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Abstract 

 

Crop production by smallholder farmers in Malawi is characterized by cultivation of 

maize on a large share of the agricultural land with limited nutrient input. There is 

need for productive farming systems that are better adapted to a changing climate, 

and that produce more diverse food to achieve both food and nutrition security. The 

aim of this thesis was to explore options for sustainable intensification and 

diversification of maize-based farming systems in central Malawi with legumes and 

sweet potato. 

 

Farmers participating in on-farm soybean agronomy trials ranked eight technologies 

in descending order of preference as 1. Early planting 2. Plant population 3. Variety 

choice 4. Compost manure 5. Weeding 6. Inoculant 7. Fertilizer and 8. Spraying. A 

combination of inoculation, inorganic fertilizer (10 N, 8 P, 20 K in kg ha-1), and 6 t 

ha-1 compost manure increased yields from 0.86 t ha-1 under farmers’ practice to 1.56 

t ha-1 and resulted in average profits of 222 USD ha-1. Increased plant populations 

and biocide spraying also increased yields. Low investment costs make inoculants, 

compost manure and increased plant populations interesting options, unlike inorganic 

fertiliser.  

 

Locally sourced soybean varieties obtained a larger %Ndfa (65%) than the 

‘improved’ variety Nasoko (53%). The %Ndfa was positively associated with soil 

sand content, sowing date, plant population and biomass accumulation. Quantities of 

N2 fixed differed between regions and years, and was enhanced by applying inoculant 

and fertiliser together, leading to more biomass accumulation and larger grain yields. 

Soil available P and exchangeable K contents also increased the total amount of N2 

fixed. Average yield in continuous maize was 2.5 t ha-1, while maize after soybean 

produced 3.5 t ha-1. Fields of soybean and maize that received adequate nutrient 

inputs and good management to ensure good yields benefitted most in terms of 

quantities of N2 fixed by the legume and the yield response of the following maize 

crop.  

 

Evaluation of six orange-fleshed sweet potato varieties on 221 farmers’ fields showed 

large variability across fields. The average attainable fresh root yield ranged from    

18 t ha-1 for variety Zondeni to 32 t ha-1 for Mathuthu, against actual yields of 5 to 9 

t ha-1. Elevation, planting date, rainfall and crop establishment could explain only 28 

percent of the average yield gap. Varieties differed in average yields and taste 

preferences. Timely planting was crucial to attain good root yields by making better 

use of the available rainfall. Kaphulira was most affected by weevils and weevil 

control is required for market-oriented producers. Male host farmers received better 
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quality cuttings and planted in better soil moisture conditions, resulting in better 

establishment and vine yields.  

 

In multi-location input trials excellent mean trial yields of 5.0 t ha-1 for maize, 3.4 t 

ha-1 for soybean, 2.5 t ha-1 for groundnuts and 13.2 t ha-1 for sweet potato were 

achieved. Responses to various combinations of inorganic fertilizer and lime were 

highly variable, but applications enhanced yields in all crops. Although maize 

production and investments in maize fertilizer were not as profitable as the other 

crops, fertilizer application to maize gave the best returns of food per amount of 

money invested. Investments in fertiliser and lime in soybean was more worthwhile 

than in groundnut, though the financial benefits were somewhat hidden by high 

groundnut prices.  

 

While there is potential to derive better financial returns from diversification and 

intensification with legumes and sweet potato, farmers prioritize maize in terms of 

land area and resource allocation. The participatory research approach demonstrated 

that there is a wide range of technologies with different levels of human and financial 

investment costs that smallholder farmers can adopt to enhance yields and profits. 

There is large variability between farmers in the potential for adoption and the 

benefits that can be derived from sustainable intensification. Approaches to enhance 

crop diversification and intensification should address the main constraints of lack of 

awareness of the benefits of nutrient application to legumes and sweet potato, 

unstable markets, and access to inputs and credit.  
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1.1 Background 

Malawi is a landlocked country in sub-Saharan Africa. Of its population of 18.6 million, 65% 

are below the age of 24 and the population is expected to increase up to 41.7 million by 2050 

(UN, 2017). Eighty-five percent of the population lives in the rural areas of whom 94 percent 

engage in agricultural activities (NSO, 2012). The average smallholder landholding size has 

reduced from 1.5 hectares in 1968 to 0.8 hectares in 2011 with more than 70% of current 

land cultivated with maize (IFAD, 2011; Nalivata et al., 2017; NSO, 2012). Most rural 

farmers depend on the single rainy season from December to March as only 0.5 percent of 

the fields are irrigated (NSO, 2012). Limited crop diversity and overdependence on maize 

can result in diets that are lacking important vitamins and minerals (Haddad et al., 2016). 

The prevalence of micronutrient deficiencies such as iron, iodine and vitamin A are a major 

health concern to children and pregnant women caused by limited dietary diversity (WHO, 

2018). Twenty-six percent of the population in Malawi is undernourished, 42% of children 

are stunted and the prevalence of anaemia of women of reproductive age is 34% (FAO et al., 

2017). To achieve the second sustainable development goal (SDG2) to end hunger, achieve 

food security and improved nutrition and promote sustainable agriculture by 2030, we need 

to ‘rethink how we grow, share and consume our food’ (UN, 2018).  

 

The average maize yield achieved by smallholders in Malawi is only 2 t ha-1 (IFDC, 2013). 

While fallow areas have largely disappeared due to expanding arable farming, cropping 

intensity is still low (Binswanger-Mkhize and Savastano, 2017). If the overdependence on 

low-input maize cultivation is not addressed, continued soil nutrient depletion may 

eventually result in severe soil degradation (Tittonell and Giller, 2013). Sustainable 

intensification (SI), is often considered a possible avenue to enhance productivity to meet the 

future demand for food, fuel and fibre while protecting environmental services and increasing 

resilience to shocks (Snapp et al., 2018; Vanlauwe et al., 2014). While there is limited general 

consensus on what SI exactly entails (Petersen and Snapp, 2015), several options are 

promoted. These include integrated nutrient management with mineral and organic 

fertilizers, agroforestry, green manures, conservation agriculture and diversification with 

legumes (Droppelmann et al., 2017). The scope of SI can be more broadly defined to include 

social and human conditions such as gender dynamics and farmer preferences (Snapp et al., 

2018). It is in this context that this thesis explores several options to enhance productivity 

and to diversify cropping systems in Malawi. 

 

1.2 Crop diversification with legumes and sweet potato 

Crop diversification forms an important part of the National Agricultural Policy of Malawi 

(MAIWD, 2016a). It can benefit the overall farming system productivity, enhance resilience 

to climate variability and change, and improve food and nutrition security (Bezner Kerr et 

al., 2007; Kankwamba et al., 2012). There is a positive association between food crop 
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production diversification and both dietary diversity and households’ access to 

micronutrients in Malawi (Mazunda et al., 2018). In the context of maize based smallholder 

farming systems, increasing the role of legumes such as soybean (Glycine max (L.) Merr.) 

and groundnuts (Arachis hypogaea L.) is considered as an important component of 

sustainable intensification (Mhango et al., 2013). For every ton of shoot dry matter produced, 

legumes fix on average 30 to 40 kg of freely available atmospheric nitrogen (Peoples et al., 

2009). This can contribute to soil fertility especially when crop residues are incorporated in 

the soil (Giller, 2001; Sanginga, 2003; Sisworo et al., 1990). In southern Africa, legumes 

enhance the following cereal yields by an average of 42 percent due to the rotational benefits 

(Franke et al., 2018). In terms of building resilience to climate change, root and tuber crops 

are considered more tolerant to drought and are projected to be less affected by global 

warming than grain crops (Adhikari et al., 2015). Therefore, sweet potato (Ipomoea batatas 

[L.] Lam) is often considered an important food security crop (Motsa et al., 2015) as 

evidenced by frequent mass distributions of planting material to rural households in response 

to droughts or floods (Kapinga et al., 2005).  

 

Enhanced legume and sweet potato production may result in more diverse diets. Legumes 

can contribute to the essential protein needs of rural households (Snapp et al., 2014; Bezner 

Kerr et al., 2007; Jones and Divine, 1944). Sweet potato is a rich source of carbohydrates, 

protein, calcium, iron, potassium, carotenoids, dietary fibre, and vitamins, and very low in 

fat and sodium (Bovell-Benjamin, 2007). The leaves are also edible and very nutritious. The 

orange-fleshed sweet potato varieties have the additional benefit that they are rich in beta-

carotene which is converted into vitamin A in the human body (Low et al., 2017). Its 

production and consumption has proven to reduce vitamin A deficiency in breast feeding 

mothers and young children in southern Africa (Low et al., 2017; Tanumihardjo et al., 2017). 

 

1.3 Rationale of the research 

The benefits of legumes and sweet potato to smallholder farmers may be enhanced by 

boosting the productivity and subsequent profitability of these crops. Planting improved 

varieties would be a good starting point but farmers often do not derive the intended benefits 

from genetic improvement due to other yield limiting and reducing factors (Tittonell and 

Giller, 2013). To quantify the yield gaps for different crops, production ecological concepts 

are commonly used to determine the potential, water or nutrient limited yields and the actual 

yields (Van Ittersum and Rabbinge, 1997). To enhance productivity, the main factors that 

contribute to the yield gaps should be understood and addressed by targeting the right 

interventions. This goes beyond agronomy because the actual yields on farmers’ fields are a 

result of many interacting biophysical, socio-economic and management constraints 

(Fermont et al., 2009). There can be regional variation in biotic stresses such as pests, 

diseases and weeds or abiotic stresses such as nutrient deficiencies and drought (Wairegi et 
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al., 2010). For example in the case of legumes, the agro-ecological conditions affect the 

amounts of nitrogen fixation (Ojiem et al., 2007) and legume adoption is generally more 

beneficial to farmers in areas with good soils and rainfall (Ojiem et al., 2014).  

 

For productivity enhancing technologies to be adopted, farmer preferences and socio-

economic conditions must be in the forefront in the process of technology development 

(Snapp and Silim, 2002). Common socio-economic constraints to technology adoption 

reported in Malawi include limited access to input and output markets, labour constraints, 

financial resources to procure seeds, fertilizer, inoculant in the case of soybean and plant 

protection agents (Mhango et al., 2013; Van den Brand, 2011; Franke et al., 2014; Snapp et 

al., 2002). Because biophysical and socio-economical characteristics of smallholder farms 

are very heterogeneous (Ojiem et al., 2006), a ‘one-size-fits-all’ approach to technology 

scaling may not achieve the intended results. Each technology will fit best in its specific 

socio-ecological niche (Ojiem et al., 2006). This has implications for targeting of 

interventions that aim to sustainably intensify and diversify cropping systems. Once potential 

yield enhancing technologies are identified, there is need to look beyond average yield 

responses and explore the variability in performance caused by the diversity of smallholder 

farmers environments and practices (Vanlauwe et al., 2016). This can be achieved by testing 

and evaluating technologies together with smallholders through multi-locational on-farm 

experiments. 

 

1.4 Objectives 

The aim of this thesis is to explore options for sustainable intensification and diversification 

of maize-based farming systems in central Malawi with legumes and sweet potato. I 

hypothesize that farmers can substantially increase their productivity and incomes through 

crop diversification with legumes and sweet potato and through application of improved 

agronomic practices and technologies. Specific objectives were to: 

1. Quantify the effects of a range of nutrient and crop management practices on 

soybean yields and financial returns, and understand farmers’ perceptions and 

rankings of these technologies. 

2. Understand the variability and factors behind the benefits of N2-fixation in soybean-

maize rotations on smallholder farmers’ fields. 

3. Assess the performance of six orange-fleshed sweet potato varieties in different 

agro-ecological conditions and explore the factors that contribute to the yield gap 

on smallholder farmers’ fields. 

4. Explore the benefits of fertilizer use with maize, legumes and sweet potato to 

intensify and diversify cropping systems 
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1.5 Summary of research approach 

The research methodology consisted of the establishment of a range of multi-locational on-

farm agronomic trials and demonstrations. Multiple technology options to enhance soybean 

productivity were tested in 144 on-farm sites, biological nitrogen fixation by soybean was 

quantified in 150 plots under different inputs levels and varieties, and the rotational effect of 

soybean on maize was assessed on 53 farmers’ fields. The variability in yield performance 

of six orange-fleshed sweet potato varieties was explored based on data from 221 on-farm 

demonstration sites. In partnership with a private sector company, the effect of different 

combinations of fertilizer and lime was assessed in 50 maize trials, 28 soybean trials, 24 

groundnut trials and 26 sweet potato trials. The large number of locations allowed capturing 

the large variability in productivity and yield responses to technologies. To identify some of 

the factors underlying this variability, a wide range of biophysical and socio-economic data 

were collected including soil characteristics, climatic data, data on crop components, pests 

and disease scoring and household characteristics. Mixed linear models and multivariate 

boundary line models were used to explore which biophysical and socio-economic factors 

contribute to yield gaps, yield variability, and variability in responses to technologies. 

Participatory approaches including pairwise technology ranking and focus group discussions 

were used to explore farmers’ perceptions on technologies and on crop diversification. 

Secondary data collection on costs of technologies and farm-gate prices of commodities 

allowed for the calculation of partial gross margins for farmers’ investments in intensification 

and crop diversification. The interdisciplinary approach of combining agronomic work with 

farmers’ perceptions and economic evaluations allowed me to capture a wide range of 

considerations that will determine technology adoption. This provided important lessons for 

targeting and scaling out technologies, which can benefit development of policy and new 

partnership approaches to stimulate crop diversification and intensification. 

 

1.6 Outline of the thesis 

Chapter 2 explores crop management and nutrient management technologies that can 

contribute to closing the soybean yield gap on smallholder farmers’ fields. Through a 

combination of multi-location on-farm trials and participatory evaluations with farmers, the 

constraints and opportunities for the adoption of early planting, plant population, variety 

choice, compost manure, weeding, inoculant, fertilizer and spraying were assessed. A 

comparative evaluation of yield responses, economic benefits and farmers’ perceptions 

shows there are options to enhance productivity, but these require different levels of human 

and financial investments.  

