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Abstract

The barren and inhospitable Arctic region has over recent decades seen large 
changes in its natural environment. Observations have shown that the Arctic is 
warming twice as fast compared to the rest of the world, mostly noticed by the 
strong decrease of sea ice. These changes present large threats to the unique 
Arctic ecosystem and indigenous communities, but also provides opportunities 
such as improved navigation of the fabled northerly passages and exploration of 
natural resources. Hence, from a scientific, ecological and an economic viewpoint 
there is a strong need for accurate knowledge on future development of the 
Arctic climate, and specifically its sea ice cover. This thesis therefore focuses 
on the predictability of the Arctic climate on time scales ranging from seasonal 
to centennial, with an emphasis on the physical processes that give rise to, or 
inhibit, this predictability. This is achieved by studying the physical mechanisms 
related to Arctic climate variability and climate change, both in climate models 
and observations.

Over recent years there has been an increase in using fully coupled climate 
models for seasonal to decadal predictions. Hence, it is important to understand 
the physical processes that provide predictability beyond persistence of sea ice 
anomalies in these climate models. In chapter 2 we analyze the natural variability 
of Arctic sea ice from an energy budget perspective in multiple climate models and 
compare these results to observations. The Arctic energy balance components 
primarily indicate the important role of the ice–albedo feedback, through which 
sea ice anomalies in the melt season reemerge in the growth season. The role of 
the ocean lies mainly in storing heat content anomalies in spring and releasing 
them in autumn. Confirming a previous (observational) study, we demonstrate 
that there is delayed atmospheric response in of clouds in autumn to spring sea 
ice anomalies. Hence, there is no cloud–ice feedback in late spring and summer, 
but there is a cloud–ice feedback in autumn, which strengthens the ice–albedo 
feedback. Anomalies in insolation are, counter-intuitively, positively correlated 
with sea ice variability. This is primarily a result of reduced multiple reflection 
of insolation due to an albedo decrease. This effect counteracts the icealbedo 
effect up to 50%. Reanalysis products confirm the main findings from the climate 
models.

Observed and projected climate warming is strongest in the Arctic regions, 
peaking in autumn/winter. Attempts to explain this feature have focused 
primarily on identifying the associated climate feedbacks, particularly the ice-
albedo and lapse-rate feedbacks. In chapter 3, we use a global climate model in 
idealized seasonal forcing simulations to show that Arctic warming (especially in 
winter) and sea ice decline are particularly sensitive to radiative forcing in spring, 
during which the energy is effectively ‘absorbed’ by the ocean (through sea ice 
melt and ocean warming, amplified by the ice-albedo feedback) and consequently 
released to the lower atmosphere in autumn and winter, mainly along the sea ice 
periphery. In contrast, winter radiative forcing causes a more uniform response 



centered over the Arctic Ocean. This finding suggests that intermodel differences 
in simulated Arctic (winter) warming can to a considerable degree be attributed 
to model uncertainties in Arctic radiative fluxes, which peak in summer.

The intermodel differences in projected Arctic warming are very large, owing to 
considerable differences between climate models. A clear understanding of this 
large uncertainty is currently lacking. In chapter 4 we use global climate models 
to show that springtime interannual variability in downwelling longwave radiation 
in the pre-industrial climate explains about two-thirds of the intermodel spread 
in projected Arctic warming under a high greenhouse gas emission scenario. 
This variability, which peaks on the land masses adjacent to the Arctic ocean, 
is related to the combined effects of the cloud radiative forcing and the albedo 
response to snowfall, which vary strongly among models in these regions. These 
processes govern interannual variability of downwelling longwave radiation in the 
pre-industrial climate, but also largely modulate the Arctic climate response. This 
finding elucidates the crucial interaction between clouds and surface radiation 
within the Arctic climate system. As such it provides important insights into 
possible reductions in the uncertainty in future Arctic climate projections that 
are required to constrain regional mitigation and adaptation strategies to Arctic 
climate change.

In chapter 5 we explore the error and improve the skill of the outcome from 
dynamical seasonal Arctic sea ice reforecasts using different bias correction 
and ensemble calibration methods. These reforecasts consist of a five-member 
ensemble from 1979 to 2012 using the general circulation model EC-Earth. 
The raw model forecasts show large biases in Arctic sea ice area, mainly due 
to a differently simulated seasonal cycle and long-term trend compared to 
observations. This translates very quickly (1–3 months) into large biases. We 
find that (heteroscedastic) extended logistic regressions are viable ensemble 
calibration methods, as the forecast skill is improved compared to standard bias 
correction methods. Analysis of regional skill of Arctic sea ice shows that the 
Northeast Passage and the Kara and Barents Sea are most predictable. These 
results demonstrate the importance of reducing model error and the potential 
for ensemble calibration in improving skill of seasonal forecasts of Arctic sea ice.
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1. Introduction

1.1 General introduction

The Arctic region is the most northerly part of our planet. It is commonly referred to 
as the region north of the Arctic circle (figure 1.1), which represents the latitude at 
which during winter solstice the sun does not rise. The Arctic climate is characterized 
by cold and harsh conditions, long winters without sunshine and summers with 
continuous sunshine. The sea ice cover is one of the most important and unique 
features of the Arctic climate system. The Arctic region consists of a large ocean 
surrounded by land (figure 1.1), hence the climate is strongly affected by the ocean 
and its sea ice cover. During Arctic winter, sea ice covers the complete Arctic ocean 
and part of the surrounding seas (figure 1.2). During summer approximately 2/3 of 
this sea ice melts away, resulting in a large seasonal cycle of the sea ice cover. Because 
the sea ice acts as a lid on the Arctic ocean, effectively separating the relatively warm 
ocean from the lower atmosphere, there is also a strong seasonal cycle in the lower 
atmospheric temperatures. Summer temperatures are generally confined to around 
freezing point during summer, as extra heat is used to melt sea ice and not warm 
the lower atmosphere. Winter temperatures can plummet to around -40oC, due to a 
lack of solar insolation (Serezze and Barry, 2009). This sharp temperature contrast 
between the lower atmosphere and ocean implies that changes in sea ice cover have 
a profound influence on the Arctic climate. The harsh and cold Arctic climate has 
led to the development of a unique ecosystem, with species specifically adapted to 
the Arctic climate. Further, the Arctic is home to a large population of indigenous 
communities. Their livelihoods are strongly connected to the unique Arctic climate, 
ecosystem and the sea ice cover through e.g. fishing, hunting and herding.
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Observations have shown that over recent decades the Arctic is warming twice as fast
compared to the rest of the world (Cohen et al., 2014). This is mostly noticed 
by the strong decrease of sea ice, as the yearly sea ice minimum decreases at a 
rate of approximately 11.5% per decade (Comiso and Hall, 2014). These changes 
present large threats to the unique Arctic ecosystem and indigenous communities. 
However, the retreat of Arctic sea ice also provides opportunities. The reduced sea 
ice offers potential for improved navigation of the fabled northerly passages, fishing 
and exploration of natural resources. Hence, there is a strong need for accurate 
knowledge on the future state of the Arctic climate, and specifically its sea ice cover. 
The time scales over which this information is needed ranges from near-term (i.e. 
days to months) for e.g. information on ice-free passages or offshore operations, to 
centennial (climate projections) for use in adaptation and mitigation strategies for 
the Arctic region.

Figure 1.1: Map of the Arctic region according to multiple definitions. 

Source: AMSA, 2009
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This thesis presents the results of a study on the predictability of the Arctic climate 
and on physical processes that can control this predictability, on time scales ranging 
from seasonal to centennial. First we will start with an introduction of the Arctic 
climate system and discuss the important changes that are observed and projected 
for the Arctic region. The 2nd chapter will focus on physical processes that provide 
seasonal to yearly predictability of Arctic sea ice, through studying the surface energy 
balance in relation to sea ice variability. In chapter 3 we study the sensitivity of 
the Arctic climate system to the seasonality of a radiative forcing. This analysis is 
continued in chapter 4, where we assess the importance of the seasonality of the 
radiative forcing in explaining the uncertainty in Arctic climate projections. In chapter 
5 we assess the actual skill of yearly forecasts of Arctic sea ice, and the effect of 
(ensemble) bias-correction methods therein. All results are compiled and discussed 
in chapter 6, including suggestions for future research.

1.2 The Arctic climate system

The Arctic climate is characterized by an integrated system of multiple components, 
namely the ocean, atmosphere, land and sea ice. These components are tightly 
connected through large energy fluxes from one component to another over the 
course of a year. These large energy fluxes are mostly driven by the large seasonality 
of solar radiation, which is absent during winter months but prevailing during summer 
due to 24 hours of sunshine per day. During summer, the abundant solar radiation 

Figure 1.2: Map of the average sea ice cover (1980-2010) in March and September. Source: NSIDC 
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causes widespread melt of snow and sea ice, and warming of the upper part of the 
Arctic ocean. During autumn, when solar radiation diminishes, the atmosphere starts 
to cool and becomes colder than the Earth’s surface. This results in an energy flux 
from the Earth’s surface to the atmosphere, yielding a cooling of the upper ocean and 
henceforth a large refreezing of the Arctic ocean and the peripheral seas (Serezze 
and Barry, 2009). Besides the local energy balance, there is also a large transport of 
energy towards the Arctic from lower latitudes. The energy that enters Earth’s climate 
through solar radiation is unevenly distributed over the Earth, with more radiation 
absorbed at lower latitudes due to a higher solar elevation angle. Part of this surplus 
of energy is emitted by the Earth’s surface in the form of longwave radiation towards 
the atmosphere and to space. The remaining surplus of energy in the tropics is 
redistributed by the atmosphere and ocean, through poleward transport of heat and 
moisture. Most of the energy that reaches the Arctic by the ocean is transported 
through the North Atlantic current (Fig. 1.3, label 6), which is the northerly branch of 
the Atlantic meridional overturning circulation (AMOC). This is an ocean current that 
transports warm water originating from the Gulf of Mexico towards western Europe 
and then continuous northward towards the Norwegian and Barents Sea. The inflow 
of water at the Pacific side of the Arctic is colder and less saline than the waters of 
the North Atlantic current (Fig 1.3, label 1).

Figure 1.3: Illustration of the Arctic region and the ocean currents. Blue arrows represent relatively 
cold and fresh currents and red arrows relatively warm and saline currents. The dotted line represent 
the Arctic circle at 66°33’ latitude. (Figure courtesy of Jack Cook, WHOI)
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The energy transport by the atmosphere is mainly through planetary waves (Graversen 
and Burtu, 2016), which are large-scale disturbances of the generally westerly 
circulation of the mid-latitudes. These disturbances bring in heat and moisture to 
the Arctic region, mainly in the winter months as the strength of these disturbances 
is larger when the meridional temperature gradient is large. Another important 
component of the Arctic climate system is the Greenland ice sheet. This vast body 
of ice almost completely covers Greenland, and is up to 3 km thick. Though it is 
also affected by climate change (Khan et al., 2014) and is a very important factor 
concerning sea level rise (Yan et al., 2014), it does not directly affect the predictability 
of the Arctic sea ice and is henceforth not further discussed.

The Arctic climate is thus characterized by the interplay of local radiative processes 
and inflow of energy from the ocean and atmosphere. The Arctic sea ice responds 
strongly to these different forcings. The inflow of warm and saline waters prevent 
the Arctic sea ice cover from spreading further south than ~70oN at the Atlantic side 
of the Arctic, whilst at the Pacific side with the relative cold and less saline inflow 
current the sea ice can expand as far as 50oN. Also, the large seasonality of the solar 
radiation causes the large seasonal cycle in sea ice cover (Fig 1.2). The sea ice however 
is not bound to one location. It is in constant motion as it gets pushed around by 
oceanic and atmospheric circulation and it can travel multiple kilometers per day 
(Kwok et al., 2013). Generally, there are two large wind-driven ocean circulations 
that affect sea ice. Over the Beaufort sea there is a climatological high pressure area 
(Beaufort high). This high pressure, and associated clockwise circulation, sets both 
the ice and ocean in motion through transfer of momentum resulting in the Beaufort 
Gyre (Fig. 1.3, label 3). The second large ocean current is the Transpolar Drift Stream 
(Fig 1.3, label 4), which pushes the ice from the central Arctic towards the Fram Strait 
and Greenland. The sea ice that gets pushed towards Greenland and the Canadian 
Archipelago gets compressed and deforms into ridges, and becomes the thickest ice 
found in the Arctic (~4-10 meters). The ice that gets pushed towards the Fram Strait 
will exit the Arctic region and melt when it reaches the warmer waters of the Atlantic 
ocean.

The Arctic climate as described above illustrates the climatological mean. In other 
words, it is the average climate state over the last decades. At certain times however 
the actual state can strongly deviate from the recent climatological state. Changes 
in the Arctic climate and its sea ice cover are driven by two main components, long 
term climate change and short term natural climate variability. The former is mostly 
driven by changes in the external forcing. This is a forcing that acts on the climate 
system while being outside of the climate system itself. Examples are increased 
greenhouse gases, changes in solar radiation or large volcanic eruptions. Variability 
due to changes in external forcing has typical time scales of multiple decades and 
longer. Short term natural climate variability is caused by the chaotic nature of the 
climate system with typical time scales of days to multiple decades.

Variability on shorter time scales are e.g. a change in strength or direction of the 
Beaufort Gyre and Transpolar Drift Stream through changes in the local atmospheric 
pressure distribution. Variability on monthly to seasonal time scales are generally 
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Figure 1.4: Average monthly Arctic sea ice extent in September from 1979 to 2017.  
Source: NSIDC

driven by larger scale atmospheric pressure distributions or changes in ocean 
circulation. The Arctic region is characterized by multiple processes that give rise to 
natural variability on longer time scales (Boer and Lambert, 2008). Important modes 
of variability in the Arctic region are, among others, the Arctic Oscillation (AO) and the 
Pacific Decadal Oscillation (PDO). The AO index describes the large scale atmospheric
pressure distribution in the Arctic relative to the pressure at lower latitudes. A positive 
index (smaller difference in surface pressure between the Arctic and mid-latitudes), 
indicates a reduced westerly circulation and more warm (cold) air transported to 
(from) the Arctic. A negative index yields a stronger westerly circulation and a more 
isolated Arctic. The AO is therefore an important driver of variability of weather at the 
mid-latitudes and the summer Arctic sea ice variability (Stroeve et al., 2011). The PDO 
describes the main variability of sea surface temperature (SST) in the North Pacific 
Ocean. Though the PDO does not directly affect Arctic sea ice, it does modulate 
the response of the atmosphere to sea ice variability (Screen and Francis, 2016) 
and is therefore also an important mode of climate variability in the Arctic. Another 
important contributor to long term natural variability is the Atlantic meridional 
overturning circulation (AMOC). It describes the ocean heat transport from lower 
latitudes to the Arctic region. It varies over the course of years to decades, and thus 
alters the amount of heat transported towards the Arctic. This effects the location of 
the sea ice edge on the Atlantic side of the Arctic (Bitz et al., 2005) and the surface 
air temperature (Mahajan et al., 2011).
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1.3 The changing Arctic climate

1.3.1 Observed sea ice changes

The decrease of the sea ice in the Arctic is one of the most visible effects of recent 
climate change. Reliable continuous observations of the total sea ice coverage are 
available since 1979, with the advent of satellite observations. These observations 
show a clear trend towards less sea ice (Fig. 1.4), which is stronger during the sea 
ice minimum in September than during the sea ice maximum in March (Figure 1.1b). 
What is further evident in this figure is the large inter-annual variability on top of the 
long-term trend, especially in recent years. Another important variable to indicate the
changes in sea ice is the thickness of the ice. Because the thickness of the ice has 
only been measured by satellites over the last 10 years, we show the age of sea ice 
here (Fig. 1.5), which is strongly related to the thickness (Tschudi et al., 2016), and 
of which a time series is available since 1985. This figure shows that there is a sharp 
drop in the age of the sea ice, and therefore in thickness. This indicates a transition 
from a particularly thick, multi-year ice cover to a thin, seasonal ice cover. This thin 
sea ice is much more susceptible to the harsh Arctic weather.

Figure 1.5: left: Sea ice age for March 2016 and right: the trend of different sea ice age categories 
from 1985 to 2016. 
Source: NSIDC

The large inter-annual variability in sea ice coverage in recent years is thus also partly 
linked to the decrease of the thickness of the sea ice, and the relative increase of the 
fragile one-year ice (Stroeve et al., 2012). Due to these large fluctuations, it is difficult 
to say something about the state of the sea ice on the basis of a single year. Though 
the observational record shows a strong and significant trend (Cohen et al., 2014), 
it is relatively short from a climate perspective, as the observed changes can also be 
caused by natural changes in the climate system. Walsh et al. (2017) identified this 
problem and decided to collect and digitize as much information as possible about 
the sea ice state of the pre-satellite era. They have used, among other things, logs 
of whalers, newspaper articles, plane observations and maps made by the Danish 
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Figure 1.6: Sea ice extent for March and September from 1850 to currently. Excerpt from Walsh et al. 
(2017).

Meteorological Institute. This results in a time series of sea ice from 1850 (Figure 
1.6). Here, despite the higher uncertainty in the pre-1979 time series, we can see that 
there has never been such low coverage and strong decline of sea ice in the past 170 
years (mainly for summer), and that the multi-decadal variability is much smaller than
the inter-annual variability.

These results show that recent changes cannot be explained by natural variability 
alone. This raises the question on the relative importance of natural variability 
compared to changes in external forcing in the observed changes in the Arctic. 
Recent findings indeed point to an important role for natural variability. The PDO, 
which changed from strongly positive in the beginning of the satellite era to negative 
over the course of three decades, can explain part of retreat of sea ice (Screen and
Francis, 2016). Furthermore, Ding et al. (2017) show that trends in summertime 
atmospheric circulation can explain up to 60% of the decline in September sea ice 
from 1979 onwards, where they relate the trend in summertime circulation to natural 
climate variability. Hence, the role of natural variability on the recent decline of Arctic 
sea ice seems as important as the increased external forcing.
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1.3.2 Arctic amplification

In addition to the sharp decline of sea ice, the temperature in the Arctic region also 
increases much faster than elsewhere in the world, and this increase is projected 
to strengthen (Stroeve et al., 2012). This process is called Arctic amplification. The 
temperature increases throughout the world due to the increase in greenhouse gases. 
These gases absorb longwave radiation with the result that less longwave radiation 
can escape to space. This leads to a radiative imbalance at the top of the atmosphere 
(TOA) between the incoming shortwave radiation and the outgoing longwave 
radiation. The surplus of energy causes an increase in air temperature, which will 
continue until the atmospheric temperature, and thus outgoing longwave radiation, 
matches the incoming solar radiation. This is the so-called Planck feedback. Though 
this feedback mechanism is active throughout the world, it is more efficient at higher 
temperatures (i.e. lower latitudes), because the relation between temperature and 
longwave radiation is highly non-linear. As a result, to overcome a TOA radiation 
imbalance the Arctic has to warm up more than the Tropical region. Another 
feedback mechanism is the well-known albedo (reflectivity of the earth’s surface) 
feedback. Higher temperatures results in less sea ice or snow (lower albedo), which 
reflects less solar radiation, yielding a temperature increase, with subsequently more 
sea ice melt and even higher temperatures. Model studies indeed show that this 
makes a significant contribution to the Arctic warming (e.g. Pithan and Mauritsen, 
2014). Another important mechanism is the supply of warm and humid air from the  
mid-latitudes through breaking planetary waves. This mild and humid air mass 
replaces the typical cold and clear Arctic air mass, resulting in higher temperatures, 
more clouds and less sea ice. Recent examples of this are December 2015, with 
temperatures above the freezing point (Figure 1.7), and in November 2016 until 
January 2017, where it was regularly 20 degrees warmer than normal in a large part 
of the Arctic (Graham et al., 2017). The frequency of these intrusions is increasing 
and can explain part of the Arctic warming (Woods and Caballaro, 2016; Graham et 
al., 2017).

A feature of both the albedo feedback and the intrusions of hot and humid air is that 
the warming takes place in the lower part of the troposphere. Where the additional 
heat at lower latitudes is mixed well over the troposphere by convection, the Arctic is 
characterized by a stable lower atmosphere that largely inhibits convection, and thus 
the vertical mixing of this extra heat over the troposphere. The heat is thus ‘trapped’ 
in the lower part of the troposphere, which causes the Arctic warming to be confined 
to the lower part of the troposphere. An additional effect of this is that the extra 
energy cannot escape easily to space as longwave radiation. The emitted longwave 
radiation from the lower atmosphere is partly absorbed by the colder air above 
and re-emitted again, but because the air is colder it emits less longwave radiation 
than it has absorbed. Hence, the TOA outgoing longwave radiation is less if the 
warming is mainly confined to the lower atmosphere. This effect is called the lapse 
rate feedback, and is, together with the surface albedo feedback, the main feedback 
mechanism behind the Arctic amplification (Pithan and Mauritsen, 2014). The recent 
sharp decline of sea ice and the rise in temperature are therefore mainly the result 
of increasing greenhouse gases, with different feedback mechanisms strengthening 
the Arctic amplification.
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Figure 1.7: Temperature anomaly on 31 December 2015.  
Source: www.climatereanalysis.org
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1.3.3 The Arctic climate towards the future: Climate model projections

One of the most pressing questions in current climate research is how the Arctic 
sea ice will evolve towards the future. A tool often used to study Earth’s climate 
and its sensitivity to an increase of greenhouse gases are general circulation models 
(GCM’s), also often referred to as ‘climate models’ in this thesis.

