: 450. 1996.
Synonyms: Teratosphaeria africana (Crous \& M.J. Wingf.) Crous \& U. Braun, Stud. Mycol. 58: 8. 2007.
Mycosphaerella aurantia A. Maxwell, Mycol. Res. 107: 353. 2003.
Mycosphaerella ellipsoidea Crous \& M.J. Wingf., Mycologia 88: 452. 1996.
Mycosphaerella aggregata Carnegie \& Keane, Mycol. Res. 98: 415. 1994, nom. illegit (Art. 53.1), non Mycosphaerella aggregata (Schwein.) J.A. Stev. 1918.

Mycosphaerella gregaria Carnegie \& Keane, Mycol. Res. 101: 843. 1997, nom. inval. (Art. 41.5).

Phaeophleospora gregaria (Carnegie \& Keane) Quaedvlieg \& Crous, Persoonia 33: 23. 2014, nom. inval. (Art. 41.4).
Mycosphaerella buckinghamiae Crous \& Summerell, Australas. Pl. Pathol. 29(4): 272. 2000.
Description and illustration: Crous (1998).
Materials examined: Australia, New South Wales, Mangrove Mountain, on leaves of Buckinghamia sp., Aug. 1999, P.W. Crous \& B. Summerell (JT 902, DAR 74865, holotype of Mycosphaerella buckinghamiae, cultures ex-type CBS $111996=$ CPC 3006, CPC 3007); Victoria, Nowa Nowa, on leaves of Eucalyptus grandis, 11 Nov. 1990, A.J. Carnegie (holotype of Mycosphaerella gregaria IMI 353729b, isotype VPRI 20739a, cultures ex-type CBS 134927 = DAR 72368); Western Australia, Bunbury, Summerlea plantation of Western Australian Chip and Pulp (WACAP), E115³70, S33400, on Eucalyptus globulus, 1 May 2000, A. Maxwell (holotype of M. aurantia, PERTH 05849543, isotype MURU0001, culture ex-type CBS 110500 = CMW 14460). Colombia, Sinai, on leaves of Eucalyptus grandis, 1995, M.J. Wingfield, PREM 54978. New Zealand, on Dracaena draco, 1 Mar. 2004, M. Braithwaite, culture CPC 12678. Portugal, on leaves of Eucalyptus globulus, Jun. 1995, S. McRae, PREM 54974, cultures CPC 1196-1198. South Africa, Western Cape Province, Stellenbosch, Stellenbosch Mountain, leaves of Eucalyptus viminalis, Oct. 1994, P.W. Crous (holotype of M. africana, PREM 51917, cultures ex-type CPC 794-796 = CBS 116154, 116155, 680.95); on leaves of Eucalyptus deanei, Oct. 1994, P.W. Crous, PREM 51918, culture CPC 816; Rust and Vrede Farm, leaves
of Eucalyptus radiata, Nov. 1994, P.W. Crous, cultures CPC 896-898; Darling, Pampoenvlei, leaves of E. globulus, Nov. 1994, P.W. Crous, PREM 51919, cultures CPC 838-840; leaves of E. grandis, Nov. 1994, P.W. Crous, PREM 51920, cultures CPC 833-837; Darling, Pampoenvlei, on leaves of Eucalyptus cladocalyx, 7 Nov. 1994, P.W. Crous (holotype of M. ellipsoidea, PREM 51924, cultures ex-type CPC 849-851, 850 = CBS 110843); Kwazula-Natal Province, Richmond, leaves of Eucalyptus smithii, Nov. 1994, G. Kemp, PREM 51921, cultures CPC 819-821. Zambia, on leaves of E. globulus, Aug. 1995, T. Coutinho, PREM 54973, cultures CPC 1229-1231.

Notes: Only the mycosphaerella-like sexual morph is known for this genus that until now included only one species (Quaedvlieg et al. 2014). Morphologically, Amycosphaerella africana ascospores germinate from both cells and become distorted (though this character was found to vary among different collections, e.g. see Mycosphaerella gregaria). Phylogenetically, Amycosphaerella clusters close to Asperisporium in a clade well-supported by all three phylogenetic analyses (Fig. 1, clade 45; Fig. 3, clade 8). Based on the phylogenetic analyses, the ex-type strain of Mycosphaerella buckinghamiae is identical to Amycosphaerella africana and is therefore considered as a synonym.

Amycosphaerella keniensis (Crous \& T.A. Cout.) Videira \& Crous, comb. nov. MycoBank MB822738.
Basionym: Mycosphaerella keniensis Crous \& T.A. Cout., Mycol. Mem. 21: 74. 1998.
Description and illustration: Crous (1998).
Materials examined: Australia, on Musa sp., unkown collector and date, culture CBS 121391. Kenya, on leaf litter of Eucalyptus grandis, May 1995, M.J. Wingfield (holotype PREM 54402, cultures ex-type CBS $111001=$ CPC $1084=$ CMW 5147) idem., cultures CPC 1085, CPC 1086.

Notes: The morphological characteristics and phylogenetic position of Mycosphaerella keniensis agree with those of the genus Amycosphaerella, and a new combination is hereby proposed as Amycosphaerella keniensis. Phylogenetically, this species is represented by two strains that cluster in a clade well-supported by all three phylogenetic methods (Fig. 1, clade 45; Fig. 3, clade 8). The strain CBS 121391 was previously classified as Mycosphaerella mozambica based on phylogenetic similarity to the ex-type strain CBS 122464, since it was sterile in culture (Arzanlou et al. 2008). When comparing the type culture of Mycosphaerella mozambica CBS 122464 and strain CBS 121391 using BLAST, they are nearly identical on ITS, but significantly different on actA and his3: on ITS $99 \%(496 / 497)$ similarity between GenBank EU514257 and GenBank EU514258; on actA 86 \% (154/179) similarity and 2 \% (5/179) gaps between GenBank EU514318 and GenBank EU514319; on his3 95 \% (378/396) similarity and $2 \%(8 / 396)$ gaps between GenBank EU514371 and GenBank EU514372. The partial $r p b 2$ sequences generated in this study for the same strains showed only 85% (659/779) similarity. In addition, when comparing the partial rpb2, between the type of Mycosphaerella keniensis CBS 111001 and strain CBS 121391, they are 100% identical, and the strain is therefore renamed as Amycosphaerella keniensis.

Amycosphaerella sp.

Materials examined: Brazil, Par a, Tom e Acu, on Theobroma cacao, unknown date, H.C. Evans, dep. in 1980, culture CBS 441.80.

Notes: This strain was initially identified as Crinipellis perniciosa, an agaric responsible for the destructive Witches Broom disease on Cocoa (Theobroma cacao). The present strain clusters in the Amycosphaerella clade (Fig. 3, clade 8), therefore it is not a basidiomycete, and is sterile in culture. There is only a single Mycosphaerella species known to infect Theobroma cacao, namely Mycosphaerella theobromae, but it was described from Africa and the whereabouts of the specimen is unkown (Aptroot 2006). Cacao tree pathogens and endophytes have been studied recently (Mejía et al. 2008), but no mycosphaerella-like fungi have been detected so far. Another mycosphaerella-like pathogen known from cacao is Ceratosperma theobromae, but little is known about this pathogen (see section Genera of Mycosphaerellaceae below).

Clade 46: Pseudocercosporella

Pseudocercosporella Deighton, Mycol. Pap. 133:38. 1973.
Description (from Frank et al. 2010): Colonies in vivo. Mycelium consisting of primary internal and secondary external hyphae, hyaline to pale brown, septate, branched, smooth; stromata lacking or weakly to well-developed, substomatal to intraepidermal. Conidiophores solitary to fasciculate, emerging through stomata or erumpent through the cuticle, arising from inner hyphae or from stromata, sometimes formed as lateral branches of superficial hyphae, or forming crustose to subglobose sporodochia; conidiophores rarely branched, straight and subcylindrical to geniculate-sinuous, hyaline, occasionally faintly pigmented, reduced to conidiogenous cells, or septate. Conidiogenous cells integrated, terminal, mono- to polyblastic, sympodial; conidiogenous loci inconspicuous, unthickened, hyaline. Conidia formed singly, rarely in simple or branched chains, subcylindrical, filiform, somewhat obclavate, euseptate, 1-multiseptate, hyaline, thin-walled, apex obtuse to subacute, subtruncate in catenate conidia, base truncate or subtruncate, hilum unthickened, not darkened, nor refractive.

Type species: Pseudocercosporella bakeri (Syd. \& P. Syd.) Deighton (三 Cylindrosporium bakeri Syd. \& P. Syd.).

Pseudocercosporella bakeri (Syd. \& P. Syd.) Deighton, Mycol. Pap. 133: 41. 1973.
Basionym: Cylindrosporium bakeri Syd. \& P. Syd., Ann. Mycol. 14(5): 372. 1916.
Synonyms: Ramularia ipomoeae F. Stevens, Bull. Bern. Bishop Mus. 19: 150. 1925.
Cercosporella ipomoeae Sawada, Rep. Gov. Agric. Res. Inst. Formosa 86: 161. 1943.
Cercosporella ipomoeicola Sawada, Special Publ. Coll. Agric. Natl. Taiwan Univ. 8: 192. 1959.
Pseudocercosporella ipomoeae Deighton, Mycol. Pap. 133: 38. 1973.
Descriptions and illustrations: Braun (1995), Frank et al. (2010).
Materials examined: Laos, Vientiane Capital, Xaythany District, Xay Villiage, on Ipomoea sp., 8 Sep. 2009, P. Phengsintham (epitype designated by Frank et al. 2010, CBS H-20409, exepitype culture CBS $125685=$ CPC 17570). New Zealand, Auckland, St. Johns, Morrin Road,

Univ. Campus, on leaf spots on Ipomoea indica, unknown date, C.F. Hill, culture CBS 119488 $=$ Lynfield 1252. Philippines, Los Banos, on Ipomoea sp., Dec. 1915, Baker 4029 (lectotype of Cylindrosporium bakeri, S F40429; isolectotype S F42032, see Braun 1995). Taiwan, Taipei, on Ipomoea indica, 14 Feb. 1913, Y. Fujikuro (isotype of P. ipomoeae TNS-F-220454).

Notes: Based on examination of type materials and additional collections of Pseudocercosporella bakeri and Pseudocercosporella ipomoeae, Braun (1995) concluded that they represented a single taxon. Frank et al. (2010) supported the conclusion of Braun (1995) and designated an epitype for Pseudocercosporella bakeri. Pseudocercosporella, based on Pseudocercosporella bakeri, clusters in a well-supported clade (Fig. 1, clade 46; Fig. 3, clade 10) close to Asperisporium and Amycosphaerella. Based on the single-gene trees of dataset 3 (not shown, in TreeBASE), Pseudocercosporella is reliably distinguished from other genera based on $r p b 2$ sequences while it is less distinct based on LSU and ITS data. Several species that were pseudocercosporellalike in morphology but are phylogenetically not congeneric with the genus type species have been recently assigned to new genera (Videira et al. 2016). As in other cercosporoid genera, morphology alone is insufficient for allocations of new species to the phylogenetically delineated genera.

Clade 47: Distomycovellosiella

Distomycovellosiella U. Braun, C. Nakash., Videira \& Crous, gen. nov. MycoBank MB822588.
Etymology: Derived from "Disto-" (referring to distoseptation) + resembling the genus Mycovellosiella.

Description: Phytopathogenic. Caespituli hypophyllous, pale brown or olivaceous, floccose. Mycelium internal composed of hyaline hyphae, external mycelium composed of pale brown to brown hyphae that arise from internal hyphae. Stromata lacking or small, composed of few brown cells. Conidiophores emerging through stomata in loose to dense coremioid fascicles, or arising solitary from external hyphae, brown, straight to geniculate, simple, sometimes branched. Conidiogenous cells integrated, terminal or intercalary, polyblastic, proliferating sympodially, with conidiogenous loci thickened and darkened, flat or protruding. Conidia catenate in unbranched or branched chains, pale brown to pale olivaceous, smooth to verruculose, ovoid, obovoid, obclavate, clavate, cylindrical, fusiform, straight or slightly curved, aseptate, euseptate or distoseptate, hila thickened, darkened and refractive. Differs from the genus Mycovellosiella by forming distoseptate conidia with slightly thickened and refractive loci.

Type species: Distomycovellosiella brachycarpa (Syd.) U. Braun et al. (三 Cercospora brachycarpa Syd.).

Distomycovellosiella brachycarpa (Syd.) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MB822756. Fig. 24.
Basionym: Cercospora brachycarpa Syd., Ann. Mycol. 28: 207. 1930.
Synonyms: Mycovellosiella solanicola (Viégas) Munt.-Cvetk., Lilloa 30: 178. 1960.
Mycovellosiella brachycarpa (Syd.) Deighton, Mycol. Pap. 137: 8. 1974.
Passalora brachycarpa (Syd.) U. Braun \& Crous, in Crous \& Braun, CBS Biodiversity Ser.: 87. 2003.

Fig. 24. Distomycovellosiella brachycarpa (CPC 18381). A-D. Observations in vivo. A, B. Leaf spot symptoms on the host. C. Catenate and single conidia. D. Conidiophores synnematous-like, conidiogenous cells and conidia. E-G. Observations in vitro. E-G. Conidiophores, conidiogenous cells and conidia. Scale bars $=10 \mu \mathrm{~m}$.

For additional synonyms see MycoBank.
Description in vivo (CBS H-22948): Leaf spots circular to subcircular, yellow to pale brown on the upper surface, brown on the lower surface, with indistinct margin, 3-7 mm diam. Caespituli hypophyllous, pale brown or olivaceous, floccose. Mycelium internal composed of hyaline hyphae, external mycelium composed of pale brown to brown hyphae that arise from internal hyphae creeping on the lower leaf surface. Stromata lacking or small, composed of few brown cells. Conidiophores emerging from internal hyphae, bearing through the stomata in loose to dense coremioid fascicles of $4-10$ conidiophores, or solitary arising from external hyphae, brown, smooth, branched, straight to geniculate, 11-38 $\times 2.5-5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal and intercalary, polyblastic, proliferating sympodially, with conidiogenous loci thickened, darkened and somewhat protruding, $1.5-2 \mu \mathrm{~m}$ diam. Conidia catenate in single or branched chains, pale brown to pale olivaceous brown, smooth to verruculose, variable in shape, ovoid, obovoid, obclavate, cylindrical, fusiform, $10-40 \times 3-7 \mu \mathrm{~m}, 0-3$-eu- or distoseptate, hila thickened and darkened, $1.5-2 \mu \mathrm{~m}$ diam.

Description in vitro (on V8; CPC 18381): Mycelium hyaline to pale olivaceous, smooth, uniform in width, 2-2.5 $\mu \mathrm{m}$. Conidiophores arising from hyphae, macronematous, hyaline to pale brown, smooth, straight, simple or branched, 7.5-215 $\times 2.5-3 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal and intercalary, hyaline to pale brown, smooth, mono- or polyblastic, determinated or proliferating sympodially, conidiogenous loci darkened and thickened, 1-2.5 $\mu \mathrm{m}$ diam. Conidia catenate, in single or branched chains, hyaline to pale olivaceous, smooth to verruculose, guttulate, obovoid, clavate, cylindrical to obclavate, $12.5-55 \times 2.5-5 \mu \mathrm{~m}, 0-3$ indistinctly eu- or distoseptate, hila slightly thickened and darkened.

Materials examined: New Zealand, Coromandel, Thames, on Solanum mauritianum, unknown collector and date, isol. C.F. Hill, Feb. 2004, 1001, MAF, Auckland, culture CBS 115124; same country, unkown host, collector and date, isol. E. McKenzie, 29 Mar. 2003, dep. B.F. Brandwagt, culture CBS 114855. South Africa, KuwaZulu Natal, on Solanum mauritianum, 6 Jul. 2010, A.R. Wood (epitype designated here CBS H-22948, MBT378601, ex-epitype culture CBS 142178 = CPC 18381). Venezuela, D.F., Puerto La Cruz, on Solanum hirtum ($=$ S. obtusifrons), 24 Dec. 1927, H. Sydow 90 (holotype S F23388; isotype IMI 8500).

Notes: Distomycovellosiella is a monotypic genus that is morphologically similar to Mycovellosiella but is not congeneric with its type, Mycovellosiella cajani. Morphologically, Distomycovellosiella differs from Mycovellosiella by forming distoseptate conidia with slightly thickened and refractive loci (Fig. 24). Distomycovellosiella forms a clade well-supported by all three phylogenetic methods (Fig. 1, clade 47; Fig. 3, clade 9) and that is closely related to Pseudocercosporella as defined by its type, Pseudocercosporella bakeri. Based on a BLAST comparison against the alignment, Distomycovellosiella brachycarpa CPC 18381 shares $99 \%(470 / 474)$ similarity based on ITS with Clarohilum henningsi CPC 17314 and 93 \% (723/778) similarity based on rpb2 with Amycosphaerella keniensis CBS 111001. Cultures of collections from South America in general and Venezuela in particular are not yet available, but the collections from New Zealand and South Africa agree with type material of this species and descriptions in literature so that we have decided to fix the application of this species by epitypification.

Clade 48: Asperisporium

Asperisporium Maubl., Bull. Trimestriel Soc. Mycol. France 29: 357. 1913.
Description (from Braun et al. 2014): Usually foliicolous, leaf-spotting hyphomycetes. Mycelium in vivo internal; hyphae branched, septate, hyaline to pigmented, thin-walled, smooth or almost so. Stromata usually well-developed, substomatal to intraepidermal, often somewhat erumpent, pigmented. Conidiophores macronematous, usually densely fasciculate, forming sporodochial conidiomata, continuous to septate, pigmented, wall thin to slightly thickened, smooth or almost so. Conidiogenous cells integrated, terminal or conidiophores reduced to conidiogenous cells, usually polyblastic, sympodial, but mostly not strongly geniculate, conidiogenous loci conspicuous, thickened and darkened. Conidia solitary, amero- to phragmosporous (nonscolecosporous), mostly ellipsoid-ovoid, obovoid, fusiform to short cylindrical or obclavate, mostly with $0-3$-eusepta, sometimes with a single or several oblique or longitudinal septa, pigmented, distinctly verruculose to coarsely verrucose, basal hilum thickened and darkened, conidial secession schizolytic.

Type species: Asperisporium caricae (Speg.) Maubl (三 Cercospora caricae Speg.).
Asperisporium caricae (Speg.) Maubl., Bull. Trimestriel Soc. Mycol. France 29: 358. 1913.
Basionym: Cercospora caricae Speg., Anales Soc. Ci. Argent. 22 (4): 215. 1886.
Synonyms: Fusicladium caricae (Speg.) Sacc., Atti Congr. Bot. Palermo: 58. 1902.
Pucciniopsis caricae (Speg.) Höhn., Centralbl. Bakteriol., Abt. II, 60: 5. 1926, nom. illeg (Art. 53.1), non Earle 1902.

Description and illustrations: Minnis et al. (2011a).

Materials examined: Brazil, intercepted at USA, Washington, Seattle, entering from Brazil, on fruit of Carica papaya, 16 Apr. 2010, coll. C. Weight, isol. by J.F. Bischoff from BPI 880773 (epitype designated by Minnis et al. 2011a, is a dried culture on SDA (BPI 881135), ex-epitype culture CBS 130298); on fruit of Carica papaya, Mar. 2013, A.C. Alfenas, culture CPC 22691. Paraguay, Guarapi, on leaves of Carica papaya, Feb. 1881, B. Balansa, no. 2739 (lectotype designated by Chupp 1954, LPS).

Notes: Morphologically, Asperisporium is passalora-like but with verrucose conidia (Crous \& Braun 2003). The phylogenetic position of Asperisporium within the Mycosphaerellaceae has been resolved by Minnis et al. (2011a), based on the ITS and LSU of the type species Asperisporium caricae. Asperisporium clusters in a well-supported clade (Fig. 1, clade 48; Fig. 3, clade 13) and is closely related to Amycosphaerella and Paramycovellosiella. Other species assigned to Asperisporum must be individually reassessed.

Asperisporium caricicola Crous \& C. Nakash., Sydowia 67: 87. 2015.
Description and illustration: Crous et al. (2015c).
Materials examined: Republic of Fiji, Viti Levu, Navua, on leaves of Carica papaya, 10 Sep . 2013, leg. C. Nakashima (holotype CBS H-22252, isotype TSU: MUMH 11477, cultures exholotype CPC 24348 = CBS 139998); idem., culture CPC 24349.

Notes: Asperisporium caricicola is represented by a single strain in the phylogenetic analyses (Fig. 1, clade 48; Fig. 3, clade 13). At the time it was described, Asperisporium caricicola was found to be morphologically very similar to Asperisporium caricae, but phylogenetically distinct based on the partial sequences of LSU and ITS (Crous et al. 2015c). The ITS sequence of Asperisporium caricicola is $97 \%(463 / 477)$ similar to Asperisporium caricae (GenBank JN190955). The partial sequence of $r p b 2$, however, shares $99 \%(778 / 780)$ similarity with Asperisporium caricae (GenBank JN190955). More isolates of both species should be analysed in order to determine whether these represent two distinct species or whether they are conspecific with some intraspecific variation.

Clade 49: Pantospora

Pantospora Cif., Ann. Mycol. 36: 242. 1938.
Unconfirmed synonym: Dictyocephala A.G. Medeiros (Medeiros 1962).
Description (from Braun et al. 2013): Foliicolous hyphomycetes, associated with leaf spots. Mycelium internal; hyphae hyaline or almost so. Stromata developed, pigmented. Conidiophores macronematous, in dense coremioid fascicles or synnemata, septate, pigmented, thin-walled, smooth. Conidiogenous cells integrated, terminal, proliferation sympodial and percurrent, with planate to slightly convex, neither thickened nor darkened loci (pseudocercospora-like). Conidia formed singly, shape variable, ellipsoid-ovoid, fusiform, clavate to obclavate, didymoto scolecosporous, with 1-11 transverse eusepta and often a single or few oblique to longitudinal septa, hila neither thickened nor darkened.

Type species: Pantospora guazumae Cif.

Fig. 25. Pantospora guazumae (IMI 59269). A-H. Observations in vivo. A. Leaf spot symptoms on the host. B. Conidiophores and conidia. C-F. Partial conidiophore, conidiogenous cells and conidia. G-H. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Pantospora guazumae Cif., Ann. Mycol. 36: 242. 1938. Fig. 25.
Synonyms: Cercospora ulmifoliae Obreg.-Bot., Caldasia 1: 51. 1941.
Dictyocephala ulmifoliae (Obreg.-Bot.) A.G. Medeiros, Publ. Inst. Micol. Recife 372: 15. 1962.
Pseudocercospora ulmifoliae (Obreg.-Bot.) U. Braun \& Crous, inCrous \& Braun, CBS Biodiversity Ser.: 415. 2003.

Description and illustration: Minnis et al. (2011a), present study (Fig. 25).
Materials examined: Cuba, Bayamo, on Guazuma ulmifolia (= G. tomentosa), 16 Feb. 1966, R. Urtiaga-Martinez, IMI 117605. Dominican Republic, Valle del Cibao, prov. Santiago, Hato del Yaque, on leaves of Guazuma ulmifolia, 20 Apr. 1930, coll. R. Ciferri \& A.M. Borgna Ciferri, Batey no. 1, Mycoflora Domingensis Exsiccata 210 (lectotypus of Pantospora guazumae designated by Deighton 1976a: (IMI 59269). Mexico, intercepted at USA, Arizona, Nogales, entering from Mexico, on leaf of Guazuma ulmifolia, 12 Feb. 2009, coll. J. Moore (epitype designated by Minnis et al. 2011a: BPI 880778, culture ex-epitype CBS 130299).

Notes: Pantospora is a monotypic genus with no known sexual morph that is reminiscent of Pseudocercospora but with synnematous conidiomata, percurrent and sympodial conidiogenous cells and frequently dictyosporous conidia (Crous \& Braun 2003). Since the formation of dictyosporous conidia also occurred in the type of Pseudocercospora (Pseudocercospora vitis), Crous \& Braun (2003) reduced Pantospora to synonymy with Pseudocercospora. The
phylogenetic position of Pantospora within the Mycosphaerellaceae has been established by Minnis et al. (2011a), based on the ITS and LSU sequences of the epitype culture of the type species Pantospora guazumae. In the present study Pantospora is represented by a single strain lineage (Fig. 1, clade 49; Fig. 3, clade 12) closely related to Paracercospora.

Clade 50: Paracercospora

Paracercospora Deighton, Mycol. Pap. 144: 47. 1979.
Description (from Braun et al. 2013): Mycelium in vivo internal. Conidiophores macronematous, fasciculate, pigmented. Conidiogenous cells integrated, terminal or conidiophores reduced to conidiogenous cells, conidiogenous loci subconspicous by being circular with very slightly thickened and darkened-refractive rim. Conidia solitary, scolecosporous, subhyaline to very pale olivaceous, hila very slightly thickened and darkened-refractive along the rim.

Type species: Paracercospora egenula (Syd.) Deighton (三 Cercoseptoria egenula Syd.).
Paracercospora egenula (Syd.) Deighton, Mycol. Pap. 144: 48. 1979.
Basionym: Cercoseptoria egenula Syd., Ann. Mycol. 33(3-4): 235. 1935.
Synonyms: Cercospora egenula (Syd.) Chupp \& Doidge, Bothalia 4: 885. 1948.
Pseudocercospora egenula (Syd.) U. Braun \& Crous, in Crous \& Braun, CBS Biodiversity Ser.: 171. 2003.

Cercospora solani-melongenae Chupp, Bothalia 4: 892. 1948.
Descriptions and illustrations: Chupp (1954), Deighton (1979), Crous et al. (2013a).
Materials examined: India, on Solanum melongena, N. Ponnapa, No. 109/1981, culture CBS 485.81. Japan, Shimane, on leaves of Solanum melongena, 5 Aug. 1998, T. Mikami, CNS415, cultures MUCC 883 = MAFF 237766. Republic of Korea, Hongcheon, on leaves of S. melongena, 26 Oct. 2005, H.D. Shin, CBS H-20836, culture CBS $132030=$ CPC 12537. South Africa, Gauteng Province, Barberton, on Solanum panduriforme, May 1931, L. Liebenberg No. 25999 (holotype PREM 25999, isotype IMI 89597).

Notes: Paracercospora was introduced by Deighton (1979) in order to accommodate Paracercospora egenula, a pseudocercospora-like species with distinct circular conidiogenous loci (scars) with a slightly thickened dark rim. This type of scar, however, is also present is some species of Pseudocercospora and with further support from earlier phylogenetic works (Stewart et al. 1999, Crous et al. 2000, 2001b), Paracercospora was synonymised with Pseudocercospora (Crous \& Braun 2003). When representatives of the type species, Paracercospora egenula, were recollected, their partial LSU DNA sequences placed them apart from Pseudocercospora (Crous et al. 2013a, Vaghefi et al. 2016). Paracercospora is maintained as a separate genus based on the combination of its phylogenetic position (Fig. 1, clade 50, Fig. 3; clade 11), minimal marginal thickening of the conidiogenous loci and subhyaline conidia. Closely related species to Paracercospora egenula include Passalora brachycarpa (pale olivaceous, catenate conidia, prominent, thickened, darkened scars), and Pseudocercospora tibouchinigena (subhyaline conidia, unthickened hila and scars) (Crous et al. 2013a). In the present study, with the addition of the ITS and partial rpb2 sequences to
the phylogenetic analysis, the strains of Passalora brachycarpa (now Distomycovellosiella brachycarpa) cluster in a separate clade from Paracercospora egenula. Unfortunately, the phylogenetic position of Pseudocercospora tibouchinigena was not reassessed in this study and it may eventually be shown to represent a distinct genus since phylogenetically, it clusters apart from Pseudocercospora and, morphologically it is neither a species of Pseudocercospora s. str. (subhyaline conidia), nor Paracercospora (lacking any scar thickening). In a recently published paper (Ou et al. 2015), with the description of a new species of Paracercospora, Paracercospora dictamnicola, all three species 'Pseudocercospora tibouchinigena', Paracercospora egenula and Paracercospora dictamnicola cluster together in a phylogeny based on LSU and ITS. However, Paracercospora dictamnicola is described as having conidiogenous loci unthickened and not darkened (pseudocercospora-like) and conidia solitary, subhyaline to pale olivaceous (paracercospora-like). Thus, the case of Paracercospora dictamnicola adds to the morphological vs. phylogenetic placement of cercosporoid species dilemma.

Clade 51: Nothopassalora [and Clarohilum]

Nothopassalora U. Braun, C. Nakash., Videira \& Crous, gen. nov. MycoBank MB822696.
Etymology: From the greek notho-, meaning false, and resembling the genus Passalora.
Description: Hyphomycetous, phytopathogenic. Mycelium internal, hyaline to pale brown, branched, septate hyphae. Stromata dark, epidermal, substomatal, subglobose. Conidiophores emerging in fascicles from stromata, through stomata, pale to medium brown, smooth to verruculose, simple, straight to flexuous, geniculate-sinuous at the apex, multiseptate, but sometimes with a single basal septum or reduced to conidiogenous cell. Conidiogenous cells integrated, terminal, proliferating sympodially, mono- or polyblastic, conidiogenous loci rim-like, darkened, thickened and refractive. Conidia solitary, pale brown to olivaceous, smooth, thin-walled, cylindrical to long-obclavate, straight or gently curved, apex rounded and sometimes narrowing into a beak, base rounded or obconically truncate, multiseptate, hila thickened, darkened and refractive, sometimes protruding.

Type species: Nothopassalora personata (Berk. \& M.A. Curtis) U. Braun et al. (\equiv Cladosporium personatum Berk. \& M.A. Curtis).

Nothopassalora personata (Berk. \& M.A. Curtis) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822766. Fig. 26.
Basionym: Cladosporium personatum Berk. \& M.A. Curtis, Grevillea 3(27): 106. 1875.
Synonyms: Cercospora personata (Berk. \& M.A. Curtis) Ellis \& Everh., J. Mycol. 1: 63. 1885. Cercosporiopsis personata (Berk. \& M.A. Curtis) Miura, Flora of Manchuria and East Mongolia. Part III. Cryptogams, fungi 3: 529. 1928.
Passalora personata (Berk. \& M.A. Curtis) S.A. Khan \& M. Kamal, Pakistan J. Sci. Res. 13: 188. 1961.

Cercosporidium personatum (Berk. \& M.A. Curtis) Deighton, Mycol. Pap. 112: 71. 1967. Mycosphaerella berkeleyi Jenkins, J. Agr. Res. 56: 325. 1938.
For additional synonyms see Crous \& Braun (2003) or MycoBank.
Description in vivo (CBS H-22946): Leaf spots amphigenous, blackish brown, circular to subcircular, with yellow halo, 5-12 mm diam. Mycelium internal, composed of hyaline to pale

Fig. 26. Nothopassalora personata (CPC 19466). A-E. Observations in vivo. A, B. Leaf spot symptoms on the host. C, D. Conidiophores and conidiogenous cells. E. Single conidia. F-K. Observations in vitro. F. Culture on SNA. G. Conidiophore and conidiogenous cell. H. Partial conidiophore and conidiogenous cell. I-K. Single conidia. Scale bars $=10 \mu \mathrm{~m}$.
brown hyphae, smooth, septate, branching. Stromata amphigenous, mainly hypophyllous, welldeveloped, 42-165 $\mu \mathrm{m}$ diam, brown to dark brown, epidermal, substomatal, subglobose and composed of textura angularis. Conidiophores emerging from upper part of stromata, densely fasciculate, pale brown to brown olivaceous, smooth to verruculose, erect, simple, straight to sinuous, geniculate-sinuous or conically truncate at the apex, irregular in width, 28-63 $\times 5-7.3$ $\mu \mathrm{m}$, sometimes only 1 -septate. Conidiogenous cells integrated, terminal, mono- or polyblastic, proliferating sympodially, with rim-like conidiogenous loci distinctly thickened, darkened and refractive, located on the shoulders and the apex, 3-4 $\mu \mathrm{m}$ diam. Conidia solitary, pale to pale olivaceous brown, thick-walled, cylindrical to long-obclavate, straight or gently curved, apex rounded and sometimes narrowing into a beak, base rounded or obconicaly truncate, 38-85× $5-8 \mu \mathrm{~m}, 2-7$-euseptate, hila thickened, darkened and refractive, 3-4 $\mu \mathrm{m}$ diam.

Description in vitro (on V8; CPC 19466): Mycelium composed of hyaline to olivaceous hyphae, smooth to finely verruculose, septate, branching, uniform in width, $2.5 \mu \mathrm{~m}$. Conidiophores pale brown to brown, micro- to macronematous, darker at the middle part, and paler towards apex, smooth to rough, cylindrical, geniculate-sinuous at the apex, simple, $50-100 \times 3-5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal, mono- or polyblastic, proliferating sympodially, with conidiogenous loci rim-like, thickened, darkened and refractive, located at the shoulders and apex, $2.5 \mu \mathrm{~m}$ diam. Conidia solitary, pale to pale brown, cylindrical to long-obclavate, rounded at the apex and obconicaly truncate at the base, 45-110 $\times 5-7 \mu \mathrm{~m}, 2-10$-euseptate, hila thickened, darkened and refractive, $2.5 \mu \mathrm{~m}$ diam.

Materials examined: Australia, Northern Territory, Darwin, on Arachis hypogaea, 30 Apr. 2011, P.W. Crous (epitype designated here, CBS H-22946, MBT378602, ex-epitype culture CBS 142236 = CPC 19466). USA, Georgia, Spalding Co., Georgia Experiment Station, on Arachis hypogaea, 23 Jun. 1937, W.A. Jenkins (CUP-027308, isotype of Mycosphaerella berkeleyii, ex-isotype culture CBS 222.38); South Carolina, Santee River, on Arachis hypogaea, Ravenel 1612 (holotype K, isotype IMI 104552).

Notes: The two major foliar diseases occurring on peanut, Early leaf spot and Late leaf spot, are respectively caused by Cercospora arachidicola ($=$ Mycosphaerella arachidis) and Passalora personata (= Mycosphaerella berkeleyi) (Jenkins 1938, Kokalis-Burelle et al. 1997). Both diseases occur wherever peanut is grown but is usually manageable with timely fungicide applications (Kokalis-Burelle et al. 1997). The strains used in this study are identical based on their DNA sequences (Fig. 1, clade 51; Fig. 3, clade 14) and closely related with Asperisporium, despite their morphological differences (Fig. 26).

Clarohilum Videira \& Crous, gen. nov. MycoBank MB822583.
Etymology: from the latin clarus- that means visible + hilum.
Description (adapted from Little 1987): Phytopathogenic, causing leaf spots. Ascomata globose, subepidermal, mostly epiphyllous, brown or dark brown, ostiolate, thin wall composed of pseudo-parenchymatous cells. Asci cylindrical, tapering towards the base, bitunicate, thick-walled, 8 -spored. Ascospores hyaline, tapering at both ends, two-celled with the upper cell slightly broader than the lower. Conidiophores mononematous, pale olivaceous brown, not branched, with slight geniculations, septate. Conidiogenous cells terminal, elongating sympodially, polyblastic, with conidiogenous loci thickened and darkened, located both apical and laterally. Conidia single, pale olivaceous, smooth, obovoid, obclavate, cylindrical to longobclavate, slightly curved, apex obtuse, base rounded or short obconicaly truncate, septate, hila thickened, darkened and usually protruding.

Type species: Clarohilum henningsii (Allesch.) Videira \& Crous Crous (三 Cercospora henningsii Allesch.).

Clarohilum henningsii (Allesch.) Videira \& Crous, comb. nov. MycoBank MB822748. Fig. 27.

Basionym: Cercospora henningsii Allesch., Die Pflanzenwelt Ost-Afrikas und der Nachbargebiete. Teil C: 35. 1895.
Synonyms: Cercosporidium henningsii (Allesch.) Deighton, More dematiaceous Hyphomycetes: 295. 1976.

Passalora henningsii (Allesch.) Poonam Srivast., J. Living World 1(2): 116. 1994, nom. inval. (Art. 41.1).
Passalora henningsii (Allesch.) R. F. Castañeda \& U. Braun, Cryptog. Bot. 1: 46. 1989.
Cercospora cassavae Ellis \& Everh., Bull. Torrey Bot. Club 22: 438. 1895.
Cercospora manihotis Henn., Hedwigia 41: 18. 1902.
Mycosphaerella henningsii Sivan., Trans. Brit. Mycol. Soc. 84: 552. 1985.
For additional synonyms see MycoBank.

Fig. 27. Clarohilum henningsii (CPC 17314). A-E. Observations in vivo. A, B. Leaf spot symptoms on the host. C, D. Conidiophores and conidiogenous cells. E. Single conidia. F-K. Observations in vitro. F. Culture on OA. G-J. Partial conidiophore, conidiogenous cell and conidia. K. Single conidia. Scale bars $=10 \mu \mathrm{~m}$.

Descriptions and illustrations: Ellis (1976), Little (1987).
Description in vitro (on V8; CPC 17314): Mycelium hyaline to olivaceous brown, smooth to rough, septate, branching, uniform in width, $2.5-7.5 \mu \mathrm{~m}$. Conidiophores micro- and macronematous, pale brown to olivaceous brown, paler at the apex, smooth, straight, simple or occasionally branched, cylindrical, geniculate sinuous at the apex, $75-170 \times 5-7.5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal, proliferating sympodially, mono- or polyblastic, with conidiogenous loci thickened, darkened and protruding, $2.5 \mu \mathrm{~m}$ diam. Conidia solitary, hyaline to pale brown, smooth, obovoid, cylindrical, obclavate, base rounded or obconically truncate, sometimes sligltly swollen, apex rounded, $30-75 \times 5-7 \mu \mathrm{~m}, 0-8$-euseptate, sometimes slightly constricted at the septa, hila rim-like, thickened, darkened and refractive, sometimes protruding, $2.5 \mu \mathrm{~m}$ diam.

Material examined: Laos, on Manihot esculenta, 5 May 2006, P. Pheng, NOUL 26, culture CPC 17314. Tanzania, Usambara (Amboni), on Manihot esculenta (= M. utilissima), Holst No. 2899 (lectotype of C. henningsii designated here, MBT378578, S F37294; isolectotype S F37295).

Notes: Passalora henningsii is widely distributed in tropical to subtropical regions along with its host plant, Manihot esculenta. Morphologically, the description of the observed strain is similar to that available in literature (Chupp 1954, Castañeda \& Braun 1989). In this study, caespituli of this species are paler than that of the other species of Passalora s. lat. and has
conidia with distinctly protruding hila (Fig. 27). The phylogenetic analyses place this strain in a single-strain lineage (Fig. 3, clade 15) that is closely related to Nothopassalora (Fig. 1, clade 51; Fig. 3, clade 14). Morphologically, a few conidia of Passalora henningsii showed less protruding hila that tapered towards the base like some of the conidia of Nothopassalora personata (Fig. 26). In a supplementary phylogenetic analysis performed using a smaller dataset (sequences in dataset 3 corresponding to Fig. 3, clades 1-16), this single-strain lineage remains apart from the Nothopassalora clade. Based on a BLAST comparison against the alignment, the present strain shares only $95 \%(447 / 473)$ similarity on ITS and $91 \%(686 / 750)$ similarity on $r p b 2$ with Nothopassalora personata. The morphological differences and the instability of the phylogenetic position of these strains indicate that it is better to introduce this species into a new genus than combine it into Nothopassalora. Type material of Cercospora manihotis Henn. 1902 (Brazil, Pará, on Manihot esculenta, May 1901, J. Huber 42) is not preserved at B and could not be traced in other herbaria. Syntype material of the illegitimate name Cercospora manihotis Henn., in de Wildemann, Ann. Mus Congo, 5 Sér., Vol. II, Fasc. II: 104. 1907 [non Cercospora manihotis Henn. 1902] is presenved in B and S (Congo, Kwango, Kisantu, May 1906, H. Vanderyst 179). Syntypes of Cercospora cassava are housed in several herbaria, including BPI 434310, 437138, FH 01012118, and S F278433 (USA, Florida, Lake County, Eustis, on Cassava leaves (Manihot sp.), 28 May 1895, Geo. V. Nash).

Clade 52: Pluripassalora

Pluripassalora Videira \& Crous, gen. nov. MycoBank MB822611.
Etymology: The name is a combination of pluri- (many) which refers to the multiseptate conidia + passalora, due to the similarity to the Passalora genus.

Description: Phytopathogenic, forming leaf spots. Mycelium internal, septate, smooth, hyaline to pale brown. Stromata amphigenous, mainly hypophyllous, well-developed, epidermal, substomatal, subglobose. Conidiophores emerging from upper part of stromata in dense fascicles, or emerging singly from internal hyphae, pale brown to brown, simple, sinuous, sometimes geniculate, irregular in width, smooth to verruculose, aseptate or septate. Conidiogenous cells integrated, terminal or intercalary, proliferating sympodially, mono- or polyblastic, conidiogenous loci rim-like, thickened, darkened and refractive. Conidia solitary, pale to pale olivaceous brown, paler towards the apex, smooth, thick-walled, mostly obclavate (in host), cylindrical-obclavate (in culture), euseptate, multiseptate, sometimes constricted at the septa (in culture), rounded at the base, beak-like and rounded at the apex, hila thickened, darkened and refractive.

Type species: Pluripassalora bougainvilleae (Munt.-Cvetk.) U. Braun et al. (\equiv Cercospora bougainvilleae Munt.-Cvetk.).

Pluripassalora bougainvilleae (Munt.-Cvetk.) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822822. Fig. 28.
Basionym: Cercospora bougainvilleae Munt.-Cvetk., Revista Argent. Agron. 24: 84. 1957.
Synonyms: Cercosporidium bougainvilleae (Munt.-Cvetk.) Sobers \& C.P. Seym., Proc. Florida State Hort. Soc.: 398. 1969.
Passalora bougainvilleae (Munt.-Cvetk.) R.F. Castañeda \& U. Braun, Cryptog. Bot. 2: 291. 1991.

Fig. 28. Pluripassalora bougainvilleae (CPC 19327). A-E. Observations in vivo. A, B. Leaf spot symptoms on the host. C, D. Conidiophores, conidiogenous cells and conidia. E. Single conidia. F-K. Observations in vitro. F. Culture on OA. G-K. Partial conidiophore, conidiogenous cell and conidia. Scale bars $=10 \mu \mathrm{~m}$.

Description and illustration: Ellis (1976), present study (Fig. 28).
Description in vivo (CBS H-22947): Leaf spots amphigenous, brown to whitish brown, circular to subcircular, with a dark brown concentric ring, 2-5 mm diam. Mycelium internal, hyaline to pale brown. Stromata amphigenous, mainly hypophyllous, well-developed, 25-50 $\mu \mathrm{m}$ diam, brown, epidermal, substomatal, subglobose. Conidiophores emerging from upper part of stromata in dense fascicles, or emerging singly from internal hyphae, pale brown to brown, smooth, simple, straight to geniculate-sinuous, irregular in width, $24-62 \times 5-6 \mu \mathrm{~m}$, septate. Conidiogenous cells integrated, terminal and intercalary, mono-or polyblastic, proliferating sympodially, with rim-like conidiogenous loci thickened, darkened and refractive, located on on the shoulders and apex, 2-3 $\mu \mathrm{m}$ diam. Conidia solitary, smooth, pale to pale olivaceous brown, paler towards the apex, thick-walled, mostly obclavate or long-obclavate, base rounded, apex rounded and beak-like, $40-116 \times 7-10 \mu \mathrm{~m}, 3-10$-euseptate, sometimes constricted at the septa, hila distinctly thickened, darkened and refractive, $2-3 \mu \mathrm{~m}$ diam.

Description in vitro (on MEA; CPC 19327): Mycelium composed of hyphae uniform in width, hyaline and $1-2 \mu \mathrm{~m}$ diam when young, pale brown and $3.8-5 \mu \mathrm{~m}$ diam when mature, septate and branching. Conidiophores emerging from large brown aggregated cells $7.5-12.5 \mu \mathrm{~m}$ diam, micro- or macronematous, pale brown, septate, straight to curved in segments, occasionally geniculate-sinuous, uniform in width, $100-150 \times 5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal and intercalary, pale brown, straight to mildly geniculate, mono- or polyblastic, conidiogenous
loci thickened, darkened and refractive, $2-2.5 \mu \mathrm{~m}$ diam. Conidia solitary, pale brown, smooth, cylindrical-obclavate, long-obclavate, base obconically truncate, apex rounded, beak-like, sometimes swollen, $45-75 \times 5-7.5 \mu \mathrm{~m}, 3-7$-euseptate, slightly to strongly constricted at the septa, hila thickened, darkened and refractive, 2-2.5 $\mu \mathrm{m}$ diam.

Material examined: Australia, Northern Territory, Darwin, on Bougainvillea sp., 30 Apr. 2011, P.W. Crous, CBS H-22947, culture CBS 142237 = CPC 19327.

Notes: The present species was initially described as Cercospora bougainvilleae and was described on the host Bougainvillea stipitata from Argentina (Muntañola-Cvetkovic 1957) but no original material could be traced. The designation of a neotype is necessary, but the present strain is from a different geographical location. In the phylogenetic analyses, this species is represented by a single-strain lineage (Fig. 1, clade 52; Fig. 3, clade 16) closely related to Nothopassalora. Based on a BLAST comparison, Pluripassalora shares $90 \%(418 / 463)$ similarity on ITS and 87 \% (679/780) similarity on rpb2, with Nothopassalora personata CPC 19466. Morphologically, Pluripassalora can be distinguished from Nothopassalora by its obclavate and multiseptate conidia and also differs from Passalora s. str. by its multiseptate conidia.

Clade 53: Micronematomyces

Micronematomyces U. Braun, C. Nakash., Videira \& Crous, gen. nov. MycoBank MB822595.
Etymology: Derived from the micronematous conidiophores (micronemato-) and fungus (-myces).

Differs from Passalora in forming short and micronematous to submicronematous conidiophores, and solitary and cylindrical, long-obclavate to filiform conidia.

Type species: Micronematomyces caribensis (Crous \& Den Breeÿen) U. Braun, C. Nakash., Videira \& Crous (\equiv Passalora caribensis Crous \& Den Breeÿen).

Micronematomyces caribensis (Crous \& Den Breeÿen) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822763.
Basionym: Passalora caribensis Crous \& Den Breeÿen, Fungal Diversity 23: 98. 2006.
Description and illustration: Breeÿen et al. (2006).
Materials examined: Cuba, near Havana, Chromolaena. odorata, 28 Oct. 1997, S. Neser, culture CBS $113376=$ MJM 1539 = C487. Jamaica, Central Jamaica, between Guinea corm and John's Hall, on C. odorata, 31 Oct. 1997, M.J. Morris (holotype CBS H-19754, culture ex-type CBS $113380=$ MJM $1550=$ C498); Kingston, road to Strawberry Hill off Blue Mountain road, on C. odorata, M.J. Morris, 30 Oct. 1997, cultures CBS $113374=$ MJM $1545=$ C481, CBS $113375=$ MJM $1543=$ C482; between Maypen and Chapleton, on C. odorata, 30 Oct. 1997, M.J. Morris, culture CBS 113381 = MJM 1549 = C500; on highway to Kingston, between Moneague and Edwarton, on Chromolaena odorata, 1 Nov. 1997, M.J. Morris, culture CBS 113378 = MJM 1552 = C494; Strawberry Hill, on C. odorata, 30 Oct. 1997, M.J. Morris, culture CBS 113379 $=$ MJM $1544=$ C495.

Notes: The genus Micronematomyces is phylogenetically and morphologically distinct from Passalora as circumscribed in this study. It encompasses two species, Micronematomyces caribensis and Micronematomyces chromolaenae, that cluster together in a well-supported clade in the phylogenetic analyses performed in this study (Fig. 1, clade 53; Fig. 3, clade 17). Morphologically, species in the genus Micronematomyces differ from Passalora s.str. in forming short conidiophores, and multiseptate conidia that are cylindrical, long-obclavate to filiform. Micronematomyces caribensis can be distinguished from Micronematomyces chromolaenae by its shorter and slightly wider conidia. The strains CBS 113378 and CBS 113379 were identified as Passalora perfoliati based on morphological characters (Breeÿen et al. 2006) using the descriptions available in literature (Ellis 1971, Braun 1998). Unfortunately, when the cultures were observed in this study they did not sporulate and the fungarium material was depauperate. Based on a BLAST against the entire alignments, these two strains share 99 \% (779/780) similarity on $r p b 2$ and $98 \%(465 / 474)$ similarity on ITS with Micronematomyces caribensis. The type of Passalora perfoliati was isolated from Eupatorium perfoliatum from Wisconsin, USA (Ellis \& Everhart 1889; syntypes NY, WIS-F-0003831) while the aforementioned two strains were obtained from a different host (Chromolaena odorata) and from a different location (Jamaica). Therefore, these two strains will henceforth be treated as Micronematomyces caribensis.

Micronematomyces chromolaenae (Crous \& Den Breeÿen) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822764.
Basionym: Passalora chromolaenae Crous \& Den Breeÿen, Fungal Diversity 23: 98. 2006.
Description and illustration: Breeÿen et al. (2006).
Materials examined: Mexico, Veracruz Province, Catemaco Lake, on Chromolaena odorata, 12 Oct. 1997, M.J. Morris (holotype CBS H-19753, culture ex-type CBS 113611 = MJM 1498 = C452); Entrada Corretera, on C. odorata, 12 Oct. 1997, M.J. Morris, culture CBS $113371=$ MJM $1490=$ C450.

Notes: The host Chromolaena odorata (\equiv Eupatorium odoratum) is considered to be the one of the most problematic invasive species within protected rainforests in Africa (Struhsaker et al. 2005). Among plant pathogens those considered to be host-specific are considered to be potentially good as biological control agents (Barreto \& Evans 1994). Micronematomyces chromolaenae is distinguished from other species occurring on this host by its conidial dimensions (up to $200 \mu \mathrm{~m}$ long and $4 \mu \mathrm{~m}$ wide) and shape that is never curled (Breeÿen et al. 2006). The representative strains of this species cluster in a clade well-supported by all three phylogenetic methods employed in this study (Fig. 3, clade 17). They were, unfortunately, sterile in culture at the time this study was performed and the herbarium specimens were depauperate.

Clade 54: Rhachisphaerella

Rhachisphaerella U. Braun, C. Nakash., Videira \& Crous, gen. nov. MycoBank MB822702.
Etymology: Derived from the conidiogenous cells forming a rachis and the mycosphaerella-like sexual morph.

Description (adapted from Arzanlou et al. 2008): Phytopathogenic. Ascomata amphigenous, dark brown, subepidermal, becoming erumpent, globose; wall composed of layers of medium brown textura angularis. Asci aparaphysate, fasciculate, bitunicate, subsessile, obovoid to broadly ellipsoid, straight to slightly curved, 8 -spored. Ascospores bi- to tri-seriate, overlapping, hyaline, thin-walled, straight to curved, fusoid-ellipsoidal with obtuse ends, widest in middle of apical cell, medianly 1 -septate, not to slightly constricted at the septum, tapering towards both ends but more prominently towards the lower end; ascospores becoming distorted upon germination, becoming constricted at the septum, with irregular, wavy germ tubes, growing 90° to the long axis, and not arising from the polar ends of the spore. (In vitro) Mycelium submerged and superficial; submerged hyphae hyaline to subhyaline, thin-walled, smooth or slightly rough; aerial hyphae pale olivaceous, smooth or finely verruculose. Conidiophores arising from hyphae, occasionally reduced to conidiogenous cells, hyaline, subcylindrical. Conidiogenous cells integrated, terminal, proliferating sympodially, polyblastic, conidiogenous loci aggregated, flat, not protuberant (not denticle-like), unthickened, but somewhat darkened. Conidia solitary, hyaline, thin-walled, smooth, obovoid, ellipsoidal, obclavate, aseptate or multiseptate, hilum truncate, flat, broad, unthickened, slightly darkened.

Type species: Rhachisphaerella mozambica (Arzanlou \& Crous) Videira \& Crous (三 Mycosphaerella mozambica Arzanlou \& Crous).

Rhachisphaerella mozambica (Arzanlou \& Crous) Videira \& Crous, comb. nov. MycoBank MB822798.
Basionym: Mycosphaerella mozambica Arzanlou \& Crous, Persoonia 20: 26. 2008.
Description and illustration: Arzanlou et al. (2008).
Materials examined: Mozambique, Chimoio, Bairro, on leaf of Musa cv., 2003, A. Viljoen (holotype CBS H-20039, culture ex-type CBS 122464); idem. CBS H-20040, CBS H-20041, CBS H-20042.

Notes: Mycosphaerella mozambica is a common pathogen occurring on banana in Mozambique (Arzanlou et al. 2008). The sympodially proliferating conidiogenous cells are reminiscent of Ramichloridium, but the type species of that genus, Ramichloridium apiculatum, has been found to cluster within Dissoconiaceae (Arzanlou et al. 2007). As other ramichloridiumlike species within Mycosphaerellaceae, M. mozambica needed to be reassigned into a new genus. Phylogenetically, the representative strain of this species forms a single species lineage closely related to Micronematomyces (Fig. 1, clade 54; Fig. 3, clade 18). Morphologically, Rhachisphaerella mozambica is quite distinct from species of Micronematomyces, since its conidiogenous cells form a rachis with unthickened conidiogenous loci and the conidia are generally obovoid, $0-1$-septate with unthickened hila.

Clade 55: Neophloeospora

Neophloeospora U. Braun, C. Nakash., Videira \& Crous, gen. nov. MycoBank MB822598.
Etymology: Derived from the similarity to the genus Phloeospora (neo- = new).

Description (adapted from Punithalingam 1990): Phytopathogenic, causing leaf spots. Pseudothecia on overwintered, fallen leaves, initially immersed, later erumpent, epiphyllous, dark brown, spherical, with short necks and circular ostioles, wall composed of several cell layers of textura angularis, the outer cells dark brown, the inner cells hyaline. Asci fasciculate, cylindrical to clavate, hyaline, 8 -spored, bitunicate. Ascospores biseriate or irregularly biseriate, ellipsoid, medianly or slightly unequally 1 -septate, upper cell slightly wider than the lower cell, guttulate. Conidiomata epiphyllous, acervular, subepidermal, separate or confluent, composed of textura angularis; dehiscence irregular. Conidiogenous cells terminal, hyaline, cylindrical, proliferating percurrently with inconspicuous annellations or sympodially. Conidia hyaline or subhyaline, smooth, cylindrical to obclavate, straight or curved, septate, guttulate, with age becoming darker, constricted at the septa and slightly verruculose.

Type species: Neophloeospora maculans (Bérenger) Videira \& Crous (\equiv Fusarium maculans Bérenger).

Neophloeospora maculans (Bérenger) Videira \& Crous, comb. nov. MycoBank MB822823. Fig. 29.
Basionym: Fusarium maculans Bérenger, Atti Riunione Sci. Ital. (Milano) 6: 474.1845 (1844). Synonyms: Phloeospora maculans (Bérenger) Allesch., in Rabenh., Krypt.-Fl., Edn 2, 1(6): 935. 1900 (1899).

Phloeosporella maculans (Bérenger) Höhn., Mitt. Bot. Lab. T. H. Wien 4(2): 77.1927.
Cercosporella maculans (Bérenger) F.A. Wolf, J. Elisha Mitchell Sci. Soc. 51: 165.1935.
Septoria mori Lév., Ann. Sci. Nat., Bot., Sér. 3, 5: 279. 1846.
Cheilaria mori (Lév.) Desm., Ann. Sci. Nat., Bot., Sér. 3, 8: 27. 1847.
Phloeospora mori (Lév.) Sacc., Michelia 1(2): 175. 1878.
Septogloeum mori (Lév.) Briosi \& Cavara, Fung. Paras. Piante Colt. Util., Fasc. 1: no. 21. 1888. Cylindrosporium mori (Lév.) Berl., Riv. Patol. Veg., Pavia 5: 205. 1896.
Sphaerella mori Fuckel, Jahrb. Nassauischen Vereins Naturk. 23-24: 106. 1870 (1869-1870).
Mycosphaerella mori (Fuckel) F.A. Wolf, J. Elisha Mitchell Sci. Soc. 51: 165. 1935.
Sphaerella morifolia Pass., Erb. Critt. Ital., Ser. 2, Fasc. 30: no. 1464. 1885.
Mycosphaerella morifolia (Pass.) Cruchet, Bull. Soc. Vaud. Sci. Nat. 55: 43. 1923.
Sphaeria mori Nitschke, Fungi Rhen. Exs.: no. 1784. 1866.
Cercospora pulvinulata f. angulosa Savul. \& Sandu, Herb. Mycol. Rom.: no. 188. 1931.

Fig. 29. Neophloeospora maculans (CBS 115123). A-E. Observations in vitro. F. Culture on SNA. B, C. Conidiophore and conidia. D, E. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Description and illustration: Punithalingam (1990).
Description in vitro (on OA; CBS 115123): Mycelium hyaline to subhyaline, uniform in width, 2.5-3 $\mu \mathrm{m}$ diam. Conidiophores micronematous, hyaline, smooth, $5-10 \times 1-2 \mu \mathrm{~m}$. Conidiogenous cells terminal, indistinct. Conidia solitary, smooth, hyaline to pale brown, cylindrical to obclavate, subtruncate to truncate at the base, rounded to beak-like at the apex, straight to mildly sinuous, $38-70 \times 3-5 \mu \mathrm{~m}, 3-10$-euseptate, not or only slightly constricted at the septa, with age becoming darker, slightly verruculose, strongly constricted at the septa and wider ($5-10 \mu \mathrm{~m}$).

Material examined: New Zealand, Auckland, Mt. Albert, on Morus alba, isol. CF Hill (996), MAF, Mar. 2004, herbarium material U. Braun, Fungi Sel. Exs. 101, e.g. HAL, PDD 93510, culture CBS 115123.

Notes: This genus is introduced to accommodate the species Phloeospora maculans that is not congeneric with the type of Phloeospora, Phloeospora ulmi, and clusters in a single strain lineage in the phylogenetic analyses performed in this study (Fig. 1, clade 55; Fig. 2, clade 19). Morphologically, Neophloeospora can be distinguished from Phloeospora by the subhyaline to pale brown conidia constricted at the septum (Fig. 29). Neophloeospora maculans is a pathogen causing leaf spot on mulberry (Morus alba), a native tree to China that is commonly used to feed silkworms and is now cultivated worldwide for its berries (Punithalingam 1990, Hong et al. 2011). The ITS sequence generated here matches those of Hong et al. (2011).

Clade 56: Dothistroma

Dothistroma Hulbary, Bull. Illinois Nat. Hist. Surv. 21: 235. 1941.

Description (from Sutton 1980): Mycelium immersed, branched, septate, pale brown to hyaline. Conidiomata sometimes acervular, initially subepidermal later erumpent, composed of pale brown, thin-walled textura angularis, sometimes eustromatic, multilocular and of darker brown, thick-walled tissue. Dehiscence irregular, stromata strongly erumpent and finally pulvinate. Conidiophores absent. Conidiogenous cells holoblastic, discrete, determinate, ampulliform, hyaline, smooth, non-proliferating, formed from the upper cells of stroma or from inner cells of the locular walls. Conidia acrogenous, solitary, hyaline, straight or curved, filiform, $1-5$-euseptate, continuous, thin-walled, smooth.

Type species: Dothistroma pini Hulbary.
Dothistroma pini Hulbary, Bull. Illinois Nat. Hist. Surv. 21: 235. 1941.
Descriptions and illustrations: Barnes et al. $(2004,2016)$.

Materials examined: Russia, Rostov oblast, Kamensky district, Kamensky timber enterprise, Kamenskoye forestry, 3 km to the east of Staraya Stanitsa village, pine planting, on Pinus pallasiana, 8 Oct. 2006, T.S. Bulgakov, culture CBS 121005 = CMW 24852. USA, Illinois, De Kalb County, on P. nigra subsp. austriaca, 29 Nov. 1938, J. Cedric Carter (holotype ILLS 27093, isotype CBS H-12211); Michigan, Massaukee County, McBain, Riverside Township,
on Pinus nigra, Aug. 2001, G. Adams, CBS H-12203, culture CBS 116483 = CMW 14905; Michigan, Montcalm County, Stanton, Evergreen Township, on P. nigra, 2001, G. Adams (epitype designated by Barnes et al. 2016, CBS H-12211, culture ex-epitype CBS $116487=$ CMW 10951); idem., culture CBS 116486.

Notes: Dothistroma needle blight is one of the most important diseases of Pinus spp., both in natural forest ecosystems and particularly in plantations of non-native pines. The causal agent of the disease has been narrowed down to two species, Dothistroma septosporum (worldwide) and Dothistroma pini (USA) (Barnes et al. 2004, Groenewald et al. 2007). The type of Dothistroma pini was originaly isolated from Pinus nigra in the USA and an epitype has recently been designated (Barnes et al. 2016). Dothistroma clusters in a clade well-supported by all three phylogenetic methods employed in this study (Fig. 1, clade 56; Fig. 3, clade 20) and is closely related to Stromatoseptoria.

Dothistroma septosporum (Dorog.) M. Morelet, Bull. Soc. Sci. Nat. Archéol. Toulon \& Var 177: 9. 1968.
Basionym: Cytosporina septospora Dorog., Bull. Bull. Trimestriel Soc. Mycol. France 27: 106. 1911.

Synonyms: Septoriella septospora (Dorog.) Sacc., Syll. Fung. 25: 480. 1931.
For additional synonyms see MycoBank.
Description and illustrations: Barnes et al. (2004, 2016).
Materials examined: Brazil, São Paulo, Santo Antonio do Pinhal, on needles of Pinus pinaster, 1974, T. Namekata, culture CBS 543.74. Ecuador, on needles of Pinus radiata, culture CBS $112498=$ CPC 3779. France, Meurthe et Moselle, Arboretum d'Amance, on needles of Pinus coulteri, 27 Feb. 1970, culture CBS 383.74. Netherlands, Lunteren, Pinetum Dennenhorst, on needles of Pinus mugo 'Rostrata', 1 June 2009, W. Quaedvlieg, cultures CBS 128782 = CPC 16798, CBS 128783 = CPC 16799. Russia, St. Petersburg, Park Sosnovka, from Pinus sylvestris, 14 Nov. 2013, R. Drenkhan \& D.L. Musolin (neotype designated by Barnes et al. 2016, CBS H-22299, culture ex-neotype CMW $44656=$ CBS $140339=$ TAAM 168554A).
Poland, Miechów Forest District, Goszcza Forest Unit, on Pinus nigra, Jun. 2003, T. Kowalski, CBS H-12209, cultures CBS 116488 = CMW 13004, CMW 13010. South Africa, Tzaneen, on P. radiata, 2002, M.J. Wingfield, CBS H-12210, culture CBS 116489 = CMW 11372.

Notes: Dothistroma septosporum is one of the causal agents of Dothistroma needle blight (Red band disease of pine) and used to be listed as a species of quarantine importance to Europe (Quaedvlieg et al. 2012, EPPO 2012). This disease occurs wherever Pinus and Larix species are grown (Groenewald et al. 2007) and can cause varying degrees of damage depending on humidity and temperature (Evans 1984, Barnes et al. 2004). In the phylogenetic analyses, the strains clustered in a well supported clade (Fig. 1, clade 56; Fig. 3, clade 20). The herbarium material of the holotype was lost and a neotype was recently designated (Barnes et al. 2016).

Clade 57: Hyalocercosporidium

Hyalocercosporidium Videira \& Crous, gen. nov. MycoBank MB822592.

Etymology: Similar to Cercosporidium but with hyaline conidia.
Description: Phytopathogenic. Mycelium internal, composed of hyaline to pale brown hyphae. Conidiophores solitary, simple, pale to brown, straight or mildly sinuous, geniculate. Conidiogenous cells terminal and intercalary, geniculate-sinuous, determinate or proliferating sympodially, monoblastic, with conidiogenous loci slightly thickened, darkened and refractive, located on the shoulders and apex. Conidia solitary, hyaline, smooth, obovoid, long-obclavate, straight or slightly curved, base obconical truncate or short obconical truncate, apex rounded, aseptate or euseptate, hila slightly thickened, darkened and refractive.

Type species: Hyalocercosporidium desmodii Videira \& Crous.
Hyalocercosporidium desmodii Videira \& Crous, sp. nov. MycoBank MB822712. Fig. 30.
Etymology: Named after the genus of the host it was isolated from, Desmodium.
Description in vitro (on MEA; CPC 19483): Mycelium composed of hyaline to pale brown hyphae, smooth to verruculose, septate, branching, $2-3.5 \mu \mathrm{~m}$ diam. Conidiophores pale brown, smooth to lightly verruculose, simple, straight or mildly sinuous, up to 3-geniculate, (52.5$) 98-126(-167) \times(2.5-) 3(-4) \mu \mathrm{m}$. Conidiogenous cells integrated, terminal and intercalary, monoblastic, determinate or proliferating sympodially, monoblastic, with conidiogenous loci slightly thickened, darkened and refractive, $1.5 \mu \mathrm{~m}$ diam. Conidia solitary, hyaline, smooth, obovoid, cylindrical to long obclavate, truncate to long-obconically truncate at the base, rounded at the apex, (14.5-)24-30(-40) $\times(3-) 4(-6) \mu \mathrm{m}$, aseptate to 3 -septate, septa indistinct, hila slightly thickened, darkened and refractive, $1.5 \mu \mathrm{~m}$ diam.

Material examined: Brazil, Minas Gerais, Vale da Lua, Alto Paraiso de Goias, on Desmodium tortuosum, 2 Aug. 2009, R.W. Barreto (holotype CBS H-22949, ex-type culture CBS 142179 $=$ CPC 19483).

Notes: Two Passalora species (s. lat.) are known from Desmodium in literature, namely Passalora desmodii and Passalora atropunctata. From these two species, only the last one has been previously reported from the host Desmodium tortuosum in Brazil (Crous \& Braun 2003). Passalora atropunctata produces very pale brown and wider conidia (25-50 $\times 7-8$ $\mu \mathrm{m}$; Ellis 1976) compared with Hyalocercosporidium desmodii, and Passalora desmodii has multilocal conidiogenous cells with 1-5 minute apical to lateral conidiogenous loci which are unthickened or almost so, only somewhat darkened or refractive and in front view visible as a minute circle [based on comparision with North American material of Passalora desmodii, including Petr., Mycoth. Gen.1220, GZU (lectotype of Cercospora desmodii Ellis \& Kellerm., designated here, MBT378579: USA, Kansas, Manhattan, on Desmodium acuminatum, 30 Jul. 1884, W.A. Kellerman 585, BPI 435642; isolectotypes, MU 10493, NY 270695); syntypes: CUP 39659 (only July), NY 838298 (1 July, Kellerman s.n., marked as "type"); topotype collections distributed as Ellis \& Everh., N. Amer. Fungi 1501] (Chupp 1954). The original specimen of Hyalocercosporidium desmodii was, unfortunately, not available for morphological examination and a dried culture specimen was prepared. The representative ex-type strain of Hyalocercosporidium desmodii formed a single-strain lineage in the phylogenetic analyses (Fig. 1, clade 57; Fig. 3, clade 21) and is closely related to Dothistroma and Stromatoseptoria.

Fig. 30. Hyalocercosporidium desmodii (CPC 19483). A-F. Observations in vitro. A. Culture on OA. B. Mycelium. C-E. Partial conidiophore, conidiogenous cell and conidia. F. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Morphologically, Hyalocercosporidium desmodii cannot be accommodated in Dothistroma or in Stromatoseptoria, since these genera have conidiogenous cells that proliferate percurrently and produce pigmented conidia (Quaedvlieg et al. 2013, Barnes et al. 2004).

Clade 58: Stromatoseptoria

Stromatoseptoria Quaedvlieg et al., Stud. Mycol. 75: 353. 2013.
Description (from Quaedvlieg et al. 2013): Foliicolous, plant pathogenic. Conidiomata pycnidial, hypophyllous, subglobose to lenticular, very pale brown to dark brown, immersed to erumpent, exuding conidia in white cirrhus; ostiolum central, circular, surrounding cells concolorous; conidiomatal wall composed of a homogenous tissue of hyaline to very pale brown, angular to irregular cells. Conidiophores subcylindrical, branched, hyaline, septate. Conidiogenous cells hyaline, discrete or integrated, cylindrical or narrowly ampulliform, holoblastic, often also proliferating percurrently. Conidia solitary, cylindrical, slightly to distinctly curved, broadly rounded apex, attenuated towards a truncate base, transversely euseptate, mostly constricted at septa.

Type species: Stromatoseptoria castaneicola (Desm.) Quaedvlieg et al. (\equiv Septoria castaneicola Desm.).

Stromatoseptoria castaneicola (Desm.) Quaedvlieg, Verkley \& Crous, Stud. Mycol. 75: 353. 2013.

Basionym: Septoria castaneicola Desm., Ann. Sci. Nat., Bot., Sér. 3, 8: 26. 1847.
Description and illustration: Quaedvlieg et al. (2013).
Material examined: France, on leaves of Castanea sativa, Aug. and Sep. 1843, M. Roberge, ‘Coll. Desmazières 1863, no. 8’ (holotype PC 0084574). Netherlands, Utrecht, Baarn, near Lage Vuursche, on Castanea sativa, 29 Aug. 1999, G. Verkley, CBS H-21200, culture CBS 102322; Mook en Middelaar, St. Jansberg, on on Castanea sativa, 9 Sep. 1999, G. Verkley, No. 932, culture CBS 102377.

Notes: Stromatoseptoria is a monotypic genus that differs from Septoria s. str. by forming a stroma that gives rise to the conidiophores, by producing conidia that are olivaceous in mass and, although hyaline and smooth at first, become olivaceous and verruculose with age (Quaedvlieg et al. 2013). Phylogenetically, Stromatoseptoria clusters within the Mycosphaerellaceae in a clade well-supported by all three phylogenetic methods employed (Fig. 1, clade 58; Fig. 3, clade 22) and is closely related to Dothistroma.

Clade 59: Fulvia

Fulvia Cif., Atti Ist. Bot. Univ. Lab. Crittog. Pavia 10: 246. 1954.
Description (from Ellis 1971): Colonies effuse, velvety, buff to brown or purplish. Stroma present, pale, substomatal. Conidiophores macronematous, mononematous, caespitose, emerging through stomata, unbranched or occasionally branched, straight or flexuous, narrow at the base, thickening towards the apex, with unilateral nodose swellings which may proliferate as short lateral branchlets, very pale to mid pale brown or olivaceous brown, smooth. Conidiogenous cells mono- or polyblastic, integrated, terminal becoming intercalary, sympodial, clavate or cylindrical, cicatrized. Conidia catenate, chains frequently branched, acropleurogenous, simple, cylindrical with rounded ends or ellipsoidal, very pale to mid pale brown or olivaceous brown, smooth, $0-3$-septate, hilum sometimes slightly protuberant.

Type species: Fulvia fulva (Cooke) Cif. (三 Cladosporium fulvum Cooke).
Fulvia fulva (Cooke) Cif., Atti Ist. Bot. Univ. Lab. Crittog. Pavia 10: 245. 1954. Fig. 31.
Basionym: Cladosporium fulvum Cooke, Grevillea 12(61): 32. 1883.
Synonyms: Mycovellosiella fulva (Cooke) Arx, Proc. Kon. Ned. Akad. Wetensch., C86(1): 48. 1983.

Passalora fulva (Cooke) U. Braun \& Crous, in Crous \& Braun, CBS Biodiversity Ser. 1: 453. 2003.

Description and illustrations: Ellis (1971).
Description in vitro (on SNA; CPC 13652): Mycelium composed of hyaline to pale brown hyphae, uniform in width, $2 \mu \mathrm{~m}$ diam. Conidiophores arising from hyphae, pale brown, smooth to rough, micro- or macronematous, multi-septate, simple or short branched, straight or sinuous, often strongly curved at the tip, $20-160 \mu \mathrm{~m} \times 2.5-10 \mu \mathrm{~m}$, variable in width, sometimes reduced to conidiogenous cell. Conidiogenous cells integrated, terminal and intercalary, proliferating sympodially, polyblastic, with rim-like conidiogenous loci that are darkened and thickened, $1-2.5 \mu \mathrm{~m}$. Conidia catenate, often forming branched chains, ovoid, obovoid, ellipsoidal, sphaerical, cylindrical, straight or strongly curved, $10-30 \times 5-10 \mu \mathrm{~m}, 1-4$-septate, hila thickened and darkened, $1-2.5 \mu \mathrm{~m}$ diam.

Materials examined: Cuba, on leaves of Solanum lycopersicum, 2006, B. Summerell (epitype designated here: CBS H-22950, MBT378581, culture ex-epitype CBS $142314=$ CPC 13652). Netherlands, unknown host, and collector, 1946, isol. CBS Practicum, culture CBS 119.46. Switzerland, fruit of S. lycopersicum, unknown collector, dep. L. Zobrist, 1946, culture CBS 120.46 = VKM F-3053. USA, South Carolina, Aiken, on S. lycopersicum, H.W. Ravenel, Fungi

Fig. 31. Fulvia fulva (CPC 13652). A-H. Observations in vitro. A. Culture on V8. B, D. Conidiophore reduced to conidiogenous cell and catenate conidia. C. Conidiogenous cell and catenate conidia. E, F. Conidiophore and catenate conidia. G, H. Catenate conidia. Scale bars $=10 \mu \mathrm{~m}$.

Amer. Exs. 599 (lectotype, designated here: BPI 426698, MBT378580; isolectotypes, Ravenel, Fungi Amer. Exs. 599, e.g. B, CUP, K, NEB).

Notes: The genus Fulvia is no longer considered a synonym of Passalora as a result of analysis of the type species, Fulvia fulva (\equiv Cladosporium fulvum \equiv Passalora fulva), which was recollected and epitypified in this study. Fulvia fulva clusters close to Stromatoseptoria in the phylogenetic analyses (Fig. 1, clade 59; Fig. 3, clade 23). The single-gene trees indicate that both LSU and ITS are able to distinguish this species but rpb2 is more reliable. Fulvia fulva is the causal agent of tomato leaf mould, a disease that affects mostly the leaves of tomato but occasionally also stems, blossoms, petioles and fruit (Butler \& Jones 1949, de Wit 1977, 1992, Jones et al. 1997). The interaction between Fulvia fulva and tomato is governed by a gene-for-gene relationship, a characteristic that made this organism an interesting model to study plant-pathogen interactions (Wit 1981, 1992). The resistance of tomato against Fulvia fulva was genetically determined by the presence of $C f$ (Cladosporium fulvum) resistance genes of which now five have been cloned. Cf proteins mediate the recognition of effector proteins secreted by Fulvia fulva of which all encoding genes have been cloned (Wit 2016). Fulvia fulva was once a devastating pathogen of tomato that required treatment with agrochemicals, but since various Cf genes from different wild Solanum species were introduced in commercial tomato cultivars by breeders the pathogen is now under control. Commercially grown tomato cultivars contain up to five different $C f$ genes ($C f-2, C f-4, C f-4 E, C f-5$ or $C f-9$) (Thomma et al. 2005).

Clade 60: Ragnhildiana

Ragnhildiana Solheim, Mycologia 23: 402. 1931.
Description: Hyphomycetous, phytopathogenic. Mycelium internal and external, composed of hyaline to pigmented hyphae, branched, septate. Stromata lacking or developed, composed of brown pseudoparenchymatal cells. Conidiophores formed in fascicles, sometimes coremioid, emerging through stomata, through the epidermis, or single and arising from external hyphae, olivaceous to brown, septate, simple or branched, straight or geniculate-flexuous, sometimes reduced to conidiogenous cells. Conidiogenous cells integrated, terminal, mono- or polyblastic, with conidiogenous loci somewhat thickened and darkened. Conidia solitary or catenate, chains simple or branched, subhyaline to brown, ellipsoid-ovoid, subcylindrical-fusoid, or obclavate, aseptate to multi-septate, hila somewhat thickened and darkened.

Type species: Ragnhildiana agerati (F. Stevens) F. Stevens \& Solheim (三 Cercospora agerati F. Stevens) = Ragnhildiana perfoliati (Ellis \& Everh.) U. Braun, C. Nakash., Videira \& Crous

Ragnhildiana ampelopsidis (Peck) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822787. Fig. 32.
Basionym: Cercospora ampelopsidis Peck, Rep. (Annual) New York State Mus. Nat. Hist. 30: 55. 1877.

Synonyms: Passalora ampelopsidis (Peck) U. Braun, Trudy Bot. Inst. im. V.L. Komarova 20: 38. 1997.

Cercospora pustula Cooke, Grevillea 12: 30. 1883.
Cercospora psedericola Tehon, Mycologia 16: 139. 1924.
Descriptions and illustrations: Chupp (1954), Braun \& Mel'nik (1997).
Description in vitro (on V8; CBS 249.67): Mycelium composed of hyaline to pale brown hyphae, smooth to verruculose, uniform in width, $1.5-2.5 \mu \mathrm{~m}$. Conidiophores micro- or macronematous, pale olivaceous brown, smooth to verruculose, simple or branched, strongly geniculated at the apex, $70-160 \times 2.5-4 \mu \mathrm{~m}$. Conidiogenous cells terminal, subhyaline to pale olivaceous brown, smooth, strongly geniculated at the apex, proliferating sympodially, polyblastic, with conidiogenous loci thickened, darkened and protruding, $2 \mu \mathrm{~m}$ diam. Conidia solitary or catenate, in simple or branching chains, subhyaline to pale olivaceous brown, smooth, obovoid, clavate to obclavate, cylindrical, straight or slightly curved, (16-)27-33(-48) $\times(2.5-) 3(-4) \mu \mathrm{m}$, 1-4-euseptate, hila thickened, darkened and protruding, $1.5-2 \mu \mathrm{~m}$ diam.

Materials examined: Romania, Simeria, on Parthenocissus tricuspidata, 6 May 1965, unkown collector, isol. O. Constantinescu, culture CBS 249.67 = IMI 124968. USA, New York, Albany, Bethlehem, on Ampelopsis quinquefolia, July, C.H. Peck (holotype NYS-F-000244).

Notes: Braun \& Melnik (1997) examined the holotype specimen of Cercospora ampelopsidis, and noted that the conidiophores can occasionally form synnema-like fascicles [20-130 $\times 3.5-$ $5(-7) \mu \mathrm{m}$], and the conidia are formed singly $[(20-) 30-60(-140) \times 4-8 \mu \mathrm{~m}]$. In culture (CBS 249.67), synnema-like conidiophores were not observed and conidia were catenate and smaller (Fig. 32). Phylogenetically, Ragnhildiana ampelopsidis clusters in the Ragnhildiana clade (Fig. 1, clade 60; Fig. 3, clade 24) as a single-strain lineage.

Fig. 32. Ragnhildiana ampelopsidis (CBS 249.67). A-E. Observations in vitro. A. Culture on V8. B. Partial conidiophore, conidiogenous cell and catenate conidia. C. Conidiogenous cell and conidia. D, E. Catenate conidia. Scale bars $=10 \mu \mathrm{~m}$.