 

Chapter 3 places the benefits of soybean intensification in the context of the cropping system 

in terms of N2-fixation by soybean and the rotational benefit of soybean on maize 

productivity. Through quantification of biological nitrogen fixation (BNF) for different 
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soybean varieties and input treatments in multiple sites and seasons, factors behind the 

variability in BNF could be explored. The effects of socio-economic and biophysical 

characteristics on the rotational benefits of planting maize after soybean are also presented. 

The results shed light on the conditions under which BNF and crop rotation will be most 

beneficial to smallholder farmers. 

 

Chapter 4 provides an assessment of the performance of six orange-fleshed sweet potato 

varieties based on many demonstrations established in a technology scaling project. Factors 

that affect crop establishment, vine yields, storage root formation, root yields, percentage of 

marketable root yield, and weevil infestation are identified. A range of biophysical, climatic, 

management and socio-economic factors and variables was included in a multivariate 

boundary line model to identify the most yield limiting factors affecting sweet potato 

production on smallholder farmers’ fields.  

 

Chapter 5 compares the performance of maize, soybean, groundnut and sweet potato in multi-

locational input trials in central Malawi. This includes an assessment of the effects of 

different levels of fertilizer application and lime on yields and economic benefits of each 

crop. The chapter demonstrates the importance of including farmer perceptions as farmers 

consider factors beyond plot level yield and economic benefits of technologies.  

 

In Chapter 6, I discuss whether farmers can increase productivity and incomes by 

intensification and crop diversification. I explore the implications of variability in 

performance of technologies across farms and the perceptions of farmers on intensification 

and diversification. I discuss the role sustainable intensification can play towards the 

achievement of SDG 1 and 2. Finally, I discuss approaches to technology scaling that 

consider the large variability in yield performance encountered, and that match the 

constraints and the context in which smallholder farmers operate.
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Abstract 

Soybean yields on smallholder farmers’ fields in Malawi are constrained by poor soil fertility, 

limited application of external inputs and poor crop husbandry. We tested crop management 

practices through on-farm experimentation and participatory technology evaluation. Two 

agronomic soybean trials were established in 2009 and 2010 in three contrasting agro- 

ecologies resulting in 72 replications per trial. Treatments in the first trial included several 

combinations of inoculation with Bradyrhizobium japonicum, inorganic fertilizer application 

and compost manure. In the second trial, farmers tested an improved variety, optimal 

weeding regime, increased plant population and chemical pest and disease control. A 

combination of inoculation, inorganic fertilizer (10 N, 8 P, 20 K in kg ha-1), and 6 t ha-1 

compost manure increased yields from 0.86 t ha-1 under farmers’ practice to 1.56 t ha-1 and 

resulted in average profits of 222 USD ha-1. Increased plant populations and biocide spraying 

also resulted in substantial yield increases. All technologies except planting Nasoko and weed 

management were profitable with a value to cost ratio (VCR) > 1 but only inoculation and 

increased plant population resulted in an average VCR > 2. Spraying was only beneficial 

where leaf rust was present. Low investment costs make inoculants, compost manure and 

increased plant populations interesting options, whereas adoption of inorganic fertiliser 

application in soybean may be limited due to high costs and low VCR. Farmers’ technology 

rankings considered factors such as purchasing power, access to inputs, the role of soybean 

in the cropping system, labour availability and risks associated with variability in yield 

responses to technology. The farmers ranked eight technologies in descending order of 

preference as 1. Early planting 2. Plant population 3. Variety choice 4. Compost manure 5. 

Weeding 6. Inoculant 7. Fertilizer and 8. Spraying. Our participatory research approach 

demonstrated that there is a wide range of technologies with different levels of human and 

financial investment costs that smallholder farmers can adopt to enhance their soybean yields 

and profits. 

Keywords: Rhizobium inoculation, nitrogen fixation, phosphorus deficiency, crop 

management, technology ranking. 
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2.1 Introduction 

Smallholder farming systems in southern Africa are dominated by the staple crop maize (Zea 

mays L.) which is cropped on over 80% of smallholder land area in some areas (Giller et al., 

2011). Soil organic matter (SOM) inputs produced on-farm are insufficient to maintain soil 

fertility and mineral fertilizers are expensive and often unavailable (Bloem et al., 2009). 

Legumes such as soybean (Glycine max (L.) Merr.) can contribute to improved soil fertility 

through biological nitrogen fixation when crop residues are incorporated into the soil 

(Sanginga, 2003; Sisworo et al., 1990; Peoples et al., 2009; Giller, 2001). Incorporation of 

legumes into maize-based systems can help reduce biotic stresses in cereals such as Asiatic 

witch weed (Striga asiatica (L.) Kuntze) (Kabambe et al., 2008), improve household 

nutrition by adding essential amino acids to diets (Bezner Kerr et al., 2007) and provide 

additional cash income if markets are available (Giller et al., 2011). 

 

Between 2003 and 2014 soybean yields in Malawi averaged only 0.88 t ha-1 – substantially 

less than in Zimbabwe (1.47 t ha-1) or South Africa (1.67 t ha-1) during this period (FAO, 

2016). An array of interacting constraints limit soybean yields. These include biophysical 

constraints such as rainfall distribution and poor soil phosphorus availability as well as socio-

economic constraints such as limited market opportunities, labour constraints and limited 

availability of cash for seeds, fertilizer, inoculant and plant protection agents (Van den Brand, 

2011; Snapp et al., 2002; Mhango et al., 2013). Local demand for soybeans has increased 

substantially over the past 20 years due to increasing demand for poultry feed and processing 

into infant and baby formula (Tinsley, 2009). This provides opportunities for smallholder 

farmers to produce soybean as a cash crop. Yet to be profitable, soybean productivity needs 

to be enhanced.  

 

Several technologies can contribute to closing the yield gap between actual and attainable 

yields. Inoculation with Bradyrhizobium japonicum, fertilizer application and the use of 

compost manure can increase soybean yields (Hati et al., 2006; Ndakidemi et al., 2006). 

Farmers need to select good quality seed of a genotype that matches the agro-ecological 

conditions in which the crop is grown. Without access to inoculant, farmers can benefit from 

growing promiscuous varieties with an improved ability to nodulate with Bradyrhizobium 

naturally present in the soil (Mpepereki et al., 2000). Timely planting allows the crop to make 

optimal use of the available growing season (Summerfield et al., 1996; Parker et al., 1981; 

Davis, 1979). Matching soybean genotypes with their optimal row spacing and plant 

populations can result in larger yields if water and nutrients are in sufficient supply (Alessi 

and Power, 1982; Taylor, 1980). Pests such as termites, caterpillars and pod suckers attack 

soybeans (Haile et al., 1998) and their control can enhance production (Sastawa et al., 2004). 

The most destructive disease in soybeans in southern Africa is leaf rust (Phakopsora 

pachyrhizi), which can be controlled by fungicides (Levy, 2005) or by growing rust-tolerant 

http://en.wikipedia.org/wiki/Carolus_Linnaeus
http://en.wikipedia.org/wiki/Otto_Kuntze
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genotypes (Jarvie and Shanahan, 2009). Finally, weed control is required to maximize 

soybean yields (Odeleye et al., 2007).  

 

Current crop management recommendations in Malawi are largely based on a set of on-

station agronomic trials that were conducted without farmer participation (Davis, 1979). 

Yields reported on research stations are often higher than on farm due to better soil fertility 

and crop management (Mugwe et al., 2009). Therefore yield response to treatments such as 

fertilizer, inoculant, manure and plant spacing will be different under on farm conditions. 

New threats such as leaf rust should also be included in agronomic research. A technology is 

unlikely to be adopted by farmers unless it fits their socio-ecological niche (Ojiem et al., 

2006) and farmers’ preferences are at the forefront (Snapp and Silim, 2002). Therefore 

technologies should be tested and evaluated together with smallholders on their farms 

(Chamango, 2001). 

 

We report a set of on-farm experiments conducted in central Malawi to: 1) quantify the 

effects of inoculation, fertilizer, compost manure, improved variety, weed management, plant 

population and pest and disease control on soybean yields, 2) assess the economic benefits 

of these technologies and 3) understand farmers’ perceptions and rankings of these 

technologies. 

 

2.2 Materials and methods 

2.2.1 Study areas and farmer selection 

Experiments were conducted in three contrasting agro-ecological zones in the central region 

of Malawi. In Mchinji district, the trials were established at an altitude of 1050-1150 meters 

above sea level (masl) in a radius of 10 km around Kachamba village (13°44’S, 33°20’E), in 

Dowa district at an altitude of 1200-1400 masl in a radius of 15 km around Msakambewa 

trading centre (13°33’S, 33°54’E), and in Salima at an altitude of 550-650 masl in a radius 

of 5 km around Chitala research station (13°40’S, 34°15’E). Malawi has a unimodal rainfall 

distribution with rains starting early December and continuing for about four months. 

Average long term precipitation across the three regions are in the range of 900-950 mm per 

year (Hijmans et al., 2005). The dominant soil types are Chromic luvisols in Mchinji and 

Dowa and Eutric cambisols in Salima. 

 

Participatory agronomic soybean trials were conducted with 120 farmers in total. Farmers 

were selected in consultation with local field technicians, lead farmers and village chiefs, 

based on their experience with growing soybeans, motivation to participate, and diversity in 

gender, age and resource endowment. Structured household surveys were conducted with the 

participating farmers to gather information on available family labour in men equivalents 

(ME where an adult male >15 years counts 1, an adult female 0.8 and children between 5 and 
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15 years are 0.5 ME), arable land area (ha), total value of assets, and quality of housing score 

based on material used for walls, floor and roof. 

2.2.2 On-farm experimental design 

Two sets of trials were established in the 2009/10 and 2010/11 growing seasons (hereafter 

referred to as the 2010 and 2011 seasons respectively) on a total of 144 farmers’ fields on 

plots cultivated with maize in the previous season. In each region and year, one nutrient 

management (NM) trial and one crop management (CM) trial was established. The trial 

design was a random controlled block design (RCBD) with 12 farmers per season per region 

hosting a single replicate block with five treatments. Trials were researcher-designed and 

implemented by farmers with assistance of a field technician responsible for monitoring, data 

collection and the weeding and spraying treatments during the growing season. Some farmers 

participated in both seasons using a different plot in the second season.  

 

Each NM block consisted of five plots of 10 by 10 m each that were all planted with soybean 

variety Nasoko, a common specifically-nodulating grain type variety widely available in 

Malawi. Treatments represented a stepwise increase in intensity, namely T1) farmers 

practice, T2) inoculation, T3) inoculation plus fertilizer rate 1, T4) inoculation plus fertilizer 

rate 2, T5) inoculation plus fertilizer rate 1 plus compost manure. This design was chosen to 

enable farmers to evaluate various nutrient management options in one block. The inoculant 

containing Bradyrhizobium japonicum strain MAR 1491 was sourced from Zimbabwe and 

did not contain additional nutrients. Compound fertilizer Super D was applied 2 weeks after 

planting (WAP) at a rate of 100 kg ha-1 (10 kg N ha-1, 8 kg P ha-1 and 20 kg K ha-1) for rate 

1 (T3 and T5) and 300 kg ha-1 (30 kg N ha-1, 24 kg P ha-1 and 60 kg K ha-1) for rate 2 (T4). 

Compost (T5) was sourced locally and was made mainly from maize and legume crop 

residues. In 2010 three sub-samples of compost were collected from each region and 

chemical analysis showed an average pH of 7.5, 4.2% OC, 0.013% P, 0.21% N and an ash 

content of 10.0%. The manure was incorporated at a rate of 6 t ha-1 in the surface 20 cm of 

soil two weeks before planting. Farmers were free to follow their own practices regarding 

row spacing, sowing rate, planting date, weeding date and frequency, and pest and disease 

control as long as these practices were constant across all plots.  

 

Each CM block also consisted of five plots of 10 by 10 m reflecting a stepwise increase in 

management intensity with treatments T1) local variety, T2) improved variety, T3) as T2 but 

with improved weed management, T4) as T3 with increased plant population, T5) as T4 with 

pest and disease control. This design was chosen to demonstrate options to enhance soybean 

yields without application of fertilizer or manure. T1 was planted with unsorted soybean 

grains of unknown variety locally procured from traders or farmers in each region and T2-

T5 were planted with variety Nasoko. The field technician weeded T3-T5 manually at two 

and six weeks after planting. Farmers followed their own weeding regime in T1 and T2. In 
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T1-T3 farmers were free to decide on their preferred ridge spacing, plant population and 

planting methods. In T4 and T5 soybean was planted in two lines (20 cm between lines; 5 

cm between seeds) on ridges spaced 75 cm apart. This resulted in a seeding rate of about 

533,000 seeds ha-1 aiming for approximately 400,000 plants ha-1 at 75-80% germination. In 

T5 caterpillars (loopers) were controlled by spraying 300 ml ha-1 Cypermethrin at 3, 7 and 

11 WAP and leaf rust was prevented by spraying 500 ml ha-1 Folicur (tebuconazole 250           

g l-1) at 7 and 11 WAP. Seeds in all treatments were inoculated at planting. 