These climate models can be used to simulate previous, current and future climate 
states, provided that the external forcing is known. For future climate conditions 
this is difficult, as it is unclear how greenhouse gas emissions will evolve over the 
21st century. Therefore, multiple scenarios, labeled Representative Concentration 
Pathways (RCP’s), were developed for 21st century greenhouse gas concentrations 
ranging from strong climate mitigation (RCP2.6) to ‘business as usual’ (RCP8.5). The 
2.6 and 8.5 refer to an increase of Wm-2 equivalent external forcing at 2100 relative 
to pre-industrial (<1850) values (Moss et al., 2010). In order to provide information 
on the future development of Earths’ climate, large Coupled Model Intercomparison 
Project were started (CMIP3 and CMIP5). Here, ‘coupled’ refers to a coupling in the 
model between the ocean, atmosphere, land surface and sea ice. A large suit of 
climate models performed a coordinated set of simulations, in which the models are 
run with the same external forcing. Such an experimental setup provides climate 
projections for the future, associated uncertainties of the projections measured by 
the multi-model spread, and an opportunity for studying the intermodel differences 
in order to understand and improve the climate models. Figure 1.8 shows the total 
Arctic sea ice for the climate projections of Arctic sea ice for multiple scenario’s, 
based on the CMIP5 climate models. These results show that, independent of the 
scenario, the Arctic sea ice is projected to decrease rapidly over the first half of 
the 21st century. The first predicted occurrence of an ice free summer ranges from 
around 2050 to 2100 for the RCP4.5 and RCP8.5 scenario’s. However, many of these 
climate models seem to underestimate the current decline in sea ice (Figure 1.8, black 
line). Logically, the time for the first ice-free summer is then also underestimated. 
When corrected for this (Massonet et al., 2012), this time is somewhere between 
2040 and 2060.

1.4 Impacts of Arctic climate change

The changing Arctic climate has many local and non-local effects. In this section we 
will give a brief overview of some of the effects for the climate system, ecology and 
economy.

1.4.1 Atmospheric and oceanic impacts

As previously mentioned, the Arctic warming is most profound in the lower part of 
the atmosphere. When air warms up it expands, causing the column of air to become 
thicker thus increasing the pressure aloft. This can lower the meridional pressure 
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gradient between the mid-latitudes and the Arctic. The strength of this pressure 
gradient largely determines the weather in the Arctic and the mid-latitudes. A higher 
pressure gradient can result in a stronger westerly (zonal) circulation that isolates the 
Arctic region, whilst a lower pressure gradient yields a weaker zonal circulation and 
an increase of the north-south (meridional) component of the wind. The latter gives 
more transport of heat and moisture towards the Arctic through breaking planetary 
waves, whilst also yielding more persistent and extreme weather in the midlatitudes. 
There is indeed evidence pointing to increased zonal wind speeds in recent times 
(e.g. Francis and Vavrus, 2012). However, other research shows that this relation is 
very sensitive to where and how the activity of breaking planetary waves is computed 
(e.g. Screen and Simmons, 2013; Barnes, 2013), and that the signal to noise ratio for 
this relation is still too small in order to draw clear conclusions (Hopsch et al., 2012). 
Hence, the impact of reduced arctic sea ice on mid-latitude weather is still a very 
active research area. Climate projections for the Arctic show increased precipitation 
and river-runoff in the Arctic region (Bintanja and Selten, 2014). This results in more 
fresh water in the upper Arctic ocean and peripheral seas. This cold and less saline 
water can prevent the deep-water formation process of the AMOC, which can reduce 
the strength AMOC (e.g. Jackson and Wood, 2017). This can reduce northward heat 
transfer, which might counter the warming to some extent, but can cause more 
warming in other parts of the world (ACIA, 2004). Also, the carbon uptake of the 
ocean can decrease due to a decreasing AMOC, resulting in higher carbon dioxide 
levels in the atmosphere (Fontela et al. 2016).

1.4.2 Ecological impacts

The main region of the Arctic ice pack with biological activity is the marginal ice 
zone. It represents the transition between open water and sea ice, and is defined as 
the region which is close enough to the open ocean to be affected by its presence. 
The region is characterized by enhanced mixing of the upper ocean due to wave 
activity and sea ice melting. The Arctic warming and associated retreat of sea ice can 
lead to a large loss of habitat for biological activity such as sea ice algae and sub-ice 
phytoplankton (Post el al., 2013). Both are important sources of the total primary 
production in the Arctic and thus the basis of the food chain in the Arctic (Gosselin et 
al., 1997). This has consequences for higher consumers, such as cod (Ji et al., 2013), 
seabirds and marine mammals (Moody et al., 2012). Many species also depend on 
the sea ice for foraging, resting and reproduction. For example, the decline of sea 
ice directly affects the body condition and abundance of polar bears (Stirling and 
Derocher, 2012), the habitat and reproduction of ringed seals (Hezel et al., 2012) 
and the habitat of the Pacific walrus (Fishbach et al., 2009). The Arctic is also already 
becoming more accessible for species that normally live further south, whilst natural 
boundaries such as ice or ocean, or a lack of sea ice, prevent Arctic species from 
moving further north. This results in increased conflicts between e.g. the Arctic fox 
with the red fox, or hybridization between e.g. the polar bear with the grizzly bear 
(Kelly et al., 2010). The warmer Arctic also affects vegetation, with an earlier start of 
the plant growing season, which mismatches with the caribou arrival that normally 
feed on these plants (Kerby and Post, 2013).
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These example are only a fraction of the widespread impact of the changing 
Arctic on its unique Ecology (Post et al., 2013). Projected changes in the climate 
will undoubtedly further impact the ecology, though it is difficult to predict how 
the ecology will change with it (Gilg et al., 2011, Lameris et al., 2017). The rapid 
climate change observed in the Arctic is already inducing large structural changes in 
ecosystems, e.g. with northward migration of fish (cod) (Fossheim et al., 2015).

1.4.3 Economic impacts

The retreating sea ice also offers potential for economic development. The Arctic 
region offers a wealth of natural resources, such as oil and gas fields and numerous 
minerals, but also biological resources such as salmon, cod and pollock. These 
are becoming better accessible with the retreat of sea ice, which sparks economic 
activities in the region, and increases the amount of destination traffic. It is estimated 
that up to 30% of the world’s undiscovered natural gas and 13% of its undiscovered 
oil are located in the Arctic (Gautier et al., 2009). The fabled northerly passages are
also becoming more frequently ice-free, which results in more trans-polar shipping, 
mainly through the Northern sea route (NSR) and to a lesser extent the North Westerly 
Passage (NWP). The northerly passages have the potential to significantly reduce the 
length and travel time between western Europe and Asia, which can substantially 
lower the costs (Liu and Kronbak, 2010). The number of transits through the Arctic 
region steadily increases (Eguiluz et al., 2016), though the numbers are still vastly 
lower compared to the Suez canal and the Panama canal. Projections of Arctic sea ice 
of the 21st century show a steady increase of the shipping-season length (Melia et al.,
2016).

Though there are a lot of economic opportunities, there are also economic threats 
associated with Arctic warming. The thawing of the Arctic permafrost in the Arctic 
region will likely release vast amounts of methane, either steadily over 50 years or 
suddenly (Shakhova et al., 2010). This enhanced methane release can significantly 
amplify global warming which has an estimated cost of 60 trillion dollars (Whiteman 
et al., 2013). Hence, the projected costs of Arctic warming far out way the benefits.
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1.5 Predictability of Weather and Climate

An important part of this thesis is assessing the predictability of the Arctic climate 
system on multiple time and length scales. Therefore in this section we will introduce 
weather to climate predictions and the models used for these predictions in more 
detail.

1.5.1 Weather predictions

A main goal of meteorology is to predict how the weather will develop towards the 
future. Though weather predictions have already been around since the Babylonians, 
the basis of the modern weather predictions was laid by Abbe (Abbe, 1901) and 
Bjerknes (Bjerknes, 1904) in the beginning of the 20th century. They both recognized 
that the laws of physics could be used to describe atmospheric processes (i.e. 
weather). Hence, if the initial state of the atmosphere is known, one can use the laws 
of physics to predict how the weather will develop. With the advent of the computer
mid 20th century it became possible to solve these equations numerically, and 
produce the first numerical weather predictions (NWP). The problem at that time 
however was, without sufficient computer resources, that producing the forecast 
took longer than the time for which the forecast was valid. With the more powerful 
(super)computers from the 1970’s onwards, skillful weather predictions were created 
(Lynch, 2008), though still having a limited level of detail in the beginning. Over 
the recent decades the level of detail of the forecasts has increased strongly due to 
increasing computer power, better weather models and a better estimate of the initial 
state, leading to steady increase of forecast quality (Bauer et al., 2015).

The quality of the weather predictions thus depends on how well the initial state 
matches the real initial state, and the quality of the weather model. The former 
depends on the quantity and the quality of the observations, and on how all that 
data is assimilated in the weather model. The latter depends on many aspects of the 
weather model, such as the horizontal and vertical resolution of the model and the 
quality of the parameterizations. Note however, that even with a perfect initial state
and a perfect weather model the predictability of weather is still limited. This is due 
to the chaotic nature of the climate system. A small error in e.g. the initial state 
or due to numerical and physical approximations can lead to large errors at later 
times because of the non-linearity of the forecast equations. The predictability of our 
weather is henceforth inherently limited. Edward Lorenz (Lorenz, 1963) found that 
the rate at which these errors grow is state dependent, i.e. sometimes these errors 
grow rapidly (unpredictable weather) and sometimes they grow slowly (predictable 
weather). This error growth can be quantified by starting multiple forecasts from 
slightly perturbed initial conditions that reflect the uncertainty of the observed initial 
state, i.e. ensemble forecasting. In this way, we not only acquire an estimate of future 
weather, but also the uncertainties or probabilities associated with specific forecasts 
(figure 1.8).
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The chaotic atmosphere is thus only limited predictable, hence the follow-up 
question is: how far ahead can we predict the weather? Currently, the large scale 
atmospheric flow, more specifically the 500 hPa geopotential height, is on average 
skillfully predictable up to 10 days ahead (Bauer et al., 2015). The word ‘skillfully’ 
here represents that it matches the observations by at least 60%, measured as an 
anomaly correlation.

1.5.2 Seasonal to decadal predictions

So how is it possible that we can make seasonal predictions, or even up to decadal 
time scales, whilst the atmospheric flow is only predictable for a short time? The 
answer lies in the fact that there are multiple sources that provide predictability. 
The large-scale atmospheric flow is the main source of predictability at shorter time-
scales. Predictability at longer times scales is mainly based on slow modes of climate 
variability, i.e. changes in weather that can last for weeks or months. One of the most 
well-known examples herein is the El Nino Southern Oscillation (ENSO) (Cane and 
Zebiak, 1985), which is a fluctuation in sea surface temperature and air pressure in 
the equatorial Pacific Ocean which affects weather at large parts of our planet (Wallace 
et al., 1998). An important aspect in many of these mechanisms is the ocean, as the 
variability in the ocean generally occurs on much longer time scales.

Weather models consist mostly of an atmospheric model and as such cannot simulate 
the mechanisms that provide predictability at longer time scales. In order to adequately 
simulate these mechanisms a model is needed that describes the processes in, and 
the interactions between, the ocean, land, atmosphere and sea ice. These models 
are called general (or global) circulation models (GCM’s). Because of the increased 
complexity of these models due to the added ocean and sea ice components and 
the generally longer simulations performed with these models, they tend to have a 
coarser spatial resolution (less detail) compared to the weather models.

Figure 1.8: Schematic diagram of an ensemble forecast used to estimate the probability of 
precipitation over the UK. Excerpt from Bauer et al. (2015).
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If these GCM’s are initialized with the observed state and can accurately simulate the
mechanisms that provide predictability, there is a strong potential for seasonal to 
decadal predictions (Smith et al., 2007). The potential is however strongly related to 
the specific processes in the regional climates. In the Arctic region there are multiple 
processes that give rise to long term climate variability (see section 1.2), thus 
providing a basis for seasonal-to-decadal predictions (Boer et al., 2004; Seitola and 
Jarvinen, 2014) . Important sources of seasonal predictability are e.g. persistence of 
sea ice (volume) anomalies and sea surface temperature (SST) anomalies (Blanchard-
Wrigglesworth et al. 2015). Also, the AO provides some predictability (Stockdale et al., 
2015) on seasonal time scales. Predictability on longer time scales can be achieved 
by e.g. variability in the PDO (Screen and Francis, 2016) or the AMOC. Initialized 
climate model forecasts from Yeager et al. (2015) show that the ice cover is likely 
to melt less rapidly over the next 10 years due to a slight decrease in heat supply 
through the AMOC, which could partly offset the negative trend.

The skill of these forecasts is however limited, as the forecasts are hampered by 
model error and observational uncertainty, specifically for the Arctic region. Forecast 
biases can grow more strongly in these models because of its fully coupled system 
and relatively long simulations (Hawkins and Sutton, 2007). Hence, after initialisation, 
GCM’s tend to drift back towards their preferred biased state (Meehl et al., 2009). 
Therefore all forecasts need to undergo bias correction. The quality of the forecasts 
thus strongly depends on the quality of the bias-correction (Van Olderborgh et 
al., 2012, Fuckar et al., 2015). As a consequence, the full potential of Arctic sea 
ice forecasts is still far from reached (Guemas et al., 2014). Because of the large 
potential, but also its drawbacks, this is still a very active field of research (Meehl et 
al., 2009; 2012). This is studied in more detail in chapter 5.

1.5.3 Climate prediction

Though GCM’s are currently also used for seasonal-to-decadal predictions, it is more 
commonly used to study processes in our climate and its response to increased 
greenhouse gases as described in section 1.3.3. In contrast to weather and seasonal 
prediction, where their skill is inherently limited due to the chaotic nature of our 
climate system, this is only partly true for climate modeling. Generally, in climate 
simulations we are not interested in the exact timing of a certain weather event, but 
more in the climatological distribution of certain meteorological variables, and how 
this changes under different external forcings.
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Figure 1.9: Projected sea ice evolution in the 20st and 21st century for different scenarios. The dark 
lines represent the CMIP5 multi-model mean, and the bandwidth around the line represent one standard 
deviation multi-model uncertainty. Excerpt from Stroeve et al. (2012).

Climate simulations are not initialized from an observed climate state, hence for any
moment in time the observed and simulated climates can be in different phases 
of large scale climate variability. When comparing observations with climate model 
results this must be taken into account. Climate models are generally run in an 
ensemble mode, where multiple members are started from slightly different initial 
states. The ensemble mean of all these members then represents the average model 
climate and the ensemble spread represents the size of the internal climate variability. 
Because the observed climate state is only one possible outcome of many it can, for
years or even longer, reverse or strengthen observed trends associated with changes 
in external forcing. A possible example of this can be seen in figure 1.9, where the 
observations of September Arctic sea ice show a much stronger trend than simulated 
by the climate models. This could either be caused by an underestimation of the 
trend by the climate models, or it could be that the observed recent trend is partly 
caused by natural variability. Initially this bias was attributed to a too low external 
forcing in the climate models (Stroeve et al., 2007), or because the models fail to 
reproduce complex dynamical feedbacks (Rampal et al., 2011). However, as already 
mentioned in section 1.3.1, recent findings (e.g. Ding et al., 2017; Screen and Francis, 
2016) point to an important role of natural variability. This obviously has important 
ramifications for the trust in the 21st century climate projections. Natural climate 
variability is thus also an important source of uncertainty in climate projections.
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Another important source of uncertainty is that not all climate models are created 
equal. This translates into large differences in how well models can reconstruct the 
observed climate, and even larger difference between the models’ response to a 
change in external forcing (i.e. climate sensitivity). This uncertainty is be quantified 
by the multi-model spread, as e.g. depicted in figure 1.9 by the bandwidth around the 
multi-model mean sea ice. This source of uncertainty for Arctic climate projections 
will be discussed in more detail in chapter 4. Further, as already discussed in section 
1.3.3, the future greenhouse gas forcing is uncertain as it depends on complex carbon 
cycle feedbacks (Friedlingstein et al., 2006) and on how mankind can limit further 
emission of greenhouse gases. The latter is included in current climate projections 
through the different scenario’s, as illustrated in figure 1.9 for the Arctic sea ice 
development over the 21st century under different RCP’s. The former however is not 
yet universally included as most models lack an interactive carbon cycle, which can 
lead to an underestimation of the uncertainty in climate projections (Bodman et al., 
2016).

Henceforth, the predictability of our climate is limited due to a lack of knowledge of our 
climate system, computational restraints preventing more detail in the simulations, 
uncertaintties in the observed state and uncertainties in changes in external forcings 
such as future greenhouse gas concentrations and volcano eruptions.
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1.6 Aims and outline

The primary aim of this thesis is to assess the predictability of the Arctic climate, with 
an emphasis on its sea ice cover, on timescales ranging from monthly to centennial. 
Predictability of the Arctic sea ice on scales from monthly to annual is only possible 
if there are mechanisms that provide predictability on those time scales, and if these 
are present in the models used for these predictions. This poses the questions:
• What are the physical mechanisms in current climate models that can provide 

predictability on seasonal to yearly time scales?

To be able to answer this question we performed a process-based evaluation of the 
Arctic sea ice characteristics in chapter 2, by looking at the monthly-to-annual Arctic 
variability from an energy balance perspective. Here we used data from multiple 
models from the CMIP5 dataset, and studied lead-lag relations between the different 
components of the energy balance and the Arctic sea ice properties, both locally 
and averaged over the Arctic region. We also identified the physical processes that 
provide the inherent predictability found in Arctic region.

The Arctic climate is a complex dynamical system with multiple feedback mechanisms 
active over different parts of the year (e.g. Blanchard-Wrigglesworth et al., 2011; 
Pithan et al., 2014). Therefore, the impact of a radiative forcing can also differ 
throughout the season. Furthermore, the projected climate response has a distinct 
seasonal cycle with the strongest warming in winter months (Bintanja and van der 
Linden, 2013). This poses the question:
• How sensitive is the Arctic climate to the seasonality of a radiative forcing?

We test this in chapter 3 through applying an artificial longwave radiative forcing 
for each season separately in the EC-Earth climate model (Hazeleger et al., 2010; 
2012), and then study the response. This novel approach leads to new insights in the 
relevant processes at play and the importance of spring radiative forcing.

As demonstrated in figure 7, the intermodel spread in climate projections of Arctic 
sea ice is very large. The projected first occurrence of an ice-free Arctic spans almost 
the complete 21st century (Stroeve et al., 2012). A clear understanding of the sources 
behind the large uncertainty is currently lacking. Motivated by the results from 
chapter 3, which demonstrates the important role of downwelling longwave radiation 
(DLR) in spring, raised the question:
• What is the role of downwelling longwave radiation in the intermodel spread in 

future climate projections of Arctic climate change?

We answer this question in chapter 4, through an intermodel comparison study using 
the CMIP5 climate model dataset. Here we study whether the intermodel relation 
between DLR characteristics in the pre-industrial climate and the Arctic climate 
response to increased greenhouse gases and study the mechanisms that explain this 
intermodel relation.
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In the fifth chapter we studied processes which provide potential predictability of 
Arctic sea ice. This raises the question as how this potential predictability translates 
to real predictability of the Arctic sea ice, hence the question:
• How well can a climate model re-forecast the Arctic sea ice on seasonal to yearly 

timescales?