Ragnhildiana diffusa (Heald \& F.A. Wolf) Videira \& Crous, comb. nov. MycoBank MB822788. Basionym: Clasterosporium diffusum Heald \& F.A. Wolf, Mycologia 3: 21. 1911.
Synonym: Cercospora fusca F.V. Rand, J. Agric. Res. 1: 318. 1914, nom. nov., non C. diffusa Ellis \& Everh., 1888.
Sirosporium diffusum (Heald \& F.A. Wolf) Deighton, in Ellis, More Dematiaceous Hyphomycetes: 299. 1976.

Descriptions and illustrations: Chupp (1954), Ellis (1976), Poletto et al. (2017).
Material examined: USA, Georgia, Baconton, on Carya illlinoinensis, 29 Aug. 1911, dep. F.V. Rand, culture CBS 106.14; Texas, Gonzales, on Carya illinoinensis, 10 Sep. 1909, F.D. Heald \& F.F. Wolf 2695 (holotype of Clasterosporium diffusum [\equiv Cercospora fusca], BPI 436535; isotypes CUP 3946, NEB 47510).

Notes: This pathogen is reported to cause reddish brown angular to round spots on leaves of Carya spp. in Cuba, Malawi, Mexico, Mozambique, South Africa, USA, and Venezuela (Ellis 1976, Crous \& Braun 2003). It has recently been reported from Brazil (Poletto et al. 2017) where it was freshly collected from the same host and examined morphologically and genetically. Both the ITS and tefl- α sequences were identical to the respective sequences of Sirosporium diffusum (CBS 106.14). This culture is an authentic representative of Cercospora fusca, isolated in pure culture by F.V. Rand, on 29 Aug. 1911, from Carya illinoinensis in Baconton, Georgia, USA (Rand 1914). Although this isolate was never observed sporulating in culture, the specimen it was isolated from was compared to the type of Clasterosporium diffusum (basionym to the current name Ragnhildiana diffusa) and considered identical (Rand 1914). Morphologically, the description based on the Brazilian isolate fits well with the published description. Phylogenetically, this strain clusters among Ragnhildiana isolates (Fig. 1, clade 60; Fig. 3, clade 24) that produce catenate conidia, while Sirosporium diffusum produces solitary conidia that are very long and sometimes slightly constricted at the septa. The phylogenetic position of the type species of Sirosporium, Sirosporium antenniforme, is still undetermined (see section Genera of the Mycosphaerellaceae below).

Ragnhildiana ferruginea (Fuckel) U. Braun, C. Nakash., Videira \& Crous, comb. nov.

 MycoBank MB822791. Fig. 33.Basionym: Cercospora ferruginea Fuckel, Hedwigia 2(15): 134. 1863 and Fuckel, Fungi Rhen. Exs., Fasc. II: no. 120. 1863.
Synonyms: Mycovellosiella ferruginea (Fuckel) Deighton, Mycol. Pap. 144: 14. 1979.
Passalora ferruginea (Fuckel) U. Braun \& Crous, CBS Biodiversity Ser.: 183. 2003.
Cercospora olivacea G.H. Otth, Mitth. Naturf. Ges. Bern 654-683 (1868): 65. 1869.
Helminthosporium absinthii Peck, Rep. (Annual) New York State Mus. Nat. Hist. 30: 54. 1878. Cercospora absinthii (Peck) Sacc., Syll. Fung. 4: 444. 1886.
Ramularia absinthii Laubert, Centralbl. Bacteriol., 2. Abt., 52: 242. 1920.
Cercosporidium artemisiae Sawada, Rep. Gov. Agric. Res. Inst. Taiwan 86: 164. 1943 (nom. inval.).

Descriptions and illustrations: Deighton (1979), Shin \& Kim (2001).
Description in vitro (on V8; CBS 546.71): Mycelium composed of hyaline to brown hyphae, smooth to rough, uniform in width, $2-3 \mu \mathrm{~m}$. Conidiophores micro- or macronematous, pale brown to brown, smooth to faintly verruculose, simple or branched, straight to sinuous, sometimes geniculate-sinuous at the apex, 5-200 $\times 2.5-5 \mu \mathrm{~m}$. Conidiogenous cells terminal

Fig. 33. Ragnhildiana ferruginea (CPC 10075). A-F. Observations in vivo. A, B. Leaf spot symptoms on the host. C. Conidiophores. D, E. Partial conidiophore, conidiogenous cell and conidium. F. Conidia. G-K. Observations in vitro. G. Culture on V8. H, I. Conidiophore, conidiogenous cell and conidia. J. Partial conidiogenous cell with single and catenate conidia. K. Single conidia. Scale bars $=10 \mu \mathrm{~m}$.
or intercalary, subhyaline to brown, smooth, geniculate to geniculate-sinuous, proliferating sympodially, polyblastic, with conidiogenous loci thickened, darkened and protruding, 1.5-2 $\mu \mathrm{m}$ diam. Conidia solitary, ocasionally catenate in simple chains, subhyaline to brown, smooth, obovoid, long-obclavate, cylindrical, base long-obconically truncate, apex rounded, straight to mildly curved, $20-75 \times 2.5-5 \mu \mathrm{~m}, 0-5$-euseptate, hila thickened, darkened and protruding, $1.5-2 \mu \mathrm{~m}$ diam.

Materials examined: Germany, Altersand vs. Hostrichiam (Nassau, Oestrich), on Artemisia vulgaris, 1863, Fuckel, Fungi Rhen. Exs. 120 (lectotype, designated here, MBT378582, HAL; isolectotypes, Fuckel, Fungi Rhen. Exs. 120, e.g. BPI 436287, F-C0003573F, FH-01012187, G, S F199142, 267462). Romania, Bucuresti, on Artemisia vulgaris, unknown collector, isol. O. Constantinescu, 6 Apr. 1965, CBS H-9838, culture CBS 255.67 = IMI 124973; unknown host and collector, isol. O. Constantinescu, 20 Jul. 1970, CBS H-9839, culture CBS 546.71. Republic of Korea, Pochon, on Artemisia sylvatica, 23 Oct. 2002, H.D. Shin, cultures CPC 10014, CPC 10075.

Notes: Ragnhildiana ferruginea has a worldwide distribution on hosts from the genera Ambrosia and Artemisia (Asteraceae) (Crous \& Braun 2003). It produces mostly single conidia and only rarely catenate conidia in short unbranched chains (Fig. 33) (Shin \& Kim 2001). Based on the phylogenetic analyses, Ragnhildiana ferruginea clusters among Ragnhildiana species (Fig. 1, clade 60; Fig. 3, clade 24) in a well-supported clade. Based on a BLAST comparison against the alignment, Ragnhildiana ferruginea CBS 546.71 shared 93 \% (441/474) similarity based on ITS and $90 \%(674 / 750)$ similarity based on rpb2 with Ragnhildiana ampelopsidis CBS 249.67. In addition, it shared only 85 \% (664/780) similarity with Ragnhildiana perfoliati CBS 125419 based on $r p b 2$.

Ragnhildiana gnaphaliacea (Cooke) Videira, H.D. Shin, C. Nakash. \& Crous, comb. nov. MB822795. Fig. 34.
Basionym: Cercospora gnaphaliacea Cooke, J. Linn. Soc., Bot. 17: 142. 1880.
Synonyms: Phaeoisariopsis gnaphaliacea (Cooke) Morgan-Jones, Canad. J. Bot. 52: 2635. 1974.

Passalora gnaphaliacea (Cooke) U. Braun \& Crous, in Crous \& Braun, CBS Biodiversity Ser.: 201. 2003.

Cercospora gnaphalii Harkn., Bull. Calif. Acad. Sci. Bull. 1: 38. 1884.
Description in vivo (CBS H-22952): Leaf spots yellowish to brownish, without definite margin, subcircular to irregular, 3-20 mm. Mycelium internal and external, composed of pale brown to brown hyphae that are septate and smooth to verruculose. Stromata hypophyllous epidermal, submerged, stomatal or erumpent from epidermal cells, small composed of few brown cells to well-developed, pale to dark brown, up to $180 \mu \mathrm{~m}$ diam. Conidiophores solitary to densely fasciculate, emerging from stromata, brown to pale brown, paler towards apex, smooth to verruculose, straight to sinuous-geniculate, simple or branched, 46-75(-240) $\times 4-6.5 \mu \mathrm{~m}$. Conidiogenous cells terminal and intercalary, polyblastic, proliferating sympodially, with rimlike conidiogenous loci, thickened and darkened, $2-2.5 \mu \mathrm{~m}$ diam. Conidia solitary or rarely catenate, hyaline to pale olivaceous brown, obovoid, cylindrical, straight or mildly curved, base obconicaly truncate, apex rounded, $18-70 \times 6-10 \mu \mathrm{~m}, 0-4$-euseptate, occasionally constricted at the septa, hila thickened and darkened.

Fig. 34. Ragnhildiana gnaphaliacea (CPC 12517). A-E. Observations in vivo. A, B. Leaf spot symptoms on the host. C. Conidiophores. D. Conidiophores, conidiogenous cells and conidia. E. Catenate conidia and single conidia. F-J. Observations in vitro. F. Culture on OA. G-I. Conidiophore, conidiogenous cell and conidia. J. Partial conidiophore, conidiogenous cell and conidia. Scale bars $=10 \mu \mathrm{~m}$.

Description in vitro (on SNA; CPC 12517): Mycelium hyaline to olivaceous brown, smooth to verruculose. Conidiophores macronematous, hyaline to pale brown, simple, septate, cylindrical, straight to slightly curved, $30-88 \times 2.5-3 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal or intercalary, monoblastic, cylindrical, conically truncate at the apex or geniculate-sinuous, determinate or proliferating sympodially, with conidiogenous locus thickened and darkened, located on the shoulder or at the apex, $1.5-2.5 \mu \mathrm{~m}$ diam. Conidia solitary, hyaline to pale brown, smooth to verruculose, long-obovoid, cylindrical to long-obclavate, base obconically truncate, apex rounded, straight to slightly curved, $20-75 \times 2.5-5 \mu \mathrm{~m}, 0-5$-euseptate, sometimes mildly constricted at septa, hila thickened and darkened, 1.5-2.5 $\mu \mathrm{m}$ diam.

Materials examined: Republic of Korea, Jeju, on Gnaphalium affine, May 2005, H.D. Shin, CBS H-22952, culture CBS 142181 = CPC 12517; idem., cultures CPC 10882, CPC 10883. USA, Texas, Houston, Gnaphalium sp., 17 Apr. 1869, H.W. Ravenel 283 (lectotype designated here BPI 436721, MycoBank MBT378599).

Notes: This is the first report of Ragnhildiana gnaphaliacea in Korea (based on Crous \& Braun 2003, Shin \& Kim 2001 and https://nt.ars-grin.gov/fungaldatabases/). Morphologically, the observed isolate description in vivo varies slightly from the one available in literature by producing longer conidiophores ($60-90 \times 4-5 \mu \mathrm{~m}$; Morgan-Jones 1974) and shorter conidia [40-65 $\times 4-5 \mu \mathrm{~m},(2-) 3(-5)$-septate; Morgan-Jones 1974] (Fig. 34). Phylogenetically, it clusters in the Ragnhildiana clade (Fig. 1, clade 60; Fig. 3, clade 24).

Ragnhildiana perfoliati (Ellis \& Everh.) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822824.
Basionym: Cercospora perfoliati Ellis \& Everh., J. Mycol. 5: 71. 1889.
Synonyms: Cercospora agerati F. Stevens, Bull. Bern. Bishop Mus. 19: 154. 1925.
Ragnhildiana agerati (F. Stevens) F. Stevens \& Solheim, Mycologia 23: 402. 1931.
Cercospora assamensis S. Chowdhury, Lloydia 20(2): 134. 1957.
Passalora perfoliati (Ellis \& Everh.) U. Braun \& Crous, in Crous \& Braun, CBS Biodiversity Ser. 1: 314. 2003.
Passalora assamensis (S. Chowdhury) U. Braun \& Crous, in Crous \& Braun, CBS Biodiversity Ser. 1: 69. 2003.
Passalora ageratinae Crous \& A.R. Wood, Stud. Mycol. 64: 34. 2009.
Description and illustrations: Crous et al. (2009c).
Description in vitro (on V8; CBS 125419): Mycelium hyaline to brown, smooth, uniform in width, $2.5-3 \mu \mathrm{~m}$ diam. Conidiophores micro- to macronematous, cylindrical, subhyaline to brown, smooth, uniform in width, straight to slightly curved, simple, 25-150 $\times 2.5-5 \mu \mathrm{~m}$. Conidiogenous cells integrated, apical, mostly monoblastic but sometimes polyblastic, usually determinate but occasionally proliferating sympodially, conically truncate at the apex, with conidiogenous loci slightly but clearly thickened loci at the apex, $2-2.5 \mu \mathrm{~m}$ diam. Conidia catenate, in simple chains, rarely in branched chains, hyaline to brown, smooth to verruculose, variable in shape, long-obovoid, cylindrical to long-obclavate, straight to curved, base and apex short- to medium-obconically truncate in intermediate conidia, apex rounded in terminal conidia, $20-80 \times 2.5-5 \mu \mathrm{~m}, 0-5$-euseptate, occasionally constricted at septa, hila thickened, darkened and refractive, 2-2.5 $\mu \mathrm{m}$ diam. Strain CPC 15366 on V8 agar produces conidiophores that often form synnematous fascicles and are longer, 10-300 $\times 2.2-6 \mu \mathrm{~m}$. Strain CPC 17321 on V8 agar produces conidiophores that are finely verruculose, longer and wider, 20-275 $\times 2.5-7.5$ $\mu \mathrm{m}$, and wider conidia $26-70 \times 3-7.5 \mu \mathrm{~m}$.

Materials examined: Guatemala, on Ageratina adenophora, unknown date, M.J. Morris, MJM 1506, dep. A. den Breeÿen, culture CBS $113613=$ MJM $1506=$ C486. Laos, Luang Prabang, on Chromolaena odorata, 17 Jun. 2006, P. Pheng, NOUL P101, culture CBS $142180=$ CPC 17321.
New Zealand, Cmoromandel, Thames, on Ageratina adenophora, unknown collector and date, isol. CF Hill, MAFF, Auckland, Feb. 2004, culture CBS 115119. South Africa, KwaZulu-Natal Province, Hilton, on leaves of Ageratina adenophora, 28 May 2008, A.R. Wood (holotype of Passalora ageratinae CBS H-20336, ex-type culture CBS $125419=$ CPC 15365); idem. CPC 15366, CPC 15367.

Notes: Ragnhildiana was reduced to synonymy with Mycovellosiella by Muntañola (1960), and later both genera were placed in synonymy with Passalora by Crous \& Braun (2003). With the recollection of the type species of Passalora, Passalora bacilligera, these three genera were found to be phylogenetically distinct, and hence the name Ragnhildiana is resurrected for this clade of passalora-like fungi. The type of Ragnhildiana, Ragnhildiana agerati was described from Ageratum conyzoides in Hawaii (syntype: ILL00010589, lectotype: ILL00010590). Passalora ageratinae was described from the host Ageratina adenophora from Mexico, and was transported into Hawaii, Australia and South Africa in association with a stem galling fly that was introduced as biocontrol agent for the invasive weed Ageratina adenophora (Dodd

1961, Morris 1989, Wang et al. 1997, Zhu et al. 2007, Muniappan et al. 2009). Passalora ageratinae, is similar to "Passalora" assamensis, except for the amphigenous nature of the colonies, the absence of external mycelium and the production of shorter conidiophores. Type material of "Passalora" assamensis was not available for re-examination but other specimens from the same location and host (India, Nepal, Ageratina adenophora) were examined and found to be compatible with the description (Crous \& Braun 2003). Based on the phylogenetic analyses, the available strains cluster together in a clade that has a well supported basal branch (Fig. 3, clade 24) and is included in the Ragnhildiana clade (Fig. 1, clade 60). In addition, using a BLAST comparison against the alignment, "Passalora" assamensis CBS 115119 shares 99% (469/475) similarity on ITS and $99 \%(656 / 657)$ similarity on rpb2 with "Passalora" ageratinae CBS 125419. The morphological description of "Passalora" perfoliati is also similar to that of "Passalora" ageratinae and, based on a BLAST comparison against the alignment, "Passalora" perfoliati CPC 17321 shares $99 \%(468 / 475)$ similarity on ITS and $100 \%(780 / 780)$ similarity on rpb2 with "Passalora" ageratinae CBS 125419. Therefore, we consider them all to be synonyms.

Ragnhildiana pseudotithoniae (Crous \& Cheew.) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822797.
Basionym: Passalora pseudotithoniae Crous \& Cheew., Persoonia 31: 261. 2013.
Description and illustration: Crous et al. (2013b).
Description (from Crous et al. 2013b): Leaf spots amphigenous, brown, angular, confined by leaf veins, $2-5 \mathrm{~mm}$ diam. Conidiophores amphigenous, fasciculate, $40-100 \mu \mathrm{~m}$ tall, $3-4 \mu \mathrm{~m}$ wide, straight to geniculate-sinuous, mostly unbranched, subcylindrical, $1-3$-septate, brown, smooth to finely verruculose, arising from a weakly developed brown stroma, up to $50 \mu \mathrm{~m}$ wide and $60 \mu \mathrm{~m}$ tall. Conidiogenous cells integrated, brown, smooth to finely verruculose, terminal, subcylindrical to once geniculate, $15-35 \times 3-4.5 \mu \mathrm{~m}$, with thickened and darkened loci, $2 \mu \mathrm{~m}$ diam, mostly solitary and terminal, but also lateral on conidiogenous cells. Conidia occurring in long branched chains, brown, granular, smooth, subcylindrical to narrowly obclavate, (30-)40-$65(-130) \times(4-) 5(-5.5) \mu \mathrm{m}, 1-6$-septate, apex obtuse to truncate, base obconically truncate, thickened and darkened, $2 \mu \mathrm{~m}$ diam.

Materials examined: Thailand, N1809024.800 E9823019.600, Royal Project, on leaves of Tithonia diversifolia (Asteraceae), 5 Nov. 2012, P.W. Crous (holotype CBS H-21453, ex-type culture CBS $136442=$ CPC 21688).

Notes: Phylogenetically, Ragnhildiana pseudotithonia clusters in the Ragnhildiana clade (Fig. 1, clade 60; Fig. 3, clade 24) in a single-strain lineage. One other species has been recently described from the same host but originary from Brazil, Passalora stromatica (Fernandes et al. 2013). Based on a BLAST comparison against the alignment, the ITS sequence of Passalora stromatica GenBank KF275128 was closest to Ragnhildiana pseudotithonia CBS 136442, with which it shared 96 (467/484) similarity, including 2% (10/484) gaps. Based on the morphological and DNA differences, these are not the same species.

Clade 61: Phaeoramularia

Phaeoramularia Munt.-Cvetk., Lilloa 30: 182. 1960.
Description (from Braun 1998): Phytopathogenic, usually forming leaf spots, occasionally almost symptomless. Mycelium internal, composed of subhyaline to pigmented hyphae, septate, branched, smooth to rough. Stromata almost absent to well-developed, pigmented. Conidiophores macronematous, mononematous, in small to large fascicles, rarely solitary, arising from internal hyphae or stromata, emerging through stomata or erumpent through the cuticle, erect, straight, subcylindrical to flexuous, geniculate-sinuous, simple, rarely branched, continuous to septate, pale yellowish green, olivaceous to brown, smooth to rough, thin-walled. Conidiogenous cells integrated, terminal, occasionally intercalary, sometimes conidiophores reduced to a single conidiogenous cell, polyblastic, proliferation sympodial, rarely percurrent, conidiogenous loci thickened and darkened. Conidia catenate, sometimes in branched chains, ellipsoid-ovoid, subcylindrical, fusiform, continuous to euseptate, subhyaline to pigmented, smooth to rough, ends obtuse, truncate or subacute; hila thickened and darkened; conidial secession schizolytic.

Type species: Phaeoramularia gomphrenicola (Speg.) Munt.-Cvetk. (\equiv Cercospora gomphrenicola Speg.).

Phaeoramularia capsicicola (Vassiljevsky) Deighton, More Dematiaceous Hyphomycetes: 323. 1976.

Basionym: Cercospora capsicicola Vassiljevsky, Fungi imperfecti Parasitici. I. Hyphomycetes: 344. 1937.

Synonyms: Cercospora capsici E.J. Marchal \& Steyaert, Bull. Soc. Roy. Bot. Belgique 61: 167. 1929.

Cladosporium capsici Kovatsch., Z. Pflanzenkrankh. Pflanzenschutz 48(7): 335. 1938.
Cercospora unamunoi Castell., Rivista Agric. Subtrop. Trop. 42: 20. 1948.
Passalora capsicicola (Vassiljevsky) U. Braun \& F.O. Freire, Cryptog. Mycol. 23: 299. 2002. For additional synonyms see Crous \& Braun (2003).

Descriptions and illustrations: Kovachevsky (1939), Muntañola (1954), Ellis (1976), Deighton (1976b).

Materials examined: Italy, on Capsicum annuum, unknown collector and date, dep. A. Matta, 1962, culture CBS 156.62. Jamaica, on Chromolaena odorata, 2006?, coll. M.J. Morris, dep. A. den Breeÿen, culture CBS $113384=$ C499. USA, on C. odorata, 2006?, coll. M.J. Morris, dep. A. den Breeÿen, culture CBS $113382=$ C460.

Notes: In August 2011, the occurrence of Passalora capsicicola, the causal agent of a foliar disease on sweet pepper, was reported for the first time in Austria but unfortunately no DNA was extracted (Bedlan et al. 2012). The species Passalora capsicicola is reported to infect hosts of Capsicum sp. (Solanaceae) in tropical and subtropical countries including the USA, Brazil, Romania, Tanzania, China and many others (Crous \& Braun 2003). The strains CBS 113384 and CBS 113382 were not described due to the cultures being sterile and the herbarium specimens not being preserved (Breeÿen et al. 2006). There is no previous report of Passalora
capsicicola being isolated from the host Chromolaena odorata (Asteraceae) (Farr \& Rossman, retrieved June 22, 2017, from https://nt.ars-grin.gov/fungaldatabases/). The strain CBS 156.62, identified as Passalora capsicicola, was also sterile in culture and the herbarium specimen could not be traced. Based on the phylogenetic analysis, Passalora capsicicola clusters in the Phaeoramularia clade (Fig. 1, clade 61; Fig. 3, clade 25) in a well supported clade. In addition, based on a BLAST comparison against the alignment, CBS 148.38 shared 99 \% (465/472) similarity on ITS and 92% (587/639) similarity on rpb2 with Phaeoramularia gomphrenicola CPC 23248.

Phaeoramularia gomphrenicola (Speg.) Munt.-Cvetk., Lilloa 30: 209. 1960. Fig. 35.
Basionym: Cercospora gomphrenicola Speg., An. Soc. Cient. Argent. 13(1): 29. 1882.
Description in vivo (CBS H-22954): Mycelium internal, composed of hyaline to pale brown hyphae, smooth to finely verruculose. Stromata hypophyllous, epidermal, stomatal, brown to reddish brown, small to well-developed, $20-50 \mu \mathrm{~m}$ diam. Conidiophores emerging from upper part of stromata in dense fascicles, pale brown to brown, smooth to finely verruculose, straight to sinuous, simple or occasionally branched, 25-125(-200) $\times 5-7.5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal or intercalary, pale brown, smooth to finely verruculose, mono- or polyblastic, proliferating sympodially, with rim-like conidiogenous loci that are thickened and darkened, $2-2.5 \mu \mathrm{~m}$ diam. Conidia catenate, in simple or branched chains, with microcyclic conidiation, pale brown, smooth to finely verruculose, obclavate to cylindrical, base obconically truncate, apex conically truncated in intercalary conidia and rounded in terminal conidia, 20-75 $\times 5-7.5 \mu \mathrm{~m},(0-) 1-3(-4)$-septate, hila thickened and darkened, $2-2.5 \mu \mathrm{~m}$ diam.

Description in vitro (on V8; CPC 23248): Mycelium composed of hyaline to olivaceous brown hyphae, smooth to finely verruculose, often constricted at septa, irregular in width, 2.5-7.5 $\mu \mathrm{m}$. Conidiophores micro- or macronematous, pale brown to pale olivaceous brown, smooth to finely verruculose, constricted at septa, simple or branched, straight or mildly sinuous, $50-250 \times 2.5-7.5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal or intercalary, smooth to finely verruculose, mono- or polyblastic, proliferating sympodially, conically truncate at the apex or geniculate-sinuous, with rim-like conidiogenous loci that are slightly thickened and darkened, $2-2.5 \mu \mathrm{~m}$ diam. Conidia catenate in simple chains, rarely in branched chains, pale to pale olivaceous brown, smooth to finely verruculose, obovate, allantoid, cylindrical, base obconically truncate, apex conically truncate in intermediate conidia and rounded in terminal conidia, irregular in width, $18-125 \times 3.5-5 \mu \mathrm{~m}, 0-4$-septate, occasionally constricted at septa, hila slightly thickened and darkened, $2-2.5 \mu \mathrm{~m}$ diam.

Materials examined: Argentina, Buenos Aires, Palermo, on Pfaffia glomerata (as Gomphrena glauca), Feb. 1881, C. Spegazzini (holotype LPS 914; isotypes Speg., Hongos Sud-Amer., Dec. Mycol. Argent. 45, e.g. BPI 436740, 722393, FH, PAD, PDD 25866; IMI 7706, slide ex holotype). Brazil, Minas Gerais, Viçosa, on P. glomerata, 29 Oct. 2012, R.W. Barreto (epitype designated here: CBS H-22954, MBT378603, ex-epitype culture CBS $142182=$ CPC $23248=$ COAD570); idem., culture CPC 23249 = COAD571.

Notes: Phaeoramularia resembles Ramularia by producing catenate conidia but differs by producing pigmented conidiophores and conidia (Braun 1998). In addition, the conidiogenous loci are thickened and rim-like and not coronate. This genus is no longer considered a synonym

Fig. 35. Phaeoramularia gomphrenicola (CPC 23248). A-E. Observations in vivo. A, B. Leaf spot symptoms on the host. C. Conidiophores. D. Partial conidiophore, conidiogenous cells and conidia. E. Catenate conidia. F-J. Observations in vitro. F. Culture on OA. G-I. Partial conidiophore, conidiogenous cell and conidia. J. Single and catenate conidia. Scale bars $=10 \mu \mathrm{~m}$.
of Passalora since the type, Phaeoramularia gomphrenicola (Fig. 1, clade 61), clusters apart from the type of Passalora, Passalora bacilligera (Fig. 1, clade 34). Phylogenetically, Phaeoramularia clusters in a clade well-supported by all three phylogenetic methods (Fig. 1, clade 61, Fig. 3, clade 25) and is closely related to Ragnhildiana. Morphologically, it can be distinguished from Ragnhildiana by forming broader conidiophores and conidia, and its conidia can generate new conidia from any segment (Fig. 35). The single-gene trees indicate that both LSU and ITS can distinguish this genus but rpb2 is more reliable. The previously applied phaeoramularioid habit, i.e. internal mycelium in vivo, fasciculate conidiophores and catenate conidia, is not diagnostic any longer since species with this morphology belong to different clades within the Mycosphaerellaceae. Therefore, phylogenetically unproven species should tentatively be maintained in Passalora s. lat.

Clade 62: Deightonomyces

Deightonomyces Videira \& Crous, gen. nov. MycoBank MB822586.
Etymology: Name composed of Deighton (F.C. Deighton, British mycologist and pioneer of modern taxonomy of cercosporoid fungi) and -myces (fungus).

Description: Mycelium immersed, hyphae pigmented. Stromata immersed, composed of brown, thick-walled hyphal cells. Conidiophores in dense fascicles, arising from stromata, olivaceous brown, smooth, simple, straight, subcylindrical, slightly geniculate-sinuous. Conidiogenous
cells terminal, subhyaline to pale olivaceous, smooth, proliferating sympodially, conidiogenous loci conspicuous, slightly thickened and darkened. Conidia solitary, ellipsoid-ovoid, obclavatefusiform, subcylindrical, aseptate or septate, subhyaline to pale olivaceous, smooth to verruculose, apex obtuse or subacute, base obconically truncate, hila hardly thickened and somewhat darkened.

Type species: Deightonomyces daleae (Ellis \& Kellerm.) Videira \& Crous (三 Cercospora daleae Ellis \& Kellerm.).

Deightonomyces daleae (Ellis \& Kellerm.) Videira \& Crous, comb. nov. MycoBank MB822753. Basionym: Cercospora daleae Ellis \& Kellerm., J. Mycol. 4: 6. 1888. Synonym: Passalora daleae (Ellis \& Kellerm.) U. Braun, Sydowia 48: 208. 1996.

Description and illustration: Braun (1996).
Materials examined: Mexico, Baja California Norte, Catarina, on bark of Dalea spinosa, Apr. 2003, L.B. Sparrius, isol. Aptroot, 2003, culture CBS 113031. USA, Kansas, on stems of Dalea enneandra (= Dalea laxiflora), 10 Dec. 1887, Kellerman 954 (holotype NY00838299).

Notes: The strain of Passalora daleae used in this study forms a single-strain lineage in the phylogenetic analyses (Fig. 1, clade 62; Fig. 4, clade 26). Both morphologically and phylogenetically, this species is not a true Passalora as circumscribed in this study, and therefore a new genus is introduced to accommodate it. When blasted against the individual gene alignments, Deightonomyces daleae CBS 113301 shares 98 \% (465/474) similarity with Dothistroma pini CBS 116486 on ITS, $99 \%(724 / 726)$ similarity with Dothistroma septosporum CBS 128282 on LSU, and only $81 \%(633 / 784)$ similarity with Phaeoramularia sp. CBS 113382 on $r p b 2$.

Clade 63: Pleopassalora

Pleopassalora Videira \& Crous, gen. nov. MycoBank MB822608.
Etymology: Named after its pleomorphic morphology (Greek pleon = more), and its resemblance to Passalora.

Description (adapted from Beilharz et al. 2004): Pleoanamorphic, phytopathogenic, causing leaf spots. Mycelium internal, hyphae smooth, branched, septate, brown. Stromata medium brown, erumpent, protuberant and pulvinate, composed of textura angularis. Conidiomata amphigenous, eustromatic, bearing Type 1 conidiophores and conidia, Type 2 conidiophores and conidia, or both. Type 1 synasexual morph: Conidiophores occasionally solitary, usually in fascicles arising from stromata, pale to medium brown, smooth to rugose, subcylindrical, branched or unbranched, walls slightly thickened, straight to variously curved or geniculatesinuous, septate. Conidiogenous cells terminal, verruculose or rugose, unbranched, subcylindrical, tapering to rounded apices proliferating sympodially, conidiogenous loci slightly thickened and darkened, refractive, flat or sometimes protuberant. Conidia solitary, pale olivaceous, dry, smooth, rarely finely verruculose, straight or curved, narrowly obclavate to subcylindrical, tapering gradually to an obtuse apex and to a rounded base, often constricted
at one or more septa, hila slightly but distinctly thickened, darkened and refractive. Type 2 synasexual morph: Conidiophores reduced, hyaline to sub-hyaline, aseptate or 1 -septate, lining a stroma. Conidia hyaline to pale olivaceous, cylindrical, rounded at the apex, truncate at the base, smooth, aseptate to 3 -septate, occasionally constricted at septa, hila broad, truncate to slightly convex, not darkened, unthickened, non-refractive. Type 3 synasexual morph: Type 2 conidia develop thick-walled hyphal swellings (reminiscent of chlamydospores), ellipsoid and hyaline, aseptate to 1 -septate, that burst free from the cells of the Type 2 conidia, frequently carrying remnants of the conidial wall attached to their hyaline walls.

Type species: Pleopassalora perplexa (Beilharz et al.) Videira \& Crous (三 Passalora perplexa Beilharz et al.).

Pleopassalora perplexa (Beilharz et al.) Videira \& Crous, comb. nov. MycoBank MB822776. Fig. 36.
Basionym: Passalora perplexa Beilharz et al., Stud. Mycol. 50: 473. 2004.
Description and illustrations: Beilharz et al. (2004).
Materials examined: Indonesia, South Sumatra, Kerinci, on Acacia crassicarpa, Feb. 2004, M.J. Wingfield (holotype CBS H-9907, culture ex-type CBS 116363 = CPC 11147-11149);

Fig. 36. Pleopassalora perplexa (CPC 12168). A-H. Observations in vitro. A. Culture on OA. B, C. Conidiophore and conidia type II. D, E. Conidiophore and conidia type I. F. Conidiophore type I. G. Conidia type I, slightly constricted at the septa and swollen cells at the base, and type II, smaller and narrower. H. Conidia type I and type II. Scale bars $=10 \mu \mathrm{~m}$.
idem. CBS H-9908, CBS H-9909, CBS H-9911, cultures derived from CBS H-9911, CBS 116364 = CPC 11150-11151; idem., 1 Mar. 2004, M.J. Wingfield, culture CPC 11152; idem., Acacia sp., 1 May 2005, M.J. Wingfield, cultures CPC 12168, CPC 12170.

Notes: Passalora perplexa is the causal agent of leaf blight in Acacia crassicarpa both in Australia where it is native and also in plantations in Indonesia to where it spread. It is one of few pleoanamorphic cercosporoid fungi described with one morph characterised as a hyphomycete, a second morph described as a coelomycete, and a third morph representing a resting spore form on natural substrates and artificial media (Beilharz et al. 2004). The available strains of Passalora perplexa cluster together in a well-supported clade in the phylogenetic analyses (Fig. 1, clade 63; Fig. 3, clade 27). The phylogenetic analyses support a clade including strains from Passalora perplexa, Passalora sp. 1, Passalora juniperina and Phaeocercospora colophospermi, but these species vary too significantly in their morphology to be assigned to the same genus.

"Passalora" sp. 1

Description in vitro (V8; CBS 122466): Mycelium composed of hyaline to pale brown hyphae, smooth, uniform in width, 2-2.5 $\mu \mathrm{m}$. Conidiophores micro- or macronematous, pale to pale brown, simple, rough, straight to mildly sinuous, long to medium conically truncate at the apex, $10-40 \times 2.5 \mu \mathrm{~m}$. Conidiogenous cells integrated, apical, polyblastic, proliferating sympodially, with slightly protruding conidiogenous loci that are somewhat thickened and darkened, $2 \mu \mathrm{~m}$ in diam. Conidia solitary, hyaline to pale brown, finely verruculose, cylindrical to obclavate, base obconically truncate, rounded at the apex, 25-40 $\times 2-2.5 \mu \mathrm{~m}$, multi-euseptate, septa indistinct, hila somewhat thickened and darkened, $2 \mu \mathrm{~m}$ diam.

Material examined: USA, Florida, on Citrus sp., unknown date, R.C. Ploetz, culture CBS 122466.

Notes: Phylogenetically, the present species forms a single strain lineage closely related to Pleopassalora (Fig. 1, clade 63; Fig. 3, clade 27). The present strain was initially identified as Passalora loranthi (Arzanlou et al. 2008) since its DNA was identical to a sequence of Passalora loranthi available on GenBank (GenBank AY348311). Although there is no publication associated with that accession number, many subsequent authors followed this identification (Crous et al. 2004b, Beilharz et al., 2004, Arzanlou et al. 2008, Douanla-Meli et al. 2013, Huang et al. 2015). A description based on the observation of strain CBS 122466 in culture is presented. Unfortunately, the culture became sterile and thus fresh material needs to be collected to fully clarify the taxonomy of this species, which appears to have a wide host range.

Clade 64: Phaeocercospora

Phaeocercospora Crous, Persoonia 28: 171. 2012.
Description (from Crous et al. 2012b): Foliicolous, associated with leaf spots. Caespituli amphigenous, subepidermal, arising from subepidermal, globular fruiting bodies (immature structures with undefined white contents); wall of 2-3 layers of textura angularis, bursting through epidermis, forming grey sporodochia with densely aggregated conidiophores.

Conidiophores subcylindrical to ampulliform, brown, finely verruculose, aggregated, $0-2$-septate. Conidiogenous cells terminal, brown, finely verruculose, ampulliform, tapering to a truncate apex, proliferating several times percurrently at apex (proliferations irregular, rough), or sympodially. Conidia solitary, brown, finely verruculose, guttulate, subcylindrical to narrowly obclavate, straight to mildly curved, apex subobtuse, base truncate with marginal frill, transversely septate; hila and scars not thickened, nor darkened or refractive.

Type species: Phaeocercospora colophospermi Crous.
Phaeocercospora colophospermi Crous, Persoonia 28: 171. 2012.
Descriptions and illustrations: Crous et al. (2012b).
Material examined: South Africa, Mpumalanga, Kruger Game Reserve, Satara rest camp, on leaves of Colophospermum mopane, 11 Jul. 2011, P.W. Crous \& K.L. Crous (holotype CBS H-20966, culture ex-type CBS $132687=$ CPC 19812).

Notes: Phaeocercospora is a recently introduced genus that was established to accommodate Phaeocercospora colophospermi (Crous et al. 2012b). In the present phylogenetic analyses, Phaeocercospora colophospermi is represented by a single-strain lineage (Fig. 1, clade 64; Fig. 3, clade 28) closely related to Pleopassalora.

Phaeocercospora juniperina (Georgescu \& Badea) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822825. Fig. 37.
Basionym: Cercospora juniperina Georgescu \& Badea, Analele Inst. Cercet. Exp. Forest. Bucharest I: 37. 1937.
Synonyms: Stigmina juniperina (Georgescu \& Badea) M.B. Ellis, Mycol. Pap. 72: 67. 1959.
Sciniatosporium juniperinum (Georgescu \& Badea) Morgan-Jones, Canad. J. Bot. 49: 998. 1971.

Asperisporium juniperinum (Georgescu \& Badea) B. Sutton \& Hodges, Mycologia 82: 317. 1990.

Passalora juniperina (Georgescu \& Badea) H. Solheim, Agarica 34: 110. 2014.
Camarosporium juniperinum Georgescu \& Badea, Rev. Padurilor, Bucharest: 1. 1935.
Description in vivo (CBS H-22955): Mycelium internal, composed of brown hyphae, septate, branched. Stromata well-developed, brown to dark brown, often with a cavity filled with spermatia, single or aggregate, wall composed of textura angularis, $80-340 \mu \mathrm{~m}$ diam. Conidiophores sporodochial, densely fasciculate, pale brown to brown, smooth, aseptate or septate, cylindrical to geniculate, $16-50 \times 4-9 \mu \mathrm{~m}$, often reduced to conidiogenous cells. Conidiogenous cells integrated, terminal, polyblastic, proliferating percurrently or sympodially, with conidiogenous loci not thickened and not darkened, apical or lateral at the apex, 2-2.5 $\mu \mathrm{m}$ diam. Conidia solitary, pale to pale olivaceous brown, smooth to thinly verruculose, cylindrical to long-obclavate, straight to slightly curved, base obconically truncate, apex rounded, 18-56 \times $2.5-3.5 \mu \mathrm{~m}, 1-4$-septate, hila not thickened and not darkened at the base, $2-2.5 \mu \mathrm{~m}$ diam.

Description in vitro (on SNA; CPC 11258): Mycelium composed of pale brown hyphae, smooth, septate, branched. Stromata absent. Conidiophores emerging from hyphae, pale

Fig. 37. Phaeocercospora juniperina (CPC 11258). A-F. Observations in vivo. A. Leaf spot symptoms on the host. B. Conidiophores and conidia on the lesions. C, E. Conidiogenous cells and conidia. D. Conidiophores and conidia. F. Conidia. G-K. Observations in vitro. G. Culture on SNA. H, I. Conidiophore and conidia. J, K. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
brown, smooth, erect, cylindrical to geniculate, septate, $11-55 \times 3-6 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal, polyblastic, proliferating sympodially, conically truncate or geniculate at the apex, with conidiogenous loci not thickened or darkened, apical or lateral at the apex, $2 \mu \mathrm{~m}$ diam. Conidia solitary, pale brown, smooth to thinly verruculose, cylindrical to longobclavate, straight to slightly curved, base obconically truncate, apex rounded, 25-54 $\times 2.5-4$ $\mu \mathrm{m}, 1-4$-septate, hila not thickened and not darkened, 2-2.5 $\mu \mathrm{m}$ diam.

Material examined: USA, North Carolina, on Juniperus virginiana, 1 Mar. 2004, C.S. Hodges, CBS H-22955, culture CBS $142238=$ CPC 11258.

Notes: Both specimen and culture materials were examined and this fungus has conidiogenous cells proliferating both percurrently with annellations and sympodially with rim-like loci (Fig. 37). Phylogenetically, this strain forms a single-strain lineage closely related to Phaeocercospora colophospermi (Fig. 1, clade 64; Fig. 3, clade 28). Given the phylogenetical proximity and morphological similarities, a combination is proposed in Phaeocercospora until further evidence becomes available.

Clade 65: Rosisphaerella
Rosisphaerella Videira \& Crous, gen. nov. MycoBank MB822703.
Etymology: Mycosphaerella-like species from the host genus Rosa.

Description: Phytopathogenic, foliicolous. Mycelium internal, composed of subhyaline to brown hyphae, smooth, septate, branching. Stromata lacking or small, epidermal, substomatal, brown to dark brown. Conidiophores emerging from stromata or few brown cells, solitary to fasciculate, often synnematous, dark olivaceous brown near base and paler toward the tip, smooth, simple, multiseptate, straight to sinuous, usually geniculate-sinuous. Conidiogenous cells integrated, terminal and intercalary, proliferating sympodially, rarely proliferating percurrently, with rimlike conidiogenous loci, somewhat thickened, darkened and protuberant. Conidia solitary, pale to medium olivaceous brown, smooth to finely verruculose, cylindrical to obclavate, straight to mildly curved, septate, obconically truncate at base and rounded at apex, hila somewhat thickened and darkened.

Type species: Rosisphaerella rosicola (Pass.) U. Braun, et al. (三 Cercospora rosicola Pass.).
Rosisphaerella rosicola (Pass.) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822800. Fig. 38.
Basionym: Cercospora rosicola Pass., in Thüm., Herb. Mycol. Oecon., Fasc. VII: no. 333. 1875. Synonyms: Passalora rosicola (Pass.) U. Braun, Mycotaxon 55: 234. 1995.
Cercospora rosicola var. undosa Davis, Trans. Wisconsin Acad. Sci. 20: 405. 1921.
Cercospora rosae J.M. Hook, Proc. Indiana Acad. Sci. 38: 131. 1929.
Cercospora rosae-indianensis J.M. Hook, Proc. Indiana Acad. Sci. 39: 82. 1930.
Mycosphaerella rosicola B.H. Davis, Mycologia 30: 296. 1938.
Description in vivo (CBS H-22956): Leaf spots scattered, circular or irregular when coalescing, singly $1-4 \mathrm{~mm}$ diam, uniformly purplish or reddish brown, or greysh white to pale brown

5

Fig. 38. Rosisphaerella rosicola (CPC 12548). A-E. Observations in vivo. A, B. Leaf spot symptoms on the host. C, D. Conidiophores and conidiogenous cells. E. Single conidia. F-K. Observations in vitro. F. Culture on OA. G-I. Conidiophore, conidiogenous cells and conidia. J. Partial conidiophore, conidiogenous cells and conidia. K. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
at the centre, indistinct on lower leaf surface. Mycelium internal, composed of hyaline and pale brown to brown hyphae, septate, branching, 3-4 $\mu \mathrm{m}$ diam. Stromata lacking or small, epidermal, substomatal, brown to dark brown, $25-52 \mu \mathrm{~m}$ diam. Conidiophores emerging from stromata or agglomerates of a few brown cells, solitary or in fascicles, fascicles loose or dense, often synnematous, dark olivaceous brown near base, paler towards the tip, smooth, simple, multiseptate, straight or sinuous, usually geniculate-sinuous, $20-156 \times 3-6 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal and intercalary, proliferating sympodially, rarely proliferating percurrently, with rim-like conidiogenous loci, somewhat thickened and darkened, $2-4 \mu \mathrm{~m}$ diam. Conidia solitary, pale to medium olivaceous brown, smooth to finely verruculose, cylindrical to obclavate, straight to mildly curved, base long-obconically truncate, apex rounded, 20-98× $3-5 \mu \mathrm{~m}, 1-6$-septate, hila somewhat thickened and darkened, $2-4 \mu \mathrm{~m}$ diam.

Description in vitro (on SNA; CPC 12548): Mycelium composed of pale brown to brown hyphae, uniform in width, $2-3 \mu \mathrm{~m}$. Conidiophores micro- or macronematous, pale brown to brown, paler at the apex, smooth, erect, simple, septate, geniculate-sinuous, $10-280 \times 2.5-5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal and intercalary, pale brown to brown, smooth, monoor polyblastic, proliferating sympodially, conically truncate at the apex or geniculate-sinuous, with conidiogenous loci thickened and darkened, located protruding at the apex and shoulders, $2-2.5 \mu \mathrm{~m}$ diam. Conidia solitary, subhyaline to pale brown, smooth to finely verruculose, cylindrical to long obclavate, straight or mildly curved, base short obconically truncate, apex rounded, 1-4-euseptate, $20-63 \times 2.5-5 \mu \mathrm{~m}$, hila refractive and slightly thickened and darkened.

Materials examined: Italy, Parma, on Rosa sp. cult., 1874, G. Passerini, Thümen, Herb. Mycol. Oecon. 333 (lectotype designated here, BPI 440506, MBT378584; isolectotypes Thümen, Herb. Mycol. Oecon. 333, e.g. B, K, S). USA, North Carolina, on Rosa sp. hybrid, 2005, C.S. Hodges, CBS H-22956, culture CBS $142183=$ CPC 12548; unknown state/city, host, collector and date, dep. LM Massey, 1935, culture CBS $138.35=$ ATCC 52313.

Notes: Passalora rosicola is known to cause leaf spot disease on rose worldwide (Davis 1938). Morphologically, the specimens examined (Fig. 38) fit the description available in the literature (Braun 1995). Morphologically, the strain CBS 142183 is a good representative of the species and was isolated from the same host as the type specimen. However, since it was isolated from a different continent, we refrain from proposing an epitype. Phylogenetically, the observed strains cluster in a well-supported clade (Fig. 1, clade 65; Fig. 3 clade 29) closely related to Phaeocercospora and Pleopassalora. When single gene sequences are BLASTed against the alignment, CPC 12548 shares 80 \% (623/778) similarity on rpb2 with CPC 11258 Phaeocercospora juniperina, 91 \% (438/479) similarity on ITS and 96 \% (700/727) similarity on LSU. In Passalora rosicola we did not observe pleomorphic asexual states as in Pleopassalora, nor percurrent conidiation as in Phaeocercospora. Given both the morphological and phylogenetic differences from the closest related genera, we introduce the genus Rosisphaerella to accommodate this species.

Clade 66: Exutisphaerella

Exutisphaerella Videira \& Crous, gen. nov. MycoBank MB822590.

Etymology: exutus- meaning "cast off" or "shed" like the disease symptom + sphaerella because of the globose ascomata.

Description: Ascomata pseudothecial, globose to slightly elongated or elliptical, emerging through the epidermis, solitary or gregarious, ostiole apical. Asci club-shaped, stipitate, 8 -spored. Ascospores hyaline, oblong, fusiform-elliptical, straight or slightly curved, 1 -septate, not constricted at septa, with cells of equal size. Asexual morph acervular-like. Conidiophores ampulliform, in compact bunches. Conidia hyaline, bacillar to allantoid, rounded at the tip, truncate at the base, straight to slightly curved, aseptate to multiseptate. Spermagonia in stromata, barely erumpent to completely exposed, globose to oval or pyriform, apical ostiole. Spermatia bacillar to pyriform.

Type species: Exutisphaerella laricina Videira \& Crous (\equiv Sphaerella laricina R. Hartig).
Exutisphaerella laricina (R. Hartig) Videira \& Crous, comb. nov. MycoBank MB822758.
Basionym: Sphaerella laricina R. Hartig, Forstl.-Naturwiss. Z. 4: 445. 1895.
Synonym: Mycosphaerella laricina (R. Hartig) Mig., Krypt.-Fl. Deutschl. Österr. Schweiz. 3(1): 301. 1912.

Descriptions and illustrations: Hartig (1895), Patton et al. (1983).
Description in vivo (adapted from Hartig 1895 and Patton 1983): Ascomata pseudothecial, globose to slightly elongated or elliptical, emerging through the epidermis, solitary or gregarious, $100-150 \mu \mathrm{~m}$ diam, ostiole apical. Asci club-shaped, stipitate, $40-60 \mu \mathrm{~m}$ long, 8 -spored. Ascospores hyaline, oblong, fusiform-elliptical, straight or slightly curved, 1-septate, not constricted at septa, with cells of equal size, $11-17 \times 2.5-3 \mu \mathrm{~m}$. Asexual morph acervulum-like. Conidiophores ampulliform, in compact bunches. Conidia hyaline, bacillar to allantoid, rounded at the tip, truncate at the base, straight to slightly curved, $25-46 \times 2-4 \mu \mathrm{~m},(0-) 1-4$-septate. Spermagonia in stromata, barely erumpent to completely exposed, globose to oval or pyriform, occasionally two spermagonial cavities occur in a single stroma, apical ostiole. Spermatia bacillar to pyriform, $1-3 \times 0.5 \mu \mathrm{~m}$.

Material examined: Switzerland, Kt. Zurich, Horgenberg, on Larix decidua, unknown date and collector, isol. E. Müller, 27 May 1952 (neotype designated here as metabolically inactive culture CBS 326.52, MBT378624).

Notes: Mycosphaerella laricina was first observed infecting the host Larix europaea (Pinaceae) in Germany, and is the causative agent of needle cast disease of European larch wherever it is cultivated. Unfortunately, the type could not be located in any fungaria and a neotype is necessary (Aptroot 2006). The asexual morph is reported as a Cercoseptoria (fide D.F. Farr et al. 1989, Corlett 1991), currently treated as synonym of Pseudocercospora (needs confirmation based on DNA), or a Leptostroma (fide Tomilin 1979). The asexual morph is characterised by acervular conidiomata, lined with ampulliform conidiophores with truncate apices, producing hyaline and bacillar conidia, 1-4-septate (Patton 1983). The strain used in this study was unfortunately sterile and morphological comparison was impossible. Phylogenetically, this strain forms a single-strain lineage closely related to Rosisphaerella (Fig. 1, clade 66; Fig. 3 clade 30). When the single genes are BLASTed against the alignment, CBS 326.52 shares $90 \%(700 / 774)$ similarity on $r p b 2$ and $99 \%(717 / 726)$ similarity on LSU with CPC 12548 Rosiphaerella rosicola, and 98 \% (470/480) similarity on ITS with CBS 122466 (Passalora sp .1). Based on the phylogenetic results and the morphological differences in comparison to the
closest related species Rosisphaerella rosicola, we introduce this new genus to accommodate the present species.

Clade 67: Brunswickiella, Cytostagonospora, Devonomyces and Phaeophleospora

Brunswickiella Videira \& Crous gen. nov. MycoBank MB822694.

Etymology: Named after the nature reserve it was collected from.
Description: Phytopathogenic. Conidiomata pycnidial, epiphyllous, immersed, black and with central ostiole, outer layer with irregular, brown, verruculose hyphae; basal stroma brown, verruculose, giving rise to conidiophores; basal cells brown, verruculose, upper cells hyaline, smooth, septate, subcylindrical, branched below. Conidiogenous cells hyaline, smooth, subcylindrical, terminal and lateral, proliferating percurrently at apex, or with periclinal thickening, intermixed among paraphyses that are branched, similar in length and at times become fertile. Conidia solitary, hyaline, smooth, guttulate, subcylindrical to narrowly fusoidellipsoidal, straight to slightly curved, widest in the middle, tapering to subobtuse apex and truncate hilum.

Type species: Brunswickiella parsonsiae (Crous \& Summerell) Videira \& Crous.
Brunswickiella parsonsiae (Crous \& Summerell) Videira \& Crous comb. nov. MycoBank MB822740.
Basionym: Phaeophleospora parsonsiae Crous \& Summerell (as "parsoniae"), Persoonia 32: 217. 2014.

Description and illustration: Crous et al. (2014a).
Material examined: Australia, New South Wales, Brunswick Heads Nature Reserve, S28º31090.800 E153³2057.000, on Parsonsia straminea leaves, 9 Mar. 2013, B.A. Summerell (holotype CBS H-21691, culture ex-type CBS $137979=$ CPC 22537).

Notes: Brunswickiella parsonsiae forms pycnidial conidiomata with hyaline conidiogenous cells that proliferate percurrently and produce hyaline fusoid-ellipsoid aseptate conidia. At the time it was described, Crous et al. (2014a) assumed it represented a microconidial state of Phaeophleospora. The phylogenetic position of the present strain is outside the Phaeopleospora clade, sitting in a single-strain lineage (Fig. 4, clade 6-II) sister to the clade of Lecanosticta. Based on the morphological differences between this strain and the closest genera and its phylogenetic position we place it in a new genus.

Cytostagonospora Bubák, Ann. Mycol. 14: 150. 1916.

Description (from Sutton 1980): Mycelium immersed, dark brown, branched, septate. Conidiomata pycnidial, amphigenous, separate, globose, dark brown to black, immersed, unilocular, thick-walled, clypeate; walls of dark brown, thick-walled textura angularis to textura globulosa, becoming hyaline towards the conidiogenous region, extending in the upper part to become a circular clypeus of similar thickness to the wall. Ostiole central, circular, papillate
to short rostrate, depressed, situated immersed within the clypeus. Conidiophores reduced to conidiogenous cells. Conidiogenous cells holoblastic, determinate, discrete, lageniform, hyaline, smooth, formed from the inner cells of the pycnidial wall. Conidia hyaline, $0-2$-euseptate, not constricted at septa, base truncate, apex obtuse, thin-walled, eguttulate, smooth, filiform, often curved.

Type species: Cytostagonospora photiniicola Bubák.
Cytostagonospora martiniana (Sacc.) B. Sutton \& H.J. Swart, Trans. Br. mycol. Soc. 87: 99. 1986.

Basionym: Septoria martiniana Sacc., Syll. Fung. (Abellini) 10: 351. 1892.
Synonym: Septoria phyllodiorum Cooke \& Massee, Grevillea 19:47. 1890, non S. phyllodiorum Sacc., Hedwigia 29: 156. 1890.

Description and illlustration: Sutton \& Swart (1986), Quaedvlieg et al. (2013).
Materials examined: Australia, Victoria, Warneet close to Melbourne, $\mathrm{S}^{\circ} 8^{\circ} 13037.800$ E145 ${ }^{\circ} 18025.400$, on leaves of Acacia pycnantha, 21 Oct. 2009, P.W. Crous (epitype designated here CBS H-21297, MBT378691, culture CBS $135102=$ CPC 17727); Victoria, on phyllodes of Acacia longifolia, Mrs. Martin 432 (holotype K, slide as IMI 299337).

Notes: According to the phylogenetic analyses in the present study, the strain of Cytostagonospora martiniana forms a single strain lineage (Fig. 1, clade 66; Fig. 4, clade 5-III) closely related to Phaeopleospora species. Cytostagonospora martiniana forms pycnidial to acervular conidiomata, hyaline conidiogenous cells that are polyphialidic with periclinal thickening, proliferate percurrently and produce hyaline, 1-3-septate, scolecosporous conidia (Quaedvlieg et al. 2014). These morphological characters are distinct from the typical generic characters of Phaeophleospora.

Cytostagonospora photiniicola Bubák, Ann. Mycol. 14(3-4): 150. 1916.
Synonym: Cytostaganis photiniicola (Bubák) Clem. \& Shear, The genera of Fungi: 367. 1931.
Description and illustration: Quaedvlieg et al. (2013).
Notes: The phylogenetic position of Cytostagonospora (Bubák 1916) is still unclear since material representing the type species, Cytostagonospora photiniicola, has not yet been sequenced. The only Cytostagonospora species of which a strain is available is Cytostagonospora martiniana, which forms a single strain lineage in the phylogenetic analysis (Fig. 4, clade 5-III).

Devonomyces Videira \& Crous, gen. nov. MycoBank MB822695.
Etymology: Named after Devon Valley, Stellenbosch, where this taxon was first collected.

Description:Phytopathogenic,foliicolous.Ascomatapseudothecial, amphigenous,subepidermal, becoming erumpent, subglobose to globose, with apical, papillate ostiole; walls of 2-3 layers of medium brown textura angularis, subhymenium of 1-2 layers of hyaline cells. Asci fasciculate, bitunicate, cylindrical to narrowly obovoid, straight or slightly incurved, 8-spored. Ascospores
bi- to triseriate, overlapping, hyaline, guttulate, thin-walled, straight, fusoid-ellipsoidal with obtuse ends, medianly 1 -septate. Mycelium internal, consisting of septate, branched, hyaline to brown, smooth to verruculose hyphae. Caespituli sporodochial, situated on a brown stroma consisting of verruculose, brown, globose cells and hyphal elements. Conidiophores rarely pigmented and verruculose in lower part, mostly hyaline and smooth throughout, thick-walled, cylindrical, straight to irregularly curved, septate. Conidiogenous cells terminal, hyaline, smooth, unbranched, straight or slightly curved, proliferating sympodially. Conidia solitary, hyaline, smooth, narrowly obclavate, septate, irregularly curved, rarely straight, apex obtuse, base long obconic-truncate, lateral branches common, secondary conidia forming on most mature primary conidia; conidia aggregated in slimy masses.

Type species: Devonomyces endophyticus (Crous \& H. Sm. ter) Videira \& Crous.
Devonomyces endophyticus (Crous \& H. Sm. ter) Videira \& Crous, comb. nov. MycoBank MB822754.
Basionym: Mycosphaerella endophytica Crous \& H. Sm. ter, Mycol. Mem. 21: 54. 1998. Synonym: Pseudocercosporella endophytica Crous \& H. Sm. ter, Mycol. Mem. 21: 55. 1998.

Descriptions and illustrations: Crous (1998).
Materials examined: Australia, Western Australia, Esperance, Chips Plantation (ITC), on Eucalyptus globulus, 15 Dec. 2000, A. Maxwell, MURU0011, culture CBS 110501 = CMW 14462; Pemberton, Steward Road, Banksia woodland, on Hakea undulata, 2 Aug. 2008, A.R. Wood, culture CPC 15580. South Africa, Western Cape Province, De Hoop Nature Reserve, Eucalyptus cladocalyx, 22 Sep. 1995, A.R. Wood, culture CBS 111167 = CPC 1225; Stellenbosch, Devon Valley, on leaves of Eucalyptus sp., Jun. 1995, P.W. Crous (holotype of Mycosphaerella endophytica PREM 54398, culture ex-type CBS 114662 = CPC 1193); Kwazulu-Natal, on Eucalyptus nitens, unknown collector and date, isol. G.C. Hunter, Jun. 2000, culture CBS 114709 = CMW 9099.

Notes: Based on the phylogenetic analyses Devonomyces endophyticus (Fig. 4, clade 5-I) is closely related to Phaeophleospora eugeniae, as observed in a previous study (Quaedvlieg et al. 2014). The pseudocercosporella-like morph of Devonomyces endophyticus is however morphologically distinct from Phaeophleospora (Crous 1998), and thus has to be accommodated in a different genus. The strain CBS 114709 was originally named as Mycosphaerella pseudoellipsoidea but no details of the species description could be found. The strain is currently sterile and is included in Devonomyces endophyticus based on molecular data. The strain CPC 15580 was isolated from the same herbarium material as Periconiella hakeae (CPC 15577), which indicates they may be co-existing in the same lesions.

Phaeophleospora Rangel, Arq. Mus. Nac., Rio de Janeiro 18: 162. 1916.

Description: Foliicolous, plant pathogenic. Conidiomata pycnidial, aggregated or separate, becoming erumpent, lifting the epidermis, pycnidia black, subglobose, unilocular, wall of brown textura epidermoidea in surface view, and of textura angularis to textura intricata in vertical section, base of 2-3 layers, ostiole irregular, central. Conidiophores mostly reduced to conidiogenous cells. Conidiogenous cells terminal, discrete, brown, verruculose, subcylindrical
or doliiform, proliferating percurrently, with inconspicuous percurrent proliferations, or at times proliferating sympodially. Conidia solitary, exuded in cirrhus, hyaline to medium brown, smooth to verruculose, granular, thick-walled, subcylindrical to obclavate, straight to irregularly curved, base obconically truncate, apex obtuse, euseptate, hila with a minute marginal frill. Spermatogenous cells developing in conidiomata before the development of conidia, hyaline, ampulliform. Spermatia hyaline, smooth, rod-shaped.

Type species: Phaeophleospora eugeniae Rangel.
Phaeophleospora eugeniae Rangel, Decheniana 18: 162. 1916.
Description and illustration: Crous et al. (1997).
Description in vitro (on V8; CPC 15143): Mycelium hyaline, smooth, uniform in width, $2.5 \mu \mathrm{~m}$ diam. Conidiomata pycnidial, aggregated on mycelial colonies, pale brown, forming 1-layered conidiomatal wall composed of large brown cells (textura intricata), 100-300 $\mu \mathrm{m}$ diam. Conidiogenous cells lining the inner cavity, hyaline to pale brown, ampulliform, monoblastic, determinate or proliferating percurrently, 5-20 $\times 2.5-3.8 \mu \mathrm{~m}$, without distinguished loci. Conidia solitary, pale brown to pale olivaceous brown, darker in the center and paler towards both ends, scolecosporous, obclavate, straight or sinuous, base long-obconical, apex pointed, $30-150 \times 5-8 \mu \mathrm{~m}, 6-25$-euseptate, with frill-like hila.

Materials examined: Brazil, Minas Gerais, Viçosa University campus, living leaves of Eugenia uniflora, 8 Jul. 1996, F.A. Ferreira (neotype IMI 372655, designated in Crous et al. 1997; isoneotype PREM 55275, cultures ex-type CPC 1453, CPC 1454); same location and host, 15 Jun. 1990, F.A. Ferreira, PREM 55276; same location and host, 20 Jun. 1989, F.A. Ferreira, PREM 55277; Viçosa, Paraiso, on Eugenia uniflora, 1 Mar. 2008, A.C. Alfenas, CBS H-22957, culture CBS 142184 = CPC 15143; Guaiba, on Eugenia uniflora, 1 Apr. 2008, A.C. Alfenas, culture CPC 15159.

Notes: The genus Phaeophleospora, based on Phaeophleospora eugeniae (on Eugenia uniflora, Brazil), includes species that form pycnidia lined with percurrently proliferating brown conidiogenous cells that give rise to brown, multiseptate, scolecosporous conidia (Crous et al. 1997, 2007a). Based on phylogenetic analyses, Phaeophleospora belongs to the Mycosphaerellaceae (Crous et al. 1997, 2009b; present study Fig. 1, clade 67), and clusters in a well supported clade by the Bayesian analyses (Fig. 4, clade 5-II), being closely related to Lecanosticta. The genus Kirramyces, initially considered a synonym of Phaeophleospora (Crous et al. 1997), is currently considered the asexual morph of Teratosphaeria. The taxa Phaeophleospora scytalidii and Phaeophleospora stramenti were allocated to Phaeophleospora based on phylogenetic inference since only the sexual morph is known (Quaedvlieg et al. 2014). Recently described species in the genus are morphologically variable [e.g. Phaeophleospora pteridivora has a sporodochial hyphomycete asexual morph (Guatimosim et al. 2016); Phaeophleospora hymenocallidis and Phaeophleospora hymenocallidicola produce hyaline conidia (Crous et al. 2015d)], suggesting that this genus needs to be revised.

Clade 68: Lecanosticta

Lecanosticta Syd., Ann. Mycol. 20: 211. 1922.
Description(fromSutton 1980):Mycelium immersed, branched, septate, pale brown. Conidiomata acervular, subepidermal, separate, formed of brown, thin- or thick-walled textura angularis. Dehiscence by pushing back a flap of epidermis that remains attached. Conidiophores hyaline to pale brown, branched, septate, smooth, formed from the upper cells of the pseudoparenchyma. Conidiogenous cells holoblastic, integrated or discrete, indeterminate, cylindrical, hyaline, with 1-2 often widely spaced percurrent proliferations. Conidia acrogenous, straight or curved, fusiform, tapered to the rounded apex and truncate base, 1-3-euseptate, continuous, pale brown, verrucose.

Type species: Lecanosticta acicola (Thüm.) Syd. (三 Cryptosporium acicola Thüm.).
Lecanosticta acicola (Thüm.) Syd., Ann. Mycol. 22: 400. 1924.
Basionym: Cryptosporium acicola Thüm., Flora (Regensburg) 61: 178. 1878.
Synonyms: Septoria acicola (Thüm.) Sacc., Syll. Fung. 3: 507. 1884.
Dothistroma acicola (Thüm.) Schischkina \& Tzanava, Novosti Sist. Nizsh. Rast. 1967: 277. 1967.

Lecanosticta pini Syd., Ann. Mycol. 20: 211. 1922.
Oligostroma acicola Dearn., Mycologia 18: 251. 1926.
Scirrhia acicola (Dearn.) Sigg., Phytopathology 29: 1076. 1939.
Systremma acicola (Dearn.) F.A. Wolf \& Barbour, Phytopathology 31: 70. 1941.
Mycosphaerella dearnessii M.E. Barr, Contr. Univ. Michigan Herb. 9: 587. 1972.
Description and illustration: Quaedvlieg et al. (2012).
Materials examined: France, Gironde, Le Teich, on needles of Pinus radiata, Apr. 1995, M. Morelet, CBS H-21114, culture CBS 871.95. Lithuania, on needles of Pinus mugo, 2009, S. Markovskaja, A. Kačergius \& A. Treigienè, CBS H-21109, cultures LA773A \& LA773B = CBS 133790. Mexico, on needles of a Pinus sp., 30 Nov. 2009, M. de Jesús Yáñez-Morales, CBS H-21112, culture CPC 17822 = CBS 133789. USA, South Carolina, Aiken, needles of Pinus caribaea, 1876, H.W. Ravenel (lectotype designated here IMI 91340, MBT378589, isotype of Cryptosporium acicula ex Padova No. 1484); Arkansas, Pike City, alt. 700 ft , needles of Pinus (palustris or taeda), 24 Apr. 1918, coll. J.A. Hughes, det. Sydow (syntypes of Lecanostricta pini, BPI 393329, BPI 393331); Florida, Silver Spring, needles of P. palustris, 27 Feb. 1919, coll. Geo G. Hedgcock, det. J. Dearness (syntype of Oligostroma acicola, BPI 643015); Maine, Bethel, on needles of Pinus strobus, 14 Jun. 2011, coll. B. Ostrofsky, det. K. Broders, WPF4.12; idem., on needles of P. strobus, 15 Jun. 2011, coll. B. Ostrofsky, det. K. Broders, WPF13.12; New Hampshire, Blackwater, on needles of P. strobus, 15 Jun. 2011, coll. B. Ostrofsky, det. K. Broders (epitype of Cryptosporium acicola designated here: CBS H-21113, MBT378591, culture ex-epitype CBS 133791).

Notes: The genus Lecanosticta is closely related to Phaeophleospora based on phylogenetic analyses (Crous et al. 2009c). The phylogenetic analyses in the present study corroborated the previous findings, placing Lecanosticta species in a well-supported clade (Fig. 1, clade 68; Fig.

4, clade 6-I) sister to Phaeophleospora. Species of Lecanosticta have typical phaeophleosporalike conidia, but form acervular conidiomata instead of pycnidial conidiomata. Lecanosticta acicola is the causal agent of brown spot needle blight on Pinus spp. worldwide, a serious disease that leads to defoliation, dieback and finally tree death. For this reason, it is included on the European quarantine list. Lecanosticta acicola was shown to represent a species complex, including Lecanosticta brevispora and Lecanosticta guatemalensis (Quaedvlieg et al. 2012). The epitypification presented by Quaedvlieg et al. was not compliant with the code (Art. 9.8) and a new epitypification is therefore proposed.

Lecanosticta brevispora Quaedvlieg \& Crous, Persoonia 29: 109. 2012.
Descriptions and illustrations: Quaedvlieg et al. (2012).
Materials examined: Mexico, on needles of a Pinus sp., 24 Oct. 2009, M. de Jesús YáñezMorales (holotype CBS H-21110, cultures ex-type CBS $133601=$ CPC 18092).

Notes: Lecanosticta brevispora produces smaller conidia than Lecanosticta acicula (Quaedvlieg et al. 2012). Based on the phylogenetic analyses, Lecanosticta brevispora clusters in the Lecanosticta clade (Fig. 1, clade 68; Fig. 4, clade 6-I) as observed in a previous phylogenetic study (Quaedvlieg et al. 2012).

Lecanosticta longispora Marm., Mycotaxon 76: 395. 2000.
Description and illustration: Quaedvlieg et al. (2012).
Materials examined: Mexico, Nuevo León, Galeana, Cerro del Potosí, on Pinus culminicola, 6 Jun. 1993, J.G. Marmolejo (holotype CFNL); Michoacán State, Zinapecuaro area, on needles of a Pinus sp., 24 Oct. 2009, M. de Jesús Yáñez-Morales \& C. Méndez-Inocencio (epitype designated by Quaedvlieg et al. 2012: CBS H-21111, cultures ex-epitype CBS 133602 = CPC 17940); idem., culture CPC 17941.

Notes: Lecanosticta longispora produces conidia of the same size as Lecanosticta acicola but conidia have only 1-3 septa (Marmolejo 2000). Phylogenetically, Lecanosticta longispora clusters in the Lecanosticta clade (Fig. 1, clade 68; Fig. 4, clade 6-I) as observed in a previous phylogenetic study (Quaedvlieg et al. 2012).

Clade 69: Zasmidium complex (Periconiella, ramichloridium-like, rasutoria-like, stenellalike, Verrucisporota, Zasmidium)

Zasmidium Fr., Summa Veg. Scand. 2: 407. 1849.
Synonyms: Periconiella Sacc., Atti Ist. Veneto Sci. Lett. Arti 3: 727. 1885 (type species: Periconiella velutina (G. Winter) Sacc. 1885).
Biharia Thirum. \& Mishra, Sydowia 7: 79. 1953 (type species: Biharia vangueriae Thirum. \& Mishra 1953).
Stenellopsis B. Huguenin, Bull. Trimestriel Soc. Mycol. France 81: 695. 1966 (type species: Stenellopsis fagraeae B. Huguenin 1966).
Verrucisporota D.E. Shaw \& Alcorn, Austral. Syst. Bot. 6:273.1993 (typespecies: Verrucisporota
proteacearum (D.E. Shaw \& Alcorn) D.E. Shaw \& Alcorn 1993).
Verrucispora D.E. Shaw \& Alcorn, Proc. Linn. Soc. New South Wales 92: 171. 1967, nom. illeg. (Art. 53.1).

Description (from Braun et al. 2013): Hyphomycetous (asexual morphs or asexual holomorphs) or Zasmidium with mycosphaerella-like sexual morphs; saprobic or mostly biotrophic, usually foliicolous, symptomless or causing various lesions, ranging from yellowish discolorations to distinct leaf spots. In plant pathogenic species, mycelium mostly immersed as well as superficial, rarely only immersed; hyphae branched, septate, hyaline or almost so to pigmented, pale olivaceous to brown, wall thin to somewhat thickened, immersed hyphae smooth or almost so to faintly rough, external hyphae distinctly verruculose to verrucose (in culture immersed hyphae usually smooth or almost so, aerial hyphae verruculose). Stromata lacking to well-developed, pigmented. Conidiophores solitary, arising from superficial hyphae, lateral, occasionally terminal, in vivo (in plant pathogenic taxa) sometimes also fasciculate, arising from internal hyphae or stromata, semimacronematous to macronematous, in culture occasionally micronematous, cylindrical, filiform, subuliform, straight to strongly geniculate-sinuous, mostly unbranched, aseptate, i.e. reduced to conidiogenous cells, to pluriseptate, subhyaline to pigmented, pale olivaceous to medium dark brown, wall thin to somewhat thickened, smooth to verruculose; conidiogenous cells integrated, terminal, occasionally intercalary, rarely pleurogenous, or conidiophores reduced to conidiogenous cells, mostly polyblastic, sympodial, with conspicuous, somewhat thickened and darkened-refractive, planate loci. Conidia solitary or catenate, in simple or branched acropetal chains, shape and size variable, ranging from amero- to scolecosporous, aseptate to transversely plurieuseptate, subhyaline to pigmented, pale olivaceous to brown, wall thin to somewhat thickened, smooth or almost so to usually distinctly verruculose (in plant pathogenic species without superficial mycelium always verruculose), hila somewhat thickened and darkened-refractive, planate, conidial secession schizolytic.

Type species: Zasmidium cellare (Pers.) Fr. (三 Racodium cellare Pers.).
Zasmidium angulare Batzer \& Crous, Persoonia 28: 123. 2012.

Description and illustration: Li et al. (2012).
Materials examined: USA, Georgia, on fruit surface of Malus domestica, Aug. 2005, M. Wheeler (holotype CBS H-20931, ex-type culture CBS $132094=$ CPC $19042=$ GA227B1a).

Notes: Zasmidium angulare was the first Zasmidium species described in association with sooty blotch and flyspeck symptoms on apple. Phylogenetically, it is closely related to Zasmidium nocoxi (Fig. 4, clade 1, Fig. 5, clade I) but can morphologically be distinguished in having shorter conidiophores (Li et al. 2012).

Zasmidium anthuriicola (U. Braun \& C.F. Hill) Crous \& U. Braun, Persoonia 23: 104. 2009. Basionym: Stenella anthuriicola U. Braun \& C.F. Hill, Fungal Diversity 22: 33. 2006.

Description and illustration: Braun et al. (2006).

Materials examined: Thailand, (intercepted at Auckland International Airport, New Zealand), on Anthurium sp., 3 Aug. 2005, C.F. Hill 1235 (holotype HAL 1870 F, ex-type culture CBS 118742).

Note: In the present study Zasmidium anthuriicola is phylogenetically close to Zasmidium citrigriseum (Fig. 4, clade 1; Fig. 5, clade III).

Zasmidium arcuatum (Arzanlou et al.) Videira \& Crous, comb. nov. MycoBank MB822807. Basionym: Periconiella arcuata Arzanlou et al., Stud. Mycol. 58: 65. 2007.

Description and illustration: Arzanlou et al. (2007).
Materials examined: South Africa, Western Cape Province, Kogelberg, on dead culms of Ischyrolepis subverticillata, May 2001, S. Lee (holotype CBS H-19927, culture ex-type CBS 113477).

Notes: The present species was previously known as Periconiella arcuata, but the type of Periconiella, Periconiella velutina, is combined into Zasmidium in the present study based on morphology and phylogenetic data (see notes under Zasmidium cellare). Based on the phylogenetic analysis, the present species is represented by a single-strain lineage (Fig. 4, clade 1, Fig. 5, clade VIII). It is unique in producing large obclavate conidia that are pale olive, coarsely verrucose and straight to curved (Arzanlou et al. 2007).

Zasmidium aucklandicum (U. Braun \& C.F. Hill) U. Braun, Polish Bot. J. 55: 289. 2010.
Basionym: Stenella aucklandica U. Braun \& C.F. Hill, Australas. Pl. Pathol. 32: 96. 2003.
Description and illustration: Braun et al. (2003b).
Materials examined: New Zealand, on Geniostoma rupestre, 15 Oct. 2005, C.F. Hill 6000, culture CPC 13569; Auckland, Grey Lynn, Western Springs Park, on Geniostoma rupestre, 14 Apr. 2001, C.F. Hill 402-A (holotype HAL 1726 F).

Note: Based on the phylogenetic analyses, Zasmidium aucklandicum is closely related to Zasmidium pittospori (Fig. 4, clade 1; Fig. 5, clade VII), which is also found in New Zealand but on a different host (Pittosporum tenuifolium; Pittosporaceae).

Zasmidium biverticillatum (Arzanlou \& Crous) Videira \& Crous, comb. nov. MycoBank MB822827.
Basionym: Ramichloridium biverticillatum Arzanlou \& Crous, Stud. Mycol. 58: 72. 2007.
Synonyms: Ramichloridium musae Stahel, Trop. Agric., Trinidad 14: 43. 1937, nom. inval., Art. 36.

Periconiella musae Stahel ex M.B. Ellis, Mycol. Pap. 111: 5. 1967, non Zasmidium musae (Arzanlou \& Crous) Crous \& U. Braun, 2010.
Ramichloridium musae (Stahel ex M.B. Ellis) de Hoog, Stud. Mycol. 15: 62. 1977.
Description and illustration: Arzanlou et al. (2007).

Materials examined: Surinam, on Musa sapientum, isol. and dep. G. Stahel, Aug. 1936, culture CBS 335.36.

Notes: The genus Ramichloridium, based on the type Ramichloridium apiculatum, belongs to the Dissoconiaceae (Fig. 1, clade 95; Fig. 4, clade 31). Based on the phylogenetic analyses, the current species belongs to the genus Zasmidium (Fig. 4, clade 1; Fig. 5, clade V). Zasmidium biverticillatum is closely related to Zasmidium musigenum (= Ramichloridium musae), but produces profusely branched conidiophores and smaller conidia (Arzanlou et al. 2007).

Zasmidium cellare (Pers.) Fr., Summa Veg. Scand. 2: 407. 1849.
Basionym: Racodium cellare Pers., Neues Mag. Bot. 1: 123. 1794.
Synonyms: Antennaria cellaris (Pers.) Fr., Syst. Mycol. 3: 229. 1829.
Cladosporium cellare (Pers.) Schanderl, Arch. Hyg. Bakteriol.: 117. 1936.
Rhinocladiella cellaris (Pers.) M.B. Ellis, Dematiaceous Hyphomycetes: 248. 1971.
Rhinocladiella ellisii D. Hawksw., Taxon 26: 208. 1977.

Description and illustration: Arzanlou et al. (2007).
Materials examined: Europe, on wall in wine cellar, unknown collector and date, isol. and dep. H. Schanderl, Jun. 1936 (neotype designated here, preserved as metabolically inactive, CBS 146.36, MBT378698) duplicate cultures are ATCC $36951=$ IFO $4862=$ IMI $44943=$ LCP $52.402=$ LSHB BB274 $=$ MUCL 10089, MBT378698; Germany, Lorch am Rhein, on wall in wine cellar, Aug. 1985, M. Schlag, CBS H-3980, culture CBS 892.85.

Notes: Zasmidium was introduced for the stenella-like fungibelonging to the Mycosphaerellaceae, since the type species of Stenella (Stenella araguata) clustered in the Teratosphaeriaceae (Arzanlou et al. 2007, Braun et al. 2010a, b, Kamal 2010, present study Fig. 1, clade 98; Fig. 4, clade 33). The type specimen of Zasmidium cellare (based on Racodium cellare, from wine cellars in Europe and America) could not be located and the species needed to be neotypified. Morphologically, Stenella and Zasmidium species are very similar and are usually distinguished by the shape of the conidiogenous loci, which is planate in Zasmidium and more pileate in Stenella (Braun et al. 2013).