2.2.3 Soil sampling and data collection 

Five topsoil samples (0-20 cm) were collected from each block and combined in a composite 

sample, which was mixed, air-dried, crushed and passed through a 2-mm sieve. Samples were 

analysed at IITA-Malawi and Chitedze Research Station for SOC% (Walkley-Black), total 

N% (micro-Kjeldahl), available P (Bray-1), K (Mehlich-3 method), soil pH (CaCl2) and 

texture. In each region, the field technician collected rainfall data using a rain gauge and three 

farmers using a calibrated water bottle and a ruler. The date of effective planting rains, 

defined as the date at which at least 25 mm of accumulated rainfall was received within 10 

days, not followed by a period of 10 consecutive days with an accumulated rainfall less than 

2 mm (Tadross et al., 2007), was recorded. Farmers’ practices recorded by the field 

technicians included actual planting and weeding dates, the number of ridges and their 

spacing, the number of rows sown per ridge and the number of plants counted on two selected 

ridges in each plot at 3 WAP. Weed pressure was scored visually from 1 (<10% of the plot 

surface covered with weeds) to 5 (>90% of the plot surface covered with weeds) at 5, 8 and 

11 WAP. Pest and disease incidence was scored visually on leaves at half the plant height at 

3, 7 and 11 WAP before spraying. Leaf damage was scored as the average percentage of leaf 

area defoliated and leaf rust incidence as the percentage of leaf area covered by rust lesions.  

 

At mid pod-filling stage (R5.5) three sub-samples of biomass were taken in each plot by 

harvesting 0.5 m of a ridge at a randomly selected spot. Sub-samples were combined and 

fresh weight was determined in the field. Samples were oven-dried at 700C until constant 

weight to determine dry matter concentration. Nodulation was assessed by uprooting six 

sampled plants and scoring on a scale of 1-5 with 1 being no nodulation and 5 abundant 

nodules observed.  

 

At crop maturity, plots were harvested excluding the outer ridges and the 1.5 m ridge-length 

from which the biomass sub-samples were collected. Harvested plants were threshed and 

weighed, and a sub-sample of the grain was taken from each plot to assess moisture 

concentration and 100 seed weight. Yields were adjusted to 13% grain moisture 

concentration. 
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2.2.4 Partial gross margin analysis 

Partial gross margins in the NM trials were calculated for the various input combinations in 

T2-T5 relative to the farmers practice (T1). In the CM trials the margins were calculated for 

increased plant population (T4) and spraying (T5). Variety Nasoko (T2) and weed 

management (T3) were excluded since these treatments did not enhance yields relative to T1. 

Therefore T3 was considered as a base case in the analysis.  

 

Marginal revenues were calculated by multiplying the marginal grain yields with the average 

farm-gate price farmers received from vendors in the months May to July following harvest 

(0.67 USD kg-1). The marginal costs include variable and fixed marginal costs (Table 2.1) 

where the variable costs represent the (post-) harvest costs that result from increased yields 

and the fixed costs represent the procurement, transport and application costs of the inputs. 

Labour costs are those of hired labour commonly used in the study areas based on information 

from local informants. Costs and benefits were calculated in USD at the official exchange 

rate of 150 MWK per USD at the time the field work was conducted. The incremental value 

to cost ratio (VCR) was calculated for each technology by dividing the marginal revenue by 

the marginal production costs. We calculated the percentage of farms with a VCR > 2 for 

each technology since this is often considered to be a sufficient economic incentive for 

adoption by smallholder farmers (Kelly, 2006).  

2.2.5 Technology evaluations and ranking 

In each region, field days were organized each season when the crop was around the mid-

pod filling stage. After a visit to a block of the NM and the CM trial, group discussions were 

held. Early planting was not a treatment in the trials but was included in the evaluations 

because farmers considered it to be an important factor determining yield. Each farmer 

evaluated the technologies early planting, optimal weed management, spraying against pests 

and diseases, planting two lines per ridge, variety choice, inoculation, fertilizer application 

and compost manure by noting their advantages and disadvantages. This was followed by a 

pair wise technology ranking exercise where each farmer selected the preferred technology 

out of a set of two technologies until all eight technologies were compared with each other. 

Grain yields and their implications for technology adoption were discussed in meetings with 

participating farmers after each growing season. 
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Table 2.1: Marginal costs of technologies. 

Variable marginal costs* USD kg-1 

 Labour for harvesting and threshing  0.053 

 Harvest bags  0.010 

 Transport produce to homestead  0.017 

 Total  0.080 

   

Fixed marginal costs USD ha-1 

   Inoculation  

 Procurement inoculants   2.00 

 Transport to nearest supplier   6.00 

 Total   8.00 

 

   Fertilizer 1 (100 kg ha-1)  

 Super D fertilizer 2 bags  93.33 

 Transport  10.67 

 Labour fertilizer application  13.33 

 Total 117.33 

 

   Fertilizer 2 (300 kg ha-1)  

 Super D fertilizer 6 bags 280.00 

 Transport  16.00 

 Labour fertilizer application  13.33 

 Total 309.33 

 

   Compost manure (6 t ha-1)  

 Labour for making manure  26.67 

 Transport of manure to the field  10.67 

 Labour manure application in the field  20.00 

 Total  57.33 

   

   Improved variety 

 

 Procurement logistics/transport  10.67 

 Additional costs 80 kg certified seed  80.00 

 Total  90.67 

 

   Increase plant population  

 20 kg certified seed  33.33 

 Additional labour planting two lines per ridge  24.00 

 Total  57.33 

 

   Pest and disease control  

 Costs of Cypermethrin  13.33 
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 Costs of Folicur  18.00 

 Transport to town   8.00 

 Labour chemical application   6.67 

 Rent of sprayer   6.67 

 Total  52.67 

 

2.2.6 Data analysis 

Statistical analyses were conducted in Genstat 12.2 VSN International Ltd. Average yields 

of blocks (average of T1-T5), wealth indicators and soil characteristics were subjected to 

general analysis of variance (ANOVA) to identify differences between regions and to test for 

region x year interactions. The treatment effects on yield, crop components, pest and disease 

incidence and first weeding date were tested in both trials for the whole data set (there was 

no blocking effect of region or season). We also evaluated whether the treatment responses 

were different for the regions or years by testing for interactions. Pair wise ranking data were 

analysed by adding a score of 1-7 to each technology for each farmer based on the number 

of times the technology was preferred over other technologies. General ANOVA was used 

to identify differences in scores for technologies across regions and years. The advantages 

and disadvantages of technologies were analysed using frequency tables. 

 

2.3 Results 

2.3.1 Households, soils and rainfall in the study regions 

The three regions varied in wealth, soil characteristics and rainfall distribution (Table 2.2 and 

Fig. 2.1). In Mchinji the planting rains started about a month earlier than in the other regions. 

Total rainfall was sufficient for soybean production, but the distribution was uneven in 

Salima in 2010 (Fig. 2.1). Farmers in Mchinji owned more assets such as a house with an 

iron sheet roof, a television, radio, phone, irrigation pump or bicycle. In Dowa most houses 

were constructed of mud with a grass roof and farmers owned only few assets. On the other 

hand, soils in Dowa contained more SOC, N and clay than the other regions (Table 2.2). Soil 

available P and exchangeable K were expected to be limiting (P <10 mg kg-1 and K<0.02 

cmol kg-1) in 76% and 16% of the fields in Dowa, 71% and 47% in Mchinji and 77% and 0% 

in Salima respectively. Soil pH was generally not limiting because 96% of the fields fell 

within the range (4.2-7.5 (CaCl2)) considered suitable for soybean production.  

2.3.2 Trial performance and yields  

Yields averaged 1.22 t ha-1 in the NM trials and 1.09 t ha-1 in the CM trials (Table 2.3). Yields 

in Salima in 2010 were significantly less than in Mchinji and Dowa, and also less than in 

Salima in 2011. Poor yields in Salima in 2010 can be explained by drought stress after 

planting and water logging in the middle of the growing season (Fig. 2.1), grasshoppers 
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attacking emerging plants, and a small number of weeding operations per block. No other 

significant differences in yield performance between regions or years were observed. The 

trials were planted on average 21 (3-44) days after the first planting rains, on ridges spaced 

77 (59-100) cm apart.  

 

The yield responses to treatments (Table 2.4) were consistent across regions and years. 

However, the boxplots in Fig. 2.2 show wide variation in yields achieved across the replicate 

blocks within each region and year in both trials. 

 

Table 2.2: Wealth indicators and soil characteristics in three districts in central Malawi. 

  Dowa Mchinji Salima Mean LSD1 

Wealth indicators (n = 47) (n = 31) (n = 42) (n = 120)  

 Arable land (ha) 1.5  (0.8)1 2.6  (2.0) 2.9  (3.3) 2.3  (2.3) 1.0* 

 Household labour (ME) 4.4  (2.2) 4.0  (1.8) 3.1  (1.5) 3.9  (1.9) 0.9** 

 Value of assets (USD) 87  (126) 286 (326) 206 (384) 180 (300) 134* 

 Housing quality (0-3) 0.3  (0.6) 1.9  (1.0) 0.8  (0.6) 0.9  (1.0) 0.3*** 

Soils (n = 41) (n = 45) (n = 37) (n = 123)  

 pH (CaCl) 4.9   (0.5) 4.6   (0.3) 5.5   (0.9) 5.0   (0.7) 0.25*** 

 SOC (%) 1.6   (0.6) 0.9   (0.5) 0.9   (0.8) 1.12  (0.6) 0.22*** 

 SOM (%) 2.4   (0.8) 1.6   (0.8) 1.5   (0.9) 1.81  (0.9) 0.33*** 

 N (%) 0.08  (0.03) 0.05  (0.02) 0.04  (0.04) 0.06  (0.031) 0.01*** 

 P (mg kg-1) 8.1   (9.3) 8.3   (6.5) 10.4  (10.9) 8.8   (10.8) ns 

 K (cmol/kg) 0.57  (0.42) 0.23  (0.18) 0.51  (0.36) 0.42  (0.32) 0.12*** 

 Clay (%) 41.5  (10.4) 27.6  (11.7) 29.8  (11.5) 32.9  (12.8) 3.31*** 

 Silt (%) 14.3  (4.0) 12.7  (6.9) 14.9  (8.1) 14.0  (6.6) ns 

 Sand (%) 44.2  (10.4) 59.8  (17.5) 55.4  (17.8) 53.2  (17.0) 4.11*** 
1LSD = Least significant difference between means, significant at * P<0.05, ** P<0.01, *** P<0.001, 

ns = not significant. Values in brackets represent the standard deviation from the mean. 
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Table 2.3: Mean soybean yields observed in each region and year. 

 Dowa Mchinji Salima Mean LSD 

         

 

Yield  

(t ha-1) 

n1 Yield  

(t ha-1) 

n Yield  

(t ha-1) 

n 

  

NM trial         

 2010 1.44 11 1.00 10 0.43 10 0.95 0.46*** 

  2011 1.38 11 1.40 12 1.63 10 1.47 ns 

 mean 1.39 22 1.22 22 1.03 20 1.22  

 LSD2 ns  ns  0.52***    

CM trial         

 2010 0.88 10 0.96 11 0.37 10 0.74 0.37** 

  2011 1.38   9 1.23 12 1.70 11 1.43 ns 

 mean 1.11 19 1.10 23 1.06 21 1.09  

 LSD ns  ns  0.40***    
1N= number of replicate blocks 2LSD = Least significant difference between means, significant at * 

P<0.05, ** P<0.01, *** P<0.001, ns = not significant. 
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Fig. 2.1: Cumulative rainfall data collected by four farmers in each region in 2010 and 2011. Each 

line represents the data from a single farmer. 
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The NM trial yields ranged from 0.43 t ha-1 in Salima 2010 to 1.63 t ha-1 in Salima 2011 

(Table 2.3). Yields increased from 0.86 t ha-1 in the control to 1.56 t ha-1 with a combination 

of inoculation, 100 kg ha-1 fertilizer and 6 t ha-1 compost manure (Table 2.4). Of this yield 

increase of 0.70 t ha-1, 0.09 t ha-1 could be attributed to inoculation (T2-T1), 0.31 t ha-1 to 

fertilizer application (T3-T2) and 0.30 t ha-1 to compost manure application (T5-T3). 

Increasing the fertilizer rate from 100 (T3) to 300 kg ha-1 (T4) enhanced yields by 0.29                

t ha-1. Compost manure (average 252 kg ha-1 OC, 12.6 kg ha-1 N, 0.8 kg ha-1 P) had roughly 

the same effect on the yield as the additional 200 kg ha-1 inorganic fertilizer (20 kg ha-1 N, 16 

kg ha-1 P, 40 kg ha-1 K). Inoculation resulted in better nodulation scores. Increased nutrient 

inputs resulted in more dry matter accumulation at R5.5 (Table 2.4). The yields for the 

various nutrient management treatments varied considerably across replicate blocks (Fig. 

2.2), but differences between treatments were significant in each region and year except in 

Salima in 2010. 