We test this in chapter 5 on a set of yearly predictions of Arctic sea ice. The forecast 
consist of a five-member ensemble, re-forecasts from 1981 to 2012 for 3 different start 
months, using the fully coupled EC-Earth GCM which are initialized from estimates 
of observed data. We analyze pan-Arctic and regional skill of these forecasts, and 
use different bias-correction and ensemble calibration techniques to test how they 
improve the forecasts.
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Journal of Climate, 2015

Chapter 2
Arctic Energy Budget in Relation to Sea Ice Variability on

Monthly-to-Annual Time Scales
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Abstract

The large decrease in Arctic sea ice in recent years has triggered a strong interest 
in Arctic sea ice pre-dictions on seasonal-to-decadal time scales. Hence, it is 
important to understand physical processes that provide enhanced predictability 
beyond persistence of sea ice anomalies. This study analyzes the natural 
variability of Arctic sea ice from an energy budget perspective, using 15 climate 
models from phase 5 of CMIP (CMIP5), and compares these results to reanalysis
data. The authors quantify the persistence of sea ice anomalies and the cross 
correlation with the surface and top-of-atmosphere energy budget components. 
The Arctic energy balance components primarily indicate the important role of 
the seasonal ice–albedo feedback, through which sea ice anomalies in the melt 
season reemerge in the growth season. This is a robust anomaly reemergence
mechanism among all 15 climate models. The role of the ocean lies mainly in 
storing heat content anomalies in spring and releasing them in autumn. Ocean 
heat flux variations play only a minor role. Confirming a previous (observational) 
study, the authors demonstrate that there is no direct atmospheric response of 
clouds to spring sea ice anomalies, but a delayed response is evident in autumn. 
Hence, there is no cloud–ice feedback in late spring and summer, but there is 
a cloud–ice feedback in autumn, which strengthens the ice–albedo feedback. 
Anomalies in insolation are positively correlated with sea ice variability. This is 
primarily a result of reduced multiple reflection of insolation due to an albedo 
decrease. This effect counteracts the ice-albedo effect up to 50%. ERA-Interim and 
Ocean Reanalysis System 4 (ORAS4) confirm the main findings from the climate
models.
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2.1 Introduction

The Arctic sea ice has shown a rapid decrease over the last few decades. An ice-free 
Arctic summer is already likely within the first half of this century (Overland and 
Wang, 2013). With the sea ice in the Arctic region retreating, the economic activities 
in the region are expanding and diversifying. More shipping lanes are becoming ice 
free, and natural resources will become better accessible (Stephenson et al., 2013). 
These increasing economic activities offer opportunities, but also threats, to the 
region. To be able to reduce the stakes at play and improve the operational planning 
for offshore activities in the Arctic region, improvements on forecasts of Arctic sea 
ice on seasonal-tomultiyear scales are needed.

Arctic sea ice forecasts for seasonal-to-annual timescales are often based on statistical
methods (e.g. Lindsay et al., 2008; Kapsch et al., 2013). With the fast-changing Arctic 
climate, however, the historical records on which the statistical relations are based 
are not necessarily valid for the current climate state. Another method currently 
employed is the use of initialized simulations with fully coupled (atmosphere and 
ocean) climate models (e.g. Sigmond et al., 2013; Chevallieret al., 2013; Wang et al., 
2013). However, correct initializations are still hampered by a lack of robust sea ice–
thickness observations and by model error (Holtslag et al., 2013). These simulations 
show increased forecast skill compared to anomaly persistence models (Sigmond et 
al., 2013). It is noteworthy, however, that even though the dynamical model forecast 
skill is higher than the relative simple anomaly persistence model, an important 
source of the dynamical forecast skill on seasonal-to-annual time scales originates 
from persistence of anomalies (Sigmond et al., 2013). It is therefore important to 
understand the physical mechanisms behind these processes.

Multiple studies (e.g., Bitz et al., 2005; Holland et al., 2011; Blanchard-Wrigglesworth 
et al., 2011, hereafter BW11; Chevallier and Salas-Mélia 2012) have investigated the 
inherent predictability of Arctic sea ice. These studies show a typical decorrelation 
time scale of 2–5 months, with higher persistence during summer and winter and 
lower persistence in between. Furthermore, a reemergence of sea ice anomalies is 
often observed in the ice-growth season that originates from the ice-melt season. The 
original anomaly in spring yields a (persistent) sea surface temperature (SST) anomaly 
because of reduced or enhanced cumulative heating, which again results in a sea ice
anomaly in the growth season (BW11; Day et al., 2014, hereafter DA14). Another 
mechanism that offers predictability is the maintenance of the sea ice edge in winter 
because of the convergence of heat transported by ocean currents (Bitz et al., 2005). 
The analysis of Bitz et al. (2005) suggests that absorption of shortwave radiation 
mainly determines the rate of ice melting in the marginal ice zone but that the ice edge 
is primarily determined by the strength and region of ocean heat flux convergence. 

All these processes can lead to enhanced predictability on seasonal-to-annual time 
scales and can bridge the gap between short-term predictability originating from 
correct initialization and longer term predictability originating from external forcing 
(BW11; van Oldenborgh et al., 2012). In this study, we aim for a better understanding 
of the mechanisms that offer predictability on seasonal-to-annual time scales. 
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Therefore,we perform a process-based evaluation of the Arctic sea ice characteristics 
by looking at the monthly-to-annual Arctic variability from an energy balance 
perspective. Herein we study lead–lag relations between the different components 
of the energy balance and the Arctic sea ice properties, both locally and averaged 
over the Arctic region, and identify the physical processes that provide the inherent 
predictability found in Arctic sea ice. In this way, we also test the robustness of the 
findings of BW11 and DA14 by extending their analysis with a CMIP5 multi-model 
analysis.

Table 1.1: List of selected CMIP5 climate models. The models with an asterisk are not included in 
the calculations of the cloud radiative forcing because clear-sky radiation components were not 
available.

CMIP5 models

1 ACCESS1.0 9 MIROC-ESM

2 ACCESS1.3 10 MIROC-ESM-CHEM

3 CMCC-CMS* 11 MPI-ESM-LR

4 CNRM-CM5 12 MRI-CGCM3

5 CSIRO Mk3.6.0* 13 NorESM1-M

6 GFDL-ESM2G 14 NorESM1-ME

7 GFDL-E2-R 15 BCC_CSM1.1

8 GISS-E2-H/R-CC

2.2 Data and Methods

Our analysis is based on a multi-model ensemble of atmosphere–ocean general 
circulation models (AOGCMs) and Earth system models (ESMs; see Table 1), which 
are all part of phase 5 of the Coupled Model Inter-comparison Project (CMIP5) dataset 
(Taylor et al., 2012). The selection criteria were data availability, in particular ocean 
data for constructing the energy balance. From this dataset we selected the control 
simulations, which have fixed atmospheric constituents equal to the values from the 
pre-industrial era (1850). The control simulations allow us to focus on the role of 
natural variability in Arctic sea ice, as it lacks a long-term trend in the data because 
of changing external forcing. It must be noted here that the Arctic sea ice in the pre-
industrial simulations might not be representative for the current sea ice conditions. 
The thinning of the Arctic sea ice over the last decades (Serreze et al., 2007) has 
led to an increase of relatively thin first-year ice, which is much more susceptible to 
(chaotic) weather forcings, resulting in reduced persistence and thus predictability 
(Holland et al., 2011). Therefore, we will also perform part of the analysis with 
representative concentration pathway 4.5 (RCP4.5) climate simulations, in which the 
radiative forcing increases with 4.5 W m-2 in 2100 (relative to pre-industrial forcing), 
to see if some of the findings presented here are also valid in the lower sea ice area 
(SIA) regimes. From the CMIP5 monthly dataset we select only the Arctic region, 
here defined as north of 65°N, and 200 years of simulation time for each model. 
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This latitude does not cover the complete Arctic region, but it allows us to more 
accurately close the energy balance over a region. Figure 1.1 illustrates the different 
components of the energy balance that are computed. We focus on both atmospheric 
and oceanic components. The atmospheric energy balance can be formulated by:

        (2.1)

where FTOA represents the net radiation at the top of the atmosphere (TOA), F65N–A 
is the moist static en- ergy (MSE) flux across 65oN from the surface to the TOA, 
F

SURFACE
 is the sum of net radiation and turbulent fluxes at the surface, and dMSE/dt is 

the change in moist static energy content over time. The latter is calculated by:

        (2.2)

where g is the gravitational acceleration, psfc is the surface pressure, cp is the 
specific heat for air at constant pressure, T is the temperature in kelvin, L is the latent 
heat of evaporation, q is the specific humidity, and Fs is the surface geopotential. 
By subtracting the values of two subsequent months and dividing by the time step 
(1 month) we determine the change of MSE over time. The energy flux at 65oN is 
assumed to be the residual of the other terms in Eq. (1). The oceanic energy balance
can be approximated in a similar way:

        (2.3)

where F
65N–O

 is the meridional ocean heat flux at 65oN, FSURFACE is the heat flux into 
the ocean from the surface, and dQ/dt is the change in ocean heat content (OHC) 
over time, which is calculated by

        (2.4)

where r is the density, c
p
 the specific heat of water, T the temperature of the ocean 

in kelvin, and z seabed and z
sfc

 are respectively the height of the seabed and of the 
ocean surface. Again, F

65N–O
 is the residual of the other terms in Eq. (2.3).

dMSE / dt = FTOA + F65N - A + F SURFACE

MSE = 1/g             (c p T + Lq + ф5 )dx dy dp
0    65    0

psfc   90  360

Q=                pcpT dx dy dz
zsfc    65    0

zseabed 90  360

dQ/dt= F 65N-0  + F SURFACE
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We analyze the relation of the different components of the atmospheric and ocean 
energy balance with the (lagged) Arctic sea ice, both locally and averaged over 
the Arctic region. The anomalies for the statistical calculations are computed by 
1) removing a linear trend to correct for any model drift, 2) removing the average 
seasonal cycle, and 3) subtracting an 11-yr running mean. This last step allows for a 
better evaluation of the seasonal-to-annual predictability, as otherwise the signal is 
dominated by low- frequency climate variability, as demonstrated by DA14. Note that 
the latter is not the focus of this analysis. The linear trend and 11-yr running mean 
were computed and subtracted for the 12 months individually, to avoid introducing 
an artificial seasonal signal when the anomalies are not evenly distributed over the 
season. Model results will be compared to observational and reanalysis products. 
For Arctic sea ice observations we use the Bootstrap sea ice concentrations from 
NSIDC (Comiso, 2000). The reanalysis products are ERA-Interim (Dee et al., 2011) 
and Ocean Reanalysis System 4 (ORAS4; Balmaseda et al., 2013). These reanalysis 
products should be used carefully in data-sparse regions such as the Arctic. Lindsay 
et al. (2014) evaluated seven different reanalysis products that cover the Arctic, and 
ERA-Interim was one of the three reanalysis products that stood out as being more 
consistent with observations. Zygmuntowska et al. (2012) did however find a strong 
dry bias in summer. From ORAS4 we do not use the first two decades, as these 
have large uncertainties (Balmaseda et al., 2013). For the comparison we use all five 
ensemble members of ORAS4 but present only the ensemble mean. For ERA-Interim, 

Figure 2.1: Conceptual view of Arctic energy balance 
components. The H indicates the sensible heat flux and the 
term LvE is the latent heat flux. We refer to section 2.2 for 
the definition of the remaining terms/variables.
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ORAS4, and NSIDC Arctic sea ice observations we use the years 1979–2013. The 
(lagged) relations are quantified by calculating the correlation coefficient between 
different physical quantities. The multi-model mean is computed by combining the 
individual correlation scores through Fisher’s z transformation. The associated p 
values are combined using Fisher’s combined probability test. For the model results 
and the observations, significance levels of 99% and 95%, respectively, were chosen. 
Note that, because of the large amount of data (i.e., a large sample size), correlation 
scores of lower than 0.1 are already significant. The average decorrelation time scale 
per month, here defined as the e-folding time scale of SIA, was calculated by fitting 
an exponential decaying function to the first months where the correlation coefficient 
is higher than 1/e. The climate models, NSIDC observations, and reanalyses from 
ERA-Interim and ORAS4 all undergo the same filtering procedure. The total Arctic 
sea ice can be quantified by the total extent, area, and volume. Extent is defined as 
the sum of gridcell areas with more than 15% sea ice coverage, and area as the sum 
of the sea ice–covered part of the grid cells. In this research we will focus on the sea 
ice area instead of the sea ice extent, as the area is a more relevant variable from an 
energetic and end-user viewpoint. Additionally, BW11 and DA14 found comparable 
results in lead–lag relations between sea ice area and ex- tent. Sea ice volume is also 
an important variable, as shown by Chevallier and Salas-Mélia (2012), but mainly 
as a predictor for sea ice area anomalies. A first analysis revealed that the Arctic 
integrated F

65N–A
, dMSE/dt, and the turbulent surface fluxes showed no clear relation 

with sea ice variability. Therefore, we have excluded these results from section 3.
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2.3 Results

In this section we present the lagged correlation of sea ice and the cross correlation 
between energy balance components and lagged sea ice.

2.3.1 Persistence

First we will follow the analysis of BW11 and determine the lagged correlation of sea 
ice to investigate the decorrelation time scale and possible reemergence of anomalies 
in sea ice. Figure 2.2a shows the multi-model mean lagged correlation of sea ice. 
From this figure we can identify some distinct patterns, which we will go through one 
by one. First, a typical decorrelation time scale of 2–5 months is evident (indicated in 
figure 2.2a by a 1), with the higher values in late winter and late summer and lower 
values in spring and autumn. Second, a re- emergence limb is visible (indicated by a 
2) during autumn, which is related to SST anomalies originating from SIA anomalies 
in the melt season and its prolonged/ shortened shortwave cumulative heating (i.e. a 
sea ice– albedo effect). Hence, we can identify pairs of months in the reemergence of 
anomalies coupled through the location of the sea ice edge (May and December, June 
and November, etc.) (BW11). Furthermore, a relative weak winter-to-winter (January–
March) reemergence is visible (indicated by a 3). Bitz el al. (2005) relate this winter-
to-winter reemergence to regions of ocean heat flux convergence anomalies, which 
determine the winter sea ice edge. Because of the relatively long time scales of these 
processes, this offers a winter-to-winter predictability. From this figure, however, it 
is difficult to isolate the winter-to-winter reemergence from the sea ice–albedo effect.
Last, a weak growth-to-melt reemergence is found (indicated by a 4), although this 
is mainly visible as enhanced persistence. BW11 relate this reemergence to sea ice–
thickness anomalies, which originate from a later (or earlier) freeze up resulting in 
less time for the ice to grow thicker. The thinner ice will become ice free earlier, 
which results in a reemergence of the original SIA anomaly. Note that the enhanced 
persistence in winter and summer is mostly due to these reemergence mechanisms.

To illustrate that there is added information beyond simple persistence of anomalies, 
figure 2.2b shows a simple persistence model (exponential decay) based on the 
decorrelation time scales found in figure 2.2a. Especially at longer time scales there 
is added information, mainly because of the reemergence mechanisms.

The lagged correlation patterns found in figure 2.2a are comparable to those found by 
BW11 and DA14. Note, however, that the low-frequency climate variability is removed 
by subtracting an 11-yr running mean, which makes a direct comparison between 
their figures and figure 2.2a difficult. BW11 and DA14 also found a stronger winter-
to-winter and summer-to-summer reemergence of SIA anomalies, which is largely 
absent in figure 2.2a. The first is, as already described, said to be related to ocean 
heat flux convergence and the latter to sea ice–thickness anomalies, which determine 
to some extent the summer sea ice minimum anomalies (BW11). Because these 
processes are related to climate processes on longer time scales, these reemergence 
processes are partly removed by subtracting the 11-yr running mean. Indeed, if we do 
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not remove an 11-yr running mean, these reemergence mechanisms are also present 
in the lagged correlation plots (not shown). Even though in this analysis we use 15 
different climate models, the correlation patterns are comparable to the results from 
BW11 and DA14. This illustrates that the patterns found are quite robust across the 
different climate models. This is further illustrated in figure 2.2c, which shows the 
standard deviation of the correlation scores between the different models. The areas 
(months) where the persistence and reemergence patterns are visible show a relative 
low standard deviation, indicating little spread between the models. An exception 
herein is the winter enhanced persistence.

Figure 2.2 (a) Lagged correlation of total SIA for multi-model mean, (b) simple exponential decay 
persistence model, (c) the standard deviation between the lagged correlation of different climate 
models, and (d) the lagged correlation of total SIA from observations (NSIDC). The black dots indicate 
significant values on the 99% level for multi-model mean in (a) and 95% level for ERAInterim in (d). See 
text for the definition of the numbers in (a)

When we compare the lagged correlation found in the multi-model mean to the 
observations (figure 2.2d) of total Arctic sea ice we notice distinct differences. There 
is a more distinct winter-to-winter reemergence, but the melt-to-freeze reemergence 
is partly lacking. Also, the melt-to-growth reemergence is absent. It must be noted 
that the observations cover only the satellite era (1979–2013) and show a strong trend 
toward less and thinner sea ice. A fair comparison between observations and CMIP5 
preindustrial simulations is therefore difficult. However, the proposed mechanism 
behind the persistence and reemergence of sea ice anomalies should still be active in 
the current Arctic climate. Note that the decorrelation time scales are much smaller 
(2–3 months) except in the summer months. Also, the enhanced persistence in winter 
is largely absent. This is, as figure 2.2c shows, also not agreed on in all models. This 
may indicate that some models overestimate predictability in winter months. The 
results agree with what BW11 found in their comparison with observations.
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2.3.2 Atmospheric energy balance and sea ice variability

Next, we study the relation between components of the Arctic energy budget and the 
total SIA. Figure 2.3 shows the cross correlation between the surface net radiation 
(SNR) and top-ofatmosphere net radiation (TOANR) and the total SIA, with lags ranging 
from -4 (sea ice leads) to +12 months (sea ice lags). The first row shows the correlation 
between January SNR and lagged SIA, the second row for February, and so forth. The 
zero lags are marked by black squares. This figure therefore allows us to study SIA 
anomalies before and after net radiation anomalies for every individual month. To 
simplify further explanations, we describe relationships with respect to negative sea 
ice anomalies only. If we look at figure 2.3a and 2.3b, SNR and TOANR of May–August 
(on the vertical axis) show a relative strong negative correlation with SIA, where in 
the months October–March (vertical axis) there is mainly a positive correlation. The 
negative correlation indicates that a positive anomaly in SNR (i.e., more net radiation 
to- ward the surface) relates to less sea ice. The positive correlation in the autumn 
months can be explained by the fact that the extra heat absorbed by the ocean in 
spring and summer, because of less sea ice, has to be released to the atmosphere 
before sea ice can grow again. Hence, less sea ice in spring and summer
relates to a more positive net radiation in spring and summer but a more negative 
net radiation in autumn. A distinct feature in figure 2.3a and 2.3b is that the negative 
correlations are mainly found at positive lags; that is, positive net radiation anomalies 
lead to less sea ice. The highest positive correlations, however, are mainly found 
at negative lag; that is, less sea ice leads to negative net radiation anomalies. The 
TOANR in November and December must be noted as an exception, with relatively 
large positive correlation at lag zero and lag one. The negative correlation in summer 
can be seen as a positive feedback on sea ice anomalies, which can enhance the 
persistence of sea ice anomalies. Further, in the negative correlation found in 
summer, we can clearly identify the pairs of months in the sea ice edge locations (May 
and December, June and November, etc.), as described in the previous section. When 
comparing both figures (figures 2.3a,b) with ERA-Interim (figures 2.3c,d), we find 

Figure 2.3: Cross-correlation plots of total SIA (horizontal) and (a) SNR (vertical) and (b) TOA net 
radiation. (c),(d) As in (a),(b), but for ERA-Interim. Zero lags are indicated by black squares. Also, where 
sea ice anomalies lead and lag relative to the radiation anomaly are illustrated in (a). The black dots 
indicate significant values on the 99% level for multi-model mean and 95% level for ERA-Interim.
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many similarities. Again, however, the ERA-Interim data are much noisier because of 
their shorter time span (1979–2013), making it more difficult to distinguish noise 
from signal. The main features found in figure 2.3a and 2.3b are also visible in ERA-
Interim (figures 2.3c,d). A distinct difference, however, is the relative strong negative 
correlation for April and May SNR. To identify the role of the individual components of 
SNR and TOANR, and to be able to explain some features found in figure 2.3, we have 
calculated the lead–lag relations between the individual radiation components and 
the total SIA. Figure 2.4 shows the individual radiation components of the SNR. The 
radiation components are defined positive downwards. A positive radiation anomaly
is thus either more radiation downwards, or less radiation upwards. The radiation 
components are labeled as S or L for respectively shortwave and longwave, and ↑ or ↓ 
to indicate the upwelling or downwelling component. A first look at the multi-model 
mean and ERA-Interim reveals that all radiation components match reasonably well, 
both in sign of correlation as in amplitude, which gives reasonable confidence in the 
multi-model mean. A striking feature in figure 2.4a-d is the relative high correlation 
found in early spring for all 4 plots, which is not seen in the net radiation plots 
in figure 2.3a-b. The strongest correlations are found in S↑ and L↑. The negative 
correlation of S↑ can be easily explained, as this is directly related to the amount 
of solar radiation absorbed by the Arctic region, thus heavily dependent on surface 
albedo. More radiation absorbed in the ocean, i.e. a positive anomaly of S↑, relates to 
less sea ice. Interestingly, when comparing figure 2.2a with 3.4a, we find that the S↑ 
anomaly of April and May is even a better predictor for September total SIA than sea 
ice itself (the correlation coefficient is 0.15 higher). We will discuss this in more detail
in the next section. Note however that this is not evident in ERA-Interim.