Based on the phylogenetic analyses of dataset 4, several terminal branches are highly supported but the backbone is usually poorly supported except for a very basal branch that includes various other genera like Verrucisporota, Ramichloridium, Rasutoria, Stenella and Periconiella (Fig. 1, clade 69; Fig. 4, clade 1; Fig. 5, clades I-IX). In order to improve the tree resolution, supplementary phylogenetic analyses were performed including these zasmidiumlike and closest related species in dataset 4 (Fig. 4, clades 1-7), using both Bayesian and parsimony methods (PBS), and including three genes (LSU, ITS and rpb2). Based on these analysis, there is strong support from both Bayesian and parsimony methods for keeping these species together (Fig. 5, clades I-IX). Based on the parsimony analysis these clades (Fig. 5, clades I-VIII) cluster in a basal polytomy, with one clade being excluded but closely related (Fig. 5, clade IX). Morphologically, there was also not a clear pattern that could be observed based on the most strongly supported terminal branches that justified the division of this generic complex in multiple genera. Species with a simple conidiophore are more common than with branched conidiophores, a characteristic only found in Fig. 5, clades V (e.g. Zasmidium biverticillatum) and VIII (e.g. Zasmidium velutinum). Conidiogenous cells terminal and forming rachis can be
found in Fig. 5, clades I (e.g. Zasmidium cerophilum) and V (e.g. Zasmidium musae-banksii) while conidiogenous cells both terminal and intercalary forming rachis can be found in Fig. 5, clades IV (e.g. Z. strelitziae), V (e.g. Z. musigenum) and VIII (e.g. Zasmidium arcuata). Species with short and catenate conidia are only found on Fig. 5, clades I (e.g. Zasmidium fructicola) and II (e.g. Zasmidium pseudoparkii) while species with shorter but single conidia can be found in Fig. 5, clades I (e.g. Zasmidium syzygii), IV (e.g. Zasmidium strelitziae), V (e.g. Zasmidium musigenum), VIII (e.g. Zasmidium hakeae) and IX (e.g. Zasmidium iteae). Species with single and long-obclavate conidia are less common in Fig. 5, clade I (e.g. Zasmidium angulare) but appear often in Fig. 5, clades III (e.g. Zasmidium citri-griseum), VI (Zasmidium grevilleae), VII (e.g. Zasmidium pittospori), VIII (e.g. Zasmidium daviesiae) and IX (e.g. Zasmidium queenslandicum).

Species of the genus Verrucisporota (Shaw \& Alcorn 1993, Beilharz \& Pascoe 2002) are barely distinguishable from Zasmidium based on morphological traits and phylogenetically cluster with Zasmidium strains (Crous et al. 2009a; present study, Fig. 1, clade 69; Fig. 4, clade 1; Fig. 5, clade VI, clade VIII). Although the exact phylogenetic position of the type species, Verrucisporota proteacearum, is unknown, the fact that a representative strain clustered among Zasmidium species led previous authors to consider the genus Verrucisporota as a synonym of Zasmidium (Braun et al. 2013). Therefore, we propose the combination of these names into Zasmidium.

The genus Ramichloridium was phylogenetically delimited with the sequencing of the type species (Ramichloridium apiculatum) that clustered in Dissoconiaceae (Arzanlou et al. 2007; this study Fig. 1, clade 95; Fig. 4, clade 31). New combinations are proposed for the Ramichloridium species that cluster within the Zasmidium clade, among which are included two species involved in the banana speckle disease, namely Ramichloridium musae and Ramichloridium biverticillatum (Fig. 1, clade 69; Fig. 4, clade 1; Fig. 5, clade V).

The genus Periconiella is based on Periconiella velutina, isolated from Brabejum stellatifolium (South Africa), and is known to be a polyphyletic genus (Arzanlou et al. 2007; present study Fig. 1, clade 69, 70, 85; Fig. 4, clade 1, 2, 21; Fig. 5, clades VIII, X). Morphologically, Periconiella species are zasmidium-like with pigmented conidiophores and conidia, smooth to verruculose, with conidiogenous cells polyblastic and with planate scars and were usually distinguished by producing conidiophores that are prominently branched in the upper part (Arzanlou et al. 2007). Based on the phylogenetic position of the type species Periconiella velutina and the morphological characters of the genus, we propose to reduce Periconiella to synonymy under Zasmidium, which is the older name.

Rasutoria was established by Barr (1987), based on Rasutoria abietis (on Abies amabilis, USA), to accommodate species with hyaline to brown ascospores occurring on Gymnospermae. The genus currently accommodates four species that are only known from their sexual morph. Rasutoria tsugae and Rasutoria pseudotsugae, which are important pathogens of Douglas-fir (Winton et al. 2007), have hyaline ascospores, while Rasutoria abietis and Rasutoria terrieri have pale brown to brown ascospores. Hyaline ascospores is a typical morphological characteristic in the Mycosphaerellaceae (Aptroot 2006). Only Rasutoria pseudotsugae and Rasutoria tsugae have cultures and DNA sequences available that place them among Zasmidium species (Fig. 1, clade 69; Fig. 4, clade 1, Fig. 5, clade VIII), and closely related to Zasmidium pseudovespa (= Mycosphaerella pseudovespa), which also produces hyaline ascospores (Carnegie et al. 2007). Therefore, these two species are placed in the genus Zasmidium, while Rasutoria abietis and Rasutoria terrieri need to be recollected in order to determine their correct phylogenetic position, as well as the position of the genus Rasutoria.

The clade at the bottom of the Zasmidium complex (Fig. 5, clade IX) includes species that are mostly ramichloridium-like, with a straight conidiophore and polyblastic intercalary and terminal conidiogenous cells producing single or short catenate obovoid conidia. However, the species Zasmidium queenslandicum in this clade has a typical Zasmidium morphology, similar to Zasmidium musicola (Fig. 5, clade III) and Zasmidium musae (Fig. 5, clade VIII). Therefore, based on phylogenetic support and morphological similarities these species are considered part of the genus Zasmidium.

Zasmidium cerophilum (Tubaki) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822808.
Basionym: Acrotheca cerophila Tubaki, J. Hattori Bot. Lab. 20: 143. 1958.
Synonyms: Cladosporium cerophilum (Tubaki) Matsush., Icones Microfungorum a Matsushima lectorum: 34. 1975.
Ramichloridium cerophilum (Tubaki) de Hoog, Stud. Mycol. 15: 74. 1977.
Description and illustration: Arzanlou et al. (2007).
Material examined: Japan, on Sasa sp., May 1955, K. Tubaki (holotype preserved in Nagao Institute, culture ex-type of Acrotheca cerophila CBS 103.59 = MUCL 10034).

Notes: The present species is phylogenetically placed within the Zasmidium clade (Fig. 4, clade 1; Fig. 5, clade I) among typical Zasmidium species. Zasmidium cerophilum is closely related to Zasmidium fructigenum, but is more similar morphologically to Zasmidium eucalypticola by producing terminal and short rachis-like conidiogenous cells and secondary conidia (Arzanlou et al. 2007). Zasmidium cerophilum can be morphologically distinguished from Z. musigenum, Zasmidium musae-banksii and Zasmidium biverticillatum by the production of secondary conidia and its distinct conidial hila.

Zasmidium citri-griseum (F.E. Fisher) U. Braun \& Crous, IMA Fungus 5: 337. 2014.
Basionym: Cercospora citri-grisea F.E. Fisher, Phytopathology 51: 300. 1961.
Synonyms: Stenella citri-grisea (F.E. Fisher) Sivan., Bitunicate Ascomycetes and their Anamorphs: 226. 1984.
?Mycosphaerella citri Whiteside, Phytopathology 62: 263. 1972.
?Zasmidium citri (Whiteside) Crous, Persoonia 23: 105. 2009.
Descriptions and illustrations: Braun et al. (2014), Huang et al. 2015).
Materials examined: China, Yunnan prov., Mengdian, on leaves with yellow spot of Citrus limon, Jul. 2011, L. Zhu, cultures ZJUM 103 = CPC 24500, ZJUM 104 = CPC 24501; on leaf with yellow spot of Citrus aurantifolia, Jul. 2011, L. Zhu, culture ZJUM 105 = CPC 24502; Zhejiang prov., Cangnan, on leaf with yellow spot of Citrus grandis, Dec. 2009, L. Zhu, culture ZJUM 5 = CPC 24464; Changshan, on leaves of Citrus paradisi \times Citrus sp., May 2009, L. Zhu, culture ZJUM $25=$ CPC 24468, ZJUM $27=$ CPC 24469; Nov. 2011, L. Zhu, culture ZJUM 54 = CPC 24474; Huangyan, on leaf with big round spot of Citrus reticulata, Apr. 2010, L. Zhu, culture ZJUM $81=$ CPC 24488; Yuhuan, on leaf with greasy spot of C. grandis, Nov. 2011, L. Zhu, culture ZJUM 97 = CPC 24497; Jiangshan, on leaf with brown small round spot of C. paradisi \times Citrus sp., Apr. 2013, F. Huang, culture ZJUM $127=$ CPC 24504. Thailand, on living leaves of Eucalyptus sp., 2006, W. Himaman, culture CPC 13467; Chonburi, on living
leaves of seedlings of Acacia mangium, 19 Nov. 2002, M.J. Wingfield, culture CPC 10522 = CBS 116366. USA, Florida, Polk County, Babson Park, on C. limon, 15 Jan. 1958, F.E. Fisher (presumably lost); single ascospore isolates, associated with citrus greasy leaf spot disease symptoms, Citrus sp. 2003, R.C. Ploetz, cultures CPC 15289, CPC 15290 = CBS 122455, CPC 15294, CPC 15285, CPC 15291, CPC 15293; on leaves of Musa sp., 2003, J. Cavaletto, culture CBS 116426; Florida, Lake Alfred \& Haines City, on Citrus sp., May 1970, F.E. Fisher (neotype designated by Braun et al. 2014: IMI 148810); single ascospore isolates, associated with citrus greasy leaf spot disease symptoms, Citrus sp., 2003, S.N. Mondal (epitype designated by Huang et al. 2015: CBS H-22176, culture ex-epitype CBS 139467 = CPC 15296).

Notes: See Braun et al. (2014) for the detailed description of the neotype and Huang et al. (2015) for the epitype details. Based on the phylogenetic analyses, Zasmidium citri-griseum clusters within the Zasmidium clade (Fig. 1, clade 69; Fig. 4, clade 1; Fig. 5, clade III) and is closely related to Zasmidium anthuricola.

Zasmidium daviesiae (Cooke \& Massee) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822828.
Basionym: Cercospora daviesiae Cooke \& Massee, Grevillea 18: 7. 1889.
Synonyms: Verrucisporota daviesiae (Cooke \& Massee) Beilharz \& Pascoe, Mycotaxon 82: 360. 2002.

Mycosphaerella daviesiicola Beilharz \& Pascoe, Mycotaxon 82: 364. 2002.
Description and illustration: Chupp (1954), Beilharz \& Pascoe (2002).
Materials examined: Australia, Victoria, on road from Merimbah to Circuit road, 3.4 km short of Mt. Stirling, on Daviesia mimosoides ($=$ D. cormybosa var. mimosoides), 30 Dec. 2003, V. \& R. Beilharz, culture VPRI $31767=$ CBS 116002.

Notes: The type of Zasmidium daviesiae, based on Cercospora daviesiae, was isolated from leaves of Daviesia latifolia (Victoria, Australia, K) which is a different host from the examined strain. Phylogenetically, the present specimen clusters among Zasmidium species (Fig. 1, clade 69; Fig. 4, clade 1; Fig. 5, clade VIII), as defined in the present study, and is closely related to Zasmidium velutinum (= Periconiella velutinae), but the latter species produces branched conidiophores with terminal polyblastic conidiogenous cells and shorter conidia (Arzanlou et al. 2007). Morphologically, the examined material is similar to Zasmidium spp. by producing polyblastic, intercalary and terminal conidiogenous cells with conidiogenous loci darkened and planate, which give rise to long-obclavate, multiseptate, verruculose conidia (Beilharz \& Pascoe 2002).

Zasmidium elaeocarpi U. Braun, C. Nakash., Videira \& Crous, sp. nov. MycoBank MB822718. Fig. 39.

Etymology: Derived from the host genus on which it occurs, Elaeocarpus.
Description in vitro (on SNA): Mycelium composed of hyaline and pale brown to dark blackish brown hyphae, verruculose, septate, branching, uniform in width, $2.5 \mu \mathrm{~m}$. Conidiophores arising from hyphae, micro- to macronematous, pale olivaceous brown to pale blackish brown, finely

Fig. 39. Zasmidium elaeocarpi (CPC 16640). A-F. Observations in vitro. A. Culture on OA. B, C. Conidiophore, conidiogenous cells and conidia. D, E. Partial conidiophore, conidiogenous cells and conidia. F. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
verruculose, straight or slightly curved, frequently geniculate, rugged or rugose at the upper part, $25-450 \times 3.5-5 \mu \mathrm{~m}$. Conidiogenous cells integrated, apical or intercalary, polyblastic, proliferating sympodially, with numerous rim-like conidiogenous loci, thickened and darkened, dispersed through the entire cells, forming a single or multicelled rachis (ramichloridium-like), $1-1.5 \mu \mathrm{~m}$ diam. Conidia solitary, occasionally catenate, pale blackish brown to pale olivaceous brown, verruculose, ellipsoidal, cylindrical to obclavate, base obconically truncate and apex rounded, straight or curved, $10-75 \times 2.5-4 \mu \mathrm{~m}, 0-7$-euseptate, sometimes constricted at septa, with hila thickened and darkened, $1-1.5 \mu \mathrm{~m}$ diam.

Materials examined: Australia, New South Wales, north-west of Grafton, North Washpool State Forest, on Elaeocarpus kirtonii, 1 Mar. 2009, B. Summerell (holotype CBS H-22960, extype culture CBS 142187 = CPC 16642); idem. culture CPC 16640.

Notes: Zasmidium elaeocarpi is morphologically similar to Zasmidium iteae by producing ramichloridium-like polyblastic conidiogenous cells on a short rachis with thickened and darkened scars, and verruculose conidia that are solitary or catenate. Zasmidium elaeocarpi can be distinguished by producing longer conidiophores and longer and wider conidia than Zasmidium iteae (Kirschner et al. 2004). Based on the phylogenetic analysis, these two species are closely related and cluster in the same clade within the Zasmidium complex (Fig. 4, clade 1; Fig. 5, clade IX).

Zasmidium eucalypticola U. Braun, C. Nakash., Videira \& Crous, sp. nov. MycoBank MB822724. Fig. 40.

Etymology: Composed of Eucalyptus (host genus) and -cola (dweller).
Description in vitro (on SNA; CPC 15149): Mycelium composed of hyaline, subhyaline, or pale olivaceous brown hyphae, smooth to rough, uniform in width 2-2.5 $\mu \mathrm{m}$. Conidiophores microto macronematous, arising from hyphae, pale olivaceous brown to olivaceous brown, somewhat paler towards the apex, verruculose, simple, septate, straight to slightly curved, uniform in

Fig. 40. Zasmidium eucalypticola (CPC 15149). A-D. Conidiophores and conidia observed in vivo. Scale bars $=10 \mu \mathrm{~m}$.
width, rugged or geniculate at the apex, 38-63 $\times 3-3.5 \mu \mathrm{~m}$. Conidiogenous cells integrated, apical, polyblastic, proliferating sympodially, with rim-like conidiogenous loci, thickened and darkened, located apically and lateraly as in a short rachis (ramichloridium-like), $1.5-2 \mu \mathrm{~m}$ diam. Conidia solitary, sometimes bearing conidia by microcyclic conidiation, pale olivaceous brown, verruculose, ovoid to cylindrical, base obconically truncate and apex rounded, 7.5-20× $2.5-4 \mu \mathrm{~m}, 0-1$-septate, hila thickened and darkened.

Material examined: Brazil, Minas Gerais, Viçosa, Paraíso, on Eucalyptus sp., 1 Mar. 2008, coll. A.C. Alfenas, isol. P.W. Crous (holotype CBS H-22959, ex-type culture CBS 142186 = CPC 15149).

Notes: Phylogenetically, the present species is closely related to Zasmidium syzygii (Fig. 4 clade 1; Fig. 5, clade I) but they are morphologically distinct. Zasmidium eucalypticola produces conidiogenous cells that are rachis-like with broader scars and smaller ovoid conidia. Zasmidium syzygii produces conidiogenous cells with smaller scars and multiseptate conidia that are longer and narrowly obclavate (Crous et al. 2012a). Based on a BLAST comparison against the alignment, Zasmidium eucalypticola shares $99 \%(481 / 486)$ similarity on ITS and $97 \%(714 / 737)$ similarity on rpb2 with Zasmidium syzygii.

Zasmidium eucalyptorum (Crous \& M.J. Wingf.) Quaedvlieg \& Crous, Persoonia 33: 24. 2014. Basionym: Mycosphaerella eucalyptorum Crous \& M.J. Wingf., Stud. Mycol. 55: 112. 2006.

Description and illustration: Crous et al. (2006c).
Material examined: Indonesia, on leaves of Eucalyptus urophylla, Mar. 2004, M.J. Wingfield (holotype CBS H-19689, ex-type culture CBS $118500=$ CPC 11174).

Notes: The present species is only known from its sexual morph that is mycosphaerella-like and produces ascospores $(12-17 \times 3.5-4.5 \mu \mathrm{~m})$ that germinate in a Type B germination pattern (Crous et al. 2006c). Based on the phylogenetic analyses Zasmidium eucalyptorum is closely related to Zasmidium pseudoparkii (Fig. 1, clade 69; Fig. 4, clade 1; Fig. 5, clade II), which is also a pathogen of Eucalyptus but was originally described from Colombia.

Zasmidium fructicola Crous et al., Mycologia 107: 1165. 2015.
Description and illustration: Huang et al. (2015).
Materials examined: China, Zhejiang Prov., Huangyan, on fruit of Citrus reticulata, Jan. 2010, X.H. Wang, holotype CBS H-22177, culture ex-type ZJUM $80=$ CPC $24487=$ CBS 139625; Huangyan, on fruit with citrus black spot of Citrus unshiu, Jan. 2010, X.H. Wang, culture ZJUM 84 = CPC 24489; Cangnan, on fruit with greasy spot of Citrus grandis, Oct. 2010, L. Zhu, culture ZJUM $9=$ CPC 24465; Changshan, on fruit with yellow spot of Citrus paradisi \times Citrus sp., Nov. 2010, L. Zhu, cultures ZJUM $48=$ CPC 24472, ZJUM $50=$ CPC 24473; on fruit with black dot of C. paradisi \times Citrus sp., Dec. 2010, L. Zhu, culture ZJUM $55=$ CPC 24475; Linhai, on fruit with black dot of C. sinensis, Nov. 2010, G.Q. Chen, culture ZJUM 89 = CPC 24494); Fujian Prov., on fruit with greasy spot of C. grandis, Nov. 2010, L. Zhu, culture ZJUM 58 = CPC 24477; Nanjing, on fruit with greasy spot of C. grandis, Nov. 2009, L. Zhu, culture ZJUM $90=$ CPC 24495; Guangdong Prov., Pingyuan, on fruit with citrus black spot of Citrus sinensis, Nov. 2009, X.H. Wang, culture ZJUM 68 = CPC 24479; Hunan Prov., Jishou, on fruits of C. reticulata, Nov. 2011, X.H. Wang, cultures ZJUM $77=$ CPC 24484, ZJUM $78=$ CPC 24485, ZJUM 79 = CPC 24486.

Notes: Based on the phylogenetic analyses, Zasmidium fructicola is closely related to Zasmidium fructigenum (Fig. 4, clade 1; Fig. 5, clade I) which agrees with the original assessment by Huang et al. (2015). These two species are morphologically similar, but Zasmidium fructicola produces darker and wider conidia than Zasmidium fructigenum (conidia pale brown, 5-15 $\times 2$ $\mu \mathrm{m}$; Huang et al. 2015).

Zasmidium fructigenum Crous et al., Mycologia 107: 1165. 2015.
Description and illustration: Huang et al. (2015).
Materials examined: China, Zhejiang Prov., Changshan, on fruit with greasy spot of Citrus paradisi \times Citrus sp., Nov. 2009, L. Zhu (holotype CBS H-22178, culture ex-type ZJUM $36=$ CPC 24471 = CBS 139626); Yuhuan, on fruits with greasy spot of Citrus grandis, Nov. 2010, L. Zhu, cultures ZJUM $99=$ CPC 24498 , ZJUM $100=$ CPC 24499; Linhai, on fruit with black dot of Citrus reticulata (= Citrus unshiu), Nov. 2010, G.Q. Chen, culture ZJUM $88=$ CPC 24493; Jiangxi Prov., on fruit with citrus black spot of Citrus reticulata, Nov. 2010, X.H. Wang, cultures ZJUM $86=$ CPC 24491, ZJUM $87=$ CPC 24492.

Note: See notes on Zasmidium fructicola.
Zasmidium grevilleae Crous \& Summerell, sp. nov. MycoBank MB822721.
Basionym: Verrucisporota grevilleae Crous \& Summerell, Persoonia 22: 155. 2009, nom. inval. (Art. 40.6).

Etymology: Derived from the host genus on which it occurs, Grevillea.
Description and illustration: Crous et al. (2009a).

Materials examined: Australia, Northern Territory, Emerald Springs, on leaves of Grevillea decurrens, 22 Sep. 2007, B. Summerell (holotype CBS H-20205, ex-type culture CBS 124107 $=$ CPC 14761); idem. cultures CPC 14762, CPC 14763.

Notes: Crous et al. (2009a) proposed the new species Verrucisporota grevilleae but did not designate the type specimen at the time, making it an invalid name according to Art. 40.6 (Melbourne). Herewith we designate the original specimen as the holotype for Zasmidium grevilleae. Verrucisporota is currently considered a synonym of Zasmidium based on morphological and phylogenetical evidence (Braun et al. 2013). The present species clusters within the genus Zasmidium (Fig. 1, clade 69; Fig. 4, clade 1; Fig. 5, clade VI) as circumscribed in the present study. Zasmidium grevilleae can be distinguished from its closest relative, Verrucisporota proteacearum, by producing shorter conidiophores and narrower and longer conidia (Shaw \& Alcorn 1967; Crous et al. 2009a).

Zasmidium gupoyu (R. Kirschner) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822809.
Basionym: Parastenella gupoyu R. Kirschner, Fungal Diversity 40: 42. 2010.
Description and illustration: Kirschner \& Chen (2010).
Material examined: Taiwan, Nantou County, Chitou, ca. 1200 m , on senescent lower leaf of Alocasia odora, 19 Mar. 2007, R. Kirschner \& S.-H. Wu, 2990-B (holotype TNM, isotypes BPI 878812, FR); Taipei County, Wulai, 300 m , on senescent lower leaf of Alocasia odora, 22 Feb. 2005, R. Kirschner \& C.-J. Chen 2279, 3022 (TNM), culture CBS 122099 = RoKi 3022.

Notes: The present species was originally described in the genus Parastenella. However, judging from the SEM photographs (Kirschner \& Chen 2010), its loci were distinctly thickened, which is not a character typical of the generic description of Parastenella. Parastenella gupoyu produces erect, unbranched conidiophores and verruculose hyphae and conidia, characters typical of Zasmidium s. lat. The genus Parastenella is based on Parastenella magnolia (on leaves of Magnolia grandiflora, USA) and its current phylogenetic position is unknown because there are no sequence data available. Based on the phylogenetic analyses, the present species clusters in Zasmidium (Fig. 1, clade 63; Fig. 4 clade 1; Fig. 5, clade IX) and is closely related to Zasmidium elaeocarpi. Morphologically, Zasmidium gupoyo can be distinguished from Zasmidium elaeocarpi by producing the conidia in short shoulders mostly in the apical area of the conidiogenous cells and by producing long and single conidia.

Zasmidium hakeae U. Braun, C. Nakash., Videira \& Crous, sp. nov. MycoBank MB822723. Fig. 41.

Etymology: Derived from the host genus on which it occurs, Hakea.

Description in vitro (on SNA; CPC 15577): Mycelium composed of hyaline to subhyaline hyphae, smooth to rough, septate, branching. Conidiophores emerging from hyphae, microto macronematous, brown to olivaceous brown, paler towards the apex, verruculose, rugose, straight to slightly curved, simple, strongly geniculate at the apex, $200-250 \times 2.5-3.8 \mu \mathrm{~m}$. Conidiogenous cells integrated, apical, polyblastic, proliferating sympodially, sometimes also

Fig. 41. Zasmidium hakeae (CPC 15577). A-F. Observations in vivo. A, B. Leaf spot symptoms on the host. C. Partial conidiophore and conidiogenous cells. D-F. Conidia. G-L. Observations in vitro. G. Culture on V8. H-J. Partial conidiophore, conidiogenous cells and conidia. K, L. Conidia. Scale bars = $10 \mu \mathrm{~m}$.
percurrently, with rim-like conidiogenous loci, thickened and darkened, located apically and laterally in a short rachis, $1.5-2 \mu \mathrm{~m}$ diam. Conidia solitary, pale to pale olivaceous brown, verruculose, ellipsoid to obclavate, straight to mildly sinuous, obconically truncate at the base, rounded at the apex, $8-32.5 \times 2.5-5 \mu \mathrm{~m}, 1-9$-septate, hila thickened and darkened, $1.5-2 \mu \mathrm{~m}$ diam.

Materials examined: Australia, Western Australia, Pemberton, Steward Road, Banksia woodland, on Hakea undulata, 2 Aug. 2008, A.R. Wood (holotype CBS H-22958, ex-type culture CBS 142185 = CPC 15577); idem., culture CPC 15583; Queensland, Norta Nature Reserve, leaves in shop (Loma tea), 13 Jul. 2009, P.W. Crous, culture CPC 17213.

Notes: Based on the phylogenetic analyses, the present species clusters in Zasmidium (Fig. 4, clade 1; Fig. 5, clade VIII), and is closely related to Zasmidium daviesiae. Morphologically, Zasmidium hakeae produces longer and narrower conidiophores and shorter and narrower conidia with more septa than Zasmidium daviesiae (conidiophores $16-65 \times 5-7 \mu \mathrm{~m}$, conidia $18-56 \times 4.5-7 \mu \mathrm{~m}, 0-6$-septate; Beilharz \& Pascoe 2002). There were two different species isolated from the same herbarium specimen in this study, Zasmidium hakeae (CPC 15577) and Devonomyces endophyticus (CPC 15580) which indicates they may be co-existing in the same lesions.

Zasmidium indonesianum Crous et al., Mycologia 107: 1166. 2015.
Description and illustration: Huang et al. (2015).

Materials examined: Indonesia, on leaf spots of Citrus sp., 2004, M. Arzanlou (holotype CBS H-22179, culture ex-type CBS 139627 = CPC 15300); idem., cultures CPC 15301, CPC 15302.

Notes: Based on the phylogenetic analyses, Zasmidium indonesianum clusters in the Zasmidium clade (Fig. 4, clade 1; Fig. 5, clade III), which is in agreement with the original observations by Huang et al. (2015), and is closely related to Zasmidium musicola, a pathogen of Musa sp. Zasmidium indonesianum is a pathogen of Citrus sp. and differs from Zasmidium citri-griseum by producing shorter and narrower conidiophores and conidia (Braun et al. 2014, Huang et al. 2015).

Zasmidium iteae (R. Kirschner) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822810.
Basionym: Stenella iteae R. Kirschner, Fungal Diversity 17: 58. 2004.
Description and illustration: Kirschner et al. (2004).
Materials examined: Taiwan, Pingtung, Nanrenshan, on leaves of Itea parviflora, 2 Jun. 2002, R. Kirschner \& C.-J. Chen (holotype TNM, culture ex-type CBS 113094 = RoKi 1279).

Notes: The present species was originally described in the genus Stenella (Kirschner et al. 2004), which is currently accommodated in Teratosphaeriaceae (Fig. 1, clade 98). As a consequence of the circumscription of the genus Stenella based on its type, several stenella-like species in the Mycosphaerellaceae were assigned to the genus Zasmidium (Braun et al. 2010a). Based on the phylogenetic analysis, the present species clusters in Zasmidium (Fig. 1, clade 69; Fig. 4, clade 1; Fig. 5, clade IX), and is closely related to Zasmidium elaeocarpi. Morphologically, Zasmidium iteae can be distinguished from Zasmidium elaeocarpi by producing shorter conidiophores and shorter and narrower conidia (Kirschner et al. 2004).

Zasmidium lonicericola (Y.H. He \& Z.Y. Zhang) Crous \& U. Braun, Persoonia 23: 140. 2009. Basionym: Cladosporium lonicericola Yong H. He \& Z.Y. Zhang, Mycosystema 20: 469. 2001. Synonyms: Stenella lonicericola (Yong H. He \& Z.Y. Zhang) K. Schub. et al., Fungal Diversity 20: 204. 2005.
Cladosporium lonicerae Sawada, Rep. Gov. Res. Inst. Formosa 86: 163. 1943, nom. inval. (Art. 39.1).

Description and illustrations: See Crous et al. (2009d).
Materials examined: Republic of Korea, Yangpyong, on leaves of Lonicera japonica, 23 Jul. 2004, H.D. Shin, herb. HAL 3240 F; Hongchon, on leaves of Lonicera japonica, 30 Oct. 2004, H.D. Shin [epitype of Cladosporium lonicericola designated here: CBS H-20271, MBT378604, (holotype MHYAU 03533), culture ex-epitype CBS $125008=$ CPC 11671]; idem., cultures CPC 11672, CPC11673. Taiwan, Taipei, on leaves of Lonicera japonica var. sempervillosa, 20 Dec. 1914, K. Sawada (authentic material of Cladosporium lonicerae, BPI 427243).

Notes: The taxonomic history of the present species was addressed by several authors (Zhang et al. 2003, Schubert \& Braun 2005, Crous et al. 2009d). The epitypification of Cladosporium lonicericola by Crous et al. (2009d) was not compliant with the code (Art. 9.8) since the holotype
was not cited. Based on the phylogenetic analyses this species clusters in Zasmidium (Fig. 4, clade 1; Fig. 5, clade I), and is closely related to Zasmidium cerophilum. The morphological characteristics and scar type (planate instead of pileate), of this species confirms its placement in Zasmidium.

Zasmidium musae (Arzanlou \& Crous) Crous \& U. Braun, Schlechtendalia 20: 102. 2010. Basionym: Stenella musae Arzanlou \& Crous, Persoonia 20: 31. 2008.

Description and illustration: Arzanlou et al. (2008).

Materials examined: France, Martinique, on Musa sp., unknown collector and date, culture CBS 121384 = CIRAD 41 = X877. Tonga, Aciar Plot, Tongatapu, on Musa cv. TU8 AAAA, Mar. 1990, R.A. Fullerton (holotype of Stenella musae, CBS H-20047, ex-type culture X745 = CBS 122477). Netherlands Antilles, Windward Islands, St Lucia, on Musa cv., 2003, E. Reid, culture X47 = CBS 122476; St. Lucia, on Musa cv., 2003, E. Reid, culture CBS 122478 $=\mathrm{X} 70$.

Note: Based on the phylogenetic analyses Zasmidium musae clusters in the Zasmidium clade (Fig. 1, clade 69; Fig. 4, clade 1; Fig. 5, clade VII), and is closely related to Zasmidium aucklandicum, which agrees with previous observations by Arzanlou et al. (2008).

Zasmidium musae-banksii Videira \& Crous, nom. nov. MycoBank MB822830.
Replaced synonym: Ramichloridium australiense Arzanlou \& Crous, Stud. Mycol. 58: 69. 2007, non Zasmidium australiense (J.L. Mulder) U. Braun \& Crous 2010.

Description and illustration: Arzanlou et al. (2007).
Material examined: Australia, Queensland, Mount Lewis, Mount Lewis Road, 16³4047.200 S, $145^{\circ} 190700$ E, 538 m alt., on Musa banksii leaf, Aug. 2006, P.W. Crous \& B. Summerell (holotype CBS H-19928, culture ex-type CBS 121710).

Notes: Based on the phylogenetic analyses and morphological characters, the present species belongs to the genus Zasmidium (Fig. 1, clade 69; Fig. 4, clade 1; Fig. 5, clade V). The phylogenetic position of Ramichloridium is defined by the type, Ramichloridium apiculatum, in Dissoconiaceae (Fig. 1, clade 83; Fig. 4, clade 28).

Zasmidium musicola (Arzanlou \& Crous) Crous \& U. Braun, Schlechtendalia 20: 102. 2010. Basionym: Stenella musicola Arzanlou \& Crous, Persoonia 20: 33. 2008.

Description and illustration: Arzanlou et al. (2008).
Material examined: India, Tamil Nadu, Tiruchirapally, on leaf of Musa cv. Grand Nain AAA (Cav.), 23 Feb. 2005, I. Buddenhagen (holotype CBS H-20046, culture ex-type CBS 122479 = X1019).

Notes: Zasmidium musicola (as Stenella musicola) was described from Musa sp. and found to be both phylogenetically and morphologically close to Zasmidium citri-griseum (Arzanlou et
al. 2008). These results are corroborated by the phylogenetic analyses in the present study (Fig. 4, clade 1; Fig. 5, clade III).

Zasmidium musigenum Videira \& Crous, nom. nov. MycoBank MB822831.
Replaced synonym: Veronaea musae Stahel ex M.B. Ellis, in Ellis, More Dematiaceous Hyphomycetes: 209. 1976, non Zasmidium musae (Arzanlou \& Crous) Crous \& U. Braun 2010. Synonyms: Chloridium musae Stahel, Trop. Agric., Trinidad 14: 43. 1937, nom. inval. (Art. 39.1). Ramichloridium musae (Stahel ex M.B. Ellis) de Hoog, Stud. Mycol. 15: 62. 1977.
Misapplied name: Chloridium indicum Subram., sensu Batista \& Vital, Anais Soc. Biol. Pernambuco 15: 379. 1957.

Description and illustration: Arzanlou et al. (2007).
Materials examined: Cameroon, from Musa sapientum, J.E. Heron, culture CBS $169.61=$ ATCC $15681=$ IMI $079492=$ DAOM $84655=$ MUCL 2689. Suriname, Paramaribo, from Musa sapientum leaf, G. Stahel (authentic material of Chloridium musae, CBS H-19933, culture CBS 365.36 = JCM 6973 = MUCL 9556). Unknown, from Musa sapientum, J. Brun, culture CBS 190.63 = MUCL 9557.

Notes: The type specimen of Zasmidium musigenum, based on Veronaea musae, was isolated from Musa sapientum from Jamaica (type IMI 23006), which is a different location from the examined strains. Based on the phylogenetic analysis, Zasmidium musigenum belongs to Zasmidium as circumscribed in the present study (Fig. 1, clade 69; Fig. 4, clade 1; Fig. 5, clade V), and is closely related to Zasmidium musae-banksii. Zasmidium musigenum and Zasmidium musae-banksii are both pathogens of Musa sp. and are morphologically similar, but Zasmidium musigenum produces shorter conidiophores and conidia (Arzanlou et al. 2007).

Zasmidium nocoxi Crous, Persoonia 23: 141. 2009.
Description and illustration: See Crous et al. (2009d).
Material examined: USA, Virginia, Front Royal, on twig debris, 14 May 2007, P.W. Crous (holotype CBS H-20272, cultures ex-type CBS $125009=$ CPC 14044).

Note: Zasmidium nocoxi (Fig. 1, clade 69; Fig. 4, clade 1; Fig. 5, clade I) produces a synasexual morph similar to Hyalozasmidium aerohyalinosporium (Fig. 4, clade 21), revealing this synasexual morph to not be exclusive to the genus Zasmidium.

Zasmidium pittospori (U. Braun) U. Braun, Schlechtendalia 20: 102. 2010.
Basionym: Stenella pittospori U. Braun, Fungal Diversity 26: 68. 2007.
Description and illustration: See Braun \& Crous (2007).
Material examined: New Zealand, Auckland, Mt. Albert, on Pittosporum tenuifolium, 15 Jul. 2007, C.F. Hill, culture CBS 122274 = ICMP 17098. China, Sichuan, Dujiangyan, on Pittosporum podocarpum, 20 Sep. 2006, S. Both (holotype HAL 1945 F).

Notes: Based on the phylogenetic analyses Zasmidium pittospori is closely related to Zasmidium aucklandicum and Zasmidium musae (Fig. 4, clade 1; Fig. 5, clade VII). Morphologically, it can be distinguished from Zasmidium musae by producing longer conidiophores, and longer and wider verruculose conidia (Braun \& Crous 2007, Arzanlou 2008).

Zasmidium proteacearum (D.E. Shaw \& Alcorn) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822812.
Basionym: Verrucispora proteacearum D.E. Shaw \& Alcorn, Proc. Linn. Soc. New South Wales. 92: 171. 1967.
Synonym: Verrucisporota proteacearum (D.E. Shaw \& Alcorn) D.E. Shaw \& Alcorn, Austral. Syst. Bot. 6: 273. 1993.

Description and illustrations: Crous et al. (2009a).
Material examined: Australia, Queensland, Indooroopilly, on Grevillea sp., 3 Feb. 2004, J.L. Alcorn, dep. V. Beilharz, culture CBS 116003 = VPRI 31812.

Notes: The type of Verrucisporota, Verrucisporota proteacearum, was described from the host Finschia chloroxantha from Papua New Guinea (holotype IMI 77905, fide Shaw \& Alcorn 1967). The present strain was isolated from a different host and originates from a different country. In addition, it produced wider conidia than those in the original description (Crous et al. 2009a). Therefore, this may be a different species and the precise phylogenetic position of the type of Verrucisporota remains unresolved. Nevertheless, given the morphological similarities with Zasmidium and phylogenetic placement of the existing strains (Fig. 4, clade 1; Fig. 5, clade VI), Verrucisporota was tentatively synonymised with Zasmidium (Braun et al. 2013).

Zasmidium pseudoparkii (Crous \& M.J. Wingf.) Crous \& U. Braun, Schlechtendalia 20: 102. 2010.

Basionym: Stenella pseudoparkii Crous \& M.J. Wingf., Stud. Mycol. 55: 128. 2006.
Description and illustrations: Crous et al. (2006c).
Materials examined: Colombia, Sinai, on leaves of Eucalyptus grandis, May 1995, M.J. Wingfield, culture CBS 110988 = CPC 1090; on leaves of Eucalyptus sp., 1995, M.J. Wingfield (holotype CBS H-19702, culture ex-holotype CBS $110999=$ CPC 1087).

Notes: Phylogenetically, Zasmidium pseudoparkii is closely related to Zasmidium eucalyptorum (Fig. 1, clade 69; Fig. 4, clade 1; Fig. 5, clade II). Zasmidium eucalyptorum is only known from its sexual morph and produces ascospores that germinate in a Type C pattern (Crous 1998), while ascospores of Zasmidium pseudoparkii germinate with a Type D pattern (Crous et al. 2006c). The asexual morph of Zasmidium pseudoparkii is morphologically similar to Pseudozasmidium parkii (Fig. 1, clade 94; Fig. 4, clade 27).

Zasmidium pseudotsugae (V.A.M. Mill. \& Bonar) Videira \& Crous, comb. nov. MycoBank MB822813.
Basionym: Dimeriella pseudotsugae V.A.M. Mill. \& Bonar, Univ. Calif. Publ. Bot. 19: 405. 1941.

Synonyms: Epipolaeum pseudotsugae (V.A.M. Mill. \& Bonar) Shoemaker, Canad. J. Bot. 43: 637. 1965.

Rasutoria pseudotsugae (V.A.M. Mill. \& Bonar) M.E. Barr, Mycotaxon 29: 502. 1987.
Description and illustration: Farr (1963), Shoemaker (1965).
Description in vivo (adapted from Shoemaker 1965): Perithecia clustered on hypophyllous superficial mycelium, spherical, $60-80 \mu \mathrm{~m}$ diam, setose; beak rarely perceptible, usually a paler coloured circular area, $10-15 \mu \mathrm{~m}$ diam, composed of $5-8 \times 3 \mu \mathrm{~m}$ convergent yellow hyphae; wall $10-15 \mu \mathrm{~m}$ wide, of 2 layers of polygonal cells, $9 \times 12 \mu \mathrm{~m}$. Asci in a basal cluster, bitunicate, saccate to cylindrical, aparaphysate, $30-40 \times 6-10 \mu \mathrm{~m}$, with 8 biseriate ascospores. Ascospores hyaline, smooth, without sheath, 1 -septate at middle, wider at upper cell, both cells uninucleate, $9-12(-15) \times 2.5-3.5 \mu \mathrm{~m}$.

Notes: The type specimen of Zasmidium pseudotsugae, based on Dimeriella pseudotsugae, was isolated from Pseudotsuga menziesii from California, USA (holotype UC498795, isotypes in CUP, F, NY, BPI, GAM, ILL, MICH, TENN and WIS). The DNA sequences of Rasutoria pseudotsugae used in this study were available on GenBank (Table 1) (Winton et al. 2007) and no new sequences were generated. See notes on Zasmidium cellare.

Zasmidium pseudovespa (Carnegie) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822814.
Basionym: Mycosphaerella pseudovespa Carnegie, Mycologia 99: 468. 2007.
Description and illustration: Carnegie et al. (2007).
Materials examined: Australia, New South Wales, Urbenville, Reid Plantation, native regeneration within plantation boundary, on living leaves of Eucalyptus biturbinata, 14 Apr. 2005, A.J. Carnegie (holotype DAR 77432, culture ex-type AC0466 = CBS 121159).

Notes: The species Mycosphaerella pseudovespa is commonly associated with wasp galls or leaf spots in Eucalyptus (Carnegie et al. 2007). It was described based solely on the sexual morph which is mycosphaerella-like and produces hyaline ascospores that germinate in a type I pattern (Crous et al. 2008). The phylogenetic analyses showed that it is closely related to Zasmidium velutinum (Fig. 1, clade 69; Fig. 4, clade 1; Fig. 5, clade VIII). See notes on Zasmidium cellare.

Zasmidium queenslandicum (Arzanlou \& Crous) Crous \& U. Braun, Schlechtendalia 20: 103. 2010.

Basionym: Stenella queenslandica Arzanlou \& Crous, Persoonia 20: 34. 2008.
Description and illustration: Arzanlou et al. (2008).
Material examined: Australia, Queensland, Mount Lewis, Mount Lewis Road, $16^{\circ} 34047.200$ S, $145^{\circ} 190700$ E, 538 m alt., on leaf of Musa banksii, Aug. 2006, P.W. Crous, W. Gams \& B. Summerell (holotype CBS H-20050, culture ex-type CBS 122475 = X1084).

Notes: Based on the phylogenetic analyses, the present species clusters among ramichloridiumlike species in the Zasmidium clade (Fig. 4, clade 1; Fig. 5, clade IX) but it is morphologically more similar to Zasmidium musae (Fig. 5, clade VII) and Zasmidium musicola (Fig. 5, clade III). It is characterised by short conidiophores with an apical conidiogenous cell, short geniculate, with darkened and thickened conidiogenous loci, producing single cylindrical-oblong conidia (Arzanlou et al. 2008). Based on a BLAST comparison, Zasmidium queenslandicum shares 97 \% (475/491) similarity on ITS with Zasmidium elaeocarpi (CPC 16642) and 89 \% (656/735) similarity on rpb2 with Zasmidium guроуи (CBS 122099).

Zasmidium scaevolicola R.G. Shivas et al., Persoonia 24: 133. 2010.
Description and illustration: Shivas et al. (2010).
Materials examined: Australia, Queensland, Cape Tribulation, $16^{\circ} 0400200$ S $145^{\circ} 27050.900$ E, on Scaevola taccada, 8 Aug. 2009, R.G. Shivas \& P.W. Crous (holotype BRIP 52795, isotype CBS H-20455, culture ex-type CBS $127009=$ CPC 17344); Thornton's Beach, 2 Sep. 1977, J.H. Simmonds, BRIP 12368; same loc., 1 Oct. 1979, J.H. Simmonds, BRIP 13098; Cape Tribulation, 30 Sep. 1979, J.H. Simmonds, BRIP 13097; Potters Creek, Wongaling Beach, Sep. 1993, H.Y. Yip, BRIP 21434; same loc., 27 Nov. 1993, H.Y. Yip, BRIP 21479; same loc., 17 Apr. 1994, H.Y. Yip, BRIP 22037; Cape Tribulation, 18 Dec. 2009, R.G. Shivas \& A.R. McTaggart, BRIP 50073.

Notes: Zasmidium scaevolicola is morphologically and phylogenetically a Zasmidium species (Fig. 4, clade 1; Fig. 5, clade III) as previously observed by Shivas et al. (2010). In the present phylogenetic analyses, Zasmidium scaevolicola is closely related to Zasmidium indonesianum, a recently described species that infects the host Citrus sp. (Huang et al. 2015). Morphologically, both species produce conidia solitary or catenate, very similar in size and pigmentation, but Zasmidium scaevolicola produces longer conidiophores (Shivas et al. 2010, Huang et al. 2015).

Zasmidium schini U. Braun, C. Nakash., Videira \& Crous, sp. nov. MycoBank MB822726. Fig. 42.

Etymology: Named after the host genus on which it occurs, Schinus.
Description in vitro (on V8; CPC 19516): Mycelium composed of hyaline, pale olivaceous or pale brown hyphae, rough and uniform in width, $2.5 \mu \mathrm{~m}$. Conidiophores micro- to macronematous, pale brown to brown, paler towards the apex, rough, straight to mildly sinuous, simple, 45-325 \times 2.5-5 $\mu \mathrm{m}$. Conidiogenous cells integrated, apical, polyblastic, proliferating percurrently and sympodially, with rim-like conidiogenous loci, thickened and somewhat darkened, 2-2.5 $\mu \mathrm{m}$ diam. Conidia solitary, hyaline to pale brown, rough, cylindrical to obclavate, base short-obconically truncate and apex rounded, straight, $17.5-50 \times 2.5-4 \mu \mathrm{~m}, 0-5$-septate, hila darkened and thickened.

Material examined: Brazil, Minas Gerais, Viçosa, Mata da Prefeitura, on Schinus terebinthifolia, 1 Sep. 2005, A.B.V. Faria (holotype CBS H-22961, ex-type culture CBS 142188 = CPC 19516).

Notes: Thus far, only one cercosporoid species was known from this host genus, namely Pseudocercospora schini from Schinus polygama (Argentina) (Braun et al. 2016). The

Fig. 42. Zasmidium schini (CPC 19516). A-F. Observations in vitro. A. Culture on V8. B-D. Conidiophore. E, F. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
phylogenetic analyses placed the present species in a basal branch to the clade Zasmidium (Fig. 4, clade 1; Fig. 5, clade IX). Based on a BLAST comparison, Zasmidium schini shares 94% (463/494) similarity, including 2 \% (14/494) gaps, on ITS with Zasmidium queenslandicum (CBS 122475) and $84 \%(594 / 708)$ similarity on rpb2 with Zasmidium iteae (CBS 113094). Morphologically, Zasmidium schini can be distinguished from Zasmidium elaeocarpi, by producing only apical, polyblastic conidiogenous cells and single conidia that are shorter and paler.

Zasmidium sp.

Material examined: Colombia, on Eucalyptus sp., 2004, M.J. Wingfield, culture CBS 118494 $=\mathrm{CPC} 11004$.

Notes: The culture observed was sterile and the fungarium material could not be located. Based on the results of the phylogenetic analyses, it is tentatively assigned to the genus Zasmidium (Fig. 1, clade 63; Fig. 4, clade 2; Fig. 5, clade IX) until it is recollected and morphologically described.

Zasmidium strelitziae (Arzanlou et al.) Videira \& Crous, comb. nov. MycoBank MB822815. Basionym: Ramichloridium strelitziae Arzanlou et al., Stud. Mycol. 58: 74. 2007.

Description and illustrations: Arzanlou et al. (2007).
Materials examined: South Africa, KwaZulu-Natal, Durban, near Réunion, on leaves of Strelitzia nicolai, 5 Feb. 2005, W. Gams \& H. Glen (holotype CBS H-19776, ex-type culture CBS 121711 = X1029).

Notes: Zasmidium strelitziae is the only zasmidium-like species described from the host Strelitzia, an important plant cultivated for its flowers. Phylogenetically, it clusters within the Zasmidium clade (Fig. 4, clade 1; Fig. 5, clade IV) as circumscribed in the present study, and is closely related to Z. musigenum.

Zasmidium syzygii Crous, Persoonia 29: 173. 2012.
Description and illustration: Crous et al. (2012a).
Material examined: South Africa, Mpumalanga, Nelspruit, Lowveld Botanical Garden, on leaves of Syzygium cordatum, 16 Jul. 2011, P.W. Crous, M.K. Crous, M. Crous \& K.L. Crous (holotype CBS H-21082, culture ex-type CBS $133580=$ CPC 19792).

Notes: Phylogenetically and morphologically the present species belongs to the genus Zasmidium (Fig. 4, clade 1; Fig. 5, clade I). It is closely related to Zasmidium eucalypticola, isolated from the host Eucalyptus sp. (Myrtaceae), but is morphologically distinct (see notes on Zasmidium eucalypticola).

Zasmidium tsugae (Dearn.) Videira \& Crous, comb. nov. MycoBank MB822833.
Basionym: Dimerosporium tsugae Dearn., Mycologia 16(4): 153. 1924.
Synonyms: Dimeriella tsugae (Dearn.) Petr., Ber. Schweiz. Bot. Ges. 57: 171. 1947.
Epipolaeum tsugae (Dearn.) Shoemaker, Canad. J. Bot. 43: 635. 1965.
Eudimeriolum tsugae (Dearn.) M.L. Farr, Mycologia 76: 801. 1984.
Rasutoria tsugae (Dearn.) M.E. Barr, Mycotaxon 29: 502. 1987.
Description and illustration: Dearness (1924).
Description in vivo (adapted from Dearness 1924): Mycelium hypophyllous, growing on the surface of the leaf giving it a smoky cast, branched, 3-4 $\mu \mathrm{m}$ thick. Perithecia dark brown, globose, $75-90 \mu \mathrm{~m}$, gregarious, unappendaged, sometimes with 2 to 3 short rigid mycelioid branches, cells of the wall quadrate, $6-8 \mu \mathrm{~m}$ diam. Asci very variable in shape, clavate to cylindrical, 36-60 $\times 12-25 \mu \mathrm{~m}$ wide. Ascospores biseriate to conglobate, hyaline, uniseptate, sometimes nucleate in one or both cells, $13-21 \times 3.5-5 \mu \mathrm{~m}$, upper cell usually larger.

Notes: The type specimen of Zasmidium tsugae, based on Dimerosporium tsugae, could not be located (USA, Washington, Pierce Co., on leaves of Tsuga heterophylla, 25 July 1921, J.S. Boyce 832, fide Dearness 1924). The DNA sequences of Rasutoria tsugae used in this study were available on GenBank (Table 1) (Winton et al. 2007, Schoch et al. 2009) and no new sequences were generated. See notes on Zasmidium cellare.

Zasmidium velutinum (G. Winter) Videira \& Crous, comb. nov. MycoBank MB822816.
Basionym: Periconia velutina G. Winter, Hedwigia 23: 174. 1884.
Synonym: Periconiella velutina (G. Winter) Sacc., in Saccardo \& Berlese, Atti Reale Ist. Veneto Sci. Lett. Arti, Sér. 6, 3: 727. 1885.

Description and illustrations: Arzanlou et al. (2007).

Materials examined: South Africa, Cape Town, on Brabejum stellatifolium (B. stellatum), P. MacOwan, G. Winter herbarium (lectotype selected by Arzanlou et al. 2007: B; isolectotypes PAD, S F42165, S F462166); Stellenbosch, Jonkershoek Nature Reserve, on Brabejum stellatifolium, 21 Jan. 1999, J.E. Taylor (epitype designated by Arzanlou et al. 2007: CBS H-15612, cultures ex-epitype CBS 101948-101950 = CPC 2262-2264).

Note: See notes under Zasmidium cellare.
Zasmidium xenoparkii (Crous \& M.J. Wingf.) Crous \& U. Braun, Schlechtendalia 20: 103. 2010.

Basionym: Stenella xenoparkii Crous \& M.J. Wingf., Stud. Mycol. 55: 129. 2006.
Description and illustration: Crous et al. (2006c).
Materials examined: Indonesia, on leaves of Eucalyptus grandis, Mar. 1996, M.J. Wingfield (holotype PREM 54968, isotype CBS H-19703, culture ex-type CBS $111185=$ CPC 1300); idem. Cultures CPC 1299, CPC 1301.

Notes: Zasmidium xenoparkii belongs to the genus Zasmidium both morphologically and phylogenetically (Fig. 4, clade 1; Fig. 5, clade I). In the present phylogenetic analyses, it is closely related to Zasmidium angulare, but morphologically it is more similar to Zasmidium pseudoparkii, which differs by producing longer and wider conidia (Crous et al. 2006c). Zasmidium xenoparkii has a mycosphaerella-like sexual morph and produces hyaline ascospores that germinate in a type D pattern (Crous 1998).

Clade 70: Nothopericoniella

Nothopericoniella Videira \& Crous, gen. nov. MycoBank MB822697.
Etymology: From the greek notho-, meaning false, and similarity to the genus Periconiella.
Description: Phytopathogenic. Mycelium mainly superficial, composed of brown and verrucose hyphae, internal mycelium sparsely developed, intracellular, composed of hyaline to brown hyphae, finely verruculose, septate, branched. Conidiophores solitary, arising from superficial hyphae, erect, straight, septate, brown olivaceous, paler at the apex, smooth to verruculose, composed of a main axis with a dichotomously branched apical head, branches terminal, partly lateral, proliferating percurrently and sympodially. Conidiogenous cells integrated, terminal and pleurogenous, polyblastic, sympodial, geniculate or subdenticulate, conidiogenous loci slightly thickened and darkened, truncate, without marginal rim or papillae. Conidia solitary, rarely in short chains, ellipsoid-ovoid, subcylindrical, verruculose, pale olivaceous, apex rounded, base obconically truncate, hila slightly thickened and darkened.

Type species: Nothopericoniella perseae-macranthae (Hosag. \& U. Braun) Videira \& Crous (三 Periconiella perseae-macranthae Hosag. \& U. Braun).

Nothopericoniella perseae-macranthae (Hosag. \& U. Braun) Videira \& Crous, comb. nov. MycoBank MB822767.
Basionym: Periconiella perseae-macranthae Hosag. \& U. Braun, Indian Phytopathol. 48: 260. 1996 (1995).

Descriptions and illustrations: Hosagoudar \& Braun (1995), Kirschner \& Chen (2010).

Description (adapted from Hosagoudar \& Braun 1996 and Kirschner \& Chen 2010): Phytopathogenic, producing diffuse leaf spots, colonies hypophyllous, sometimes large and confluent. Mycelium mainly external, composed of superficial brown and verrucose hyphae, internal mycelium sparsely developed, intracellular, hyaline to brown, finely verruculose. Hyphae creeping, septate, branched, occasionally anastomosing, (1-)1.5-2.5(-3.5) $\mu \mathrm{m}$ wide, somewhat darker and wider around the conidiophores. Conidiophores solitary, arising from creeping hyphae, brown olivaceous, paler at the apex, almost smooth to verruculose, septate, erect, straight or slightly curved, $250-800 \times 3-5 \mu \mathrm{~m}$, composed of a very long main axis (about 200-700 $\mu \mathrm{m}$ long) with a $1-3$ dichotomously branched apical head, branches terminal, partly lateral, proliferating percurrently and sympodially. Conidiogenous cells integrated, terminal and pleurogenous, often somewhat swollen, polyblastic, sympodial, somewhat geniculate or subdenticulate, conidiogenous loci slightly thickened and darkened, truncate, without marginal rim or papillae. Conidia solitary, rarely in short chains, pale olivaceous to olivaceous brown, verruculose, ellipsoid-ovoid, subcylindrical, base slightly obconically truncate and apex rounded, (8-)10-32 $\times 3-6 \mu \mathrm{~m},(1-) 2-3(-4)$-septate, hila slightly thickened and darkened.

Materials examined: India, Tamil Nadu, Coimbatore, Anamalai, Koomati, on leaves of Persea macrantha, 13 Mar. 1994, V.B. Hosagoudar (holotype HAL 1627 F). Taiwan, Taichung County, Dongshi Forest Park, ca. 500 m , on living leaves of Machilus zuihoensis, 18 Mar. 2007, R. Kirschner \& C.-J. Chen 2995 (TNM), culture CBS 122097 = RoKi 2995; Taipei County, Wulai, 300 m, 1 Apr. 2007, on living leaves of unidentified Lauraceae, R. Kirschner \& C.-J. Chen 3030 (TNM), culture CBS $122282=$ RoKi 2995.

Notes: Phylogenetically, Nothopericoniella perseae-macranthae is more closely related to the type of Annellosympodiella (Fig. 1, clade 71; Fig. 4, clade 3) than to the type of Periconiella, Periconiella velutina (Fig. 4, clade 1), the genus in which it was originally described. Morphologically, it is similar to Annellosympodiella by displaying both percurrent and sympodial proliferation, verrucose conidiophores and conidia and conidiogenous scars without marginal rim or papillae but slightly thickened and darkened. Nothopericoniella perseae-macranthae differs from Annellosympodiella nectandrae by forming longer conidiophores (250-800 $\times 3-5$ $\mu \mathrm{m}$) that rise singly from the external mycelium and are branched at the top instead of forming straight conidiophores ($25-50 \times 4-7 \mu \mathrm{~m}$) rising from stromata in densely aggregated bunches. The conidia of Nothopericoniella persea-macranthae are also shorter and narrower ($8-32 \times$ $3-6 \mu \mathrm{~m})$ than those of Annellosympodiella nectandrae $(30-70 \times 5-7 \mu \mathrm{~m})$ (Hosagoudar \& Braun 1996, Crous et al. 2014a).

Clade 71: Annellosympodiella

Annellosympodiella Crous \& Assefa, Persoonia 32: 245. 2014.
Description (from Crous et al. 2014a): Conidiomata sporodochial on leaflets, arising from an erumpent brown stroma, consisting of brown, subcylindrical cells. Conidiophores densely aggregated, subcylindrical, brown, verruculose to warty, rejuvenating percurrently, septate. Conidiogenous cells integrated, terminal, brown, verruculose, proliferating percurrently with irregular annellations, and long, brown, tubular collarettes. Loci formed by sympodial proliferation are also visible on the tubular collarette, circular, thickened, darkened and
refractive. Conidia solitary, brown, verruculose to warty, guttulate, subcylindrical to narrowly obclavate, straight to curved, euseptate; hilum truncate, thickened and slightly darkened.

Type species: Annellosympodiella juniperi Crous \& Assefa.

Annellosympodiella juniperi Crous \& Assefa, Persoonia 32: 245. 2014.
Description and illustration: Crous et al. (2014a).
Materials examined: Ethiopia, Addis Ababa, Mangadishu Forest, on needles of Juniperus procera, 25 Jun. 2013, PW. Crous \& A. Assefa (holotype CBS H-21706, ex-type culture CBS $137992=$ CPC 23276).

Notes: Annellosympodiella is a monotypic genus similar to Annellophragmia (Ellis 1971) and Annellosympodia (McTaggart et al. 2007) based on their strange mode of percurrent and sympodial proliferation with darkened, thickened scars (Crous et al. 2014a). In the phylogenetic analyses, Annellosympodiella is a single-strain lineage closely related to Neopenidiella and Neopericoniella (Fig. 1, clade 71; Fig. 4, clade 3).

Clade 72: Neopenidiella

Neopenidiella Quaedvlieg \& Crous, Persoonia 33: 22. 2014.
Description (from Quaedvlieg et al. 2014): Foliicolous. Conidiophores erect, straight, filiform, pluriseptate throughout, brown, darker below and paler above, thin-walled, smooth, apex penicillate, terminal cell of the conidiophore with short denticle-like loci giving rise to sets of conidiogenous cells or ramoconidia that then form a sequence of new sets of ramoconidia on different levels. Conidiogenous loci terminal or subterminal, usually 1-3(-4), subdenticulate, conical, apically truncate, unthickened or almost so, not to somewhat darkened-refractive. Ramoconidia with truncate base, barely or distinctly attenuated at the truncate base, aseptate, at the apex with 2-3(-4) subdenticulate hila, subcylindrical, very pale olivaceous, olivaceous brown to brown, thin-walled, smooth to faintly verruculose. Conidia in long acropetal chains, narrowly ellipsoid-ovoid, fusiform to cylindrical aseptate, very pale olivaceous, olivaceous brown to brown, thin-walled, smooth to very faintly rough-walled; hila unthickened or almost so, at most slightly darkened-refractive.

Type species: Neopenidiella nectandrae (Crous et al.) Quaedvlieg \& Crous (\equiv Penidiella nectandrae Crous et al.).

Neopenidiella nectandrae (Crous et al.) Quaedvlieg \& Crous, Persoonia 33: 22. 2014. Basionym: Penidiella nectandrae Crous et al., Stud. Mycol. 58: 20. 2007.
Synonym: Cladosporium ferrugineum R.F. Castañeda, Fungi Cubenses II: 4. 1987, nom. illeg. (Art. 53.1).

Description and illustrations: Crous et al. (2007a).
Material examined: Cuba, Matanzas, San Miguel de los Baños, on living leaves of Nectandrea coriacea, 24 Jan. 1987, R.F. Castañeda \& G. Arnold (holotype of Cladosporium ferrugineum

INIFAT C87/45, culture ex-type CBS 734.87 = ATCC 200932 = INIFAT 87/45; isotype HAL 2018 F).

Notes: Neopenidiella is currently a monotypic genus that was established to accommodate Neopenidiella nectandrae since it was not congeneric with the type of Penidiella, P. columbiana (Teratosphaeriaceae) (Quaedvlieg et al. 2014). Neopenidiella differs from Penidiella by forming conidiophores that are long and filiform, with a subdenticulate apical cell where long and narrow penicillate ramoconidia are formed. In the phylogenetic analyses performed in this study it forms a single-strain lineage closely related to Annellosympodiella (Fig. 1, clade 72; Fig. 4 clade 4).

Clade 73: Neoceratosperma

Neoceratosperma Crous, Persoonia 32: 257. 2014.
Description (from Crous et al. 2014a): Mycelium consisting of branched, septate, brown, verruculose hyphae turning warty with age. Conidiophores reduced to conidiogenous cells, or septate, erect, brown, verruculose, unbranched, subcylindrical, dark brown and smooth at the base. Conidiogenous cells subcylindrical, brown, verruculose, but conidiogenous apical area smooth, forming a short rachis that proliferates sympodially, with somewhat thickened and darkened loci. Conidia solitary, rarely in unbranched chains, subcylindrical, medium brown, becoming dark brown, verruculose, becoming warty, distoseptate, less obvious when older (dark brown, warty), straight to irregularly curved; apex obtuse, base truncate, but hila somewhat thickened and darkened.

Type species: Neoceratosperma eucalypti Crous \& Cheew.
Neoceratosperma cyatheae Guatimosim et al., Persoonia 37: 122. 2016.
Description and illustration: Guatimosim et al. (2016).
Materials examined: Brazil, Rio de Janeiro, Fazenda Barreto II, Rio grandina, on fronds of Cyathea delgadii, 11 Feb. 2014, R.W. Barreto (holotype CBS H-22074; isotype VIC 42605, culture ex-type CPC 24704; Rio de Janeiro, Nova Friburgo, Macaé de Cima, on fronds of C. delgadii, 11 Jul. 2009, R.W. Barreto, CBS H-22078, VIC 42533, cultures CPC $18580=$ COAD573.

Notes: Neoceratosperma cyatheae was recently described from a fern host, Cyathea delgadii, originating from Brazil. Only its asexual morph is known, which can easily be distinguished from Neoceratosperma eucalypti by producing smooth conidiophores reduced to conidiogenous cells and solitary conidia (Guatimosim et al. 2016). Based on the phylogenetic analyses it forms a single-strain lineage within the Neoceratosperma clade (Fig. 1, clade 73; Fig. 4, clade 7).

Neoceratosperma eucalypti Crous \& Cheew., Persoonia 32: 257. 2014.
Description and illustration: Crous et al. (2014a).

Materials examined: Thailand, Chiang Mai, on living leaves of Eucalyptus sp., Sep. 2013, R. Cheewangkoon (holotype CBS H-21712, culture ex-type CBS $137998=$ CPC 23465).

Notes: Neoceratosperma has a zasmidium-like morphology except it produces distoseptate conidia. Neoceratosperma differs from Ceratosperma by forming strongly verruculose conidiophores and conidia, producing conidia in a short sympodial rachis, solitary or in chains and with slightly thickened, darkened hila and scars (Crous et al. 2014a). Phylogenetically, Neoceratospoerma strains cluster in a well-supported clade by both Bayesian and maximum likelihood analyses (Fig. 1, clade 73; Fig. 4, clade 7) and is closely related to Xenomycosphaerella. Neoceratosperma was monotypic, but several species have been recently added by Guatimosim et al. (2016).

Neoceratosperma legnephoricola U. Braun, C. Nakash., Videira \& Crous, sp. nov. MycoBank MB822715. Fig. 43.

Etymology: Derived from the host genus on which it occurs, Legnephora.
Description in vivo (CBS H-22962): Leaf spots small, brown to dark brown, angular, $2-3 \mathrm{~mm}$ diam, later enlarged, circular to subcircular, with 2-3 dark brown concentric rings, $5-10 \mathrm{~mm}$ diam. Mycelium internal and external, composed of pale brown to brown hyphae, smooth to

Fig. 43. Neoceratosperma legnephoricola (CPC 16411). A-E. Observations in vivo. A. Leaf spot symptoms on the host. B. Partial conidiophore, conidiogenous cells and conidia. C. Conidiophore and conidiogenous cells. D, E. Conidia. F-K. Observations in vitro. F. Culture on V8. G. Conidiophore and conidiogenous cell. H, I. Conidiogenous cell and conidia. J, K. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
verruculose. Caespituli hypophyllous, well-developed, visible in concentric rings, yellowish brown. Stromata hypophyllous, epidermal, substomatal, 20-54 $\mu \mathrm{m}$ diam. Conidiophores often reduced to conidiogenous cells, emerging from stromata and internal/external hyphae, solitary or fasciculate, more than 20, pale brown to brown, verruculose, straight to sinuous, simple, 25$380 \times 2-6 \mu \mathrm{~m}$. Conidiogenous cells terminal or intercalary, pale brown to brown, verruculose, polyblastic, proliferating sympodially, with rim-like conidiogenous loci slightly thickened and darkened, $2-3 \mu \mathrm{~m}$ diam. Conidia solitary, pale brown to brown, verruculose, cylindrical, obclavate to filiform, straight to curved, obconically truncate at the base and apex rounded, $34-260 \times 5-11 \mu \mathrm{~m}, 0-23$-distoseptate, hila slightly thickened and darkened, $2-3 \mu \mathrm{~m}$ diam.

Description in vitro (on SNA; CPC 16411): Mycelium composed of pale brown to olicaveous brown hyphae, smooth to verruculose. Conidiophores single, pale brown to olicaveous brown verruculose, erect, straight, simple, often reduced to conidiogenous cells, $3-120 \times 4-5 \mu \mathrm{~m}$. Conidiogenous cells terminal in conidiophores or integrated in the mycelium, pale brown to olivaceous brown, verruculose, single or polyblastic, proliferating sympodially, with rim-like conidiogenous loci, slightly thickened and darkened. Conidia solitary, occasionally catenate in a single chain, pale brown to olivaceous brown, verruculose, cylindrical, straight or curved, $(16-) 44-66(-128) \times(3.5-) 4-5(-5.5) \mu \mathrm{m}, 0-10$-distoseptate, obconically truncate at the base and conically truncate at the apex when intercalary, obconically truncate at the base and apex rounded when terminal, hila slightly thickened and darkened, $2-3 \mu \mathrm{~m}$ diam.

Material examined: Australia, New South Wales, North Washpool State Forest, on Legnephora moorei (\equiv Cocculus moorei), Mar. 2009, B. Summerell (holotype CBS H-22962, ex-type culture CBS $142189=$ CPC 16411).

Notes: This is the first time that a fungus has been described in association with the host Legnephora moorei, an endemic plant of the Australian rainforest. In the phylogenetic analyses it is closely related to Neoceratosperma yunnanensis (Fig. 1, clade 73; Fig. 4, clade 7), but can be morphologically distinguished by producing longer conidiophores and shorter conidia.

Neoceratosperma haldinae U. Braun, C. Nakash., Videira \& Crous, sp. nov. MycoBank MB822716. Fig. 44.

Etymology: Derived from the host genus on which it occurs, Haldina.
Description in vitro (on SNA, CPC 19202): Mycelium composed of pale olivaceous hyphae, verruculose, $2 \mu \mathrm{~m}$ wide. Conidiophores pale olivaceous, finely verruculose, straight, simple, geniculate-sinuous at the apex, (25-)43-53(-76) $\times 1.5-2 \mu \mathrm{~m}$, often reduced to conidiogenous cells. Conidiogenous cells pale olivaceous, finely veruculose, proliferating sympodially at the apex, polyblastic, withconidiogenouslocislightlythickened and darkened, $1 \mu \mathrm{~m}$ diam. Conidia solitary, pale olivaceous, finely verruculose, filiform, cylindrical to longobclavate, baseshortobconicallytruncate and apex rounded, (5.5-)17-22.5(-30) $\times(1.5-) 2(-3) \mu \mathrm{m}, 1-5$-euseptate, with hila slightly thickened but hardly darkened, $1 \mu \mathrm{~m}$ diam.

Materials examined: Laos, Vientiane, Xanthany, Dong Makkai, on Haldina cordifolia, unknown date, P. Pheng, LC 0408, NUOL P53 (holotype CBS H-22963, culture ex-type CBS $142190=$ CPC 19202).

Fig. 44. Neoceratosperma haldinae (CPC 19202). A-F. Observations in vitro. A. Culture on OA. B, C. Conidiophore and conidiogenous cell. D-F. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Notes: Neoceratosperma haldinae needs to be compared with Passalora haldinae, which was described from Haldina cordifolia collected in Thailand (Nakashima et al. 2007). The strain CBS 142190 (previously identified as Passalora haldinae), sporulated in culture, and proved to be distinct from Passalora haldinae, which has wider conidiophores (15-63 $\times 2.8-3.6 \mu \mathrm{~m}$) that are occasionally branched, and conidia that are smooth, longer and wider (24-80 $\times 2.7-5$ $\mu \mathrm{m}, 1-7$-septate; Nakashima et al. 2007). Based on the phylogenetic analyses it forms a singlestrain lineage within the Neoceratosperma clade (Fig. 1, clade 73; Fig. 4, clade 7).

Neoceratosperma yunnanensis (Barber \& T.I. Burgess) Guatimosim et al., Persoonia 37: 123. 2016.

Basionym: Mycosphaerella yunnanensis Barber \& T.I. Burgess, Fungal Diversity 24: 150. 2007. Synonym: Xenomycosphaerella yunnanensis (Barber \& T.I. Burgess) Quaedvlieg \& Crous, Persoonia 33: 24. 2014.

Description and illustration (sexual morph): Burgess et al. (2007).
Description in vitro (on V8; CBS 119975): Mycelium composed of hyaline to pale olivaceous hyphae, verruculose, $2.5 \mu \mathrm{~m}$ wide. Conidiophores short, reduced to conidiogenous cells, hyaline to pale olivaceous, verruculose, simple, 2.5-5 $\times 3-4 \mu \mathrm{~m}$. Conidiogenous cells polyblastic, determinate, rarely proliferating sympodially, with rim-like conidiogenous loci that are slightly thickened and darkened, $1-1.5 \mu \mathrm{~m}$ diam. Conidia solitary, rarely catenate in a single chain, pale to pale olivaceous, verruculose, cylindrical to long obclavate, filiform, base short-obconical truncate and apex rounded, $30-210 \times 3-4 \mu \mathrm{~m}, 0-6$-eu- or distoseptate, hila slightly thickened and darkened, $1-1.5 \mu \mathrm{~m}$ diam.

Materials examined: China, Yunnan, Lancang, on leaves of Eucalyptus urophylla, May 2005, B. Dell (holotype MURU 407, ex-type culture CBS $119975=$ CMW $23443=$ MUCC $410=$ PAB 05.05 B2).

Notes: Until now, Mycosphaerella yunnanensis was only known from its sexual morph, but in this study, we observed the asexual morph in culture using V8 medium with sterilised banana leaves. The morphological features of the asexual morph included short conidiophores
reduced to conidiogenous cells and distoseptate scolecospores, which are in agreement with the description of the genus Neoceratosperma. Based on the genes used in this study and the phylogenetic methods employed, Mycosphaerella yunnanensis is included in Neoceratosperma (Fig. 1, clade 73; Fig. 2, clade 7).

Clade 74: Xenosonderhenia

Xenosonderhenia Crous, Persoonia 28: 175. 2012.
Description (from Crous et al. 2012b): Foliicolous, associated with leaf spots. Conidiomata pycnidial, black, globose, substomatal, erumpent, predominantly epiphyllous, with central ostiole, lined with periphyses; wall of 2-3 layers of brown textura angularis. Conidiophores reduced to conidiogenous cells. Conidiogenous cells lining the inner cavity, subcylindrical to doliiform; finely verruculose, pale brown, proliferating apically with several percurrent proliferations. Conidia subcylindrical, brown, finely verruculose, apex obtuse, base truncate with visible scar-like hilum, (1-)3-euseptate, but septa with visible central pore. Conidia of synasexual morph intermingled in same conidioma, but conidiogenous cells proliferating percurrently or sympodially; conidia hyaline to subhyaline, narrowly obclavate, apex subobtuse, base truncate, straight to curved, transversely multi-septate. Synasexual morph also hyphomycetous, developing in aerial mycelium; conidiophores subcylindrical, straight to curved, $0-2$-septate, hyaline to subhyaline, proliferating sympodially at apex. Conidiophores solitary or fasciculate or forming on a reduced stroma.

Type species: Xenosonderhenia syzygii Crous.

Xenosonderhenia eucalypti Crous \& M.J. Wingf., Persoonia 33: 241. 2014.
Description and illustration: Crous et al. (2014b).
Material examined: Mozambique, Forestas de Niassa, leaf spots of Eucalyptus urophylla, 2 Feb. 2014, M.J. Wingfield (holotype CBS H-21991, culture ex-type CPC 24247 = CBS 138858).

Notes: Xenosonderhenia eucalypti was recently described based on the morphological characteristics of the sexual morph. It was placed in Xenosonderhenia due to being phylogenetically closest to Xenosonderhenia syzygii (Crous et al. 2014b). In this study, Xenosonderhenia eucalypti formed a single-strain lineage in the phylogenetic analyses (Fig. 1, clade 74; Fig. 4, clade 9) that is closely related to Xenomycosphaerella elongata with which it shares $98 \%(728 / 740)$ similarity on LSU, 94% (449/477) similarity on ITS, and only 84% (622/737) similarity on $r p b 2$.

Xenosonderhenia syzygii Crous, Persoonia 28: 175. 2012.

Description and illustration: Crous et al. (2012b).
Material examined: South Africa, Mpumalanga, Nelspruit, Lowveld Botanical Garden, on leaves of Syzygium cordatum, 17 Aug. 2011, P.W. Crous, M.K. Crous, M. Crous \& K.L. Crous (holotype CBS H-20968, ex-type culture CBS $132688=$ CPC 19790).

Notes: Xenosonderhenia currently accommodates two species, Xenosonderhenia syzygii and Xenosonderhenia eucalypti. Xenosonderhenia syzygii is phylogenetically close to Xenomycosphaerella elongata but is unique in being morphologically dimorphic (Crous et al. 2012b). Xenosonderhenia syzygii is easily distinguished from Sonderhenia since species in the latter genus produce distoseptate conidia and form a distinct clade in the Mycosphaerellaceae (Fig. 1, clade 28; Fig. 2, clade 34). It can also be separated from Phaeophleospora since species in the latter genus produce scolecosporous conidia and form a unique clade in the Mycosphaerellaceae (Fig. 1, clade 67; Fig. 4, clade 5). Unfortunately, an rpb2 sequence was not generated for this strain and it was not included in the phylogenetic trees in this study.

Clade 75: Xenomycosphaerella

Xenomycosphaerella Quaedvlieg \& Crous, Persoonia 33: 24. 2014.
Description (from Quaedvlieg et al. 2014): Foliicolous, plant pathogenic. Ascomata pseudothecial, dark brown, subepidermal to erumpent, globose, with an apical ostiole; wall of 2-3 layers of medium brown textura angularis. Asci aparaphysate, fasciculate, bitunicate, subsessile, obovoid to broadly ellipsoidal, straight to slightly curved, 8 -spored. Ascospores bito multiseriate, overlapping, hyaline, thin- or thick-walled, straight to slightly curved, fusoidellipsoidal with obtuse ends, widest in middle of the apical cell, medianly or unequally 1 -septate, tapering towards both ends, but more prominently towards the lower end.

Type species: Xenomycosphaerella elongata (Crous \& M.J. Wingf.) Quaedvlieg \& Crous (\equiv Mycosphaerella elongata Crous \& M.J. Wingf.).

Xenomycosphaerella elongata (Crous \& M.J. Wingf.) Quaedvlieg \& Crous, Persoonia 33: 24. 2014.

Basionym: Mycosphaerella elongata Crous \& M.J. Wingf., Fungal Diversity 26: 163. 2007.
Description and illustrations: Crous et al. (2007c).
Material examined: Venezuela, El Piñal Lotes farm near Acarigua, on leaves of Eucalyptus calmadulensis \times urophylla, Oct. 2006, M.J. Wingfield (holotype CBS H-19824, ex-type culture CBS $120735=$ CPC 13378).

Notes: The genus Xenomycosphaerella was introduced to accommodate Mycosphaerella elongata and Mycosphaerella yunnanensis, both species only known from their mycosphaerellalike sexual morph but that were not congeneric with Ramularia (Quaedvlieg et al. 2014). Based on a large phylogenetic analysis based on several genes, Xenomycosphaerella yunnanensis was later combined into Neoceratosperma (Guatimosim et al. 2016). In the present phylogenetic analyses, the genus is represented by its type, Xenomycosphaerella elongata, in a singlestrain lineage (Fig. 1, clade 75; Fig. 4, clade 8) that is closely related to Xenosonderhenia. The genera Xenosonderhenia and Xenomycosphaerella are very close phylogenetically, but due to lacking information related to their morphology and the existing differences observed based on the DNA sequences, they should remain separate until more isolates are available for further analysis. The type of Xenosonderhenia, Xenosonderhenia syzygii, is only known by its dimorphic asexual morph while the type of Xenomycosphaerella, Xenomycosphaerella
elongata, is only known from its sexual morph. The other known species of Xenosonderhenia, Xenosonderhenia eucalypti, is only known from its sexual morph which can be distinguished from Xenomycosphaerella elongata by forming ascospores not constricted at the septa and widest at one third of the apex of the apical cell (ascospores constricted at the septum and tapering towards both ends but more prominently towards the lower end in Xenomycosphaerella elongata).

Clade 76: Xenosonderhenioides

Xenosonderhenioides Videira \& Crous, gen. nov. MycoBank MB822706.
Etymology: Xenos- from the Greek strange + sonderhenioides for the phylogenetic proximity to the genus Sonderhenia.