 

Soybean yields in the CM trial ranged from 0.37 t ha-1 in Salima in 2010 to 1.70 t ha-1 in 

Salima in 2011 (Table 2.3). The variety Nasoko (T2) did not give better yields than the local 

varieties (T1) but Nasoko had a larger grain size (Table 2.4). The ‘improved’ weeding 

treatment (T3) did not result in better yields than the farmers’ weeding practice (T2) since 

the average weed pressure scores and the number of weedings recorded in T3 were similar 

to the farmers’ practice. Farmers’ first weeding in T1 and T2 was done on average six days 

later, though still three days earlier than farmers’ practice in the NM trials (Table 2.4). It was 

observed that 40% of the farmers followed exactly the first weeding date of the field 

technicians. The increased plant population treatment (T4) resulted in an average yield 

increase of 0.25 t ha-1. However, an increased plant stand was observed in only 74% of the 

sites. In 32% of the sites, farmers planted 2 lines per ridge in both T3 and T4. Despite this, a 

yield increase was observed in 82% of the replicate blocks, while the average plant 

population increased from 250,000 to 315,000 plants ha-1 (Table 2.4). This was less than the 

intended 400,000 plants per ha-1 due to poor germination, grasshopper damage to emerging 

plants in Salima, termite damage, and birds removing seeds after planting. Application of 

Folicure and Cypermethrin (T5) increased yields on average by 0.16 t ha-1. In Salima leaf 

rust was not observed and spraying was not effective (Fig. 2.2). In Mchinji leaf rust scores 

were significantly reduced by spraying (Table 2.4). The highest leaf rust incidence was 

observed in Mchinji in 2010 with an average incidence of 8.0% at 11 WAP (n=11) and 

spraying increased yields from 0.86 to 1.47 t ha-1. Though there was some caterpillar damage 

in all sites and seasons, the percentage of defoliation was unlikely to result in economic loss. 
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2.3.3 Partial gross margin analysis 

The investment costs and economic benefits of the technologies tested in the trials varied 

considerably (Table 2.5). Inoculation was the cheapest technology requiring an investment 

of only 23 USD ha-1 including transport to the nearest city for procurement. It was profitable 

with an average VCR>2 in both years, though the marginal yields were low resulting in 

relatively low absolute profits. Fertilizer application was the most expensive technology but 

resulted in relatively high marginal revenues (Table 2.5). The low VCR for the high fertilizer 

dose shows that large fertilizer applications are unlikely to be attractive to farmers. The low 

fertilizer rate (100 kg ha-1) combined with inoculation was attractive in 2011 (VCR 2.1) but 

less so in 2010 (VCR 1.3). Yields in 2010 were smaller than in 2011 which also affected the 

marginal yields and revenues resulting from fertilizer application. The most profitable 

package in the NM trial was the combination of inoculation, fertilizer rate 1 and compost 

manure (T5) with a profit of 100 USD ha-1 in 2010 and 339 USD ha-1 in 2011 and a mean 

VCR>2 in 2011. The marginal costs of compost manure in T5 was 98 USD ha-1, considerably 

less than the full fertiliser application rate in T4. 

 

Increasing the plant population resulted in an average VCR>2 in all regions and on 40% of 

the farmers’ fields. The economic benefit was stronger in 2011 (VCR 2.5) than in 2010 (VCR 

1.6). Spraying resulted in average VCR>2 in Dowa and Mchinji but resulted in economic 

loss in Salima due to the absence of leaf rust. The largest revenue in the CM trial was obtained 

in Mchinji in 2010 by spraying with a VCR>2 on 73% of the fields and a marginal revenue 

of 410 USD ha-1 (data not shown). 

2.3.4 Farmers’ perceptions 

The farmers ranked early planting as the most preferred technology (Table 2.6), even though 

it was not a treatment in the trials. However, they also recognized that planting too early 

increases risks of dry spells at the start of the season and fungal infections of the crop at the 

end of the season when rains continue (Table 2.7). 

 

Technologies tested in the NM trials were ranked relatively low (Table 2.6). Inoculant is not 

easily available to the farmers, inorganic fertilizer is considered very expensive, and applying 

compost manure involves high investments in labour and transport in an oxcart (Table 2.7). 

In Dowa, inoculation was ranked higher than in Mchinji and Salima and even higher than 

early planting. This may be related to the higher marginal yields and VCR for inoculant 

compared to the other regions (Table 2.5). Farmers in Mchinji preferred compost manure 

over inoculant and inorganic fertiliser (Table 2.6). 
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Table 2.5: Partial gross margin analysis for the input treatments in the NM trial and increased plant 

population and spraying in the CM trial by location and year. 

 

n 

 

Marginal yield  

(t ha-1) 

Marginal costs  

(USD ha-1) 

Marginal revenue 

(USD ha-1) 

VCR1 

 

Sites with 

VCR>2 (%) 

Nutrient Management (NM) trial     

T2 Inoculant (I)       

    Dowa 22 0.22 28 148  5.3 68 

    Mchinji 22 0.00 20   -3 -0.1 46 

    Salima 20 0.13 22  87  4.0 65 

    2010 31 0.07 21  48  2.3 58 

    2011 33 0.16 26 105  4.1 61 

  Grand total 64 0.12 23  77  3.3 59 

T3 I + Fertilizer 1 (100 kg ha-1)     

    Dowa 22 0.37 151 248 1.6 46 

    Mchinji 22 0.30 144 200 1.4 27 

    Salima 20 0.26 139 174 1.2 30 

    2010 31 0.30 156 198 1.3 32 

    2011 33 0.55 173 368 2.1 52 

  Grand total 64 0.43 165 286 1.7 42 

T4 I + Fertilizer 2 (300 kg ha-1)     

    Dowa 22 0.93 384 624 1.6 27 

    Mchinji 22 0.55 357 370 1.0 14 

    Salima 20 0.32 339 212 0.6  5 

    2010 31 0.57 367 380 1.0 10 

    2011 33 0.87 391 583 1.5 27 

  Grand total 64 0.72 379 485 1.3 19 

T5 I + F1 + Compost Manure (6 t ha-1)     

    Dowa 22 0.90 257 604 2.3 64 

    Mchinji 22 0.55 234 368 1.6 41 

    Salima 20 0.63 236 420 1.8 40 

    2010 31 0.49 226 326 1.4 29 

    2011 33 0.89 258 597 2.3 67 

  Grand total 64 0.70 243 465 1.9 48 

Crop Management (CM) trial    

T4 Plant population (relative to T3)    

 Dowa 19 0.23 79 157 2.0 42 

 Mchinji 23 0.25 81 169 2.1 35 

 Salima 21 0.27 81 182 2.2 43 

 2010 31 0.17 71 112 1.6 26 

 2011 32 0.34 89 226 2.5 53 

  Grand total 63 0.25 80 170 2.1 40 

T5 Spraying (relative to T4)     

 Dowa 19  0.25 73 165  2.3 53 

 Mchinji 23  0.38 89 252  2.8 61 

 Salima 21 -0.15 57  -98 -1.7 14 

 2010 31  0.25 76 169  2.2 39 

 2011 32   0.08 71   51  0.7 47 

  Grand total 63  0.16 73 109  1.5 43 
1Value Cost Ratio 
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Table 2.7: Advantages and disadvantages of technologies identified by farmers. 

Technology Rank Advantages n1 Disadvantages n 

Planting 

with the first 

rains 

1 Good growth 61 Crop can rot at the end of the 

season 

14 

2 High yields 34 Poor germination in case of dry 

spell 

12 

3 Good germination 22 Dry spells during early growth 11 

4 The crop is able to mature 17 Grasshoppers eat the emerging 

plants 

8 

5 The crop can escape 

drought 

4 Farmers are busy planting other 

crops 

3 

Inoculant 

 

1 Ensures good germination 39 It is not easily available 12 

2 Good growth 36 It requires money 7 

3 Adds nitrogen or fertility 16 Poor germination 4 

4 Crops or seeds not eaten 

by insects 

15 Need to plant the day that you 

apply it 

3 

5 Crop will not get (root) 

diseases 

8 Seed coats get removed 3 

Fertilizer 1 High yield 59 It is expensive 23 

2 Good growth 56 It damages the soil 13 

3 Good pod set 11 It is not easily available 9 

4 The crop grows healthy 9 It does not work during a dry 

spell 

1 

Compost 

manure 

1 Crop grows tall and 

healthy 

46 Oxcart expensive or unavailable 14 

2 Adds fertility to the soil 23 It can bring insects and weeds 10 

3 Improves soil structure 14 Requires much labour 8 

4 Higher yields 14 Manure does not perform well 3 

5 Keeps moisture in the soil 11 There is a shortage of manure 3 

6 Prevents soil depletion 5   

Variety 

choice 

1 High yield 29 Lack of knowledge of suitable 

variety 

6 

2 Good germination 24 Needs good management, 

inputs, rain 

5 

3 Good growth 15 It is expensive or not profitable 4 

4 Profitable or easy to 

market 

12 It is difficult to find the seed 3 

5 Early maturity 8   

6 Good pod set 8   

7 Variety suits the 

environment 

 

6   
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Technology Rank Advantages n1 Disadvantages n 

Weeding at 

2 and 6 

weeks after 

planting 

1 Good and healthy growth 75 High weed pressure at harvest 10 

2 Clean fields 15 High labour requirements 8 

3 Good yield 11 Termite damage in dry 

conditions 

2 

4 No nutrient competition 5 Weeding can damage the crop 1 

Planting 2 

lines per 

ridge 

 

1 High yields from a small 

area 

99 Plants don't grow well 17 

2 Higher plant population 5 Wind and sun light competition 15 

3 Good pod setting 2 Low yields 10 

4 Diseases don't enter easily 1 The plants are too close together 9 

5 Easy fertilizer application  1 More work during planting 7 

6   Weeding is more difficult 4 

7   Nutrient competition 4 

Spraying 1 Crop is protected against 

insects and diseases 

82 Chemicals are hard to find 13 

2 Good and healthy growth 33 Chemicals can damage the crop 

or soil 

9 

3 High yields 7 The activity requires money 6 

4 The leafs don't drop 2 Chemicals are expensive 6 

1n = the number of times the advantage or disadvantage is mentioned 
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Increasing the plant population received the highest ranking after early planting (Table 2.6), 

though farmers mentioned higher labour requirements and competition for water and 

nutrients as constraints (Table 2.7). Variety choice in general was ranked highly, though not 

specifically in favour of the variety Nasoko. Disadvantages are the high costs, limited access 

to certified seeds and limited knowledge of suitable varieties (Table 2.7). Optimal weed 

management was considered significantly more important in Salima than in the other regions. 

This agreed with our observed high frequency of weeding in Salima in 2011. Spraying was 

the least favoured technology due to difficult access to chemicals and high costs (Table 2.7). 

Only in Mchinji, where leaf rust incidence was high, farmers considered spraying as an 

important option (Table 2.6). 

2.4 Discussion 

2.4.1 Trial design and implementation 

The treatments were chosen to increase management or input intensity in a stepwise fashion, 

and this proved to be a suitable method to test and evaluate a set of technologies in a limited 

number of treatments together with farmers. The small number of treatments allowed a large 

number of farmer replications, which was needed to capture a representative sample of the 

highly variable conditions in farmers’ fields. A limitation of this trial design, however, is that 

some of the technologies are only tested in combination with others, and not as stand-alone 

treatments that can be compared directly with farmers practice. For example, in T3 in the 

NM trial, the combined inoculum and fertilizer application may have given synergistic 

effects, as increased availability of P can stimulate nitrogen fixation and the response to 

inoculation. The yield response to fertilizer without inoculants may be weaker. Similarly, the 

impact of fungicide spraying (T5) in the CM trial may be weaker with lower plant 

populations. Further, interactions between crop management and nutrient management 

treatments in the two trials could not be assessed with the current design.  

2.4.2 Soybean performance across regions and years 

The average farmers’ practice yield for variety Nasoko was 0.86 t ha-1 (Table 2.4) which is 

comparable to the national average of 0.88 t ha-1 in 2003-2014 (FAO, 2016). Current global 

soybean yields are about 2.5 t ha-1 (Ray et al., 2013) and are predicted to increase to about 

3.0 t ha-1. Observed average yields in the most intense treatment of the NM trial (T5: 

inoculant, fertiliser and compost manure) and the CM trial (increased plant population and 

spraying treatment) equalled 1.6 and 1.4 t ha-1, far less than the global averages. Combining 

the treatments from the NM and CM trials may have resulted in higher yields. Moreover, 

multiple production constraints likely interact to determine yields on smallholder farmers’ 

fields (Fermont et al., 2009). This is evident from the large variability in yield among 

farmers’ replicate blocks (Fig. 2.2). Some blocks achieved yields of over 3 t ha-1 
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demonstrating the potential for smallholders to achieve high yields when constraints are 

addressed simultaneously. 

 

Soybean productivity was influenced by factors that varied among regions and years. Better 

soil fertility perhaps gave farmers in Dowa an advantage over the other regions (Table 2.2), 

but delays in planting probably caused yield reductions. In Salima, erratic rainfall 

distribution, grasshopper attacks and fast growth of weeds suppressed yields in the first 

season. Because of these unfavourable growing conditions, none of the technologies were 

economically interesting in Salima in 2010. In the second season, more motivated farmers, 

better weed control and equal rainfall distribution resulted in relatively large yields (Table 

2.3), despite the poorer soil fertility in Salima compared with Dowa. Mchinji experienced 

better rainfall in the first season (Fig. 2.1) but yields were suppressed by leaf rust. In the 

second season, leaf rust pressure was less, resulting in better yields despite the lower rainfall. 

In short, a combination of soil characteristics, rainfall distribution, time of planting, time and 

frequency of weeding, leaf rust incidence, grasshopper damage, and the experience and 

motivation of farmers and technicians all influenced soybean productivity, though the exact 

contributions of each of these factors cannot be quantified.  

2.4.3 Evaluation of technologies 

A combination of inoculation, inorganic fertiliser application and compost manure resulted 

in significant yield increases (Table 2.4) and was profitable (Table 2.5). The yield responses 

to these inputs would most likely be even higher if the choice of weed management, seed 

rate, planting date and pest and disease control were not left to farmers’ preferences. 

Inoculation is a cheap and generally profitable technology (Table 2.5), yet farmers do not 

know where it can be procured and they struggle to grasp the concept of biological nitrogen 

fixation. These may be reasons for the low ranking of inoculant by farmers (Table 2.6). 

Private sector involvement in the development, registration and marketing of high quality 

inoculants may improve opportunities for uptake of this technology in the future. An 

alternative approach to ensure effective N2-fixation is to grow promiscuous soybean 

genotypes that nodulate with indigenous bacteria in the soil (Mpepereki et al., 2000), though 

also these genotypes may still benefit from inoculation (Pule-Meulenberg et al., 2011). 

 

Farmers prefer not to apply fertilizer to soybean, despite the observed yield response. This 

seems justified given the high investment costs, low VCR (Table 2.5), and preference of 

farmers to allocate resources to maize and cash crops such as cotton and tobacco. A study in 

Kasungu District (Kamanga et al., 2010b) showed a soybean yield response of 0.5 t ha-1 as a 

result of 20 kg P ha-1 applied as triple super phosphate (TSP), indicating that P-based fertiliser 

applications in soybean can be profitable. Research in north east Zimbabwe showed that on 

more fertile soils the economic potential of targeting manure and P fertilizer to soybean is 

larger than targeting it to maize in the rotation (Zingore et al., 2008). An alternative strategy 
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to improve soil P status could include the use of local rock phosphate (Wendt and Jones, 

1997). In the past, uptake of technologies such as fertilizer and hybrid maize seeds in Malawi 

depended strongly on subsidies, since these inputs are otherwise not affordable to most rural 

households (Carr, 1997; Chirwa, 2005). 