L↑ (figure 2.4c) shows strong resemblance to S↑ in correlation strength, albeit positive 
values. This may seem counter-intuitive, as less energy away from the surface would 
result in a warmer surface, thus less sea ice, which would yield a negative correlation. 
However, L↑ anomalies originate from surface temperature anomalies, linked through 
the Stefan-Boltzmann relation. L↑ therefore acts to restore surface temperature 
anomalies to their equilibrium state and is therefore of opposite sign to the radiation 
components that force a surface temperature anomaly.

The role of L↓ (figure 2.4d) is different, as this is mainly related to the amount and 
height of clouds and humidity, which emit longwave radiation back to the surface. 
The negative correlation found in figure 4 can be explained by more L↓, thus a 
positive anomaly, resulting in a negative SIA anomaly. The fact that L↓ shows relative 
high correlation, especially in autumn, suggests that clouds and humidity play an 
important role in SIA variability. This relation will be explained in more detail in the 
discussion. The role of S↓ is more difficult to understand. Figure 2.4b shows positive
correlations between shortwave down and sea ice anomalies. This indicates that with 
less shortwave radiation reaching the surface there is also less sea ice, which may 
seem counter-intuitive. These results therefore again point to a possible influence of 
clouds. It is striking however, that the variables most influenced by clouds (L↓ and S↓) 
show no clear relation with SIA in July. Shortwave radiation is largely absent in Arctic 
winter, hence longwave is dominant over shortwave in winter months, which explains 
the positive correlations found in the winter months in figure 2.3. The fact that L↑ 
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Figure 2.4: As in Fig. 2.3, but for surface radiation components (a) S↑, (b) S↓, (c) L↑, and (d) L↓.
(e)–(h) As in (a)–(d), but for ERA-Interim.

anomalies mainly follow after SIA anomalies also explains the positive correlation in 
figure 2.3a-b at negative lags. Another distinct pattern found in all plots in figure 2.4
is the difference between radiation anomalies in December to May, and June to 
October. In general, the former are not preceded by SIA anomalies, and the latter are. 
In March to May, the radiation anomalies precede sea ice anomalies, thus act as a 
forcing. From June onwards, the sea ice anomalies originating in June seem to persist 
and possibly strengthen the sea ice and radiation anomaly in the subsequent months 
through the sea ice albedo effect. The TOANR components (figure 2.5) show similar 
patterns, albeit less strong and no clear relation between early spring radiation and 
total SIA. Also, the S↑ has no relation with total SIA anomalies from October onwards, 
which is in contrast to the surface S↑. This also explains the relative strong positive 
correlation found in figure 2.3b in the autumn months, as when the influence of S↑ is 
absent, TOANR is only dependent on L↑. We can identify the same differences between 
the multi-model mean and ERA-Interim as with figure 2.4. Because correlation only 
indicates how much two variables can covary, but nothing about the amplitude of 
both signals, we also performed the above analysis by calculating the regression 
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Figure 2.5. As in Fig. 2.3, but for TOA radiation components: (a) S↑ and (b) L↑. (c),(d) As in (a),(b), but 
for ERA-Interim.

coefficients (not shown). This helps us to identify the relative importance of the 
different energy balance components. The results indicate that the amplitudes of 
the radiation anomalies correlated with sea ice anomalies are in the same order of 
magnitude (not shown), with S↑ and L↑ slightly higher.

Figure 2.6. As in Fig. 2.3, but for (a) OSHF, (b) dQdt, and (c) the 650N meridional ocean heat flux.
(d)–(f) As in (a)–(c), but for ORAS4.
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2.3.3 Ocean energy balance and sea ice variability

Next, we study the components of the ocean energy balance in relation to sea ice 
variability. Figure 2.6 shows the components of the ocean energy balance in relation 
to SIA anomalies. The ocean surface heat flux (OSHF), defined as positive down, is 
the heat flux at the top of the water column. Hence, it is at open ocean strongly 
related to the surface net radiation, and also yields comparable results except for 
the months April and May. The negative correlation in summer months is explained 
by more radiation into the ocean, relating to negative total SIA anomalies. As also 
described in section 2.2, the extra heat in the ocean has to be released back to the 
atmosphere before ice can grow again. Thus, less sea ice relates to a more positive 
OSHF in late spring and summer, but to a more negative OSHF in autumn, hence the 
positive correlation in autumn months at negative lags. The change in ocean heat 
content (dQdt) gives almost the same results as the OSHF, which indicates that with a 
11 year running mean removed, most of the variability in dQdt is related to variability 
in OSHF. The correlation between the OSHF and dQdt anomalies vary from 0.6 to 0.8
between the models (not shown), which further strengthens this idea. There is 
some impact of ocean heat transport in summer in the models (both in forcing as 
in response), but from ORAS4 no clear relation is found. These findings support 
the idea that, with low-frequency climate variability removed, the main function of 
the ocean in relation to SIA variability is to store SST anomalies forced by OSHF 
anomalies. ORAS4 yields generally the same results, except for the summer months 
in OSHF where the negative correlation is not as strong as in the multi-model mean.

2.3.4 Local surface radiation anomalies

To identify which regions in the Arctic sea ice cover are related to the spring and 
summer correlation found in figure 2.4a, we have plotted the local S↑ anomaly of 
April (figure 2.7a) and July (figure 2.7b), correlated with the total SIA anomaly of 
the subsequent 8 months. The regions that show higher correlation for the April S↑ 
are the Bering Sea and the Barents Sea, where the latter also shows relative strong 
correlation up to lag 3 and a weak reemergence in lag 7. For the July S↑ anomaly the 
main region consists of the Beaufort, Chuckchi, East-Siberian, Laptev and Kara Sea. 
For both figure 2.7a as 2.7b, the regions with relative high correlation are situated 
close to the sea ice edges, except for typical sea ice export regions (e.g. the Fram 
export region). The other radiation components show similar spatial patterns (not 
shown), indicating that the anomalies for S↑, S↓, L↑ and L↓ are all spatially related. 
It must be noted here that the multi-model mean correlation is quite small, mostly 
between 0.2 and 0.3. The correlation for the individual models is often higher  
(~ 0.4 – 0.5). The lower multi-model mean is caused by differences in location of the 
sea ice edge, which therefore also changes the regions where the higher correlations 
are found. The multi-model mean therefore results in a lower correlation and spread 
over a larger area. Figure 2.7 can also help us to understand why spring S↑ is a better 
predictor for September sea ice area than spring sea ice itself (as seen in figure 2.3 
and 2.4). This can be explained by the fact that a SIA anomaly in spring only provides 
information in the region of the sea ice edge, whilst the sea ice edge in September 
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is far more to the north. The spring Arctic integrated upwelling solar radiation 
does contain information about conditions further north through surface albedo 
anomalies. The albedo of sea ice slowly decreases in spring because of melting of 
snow and ice and the formation of melt-ponds. A change in surface albedo in spring 
therefore provides information on the rate of melting at the region of the sea ice edge 
in September, as also suggested by Schröder et al. (2014) who show that spring melt-
pond fraction could be a good predictor for September sea ice.

2.4 Discussion 

The results above support the important role of the sea ice albedo effect, which is 
manifested in SST anomalies originating from prolonged, or shortened, cumulative 
heating by shortwave radiation as a result of SIA anomalies. This is especially evident 
in OSHF, OHC and S↑ anomalies. The atmospheric radiation components, however, 
also point to an important role for clouds in explaining SIA anomalies, notably the 
correlation between L↓ and SIA, and the positive correlation between S↓ and SIA. 
The role of clouds on Arctic sea ice variability has been investigated before, both 
in observational studies (e.g. Francis et al., 2005; Kay and Gettelman, 2009) and in 
modeling studies (e.g. Gorodetskaya and Tremblay, 2008). These studies emphasize 
the complicated relationship between clouds and Arctic sea ice, because the cloud 
radiative forcing (CRF) is strongly dependent on the insolation, surface albedo and 
the type of clouds, which in turn vary strongly during the season. Here we elaborate 
further on the role of clouds in the context of this study.

In order to understand and quantify the relation between the radiation components, 
clouds and sea ice variability we determine how radiation and cloud anomalies evolve, 
prior to, and after, the occurrence of sea ice anomalies. We do this by first selecting 
the locations and times of sea ice anomalies, for all models. Herein we distinguish 
between positive and negative sea ice anomalies. We will only consider negative sea 
ice anomalies to simplify the explanation. For these negative sea ice anomalies we 
calculate the radiation and cloud anomalies in the range of 12 months prior and 
12 months after, and at the location of, the occurrence of sea ice anomalies. The 
radiation and cloud anomalies are computed relative to sea ice conditions. In this way 
the anomaly represents the difference between sea ice and open water conditions. 
The radiation and cloud anomalies are then averaged over the different grid points, 
years and models to get the average anomaly, prior to and after a sea ice anomaly, for 
the different months. The results are presented in figure 2.8. We also performed the 
above analysis for positive sea ice anomalies. These values are generally similar, but 
of opposite sign. Note that, in contrast to figure 2.3-2.6, here the radiation anomalies 
are lagged and not the sea ice anomalies.
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Figure 2.7: Correlation between the local surface S↑ of (a) April and (b) July and total SIA for lags  
0–7. The black contours indicate the model mean sea ice edge.

From figure 2.8a we can see that a negative sea ice anomaly in spring relates, on 
average, to a SNR anomaly of ~25 W m-2 at zero lag (indicated by a 1 in figure 2.8a). 
In late autumn and winter, the SNR anomaly at zero lag is very small compared to 
spring and summer (indicated by a 2). However, we do find a positive SNR anomaly 
of ~12-18 W m-2 prior to the sea ice anomalies in late autumn / winter (indicated 
by a 2.3). This nicely illustrates the reemergence of an anomaly in autumn from an 
original anomaly in spring, as illustrated before in figure 2.2a. This figure shows 
the pairs of months (May-Dec, Jun-Nov etc.) that share the location of the sea ice 
edge. These pairs of months can also be seen in the shortwave (figure 2.8g-h) and 
longwave (figure 2.8b-c) radiation components. The individual radiation components 
also reveal that the increase in SNR of ~25 W m-2 in late spring / summer is mainly 
related to a positive anomaly of S↑, i.e. less upwelling solar radiation, which is directly 
related to the decreasing surface albedo. Interestingly however, the S↓ decreases by ~ 
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20 Wm-2, which partly compensates for the reduced S↑. Less S↓ could be caused by a 
higher cloud fraction related to enhanced evaporation from open water, but as figure 
2.8e shows, June to August show no cloud response to a sea ice anomaly (indicated 
by a 4 in figure. 2.8e). The decrease in S↓ is then most likely related to the multiple 
reflection component of S↓, which reduces as the surface albedo becomes smaller. We 
can estimate the reduction of S↓ due to a surface albedo change. For a non-absorbing 
cloud, S↓ is given by S↓ = F

0
 (1-r) / (1 – αr) (e.g. Shine 1984; DeWeaver et al. 2008), 

where F
0
 is the solar downwelling radiation above the cloud, r the cloud reflectivity 

and α the surface albedo. Following DeWeaver et al. (2008) we assume an Arctic 
cloud reflectance of 0.7. Values associated with the decrease in S↓ are a decrease 
in albedo from ~0.5 to ~0.25, a F

0
 of ~320 W m-2 and a cloud fraction of ~0.7 (not 

shown), which yields a decrease of ~22 W m-2. This indicates that the decrease of 
S↓ can indeed be caused by the decrease of the multiple reflection component of S↓.

Figure 2.8f shows the anomaly of OSHF due to less sea ice. It increases ~60 W m-2, 
which is more than twice the response of SNR. This can be explained by the fact that 
the extra solar radiation is directly absorbed by the ocean, whilst if there were ice, 
a large portion of this energy is absorbed by the sea ice and only a small portion of 
that reaches the water column.

Even though there is no direct cloud response from June till August to sea ice 
anomalies, we do find a delayed response (indicated by a 5 in figure 2.8e). Such a 
delayed response can also be found in the turbulent fluxes (figure 2.8d,i) and the 
longwave radiation components (figure 2.8b,g). These results correspond to findings 
from Kay and Gettelman (2009), who found a seasonal dependence on cloud response 
to sea ice decline in an observation study in the 2006-2008 period. They found no 
clear cloud response in summer on sea ice anomalies, while in early fall more clouds
did form. They related the lack of response in summer to a weaker ocean-atmosphere 
coupling because of stronger atmospheric stability and weaker air-sea temperature 
gradients. In early fall however, the lower static-stability and stronger air-sea 
temperature gradients result in stronger turbulent fluxes, which are in turn further 
strengthened by the SST anomaly. The larger turbulent fluxes increase the moisture 
in the air, hence yield a higher cloud fraction, which in turn enhances L↓. Our analysis 
supports this finding, and shows that this is an integral part of the seasonal sea ice
albedo feedback in the climate models used for this analysis.
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Figure 2.8: multi-model (a)–(d),(f)–(j) mean radiation and (e) cloud fraction anomalies at the location of 
negative sea ice anomalies and 12 months prior to and 12 months after their occurrence.

It is now also interesting to see how this delayed cloud response influences the 
seasonal sea ice albedo feedback, i.e. a cloud-ice feedback. Kay and Gettelman 
(2009) already concluded that cloud changes resulting from sea ice anomalies only 
play a minor role in regulating the sea ice albedo feedback in spring, but that it 
may contribute to a cloud-ice feedback during early fall. They couldn’t quantify the 
magnitude, or sign, of this feedback. Our analysis does provide this opportunity. 
Figure 2.8e shows the anomaly in surface CRF, for negative sea ice anomalies. This is
calculated by summing the longwave forcing (LW

CLOUD
 – LW

CLEAR SKY
) and the shortwave 

forcing (SW
CLOUD

 – SW
CLEAR SKY

), where LW and SW are the net longwave and net shortwave 
radiation at the surface. A positive CRF thus means more clouds warm the surface. 
During spring and summer, around lag zero, the CRF decreases by ~25 W m-2. This 
is primarily related to the decrease in the multiple reflection component of S↓, hence 
an indirect radiative effect. This is, as described above, caused by the decrease in 
surface albedo. The cloud response in fall, as a result of a SIA anomaly in spring, 
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does result in a larger CRF of ~6 W m-2. This increase in CRF is not due to a change 
in multiple-reflection, as it is also visible in the longwave cloud radiative forcing (not 
shown). If we compare this response to the original net radiation anomaly in spring 
(~25 Wm-2), i.e. the direct sea ice albedo effect, we find that the delayed response 
contributes about 20% to the seasonal sea ice albedo feedback. It must be noted here 
that this is only true if the sea ice anomaly indeed reemerges, as it does in about 25-
50% of the times, depending on the month (see figure 2.2a).

To understand why an increase in cloud fraction results in a positive CRF anomaly, we 
have calculated the multi-model mean surface CRF climatology (figure 2.9). From this 
figure we can deduce both a strong seasonal (i.e. solar zenith angle), and an albedo 
dependence. CRF is positive if the warming effect of enhanced L↓ is larger than the 
cooling effect of less S↓. During Arctic winter the enhanced L↓ dominates because S↓ 
is largely absent, hence clouds have a net warming effect. During Arctic summer S↓ 
becomes larger, hence the cooling effect of less S↓ also becomes larger. It depends 
on the surface albedo and the strength of S↓ (i.e. the net solar radiation) whether the 
cooling effect of less S↓ becomes stronger than the warming effect of more L↓. For 
the largest part of the year, the CRF is positive over the sea ice (indicated by the white 
line). Only during June and July there are regions on the Arctic sea ice with a negative 
CRF. Because there is no cloud response in spring, there is also no cloud-ice feedback 
in spring. When there is indeed a cloud response in late summer and autumn, the CRF 
has become positive due to the absence of solar radiation. The increase in clouds in 
autumn thus yields a more positive CRF. The response of clouds to the seasonal sea 
ice albedo effect is thus that it strengthens the feedback mechanism.

From figure 2.8 and 2.9 we can find two possible explanations for the positive 
correlation between S↓ and Arctic sea ice, found previously in figure 2.4b. The first 
is a positive CRF, where, as described above, an increase in S↓ is compensated by 
a stronger decrease in L↓. The second explanation is the decrease of the multiple 
reflection component of S↓ due to an albedo decrease. Our analysis shows that, on 
average, the latter effect is stronger than the former. It should be noted however that 
S↓ can also be negatively correlated with sea ice variability. As indicated in figure 9, 
the CRF is not always positive, hence a S↓ anomaly can also enhance sea ice retreat. 
This is clearly demonstrated by Kay et al. (2008) in the 2005 and 2007 sea ice melt 
seasons.
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Figure 2.9: multi-model mean climatology of cloud radiative forcing. The white contour indicates the 
multi-model mean sea ice edge and the blue contour the 0 Wm-2 CRF isoline.

We have also performed the analysis presented in figure 2.8 and 2.9 with ERA-Interim 
and ORAS4. These results (not shown) also show the delayed cloud response of 
clouds on sea ice anomalies, and the decrease of S↓ because of a decrease of the 
multiple reflection component. The overall picture of CRF for the multi-model mean 
and ERA-Interim match reasonably well, although the amplitude of the seasonal cycle 
is smaller in ERA-Interim.

Recent work by Kapsch et al (2013, 2014) also investigated the role of spring 
atmospheric forcing on sea ice variability. They showed a clear connection between 
anomalies in spring L↓ and S↓, and September sea ice anomalies in a large part of the 
Arctic ocean. Our results (figure 2.8d and 2.8h) also show a small L↓ anomaly in April 
and May (figure 2.8d) and a S↓ anomaly from May onwards. Our results therefore 
confirm their findings, but it must be noted that the signal is relatively small.
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Figure 2.10: As in Figs. 2.2a, 2.3a, and 2.4, but now for RCP4.5 scenario, lagged correlation of (a) total 
sea ice area and cross correlation between (lagged) sea ice and (b) L↑, (c) L↓, (d) SNR, (e) S↑, and (f) S↓.

In this analysis we have used the pre-industrial (control) CMIP5 climate simulations. 
Because the simulations lack a long term trend, it allows us to focus on the role of 
natural variability in the Arctic sea ice. The question must be asked however, whether 
the findings presented above are also valid for the future climate. To test this we 
have performed part of the analysis presented above using the RCP45 scenario 
simulations (2005-2100). Figure 2.10 shows the lagged correlation of SIA, and the 
cross-correlation of SNR and the individual components of SNR with (lagged) sea ice, 
presented in the same manner as in figure 2.4. The RCP45 multi-model mean shows 
strong overall resemblance to the control multi-model mean. There are some slight 
differences in the specific values of the correlation, but the main patterns are very 
similar, indicating that the analysis presented above also seems valid for future sea 
ice regimes. This can be expected, as the physical mechanisms for the enhanced 
persistence and reemergence of anomalies, should still be working in a thinner, and 
smaller extent, sea ice regime. Andry et al (2016) even show that the sea ice albedo 
feedback will only strengthen when the amplitude of the seasonal cycle increases, as 
projected in future sea ice regimes.
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2.5 Conclusions

We performed an analysis on the natural variability of Arctic sea ice from an energy 
balance perspective. In this analysis we aimed to explain the physical mechanisms 
that provide predictability of Arctic sea ice on seasonal to yearly time-scales. For 
this we used a selection of state-of-the-art CMIP5 climate models. In the first part 
of the analysis we computed the lagged correlation of total Arctic sea ice and cross-
correlation between radiation components and (lagged) total arctic sea ice. In the 
second part we analysed the radiation anomalies on locations prior to and after sea 
ice anomalies. We compared our results with reanalysis data, namely ERA-Interim and
ORAS4.

In the lagged correlation plots we found (1) typical decorrelation time-scales ranging 
from 2 to 5 months, (2) a reemergence of anomalies in autumn related to the 
seasonal sea ice albedo effect, (3) a winter to winter memory most likely related 
to ocean heat convergence anomalies (Bitz et al. 2005) and (4) a weak autumn to 
spring reemergence related to ocean thickness anomalies (BW11). These findings 
correspond to BW11 and DA14, which shows that these persistence and reemergence 
mechanisms are robust mechanisms in current climate models.

Net radiation, both at the surface and at the top of atmosphere, are negatively 
correlated with sea ice in summer, and weakly positively correlated in winter. The 
negative correlation in summer is mostly determined by upward shortwave radiation, 
which is directly related to the surface albedo. Hence, more radiation upward relates to 
more sea ice. The negative correlation during winter is mostly determined by upward 
longwave radiation, which acts to restore temperature anomalies to their equilibrium 
state. Hence, a positive sea ice anomaly is related to less upward longwave radiation 
which results in a positive correlation.