Description: Mycelium composed of hyaline to pale brown hyphae, smooth, septate, branching. Conidiophores micro- to macronematous, subhyaline to pale brown, smooth to rough, simple, sometimes branched, straight to sinuous. Conidiogenous cells integrated, terminal or intercalary, hyaline to pale brown, proliferating sympodially, polyblastic, with rim-like conidiogenous loci, slightly thickened and darkened. Conidia solitary, rarely catenate in a single chain, hyaline to subhyaline, smooth, oblong, cylindrical to obclavate, straight, base medium-long obconically truncate, apex rounded, aseptate or eu- or distoseptate hila thickened and darkened and protruding at the base or at both ends when catenate.

Type species: Xenosonderhenioides indonesiana C. Nakash., Videira \& Crous.

Xenosonderhenioides indonesiana C. Nakash., Videira \& Crous, sp. nov. MycoBank MB822728. Fig. 45.

Etymology: Derived from the country where it was collected from, Indonesia.
Description in vitro (on SNA; CPC 15066): Mycelium composed of hyaline to pale brown hyphae, smooth, septate, branched, uniform in width, $2-2.5 \mu \mathrm{~m}$ diam. Conidiophores micro- to macronematous, subhyaline to pale brown, smooth to finely verruculose, simple, straight to sinuous, sometimes geniculate-sinuous at the apex, 20-75 $\times 2.5-7.5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal and intercalary, hyaline to pale brown, smooth, proliferating sympodially, conical at the apex, mono- or polyblastic, with rim-like conidiogenous loci slightly thickened and darkened, located at the apex or shoulder, sometimes in large number and disperse through the cell, $1.5-2 \mu \mathrm{~m}$ in diam. Conidia solitary, rarely catenate in a single chain, hyaline to subhyaline, smooth, oblong, cylindrical to long-obclavate, base medium-long obconically truncate, apex rounded, $15-50 \times 5-6 \mu \mathrm{~m}, 0-4$-septate, eu- or distosepta, sometimes slightly constricted at the septa, hila slightly thickened and darkened.

Material examined: Indonesia, on Eucalyptus sp., 26 Mar. 2008, M.J. Wingfield (holotype CBS H-19824, ex-type culture CBS 142239 = CPC 15066).

Notes: Phylogenetically, the genus Xenosonderhenioides is represented by a single-strain lineage (Fig. 1, clade 76; Fig. 4, clade 10) that is closely related to Xenosonderhenia. Morphologically,

Fig. 45. Xenosonderhenioides indonesiana (CPC 15066). A-E. Observations in vitro. A. Culture on OA. B, C. Conidiophore and conidiogenous cell. D. Conidiogenous cell and conidia. E. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Xenosonderhenioides indonesiana can easily be distinguished from Xenosonderhenia syzygii, which has dimorphic conidia in culture. Due to phylogenetic and morphological differences, we consider that this should represent a unique genus.

Clade 77: Polyphialoseptoria

Polyphialoseptoria Quaedvlieg et al., Stud. Mycol. 75: 355. 2013.
Description (from Quaedvlieg et al. 2013): Foliicolous, plant pathogenic. Conidiomata brown, erumpent, pycnidial (acervular in culture), globose, brown; wall of 3-6 layers of pale brown textura angularis. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, smooth, subcylindrical to ampulliform, proliferating sympodially at apex, forming polyphialides with minute periclinal thickening, or as solitary loci on superficial mycelium in culture. Conidia hyaline, smooth, granular to guttulate, scolecosporous, irregularly curved, apex subobtuse, base long obconically truncate, transversely multi-euseptate, in older cultures disarticulating at septa; microcyclic conidiation also common in older cultures.

Type species: Polyphialoseptoria terminaliae Quaedvlieg et al.
Polyphialoseptoria terminaliae Quaedvlieg et al., Stud. Mycol. 75: 356. 2013.
Description and illustration: Quaedvlieg et al. (2013).
Materials examined: Brazil, Minas Gerais, Viçosa, on leaves of Terminalia catappa, 18 May 2010, R.W. Barreto (holotype CBS H-21298, culture ex-type CBS 135106 = CPC 19611); idem. cultures CBS $135475=$ CPC 19487.

Notes: Polyphialoseptoria currently includes two species, Polyphialoseptoria terminaliae and Polyphialoseptoria tabebuiae-serratifoliae, both collected from Brazil. It differs from Septoria and Neoseptoria based on the presence of polyphialides. The phylogenetic analyses performed in this study strongly supported the Polyphialoseptoria clade (Fig. 1, clade 77; Fig. 4, clade 11).

Clade 78: Mycodiella

Mycodiella Crous, Persoonia 37: 337. 2016.
Description (from Crous et al. 2016a): Ascomata pseudothecial, brown, erumpent, globose; wall consisting of 2-3 layers of medium brown textura angularis. Asci aparaphysate, fasciculate, bitunicate, subsessile, obovoid, straight to slightly curved, 8 -spored. Ascospores multiseriate, overlapping, hyaline, guttulate, thin-walled, straight to slightly curved, fusoid-ellipsoidal with obtuse ends, widest in middle of apical cell, medianly 1 -septate.

Type species: Mycodiella eucalypti Crous.
Mycodiella eucalypti Crous, Persoonia 37: 337. 2016.
Description and illustration: Crous et al. (2016a).
Materials examined: Australia, Western Australia, Porongurup, Porongurup National Park, S34ํ41018.600 E117 $5505600, ~ o n ~ l e a v e s ~ o f ~ E u c a l y p t u s ~ d i v e r s i c o l o r, ~ 24 ~ S e p . ~ 2015, ~ P . W . ~ C r o u s ~$ (holotype CBS H-22885, culture ex-type CBS 142097 = CPC 29226); Western Australia, Denmark, Mount Lindesay Walk Trail, Southern Cross, on leaves of Xanthosia rotundifolia, 19 Sep. 2015, P.W. Crous, cultures CBS $142099=$ CPC 29525.

Notes: Mycodiella was recently introduced to accommodate Mycodiella eucalypti, a pathogen on Eucalyptus that clustered together with "Mycosphaerella" sumatrensis on Eucalyptus and "Mycosphaerella" laricis-leptolepidis on Larix. All three species are only known from their asexual morph and cluster together in a well-supported clade based on LSU, which supported the combination of all three species into the same genus (Crous et al. 2016a). In this study only a representative of Mycodiella sumatrensis was used and it forms a single-strain lineage closely related to Polyphialoseptoria (Fig. 1, clade 78; Fig. 4, clade 12).

Mycodiella sumatrensis (Crous \& M.J. Wingf.) Crous, Persoonia 37: 337. 2016. Basionym: Mycosphaerella sumatrensis Crous \& M.J. Wingf., Stud. Mycol. 55: 124. 2006.

Description and illustration: Crous et al. (2006c).
Material examined: Indonesia, Northern Sumatra, on leaves of Eucalyptus sp., Feb. 2004, M.J. Wingfield (holotype CBS H-19704, cultures ex-type CBS $118499=$ CPC 11171); idem. cultures CBS $118501=$ CPC 11175, CBS $118502=$ CPC 11178.

Note: See Mycodiella eucalypti.

Clade 79: Australosphaerella

Australosphaerella Videira \& Crous, gen. nov. MycoBank MB822579.
Etymology: Derived from the country of origin Australia and mycosphaerella-like sexual morph.

Description: Ascomata pseudothecial, black, slightly erumpent, globose. Asci aparaphysate, fasciculate, bitunicate, subsessile, obclavate to ellipsoidal, straight to incurved, 8 -spored. Ascospores multiseriate, overlapping, hyaline, straight to rarely curved, fusoid-ellipsoidal with obtuse ends, medianly 1 -septate, widest in middle of apical cell, not constricted at septum or only slightly so.

Type species: Australosphaerella nootherensis (Carnegie) Videira \& Crous.
Australosphaerella nootherensis (Carnegie) Videira \& Crous, comb. nov. MycoBank MB822739.
Basionym: Mycosphaerella nootherensis Carnegie, Austral. Pl. Pathol. 40: 377. 2011.
Description and illustration: Carnegie et al. (2011).
Materials examined: Australia, Queensland, Noosa Heads, on living leaves of Corymbia intermedia, 11 Aug. 2008, A.J. Carnegie (holotype BRIP 52584a, ex-type culture CBS 130522).

Notes: This genus is represented by a single-strain lineage in the phylogenetic analyses (Fig. 1, clade 79; Fig. 4, clade 16), closely related to Mycodiella, but not strongly supported by any of the phylogenetic methods employed, which indicates that it is quite different even from the closest related species. Based on a BLAST search against the alignment, CBS 130522 shares 89 \% (428/483) similarity on ITS, including 2% (10/483) gaps, with Xenosonderhenioides indonesiana CPC 15066 and 76 \% (535/ 704) similarity on rpb2, including 1 \% (12/704) gaps, with Polyphialoseptoria terminaliae CBS 135106. Therefore, a new genus is introduced to accommodate this species. Morphologically it is only known from its mycosphaerella-like sexual morph but the ascospores have a distinctive germination pattern with multiple germ tubes growing at various angles from both ends of the ascospore (Carnegie et al. 2011).

Clade 80: Chuppomyces

Chuppomyces Videira \& Crous, gen. nov. MycoBank MB822582.
Etymology: In honour of the mycologist Charles Chupp, who produced an extensive work on cercosporoid fungi.

Description: Mycelium composed of hyaline to pale olivaceous brown hyphae, smooth to rough. Conidiophores macronematous, pale olivaceous brown, rough, straight or strongly geniculate, simple. Conidiogenous cells integrated, terminal or intercalary, thickened and darkened, proliferating sympodially, polyblastic, apex short-conically truncate, with rimlike conidiogenous loci, thickened and darkened, located on the apex and shoulders. Conidia solitary, hyaline, smooth, cylindrical to obclavate, septate.

Type species: Chuppomyces handelii (Bubák) U. Braun et al. (三 Cercospora handelii Bubák).
Chuppomyces handelii (Bubák) U. Braun, C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822741. Fig. 46.
Basionym: Cercospora handelii Bubák, Ann. Naturhist. Mus.Wien 23: 106. 1909.

Synonyms: Cercoseptoria handelii (Bubák) Deighton, Mycol. Pap. 140: 166. 1976. Cercospora rhododendri Ferraris, Fl. Ital. Cryptog. I: Fungi, Hyphales: 895. 1910.
Cercospora rhododendri Marchal \& Verpl., Bull. Soc. Roy. Bot. Belgique 59: 24. 1927 (19261927), nom. illeg. (Art. 53.1).

Pseudocercospora handelii (Bubák) Deighton, Trans. Brit. Mycol. Soc. 88(3): 390. 1987. Mycosphaerella handelii Crous \& U. Braun, CBS Biodiversity Ser. 1: 211. 2003.

Description and illustrations: Chupp (1954), Ellis (1976), Deighton (1976a), Crous \& Braun (2003), present study (Fig. 46).

Description in vitro (on V8; CBS 113302): Mycelium composed of hyaline to pale olivaceous brown hyphae, smooth to rough, uniform in width, 2.5-3 $\mu \mathrm{m}$. Conidiophores macronematous, pale olivaceous brown, rough, straight or geniculate-sinuous, simple, 30-80 $\times 3-6 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal or intercalary, proliferating sympodially, polyblastic, apex short-conically truncate or geniculate-sinuous, with rim-like conidiogenous loci, thickened and darkened, located on the apex and shoulders, $2-2.5 \mu \mathrm{~m}$. Conidia solitary, hyaline, smooth, cylindrical to obclavate, base medium-long obconically truncate and apex rounded, straight, $25-125 \times 3-5 \mu \mathrm{~m}, 1-5$-septate, hila thickened and darkened.

Materials examined: Netherlands, Utrecht, Bilthoven, 28 Evert Comelislaan, on Rhododendron sp., 10 Mar. 2003, M. Crous \& P.W. Crous (holotype of Mycosphaerella handelii CBS H-6594, culture ex-type CBS 112681); Utrecht, on Rhododendron sp., 2002, P.W. Crous \& U. Braun, culture CBS 113302. Turkey, Trabzon District, Fol Koei, on Rhododendron ponticum, 14 Jul. 1907, Handel-Mazzetti (holotype of Cercospora handelii, BPI 437020).

Notes: The culture CBS 113302 was deposited as "Mycosphaerella" handelii (= Pseudocercospora handelii). However, the morphological characters on the V-8 medium are different from that of the genus Pseudocercospora. In the phylogenetic analyses, the present species is closely related to Ruptoseptoria unedonis and Neoamichloridium pini, but morphologically is quite distinct from both (Fig. 1, clade 80; Fig. 4, clade 13). Chuppomyces handelii (Fig. 1, clade 80; Fig. 4, clade 13) forms sympodially proliferating conidiophores

Fig. 46. Chuppomyces handelii (CBS 113302). A. Disease symptoms on the host leaves. B. Drawings of the asexual morph (from Crous \& Braun 2003). C. Drawings of the sexual morph (from Crous \& Braun 2003).
and conidia which are hyaline, solitary, cylindrical and multiseptate. Ruptoseptoria unedonis (Fig. 1, clade 81; Fig. 4, clade 14) has convoluted conidiomata that open by irregular rupture and frequently form phialidic conidiogenous cells. Pachyramichloridium pini (Fig. 1, clade 82; Fig. 4, clade 15) has simple conidiophores, plurigenous conidiogenous cells with flat to prominent conidiogenous scars, producing conidia hyaline, obovoid, aseptate with darkened hila. Chuppomyces handelii shares 98 \% (729/747) similarity with Ruptoseptoria unedonis and $96 \%(712 / 744)$ similarity with Pachyramichloridium pini, based on LSU; 95 \% (450/475) similarity with Ruptoseptoria unedonis and 91 \% (431/476) similarity with Pachyramichloridium pini, based on ITS; 87 \% (639/731) similarity with Ruptoseptoria unedonis and $80 \%(593 / 737)$ similarity with Pachyramichloridium pini, based on rpb2. Despite the strong support on the branch that connects these three strains together based on all three phylogenetic methods employed in this study, the morphological characters are too different to consider joining them in the same genus and, therefore, two new genera are introduced to accommodate them.

Clade 81: Ruptoseptoria

Ruptoseptoria Quaedvlieg et al., Stud. Mycol. 75: 356. 2013.
Description (from Quaedvlieg et al. 2013): Foliicolous, plant pathogenic. Conidiomata black, appressed, elongated, pycnidial, but opening via irregular rupture, convulated; exuding a creamy white conidial mass; outer wall dark brown, crusty, consisting of 6-8 layers of dark brown textura angularis; giving rise to $2-3$ inner layers of pale brown to hyaline textura angularis. Conidiophores lining the inner cavity, hyaline, smooth or pale brown, verruculose at base, branched below, septate, subcylindrical. Conidiogenous cells integrated, terminal, subcylindrical, smooth; proliferating sympodially at apex, or apex phialidic with minute periclinal thickening. Conidia solitary, hyaline, smooth, guttulate, subcylindrical to narrowly obclavate, gently to irregularly curved, apex subobtuse, base truncate to narrowly obovoid, transversely septate.

Type species: Ruptoseptoria unedonis (Roberge ex Desm.) Quaedvlieg et al. (三Septoria unedonis Roberge ex Desm.).

Ruptoseptoria unedonis (Roberge ex Desm.) Quaedvlieg, Verkley \& Crous, Stud. Mycol. 75: 357. 2013.

Basionym: Septoria unedonis Roberge ex Desm., Ann. Sci. Nat., Bot., Sér. 3, 8: 20. 1847.
Synonym: Sphaerella arbuticola Peck, Bull. Torrey Bot. Club 10(7): 75. 1883.
For additional synonyms see MycoBank.
Description and illustration: Quaedvlieg et al. (2013).
Materials examined: Croatia, Rab, city park, leaf spots on Arbutus unedo, Jul. 1970, J.A. von Arx, CBS H-18192, culture CBS 755.70. France, on leaves of Arbutus unedo, Aug. 1986, H.A. van der Aa, CBS H-14645, culture CBS 355.86.

Notes: Morphologically, Ruptoseptoria is very similar to Septoria but differs from the later genus in forming convoluted conidiomata that open by irregular rupture and frequently form
phialidic conidiogenous cells. The type species Ruptoseptoria unedonis was described from Arbutus unedo from France, but the type specimen could not be located. The link between the asexual morph Septoria unedonis (CBS 755.70) and the sexual morph Mycosphaerella arbuticola (CBS 355.86) was established based on phylogenetic data (Quaedvlieg et al. 2013). In this study, based on the phylogenetic analyses, Ruptoseptoria forms a single-strain lineage (Fig. 1, clade 81; Fig. 4, clade 14). See also notes on Chuppomyces handelii.

Clade 82: Pachyramichloridium

Pachyramichloridium Videira \& Crous, gen. nov. MycoBank MB822600.
Etymology: When noting the differences between Ramichloridium apiculatum and Ramichloridium pini, Hoog et al. (1983) stated it had: "darker, shorter and stout conidiophores". The name is formed by the Greek prefix pachy- (stout), and -ramichloridium for its morphological resemblance to the genus.

Description: Mycelium composed by dimorphic hyphae, hyaline to pale olivaceous, or olivaceous to dark brown and thick-walled, verrucose often with irregular clumps of pale olivaceous, capsular material. Conidiophores simple, erect, emerging from hyphae, wall thick and smooth, dark olivaceous brown, aseptate or septate, slightly tapering towards the apex. Conidiogenous cells terminal, subhyaline to brown, with scattered conidiogenous loci, flat or slightly protuberant, slightly darkened. Conidia solitary, pale olivaceous, thin-walled, smooth, obovate to obconical, hila slightly darkened.

Type species: Pachyramichloridium pini (de Hoog \& Rahman) C. Nakash., Videira \& Crous.
Pachyramichloridium pini (de Hoog \& Rahman) C. Nakash., Videira \& Crous, comb. nov. MycoBank MB822769.
Basionym: Ramichloridium pini de Hoog \& Rahman, Trans. Brit. Mycol. Soc. 81: 485. 1983.
Description in vitro (adapted from Hoog et al. 1983): Hyphae dimorphic, hyaline to pale olivaceous $0.5-3 \mu \mathrm{~m}$ wide, olivaceous to dark brown, thick-walled, 2-4 $\mu \mathrm{m}$ wide, verrucose, often with irregular clumps of pale olivaceous, capsular material. Conidiophores simple, erect, emerging from hyphae, wall thick and smooth, dark olivaceous brown, $60 \times 2-3 \mu \mathrm{~m}$, slightly tapering towards the rounded apex, aseptate or up to 5 -septate. Conidiogenous cells terminal on conidiophore, with scattered conidiogenous loci, flat or slightly protuberant, subhyaline to brown, up to $1 \mu \mathrm{~m}$ wide. Conidia solitary, pale olivaceous, thin wall, mostly smooth, obovate to obconical, $3-8 \times 2-3 \mu \mathrm{~m}$, truncate base, hila slightly darkened.

Material examined: UK, Scotland, Old Aberdeen, branch of Pinus contorta, unknown date and coll., isol. M.A. Rahman, dep. 1982 (holotype CBS 461.82 = MUCL 28942).

Notes: The type species of Ramichloridium, Ramichloridium apiculatum, clusters in a sister clade to Dissoconium (Dissoconiaceae) (Arzanlou et al. 2007; present study Fig. 1, clade 95; Fig.4, clade 31). Other ramichloridium-like species cluster within the Zasmidium complex (Fig. 1, clade 69 ; Fig. 4, clade 1). The present species forms a single-strain lineage closely related to Ruptoseptoria (Fig. 1, clade 81; Fig. 4, clade 14). Morphological evaluation of the strain

CBS 461.82 is impossible since it was sterile (Arzanlou et al. 2007; this study). According to the original description (Hoog et al. 1983), this species has simple conidiophores, plurigenous conidiogenous cells with flat to prominent conidiogenous scars, producing hyaline obovoid, aseptate conidia. See also notes on Chuppomyces handelii.

Clade 83: Exosporium

Exosporium Link, Mag. Ges. Naturf. Freunde, Berlin 3(1-2): 9. 1809.
Synonyms: Cephaloedium Kunze, Consp. Regni Veget. (Leipzig): 4. 1828.
Cuspidosporium Cif., Sydowia 9: 303. 1955.
Description (from Ellis 1961): Colonies discrete and punctiform or effuse, hairy, brown to black. Mycelium immersed. Stroma usually present, often very well-developed. Setae and hyphopodia absent. Conidiophores macronematous, mononematous, often caespitose, straight or flexuous, unbranched, or very rarely branched, mid to dark brown or olivaceous brown, smooth or verruculose. Conidiogenous cells polytretic, integrated, terminal, becoming intercalary, sympodial, cylindrical, or clavate, cicatrized, conidiogenous loci (scars) often dark and prominent. Conidia usually solitary, short catenate in one species, acropleurogenous, simple, mostly obclavate, pale to dark brown or olivaceous brown, smooth, verrucose or echinulate, distoseptate, generally with a thick, dark hilum at the base.

Type species: Exosporium tiliae Link.
Exosporium livistonae Crous \& Summerell, Persoonia 27: 145. 2011.
Description and illustration: Crous et al. (2011a).
Materials examined: Australia, Northern Territory, Litchfield National Park, on leaves of Livistona benthamii, 25 Apr. 2011, P.W. Crous \& B.A. Summerell (holotype CBS H-20763, ex-type culture CBS 131313 = CPC 19357).

Note: See notes under Exosporium livistonicola.
Exosporium livistonicola U. Braun, Videira \& Crous, nom. nov. MB822834.
Replaced synonym: Distocercospora livistonae U. Braun \& C.F. Hill, Fungal Diversity 22: 23. 2006.

Description and illustration: Braun et al. (2006).
Materials examined: Japan, Yonagunijima Is., Livistona chinensis, 27 Feb. 2003, T. Kobayashi \& Y. Ono, culture MUCC 190; Hahajima Is., on Livistona chinensis var. boninensis, 17 Mar. 2003, T. Kobayashi \& Y. Ono, culture MUCC 194. New Zealand, Auckland, Manurewa, Auckland Regional Botanic Gardens, Hill Road, on Livistona chinensis, 10 Sep. 2005, C.F. Hill 1247 (holotype of Distocercospora livistonae, HAL 1875 F).

Notes: In this study, the type species of the genus Distocercospora, Distocercospora pachyderma, formed an independent clade within Mycosphaerellaceae (Fig. 1, clade 31; Fig.

2, clade 27). Sequences retrieved from cultures of Distocercospora livistonae, isolated from Livistona chinensis and originating from Japan, clustered together with the sequences obtained from the ex-type culture of Exosporium livistonae (Fig. 1, clade 72; Fig. 4, clade 29). The type species of Distocercospora livistonae was described from a different country (New Zealand) but the same host (Livistona chinensis) as the studied material from Japan, which was found to be a good representative of the species. The morphological characters observed for both species, Exosporium livistonae and Distocercospora livistonae, were similar, though the two species differ in conidial width, and this is also to be seen in the phylogeny, where the two taxa are shown to be congeneric, but not conspecific. A further paper on Exosporium species (Nakashima, in prep.) will provide further detail on the genus. Based on the phylogenetic analyses, the position of Exosporium varies as there is no strong backbone support (Fig. 1, clade 83; Fig. 4, clade 29). Although it sits in the Mycosphaerellaceae in the displayed trees, this position may change when more species are introduced as the current genus occasionally clustered between Schizothyriaceae and Dissononiaceae in different analyses (data not shown). Furthermore, sequences based on the type species of Exosporium, Exosporium tiliae, are not yet available. Therefore, the inclusion of Exosporium livistonae in Exosporium is only tentative until the application of the latter genus based on the phylogeny of its type species will be resolved.

Clade 84: Paramycosphaerella

Paramycosphaerella Crous \& Jol. Roux, Persoonia 31: 245. 2013.
Description (from Crous et al. 2013b): Foliicolous, plant pathogenic. Ascomata erumpent, amphigenous, brown, globose, with central ostiole; wall of 2-3 layers of brown textura angularis. Asci fasciculate, bitunicate with apical chamber, 8 -spored, subcylindrical to narrowly ellipsoid. Ascospores tri- to multiseriate, thin-walled, guttulate, not to very slightly constricted at septum, obovoid, remaining hyaline.

Type species: Paramycosphaerella brachystegiae Crous \& Jol. Roux.
Paramycosphaerella brachystegiae Crous \& Jol. Roux ('brachystegia'), Persoonia 31: 245. 2013.

Description and illustration: Crous et al. (2013b).
Materials examined: Zimbabwe, Mtau forest reserve, near Mvuma, on leaves of Brachystegia sp., 2 Apr. 2012, J. Roux (holotype CBS H-21445, ex-type cultures CBS 136436 = CPC 21136); idem. culture CPC 21137.

Notes:Paramycosphaerella is morphologically mycosphaerella-like, butsince Mycosphaerella is restricted to Ramularia asexual morphs, a new genus was established to accommodate the type species Paramycosphaerella brachystegiae (Crous et al. 2013b). Two more species, Paramycosphaerella intermedia (Dick \& Dobbie 2001, as Mycosphaerella intermedia) and Paramycosphaerella marksii (Carnegie \& Keane 1994, as Mycosphaerella marksii), were later placed in this genus based on phylogenetic inference (Quaedvlieg et al. 2014). In a recent publication(Guatimosimetal.2016), alarge groupofspecieswasintroducedinthisgenus, mostly
based on phylogenetic inference, including Paramycosphaerella aerohyalinosporum (Crous et al. 2009d, as Zasmidium aerohyalinosporium), Paramycosphaerella blechni (Guatimosim et al. 2016), Paramycosphaerella cyatheae (Guatimosim et al. 2016), Paramycosphaerella dicranopteridis (Kirschner \& Liu 2014, as Zasmidium dicranopteridis), Paramycosphaerella dicranopteridis-flexuosae (Guatimosim et al. 2016), Paramycosphaerella gleicheniae (Kirschner \& Liu 2014, as Mycosphaerella gleicheniae), Paramycosphaerella irregularis (Cheewangkoon et al. 2008, as Mycosphaerella irregularis), Paramycosphaerella madeirensis (Crous et al. 2004b, as Mycosphaerella madeirae), Paramycosphaerella nabiacense (Crous et al. 2009d, as Zasmidium nabiacense), Paramycosphaerella parkii (Crous et al. 1993, Crous \& Alfenas 1995, as Zasmidium parkii), Paramycosphaerella pseudomarksii (Cheewangkoon et al. 2008, as Mycosphaerella pseudomarksii), Paramycosphaerella sticheri (Guatimosim et al. 2016) and Paramycosphaerella vietnamensis (Burgess et al. 2007, as Mycosphaerella vietnamensis). Morphologically, the majority of these species are only known from their mycosphaerella-like sexual morphs (Mycosphaerella gleicheniae, Mycosphaerella marksii, Mycosphaerella intermedia, Mycosphaerella pseudomarksii, Paramycosphaerella blechni, Paramycosphaerella cyatheae, Paramycosphaerella dicranopteridis-flexuosae, Paramycosphaerella sticheri). Most of the remaining species produce a zasmidium-like asexual morph (Zasmidium aerohyalinosporium, Zasmidium dicranopteridis, Zasmidium nabiacense, Zasmidium parkii). In two cases, both sexual and asexual morphs are known, namely with "Mycosphaerella" madeirensis and "Mycosphaerella" vietnamensis, which have a presumed pseudocercospora-like asexual morph. In a later study (Videira et al. 2016), a new phylogenetic analysis based on LSU and rpb2 placed the strains of Paramycosphaerella madeirensis in a sister clade to Microcyclosporella and, based on their phylogenetic positon and morphological differences, the genus Mycosphaerelloides was erected to accommodate them. In the present study, with the addition of more genera belonging to the Mycosphaerellaceae, we observe the previously defined Paramycosphaerella clade becoming paraphyletic (Fig. 1, clades 84, 87, 93, 94; Fig. 4, clades 17, 21, 22, 26, 27). Consequently, the phylogenetic position of the species Paramycosphaerella blechni, Paramycosphaerella cyatheae and Paramycosphaerella diacranopteridis, that clustered closely related to Mycosphaerelloides (Guatimosim et al. 2016, as Paramycosphaerella madeirensis) need to be re-evaluated based on the $r p b 2$ gene. Based on the phylogenetic analyses, Paramycosphaerella clusters close to Brunneosphaerella in a very heterogeneous clade (Fig. 1, clade 84; Fig. 4, clade 17) suggesting that further analysis is necessary to resolve this group of species.

Paramycosphaerella intermedia (M.A. Dick \& K. Dobbie) Quaedvlieg \& Crous, Persoonia 33: 23. 2014.

Basionym: Mycosphaerella intermedia M.A. Dick \& K. Dobbie, New Zealand J. Bot. 39(2): 272. 2001.

Description and illustration: Dick \& Dobbie (2001).
Materials examined: New Zealand, Bay of Plenty, Rotoehu Forest, Kohekohe Road, on living leaves of Eucalyptus saligna, 30 Jun. 1998, L. Renney (holotype NZFRI-M 3831, ex-type cultures NZFS $301.10=$ CBS $114356=$ CMW $7163=$ CPC 10902); Waimana Forest, 12 Aug. 1998, K. Dobbie, culture NZFS 301.13 = CBS $114415=$ CMW $7164=$ CPC 10922.

Note: See notes on Paramycosphaerella brachystegiae.
Paramycosphaerella marksii (Carnegie \& Keane) Quaedvlieg \& Crous, Persoonia 33: 23. 2014. Basionym: Mycosphaerella marksii Carnegie \& Keane, Mycol. Res. 98: 414. 1994.

Description and illustration: Carnegie \& Keane (1994).
Materials examined: Australia, Victoria, Briagolong, on leaves of Eucalyptus globulus, 14 Oct. 1994, A. Carnegie, culture CBS $110920=$ CPC 935. South Africa, Northern Province, Magoebaskloof, Eucalyptus grandis \times saligna, Oct. 1994, G. Kemp, cultures CBS $110693=$ CPC 823, CBS $110750=$ CPC $822=$ CMW 14778. Tanzania, Eucalyptus sp., May 1995, M.J. Wingfield, cultures CBS $110981=$ CPC 1073.

Notes: The type species of Paramycosphaerella marksii, based on Mycosphaerella marksii, was isolated from Eucalyptus botryoides from Australia (holotype IMI 353731). See notes on Paramycosphaerella brachystegiae an also Quaedvlieg et al. (2014).

Paramycosphaerella wachendorfiae (Crous) Videira \& Crous, comb. nov. MycoBank MB822773.
Basionym: Mycosphaerella wachendorfiae Crous, Persoonia 26: 129. 2011.

Description and illustration: Crous et al. (2011a).
Materials examined: South Africa, Western Cape Province, Hermanus, Fernkloof Nature Reserve, S $34^{\circ} 2303800$ E $19^{\circ} 1609.700$, on leaves of Wachendorfia thyrsifolia, 2 May 2010, K.L. Crous \& P.W. Crous (holotype CBS H-20584, cultures ex-type CBS $129579=$ CPC 18338).

Notes: The present strain is phylogenetically closest to the type of Paramycosphaerella, Paramycosphaerella brachystegiae (Fig. 1, clade 84; Fig. 4, clade 17). The morphological characteristics of the sexual morph are compatible with the genus.

Paramycosphaerella sp. A

Materials examined: South Africa, Mpumalanga, on Musa cv. Williams, 27 Jul. 2000, K. Surridge, culture CBS 118825 = CMW 10904; idem. on Musa cv. Grande Naine, 27 Jul. 2000, K. Surridge, culture CBS $118849=$ CMW 10902.

Notes: The present strains were originally identified as Mycosphaerella colombiensis based on their ITS sequences originally deposited in GenBank (AY217106 and AY217108, respectively). However, Mycosphaerella colombiensis was described from Eucalyptus in Colombia and is currently a synonym of Parapallidocercospora colombiensis (Fig. 1, clade 25; Fig. 2, clade 31). Phylogenetically, both the present strains cluster in Paramycosphaerella (Fig. 1, clade 84; Fig. 4, clade 17) and were sterile in culture. It is possible that the wrong cultures were deposited in the CBS culture collection. Therefore, they should be treated as Paramycosphaerella sp. until more information becomes available.

Paramycosphaerella sp. B

Materials examined: USA, Illinois, Rockford, apple fruit, Sep. 2000, J. Batzer, culture CBS 118968 = CUF2d; New York, Geneva, on apple fruit, 30 Oct. 2005, D. Rosenberger, culture CBS $125300=$ NY1 3.2F1c.

Notes: The present strains were initially identified based on morphological characters as Colletogloeum sp. and, based on an LSU neighbour-joining phylogeny, they clustered closest to Mycosphaerella marksii. They formed a dense, fuliginous mycelial mat with no sclerotium-like bodies, had thick-walled, ovoid to allantoid blastospores that were highly vacuolate, subhyaline, and truncate at the base, measuring 6-19 $\times 2.5-4.5 \mu \mathrm{~m}$ (strain FG 2.1) or $7-11 \times 1-2 \mu \mathrm{~m}$ (strain FG 2.3) on CLA culture media (Batzer et al. 2005). This description is very broad and the present strains are now sterile which makes it impossible to draw further conclusions. The correct phylogenetic placement of the genus Colletogloeum, based on the type Colletogloeum dalbergiae (Pakistan), is unknown, although DNA extracted from a herbarium specimen of Colletogloeum sissoo (IMI 119162) (= Colletogloeum dalbergiae) suggests Colletogloeum to cluster in a sister clade to Pseudocercospora (Crous et al. 2009e). Based on the phylogenetic analysis in the present study, these present strains cluster within the Paramycosphaerella clade (Fig. 1, clade 84; Fig. 4, clade 17), and should be treated as Paramycosphaerella sp. until more information is available.

Clade 85: Pseudopericoniella

Pseudopericoniella Videira \& Crous, gen. nov. MycoBank MB822699.
Etymology: From pseudo-, that means resembling but not equalling, and the similarity to the genus Periconiella.

Description: Mycelium composed of submerged hyaline hyphae, smooth and thin-walled, and aerial hyphae subhyaline, later becoming dark brown, smooth and thick-walled. Conidiophores arising from creeping aerial hyphae, erect, dark brown at the base, paler towards the apex, thick-walled, septate, branched in the upper part. Conidiogenous cells integrated, terminal and intercalary, subhyaline, later becoming pale brown, cylindrical, proliferating sympodially, forming a short rachis with conidiogenous loci darkened, slightly thickened and protruding. Conidia solitary, pale olivaceous, smooth, obovoid, ellipsoidal, pyriform to clavate, cylindrical, base long obconicaly truncate and rounded apex, straight to mildly curved, aseptate or septate, sometimes constricted at the septa, with a hilum slightly thickened and darkened.

Type species: Pseudopericoniella levispora (Arzanlou et al.) Videira \& Crous (三 Periconiella levispora Arzanlou et al.).

Pseudopericoniella levispora (Arzanlou et al.) Videira \& Crous, comb. nov. MycoBank MB822780.
Basionym: Periconiella levispora Arzanlou et al., Stud. Mycol. 58: 68. 2007.
Description and illustration: Arzanlou et al. (2007).

Materials examined: Sri Lanka, Hakgala Botanic Gardens, on dead leaves of Turpinia pomifera, Jan. 1973, W. Gams (holotype CBS H-15611, culture ex-type CBS 873.73).

Notes: Morphologically, Pseudopericoniella levispora is similar to Periconiella velutina but can be distinguished by producing darker and longer conidia [(7-)8-9(-11) $\times(2.5-) 3(-4)$ $\mu \mathrm{m}$, in Periconiella velutina; Arzanlou et al. 2007]. Based on the phylogenetic analyses in the present study, the type of Periconiella, Periconiella velutina, clusters within the Zasmidium complex (Fig. 1, clade 69; Fig. 4, clade 1), while Pseudopericoniella levispora clusters in a unique position (Fig. 1, clade 85; Fig. 4 clade 22) closely related to Hyalozasmidium.

Pseudopericoniella sp.

Material examined: Netherlands, Aalsmeer, leaf spot on Rosa sp., isol. \& dep. J.A. von Arx, 1951, culture CBS 330.51.

Notes: The present strain was previously identified as Mycosphaerella rosigena. It is currently sterile and no fungarium material has been preserved. The type specimen of Mycosphaerella rosigena (from Rosa sp., Louisiana, USA, holotype NY) was examined by Aptroot (2006) and combined into Davidiella (currently a synonym of Cladosporium) based on morphological characters. Based on the phylogenetic analysis, the present strain clusters close to Pseudopericoniella levispora (Fig. 1, clade 85; Fig. 4, clade 22), and should be treated as Pseudopericoniella sp. until more information becomes available.

Clade 86: Brunneosphaerella

Brunneosphaerella Crous, Stud. Mycol. 64: 31. 2009.

Description (from Crous et al. 2009c): Ascomata amphigenous, immersed to semi-immersed, black, single, gregarious, substomatal, pyriform or globose with a papillate, periphysate ostiole; peridium consisting of three strata of slightly compressed textura angularis, an outer stratum of dark brown, thick-walled cells, becoming paler in the central stratum, and hyaline, thinwalled in the inner stratum. Asci clavate to cylindro-clavate, often curved, tapering to a pedicel, narrowing slightly to a rounded apex with an indistinct ocular chamber, 8 -spored, bitunicate with fissitunicate dehiscence. Pseudoparaphyses absent. Ascospores biseriate, fusiform, broader at the apical end, initially hyaline and 1 -septate, becoming yellow-brown and 3 -septate at maturity, slightly constricted at median to supra-median septum.

Type species: Brunneosphaerella protearum (Syd. \& P. Syd.) Crous (三 Leptosphaeria protearum Syd. \& P. Syd.).

Brunneosphaerella protearum (Syd. \& P. Syd.) Crous, Stud. Mycol. 64: 31. 2009.
Basionym: Leptosphaeria protearum Syd. \& P. Syd., Ann. Mycol. 10: 441. 1912.
Description and illustration: Crous et al. (2009c).
Material examined: South Africa, Western Cape Province, Wellington, on leaves of Protea lepidocarpodendron (as P. melaleuca), 22 Feb. 1912, E.M. Doidge (holotype PREM 2061);

Cape town, Kirstenbosch Botanical Garden, on Protea sp., 13 Jan. 2009, P.W. Crous, (epitype designated by Crous et al. 2011c: CBS H-20335, ex-epitype culture CBS 130597 = CPC 16338); Kirstenbosch Botanical Garden, on leaves of P. coronata, 8 May 2010, P.W. Crous, CBS H-20673, culture CPC 18308 = CBS 130598; Harold Porter Botanical Garden, Betties Bay, on leaves of P. mundii, 4 May 2010, P.W. Crous, CBS H-20683, culture CPC 18328; Bettys' Bay, leaf litter of Protea magnifica, 11 Jul. 2000, S. Marincowitz, PREM 59448; Helderberg Nature Reserve, leaf litter of Protea laurifolia, 14 Aug. 2000, S. Marincowitz, PREM 59482; Helderberg Nature Reserve, leaf litter of Protea obtusifolia, 14 Aug. 2000, S. Marincowitz, PREM 59495; Jonkershoek Nature Reserve, leaf litter of Protea nitida, 6 Jun. 2000, S. Marincowitz, PREM 59442; Jonkershoek Nature Reserve, leaf litter of Protea repens, 6 Jun. 2000, S. Marincowitz, PREM 59450; Jonkershoek Nature Reserve, S3359011.200 E1857014.700 leaves of Protea sp., 1 Apr. 2007, P.W. Crous, CBS H-20330, cultures CPC 13914-13916; Jonkershoek Nature Reserve, S3359026.100 E1857059.500 leaves of P. repens, 1 Apr. 2007, P.W. Crous, CBS H-20331, cultures CPC 13911-13913; Jonkershoek Nature Reserve, leaves of Protea sp., 1 Apr. 2007, P.W. Crous, CBS H-20332, cultures CPC 13908-13910; Jonkershoek Nature Reserve, "Tweede Waterval", leaves of Protea sp., 1 Apr. 2007, P.W. Crous, CBS H-20333, cultures CPC 13902-13907; Jonkershoek Nature Reserve, leaves of P. nitida, 12 Apr. 2008, L. Mostert, CBS H-20334, cultures CPC 15231-15233; Stellenbosch, J.S. Marais Garden, S3355059.300 E1852022.500, on living leaves of P. magnifica, 1 Apr. 1998, J.E. Taylor, culture CPC 16849.

Notes: The genus Brunneosphaerella was established to accommodate species belonging to the Leptosphaeria protearum complex (Pleosporales) that clustered within the Mycosphaerellaceae (Crous et al. 2009c, 2011c). These species were characterised by having bitunicate asci without pseudoparaphyses, brown, 3-septate ascospores, and a coniothyrium-like asexual morph. Brunneosphaerella protearum is a major leaf spot and blight pathogen of Protea spp. causing severe losses in plantations of South African Protea spp. wherever they are cultivated (Crous et al. 2009c, 2011c). Morphologically Brunneosphaerella is distinct from Leptosphaeria in that its ascospores are always brown at maturity and similar to Phaeophleospora in that conidiogenous cells are brown and proliferate percurrently. The genus Brunneosphaerella currently contains three species that cluster in a well-supported clade (Fig. 1, clade 86; Fig. 4, clade 18) that is closely related to Neomycosphaerella.

Clade 87: Hyalozasmidium

Hyalozasmidium U. Braun, C. Nakash., Videira \& Crous, gen. nov. MycoBank MB822593.
Etymology: Derived from the hyaline conidia + resembling the genus Zasmidium.
Description: Mycelium composed of subhyaline to pale brown hyphae, smooth, branched and septate, producing large swollen propagules that occur terminaly or lateraly on hyphal strands. Conidiophores medium to dark brown, unbranched, smooth to verruculose, becoming constricted at septa, eventually disarticulating, with each conidiophore giving rise to a single conidium. Conidiogenous cells apical and intercalary, mono- or polyblastic, straight, proliferating sympodially, with conidiogenous loci unthickened or slightly thickened, located at shoulders and apex. Conidia hyaline, thick-walled, subcylindrical, with multiple transverse septa, developing irregular swellings which can form branches with obtuse ends, body granular, basal cell tapering prominently towards the conidiophore. Differs from the genus Zasmidium, by bearing hyaline conidia.

Type species: Hyalozasmidium aerohyalinosporum (Crous \& Summerell) Videira \& Crous (\equiv Zasmidium aerohyalinosporum Crous \& Summerell).

Hyalozasmidium aerohyalinosporum (Crous \& Summerell) Videira \& Crous, comb. nov. MycoBank MB822761.
Basionym: Zasmidium aerohyalinosporum Crous \& Summerell, Persoonia 23: 144. 2009.
Synonym: Paramycosphaerella aerohyalinosporum (Crous \& Summerell) Guatimosim et al. Persoonia 37: 124. 2016.

Description and illustration: Crous et al. (2009d).
Materials examined: Australia, New South Wales, Road to Robin Falls, 13³1001.300S, $131^{\circ} 16022.500 \mathrm{E}, 126 \mathrm{~m}$, on leaves of Eucalyptus tectifica, 23 Sep. 2007, coll. B.A. Summerell, isol. P.W. Crous (holotype of Zasmidium aerohyalinosporium CBS H-20274, culture ex-type CBS 125011 = CPC 14636); idem., culture CPC 14637.

Notes: In the phylogenetic analyses, the present species is closely related to Neomycosphaerella (Fig. 1, clade 87; Fig. 4, clade 21). See notes in Crous et al. (2009d) and also notes on Paramycosphaerella brachystegiae.

Hyalozasmidium sideroxyli U. Braun, C. Nakash., Videira \& Crous, sp. nov. MycoBank MB822713. Fig. 47.

Etymology: Named after the host genus on which it occurs, Sideroxylon.
Description in vitro (on SNA; CPC 23462): Mycelium composed of hyaline to subhyaline hyphae, smooth, branched and septate, producing large swollen propagules that occur terminally or laterally on hyphal strands, 1.5-3 $\mu \mathrm{m}$ diam. Conidiophores micro- or macronematous, hyaline to subhyaline, simple or branched, septate, straight to slightly curved, $12.5-60 \times 2.5-5 \mu \mathrm{~m}$. Conidiogenous cells apical and intercalary, mono- or polyblastic, proliferating sympodially, with conidiogenous loci slightly thickened and darkened, located at shoulders and apex, 1.5-2 $\mu \mathrm{m}$ diam. Conidia solitary, sometimes bearing conidia by microcyclic conidiation, hyaline,

Fig. 47. Hyalozasmidium sideroxyli (CPC 23462). A-E. Observations in vitro. A. Culture on V8. B, C. Conidiophores and conidiogenous cells. D. Conidia. E. Irregular swollen conidia synanamorph. Scale bars $=10 \mu \mathrm{~m}$.
smooth to rough, cylindrical to obclavate, straight, base obconically truncate and apex rounded, $20-50 \times 2-2.5 \mu \mathrm{~m}, 0-4$-septate, hila slightly thickened and darkened.

Material examined: South Africa, Eastern Cape, Cape St. Francis, on Sideroxylon inerme, 8 May 2013, A.R. Wood (holotype CBS H-22965, ex-type culture CBS 142191 = CPC 23462).

Notes: Based on the phylogenetic analyses, the present strain clusters within the Hyalozasmidium clade (Fig. 1, clade 87; Fig. 4, clade 21). Morphologically, its characteristics are in accordance with the genus description (Fig. 47) and it can be distinguished from Hyalozasmidium aerohyalinosporium by having conidiogenous cells that are polyblastic, and longer, less septate conidia.

Clade 88: Madagascaromyces

Madagascaromyces U. Braun, C. Nakash., Videira \& Crous, gen. nov. MycoBank MB822594.
Etymology: Named after the island where the type species was collected, Madagascar.
Description: Mycelium composed of pale to medium brown hyphae, septate, branched, smooth, $2-3 \mu \mathrm{~m}$. Conidiophores solitary, medium brown, smooth, subcylindrical, simple or branched, straight to variously curved or geniculate-sinuous. Conidiogenous cells terminal and intercalary, proliferating sympodially, with one or multiple conidiogenous loci that are thickened and darkened. Conidia solitary, pale brown, smooth, guttulate, subcylindrical when small, narrowly obclavate when larger, apex subobtuse, base long obconically subtruncate, straight to slightly curved, 1- or multiseptate, with hila thickened and darkened, microcyclic conidiation observed in culture. Spermatogonia forming on OA. Spermatia cylindrical with obtuse ends, smooth, hyaline.

Type species: Madagascaromyces intermedius (Crous \& M.J. Wingf.) Videira \& Crous (三 Passalora intermedia Crous \& M.J. Wingf.).

Madagascaromyces intermedius (Crous \& M.J. Wingf.) Videira \& Crous, comb. nov. MycoBank MB822762.
Basionym: Passalora intermedia Crous \& M.J. Wingf., Persoonia 22: 88. 2009.
Description and illustrations: Crous et al. (2009g).
Materials examined: Madagascar, Morondavo, on leaf of Eucalyptus calmadulensis, Aug. 2007, M.J. Wingfield (holotype CBS H-20197, ex-type culture CBS 124154 = CPC 15745); on E. calmadulensis, 1 Oct. 2007, M.J. Wingfield, culture CPC 15719.

Notes: The genus Madagascaromyces is monotypic and based on Madagascaromyces intermedius (syn. Passalora intermedia). Morphologically, Madagascaromyces intermedius can be considered intermediate between Pseudocercospora and Passalora, based on the narrowly obclavate conidia with hila that are somewhat thickened and darkened, but not prominently refractive (Crous et al. 2009g). Phylogenetically, strains of the present species cluster in a wellsupported clade (Fig. 1, clade 88; Fig. 4, clade 19) that is closely related to Neomycosphaerella.

Since the species Madagascaromyces intermedius is only known from its asexual morph, and the species Neomycosphaerella pseudopentameridis is only known by its sexual morph, a direct comparison between both is not possible. Based on a BLAST comparison against the ITS alignment, Madagascaromyces intermedius CPC 15745 shares 92 \% (450/489) similarity, including $2 \%(13 / 489)$ gaps, with Hyalozasmidium sideroxyli CBS 125011 and 90% (439/488) similarity, including 3 \% (16/488) gaps, with Neomycosphaerella pseudopentameridis CBS 136407. Based on a BLAST comparison against the rpb2 alignment, Mad. intermedius CPC 15745 shares $81 \%(571 / 703)$ similarity with Pseudopericoniella sp. CBS 330.51 using megablast search, and 82% (589/722) with Neomycosphaerella pseudopentameridis CBS 136407 using a blastn search. Based on the molecular and morphological differences, we decided to keep the present two taxa in single species genera until more information becomes available.

Clade 89: Neomycosphaerella

Neomycosphaerella Crous, Persoonia 31: 195. 2013.
Description (from Crous et al. 2013b): Foliicolous, phytopathogenic. Ascomata immersed, subepidermal, frequently in a brown stroma, unilocular, in rows of $2-4$, globose, with central ostiole; wall of 2-4 layers of brown textura angularis. Asci fasciculate, stipitate, 8 -spored, with minute ocular chamber, obovoid, straight to slightly curved, hyaline. Ascospores tri- to multiseriate, hyaline, smooth, granular, medianly 1 -septate; ascospores becoming brown and verruculose with age.

Type species: Neomycosphaerella pseudopentameridis Crous.
Neomycosphaerella pseudopentameridis Crous, Persoonia 31: 195. 2013.
Description and illustration: Crous et al. (2013b).
Material examined: South Africa, Western Cape Province, Cape Town, Green Point Park, on leaves of Pseudopentameris macrantha, 22 Jul. 2012, P.W. Crous (holotype CBS H-21416, extype cultures CBS 136407 = CPC 21126); idem., culture CPC 21127.

Notes: Neomycosphaerella represents a single-strain lineage in the phylogenetic analyses and is closely related to Brunneosphaerella (Fig. 1, clade 89; Fig. 4, clade 20). Morphologically, Neomycosphaerella is only known by its sexual morph, which is mycosphaerella-like. Brunneosphaerella differs from Neomycosphaerella by producing pigmented ascospores, 3 -septate, and with mucoid caps (Crous et al. 2013b).

Clade 90: Mycosphaerelloides

Mycosphaerelloides Videira \& Crous, Stud. Mycol. 83: 99. 2016.
Description (from Videira et al. 2016): Leaf spots amphigenous, subcircular, $2-15 \mathrm{~mm}$ diam, medium brown, surrounded by a slightly raised, red-purple border. Ascomata pseudothecial, predominantly epiphyllous, single, black, immersed, becoming erumpent, globose, up to 120 $\mu \mathrm{m}$ diam; apical ostiole $10-15 \mu \mathrm{~m}$ diam; wall of 2-3 layers of medium brown textura angularis.

Asci aparaphysate, fasciculate, bitunicate, subsessile, obovoid to narrowly ellipsoid, straight or slightly incurved, 8 -spored, $30-50 \times 8-12 \mu \mathrm{~m}$. Ascospores 3 - to multiseriate, overlapping, hyaline, guttulate, thin-walled, straight to slightly curved, fusoid-ellipsoid with subobtuse ends, apex frequently acutely rounded, medianly 1 -septate, widest in the middle of the apical cell, not constricted at the septum, tapering towards both ends, but more prominently towards the lower end, (9-)10-13(-15) $\times 2.5-3(-3.5) \mu \mathrm{m}$ in vivo. Mycelium internal and external, consisting of smooth, branched, septate, pale to medium brown, 3-6 $\mu \mathrm{m}$ wide hyphae; external mycelium extensive on abaxial leaf surface. Conidiomata fasciculate, hypophyllous, medium brown, up to $90 \mu \mathrm{~m}$ wide and $150 \mu \mathrm{~m}$ high. Conidiophores arising from superficial mycelium, or aggregated in loose fascicles arising from the upper cells of a brown stroma up to $80 \mu \mathrm{~m}$ wide and 90 $\mu \mathrm{m}$ high; conidiophores pale to medium brown, smooth, unbranched or branched, $1-5$-septate, subcylindrical, straight to variously curved, $15-45 \times 2.5-4 \mu \mathrm{~m}$; conidiogenous cells terminal or lateral, unbranched, subcylindrical, pale brown, smooth, proliferating sympodially, or 1-4 times percurrently near apex, $7-15 \times 2.5-3 \mu \mathrm{~m}$; conidiogenous loci inconspicuous. Conidia solitary, pale brown, smooth, subcylindrical, but tapering from a subtruncate base towards a subobtuse apex, 3-6- or multiseptate, $35-85 \times 2.5-4 \mu \mathrm{~m}$, hila neither thickened nor darkened-refractive.

Type species: Mycosphaerelloides madeirae (Crous \& Denman) Videira \& Crous (三 Mycosphaerella madeirae).

Mycosphaerelloides madeirae (Crous \& Denman) Videira \& Crous, Stud. Mycol. 83: 100. 2016.

Basionym: Mycosphaerella madeirae Crous \& Denman, Stud. Mycol. 50: 204. 2004.
Synonym: Paramycosphaerella madeirae (Crous \& Denman) Guatimosim et al., Persoonia 37: 127. 2016, as 'madeirensis'.

Description and illustrations: Crous et al. (2004b).
Materials examined: Portugal, Madeira, Party Farm, on leaves of Eucalyptus globulus, Apr. 2000, S. Denman (holotype CBS H-9898, culture ex-type CBS $112895=$ CPC $3745=$ CMW 14458); idem., culture CBS $112301=$ CPC 3747. Netherlands, Utrecht, Soest, endophytic on green leaves of Quercus robur, 2002, G. Verkley, cultures CBS 115936, CBS 116068, CBS 116066.

Notes: Mycosphaerelloides is currently a monotypic genus based on Mycosphaerelloides madeirae, which has a mycosphaerella-like sexual morph and a presumed pseudocercosporalike asexual morph (Crous et al. 2004b, Videira et al. 2016). Phylogenetically, the strains of Mycosphaerelloides madeirae cluster in a well-supported clade (Fig. 1, clade 90; Fig. 4, clade 24) that is closely related to Microcyclosporella. Based on a BLAST comparison against the alignment, Mycosphaerelloides madeirae CBS 112895 shares $96 \%(467 / 485)$ similarity with Microcyclosporella mali CBS 126136 based on ITS and shares 88% (594/674) similarity with Epicoleosporium ramularioides CPC 10672 based on rpb2.

Clade 91: Epicoleosporium

Epicoleosporium Videira \& Crous, Stud. Mycol. 83: 100. 2016.

Description (from Videira et al. 2016): Colonies growing on uredinia of Coleosporium, mycophilic. Mycelium superficial, consisting of hyaline, septate, thin-walled, smooth hyphae. Conidiophores hyaline, loose, straight, subcylindrical, unbranched, septate, thin-walled, smooth. Conidiogenous cells hyaline, terminal in the conidiophore, cylindrical-oblong, proliferation sympodial, with conspicuous conidiogenous loci, thickened, darkened and refractive. Conidia hyaline, smooth, solitary or in short chains, cylindrical-oblong, clavate, obovate, aseptate, thinwalled, smooth, with hila thickened, darkened and refractive.

Type species: Epicoleosporium ramularioides Videira et al.

Epicoleosporium ramularioides Videira et al., Stud. Mycol. 83: 100. 2016.
Description and illustrations: Videira et al. (2016).
Materials examined: Republic of Korea, Pyeongchang, on Coleosporium phellodendri on leaves of Phellodendron amurense, 4 Sep. 2003, H.D. Shin (holotype KUS F19603, isotype CBS H-22542, culture ex-type CBS 141103 = CPC 10672); idem., culture CPC 10673.

Notes: The genus Epicoleosporium is presently monotypic and is based on Epicoleosporium ramularioides, which has a ramularia-like morphology, but is not congeneric with Ramularia as currently circumscribed (Videira et al. 2016). Based on the phylogenetic analyses in the present study, the representative strains cluster in a well-supported clade (Fig. 1, clade 91; Fig. 4, clade 25) and are closely related to the genus Mycosphaerelloides.

Clade 92: Microcyclosporella

Microcyclosporella J. Frank et al., Persoonia 24: 101. 2010.
Description (from Frank et al. 2010): Hyphomycetous. Mycelium consisting of pale brown, smooth to finely verruculose, branched, septate, $2-3.5 \mu \mathrm{~m}$ wide hyphae, at times covered by a mucoid layer, with integrated, lateral, truncate conidiogenous loci. Conidiophores mostly reduced to conidiogenous cells. Conidiogenous cells integrated, intercalary on hyphae, rarely terminal, cylindrical to doliiform, pale brown, but hyaline if occurring in yeast-like sectors of colonies, smooth, mono- or polyblastic, proliferating sympodially, with inconspicuous, truncate, unthickened, not darkened, pale brown to hyaline loci. Conidia solitary, hyaline, smooth, subcylindrical to narrowly obclavate or narrowly fusoid with acutely rounded apex and obconically truncate base, guttulate, 0-6 times transversely septate; microcyclic conidiation common.

Type species: Microcyclosporella mali J. Frank et al.

Microcyclosporella mali J. Frank et al., Persoonia 24: 101. 2010.
Description and illustration: Frank et al. (2010).
Materials examined: Slovenia, Senozeti, Dolsko, on fruit surface Malus domestica, 7 Aug. 2007, J. Frank (holotype CBS H-20413, culture ex-type 300-07 = CBS $126136=$ CPC 16184);

Mirna, on M. domestica fruit surface, 17 Oct. 2007, J. Frank, culture 174-07 = CPC $16180=$ CBS 126132. USA, Michigan, Fennville, on Malus sp., 1 Sep. 2005, G. Sundin, culture CBS 125653 = RH6 = MI3 20F1a; Ohio, Wooster, on Malus sp., 5 Sep. 2005, M. Ellis, culture CBS $125651=\mathrm{RH} 1=\mathrm{OH} 134 \mathrm{D} 2 \mathrm{a}$.

Notes: The genus Microcyclosporella is presently monotypic and is based on Microcyclosporella mali, a species that is associated with sooty blotch and flyspeck (SBFS) lesions on apples. It has a pseudocercosporella-like morphology but is not congeneric with the type of Pseudocercosporella, Pseudocercosporella bakeri (Frank et al. 2010, Videira et al. 2016). Phylogenetically, the present strains clusters in a well-supported clade (Fig. 1, clade 92; Fig. 4, clade 23) that is closely related to Epicoleosporium ramularioides and Mycosphaerella madeirae.

Clade 93: Virosphaerella

Virosphaerella Videira \& Crous, gen. nov. MycoBank MB822705.
Etymology: The prefix virus- (= slime) for the germinating ascospores enveloped in a slime sheath + sphaerella (referring to Mycosphaerella).

Description: Phytopathogenic, producing leaf spots or not. Ascomata amphigenous or epiphyllous, black, subepidermal to erumpent, ovoid, globose or subglobose, apical ostiole, wall consisting of 2-3 layers of medium brown textura angularis. Asci aparaphysate, fasciculate, subsessile, subcylindrical to narrowly obovoid, straight to slightly curved, 8 -spored. Ascospores bi- to tri-seriate, overlapping, hyaline, guttulate, thin-walled, straight to slightly curved, fusoid, fusoid-ellipsoidal with obtuse ends, medianly 1 -septate or slightly longer in the basal cell, slightly constricted at septum, widest just above the septum, or in the middle of the apical cell, tapering toward both ends, but with more prominent taper towards lower end, mucilaginous sheath visible around spore. Ascospore germination from both ends in two patterns (remaining hyaline): Type I (Crous 1998), growing parallel to the long axis of the spore, with lateral branches parallel or perpendicular to the long axis of spore, irregular in width, constricted at the median septum of the spore, slightly distorting; Type B (Crous 1998), germ tube growing parallel to the long axis of the spore, regular in width, not distorting or becoming constricted at septum. Spermatogonia, when present, amphigenous, dark brown, subepidermal to erumpent, globose to subglobose. Spermatia hyaline, smooth, rod-shaped, with obtuse ends.

Type species: Virosphaerella pseudomarksii (Cheewangkoon et al.) Videira \& Crous (\equiv Mycosphaerella pseudomarksii Cheewangkoon et al.).

Virosphaerella irregularis (Cheewangkoon et al.) Videira \& Crous, comb. nov. MycoBank MB822803.
Basionym: Mycosphaerella irregularis Cheewangkoon et al. (as 'irregulari'), Persoonia 21: 83. 2008.

Synonyms: Paramycosphaerella irregularis (Cheewangkoon et al.) Guatimosim et al., Persoonia 37: 127. 2016.

Description and illustration: Cheewangkoon et al. (2008).

Materials examined: Thailand, Udonthani, on living leaves of Eucalyptus sp., Jul. 2007, R. Cheewangkoon (holotype CBS H-20135, culture ex-type CBS 123242 = CPC 15408); idem., cultures CPC 15431, CPC 15432.

Notes: Ascospores of Virosphaerella irregularis are similar to Amycosphaerella africana, but differ by producing a mucilaginous sheath around the ascospore and by the irregular germ tubes and germination pattern (Cheewangkoon et al. 2008). Phylogenetically, the present species clusters in a well-supported clade with Virosphaerella pseudomarksii (Fig. 1, clade 93; Fig. 4, clade 26), as previously observed by Cheewangkoon et al. (2008) in a phylogeny based only on LSU sequences. Based on a BLAST against the alignment, Virosphaerella irregularis CBS 123242 shares 95 \% (472/495) similarity on ITS, including 1% (7/495) gaps, and 85% (623/734) similarity on rpb2, with Virosphaerella pseudomarksii CBS 123241.

Virosphaerella pseudomarksii (Cheewangkoon et al.) Videira \& Crous, comb. nov. MycoBank MB822806.
Basionym: Mycosphaerella pseudomarksii Cheewangkoon et al., Persoonia 21: 83. 2008.
Synonym: Paramycosphaerella pseudomarksii (Cheewangkoon et al.) Guatimosim et al., Persoonia 37: 127. 2016.

Description and illustration: Cheewangkoon et al. (2008).

Materials examined: Thailand, Chiang Mai, Mae Tang, on living leaves of Eucalyptus sp., Jun. 2007, R. Cheewangkoon (holotype CBS H-20134, ex-type culture CBS 123241 = CPC 15410); idem., cultures CPC 15435, CPC 15436.

Notes: Virosphaerella pseudomarksii ascospore morphology and ascospore germination patterns are similar to Paramycosphaerella marksii (Carnegie \& Keane 1994, as Mycosphaerella marksii) but differ by producing a visible mucilaginous sheath around the ascospore (Cheewangkoon et al. 2008). Phylogenetically, the present species clusters in a well-supported clade based on all three phylogenetic methods employed (Fig. 1, clade 93; Fig. 4, clade 26), and is closely related to Virosphaerella irregularis.

Clade 94: Pseudozasmidium [and Genus A]

Pseudozasmidium Videira \& Crous, gen. nov. MycoBank MB822701.
Etymology: Derived from pseudo-, that means resembling but not equalling, and the similar genus, Zasmidium.

Description: Phytopathogenic, causing leaf spots. Pseudothecia amphigenous, aggregated, black, immersed and becoming erumpent, wall of 2-3 layers of medium brown textura angularis. Asci aparaphysate, fasciculate, bitunicate, subsessile, narrowly ellipsoid or obclavate to cylindrical, straight or slightly incurved, 8 -spored. Ascospores bi-seriate to triseriate, overlapping, hyaline, straight to slightly curved, ellipsoid or fusoid-ellipsoid, with obtuse ends, medianly 1 -septate, not constricted to slightly constricted at the septum, symmetrical cells or widest at the middle of the apical cell, tapering towards both ends or more prominently towards lower end. Ascospore germination parallel to perpendicular to the long axis of the spore. Mycelium internal and
external, internal hyphae branched, septate, smooth and hyaline, external hyphae verruculose and pale to medium brown, terminal hyphal ends may develop clusters of globose, multi-celled chlamydospore-like structures. Conidiophores pale to medium brown, smooth to verruculose, erect, subcylindrical, straight or curved, branched or unbranched, repeatedly geniculate, septate, sometimes reduced to conidiogenous cells. Conidiogenous cells terminal, smooth to verruculose, pale brown to brown, proliferating sympodially, sometimes repeatedly geniculate, with conidiogenous loci thickened and darkened-refractive. Conidia single, pale brown to olivaceous brown, smooth to verruculose, obclavate, narrowly obclavate to subcylindrical, obtuse apex and obconically truncate base, straight or curved, 1- to multiseptate, hila thickened and darkened-refractive.

Type species: Pseudozasmidium parkii (Crous \& Alfenas) Videira \& Crous (\equiv Stenella parkii Crous \& Alfenas).

Pseudozasmidium eucalypti (Crous \& Summerell) Videira \& Crous comb. nov. MycoBank MB822783.
Basionym: Stenella eucalypti Crous \& Summerell, Fungal Diversity 26: 177. 2007.
Synonym: Zasmidium eucalypti (Crous \& Summerell) Crous \& U. Braun, Schlechtendalia 20: 101. 2010.

Description and illustrations: Crous et al. (2007c).
Description in vitro (on V8; CPC 13302): Mycelium composed of hyaline to subhyaline hyphae, uniform in width, $2-2.5 \mu \mathrm{~m}$, smooth. Conidiophores macronematous, first cell arising from hypha (foot cell) hyaline, following cells pale brown to dark brown, paler towards the apex, cylindrical, simple, rarely branched, straight to geniculate, $20-80 \times 5-7.5 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal, polyblastic, proliferating sympodially, occasionally proliferating percurrently, with rim-like conidiogenous loci, somewhat thickened, darkened and protruding, $2-2.5 \mu \mathrm{~m}$ diam. Conidia solitary, hyaline to pale brown, cylindrical to obclavate, obconical truncate at the base and rounded at the apex, $12.5-120 \times 3-5 \mu \mathrm{~m}, 0-8$-septate, hila thickened and darkened, $2-2.5 \mu \mathrm{~m}$ diam.

Materials examined: Australia, Queensland, Cairns, Eureka Creek, 48 km from Mareeba, S17 11013.200 , E145ㅇํ $02027.400,468 \mathrm{~m}$, on leaves of Eucalyptus tereticornis, 26 Aug. 2006, P.W. Crous (holotype CBS H-19830, ex-type culture CBS $121101=$ CPC 13302).

Notes: The present species was initially described in Stenella (Crous et al. 2007c), but was later reallocated to Zasmidium (Braun et al. 2010a). Its asexual morph is zasmidium-like, with brown and verruculose conidiophores and conidia, with hila thickened, darkened and refractive. However, based on the phylogenetic analysis, it is not part of Zasmidium as circumscribed in the present study, but clusters in a poorly resolved clade (Fig. 1, clade 94; Fig. 4, clade 27) that is closely related to Virosphaerella. All three phylogenetic methods support the smaller clade including Pseudozasmidium vietnamense and Pseudozasmidium parkii, but the support for the species Pseudozasmidium eucalypti and Pseudozasmidium nabiacense is very low. Based on the parsimony analysis, Pseudozasmidium eucalypti and Pseudozasmidium nabiacense form a basal polytomy closely related to Pseudozasmidium vietnamense and Pseudozasmidium parkii. Since their morphology is also zasmidium-like, we decided to retain them in the same genus
for now. Pseudozasmidium eucalypti is unique among other Pseudozasmidium species in its ability to produce clusters of globose chlamydospore-like structures, frequently surrounded by a mucus sheath, at the terminal ends of hyphae.

Pseudozasmidium nabiacense (Crous \& Carnegie) Videira \& Crous, comb. nov. MycoBank MB822784.
Basionym: Zasmidium nabiacense Crous \& Carnegie, Persoonia 23: 142. 2009.
Synonym: Paramycosphaerella nabiacensis (Crous \& Carnegie) Guatimosim et al., Persoonia 37: 127. 2016.

Description and illustrations: Crous et al. (2009d).
Description in vitro (on V8; CPC 12748): Mycelium composed of hyaline to pale olivaceous brown hyphae, verruculose, uniform in width, $2-3 \mu \mathrm{~m}$. Conidiophores micro- to macronematous, pale olivaceous brown, verruculose, simple, straight to geniculate, $25-58 \times 3-4 \mu \mathrm{~m}$. Conidiogenous cells integrated, terminal, polyblastic, proliferating sympodially, long-conically truncate at the apex and shoulders, with conidiogenous loci somewhat thickened, darkened and protruding, $1.5-2.5 \mu \mathrm{~m}$ diam. Conidia solitary, pale olivaceous brown, verruculose, straight, cylindrical to obclavate, obconically truncate at the base and rounded at the apex, $18-32 \times 3-3.5 \mu \mathrm{~m}$, $0-3$-septate, with hila thickened and darkened, $1.5-2.5 \mu \mathrm{~m}$ diam.

Materials examined: Australia, New South Wales, Nabiac, on leaves of Eucalyptus sp. (red gum), 30 Nov. 2005, A.J. Carnegie (holotype CBS H-20273, cultures ex-type CBS $125010=$ CPC 12748-CPC 12750).

Notes: Pseudozasmidium nabiacense is only known from its asexual morph, which is zasmidiumlike. The phylogenetic analyses in the present study showed Pseudozasmidium nabiacense clustering in a poorly resolved clade (Fig. 1, clade 94; Fig. 4, clade 27) that is closely related to Pseudozasmidium parkii, which agrees with the findings of Crous et al. (2009d). See notes on Pseudozasmidium eucalypti.

Pseudozasmidium parkii (Crous \& Alfenas) Videira \& Crous, comb. nov. MycoBank MB822785.
Basionym: Stenella parkii Crous \& Alfenas, Mycologia 87: 121. 1995.
Synonyms: Zasmidium parkii (Crous \& Alfenas) Crous \& U. Braun, Schlechtendalia 20: 102. 2010.

Paramycosphaerella parkii (Crous \& Alfenas) Guatimosim et al., Persoonia 37: 127. 2016. Mycosphaerella parkii Crous et al., Mycol. Res. 97: 582. 1993.

Description and illustrations: Crous et al. (1993), Crous \& Alfenas (1995).
Materials examined: Brazil, Aracruz, Florestal nursery, on living leaves of Eucalyptus grandis, 24 Feb. 1990, M.J. Wingfield (holotype of Mycosphaerella parkii, PREM 50668, ex-type culture CBS 387.92); Rio Grande do Sul, on Eucalyptus globulus, 7 Jul. 1993, F.A. Ferreira, PREM 51714, culture CPC 651; São Paulo, on Eucalyptus saligna, Apr. 1993, P.W. Crous (holotype of Stenella parkii, PREM 51713). Indonesia, North of Sumatra, on E. grandis, 22 Nov. 1993, F.A. Alfenas, PREM 51715.

Notes: Pseudozasmidium parkii produces a mycosphaerella-like sexual morph and a zasmidium-like asexual morph, with verruculose hyphae, conidiophores and conidia verruculose and conidiogenous cells with conspicuous, darkened and refractive conidiogenous loci (Crous et al. 1993, Crous \& Alfenas 1995). Based on the phylogenetic analyses, however, Pseudozasmidium clusters apart from the Zasmidium clade, as presently defined by the type species Z. cellare, in a poorly resolved clade including Pseudozasmidium vietnamense, Pseudozasmidium nabiacense and Pseudozasmidium eucalypti (Fig. 1, clade 94; Fig. 4, clade 27). Based on a BLAST search against the alignment, Pseudozasmidium parkii CBS 387.92 shares $99 \%(479 / 485)$ similarity on ITS with Pseudozasmidium vietnamense CBS 119974. Unfortunately, the rpb2 sequence of Pseudozasmidium parkii failed to amplify and is coded as missing data in the alignments, but the next closest strain on ITS is Virosphaerella irregularis CBS with only 92 \% (455/496) similarity and including $3 \%(17 / 496)$ gaps. See also notes on Pseudozasmidium vietnamense and Paramycosphaerella brachystegiae.

Pseudozasmidium vietnamense (Barber \& T.I. Burgess) Videira \& Crous, comb. nov. MycoBank MB822786.
Basionym: Mycosphaerella vietnamensis Barber \& T. I. Burgess, Fungal Diversity 24: 148. 2007.

Synonym: Paramycosphaerella vietnamensis (Barber \& T.I. Burgess) Guatimosim et al., Persoonia 37: 128. 2016.

Description and illustration: Burgess et al. (2007).
Material examined: Vietnam, South East Forestry Institute nursery, on leaves of Eucalyptus grandis hybrid, 6 Jul. 2004, coll. T.I. Burgess, isol. P.A. Barber (holotype MURU 411, ex-type culture CBS $119974=$ CMW $23441=$ MUCC $66=$ VTN1).

Notes: Pseudozasmidium vietnamense was described based on the mycosphaerella-like sexual morph and a presumed pseudocercospora-like asexual morph (Burgess et al. 2007). In previous phylogenetic studies, it always clustered close to Pseudozasmidium parkii (as Mycosphaerella parkii, Burgess et al. 2007, Crous et al. 2009d). The phylogenetic analyses in the present study agrees with the previous works and this species clusters in a poorly resolved clade of zasmidiumlike species (Fig. 1, clade 94; Fig. 4, clade 27). Therefore, the presumed pseudocercospora-like asexual morph should not be considered correct. See also notes on Pseudozasmidium parkii and Paramycosphaerella brachystegiae.

Genus A

Passalora vaginae (W. Krüger) U. Braun \& Crous, in Crous \& Braun, CBS Biodiversity Ser.: 417. 2003.

Basionym: Cercospora vaginae W. Krüger, Ber. Versuchsstat. Zuckerrohr W.-Java, KagokTegal 1: 64. 1890.
Synonyms: Mycovellosiella vaginae (W. Krüger) Deighton, Mycol. Pap. 144: 26. 1979.
Description in vivo (from Braun 2015a): Spots mainly on sheaths, sometimes also formed as leaf spots, at first small, subcircular to elliptical, red, margin conspicuous, spots later confluent or increasing to about 15 mm diam, on leaves dark reddish above, indistinct below. Caespituli amphigenous, effuse, dark greyish brown, velvety, mostly in the centre of the
lesion. Mycelium internal and external; superficial hyphae sparingly branched, septate, pale, thin-walled, smooth. Stromata sometimes well-developed, substomatal, $10-75 \mu \mathrm{~m}$ diam, dark brown, but without conidiophore fascicles. Conidiophores solitary, arising from superficial hyphae, lateral, at the top of mother cells, occasionally terminal, i.e. at the end of procumbent hyphae, erect to ascending, straight to curved, subcylindrical, conical to geniculate-sinuous, simple or sometimes branched, occasionally entangled, $20-200 \times 3-5 \mu \mathrm{~m}, 1-5$-septate, pale olivaceous brown to darker brown, paler towards the tip, thin-walled, smooth; conidiogenous cells integrated, terminal, with conspicuous conidiogenous loci, about $1-1.5 \mu \mathrm{~m}$ diam. Conidia solitary, cylindrical or obclavate-cylindrical, straight to somewhat curved, $15-55 \times 3-6.5 \mu \mathrm{~m}$, $0-5$-septate, occasionally slightly constricted at the septa, hyaline to olivaceous, thin-walled, smooth, apex obtuse, base short obconically truncate, $1-2 \mu \mathrm{~m}$ wide, somewhat thickened and darkened.

Materials examined: Taiwan, on Saccharum officinarum, unknown collector and date, dep. T. Miyake, 1934, culture CBS 140.34 = DSM 1148 = IMI 303641.

Notes: Passalora vaginae causes a foliar disease of sugarcane (Sacharum officinarum) and sorghum (Sorghum vulgare) (Poaceae) and has a worldwide distribution (Crous \& Braun 2003). The strain is presently sterile but clusters as a single-strain lineage in the phylogenetic analysis (Fig. 4, clade 28) that represents a potential new genus. The holotype specimen, on Saccharum officinarum, which originates from Java, Indonesia, could not be located, and presently no suitable specimen is available for neotypification (Braun et al. 2015a). Therefore, the proposal of a new genus is postponed until suitable material is collected and examined.

CLADES 95-96: Dissoconiaceae

Dissoconiaceae Crous \& de Hoog, Stud. Mycol. 64: 36. 2009.

Clade 95: Ramichloridium

Ramichloridium Stahel ex de Hoog, Stud. Mycol.15: 59. 1977.
Note: See Arzanlou et al. (2007).

Clade 96: Uwebraunia

Uwebraunia Crous \& M.J. Wingf., Mycologia 88: 446. 1996.
Note: See Crous \& Wingfield (1996), Crous et al. (1999) and Li et al. (2012).

CLADES 97-100: Phaeothecoidiellaceae

Phaeothecoidiellaceae K.D. Hyde \& Hongsanan, Mycosphere 8: 140. 2017.

Clade 97: Exopassalora

Exopassalora Videira \& Crous, gen. nov. MycoBank MB822589.
Etymology: Exo- meaning outside, as in outside the family Mycosphaerellaceae, where the genus Passalora is included.

Description: Foliicolous, phytopathogenic. Mycelium composed of brown hyphae, smooth to rough, irregularly branched, septate, with dark brown chlamydospore-like hyphal swellings. Conidiophores arising from the mycelium, medium brown, smooth, simple or branched, straight to curved. Conidiogenous cells terminal and intercalary, subcylindrical, pale to medium brown, smooth, proliferating sympodially, conidiogenous loci conspicuous, darkened, refractive. Conidia catenate, in simple or branched chains, medium brown, smooth, narrowly ellipsoidal, tapering to subtruncate, straight or slightly curved, hila slightly thickened and darkened.

Type species: Exopassalora zambiae (Crous \& T.A. Cout.) Videira \& Crous.
Exopassalora zambiae (Crous \& T.A. Cout.) Videira \& Crous, comb. nov. MycoBank MB822757.
Basionym: Passalora zambiae Crous \& T.A. Cout., Stud. Mycol. 50: 209. 2004.
Description and illustration: Crous et al. (2004b).
Material examined: Zambia, on leaves of Eucalyptus globulus, 21 Aug. 1995, T. Coutinho (holotype CBS H-9895, culture ex-type CBS $112971=$ CMW $14782=$ CPC 1227); idem., cultures CBS $112970=$ CPC 1228).

Notes: This species is phylogenetically distant from other Mycosphaerella spp. known from Eucalyptus (Crous et al. 2004b) and clusters in a well-supported clade (Fig. 1, clade 96; Fig. 4, clade 32) within the recently introduced Phaeothecoidiellaceae family (Hongsanan et al., 2017).

Exopassalora sp.

Material examined: USA, Illinois, Chester, on apple fruits, culture CBS 118964 = GTF1a.
Notes: Based on the phylogenetic analyses this strain is closest to Exopassalora (Fig. 1, clade 96; Fig. 4, clade 32). The present strain shares $97 \%(711 / 736)$ similarity on LSU, $88 \%(288 / 326)$ similarity on ITS and $77 \%(537 / 701)$ similarity on rpb2 with Exopassalora zambiae. Based on the differences observed between the sequences of the partial genes studied, this can be a new genus. Morphological characters from this strain include mycelium on PDA blackish, brown and convoluted, conidia on CLA dark, catenate, with flattened ends (Batzer et al. 2005). Unfortunately, the culture is presently sterile and is tentatively placed in Exopassalora until the morphological characters can be observed and properly described.

Clade 98: Houjia

Houjia G.Y. Sun \& Crous, Persoonia 24: 33. 2010.
Note: See Yang et al. (2010).

Clade 99: Sporidesmajora

Sporidesmajora Batzer \& Crous, Persoonia 24: 35. 2010.
Note: See Yang et al. (2010).