 

Compost manure was preferred over inorganic fertiliser by farmers (Table 2.6) since it can 

be made on-farm with main costs being household labour and transport of manure to the 

field. However, the quantity of manure that can be produced in-situ is limited and there are 

often alternative, competing uses of crop residues, e.g. for animal feed or mulching (Giller et 

al., 2009). Soybean residues are more likely to be used for compost since soybean is threshed 

at the household, whereas maize residues usually remain in the field. The nutrient 

concentrations in the compost used in this study (4.2% C, 0.21% N and 0.013% P) were low 

though typical of the farmers’ situation. Despite the fact that the additional 200 kg ha-1 

mineral fertiliser (NM-T4) contained more NPK than the 6 t ha-1 compost manure (NM-T5), 

the yield response was comparable. Compost manure probably gave additional benefits such 

as impacts on the crop water balance or nutrients other than NPK (Steiner et al., 2007). 

Breeding efforts have significantly increased soybean yield potential over the last decades in 

sub-Saharan Africa (Tefera et al., 2009). Farmers perceived variety choice as an important 

production factor, despite the fact that Nasoko did not outperform the local varieties (Table 

2.4 & 2.6). Farmers evaluating the CM trial were aware of the importance of weeding (Table 

2.6 & 2.7) and their weed management practices were quite similar to the proposed improved 

weeding regime. Precise recommendations on weeding dates and frequencies may not be 

suitable since the optimum timing of weeding is determined by various factors such as weed 

pressure, rainfall, termites, fertilizer use and labour supply (Kamanga et al., 2013; Orr et al., 

2002; Dimes et al., 2001). Research in western Kenya showed that one instead of two 

weeding operations reduced soybean yields with 5%, while reducing total labour costs for 

production by 36% (Vandeplas et al., 2010) indicating there is more to consider than yields 

only. Increasing the plant population improved yields and resulted in economic benefits 

(Table 2.4 & 2.5), while the additional costs were small (Table 2.1). Since farmers prefer to 

maintain the 90 cm ridge spacing used in maize in the rotation, sowing two lines on each 

ridge is a better approach to increase plant population than reducing ridge spacing. Soybean 

leaf rust is a serious threat to the future of soybean farming in sub-Saharan Africa (Kawuki 

et al., 2003). The yield response to spraying Folicur (tebuconazole) at 7 and 11 WAP in 

Mchinji and Dowa where leaf rust was present is a significant finding, especially in case the 

leaf rust epidemic will spread further. In this study leaf defoliation by insects was low, and 

we can assume the yield response to spraying was mainly due to leaf rust control.   

 

Early planting, despite not being a treatment in the trials, was ranked by farmers as the most 

important practice to ensure good yields (Table 2.6) by reducing the risk of drought stress at 
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flowering and pod filling (Doss et al., 1974; Dogan et al., 2007). However, farmers usually 

plant crops such as maize, tobacco and cotton first, resulting in delayed planting of soybean. 

 

2.5 Conclusions 

Through farmer participatory research, we could identify economically viable and farmer 

acceptable methods to increase soybean productivity. While variability in yield within 

treatments among farmers was high, some plots gave yields of more than 3 t ha-1. This 

confirms that a wide gap exists between farmers’ current yields in Malawi (0.88 t ha-1) and 

what is attainable if limiting constraints are addressed. While the application of mineral 

fertilizer helped to increase yield, farmers preferred to apply compost manure, due to the high 

investment costs and low VCR of mineral fertilizer, and farmers’ preference to allocate 

resources to maize and cash crops. Inoculation of soybean seeds led to modest yield 

increases, but was the cheapest and most cost-effective technology with a VCR > 2 on 59% 

of the farms. Its adoption is limited by the poor availability of quality inoculants. Increasing 

plant population was a relatively cheap and effective way to increase yields, without the use 

of fertiliser inputs, and was highly ranked by farmers. Fungicide spraying was found to be a 

cost effective technology to increase yield under smallholders’ conditions when leaf rust was 

present. Limited purchasing power, awareness of farmers, access to inputs, the role of 

soybean in the cropping system, labour availability and risks associated with variability in 

yield responses to technology are important factors emerging from the participatory research 

approach that should be considered in the development of crop management 

recommendations.  
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Chapter 3 

Understanding variability in the benefits of N2-fixation in soybean-

maize rotations on smallholder farmers’ fields in Malawi 
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Abstract 

Soybean production can contribute to the nitrogen economy of smallholder farming systems, 

but our understanding of factors explaining variability in nitrogen fixation and rotational 

benefits across farms and regions is limited. Biological nitrogen fixation (BNF) was 

quantified with the natural abundance method in 150 farmer-managed soybean plots under 

different varieties and inputs in Dowa, Mchinji and Salima districts of Malawi. Soybean 

yielded on average 1.2 t ha-1 grain and the above-ground biomass at mid pod filling (R5.5) 

was 2.8 t ha-1 and contained in total 63 kg ha-1 nitrogen derived from the atmosphere (Ndfa). 

Locally sourced varieties obtained a larger %Ndfa (65%) than the ‘improved’ variety Nasoko 

(53%). The %Ndfa was positively associated with soil sand content, sowing date, plant 

population and biomass accumulation, but it was not affected by inoculation with rhizobia or 

the combination of inoculation and NPK fertiliser application. Quantities of N2 fixed differed 

between regions and years, and was enhanced by applying inoculant and fertiliser together, 

leading to more biomass accumulation and larger grain yields. Soil available P and 

exchangeable K contents also increased the total amount of N2 fixed. In a related trial, 

continuous maize yields were compared with maize following soybean in 53 farmer-managed 

fields. Average yield in continuous maize was 2.5 t ha-1, while maize after soybean produced 

3.5 t ha-1 (139% of continuous maize). Farmers with higher maize yields, who applied 

external nutrient inputs, and with a larger value of household assets achieved greater yield 

responses to rotation with soybean. A relative yield increase of more than 10% was observed 

on 59, 90 and 77% of the fields in Dowa, Mchinji and Salima respectively. We conclude that 

fields of soybean and maize that receive adequate nutrient inputs and good management to 

ensure good yields benefit most in terms of quantities of N2 fixed by the legume and the yield 

response of the following maize crop. The results suggest that the promotion of soybean-

maize rotations should be done through an integrated approach including the promotion of 

appropriate soil and crop management techniques. Furthermore, they suggest that wealthier 

households are more likely to apply adequate nutrient inputs and good crop management 

practices and are likely to receive larger maize yield responses to the incorporation of 

soybean. 

 

Keywords: Natural abundance method, crop rotation, nitrogen fixation, soil fertility, yield 

variability 
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3.1 Introduction 

In southern Africa, maize is the most dominant crop and is produced on 47% of cultivated 

land (FAO, 2014). It is the main crop for smallholder farmers who constitute the majority of 

the rural population and depend mainly on rain fed agriculture for food and income 

generation. In 2011 the average smallholder landholding size in Malawi was 0.8 hectares and 

over 80% of this land was cultivated with maize (IFAD, 2011). Fertiliser use is highly 

variable among African smallholder farmers, but generally resource constrained farmers 

apply few external inputs, which leads to poor yields and nutrient depletion (Vanlauwe and 

Giller, 2006; Waddington et al., 2004). As a result nitrogen is widely limiting and farmers 

find themselves in a poverty trap where increasing nutrient and organic matter depletion may 

eventually result in non-responsive degraded soils (Tittonell and Giller, 2013). Increasing the 

share of legumes can contribute to sustainable intensification of maize-based cropping 

systems by enhancing the input of abundantly available atmospheric N2 through biological 

nitrogen fixation (BNF) (Mhango et al., 2013). Legumes fix on average 30-40 kg of N2 for 

every ton of shoot dry matter produced and can contribute to improved soil fertility and 

enhanced yields of a subsequent cereal crop (Peoples et al., 2009). Crop diversification with 

legumes can better meet caloric and protein needs of farm households if farmers adopt 

species that perform well under variable rainfall patterns (Snapp et al., 2014). Legumes also 

provide nutritional benefits through the addition of proteins to starch-based diets (Bezner 

Kerr et al., 2007). There is scope for enhancing productivity of edible and marketable grain 

legumes (Mhango et al., 2013) such as soybean (Glycine max (L.) Merril.) for the expanding 

market in southern Africa for livestock feeds, edible oils and human foods (Tichagwa and 

Rusike, 2009). Soybean fixes on average approximately 50-60% of its nitrogen (Hardarson 

and Atkins, 2003; Salvagiotti et al., 2008) though ranges of 9 to 91% have been reported 

(Franke et al., 2018). 

 

Challenges to increase the area under legumes in southern Africa include high labour costs 

associated with legume cultivation, poor yields (Waddington and Karigwindi, 2001; Franke 

et al., 2014) and poor access to quality seed, inputs and output markets (Mtambanengwe and 

Mapfumo, 2009; Snapp et al., 2002). Farmers usually prioritise maize above legumes as 

maize yields and returns to labour are often better. However, including soybean into the 

cropping system can become attractive when the rotational benefits to maize in terms of yield, 

food security and profitability are considered (Franke et al., 2014). This is especially the case 

if good productivity of the legume can be assured through good management practices such 

as the application of inoculants, inorganic fertiliser or compost manure (Hati et al., 2006; 

Ndakidemi et al., 2006; Van Vugt et al., 2017). The amounts of nitrogen fixed may vary 

across different agro-ecological zones (Ojiem et al., 2007). On poor degraded soils, manure 

application can enhance nitrogen fixation (Zingore et al., 2008). The percentage of nitrogen 

derived from the atmosphere (%Ndfa) can be reduced by nitrogen fertiliser application 



Chapter 3 

 

 

34 

 

(Hardarson and Zapata, 1984; Salvagiotti et al., 2008) and soil water deficits (Sinclair et al., 

2007). Self-nodulating promiscuous types of indeterminate soybean can fix more nitrogen 

than high harvest index grain type varieties (Snapp et al., 1998) due to their longer growing 

period and better ability to nodulate with indigenous Bradyrhizobium strains in the soil 

(Mpepereki et al., 2000). Therefore, when seeds are not inoculated, promiscuous soybean 

varieties tend to confer a larger residual benefit on the following maize crop than specific 

varieties (Kasasa et al., 1999). However, farmers often prefer shorter duration grain-type 

varieties as they give quicker returns on investments (Snapp and Silim, 2002; Adjei-Nsiah et 

al., 2008). 

 

Nitrogen fixation, the yield performance of legumes and the residual benefits to a following 

cereal crop depend on a range of environmental and crop management factors which in turn 

are a reflection of farmers’ socio-economic conditions. Smallholder farming systems are very 

heterogeneous in biophysical and socio-economical characteristics (Ojiem et al., 2006) and 

agronomic research is often not adapted to include this variability when identifying options 

to enhance productivity (Vanlauwe et al., 2016). While legumes are well known to fix N2 

and improve yields of subsequent cereals in SSA, a high variability across smallholder 

farmers in socio-economic and biophysical conditions implies these benefits are also highly 

variable. We are unaware of studies in SSA that quantify and attempt to explain the variability 

in BNF by soybean and maize yield response to crop rotation across a wide range of 

smallholder farmers’ fields. This is however crucial for improved tailoring of legume-based 

technologies to those farmers where impact is likely to be largest. Therefore, this study aims 

to quantify and understand the variability and factors behind BNF and rotational effects of 

including soybean in maize-based rotations, based on a large number of farmer-managed 

trials in central Malawi. 

 

3.2 Materials and methods 

3.2.1 Trial lay-out and treatments 

On-farm experiments were conducted in Dowa, Mchinji and Salima districts (also referred 

to as regions) in central Malawi in the 2009/10 and 2010/11 growing seasons, in this study 

referred to as the 2010 and 2011 seasons respectively. Central Malawi has a uni-modal 

rainfall distribution with rains starting early December and continuing for four months. Long 

term precipitation averages are in the range of 900-950 mm per year (Hijmans et al., 2005). 

A nutrient management (NM) trial and a crop management (CM) trial was established with 

12 treatment blocks for each trial in each region in each year giving a total of 72 blocks per 

trial. Farmers hosted a single replicate block of one of the trials with five non-randomly 

assigned treatments. In the NM trials inoculant, fertiliser and compost manure treatments 

were assigned to five plots of 10 by 10 m. The CM trials consisted of five plots with variety, 

weed management, plant population, and pest and disease control treatments. In Dowa 
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district, trials were established around Msakambewa trading centre (13°33’S, 33°54’E) at 

1200-1400 meters above sea level (masl), in Mchinji around Kachamba village (13°44’S, 

33°20’E) at an altitude of 1050-1150 masl and in Salima around Chitala research station 

(13°40’S, 34°15’E) at 550-650 masl. The major soil types in Dowa and Mchinji are Chromic 

luvisols and in Salima Eutric cambisols. For a more detailed description of the NM and CM 

trials, see Chapter 2. 

 

In this study we use data collected from a subset of the treatments and farmers participating 

in the NM or CM trial. To assess BNF for different varieties and input levels, five blocks 

from the twelve replicate blocks per region per year were selected from each trial, resulting 

in a total of 60 blocks (5 blocks x 3 regions x 2 years x 2 type of trials; 30 blocks assessed in 

each trial), hosted by 56 farmers (four farmers in Mchinji hosted a trial block in both years). 