The individual radiation components also provide interesting insights. Spring upward
shortwave radiation is a better predictor for September sea ice area than spring sea 
ice itself. This can be explained by the fact that a sea ice anomaly in spring only 
provides information in the region of the sea ice edge, whilst the sea ice edge in 
September is far more north. The upwelling solar radiation also provides information 
about the albedo where the sea ice edge will be in September. The albedo of sea ice 
slowly decreases in spring because of melting of snow and ice. A change in surface 
albedo in spring therefore provides information on the rate of melting at the region 
of the sea ice edge in September, as also suggested by Schröder et al. (2014) who 
show that spring meltpond fraction is a very good predictor for September sea ice. 
The downward shortwave component is, counter-intuitive, positively correlated with 
sea ice area. Hence, more radiation downward yields a positive sea ice area. This 
has previously been attributed to the generally positive cloud radiative forcing over 
the Arctic (Francis et al. 2005). Our analysis reveals however that this is primarily 
due to a decrease (increase) of multiple-reflection of shortwave radiation due a 
decreasing (increasing) surface albedo. Our results therefore suggest that under 
cloudy conditions, the direct effect of the sea ice albedo feedback, i.e. the enhanced 
absorbed solar radiation at the surface, is compensated up to 50% by reduced 
multiple-reflection of downwelling solar radiation.
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By analysing radiation anomalies at locations of sea ice anomalies, we found a delayed
atmospheric response on spring sea ice anomalies. This delayed response is 
previously documented in an observational study by Kay and Gettelman (2009) over 
the 2006-2008 period. They related this lack of response in summer to a weaker 
ocean-atmosphere coupling due to a stronger atmospheric stability and weaker air-
sea temperature gradients. In early fall, the lower staticstability and stronger air-
sea temperature gradients result in stronger turbulent fluxes, which are further 
increased by the SST anomaly. The enhanced turbulent fluxes result in a higher cloud 
fraction, which in turn enhances downwelling longwave radiation and slows the ice-
growth. Our analysis reveals that this mechanism is not only present in the 2006-
2008 period, but that it is an integral part of the seasonal sea ice albedo feedback in 
the selected climate models and ERAInterim. Due to the delayed response the cloud 
radiative effect on the seasonal sea ice albedo effect results in a net warming.
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Abstract

Observed and projected climate warming is strongest in the Arctic regions, 
peaking in autumn/winter. Attempts to explain this feature have focused 
primarily on identifying the associated climate feedbacks, particularly the ice-
albedo and lapse-rate feedbacks. Here we use a state-of-theart global climate 
model in idealized seasonal forcing simulations to show that Arctic warming 
(especially in winter) and sea ice decline are particularly sensitive to radiative 
forcing in spring, during which the energy is effectively ‘absorbed’ by the ocean 
(through sea ice melt and ocean warming, amplified by the ice-albedo feedback) 
and consequently released to the lower atmosphere in autumn and winter, mainly 
along the sea ice periphery. In contrast, winter radiative forcing causes a more 
uniform response centered over the Arctic Ocean. This finding suggests that 
intermodel differences in simulated Arctic (winter) warming can to a considerable 
degree be attributed to model uncertainties in Arctic radiative fluxes, which peak 
in summer.
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3.1 Introduction

The warming of the Arctic regions and the associated sea ice retreat are among the 
most prominent features of ongoing and projected climate change. A host of regional 
feedback mechanisms, mostly related to sea ice, contribute to Arctic warming being 
much stronger than the global response (e.g Lu and Cai, 2009; Pithan and Mauritsen, 
2014; Winton 2006; Graversen and Wang, 2009; Bintanja and van der Linden, 2013; 
Hall, 2004; Bintanja et al., 2011; Held, 1979). Simulating Arctic warming using climate 
models (Hazeleger et al., 2010; Holland and Bitz, 2003) involves many uncertainties 
though, as indicated by the large intermodel differences. This may be attributed to 
uncertainties in the magnitude of climate feedbacks, to intermodel differences in the 
representation of important physics such as radiation (English et al., 2015), and to 
uncertainties in the radiative forcing. In any case, the interrelation between Arctic 
warming and sea ice decline clearly is a vital issue (Screen and Simmons, 2010), since 
this connection involves many of the relevant regional Arctic feedbacks as well as 
the shortwave and longwave radiation characteristics that govern the Arctic climate 
response.

Over the 21 st century, the CMIP5 RCP8.5 scenario (Collins et al., 2013) (see Methods)
projects a model-mean annual mean Arctic warming of 8.5 ± 4.1 °C (figure 3.1a) 
accompanied by a 49 ± 18% retreat in sea ice cover, with summer sea ice having 
largely vanished in 2100. Arctic warming exhibits a very pronounced seasonal cycle, 
however, with exceptionally strong warming in the winter months (up to 14.1 ± 2.9 
°C in December) and only moderate warming during the summer season (figure 3.1b). 
Associated with this surface-based warming is a strong increase in precipitation (up 
to 60%), which has been attributed mainly to reduced sea ice cover and the associated 
strong increase in evaporation from the open Arctic Ocean (Bintanja and Selten, 2014). 

Figure 3.1: Projected 21st century Arctic (70°–90°N) near-surface warming (T2m) using CMIP5 model 
ensemble. (a) Model-mean annual mean Arctic near-surface temperature change, (b) Annual cycle 
in Arctic near-surface warming, with the grey envelope representing the standard deviation of the 
intermodel mean. Dark-grey lines denote individual CMIP5 models. Results are for the strong (RCP8.5) 
forcing scenario trends in Arctic temperature are defined as the difference between the means over the 
periods 2091–2100 and 2006–2015 (37 models).
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The projected precipitation changes therefore also peak in winter, meaning that not 
only the magnitude but also the seasonal imprint of Arctic warming has important 
ramifications for various components of the Arctic (climate) system (ACIA, 2005) . 
Evidently, the changing seasonal cycle in the Arctic climate will have profound effects 
on Arctic ecosystems, emerging economic activities (e.g. shipping, fishery, mining, 
tourism) and may even impact the climate in other parts of the world (Overland and 
Wang, 2010; Francis and Vavrus, 2012; Walsh, 2014), for instance through changes 
in sea level and global ocean currents (Bintanja and Selten, 2014; ACIA, 2005). It is 
therefore imperative to identify and quantify the climate mechanisms and feedbacks 
that cause the huge seasonal range in Arctic warming.

Until now, Arctic warming and its seasonal variation have been addressed primarily 
by studying various climate feedbacks (e.g. Pithan and Mauritsen, 2014; Bintanja 
et a., 2011; Walsh, 2014) related to, among others, surface albedo, atmospheric 
humidity and clouds, and poleward transport of dry static and latent heat. An 
important aspect of the seasonal response is the ice-albedo feedback, which operates 
mainly in the spring/summer seasons. However, this feedback contributes to winter 
warming 20 through interacting with storage (in summer) and release (in winter) of 
heat in the Arctic Ocean (Pithan and Mauritsen, 2014; Bintanja and van der Linden, 
2013; Krikken and Hazeleger, 2015). Arctic winter warming is further amplified by 
feedbacks that operate in wintertime, such as the lapse-rate feedback (Bintanja et al., 
2011). Another aspect that modulates the (seasonal) climate response in the Arctic is 
the direct radiative forcing by increasing concentrations of greenhouse gases, which 
does in fact exhibit a seasonal signature (Hansen et al., 1997).

3.2 Results

Here we use a state-of-the-art global climate model (EC-Earth, Hazeleger et al., 
2010, see Methods) in idealized climate (‘ghost’) forcing simulations to quantify the 
effect of seasonality in radiative forcing on the magnitude and pattern of seasonal 
Arctic warming. To infer the climate response throughout the year resulting from 
forcings in different seasons, an artificial longwave radiative forcing was applied 
to the surface for each season separately (see Methods). While the future climate 
response in near-surface temperature is maximum in winter (DJF, see figure 3.1b), the 
seasonal forcing simulations suggest that the forcing season causing the strongest 
annual temperature response is spring (table 3.1), and to a somewhat lesser degree 
summer. Interestingly, the spring and summer forcing combined contribute about 
40% to the total wintertime temperature response. Even more surprising, summer 
forcing causes a much larger response in autumn and winter than in summer itself. 
In contrast, winter forcing is important for the wintertime response, but hardly for 
other seasons. The winter response is thus to a large degree governed by non-winter
forcing, mainly through storage/release of ocean energy and associated feedbacks 
and possibly through changing atmospheric circulation. This clearly demonstrates 
that the near-surface Arctic temperature response to any climate forcing depends 
greatly on the season in which the forcing occurs, with the spring season being most 
effective. The only viable mechanism to invoke a surface air temperature response in 
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seasons other than the forcing season relates to ocean storage and release of energy, 
which in turn is strongly modulated by sea ice (thickness) changes (Bintanja and van 
der Linden, 2013).

The concurrent response in Arctic sea ice cover clearly peaks for spring and summer 
forcing (table 3.1). Spring forcing causes maximum sea ice decline in all other 
seasons, including the winter (even more than for winter forcing itself). This is due 
to the ice-albedo feedback amplifying the sea ice retreat over the summer months 
(Kapsch et al., 2013): the extra energy in spring thins the sea ice and/or creates melt 
ponds, lowering the surface albedo and allowing spring and summer insolation to 
more effectively warm the surface (figure 3.2a) and melt away sea ice (Perovich et al., 
2007). Infact, reflected solar radiation in the Arctic peaks in spring, when both sea 
ice cover and insolation are relatively high, meaning that any change in spring sea 
ice has a profound effect on absorbed solar radiation. The ice-albedo feedback thus 

Table 3.1: Simulated seasonal and annual response resulting from a surface radiative forcing in 
various seasons (see Methods). Surface air temperature (in K, upper panel), Sea ice area (in 106 km2 
, middle panel), Net downward total surface heat flux (in W m-2 , bottom panel), which is the total of 
the net shortwave and longwave radiative fluxes and the sensible and latent heat fluxes. Note that the 
30 W m−2 additional downward forcing (see Methods) is included in the response value for the forcing 
season (as an example, the 44.7 W m−2 JJA response for JJA forcing includes the 30 W m−2 forcing). 
ANN represents the annual mean response. The uncertainties represent the 95% confidence interval 
of the mean, where seasonal (annual) means are used to evaluate the seasonal (annual) response 
uncertainties. Colouring indicates the magnitude and sign of the responses.
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strongly amplifies the response only if the forcing occurs in the season in which the 
seasonal ice-albedo feedback is mainly active (spring/summer) and the additional 
energy is used to melt ice. This leads to enhanced absorption of shortwave radiation 
of the surface (figure 3.2a), increased sea surface temperatures, earlier onset of 
melt and an associated decline in sea ice cover. This amplified response for spring 
forcing is effectively carried over to subsequent seasons by storage of heat in the 
open Arctic Ocean, likely amplified by water vapour and cloud feedbacks (Kapsch 
et al., 2016) , leading to delayed freeze-up and thinner sea ice. The autumn sea ice 
response is indeed most pronounced for spring radiative forcing, which corresponds 
very well with observations-based correlations between enhanced incoming longwave 
radiation in spring and reduced autumn sea ice extent (Kapsch et al., 2013).

Since sea ice effectively regulates the ocean-atmosphere energy exchange by acting 
as a lid, the total air-sea flux changes also exhibit a pronounced seasonal cycle 
(table 3.1 and figure 3.2b). In summer, nearly all additional longwave forcing is 
used to either melt sea ice or warm the upper Arctic ocean; this energy thus hardly 
contributes to warming of the lower atmosphere in this season, but it is instead 
stored and subsequently released in autumn/winter (figure 3.2b). A considerable part 
of the upward energy flux used to warm the lower atmosphere during autumn/winter 
originates from spring/summer forcing (table 3.1). In contrast, a large portion of the 
additional energy is immediately returned to warm the lower atmosphere (and is partly 
lost to space) in case of autumn and winter surface forcing. Additionally, the limited 

Figure 3.2: Simulated monthly Arctic mean surface energy budget components for each of the 
simulations (see Methods). (a) Net shortwave radiation, (b) Net surface flux (i.e. radiative fluxes plus 
turbulent fluxes). Downward fluxes are defined positive. The legend shows the forcing season. The 
uncertainty band represents the 95% confidence interval of the mean.
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impact of winter forcing on the response in other seasons can be attributed to the 
negative feedback between ice growth and ice thickness, meaning that ice thickness 
anomalies following a winter forcing will effectively decay in subsequent seasons. An 
extra downward forcing is thus most effective when the climatological net surface 
forcing is already downward (in late spring and summer, see figure 3.3b), so that the 
additional energy is predominantly used to warm the ocean and melt sea ice. In the 
winter months, the energy from the relatively mild and ice-depleted ocean surface 
is more easily radiated upward and thereby warms the overlying atmosphere (figure 
3.2b). The stable stratification of the wintertime Arctic boundary layer reinforces 
warming of the near-surface atmosphere.

The seasonally varying response as shown in table 3.1 is purely the result of internal 
climate mechanisms since the magnitude of the applied radiative forcing was similar 
in all seasons. However, anthropogenic greenhouse forcing in the Arctic exhibits 
a pronounced seasonal cycle, peaking in late spring and summer (Hansen et al., 
1997), which can be attributed mainly to the vertical distributions of temperature, 
water vapour and clouds, as well as to the temperature dependence of the emission/
absorption characteristics of greenhouse gases. Intrusions of relatively warm and 
humid air from lower latitudes also lead to positive anomalies in moisture content 
and cloud amount, which especially in spring cause a considerable longwave forcing 
at the surface that contributes to enhanced sea ice melt later in the year (Kapsch et 
al., 2013). Moreover, internal climate feedbacks, for instance those related to sea 
ice retreat and the associated enhanced surface evaporation and cloud formation, 
may lead to climate forcings that exhibit strong seasonal variations. In any case, 
the climate radiative forcing tends to peak in the seasons during which the Arctic 
system is most sensitive to additional forcing. With spring sensitivity being about 
50% higher than in winter (table 3.1), the impact of enhanced spring/summer forcing 
on the annual temperature response reinforces the response from internal climate 
mechanisms alone, increasing the seasonality of the temperature response (maximum 

Figure 3.3: Simulated winter (DJF) temperature response as a function of seasonal radiative forcing 
(see Methods). (a) Response for spring (MAM) forcing, (b) Response for winter (DJF) forcing.
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in winter) as well as the magnitude of the annual response. The seasonality of Arctic 
surface radiative forcing thus exerts a comparatively strong impact on annual mean 
Arctic warming (compared to the hypothetical situation in which the forcing were 
seasonally invariant).

Over the Arctic Ocean, the ‘transfer’ of energy from one season to the other through 
storage and release of energy (Fig. 3.3b) is obviously most effective in the sea ice 
retreat regions, since these are the locations where a strong increase in upward 
energy flux can occur, heating the lower atmosphere in autumn/winter. Therefore, 
the effect of spring forcing on the surface temperature response in winter peaks 
in the sea ice retreat regions (the periphery of the Arctic region), especially in the 
Barents Sea (figure 3.3a). Remarkably, in these regions the winter temperature 
response due to spring forcing is even larger than that due to winter forcing itself. 
In contrast, winter forcing causes a somewhat more uniform response (figure 3.3b) 
centered over the Arctic. Being effectively decoupled from the Arctic Ocean by sea 
ice, the direct winter forcing is mainly used to warm the (low thermal inertia) stably 
stratified lower atmosphere. Also, winter forcing yields a much larger surface air 
temperature response over the subarctic continents compared to spring forcing. 
Spring/summer forcing evidently exhibits a different geographical imprint compared 
to winter forcing in terms of the wintertime temperature response (and thereby the 
annual response, since this is governed by winter warming).
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3.3 Discussion

Because Arctic radiative forcing peaks in spring/summer, it contributes strongly to 
Arctic winter and annual warming, especially in the peripheral sea ice regions where, 
according to our climate model simulations, spring forcing even dominates winter 
warming through seasonal storage and release of energy in the Arctic Ocean. To 
understand Arctic warming and its huge seasonal cycle, as well as related processes 
(such as sea ice decline and precipitation increases [Bintanja and Selten, 2014]) it 
is therefore imperative to study not only the governing feedbacks but also assess 
the impact of seasonally-varying radiative forcing. This also implies that an accurate 
representation of changes in the seasonality of radiative forcing (which are dominated 
by clouds [English et al., 2015], see Methods) is crucial to correctly project both 
the magnitude and the pattern of future Arctic warming. Uncertainties in Arctic 
radiative fluxes (which peak in summer [English et al., 2015]) mainly affect Arctic 
winter and annual warming (Holland et al., 2003), meaning that not only uncertain 
Arctic feedbacks but also the (spring and summer) radiative forcing contribute to the 
intermodel spread in Arctic climate change (Collins et al., 2013).

Current changes in the Arctic climate peak in Autumn (in particular November). With 
ongoing Arctic warming and further reductions in sea ice, the changes will probably 
become more winter centered, with peak warming shifting towards the winter (figure 
3.1b), similar to the response simulated here (which represent an ‘artificial’ future 
warming relative to the present-day state).

Ongoing sea ice decline is expected to spark human activities in the Arctic (e.g., 
shipping, fishery, mining, tourism), which will lead to increased emissions of 
radiatively-active constituents (ACIA, 2005; Corbett et al., 2010), such as soot (Sand 
et al., 2013), especially in summer (also soot originating from summertime sub-
Arctic fires will enter the Arctic). By lowering the sea ice albedo, the additional soot 
may induce a net radiative surface forcing during summer. The seasonal timing of 
anthropogenic radiative forcing (in whatever form) is most powerful when it occurs 
in seasons when the surface is climatologically gaining energy (spring and summer), 
so future anthropogenic emissions peaking in summer may reinforce Arctic (winter) 
warming and sea ice retreat.

3.4 Methods

We used the global climate model EC-Earth V2.3 9 (one of the CMIP5 models) to 
assess the mechanisms relating seasonally-varying radiative forcing to Arctic warming 
and sea ice retreat. ECEarth V2.3 includes the following components: atmosphere, 
ECMWF’s Integrated Forecast System (IFS cycle 31r1), resolution T159L62, including 
HTESSEL as land surface module; ocean, NEMO V2, resolution 1 deg.; sea ice, LIM2, 
resolution 1 deg; all coupled through the OASIS3 coupler 9 . The performance of 
EC-Earth in terms of its simulation of the present-day climate is satisfactory, even 
though parts of the (sub) Arctic have too high winter temperatures, especially the 
continental regions of Siberia and Canada, while the central Arctic is somewhat too 
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cold. We carried out 44-year simulations for perpetual year 2006 climate forcing 
(the model is in equilibrium for year 2006 radiative forcing), in which we added an 
artificial (or ‘ghost’) additional downward longwave radiative forcing of 30 W m−2 to 
the surface of the entire Arctic region north of 70 °N (we chose a relatively strong 
radiative forcing to obtain a climate response larger than the interannual variability 
yet small enough to avoid possible nonlinear effects becoming dominant; we 
additionally carried out simulations with smaller/larger forcing, and concluded that 
the first-order average Arctic response roughly linearly depends on the magnitude of 
the forcing); the forcing was applied in each season separately over the entire length 
of the simulation (hence each year). Thus, in total we performed 5 simulations: 4 
simulations with additional forcing in winter (December-January-February, DJF), spring 
(March-April-May, MAM), summer (June-July-August, JJA) and autumn (September-
October-November, SON), respectively, and a control simulation without additional 
forcing. Note that the seasonal forcing of 30 W m−2 translates to an annual forcing 
of 7.5 W m−2 , comparable to the RCP8.5 radiative forcing (but applied here only 
to the Arctic). The seasonal longwave forcing of 30 W m−2 corresponds to 15, 10, 
13 and 17% of the modelled climatological (of the control run) downward longwave 
radiation in DJF, MAM, JJA and SON, respectively. The results in table 3.1 and figures 
3.2 and 3.3 represent the differences between the additional forcing simulations 
and the control simulation over the final 30 years of the simulations (over which the 
residual trend is small). In this way the contributions of the feedbacks (for seasonally 
constant forcing) and of the (seasonally varying) radiative forcing on the seasonal 
climate response can effectively be separated. Obviously, the applied ghost forcing 
is a simplified representation of real radiative forcings, but previous studies (Hanset 
et al., 1997; Alexeev et al., 2005) have shown that this method nonetheless provides 
important insights into the primary response of the climate system. Note that the 30-
year average climate state representing the year 2006 forcing (the control simulation) 
is used as a climatology to compare our sensitivity simulations to. A possible caveat 
in our simulations is the absence of a transition zone in which the 30 Wm−2 forcing 
gradually reduces to zero, both spatial (at 70°N) and temporal (at the beginning and 
ending of seasons), rather than instantaneous. Even though such a ‘soft’ transition 
(instead of the ‘hard’ one used here) probably affects the details of the response (e.g. 
atmospheric dynamics), it is unlikely to have a considerable effect on the overall (i.e. 
Arctic mean) temperature response. Hence, we do not expect the first-order results 
to be sensitive to minor changes at the edges. Our ‘hard transition’ forcing has the 
advantage that results are easy to interpret, moreover this simple forcing is also easy 
to apply (in other studies), and therefore facilitates intercomparison of results.