Clade 100: Phaeothecoidiella

Phaeothecoidiella Batzer \& Crous, Persoonia 24: 30. 2010.

Note: See Yang et al. (2010).

CLADE 101: Schizothyriaceae

Schizothyriaceae Höhn. ex Trotter, Sacc., D. Sacc. \& Traverso as "Schizothyrieae", in Saccardo, Syll. fung. (Abellini) 24(2): 1254. 1928.
Synonym: Schizothyrieen Höhn., Ber. Deutsch. Bot. Ges. 35: 417. 1917, nom. inval. (Art. 32.1(b), Art. 18.4).

Clade 101: Schizothyrium

Schizothyrium Desm., Ann. Sci. Nat., Bot., Sér. 3, 11: 360. 1849.
Note: See Batzer et al. (2008), Schoch et al. (2009) and Crous et al. (2009c).

CLADES 102-107: Teratosphaeriaceae

Teratosphaeriaceae Crous \& U. Braun, Stud. Mycol. 58: 8. 2007.

Clade 102: Teratosphaeria

Teratosphaeria Syd. \& P. Syd., Ann. Mycol. 10: 39. 1912.
Note: See Crous et al. (2009d) and Quaedvlieg et al. (2014).

Clade 103: Batcheloromyces

Batcheloromyces Marasas, P.S. van Wyk \& Knox-Dav., S. African J. Bot. 41(1): 41. 1975.
Note: See Crous et al. (2007a), Crous et al. (2008).

Clade 104: Readeriella

Readeriella Syd. \& P. Syd., Ann. Mycol. 6: 484. 1908.
Note: See Crous et al. (2009d).
Clade 105: Stenella
Stenella Syd., Ann. Mycol. 28(1-2): 205. 1930.
Note: See Quaedvlieg et al. (2014).
Clade 106: Parapenidiella
Parapenidiella Crous \& Summerell, Persoonia 29: 185. 2012.
Note: See Crous et al. (2012a).

Clade 107: Acrodontium

Acrodontium de Hoog, Stud. Mycol. 1: 23. 1972.
Note: See Videira et al. (2016).

CLADE 108: Cladosporiaceae

Cladosporiaceae Castell. \& R.G. Archibald, Yearbook of Tropical Medicine and Hygiene: 25. 1915.

Synonyms: Cladosporieae Mathieu, Flore Générale de Belgique: 2. 1854.
Cladosporieae Sacc., Sylloge Fungorum 4: 341. 1886.
Cladosporiaceae Nann., Repertorio sistematico dei miceti dell' uomo e degli animali 4: 404. 1934.

Clade 108: Cladosporium

Cladosporium Link, Mag. Ges. Naturf. Freunde Berlin 7: 37. 1816 ['1815'].
Note: See Bensch et al. (2015).

Genera of Mycosphaerellaceae

Acervuloseptoria Crous \& Jol. Roux.
Note: See treatment in text.
Acrodesmis Syd., Ann. Mycol. 24(5-6): 424. 1926.

Description (adapted from Sydow 1926 and Ellis 1961): Mycelium composed of pale brown to olivaceous brown hyphae, branching and anastomosing, smooth, septate. Stromata composed of dense and irregular dark brown hyphal cells, semiglobose. Conidiophores single or in group, emerging from stromata or from hyphae, erect, straight or flexuous, cylindrical, septate, dark brown, paler towards the tips, densely branched at the apex. Conidiogenous cells terminal, hyaline to pale olivaceous brown, polyblastic, with multiple conidiogenous cells. Conidia single or in short chains, sometimes branched chains, acropleurogenous, pale olivaceous brown, smooth, cylindrical, elliptical or fusiform, aseptate, with minute hila at the base.

Type species: Acrodesmis cestri Syd. [Costa Rica, La Caja, pr. San. Jose, on leaves of Cestrum macrophyllum, 13 Feb. 1925, H. Sydow, Fungi Exot. Exs. 650 (syntypes S F12601, S F189761)].

Description and illustration: Ellis (1967, 1971, as Periconiella cestri).
Notes: Unconfirmed synonym of Periconiella. Two species, Acrodesmis cestri and Acrodesmis secunda. No cultures available, and its phylogenetic position remains unresolved.

Acrocladium Petr., Sydowia 3(1-6): 263. 1949.
Description (adapted from Petrak 1949): Mycelium superficial, composed of olivaceous brown hyphae, branched, septate. Conidiophores sparse, brown, long, erect, densely branched at the apex (diverging as in penicillium-like species). Conidia greyish to olivaceous brown, aseptate, acrosporogenous, oblong to ellipsoid.

Type species: Acrocladium andinum Petr.

Description and illustration: Petrak (1949).
Notes: Unconfirmed synonym of Periconiella. Two species, Acrocladium andinum and Acrocladium fragile. No cultures available, and its phylogenetic position remains unresolved.

Achorodothis Syd., Ann. Mycol. 24: 380. 1926.
Description(adaptedfromSydow 1926):Stromatamainlyintraepidermal,pseudoparenchymatous, dark brown, forming continuous to loose crusts with loculi. Asci sparingly developed, clavate to almost ellipsoid, sessile or with short knob-like stalk, wall firm, apically thickened, 8 -spored, immersed in a hyaline, viscous, little differentiated to slightly filamentous, paraphysoid mass. Ascospores 2- to 3-seriate, hyaline, ellipsoid-ovoid, straight or rarely slightly asymmetric, aseptate, slightly attenuated towards the base, both ends rounded, at the base with a colourless bluntly conoid to capped appendage.

Type species: Achorodothis poasensis Syd. [Costa Rica, on Ocotea mollicella (\equiv Phoebe mollicella), 15 Jan. 1925 (syntype IMI 18604)].

Description (no illustration): Sydow (1926).
Note: Achorodothis is not known from culture, and its phylogenetic position remains unresolved.

Acrotheca Fuckel, Jahrb. Nassauischen Vereins Naturk.15: 42. 1860.
Type species: Acrotheca gei Fuckel [Austria, Rhenogovia, on Geum urbanum, Fuckel, Fungi Rhen. Exs. 2229, e.g. HAL] = Ramularia gei (A.G. Eliasson) Lindr.

Description and illustration: Hughes 1951, Braun (1998, as Ramularia gei).
Note: Acrotheca gei is presently regarded as a species of Ramularia, but this conclusion has not been confirmed based on DNA data.

Allantophomoides S.L. Wei \& T.Y. Zhang, Mycosystema 22: 9. 2003.
Description (adapted from Wei \& Zhang 2003): Conidiomata pycnidial, immersed, globose to subglobose, unilocular, sometimes slightly papillate, thin-walled, wall composed by 1-3 cells with pale brown to brown textura angularis. Conidiophores reduced to conidiogenous cells. Conidiogenous cells ampulliform to doliiform, hyaline, smooth, covering the entire inside wall, enteroblastic, phialidic with minute collarette. Conidia hyaline, guttulate, allantoid to elongateellipsoidal, aseptate or septate.

Type species: Allantophomoides carotae S.L. Wei \& T.Y. Zhang [China, Gansu Province, Zhangye, on Daucus carota var. sativa, 10 Oct. 1995 (holotype HSAUP 960001, isotype IMI)].

Description and illustration: Wei \& Zhang (2003).
Notes: The most closely related genera are Phoma, Coleophoma and Allantophomopsis. Without molecular data the phylogenetic position of this septoria-like genus remains unresolved.

Amycosphaerella Quaedvlieg \& Crous

Note: See treatment in text.
Anematidium Gronchi, Boll. Ist. Sieroterap. Milan. 10: 242. 1931.
Description (adapted from Gronchi 1931): Mycelium olivaceous, septate, branching. Conidiophores absent. Conidia catenate, in branched chains, integrated in the mycelium, cylindrical. In solid agar media, colonies olivaceous, coalescent, round, convex, with wrinkled and irregular surface, margin dark. Hyphae densely aggregated, olivaceous, branched and septate. In liquid acidic media, hyphae within the liquid media, lax, with very long branches, septate, subhyaline to olivaceous. Conidia catenate, in branched chains, integrated in the mycelium, cylindrical, branching.

Type species: Anematidium oxiphilum Gronchi [Italy, Firenze, growing in a N/10 HCL solution in a laboratory].

Description and illustration: Gronchi (1931).
Notes: This genus is insufficiently known, and its status remains unresolved. The author named the genus Anematidium after the absence of conidiophores and the type species Anematidium
oxiphilum after the fungus affinity to the acidic substrate from which it was isolated, a laboratory solution of N/10 HCL (Gronchi 1931).

Anguillosporella U. Braun, A monograph of Cercosporella, Ramularia and allied genera (Phytopathogenic Hyphomycetes) 1: 233. 1995.

Description (adapted from Braun 1995): Mycelium internal, composed of hyaline hyphae, septate and branched. Stromata subcuticular to intraepidermal, often erumpent. Conidiophores hyaline, smooth, arising from stromata, macronematous, single or in fascicles, loose or densely aggregated, simple, continuous or septate, straight, subcylindrical to flexuous. Conidiogenous cells integrated, terminal, monoblastic, determinate, with conidiogenous loci (scars) more or less truncate, unthickened and not darkened, conidial secession schizolytic. Conidia solitary, hyaline, multi-euseptate, scolecosporous, wih apex subacute and base usually with a short appendage.

Type species: Anguillosporella vermiformis (Davis) U. Braun [USA, Wisconsin, on Alnus incana (lectotype BPI 442755, see Braun 1995)].

Descriptions and illustrations: Braun (1995), Seifert et al. (2011).
Note: The phylogenetic position of Anguillosporella remains unresolved.
Annellophora S. Hughes, Trans. Brit. Mycol. Soc. 34: 544. 1952.
Description (adapted from Ellis 1971): Mycelium superficial or immersed, composed of subhyaline, brown or olivaceous brown hyphae. Conidiophores macronematous, single or in fascicles, brown or dark brown, simple, septate. Conidiogenous cells integrated, terminal, monoblastic, proliferating percurrently. Primary conidia terminal, cylindrical, obclavate or fusiform, subhyaline to brown, smooth, transversely septate or pseudoseptate. Secondary conidia germinating from the apex of primary conidia, one at a time, proliferating percurrently, smaller.

Type species: Annellophora solani (Syd.) S. Hughes (三 Chaetotrichum solani Syd. 1927).
Description and illustration: Ellis (1971), Seifert et al. (2011); present study (Fig. 48).
Material examined: Costa Rica, Los Angeles de San Ramon, on Solanum erythrotrichum, 30 Jan. 1925 (holotype of Chaetotrichum solani, E 00417817).

Notes: The phylogenetic position of Annellophora is unknown, and its 11 species are only known by their hyphomycetous sporidesmium-like asexual morph (Seifert et al. 2011). Cultures and sequence data are necessary to determine its phylogenetic position.

Annellophragmia Subram., Proc. Indian Acad. Sci., Sect. B, 58: 349. 1963.
Description (adapted from Ellis 1971): Mycelium superficial and immersed. Stroma erumpent, brown and pseudoparenchymatous. Conidiophores macronematous, synnematous, brown,

Fig. 48. Annelophora solani (E00417817). A-F. Observations in vivo. A. Symptoms on host. B, C. Conidiophores erect and developing on the host surface. D. Attachment of the conidiophore to a leaf trichome. E. Conidiogenous cell and conidium. F. Conidia. Scale bars $=10 \mu \mathrm{~m}$.
smooth, straight, with each individual stipe unbranched, gathered tightly for most of the length and spreading like a hand fan at the apex. Conidiogenous cells integrated, terminal and intercalary, cylindrical, proliferating sympodially, polyblastic, conidiogenous loci (scars) large, apical and lateral. Conidia solitary, acropleurogenous, pale to dark brown or golden brown, smooth, fusiform to obclavate, truncate at the base, pseudoseptate.

Type species: Annellophragmia coonoorensis (Subram.) Subram. (\equiv Arthrobotryum coonoorense Subram.).

Descriptions and illustrations: Ellis (1971), Seifert et al. (2011); present study (Fig. 49).
Materials examined: India, Madras, Nilgiris, Coonoor, Simm, on leaves of Thysanolaena maxima, 8 Dec. 1953, T.S.S. \& C.V. Subramanian (holotype of Arthrobotryum coonoorense (K(M) 180920); Madhya Pradesh, Balaghat, on Thysanolaena maxima, Jan. 1980, S.M. Singh, IMI 245197.

Fig. 49. Annelophragmia coonoorensis (IMI 245197). A-F. Observations in vivo. A. Conidiophores in compact fascicles, erect and emerging from the host. B. Apical area of the conidiophores, with conidiogenous cells and conidia. C, D. Conidiogenous cells and conidia. E, F. Conidiogenous cell and conidium. Scale bars $=10 \mu \mathrm{~m}$.

Notes: The phylogenetic position of Annelophragmia is unknown and the genus is only known from its hyphomycetous type species, Annelophragmia coonoorensis (Kirk et al. 2013; genus accepted). Sequence data are necessary to determine its phylogenetic position.

Annellosympodia McTaggart et al., Australas. Pl. Path. 36: 574. 2007.
Description (adapted from McTaggart et al. 2007): Mycelium immersed. Conidiophores reduced to conidiogenous cells. Conidiogenous cells on minute pulvinate sporodochia, macronematous, dark brown, aseptate, verrucose, thick-walled, ampulliform, doliiform or obovoid, mono- or polyblastic, proliferating sympodially (rectilinear), conidiogenous loci ring-like with a central pore, slightly thickened and darkened, apical at first and later displaced laterally. Conidia solitary, brown, coarsely verrucose, cylindrical to ellipsoidal, apex rounded, base truncate with a marginal frill and a dark conspicuous hilum, aseptate or septate, sometimes constricted at the septum; secession rhexolytic.

Type species: Annellosympodia orbiculata McTaggart et al. [Australia, Western Australia, on phyllodes of Acacia sp. (holotype PERTH 03270173)].

Description and illustration: McTaggart et al. (2007).
Note: Annellosympodia is not known from culture, and hence its phylogenetic position remains unresolved.

Annellosympodiella Crous \& Assefa

Note: See treatment in text.

Apseudocercosporella Videira \& Crous

Note: See treatment in text.

Asperisporium Maubl.

Note: See treatment in text.
Asteromidium Speg., Ann. Soc. Cient. Argent. 26(1): 66. 1888.
Description (from Quaedvlieg etal. 2013, adapted from Sutton 1980): Mycelium immersed, branched, septate, hyaline. Conidiomata acervular, subcuticular, separate or confluent, pulvinate to doliiform, at the base, composed of hyaline to pale brown, thin-walled textura angularis which extends laterally, finally with separate cells dispersed in a mucilaginous matrix to form the overlaying wall; cuticle discoloured and occasionally pseudoparenchymatous, walls adjacent to the upper epidermal wall also discoloured; dehiscence irregular. Conidiogenous cells holoblastic, discrete, indeterminate, \pm cylindrical, hyaline, smooth, with 1-2 sympodial proliferations, scars unthickened, flat, formed from the basal and lateral walls. Conidia cylindrical to fusoid, gently tapered at each end, apex obtuse, base truncate, thin-walled, guttulate to granular, hyaline, 3 -septate.

Type species: Asteromidium imperspicuum Speg. [Paraguay, on leaves of Sapindaceae, 1883, ex B. Balansa Pl. du Paraguay No. 4085 (syntype K(M) 180228)].

Description and illustration: Quaedvlieg et al. (2013).
Note: See Quaedvlieg et al. (2013).
Berteromyces Cif., Sydowia 8: 267. 1954.
Description (from Ciferri 1954): Biotrophic, external mycelium lacking, internal mycelium with branched hyphae, hyaline, sparingly developed. Conidiophores hyaline or subhyaline, erumpent, with a dense basal stroma, fasciculate, unbranched, erect, distinct. Conidia apical, solitary, hyaline, ovoid, at first continuous, later 1-septate.

Type species: Berteromyces aeneus Cif. [Uganda, Kawanda, on Senna bicapsularis (\equiv Cassia bicapsularis), Jul. 1940, Hansford 2751 (neotype designated by Crous \& Braun (2003), IMI 8180)] \equiv Passalora aenea (Cif.) U. Braun \& Crous.

Description and illustrations: Ciferri (1954), Deighton (1967, as Cercosporidium cassiae).
Notes: This genus is seen as part of the Passalora complex, with its type species treated as Passalora aenea (Cif.) U. Braun \& Crous. The neotype was selected by Crous \& Braun (2003) but as no material is available from which DNA can be extracted, its phylogenetic position remains unresolved.

Australosphaerella Videira \& Crous

Note: See treatment in text.
Biharia Thirum. \& Mishra, Sydowia 7: 79. 1953.
Description (adapted from Thirumalachar \& Mishra 1953): Mycelium yellowish brown, emerging through stoma and developing a stroma, from which conidiophores arise. Conidiophores yellowish brown, smooth, septate, geniculate. Conidiogenous cell terminal, polyblastic, proliferating sympodially. Conidia single, yellowish brown, obclavate or cylindrical, echinulate or rugose, septate, simple or with protrusions at the region of septa.

Type species: Biharia vangueriae Thirum. \& Mishra [India, Bihar, on Vangueria spinosa (lectotype designated here IMI 51482, MBT378592)].

Description and illustration: Thirumalachar \& Mishra (1953).
Notes: The type species was combined into Stenella by Deighton (1979) and later into Zasmidium by Kamal (2010). It is regarded as part of the Zasmidium complex until sequence data of its type species is available and its phylogenetic position is resolved.

Brunneosphaerella Crous

Note: See treatment in text.
Bryopelta Döbbeler \& Poelt, in Döbbeler, Mitt. Bot. Staatssamml. München 14: 126. 1978.
Description (adapted from Döbbeler 1978 and Li et al. 2014): Mycelium composed of hyaline hyphae, septate, branched within the host cells. Ascomata solitary, glabrous, semi-immersed or immersed, globose to subglobose, black, thick-walled, ostiole central, papillate, filled with hyaline to dark brown periphyses. Peridium composed of thick-walled hyaline to dark brown cells of textura angularis to textura porrecta. Hamathecium composed of dense, filamentous, hyaline, septate, unbranched, anastomosing pseudoparaphyses. Asci 8-spored, bitunicate, fissitunicate, cylindrical to fusiform, obtuse at the tip, slightly widened at base or sometimes with short pedicel, slightly curved. Ascospores multiseriate, crowded, ellipsoidal, generally 1 -septate, asymmetrical, sometimes $1-3$-septate, constricted at septa, with a smooth or rough epispore. Mycelium producing black synnemata, with conidiophores directly arising from the basal layers, brown. Conidia hyaline, narrow ellipsoid.

Type species: Bryopelta variabilis Döbbeler \& Poelt [Sweden, on Mylia anomala (holotype

 GZU 000302175)].Description and illustration: Li et al. (2014).
Notes: The taxonomic history of Bryopelta has been discussed in detail by Li et al. (2014). Bryopelta variabilis is a lichenicolous species with uncertain phylogenetic position due to the lack of sequence data.

Camptomeris Syd., Ann. Mycol. 25: 14. 1927.
Description (adapted from Ellis 1971): Sporodochia mostly hypophyllous, pulvinate, punctiform, dark olivaceous brown to black. Mycelium immersed. Stroma present with one or several swollen cells bearing conidiophores. Conidiophores macronematous, often curved inwards, simple, smooth, pale brown to brown. Conidiogenous cells integrated, terminal, cylindrical, proliferating sympodially, polyblastic, with prominent conidiogenous loci (scars). Conidia solitary, acropleurogenous, pale olivaceous brown or brown, usually verruculose but sometimes smooth, obclavate or oblong, rounded at the ends, aseptate or septate.

Type species: Camptomeris calliandrae Syd. [Costa Rica, on leaves of Calliandra houstoniana var. calothyrsus (= Calliandra similis), 30 Dec. 1924 (slide ex type IMI 7687; fide Hughes 1952)].

Descriptions and illustrations: Ellis (1971), Seifert et al. (2011); present study (Fig. 50).
Notes: The phylogenetic position of the genus Camptomeris is currently undetermined due to the lack of DNA sequence data from its type species. The cercosporoid nature of the type species suggests an affinity to Mycosphaerellaceae. No species of this genus are presently known from culture.

Fig. 50. Camptomeris leucaenae (CBS H-22884). A-F. Observations in vivo. A, B. Leaf spot symptoms on the host. C. Conidiophores emerging from the leaf host with conidiogenous cells. D. Apex of the conidiogenous cells with the conidiogenous scar. E. Conidiogenous cells and conidia. F. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Camptomeriphila Crous \& M.J. Wingf., Persoonia 37: 335. 2016.
Description (from Crous et al. 2016a): Mycelium consisting of branched, septate, smooth, pale brown hyphae, forming thick-walled, brown, verruculose, intercalary chlamydospores. Conidiophores in loose fascicles, erect, branched, flexuous, multi-septate, pale brown, smooth. Conidiogenous cells integrated, terminal and lateral, subcylindrical, pale brown, smooth; scars thickened, darkened, refractive. Conidia solitary, fusoid-ellipsoid, becoming obclavate when mature, subhyaline to pale brown, smooth, apex subobtuse, hilum protruding, truncate, thickened, darkened, refractive.

Type species: Camptomeriphila leucaenae Crous \& M.J. Wingf.
Description and illustration: Crous et al. (2016a).
Materials examined: Malaysia, Sabah, growing on Camptomeris leucaenae, on leaves of Leucaena leucocephala, 29 May 2015, M.J. Wingfield (holotype CBS H-22884, culture extype CBS $142135=$ CPC 27608).

Notes: The present species was observed growing in close association with sporodochia of Camptomeris leucaenae (Fig. 50), which causes a leaf spot disease on Leucaena leucocephala. Morphologically, it is a passalora-like mycophilic fungus, phylogenetically, it is closely related to species of Dothistroma or Pseudophaeophleospora, based on LSU (Crous et al. 2016a). This strain was not included in the present study.

Caryophylloseptoria Verkley, Quaedvlieg \& Crous
Note: See treatment in text.

Catenulocercospora C. Nakash., Videira \& Crous

Note: See treatment in text.
Ceratosperma Speg., Physis (Buenos Aires) 4(17): 284.1918.

Description (adapted from Saccardo \& Trotter 1913): Ascomata pseudothecial, globose. Asci subglobose, 8 -spored, stipitate, aparaphysate. Ascospores oblong, 2-6-septate, constricted at septa, hyaline to olivaceous, smooth.

Type species: Ceratosperma theobromae (Faber) Speg. (\equiv Ceratocarpia theobromae Faber) [Cameroon, on Theobroma cacao].

Notes: Very little is known from this genus besides its description. Authentic specimens could not be located and no illustration or recent publication are known. The species needs to be recollected to resolve its phylogenetic position.

Cercocladospora G.P. Agarwal \& S.M. Singh, Proc. Natn. Acad. Sci. India, Sect. B, Biol. Sci. 42(4): 439. 1974.

Type species: Cercocladospora adinae G.P. Agarwal \& S.M. Singh [India, on leaves of Haldina cordifolia (\equiv Adina cordifolia) (IMI 148087), fide Deighton 1976a] = Pseudocercospora adinicola (A.K. Kar \& M. Mandal) Deighton.

Notes: Both the generic name, Cercocladospora, and the name of the type species, Cercocladospora adinae, were not validly published (Art. 40.1, Art. 40.3, Art. 39.1, Melbourne). Since it was morphologicaly identical to Cercospora adinicola, Deighton (1976a) synonymised both under Pseudocercospora adinicola using the validly published name Cercospora adinicola as the basionym. Although Cercocladospora is treated as a synonym of Pseudocercospora, this conclusion has not been confirmed based on DNA data.

Cercodeuterospora Curzi, Boll. Staz. Patol. Veg. Roma, Ser. 2, 12: 149. 1932.
Type species: Cercodeuterospora trichophila Curzi [Somalia, on Cajanus indicus] = Mycovellosiella cajani (Henn.) Rangel ex Trotter.

Notes: Although no culture is available, Cercodeuterospora is regard as a synonym of Mycovellosiella cajani based on morphology. The latter species also occurs on Cajanus spp. in Africa. Deighton (1974) did not observe the type material when he proposed the combination Mycovellosiella cajani var. trichophila for Cercodeuterospora trichophila, but a specimen from Kenya (IMI 68281) which he deemed very similar to the material illustrated and described by Curzi. We were unable to trace the location of the Curzi specimen

Cercoramularia Videira, H.D. Shin, C. Nakash. \& Crous
Note: See treatment in text.
Cercoseptoria Petr., Ann. Mycol. 23: 69.1925.
Type species: Cercoseptoria chamaesyces (F. Stevens \& Dalbey) Petr. (= Septoriopsis chamaesyces F. Stevens \& Dalbey) [Puerto Rico, Rio Piedras, on Chamaesyce hypericifolia, F.L. Stevens No. 9445 (holotype ILL00011697)] = Pseudocercospora chamaesyces (F. Stevens \& Dalbey) Deighton.

Description and illustration: Stevens \& Dalbey (1919, as Septoriopsis chamaesyces); Deighton (1976a, as Cercoseptoria chamaesyces).

Note: Although Cercoseptoria is treated as a synonym of Pseudocercospora, this conclusion has not been confirmed based on DNA data.

Cercosphaerella Kleb., Haupt- und Nebenfruchtformen der Askomyzeten: 132. 1918.
Description (based on Klebahn 1918): "Cercosphaerella. Konidienform Cercospora. Arten: C. millegrana; cerasella" [Cercosphaerella. Conidial form Cercospora. Species: C. millegrana; cerasella].

Type species: Cercosphaerella millegrana (Cooke) Kleb. [Austria, on leaf litter of Carpinus betulus (holotype K(M) 56297)].

Description: Saccardo (1882, as Sphaerella millegrana), Klebahn (1918).
Notes: Klebahn (1918) introduced Cercosphaerella as new genus for Mycosphaerella species with asexual morphs belonging to Cercospora s. lat. and linked Cercospora microsora (\equiv Passalora microsora) to Mycosphaerella millegrana, although Sydow (1940) disagreed, and described the sexual morph of Passalora microsora as Mycosphaerella microsora. The name Sphaerella millegrana, based on a Mycosphaerella on leaf litter of Carpinus betulus, was misapplied in Klebahn (1918). Klebahn (1918: 132) placed two species in Cercosphaerella, viz. Cercosphaerella millegrana and Cercosphaerella cerasella (Aderh.) Kleb. (\equiv Mycosphaerella cerasella Aderh.). Clements \& Shear (1931) cited Cercosphaerella as a subgenus of Mycosphaerella and Mycosphaerella millegrana as lectotype. However, Klebahn (1918: 131) clearly emphasized that Septosphaerella, Ramularisphaerella, and Cercosphaerella were introduced as separate genera. Therefore, it is concluded that the phylogenetic position of Cercosphaerella based on its lectotype species Cercosphaerella millegrana remains unresolved pending the availability of phylogenetic analyses, and an epitypification of the latter species. Cercosphaerella may be available for some unnamed mycosphaerella-like clades.

Cercosperma G. Arnaud ex B. Sutton \& Hodges, Nova Hedwigia 35: 798. 1983 [1981].
Description (from Sutton \& Hodges 1981): Mycelium mostly superficial, composed of thickwalled, branched, brown, anastomosing, smooth hyphae; hyphopodia and setae absent.

Conidiophores micro- to semi-macronematous, mononematous, erect, pale brown, ofen with a single short lateral branch at base. Conidiogenous cells holoblastic, determinate, integrated or discrete, terminal on the main axes or lateral branches, pale brown, smooth, with flattened apex. Conidia solitary, dry, acrogenous, straight to curved, tapered towards apex, truncate at base, distoseptate, alternate septa thickened, lumina reduced, smooth, pale brown.

Type species: Cercosperma arnaudii B. Sutton \& Hodges [Brazil, Pará, Monte Dourado, on Eucalyptus leaf litter, 20 Jun. 1974, C.S. Hodges, holotype IMI 186982i].

Note: When Sutton \& Hodges (1983) validated Cercosperma, they also pointed out its similarity to Ceratophorum, which is another genus that remains phylogenetically unresolved.

Cercospora Fresen. ex Fuckel.
Note: See treatment in text.

Cercosporella Sacc.

Note: See treatment in text.

Cercosporidium Earle

Note: See treatment in text.
Cercosporina Speg., Anal. Mus. Nac. B. Aires, Ser. 3, 13: 424. 1911.
Type species: Cercosporina asparagicola Speg. [Argentina, La Plata, on Asparagus officinalis, Maj. 1906, holotype LPS 4966; isotype IMI 247001 (slide)] = Cercospora asparagi Sacc.

Description and illustration: Chupp (1954, as Cercospora aparagi).

Note: Cercosporina is currently treated as a synonym of Cercospora.
Cercosporiopsis Miura, Flora of Manchuria and East Mongolia. Part III. Cryptogams, fungi: 527. 1928.

Type species: Cercosporiopsis menispermi (Ellis \& Holw.) Miura (\equiv Cercospora menispermi Ellis \& Holw.) [USA, Iowa, Decorah, on Menispermum canadense, Jun. 1886 (holotype FH01012294)] = Passalora menispermi (Ellis \& Holw.) U. Braun \& Crous.

Description and illustration: Chupp (1954, as Cercospora menispermi), Ellis (1976, as Phaeoisariopsis menispermi).

Note: The placement of Cercosporiopsis menispermi in Passalora needs to be confirmed based on DNA data, as this generic name may be available for some of the unnamed passalora-like clades.

Cercostigmina U. Braun, Cryptog. Bot. 4: 107. 1993.
Type species: Cercostigmina concentrica (Cooke \& Ellis) U. Braun (三 Cercospora concentrica Cooke \& Ellis) [USA, New Jersey, Gloucester, on Yucca filamentosa, 1 Jun. 1874, W.A. Kellerman, no. 2150 (holotype NY 00838826; isotype: NY 01102862)] = Pseudocercospora concentrica (Cooke \& Ellis) U. Braun \& Crous.

Description and illustrations: Braun (1993, as Cercostigmina concentrica).
Note: The placement of Cercostigmina concentrica in Pseudocercospora needs to be confirmed based on DNA data.

Chuppomyces Videira \& Crous

Note: See treatment in text.
Ciferriella Petr., Ann. Mycol. 28(5-6): 409. 1930.
Type species: Ciferriella domingensis Petr. \& Cif. [Dominican Republic, on Vitex umbrosa, 26 May 1929, coll. R. Ciferri, det. F. Petrak (holotype NY 01048475)] = Pseudocercospora domingensis (Petr. \& Cif.) Quaedvl., Verkley \& Crous.

Description and illustrations: Quaedvlieg et al. (2013).
Note: Ciferriella is currently considered a synonym of Pseudocercospora, see Quaedvlieg et al. (2013).

Cladosporiella Deighton, Mycol. Pap. 101: 34. 1965.
Description (from Braun et al. 2013): Morphologically close to Cladosporium and mycovellosiella-like Passalora species (with superficial hyphae, conidiophores fasciculate or solitary, arising from superficial hyphae, conidiogenous loci conspicuous, thickened and darkened, conidia catenate, pigmented), but the loci and hila are not cladosporium-like (not coronate) and all species assigned to this genus are hyperparasitic.

Type species: Cladosporiella cercosporicola Deighton.
Description and illustrations: Braun et al. (2013); present study (Fig. 51).
Materials examined: Malaysia, Sabah, Tawau, Quoin Hill, on Passalora koepkei on Saccharum officinarum, 9 May 1964, T.H. Williams (holotype IMI 107538b).

Notes: The hyperparasitic habit is the only character to discriminate this genus from Passalora. However, as the latter is now a generic complex, we tentatively prefer to maintain Cladosporiella as separate genus.

Fig. 51. Cladosporiella cercosporicola (IMI 107538). A-E. Observations in vivo. A. Leaf spot symptoms on the host. B. Conidiophores and conidiogenous cells. C. Conidiophores, conidiogenous cells and conidium. D, E. Catenate and single conidia. Scale bars $=10 \mu \mathrm{~m}$.

Clarohilum Videira \& Crous

Note: See treatment in text.
Clypeispora A.W. Ramaley, Mycotaxon 40: 13. 1991.
Description (from Ramaley 1991): Coelomycetous, phytopathogenic. Mycelium immersed, consisting of branched, septate, hyaline hyphae. Conidiomata pycnidial, immersed, black to subhyaline, substomatal, unilocular, thin-walled, ostiolate, papillate, exuding translucent conidial cirrhus; wall of hyaline to golden brown cells. Conidiophores reduced to conidiogenous cells. Conidiogenous cells holoblastic, discrete, hyaline, golden-brown at base, thin-walled, with thin, thread-like projection giving rise to conidia. Conidia hyaline, allantoid, smooth, aseptate, bluntly rounded at both ends, often with irregular apical, and/or basal appendage.

Type species: Clypeispora angustifoliorum A.W. Ramaley [USA, Colorado, La Plata county, Haflin Creek Trail, on leaves of Populus angustifolia, Sep. 1987, A.W. Ramaley, holotype BPI 1102631)] = Mycosphaerella angustifoliorum A.W. Ramaley [USA, Colorado, La Plata county, Durango, Roosa Avenue, on leaves of Populus angustifolia, Oct. 1988, A.W. Ramaley (holotype BPI 1102629).

Description and illustration: Ramaley (1991).
Note: This species needs to be recollected and its phylogenetic position determined.
Clypeosphaerella Guatimosim, R.W. Barreto \& Crous
Note: See treatment in text.
Collarispora Videira \& Crous
Note: See treatment in text.

Colletogloeum Petr., Sydowia 7: 368. 1953.
Description (from Sutton 1980): Mycelium immersed, branched, septate, hyaline to pale brown. Conidiomata acervular, epidermal to subepidermal, separate, occasionally confluent, composed of pale brown to hyaline, thin-walled textura angularis. Dehiscence irregular. Conidiophores hyaline or very pale brown, sparsely branched, septate, smooth, cylindrical or slightly irregular, formed from the upper cells of the acervulus. Conidiogenous cells holoblastic, annellidic, integrated or discrete, indeterminate, cylindrical or doliiform, with several percurrent proliferations. Conidia hyaline or pale brown, 0 - to multiseptate, straight, curved or irregular, truncate at the base, obtuse at the apex, usually thin-walled, smooth, guttulate or eguttulate.

Type species: Colletogloeum dalbergiae (S. Ahmad) Petr. (\equiv Septogloeum dalbergiae S. Ahmad); = Colletogloeum sissoo (Syd.) B. Sutton (= Cercospora sissoo Syd.) [Pakistan, on pods of Dalbergia sissoo (presumed slide ex type collection IMI 8196; authentic for the name C. sissoo IMI 90825, fide Sutton 1964)].

Notes: Colletogloeum was first described by Petrak (1953) based on Septogloeum dalbergiae published earlier in that year. However, Cercospora sissoo Syd. (Sydow \& Mitter 1933) provides an earlier epithet for the type and a combination was proposed by Sutton (1964) together with an amendment of the genus description to include only fungi with annellate conidiophores. Colletogloeum differs from Ahmadia only in having epidermal to subepidermal conidiomata as opposed to subcuticular conidiomata. The correct phylogenetic placement of the genus Colletogloeum is unknown, though DNA extracted from a fungarium specimen representative of the type species, C. sissoo (IMI 119162), showed Colletogloeum to be closely related to Pseudocercospora (Crous et al. 2009e), which fits with its morphology.

Coremiopassalora U. Braun, C. Nakash., Videira \& Crous
Note: See treatment in text.
Cucurbitariopsis C. Massal., Mém. Accad. Agricolt. Arti Commerc. Verona, Ser. 3, 65: 133. 1889.

Type species: Cucurbitariopsis leptospora C. Massal. [Italy, Veneto, Monte Zevola, Passo Ristele, stem of 'Clematidis? v. Astragenes?' (sic. Saccardo, Syll. fung. 10: 396. 1892)] = Rhabdospora leptospora (C. Massal.) Sacc.

Note: Insufficiently known, seen as synonym of Rhabdospora (Saccardo 1892). The type specimen could not be located.

Cyclodothis Syd. \& P. Syd., Ann. Mycol. 11: 266. 1913.

Description (adapted from Sydow \& Sydow 1913): Stromata erumpent through the epidermis, characteristically annular, with numerous densely arranged small perithecioid loculi, wall distinct, dark brown, composed of small cells, ostiolate. Asci clavate, 8 -spored, ascospores 3 - to 4 -stichous, indistinctly paraphysate. Ascospores oblong cylindrical, colourless, straight, slightly inequilateral, ends obtuse, with a single medial septum.

Type species: Cyclodothis pulchella Syd. \& P. Syd. [Philippines, Mindanao, Todaya, Mt. Apo, on leaf spots of Piper celtidiforme, Jul. 1909, A.D.E. Elmer, no. 11163 (syntypes BPI 642231, BPI 642230, S F207022, S F207023)].

Notes: The genus has in recent years been treated as synonym of Mycosphaerella [Mycosphaerella pulchella (Syd. \& P. Syd.) Arx]. However, Cyclodothis is insufficiently known, and Aptroot (2006) observed the type specimen to only contain a coelomycete.

Cytostagonospora Bubák, Ann. Mycol. 14: 150. 1916.
Synonym: Cytostaganis Clem. \& Shear, Gen. fung., Edn 2 (Minneapolis): 367. 1931.
Description (from Quaedvlieg et al. 2012, adapted from Sutton 1980): Mycelium immersed, dark brown, branched, septate. Conidiomata pycnidial, amphigenous, separate, globose, dark brown to black, immersed, unilocular, thick-walled, clypeate; walls of dark brown, thickwalled textura angularis to textura globulosa, becoming hyaline towards the conidiogenous region, extending in the upper part to become a circular clypeus of similar thickness to the wall. Ostiole central, circular, papillate to short rostrate, depressed, situated immersed within the clypeus. Conidiophores reduced to conidiogenous cells. Conidiogenous cells holoblastic, determinate, discrete, lageniform, hyaline, smooth, formed from the inner cells of the pycnidial wall. Conidia hyaline, 0-2-euseptate, not constricted at septa, base truncate, apex obtuse, thinwalled, eguttulate, smooth, filiform, often curved.

Type species: Cytostagonospora photiniicola Bubák, [Italy, Bozen, Oswald, on Photinia serrulata).

Description and illustration: Quaedvlieg et al. (2013).
Notes: Arx (1983) treated Cytostagonospora as a synonym of Septoria, while Sutton (1980) retained it as a separate genus. The genus Cytostaganis Clem. \& Shear 1931 is based on the same species as Cytostagonospora, and is thus a homotypic synonym. The type specimen could not be located.

Davisoniella H.J. Swart, Trans. Brit. Mycol. Soc. 90: 289. 1988.
Description (from Swart 1988): Conidiomata in necrotic spots in living leaves, abaxial, single or a few clustered together, stromatic, subepidermal, lifting the epidermis at maturity. Conidiogenous cells holoblastic, percurrent, arising from the inner wall of the locules, flask shaped. Conidia oval, brown, verruculose, apex rounded, base truncate with a marginal frill.

Type species: Davisoniella eucalypti H.J. Swart [Australia, Western Australia, Darling Ranges, Mundlimup Block, on leaves of Eucalyptus marginata, 24 Nov. 1981, F. Tay (holotype DAR 58999)].

Notes: Although Crous et al. (2006c) described a sexual morph on the type material as Mycosphaerella davisoniellae, the link was never confirmed in culture. However, the morphology of both the sexual and asexual morphs suggests that this taxon would be better accommodated in Teratosphaeriaceae (Teratosphaeria) than Mycosphaerellaceae.

Dearnessia Bubák, Hedwigia 58: 25. 1916.
Description (from Quaedvlieg et al. 2013, adapted from Sutton 1980): Mycelium hyaline to brown, branched, septate. Conidiomata pycnidial, amphigenous, separate, globose, immersed, brown; wall of thin-walled textura angularis. Ostiole central, circular, papillate. Setae ostiolar, approximately straight, unbranched, tapered towards apex, dark brown, smooth, thin-walled, septate. Conidiogenous cells holoblastic, determinate, discrete, doliiform to ampulliform, hyaline, smooth and formed from the inner layer of the pycnidial wall. Conidia cylindrical to irregular, hyaline, 1-multi-transversely euseptate, rarely with $1-2$ longitudinal eusepta, continuous or constricted, often tapered at the apex, base truncate, thin-walled, smooth, guttulate or not.

Type species: Dearnessia apocyni Bubák [Canada, Ontario, London, on leaves of Apocynum androsaemifolium, 11 Aug. 1910, J. Dearness (holotype F43227)].

Description and illustration: Quaedvlieg et al. (2013).
Notes: The type species needs to be recollected in order to determine the phylogenetic position of this genus. See Quaedvlieg et al. (2013).

Deightoniella S. Hughes, Mycol. Pap. 48: 27. 1952.
Description (adapted from Hughes 1952): Colonies effuse, grey, brown or black. Mycelium immersed, occasionally superficial. Stroma absent. Setae and hyphopodia absent. Conidiophores macronematous, mononematous, torsive or flexuous, unbranched brown, smooth, with characteristic swellings along length of conidiophore, due to percurrent rejuvenation, and elongation of conidiophore, producing conidia at higher levels. Conidiogenous cells monoblastic, integrated, terminal, percurrent, cylindrical. Conidia solitary, acrogenous, obclavate to obpyriform, medium brown, verruculose, transversely 1 -septate above the median, with apical cell showing prominent taper towards subobtuse apex; basal scar somewhat darkened and thickened.

Type species: Deightoniella africana S. Hughes.
Description and illustrations: Hughes (1952); present study (Fig. 52).
Materials examined: Ghana, Hohae (Togoland), on leaves of Imperata cylindrica var. africana, 28 May, 1949, S.J. Hughes 913 (holotype IMI 39675a)]; Sierra Leone, Newton (?) colony, on leaves of Imperata cylindrica var. africana, 17 Jan. 1950, T.C. Deighton, M3478A, IMI 41188.

Note: See notes under Utrechtiana.
Deightonomyces Videira \& Crous
Note: See treatment in text.

Fig. 52. Deightoniella africana (IMI 39675a). A-E. Observations in vivo. A. Conidiophores emerging on the leaf surface. B, C. Conidiophores. D, E. Single conidia. Scale bars $=10 \mu \mathrm{~m}$.

Denticularia Deighton, Trans. Brit. Mycol. Soc. 59: 421. 1972.
Description (from Deighton 1972): Parasitic fungi, causing leaf spots. Mycelium immersed. Conidiophores arising from stromata, densely crowded, brown, mostly simple, smooth, thinwalled, continuous or few septate, sympodial, polyblastic, denticulate, not cicatrized, the denticles short and subcylindrical with a truncate unthickened apex. Conidia pale brown, more or less fusiform, catenulate, with the hila and scars unthickened, thin-walled, smooth or very minutely rough-walled, continuous or 1 -septate.

Type species: Denticularia modesta (Syd.) Deighton (三 Cladosporium modestum Syd.). [Sierra Leone, Kenema (Nougowa), on leaves of Anthostema senegalense, 5 Dec. 1938, F.C. Deighton M1681 (holotype IMI 7520)].

Description and illustration: Deighton (1972), Ellis (1976); present study (Fig. 53).
Material examined: Sierra Leone, Kenema (Nougowa), on Anthostema senegalense, 9 Feb. 1956, C.T. Pyne M6473, IMI 62524.

Notes: Cultures of the type species of this genus and results of molecular analyses are necessary to resolve its phylogenetic position and clarify its relation to Pseudocercospora. It is still unclear and unproven whether this genus belongs in the Mycosphaerellaceae.

Dictyocephala A.G. Medeiros, Publ. Inst. Micol. Recife 372: 13. 1962.
Type species: Dictyocephala ulmifoliae (Obreg.-Bot.) A.G. Medeiros (三 Cercospora ulmifoliae Obreg.-Bot.) [Colombia, Quipile, on Guazuma ulmifolia, 16 Apr. 1940, R. Obregón-Botero \& G.J. Quintana, No. 901$] \equiv$ Pseudocercospora ulmifoliae (Obreg.-Bot.) U. Braun \& Crous.

Descriptions and illustrations: Chupp (1954); Deighton (1976a).
Note: The synonymy with Pseudocercospora is based on morphology, and needs to be confirmed based on DNA data. The type specimen could not be located.

Fig. 53. Denticularia modesta (IMI 62524). A-E. Observations in vivo. A. Leaf spot symptoms on the host. B, C. Conidiophores and conidiogenous cells. D. Conidiophores, conidiogenous cells and conidia. E. Catenate and single conidia. Scale bars $=10 \mu \mathrm{~m}$.

Dictyodesmium S. Hughes, Mycol. Pap. 36: 29. 1951.
Description (from Ellis 1971): Sporodochia epiphyllous, erumpent, pulvinate, olivaceous brown. Mycelium immersed forming hyphal cushions at the point of origin of the conidiophores but no definite stroma. Setae and hyphopodia absent. Conidiophores mono- and macronematous, caespitose, crowded, straight or flexuous, unbranched, pale brown, smooth. Conidiogenous cells monoblastic, integrated, terminal, determinate, cylindrical. Conidia solitary, acrogenous, simple, fusiform to obclavate, rostrate, truncate at the base, rather pale olivaceous brown, palest at the ends, smooth, with transverse septa throughout and longitudinal and oblique septa in the central 6-9 cells.

Type species: Dictyodesmium ulmicola (Ellis \& Kellerm.) S. Hughes (三 Ceratophorum ulmicola Ellis \& Kellerm.).

Descriptions and illustrations: Ellis (1971), Seifert et al. (2011); present study (Fig. 54).
Materials examined: USA, Kansas, on leaves of Ulmus fulva, Oct. 1987, W.A. Kellerman 1112 (holotype NY 00838655).

Notes: The phylogenetic position of Dictyodesmium is unknown and its four species are only known by their hyphomycetous asexual morph (Seifert et al. 2011). Sequence data are necessary to determine its phylogenetic position.

Didymaria Corda, Icon. fung. 5: 9. 1842.
Type species: Didymaria ungeri Corda [Switzerland, on Ranunculus nemorosus] $=$ Ramularia didyma Unger.

Description and illustration: Braun (1998).
Note: See Braun (1998).

Fig. 54. Dictyodesmium ulmicola (NY 00838655). A, C-E. Observations in vivo. A. Leaf spot symptoms on the host. B. Conidiophores and conidia drawing on the specimen envelope. C-E. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Didymellina Höhn., Ann. Mycol. 16: 66. 1918.
Description: Leaf spots ellipsoid-lenticular, pale brown with dark brown border. Ascomata pseudothecial, black, scattered, subepidermal to erumpent, wall of 2-3 layers of brown textura angularis. Asci aparaphysate, fasciculate, bitunicate, subsessile, obovoid, straight to slightly curved, 8 -spored, with visible apical apiculus. Ascospores 3 - to multiseriate, hyaline, nonguttulate, thin-walled, straight to slightly curved, fusoid-ellipsoid with obtuse ends, medianly 1 -septate, widest in middle of apical cell, not constricted at the septum (but slightly so with age), tapering towards both ends, but slightly more to lower end; ascospores germinating while in ascomata, hyaline, slightly constricted at septum, germinating from both ends with germ tubes parallel to the long axis of the spore, in some cases germinating ascospores becoming 3-septate.

Type species: Didymellina iridis (Desm.) Höhn. (三 Dothidea iridis Desm.) [France, Trouve a Hermanville, on leaves and capsules of Iris pseudacorus, 1847, M. Roberge (holotype, PC)].

Notes: Didymellina iridis is the type species of the genus Didymellina, which Müller \& Arx (1962) treated as synonym of Mycosphaerella. A short overview of the taxonomic history of this species was presented by (Braun et al. 2003a). Ascospores observed in asci were 1-septate, but 3-septate ascospores were observed at the onset of germination. Based on its morphology, it is considered that this represents a separate genus. However, the taxonomic position of this fungus can only be resolved when fresh material has been obtained.

Didymochora Höhn. Hedwigia 60: 172. 1918.
Description (adapted from Höhnel 1918): Stromata small, flat, subcuticular, pseudoparenchymatous, carbonaceous, with a vertically arranged successive structure, with a single locus, cover one-layered, irregularly splitting, basal layer pseudoparenchymatous below and palisade-like above. Conidia pigmented, 2-celled, solitary, separated from the tips of the internal palisade-like cell layer by a horizontal septum.

Type species: Didymochora betulina Höhn. (described as asexual morph of Euryachroa betulina (Fr.: Fr.) J. Schröt. ミAtopospora betulina (Fr.: Fr.) Petr., without any further details, and placed in the Leptostromaceae.

Notes: The phylogenetic position of Didymochora is unknown and its two species are only known by their stromatic asexual morph. It is currently considered a genus of incertae sedis belonging to the Dothideomycetes (Wijayawardene et al. 2014). Sequence data are necessary to determine its phylogenetic position.

Distocercospora N. Pons \& B. Sutton
Note: See treatment in text.
Distocercosporaster Videira, H.D. Shin, C. Nakash. \& Crous
Note: See treatment in text.
Distomycovellosiella U. Braun, C. Nakash., Videira \& Crous
Note: See treatment in text.

Dothistroma Hulbary

Note: See treatment in text.
Elletevera Deighton, Mycol. Pap. 118: 17. 1969.
Description (from Deighton 1969): Mycelium immersed in the host fungus. Conidiophores dilute brown, smooth, branched, well developed, fasciculate, thin-walled: conidial scars conspicuous, slightly but distinctly thickened, prominent, aggregated towards the apices of the branchlets of the conidiophores. Conidia concolorous with the conidiophores, smooth, thinwalled, mostly cylindric-clavate and 3 -septate, sometimes $0-2$-septate, the shorter ones very rarely catenulate, sometimes fusoid, rostrate and pluriseptate, with a conspicuous and slightly but distinctly thickened hilum.

Type species: Elletevera parasitica (Ellis \& Everh.) Deighton (三 Pyricularia parasitica Ellis \& Everh.).

Description and illustration: Deighton (1969), Braun et al. (2013); present study (Fig. 55).
Material examined: USA, Wisconsin, Kenosha Co., on Phyllachora graminis on Elymus virginicus, 13 Aug. 1893, J.J. Davis 9311, (holotype NY 00928212, isotype BPI 420251, slide ex type collection IMI 129275).

Notes: The present genus was introduced by Deighton (1969) to accomodate hyperparasitic cercosporoid hyphomycetes with distinct conidiogenous loci. Upon re-examination of several specimens, Braun et al. (2013) considered the conidiogenous loci description to be

Fig. 55. Elletevera parasitica (IMI 127995). A. Drawing in the specimen envelope. B-E. Observations in vivo. B-D. Conidiophores and conidiogenous cells. E. Conidiogenous cells and conidium. Scale bars $=10 \mu \mathrm{~m}$.
misleading and observed that the denticle-like loci are unthickened and undarkened. Due to the morphological characters this genus may be related to Pseudocercospora but cultures and sequence data are necessary to determine its phylogenetic position.

Epicoleosporium Videira \& Crous

Note: See treatment in text.
Eriocercospora Deighton, Mycol. Pap. 118: 5. 1969.
Description (from Deighton 1969): Hyperparasitic hyphomycetes. Mycelium superficial, composed of pale brown, branched, septate, smooth, repent hyphae which bear conidiophores terminally and as lateral branches. Conidiophores pale brown, erect simple or branched, smooth, septate, not geniculate at the old conidial scars. Conidial scars slightly thickened, slightly prominent, the old ones lying more or less flat against the side of the conidiophore. Conidia pale brown, smooth, clavate, fusiform, subcylindric or obclavate, pluriseptate.

Type species: Eriocercospora balladynae (Hansf.) Deighton (三 Helminthosporium balladynae Hansf.)

Description and illustration: Deighton (1969), Braun (1995); present study (Fig. 56).
Materials examined: Uganda, Entebbe Road, on Balladynocallia glabra on Grumilea succulenta, Nov. 1943, C.G. Hansford 3264 (holotype of Helminthosporium balladynae, IMI 562a); Entebbe Road (mile 13), on Balladyna sp. on leaves of Pavetta sp., Mar. 1940, C.G. Hansford 2609 (holotype of Cercospora balladynae, IMI 4706c); Entebbe, on Balladynocallia glabra on Pavetta sp., Dec. 1945, C.E. Hansford 3726, (IMI 5293).

Notes: The present genus was introduced by Deighton (1969) who described the conidiogenous loci as mycovellosiella-like. Upon re-examination of several specimens Crous \& Braun (2003) considered the conidiogenous loci description to be misleading and observed that the denticle-

Fig. 56. Eriocercospora balladynae (IMI 5293c). A-E. Observations in vivo. A. Leaf spot symptoms on the host. B. Conidiophores, conidiogenous cells and conidia. C. Partial conidiophore, conidiogenous cells and conidium. D, E. Single conidia. Scale bars $=10 \mu \mathrm{~m}$.
like loci are neither thickened nor conspicuously darkened. Due to morphological characters this genus may be related to Pseudocercospora but sequence data are necessary to determine its phylogenetic position.

Eriocercosporella Rak. Kumar, A.N. Rai \& Kamal ex U. Braun, A monograph of Cercosporella, Ramularia and allied genera (Phytopathogenic Hyphomycetes) 2: 398. 1998.

Description (from Braun et al. 2013): Foliicolous hyphomycetes, associated with leaf spots. Mycelium internal and external, superficial hyphae emerging through stomata, branched, pigmented, septate, thin-walled, smooth. Stromata lacking. Conidiophores macronematous, mononematous, in vivo solitary, arising from superficial hyphae, lateral, simple, occasionally branched, pigmented, septate, thick-walled, smooth; conidiogenous cells integrated, terminal, uni- to multilocal, sympodially or occasionally percurrently proliferating, loci truncate, flat, broad, neither thickened nor darkened, conidiogenesis thalloblastic, i.e. at first blastic, then thallic (base of conidia \pm agreeing in width with the diameter of the broad conidiogenous loci). Conidia solitary, cylindrical to subclavate, occasionally disarticulating, plurieuseptate, occasionally with 1-2 additional distosepta, thick-walled, brown, smooth, not attenuated at the base, hila truncate, broad, width \pm agreeing with the diameter of the conidiogenous loci, neither thickened nor darkened, conidial secession schizolytic.

Type species: Eriocercosporella indica R. Kumar, A.N. Rai \& Kamal ex U. Braun
Description and illustration: Braun (1998), Braun et al. (2013); present study (Fig. 57).
Materials examined: India, Uttar Pradesh, Pithoragarh, on Marsdenia roylei, 1985, Kumar (holotype IMI 302747).

Note: Due to its morphological characters this genus may be related to either Pseudocercospora or Sporidesmium, but sequence data are necessary to determine its phylogenetic position.

Fig. 57. Eriocercosporella indica (IMI 302747). A-I. Observations in vivo. A. Leaf spot symptoms on the host. B, C. Conidiophores. D. Conidiogenous cells proliferating percurrently and conidia. E-H. Conidiophores and conidia. I. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Euryachora Fuckel, Jahrb. Nassauischen Vereins Naturk. 23-24: 220. 1870 (1869-1870).
Description (from Fuckel 1869): Ascomata pseudothecial. Asci obovoid, sessile, 8-spored. Ascospores obovoid, hyaline, 1-septate.

Type species: Euryachora sedi (Link) Fuckel [as 'sebi’] (三 Leptostroma sedi Link) (Austria, on Sedum maximum).

Note: The present genus is based on Euryachora sedi which is only known by the mycosphaerellalike sexual morph. It is currently considered to belong to Mycosphaerellaceae (Lumbsch \& Huhndorf 2010) but the type specimen could not be located and no DNA sequence data are available to determine its phylogenetic position.

Exopassalora Videira \& Crous
Notes: See treatment in text.

Exosporium Link

Note: See treatment in text.

Exutisphaerella Videira \& Crous

Note: See treatment in text.

Filiella Videira \& Crous

Note: See treatment in text.

Fulvia Cif.

Note: See treatment in text.
Fusicladiella Höhn., Ber. Deutsch. Bot. Ges. 37: 155. 1919.

Description (from Ellis 1971): Colonies suborbicular or angular. Mycelium immersed. Stroma sometimes present in the host cuticle. Setae and hyphopodia absent. Conidiophores macronematous, mononematous, crowded, unbranched, at first erect, straight or slightly curved, cylindrical, almost colourless, later strongly curved, brown or olivaceous brown, pale and thinwalled on one side, dark and thick-walled on the other, the curvature always taking place towards the thin-walled side, smooth or sometimes finely verruculose near the apex. Conidiogenous cells monoblastic, integrated, terminal, determinate, cylindrical, cicatrized, the single apical scar broad and flat. Conidia solitary, dry, aerogenous, straight or slightly curved, often cylindrical, rounded at the apex, truncate with a thin scar at the base, but sometimes clavate, ellipsoidal or obclavate, colourless to pale olive, smooth to finely verruculose, almost always 1 -septate, rarely 2 -septate.

Type species: Fusicladiella aronici (Sacc.) Höhn. (三 Fusicladium aronici Sacc.) = Fusicladiella melaena (Fuckel) S. Hughes) [syntypes, Italy, Vette di Feltre, on Doronicum grandiflorum (= Aronicum scorpioides), Aug. 1879, G. Bizzozero (BPI 423776, PAD); Mt. Baldo, Valle delle Pietre, on D. glaciale (= Aronicum doronicum), V. de Cesati, Rabenh., Fungi Eur. 2339 (numerous fungaria including HAL)].

Descriptions and illustrations: Hughes (1952), Deighton \& Pirozynski (1965), Ellis (1971), Arx (1983); present study (Fig. 58).

Materials examined: Switzerland, Graubünden, Fimbertal, Silvretta, on leaf of Doronicum grandiflorum, 5 Aug. 1967, J. Poelt \& M. Steiner, Reliquiae Petrakianae no. 2565 (IMI 371583). Russia, Moskovsky, St Petersburg, on leaves of Carduus crispus, 2007, V. Melnik. Exsicc. Mycoth. Petropol. 90, UPS:BOT:F-144284.

Notes: Fusicladiella is based on Fusicladiella aronici, which is only known by its hyphomycetous asexual morph. The phylogenetic position of this genus remains obscure due to absence of DNA data.

Fusoidiella Videira \& Crous

Note: See treatment in text.

Gillotia Sacc. \& Trotter, Syll. Fung. 22: 253. 1913.
Description (Saccardo \& Trotter 1913): Ascomata erumpent to superficial, subglobose. Asci saccate, subclavate, aparaphysate, stipitate, 8 -spored. Ascospores oblong, 3 -septate, straight to slightly curved, hyaline, becoming olivaceous brown.

Fig. 58. Fusicladiella aronici (IMI 371583). A-H. Observations in vivo. A, B. Leaf spot symptoms on the host. C. Conidiophores. D. Partial conidiophore and conidiogenous cell. E, F. Conidiogenous cells and conidia. G, H. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Type species: Gillotia orbicularis (Syd. \& P. Syd.) Sacc. \& Trotter (\equiv Diplotheca orbicularis Syd. \& P. Syd.) [Brazil, São Paulo, Campinas, on Cactus sp., Oct. 1896, F. Noack (holotype S F9063).

Notes: Gillotia is based on Gillotia orbicularis, which is mostly known by its sexual morph. The presence of an asteromella-like asexual morph is indicated by Hyde et al. (2010). The fact that this species produces 3 -septate ascospores that become olivaceous brown is suggesting it should not belong in the Mycosphaerellaceae. However, DNA is not available and hence its phylogenetic position remains obscure.

Gloeocercospora D.C. Bain \& Edgerton ex Deighton, Trans. Brit. Mycol. Soc. 57: 358. 1971.
Description (from Deighton 1971): Mycelium internal, composed of septate, branched hyphae. Stroma small or absent. Conidiomata sporodochial, suprastomatal, originating from hyphae which emerge through stomata, pulvinate, composed of more or less hyaline, repeatedly branched hyphae with short cells of which the terminal cells act as conidiogenous cells; conidiogenous loci terminal, minute, unthickened. Conidia hyaline, filiform, straight to curved, multi-septate, smooth, in mucoid mass.

Type species: Gloeocercospora sorghi D.C. Bain \& Edgerton ex Deighton [USA, Louisiana, on Sorghum vulgaris, Aug. 1943, D.C. Bain (holotype BPI 433333)].

Notes: Gloeocercospora was considered a synonym of Microdochium based on morphological characters (Braun 1995). The ITS sequence of CBS 131812 (unpublished, India, on Sorghum
vulgare, Nov. 1971, G.S. Rawla, culture CBS 131812 = IMI 165194) is identical to that of Gloeocercospora sorghi NBRC 7430, currently available in GenBank (ITS and partial LSU: accession LC063852). More data are necessary to resolve the phylogenetic position of this pathogen.

Gomphinaria Preuss, Linnaea 24: 130. 1851.
Description (adapted from Preuss 1851 and Saccardo 1886, as Acrotheca amoena): Caespituli effuse, brown. Conidiophores erect, subulate, simple, below densely septate and brown, above subhyaline, transparent and aseptate. Conidia terminal, subapically formed, oblong, hyaline, aseptate, base acute or subapiculate, hila hyaline.

Type species: Gomphinaria amoena Preuss [Germany, on Alnus glutinosa (holotype in B)].
Description and illustration: Preuss (1851).
Note: Arzanlou et al. (2007) examined the holotype of Gomphinaria amoena Preuss (B), and concluded that without fresh collections, it would not be possible to ascertain the phylogenetic position of this ramichloridium-like hyphomycete.

Graminopassalora U. Braun, C. Nakash., Videira \& Crous
Note: See treatment in text.
Haplodothis Höhn., Sitzungsber. Akad. Wiss. Wien, Math.- Naturwiss. Kl., Abt. 1120: 423 (45 repr.). 1911.

Type species: Haplodothis singularis (Henn.) Höhn. (三 Lizonia singularis Henn.) [Australia, Western Australia, on Leucopogon hispidus, L. Diels, No. 3055] = Mycosphaerella singularis (Henn.) Arx.

Notes: The genus Haplodothis is based on Haplodothis singularis, which is currently considered a synonym of Mycosphaerella singularis. The type specimen could not be located. Fresh collections and DNA sequence data are necessary to determine if Haplodothis is a real synonym of Mycosphaerella, which is now treated as Ramularia (Videira et al. 2015a, b, 2016).

Haplographium Berk. \& Broome, Ann. Mag. Nat. Hist., Ser. 3, 3: 360 (1859).
Type species: Haplographium delicatum Berk. \& Broome = Dematioscypha dematiicola (Berk. \& Broome) Svrček 1977

Description and illustration: Ellis (1971), Seifert et al. (2011).
Notes: The genus Haplographium is based on H. delicatum, a hyphomycetous species with a link to the sexual morph Hyaloscypha dematiicola (Berk. \& Broome) Nannf. (Ellis 1971), which is a current synonym of Dematioscypha dematiicola (Berk. \& Broome) Svrček. The recent work of Han et al. (2014) places a representative strain of Dematioscypha dematiicola
(TNS-F17834) in the Leotiomycetes (Helotiales). The work of Crous et al. (2009a) summarizes the taxonomic history of Lauriomyces and Haplographium and shows that the available strains of Haplographium catenulatum (CBS 196.73, CBS 482.67, CBS 739.68) cluster in Hyaloscyphaceae (Leotiomycetes) and apart from the available strains of Lauriomyces bellulus (CBS 517.93) and Lauriomyces heliocephalus (CBS 112054), which are considered to be incertae sedis.

Hawksworthiana U. Braun, Int. J. Mycol. Lichenol. 3: 276. 1988.
Description (from Videira et al. 2016): Lichenicolous, forming gall-like deformations. Mycelium consisting of hyaline, septate, sparsely branched, thin-walled hyphae. Conidiophores reduced to the conidiogenous cells, erumpent, usually ampulliform but sometimes subcylindrical, aseptate, hyaline, thin-walled, mono- or polyblastic, sympodial, conidiogenous loci conspicuous, thickened and darkened. Conidia formed singly, acrogenous, oblong-clavate to subcylindrical, hyaline, thin-walled, smooth, aseptate or 1-septate, hilum conspicuous, thickened and darkened.

Type species: Hawksworthiana peltigericola (D. Hawksw.) U. Braun (\equiv Ramularia peltigericola D. Hawskw.) [UK, Scotland, Isle of Mull, Killiemore, on thallus of Peltigera polydactylon, 16 Jun. 1979, Clark (holotype IMI 239715a).

Description and illustration: Braun et al. (1998), Videira et al. (2016).
Notes: Hawksworthiana differs from Ramularia by its lichenicolous habit and some morphological features. Although fresh material has been available, all attempts to grow this fungus in culture have thus far been unsuccessful and no sequence data are available.

Helicomina L.S. Olive, Mycologia 40: 16. 1948.
Type species: Helicomina caperoniae L.S. Olive [USA, Louisiana, Baton Rouge, on Caperonia castaneifolia, 2 Oct. 1946, Q.L. Holdman (holotype BPI 447607)] = Pseudocercospora caperoniae (L.S. Olive) Deighton.

Descriptions and illustrations: Olive (1948), Ellis (1971), Deighton (1976a).
Notes: This genus is currently considered a synonym of Pseudocercospora based on its morphological characters (Crous et al. 2013a). However, the type species needs to be recollected to confirm the generic synonymy based on DNA data.

Hoornsmania Crous, Fungal Planet 11: 1. 2007.
Description (from Crous 2007): Hyphomycetes. Conidiophores solitary, brown, arising from superficial hyphae, septate. Conidiogenous cells brown, smooth to finely verruculose, elongate-ellipsoid to fusoid, with 1-2 truncate loci, somewhat thickened and darkened, but not prominently refractive. Conidia brown, smooth to finely verruculose, broadly ellipsoidal to somewhat fusoidal, occurring in branched, acropetal chains; scars somewhat darkened, thickened, but not refractive; hyperparasitic on Neonectria ditissima.

Type species: Hoornsmania pyrina Crous [Netherlands, Utrecht Prov., Bilthoven, on perithecia of Neonectria ditissima on twigs of Pyrus malus, Jan. 2005, P.W. Crous (holotype CBS H-19769)].

Description and illustration: Crous (2007).
Note: All attempts to cultivate this species, or isolate DNA from freshly collected material, have thus far been unsuccessful.

Hyalodictys Subram., Proc. Indian Acad. Sci., Pl. Sci.: 8. 1962.
Type species: Hyalodictys degenerans (Syd. \& P. Syd.) Subram. (三 Clasterosporium degenerans Syd. \& P. Syd.) = Miuraea degenerans (Syd. \& P. Syd.) Hara.

Description and illustration: Braun (1995, as Miuraea degenerans).
Notes: The genus Hyalodyctis, based on Hyalodyctis degenerans, is currently considered a synonym of Miuraea based on morphological characters. See treatment of Miuraea in text and Braun (1995).

Hyalocercosporidium Videira \& Crous

Note: See treatment in text.
Hyalodothis Pat. \& Har., Bull. Soc. Mycol. France 9: 210. 1893.
Description (adapted from Saccardo 1895): Glumicolous. Stromata superficial, encrusting ovaria and fruits, black, effuse-pulvinate, coriaceous-horny or subcarbonaceous, sclerotiform, with numerous immersed little loci. Asci 8 -spored. Ascospores oblong, aseptate, hyaline.

Type species: Hyalodothis clavus Pat. \& Har. [Democratic Republic of the Congo, on culms of Poaceae].

Descriptions and illustrations: Arnold (1967), Patouillard \& Hariot (1893).
Notes: Arnold (1967) found that the type specimen contained two distinct species of fungi that were used to generate the description of Hyalodothis, and thus recommended that the genus be considered a nomen confusum, which is currently not part of the ICN. Hence, a lectotypification confining this name to one of the included elements is necessary to clarify the identity of this genus. According to Arnold (1967) the type specimen is part of Patouillard collection (no.597) in FH, but it could not be traced using the online catalog.

Hyalozasmidium U. Braun, C. Nakash., Videira \& Crous

Note: See treatment in text.

Isariella Henn., Hedwigia 48: 19. 1908.
Description (adapted from Hennings 1908): "Sporodochia" (fascicles/coremia) parasitic, superficial, fasciculate-fasciate, waxy, composed of hyaline, septate, loosely united, converging "hyphae" (conidiophores). Conidia ellipsoid, aseptate, hyaline.

Type species: Isariella auerswaldiae Henn. [Brazil, São Paulo, Horto Botanico, on stromata of Auerswaldia puttemansia on leaves of Lauraceae, 1902, Puttemans, No. 571 (holotype S F40445)]

Description and illustrations: Hennings (1908), Seifert et al. (2011).
Notes: The phylogenetic position of Isariella is unknown and its two species are only known by their hyphomycetous asexual morph (Seifert et al. 2011). Sequence data are necessary to determine its phylogenetic position.

Isariopsella Höhn., in Weese, Mitt. Bot. Inst. Tech. Hochsch. Wien 6: 68. 1929.
Type species: Isariopsella vossiana (Thüm.) Höhn. (三 Ramularia vossiana Thüm.) [Slovenia, Ljubljana (Laibach), on Cirsium oleraceum, Oct. 1879, W. Voss, Thüm., Mycoth. Univ. 1769 (lectotype HAL) = Phacellium vossianum (Thüm.) U. Braun.

Description and illustration: Braun (1998, as Phacellium vossianum).
Notes: Isariopsella is currently considered a synonym of Phacellium. If Phacellium is synonymous with Ramularia as is expected, the older name Ramularia vossiana will be used for this species. Sequence data are necessary to confirm this hypothesis.

Isariopsis Fresen., Beitr. Mykol. 3: 87. 1863.
Type species: Isariopsis pusilla Fresen. [Germany, on Cerastium holosteoides] = Phacellium alborosellum (Desm.) U. Braun.

Description and illustration: Braun (1998, as Phacellium alborosellum).
Notes: Isariopsis is currently considered a synonym of Phacellium. If Phacellium is synonymous with Ramularia as is expected, the name Ramularia alborosella (Desm.) Gjaerum would be available for the type species of Isariopsis as well as Phacellium (see Braun 1998). Sequence data are necessary to confirm this hypothesis.

Jaczewskiella Murashk., Mater. Mikol. Fitopatol. Rossii 5(2): 5. 1926.
Description (adopted from Shkarupa 1992 and Mel’nik \& Popushoj 1992): Saprobic. Conidiomata stromatic, cupulate, with a more or less well-developed stalk, sometimes sessile, large, scattered, composed of light brown to brown prismatic or oblong cells, darker and thickwalled towards the periphery. Conidiophores lacking. Conidiogenous cells lining the whole inner surface of the conidiomata, holoblastic, annellidic, indeterminate, discrete, cylindrical,
thin-walled, smooth, light brown, with a single percurrent proliferation, margin uneven, fimbriate. Conidia solitary, clavate, obclavate, broad ellipsoid, smooth, with transverse and oblique to vertical septa, constricted at transverse septa, light brown, transparent.

Type species: Jaczewskiella altajensis Murashk. [Russia, Altai, valley of the river Dzhelo, 2200 m alt, on dead branches of Comarum salessowianum, 19 July 1925, S. Antonov (holotype LEP)].

Description and illustration: Shkarupa (1992).
Notes: Jaczewskiella is a coelomycetous genus that was considered a synonym of Stigmina by Sutton (1977). Shkarupa (1992) and Braun \& Mel'nik (1996) considered Jaczewskiella to be an independent genus based on cupulate conidiomata and brown phragmo- to dictyoconidia. This genus is insufficiently known, and will have to be recollected and sequenced in order to determine its true status.

Janetia M.B. Ellis, More Dematiaceous Hyphomycetes (Kew): 33. 1976.
Description (from Ellis 1976): Colonies effuse, thin, dark blackish brown. Mycelium superficial composed of a network of branched and anastomosing septate, olivaceous or dark brown, smooth hyphae. Stroma none; setae and hyphopodia absent. Conidiophores micronematous, mononematous. Conidiogenous cells integrated, mostly intercalary, polyblastic, denticulate; denticles large, flat-topped. Conidia solitary, dry, obclavate, multiseptate, brown, smooth.

Type species: Janetia euphorbiae M.B. Ellis [Tanzania, Ukiriguru Hill, on Euphorbia tirucalli, 13 Nov. 1972, D.L. Ebbels (holotype IMI 163941)].

Description and illustration: Ellis (1976), Seifert et al. (2011).
Notes: The genus Janetia is characterised by the production of polyblastic, pigmented and denticulate conidiogenous cells that give rise to phragmosporous, disto- or eu-septate conidia. The LSU sequences of two recently described species, Janetia wilsonii and Janetia dimorphandrae-mollis, place the genus in the Mycosphaerellaceae, in close association with species of the Zasmidium complex (Silva et al. 2016). However, until sequences from the type species Janetia euphorbia are obtained, the phylogenetic placement of this genus in the Mycosphaerelaceae is only tentative.

Jahniella Petr., Ann Mycol. 18(4/6): 123. 1921. 1920.
Description (from Quaedvlieg et al. 2013, adapted from Sutton 1980): Mycelium branched, immersed, septate, brown. Conidiomata pycnidial, superficial on epidermis, immersed, separate, globose, papillate, dark brown, thick-walled, sclerenchymatic; wall consisting of an outer layer of dark brown, thick-walled textura angularis, a middle layer of 8 cells thick, of hyaline to pale brown, thickwalled cells, and an inner layer of thin-walled, hyaline, irregular cells. Ostiole single, circular, with a distinct channel and hyaline periphysoid cells. Conidiophores reduced to conidiogenous cells. Conidiogenous cells holoblastic, determinate, discrete, hyaline, ampulliform, lining the wall of the pycnidium. Conidia straight or slightly
curved, hyaline, thin-walled, smooth, 3-4-euseptate, eguttulate, truncate at the base, slightly tapered to the apex.

Type species: Jahniella bohemica Petr., [Czech Republic, Bohemia, on stems of Scrophularia nodosa, 18 Mar. 1916, J. Jahn (isotype K(M) 180917 (slides) ex BPI).

Description and illustration: Quaedvlieg et al. (2013).
Notes: The type species needs to be recollected in order to determine the phylogenetic position of the genus. See Quaedvlieg et al. (2013).

Laocoön J.C. David, Mycol. Pap. 172: 116. 1997.
Description (from David 1997): Hyphomycetous, phytopathogenic. Mycelium superficial, hyphae creeping, septate, branched, pigmented, smooth. Conidiophores arising from creeping hyphae, macronematous, mononematous, simple, rarely branched, straight to flexuous, septate, densely verruculose, not spirally twisted. Conidiogenous cells integrated, terminal, multilocal, sympodial; conidiogenous loci broad, aggregated, cercospora-like, thickened and darkened, flattened with a rough surface, raised at the edge and with a conspicuous central dome. Conidia solitary, consisting of only one filament, transversely euseptate, pustulate, not proliferating, thin-walled, pigmented; conidial secession schizolytic.

Type species: Laocoön paradoxus (Syd. \& P. Syd.) J.C. David (三 Heterosporium paradoxum Syd. \& P. Syd.).

Descriptions and illustrations: David (1997), Braun (1998), Seifert et al. (2011); present work (Fig. 59).

Materials examined: Colombia, Antioquia, Guaca, on Calea glomerata, 12 Sep. 1910, E. Mayor 346 (holotype S F40564, isotype IMI 375866).

Note: Laocoön is a hyphomycetous genus that includes a single species thus far only known from the type locality (Seifert et al. 2011). Sequence data are necessary to determine its phylogenetic position.

Lecanosticta Syd.

Notes: See treatment in text.
Lecanostictopsis B. Sutton \& Crous, Mycol. Res. 101: 215. 1997.
Description (from Sutton \& Crous 1997): Mycelium immersed, intercellular, branched, septate, dark to reddish brown. Conidiomata epidermal to subepidermal, erumpent, eustromatic, acervular to sporodochial, composed of thick-walled, dark to reddish brown textura angularis. Conidiophores dark to reddish brown, coarsely verrucose, cylindrical, unbranched, septate, formed from the upper cells of the conidiomata. Conidiogenous cells integrated, dark to reddish brown, coarsely verrucose to tuberculate, cylindrical, with several percurrent enteroblastic

Fig. 59. Laocoön paradoxus (IMI 375866). A-D. Observations in vivo. A. Leaf spot symptoms on the host. B-D. Conidiophores, conidiogenous cells and conidia. Scale bars $=10 \mu \mathrm{~m}$.
proliferations. Conidia holoblastic, dark to reddish brown, coarsely verrucose to tuberculate, with 0 - to several eusepta, straight to curved, obtuse or acute at apex, truncate at base, cylindrical to fusiform. Conidiogenesis: a succession of conidia is formed by holoblastic conidial ontogeny, delimitation by a transverse septum, schizolytic secession, replacement wall building apex leading to enteroblastic percurrent conidiogenous cell proliferation followed by holoblastic conidial ontogeny, with successive conidia seceding at progressively higher levels.

Type species: Lecanostictopsis kamatii (Ullasa) B. Sutton \& Crous (\equiv Stigmina kamatii Ullasa) [India, Mysore State, Bettigeri, on leaves of Syzygium aromaticum (type IMI 147817)].

Descriptions and illustrations: Sutton \& Crous (1997), Seifert et al. (2011).
Notes: All attempts to culture species of Lecanostictopsis have thus far proven unsuccessful, even from freshly collected material, therefore its phylogenetic position remains unknown. The taxonomic history of this genus is detailed by Sutton \& Crous (1997).

Lembosiopsis Theiss., Ann. Mycol. 15: 422. 1918.
Description (from Hongsanan et al. 2014): Ascomata solitary to clustered, subcuticular, circular, slightly irregular from above, black, shiny, with a central rounded ostiole. Hamathecium lacking pseudoparaphyses. Asci 8 -spored, bitunicate, obclavate, tapering towards the apex, apedicellate or with short pedicel, apically rounded with a small ocular chamber. Ascospores $2-3$-seriate in the ascus, narrowly ovoid, tapering from the apex to the base, 1 -septate slightly above the centre, slightly constricted at the septum, hyaline, surrounded by thin gelatinous sheath, smoothwalled.

Type species: Lembosiopsis andromedae (Tracy \& Earle) Theiss. (= Lembosia andromedae Tracy \& Earle) [USA, Mississippi, Biloxi, on leaves of Andromeda nitida, 26 May 1895, S.M. Tracy and F.S Earle 4005 (holotype BPI 647155]

Description and illustration: Hongsanan et al. (2014).

Notes: Based on the literature, Lumbsch \& Huhndorf(2010) place Lembosiopsis in Asterinaceae, but in a recent review of Asterinales Hongsanan et al. (2014) transferred the genus to the Mycosphaerellaceae based on morphological characters (subcuticular ascomata with a rounded central ostiole, without pseudoparaphyses, and procuding obclavate asci). The phylogenetic placement of this genus is uncertain as DNA sequence data are not available.

Lophiosphaerella Hara, Byogaichu-Hoten (Manual of Pests and Diseases): 778. 1948.
Description (from Li et al. 2014): Parasitic on terrestrial plants, forming conspicuous small, rounded, pale grey leaf spots on both sides of the leaf. Ascomata solitary, scattered, gregarious or confluent, globose or subglobose, semi-immersed or immersed, ostiolate. Ostiole centrally located. Peridium composed of brown to black, thick-walled cells arranged as textura angularis. Pseudoparaphyses absent. Asci 8 -spored, bitunicate, fissitunicate, clavate, oblong or elongate, with an ocular chamber. Ascospores multi-seriate or crowded, irregularly arranged in the asci, oblong to fusiform or clavate, 1 -septate, slightly constricted at the septum, hyaline, smooth-walled.