BNF data were collected from the following treatments:  

- T1 (n=30) inoculated soybean seed of unknown variety procured from local markets 

in each region 

- T2 (n=30) variety Nasoko without any inputs 

- T3 (n=60) variety Nasoko with inoculation 

- T4 (n=30) variety Nasoko with inoculation and application of 300 kg ha-1 compound 

fertiliser Super D containing 10% N, 8% P and 20% K.  

 

Nasoko is a commonly grown, specifically-nodulating variety that, unlike more 

‘promiscuous’ varieties that can effectively nodulate with a large diversity of indigenous 

rhizobia in the soil (Giller et al., 2011), needed to be inoculated. The applied inoculant was 

manufactured at the Soil Productivity Research Laboratory, Marondera, Zimbabwe and 

contained the Bradyrhizobium japonicum strain MAR 1491 (Giller et al., 2011). T1 was a 

treatment in the CM trials, T2 and T4 in the NM trials, and T3 in both trials. We refer to this 

set of treatments in which we assessed BNF as the ‘BNF trial’ and since we use a flexible 

linear mixed model (REML) tool for analysis we can still analyse this unbalanced design 

with treatments that were done at different farms. Apart from the described treatments, 

farmers were free to manage the trial plots according to their own preferences.  

 

To assess the residual benefits of soybean on subsequent maize crop 53 farmers (17 in Dowa, 

19 in Mchinji and 17 in Salima) participated in a crop rotation trial. These farmers all hosted 

a trial with a treatment plot ‘Nasoko with inoculation’ in 2010, but only 21 of these plots (7 

in Dowa, 9 in Mchinji and 5 in Salima) were also part of the BNF trial. Soybean did not 

receive any external nutrient inputs. In 2010 farmers typically produced maize on a field near 

the soybean plot on a similar soil type. At the start of the 2011 season a plot of 10 by 10 

meters was demarcated on this field previously cultivated with maize. All farmers 

subsequently sowed their own maize seeds on both plots, resulting in a soybean-maize 
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rotation (SM) and a continuous maize (MM) treatment. Farmers were instructed to plant both 

maize plots on the same day and apply their common crop husbandry practices and inputs. 

This trial is referred to as ‘rotation trial’ in this study. 

 

3.2.2 Data collection 

Daily rainfall was collected by a field technician and three farmers in each region. Composite 

soil samples (0-20 cm) were collected in the BNF trial by taking five subsamples from each 

block. Samples were mixed, air-dried, crushed and sieved through a 2-mm sieve and analysed 

at IITA-Malawi and Chitedze Research Station for soil organic carbon (SOC) (Walkley-

Black), available P (Bray-1), soil pH (CaCl2), exchangeable K (Mehlich 3 method) and 

texture. In 2011 soil samples were collected from the two maize plots of the rotation trial and 

analysed for SOC, available P and soil pH following the same methods. 

 

Farmers’ practices in the BNF trial recorded by field technicians included actual sowing and 

weeding dates, the number of ridges and their spacing, the number of rows sown per ridge 

and the number of plants counted on two selected ridges in each plot at 3 weeks after sowing 

(WAS). Weed pressure was scored visually from 1 (<10% of the plot surface covered with 

weeds) to 5 (>90% of the plot surface covered with weeds) at 5, 8 and 11 WAS.  Above-

ground biomass samples of soybean were collected in the two seasons in all plots in the BNF 

trial at R5.5 (mid pod filling) growth stage. Sub-samples from three quadrants of 0.5 x 0.5 m 

were combined into one composite biomass sample per plot. Broad-leaved weed species were 

sampled as reference plants from unfertilized un-weeded soybean plots or from border 

margins in case the plots were all weeded. The weed species sampled in Dowa were 

Ageratum conyzoides (11 fields) and Leucas martinicensis (7 fields), in Mchinji Bidens 

pilosa (all fields) and in Salima Bidens pilosa (13 fields), Bothriocline laxa (5 fields) and 

Leucas martinicensis (1 field). The 150 soybean and 60 broadleaved weed samples were 

oven-dried until constant weight and ground to powder with an electric mill. They were 

weighed at 7 mg on a microbalance, stored in tin capsules, and analysed for nitrogen content 

(%) and δ15N at the UC Davis Stable Isotope Facility using a continuous flow isotope ratio 

mass spectrometer. The 15N natural abundance method was applied to estimate nitrogen 

fixation (Unkovich, 2008). The percentage of nitrogen derived from the atmosphere (%Ndfa) 

was calculated using the formula %Ndfa = ((δ
15

N
ref 

- δ
15

N
fix

) / (δ
15

N
ref 

- B)) × 100, where ‘ref’ 

are non-fixing and ‘fix’ are nitrogen fixing plants grown under the same conditions, and B is 

the δ15N of the N2-fixing plant grown with N2 as the sole external nitrogen source. The B 

value for soybean used was -2.00 (Ojiem et al., 2007; Boddey et al., 2000). The formula 

gNdfa = N yield x %Ndfa/100, was then used to calculate the amount of nitrogen fixed per 

ha based on the nitrogen content in the samples and the total dry biomass accumulated per 

ha at the time of sampling. The 15N natural abundance method only works if the δ15N of the 

legume falls between the ‘B’-value and the δ15N of the reference plant. Plots for which this 
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condition was not met were excluded from further analysis. At crop maturity, plots were 

harvested excluding the outer ridges and the 1.5 m ridge-length from which the biomass sub-

samples were collected. Harvested plants were threshed and weighed, and a sub-sample of 

the grain was taken from each plot to assess moisture content. Yields were adjusted to 13% 

grain moisture content. Biomass is presented as above-ground dry matter weight. Socio-

economic characteristics including gender, age, arable land area (ha), available family labour 

(ME), value of assets (USD) and livestock ownership (LU) were collected through structured 

interviews with farmers participating in all soybean trials as explained in Chapter 2.  

 

In the second season of the rotation trial (2011), structured questionnaires were conducted 

with all participating farmers to record input application and agronomic practices in the maize 

plots in the two seasons. The method of data collection in the 53 soybean plots in the first 

season was similar to the BNF trial, except that in the rotation trial oven-dried biomass 

samples were only analysed for nitrogen content (%) and δ15N in the 21 plots that also formed 

part of the BNF trial. At maize maturity in 2011, both plots were entirely harvested and maize 

was dried, shelled and kept in 50 kg bags at the household until the technician came to weigh 

the grain. Therefore, this study presents maize yields measured under storage conditions with 

an estimated moisture content of 12 to 15.5%. 

 

3.2.3 Data handling and analysis 

Linear mixed model (REML) analysis was used to test the effects of treatments in the BNF 

trials on δ15N, %Ndfa, total N2 fixed (kg ha-1) and grain yield (t ha-1), while testing for 

interactions between treatments, years and regions. Similar analysis was done to assess the 

effect of region on maize yields and the yield response to crop rotation with soybean. Since 

average values are not very informative due to large variability in responses across farms we 

presented data in cumulative frequency curves (Vanlauwe et al., 2016). The next step was to 

explore which factors contributed to the variability in the dependant variables %Ndfa, total 

N2 fixed, soybean yields, maize yields and yield responses. To avoid erratic model outputs 

due to collinearity, independent variables were associated with the dependant variables in 

separate analyses. REML is a flexible tool for analysis that can include unbalanced and 

categorical data and can be used to compensate for confounding factors and was used in 

similar studies to explain variability (Franke et al., 2016; Ronner et al., 2016). We included 

region and/or year as random factors in the model when they affected the dependant variable 

(p<0.05). Continuous independent variables in the fixed model included sowing date, first 

weeding date, weed pressure score (1-5), plant population density, biomass accumulation, 

plant height, soybean grain yield, soil texture, soil OC, P, K and pH and the socioeconomic 

characteristics arable land area, age of farmer, available family labour, value of assets and 

livestock ownership. Categorical factors included gender, external nutrient input (yes/no), 

improved maize variety (yes/no) and crop residue management (compost, incorporation in 
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the soil, burnt). Input levels in maize were determined through questionnaires resulting in 

rough estimates of quantities of urea (46% N) and/or NPS (23:21 +4S) applied per hectare. 

Since we could not assign reliable quantities of N and P to each field we included input level 

as a categorical factor (with or without inputs) in the REML. We used Spearman’s Rank 

Correlations test to determine if the effect of a continuous independent variable on the 

dependent variable was positive or negative. In the 21 sites where the BNF and rotation trials 

overlapped, we also tested for correlations between soybean yield components and N2 

fixation data and the following maize yields and yield responses to rotation. All statistical 

analysis were done using Genstat 18th edition. 

 

3.3 Results 

3.3.1 Socio-economic and biophysical characteristics of the farmers 

The 83 farmers who participated in the trials had different socio-economic and biophysical 

characteristics (Table 3.1). In Dowa a larger percentage of women hosted a trial and the 

households were poorer in terms of the value of assets, since field technicians in Dowa 

targeted vulnerable female farmers, while in the other districts a more random selection of 

farmers was made. In Salima participating farmers were relatively young and families had 

less labour available than in the other regions. Farmers in Mchinji kept more livestock. Soils 

in Dowa contained more OC, while in Salima soil pH was higher and more favourable for 

crop growth. There was a large variability in soil available P content within each region. Soil 

properties in soybean-maize plots were not different from the continuous maize plots in any 

of the three regions (data not shown).  Rainfall was more than the 50-year average in both 

seasons except for Mchinji in 2011. In Salima in 2010 over 80% of the total rain fell in 

February. Daily rainfall data in the three regions during the trials are presented in Chapter 2. 

 

3.3.2 BNF trial 

3.3.2.1 Farmers’ practices and yields 

The BNF trial plots were established on average 20 days after the first effective sowing rains, 

though differences in the onset of the rains between years and regions, and in farmers’ 

practices resulted in a wide range of sowing dates (Table 3.2). Fields in Dowa had larger 

plant populations compared with Mchinji and Salima. Mean soybean grain yields were 1.47 

t ha-1 in Dowa, 1.14 t ha-1 in Mchinji and 0.99 t ha-1 in Salima. The average yields did not 

differ much between regions and years in Dowa and Mchinji, but yields of 0.38 t ha-1 in 

Salima in 2010 were much smaller than 1.60 t ha-1 in 2011 (Table 3.2). This resulted in a 

strong region by year effect on both biomass and grain yields. The poor performance in 

Salima 2010 can be explained by the erratic rainfall distribution that resulted in dry spells 

after sowing. This was exacerbated by grasshoppers that damaged emerging plants. Strong 

weed pressure (Table 3.2) also contributed to poor yields in 2010. In 2011 rainfall was more 

evenly distributed and weed pressure was less. 
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Table 3.1: Socio-economic and biophysical characteristics of participating farmers in three regions. 

Data in brackets represent standard deviations from the mean. 

    Dowa Mchinji Salima Total / Fpr1 / Mean 

Participation in trials    Total 
 Only BNF2 trial (n) 13   6 11 30 
 Only rotation trial (n)   9 10   8 27 
 Both trials (n)   8   9   9 26       
Socio-economic characteristics    F pr 

 Female participants (%) 72 31 32  
 Age of farmer 51  (13) 47   (14) 32   (9) <0.001 
 Arable land (ha) 1.4 (0.86) 2.9  (2.6) 3.4  (3.8) 0.017 
 Available family labour (ME3) 4.4 (2.4) 4.1  (1.8) 3.1  (1.3) 0.041 
 Value of assets (USD) 81  (152) 288 (334) 250 (463) n.s. 
 Livestock ownership (LU4) 0.7 (1.8) 3.1  (5.6) 1.1  (2.4) 0.036       
Soil data both trials    F pr 
 SOC5 (g kg-1) 15.3 (4.1) 8.3 (2.4) 8.8 (4.1) <0.001 
 P (mg kg-1) 7.2   (9.7) 9.8 (5.8) 8.6 (13.7) n.s. 
 pH (CaCl2) 4.8   (0.4) 4.6 (0.3) 5.4 (0.6) <0.001 

Soil data BNF trials only    F pr 

 K (cmol kg-1) 5.4  (3.5) 2.5  (1.2) 6.1  (2.2) <0.001 

 Clay (g kg-1) 402 (80) 282 (127) 285 (121) <0.001 

 Silt (g kg-1) 146 (36) 125 (75) 143 (73) n.s. 

 Sand (g kg-1) 452 (89) 594 (188) 572 (183) 0.002       
Climatic data    Mean 
 Rainfall 2009/10 (mm) 979 1257 1199 1145 
 Rainfall 2010/11 (mm) 1278 756 1106 1047 

  Rainfall 50 years average6 905 952 946 934 
1Fpr = the probability of no difference between regions calculated through REML analysis. Fpr > 0.05 

means no significant difference (n.s.) between regions, 2Biological Nitrogen Fixation, 3Men Equivalent, 
4Livestock Units, 5Soil Organic Carbon, 6Source: Hijmans et al. (2005). 