One of the most uncertain issues in terms of a longwave radiation response concerns 
the role of clouds. Among CMIP5 models, Arctic cloud cover varies significantly. Also, 
most CMIP5 models exhibit biases in especially Arctic cloud phase, with excessive 
cloud ice and insufficient cloud water content (English et al., 2011; Pithan et al., 
2016) . This leads to an overestimate of surface cooling in winter and spring, too 
strong surface inversions and biases in TOA radiative fluxes. EC-Earth V2.3 has a 
single prognostic variable for cloud condensate mass with a temperature-driven 
partitioning between cloud liquid and solid mass, and also generally underestimates 
cloud liquid mass in the Arctic. This deficiency may affect the climate response 
resulting from enhanced radiative forcing.
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Abstract

The Arctic region has warmed rapidly over the last decades, and this warming is 
projected to continue. However, the uncertainty in these projections is very large, 
owing to considerable differences between climate models. A clear understanding 
of the sources behind this large uncertainty is currently lacking. Here we use 
state-of-the-art global climate models to show that springtime variability in 
downwelling longwave radiation (DLR) in the pre-industrial climate explains 
about two-thirds of the intermodel spread in projected Arctic warming under a 
high greenhouse gas emission scenario. This variability, which peaks on the land 
masses adjacent to the Arctic ocean, is related to the combined effects of the 
cloud radiative forcing and the albedo response to snowfall, which vary strongly 
among models in these regions. These processes govern interannual variability of 
DLR in the pre-industrial climate, but also largely modulate the climate response 
of DLR, sea ice cover and near-surface temperature. This finding elucidates the 
crucial interaction between clouds and surface radiation within the Arctic climate 
system. As such it provides important insights to reduce the uncertainty in future 
Arctic climate projections that are required to constrain regional mitigation and 
adaptation strategies to Arctic climate change.
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4.1 Introduction

The rapidly evolving Arctic climate has become one of the most prominent features 
of climate change. Recently, Arctic sea ice has receded substantially, and this trend is 
projected to continue (Stroeve et al., 2012; Overland and Wang, 2013) and possibly 
accelerate. The rising Arctic temperature and associated sea ice retreat have extensive 
impacts, for instance on the unique Arctic ecosystem (Grebmeier et al., 2013; Hoegh-
Guldberg and Bruno, 2010), on enhanced methane venting of the East Siberian 
Arctic Shelf (Shakhova et al., 2010) and possibly on mid-latitude weather patterns 
(Overland et al., 2015). On the other hand, economic activities in the Arctic may 
benefit from sea ice retreat, with the opening of the fabled northerly passages being 
the most prominent example (Rojas-Romagosa et al., 2015). Hence, from scientific, 
ecological and economic viewpoints there is a strong need for accurate projections 
of the Arctic climate response over the 21st century. However, climate models in the 
Coupled Model Intercomparison Project phase 5 (CMIP5, Taylor et al., 2011) exhibit 
considerable intermodel differences in projected Arctic warming and sea ice decline. 
For instance, the projected first occurrence of an ice-free Arctic summer spans almost
the entire 21st century (Overland and Wang, 2013).

The intermodel spread in near-term climate trends in September Arctic sea ice is 
governed by the current sea ice state (Massonet et al., 2012) , but on the longer-term 
the mean sea ice state is less relevant (Van der Linden et al., 2014) and regional 
climate feedbacks become more important Boé et al., 2010) . The two climate 
feedbacks that largely govern Arctic warming, and thus the intermodel spread, are 
the lapse-rate feedback and the surface albedo feedback (Pithan and Mauritsen, 
2014). It is, however, difficult to evaluate these climate feedbacks due to the relative 
short record of observations. An alternative way to assess intermodel differences is 
to identify governing physical processes and related climate feedbacks in the current 
climate and relate these to long-term climate projections in a suit of climate model 
simulations (e.g. CMIP5). An example of this approach concerns the link between 
seasonal and long-term changes in the albedo feedback strength over northern 
hemispheric land masses (Hall and Qu, 2006; Qu and Hall, 2014). The lapserate 
feedback is more difficult to evaluate, as it involves various atmospheric processes 
that affect the atmospheric lapse-rate differently (Pithan and Mauritsen, 2014). Most 
of these processes, however, impact downwelling longwave radiation (DLR), making 
this one of the most important variables in Arctic climate change.

DLR is an important driver of intermodel variability of Arctic sea ice (Kapsch et al., 
2013) and Arctic climate change (Graversen and Burtu, 2016; Burt et al., 2015). 
Unfortunately, climate models have difficulty in adequately representing DLR 
climatology, which is therefore a source of large biases in current climate models 
(Pithan et al., 2013). These biases arise primarily from uncertainties in representing 
mixed-phase clouds and low-level stability (Pithan et al., 2017). Furthermore, the 
Arctic climate response is very sensitive to the seasonality of radiative forcing, in 
particular to radiative perturbations in spring (Bintanja and Krikken, 2016). Hence, 
the way models reproduce DLR seasonality, variability and trend are expected to 
have a large impact on their Arctic climate response. Arctic warming and DLR are 
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intrinsically linked through the ice-insulation feedback (Burt et al., 2016). Increasing 
air temperature, water vapor and cloudiness all cause an increase in DLR, which leads 
to reduced sea ice and even higher temperatures, amplifying the original temperature 
increase. This positive feedback mechanism thus implies a strong link between 
projected increases in DLR, Arctic surface warming and sea ice retreat, rendering it 
difficult to infer a causal relation and to determine a specific variable or process as 
the main driver of the uncertainty in the projected DLR. 

4.2 Results

Here we use 31 state-of-the-art CMIP5 climate models (Supplementary Table 4.1) in 
standardized 21st-century simulations (RCP8.5 emission scenario) and pre-industrial 
control simulations (piControl, 200 years per model) to infer the role of DLR in the 
models’ control climate and variability, and in Arctic climate projections. Since we 
focus on the role of DLR, we first assess the relation between Arctic average (> 65°N) 
DLR in the control simulations and the projected increase DLR under RCP8.5 forcing. 
We find that the mean state of pre-industrial DLR has no predictive value for the 
DLR climate response (not shown), but that the pre-industrial interannual variability 
(standard deviation, std) of DLR has (Fig. 4.1). Specifically, May DLR std is a very good 
predictor for the annual climate response in DLR (r = 0.84), near surface temperature 
(TAS, r = 0.82) and sea ice area (SIA, r = 0.77), as it explains a considerable part of 
the intermodel spread.

Figure 4.1: Intermodel correlation of Arctic average pre-industrial (65°N - 90°N) DLR and RCP8.5 climate 
projections. (a) Intermodel correlation of monthly DLR standard deviation (piControl) with projected 
DLR, near surface temperature (TAS) and sea ice area (SIA) responses [annual average, 2090-2100 
minus 2006-2016]. The dotted lines indicate the significance level for p = 0.05. (b) Intermodel correlation 
of May DLR standard deviation and TAS response. The dotted lines indicate the 2 x standard deviation, 
while the numbers indicate individual models listed in Supplementary Table 4.1.
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Figure 4.2: Intermodel correlation of pre-industrial climate variability and RCP8.5 Arctic warming 
projections. The predictand for a, b and c is Arctic warming [annual average, 2090-2100 minus 2006-
2016, 65°N - 90°N] and as predictor pre-industrial gridpoint-wise (a) May DLR std., (b) correlation of May 
clear-sky and cloud-sky DLR and (c) correlation of May cloud-sky DLR and surface net radiation. Only 
significant values (p < 0.05) are plotted.

To infer why models with relatively large variability of May DLR in the pre-industrial 
climate exhibit a relatively strong Arctic climate response, we need to establish the 
source of the DLR variability in the various climate models. The main region where 
the intermodel relation between both is strong is, surprisingly, over the land masses 
surrounding the Arctic ocean (Fig. 4.2a). DLR can be decomposed in the clear-sky 
(DLR

CS
) and cloud-sky part (DLR

CL
), where the former is mainly governed by the lower 

atmospheric temperature and the latter by clouds. To further diagnose the source of 
DLR variability we separately diagnose the variability of DLR

CS
 and of DLR

CL
, as well as 

their mutual correlation since the total variability of DLR can be damped or enhanced, 
depending on whether DLR

CS
 and DLR

CL
 covary. We find no significant correlation when 

we use the variability of either DLR
CS

 or DLR
CL

 as predictor for Arctic warming, but we 
do find significant correlation when we use their mutual correlation as predictor for 
Arctic warming (Fig. 4.2b). Note that the intermodel spread in correlation between 
DLR

CS
 and DLR

CL
 ranges from strongly negative to strongly positive over Siberia. This 

implies that the total variability of DLR depends mostly on whether anomalies in 
cloud cover covary with anomalies in lower atmospheric temperatures, and that this 
relation widely differs among the various climate models.

A possible explanation for the large intermodel spread is the effect of clouds on the 
surface net radiation (Q). Clouds can warm the surface through emitting longwave 
radiation (greenhouse effect), but can also cool the surface by reducing the amount 
of solar radiation that reaches the surface (shading effect) (Fig. 4.3a). The net effect 
of both mechanisms is the surface cloud radiative forcing (CRF), where positive values 
indicate that the greenhouse effect is stronger than the shading effect, resulting 
in a net increase of surface radiation and a warming at the surface. The sign and 
strength of the CRF impacts the correlation of DLR

CL
 and DLR

CS
 as follows: a positive 

anomaly of DLR
CL

 (more clouds) results in an increase of Q when the CRF is positive. 
This results in a higher surface temperature and thus in an increase of DLR

CS
, which 

implies that DLR
CL

 and DLR
CS

 covary when the CRF is positive. The opposite holds 
for a negative CRF. However, though we find a significant correlation between the 
mean CRF and Arctic warming (Supplementary Fig. 4.1), it is still relatively weak 
(~0.5-0.6) and thus only partially explains the intermodel spread in the variability of 
DLR. Another important effect of clouds on Q is not captured in the CRF. Snowfall 
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variability, associated with cloud variability, will affect the surface albedo, thus 
altering reflected shortwave radiation (Fig. 4.3a). This effect can be elucidated by 
through the relation between DLR

CL
 and Q. The correlation between DLR

CL
 and Q in 

the various climate models ranges from strongly negative (clouds cool) to strongly 
positive (clouds warm) over Siberia (not shown), and, more importantly, this relation 
is a good predictor for Arctic warming (Fig. 4.2c). This also explains why spring is 
so important (Fig. 4.1), as for these mechanisms to be active, snowfall has to be 
able to change the surface albedo and sufficient downwelling shortwave radiation is 
required, which typically happens in spring.

Note that the analysis is based on monthly averaged data, even though the proposed
mechanism acts on much shorter time scales (days). Hence, we can identify the results 
of both mechanisms, but not the mechanisms themselves. As a result, we can find 
that more clouds can lead to less snowfall (secondary mechanisms) because the extra 
snowfall is melted due to a positive CRF or because the extra clouds mostly give rain.

Changes in clouds can thus increase or decrease Q, depending on the strength of the
anomalies in CRF (primary effect) and in surface albedo response to snowfall (secondary 
effect). This leads to enhanced or decreased variability of DLR in the control climate, 
but, more importantly, to a strong link to the projected Arctic warming (Fig. 4.3b). If 
we combine both mechanisms as a predictor for Arctic warming, we find a correlation 
of 0.9 (Fig. 4.4), further reinforcing the significance of these mechanisms in the 
Arctic climate response.

Figure 4.3: Overview of the primary and secondary effects of clouds. (a) A schematic of the cloud 
radiative forcing and the albedo response due to snowfall. (b) A process diagram with the primary and 
secondary effect of clouds measured trough respectively the regression coefficient of DLR

CL
 and CRF 

(x-axis), and the regression coefficient of DLR
CL

 and clear-sky upwelling solar radiation (S
CS

↑) (y-axis), 
based on May pre-industrial simulations at grid points where the correlation in Fig. 4.2c is more than 
0.5. Positive values for the primary effect indicate the greenhouse effect is stronger than the shading 
effect of clouds thus more energy at the surface (warming). Positive values for the secondary effects 
indicate more S

CS
↑ thus less energy at the surface (cooling). The colors of the dots indicate the annual 

average Arctic warming . The round markers indicate the CMIP5 climate models, the squares markers 
and associated numbers indicate reanalysis (black) or satellite (gray) derived products [listed in 
Supplementary Table 4.2].
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Having established the mechanisms behind DLR variability in the pre-industrial 
climate, the next question is why models differ in their representation of these 
mechanisms, and why these mechanisms govern Arctic warming. The radiative effect 
of clouds over land is firmly linked to the surface albedo, which depends on the 
amount of snow cover, but also on the albedo of fully snowcovered land. The latter 
varies considerably among climate models (ranging from 0.3 to 0.8), owing mainly 
to differences in treatment of vegetation masking effects (Qu and Hall, 2007; 2014). 
A relatively large contrast in albedo between snow-covered and snow-free surfaces 
yields a stronger surface albedo feedback, because the net solar radiation increase 
will be larger if the albedo contrast is more pronounced. The surface albedo of snow-
covered surfaces is therefore also a good predictor of Arctic warming (Hall and Qu, 
2006; Qu and Hall, 2014. Note that both the albedo of the continents and sea ice 
surface are good predictors for Arctic warming (Supplementary Fig. 4.2). Indeed, 
the primary effect of clouds strongly relates to the average surface albedo (r=0.79, 
Supplementary Fig. 4.3). The cooling effect due to enhanced snowfall (secondary 
effect) is more difficult to physically relate to the model spread. Part of this effect 
relates to variability of surface albedo, as models that exhibit a positive relation 
between DLR

CL
 and S↓

CS
 tend to be fully snowcovered in the regions where we find 

the highest correlation (Fig 4.2c). Hence, in those cases more snowfall will not lead 
to an increase in surface albedo compared to models with partial snow cover in the 
same region.

Figure 4.4: Arctic warming predicted by the primary and secondary effect of clouds. The predicted 
Arctic warming (AW) is based on multiple linear regression using the values of the primary (PE) and 
secondary effect (PE) of clouds from Fig. 4.3b as predictors using the equation: AW=β0+β1⋅PE+β2⋅SE .
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A correct representation of these mechanisms thus appears to be crucial for accurate 
projections of Arctic climate change. Hence, it is imperative to compare the climate 
models to relevant observations. For that reason we computed the strength of the 
primary and secondary effect of clouds in 4 reanalysis and 2 satellite derived products 
(Supplementary Table 4.2). Interestingly, the spread amongst the various reanalysis 
products with respect to the relevant processes is even larger than intermodel 
differences (Fig. 4.3b). This is partly explained by the relative short time period of the 
different reanalysis products, yielding large statistical uncertainties (Supplementary 
Table 4.2). However, it also reflects the inherent differences in cloud and surface 
parameterizations between the different products. Reanalsyis products are a mix of 
observations and model forecasts. In observation-sparse regions such as the Arctic 
the products are heavily influenced by the model forecast and thus its associated 
bias. This is especially true for variables such as surface radiative fluxes, which 
are not assimilated in the reanalysis and therefore heavily influenced by the cloud 
parameterizations (Lindsay et al., 2014). A comparison of the reanalysis and satellite 
products to local observations (Supplementary Table 4.3) reveals that it is difficult to 
point to a single products as being better. Hence, it is hard to draw firm conclusions 
as to what climate models, if any, best represent the relevant mechanisms.

The importance of cloud-surface interactions in the Arctic climate has long been 
recognized (e.g. Curry et al., 1993; Pithan et al., 2013; Kay et al., 2016). However, 
we find that the influence of clouds on surface radiation in current climate models 
is crucial because this explains to a considerable extent the large uncertainty in 
the Arctic climate response. This highlights the importance of more (and long-term) 
observational campaigns of clouds and radiation in the Arctic region. These will 
ultimately lead to more accurate climate projections that are crucial to implement 
mitigation and adaptation measures in the Arctic region.

4.3 Methods

For the multi-model analysis we use the CMIP5 dataset3. From this dataset we select 
the strong forcing scenario (RCP85) to study the Arctic climate response and the 
pre-industrial control runs (piControl) to study the control climate. Annual average 
climate responses are computed by subtracting the average of 2090-2100 from the 
average of 2006-2015. Note that taking 20 or 30 year averages from the beginning 
and end of the 21st century hardly effect the results. piControl climatologies and 
climate variability are based on 200 years of monthly mean data per model. Arctic 
averages are computed using 65°N – 90°N, as this includes the Arctic ocean and 
relevant Arctic regions over land such as Siberia, Northern Canada and Alaska. All 
model output was regridded to a 1x1 grid for ease of comparison. The total sea 
ice area was computed on the original grid. The surface cloud radiative forcing is 
computed by summing longwave (LW − LWclear-sky) and shortwave radiative forcing 
(SW − SWclear-sky), where LW and SW are the net longwave and net shortwave radiation 
at the surface.
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For validation of the climate model results we study the same mechanisms in multiple
satellite and reanalysis products. For the former we use the Surface Radiation Budget 
version 3 (SRB3.0, Cox et al., 2017) (1984-2007) and the NASA Clouds and the Earth’s 
Radiant Energy System (CERES, Wielicki et al., 1998) (2000-2016). For the latter we use 
the Climate Forecast System Reanalysis (CSFR, Saha et al., 2010), ERA-Interim (ERA-I, 
Dee et al., 2011), the Japanese 55-year reanalysis (JRA-55, Kobayashi et al., 2015) 
and the Modern-Era Retrospective Analysis for Research and Application (MERRA2, 
Bosilovich et al., 2016) (Supplementary Table 4.2). All 6 products are regridded to 
the same 1x1 grid for ease of comparison, and are monthly averages. For a validation 
of the quality of the satellite and reanalysis products (Supplementary Table 3) we 
use monthly averaged surface radiative fluxes from four in-situ observations located 
around the Arctic ocean, provided by the CERES–Atmospheric Radiation Measurement 
Program (ARM) Validation Experiment (CAVE). Namely Barrow, Alaska (2000-2010); 
Ny-Alesund, Norway (2000-2015); Alert, Canada (2005-2015); Tiksi, Russia (2010-
2015).
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4.4 Supplementary information

Supplementary Figure 4.1: Intermodel correlation of gridpoint-wise pre-industrial May average CRF and 
annual average Arctic warming [RCP85, 2090-2100 minus 2006-2016, 65°N – 90°N]. Only significant 
values (p < 0.05) are plotted.

Supplementary Figure 4.2: Intermodel correlation of gridpoint-wise pre-industrial May average surface 
albedo and annual average Arctic warming [RCP8.5, 2090-2100 minus 2006-2016, 65°N – 90°N]. Only 
significant values (p < 0.05) are plotted.
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Supplementary Figure 4.3: Relation of the average surface albedo with the primary effect of clouds 
(regr. coef. DLR

CL
 with CRF). Both are averaged over the area where the correlation in Fig. 4.2c is more 

than 0.5.
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Supplementary Table 4.1: List of the climate models used, their Arctic temperature response, DLR 
variability, primary effect (PE, regression coefficient DLRCL with CRF) and secondary effect (SE, 
regression coefficient DLRCL with S↑

CS
), based on 200 years of May pre-industrial simulations. The 

uncertainties represent the bootstrapped (n = 1e4) standard error for DLR and the standard error of 
the regression coefficient for PE and SE. The models are sorted by their Arctic temperature response 
under RCP8.5. The models indicated with a * have no clear-sky radiation variables available.

Supplementary Table 4.2: Same as Supplementary Table 1, but for the satellite (1,2) and reanalysis 
products (3,4,5,6).
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Supplementary Table 4.3: The mean bias, root mean square error (RMSE) and correlation of the 
satellite product and reanalysis products, for May DLR, downwelling shortwave radiation (S↓) and 
upwelling shortwave radiation (S↑) using 4 different observation stations surrounding the Arctic ocean 
of monthly mean data (see methods).
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Abstract

We explore the error and improve the skill of the outcome from dynamical seasonal 
Arctic sea ice reforecasts using different bias correction and ensemble calibration 
methods. These reforecasts consist of a five-member ensemble from 1979 to 
2012 using the general circulation model EC-Earth. The raw model reforecasts 
show large biases in Arctic sea ice area, mainly due to a differently simulated 
seasonal cycle and long term trend compared to observations. This translates very 
quickly (1–3 months) into large biases. We find that (heteroscedastic) extended 
logistic regressions are viable ensemble calibration methods, as the forecast skill 
is improved compared to standard bias correction methods. Analysis of regional 
skill of Arctic sea ice shows that the Northeast Passage and the Kara and Barents 
Sea are most predictable. These results show the importance of reducing model 
error and the potential for ensemble calibration in improving skill of seasonal 
forecasts of Arctic sea ice.
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5.1 Introduction

Arctic sea ice has quickly retreated in recent decades, triggering both a large scientific 
and economic interest. Hence it is key to understand the processes at play and 
adequately predict the sea ice variability and long term trend. A promising method 
herein is the use of fully coupled general circulation models (GCMs) (Guemas et al., 
2016), as the sea ice variability and trend are highly dependent on atmosphere (e.g. 
Kay et al., 2008; Graversen et al., 2010), ocean and sea ice processes (Shimada et al., 
2006; Mahajan et al., 2011), and their interactions (Krikken and Hazeleger, 2015).