Type species: Lophiosphaerella euryae (Syd. \& P. Syd.) Hara (\equiv Aulographum euryae Syd. \& P. Syd.) [Japan, Tokyo, on Eurya chinensis, Jun. 1899, M. Shirai (syntypes S F12246, S F171544)].

Description and illustration: Li et al. (2014).
Notes: Lophiosphaerella was considered incertae sedis by Lumbsch \& Huhndorf (2010) but was transferred to Mycosphaerellaceae by Li et al. (2014) based on morphological characters. This genus is insufficiently known, and the type species needs to be recollected and subjected to molecular analysis.

Marcosia Syd. \& P. Syd., Ann. Mycol.14: 96. 1916.
Type species: Marcosia ulei Syd. \& P. Syd. [Brazil, Brazilia, on leaves of Cynometra bauhiniifolia] \equiv Stigmina ulei (Syd. \& P. Syd.) B. Sutton.

Description: Sydow \& Sydow (1916).
Notes: Marcosia is based on Marcosia ulei and is considered a synonym of Stigmina ulei. The genus Stigmina is currently considered a synonym of Pseudocercospora (Crous et al. 2013a). However, since no molecular data are available for this species, the current name remains in Stigmina.

Madagascaromyces U. Braun, C. Nakash., Videira \& Crous
Note: See treatment in text.
Megaloseptoria Naumov, Bolêz. Rast. 14: 144. 1925.
Description (from Quaedvlieg et al. 2013, adapted from Sutton 1980): Mycelium immersed, branched, septate, brown. Conidiomata pycnidial, separate, globose, slightly papillate, dark
brown to black, superficial, sessile, often aggregated in groups, unilocular, thick-walled; wall of several cell layers of brown textura angularis, more darkly pigmented on the outside. Ostiole single, circular. Conidiophores hyaline, branched, septate (mainly at the base), smooth, straight or irregular, formed from the inner cells of the pycnidial wall. Conidiogenous cells enteroblastic, determinate, discrete or integrated, doliiform, ampulliform or irregularly cylindrical, hyaline, smooth, collarette evident, channel wide, periclinal thickening present. Conidia hyaline to pale brown with several transverse eusepta, continuous, tapered near the obtuse apex and truncate base, thin-walled, smooth, cylindrical, straight or slightly curved, often with 2 guttules in each cell.

Type species: Megaloseptoria mirabilis Naumov [Russia, on Picea pungens].
Description and illustration: Quaedvlieg et al. (2013)
Notes: A specimen of Megaloseptoria mirabilis collected by Naomov in Russia was located in BPI (BPI 389179), but was not observed. See also Quaedvlieg et al. (2013).

Melanodothis R.H. Arnold, Canad. J. Bot. 49: 2188. 1972 (1971).
Description (adapted from Arnold 1971): Ascostromata arising from a hypostroma formed within the ovary and perigynum, black, subglobose, multilocular, wall composed of a textura angularis with pseudoparenchymatic cells. Locules in a single layer beneath the surface of the stroma, each with an ostiole. Microconidial locules are formed in the early stages of ascostromata. Microconidia (spermatia) narrowly oblong, hyaline, formed on short projections on the hyaline cells lining the microconidial cavity. Asci oblong to rarely oblong-pyriform, aparaphysate, sessile, 8 spored, arising from a basal cushion of pseudoparenchymatic cells. Ascospores hyaline, one celled, thick-walled, narrowly ellipsoidal, with ends sometimes narrowly and abruptly tapered. Conidiophores indeterminate. Conidiogenous cells holoblastic. Macroconidia ramularia-like, hyaline, smooth, catenulate, branched or unbranched, cylindrical, aseptate or 1 septate, with a disc-like hilum at each end. Blastoconidia formed singly at the apex of hyphae in the periphery of the colony or on the long cylindrical conidia as secondary conidia, one celled, hyaline, smooth, ovoid.

Type species: Melanodothis caricis R.H. Arnold [Canada, on flowers of Carex aquatilis var. dives ($=$ C. sitchensis), (holotype DAOM 116433, ex-type culture CBS $860.72=$ ATCC 24309)].

Description and illustration: Arnold (1971).
Notes: The ex-type culture of Melanodothis caricis clusters in Cladosporiaceae, suggesting that Melanodothis is an older name for Davidiella. However, the name presently being used for this genus is that of the asexual morph, Cladosporium (Bensch et al. 2012). Arnold (1971) reported the presence of an ascostroma with pseudothecial locules and this could be consistent with the variation observed in Davidiella (see Schubert et al. 2007). Furthermore, he also reported ramularia-like conidia, which could be Cladosporium, which at times mutates, and produces hyaline conidia with darkened hila only. Furthermore, the relation of this species to the North American Ramularia caricis U. Braun (Braun 1998) has to be proven.

Microcyclosporella Jana Frank, Schroers \& Crous
Note: See treatment in text.
Microcyclus Sacc. et al., Ann. Mycol. 2: 165. 1904.
Description (from Monkai et al. 2013): Biotrophic on leaves and stems. Ascostromata pulvinate, irregularly shaped, developing from central basal hypostroma, superficial, multilocular, composed of textura angularis, thick-walled, reddish brown. Ostiole papillate, periphysate. Asci 8 -spored, thick-walled, bitunicate, fissitunicate, cylindrical to clavate, with an ocular chamber, with a long pedicel. Ascospores 1-3-seriate, 1-septate, obovoid, upper cell shorter and wider than lower, not or slightly constricted at the septum, smooth wall, granular, hyaline.

Type species: Microcyclus angolensis Sacc. et al. [Angola, on living leaves of Millettia thonningii, Welwitsch (holotype S F8592, isotype S F8593)].

Notes: Monkai et al. (2013) placed the genus in Mycosphaerellaceae, and even though molecular data are lacking, this assumption seems likely. The genus Microcyclus includes an important pathogen on Hevea, Microcyclus ulei, that was recently recollected and transferred to Pseudocercospora based on morphological and molecular data (Hora Júnior et al. 2014).

Micronectriella Höhn., Sitzungsber. Kaiserl. Akad. Wiss. Wien, Math.-Naturwiss. Cl., Abt. 1, 115: 1194. 1906.

Type species: Micronectriella pterocarpi (Racib.) Höhn. (三 Micronectria pterocarpi Racib.) [Indonesia, Java, on leaves of Pterocarpus indicus] = Sphaerulina pterocarpi (Racib.) Arx \& E. Müll.

Description and illustration: Arx \& Müller (1975).
Notes: The genus Sphaerulina was recently shown to be distinct from others in the Mycosphaerellaceae (Quaedvlieg et al. 2013), but fresh collections are required to determine the phylogenetic position of Micronectriella. The type specimen could not be located.

Micronematomyces U. Braun, C. Nakash., Videira \& Crous

Note: See treatment in text.

Miuraea Hara

Note: See treatment in text.

Mycodiella Crous

Note: See treatment in text.

Mycoporis Clem., The Genera of Fungi: 50, 173. 1909.
Description (from Thambugala et al. 2014): Parasitic on leaves. Ascomata appearing as black spots on the host surface, gregarious, scattered, superficial, very easily removed from the host surface, globose, uniloculate, ostiolate. Peridium one-layered, composed of dark to brown cells of textura angularis. Haemathecium lacking pseudoparaphyses. Asci eight-spored, bitunicate, broadly cylindrical to fusiform, sessile, with a large ocular chamber. Ascospores overlapping, uniseriate at the apex to tri-seriate near the base, hyaline, 5-septate, strongly constricted at the primary septum, broadly fusiform to cylindrical with broadly rounded ends.

Type species: Mycoporis perexigua (Müll. Arg.) Clem. (三 Mycoporellum perexiguum Müll. Arg.) [Australia, Queensland, Brisbane, Bailey, on bark (holotype G 00110864)].

Description and illustration: Thambugala et al. (2014).
Notes: Thambugala et al. (2014) allocated the genus to Mycosphaerellaceae based on its ascomatal morphology. Since there are no available DNA sequences the phylogenetic position of Mycoporis remains unresolved.

Mycosphaerelloides Videira \& Crous
Note: See treatment in text.
Mycovellosiella Rangel
Note: See treatment in text.
Neoceratosperma Crous \& Cheew.
Note: See treatment in text.
Neocercospora M. Bakhshi, Arzanlou, Babai-ahari \& Crous
Note: See treatment in text.
Neocercosporidium Videira \& Crous
Note: See treatment in text.
Neodeightoniella Crous \& W.J. Swart
Note: See treatment in text.
Neomycosphaerella Crous
Note: See treatment in text.

Neoovularia U. Braun, Nova Hedwigia 54: 473. 1992.
Description (from Videira et al. 2016, adapted from Braun 1998): Phytopathogenic, causing leaf spots. Caespituli amphigenous, whitish to pink or ochraceous. Mycelium consisting of hyaline to faintly pigmented, septate, branched, thin-walled hyphae forming well-developed stromata. Conidiophores arising from stromata, emerging through stomata or erumpent through the cuticle, often forming sporodochia, subcylindrical, subclavate, simple, thin-walled, smooth, hyaline or lightly pigmented, continuous or septate. Conidiogenous cells integrated, terminal, straight to moderately geniculate-sinuous, polyblastic and sympodial, conidiogenous loci numerous, conspicuous, bulging, papilla-like, but not thickened and darkened, at most slightly refractive. Conidia formed singly, subglobose, obovoid, ellipsoid, aseptate, hyaline to faintly pigmented, thin-walled, smooth to verruculose, basal hilum not thickened or darkened; conidial secession schizolytic.

Type species: Neoovularia nomuriana (Sacc.) U. Braun (三 Tuberculina nomuriana Sacc.) [Japan, Kikotaro, on Astragalus sinicus, 1903, Nomura (holotype PAD)].

Descriptions and illustrations: Braun (1998), Videira et al. (2016).
Notes: The phylogenetic position of Neoovularia remains unresolved since no DNA from the type species is available. See treatment in Braun (1998) and Videira et al. (2016).

Neopenidiella Quaedvlieg \& Crous
Note: See treatment in text.

Neophloeospora Videira \& Crous

Note: See treatment in text.

Neopseudocercospora Crous

Note: See treatment in text.

Neopseudocercosporella Videira \& Crous

Note: See treatment in text and Videira et al. (2016).
Neoramularia U. Braun, Nova Hedwigia 53: 291. 1991.
Description (from Videira et al. 2016, adapted from Braun 1998): Phytopathogenic, causing leaf spots. Mycelium consisting of hyaline or subhyaline, septate, branched, thin-walled hyphae forming stromata or not. Conidiophores macronematous, usually in large fascicles, sometimes forming sporodochial and basistromatic conidiomata, emerging through stomata or erumpent through the cuticle, straight, subcylindrical to geniculate-sinuous, simple, hyaline or faintly pigmented, continuous or septate, thin-walled, smooth or occasionally rough. Conidiogenous cells integrated, terminal, polyblastic, percurrent and sympodial, conidiogenous loci inconspicuous,
not thickened or darkened. Conidia solitary or catenate, ellipsoid-ovoid, subcylindrical or fusoid, hyaline or slightly pigmented, aseptate to 3-septate, thin-walled, smooth or almost so, hila unthickened and hyaline, conidial secession schizolytic.

Type species: Neoramularia eurotiae (Gamalizk.) U. Braun (\equiv Ramularia eurotiae Gamalizk.) [Kyrgyzstan, Central Tien-Shan, on Krascheninnikovia ceratoides, 5 Jun. 1958, Gamalitzkaya (holotype LE 41968] = Neoramularia kochiae (Woron.) U. Braun (Azerbeijan, on Kochia sp.).

Description and illustration: Braun (1991), Videira et al. (2016).
Notes: Neoramularia is ramularia-like but differs in having unthickened and not darkened conidiogenous loci and conidial hila, i.e. characteristic Ramularia loci and hila are lacking. Cultures from fresh specimens must be obtained in order to determine the phylogenetic position of this genus based on DNA sequences. See treatment in Videira et al. (2016).

Neoseptoria Quaedvlieg, Verkley \& Crous
Note: See treatment in text.
Nothopassalora U. Braun, C. Nakash., Videira \& Crous
Note: See treatment in text.
Nothopericoniella Videira \& Crous
Note: See treatment in text.
Nothophaeocryptopus Videira, C. Nakash., U. Braun, Crous
Note: See treatment in text.
Oedothea Syd., Ann. Mycol. 28: 202. 1930.
Description (adapted from Sydow 1930): Stromata on leaf veins, forming small gall-like swellings, subepidermal, erumpent through longitudinal fissures, exposed surface dull blackbrown, finely pulverulent to floccose by abundant superficial conidia, intramatrical stromata composed of brown hypertrophic cells of the host tissue, interrupted by small to larger cavities, and sparingly developed filamentous, hyaline hyphae. Conidia in small to larger aggregations, broad ovate, ellipsoid to subglobose, with a single median septum, barely constricted, dark brown but transparent.

Type species: Oedothea vismiae Syd.
Description and illustrations: Sydow (1930), Seifert et al. (2011); present study (Fig. 60).
Materials examined: Venezuela, Los Naranjos pr. Puerto la Cruz, on leaves of Vismia hamanii, 7 Jan. 1928, H. Sydow 183 (holotype S F42267).

Fig. 60. Oedothea vismiae (NY 00945740). A-E. Observations in vivo. A. Leaf spot symptoms on the host. B-D. Conidiophores and conidia. E. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Notes: The phylogenetic position of Oedothea is unknown and only its hyphomycetous asexual morph is known (Seifert et al. 2011). Sequence data are necessary to determine its phylogenetic position.

Ophiocarpella Theiss. \& Syd., Ann. Mycol. 13: 644. 1915.
Description (adapted from Theiss \& Sydow 1915): Like Montagnella, but paraphyses lacking, ascospores colourless, filiform, septate. Stromata hypophyllous, black, irregular, with dense protuberant loculi, half immersed in the host tissue, connected by vertical hyphal strands, apex free, protuberant through the epidermis. Hyphae greyish brown, with swollen cells, several layers around the loculi forming a kind of wall, dense between loculi, sparingly developed below, loculi globose, non-ostiolate. Asci fasciculate, paraphyses lacking, 8 -spored. Ascospores polystichous, colourless, filiform, with a distinct median septum, possibly with several septa when mature.

Type species: Ophiocarpella tarda (Harkn.) Theiss. \& Syd. (三 Ophiodothis tarda Harkn.) (USA, California, San Francisco, on fruit of Rhus diversiloba, H.W. Harkness (holotype BPI 798419)] \equiv Sphaerulina tarda (Harkn.) M.E. Barr.

Description (no illustration): Theissen \& Sydow (1915).
Notes: Based on morphology, Ophiocarpella was considered as a synonym of Sphaerulina. Fresh collections are required to determine the phylogenetic position of Ophiocarpella tarda.

Ophiocladium Cavara, Z. Pflanzenkrankh. 3: 26. 1893.
Type species: Ophiocladium hordei Cavara [Cavara, Z. Pflanzenkrankh. 3: Plate (Tab.) I, Fig. 9, 1893 (lectotype designated by Braun 2017)] [Austria, Reichersberg am Inn, on Hordeum vulgare (epitype designated by Braun 2017, CBS H-22641, culture ex-epitype CBS 101180)] \equiv Ramularia collo-cygni B. Sutton \& J.M. Waller.

Description and illustration: See Braun (1998, as Ramularia collo-cygni).

Notes: See treatment in Videira et al. (2016) as Ramularia collo-cygni. The typification of the type species has recently been clarified by Braun (2017).

Oreophylla Cif., Sydowia 8: 253. 1954.
Description (adapted from Ciferi 1954): Biotrophic. Mycelium internal, superficial hyphae lacking. Conidiophores in fascicles, arising from an immersed pseudostromatic base, erect, brown, unbranched, straight to tortuose, septate. Conidia solitary, acrogenous, cylindricalattenuated, transversely pluriseptate, straight to curved, hyaline.

Type species: Oreophylla angelae-mariae Cif. (as 'angelaemariae') [Dominican Republic, Hato del Yaque, on leaves of Gliricidia sepium] = Passalora gliricidiasis (Gonz. Frag. \& Cif.) R.F. Castañeda \& U. Braun.

Descriptions and illustrations: Ciferri (1954), Ellis (1976, as Cercosporidium gliricidiasis).
Notes: Deighton (in Ellis 1976) considered Oreophylla angelaemariae a synonym of Sirosporium gliricidiae (Syd.) Deighton (三 Passalora gliricidiae (Syd.) U. Braun \& Crous), but Braun et al. (1999) stated that this species has to be reduced to synonymy with Passalora gliricidiasis. Oreophylla was treated as synonym of Passalora s. lat. by Crous \& Braun (2003), but as DNA of Passalora gliricidiasis (= Oreophylla angelae-mariae) is not available, the phylogenetic position of Oreophylla remains unresolved.

Ormathodium Syd., Ann. Mycol. 26: 138. 1928.
Description (adapted from Sydow 1928): Leaf spots lacking. Caespituli hypophyllous, regularly spread, loose to dense, mostly on tips of stellate hairs, rarely on the epidermis. Conidiomata superficial, 30-130 $\mu \mathrm{m}$ diam, globose to hemispherical, more rarely irregular, with a basal dense plectenchymatous stroma composed of yellow to olivaceous brown hyphae, equipped with short protuberant free ends [conidiophores] giving rise to simple or dichotomously branched conidial chains. Conidia oblong, often almost cylindrical, more rarely fusiform, olivaceous brown, transversely 1-2-septate, not or only slightly constricted at the septa.

Type species: Ormathodium styracis Syd. [Costa Rica, San José, Rio Torres, on leaves of Styrax argenteus].

Description (no illustration): Sydow (1928).
Notes: The genus Ormathodium was considered a synonym of Mycovellosiella by Muntañola (1960), and subsequently placed in synonymy of Passalora by Crous \& Braun (2003). Unfortunatelly, the type material of this genus has not been preserved (Crous \& Braun 2003), and this synonymy remains unconfirmed.

Ovosphaerella Laib., Centralbl. Bakteriol., 2. Abth., 55: 293. 1922.
Description (based on Laibach 1922): Introduced for a mycosphaerella-like sexual morph with an Ovularia asexual morph.

Type species: Ovosphaerella lapathi Laib. [Germany, on Rumex sp.) \equiv Mycosphaerella lapathi (Laib.) Petr.

Description: Arx (1983, as Mycosphaerella lapathi).
Notes: Laibach (1922) introduced Ovosphaerella as genus for the mycosphaerella-like sexual stage of Ovularia obliqua (current name Ramularia rubella, see Braun 1998). Ramularia obovata, another synonym of Ramularia rubella, was linked to Mycosphaerella lapathi by Arx (1983). The type material of Ovosphaerella lapathi is probably missing (Aptroot 2006). Fresh collections are required to confirm this relationship, and clarify the phylogenetic position of Ovosphaerella. In case that the connection between these sexual and asexual morphs on Rumex were correct, Ovosphaerella would be a synonym of Ramularia.

Ovularia Sacc., Michelia 2(no. 6): 17. 1880.
Type species: Ovularia obovata (Fuckel) Sacc. (\equiv Ramularia obovata Fuckel) [Germany, Erbach, on Rumex crispus, Fuckel, Fungi Rhen. Exs. 1635 (lectotype HAL)] = Ramularia rubella (Bonord.) Nannf.

Description: Braun (1998, as Ramularia rubella).

Note: See Videira et al. (2016) for neotypification details of Ramularia rubella.

Pachyramichloridium Videira \& Crous

Note: See treatment in text.

Pallidocercospora Crous

Note: See treatment in text.

Pantospora Cif.

Note: See treatment in text.
Paracercospora Deighton
Note: See treatment in text.
Paracercosporidium Videira \& Crous
Note: See treatment in text.

Paramycosphaerella Crous \& Jol. Roux
Note: See treatment in text.

Paramycovellosiella Videira, H.D. Shin \& Crous

Note: See treatment in text.
Parapallidocercospora Videira, Crous, U. Braun, C. Nakash.
Note: See treatment in text.
Parastenella J.C. David, Mycol. Res. 95: 124. 1991.
Description (from Braun et al. 2013): Dematiaceous hyphomycete genus resembling Zasmidium (in vivo with superficial mycelium, hyphae, conidiophores and solitary conidia pigmented, distinctly verruculose to verrucose), but the conidiogenous cells are terminal and intercalary, denticulate, with lateral short peglike protuberances, conidiogenous loci inconspicuous, neither thickened nor darkened.

Type species: Parastenella magnoliae (Weedon) J.C. David (三 Heterosporium magnolia Weedon) [USA, Florida, St. Petersburg, on leaves of Magnolia grandiflora, 15 Feb. 1923, A.J. Weedon (holotype ILL 6019, isotypes BPI 443255, 443261, 443270, 443274, K(M), MICH 15715)].

Illustration: Braun et al. (1995).
Notes: The phylogenetic position of this genus is unknown; it should be recollected to resolve this uncertainty. See also notes under Zasmidium gироуи in text.

Passalora Fr.

Note: See treatment in text.
Periconia Tode, Fung mecklenb. sel. (Lüneburg) 2: 2. 1791.
Description (adapted from Ellis 1971): Colonies effuse, occasionally small and compact, grey, brown, olivaceous brown or black, hairy. Mycelium mostly immersed but sometimes partly superficial. Stroma frequently present, mid to dark brown, pseudoparenchymatous. Setae and hyphopodia absent. Conidiophores micro- and macronematous, mononematous, with a stipe and spherical head, branches present or absent, stipe straight or flexuous, rarely torsive, pale to dark brown or black, smooth or rarely verrucose, apex sometimes sterile and setiform. Conidiogenous cells mono- or polyblastic, discrete on stipe and branches, determinate, ellipsoidal, spherical or subspherical. Conidia catenate, often in branched chains, usually spherical or subspherical, occasionally ellipsoidal, oblong or broadly cylindrical, pale to dark brown, verruculose or echinulate, aseptate.

Type species: Periconia lichenoides Tode.

Descriptions and illustrations: Mason \& Ellis (1953), Ellis (1971), Seifert et al. (2011).

Notes: Periconia is currently the type genus of the Periconiaceae (Tanaka et al. 2015). The type species is not known from any recent collections and the original material is presumably lost (Ellis 1971, Tanaka et al. 2015). The type species needs to be recollected to determine the phylogenetic position.

Periconiella Sacc.

Note: See treatment in text.

Phacellium Bonord.

Note: See treatment in text.

Phaeocercospora Crous

Note: See treatment in text.
Phaeoisariopsis Ferraris, Ann. Mycol. 7: 280. 1909.
Type species: Phaeoisariopsis griseola (Sacc.) Ferraris (三 Isariopsis griseola Sacc.) [Italy, Selva, on Phaseolus vulgaris, Aug. 1877, Saccardo, Mycotheca Veneta 1247 (lectotype designated here, HAL, MBT378593] P Pseudocercospora griseola (Sacc.) Crous \& U. Braun [Tanzania, on Phaseolus vulgaris, F.S. Ngulu \& C. Mushi (epitype designated here CBS H-19683, MBT378594, culture ex-epitype CBS $119906=$ CPC 10468)].

Description and illustration: Crous et al. (2006a), Seifert et al. (2011).
Notes: The present genus has been determined as a synonym of Pseudocercospora by the phylogenetic placement of the type species Phaeoisariopsis griseola (Crous et al. 2006a). The epitype designated by Crous et al. (2006a) did not cite a lectotype, and thus this matter is addressed here.

Phaeophleospora Rangel

Note: See treatment in text.

Phaeophloeosporella Crous \& B. Sutton, S. Afr. J. Bot. 63: 281. 1997.

Description (from Crous \& Sutton 1997): Associatted with leaf spots. Mycelium immersed, consisting of smooth, hyaline to olivaceous, branched, septate hyphae. Conidiomata amphigenous, separate, palle yellow to light brown, acervular, subepidermal, base consisting of olivaceous cells of textura angularis. Conidiophores pale olivaceous, smooth, simple or branched at the base, septate, cylindrical, erect, formed from the upper cells of the conidioma. Conidiogenous cells integrated, terminal, smooth, pale olivaceous, cylindrical, straight to geniculate-sinuous with a subtruncate apex, proliferating sympodially and holoblastically. Conidia holoblastic, pale olivaceous, smooth, subcylindrical, straight to gently curved, obtuse at apex, and subtruncate at base, guttulate, euseptate, with inconspicuous hila.

Type species: Phaeophloeosporella ekebergiae (Syd. \& P. Syd.) Crous \& B. Sutton (三 Cercosporella ekebergiae Syd. \& P. Syd.) [South Africa, KwaZulu-Natal, Verulam, on leaves of Ekebergia sp., 1913, J.B. Pole Evans 6799 (holotype S F37999)].

Description and illustration: Crous \& Sutton (1997).
Note: This species needs to be recollected to resolve its phylogenetic position.
Phaeoramularia Munt.-Cvetk.
Note: See treatment in text.
Pharcidia Körb., Parerga lichenol. (Breslau) 5: 469. 1865.
Type species: Pharcidia congesta Körb. [Europe, on thallus of Lecanora subfusca, (holotype in L, fide Santesson (1960)] \equiv Stigmidium congestum (Koerb.) Triebel.

Note: See Triebel et al. (1991).

Phloeospora Wallr.

Note: See treatment in text.
Phlyctaeniella Petr., Ann. Mycol. 20(5/6): 323. 1922.
Description (from Quaedvlieg et al. 2013): Mycelium immersed, branched, septate, hyaline. Conidiomata eustromatic, separate, immersed, pale brown, globose, unilocular, scarcely erumpent; side wall and base of several cell layers of hyaline, thin-walled textura angularis, above of larger pale brown tissue. Ostiole indistinct, and dehiscence by rupture of the upper wall. Conidiophores hyaline, smooth, septate, irregularly branched, especially at the base, formed from the inner cells of the stroma wall. Conidiogenous cells phialidic, integrated or discrete, determinate, hyaline, markedly tapered at the apices, smooth, with apical or lateral apertures, collarette minute, with periclinal thickening; only rarely becoming percurrent. Conidia hyaline, smooth, thinwalled, irregularly guttulate, filiform, straight, curved or irregular, multiseptate (Sutton 1980).

Type species: Phlyctaeniella polonica Petr. [Austria, on Aruncus dioicus ($=$ A. silvestris)].
Description and illustration: Quaedvlieg et al. (2013).
Notes: The type specimen of the present species could not be traced. The phylogenetic position of this genus remains unresolved until fresh specimens are collected.

Placocrea Syd., Ann. Mycol. 37: 380. 1939.
Description (from Sydow 1939): Ascomata aggregated in stroma, immersed, globose to ovoid, with papillate ostiole. Asci clavate to cylindrical-clavate, 8 -spored. Ascospores biseriate,
oblongclavate to fusoid, medianly 1 -septate, constricted at septum, hyaline, pseudoparaphyses present.

Type species: Placocrea pulchella Syd. [Equador, Prov. Pichincha, Mindo, on leaves of Sarcorhachis sydowii, 1937, H. Sydow 252 and 284 (syntypes, NY 01102921, NY 01102922, RMS0017369, S F44505; S F44506; BPI 631051 and Syd., Fungi Exot. Exs. 1200, e.g. S F8589].

Notes: This genus is insufficiently known, and needs to be recollected to resolve its phylogenetic position. Lumbsch \& Huhndorf (2010) tentatively place this genus in Mycosphaerellaceae based on its morphological characters.

Pleopassalora Videira \& Crous

Note: See treatment in text.

Pleuropassalora U. Braun, C. Nakash., Videira \& Crous

Note: See treatment in text.
Pleurovularia R. Kirschner \& U. Braun, Mycoscience 43: 16. 2002.
Description (from Kirschner et al. 2002): Phytoparasitic, conidiophores macronematous, mononematous, hyaline, simple or sparsely branched, verruculose at least in the distal part, emerging mainly through the outer wall of epidermal cells of the host, conidiogenous cells intercalary and terminal with slightly thickened, pigmented scars, mono- or polyblastic, producing hyaline conidia with vacuole.

Type species: Pleurovularia polliniae (Henn.) R. Kirschner \& U. Braun (三 Ovularia polliniae Henn.).

Description and illustration: Kirschner et al. (2002), Seifert et al. (2011), present study (Fig. 61).

Materials examined: Japan, Prov. Tosa, Katakasa-mura, on Pollinia imberbis, Jun. 1901, T. Yoshinaga No. 25 (holotype S F43065).

Notes: The phylogenetic position of Pleurovularia is unknown and only the hyphomycetous asexual morph is known. It is necessary to recollect the type species and obtain cultures to determine the phylogenetic position of Pleurovularia.

Pluripassalora Videira \& Crous

Note: See treatment in text.

Fig. 61. Pleurovularia polliniae (S F43065). A-E. Observations in vivo. A. Leaf spot symptoms on the host. B. Conidiophores, conidiogenous cells and conidium. C, D. Conidiophores and conidiogenous cells. E. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Polyphialoseptoria Quaedvlieg, R.W. Barreto, Verkley \& Crous
Note: See treatment in text.
Polysporella Woron., Izv. Kavkazsk. Muz. 10: 7. 1916.
Description: Ascomata pseudothecial, scattered, immersed, later erumpent through the epidermis, flattened, 120-150 $\mu \mathrm{m}$ diam, $75-90 \mu \mathrm{~m}$ high, parenchyma composed of polygonal cells, $12-15 \mu \mathrm{~m}$ diam. Asci oval, apex thickened, sessile, $60-67 \times 30-32 \mu \mathrm{~m}$, aparaphysate, 24-27(-32?)-spored. Ascospores 1-celled, at first hyaline, late slightly brown, oblong-ovate, aggregated, $20-22 \times 7-8 \mu \mathrm{~m}$.

Type species: Polysporella woronowii Woron. [Turkey (locality historically situated in Russia), eastern Anatolia, Province Kars, Kavgızman ('district Kaghyzman, Novo-Nikolaevka’), on stems of Dianthus crinitus, 7 Jun. 1913, G. Woronow (type TBIP)].

Description and illustration: Woronichin (1916: 7, fig. 3).
Notes: This genus is insufficiently known, and needs to be recollected to resolve its phylogenetic position. The allocation of Polysporella to Mycosphaerelaceae dates back to Lumbsch \& Huhndorf (2007: 79, no 4542), with reference to 'O. Eriksson, in litt.' However, the position of this genus and its assignment to Mycosphaerelaceae are quite unclear and unproven, which was also confirned by T. Lumbsch and O. Eriksson (pers. comm.). The locality of the holotype was historically located in the Russian Province Kars (Karsskaya Oblast), district Kagizman (Kaghyzman), which nowadays belongs to Turkey (southeast Anatolia, Province Kars, Kavğzman). The continued existence and possible current Turkish name of the settlement 'Novo-Nikolaevka' could not be clarified.

Polythrincium Kunze, in Kunze \& Schmidt, Mykologische Hefte (Leipzig) 1: 13. 1817. Synonym: Cymadothea F.A. Wolf, Mycologia 27: 71. 1935.

Description (from Ellis 1971): Colonies punctiform or effuse, olivaceous brown. Mycelium immersed. Stroma pseudoparenchymatous, brown to black. Setae and hyphopodia absent. Conidiophores macronematous, mononematous, caespitose, unbranched or with several branches arising at one point, the upper part curved and often thickened on the side away from the curvature, undulate, often torsive, mid pale brown, smooth. Conidiogenous cells polyblastic, integrated, terminal, sympodial, cylindrical, undulate, cicatrized; scars large, flat, unilateral. Conidia solitary, acropleurogenous, simple, cuneiform or pyriform, hyaline to pale brown, smooth or verruculose, 1-septate.

Type species: Polythrincium trifolii Kunze [Germany, on leaves of Trifolium pratense].
Descriptions and illustrations: Sivanesan (1984), Ellis (1971), Simon et al. (2009).
Notes: This species is an obligate biotroph, and does not grow in culture. The phylogenetic link between the sexual morph, Cymadothea trifolii, and Polythrincium trifolii was confirmed by Simon et al. (2009). In addition, Simon et al. (2009) determined the phylogenetic position of the genus as belonging in Mycosphaerellaceae by extracting DNA directly from lesion caused by the pathogen on Trifolium repens collected in Germany (CBS H-20110).

Prathigada Subram., J. Madras Univ. 26: 366. 1956.
Type species: Prathigada cratevae (Syd.) Subram. (三 Napicladium cratevae Syd.) \equiv Pseudocercospora cratevicola C. Nakash. \& U. Braun.

Description and illustration: Braun et al. (2013), present study (Fig. 62).
Materials examined: India, Madras, Coimbatore, Government Farm, on Crateva religiosa, 5 Feb. 1912, W. McRae 9 (holotype S F42112); Calcuta, on Crateva nurvala, 30 May 1978, J.B. Ray PCC2700 Dep. Botany Presidency College (IMI 234117). Myanmar, Tutkon, on Crateva religiosa, 20 Nov. 1973, Mya Tharng (IMI 182578). Japan, on Crataeva falcata, 18 Sep. 1998, S. Uematsu \& C. Nakashima, culture MUCC 1088.

Notes: Braun et al. (2013) examined type material of this species and compared it with conspecific Japanese collections on Crateva formosensis. The morphological characteristics are quite uniform among the observed specimens (Fig. 62). Sequences retrieved from Japanese cultures (MUCC 1088, Table 1, Fig. 1) clusted within the big Pseudocercospora clade close to Pseudocercosporafijiensis. Thus, Prathigada was reduced to synonymy with Pseudocercospora (Braun et al. 2013).

Protostegia Cooke, Grevillea 9(49): 19. 1880.
Description (from Crous et al. 2015a): Conidiomata immersed, becoming somewhat erumpent, solitary, exuding a mucoid conidial cirrhus, pale brown, splitting the leaf surface, with central ostiole; wall of brown textura intricata. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, smooth, lining the inner cavity, lageniform to subcylindrical, proliferating percurrently at apex. Conidia hyaline, smooth, scolecosporous, euseptate.

Fig. 62. Prathigada crataevae (IMI 234117 and IMI 182578). A-G. Observations in vivo. A, B. Leaf spot symptoms on the host. C, D, F. Conidiophores, conidiogenous cells and conidia. E. Conidiogenous cell and conidium. G. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Type species: Protostegia eucleae Kalchbr. \& Cooke [South Africa, on Euclea undulata, (epitype designated by Crous et al. 2015a: PREM 60879, culture ex-epitype CPC $23549=$ CBS 137232)].

Description and illustration: Crous et al. (2015a).
Notes: Protostegia is a coelomycetous genus only known from its asexual morph and was recently epitypified (Crous et al. 2015a). Based on the epitype, the phylogenetic position of this genus is close to Cytostagonospora martiniana (Crous et al. 2015a).

Pseudocercospora Speg.
Note: See treatment in text.

Pseudocercosporella Deighton

Note: See treatment in text.

Pseudocercosporidium Deighton

Description (from Braun et al. 2013): Foliicolous, plant pathogenic, leaf spotting hyphomycetes, teleomorph unknown. Mycelium internal. Stromata lacking. Conidiophores in vivo solitary or in small loose fascicles (groups) emerging through stomata, laxly erect, macronematous, frequently branched, septate, pigmented (very pale brown), thin-walled, smooth; conidiogenous cells
integrated, terminal, intercalary or pleurogenous (as lateral branchlets), sympodial, polyblastic, conidiogenous loci conspicuous, protruding, convex (papilla-like), but wall of the loci neither thickened nor darkened, only somewhat refractive. Conidia solitary, didymo- to scolecosporous, pigmented (deeper in pigmentation than the conidiophores), thin-walled, smooth or almost so, hila neither thickened nor darkened.

Type species: Pseudocercosporidium venezuelanum (Syd.) Deighton.
Description and illustration: Ellis (1971), Crous \& Braun (2003), Seifert et al. (2011), Braun et al. (2013), present study (Fig. 63).

Material examined: Venezuela, Aragua, between La Victoria and Guacamaya, on Cordia heterophylla, 3 Jan. 1928, H. Sydow No. 381 (holotype S F38692).

Notes: The phylogenetic position of Pseudocercosporidium venezuelanum is unknown due to the absence of DNA sequence data. Morphologically, Pseudocercosporidium resembles Passalora, but differs in the structure of the conidiogenous loci that are not thickened or darkened (Braun 2013).

Pseudodidymaria U. Braun, Cryptog. Bot. 4: 110. 1993.
Description (from Videira et al. 2016, adapted from Braun 1998): Phytopathogenic, causing leaf spots. Mycelium consisting of hyaline or faintly pigmented, septate, thin-walled and branched hyphae, forming well developed stromata. Conidiomata basistromatic and sporodochial.

Fig. 63. Pseudocercosporidium venezuelanum (S F38692). A-H. Observations in vivo. A. Leaf spot symptoms on the host. B-D. Conidiophores, conidiogenous cells and conidia. E-G. Conidiogenous cells and conidia. H. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Conidiophores arranged in palisade-like fascicles, subcylindrical, subclavate, straight to flexuous, sinuous, rarely septate, hyaline to faintly pigmented, thin-walled, smooth, sometimes reduced to conidiogenous cells. Conidiogenous cells integrated, terminal, polyblastic, sympodial, conidiogenous loci bulging, unthickened or with a thickened rim, not darkened but refractive. Conidia formed singly, ellipsoid-obovoid, subclavate, aseptate to 2 -septate, base rounded to broadly truncate, hyaline to faintly pigmented, thin-walled, smooth to verruculose, hilum unthickened, not darkened but refractive, conidial secession schizolytic.

Type species: Pseudodidymaria wyethiae (Ellis \& Everh.) U. Braun (\equiv Marssonina wyethiae Ellis \& Everh.) [USA, California, Sonoma, on Wyethia glabra, 25 May 1894, Blasdale (lectotype NY 01087025; isolectotypes Ellis \& Everh., Fungi Columb. 589 and Ellis \& Everh., N. Amer. Fungi 3184)].

Descriptions and illustrations: Braun (1998), Videira et al. (2016).
Notes: Pseudodidymaria is tentatively maintained as a separate genus. Molecular data are required to fully resolve its phylogenetic position.

Pseudophaeoramularia U. Braun, Trudy Bot. Inst. im. V.L. Komarova 20: 18. 1997.
Type species: Pseudophaeoramularia geranii (W.B. Cooke \& C.G. Shaw) U. Braun (三 Cercosporella geranii W.B. Cooke \& C.G. Shaw) [USA, Washington State, Whiteman Co., on Geranium viscossissimum, 20 Jul. 1948, Shaw \& Coheen (holotype WSP 19945)] \equiv Pseudocercospora geranii (W.B. Cooke \& C.G. Shaw) U. Braun.

Description and illustration: Braun \& Mel'nik (1997).

Notes: Braun \& Mel’nik (1997) introduced Pseudophaeoramularia as intermediate between Pseudocercospora and Phaeoramularia. Although the genus has since been treated as synonymous with Pseudocercospora (Crous et al. 2001b, Crous et al. 2013a), phylogenetic proof from the type species is still lacking to confirm this synonymy.

Pseudopericoniella Videira \& Crous

Note: See treatment in text.
Pseudophaeophleospora U. Braun, C. Nakash., Videira \& Crous
Note: See treatment in text.
Pseudopuccinia Höhn., Mitt. Bot. Inst. Techn. Hochsch. Wien 2: 41. 1925.

Description (adapted from Ellis 1976): Stromata present. Conidiophores with anellations. Conidia pale to brown, verrucose, ellipsoid-obovoid with 1-2 transverse septa and occasionally an oblique septum.

Type species: Pseudopuccinia thermopsidis (Harkn.) Höhn. [as ‘thermopsis'] (三 Stigmina thermopsidis Harkn.) [USA, California, on Thermopsis californica].

Description and illustration: Ellis (1976, as Stigmina thermopsidis).
Notes: Pseudopuccinia was considered to be a synonym of Stigmina (Seifert et al. 2011). Based on DNA sequence comparisons, the genus Stigmina was treated as synonym of Pseudocercospora (Braun \& Crous 2006, Crous et al. 2013a). However, the phylogenetic position of Pseudopuccinia, a stigmina-like genus, is unknown, pending fresh collections and molecular analyses.

Pseudostigmidium Etayo, Biblioth. Lichenol. 98: 193. 2008.
Description (Etayo \& Sancho 2008): Lichenicolous. Ascomata perithecioid, black, subconical or subglobose, immersed to semiimmersed, protruding, periphyses abundant, paraphyses lacking, gelatinuous hymenial mass I+, KI+ red to violaceous. Asci bitunicate, fissitunicate, clavate, broad obovoid to saccate, apically thickened, with an ocular chamber, wall I+, KI+ red to violaceous, 8 -spored. Ascospores ellipsoid, ellipsoid-ovoid, fusiform, (0-)1-3-septate, colourless, sometimes becoming somewhat pigmented with age.

Type species: Pseudostigmidium nephromiarium (Linds.) Etayo. (\equiv Microthelia nephromiaria Linds.) [Chile, Cape Horn, Hermit Island, on thalus and apothecia of Nephromium cellulosum, Antartic expedition 1839-43, Dr. Hooker.]

Description and illustrations: Etayo \& Sancho (2008).
Notes: Pseudostigmidium includes lichenicolous species that are only known by their sexual morph. Hyde et al. (2013) accepted this genus in Mycosphaerellaceae, but it needs to be recollected before its phylogenetic position can be resolved.

Pseudovularia Speg., Anales Mus. Nac. Hist. Nat. Buenos Aires, Ser. 3, 13: 418. 1911.
Type species: Pseudovularia trifolii Speg. [Argentina, Lezama, on Trifolium pratense, 2 Nov. 1904, Spegazzini (holotype LPS 12946)] = Ramularia sphaeroidea Sacc. [Germany, Berlin, Spandau, on Lotus uliginosus, Jul. 1875, Magnus (type PAD)].

Descriptions and illustrations: Spegazzini (1910), Deighton (1972).
Notes: Pseudovularia is considered a synonym of Ramularia based on morphological characteristics and Pseudovularia trifolii is currently a synonym of Ramularia sphaeroidea (Braun 1998, Videira et al. 2016). However, no material originating from the type of Pseudovularia trifolii has thus far been obtained for further DNA studies.

Pseudozasmidium Videira \& Crous
Note: See treatment in text.

Quasiphloeospora B. Sutton et al., Mycol. Res. 100: 979. 1996.
Description (from Sutton et al. 1996): Foliicolous, associated with lesions. Mycelium internal, brown, branched, septate. Conidiomata separate, acervular to sporodochial, epidermal to subepidermal, composed of brown textura angularis at the base, and textura prismatica above. Conidiophores brown, verruculose, irregularly branched at the base, septate, cylindrical, formed from the upper cells of the conidiomata. Conidiogenous cells integrated, terminal or lateral, smooth or verruculose, brown, cylindrical, straight, proliferating percurrently and enteroblastically to form annellations or sympodially and holoblastically; conidiogenous loci dark and thickened. Conidia holoblastic, pale brown, smooth, cylindrical, septate, obtuse at the apex and truncate at the base; basal scar dark and thickened.

Type species: Quasiphloeospora saximontanensis (Deighton) B. Sutton et al. (三 Cercospora saximontanensis Deighton) [USA, Wyoming, Grand Tehon National Park, on leaves of Ribes viscosissimum, 16 Aug. 1937, W.G. \& R. Solheim \& H.F. House 5369, Solh., Mycofl. Saximon. Exs. 1191 (holotype IMI 98069, isotypes Solh., Mycofl. Saximon. Exs. 1191, e.g. BPI 762561, PUL 25574).

Descriptions and illustrations: Sutton et al. (1996), Seifert et al. (2011).
Notes: Quasiphloeospora is a cercosporoid genus with intricate morphology and complex morphological relations to several other genera, including Cercospora, Passalora and Pseudocercospora (Crous \& Braun 2003), but due to very pale, almost hyaline structures, it is also similar to Pseudocercosporella. Sutton et al. (1996) classified the conidiomata as acervuli, although they may better be referred to as sporodochia. The particular characters of Quasiphloeospora saximontanensis, above all the structure of the conidiogenous loci, are intermediate between the three similar genera cited above. A clear affiliation to one of these genera, just based on morphology, is not possible. It is also possible that this species is unrelated to any of the cercosporoid genera. Affinity and position of Quasiphloeospora can only be proven by means of results of molecular sequence analyses, which are, however, not yet available.

Ragnhildiana Solheim

Note: See treatment in text.
Ramularia Unger
Note: See treatment in text.
Ramichloridium Stahel ex de Hoog
Note: See treatment in text under Zasmidium.

Ramulariopsis Speg.

Note: See treatment in text.

Ramularisphaerella Kleb., Haupt- und Nebenfruchtformen der Ascomyzeten (Leipzig) 1: 131. 1918.

Description (from Klebahn 1918): "Ramularisphaerella. Konidienform Ramularia. Arten: R. hieracii, fragariae, punctiformis, maculiformis, tussilaginis" [Ramularisphaerella. Conidial form Ramularia. Species: R. hieracii, fragariae, punctiformis, maculiformis, tussilaginis].

Type species: Ramularisphaerella hieracii (Sacc. \& Briard) Kleb. (\equiv Sphaerella nebulosa var. hieracii Sacc. \& Briard, 三 Mycosphaerella hieracii (Sacc. \& Briard) Jaap) [France, on Hieracium sp.].

Description and illustration: Sivanesan (1984, as Mycosphaerella hieracii and Ramularia hieracii), Braun (1998, as Ramularia hieracii).

Notes: Klebahn (1918) introduced Ramularisphaerella as new genus for a mycosphaerella-like sexual morph on Hieracium that he considered to be linked to Ramularia on hawkweed. The type specimen could not be located (Aptroot 2006), and the status of this genus remains unclear due to the absence of DNA sequence data. Jaap (1908) considered this species to be the sexual morph of Ramularia hieracii (Bäumler) Jaap. Klebahn (1918) has proved the connection between the ascus and conidial state. In case that this connection was correct, Ramularisphaerella would be a synonym of Ramularia.

Ramulispora Miura

Note: See treatment in text.
Rasutoria M.E. Barr, Mycotaxon 29: 501. 1987.
Description (from Barr 1987): Ascomata pseudothecial, globose, superficial, densely clustered on mycelium on the undersides of leaves, dark brown, with numerous hyphal appendages, brown, obtuse, septate ot not. Asci saccate, bitunicate, oblong, paraphysate. Ascospores hyaline to pale brown, obovoid, 1-septate.

Type species: Rasutoria abietis (Dearn.) M.E. Barr (三 Dimerosporium abietis Dearn.) [USA, Washington, on needles of Abies amabilis (holotype BPI 691065)].

Illustration: Farr (1963).
Notes: A very similar description was also presented by Dearness (1926), as Dimerosporium abietis. See treatment in text under Zasmidium cellare.

Rhabdospora (Durieu \& Mont.) Sacc., Syll. fung. (Abellini) 3: 578. 1884.

Description (adapted from Saccardo 1884): Pycnidia (perithecia) subcuticular-erumpent, globose-depressed, papillate, solid, soon subhysterioid, black or brown, usually neither on spots nor on leaves. Spores [conidia] bacilliform or filiform, pluriguttulate or pluriseptate, hyaline. 'Basidia' diverse or lacking. Differs from Septoria like Phoma from Phyllosticta.

Type species：Rhabdospora oleandri（Durieu \＆Mont．）Sacc．（三 Septoria oleandri Durieu \＆ Mont．）［Algeria，on Nerium oleander］．

Description and illustration：Bory de St．－Vincent \＆Durieu de Maisonneuve（1849）．
Notes：Rhabdospora is a poorly known genus from which many species are currently placed in Septoria．The type species needs to be recollected in order to resolve its phylogenetic position （Quaedvlieg et al．2013）．The type specimen could not be located．

Rhachisphaerella Videira \＆Crous

Note：See treatment in text．
Rhopaloconidium Petr．，Sydowia 6：300． 1952.
Type species：Rhopaloconidium asiminae（Ellis \＆Morgan）Petr．（三 Phloeospora asiminae Ellis \＆Morgan）［USA，Ohio，Preston，on Asimina triloba，H．P．Morgan 463 （holotype NY 01097272）］ミPseudocercospora asiminae（Ellis \＆Morgan）U．Braun \＆Crous．

Description and illustration：Braun（1995，as Miuraea asiminae）．
Notes：Braun \＆Crous（2008）proposed the combination of Phloeospora asiminae into Pseudocercospora．Sequence data authentic for the type species of this genus are necessary to confirm the synonymy of Rhopaloconidium and Pseudocercospora．

Rosisphaerella Videira \＆Crous
Note：See treatment in text．
Rosenscheldiella Theiss．\＆Syd．，Ann．Mycol．13：645． 1915.
Description（adapted from Sultan et al．2011）：Ascomata globose，dark－walled．Pseudothecia develop on stromatic pads of globose cells with thick，dark walls that form amongst thick－ walled，multi－lobed hairs on lower surface of leaves．Hamathecium lacking．Asci fissitunicate， cylindrical， 8 －spored．Ascospores cylindrical，tapering slightly to rounded ends， 1 median septum，slightly constricted at septum，hyaline．

Type species：Rosenscheldiella styracis（Henn．）Theiss．\＆Syd．（三 Naemacyclus styracis Henn．） ［Brazil，São Paulo，Morro pelado，on Styrax sp．］．

Descriptions and illustrations：Sultan et al．（2011）．
Notes：The type species Rosenscheldiella styracis is only known from its sexual morph．The genus Rosenscheldiella is currently accepted in the Mycosphaerellaceae（Wijayawardene et al．2014）but recollection of the type species is necessary to determine its true phylogenetic position．Two species for which there are cultures available，Rosenscheldiella brachyglottidis
and Rosenscheldiella korthalsellae, cluster in the Mycosphaerellaceae and are closely related to Pseudocercospora and Amycosphaerella, respectively (Sultan et al. 2011).

Ruptoseptoria Quaedvlieg, Verkley \& Crous

Note: See treatment in text.

Scirrhia Nitschke ex Fuckel, Jahrb. Nassauischen Vereins Naturk. 23-24: 220. 1870 (18691870).

Description (from Sivanesan 1984): Stromata subepidermal to erumpent, elongated, depressed globose, rounded, unilocular or with locules in many rows, opening by an apical pore. The stromatic wall is composed of vertically-orientated rows of brown to reddish brown cells of textura globosa or angularis and textura prismatica between locules; the outermost layers composed of black to dark brown cells and the cells of the inner layers brown to hyaline. Asci oblong or clavate, 8 -spored, stalked, arising from compressed hyaline tissue at the base of the locule. Ascospores biseriate overlapping in the ascus, hyaline or yellowish, elliptic or obovoid, septate near the middle, not or slightly constricted at the septum, straight or often inequilateral, smooth, sometimes guttulate. Interthecial tissue compressed between asci and intact over the asci.

Type species: Scirrhia rimosa (Alb. \& Schwein.) Fuckel (三 Sphaeria rimosa Alb. \& Schwein.) [Germany, Lusatia (Lausitz), on stems of Phragmites australis].

Notes: Scirrhia rimosa is presently not known from available collections. Scirrhia aspidiorum (CBS 204.66) clusters in the Didymellaceae, while Scirrhia brasiliensis (CBS 128762) clusters in Mycosphaerellaceae (Crous et al. 2011b). The status of purported synonyms of Scirrhia, namely Scirrhodothis, Scirrhophragma and Metameris also remains unresolved.

Scolecostigmina U. Braun
Note: See treatment in text.

Semipseudocercospora J.M. Yen, Mycotaxon 17: 361. 1983.
Description (from Braun et al. 2013): Morphologically close to Pseudocercospora (leaf spotting hyphomycetes with unthickened, not darkened conidiogenous loci and hila), but the conidiogenous cells are not geniculate, i.e. not distinctly sympodially proliferating, the conidiogenous loci are distinctly denticle-like, and the solitary conidia are didymo- to phragmosporous, i.e. not scolecosporous.

Type species: Semipseudocercospora peristrophes-acuminatae (J.M. Yen) J.M. Yen (\equiv Cercospora peristrophes-acuminatae J.M. Yen).

Description and illustrations: Yen (1983), Seifert et al. (2011), present study (Fig. 64).
Materials examined: Singapore, Katung, on Peristropha acuminata, 20 Apr. 1964, Sun No. 20
(holotype PC; isotype IMI 122324).

Fig. 64. Semipseudocercospora peristrophes-acuminatae (IMI 122324). A-E. Observations in vivo. A. Leaf spot symptoms on the host. B-D. Partial conidiophore, conidiogenous cells and conidia. E. Single conidia. Scale bars $=10 \mu \mathrm{~m}$.

Notes: The phylogenetic position of the type species of this genus and its relation to the Mycosphaerellaceae as well as to the genus Pseudocercospora are still unknown and unproven. Therefore, Semipseudocercospora is tentatively maintained as a separate cercosporoid genus.

Septocylindrium Bonord. ex Sacc., Michelia 2: 15. 1880.
Type species: Septocylindrium bonordenii Sacc., nom. illegit., Art. 52.1 [Italy, Padova, on Galanthus nivalis, Apr. 1876, Sacc., Mycoth. Ven. 1050 (neotype HAL)] = Ramularia septata (Bonord.) Bubák.

Description and illustration: Braun (1998, as Ramularia septata).
Notes: Septocylindrium is currently accepted as a synonym of Ramularia (Braun 1998, Videira et al. 2016). However, no DNA sequences are available of the type species and that assumption, therefore needs to be re-evaluated.

Septocyta Petr., Ann. Mycol. 25(3/4): 330. 1927.
Description (from Quaedvlieg et al. 2013, adapted from Sutton 1980): Mycelium immersed, branched, septate, hyaline to pale brown. Conidiomata eustromatic, immersed, separate, erumpent, dark brown to black, finally opening widely, unilocular, multilocular or convoluted, thick-walled; wall of pale brown, thin-walled textura angularis except in the dehiscent region which is darker brown and more thick-walled. Ostiole absent, dehiscence by breakdown of the upper wall. Conidiogenous cells are holoblastic, sympodial with $1-3$ apical, scarcely protruding, unthickened denticles, indeterminate, discrete, ampulliform to lageniform, hyaline, smooth, formed from the inner cells of the locular walls. Conidia hyaline, 1-3 euseptate, smooth, straight or slightly curved, acicular, apex obtuse, base truncate, often with minute guttules associated with septa.

Type species: Septocyta ramealis (Roberge ex Desm.) Petr. (\equiv Septoria ramealis Roberge ex Desm.) [Europe, on stems of Rubus spp.]

Description and illustration: Quaedvlieg et al. (2013).
Notes: The type specimen could not be traced. See Quaedvlieg et al. (2013).
Septopatella Petr., Ann. Mycol. 23(1/2): 128. 1925.
Description (from Quaedvlieg et al. 2013, adapted from Dyko \& Sutton 1979 and Sutton 1980): Mycelium immersed, branched, septate, hyaline to subhyaline. Conidiomata superficial, often subtended by a superficial, pale brown, septate, branched mycelium, pulvinate, separate to occasionally aggregated, dark brown to black, finally opening widely, cupulate; basal wall of small-celled, brown, thin-walled textura angularis, becoming textura porrecta as it merges into the periclinal walls; a hypostroma attaches the conidioma to the substrate; Ostiole absent. Conidiophores hyaline, septate, branched at the base, thin-walled, cylindrical, formed from the gelatinized basal wall of the conidioma. Conidiogenous cells holoblastic, sympodial, integrated, indeterminate, cylindrical, hyaline, smooth, produced as 2-3 branches from the apex of the conidiophores. Conidia hyaline, 3-4-euseptate, thin-walled, smooth, minutely guttulate, straight or curved, occasionally irregularly filiform (Dyko \& Sutton 1979, Sutton 1980).

Type species: Septopatella septata (Jaap) Petr. (\equiv Pseudocenangium septatum Jaap) [Austria, Pinus montana, 31 Jul. 1907, O. Jaap (holotype BPI 393484; isotype IMI 225733, slide)].

Description and illustration: Quaedvlieg et al. (2013)
Notes: The present species needs to be recollected and its phylogenetic position determined. The holotype specimen could not be traced. See Quaedvlieg et al. (2013).

Septoria Sacc.

Note: See treatment in text.
Septoriopsis Gonz. Frag. \& M.J. Paúl, Bol. Real Soc. Esp. Hist. Nat. 15: 127. 1915.
Description (adapted from Saccardo et al. 1931): Pycnidia on leaf spots, superficial, membraneous-carbonaceous, usually caespitose, globose to conoid. Spores [conidia] bacilliform, hyaline, usually 1 -septate, formed at the apex of filiform conidiophores.

Type species: Septoriopsis citri Gonz. Frag. [Spain, Sevilla, Huevar, on Citrus vulgaris, M. de Paul].

Description and illustration: González Fragoso (1915).
Note: Seen as synonym of Septoria, though fresh collections are required to resolve its phylogenetic position.

Septorisphaerella Kleb., Haupt- und Nebenfruchtformen der Ascomyzeten (Leipzig) 1: 131. 1918.

Description (from Klebahn 1918): "Septorisphaerella. Konidien- form Septoria oder Phloeospora. Arten: S. hippocastani, populi, ribis, sentina, ulmi, aegopodii, exitialis, jaczewskii, lathyri, nigerristigma" [Ramularisphaerella. Conidial form Septoria or Phloeospora. Species: S. hippocastani, populi, ribis, sentina, ulmi, aegopodii, exitialis, jaczewskii, lathyri, nigerristigma].

Type species: Septorisphaerella hippocastani (Jaap) Kleb. (三 Sphaerella maculiformis var. hippocastani Jaap), [Germany, Brandenburg, Prignitz, Triglitz, on Aesculus hippocastanum, Mar. 1910, O. Jaap, Fungi Sel. Exs. 423 (syntypes Jaap, Fungi Sel. Exs. 423, e.g. B, HAL, L)] $=$ Mycosphaerella hippocastani Jaap.

Description and illustration: Klebahn (1918).
Notes: Klebahn (1918) introduced Septorisphaerella as genus for sexual mycosphaerellalike morphs associated with septoria-like asexual morphs. Septorisphaerella hippocastani, the type species, was linked to a Septoria on Aesculus which was nomenclaturally discussed in detail, with the conclusion to refer to it as 'Septoria aesculicola (Fr.) Fuckel' (including Septorisphaerella hippocastani Berk. \& Broome, see Klebahn 1918: 45). Fresh material of the type species needs to be recollected to resolve the phylogenetic position of this genus, above all since Septoria s. lat. has recently been split into several genera (see Verkeley et al. 2013).

Sirosporium Bubák \& Serebrian., Hedwigia 52: 273. 1912.
Description (from Braun et al. 2013): Leaf spotting dematiaceous hyphomycetes with internal and external mycelium, superficial hyphae giving rise to solitary conidiophores, lateral and terminal, conidiophores may also be formed in fascicles, conspicuous conidiogenous loci and hila, thickened and darkened, conidia solitary, size, shape and septation variable, but the conidia are relatively thick-walled and at least partly dictyosporous.

Type species: Sirosporium antenniforme (Berk. \& M.A. Curtis) Bubák \& Serebrian.
Descriptions and illustrations: Ellis (1971), Seifert et al. (2011); present study (Fig. 65).
Materials examined: USA, Alabama, on leaves of Celtis (microscope slide ex-type of Macrosporium antenniforme, IMI 1253).

Notes: The genus Sirosporium is passalora-like in morphology, but until the type species S. antenniforme has been recollected and its phylogenetic position resolved, its status remains unresolved. Sirosporium has been tentatively treated as a separate genus confined to species with thick-walled dictyosporous conidia (Braun 1995, Crous \& Braun 2003, Braun et al. 2013). The two Sirosporium species included in this study cluster within the Mycosphaerellaceae but in separate clades, Sirosporium celtidis (Fig. 1, clade 39; Fig. 3, clade 4) and Sirosporium diffusum (Fig. 1; clade 60; Fig. 3, clade 24, as Ragnhildiana diffusa).

Sonderhenia H.J. Swart \& J. Walker
Note: See treatment in text.

Fig. 65. Sirosporium antenniforme (IMI 1253). A-F. Observations in vivo. A, B. Conidiophores emerging from the host leaf. C-F. Conidia. Scale bars $=10 \mu \mathrm{~m}$.

Sphaerellothecium Zopf, Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 70: 184. 1897.

Description (adapted from Roux \& Triebel 1994 and Knudsen et al. 2009): Lichenicolous, usually distinguished by the formation of a superficial reticulum of dark hyphae occurring on the thallus and apothecia of the host. Ascomata perithecioid, black, immersed to superficial, ostiolate, wall pigmented, hamathecium of unbranched periphyses, but often rudimentary, with colourless interascal filaments (paraphysoids). Asci bitunicate, fissitunicate, 8 -spored, clavate, ellipsoid-ovoid, obpyriform, saccate to irregular, with distinct ocular chamber. Ascospores hyaline, sometimes turning brown when mature, $1-3(-5)$-septate, smooth-walled.

Type species: Sphaerellothecium araneosum (Rehm) Zopf (\equiv Sphaerella araneosa Rehm) [Austria, Tirol, oberhalb der Waldrast (Mattrei), on Ochrolechia tartarea, Aug. 1872, Arnold, ex Herb. Rehm. Ascomyc. nr. 133 (syntype S F45258, designated here as lectotype MBT378595)].

Description: Vouaux (1913, as Discothecium araneosum).
Note: The type species is lichenicholous and, in the absence of DNA, its phylogenetic position remains obscure.

Sphaerulina Sacc.

Note: See treatment in text.
Spilosphaeria Rabenh., Klotzschii Herb. Viv. Mycol., Ed. Nov., Ser. Prima, Cent. 6: no. 559. 1857.

Type species: Not indicated (Rabenhorst assigned eight species to the new genus Spilosphaeria in Cent. 6 of this exsiccatum).

Notes: This genus is insufficiently known, but regarded as synonym of Septoria based on morphology. The status of Spilosphaeria needs to be clarified by lectotypification of the genus and recollection of a lectotype species to determine the phylogenetic position of the genus.

Stenella Syd., Ann. Mycol. 28(1-2): 205. 1930.
Type species: Stenella araguata Syd. [Venezuela, Aragua, La Victoria, on leaves of Pithecellobium lanceolatum, Jan. 1928, H. Sydow (lectotype, designated in Crous et al. 2007b, IMI 15728a; isolectotypes BPI 443420, 443422, S F64888; syntypes Syd., Fungi Exot. Exs. 883, e.g. CUP, MICH 13093, S F64890, Petr., Mycoth. Gen. 1399, e.g. S F64889)].

Description and illustration: Crous et al. (2007b).
Note: Currently assigned to Teratosphaeriaceae (Crous et al. 2007b, Arzanlou et al. 2008, Crous et al. 2009d).

Stenospora Deighton, Mycol. Pap. 118: 22. 1969.
Description (from Deighton 1969): Mycelium hyperparasitic: hyphae colourless, septate. Conidiophores arising as lateral branches of the mycelial hyphae, short, smooth, simple or branched, septate, with conidial scars very slightly but distinctly thickened and refractive and slightly prominent. Conidia colourless, acicular, much resembling those of Cercospora, smooth, pluriseptate, with a very slightly but distinctly thickened and refractive truncate hilum.

Type species: Stenospora uredinicola Deighton [Sierra Leone, Bundulai (Loko Masama), on Puccinia kraussiana on Smilax anceps $(=$ S. kraussiana), 26 Nov. 1951, F.C. Deighton M4515 (holotype IMI 48655b)].

Description and illustration: Deighton (1969).
Note: Stenospora is very similar to Eriocercospora but mucedinaceous (hyaline).
Stenellopsis B. Huguenin, Bull. Trimestriel Soc. Mycol. France 81: 695. 1966.
Description (from Ellis 1971): Colonies effuse, greyish olive, hairy. Mycelium immersed. Stroma rudimentary or prosenchymatous, immersed. Setae and hyphopodia absent. Conidiophores macronematous, mononematous, caespitose, unbranched, usually rather short, straight or flexuous, olivaceous, smooth or verruculose. Conidiogenous cells polyblastic, integrated, terminal, sympodial, cylindrical, cicatrized; scars broad, flat. Conidia solitary, dry, acropleurogenous, simple, cylindrical to obclavate, rounded at the apex, truncate at the base, pale olivaceous brown, verrucose, multiseptate.

Type species: Stenellopsis fagraeae Huguenin.
Descriptions and illustrations: Ellis (1971), Seifert et al. (2011); present study (Fig. 66).

Fig. 66. Stenellopsis fragariae (PDD 75945). A-G. Observations in vivo. A. Leaf spot symptoms on the host. B. Conidiophores. C-G. Conidiophores, conidiogenous cells and conidia. Scale bars $=10 \mu \mathrm{~m}$.

Materials examined: Cook Islands, Rarotonga, Takitumu Conservation Area, on Fagraea berteroana, 14 Jul. 2002, E.H.C. McKenzie EHCM 284 (PDD 75945); Rarotonga, Totokoitu Valley, 19 Oct. 1975, J.M. Dingley (PDD 35381). New Caledonia, Rivière de Thi (St. Louis), on Fagraea berteroana (= F. schlechteri), 24 Nov. 1963, Huguenin, NC 63219 (holotype PC).

Notes: Stenellopsis is morphologically similar to Zasmidium. It has single, conspicuously verrucose conidia with hila that are barely to slightly thickened and somewhat darkenedrefractive, but lacks verruculose superficial hyphae (Crous \& Braun 2003). The type species needs to be recollected to resolve the phylogenetic position of the genus.

Stictosepta Petr., Sydowia 17: 230. 1964 (1963).
Description (from Quaedvlieg et al. 2013, adapted from Sutton 1980): Mycelium immersed, branched, septate, hyaline. Conidiomata eustromatic, immersed, globose to collabent, papillate, unilocular, often convoluted, hyaline; walls thick, of hyaline, thin-walled textura intricata. Ostiole central and circular, single, furfuraceous. Conidiophores hyaline, septate, branched, anastomosing, formed from the inner cells of the locular wall. Conidiogenous cells sympodial or synchronous, integrated, indeterminate, hyaline, thin-walled, with usually two small, unthickened, apical, slightly protuberant conidiogenous loci. Conidia solitary, hyaline, thin-walled, smooth, multiseptate, slightly constricted at the septa, each cell medianly guttulate, straight or curved, base truncate, apex obtuse.

Type species: Stictosepta cupularis Petr. [Czech Republic, Hranice, Ribar, Fraxinus, 30 Mar. 1927, F. Petrak (syntype BPI 668877, designated here as lectotype MBT378596; syntype IMI 204093 [slide])].

Illustration: Quaedvlieg et al. (2013).
Note: This species needs to be recollected to resolve its phylogenetic position.
Stigmidium Trevis., Conspect. Verruc.: 17. 1860.
Description (adapted from Roux \& Triebel 1994): Vegetative hyphae absent. Ascomata perithecioid, black, globose to subglobose, ostiolate, usually half-immersed to sessile. Ascomatal wall dark brownish black in upper part, paler brown in middle or lower part. Periphysoids originating from the upper wall of the ascomatal cavity, hyaline, branched or not. Interascal filaments lacking. Asci originating from the lower wall of the ascomatal cavity, fissitunicate, saccate, 8 -spored, with ascospores irregularly arranged. Ascospores 1 -septate, hyaline, but occasionally turning brown when overmature.

Type species: Stigmidium schaereri (A. Massal.) Trevis. (三Sphaeria schaereri A. Massal.) [Italy, on thalli of Solorina spp.].

Description and illustration: Roux \& Triebel (1994).
Notes: The genus Stigmidium is distinguished by ascomata with punctiform ostioles with a hamathecium of periphyses, with periphysoids, and hyaline 1-septate ascospores (rarely turning brown in a few species). The type species is lichenicolous and until DNA data have been generated, the phylogenetic position of the genus remains unresolved.

Stigmina Sacc., Michelia 2: 22. 1880.
Type species: Stigmina platani (Fuckel) Sacc. (\equiv Stigmella platani Fuckel) [Greece, Attikis, Kifisia, on Platanus orientalis, 7 Nov. 1869, Th. de Heldreich (syntype BPI 428005, designated here as lectotype, MBT378597] \equiv Pseudocercospora platanigena Videira \& Crous, nom. nov. MycoBank MB822835. Replaced synonym: Stigmella platani Fuckel, in Thümen, Bot. Zeitung (Berlin). 29: 27. 1871, non Pseudocercospora platani (J.M. Yen) J.M. Yen, 1979.

Description and illustration: Ellis (1971).
Note: Stigmina is a synonym of Pseudocercospora (Braun \& Crous 2006, Crous et al. 2006a) and a new name is herewith introduced for Stigmina platani.

Stromatoseptoria Quaedvlieg, Verkley \& Crous
Note: See treatment in text.
Sultanimyces Videira \& Crous
Note: See treatment in text.

Tandonella S.S. Prasad \& R.A.B. Verma, Indian Phytopathol. 23: 112. 1970.
Description (from Sutton \& Pascoe 1987): Mycelium in vivo immersed and superficial, subhyaline to pigmented, branched, septate, thin-walled. Stromata superficial, small, brown, pseudoparenchymatic. Conidiomata synnematous, synnemata composed of parallel threads, determinate, solitary or grouped, erect, brown, apically lax, splaying out. Individual conidiophores filiform, usualy unbranched, septate, pigmented, smooth to rough-walled; conidiogenous cells integrated, terminal or intercalary (conidiogenous region terminal, rarely lateral or extending down the synnemata), proliferation sympodial, geniculate, cicatrized, conidiogenous loci conspicuous, slightly thickened, darkened-refractive, often protuberant. Conidia holoblastically formed, catenate, in short simple or branched chains, ellipsoid-ovoid, fusiform, cylindrical, aseptate to euseptate, pigmented, rough-walled, hila somewhat thickened and darkened-refractive.

Type species: Tandonella ziziphi S.S. Prasad \& R.A.B. Verma [India, Bihar, on leaves of Ziziphus jujuba (holotype IMI 112255c as Cercospora ziziphi)] \equiv Passalora ziziphi (S.S. Prasad \& R.A.B. Verma) U. Braun \& Crous.

Description and illustration: Sutton \& Pascoe (1987).
Notes: Tandonella has currently been treated as a synonym of Passalora (Crous \& Braun 2003, Braun et al. 2013), but the type species Tandonella ziziphi is not known from DNA data. Sutton \& Pascoe (1987) added Tandonella oleariae, re-examined and illustrated holotype material of Tandonella ziziphi [IMI 112255c], and published an emended description of the genus Tandonella, which is characterised by a combination of synnematous conidiomata and conspicuous conidiogenous loci (thickened and darkened) giving rise to catenate, pigmented conidia (phaeoramularioid). The species Tandonella cubensis was described by Castañeda \& Kendrick (1990) and the holotype was collected from Bauhinia divaricata in Cuba [INIFAT C88/58 (13. IV.1988)]. The strain in this study was collected by the same author from Bauhinia cuyabensis in Cuba and was deposited at the CBS [CBS 500.92, INIFAT C92/43-3 (Nov. 1992), CBS H-18755). The morphology of Tandonella cubensis varied from Tandonella ziziphi mainly in the falcate, lunate or irregular and smooth conidia instead of cylindrical to fusiform and verrucose conidia. Morphologically, Tandonella cubensis (CBS 500.92) differs significantly from Pseudocercospora spp. by the formation of long synnematous fascicles, dark brown at the base and brown above, brown, polyblastic conidiogenous cells and brown, falcate conidia developing in chains. In all phylogenetic analyses performed in this study, this strain clustered within Pseudocercospora.

Tapeinosporium Bonord., Bot. Zeitung (Berlin) 11: 285. 1853.
Description (from Bonorden 1853): Conidial chains multiseptate, arising from aseptate, simple or sometimes branched "stalks" [conidiophores]. Spores [conidia] ovate, 3-septate, greenish, caespitose conidial chains olivaceous or later black.

Type species: Tapeinosporium viride Bonord. [Germany, on Solanum tuberosum (lectotype [iconotype] designated here, MBT378598, Bonorden, Bot. Zeitung (Berlin) 11: Pl. (Tafel) VII, Fig. 6. 1853)] \equiv Septocylindrium tapeinosporum (Bonord.) Sacc.

Description and illustration: Bonorden (1853).

Notes: Saccardo (1886) considered Tapeinosporium a synonym of Septocylindrium, which in turn is considered a synonym of Ramularia (Braun 1998, Videira et al. 2016), but as emphasized in Braun (1998: 13) Tapeinosporium, described from potato tubers, is a doubtful genus of quite unclear affinity. Type material is not preserved, but Bornorden added an illustration to the original description, which is part of the protologue and has to be used for lectotypification. This illustration does not agree with genuine Ramularia species and could rather pertain to Cladosporium or similar saprobic hyphomycetous genera. New collections from potato tubers are necessary for an epitypification of Tapeinosporium viride and corresponding sequence data for a clarification of its phylogenetic affinity.

Trochophora R.T. Moore

Note: See treatment in text.

Utrechtiana Crous \& Quaedvlieg, Persoonia 26: 153. 2011.
Description (from Crous et al. 2011a): Hyphomycetous, associated with leaf spots. Mycelium internal, consisting of septate, smooth, hyaline, branched hyphae. Conidiophores solitary, erect, bursting through epidermis, with circular scar where base of conidiophore is attached to immersed hyphal network; conidiophores dark brown, erect, base subglobose, giving rise to a subcylindrical, brown conidiogenous cell that ends in a clavate, bluntly rounded apex, with truncate, flattened scar; sometimes thickened, not darkened, nor refractive. Conidia solitary, pale brown, ellipsoid, guttulate to granular, smooth to finely verruculose, 1 -septate slightly above the conidial median, thin-walled, apex bluntly to acutely rounded, base obtusely rounded with a flattened, darkened and thickened hilum that has a central pore.

Type species: Utrechtiana cibiessia Crous \& Quaedvlieg [Netherlands, Utrecht, on leaves of Phragmites australis, 14 Dec. 2010, W. Quaedvlieg (holotype CBS H-20594, cultures ex-type CPC 18917, $18916=$ CBS 128780)] $=$ Utrechtiana roumeguerei (Cavara) Videira \& Crous [France, Toulouse, on Phragmites australis, undated, coll. C. Roumeguère, Biosi \& Cavara, syntypes of Scolicotrichum roumeguerei Briosi \& Cavara, Funghi Parass. Piante Colt. Util. Ess. 112 (lectotype in HAL here designated, MBT378701)].

Utrechtiana roumeguerei (Cavara) Videira \& Crous, comb. nov. MycoBank MB822836.
Basionym: Scolicotrichum roumeguerei Cavara (as 'roumegueri'), in Briosi \& Cavara, Funghi Parass. Piante Colt. Util. Ess., Fasc. 5: no. 112. 1890.
Synonyms: Deightoniella roumeguerei (Cavara) Constant., Proc. K. Ned. Akad. Wet., Ser. C, Biol. Med. Sci. 86(2): 137. 1983.
Utrechtiana cibiessia Crous \& Quaedvl., Persoonia 26: 153. 2011.
Notes: The genus Utrechtiana was regarded as synonymous with Deightoniella by Seifert et al. (2011) based on morphology. The type species, Utrechtiana cibiessia, is synonymous with Deightoniella roumeguerei, which Klaubauf et al. (2014) showed to belong to Pyriculariaceae, a family containing numerous cryptic fungal genera on Poaceae. An examination of the type species of Deightoniella, Deightoniella africana, has shown, however, that Deightoniella
is also a generic complex in Pyriculariaceae, meaning that the generic circumscription provided by Ellis (1976) needs to be emended. Deightoniella torulosa, a foliar pathogen of Musa, has been shown to be a species of Corynespora (Crous et al. 2013b). A similar fungus occurring on leaf spots of Phragmites in South Africa, was shown to represent a distinct genus, Neodeightoniella, which lacks conidiophores with percurrent rejuvenation, has welldeveloped apical and intercalary conidiogenous loci, and conidia with mucoid caps (Crous et al. 2013b). The genus Deightoniella (based on Deightoniella africana), is distinct from Utrechtiana, as the latter lacks torsive to flexuous conidiophores with percurrent rejuvenation and prominent conidiophore swellings. Conidia of Utrechtiana are also very pale brown, smooth to finely roughened, with prominent thickened, darkened scars, while those of Deightoniella are medium brown, verruculose, and obpyriform with prominent apical taper. Fresh material of Deightoniella africana needs to be recollected to facilitate epitypification, and to clarify its phylogenetic relationships.

Uwemyces Hern.-Restr., G.A. Sarria \& Crous

Note: See treatment in text.
Verrucisporota D.E. Shaw \& Alcorn
Note: See treatment in text under Zasmidium.

Virgasporium Cooke, Grevillea 3(28): 182. 1875.
Type species: Virgasporium maculatum Cooke [Jersey (UK), on leaves of Reseda sp.] = Cercospora resedae Fuckel [Germany, on leaves of Reseda odorata, Fuckel, Fungi Rhen. Exs. nr. 1632 (syntype S F267614)

Description and illustration: Cooke (1875).
Note: Virgasporium is currently considered a synonym of Cercospora based on morphological characteristics (Braun et al. 2013). The type specimen of Virgasporium maculatum could not be traced and the species needs to be recollected in order to confirm its phylogenetic position. A tentative clade of Cercospora cf. resedae is considered in a recent phylogenetic study by Groenewald et al. (2013).

Virosphaerella Videira \& Crous

Note: See treatment in text.
Walkeromyces Thaung, Trans. Brit. Mycol. Soc. 66: 213. 1976.

Description (from Thaung 1976): Hyphomycetous, foliicolous, phytopathogenic. Stroma, setae and hyphopodia absent. Mycelium superficial, consisting of brown, branched, septate, creeping hyphae. Conidiophores simple or branched, medium brown, arising from superficial mycelium, straight to flexuous, with intergrated terminal conidiogenous cells. Conidiogenous cells polyblastic, terminal, sympodial, with thickened, darkened scars. Conidia dry, solitary,
acropleurogenous, straight or curved, obclavate or fusiform or short navicular, septate, smooth, brown, with thickened, darkened hilum.

Type species: Walkeromyces grewiae Thaung [Myanmar, Maymyo, Kyaukchaw, on Grewia cf. macrophylla, 26 Sep. 1974, M.M. Thaung (holotype IMI 188948)].

Description and illustration: Thaung (1976).
Notes: Walkeromyces is mycovellosiella-like in morphology, and has been treated as synonym of Passalora in the past (Crous \& Braun 2003). However, until the type species has been recollected and subjected to molecular comparison, its phylogenetic position remains unknown.

Xenomycosphaerella Quaedvlieg \& Crous
Note: See treatment in text.
Xenoramularia Videira, H.D. Shin \& Crous
Note: See treatment in text.

Xenosonderhenia Crous

Note: See treatment in text.
Xenosonderhenioides Videira \& Crous.
Note: See treatment in text.

Zasmidium Fr.

Note: See treatment in text.
Zymoseptoria Quaedvlieg \& Crous
Note: See treatment in text.