 

3.3.2.2 15N natural abundance signatures in soybean and reference plants 

The average δ15N values in the BNF trials were +0.80‰ for soybean shoots and +3.85‰ for 

broad leaved weeds species (Table 3.3). The δ15N of the local soybean varieties (-0.12‰) 

was smaller (p<0.01) than for Nasoko (+0.91‰) across the three sites. The soybean δ15N was 

not affected by region or year but the δ15N of broad-leaved weed species were smaller in 

Salima. A combination of inoculant and fertiliser application resulted in smaller δ15N values 

compared with plots that received no inputs. 
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Table 3.2: Farmers’ crop management practices and soybean characteristics in the biological nitrogen 

fixation trial. 

  n Dowa Mchinji Salima Mean SED1 

Date of sowing rains (SR)       

 2010 75 15 Dec 11 Nov 21 Dec  

 2011 75 5 Dec 24 Nov 2 Dec  

Sowing date (days after SR)      Y=0.99** 

R=1.21*** 

R x Y=1.71 

 2010 75 26 22 8 19 

 2011 75 28 24 13 22 

First weeding (DAP)      Y=1,68*** 

R=2.05* 

R x Y=2.89** 

 2010 63 12 22 21 19 

 2011 67 30 30 25 28 

Weed pressure (1-5)      Y=0.09 

R=0.12***  

R x Y=0.16*** 

 2010 73 1.9 1.4 2.4 1.9 

 2011 60 2.2 1.6 1.8 1.8 

Plant population (1000 pl ha-1)      Y=17.5* 

R=21.4***  

R x Y=30.3** 

 2010 75 412 266 205 294 

 2011 75 308 207 257 257 

Plant height (cm)      Y=1.76 

R=2.15** 

R x Y=3.04*** 

 2010 75 47 53 40 47 

 2011 75 57 44 48 50 

Biomass dry weight (t ha-1)      Y=0.23*** 

R=0.28*** 

R x Y=0.40*** 

 2010 73 2.8 2.7 1.1 2.2 

 2011 75 4.6 2.3 2.9 3.3 

Grain yield (t ha-1)      Y=0.11*** 

R=0.13** 

R x Y=0.19*** 

 2010 75 1.4 1.1 0.4 1.0 

 2011 75 1.6 1.2 1.6 1.5 
1SED = Standard error of difference between means. Y=Year, R=Region, * p<0.05, ** p<0.01, 

*** p<0.001.  
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3.3.2.3 Variability in %Ndfa, total N2 fixed and grain yields 

The average %Ndfa of soybean was 57% in Dowa, 58% in Mchinji and 54% in Salima (n.s.) 

and did not differ between the years. The local varieties fixed a larger percentage of N2, while 

inoculation and fertiliser treatments did not affect %Ndfa (Table 3.4). There was a large 

variability in %Ndfa across farms, also within treatments (Fig. 3.1a). Several factors 

contributing to this variability were identified in the REML analysis (Table 3.5). Plant 

population and biomass accumulation were positively associated with %Ndfa. Delayed 

sowing also correlated with a larger %Ndfa. Clay content correlated negatively and sand 

positively with %Ndfa. Soybean plots hosted by male farmers (n=93) fixed 61% N compared 

to 50% on female farmers’ fields (n=57). Male farmers’ fields contained more sand (580 g 

kg-1 versus 470 g kg-1; p=0.01) and less clay (290 g kg-1 versus 390 g kg-1; p<0.001) than 

female farmers’ fields. The percentage of female farmers that participated in the BNF trial 

varied by region (57% in Dowa, 20% in Mchinji and 33% in Salima) and soils in Dowa 

contained more clay than in Mchinji and Salima (Table 3.1). Despite this, there was no 

interaction between the variables gender and region (p=0.15), soil texture and region (p=0.8), 

or gender and soil texture (p=0.07) in the effect on %Ndfa. 

 

The average total N2 fixed was 63 kg ha-1 and there was an effect of region (Table 3.4) and 

year with for instance 21 kg ha-1 fixed in Salima in 2010 and 107 kg ha-1 in Dowa in 2011. 

Like the %Ndfa, the local varieties also fixed larger quantities of N2 per ha, though this did 

not result in better grain yields (Table 3.4). Total N2 fixed increased with the combined 

application of inoculant and NPK fertiliser compared to the no input treatment (Table 3.4), 

though a considerable variability existed within all treatments (Fig. 3.1b). Total N2 fixed was 

strongly associated with plant growth traits such as grain yield, biomass yield and plant height 

and was positively affected by soil available P and exchangeable K (Table 3.5). Plants on 

soils containing more available P accumulated more biomass (r=0.32, p<0.001) and had taller 

plants (r=0.19, p=0.05).  

 

Soybean grain yields were affected by year, region and input level (Table 3.2 & 3.4). Average 

grain yields without inputs were 1.02 t ha-1, with only inoculation 1.08 t ha-1 and with 

inoculation plus fertiliser 1.68 t ha-1. The combined application of fertiliser and inoculant 

enhanced both biomass and grain yields compared with application of only inoculant (Table 

3.4). The REML analysis identified additional factors that may have contributed to the large 

variability in yields across farms (Fig. 3.1c). Fields with larger plant populations were 

associated with better yields, while high weed pressure was associated with lower yields. 

Male farmers and farmers with more assets tended to have better yields (Table 3.5). Female 

farmers’ soybean grain yields were only 0.99 t ha-1 compared with 1.33 t ha-1 achieved by 

male farmers. Besides soil texture, we did not find any associations between other 

biophysical, crop management, or socio-economic variables and gender. 
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Table 3.5: Factors affecting %Ndfa, quantities of N2 fixed and soybean grain yield. 

1For continuous variables ‘+’ indicates a positive and ‘–‘ a negative correlation with the dependent 

variable; Categorical factors are indicated with ‘C’. 2Random factors included in the REML model:  

R = Region, Y = Year, T = Technology treatment. 3 Percentage of nitrogen derived from the 

atmosphere. 

 

 

 

 

Dependent variable Type of relation1 n Fpr Random Factors2 

 Explanatory variables  
   

%Ndfa3   
 

 

 Technology treatment C 122 0.023 - 

 Clay - 120 0.043 T 

 Sand + 120 0.039 T 

 Sowing date + 122 0.042 T 
 Plant population + 150 0.029 - 
 Biomass yield + 148 0.049 - 
 Gender C 150 <0.001 T 
 Value of assets - 150 0.050 T 
       

Total N2 fixed     

 Region C 120 <0.001 - 
 Year C 120 0.003 - 

 Technology treatment C 120 0.043 R, Y 
 Available P + 141 <0.001 R, Y, T 

 Exchangeable K + 111 0.015 R, Y, T 
 Grain yield  + 150 <0.001 R, Y 
 Biomass yield + 148 <0.001 R, Y 
 Plant height + 148 0.002 R, Y 

     

Soybean grain yield     

 Region C 150 0.005 - 

 Year C 150 <0.001 - 

 Technology treatment C 150 <0.001 R, Y 

 Plant height + 148 <0.001 R, Y 

 Biomass yield + 148 <0.001 R, Y 

 Plant population density + 150 0.013 R, Y 

 Weed score - 133 0.022 R, Y 

 Total N2 fixed + 120 <0.001 R, Y 

 Net N benefit from BNF - 120 <0.001 R, Y 

 Gender C 150 0.002 R, Y, T 
 Value of assets + 150 <0.001 R, Y, T 
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3.3.3 Rotation trial 

3.3.3.1 Farmers’ practices and maize yields 

Most soybean plots cultivated in 2010 were preceded by cereal crops in 2009 whereas the 

maize plots were preceded by cereals (53%), legumes (29%) or other cash crops (Table 3.6). 

The soybean plots in Dowa accumulated most biomass and attained the largest yields 

followed by Mchinji and Salima. In the maize plots in 2010 most farmers in Mchinji applied 

a combination of ‘NPS’ (23:21+4S) and urea fertilisers at a rate of at 85 kg N, 11 kg P and 5 

kg S ha-1, but in Dowa unfertilised maize was most common. The use of animal manure was 

rare and only three farmers used chemicals for weed, pest or disease control. At the end of 

the season, maize residues were mainly incorporated into the soil or burnt. Soybean residues 

were taken to the homestead for threshing and residues were commonly used to make 

compost manure, but in Salima farmers burnt the residues or took them back to the field to 

incorporate them into the soil. 

 

Most maize plots in the second season of the rotation trial were sown in December, though 

in Mchinji and Salima sowing was spread out over two months (Table 3.7). In Dowa only 

36% of the plots received external nutrient inputs, compared to 89% in Mchinji and 65% in 

Salima. There was much variation in the date of first weeding ranging from 14 to 70 days 

after sowing. Improved varieties were used by 61% of the farmers whereas the rest of the 

farmers cultivated local varieties. There was large variability in number of sowing stations 

per hectare and number of seeds per station. The average sowing rate was 57,700 seeds ha-1. 

 

3.3.3.2 Maize yields, yield responses and yield variability in the rotation trials 

Mean maize grain yield in 2011 was 3.98 t ha-1 and yields varied between regions (Table 3.8) 

with 1.63 t ha-1 in Dowa, 2.94 t ha-1 in Mchinji and 4.37 t ha-1 in Salima (p<0.001). Maize 

yields achieved by farmers were highly variable between and within regions with 90% of the 

fields having yields in the range of 0.9 to 3.4 t ha-1 in Dowa, 1.5 to 5.3 t ha-1 in Mchinji and 

1.8 to 7.5 t ha-1 in Salima. The REML analysis identified the region and the previous crop 

(maize or soybean) as factors affecting maize yields (Table 3.9). Farmers that cultivated 

improved maize varieties also benefitted from better yields in plots that were proceeded by 

soybean, and input application enhanced maize yields in both treatments (Table 3.8). We did 

not find a relationship between soil characteristics, sowing date, sowing rate or socio-

economic characteristics of the households and maize yields. 
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Table 3.6: History and characteristics of plots used in the rotation trial. 

Plot history before rotation trial (2009)    

Crop1 before soybean (% of plots) Dowa  

(n= 16) 

Mchinji  

(n= 19) 

Salima  

(n= 17) 

Mean 

 Cereals 81 84 71 79 

 Legumes  0 5 0 2 

 Other cash crops  6 0 24 10 

 Fallow  13 11 6 10 

      

Crop before maize (% of plots) Dowa  

(n= 6) 

Mchinji  

(n= 16) 

Salima  

(n= 16) 

Mean 

  Cereals  83 25 50 53 

  Legumes  17 44 25 29 

 Other cash crops  0 31 25 19 

 Fallow  0 0 0 0 

     

Plot characteristics trial season 1 (2010)    

External inputs in maize plots2 Dowa  

(n= 11) 

Mchinji  

(n= 18) 

Salima  

(n= 17) 

Mean 

 NPS and Urea (%) 27 83 47 57 

 Animal manure (%) 9 6 12 9 

External inputs in soybean plots 0 0 0 0 

      

  Dowa  

(n= 15) 

Mchinji  

(n= 17) 

Salima  

(n= 15) 

Mean 

Yields in soybean plots (t ha-1) 1.13 0.76 0.33 0.74 

Soybean dry biomass at R5.5 (t ha-1) 2.49 1.94 1.00 1.83 

      

Use of maize residues after harvest Dowa  

(n= 8) 

Mchinji  

(n= 18) 

Salima  

(n= 17) 

Mean 

 Make compost manure (%) 13 6 6 7 

 Incorporate into the soil (%) 50 67 53 58 

 Burn (%) 38 28 41 35 

      

Use of soybean residues after harvest Dowa  

(n= 11) 

Mchinji  

(n= 17) 

Salima  

(n=17) 

Mean 

 Make compost manure (%) 91 94 6 60 

 Incorporate into the soil (%) 0 0 53 20 

 Burn (%) 9 6 41 20 
1Cereals are maize (53) and in Salima sorghum (5); Legumes include groundnuts (8) and soybean (6); 

Cash crops include in Mchinji tobacco (5), in Salima cotton (8) and in Dowa sweet potatoes (1). 
2Percentage of farmers applying these inputs. NPS (23:21+4S) and urea (46:0:0) were commonly 

applied at 125 kg ha-1 each. 
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Table 3.7: Maize management in the second year (2011) of the rotation trial. 

External inputs in trial plots (% of trials) Dowa 

(n=11) 

Mchinji 

(n=18) 

Salima 

(n=17) 

Mean 

 NPS1, Urea and Manure 0.0 16.7 5.9 7.5 

 NPS and Urea 36.4 61.1 41.2 46.2 

 Urea or CAN2 only 0.0 11.1 11.8 7.6 

 NPS only 0.0 0.0 5.9 2.0 

 No inputs 63.6 11.1 35.3 36.7 

     

Other crop management practices 

Dowa 

(n=8) 

Mchinji 

(n=18) 

Salima 

(n=17) 

Mean 

 

Sowing date 

    First 

    Median 

    Last 

 

- 

- 

- 

 

27 Nov 

12 Dec 

28 Jan 

 

11 Nov 

  6 Dec 

15 Jan 

 

 First weeding date (DAP) -   30 (16-54)3 22 (14-70)  

 Second weeding date (DAP) - 58 (43-75) 40 (27-58)  

 Improved variety4 (% of farmers) 50 68 65 61 

 Row spacing (cm) 75 84 (75-90) 77 (75-90) 79 

 

Plant spacing (%) 

    20-25 cm; 1 seed per station 

    40-50 cm; 2-3 seeds per station 

    60-90 cm; 3-4 seeds per station 

 

25 

50 

25 

 

5 

95 

0 

 

29 

6 

65 

 

20 

50 

30 

 Sowing rate (1000 seeds ha-1) 60.4 57.2 56.8 57.7 
 1NPS (23:21+2S). 2CAN is Calcium ammonium nitrate (27% N, 8% Ca). 3Data in brackets are 

minimum and maximum observes values. 4Includes hybrid and open pollinated maize varieties. 

 

On most farms, maize following soybean outperformed continuous maize (Fig. 3.2). The 

average yield increase of maize after soybean relative to continuous maize was 0.32 t ha-1 in 

Dowa, 1.29 t ha-1 in Mchinji and 1.23 t ha-1 in Salima (Table 3.8). The maize yield response 

was highly variable (Fig. 3.2a) with an overall probability of a positive response of 85%, and 

a 40% probability of a response above 1.0 t ha-1. There was variation across regions with 60, 

100 and 85% of fields showing a positive response in Dowa, Mchinji and Salima 

respectively. Farmers that applied nutrient inputs (n=32) had mean yield responses to rotation 

of 1.32 t ha-1 compared with 0.47 t ha-1 without input application (n=15). The average site 

yield (average yield of the two maize plots) was strongly correlated with the absolute yield 

response (r=0.52, p<0.001) indicating that more productive farmers benefited from larger 

absolute yield increases. The value of assets at the household was also associated with larger 

yield responses (r=0.37, p=0.006). 
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Table 3.8: Effect of region, maize variety and input application on maize yields and yield response to 

rotation. Data in brackets represent standard deviations from the mean. 

  n M-M1 plot (t ha-1) S-M2 plot (t ha-1) Yield response (t ha-1) 

Region     

   Dowa 17 1.47 (0.59) 1.79 (1.12) 0.32 (0.92) 

   Mchinji 19 2.30 (1.37) 3.59 (1.56) 1.29 (0.87) 

   Salima 17 3.75 (1.75) 4.98 (2.29) 1.23 (1.09) 

   SED3         0.45***        0.58***      0.32** 

Variety class     

   Improved4 27 2.98 (1.65) 4.01 (2.14) 1.23 (1.06) 

   Local 18 2.23 (1.57) 2.88 (1.87) 0.69 (0.97) 

   SED  n.s.   0.80* n.s. 