A prominent mechanism to provide seasonal predictability is persistence of sea ice 
area (SIA) anomalies up to 2-5 months, whereas thickness anomalies can persist for 
up to 12 months (Blanchard-Wrigglesworth et al., 2011). Other relevant mechanisms 
are winter-to-winter sea surface temperature (SST) memory at the sea ice edge (Bitz 
et al., 2005), summer-to-summer memory through persisting sea ice thickness 
anomalies and melt to freeze-up reemergence due to the icealbedo feedback and 
persistence of SST anomalies (Blanchard-Wrigglesworth et al., 2011; Krikken and 
Hazeleger, 2015), early season melt ponds (Schröder et al., 2014) and varying sea ice 
thickness distributions (Chevallier and Salas-Melia, 2012).

Model studies show high potential for skillful prediction of Arctic sea ice on seasonal 
time scales (Tietsche et al., 2014; Day et al., 2014). Turning the potential predictability 
into actual skillful predictions is, however, still challenging. GCMs have potential skill 
to predict sea ice cover 1-2 years ahead, but actual skill is only significant for 2-5 
months (Guemas et al., 2016). This difference is caused by model and initialization 
errors. Biases in the models cause them to drift from the initialized state to the 
models’ state that include systematic errors, resulting in large forecast errors and 
raising the need for bias correction (Meehl et al., 2013). These uncertainties and the 
chaotic nature of the atmospheric circulation (Serezze and Stroeve, 2015) imply that 
a probabilistic skill assessment of sea ice predictions could be considered.

An often-used bias correction method removes the mean bias of the forecast at each 
forecast time (Smith et al., 2007). However, the large negative trend in Arctic sea ice 
over the last decades, in combination with the underestimation of this trend in GCMs 
(Stroeve et al., 2012), introduces a time dependence of the model drift during the 
validation period (Oldenborgh et al., 2012; Meehl et al., 2013). Further complications 
arise from the fact that the model drift can be dependent on the varying initial state 
due to natural variability (e.g. Kharin et al., 2012; Fučkar et al., 2014), and on the 
initialization month (Day et al., 2014).

Here, we show how skill in Arctic sea ice predictions can be improved by taking into 
account some of the challenges described above. First, we analyze the forecast error 
of SIA in a set of retrospective initialized coupled model forecasts (Guemas et al., 
2014). Second, we use ensemble calibration methods to improve the forecast skill 
and compare it to standard bias correction methods. Though often used in weather 
prediction (e.g. Roulston and Smith, 2003; Raftery et al., 2005; Schmeits and Kok, 
2010), full ensemble calibration has so far not been applied to seasonal forecasts 
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of Arctic sea ice. We use two recently developed methods, namely extended logistic 
regression (ELR) (Wilks, 2009) and heteroscedastic ELR (HELR) (Messner et al., 2014). 
Third, we apply these advanced methods to different regions in the Arctic to assess 
the regional differences in skill.

5.2 Data and Methods

5.2.1 Datasets

The retrospective initialized coupled model forecasts used in this study are described 
in detail by Guemas et al. (2014). They are performed with EC-Earth, v2.3 (Hazeleger 
et al., 2010, 2012). The sea ice component of the model is the Louvain-la-Neuve 
(LIM2) sea ice model (Fichefet and Maqueda, 1997; Goosse and Fichefet, 1999). We 
reforecast sea ice during the 1979-2012 period with start dates each year in May, 
August and November, 5 members for each start date and a simulation time of 12 
months. The atmosphere initial state is obtained from ERA-Interim (Dee et al., 2011). 
The ocean initial states are obtained from the 5-member ORAS4 reanalysis (Balmaseda
et al., 2013) and surface initial conditions from ERA-Interim. The sea ice initial 
conditions come from a sea ice reconstruction performed by forcing the ocean and 
sea ice components of EC-Earth v2.3 with ERA-Interim and nudging the ocean toward 
ORAS4. We use monthly averaged output for the analysis. Hereafter, this experiment 
will be referred to as EC-init, and May-init, Aug-init or Nov-init to further specify the 
initialization month. The ensemble of sea ice forecasts is generally underdispersive 
for all lead times (not shown).

We compare the re-forecasts to sea ice observations from NSIDC (Cavalieri et al., 
1996). To illustrate EC-Earth’s own climatology we use the ensemble mean of the 
historical (1979-2005) and RCP45 (2006-2013) simulations using the CMIP5 protocol, 
hereafter EC-free. The only difference between EC-init and EC-free is the initialization.

5.2.2 Bias correction and ensemble calibration methods

For the statistical post-processing of the sea ice forecasts we use multiple methods. 
The simple bias correction methods remove the (1) bias per lead time, (2) bias per 
lead time and the error in the long term linear trend, and (3) monthly linear trend of 
the bias, i.e. the trend for all Januaries, Februaries etc. The latter method is similar 
to the one used by Kharin et al. (2012). For the ensemble calibration we use ELR 
and HELR. ELR provides full continuous probability distribution forecasts, which is 
defined as, 

5.1
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where p is the conditional probability that y (SIA) falls below a certain threshold q, 
given a vector of predictor variables (X). For the thresholds we use the quantiles qj 
(0.1, 0.2, … , 0.9). μ and σ are respectively the location and scale parameter of the 
logistic function. These are defined as   μ=XT γ   and   σ=1 ,  where X is a vector of 
predictors and γ a vector of coefficients that have to be estimated. Here we use the 
ensemble mean and ensemble standard deviation of SIA as predictors. Note that we 
only include the latter when it is a significant predictor.

The advantages of including the thresholds in the forecast equation are that the 
probabilities for different thresholds are mutually consistent, and that the set of 
regression coefficients only has to be calculated once, instead of per individual 
threshold. A disadvantage of ELR is that the scale parameter is constant. Hence the 
predictors only affect the location parameter (i.e. calibrated ensemble mean). As a 
result, using the ensemble spread as predictor has no effect on the scale parameter 
(i.e. calibrated ensemble spread) of the predictive distribution (Messner, 2014). HELR
alleviates this problem by using the ensemble spread directly as a predictor for the 
dispersion of the predictive distribution through   σ=exp(ZT δ)  ,  where ZT is an 
additional predictor (here ensemble standard deviation) and δ a coefficient that has 
to be estimated.

Because of the strong trend in Arctic sea ice, we linearly detrend the data before 
applying ELR and HELR. Furthermore, we perform the analysis per lead time, and use 
‘leave-one-out’ crossvalidation to be able to assess the results of an independent 
dataset. For ELR and HELR, we use the ‘crch’ R package.

5.2.3 Verification metrics

To evaluate the sea ice forecasts and the impact of the different bias correction 
methods we use the root mean squared error (RMSE), as a measure for the error 
of the ensemble mean. To validate the ensemble forecasts we use the continuous 
ranked probability skill (score) (CRPS(S)). The CRPS is defined as, 

where F(y) is the cumulative distribution function of an ensemble of forecasts, and 
F

0
(y) a cumulative-probability step function that jumps from 0 to 1 where the forecast 

variable y equals or is greater than the observation.

The CRPSS is defined as                     ,      where CRPS
ref

 is the CRPS of a reference

forecast. Here we use the climatological distribution of sea ice as a reference forecast, 
and corrected it for the long term trend so that it represents natural variability up to 
decadal time scales only. The CRPSS ranges from -∞ to 1, where values above (below) 
0 indicate that the model (reference forecast) is better than the reference forecast 
(model). We use the bootstrapping resampling technique (n=10000) to produce the 
5-95% confidence intervals (Wilks, 2011).

5.2
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5.3 Results

5.3.1 Forecast bias

As described in the introduction, GCMs such as EC-Earth drift towards their own 
climatology after initialization. Figure 5.1a shows the long term trend of SIA for EC-
free (gray) and NSIDC (black). Note that the only difference between EC-init and EC-
free is the initialization. Generally, EC-free has a cold bias in the Arctic (Sterl et al., 
2011) and therefore simulates too much sea ice. If we compare the trend of EC-free 
to the observed trend (NSIDC), we see that EC-free underestimates the decline in sea 
ice. This decline is strongest in the last 2 decades, which is not visible in the long
term linear trend.

To illustrate model drift we show the error of Nov-init for each year (ensemble mean 
Novinit - NSDIC) relative to the linear trend of NSIDC (red, Fig. 5.1a). In this way, a 
perfect forecast would match the black line. On average (Fig. 5.1b), we find a positive 
drift, but it must be noted that drift depends strongly per month with a slightly 
negative bias in winter and spring months and a large positive bias in September. 
The drift also strongly varies from year to year. In the first decade there is no clear 
positive or negative drift, but in the last 2 decades the drift is generally positive, 
which brings EC-init closer to EC-free climatology. A possible explanation for the 
increase in positive drift is the increasing difference between NSIDC and EC-free sea 
ice area. From figure 5.1 we can clearly see that a drift correction needs to account 
for time dependency, both in lead time and analysis time.

To be able to better assess the bias of EC-init, we decompose the bias of EC-free 
relative to NSIDC into an average bias (0.94·106 km²) and a bias in the seasonal cycle. 
This is illustrated in figure 5.1c, which shows the average seasonal cycle of EC-free, 
and the average seasonal cycle of EC-free minus the average bias. A striking feature 
is that the SIA minimum of EC-free and EC-init is not in September, but in August. 
To better illustrate this, we show the bias of the seasonal cycle of EC-init and EC-free 
minus the average bias, relative to NSIDC (Fig. 5.1d). We find a strong resemblance 
between EC-init and EC-free minus the average bias. This indicates that the bias 
in the shape of the seasonal cycle in the free model to a large extent determines 
the model’s bias for seasonal forecasts. The figure also shows that already within 
2 months Aug-init shows a strong drift towards the seasonal cycle of EC-free. Also, 
May-init and Nov-init drift back towards the average seasonal cycle of EC-free albeit 
not as strong as Aug-init. Note that the individual linear trends seen in Fig. 5.1a 
are mostly positive because the largest model errors occur from August to October, 
which is at the end of the 1-year forecast for Nov-init resulting in a positive linear 
drift. For May-init and Auginit this is not the case. This results in a strong seasonality 
of the drift as shown in figure 5.1d.

A possible explanation for the large difference between EC-Earth and NSIDC could 
be a too early refreezing of open water in the central Arctic. The average seasonal 
cycle of sea ice extent (SIE) of EC-init has its minimum in September (not shown). This 
implies that around the edges, there is still mainly melting in August and September, 



Skill improvement of dynamical seasonal Arctic sea ice forecasts

79

C
h
ap

te
r 

5

Figure 5.1. (a) Long term linear trend of SIA for EC-free (gray) and NSIDC (black) and the error of all 
individual Nov-init simulations (ensemble-mean) with the NSIDC long term linear trend added (Nov-
init—NSIDC + NSIDC lin .trend) (red, opaque) and the linear trends per forecast (red). (b) The average 
bias and its linear trend together with the average linear trend of NSIDC (black). (c) Average seasonal 
cycle of NSIDC, May-init, Aug-init, Nov-init, EC-free, and EC-free minus the avg. bias (0.94 · 106 km2), 
and (d) the same as (c) but with NSIDC subtracted to get the seasonal anomalies relative to NSDIC.

but that the sea ice concentration already increases within the ice pack, leading to a 
higher total SIA.
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5.3.2 Impact of bias correction on forecast error

As demonstrated in the previous section, the raw forecasts of sea ice area contain 
large biases. We assess the impact of different bias correction methods on the error 
of the forecast ensemble mean, by calculating the RMSE for the different initialization 
months (May, August, November) as a function of lead time (figure 5.2). The raw 
model forecasts of May-init (Fig. 5.2a) show large RMSE, especially in September. 

Figure 5.2: RMSE of SIA as a function of lead time for different bias correction methods for (a) May-init, 
(b) Aug-init, and (c) Nov-init.

In the following months the RMSE drops again to values comparable to those in the 
month of initialization. Note that a SIA error of 1·106 km2 represents roughly 20% of 
the total SIA in September. If we correct for the average bias per lead time (blue line) 
the RMSE in September is already halved. The raw forecasts of Aug-init and Nov-init 
also have large RMSE around September, but the effect of removing the average bias 
is smaller. This illustrates that especially around September there are large systematic 
errors in the model, which, as shown in the previous section, are related to the errors 
in the seasonal cycle of SIA in EC-free. If we also include a long-term trend correction 
on top of correcting the average bias per lead time (green line) the RMSE is reduced 
considerably, mainly in spring and summer. We can further improve the forecasts by 
applying a linear trend correction applied to each calendar month (black line) (Kharin
et al., 2012), as the sea ice minimum (September) is known to have a larger negative 
trend than the sea ice maximum (March) (Stroeve et al., 2012). This method improves 
the forecasts further, mainly for Aug-init. It is striking that at short lead times the raw 
and bias corrected forecasts of Aug-init have a higher RMSE than at longer lead times 
(5-10 months). Apparently, the large bias in EC-free during the late summer and early 
autumn has a substantial impact on Aug-init yielding relatively large RMSE. The fact 
that we do not have a lower RMSE for the bias-corrected data shows that the strong 
bias of EC-free has a substantial impact on the prediction of anomalies. Also note that 
the bias-corrected error does not necessarily decrease for a specific target-month if 
the lead time decreases, as the RMSE of SIA in September and October is somewhat 
lower for May-init compared to Aug-init.
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We find that the RMSE is more dependent on the specific initialization month than on 
lead time. These results agree with findings from Wang et al. (2013). This indicates 
that errors in the mean state strongly affect prediction of anomalies respective to this 
mean state. Overall, SIA in some periods of the year is harder to predict than other 
months, with October showing the highest bias-corrected RMSE for all initialization.

5.3.3 Forecast skill

In this section, we aim to continue to reduce the error in the forecasts using ensemble 
postprocessing methods. Furthermore, we assess its skill, i.e. how good are the 
forecasts relative to reference forecasts.

Here we use a simple statistical reference forecast: damped persistence. This forecast 
starts from the observed anomaly, and then relaxes back to climatological values 
with a decreasing exponential function, where the relaxation time scale is given by 
the decorrelation time scale of SIA. Note that the climatological values include a 
monthly linear trend. Figure 5.3a-c show the RMSE of SIA forecasts based on damped 
persistence, and forecasts obtained from EC-init corrected with both ensemble 
calibration methods (ELR and HELR) and with the monthly linear trend removal (mon.
tr.). All forecasts in figure 5.3 are verified using ‘leave-one-out’ cross-validation. Both
ELR and HELR closely match mon.tr. at shorter lead times, but at longer lead times 
there is a substantial reduction of the RMSE for May-init and Nov-init. Thus, ELR and 
HELR also improve the ensemble mean of the forecasts. However, all forecasts have 
difficulty beating damped persistence, especially Aug-init. ELR and HELR for May-
init outperform damped persistence for the months June to October, but for the 
other months and initializations ELR and HELR closely match damped persistence. 
It is clear, however, that calibration improves the forecasts relative to standard bias 
correction (mon.tr.).
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Figure 5.3: (a–c) The RMSE of SIA for the damped persistence forecasts,  monthly trend corrected, 
and ELR and HELR initializations. (d–f) The  CRPSS of monthly trend corrected and ELR and HELR 
initializations. The confidence interval is the 5–95% confidence interval of the bootstrap distribution.

To assess the skill of the probabilistic forecast we use the CRPSS, which is well suited 
for verification of continuous probabilistic forecasts (e.g. Wilks, 2011). Here we use 
the climatological distribution as a reference forecast instead of damped persistence, 
as the latter is a deterministic forecast, hence not well suited as a reference for the 
CRPSS. For all initialization months (Fig. 5.3df) we find some skill (CRPSS>0) up to 2 
to 5 months. Again, it proves difficult to outperform a simple reference forecast. The 
higher CRPSS of (H)ELR relative to mon.tr. is noteworthy, also at longer lead times, 
albeit with negative CRPSS. However, we do not find a distinction between ELR and 
HELR. The calibrated ensemble spread is more variable for HELR (not shown), as 
expected, but does not have a clear effect on the CRPSS. To illustrate the improved 
skill due to a better ensemble spread, we show the CRPSS of the ensemble mean 
of mon.tr. in combination with the ensemble spread of HELR (figure 5.3d-f, ‘mon.
tr.+HELR’). The forecast is slightly improved, relative to mon.tr., especially for Nov-
init. Overall, the effect of a corrected ensemble-mean is larger.

There is a large uncertainty in the skill as indicated by the spread determined through
bootstrapping. We have used a small ensemble size and covered a relatively short 
forecast period (1979-2012) which makes it difficult to acquire statistically significant 
results. Hence, these results mainly show the potential of using these methods in 
seasonal forecasting of Arctic sea ice.
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5.3.4 Regional forecast skill

Next, we assess the skill of separately computed HELR-forecasts for the regional seas 
of the Arctic (figure 5.4, top right) and for the Northeast and Northwest passage. 
The CRPSS of the total SIA forecasts is shown in the lowest row. For May-init we find 
that most regional seas display higher skill in the first month than the total Arctic, 
except for the Greenland Sea and the Canadian Archipelago. The Kara and Barents 
Sea also show a higher skill at longer lead times than the total Arctic. Interestingly, 
the Northeast passage shows skillful forecasts up to 6 months, with a higher CRPSS 
than the total Arctic by approximately 0.1 to 0.2. Regional skill for Aug-init is also 
higher than the total Arctic for some seas (Laptev, East Siberian). Nov-init has overall 
higher skill than Aug-init, especially in the first months. For both passages we find 
significant skill in February, but it is not clear where this originates from as it cannot 
be seen in the regional seas individually. The difference in skill between the mon.
tr., ELR and HELR is comparable to as found in Fig. 3d-f (not shown). We speculate 
that the higher skill scores at regional scales are due to different processes at play 
for each region defined here. The sea ice on the Atlantic side of the Arctic basin is 
influenced by modes of climate variability, e.g. those associated with the Atlantic 
ocean circulation (Mahajan et al., 2011.), which is predictable to some extent 
(Hazeleger et al., 2012) and can therefore be a source of skill, mostly in the winter 
months. Mechanisms that can offer skill during the summer months for the Laptev, 
East Siberian, Kara and Barents seas are early spring atmospheric moisture transport 
(Kapsch et al., 2013) and for a large part of the Arctic basin the melt pond fraction in 
May (Schröder et al., 2014). This might explain the higher skill found in the Kara and 
Barents seas and the Northeast passage, though a more detailed analysis is needed 
to provide definite answers which is outside of the scope of this study.

5.4 Conclusions and discussion

In this paper, we have analyzed a set of seasonal predictions of Arctic sea ice 
consisting of 5-member ensemble retrospective forecasts using the fully coupled 
EC-Earth general circulation model, initialized from estimates of observed data. The 
raw model forecasts contain large biases, especially during summer months. This is 
mainly caused by the large difference between the average simulated seasonal cycle 
in EC-Earth and the observed seasonal cycle. This translates directly into the errors in 
the forecasts, which drift back towards their own climatological seasonal cycle within 
months, especially in August. By correcting for the error in the average seasonal 
cycle, the errors in the forecast can already be reduced. Further errors are caused by 
a difference in long term trend between the observed sea ice, and the uninitialized 
EC-Earth simulation. Correcting for this difference in long term trend in the dynamical 
forecasts reduces the errors substantially, where correcting for the monthly linear 
trend reduces the root mean square error most. In addition, we investigated more 
advanced calibration methods. We found that logistic regression methods are viable 
ensemble calibration methods, and improve forecasts compared to standard bias 
correction methods. We found no clear distinction in skill between extended logistic 
regression and heteroscedastic logistic regression methods. The increase in skill 
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arose mainly due to the correction of the ensemble-mean, and to a lesser extent due 
to correction of the ensemble spread. 