DISCUSSION

The Mycosphaerellaceae Lindau (1897), based on Mycosphaerella Johanson (1884) has an intricate taxonomic history spread over many years and numerous publications. From the traditional morphological approaches, to the more recent phylogenetic and genomics studies, species of Mycosphaerellaceae remain as popular among mycologists, due to their morphological diversity, and as infamous among phytopathologists due to the destructive impact some species have on crops that we depend on for food, feed and fuel.

Traditional identification relies on morphological characters in association with the host. The morphology of the sexual morph of Mycosphaerellaceae is extremely uniform and descriptions are mainly based on ascospores size, shape and position of the septa (Aptroot 2006). Believing
most species to be host-specific, numerous species were described multiple times under different names only based on the hosts they were isolated from, or their countries of origin. Arx (1949) was the first to compare these morphological descriptions and synonymise many species in the genus, a task later continued by Tomilin (1979). Barr (1972) introduced a system of sections to treat the species which was partially followed and improved upon by Aptroot (2006), who provided the most recent revision of Mycosphaerella species based on the study of type material. Many of these specimens contained only immature or over mature material with no ascospores, rendering many species doubtful. As a consequence, only 3000 taxa were estimated to exist in Mycosphaerella out of the total 10000 names (Aptroot 2006), excluding names of thousands of asexual species. The germination pattern of the ascospores was introduced as new character by Park \& Keane (1982a, b), and was followed by other authors as a diagnostic feature in species recognition (Crous 1998). The morphology of the asexual morphs, on the other hand, is quite distinctive and variable, and many species in the family are also polymorphic.

Two informal asexual taxonomic groups are recognized in Mycosphaerellaceae, namely the hyphomycetes, which produce solitary conidiophores, fascicles or sporodochia, and the coelomycetes, which produce acervuli or pycnidial conidiomata. The coelomycete genera were largely treated by Sutton (1980) and, to a lesser degree, by Nag Raj (1993). The hyphomycetes, however, have been the subject of several monographs. Chupp (1954) and Pollack (1987) took a wide approach and described all cercosporoid fungi in the genus Cercospora. Deighton (1967, 1974, 1976a, 1979) recognised several genera amid the large Cercospora concept, and was succeeded by Crous \& Braun (2003) who narrowed down the true cercosporoid fungi to Cercospora, Pseudocercospora, Stenella and Passalora. The hyaline counterparts of Cercospora, including Ramularia and allied genera, were treated by Braun (1995, 1998). The separation of these genera relied on the presence or absence of pigmentation in the conidiogenous structures, arrangement and branching of conidiophores, the conidiogenous cell placement, proliferation and scar type (conidiogenous loci), and conidial formation, shape and septation. Particular emphasis was placed on the nature of the conidiogenous loci and mode of conidiogenesis. However, many difficulties surrounded the definition of these genera based on these characters including intermediate characters, and species that exhibited more than one mode of conidiogenesis (Crous \& Braun 2003). Due to the impact of many of these species on agriculture and forestry, many revisions of cercosporoid species have been published based on country or geographical region, e.g. Japan (Katsuki 1965), Taiwan (Hsieh \& Goh 1990), China (Guo \& Hsieh 1995), South Africa (Crous \& Braun, 1996), Russia (Braun \& Mel’nik, 1997), Korea (Shin \& Kim 2001), India (Kamal 2010), etc. However, the circumscription of genera was not questioned at the time and authors mainly followed the works of Chupp (1954), Deighton (1967, 1974, 1976a, 1979), Braun $(1995,1998)$ and Crous \& Braun (2003).

Since the first DNA phylogeny paper published on the family (Stewart et al. 1999), the concept of Mycosphaerellaceae and the genera it contains has been significantly revised (Crous et al. 2007a, b, 2009a, c, d, e, 2013a, Quaedvlieg et al. 2011, 2013, 2014, Verkley et al. 2013, Groenewald et al. 2013, Videira et al. 2015a, b, 2016). The most significant fact was the realisation that Mycosphaerellaceae was poly- and paraphyletic in the Dothideomycetes, and that the same variation also applied to the genera and species. The second milestone was the proof that Mycosphaerella was not the sexual morph of 40 odd genera as formerly believed (Crous 2009), but that these were in fact distinct genera within the Dothideomycetes, for which the names of the asexual genera were available for use.

The widespread use of DNA sequences as an identification tool fuelled an idea that was simmering for a long time among mycologists and plant pathologists alike, namely that dual
nomenclature in fungi is superfluous. In its wake came the one fungus = one name initiative, which culminated in the termination of the dual nomenclature system (Hawksworth et al. 2011, Hawksworth 2012, Wingfield et al. 2012, Crous et al. 2015b). Based on the newly revised International Code of Nomenclature for algae, fungi, and plants (ICN), the asexual morph Ramularia was chosen over that of Mycosphaerella (Wijayawardene et al. 2014, Rossman et al. 2015, Videira et al. 2015b, 2016), and the remaining taxa assigned to existing genera or newly described genera. The ITS was introduced as the official barcode for fungi due to its ease of amplification and its ability to distinguish species across the kingdom (Schoch et al. 2012). Frequently, in Mycosphaerellaceae, the ITS is insufficient to distinguish closely related species and a combination of ITS and a secondary barcode (Stielow et al. 2015) has been proposed for each genus, such as tefl- α or tub2 for Septoria and allied genera (Verkley et al. 2013), rpb2 or actA for Ramularia and allied genera (Videira et al. 2016), cal and his3 for Cercospora (Groenewald et al. 2013), actA and/or tefl- α (Crous et al. 2013a) or rpb2 (Nakashima et al. 2016) for Pseudocercospora, and rpb2 (present study) for many genera in the Mycosphaerellaceae. The rpb2 gene is used to resolve higher levels of classification due to the ease of alignment as the sequence has no introns, and also to discriminate at species level due to the high variability of the sequence data. The main disadvantage of $r p b 2$ is that it is not always easy to amplify. In this regard, the primer RPB2-F4 was revealed to be very effective among numerous genera. Although the coding genes frequently have a higher discriminatory power between species, there are usually less available data in the public databases to compare them to (Quaedvlieg et al. 2013). However, this is slowly being overcome with the increasing amount of newly generated sequence data.

The present study aimed to clarify the phylogenetic position of the genera currently accepted to belong to Mycosphaerellaceae, and thus provides a broad framework and phylogeny for the family, laying a foundation for additional genera and species to be recognised and described. Recent studies have already clearly defined several genera (e.g. Cercospora, Pseudocercospora, Pseudocercosporella, Ramularia, Septoria and Zymoseptoria) but it was clear that genera such as Passalora, Zasmidium, Stenella and Ramichloridium remained paraand polyphyletic (Arzanlou et al. 2007, 2008, Crous et al. 2009c). The sequencing of the type species of Ramichloridium and Stenella revealed them to belong to Teratosphaeriaceae, and the taxa remaining in Mycosphaerellaceae were therefore combined into existing genera (e.g. Zasmidium), or new genera (e.g. Pachyramichloridium).

The genera Phaeoramularia, Fulvia and Mycovellosiella were previously considered synonyms of Passalora (Crous \& Braun 2003) since the morphological characters appeared to overlap among them. In the present study, based on the phylogenetic placement of good representative material, these four genera are revived and distinguished from one another. Previous generic definitions can no longer be applied to these genera in their current circumscription, and the description of new species is strongly reliant on the availability of DNA sequence data. Mycovellosiella, based on the present phylogeny is a monotypic genus, but with more collections new species may emerge. Mycovellosiella was previously distinguished from Passalora and Phaeoramularia by the formation of superficial mycelium with solitary conidiophores formed in vivo, but these traits are phylogenetically and taxonomically not significant and deemed unreliable. Other non-type species with mycovellosiella-like morphology cluster in the present trees at quite different positions (e.g. Paramycovellosiella and Distomycovellosiella). The formation of conidia in chains or singly, previously used to differentiate between Passalora (incl. Cercosporidium) and Phaeoramularia, is still somewhat reliable considering the species included in the present
phylogeny, since the type of Passalora and species of Cercosporidium produce single conidia, whereas Phaeoramularia and Ragnhildiana produce catenate conidia. With the inclusion of more species this distinguishing character may, however, become less reliable. The genus Passalora is now restricted to species with pale brown conidiophores with apical conidiogenous cell with multiple rim-like conidiogenous loci, thickened and darkened, and single obclavate $1-2$-septate conidia with a thickened and darkened hilum. New passaloralike species to be described cannot be assigned without molecular data and, if molecular data are not available, should tentatively be assigned to Passalora s. lat. This interim solution will be necessary considering the large number of species involved globally.

The particularly problematic situation pertaining to the genera Zasmidium, Periconiella, Verrucisporota and Ramichloridium, previously observed by Arzanlou et al. (2008) and Crous et al. (2009a, 2012), was addressed in the present study by taking a broad approach to the generic definition of Zasmidium, due to strong phylogenetic support of the basal branches and morphological similarity of the species involved.
The genus Phaeophleospora appeared to be polyphyletic, as previously observed by Crous et al. (2009b), and the two species that were not congeneric with the type, Phaeophleospora atkinsonii and Phaeophleospora stonei, were reassigned to the new genus Pseudophaeophleospora. The conundrum surrounding Phaeophleospora and Lecanosticta was discussed by Crous et al. (2009c). The genus Lecanosticta produces phaeophleospora-like conidia in acervular conidiomata, in contrast to the pycnidial conidiomata in Phaeophleospora. In the present phylogeny, these two genera cluster in sister clades with a strong basal support to both genera, low support for the Phaeophleospora basal branch, but strong support for the Lecanosticta basal branch. Surprisingly, the species Cytostagonospora martiniana clustered in the Phaeophleospora clade, and Phaeophleospora parsonsiae seemed to have some affinity to Lecanosticta. Until more species and further data are available to clarify this situation, however, we refrain from proposing any new combinations, since our phylogenies will always suffer from undersampling, given the many thousands of taxa included in the family.

One of the major challenges encountered in the present study was that several isolates were sterile (e.g. Sirosporium celtidis and Passalora daleae) irrespective of all the attempts with changing culture media, incubation conditions, and adding plant substrates. This was either due to the age of the isolate, or isolates requiring their respective hosts to sporulate. Fortunately, some isolates could be linked to their original works and respective morphological descriptions (e.g. Asperisporium vitiphyllum). In addition, despite the large number of taxa in the family, many have been described without the deposit of a culture in a public collection, and will therefore need to be recollected in order to resolve their phylogenetic position, which will require an enormous effort. This problem extends in retrospective to many old and obscure genera, and therefore a review of the genera associated with Mycosphaerellaceae has been included in the present study in order to motivate the recollection of these obscure fungi, which will enable us to resolve their phylogenetic relationships.

The present study addresses several problematic taxa in Mycosphaerellaceae in the light of phylogenetic analysis and morphological characterisation. Although the type species of several genera have been reliably identified and typified, many genera remain unresolved or are in need of a more in-depth study (e.g. Paramycosphaerella). The reference cultures used in this paper have, however, been deposited in a public culture collection in order to promote further research on this important family of plant pathogenic fungi. What was known as Mycosphaerella sensu Aptroot (2006), now represents a great number of different genera accommodated in different families within Dothideomycetes. As more cultures become available, new patterns of
coevolution with different fungal genera and their associated host families will emerge, which we hope will eventually lead to more clarity.

ACKNOWLEDGEMENTS

This study was financially supported by the "Fonds Economische Structuurversterking (FES)", Dutch Ministry of Education, Culture and Science grant BEK/BPR-2009/137964-U, "Making the Tree of Life Work". We thank the CBS technical staff, Arien van Iperen, IJda Vlug and Trix Merkx (cultures), Marjan Vermaas (photographic plates), and Mieke Starink-Willemse (partial DNA isolation, amplification and sequencing) for their assistance. We would also like to thank all the mycologists who deposited their specimens in the CBS and CPC collections over the years and made this work possible. We would like to thank the curators and staff of the E, K, M, NY, PDD, S, UC and UPS herbaria for all the specimens sent for study.

General discussion

The present thesis focuses mainly on the taxonomic review and circumscription of genera within the family Mycosphaerellaceae with particular emphasis on the genera Ramularia, Passalora and Zasmidium. The concept of Mycosphaerellaceae and the genera it contains has been significantly revised over the years since the introduction of DNA sequencing and phylogenetic analyses into the field of fungal systematics (Stewart et al. 1999, Crous et al. 2007a, b, 2009a-e, 2013a, Quaedvlieg et al. 2011, 2013, 2014, Verkley et al. 2013, Groenewald et al. 2013, Videira et al. 2015a, b, 2016). The reduced morphology of Mycosphaerella made it a large genus that, based on molecular evidence, was found to be poly- and paraphyletic within the Dothideomycetes. As a consequence, many genera were distributed among other families like Schizothyriaceae (Batzer et al. 2008), Cladosporiaceae (Schubert et al. 2007, Dugan et al. 2008, Bensch et al. 2012, 2015), Dissoconiaceae and Teratosphaeriaceae. This meant that Mycosphaerella was not the sexual morph of 40 odd genera as formerly believed (Crous 2009), but that these were in fact distinct genera within the Dothideomycetes, for which the names of the asexual genera were available for use. Therefore, the selection of the name Ramularia over that of Mycosphaerella (Wijayawardene et al. 2014, Chapters 3, 4) to refer to Mycosphaerella s. str. based on the newly revised International Code of Nomenclature for algae, fungi, and plants (ICN) was only logical. Based on phylogenetic analyses, the morphological traits used to distinguish genera (i.e. mode of conidiogenesis and conidiogenous loci) are not always confined to a single lineage which suggests these are traits that evolved multiple times (Chapters 4, 5). Therefore, the fundamental monographs that based their taxonomic groupings on morphology only, were in urgent need of revision under the light of new phylogenetic data.

Recent studies had already circumscribed several genera based on the phylogenetic placement of their type species (e.g. Cercospora, Pseudocercospora, Septoria) while the taxa not congeneric with the type were then reassigned to new genera (e.g. Amycosphaerella, Caryophylloseptoria, Microcyclosporella). The sequencing of the type species of Ramichloridium and Stenella revealed them to belong to Teratosphaeriaceae, and the taxa remaining in Mycosphaerellaceae were therefore combined into existing genera (e.g. Zasmidium). However, several strains present in the general phylogenies remained unassigned to a specific genus and required further treatment (e.g. Pachyramichloridium, Chapter 4). In addition, a few genera that included economically important species remained phylogenetically unresolved (e.g. Ramularia, Passalora). Based on the present work (Chapters 4, 5), many genera have been circumscribed based on the phylogenetic placement of their type species but many remain to be treated (Table 1). The taxa in these genera are mostly known by their morphological description in literature and their associated fungarium specimen. The recollection of these species will represent an enormous expenditure of time and resources that could have been avoided if only a culture had been deposited in a collection. This could have been a challenging task a few decades ago, but not any longer, with the ease in transport and the free deposit policy of most biobanks. Nevertheless, among the 41 novel Ramularia names released on MycoBank (2000-2015), only 13 included cultures and DNA sequence data while the rest relied only on morphological descriptions based on fungarium specimens. The deposit of cultures should be made compulsory with the description of a new species if we want to promote further advances in research of these organisms. Even if the culture later becomes sterile, it remains a valuable resource. As more cultures become available, new patterns of coevolution with different fungal genera and their associated host families will emerge, which will eventually lead to more clarity.

The circumscription of genera and species in the present work mostly followed the Consolidated Species Concept (CSC) (Quaedvlieg et al. 2014) which incorporates the genealogical concordance of the GCPSR (Taylor et al. 2000) and the criteria of ecology and morphology to provide a more natural classification of these organisms. These concepts and

Table 1. Genera in the Mycosphaerellaceae.
Genera with phylogenetic data

Acervuloseptoria	Lecanosticta
Amycosphaerella	Madagascaromyces*
Annellosympodiella	Megaloseptoria ${ }^{2,3}$ [Melanommataceal], 4 [emmmamyces] $^{\text {a }}$
Apseudocercosporella*	Microcyclosporella
Asperisporium	Micronematomyces*
Australosphaerella*	Miuraea
Brunneosphaerella	Mycodiella
Brunswickiella*	Mycosphaerelloides*
Camptomeriphila ${ }^{2}$	Mycovellosiella
Caryophylloseptoria	Neoceratosperma
Catenulocercospora*	Neocercospora
Cercoramularia*	Neocercosporidium*
Cercospora	Neodeightoniella
Cercosporella	Neomycosphaerella
Cercosporidium	Neopenidiella
Chuppomyces*	Neophloeospora*
Clarohilum	Neopseudocercosporella*
Clypeosphaerella	Neoseptoria
Collarispora*	Nothopassalora*
Colletogloeum ${ }^{2}$	Nothopericoniella*
Coremiopassalora*	Nothophaeocryptopus*
Cytostagonospora	Pachyramichloridium*
Deightonomyces*	Pallidocercospora
Devonomyces*	Pantospora
Distocercospora	Paracercospora
Distocercosporaster*	Paracercosporidium*
Distomycovellosiella*	Paramycosphaerella
Dothistroma	Paramycovellosiella*
Epicoleosporium*	Parapallidocercospora*
Exopassalora*	Passalora
Exosporium	Periconiella ${ }^{4}$ [Zasmidium]
Exutisphaerella*	Phacellium ${ }^{1,4 \text { [Ramularia] }}$
Filiella	Phaeocercospora
Fulvia	Phaeophloeospora
Fusoidiella*	Phaeoramularia
Gloeocercospora ${ }^{3\|X, y l u r i a l e s s, ~ 4\| M i c r o d o c h i u m] ~}$	Phloeospora
Graminopassalora*	Pleopassalora*
Hyalocercosporidium *	Pleuropassalora*
Hyalozasmidium*	Pluripassalora*
Janetia ${ }^{1,2}$	Polyphialoseptoria

Table 1. (Continued).

Prathigada ${ }^{4}$ Psendocercospora]	Sirosporium ${ }^{1}$
Protostegia ${ }^{2}$	Sonderhenia
Pseudocercospora	Sphaerulina
Pseudocercosporella	Stenella ${ }^{\text {[Teratasphaeriaceae] }}$
Pseudopericoniella*	Stromatoseptoria
Pseudophaeophleospora*	Sultanimyces*
Pseudozasmidium*	Trochophora
Ragnhildiana	Utrechtiana ${ }^{2,3 \text { PPryiculuriacaeal }}$
Ramichloridium ${ }^{3 \text { [Teratusphaeriaceae] }}$	Uwemyces
Ramularia	Verrucisporota ${ }^{1,4}$ [Zasmidium]
Ramulariopsis	Virosphaerella*
Ramulispora	Xenomycosphaerella
Rhachisphaerella*	Xenoramularia*
Rosisphaerella*	Xenosonderhenia
Ruptoseptoria	Xenosonderhenioides*
Scirrhia	Zasmidium
Scolecostigmina	Zymoseptoria
Septoria	
Genera lacking phylogenetic data	
Acrodesmis	Cercosporiopsis ${ }^{4 \text { Pausalora s. Lat.] }}$
Acrocladium	Cercostigmina ${ }^{4}{ }^{\text {Pssendocercospora }]}$
Achorodothis	Ciferriella ${ }^{4[\text { Psendocercospora }]}$
Achrotheca ${ }^{4}$ [Ramuluria]	Cladosporiella
Allantophomoides	Clypeispora
Anematidium	Cucurbitariopsis
Anguillosporella	Cyclodothis
Annellophora	Davisoniella
Annelophragmia	Dearnessia
Annelosympodia	Deightoniella
Asteromidium	Denticularia
Berteromyces ${ }^{4 \text { Paussalora s . lat.] }}$	Dictyocephala ${ }^{4 \text { Psendocercospora] }}$
Biharia	Dictyodesmium
Bryopelta	Didymaria ${ }^{4}$ [Ramuluria $]$
Camptomeris	Didymellina
Ceratosperma	Didymochora
Cercocladospora ${ }^{4}$ [Psendocercospora]	Elletevera
Cercodeuterospora ${ }^{4}$ [Mycovellosiella $]$	Eriocercospora
Cercoseptoria ${ }^{4}$ Psendocercospora]	Eriocercosporella
Cercosphaerella	Euryachora
Cercosperma	Fusicladiella
Cercosporina ${ }^{4 \text { [Cercsspora] }}$	Gillotia

Table 1. (Continued).

Gomphinaria	Phlyctaeniella
Haplographium ${ }^{4 \text { Dematioscypha] }}$	Placocrea
Hawksworthiana	Pleurovularia
Helicomina ${ }^{4[\text { Psendocercospora] }]}$	Polysporella
Hoornsmania	Polythrincium
Hyalodictys ${ }^{\text {[Miurraea }}$	Pseudocercosporidium
Hyalodothis	Pseudodidymaria
Isariella	Pseudophaeoramularia ${ }^{4 \text { Pseneldocercosporal }]}$
Isariopsella ${ }^{4}$ [Phacellium]	Pseudopuccinia
Isariopsis ${ }^{\text {4 Phacellium] }}$	Pseudostigmidium
Jackzewskiella	Pseudovularia ${ }^{4}$ [Ramularia]
Jahniella	Quasiphloeospora
Laocoön	Ramularisphaerella
Lecanostictopsis	Rasutoria
Lembosiopsis	Rhabdospora
Lophiosphaerella	Rhopaloconidium ${ }^{4 \text { PPsendocercospora] }}$
Marcosia ${ }^{4}$ STigminal	Rosenscheldiella
Melanodothis	Semipseudocercospora
Microcyclus	Septocylindrium ${ }^{4}$ Rammuraria]
Micronectriella ${ }^{4}$ \|Sphaerulina]	Septocyta
Mycoporis	Septopatella
Neoovularia	Septoriopsis
Neoramularia	Septorisphaerella
Oedothea	Sphaerellothecium
Ophiocarpella	Spilosphaeria
Ophiocladium ${ }^{4 \text { [Ramularia] }}$	Stenellopsis
Oreophilla	Stenospora
Ormathodium	Stictosepta
Ovosphaerella	Stigmidium
Ovularia ${ }^{4}$ [Ramularia]	Stigmina ${ }^{4 \text { PPsendocercospora] }}$
Parastenella	Tandonella
Periconia	Tapeinosporium
Phaeoisariopsis ${ }^{4 \text { Psendocercospora] }}$	Virgasporium ${ }^{4}$ Cercosporal
Phaeophloeosporella	Walkeromyces
Pharcidia ${ }^{4}$ Stigmidium ${ }^{\text {a }}$	

*genera introduced in the present thesis.
${ }^{1}$ not based on the type species but on the phylogenetic position of other species of the same genus.
${ }^{2}$ not used here in the phylogenetic analysis.
${ }^{3}$ reassigned to a different family based on the phylogenetic position of the type species.
${ }^{4}$ type species currently synonymized under a different genus.
respective criteria do not have hard boundaries and the final decision of what constitutes a species, a genus or a family is most of the times a personal decision of the researcher based on the coherence of the analysed data. However, the phylogenetic analysis is rather reliant on the taxa used, on the sequence alignment, on the phylogenetic method and the evolutionary models used to calculate a final tree. To atone for the inherent errors in methods, several multigene analyses using concordant genes are performed with two or more different methods. If the resulting phylogenetic trees have the same topology, it shows that the outcome is more likely true. However, the bias created by the undersampling of biodiversity is difficult to overcome. Increasing the variety and number of taxa can have a strong impact on the outcome, as it could be observed with the genus Paramycosphaerella that was first expanded based on phylogeny (Guatimosim et al. 2016) and later more narrowly redefined based on a different phylogenetic analysis (Chapter 5).

The ITS was introduced as the official barcode for fungi due to its ease of amplification and its ability to distinguish species across the kingdom (Schoch et al. 2012). Frequently, in Mycosphaerellaceae, the ITS is insufficient to distinguish closely related species and a combination of ITS and a secondary barcode (Stielow et al. 2015) is required. Unfortunately, a universal secondary barcode has not been found yet and it is usually proposed for each genus according to its effectiveness. For the Mycosphaerellaceae genera, the present work relied mostly on the $r p b 2$ as a secondary barcode (Chapters 2-5). The $r p b 2$ gene is used to resolve higher levels of classification due to the ease of alignment and is also able to distinguish taxa at species level due to the high variability of the sequence data. The difficulty of amplifying the partial rpb2 sequence was overcome by designing new primers among which the primer RPB2-F4 was found to be very effective among numerous genera (Chapters 4, 5). Secondary barcodes such as tefl- α or tub2 were proposed for Septoria and allied genera (Verkley et al. 2013), rpb2 or actA for Ramularia and allied genera (Chapter 4), cmdA and his 3 for Cercospora (Groenewald et al. 2013), actA and/or tefl- (Crous et al. 2013a) or rpb2 (Nakashima et al. 2016) for Pseudocercospora. Although the protein-coding genes frequently have a higher discriminatory power between species, there are usually less available data in the public databases for comparison (Quaedvlieg et al. 2013). However, this is slowly being overcome with the increasing amount of newly generated sequence data. Once we provide a stable genetic backbone capturing fungal biodiversity, we will be able to accommodate novelties obtained via environmental sequencing platforms like metabarcoding, metatranscriptomics or metagenomics. A recent study used a metagenomic approach to determine the pathogens involved in Citrus greasy spot (CGS) disease and determined that the genera Ramularia and Septoria were the most abundant ones in the total detected sequences (Abdelfattah et al. 2017). Further research would now be required, however, to clarify which of these taxa actually play a role in this disease complex. Nevertheless, these metagenomics findings would not have been possible without DNA species databases for Ramularia and Septoria.

The genera Ramularia, Passalora and Zasmidium

The delimitation of Ramularia (Chapter 4) was of particular importance since it includes the type of the genus Mycosphaerella, Mycosphaerella punctiformis ($=$ Ramularia endophylla), which is the anchor of the Mycosphaerellaceae. From the phylogenetic analysis performed it clustered among other Ramularia species including the type of Ramularia, R. pusilla. Following the one fungus = one name decision, and according to the criteria for pleomorphic genera under the ICN Art. 57.2, the older name Ramularia (Unger 1833) was selected over the name Mycosphaerella
(Johanson 1884b) and included in a list of protected names (Chapter 3, Wijayawardene et al. 2014). The morphological traits used to distinguish Ramularia consisted mostly of hyaline conidiophores and conidia, produced singly or in chains, with distinct, thickened, darkened, refractive conidiogenous loci and conidial hila. These characters can still be used to determine if a species belongs to Ramularia but caution must be used since similar characters can also be observed in Teratoramularia, a genus newly introduced in Teratosphaeriaceae (Chapter 4). The use of DNA sequencing of the rpb2 or actA partial genes in addition to the ITS barcode is advised in order to obtain a more reliable species identification in this genus. In addition, the genetic data that suggested that several species may be hidden under one species name (cryptic species or species complexes) or at an infraspecific rank (special forms or varieties) was correct. Based on the multigene analysis, morphological and ecological characters, the species complex of Ramularia eucalypti was divided into six species (Chapter 2), namely R. eucalypti, R. haroldporteri, R. glennii, R. mali, R. miae and R. plurivora, while the species complex of Ramularia endophylla was divided into three species (Chapter 3), namely R. endophylla, R. unterseheri and R. vizellae. The species Ramularia lamii var. lamii actually represented a total of three species (Chapter 4), namely R. agastaches, R. lami var. lami and R. leonuri, that clustered in different lineages in the phylogenetic analyses.

The use of MALDI-TOF MS as an identification tool has proven to be reliable not only in previous studies but also in the present one (Chapter 2). However, it sometimes fails to distinguish between closely related species such as those in a species complex (e.g. R. glennii and R. mali). Minor discrepancies between phylogenetic and MALDI-TOF MS-based results have been previously observed when comparing closely related Alternaria species (Brun et al. 2013). The MALDI-TOF MS pathogen identification relies on the quality and quantity of the reference database mass spectra. Identification is given as a final result of a comparison process between the unknown organism and reference in database, where presence/absence of particular peaks of proteins is analysed. The mass spectrum should be seen as species specific mass fingerprint where ribosomal proteins are most abundantly visible in the spectra, although other proteins are detected as well. Species differentiation is therefore closely comparable to that achieved by the use of the 16 S rDNA sequence databases in yeast. Therefore, species with similar ribosomal protein sequences are harder to distinguish by MALDI-TOF MS (Wieser et al. 2012). The use of MALDI-TOF MS for strain typing of filamentous fungi is still in its early stages due to their more complex nature when compared to yeasts or bacteria. Filamentous fungi have complicated phylogenetic relationships that require multiple genes to be resolved and have a more complex morphology with thick cell walls and more than one phenotype (e.g. hyphae, spores and synasexual morphs) that influence the protein extraction process. MALDI-TOF-MS is a technique that is easily applied in the clinical laboratory workflow, is quick in providing accurate results and cheaper than the DNA-based identification. Its major limitation is the lack of a comprehensive and efficient reference spectrum libraries that are also open sourced (Normand et al. 2017). For MALDI-TOF MS to become a widely used tool for filamentous fungi identification, large databases of MSP spectra need to be established based on reliably identified cultures and, most importantly, following the same protocol. The MSP spectra of filamentous fungi may differ for the same fungus depending on factors unrelated to genuine taxonomic reasons (e.g. if they are generated from spores or from mycelia; if the presence of secondary metabolites like melanin inhibits ionization). The development of standardized protocols for culturing and isolating proteins from filamentous fungi has only recently become the focus of research (Normand et al. 2017). Standardized protocols (incubation time, temperature, and culture medium) can reduce filamentous fungi pleomorphism and increase the similarity of
the protein mass spectra derived from a given isolate which improves the reliability of the identification. As with DNA sequencing, this enterprise will require an investment in time and resources until it becomes widely used.

All these techniques and work that are put into identifying cryptic species usually leads to the question of why is it so important to recognise cryptic species? The answer is that what we do not know may harm us. Failure to recognise cryptic species of pathogens might complicate efforts toward disease diagnosis, control and eradication programs. Researchers usually rely on speciesspecific interactions between pathogen and host to develop control strategies and they need to know the species they are dealing with. An intriguing question is also whether cryptic species co-occur on hosts by accident or whether there is a functional relationship. In living tissue, we assume that the latter is most likely. The multiple species in the complex might depend on each other to colonize their host by sharing different effector genes or sharing particular growth substances. Alternatively, they might keep each other in control by expression of antagonistic metabolite or effector genes in order not to colonise their host abundantly and causing too much damage. When a host and its cryptic species enters different environments via global trade or climate change, "peaceful co-existence" of cryptic species might be disturbed and one of them might become dominant and cause serious damage. Such is the case with the pathogen Pseudocercospora musicola (Yellow Sigatoka) that was rapidly displaced by the more aggressive P. fijiensis (Black Sigatoka) almost everywhere where banana is cultivated (Gomes et al. 2013, Chang et al. 2016). Identifying cryptic species complexes also has an impact on conservation since introduced invasive species cause significant damage to native populations in wild habitats. Prevalence of cryptic species also influences the estimate of the number of species of fungi on Earth that currently ranges from 1.5 million (Hawksworth \& Rossman 1997) to 3.8 million (Hawksworth \& Lücking 2017). The existence of cryptic species may also hamper the search for new pharmaceuticals in fungi since natural products with potential medicinally valuable properties, such as antibiotic activity, can go undetected within cryptic species complexes. With Ramularia species, as with other groups of fungi, there has been a tradition of describing species as new if the fungus is found on a new host plant, which can lead to an unnecessary proliferation of species names. The Ramularia species analysed in this thesis generally agree with the concept presented in literature (Braun 1998), which regards them as being host-specific but more work needs to be done since only a small percentage of taxa were analysed.

The genus Passalora, as previously defined, used to include a wide range of species that produced similar morphological characters and genera such as Phaeoramularia, Fulvia and Mycovellosiella were considered to be synonyms of Passalora (Crous \& Braun 2003). Upon the recollection of the type species of Passalora, P. bacilligera, and the introduction of its partial DNA sequences on several phylogenetic analyses, most species previously considered to belong in Passalora were found not to be congeneric with the type (Chapter 5). Passalora is now restricted to species with pale brown conidiophores with apical conidiogenous cells with multiple rim-like conidiogenous loci, thickened and darkened, and single obclavate $1-2$-septate conidia with a thickened and darkened hilum. In order to accommodate the species no longer included in Passalora, the previously synonymised genera were resurrected (e.g. Cercosporidium, Fulvia, Mycovellosiella, Phaeoramularia) and new genera were introduced (e.g. Distomycovellosiella, Neocercosporidium). New passalora-like species to be described cannot be assigned without molecular data and, if molecular data are not available, should tentatively be assigned to Passalora s. lat. In addition to the ITS barcode, for the passalora-like species, the amplification of the rpb2 partial gene is recommended, due to the long and variable sequence obtained and to the availability of the new data obtained here for comparison. The phylogenetic analysis performed with the passalora-like species (Chapter 5) was the largest of its kind to date but the phylogenetic position of many species described in literature
remains unknown until they are recollected and subjected to DNA sequencing. As observed, based on the phylogeny, morphological and ecological characters, several of the newly introduced genera were monotypic (e.g. Graminopassalora, Sultanimyces, Collarispora). These mainly include species that have an economic impact in agriculture, and many undescribed species are to be expected to exist in association with less known hosts and in non-disturbed habitats. Among vertebrate and plant genera, studies that evaluated the evolution of the taxonomic process suggest that both the excess or deficiency of monotypic and large genera is an artefact inherent to the taxonomic practice which is attenuated with further taxonomic revisions of existing species and with the description of new species (Chamberlin 1924, Cronk 1989, Scotland \& Sanderson 2004, Strand \& Panova 2015). Taxonomic rank allocations (e.g. genera, families) are non-standardised, which means that at the same rank, different amounts of phenotypic and genetic information may be applied (Avise \& Mitchel 2007). This can be observed when comparing several of the genera as circumscribed in the present work such as Phaeoramularia and Zasmidium (Chapter 5). In addition, rank allocations are usually influenced by previous rank allocations within the group (Bertrand et al. 2006, Laurin 2010). Thus, fitting the data in an existing framework has influenced many of the decisions that led to the presented generic circumscriptions (Chapters 2-5). In the end, the genus rank both partly reflects the evolutionary process and partly represents a subjective and artificial category (Clayton 1972, Strand \& Panova 2015).

The genus Zasmidium is based on the type species, Z. cellare, that has been neotypified in the present study (Chapter 5). Based on the phylogenetic analyses performed, only the basal and terminal branches were strongly supported while the intermediate branches were not significantly supported. In addition, the morphological characters appeared multiple times in different lineages, so a clear separation was not possible (Chapter 5). Therefore, based on phylogenetic, morphological and ecological data, the concept of Zasmidium has been broadened to include the genera Periconiella, Verrucisporota and ramichloridium-like species (Fig. 1). The use of additional genes (e.g. actA, tef1- α, tub2) in the phylogenetic analysis may be necessary to clarify the phylogenetic history of this group of species that includes important pathogens such as Zasmidium citri-griseum. Based on an in-silico gene selection process for alternative candidate barcodes, the tefl- α gene, amplified with the primers EF1-1018F/EF1-1620R, appears to be the most promising candidate as a universal secondary barcode and should be prioritized in this effort (Stielow et al. 2011).

General conclusions

The present work has changed how we classify several species within the Mycosphaerellaceae and has enriched the biodiversity databases that are a valuable tool to plant pathologists, breeders and medical mycologists in the development of their own research. Research lines in genomics and proteomics in Mycosphaerellaceae are still poorly explored. Among them, only Zymoseptoria tritici (Mycosphaerella graminicola) (Goodwin et al. 2011), Fulvia fulva (Cladosporium fulvum; Wit et al. 2012) Pseudocercospora fijiensis (Mycosphaerella fijiensis) (Arango et al. 2016), P. musae and P. eumusae (Chang et al. 2016), and Ramularia collo-cygni (McGrann et al. 2016) have had their genomes sequenced. Genomic analysis of pathogenic species is likely to provide valuable insights into their genetic diversity, their biological cycles and their ability to produce effector proteins and secondary metabolites that are required for pathogenesis, and that can lead to the development of more appropriate control measures.

Fig. 1. Morphological characteristics of species belonging to Zasmidium. A. Z. cerophilum (Arzanlou et al. 2007). A1, A2. Conidiophore and conidia. B. Z. cellare (Arzanlou et al. 2007). B1. Terminal conidiogenous cell and conidium. B2. Ramoconidia and terminal conidia. C. Z. eucalyptorum (Crous et al. 2006c). C1. Leaf symptoms of the sexual morph development. C2. Ascospores. D. Z. pseudoparkii, conidiophore and conidium (Crous et al. 2006c). E. Z. musicola, conidiophore and conidium (Arzanlou et al. 2008). F. Z. citri-griseum, conidiophore and conidia (Braun et al. 2014). G. Z. strelitziae (Arzanlou et al. 2007).

Fig. 1. (Continued). G1, G2. Conidiophore and conidia. H. Z. musae-banksii (Arzanlou et al. 2007). H1. Conidiogenous cell and conidia. H2. Drawing of the conidiophore and conidia. I. Z. musigenum, conidiophore and conidia (Arzanlou et al. 2007). J. Z. biverticillatum, conidiophores and conidia (Arzanlou et al. 2007). K. Z. grevilleae (Crous et al. 2009a). K1. Partial conidiophore, intercalary and terminal conidiogenous cell. K2. Conidium. L. Z. proteacearum, drawing representing conidiophores and conidia (Ellis 1971). M. Z. musae (Braun et al. 2014). M1, M2. Simple conidiophore emerging from mycelium. M3. Conidium solitary, septate, hyaline. N. Z. arcuatum (Arzanlou et al. 2007). N1. Partial conidiophore, branched, geniculate-sinuous, verruculose, pigmented. N2. Conidium solitary, with elongated apical beak, verruculose, curved. O. Z. velutinum (Arzanlou et al. 2007). O1. Conidiophore branched, pigmented, finely verruculose, intercalary and terminal conidiogenous cell, single conidia. O2. Conidia single, septate, finely verruculose, pigmented. P. Z. hakeae. P1. Partial conidiophore, finely verruculose, conidiogenous cell terminal and with multiple conidiogenous loci, conidia. P2. Conidium solitary, septate, pigmented, finely verruculose. Q. Z. queenslandicum (Arzanlou et al. 2008). Q1. Simple conidiophore emerging from mycelium. Q2. Solitary conidium. R. Z. schini. R1. Simple conidiophore emerging from mycelium, straight, pigmented. R2. Conidium solitary, septate. S. Z. elaeocarpi. S1. Conidiophore emerging from mycelium, slightly curved, with intercalary and terminal conidiogenous cell forming rachis. S2. Partial conidiophore with apical conidiogenous cell and conidium. S3. Solitary conidia, septate, finely verruculose.

APPENDIX

REFERENCES

SUMMARY
ACKNOWLEDGEMENTS
CURRICULUM VITAE
LIST OF PUBLICATIONS
EDUCATION STATEMENT

REFERENCES

Abdelfattah A, Cacciola SO, Mosca S, et al. (2017) Analysis of the fungal diversity in Citrus leaves with Greasy Spot Disease symptoms. Microbial Ecology 73(3): 739-749.

Aguileta G, Marthey S, Chiapello H, et al. (2008). Assessing the performance of single-copy genes for recovering robust phylogenies. Systematic Biology 57: 613-627.

Aly AH, Debbab A, Proksch P (2012). Fungal endophytes: unique plant inhabitants with great promises. Applied Microbiology Biotechnology 90: 1829-1845.

Aptroot A(2006). Mycosphaerella and its anamorphs 2. Conspectus of Mycosphaerella. CBS Biodiversity series 5, Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands.

Arango Isaza RE, Diaz-Trujillo C, Dhillon B, et al. (2016). Combating a global threat to a clonal crop: banana black sigatoka pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control. PLoS Genetics 12: e1005876. doi: 10.1371/journal. pgen. 1005876.

Arnold RH (1967). The Nectriella element of "Hyalodothis". Mycologia 59: 246-254.
Arnold RH (1971). Melanodothis caricis, n. gen., n. sp. and 'Hyalodothis? caricis'. Canadian Journal of Botany 49: 2187-2196.

Arnone A, Camarda L, Nasini G, et al. (1986). Secondary mould metabolites Part 15, Structure elucidation of rubellins A and B, two novel anthraquinone metabolites from Mycosphaerella rubella. Journal of the Chemical Society Perkin Transactions 1: 255-260.

Arx JA von (1949). Beiträge zur Kenntnis der Gattung Mycosphaerella. Sydowia 3: 28-100.
Arx JA von (1983). Mycosphaerella and its anamorphs. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen: Series C: Biological and Medical Sciences 86: 15-54.

Arx JA von (1987). Plant pathogenic fungi. Beiheft Nova Hedwigia 87: 1-288.
Arx JA von, Müller E (1975). A reevaluation of the bitunicate Ascomycetes with keys to families and genera. Studies in Mycology 9: 1-159.

Arzanlou M, Groenewald JZ, Fullerton RA, et al. (2008). Multiple gene genealogies and phenotypic characters differentiate several novel species of Mycosphaerella and related anamorphs on banana. Persoonia 20: 19-37.

Arzanlou M, Groenewald JZ, Gams W, et al. (2007). Phylogenetic and morphotaxonomic revision of Ramichloridium and allied genera. Studies in Mycology 58: 57-93.

Avila A, Groenewald JZ, Trapero A, et al. (2005). Characterisation and epitypification of Pseudocercospora cladosporioides, the causal organism of Cercospora leaf spot of olives. Mycological Research 109: 881-888.

Avise JC, Mitchell D (2007). Time to standardize taxonomies. Systematic Biology 56: 130-133.
Baarlen P van, Belkum A van, Summerbell RC, et al. (2007). Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiology Reviews 31: 239-277.

Bader O (2013). MALDI-TOF-MS-based species identification and typing approaches in medical mycology. Proteomics 13: 788-799.

Bai QR, Han S, Xie YY, et al. (2013). Veronica sibirica leaf spots caused by Phacellium veronicae, a new disease in China. Plant Disease 97: 1662.

Baker KF, Dimock AW, Davis LH (1950). Ramularia cyclaminicola Trel., the cause of Cyclamen stunt disease. Phytopathology 40: 1027-1034.

Baker WA, Partridge EC, Morgan-Jones G (2000). Notes on Hyphomycetes. LXXVIII. Asperisporium sequoiae, the causal organism of conifer needle blight, reclassified in Cercosporidium, with comments on the status of the genus. Mycotaxon 76: 247-256.

Bakhshi M, Arzanlou M, Babai-Ahari A, et al. (2014). Multi-gene analysis of Pseudocercospora spp. from Iran. Phytotaxa 184: 245-264.
Bakhshi M, Arzanlou M, Babai-Ahari A, et al. (2015a). Is morphology in Cercospora a reliable reflection of generic affinity? Phytotaxa 213: 22-34.

Bakhshi M, Arzanlou M, Babai-Ahari A, et al. (2015b). Application of the consolidated species concept to Cercospora spp. from Iran. Persoonia 34: 65-86.

Barkai-Golan R (2001). Postharvest Diseases of Fruit and Vegetables: Development and Control. Amsterdam, the Netherlands: Elsevier Sciences.

Barnes I, Crous PW, Wingfield BD, et al. (2004). Multigene phylogenies reveal that red band needle blight of Pinus is caused by two distinct species of Dothistroma, D. septosporum and D. pini. Studies in Mycology 50: 551-565.

Barnes I, Nest A van der, Mullett MS, et al. (2016). Neotypification of Dothistroma septosporum and epitypification of D. pini, causal agents of Dothistroma needle blight of pine. Forest Pathology 46: 388-407.

Barr ME (1972). Preliminary studies on the Dothideales in temperate North America. Contributions of the University of Michigan Herbarium 9: 523-638.

Barr ME (1987). Prodomus to class Loculoascomycetes. Published by the author, Amherst, Massachusetts.
Barreto RW, Evans HC (1994). The mycobiota of the weed Chromolaena odorata in southern Brazil with particular reference to fungal pathogens for biological control. Mycological Research 98: 1107-1116.

Batzer JC, Arias MMD, Harrington TC, et al. (2008). Four species of Zygophiala (Schizothyriaceae, Capnodiales) are associated with the sooty blotch and flyspeck complex on apple. Mycologia $\mathbf{1 0 0}$: 246-258.

Batzer JC, Gleason ML, Harrington TC, et al. (2005). Expansion of the sooty blotch and flyspeck complex on apples based on analysis of ribosomal DNA gene sequences and morphology. Mycologia 97: 1268-1286.

Bedlan G, Plenk A, Ambrosch A (2012). Erstnachweis von Passalora capsicicola (Syn. Cladosporium capsici) an Capsicum annuum in Österreich. Journal für Kulturpflanzen 64: 29-32.

Beer ZW de, Begerow D, Bauer R, et al. (2006). Phylogeny of the Quambalariaceae fam. nov., including important Eucalyptus pathogens in South Africa and Australia. Studies in Mycology 55: 289-298.

Begerow D, Nilsson H, Unterseher M, et al. (2010). Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Applied Microbiology and Biotechnology 87: 99-108.
Beilharz V, Pascoe IG (2002). Two additional species of Verrucisporota, one with a Mycosphaerella teleomorph, from Australia. Mycotaxon 82: 357-365.

Beilharz VC, Pascoe IG, Wingfield MJ, et al. (2004). Passalora perplexa, an important pleoanamorphic leaf blight pathogen of Acacia crassicarpa in Australia and Indonesia. Studies in Mycology 50: 471-479.

Bensch K, Braun U, Groenewald JZ, et al. (2012). The genus Cladosporium. Studies in Mycology 72: 1-401.

Bensch K, Groenewald JZ, Braun U, et al. (2015). Common but different: The expanding realm of Cladosporium. Studies in Mycology 82: 23-74.

Bensch K, Groenewald JZ, Dijksterhuis J, et al. (2010). Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Studies in Mycology 67: 1-94.

Berbee ML, Pirseyedi M, Hubbard S (1999). Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91: 964-977.

Berbegal M, Mora-Sala B, García-Jímenez J (2013). A nested-polymerase chain reaction protocol for the detection of Mycosphaerella nawae in persimmon. European Journal of Plant Pathology 137: 273-281.

Berner DK, Eskandari FM, Braun U, et al. (2005). Cercosporella acroptili and Cercosporella centaureicola sp. nov. - potential biological control agents of Russian knapweed and yellow starthistle, respectively. Mycologia 97: 1122-1128.

Bertrand Y, Pleijel F, Rouse GW (2006). Taxonomic surrogacy in biodiversity assessments and the meaning of Linnaean ranks. Systematics and Biodiversity 4: 149-159.

Bezerra JDP, Oliveira RJV, Paiva LM, et al. (2017). Bezerromycetales and Wiesneriomycetales ord. nov. (class Dothideomycetes), with two novel genera to accommodate endophytic fungi from Brazilian cactus. Mycological Progress 16: 297-309.

Bickford D, Lohman DJ, Sodhi NS, et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology \& Evolution 22: 148-155.

Blomquist CL, Warfield CY (2011). First report of Ramularia didyma causing a leaf spot on Ranunculus (Ranunculus asiaticus) hybrids in California. Plant Disease 95: 872.

Boerema GH, Kesteren HA van (1964). The nomenclature of two fungi parasitizing Brassica. Persoonia 3: 17-28.

Bonorden HF (1853). Beiträge zur Mykologie. Botanische Zeitung 11: 281-296.
Bonorden HF (1861). Fungi europaei exsiccati. Klotzschii herbarii vivi mycologici continuatio, Editatio nova. Series secunda, Centuria: no. 288.

Borbon-Garcia A, Ochoa-Espinoza XM, Montoya-Coronado L, et al. (2011). CIANO-LIN: nueva variedad de cártamo linoléica. Revista Mexicana de Ciencias Agrícolas 2: 791-794.

Bory de Saint-Vincent Jean-Baptiste-Genevieve-Marcellin Baron de, Durieu de Maisonneuve MichelCharles (1849). Exploration scientifique de l'Algerie, vol. 1, livraison 14, Imprimerie Imperiale, Paris, France.

Bradshaw ER (2004). Dothistroma (red-band) needle blight of pines and the dothistromin toxin: a review. Forest Pathology 34: 163-185.

Bradshaw ER, Zhang S (2006). Biosynthesis of dothistromin. Mycopathologia 162: 201-213.
Brady CR, Noll LW, Saleh AA, et al. (2011). Disease severity and microsclerotium properties of the sorghum sooty stripe pathogen, Ramulispora sorghi. Plant Disease 95: 853-859.

Braun U (1988). Studies on Ramularia and allied genera (I). International Journal of Mycology and Lichenology 3: 271-285.

Braun U (1990). Taxonomic problems of the Ramularia/Cercosporella complex. Studies in Mycology 32: 65-75.

Braun U (1991). Studies on Ramularia and allied genera (IV). Nova Hedwigia 53: 291-305.
Braun U (1992). Studies on Ramularia and allied genera (V). Nova Hedwigia 54: 459-478.
Braun U (1993). New genera of phytopathogenic Deuteromycetes. Cryptogamic Botany 4: 107-114.
Braun U (1993). Studies on Ramularia and allied genera (VI). Nova Hedwigia 56: 423-454.
Braun U (1995). A monograph of Cercosporella, Ramularia and allied genera (phytopathogenic hyphomycetes): Vol. 1. IHW-Verlag, Eching, Munich, Germany.

Braun U (1996). Taxonomic notes on some species of the Cercospora complex (IV). Sydowia 48: 205-217.
Braun U (1998). A monograph of Cercosporella, Ramularia and allied genera (phytopathogenic hyphomycetes): Vol. 2. IHW-Verlag, Eching, Munich, Germany.

Braun U (2000). Annotated list of Cercospora spp. described by C. Spegazzini. Schlechtendalia 5: 57-79.

Braun U (2001). Taxonomic notes on some species of the Cercospora complex (VII). Fungal Diversity 8: 41-71.

Braun U (2017). Typifications of some species of Ramularia and similar genera (Mycosphaerellaceae) revisited. Schlechtendalia 32: 25-28.

Braun U, Crous PW (2006). (1732) Proposal to conserve the name Pseudocercospora against Stigmina and Phaeoisariopsis (Hyphomycetes). Taxon 55: 801-808.

Braun U, Crous PW (2007). The diversity of cercosporoid hyphomycetes-new species, combinations, names and nomenclatural clarifications. Fungal Diversity 26: 55-72.

Braun U, Crous PW (2008). Cercosporoid hyphomycetes on hosts of the Annonaceae: Cercospora annonaceae and Isariopsis annonarum revisited. Mycotaxon 105: 207-224.

Braun U, Crous PW (2016). (2415) Proposal to conserve the name Cercospora (Ascomycota: Mycosphaerellaceae) with a conserved type. Taxon 65(1): 185.

Braun U, Hill CF (2002). Some new micromycetes from New Zealand. Mycological Progress 1: 19-30.
Braun U, Hill CF (2004). Some new cercosporoid and related leaf spot diseases from New Zealand and Fiji. Australasian Plant Pathology 33: 485-494.

Braun U, Hill CF (2008). New species and new records of foliicolous hyphomycetes from New Zealand. Australasian Mycologist 27: 45-56.

Braun U, Mel'nik VA (1996). Stigmina caricicola sp. nov., Venturia spiraeicola sp. nov. and notes on Jaczewskiella and Xiphomyces. Mikologiya i Fitopatologiya 30: 7-13.

Braun U, Mel'nik VA (1997). Cercosporoid fungi from Russia and adjacent countries. Trudy Botanicheskogo Instituta Imeni V.L. Komarova. Rossijskaya Akademiya Nauk St. Petersburg 20: 1-130.

Braun U, Pennycook SR (2003). Nomenclature and typification of Ramularia grevilleana. Mycotaxon 88: 49-52.

Braun U, Crous PW, Dugan F, et al. (2003a). Phylogeny and taxonomy of Cladosporium-like hyphomycetes, including Davidiella gen. nov., the teleomorph of Cladosporium s.str. Mycological Progress 2(1): 3-18.

Braun U, Crous PW, Nakashima C (2014). Cercosporoid fungi (Mycosphaerellaceae) 2. Species on monocots (Acoraceae to Xyridaceae, excluding Poaceae). IMA Fungus 5: 203-390.

Braun U, Crous PW, Nakashima C (2015a). Cercosporoid fungi (Mycosphaerellaceae) 3. Species on monocots (Poaceae, true grasses). IMA Fungus 6: 25-97.

Braun U, Crous PW, Nakashima C (2015b). Cercosporoid fungi (Mycosphaerellaceae) 4. Species on dicots (Acanthaceae to Amaranthaceae). IMA Fungus 6: 373-469.

Braun U, Crous PW, Nakashima C (2016). Cercosporoid fungi (Mycosphaerellaceae) 5. Species on dicots (Anacardiaceae to Annonaceae). IMA Fungus 7: 161-216.

Braun U, Crous PW, Schubert K, et al. (2010a). Some reallocations of Stenella species in Zasmidium. Schlechtendalia 20: 99-104.

Braun U, Freire FO, Urtiaga R (2010b). New species and new records of cercosporoid hyphomycetes from Brazil, New Zealand and Venezuela. Polish Botanical Journal 55: 281-291.

Braun U, Hill CF, Dick M (2003b). New cercosporoid leaf spot diseases from New Zealand. Australasian Plant Pathology 32: 87-97.

Braun U, Hill CF, Schubert K (2006). New species and new records of biotrophic micromycetes from Australia, Fiji, New Zealand and Thailand. Fungal Diversity 22: 13-35.

Braun U, Mouchacca J, McKenzie EHC (1999). Cercosporoid hyphomycetes from New Caledonia and some other South Pacific islands. New Zealand Journal of Botany 37: 297-327.

Braun U, Nakashima C, Crous PW (2013). Cercosporoid fungi (Mycosphaerellaceae) 1. Species on other fungi, Pteridophyta and Gymnospermae. IMA Fungus 4: 265-345.

Breeÿen Aden, Groenewald JZ, Verkley GJM, et al.(2006). Morphological and molecular characterisation of Mycosphaerellaceae associated with the invasive weed, Chromolaena odorata. Fungal Diversity 23: 89-110.

Brown LG, Morgan-Jones G (1976). Notes on hyphomycetes XI. Additions to the genera Cercosporidium, Passalora and Phaeoisariopsis. Mycotaxon 4: 299-306.

Brun S, Madrid H, Gerrits van der Ende B, et al. (2013). Multilocus phylogeny and MALDI-TOF analysis of the plant pathogenic species Alternaria dauci and relatives. Fungal Biology 117: 32-40.

Bubak F (1916). Achter Beitrag zur Pilzflora von Tirol. Annales Mycologici 14: 145-158.
Burgess TI, Barber PA, Sufaati S, et al. (2007). Mycosphaerella spp. on Eucalyptus in Asia; new species, new hosts and new records. Fungal Diversity 24: 135-157.

Butler EJ, Jones SG (1949). Tomato Leaf Mould, Cladosporium fulvum Cooke. Macmillan, London.
Cabral A, Groenewald JZ, Rego C, et al. (2012). Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycological Progress 11: 655-688.

Cai L, Giraud T, Zhang N, et al. (2011) The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Diversity 50: 121. https://doi.org/10.1007/s13225-011-0127-8

Carbone I, Kohn LM (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553-556.

Carnegie AJ, Keane PJ (1994). Further Mycosphaerella species associated with leaf diseases of Eucalyptus. Mycological Research 98: 413-418.

Carnegie AJ, Burgess TI, Beilharz V, et al. (2007). New species of Mycosphaerella from Myrtaceae in plantations and native forests in eastern Australia. Mycological Research 99: 461-474.

Carnegie AJ, Pegg GS, White D, et al.(2011). Species within Mycosphaerellaceae and Teratosphaeriaceae from eucalypts in eastern Australia. Australasian Plant Pathology 40: 366-384.

Cassagne C, Ranque S, Normand A-C, et al. (2011). Mould routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS ONE 6: e28425.

Castañeda RF, Braun U (1989). Cercospora and allied genera of Cuba (I). Cryptogamic Botany 1: 42-55.
Castañeda RF, Kendrick B (1990). Conidial fungi from Cuba: I. University of Waterloo Biology Series 32: 1-53.

Chamberlin JC (1924). The hollow curve of distribution. American Naturalist 58: 350-374.
Chang T-C, Salvucci A, Crous PW, et al. (2016). Comparative genomics of the Sigatoka disease complex on banana suggests a link between parallel evolutionary changes in Pseudocercospora fijiensis and Pseudocercospora eumusae and increased virulence on the banana host. PLoS Genetics 12: e1005904. https://doi.org/10.1371/journal.pgen. 1005904.

Cheewangkoon R, Crous PW, Hyde KD, et al. (2008). Species of Mycosphaerella and related anamorphs on Eucalyptus leaves from Thailand. Persoonia 21: 77-91.

Chen H, Lee M-H, Daub ME, Chung K-R (2007). Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora nicotianae. Molecular Microbiology 64: 755-770.

Chupp C (1954). A monograph of the fungus genus Cercospora. Ithaca, New York.
Churchill ACL (2010). Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Molecular Plant Pathology 12: 307-328.

Ciferri R (1954). Schedae Mycologicae XII-XXXIV. Sydowia 8: 245-270.
Clayton WD (1972). Some aspects of the genus concept. Kew Bulletin 27: 281-287.
Clements FE, Shear CL (1931). The genera of fungi. H.W. Wilson Co., New York.
Cline ET, Rossman AY (2006). Septoria malagutii sp. nov., cause of annular leaf spot of potato. Mycotaxon 98: 125-132.

Constantinescu O (1975). Revision of Cercospora species (Hyphomycetes) parasitic on Psoralea. Mycotaxon 3: 119-125.

Cooke MC (1875). British fungi [cont.]. Grevillea 3(28): 177-186.
Corlett M (1991). An annotated list of the published names in Mycosphaerella and Sphaerella. Mycologia Memoir 18: 1-328.

Cromey MG, Harvey IC, Sheridan EJ, et al. (2004). Occurrence, importance and control of Ramularia collo-cygni in New Zealand. In: Proceedings of the Second International Workshop on Barley Leaf Blights (Yahyaoui AH, Brader L, Tekauz A, Wallwork H, Steffenson B, eds). ICARDA, Aleppo, Syria: 337-342.

Cronk QCB (1989). Measurement of biological and historical influences in plant classifications. Taxon 38: 357-370.

Crous PW (1998). Mycosphaerella spp. and their anamorphs associated with leaf spot diseases of Eucalyptus. Mycologia Memoir 21: 1-170.

Crous PW (2007). Hoornsmania pyrina. Fungal Planet. No. 11. Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands.

Crous PW (2009). Taxonomy and phylogeny of the genus Mycosphaerella and its anamorphs. Fungal Diversity 38: 1-24.

Crous PW, Alfenas AC (1995). Mycosphaerella gracilis and other species of Mycosphaerella associated with leaf spots of Eucalyptus in Indonesia. Mycologia 87: 121-126.

Crous PW, Braun U (1996). Cercosporoid fungi from South Africa. Mycotaxon 57: 233-321.
Crous PW, Braun U (2003). Mycosphaerella and its anamorphs: 1. Names published in Cercospora and Passalora. CBS Biodiversity Series No. 1. Centraalbureau voor Schimmelcultures, Utrecht, the Netherlands.

Crous PW, Groenewald JZ (2005). Hosts, species and genotypes: opinions versus data. Australasian Plant Pathology 34: 463-470.

Crous PW, Groenewald JZ (2006). Ramularia miae. Fungal Planet No. 3.
Crous PW, Sutton BC (1997). New cercosporoid fungi from southern Africa. South African Journal of Botany 63(5): 280-285.

Crous PW, Wingfield MJ (1996). Species of Mycosphaerella and their anamorphs associated with leaf blotch disease of Eucalyptus in South Africa. Mycologia 88: 441-458.

Crous PW, Aptroot A, Kang JC, et al. (2000). The genus Mycosphaerella and its anamorphs. Studies in Mycology 45: 107-121.

Crous PW, Braun U, Groenewald JZ (2007a). Mycosphaerella is polyphyletic. Studies in Mycology 58: 1-32.

Crous PW, Braun U, Hunter GC, et al. (2013a). Phylogenetic lineages in Pseudocercospora. Studies in Mycology 75: 37-114.

Crous PW, Braun U, Schubert K, et al. (2007b). Delimiting Cladosporium from morphologically similar genera. Studies in Mycology 58: 33-56.

Crous PW, Braun U, Wingfield MJ, et al. (2009a). Phylogeny and taxonomy of obscure genera of microfungi. Persoonia 22: 139-161.

Crous PW, Carris LM, Giraldo A (2015a). The Genera of Fungi - fixing the application of the type species of generic names-G2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus 6: 163198.

Crous PW, Ferreira FA, Sutton BC (1997). A comparison of the fungal genera Phaeophleospora and Kirramyces (Coelomycetes). South African Journal of Botany 63: 111-115.

Crous PW, Gams W, Stalpers JA, et al. (2004a). MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19-22.

Crous PW, Groenewald JZ, Gams W (2003). Eyespot of cereals revisited: ITS phylogeny reveals new species relationships. European Journal of Plant Pathology 109: 841-850.

Crous PW, Groenewald JZ, Mansilla JP, et al. (2004b). Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. Studies in Mycology 50(1): 195-214.

Crous PW, Groenewald JZ, Pongpanich K, et al. (2004c). Cryptic speciation and host specificity among Mycosphaerella spp. occurring on Australian Acacia species grown as exotics in the tropics. Studies in Mycology 50: 457-469.

Crous PW, Groenewald JZ, Risede J-M, et al. (2004d). Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Studies in Mycology 50: 415-429.

Crous PW, Groenewald JZ, Shivas RG, et al. (2011a). Fungal Planet description sheets: 69-91. Persoonia 26: 108-156.

Crous PW, Groenewald JZ, Summerell BA, et al. (2009b). Co-occurring species of Teratosphaeria on Eucalyptus. Persoonia 22: 38-48.

Crous PW, Hawksworth DL, Wingfield MJ (2015b). Identifying and naming plant-pathogenic fungi: past, present, and future. Annual Review of Phytopathology 53: 12.1-12.21.

Crous PW, Hong L, Wingfield BD, et al. (2001a). ITS rDNA phylogeny of selected Mycosphaerella species and their anamorphs occurring on Myrtaceae. Mycological Research 105: 425-431.

Crous PW, Hong L, Wingfield MJ, et al. (1999). Uwebraunia and Dissoconium, two morphologically similar anamorph genera with different teleomorph affinity. Sydowia 51: 155-166.

Crous PW, Kang JC, Braun U (2001b). A phylogenetic redefinition of anamorph genera in Mycosphaerella based on ITS rDNA sequences and morphology. Mycologia 93: 1081-1101.

Crous PW, Liebenberg MM, Braun U, etal.(2006a). Re-evaluating the taxonomic status of Phaeoisariopsis griseola, the causal agent of angular leaf spot of bean. Studies in Mycology 55: 163-173.

Crous PW, Minnis AM, Pereira OL, et al. (2011b). What is Scirrhia? IMA Fungus 2: 127-133.
Crous PW, Schoch CL, Hyde KD, et al. (2009c). Phylogenetic lineages in the Capnodiales. Studies in Mycology 64: 17-47.

Crous PW, Schumacher RK, Wingfield MJ, et al. (2015c). Fungal Systematics and Evolution: FUSE 1. Sydowia 67: 81-118.

Crous PW, Shivas RG, Quaedvlieg W, et al. (2014a). Fungal Planet description sheets: 214-280. Persoonia 32: 184-306.

Crous PW, Shivas RG, Wingfield MJ, et al. (2012a). Fungal Planet description sheets: 128-153. Persoonia 29: 146-201.

Crous PW, Slippers B, Wingfield MJ, et al. (2006b). Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology 55: 235-253.

Crous PW, Summerell BA, Carnegie A, et al. (2007c). Foliicolous Mycosphaerella spp. and their anamorphs on Corymbia and Eucalyptus. Fungal Diversity 26: 143-185.

Crous PW, Summerell BA, Carnegie AJ, et al. (2009d). Novel species of Mycosphaerellaceae and Teratosphaeriaceae. Persoonia 23: 119-146.

Crous PW, Summerell BA, Carnegie AJ, et al. (2009e). Unravelling Mycosphaerella: do you believe in genera? Persoonia 23: 99-118.

Crous PW, Summerell BA, Mostert L, et al. (2008). Host specificity and speciation of Mycosphaerella
and Teratosphaeria species associated with leaf spots of Proteaceae. Persoonia 20: 59-86.
Crous PW, Summerell BA, Shivas RG, et al. (2012b). Fungal Planet description sheets: 107-127. Persoonia 28: 138-182.

Crous PW, Summerell BA, Swart L, et al. (2011c). Fungal pathogens of Proteaceae. Persoonia 27: 20-45.

Crous PW, Tanaka K, Summerell BA, et al. (2011d). Additions to the Mycosphaerella complex. IMA Fungus 2: 49-64.

Crous PW, Verkley GJM, Groenewald JZ, et al. (2009f). Fungal Biodiversity. CBS Laboratory Manual Series 1. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.

Crous PW, Wingfield MJ, Burgess TI, et al. (2016a). Fungal Planet description sheets: 469-557. Persoonia 37: 218-403.

Crous PW, Wingfield MJ, Ferreira FA, etal.(1993). Mycosphaerellaparkii and Phyllosticta eucalyptorum, two new species from Eucalyptus leaves in Brazil. Mycological Research 97: 582-584.

Crous PW, Wingfield MJ, Groenewald JZ (2009g). Niche sharing reflects a poorly understood biodiversity phenomenon. Persoonia 22: 83-94.

Crous PW, Wingfield MJ, Guarro J, et al. (2013b). Fungal Planet description sheets: 154-213. Persoonia 31: 188-296.

Crous PW, Wingfield MJ, Guarro J, et al. (2015d). Fungal Planet description sheets 320-370. Persoonia 34: 167-266.

Crous PW, Wingfield MJ, Mansilla JP, et al. (2006c). Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. II. Studies in Mycology 55: 99-131.

Crous PW, Wingfield MJ, Park RF (1991). Mycosphaerella nubilosa, a synonym of M. molleriana. Mycological Research 95: 628-632.

Crous PW, Wingfield MJ, Richardson DM, et al. (2016b). Fungal Planet description sheets: 400-468. Persoonia 36: 316-458.

Crous PW, Wingfield MJ, Schumacher RK, et al. (2014b). Fungal Planet description sheets: 281-319. Persoonia 33: 212-289.

Crous PW, Wingfield MJ, Swart WJ (1990). Shoot and needle diseases of pines in South Africa. South African Forestry Journal 154: 60-66.

Damm U, Cannon PF, Woudenberg JHC, et al. (2012a). The Colletotrichum boninense species complex. Studies in Mycology 73: 1-36.

Damm U, Cannon PF, Woudenberg JHC, et al. (2012b). The Colletotrichum acutatum species complex. Studies in Mycology 73: 37-113.

Daughtrey ML, Wick RL, Peterson JL (1995). Compendium of flowering potted plant diseases. The American Phytopathological Society, APS Press.

David JC (1997). A contribution to the systematics of Cladosporium. Revision of the fungi previously referred to Heterosporium. Mycological Papers 172: 1-157.

Davis BH (1938). The Cercospora leaf spot of rose caused by Mycosphaerella rosicola. Mycologia 30: 282-298.

Davis RM, Raid RN (2002). Compendium of Umbelliferous Crop Diseases. The American Phytopathological Society, APS Press, St. Paul, USA.

Dearness J (1924). New and Noteworthy Fungi - III. Mycologia 16: 143-176.
Dearness J (1926). New and Noteworthy Fungi - IV. Mycologia 18: 236-255.
Degenkolb T, Dieckmann R, Nielsen KF, et al. (2008). The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycological Progress 7: 177219.

Deighton FC (1967). Studies on Cercospora and allied genera II. Passalora, Cercosporidium, and some species of Fusicladium on Euphorbia. Mycological Papers 112: 1-79.

Deighton FC (1969). Microfungi. IV. Some hyperparasitic hyphomycetes, and a note on Cercosporella uredinophila Sacc. Mycological Papers 118: 1-41.

Deighton FC (1971). Validation of the generic name Gloeocercospora and specific names of C. sorghi and C. inconspicua. Transactions of the British Mycological Society 57: 358-360.

Deighton FC (1972). Ramulariopsis Speg., Pseudovularia Speg., Didymariopsis Speg. and Ramularia holci-lanati (Cav.) Lindau. Transactions of the British Mycological Society 59: 185-191.

DeightonFC(1973). Studies onCercospora andallied generaIV. CercosporellaSacc.,Pseudocercosporella gen. nov. and Pseudocercosporidium gen. nov. Mycological Papers 133: 1-62.

Deighton FC (1974). Studies on Cercospora and allied genera V. Mycovellosiella Rangel and a new species of Ramulariopsis. Mycological Papers 137: 1-75.

Deighton FC (1976a). Studies on Cercospora and allied genera VI. Pseudocercospora Speg., Pantospora Cif. and Cercoseptoria Petr. Mycological Papers 140: 1-168.

Deighton FC (1976b). Brown leaf mould of Capsicum caused by Phaeoramularia capsicicola. Transactions of the British Mycological Society 67: 140-142.

Deighton FC (1979). Studies on Cercospora and allied genera VII. New species and redispositions. Mycological Papers 144: 1-56.

Deighton FC (1985). Three leaf-spotting hyphomycetes on palms. Transactions of the British Mycological Society 85: 739-742.

Deighton FC (1987). New species of Pseudocercospora and Mycovellosiella, and new combinations into Pseudocercospora and Phaeoramularia. Transactions of the British Mycological Society 88: 365-391.

Deighton FC, Pirozynski KA (1965). Microfungi. I: African species of Uncinula; some species of Fusicladiella; various hyphomycetes, mainly tropical. Mycological Papers 101: 1-43.

Dick MA, Dobbie K (2001). Mycosphaerella suberosa and M. intermedia sp. nov. on Eucalyptus in New Zealand. New Zealand Journal of Botany 39: 269-276.

Döbbeler P(1978). Moosbewohnende Ascomycetes I. Die pyrenocarpen, den Gametophyten besiedelnden Arten in (Germany). Mitteilungen aus der Botanischen Staatssammlung München 14: 1-360.

Dodd AP (1961). Biological control of Eupatorium adenophorum in Queensland. Australian Journal of Science 23: 356-365.

Douanla-Meli C, Langer E, Mouafo FT (2013). Fungal endophyte diversity and community patterns in healthy and yellowing leaves of Citrus limon. Fungal Ecology 6: 212-222.

Dowson WJ (1924). A new disease of sweet peas. Journal of the Royal Horticultural Society 49: 211221.

Drummond AJ, Ashton B, Buxton S, et al. (2011). Geneious v5.4. Available from http://www.geneious. com/.

Du M, Schardl CL, Nuckles EM, et al. (2005). Using mating-type gene sequences for improved phylogenetic resolution of Collectotrichum species complexes. Mycologia 97: 641-658.

Dudley WR (1889). The strawberry Leaf-Blight, Sphaerella fragariae (Tul.) Sacc. Cornell University. Agricultural Experiment Station Bulletin 14: 171-184.

Dugan FM, Braun U, Groenewald JZ, et al. (2008). Morphological plasticity in Cladosporium sphaerospermum. Persoonia 21: 9-16.

Dukare AS, Paulb S, Nambia VE, et al. (2018). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical Reviews in Food Science and Nutrition: 1-16.

Dyko BJ, Sutton BC (1979). Two new and unusual deuteromycetes. Transactions of the British Mycological Society 72: 411-417.

Earle FS (1901). Some fungi from Porto Rico. Muhlenbergia 1: 10-31.
Ellis JB, Everhart BM (1889). New species of hyphomycetous fungi. Journal of Mycology 5: 68-72.
Ellis MA, Converse RH (1991). Compendium of raspberry and blackberry diseases and insects. The American Phytopathological Society, APS Press.

Ellis MB (1959). Clasterosporium and some allied Dematiaceae - Phragmosporae. II. Mycological Papers 72: 1-72.

Ellis MB (1961). Dematiaceous Hyphomycetes. III. Mycological Papers 82: 1-55.
Ellis MB (1967). Dematiaceous Hyphomycetes. VIII. Periconiella, Trichodochium, etc. Mycological Papers 111: 1-46.

Ellis MB (1971). Dematiaceous Hyphomycetes. Kew, England. Commonwealth Mycological Institute, Kew, UK.

Ellis MB (1976). More dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew, UK.
EPPO (2012). EPPO quarantine. http://www.eppo.int.
Eriksson OE (1992). The non-lichenized pyrenomycetes of Sweden. In: SBTförlaget, Lund, Sweden.
Etayo J, Sancho LG (2008). Hongos liquenícolas del sur de Sudamerica, especialmente de Isla Navarino (Chile). Bibliotheca Lichenologica 98: 1-302.

Evans HC (1984). The genus Mycosphaerella and its anamorphs Cercoseptoria, Dothistroma and Lecanosticta on pines. Mycological Papers 153: 1-102.

FAO (2011). Global food losses and food waste-extent, causes and prevention. Rome, Italy: Food and Agriculture Organization.

Farr ML (1963). The systematic position of some Dimeriella species and associated fungi on Pinaceae. Mycologia 55: 226-246.

Farr DF, Bills GF, Chamuris GP, et al. (1989). Fungi on plants \& plant products in the United States. APS Press, St. Paul, USA.

Farr DF, Rossman AY. Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Retrieved June 22, 2017, from https://nt.ars-grin.gov/ fungaldatabases/.

Fernandes AF, Miranda BEC de, Duarte LL, et al. (2013). Passalora stromatica sp. nov. associated with leaf spots of Tithonia diversifolia in Brazil. IMA Fungus 4: 201-204.

Ferraris T (1902). Materiali per una flora micologica del Piemonte. Miceti della valle d Aosta. Malpighia 16: 441-481.

Fitzpatrick DA, Logue ME, Stajich JE, et al. (2006). A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evolutionary Biology 6: 99.

Foust CM, Marshall DE (1991). Culinary rhubarb production in North America - history and recent statistics. Hortscience 26: 1360-1363.

Frank J, Crous PW, Groenewald JZ, et al. (2010). Microcyclosporella and Microcyclospora: novel genera accommodating epiphytic fungi causing sooty blotch on apple. Persoonia 24: 93-105.

Fries EM (1849). Summa vegetabilium Scandinaviae. Sectio posterior. Typographia Academica, Uppsala.

Gardner DE, Hodges JCS (1990). Diseases of Myrica faya (firetree, Myricaceae) in the Azores, Madeira and the Canary Islands. Plant Pathology 39: 326-330.

Gianetti G, Grosso S, Ortalda E, et al. (2012). Segnalata in Piemonte Ramularia eucalypti su mele frigoconservate. L'Informatore Agrario 9: 72-73.

Giordani L, Grosso S, Vittone G, et al. (2012). Rinvenuta in Piemonte su pere frigoconservate Ramularia eucalypti. L'Informatore Agrario 25: 66-67.

Giraud T, Refrégier G, Vienne DM de, et al. (2008). Speciation in fungi. Fungal Genetics and Biology 45: 791-802.

Glass NL, Donaldson G (1995). Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 13231330.

Glienke C, Pereira OL, Stringari D, et al. (2011) Endophytic and pathogenic Phyllosticta species, with reference to those associated with Citrus Black Spot. Persoonia 26: 47-56.

Gomes LIS, Douhan GW, Bibiano LBJ, et al. (2013). Mycosphaerella musicola identified as the only pathogen of the Sigatoka disease complex present in Minas Gerais State, Brazil. Plant Disease 97: 1537-1543.

Goodwin SB, M'Barek SB, Dhillon B, et al. (2011). Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet 7: e1002070. https://doi.org/10.1371/journal.pgen. 1002070.

Gond SK, Kharwar RN, White Jr. JF (2014). Will fungi be the new source of the blockbuster drug taxol? Fungal Biology Reviews 28: 77-84.

Gonzalez Fragoso R (1915). Hongos parasitos de la florula hispalense, nuevos o poco conocidos. Boletín de la Real Sociedad Española de Historia Natural 15: 120-132.

Goyer M, Lucchi G, Ducoroy P, et al. (2012). Optimization of the preanalytical steps of matrix-assisted laser desorption ionization - time of flight mass spectrometry identification provides a flexible and efficient tool for identification of clinical yeast isolates in medical laboratories. Journal of Clinical Microbiology 50: 3066-3068.

Grigoriev IV, Nikitin R, Haridas S, et al. (2013). MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Research 42: D699-D704.

Groenewald JZ, Nakashima C, Nishikawa J, et al. (2013). Species concepts in Cercospora: spotting the weeds among the roses. Studies in Mycology 75: 115-170.

Groenewald M, Barnes I, Bradshaw RE, et al. (2007). Characterization and distribution of mating type genes in the Dothistroma Needle Blight pathogens. Phytopathology 97: 825-834.

Groenewald M, Groenewald JZ, Crous PW (2005). Distinct species exist within the Cercospora apii morphotype. Phytopathology 95: 951-959.

Groenewald M, Groenewald JZ, Harrington TC, et al. (2006). Mating type gene analysis in apparently asexual Cercospora species is suggestive of cryptic sex. Fungal Genetics and Biology 43: 813-825.

Gronchi V (1931). The acidophile property of a fungus isolated from N/10 HC1. Bollettino dell'Istituto Sieroterapico Milanese 10: 237-250.

Guatimosim E, Schwartsburd PB, Barreto RW, et al. (2016). Novel fungi from an ancient niche: Cercosporoid and related sexual morphs on ferns. Persoonia 37: 106-141.

Gunasinghe N, You MP, Barbetti MJ (2016). Phenotypic and phylogenetic studies associated with the crucifer white leaf spot pathogen, Pseudocercosporella capsellae, in Western Australia. Plant Pathology 65: 205-217.

Guo YL, Hsieh WH (1995). The genus Pseudocercospora in China. International Academic Publishers, Beijing.

Guo YL, Liu XJ, Hsieh WH (2003). Mycovellosiella, Passalora, Phaeoramularia. In: Flora Fungorum Sinicorum, vol. 20. Science Press, Beijing.

Han J-G, Hosoya T, Sung G-H, et al. (2014). Phylogenetic reassessment of Hyaloscyphaceae sensu lato (Helotiales, Leotiomycetes) based on multigene analyses. Fungal Biology 118: 150-167.

Hanse B, Vermeulen GD, Tijink FGJ, et al. (2011). Analysis of soil characteristics, soil management and sugar yield on top and averagely managed farms growing sugar beet (Beta vulgaris L.) in the Netherlands. Soil \& Tillage Research 117: 61-68.

Hartig R (1895). Der Nadelschüttepilz der Lärche, Sphaerella laricina n. sp. ForstlichNaturwissenschaftliche Zeitschrift München 4: 445-457.

Harveson RM, Hanson LE, Hein GL (2009). Compendium of beet diseases and pests, Second Edition. The American Phytopathological Society, APS Press.

Harvey IC, Wenham HT (1972). A fungal leaf spot disease of grapes caused by Cercospora vitis (Lev.) Sacc. New Zealand Journal of Botany 10: 87-96.

Havis ND, Brown JKM, Clemente G, et al. (2015). Ramularia collo-cygni - an emerging pathogen of barley crops. Disease control and pest management. Phytopathology 105: 895-904.

Hawke RG (2004). An evaluation study of Alchemilla. Plant Evaluation Notes of the Chicago Botanic Garden 24: 1-2.

Hawksworth DL (2011). A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. MycoKeys 1: 7-20.

Hawksworth DL (2012). Managing and coping with names of pleomorphic fungi in a period of transition. Mycosphere 3: 143-155. IMA Fungus 3: 15-24.

Hawksworth DL, Lücking R (2017) How many fungal species are there? An updated estimate yields a range of 2.2 to 3.8 million. Microbiology Spectrum 5: doi:10.1128/microbiolspec.FUNK-0052-2016.

Hawksworth DL, Rossman AY (1997). Where are all the undescribed fungi? Phytopathology 87: 888891.

Hawksworth DL, Crous PW, Redhead SA, et al. (2011). The Amsterdam declaration on fungal nomenclature. IMA Fungus 2: 105-112.

Hebert PDN, Cywinska A, Ball SL, et al. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B 270: 313-321.

Heiser I, Sachs E, Liebermann B (2003). Photodynamic oxygen activation by rubellin D, a phytotoxin produced by Ramularia collo-cygni (Sutton et Waller). Physiological and Molecular Plant Pathology 62: 29-36.

Hennings P (1902). Fungi S. Paulensis II. a cl. Puttemans collecti. Hedwigia 41: 295-311.
Hennings P (1908). Fungi S. Paulensis IV a cl. Puttemans collecti. Hedwigia 48: 1-20.
Hey J (2006) On the failure of modern species concepts. Trends in Ecology \& Evolution 21: 447-450.
Hillis DM, Bull JJ (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182-192.

Höhnel F von (1904). Mykologische Fragmente. Annales Mycologici Editi in Notitiam Scientiae Mycologicae Universalis 2: 38-60.

Höhnel F von (1918). Fungi imperfecti. Beiträge zur Kenntnis derselben. Hedwigia 60: 56-89.
Hong SK, Kim WG, Sung GB, et al. (2011). Occurrence of leaf spot on mulberry caused by Phloeospora maculans in Korea. Plant Pathology Journal 27: 193.

Hongsanan S, Li Y-M, Liu J-K, et al. (2014). Revision of genera in Asterinales. Fungal Diversity 68: 1-68.

Hongsanan S, Zhao RL, Hyde KD (2017). A new species of Chaetothyrina on branches of mango, and introducing Phaeothecoidiellaceae fam. nov. Mycosphere 8: 137-146.

Hoog GS de (1972). The genera Beauveria, Isaria, Tritirachium and Acrodontium gen. nov. Studies in Mycology 1: 1-41.

Hoog GS de, Gerrits van den Ende AHG (1998). Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 41: 183-189.

Hoog GS de, Rahman MA, Boekhout T (1983). Ramichloridium, Veronaea and Stenella: Generic delimitation, new combinations and two new species. Transactions of the British Mycological Society 81: 485-490.

Hora Júnior BT, de Macedo DM, Barreto RW, et al. (2014). Erasing the Past: A New Identity for the Damoclean Pathogen Causing South American Leaf Blight of Rubber. PLoS ONE 9: e104750.

Horie H, Kobayashi T (1982). New diseases on ornamental trees (8): Leaf blight in Ginkgo biloba and leaf spot in Chaenomeles sinensis. Annals of the Phytopathological Society of Japan 48: 135 (in Japanese).

Horvát A, Palkovics L, Nagy G (2015). Occurrence of leaf spot caused by Phacellium veronicae on speedwell in Hungary. Journal of Plant Pathology 97: 394.

Hosagoudar VB, Braun U (1995). Two new Indian hyphomycetes. Indian Phytopathology 48: 260-262.
Hostert ND, Blomquist CL, Thomas SL, et al. (2006). First report of Ramularia carthami, causal agent of Ramularia leaf spot of safflower, in California. Plant Disease 90: 1260.

Houbraken J, Samson RA (2011). Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70: 1-51.

Hsieh WH, Goh TK (1990). Cercospora and similar fungi from Taiwan. Maw Chang Book Company, Taipei, Taiwan.

Huang F, Groenewald JZ, Zhu L, et al. (2015). Cercosporoid diseases of Citrus. Mycologia 107: 11511171.

Huber-Meinicke G, Defago G, Sedlar L (1989). Ramularia rubella (Bon.) Nannf. as a potentional mycoherbicide against Rumex weeds. Botanica Helvetica 99: 81-89.

Huerta-Espino J, Constantinescu O, Velásquez C, et al. (2006). Firstreport of Ramularia cercosporelloides on Carthamus tinctorius in Northwestern Mexico. Plant Disease 90: 1552.

Hughes SJ (1949). Studies on some diseases of sainfoin (Onobrychis sativa) II. The life history of Ramularia onobrychidis Allescher. Transactions of the British Mycological Society 32: 34-59.

Hughes SJ (1951). Studies on micro-fungi. V. Acrotheca. Mycological Papers 38: 1-8.
Hughes SJ (1952). Studies on micro-fungi. XIV. Stigmella, Stigmina, Camptomeris, Polythrincium, and Fusicladiella. Mycological Papers 49: 1-25.

Hughes SJ (1953a). Some foliicolous hyphomycetes. Canadian Journal of Botany 31: 560-576.
Hughes SJ (1953b). Conidiophores, conidia and classification. Canadian Journal of Botany 31: 577-659.
Hyde KD, Gareth EBJ, Liu JK, et al. (2013). Families of Dothideomycetes. Fungal Diversity 63: 1-313.
Hyde KD, Hongsanan S, Jeewon R, et al. (2016). Fungal diversity notes 367-490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80: 1-270.

Hyde KD, McKenzie EHC, KoKo TW (2010). Towards incorporating anamorphic fungi in a natural classification-checklist and notes for 2010. Mycosphere 2: 1-88.

Ikata S, Hitomi T (1929). Studies on circular leaf spot of persimmon caused by Mycosphaerella nawae. Special Bulletin of the Okayama Prefecture Agricultural Experiment Station 33: 1-36 (in Japanese).

Inman AJ, Sivanesan A, Fitt BDL, et al. (1991). The biology of Mycosphaerella capsellae sp. nov., the teleomorph of Pseudocercosporella capsellae, cause of white leaf spot of oilseed rape. Mycological Research 95: 1334-1342.

Jaap O (1908). Drittes Verzeichnis zu meinesm Exsiccatenwerk "Fungi select exsiccati", Series IXXII (Nummern 201-300), nebst Beschreibungen neuer Arten und Bemerkungen. Verhandlungen des Botanischen Vereins der Provinz Brandenburg 50: 29-51.

Jaap O (1910). Viertes Verzeichniss zu meinem Exsiccatenwerk "Fungi Selecti Exsiccati", Serien XIIIXVI (Nummern 301-400), nebst Beschreibungen neuer Arten und Bemerkungen. Verhandlungen des Botanischen Vereins der Provinz Brandenburg 52: 1-19.

Jackson SL, Maxwell A, Neumeister-Kemp HG, et al. (2004). Infection, hyperparasitism and conidiogenesis of Mycosphaerella lateralis on Eucalyptus globulus in Western Australia. Australasian Plant Pathology 33: 49-53.

Jenkins AE (1938). Two fungi causing leaf spot of peanut. Journal of Agricultural Research 56: 317-332. Johanson CJ (1884a). Svampar från Island. Öfversigt af Kongl. Vetenskaps-Akademiens Föhandlingar 9: 157-174.

Johanson CJ (1884b). Svampar frän Island. Bestämda af C.J. Johanson. Öfversigt af Kongl. VetenskapsAkademiens Föhandlingar 41: 157-174.

Jones JB, Jones JP, Stall RE, et al. (1997). Compendium of Tomato Diseases. APS Press, St. Paul.
Jørstad I (1945). Parasittsoppene p a kultur-og nyttevekster I Norge I. Sekksporesopper (Ascomycetes) og konidiesopper (Fungi imperfecti). Meldinger fra Statens Plantepatologiske Institutt 1: 1-142.

Kamal (2010). Cercosporoid fungi of India. Bishen Singh Mahendra Pal Singh, Dehra Dun.
Katoh K, Standley DM (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.

Katsuki S (1965). Cercosporae of Japan. Transactions of the Mycological Society of Japan 1(Extra Issue): 1-100.

Kawato M, Shinobu R (1959). On Streptomyces herbaricolour, nov. sp., supplement: a simple technique for the microscopic observation. Memoirs of the Osaka University of Liberal Arts and Education B. Natural Sciences 8: 114-119.

Kearse M, Moir R, Wilson A, et al. (2012). Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649.

Khodaparast A, Braun U (2005). Ramularia uredinicola - a new species from Iran. Mycotaxon 91: 357-359.

Killian C (1925). Le Gyroceras celtidis Mont. et Ces. parasite du Celtis australis L. Bulletin de la Societe d'histoire naturelle de l'Afrique du nord 60: 274-281.

Kirk PM (1986). Phaeoramularia angolensis. CMI Descriptions of Pathogenic Fungi and Bacteria No. 843. CAB International, Wallingford, UK.

Kirk PM, Stalpers JA, Braun U, et al. (2013). A without-prejudice list of generic names of fungi for protection under the International Code of Nomenclature for algae, fungi, and plants. IMA Fungus 4: 381-443.

Kirkpatrick TL, Rothrock CS (2001). Compendium of cotton diseases. The American Phytopathological Society, APS Press.

Kirschner R (2009). Cercosporella and Ramularia. Mycologia 101: 110-119.
Kirschner R, Chen CJ (2010). Periconiella species (anamorphic Mycosphaerellaceae) from Taiwan. Fungal Diversity 44: 135-148.

Kirschner R, Liu L-C (2014). Mycosphaerellaceous fungi and new species of Venustosynnema and Zasmidium on ferns and fern allies in Taiwan. Phytotaxa 176: 309-323.

Kirschner R, Braun U, Chen Z-C, et al. (2002). Pleurovularia, a new genus of hyphomycetes proposed for a parasite on leaves of Microstegium sp. (Poaceae). Mycoscience 43: 15-20.

Kirschner R, Piepenbring M, Chen CJ (2004). Some cercosporoid hyphomycetes from Taiwan, including a new species of Stenella and new reports of Distocercospora pachyderma and Phacellium paspali. Fungal Diversity 17: 57-68.

Ķirulis A (1942). Mikroskopskăs sēnes kă augu slimību dabīge ienaidnieki Latvijă [Die mikroskopischen Pilze als naturliche Feinde der Pflanzenkrankheiten in Lettland]. Lauksaimniecības Fakultāte Jelgavas Lauksaimniecības Akadēmija [Arbeiten der Landwirtschaftlichen Akademie Mitau] 1: 479-536.

Klaubauf S, Tharreau D, Fournier E, et al. (2014). Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Studies in Mycology 79: 85-120.

Klebahn H (1918). Haupt- und Nebenfruchtformen der Askomyzeten. Borntraeger, Leipzig, Germany.
Knudsen K, Kocourkova J, Etayo J (2009). A new species of Sphaerellothecium (Mycosphaerellaceae) on Placidium laciniatum. Opuscula Philolichenum 6: 41-44.

Koike ST, Baameur A, Groenewald JZ, et al. (2011). Cercosporoid leaf pathogens from whorled milkweed and spineless safflower in California. IMA Fungus 2: 7-12.

Koike ST, Smith RF, Crous PW, et al. (2004). Leaf and stem spot caused by Ramularia sphaeroidea on purple and lana woollypod vetch (Vicia spp.) cover crops in California. Plant Disease 88: 221.

Kokalis-Burelle N, Porter DM, Rodríguez-Kabana, et al. (1997). Compendium of peanut diseases. The American Phytopathological Society, APS Press, MN, USA.

Kolecka A, Khayhan K, Groenewald M, et al. (2013). MALDI-TOF MS identification of medically relevant species of arthroconidial yeasts. Journal of Clinical Microbiology 51: 2491-2500.

Koorders SH (1907). Botanische Untersuchungen. Verhandelingen Koninklijke Nederlandse Akademie van Wetenschappen Afdeling Natuurkunde 13: 1-264.

Kovachevsky IC (1939). Die Braunfleckenkrankheit der Paprikapflanze in Franz. Marocco. Zeitschrift für Pflanzenkrankheiten, Pflanzenpathologie und Pflanzenschutz 49: 567.

Kwon J-H, Park C-S (2004). Ecology of disease outbreak of circular leaf spot of persimmom and inoculum dynamics of Mycosphaerella nawae. Research in Plant Disease 10: 209-2016 (in Korean).

L'Ollivier C, Cassagne C, Normand A-C, et al. (2013). A MALDI-TOF MS procedure for clinical dermatophyte species identification in the routine laboratory. Medical Mycology 51: 713-720.

Laibach F (1922). Untersuchungen über einige Ramularia- und Ovularia-Arten und ihre Beziehungen zur Ascomycetengatung Mycosphaerella II. Zentralblatt für Bakteriologie Abt. II 55: 284-293.

Lau AF, Drake SK, Calhoun LB, et al. (2013). Development of a clinically comprehensive database and simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology 51: 828-834.

Laurin M (2010). The subjective nature of Linnaean categories and its impact in evolutionary biology and biodiversity studies. Contributions to Zoology 4: 131-146.

Li HY, Sun GY, Zhai XR, et al. (2012). Dissoconiaceae associated with sooty blotch and flyspeck on fruits in China and the United States. Persoonia 28: 113-125.

Li WJ, Bhat JD, Hyde KD, et al. (2014). Towards a natural classification of Dothideomycetes 4: The genera Bryopelta, Bryorella, Bryosphaeria, Lophiosphaerella and Maireella (Dothideomycetes incertae sedis). Phytotaxa 176: 28-41.

Lima LL, Barreto M, Scaloppi ÉAG (2010). Reação de cultivares de algodoeiro a Ramularia areola. Summa Phytopathologica 36: 57-60.

Lindau (1897). In: Engler A, Prantl K (eds), Die Naturlichen Pflanzen-familien, 1(1), p. 424.

Lindner L (2013). Diagnostica fitopatologica. Relazione d'attività 2013. Centro di Sperimentazione Agraria e Florestale Laimburg.

Little S (1987). Mycosphaerella henningsii. CMI Descriptions of Pathogenic Fungi and Bacteria No. 912. CAB International, Wallingford, UK.

Liu YJ, Whelen S, Hall BD (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799-1808.

Lombard L, Crous PW, Wingfield BD, et al. (2010). Phylogeny and systematic of the genus Calonectria. Studies in Mycology 66: 31-69.

Lu X-L, Najafzadeh MJ, Dolatabadi S, et al. (2013). Taxonomy and epidemiology of Mucor irregularis, agent of chronic cutaneous mucormycosis. Persoonia 30: 48-56.

Lumbsch HT, Huhndorf SM (2007). Notes on Ascomycete Systematics. Nos. 4408-4750. Myconet 13: 59-99.

Lumbsch HT, Huhndorf SM (2010). Myconet Volume 14. Part One. Outline of Ascomycota - 2009. Part Two. Notes on Ascomycete Systematics. Nos. 4751-5113. Fieldiana Life and Earth Sciences 1: 1-64.

Maas JL (1984). Compendium of Strawberry Diseases. American Phytopathological Society, St. Paul, MN 138.

Macedo DM, Pereira OL, Wheeler GS, et al. (2013). Corynespora cassiicola f. sp. schinii, a potential biocontrol agent for the weed Schinus terebinthifolius in the United States. Plant Disease 97: 496-500.

Machado AR, Pinho DB, Silva M, et al. (2012). First report of leaf spot disease caused by Cercosporella pfaffiae on Brazilian ginseng (Pfaffia glomerata) in Brazil. Plant Disease 96: 1702.

Maddison WP, Maddison DR (2011). Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org.

Marmolejo JG (2000). The genus Lecanosticta from Nuevo Leon, Mexico. Mycotaxon 76: 393-397.
Mason EW, Ellis MB (1953). British species of Periconia. Mycological Papers 56: 1-127.
McGrann GRD, Andongabo A, Sjökvist E, et al. (2016). The genome of the emerging barley pathogen Ramularia collo-cygni. BMC Genomics 17: 584.

Mchau GRA, Crous PW, Nowell DC (1996). Newly recorded foliar diseases on pearl millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) in South Africa. South African Journal of Science 92(Suppl 1): 14.

McTaggart AR, Shivas RG, Braun U (2007). Annellosympodia orbiculata gen. et sp. nov. and Scolecostigmina flagellariae sp. nov. from Australia. Australasian Plant Pathology 36: 573-579.

Mejía LC, Rojas EI, Maynard Z, et al. (2008). Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biological Control 46: 4-14.

Mel'nik VA, Popushoj IS (1992). Nesovershennye griby na drevesnykh i kustarnikovykh porodakh. Shtintsa, Kishinev.

Mezzetti A (1950). Observations on the morphology and taxonomy of Gyroceras celtidis (Biv.) Mont. \& Ces. Annali della Sperimentazione Agraria 4: 857-867.

Miethbauer S, Haase S, Schmidtke KU, et al. (2006). Biosynthesis of photodynamically active rubellins and structure of new anthraquinone derivatives produced by Ramularia collo-cygni. Phytochemistry 67: 1206-1213.

Miethbauer S, Heiser I, Liebermann B (2003). The phytopathogenic fungus Ramularia collo-cygni produces biologically active rubellins on infected barley leaves. Journal of Phytopathology 151: 665-668.

Minnis AM, Kennedy AH, Grenier DB, et al. (2011a). Asperisporium and Pantospora (Mycosphaerellaceae): epitypifications and phylogenetic placement. Persoonia 27: 1-8.

Minnis AM, Rossman AY, Olsen RT (2011b). Mycosphaerella nyssicola revisited: a species distinct from M. punctiformis. Mycotaxon 115: 311-322.

Monkai J, Liu J-K, Boonmee S, et al. (2013). Planistromellaceae (Botryosphaeriales). Cryptogamie Mycologie 34: 45-77.

Montoya-Coronado L, Ochoa-Burgos F, Wong-Pérez J, et al. (2008). CIANO-OL, CIANO-LIN, RC-1002-L, RC-1005-L y RC-1033-L variedades de cártamo altamente tolerantes a falsa cenicilla (Ramularia carthami). Folleto técnico numero 60. (ed.). Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuaria, Cd. Obregón, México (in Spanish).

Moore WC (1979). Diseases of bulbs. MAFF reference book HPD 1. HMSO, London, UK.
Morgan-Jones G (1974). Notes on Hyphomycetes. VII. An addition to the genus Phaeoisariopsis. Canadian Journal of Botany 52: 2635-2637.

Morris MJ (1989). Host specificity studies of leaf spot fungus, Phaeoramularia sp. for the biological control of crofton weed (Ageratina adenophorum) in South Africa. Phytophylactica 21: 281-283.

Mostert L, Groenewald JZ, Summerbell RC, et al. (2006). Taxonomy and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs. Studies in Mycology 54: 1-115.

Mukhtar I, Khokhar I, Haider MS, et al. (2012). New record of Ramularia leaf spot on Aristolochia punjabensis L. in Pakistan. African Journal of Microbiology Research 6: 6013-6015.

Müller E, Arx JA von (1962). Die Gattungen der didymosporen Pyrenomyceten. Beiträge zur Kryptogamenflora der Schweiz 11(2): 1-922.

Müller EV, Wehmeyer LE (1954). Ein neuer, alpiner Ascomycete: Mycosphaerella phacae-frigidae. Sydowia 8: 190-191.

Muniappan R, Raman A, Reddy GVP (2009). Ageratina adenophora (Sprengel) King and Robinson (Asteraceae). In: Biological control of tropical weeds using arthropods (Muniappan R, Reddy GVP, Raman A, eds). Cambridge University Press, Cambridge: 1-16.

Muntañola M (1954). A study of a newly identified pepper disease in the Americas. Phytopathology 44: 233-239.

Muntañola M (1960). Algunos hyphomycetes criticos. Notas y descripciones. Lilloa 30: 183-213.
Muntañola-Cvetkovic (1957). Tres especies de "Cercospora" (Deuteromycetae) de Tucúman. Revista Argentina de Agronomia 24: 84.

Nag Raj TR (1993). Coelomycetous anamorphs with appendage-bearing conidia. Mycologue publications, Waterloo.

Nakashima C, Araki I, Kobayashi T (2011). Addition and re-examination of Japanese species belonging to the genus Cercospora and allied genera. X: newly recorded species from Japan (5). Mycoscience 52: 253-259.

Nakashima C, Motohashi K, Chen C-Y, et al. (2016). Species diversity of Pseudocercospora from Far East Asia. Mycological Progress 15: 1093-1117.

Nakashima C, Motohashi K, Meeboon J, et al. (2007). Studies on Cercospora and allied genera in northern Thailand. Fungal Diversity 26: 257-270.

Nieuwenhuijzen EJ van, Miadlikowska JM, Houbraken JAMP, et al. (2016). Wood staining fungi revealed taxonomic novelties in Pezizomycotina: New order Superstratomycetales and new species Cyanodermella oleoligni. Studies in Mycology 85: 107-124.

Normand A-C, Cassagne C, Gautier M et al. (2017). Decision criteria for MALDI-TOF MS-based identification of filamentous fungi using commercial and in-house reference databases. BioMedCentral Microbiology 17: 25 DOI 10.1186/s12866-017-0937-2.

Nugent LK, Sangvichen E, Sihanonth P, et al. (2006). A revised method for the observation of conidiogenous structures in fungi. Mycologist 20: 111-114.

Nylander JAA (2004). MrModeltest 2.0. Program distributed by the author. Uppsala University, Uppsala, Sweden.

O’Donnell K, Cigelnik E (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7: 103-116.

O’Donnell K, Kistler HC, Cigelnik E, et al. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences (USA) 95: 2044-2049.

OECD (2014). Market and trade impacts of food loss andwaste reduction. Paris, France: Organization for Economic Cooperation and Development.

Oerke EC, Dehne HW (2004). Safeguarding production - losses in major crops and the role of crop protection. Crop Protection 23: 275-285.

Olive LS (1948). Taxonomic notes on Louisiana fungi - I. Mycologia 40: 6-20.
O'Neill TM, Hanks GR, Kennedy R (2002). First report of white mould (Ramularia vallisumbrosae) on daffodils (Narcissus) in eastern England. Plant Pathology 51: 400.

Ou YH, Zhou RJ, Fu JF, et al. (2015). Paracercospora dictamnicola sp. nov. from China. Mycological Progress 14: 15.

Oudemans CAJA (1873a). Aanwinsten voor de Flora Mycologica van Nederland II. Nederlandsch Kruidkundig Archief 1: 252-267.

Oudemans CAJA (1873b). Matériaux por la flore mycologique de la Néerlande. Archives Néerlandaises des Sciences Exactes et Naturelles 8: 343-416.

Paoletti M, Buck KW, Brasier CM (2005). Cloning and sequence analysis of the MAT-B (MAT-2) genes from the three Dutch elm disease pathogens, Ophiostoma ulmi, O. novo-ulmi, and O. himal-ulmi. Mycological Research 109: 983-991.

Park J-H, Shin HD (2016). Ramularia hydrangeicola sp. nov. with distinctive traits on Hydrangea serrata f. acuminata in Korea. Mycotaxon 131: 95-102.

Park RF, Keane PJ (1982a). Three Mycosphaerella species from leaf diseases of Eucalyptus. Transactions of the British Mycological Society 79: 95-100.

Park RF, Keane PJ (1982b). Leaf diseases of Eucalyptus associated with Mycosphaerella species. Transactions of the British Mycological Society 79: 101-115.

Patouillard NT, Hariot P (1893). Fungos aliquot novos in regione Congoana collectos. Bulletin de la

Societe Mycologique de France 9: 206-211.
Patton RF (1983). Needle cast of European Larch caused by Mycosphaerella laricina in Winsconsin and Iwoa. Plant Disease 67: 1149-1153.

Peace TR (1962). Pathology of trees and shrubs, with special reference to Britain. Clarendon Press, Oxford, UK.

Persoon CH (1794). Nähere Bestimmung und Beschreibungen einiger sich nahe verwandter Pflanzen. Annalen der Botanik (Usteri) 11: 1-32.

Petrak F (1915). Beiträge zur Pilzflora von Mähren und Österr. Schlesien. Annales Mycologici 13: 4451.

Petrak F (1927). Mykologische Notizen IX. Annales Mycologici 25: 193-343.
Petrak F (1940a). Beiträge zur Kenntnis der Pilzflora der Umgebung von Lunz am See und des Dürrensteins in Niederdonau. Annales Mycologici 38: 121-180.

Petrak F (1940b). Mykologische Notizen XIII. Annales Mycologici 38: 181-267.
Petrak F (1949). Neue Hyphomyzeten-Gattungen aus Ekuador. Sydowia 3: 259-266.
Petrak F (1953). Colletogloeum n. gen., eine neue Melanconieen-Gattung. Sydowia 7: 367-369.
Petzoldt S (1989). Zur Biologie, Epidemiologie und Schadwirkung des Erregers der Blatt- und Stengelanthraknose (Mycosphaerella anethi Petr.) am Fenchel (Foeniculum vulgare Mill.) - 1. Mitteilung. Drogenreport 3: 49-65.

Petzoldt S (1990). Mycosphaerella anethi - ein Beitrag zur Entwicklungsgeschichte. Boletus 14: 49-56.
Phillips AJL, Alves A, Abdollahzadeh J, et al. (2013). The Botryosphaeriaceae: genera and species known from culture. Studies in Mycology 76: 51-167.

Piotrowska M (2014). Evaluating the risk of fungicide resistance evolution to succinate dehydrogenase inhibitors in Ramularia collo-cygni. Ph.D. thesis, University of Edinburgh.

Plakidas AG (1941). Purple leaf spot of strawberry. Phytopathology 31: 225-240.
Plessis SJ du (1946). Die voorkoms en bestryding van roetdou op sultanastokke veroorsaak deur Exosporium sultanae nov. spec. Annale van die Universiteit van Stellenbosch 24: 1-32.

Poletto T, Muniz MFB, Blume E, et al. (2017). First report of Sirosporium diffusum causing brown leaf spot on Carya illinoinensis in Brazil. Plant Disease 101: 381.

Pollack FG (1987). An annotated compilation of Cercospora names. Mycological Memoirs 12: 1-212.
Pons N, Sutton BC (1988). Cercospora and similar fungi on yams (Dioscorea spp.). Mycological Papers 160: 1-78.

Pons N, Sutton BC (1996). Cercospora and similar fungi on Heliotropium weeds. Mycological Research 100: 815-820.

Potebnja AA (1908). K istorii razvitija nekotoryh askomicetov. 1. Mycosphaerella, 2. Gnomonia, Glomerella I Pseudopeziza. Charkov.

Pretorius MC, Crous PW, Groenewald JZ, et al. (2003). Phylogeny of some cercosporoid fungi from Citrus. Sydowia 55: 286-305.

Preuss CGT (1851). Übersicht untersuchter Pilze, besonders aus der Umgegend von Hoyerswerda. Linnaea 24: 99-153.

Prihastuti H, Cai L, Chen H, et al. (2009). Characterization of Colletotrichum species associated with coffee berries in Chiang Mai, Thailand. Fungal Diversity 39: 89-109.

Punithalingam E (1990). Mycosphaerella mori. CMI Descriptions of Fungi and Bacteria No. 1014. Mycopathologia 112: 45-47.

Quaedvlieg W, Binder M, Groenewald JZ, et al. (2014). Introducing the Consolidated Species Concept to resolve species in the Teratosphaeriaceae. Persoonia 33: 1-40.

Quaedvlieg W, Groenewald JZ, de Jesus Yañez-Morales M, et al. (2012). DNA barcoding of Mycosphaerella species of quarantine importance to Europe. Persoonia 29: 101-115.

Quaedvlieg W, Kema GHJ, Groenewald JZ, et al. (2011). Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species occurring on graminicolous hosts. Persoonia 26: 57-69.

Quaedvlieg W, Verkley GJM, Shin HD, et al. (2013). Sizing up Septoria. Studies in Mycology 75: 307-390.

Queiroz K de (1998) The general lineage concept of species, species criteria, and the process of speciation: a conceptual unification and terminological recommendations. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, New York, pp 57-75.

Queiroz K de (2007) Species concepts and species delimitation. Systematic Biology 56: 879-886.
Quintana-Obregón EA, Plascencia-Jatomea M, Burgos-Hérnandez, et al. (2013). Isolation and identification of fungi from leaves infected with false mildew on safflower crops in the Yaqui Valley, Mexico. Revista Mexicana de Micologia 37: 19-27.

Ramaley AW (1991). Clypeispora and its Mycosphaerella teleomorph. Mycotaxon 40: 13-22.
Rayner RW (1970). A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society, Kew, Surrey, UK.

Reddy MV, Raju TN, Sharma SB, et al. (2012). Handbook of Pigeonpea Diseases (Revised). Information Bulletin No. 42. Patancheru, AP 502 324. International Crops Research Institute for the Semi-Arid Tropics, India.

Reynolds DR (1993). The fungal holomorph: an overview. In: Reynolds DR, Taylor JW (eds) The fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics. CAB International, Wallingford, pp 15-25.

Rimmer SR, Shattuck VI, Buchwaldt L (2007). Compendium of Brassica diseases. The American Phytopathological Society, APS Press.

Rohde T (1937). Über die "Schweizer" Douglasienschütte und ihren vermuteten Erreger Adelopus spec. Mitteilungen aus Forstwirtschaft und Forstwissenschaft 8: 487-514.

Ronquist F, Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.

Ronquist F, Teslenko M, Mark P van der, et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542.

Rønsted N, Chase MW, Albach DC, Bello MA (2002). Phylogenetic relationships within Plantago (Plantaginaceae): evidence from nuclear ribosomal ITS and plastid trnL-F sequence data. Botanical

Journal of the Linnean Society 139: 323-338.
Rossman AY, Crous PW, Hyde KD, et al. (2015). Recommended names for pleomorphic genera in Dothideomycetes. IMA Fungus 6: 507-523.

Roux C, Triebel D (1994). Revision des especes de Stigmidium et de Sphaerellothecium (champignons lichenicoles non lichenises, Ascomycetes) correspondant ou a Pharcidia epicrymatia sensu Keissler ou a Stigmidium schaereri auct. Bulletin de la Societe Lineenne de Provence 45: 451-542.

Saccardo PA (1878). Fungi Veneti novi vel critici vel mycologiae Venetae addendi. Series IX. Michelia 1: 361-445.

Saccardo PA (1880a). Conspectus generum fungorum Italiae inferiorum nempe ad Sphaeropsideas, Melanconieas et Hyphomyceteas pertinentium systemate sporologico dispositorum. Michelia 2: 1-38.

Saccardo PA (1880b). Fungi Gallici lecti a cl. Viris P. Brunaud, Abb. Letendre, A. Malbranche, J. Therry vel editi in Mycotheca Gallica C. Romagueri. Ser. II. Michelia 2: 39-135.

Saccardo PA (1882). Sylloge Fungorum 1: i-xviii, 1-768. Saccardo, Padua, Italy.
Saccardo PA (1884). Sylloge Fungorum 3: i-ii, 1-860. Saccardo, Padua, Italy.
Saccardo PA (1886). Sylloge Fungorum 4: i-v, 1-807. Saccardo, Padua, Italy.
Saccardo PA (1892). Sylloge Fungorum 10: i-xxx, 1-964. Saccardo, Padua, Italy.
Saccardo PA (1895). Sylloge Fungorum 11: i-vii, 1-753. Saccardo, Padua, Italy.
Saccardo PA, Trotter A (1913). Sylloge Fungorum 22: 1-1612. Saccardo, Patavii, Italy.
Saccardo PA, Saccardo D, Traverso GB, et al. (1931). Sylloge Fungorum 25: i-ii, 1-1093. Saccardo, Abellini, Pergola, Italy.

Santesson R (1960). Lichenicolous fungi from northern Spain. Svensk Botanisk Tidskrift Utgifven af Svenska Botaniska Foreningen 54: 501-522.

Savile DBO (1962). Some fungal parasites of Onagraceae. Canadian Journal of Botany 40: 1385-1398.
Savile DBO (1968). Some parasites of Scrophulariaceae. Canadian Journal of Botany 46: 461-471.
Schellenberger HC (1917). Zur Kenntnis der Entwicklungsverhältnisse von Mycosphaerella fragariae (Tul.) Lindau. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 62: 383-392.

Schmitt I, Crespo A, Divakar PK, et al. (2009). New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23: 35-40.

Schoch CL, Crous PW, Groenewald JZ, et al. (2009). A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64: 1-15.

Schoch CL, Seifert KA, Huhndorf S, et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences (USA) 109: 6241-6246.

Schubert K, Braun U (2005). Taxonomic revision of the genus Cladosporium s.1. 4. Species reallocated to Asperisporium, Dischloridium, Fusicladium, Passalora, Pseudoasperisporium and Stenella. Fungal Diversity 20: 187-208.

Schubert K, Groenewald JZ, Braun U, et al. (2007). Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy
and diagnostics. Studies in Mycology 58: 105-156.
Schwartz HF, Steadman JR, Hall R, et al. (2005). Compendium of bean diseases. The American Phytopathological Society, APS Press.

Scotland RW, Sanderson MJ (2004). The significance of few versus many in the tree of life. Science 303: 643.

Seifert K, Morgan-Jones G, Gams W, et al. (2011). The genera of Hyphomycetes. CBS Biodiversity Series 9. CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands.

Seng P, Drancourt M, Goutiet F, et al. (2009). Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clinical Infectious Diseases 15: 543-551.

Shahjahan AKM, Rush MC, Jones JP (1998). First report of the occurrence of White Leaf Streak in Louisiana rice. Plant Disease 82: 1282.

Shao C, Tian Y, Dong Z, et al. (2012). The use of principal component analysis in MALDI-TOF MS: a powerful tool for establishing a mini-optimized proteomic profile. American Journal of Biomedical Sciences 4: 85-101.

Shaw DE, Alcorn JL (1993). New name for Verrucispora and its species. Australian Systematic Botany 6: 273-276.

Shin HD, Kim JD (2001). Cercospora and allied genera from Korea. Plant Pathogens of Korea 7: 1-303.
Shin HD, Kim JD (2002). A new species of Phacellium on Alangium. Mycotaxon 81: 341-344.
Shin HD, Sameva EF (2004). Septoria in Korea (Plant Pathogens of Korea 11). National Institute of Agricultural Science and Technology, Republic of Korea.

Shivas RG, McTaggart AR, Young AJ, et al. (2010). Zasmidium scaevolicola. Fungal Planet 47. Persoonia 24: 132-133.

Shkarupa AG (1992). Tselomitsetnyj rod Jaczewskiella Murashk. Mikologiya i Fitopatologiya 26: 3034.

Shoemaker RA(1965). Revision of some Dimeriella and Dimerosporium parasites of conifers. Canadian Journal of Botany 43: 631-639.

Silva M da, Pinho DB, Pereira OL, et al. (2016). Naming potentially endangered parasites: foliicolous mycobiota of Dimorphandra wilsonii, a highly threatened Brazilian tree species. PLoS ONE 11: e0147895.

Simon UK, Groenewald JZ, Crous PW (2009). Cymadothea trifolii, an obligate biotrophic leaf parasite of Trifolium, belongs to Mycosphaerellaceae as shown by nuclear ribosomal DNA analyses. Persoonia 22: 49-55.

Sivanesan A (1984). The bitunicate Ascomycetes and their anamorphs. Strauss \& Cramer GmbH, Germany.

Smiley RW (1983). Compendium of Turfgrass Diseases. The American Phytopathological Society APS Press, MN, USA.

Spegazzini C (1910). Mycetes Argentinenses (Series V). Anales del Museo Nacional de Historia Natural Buenos Aires 20: 329-467.

Speschnew NN (1901). Fungi transcaspici et turkestanici. Trudy Tiflisskogo Botanicheskogo Sada, Tiflis 5: 177.

Srivastava P (1994). Recombinations in genus Passalora Fries. Journal of Living World 1: 112-119.
Stamatakis A (2014). RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1844-1849.

Stamatakis A, Alachiotis N (2010). Time and memory efficient likelihood-based tree searches on phylogenomic alignments with missing data. Bioinformatics 26: 132-139.

Starbäck K (1889). Ascomyceter från Öland och Östergötland. Bihang till Kungliga svenska VetenskapsAkademiens Handlingar 15: 1-28.

Steiner H (1937). Adelopus balsamicola (Peck) Theiss. F. Douglasii als Erreger einer Schüttererkrankung der Douglastanne. Zeitschrift für Pflanzenkrankheiten (Pflanzenpathologie) und Pflanzenschutz 47: 164-186.

Stevens FL, Dalbey NE (1919). New or noteworthy Porto Rican fungi. Mycologia 11: 4-9.
Stewart EL, Liu Z, Crous PW, et al. (1999). Phylogenetic relationships among some cercosporoid anamorphs of Mycosphaerella based on rDNA sequence analysis. Mycological Research 103: 14911499.

Stielow JB, Levesque CA, Seifert KA, et al. (2015). One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 35: 242-263.

Stone JK, Capitano BR, Kerrigan JL (2008). The histopathology of Phaeocryptopus gaeumannii on Douglas-fir needles. Mycologia 100: 431-444.

Strand M, Panova M (2015). Size of genera - biology or taxonomy? Zoologica Scripta 44: 106-116.
Strobel GA, Daisy B (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews 67: 491-502.

Struhsaker TT, Struhsaker PJ, Siex KS (2005). Conserving Africa's rain forests: problems in protected areas and possible solutions. Biological Conservation 123: 45-54.

Stukenbrock EH, Quaedvlieg W, Javan-Nikhah M, et al. (2012). Zymoseptoria ardabiliae and Z. pseudotritici, two progenitor species of the septoria tritici leaf blotch fungus Z. tritici (synonym: Mycosphaerella graminicola). Mycologia 104: 1397-1407.

Subramanian CV (1962). A classification of the Hyphomycetes. Current Science 31: 409-411.
Sultan A, Johnston PR, Park D, et al. (2011). Two new pathogenic ascomycetes in Guignardia and Rosenscheldiella on New Zealand's pygmy mistletoes (Korthalsella: Viscaceae). Studies in Mycology 68: 237-247.

Sung G-H, Sung J-M, Hywel-Jones NL, et al. (2007). A multigene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstraap approach. Molecular Phylogenetics and Evolution 44: 1204-1223.

Suto V (1999). Mycosphaerella chaenomelis sp. nov.: the teleomorph of Cercosporella sp., the causal fungus of frosty mildew in Chaenomeles sinensis, and its role as the primary infection source. Mycoscience 40: 509-516.

Sutton BC (1964). Coelomycetes. III. Annellolacinia gen. nov., Aristastoma, Phaeocytostroma, Seimatosporium etc. Mycological Papers 97: 1-42.

Sutton BC (1975). Coelomycetes V. Coryneum. Mycological Papers 138: 1-224.
Sutton BC (1977). Coelomycetes VI. Nomenclature of generic names proposed for Coelomycetes. Mycological Papers 141: 1-253.

Sutton BC (1980). The Coelomycetes. Fungi Imperfecti with Pycnidia Acervuli and Stromata. Commonwealth Mycological Institute, Kew, UK.

Sutton BC, Crous PW (1997). Lecanostictopsis gen. nov., and related leaf-spotting fungi on Syzygium species. Mycological Research 101(2): 215-225.

Sutton BC, Hodges CS (1983). Eucalyptus microfungi: Cercosperma arnaudii gen. et sp. nov. and Ceratophorum mauiense sp. nov. Nova Hedwigia 35: 793-803.

Sutton BC, Pascoe IG (1987). Tandonella oleariae sp. nov. and generic separation of Tandonella and Sclerographiopsis. Australian Journal of Botany 35: 183-191.

Sutton BC, Pollack FG (1974). Microfungi on Cercocarpus. Mycopathologia 52: 331-351.
Sutton BC, Swart HJ (1986). Australian leaf-inhabiting fungi XXIII. Colletogloeum species and similar fungi on Acacia. Transactions of the British Mycological Society 87: 93-102.

Sutton BC, Waller JM (1988). Taxonomy of Ophiocladium hordei, causing leaf lesions on Triticale and other gramineae. Transactions of the British Mycological Society 90: 55-61.

Sutton BC, Shamoun SF, Crous PW (1996). Two leaf pathogens of Ribes spp. in North America, Quasiphloeospora saximontanensis (Deighton) comb. nov. and Phloeosporella ribis (J.J. Davis) comb. nov. Mycological Research 100: 979-983.

Švarcman SR, Vasjagina MP, Byzova ZM, et al. (1973). Flora sporovykh rastenij Kazakhstana. Nesoversennye griby - Fungi imperfecti (Deuteromycetes). 1. Monilial'nye - Moniliales. 8. Nauka, Alma Ata.

Swart HJ (1988). Australian leaf-inhabiting fungi. XXVI. Some noteworthy Coelomycetes on Eucalyptus. Transactions of the British Mycological Society 90: 279-291.

Swart HJ, Walker J (1988). Australian leaf-inhabiting fungi. XXVIII. Hendersonia on Eucalyptus. Transactions of the British Mycological Society 90: 633-641.

Swofford DL (2003). PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, Massachusetts.

Sydow H (1926). Fungi in intinere costaricensi collecti, pars secunda. Annales Mycologici 24: 283-426.
Sydow H (1928). Novae fungorum species XIX. Annales Mycologici 26: 132-139.
Sydow H (1930). Fungi venezuelani. Annales Mycologici 28: 29-224.
Sydow H (1940). Mycotheca germanica. Fasc. LXV-LXVIII (no. 3201-3400). Annales Mycologici 38: 453-473.

Sydow H, Mitter JH (1933). Fungi indici. I. Annales Mycologici 31: 84-97.
Sydow H, Sydow P (1913). Novae fungorum species - X. Annales Mycologici 11: 254-271.
Sydow H, Sydow P (1916). Fungi amazonici a cl. E. Ule lecti. Annales Mycologici 14: 65-97.
Tamura K, Peterson D, Peterson N, et al. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular

Biology and Evolution 28: 2731-2739.
Tanaka K, Hirayama K, Yonezawa H, et al. (2015). Revision of the Massarineae (Pleosporales, Dothideomycetes). Studies in Mycology 82: 75-136.

Taylor JW (2012). One Fungus = One Name: DNA and fungal nomenclature twenty years after PCR. IMA Fungus 2: 113-120.

Taylor JW, Jacobson DJ, Kroken S, et al. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 21-32.

Thach T, Munkb L, Hansenc AL, et al. (2013). Disease variation and chemical control of Ramularia leaf spot in sugar beet. Crop Protection 51: 68-76.

Thambugala KM, Ariyawansa HA, Li Y-M, et al. (2014). Dothideales. Fungal Diversity 68: 105-158.
Thaung MM (1976). New hyphomycetes from Burma. Transactions of the British Mycological Society 66: 211-215.

Theissen F, Sydow H (1915). Die Dothideales. Kritisch-systematische Originaluntersuchungen. Annales Mycologici 13: 147-746.

Thirumalachar MJ, Mishra JN (1953). Contribution to the study of fungi of Bihar, India - I. Sydowia 7: 29-83.

Thomma BP, Esse HP van, Crous PW, et al. (2005). Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Molecular Plant Pathology 6: 379-393.

Tomilin BA (1971). Ad nomenclaturam generis Mycosphaerella Johans. Novosti Sistematiki Nizshikh Rastenii 8: 149-153.

Tomilin BA (1979). Opredelitel' gribov roda Mycosphaerella Johans. Nauka, Leningrad, Leningradskoe otd-nie (in Russian).

Tortorano AM, Richardson M, Roilides E, et al. (2014). ESCMID \& ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp, Scedosporium spp, and others. Clinical Microbiology and Infection 20 (suppl. 3): 27-46.

Trakunyingcharoen T, Cheewangkoon R, To-anun C, et al. (2014). Botryosphaeriaceae associated with diseases of mango (Mangifera indica). Australasian Plant Pathology 43: 425-438.

Triebel D, Rambold G, Nash TH (1991). On lichenicolous fungi from continental North America. Mycotaxon 42: 293-296.

Tulasne LR (1856). Note sur l'appareil reproducteur multiple des Hypoxyle'es (DC.) ou Pyrénomycètes (Fr.). Annales des Sciences Naturelles, Botanique 4 (Série 5): 107-118.

Tulasne LR, Tulasne C (1863). Selecta fungorum carpologia. Tomus secundus. Xylariei - Valsei Sphaeriei, Paris.

Turgeon BG (1998). Application of mating type technology to problems in fungal biology. Annual Review of Phytopathology 36: 115-137.

Unger F (1833). Die Exantheme der Pflanzen und einige mit diesen verwandte Krankheiten der Gewächse. Gerold, Wien.

Unger F (1836). Über den Einfluß des Bodens auf die Vertheilung der Gewächse, nachgewiesen in der

Vegetation des nördlichen Tirols. Wien.
Vaghefi N, Pethybridge SJ, Shivas RG, et al. (2016). Confirmation of Paracercospora egenula causing leaf spot of eggplant in Hawaii. Australasian Plant Disease Notes 11: 35.

Vanittanakom N, Cooper Jr CR, Fisher MC, et al. (2006). Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspect. Clinical Microbiology Reviews 19: 95-110.

Vassiljevsky NI (1925). The morphology and biology of Ovularia on Alchemilla. Bolezni Rastenij 14: 18-28.

Vassiljevsky NI, Karakulin BP (1937). Parazitnye nesovershennye griby. Chast I. Gifomicety. Moskva, Leningrad, (in Russian).

Verkley GJM, Priest MJ (2000). Septoria and similar coelomycetous anamorphs of Mycosphaerella. Studies in Mycology 45: 123-128.

Verkley GJM, Crous PW, Groenewald JZ, et al. (2004). Mycosphaerella punctiformis revisited: morphology, phylogeny, and epitypification of the type species of the genus Mycosphaerella (Dothideales, Ascomycota). Mycological Research 108: 1271-1282.

Verkley GJM, Quaedvlieg W, Shin HD, et al. (2013). A new approach to species delimitation in Septoria. Studies in Mycology 75: 213-305.

Videira SIR, Groenewald JZ, Braun U, et al. (2016). All that glitters is not Ramularia. Studies in Mycology 83: 49-163.

Videira SIR, Groenewald JZ, Kolecka A, et al. (2015a). Elucidating the Ramularia eucalypti species complex. Persoonia 34: 50-64.

Videira SIR, Groenewald JZ, Verkley GJM, et al. (2015b). The rise of Ramularia from the Mycosphaerella labyrinth. Fungal Biology 119: 823-843.

Vilgalys R, Hester M (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238-4246.

Vitoratos A, Bilalis D, Karkanis A, et al. (2013). Antifungal activity of plant essential oils against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41 (1): 86-92.

Vouaux L (1913). Synopsis des champignons parasites de lichens. Bulletin de la Societe Mycologique de France 29: 33-128.

Wang F, Summerell BA, Marshall D, et al. (1997). Biology and pathology of a species of Phaeoramularia causing a leaf spot of crofton weed. Australasian Plant Pathology 26: 165-172.

Waterman AM (1954). Septoria canker of poplars in the United States. Circular USDA No. 947, U.S. Department of Agriculture, Washington, USA.

Webster RK, Gunnell PS (1992). Compendium of rice diseases. The American Phytopathological Society, APS Press.

Wei SL, Zhang TY (2003). Allantophomoides, a new genus in Coelomycetes. Mycosystema 22: 9-11.
Weir BS, Johnston PR, Damm U (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology 73: 115-180.

Welker M, Moore ERB (2011). Applications of whole-cell matrix-assisted laser-desorption/ionization
time-of-flight mass spectrometry in systematic microbiology (mini-review). Systematic and Applied Microbiology 34: 2-11.

White TJ, Bruns T, Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylognetics. In: A Guide to Molecular Methods and Applications (Innis MA, Gelfand DH, Sninsky JJ, White JW, eds). Academic Press, New York: 315-322.

Wijayawardene NN, Crous PW, Kirk PM, et al. (2014). Naming and outline of Dothideomycetes-2014 including proposals for the protection or suppression of generic names. Fungal Diversity 69: 1-55.

Wikee S, Lombard L, Nakashima C, et al. (2013). A phylogenetic re-evaluation of Phyllosticta (Botryosphaeriales). Studies in Mycology 76: 1-29.

Wilkinson PM, Thomas-Hall S, Marney TS, et al. (2005). First record of Passalora calotropidis in Australia and its generic position. Australasian Plant Pathology 34: 95-98.

Wingfield MJ, Beer ZW de, Slippers B, et al. (2012). One fungus, one name promotes progressive plant pathology. Molecular Plant Pathology 13: 604-613.

Winton LM, Stone JK, Hansen EM (2007). The systematic position of Phaeocryptopus gaeumannii. Mycologia 99: 240-252.

Wit PJGM de (1977). Light and scanning-electron microscopic study of infection of tomato plants by virulent and avirulent races of Cladosporium fulvum. Netherlands Journal Plant Patholology 83: 109-122.

Wit PJGM de (1981). Physiological studies on cultivar-specific resistance of tomato plants to Cladosporium fulvum. PhD dissertation. Department, Wageningen University, Netherlands.

Wit PJGM de (1992). Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annual Review of Phytopathology 30: 391-418.

Wit PJGM de (2016). Cladosporium fulvum effectors: weapons in the arms race with tomato. Annual Review of Phytopathology 54: 1-23.

Wit PJGM de, Burgt A van der, Ökmen B, et al. (2012). The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genetics 8: e1003088. doi:10.1371/journal.pgen. 1003088.

Wolf FA (1912). The Brown Leaf Spot of Colt's foot, Tussilago farfara L. Annales Mycologici 10: 65-67.

Woronichin NN (1916). Materialy k mikologicheskoj flore Kavkaza III. Griby iz kollektsii Kavkazskogo Muzeya. Izvestiya Kavkazskogo Muzeya, Tiflis 10: 1-112.

Woudenberg JHC, Groenewald JZ, Binder M, et al. (2013). Alternaria redefined. Studies in Mycology 75: 171-212.

Wu W, Sutton BC, Gange AC (1996). Revision of Septoria species on Hebe and Veronica and description of Kirramyces hebes sp. nov. Mycological Research 100: 1207-1217.

Yang HL, Sun GY, Batzer JC, et al. (2010). Novel fungal genera and species associated with the sooty blotch and flyspeck complex on apple in China and the United States. Persoonia 24: 29-37.

Yen JM (1983). Studies on parasitic fungi from South East Asia, 49. Parasitic fungi from Malaysia, 25: Semipseudocercospora gen. nov. Mycotaxon 17: 361-363.

Zaller JG(2004). Ecology and non-chemical control of Rumex crispus and R. obtusifolius (Polygonaceae): a review. Weed Research 44: 414-432.

Zhang ZY, Liu YL, Zhang T, et al. (2003). Cladosporium, Fusicladium, Pyricularia. Flora Fungorum Sinicorum 14: 1-297.

Zhao G, Liu X, Wu W (2007). Helicosporous hyphomycetes from China. Fungal Diversity 26: 313-524.
Zhao Y, Grout BWW, Crisp PC (2002). Unexpected susceptibility of novel breeding lines of European rhubarb (Rheum rhaponticum) to leaf and petiole spot disease. Acta Horticulturae 637: 139-144.

Zhao Y, Grout BW, Xu X (2006). Effects of temperature on germination and hyphal growth from conidia of Ramularia rhei and Ascochyta rhei, causing spot diseases of rhubarb (Rheum rhaponticum). Plant Pathology 55: 664-670.

Zhou XG, Tabien RE, Way MO (2010). First report of white leaf streak of rice caused by Mycovellosiella oryzae in Texas. Plant Disease 94: 639.

Zhu L, Sun OJ, Sang W, et al. (2007). Predicting the spatial distribution of an invasive plant species (Eupatorium adenophorum) in China. Landscape Ecology 22: 1143-1154.

SUMMARY

Ramularia is a species-rich genus in the order Capnodiales that harbours hyphomycetes with hyaline conidiophores and conidia with distinct, thickened, darkened, refractive conidiogenous loci and conidial hila. The sexual morph of Ramularia species belongs to Mycosphaerella but the number of experimentally proven links is small and some species may be true asexual holomorphs. Currently Ramularia species are accepted as being host-specific, although some exceptions are known. Most species are phytopathogenic and associated with leaf spots, necrosis or chlorosis, but some species can be saprobic or even hyperparasitic. The most important Ramularia plant pathogens are R. collo-cygni and R. beticola that cause severe economic losses to barley and sugar beet crops, respectively. Protecting crops from damage by weeds, animal pests and pathogens is of major importance in order to increase productivity to meet the global increase in demand for food, feed and bioenergy. The present study serves as a backbone for future studies on the taxonomy of Ramularia and allied genera since it includes the largest number of Ramularia isolates and species ever subjected to DNA sequence analyses. Combined with morphological descriptions and photo plates of several species, it provides a powerful tool to better understand and promote further research on Ramularia and allied genera. More than 1000 names are known in Ramularia alone, and this study covered only 88 taxa, which means many species still need to be recollected and characterised based on their DNA sequence data. In addition, the present study aimed to clarify the phylogenetic position of the genera currently accepted to belong to Mycosphaerellaceae, thus providing a broad framework and phylogeny for the family and laying a foundation for additional genera and species to be recognised and described. Recent studies have already clearly defined several genera, but it was clear that genera such as Passalora, Zasmidium, Stenella and Ramichloridium remained para- and polyphyletic. Although the type species of several genera have been reliably identified and typified, many genera remain unresolved or are in need of a more in-depth study. What was known as Mycosphaerella sensu Aptroot (2006), now represents a great number of different genera accommodated in different families within Dothideomycetes. The fundamental work performed in this thesis will provide plant pathologists with the resources to facilitate a more reliable identification of the pathogens they work with, as well as provide a solid platform to base their research on, while at the same time also giving more stability to the names which are used to communicate about these fungi.

Chapter 1 gives a general introduction to the genera Mycosphaerella, Ramularia and allied genera. Their taxonomic history and their economic importance as plant pathogens are detailed. The importance of the morphological characteristics in identification versus the molecular approach is introduced. The introduction of the one species $=$ one name and its impact on the taxonomy of Ramularia and allied genera is explained.

Chapter 2 provides an in-depth view on the Ramularia eucalypti species complex. Ramularia eucalypti was the only species of this genus known to infect Eucalyptus by causing severe leaf-spotting symptoms. Isolates of R. eucalypti obtained from other plant hosts, environmental samples and human clinical specimens were heterogeneous based on their ITS sequence data and morphology. Therefore, a polyphasic approach involving morphology, multi-gene phylogeny and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) was applied in order to resolve the taxa representing this species complex. A six-gene alignment (ITS, actA, tef1- α, his 3 , gapdh and rpb2) including 44 isolates of R. eucalypti s. lat.
and closely related species was used in both Bayesian and parsimony phylogenetic analysis. The resulting phylogenetic trees showed significant support for separation of seven species: two previously described species (R. eucalypti and R. miae), four newly introduced (R. haroldporteri, R. glennii, R. mali and R. plurivora) and one undescribed Ramularia species (sterile). There are now two Ramularia spp. known to infect Eucalyptus hosts, namely R. eucalypti and R. glennii. The pathogen responsible for causing lenticel rot in fruits of apple and pear in Italy is the newly described R. mali. The ITS barcode was not sufficient to achieve species level identification but any of the partial genes tef1- α, rpb2 or gapdh could be used as a secondary barcode to efficiently identify these species. The growth curve analysis of the studied isolates revealed that one strain of R. plurivora obtained from a clinical sample was able to grow at $40^{\circ} \mathrm{C}$ by changing its morphology from a filamentous fungus to an arthroconidial yeast. The MALDI-TOF is a popular diagnostics tool in clinical samples that allows the identification of microorganisms by analysing their unique protein peak pattern and comparing it with a database of reference main mass spectra (MSPs). Main mass spectra (MSPs) of several R. eucalypti s. lat. strains were generated using MALDI-TOF MS and were compared through a Principal Component Analysis (PCA) dendogram. The PCA dendrogram supported three clades containing R. plurivora, R. glennii / R. mali and R. eucalypti / R. miae. Although the dendrogram separation of species differed from the phylogenetic analysis, the clinically relevant strains of R. plurivora and R. glennii were successfully identified by MALDI-TOF MS.

Chapter 3 focuses on the resolution of the species complex of Ramularia endophylla and on the known links between asexual and sexualmorphs among Ramularia species. Ramulariaendophylla (syn. M. punctiformis) is an endophyte often associated with broad-leaved trees worldwide. The ITS sequences of several isolates from different hosts appeared to be heterogenous. In order to evaluate the presence of cryptic species a polyphasic approach involving morphology and multi-gene phylogeny was employed. A total of 81 isolates of R. endophylla s. lat. and 32 isolates representing 11 Ramularia species were targeted for the amplification of eleven genes
 amplification of cal and tub2 was often unsuccessful and the sequences obtained were not used in the multigene analysis. The amplification of the mating-type loci was not successful for all the strains and was particularly challenging for the MAT1-2-1 with the use of the available primers. A Bayesian phylogenetic analysis, as well as a parsimony analysis, was performed on a combined five-locus dataset and the resulting trees showed significant support for three species within the complex, including the previously described R. endophylla and R. vizellae, and the newly introduced Ramularia unterseheri. The ITS barcode alone proved to be insufficient for species level identification and the partial gene sequences of $a c t A, r p b 2$ and $g a p d h$ individually proved to be good complementary phylogenetic markers since they successfully separated the three species. The parsimony analyses performed separately with the mating-type gene sequences (MAT1-1-1 and MAT1-2-1) generated trees that were in accordance with those of the multigene analysis. There are presently five Ramularia species with an experimentally confirmed link between the asexual ramularia-like and the sexual mycosphaerella-like morph (R. endophylla, R. grevilleana, R. inaequalis, R. phacae-frigidae and R. variabilis). A total of 15 other links found in literature are either doubtful or have not been experimentally proven and await further collections and study. The taxa identified as Mycosphaerella in much of the plant pathology literature needs to be revisited.

Chapter 4 treats the species within the genus Ramularia and its closest allied genera. Ramularia is a species-rich genus that harbours hyphomycetes with hyaline conidiophores and conidia with distinct, thickened, darkened, refractive conidiogenous loci and conidial hila. Because of its simple morphology closely related species can be difficult to distinguish and several allied genera are frequently confused with Ramularia. In the present study a polyphasic approach based on phylogenetic, morphological and cultural data were used in order to improve species and genus circumscription. A total of 420 isolates were targeted for the amplification and sequencing of six partial genes. Five congruent genes were used in the phylogenetic analysis based on three methods that included Bayesian, Maximum-Likelihood and Parsimony methods. Although Ramularia and Ramulariopsis proved to be monophyletic, Cercosporella and Pseudocercosporella were polyphyletic. The genus Phacellium is tentatively reduced to synonymy with Ramularia since all the studied isolates clustered in the Ramularia clade and the current phylogenetic position of the type species is unknown. Cercosporella and Pseudocercosporella isolates that were not congeneric with the ex-type strains of the type species of those genera were assigned to existing genera or to the newly introduced genera Teratoramularia and Xenoramularia, respectively. The genera Apseudocercosporella, Filiella and Neopseudocercosporella are newly introduced to include pseudocercosporella-like species non-congeneric with their purported type. The genus Fusoidiella was introduced to accommodate a passalora-like species closely related to Filiella. The genera Epicoleosporium and Mycosphaerelloides were newly introduced to accommodate ramularia-like species non-congeneric with Ramularia. Several isolates included in the genus Ramularia were morphologically and molecularly characterised, nine new species were described, 12 species were epitypified, two new combinations and two new names were proposed, and a new sexual-asexual link was observed in R. hydrangeae-macrophyllae. Based on the individual genes, ITS was able to distinguish 58% of the species while tefl- α recognised 62%, actA 72%, gapdh 76% and rpb2 84% of the species. The K2P test showed that the ITS barcode has a lower ability to distinguish species than protein-coding genes and that the rpb2 gene would be a good candidate for a secondary barcode gene. Ramularia and allied genera are much undersampled and are frequently described without culture or DNA sequence data.

Chapter 5 introduces a revision of the current taxonomic knowledge of the genera within the Mycosphaerellaceae. The Mycosphaerellaceae contains numerous genera that include thousands of fungal species. Most of these species are plant pathogens and some can cause significant harm to crops we depend on for food, feed and fuel. Nevertheless, the taxonomy of many genera belonging to this family remains unclear to this day mostly due to the scarcity of cultures and the difficulty of identification based on morphological characters. Therefore, a multigene phylogenetic analysis was performed in order to resolve the phylogenetic relationships among the genera currently recognised within the family and to clarify the position of the cercosporoid fungi among them. The alignment was based on three genes (LSU, ITS and rpb2), contained 415 isolates representing 297 taxa and included ex-type strains when available. Based on the analysis, the genera Passalora, Zasmidium, Stenella and Ramichloridium are shown to be paraand polyphyletic. As a consequence, several old generic names including Cercosporidium, Fulvia, Mycovellosiella, Phaeoramularia and Raghnildiana are resurrected to accommodate the species non-congeneric with the Passalora type and 19 genera are newly introduced for the remaining passalora-like species (e.g. Graminopassalora, Pleuropassalora). Previous generic definitions can no longer be applied to these genera in their current circumscription, and the description of new species is strongly reliant on the availability of DNA sequence data. New passalora-like species to be described cannot be assigned without molecular data
and, if molecular data are not available, should tentatively be assigned to Passalora s. lat. Species of Ramichloridium and Stenella in Mycosphaerellaceae which were not congeneric with the respective type species currently in Teratosphaeriaceae, were combined into existing genera (e.g. Zasmidium), or newly described genera (e.g. Pachyramichloridium). The genera Periconiella and Verrucisporota were combined under a broader concept of Zasmidium, due to strong phylogenetic support of the basal branches and morphological similarity of the species involved. The genus Phaeophleospora was polyphyletic and species non-congeneric with the type were reassigned to the new genus Pseudophaeophleospora. The $r p b 2$ gene proved to be effective in both species and genera separation within the family and is recommended for future phylogenetic work as a secondary barcode. Based on MycoBank, the Mycosphaerellaceae contains 213 genera but, based on the phylogenetic data from the present study only 120 genera are known to belong in the family. The phylogenetic position of the remaining genera remains unresolved until fresh collections and DNA data are obtained.

Chapter 6 discusses the results of the performed studies for the present thesis. The main focus is the impact of the use of molecular tools in modern classification as well as how it impacts other scientific fields besides taxonomy and systematics.

ACKNOWLEDGEMENTS

This thesis could only be realised due to the support of many people. First and foremost a big thank you to my promotor Pedro Crous for giving me the opportunity to develop this project within his research group which turned out to be a life changing experience. I am very grateful for your guidance and constructive criticisms during the planning and development of this research work. I would also like to thank my co-promotor Pierre de Wit for his important remarks and comments during the development of this thesis. I am very thankful to my external supervisor Uwe Braun for his invaluable input on the taxonomic part of all the published manuscripts and for his availability and patience. A big thank you is also due to my co-promotor and daily supervisor Ewald Groenewald for introducing me to the laboratory routines, for all the tutorials on how to treat and interpret phylogenetic data, for all the assistance with daily bureaucracies, personal development advice and for all the scientific discussions. I would also like to thank Lorenzo Lombard for assisting me with some of the lab protocols and with the microscopy questions. I want to thank Ulrike Damm for the specimens she collected for me, for organizing the bicycle trips on the weekends and for the nice evenings out after work. I am particularly thankful to Joyce Woudenberg for being very supportive and honest on both professional and personal matters, as well as for being a good friend in and out of the office. I would like to acknowledge the help of William Quaedvlieg with the execution of the field trips in the Netherlands and with the intricacies of the different phylogeny software packages. I wish to thank Xuewei and Tao Wang for making the office a pleasant workplace and for your efforts in teaching me the Chinese language and cuisine. My thanks are also extended to Mieke Starink and Arien van Iperen, for all the assistance related to the laboratory and the cultures. I am grateful for the assistance provided by the collection personnel with regards to the CBS cultures, in particular to Trix Merkx, IJda Vlug and Diana Vos. A special thank you is owed to Michel de Vries for his assistance with the Collection DNA which was so important in my last publication. I would also like to thank Marjan Vermaas for sharing her knowledge of Photoshop and microscopy and for her assistance in preparing the photo plates for the publications. I would like to express my great appreciation to Manon Verweij, for her encouragement, her assistance with layout of the thesis and for the chestnuts she always gathered for me when Autumn came. I would like to thank all the guests that visited our group for all the nice conversations and cultural exchange, but a special thank you is extended to all the Brazilian guests, Renata Gomes, Rafael Alfenas, Meiriele Silva, Olinto Pereira, Eduardo Guatimosim, and Jadson Bezerra for all the good times and uplifting conversations in Portuguese. I would like to express my deep gratitude to Raquel Quintilla, Álvaro Fábregas, Aleja Giraldo and Anna Kolecka for being my companions in this adventure and for being my anchors whenever difficulties arose. We had wonderful times together and I am very grateful for having you all in my life. A special thank you is also due to all my friends, Inês Balula, Ludgero Avelar, António Matos, Tânia Fernandes, Daniel Magalhães and Adriano Miranda, who always gathered at my hometown for Christmas reunion to learn what was new in one another's lives.I am incredibly grateful to my better half, Luis Crespo, for his enthusiastic support, sincerity and love. Last but not least, I am deeply grateful to my parents, Fernando Videira and Maria de Lurdes Baptista, and my sister, Diana Videira, for their love and relentless encouragement throughout the years that took to develop and publish this work.

CURRICULUM VITAE

Sandra I. R. Videira was born on June 8th 1984 in Coimbra, Portugal. In 2008, she completed her bachelor in Biology and in 2009 a master in Biodiversity and Plant Biotechnology.

During graduation she collaborated in several projects in progress at the time at Departamento das Ciencias da Vida (DCV) in the University of Coimbra. From 2007-2009, she collaborated in a project that aimed to evaluate the ecology and management of the commercially harvested Tricholoma flavovirens in maritime pine forests of Beira Litoral in Portugal (POCI/ AGR/57669/2004). During this work she participated in the field trips to the marked areas where the overall abundance of several species of economic importance was calculated throughout the mushroom season over several years. From 2009-2010 she participated in a project that evaluated the fungal diversity present on historical documents through molecular identification and the implementation of control strategies based on gamma radiation for the preservation of the archive patrimony (PTDC/HAH/652662/2006). During this work she learned how to perform microfungi isolation and maintenance in culture, DNA extraction, PCR amplification, DNA sequencing and BLAST. Also from 2009-2010, she participated in a joint project between DCV and the Oryzon Energias company that aimed to inventory the macrofungi present in Póvoa Dão, an historical village, for promotion of biodiversity tourism. During this work she collected, identified and preserved many mushroom specimens and constructed a database with information regarding the species found with respective photographs for public consultation.

After graduation she worked as a research technician at DCV in the University of Coimbra, on a project funded by Fundação para a Ciência e Tecnologia (FCT). The project aimed at detecting the presence or absence of Fusarium circinatum in Pinus sp. and Pseudotsuga sp. from forest and nursery samples, since it is a quarantine pathogen that needs to be controlled. During this work she acquired further experience with microfungi isolation, DNA extraction, PCR amplification of different partial genes and DNA sequencing.

Due to end of the project in early 2011, she applied for a PhD position at the Westerdijk Fungal Biodiversity Institute (then called CBS-KNAW Fungal Biodiversity Centre), in the Evolutionary Phytopathology group of Pedro Crous, on which this thesis is based.

LIST OF PUBLICATIONS

Videira SIR, Groenewald JZ, Nakashima C, Braun U, Barreto RW, de Wit PJGM, Crous PW (2017). Mycosphaerellaceae - chaos or clarity? Studies in Mycology 87: 257-421.

Wang XW, Lombard L, Groenewald JZ, Li J, Videira SIR, Samson RA, Liu XZ, Crous PW (2016). Phylogenetic reassessment of the Chaetomium globosum species complex. Persoonia 36: 83-133.

Videira SIR, Groenewald JZ, Braun U, Shin HD, Crous PW (2016). All that glitters is not Ramularia. Studies in Mycology 83: 49-163.

Videira SIR, Groenewald JZ, Verkley GJM, Braun U, Crous PW (2015). The rise of Ramularia from the Mycosphaerella labyrinth. Fungal Biology 119(9): 823-843.

Videira SIR, Groenewald JZ, Kolecka A, Haren L van, Boekhout T, Crous PW (2015). Elucidating the Ramularia eucalypti species complex. Persoonia 34: 50-64.

Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald JZ, Crous PW (2013). Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31: 1-41.

Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, Taylor JW, Wingfield MJ, Abaci O, Aime C, Asan A, Bai FY, Beer ZW de, Begerow D, Berikten D, Boekhout T, Buchanan PK, Burgess T, Buzina W, Cai L, Cannon PF, Crane JL, Damm U, Daniel HM, Diepeningen AD van, Druzhinina I, Dyer PS, Eberhardt U, Fell JW, Frisvad JC, Geiser DM, Geml J, Glienke C, Gräfenhan T, Groenewald JZ, Groenewald M, Gruyter J de, GuéhoKellermann E, Guo LD, Hibbett DS, Hong SB, Hoog GS de, Houbraken J, Huhndorf SM, Hyde KD, Ismail A, Johnston PR, Kadaifciler DG, Kirk PM, Kõljalg U, Kurtzman CP, Lagneau PE, Lévesque CA, Liu X, Lombard L, Meyer W, Miller A, Minter DW, Najafzadeh MJ, Norvell L, Ozerskaya SM, Oziç R, Pennycook SR, Peterson SW, Pettersson OV, Quaedvlieg W, Robert VA, Ruibal C, Schnürer J, Schroers HJ, Shivas R, Slippers B, Spierenburg H, Takashima M, Taşkın E, Thines M, Thrane U, Uztan AH, Raak M van, Varga J, Vasco A, Verkley G, Videira SIR, Vries RP de, Weir BS, Yilmaz N, Yurkov A, Zhang N (2011). The Amsterdam Declaration on Fungal Nomenclature. IMA Fungus 2: 105-112.

Portugal A, Mesquita N, Videira S, Rodriguez-Echeverría S, Bandeira AML, Santos MJA, CaboVerde S, Botelho ML, Freitas H (2009). Fungal diversity in ancient documents. A case study on the archive of the University of Coimbra. International Biodeterioration \& Biodegradation 63: 626-629.

Education Statement of the Graduate School

Experimental Plant Sciences

Issued to:	Sandra Isabel Rodrigues Videira
Date:	16 Oct 2018
Group:	Laboratory of Phytopathology
University:	Wageningen University \& Research

1) Start-up phase	date
\quad First presentation of your project	
Phylogeny and Systematics of Ramularia and allied genera	Sep 2011
Writing or rewriting a project proposal	
Phylogeny and Systematics of Ramularia and allied genera	
Writing a review or book chapter	
MSc courses	
Laboratory use of isotopes	

Subtotal Start-up Phase $\quad 5.5$ credits*

2) Scientific Exposure

- EPS PhD student days

EPS PhD student day, Wageningen, the Netherlands
May 202011
KNAW PhD afternoon, Utrecht, the Netherlands
14 Sep 2011 EPS PhD student day, Wageningen, the Netherlands

Nov 302012

- EPS theme symposia

EPS theme 2 symposium - Willie Commelin Scholten day 'Interactions between plants and biotic agents', Utrecht, the Netherlands
EPS theme 2 symposium - Willie Commelin Scholten day 'Interactions between plants and biotic agents', Utrecht, the Netherlands

24 Jan 2013
20 Feb 2015

- National meetings (e.g. Lunteren days) and other National Platforms

KNVvM Mycology Day: Fungal Adaptation, Utrecht, the Netherlands
29 Nov 2013

- Seminars (series), workshops and symposia

CBS Seminar Series, Utrecht, the Netherlands
CBS Symposium: One Fungus One Name ($1 \mathrm{~F}=1 \mathrm{~N}$), Amsterdam, the Netherlands
2011-2015
CBS Symposium: One Fungus which Name (1F=?N), Amsterdam, the Netherland 19-20 Apr 201 CBS Symposium: One Fungus which gene (1F=?gene), Amsterdam, the Netherlands 12-13 Apr 2012 10-11 Apr 2013 CBS Symposium: Genera and Genomes, Amsterdam, the Netherlands
CBS Symposium: Second International Workshop on Ascomycete Systematics, Amsterdam, 24-25 Apr 2014 the Netherlands
Mini-symposium: Intraspecific Pathogen Variation - Implications and Opportunities, Wageningen, the Netherlands
Symposium: DNA barcoding Symposium, Utrecht, the Netherlands

- Seminar plus
- International symposia and congresses

10th International Mycological Congress (IMC10), Bangkok, Thailand \quad 03-08 Aug 2014
ISHAM: The Future of Barcoding, Utrecht, the Netherlands $\quad 12-13$ Apr 2013
ISHAM: Diversity and Barcoding of Medical Fungi, Utrecht, the Netherlands

- Presentations

Poster: EMBO Computational Molecular Evolution - Phylogeny and taxonomy of Ramularia and allied genera 22-23 Apr 2013

Poster: APS/MSA joint meeting 2013 - Ramularia eucalypti species complex untangled Talk: CBS Seminar series - Phylogenetic lineages in Ramularia Talk: CBS Seminar series - Ramularia eucalypti in the spotlight 22-24 Apr 2015 Talk: Laboratory of Phytopathology: Ramularia and allied genera Talk: 10th International Mycological Congress (IMC10): Radiating Ramularia Revisited Talk: DNA Barcoding Symposium - Barcoding of Ramularia and allied genera 22 Jan 2013 03 Jun 2015

Talk: CBS seminar series - The Passalora Puzzle

29 Apr 2012

IAB interview

- Excursions

> Subtotal Scientific Exposure

| 3) In-Depth Studies |
| :--- | :---: | :---: |
| EPS courses or other PhD courses |
| EMBO Practical Course 'Computational Molecular Evolution', Crete, Greece |
| CBS-KNAW Fungal Biodiversity, Utrecht, the Netherlands |
| Journal club |
| Individual research training |

(a)
6.0 credits
4) Personal development

- Skill training courses

Information Literacy including EndNote Introduction (ILP), Wageningen, the Netherlands
01-02 Nov 201 Science Communication Course for PhD Students, Utrecht, the Netherlands
Basic training Photoshop for Publications, Utrecht, the Netherlands

28 Mar-18 Apr 2012 Mini-symposium 'How to write a world-class paper', Wageningen, the Netherlands Rathenau Institute and CWTS 'Crafting your career', Utrecht, the Netherlands WGS PhD Workshop Carousel, Wageningen, the Netherlands
Entrepreneurship in and out Science, Wageningen, the Netherlands
30 Oct 2013
2 Jun 2014
08 Dec 2014-2 Jan 2015 Career Orientation, Wageningen, the Netherlands 19 Nov-14 Dec 2015

The research described in this thesis, was conducted at the Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.

Financial support for the research was provided by the Dutch Ministry of Education, Culture and Science through an endowment of the FES programme "Making the tree of life work" and the Royal Netherlands Academy of Arts and Sciences (KNAW).

Financial support from Wageningen University and the Westerdijk Institute for printing this thesis is gratefully acknowledged. The Training and Supervision Plan was completed at the Graduate School of Experimental Plant Sciences.

Layout and design thesis:

Manon van den Hoeven-Verweij.

Front and back cover:

Background picture in both front and back cover: Culture surface of Ramularia vizellae.
Front cover pictures (top to bottom and left to right): Conidia of Ramularia eucalypti, culture surface of R. hydrangea-macrophyllae, R. plurivora, and R. acris.

Back cover insets (left to right): Conidiophores and conidia of Mycovellosiella cajani, partial conidiophores and conidia of Passalora bacilligera and Phaeoramularia gomphrenicola.

All photographs were taken by Sandra I. R. Videira.
Design: Sandra I. R. Videira and Manon van den Hoeven-Verweij.

Printed by: Gildeprint

[^0]: ${ }^{1}$ AR: Personal culture collection of Amy Rossman; ATCC: American Type Culture Collection, Virginia, USA; BRIP: Plant Pathology Herbarium, Department of Primary Industries, Queensland, Australia; CBS: CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; CCM: Czech Collection of Microorganisms, Masaryk University, Brno, Czech Republic; CMW: Culture Collection of the Forestry and Agricultural Biotechnology Institute (FABI) of the University of Pretoria, Pretoria, South Africa; CPC: Personal culture collection of Pedro Crous, housed at CBS; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, United Kingdom; INIFAT: Alexander Humboldt

 Institute for Basic Research in Tropical Agriculture, Ciudad de La Habana, Cuba; JCM: Japan Collection of Microorganism, RIKEN BioResource Center, Japan; JT: Personal number of J.E. Taylor; KACC: Korean Agricultural Culture Collection, National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon, Republic of Korea; MUCL: Universit e Catholique de Louvain, Louvain-la-Neuve, Belgium; QM: Quartermaster Research and Development Center, U.S. Army, Massachusetts, USA; RoKI: Personal culture collection of Roland Kirschner; UPSC: Uppsala University Culture Collection of Fungi, Botanical Museum University of Uppsala, Uppsala, Sweden.
 ${ }^{2}$ Status of the strains: (T) ex-type, (ET) ex-epitype, (NT) ex-neotype.
 ${ }^{3}$ LSU: large subunit (28S) of the nrRNA gene operon; ITS: internal transcribed spacers and intervening 5.8S nrDNA; actA: partial actin gene; tef1- α : partial translation elongation
 factor 1-alpha gene; gapdh: partial glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene; rpb2: partial RNA polymerase II second largest subunit gene; his3: partial histone H3 gene; cmdA: partial calmodulin gene; tub2: partial beta-tubulin gene; chs-1: partial chitin synthase-1 gene; "-" represents missing data.
 ${ }^{4}$ A. $=$ Acrodontium; An. = Antennaria; C. = Cercosporella; Ca. $=$ Caryophylloseptoria; Ce. $=$ Cercospora; D. $=$ Dothistroma; N. $=$ Neopseudocercosporella; M. $=$ Mycosphaerella; P. = Pseudocercosporella; Pa. = Passalora; Pal. = Pallidocercospora; Ph. = Phacellium; Pp. $=$ Parapenidiella; Ps. $=$ Pseudocercospora; R. $=$ Ramularia; Re $=$ Readeriella; Rp. $=$ Ramulariopsis; S. = Septoria; Sp. =Sphaerulina; T. = Teratosphaeria; Tr. = Teratoramularia; U. =Uwebraunia; X. =Xenoramularia; Z. $=$ Zymoseptoria.

[^1]: ${ }^{1}$ Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands;
 ${ }^{2}$ Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
 ${ }^{3}$ Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan;
 ${ }^{4}$ Martin-Luther-Universität Halle-Wittenberg, Institut für Biologie, Bereich Geobotanik, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany;
 ${ }^{5}$ Departamento de Fitopatologia, University Federal de Viçosa, Viçosa, MG, 36570900, Brazil

[^2]: ${ }^{1}$ ITS: internal transcribed spacers and intervening 5.8 S nrDNA ; LSU: large subunit (28 S) of the nrRNA gene operon; rpb2: partial RNA polymerase II second largest subunit gene.