Concerning the different initialization months, we have found that forecasts starting 
in May have skill for longer lead times (CRPSS > 0 up to 5-6 months lead time) than 
forecasts starting in August (2-3 months) and November (2-3 months), with trend-
corrected climatology as reference. This partly contrasts with results of Day et al. 
(2014), who showed that May forecasts lose skill faster than forecasts starting in 
January or July. Although we can only compare to forecasts initialized in August and 
November, it seems that dependence on initialization month of the forecasts skill 
strongly depends on the forecast system. The large model mean state errors during 
late summer could also explain the rapid increase in RMSE for Aug-init relative to 
Nov-init.

Figure 5.4: (top right) The regional seas of the Arctic, provided by NSIDC, used in the computation of 
the regional CRPSS. The Northwest and Northeast passages are constructed by only accounting for the 
different seas the routes pass through, indicated by the black lines. Further plots show the SIA CRPSS of 
HELR for May-init, Aug-init, and Nov-init for the different lead times. The dots indicate significant skill 
(5% bootstrapped confidence level > 0), and gray pixels indicate months with no sea ice.
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We found distinct differences in skill of forecasts of sea ice area in different Arctic 
seas. Sea ice area in the Northeast passage and the Kara and Barents seas are more 
predictable compared to other regional seas, in particular for forecasts initialized in 
May and November. The non-linear characteristics of the system lead to additional 
errors that cannot be corrected through bias correction and ensemble calibration. 
Hence, to get skillful predictions of Arctic sea ice it is key to reduce model bias, both 
for seasonal forecasting and future climate projections. Our results indicate that the 
emphasis in model improvements should be on the seasonal cycle and long term 
trend. For future research a larger ensemble and more start dates are needed to 
reduce the sampling error and to better assess the sensitivity to initialization month.

Overall, we showed that ensemble calibration improves seasonal forecasts of Arctic 
sea ice. The gap between potential and real predictability is still large, but by reducing 
model biases and improved knowledge and initialization of the observed state of the 
Arctic there is a high potential to reduce this gap in the coming years.
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The primary aim of this thesis is to assess the predictability of the Arctic climate, with 
an emphasis on its sea ice cover, on timescales ranging from monthly to centennial. 
This because of the large need for better predictions of monthly-to-annual Arctic sea 
ice cover due to the increase of economical activities in the region, and to increase 
the accuracy of climate projections of the Arctic climate in order to improve climate 
adaptation and mitigation strategies. In this synthesis we reflect upon the questions 
raised in the introduction and outline, the results from the previous chapters and put 
the results in a broader perspective.

6.1 Understanding seasonal predictability  
of the Arctic climate

Predictability on seasonal-to-annual time scales for any variable is only possible if it 
either has strong enough persistence, a strong enough trend or physical processes 
with seasonal time scales and longer that are resolved in the forecasting model. 
However, this potential can only be realized if the model can be initialized correctly. 
Here we will summarize and discuss the findings from chapter 2 and 5, which aim at 
a better understanding of the processes that provide predictability for Arctic sea ice, 
and to assess if this potential can be translated to skillful predictions.

a. What are the physical mechanisms in current climate models that can provide 
predictability on seasonal to yearly time scales?

For Arctic sea ice, we find that persistence is the primary source of predictability 
on time scales of 2-5 months in a suit of CMIP5 climate models. There are several 
physical mechanisms that extend the predictably beyond persistence. Sea ice 
anomalies during the melting season correlate with anomalies during the refreeze 
season. In the case of less sea ice this can be explained through higher sea surface 
temperatures (SST’s) due to more solar radiation, which persist up to the freeze-
up season, where the higher SST’s prevent the sea ice from forming as quickly as 
normal. These results correspond to the results found by Blanchard-Wrigglesworth 
et al. (2010) and Day et al. (2014), who shows that these are robust mechanisms in 
current climate models.

We found a delayed atmospheric response on spring sea ice anomalies. This was 
previously documented in an observational study by Kay and Gettelman (2009) 
over the 2006–08 period. They related this lack of response in summer to a weaker 
ocean–atmosphere coupling due to a stronger atmospheric stability and weaker 
air–sea temperature gradients. In early fall, the lower static stability and stronger 
air–sea temperature gradients result in stronger turbulent fluxes, which are further 
increased by the SST anomaly. The enhanced turbulent fluxes result in a higher cloud 
fraction, which in turn enhances downwelling longwave radiation and slows the ice 
growth. Because of the delayed response, the cloud radiative effect on the seasonal 
sea ice-albedo effect results in a small net warming.
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More information on the future sea ice state can be found when looking at individual 
surface radiation components. Spring upward shortwave radiation is a better predictor 
for September sea ice area than spring sea ice itself, because of the information it 
contains on the surface albedo where the sea ice edge will be in September. Spring 
albedo of sea ice is generally a measure of the melt-pond fraction (Schroder et al., 
2014), and henceforth the melting rate at the region of the September sea ice edge. 
Further, a decrease of spring downward shortwave radiation is found when there 
is less sea ice. This has previously been attributed to the generally positive cloud 
radiative forcing over the Arctic (Francis et al., 2005). Our analysis reveals, however, 
that for a negative sea ice anomaly this is primarily due to a decrease of multiple 
reflection of shortwave radiation resulting from a decreasing surface albedo. Our 
results therefore suggest that under cloudy conditions, the direct effect of the sea 
ice-albedo feedback (i.e., the enhanced absorbed solar radiation at the surface) is 
compensated up to 50% by reduced multiple reflection of downwelling solar radiation.

Note that all the results are the average over 15 different climate models, in order 
to yield robust results. However, as shown in chapter 5, models may strongly differ 
in certain aspects such as the cloud radiative forcing or the strength of the multiple 
reflection component. Though not part of this analysis, it is very likely that individual 
model results can strongly differ from the modelmean, which makes the potential for 
seasonal forecast skill also highly model dependent. Further, the focus of our study 
was on predictability of short-term natural variability. This was done by removing 
the 11-year running mean from the model data. The longer term natural variability 
greatly varies among climate models (Day et al., 2014). Models with more long-term 
variability will have increased persistence and possibly skillful forecast for up to 
multiple years, depending on the predictability of the long-term natural variability 
and whether they correctly simulate the long-term variability.

b. How well can a climate model re-forecast the Arctic sea ice on seasonal to yearly 
time-scales?

In chapter 5 we have analyzed a set of seasonal predictions of Arctic sea ice consisting 
of fivemember ensemble retrospective forecasts using the fully coupled EC-Earth 
general circulation model, initialized from estimates of observed data.

The raw model forecasts contain large biases, especially during summer months. 
This is mainly caused by the large difference between the average simulated seasonal 
cycle in EC-Earth and the observed seasonal cycle. This translates directly into the 
errors in the forecasts, which drift back toward their own climatological seasonal 
cycle within months, especially in August. By correcting for the error in the average 
seasonal cycle, the errors in the forecast can already be reduced substantially. 
Further errors lie in the correct representation in the long term trend in the dynamical 
forecasts, which also differ for the individual months.

In addition, we investigated more advanced calibration methods. We found that logistic 
regression methods are viable ensemble calibration methods and improve forecasts 
compared to standard bias correction methods. We found no clear distinction in 
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skill between extended logistic regression and heteroscedastic logistic regression 
methods. The increase in skill arose mainly due to the correction of the ensemble-
mean and to a lesser extent due to correction of the ensemble spread.

Concerning the different initialization months, we have found that forecasts 
starting in May have skill for longer lead times than forecasts starting in August and 
November. This partly contrasts with results of Day et al. (2014), who showed that 
May forecasts lose skill faster than forecasts starting in January or July. Although 
we can only compare to forecasts initialized in August and November, it seems that 
dependence on initialization month of the forecasts skill strongly depends on the 
forecast system. The large model mean state errors during late summer could also 
explain the rapid increase in RMSE for initializations in August relative to November.
We found distinct differences in skill of forecasts of sea ice area in different Arctic 
seas. Sea ice area in the Northeast Passage and the Kara and Barents seas is more 
predictable compared to other regional seas, in particular for forecasts initialized in 
May and November. The nonlinear characteristics of the system lead to additional 
errors that cannot be corrected through bias correction and ensemble calibration. 
Hence, to get skillful predictions of Arctic sea ice it is key to reduce model bias, both 
for seasonal forecasting and future climate projections. Our results indicate that the 
emphasis in model improvements should be on the seasonal cycle and long term 
trend. For future research a larger ensemble and more start dates are needed to 
reduce the sampling error and to better assess the sensitivity to initialization month.

Overall, we have shown that ensemble calibration improves seasonal forecasts of 
Arctic sea ice. The gap between potential and real predictability is still large, but by 
reducing model biases and improved knowledge and initialization of the observed 
state of the Arctic there is a high potential to reduce this gap in the coming years. 
Note however, that especially at shorter time scales, it is still difficult to outperform 
a relative simple statistical model.

An important aspect is missing in this analysis, namely the quality of the initialisation.
Because the data was provided as monthly means, it was impossible to determine 
whether the error in the first month was due to initialisation error or due to model drift. 
Moreover, sea ice thickness information was not incorporated in the initialisation, 
whilst the thickness anomalies are important predictors for the sea ice pack later in 
the season (Chevallier and Salas-Melia, 2012). First results in using sea ice thickness 
information in initialisation of Arctic sea ice forecasting are promising (Collow et al., 
2015; Dirkson et al., 2017) and can thus be used to further bridge the gap between
potential and real predictability.

Initialized climate models simulations can contain a lot information on the sources of 
the model bias. However, the bias developed so quickly that with only monthly data 
it was impossible to separate cause and effect in the responses of multiple variables. 
Hence, for future research it would be very interesting to perform a similar analysis 
on daily data in order to better understand the formation of the model bias.
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6.2 Understanding long-term predictability  
of the Arctic climate

The Arctic climate is a complex dynamical system, with feedback mechanisms active 
over different parts of the year. Climate models struggle to capture the complex 
radiative and cloud microphysical processes that are key in adequately simulating 
the Arctic climate (e.g. Pithan et al., 2016), resulting in large uncertainties in Arctic 
climate projections (IPCC). Here we will summarize and discuss the findings of chapter 
3 and 4, which aim at a better understanding of key physical mechanisms that drive 
Arctic climate change on longer term (i.e. beyond annual time scale)

a. How sensitive is the Arctic climate to the seasonality of a radiative forcing?

As shown in chapter 2, the Arctic responds differently to radiative forcings over 
different parts of the year, caused by the strong seasonality of solar radiation and 
energy storage and release in the multiple components of the Arctic climate. This 
raises the question how sensitive the Arctic is to the seasonality of a radiative forcing.

Hence, in chapter 3 we tested the sensitivity of the Arctic climate to the seasonality 
of a radiative forcing. For this we used the global climate model EC-Earth in idealized 
climate forcing simulations to quantify the effect of seasonality in radiative forcing 
on the magnitude and pattern of seasonal Arctic warming. To infer the climate 
response throughout the year resulting from forcings in different seasons, an artificial 
downwelling longwave radiative (DLR) forcing of 30 Wm-2 was applied to the surface 
north of 700N for each season separately.

While the future climate response in near-surface temperature is maximum in 
winter, the seasonal forcing simulations suggest that the forcing season causing the 
strongest annual temperature response is spring, and to a somewhat lesser degree 
summer. Also, summer forcing causes a much larger response in autumn and winter 
than in summer itself, whilst winter forcing is mostly important for the wintertime 
response. This demonstrates that the near-surface Arctic temperature response to 
any climate forcing depends greatly on the season in which the forcing occurs, with 
the spring season being most effective. Similar results are found for the Arctic sea ice
cover response. The explanation for the strong response caused by spring forcing is 
the following: the extra energy in spring thins the sea ice and/or creates melt ponds, 
lowering the surface albedo and allowing spring and summer insolation to more 
effectively warm the surface and melt away sea ice. The ice-albedo feedback thus 
strongly amplifies the response only if the forcing occurs in the season in which the 
seasonal ice-albedo feedback is mainly active (spring/summer) and the additional 
energy is used to melt ice. This leads to enhanced absorption of shortwave radiation 
of the surface, increased sea surface temperatures, earlier onset of melt and an 
associated decline in sea ice cover. This amplified response for spring forcing is 
effectively carried over to subsequent seasons by storage of heat in the open Arctic 
Ocean, likely amplified by water vapor and cloud feedbacks (Chapter 2), leading to 
delayed freeze-up and thinner sea ice.
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The mechanism to invoke a surface air temperature response in seasons other than 
the forcing season relates to ocean storage and release of energy, which is the same 
mechanism that causes the reemergence of sea ice anomalies during the melt-up 
season as shown in chapter 2. These results imply that whilst the Arctic warming is 
mostly confined to the winter months, the causes of this warming could be related to 
processes during spring and summer months. Ongoing sea ice decline is expected to 
spark human activities in the Arctic especially in the summer months (e.g., shipping,
fishery, mining, tourism), which will lead to increased emissions of radiatively-
active constituents such as soot. By lowering the sea ice albedo, the additional soot 
may induce a net radiative surface forcing during summer. This finding suggests 
that the large intermodel differences in simulated Arctic (winter) warming can to a 
considerable degree be attributed to model uncertainties in Arctic radiative fluxes, 
which peak in summer.

b. What is the role of downwelling longwave radiation in the intermodel spread in 
future climate projections of Arctic climate change?

Though the results from chapter 3 highlight the sensitivity of the Arctic climate to 
spring forcing, it is difficult to quantify the importance of this mechanism in real 
climate projections from our sensitivity analysis. Hence, in chapter 4 we use 31 CMIP5 
climate models in a high greenhouse gas emission scenario and pre-industrial control 
simulations to infer the role of DLR in the models’ control climate and variability, and 
in Arctic climate projections.

We found that springtime variability in DLR in the pre-industrial climate explains 
about two-thirds of the intermodel spread in projected Arctic warming under a 
high greenhouse gas emission scenario. This variability, which peaks on the land 
masses adjacent to the Arctic ocean, is related to the combined effects of the cloud 
radiative forcing and the albedo response to snowfall, which vary strongly among 
models in these regions. These processes govern interannual variability of DLR in 
the pre-industrial climate, but also largely modulate the climate response of DLR, 
sea ice cover and near-surface temperature. When both processes are combined as a 
predictor for Arctic warming, we can explain up to ~80% of the intermodel spread in 
projected Arctic warming.

The cloud radiative forcing is strongly related to the snow covered surface albedo. 
Intermodel spread herein has previously been attributed to different treatment of 
vegetation masking effects (Hall and Qu, 2006; Qu and Hall, 2014). They found that 
a higher the snow-covered albedo yields a stronger surface albedo feedback, hence 
a stronger climate response. Hence, this can explain why the cloud radiative forcing 
explains part of the uncertainty in Arctic climate projections. The cooling effect 
due to enhanced snowfall is more difficult to physically relate to the model spread. 
Hence, it is still unclear why this process appears to be an important predictor for the 
models’ Arctic climate response.

When comparing the strength of the relevant processes in various reanalysis and 
satellite derived products, we found that the spread herein was even larger than found 
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in the climate models. It is therefore currently not yet possible to get an observational 
estimate of the strength of the relevant processes. This highlights the importance of 
more (and long-term) observational campaigns of clouds in order to improve cloud-
radiative and microphysics parameterizations in climate models.

This finding elucidates a crucial interaction between clouds and surface radiation 
within the Arctic climate system. As such it provides important insights to reduce the 
uncertainty in future Arctic climate projections that are required to constrain regional 
mitigation and adaptation strategies to Arctic climate change.

A caveat in this analysis is that the proposed mechanisms act on time-scales of hours 
or days, whilst the strength of the mechanisms is computed from monthly mean 
data. Hence, we cannot identify the mechanism itself, but rather the combined effect 
of both mechanisms. This implies an inherent uncertainty of our findings. Further 
research should therefore focus on daily model data rather than monthly mean data, 
which are currently not available in the CMIP5 dataset.

It must be noted that other research also points to an important role of ocean 
dynamics in explaining the uncertainty in Arctic climate projections, more specifically 
the northward Atlantic ocean heat transport (Hodson et al., 2013; Mahlstein and 
Knutti, 2011).

6.3 Outlook

Whilst the Arctic sea ice is rapidly retreating, the research on the Arctic climate is 
rapidly growing. This thesis builds on, and contributes to, a vast body of research 
on the Arctic climate. In this outlook we focus on possibilities to expand this body of 
research further, partly based on the research presented in this thesis.

The work in chapter 5, but also many other studies on seasonal predictability of 
Artic sea ice (e.g. Bushik et al., 2017; Dirkson et al., 2016), have shown that the 
skill of Arctic sea ice predictions is improving and that there is still lots of room to 
improve the forecasts. However, especially at longer lead times, the uncertainties 
of the forecasts will remain large. Hence, for stakeholders in the Arctic region it is 
difficult to assess how useful these forecasts are for their operations. The needs 
for specific stakeholders will vary considerably because of e.g. different planning 
horizons, areas of interest and sensitivity to wrong forecasts as for some stakeholders 
wrong forecasts could have catastrophic consequences. Hence, future research 
should focus on analysing the potential economic value of Arctic sea ice forecasts 
for the specific stakeholders in the region. This can be done in the same manner as 
done for economic value of weather forecasts, namely through cost / loss analysis 
for the specific stakeholders, and combine this with the probabilistic forecasts to 
compute the potential economic value (Richardson, 2000; Palmer et al., 2006). This 
approach can provide tailored information about the value of Arctic sea ice forecasts 
for  stakeholders.
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The limited observations in the Arctic region, both spatially as temporally, is an 
important obstacle for almost any research on the Arctic climate. The Arctic is a 
region home to substantial (multi-)decadal variability (e.g. Boer and Lambert, 2008; 
van der Linden et al., 2017). The relative short observational satellite record makes 
it difficult to isolate natural variability from externally forced climate change. This 
renders e.g. assessing the bias in the long term trend of Arctic sea ice in EC-Earth, as 
done in chapter 5, very difficult. Also, there remain large observational uncertainties
of the ice pack because of difficulties in e.g. separating melt ponds from open water 
(e.g. Notz et al., 2013). Only in recent times can sea ice thickness be measured trough 
satellite remote sensing techniques (Laxon et al., 2013). However, these also contain 
large uncertainties due to difficulties in correctly measuring the sea ice freeboard 
because of the influence of snow thickness variations (e.g. Alexandrov et al., 2010). 
Because ensemble forecasts of Arctic sea ice sample the observational uncertainty, 
this automatically translates into larger uncertainties, thus lower skill, in seasonal 
forecasts (Bunzel et al., 2016). Hence, one of the most important aspects for the future 
of Arct climate change research is the continuation of satellite observations in the 
Arctic region, and to expand on measurement campaigns for detailed measurements 
of the Arctic climate. 

With the Year of Polar Predictability (YOPP) there is already currently a period of 
intensive observing, modeling, prediction and verification which will hopefully 
increase our knowledge on the complex Arctic climate. It will also provide possibilities 
for more use of high-resolution models such as large eddy simulation (LES) and Direct 
Numerical Simulations (DNS), because the observations can be used to to set up 
multiple case studies. LES and DNS can aid in further understanding the complex 
processes, such as Arctic clouds (Pithan and Mauritsen, 2014), and use it to improve 
parameterizations of the large scale climate models (e.g. Ovchinnikov et al., 2014). 
This can lead to a better understanding of the mechanisms described in chapter 5 
that, to a large extent, control Arctic climate model projections.

An important assumption in statistical calculations is that the sample on which a 
calculation is performed is taken from, in our case, independent climate models. 
We make this assumption in chapter 2 by taking the ensemble mean with equal 
weights to all models, and in chapter 4 by treating all models equal. However, the 
multi-model ensemble in both chapter 2 and 4 contain e.g. different versions of the 
same model, multiple models that use the either the same ocean model and or the 
same atmospheric model, or even both (Knutti et al., 2013). Hence, the models in 
a multimodel ensemble are not independent from each other. The actual degrees 
of freedom, i.e. sample size, is thus smaller than the number of models used. This 
implies that the actual sampling of the uncertainty of future climate projection due to 
model error is relatively small. Furthermore, the ensemble of models is constructed 
by modeling groups that all try to construct the best model possible, and not in an 
organized setting in order to get the best possible sampling of model errors. This 
most likely leads to an underestimation of the real climate uncertainty due to model 
error (Carslaw et al., 2018). Hence, as also advocated by Carslaw et al. (2018), climate 
model development should not only focus on creating the best model possible, but 
also on creating an ensemble of model versions that best sample the model error. 
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Just as in weather forecasting in which a significant part of the model development is 
devoted to the ensemble generation. This would provide a much improved estimate 
of the uncertainty in climate projections, and a wealth of information on model 
sensitivities to perturbation in model parameters.

This research has aided in a better understanding of processes that provide 
predictability on seasonal to centennial time scales. This will ultimately lead to better 
navigability of the treacherous Arctic ocean and adjacent seas, and better constraints 
of climate model projections of the Arctic climate which can be used by policy makers 
to make improved mitigation and adaptation strategies.
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