Input class     

   No inputs 15 1.66 (0.93) 2.19 (1.24) 0.49 (0.96) 

   With inputs5 32 3.06 (1.72) 4.28 (2.10) 1.28 (1.00) 

   SED       0.60**       0.55***    0.32* 
1M-M = maize after maize, 2S-M = maize after soybean, 3SED = Standard error of difference between 

means. For variety and input class ‘Region’ was added as a random factor in the REML, n.s. = not 

significant, * p<0.05, ** p<0.01, *** p<0.001. 4Hybrid or open pollinated varieties. 5 NPS (23:21+4S), 

urea, calcium ammonium nitrate (CAN) and/or manure. 

 

 

Table 3.9: Factors affecting maize yields and absolute and relative response of maize yield to crop 

rotation. 

1For continuous variables ‘+’ indicates a positive and ‘–‘ a negative correlation with the dependent 

variable; Categorical factors are indicated with ‘C’. 2Random factors included in the REML model:  

R = Region, Y = Year, T = Technology treatment. 

Dependent variable 

       Explanatory variables 

Type of relation1 n Fpr Random 

Factors2 

Maize yield (t ha-1)   
   

 

 Region C 106 <0.001 - 

 Treatment (soya or maize in 2010) C 106 0.002 R  
Variety (local or improved) C 70 0.02 R,T 

 Input application (yes or no) C 92 <0.001 R,T 

Absolute response to rotation (t ha-1) 
   

  
Region C 53 0.007 -  
Inputs applied to maize plots (yes or no) C 47 0.018 R  
Mean site maize yield + 53 <0.001 R 

 Value of assets (USD) + 53 0.029 R 

Relative response to rotation (%)     

 Region C 53 0.03  

 Maize yield in control plot - 53 0.019 R 
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Soybean as a previous crop increased maize yield on average by 39%. This relative response 

was affected by region with average yield increases of 22, 56 and 33% in Dowa, Mchinji and 

Salima respectively (Table 3.7). An increase of more than 10% (considered a minimum 

increase to be noticeable by farmers) was observed on 59, 90 and 77% of fields in Dowa, 

Mchinji and Salima respectively. A yield response of more than 100% was observed on 15% 

of the fields (Fig. 3.2b). Unlike the absolute yield response, the relative yield response was 

less in fields with a larger continuous maize yield (Table 3.9). There was no correlation 

between soybean grain yield, biomass, %Ndfa or total N2 fixed and the following maize yield 

or yield response to rotation in the 21 fields where both BNF and rotation data were collected. 

 

 

 
Fig. 3.2: Cumulative probability of the absolute (a) and relative (b) maize yield response to crop 

rotation following soybean instead of continuous maize production in three regions in central Malawi. 

 

3.4 Discussion 

3.4.1 Methodological considerations 

The farmers and fields included in the estimation of N2-fixation and rotational benefits 

represented a wide range of environmental and socio-economic conditions and crop 

management practices in central Malawi. This offered a valuable opportunity to quantify and 

analyse the large variability in maize and soybean yields, N2-fixation parameters and residual 

effects of soybean. This type of experimentation, often conducted as part of an agricultural 

dissemination programme with goals other than scientific research, can easily lead to 

challenges with unbalanced treatment designs and confounded co-variables, which reduces 

statistical power and the ability to explain variability. Moreover, multiple interacting 

constraints typically affect crop productivity which also complicates the analyses (Ronner et 

al., 2016; Fermont et al., 2009). Therefore, we identified those factors that are associated 

with the dependant variables, but did not attempt to quantify the relative importance of each 
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variable in explaining the overall variability. Some potentially relevant factors that could 

contribute to explaining variability such as daily rainfall at field level, pest and disease 

incidence and severity, livestock damage, and crop theft were not captured. 

 

3.4.2 Factors affecting N2-fixation and soybean and maize yields 

Our results show that a combination of genetic, environmental, management (GxExM) and 

socio-economic variables affect N2-fixation and soybean and maize yields (Table 3.5, 3.8 & 

3.9). Locally procured, undefined varieties had a larger %Ndfa (65%) than variety Nasoko 

(53%) receiving inoculation, while observed values were within the range reported in 

literature (Salvagiotti et al., 2008). The %Ndfa was not affected by region and year (Table 

3.5). While research in Kenya showed that differences between agro-ecological zones in 

terms of soil fertility and rainfall can affect the %Ndfa (Ojiem et al., 2007), in our study the 

regions may not have been sufficiently distinct to affect %Ndfa. However, within regions a 

larger percentage of N2 was fixed on soils with a relatively high sand content (Table 3.5). A 

possible explanation for this could be that clay soils can store more organic N suppressing 

N2 fixation (Schipanski et al., 2010; Giller et al., 1997). The %Ndfa was not affected by 

inoculation or fertiliser application (Table 3.4 and Fig. 1a). Chapter 2 showed that the same 

inoculant applied in a larger number of farmers’ fields (n=63) did not enhance grain yields, 

which could indicate that the inoculant was not very effective. Reported yield responses to 

inoculant application on smallholder farmers’ fields are highly variable and there can be an 

additive effect of inoculant and P fertiliser application on yield (Ronner et al., 2016). In our 

study, different nutrients in the applied fertiliser blend may have had contrasting impacts on 

the %Ndfa. While the N input from fertiliser may have suppressed N2-fixation (Salvagiotti 

et al., 2008), the additional P may have enhanced the %Ndfa (Pule-Meulenberg et al., 2011). 

 

The total amount of N2 fixed was strongly affected by crop productivity components such as 

grain yield, biomass accumulation and plant height (Table 3.5). Unlike the %Nfda, total N2 

fixation and soybean yields varied considerably between regions and years, probably due to 

different interacting production constraints (Fermont et al., 2009) such as soil characteristics, 

rainfall distribution, weed management, pest and disease incidence and time of sowing 

(Chapter 2). The combined application of fertiliser and inoculant increased the quantity of 

N2 fixed, biomass and grain yields (Table 3.4). This is in line with our findings that the 

amount of N2 fixed was associated with soil available P content (Table 3.5). Since soil 

exchangeable K content did not appear to be limiting (Table 3.1), the positive effect of K on 

N2-fixation (Table 3.5) may be due to a correlation between soil available P and exchangeable 

K (r=0.35, p<0.001). The effect of grain yield on total N2 fixation and vice versa (Table 3.5) 

suggests that adoption of yield improving crop management practices such as the correct 

sowing rate to achieve a good plant population (200,000 – 500,000 plants ha-1) and 

appropriate weed control (Table 3.5) will also result in larger quantities of N2 fixation. 
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Therefore, our results suggest that farmers whose soybean crops are likely to fix large 

quantities of N2 are those who achieve good soybean yields, apply P fertiliser or have soils 

that are rich in available P, and adopt crop management practices that enhance biomass 

accumulation and grain yields.  This is in line with several studies that have shown that 

including soybean in a maize-based system is a better investment if P fertiliser is applied to 

soybean (Ogoke et al., 2003; Kihara et al., 2010), since application of P fertiliser is known 

to enhance N accumulation by soybean (Jemo et al., 2006). 

 

Soybean as a preceding crop improved maize grain yields, but this yield benefit was not 

affected by the soybean grain yields or biomass accumulation in 2010 (Table 3.9). Due to the 

limited number of plots included in the BNF trial in 2010, we also could not find correlations 

between the 2010 N2-fixation data and the rotational benefits of soybean to maize in 2011. A 

review of several studies in sub-Saharan Africa shows that a cereal crop preceded by soybean 

takes up an additional 10-77 kg N ha-1 (Franke et al., 2018). This effect could be less in our 

study since the majority of farmers burnt or removed above-ground biomass from the field 

at harvest (Table 3.6), though there may have been a contribution of the below-ground 

biomass to the N economy (Wichern et al., 2008). The field N balance of soybean after grain 

removal is often negative (Salvagiotti et al., 2008; Vanlauwe and Giller, 2006; 

Mastrodomenico and Purcell, 2012) but it is usually still larger than in continuous maize 

without adequate N inputs (Peoples et al., 1995; Sanginga, 2003).  In our study we did not 

measure N uptake by maize and the yield increase is likely to be a combination of N and non-

N factors (Franke et al., 2018). Non-N rotational benefits could have included increased 

availability of P to maize following legumes (Carsky et al., 1997), suppression of root 

nematodes (Bagayoko et al., 2000) or other benefits (Franke et al., 2018). Non-N benefits 

may explain why yield increases of maize preceded by soybean were stronger in more 

productive fields where N was applied to maize (Table 3.8, 3.9). 

 

3.4.3 Which farmers benefit most from N2-fixation and crop rotation? 

For sustainable intensification to be acceptable to smallholder farmers, promoted 

technologies should be aligned to the local heterogeneous conditions and should result in 

immediate benefits for farmers (Vanlauwe et al., 2014). Surprisingly, gender strongly 

affected the %Ndfa, though this may be confounded with soil type since most participating 

female farmers were based in Dowa where soils were less sandy. Though interaction between 

soil texture and gender was not significant (p=0.07), there is still a 93% likelihood that this 

was not by coincidence. Moreover, male farmers achieved better soybean grain yields (Table 

3.5). This is in line with findings by Kilic et al. (2015) that female-managed plots in Malawi 

are 25% less productive than male-managed plots. Gender of the farmer was not related to 

any of the household socio-economic characteristics, which suggests that female farmers did 

not belong to poorer households than male farmers. Possibly, female farmers had less access 
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to resources within the household, as was the case with climbing bean producers in Rwanda 

(Franke et al., 2016). Poor female farmers in Malawi are more likely to diversify into off-

farm casual labour (ganyu) on wealthier farmers’ fields in exchange for basic food supplies 

(Bryceson, 2006; Simtowe, 2010). Time spent on off-farm activities may have negatively 

affected crop management and yields on female farmers’ fields. Men tend to allocate their 

time to high-value crops resulting in limited male labour inputs in female-managed fields 

(Kilic et al., 2015). Our results show that wealth of the household in terms of value of assets 

is positively associated with soybean grain yields (Table 3.5) and the absolute maize yield 

response to soybean (Table 3.9), probably because wealthier farmers have more fertile soils 

and can afford better management (Franke et al., 2014). These farmers may be in a better 

position to invest in nutrient inputs. The low value to cost ratio of fertiliser application to 

soybean and farmers’ perceptions that soybean does not require additional nutrients may 

hamper the adoption of inorganic fertiliser application in legumes (Kamanga et al., 2010b; 

Van Vugt et al., 2017). However, our observation that the response to nutrient inputs to maize 

is enhanced by soybean as a previous crop implies that soybean cultivation can make fertiliser 

application to maize economically more attractive. Poor farmers who cannot afford improved 

varieties and fertiliser inputs may benefit less from including soybean in the crop rotation 

than wealthier farmers who can invest in improved inputs. 

 

The results from both trials suggest that an improved integrated management including 

variety choice, external nutrient input application and other yield enhancing crop 

management practices, is associated with greater N2-fixation and residual effects of soybean 

on a subsequent maize crop. Thus, promoting the cultivation of soybean should be part of a 

wider Integrated Soil Fertility Management strategy (Vanlauwe et al., 2010). Farmers that 

have the means to invest in yield-enhancing technologies in both maize and soybean are 

likely to achieve the greatest benefits from incorporating soybean in maize-based rotations. 

Simply distributing soybean seed to support resource-poor smallholder farmers without 

further support is unlikely to be an effective development strategy. 
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Abstract 

Orange-fleshed sweet potato (OFSP) can contribute to combating vitamin A deficiency and 

establishing more resilient cropping systems in sub-Saharan Africa. There is limited 

understanding of the factors that affect yield and quality of OFSP on smallholder farmers’ 

fields. This study aimed to assess the performance of six OFSP varieties, identify factors 

limiting productivity and explore options to close the gap between actual and attainable OFSP 

yields on fields of smallholder farmers. Data were collected in the 2015/16 growing season 

from 221 on-farm variety demonstrations in seven districts in central and southern Malawi. 

Dependent variables of interest included crop establishment, vine yields, storage root 

formation, root yields, percentage of marketable root yield, and weevil infestation. Using 

linear mixed models, a range of biophysical, climatic, management and socio-economic 

factors and variables was used to identify associations with these dependent variables. The 

root yield gap was explored using a multivariate boundary line model to identify the most 

yield limiting factors. Results show a large variability across farmers’ fields and a wide range 

of interacting factors affecting the variables of interest. Varieties Chipika and 

Kadyaubwerere attained good yields and were preferred by farmers in terms of taste. 

Varieties Zondeni and Anaakwanire gave a poor root yield, but a good vine yield. Timely 

planting is crucial to attain good root yields by making better use of the available rainfall. 

There was a varietal effect on weevil infestation and Kaphulira was most affected. Weevil 

control is required for market-oriented producers to enhance the percentage of marketable 

roots. The average attainable fresh root yield ranged from 18 t ha-1 for Zondeni to 32 t ha-1 

for Mathuthu, against actual yields of 5 to 9 t ha-1. Elevation, planting date, rainfall and crop 

establishment could explain only 28 percent of the average yield gap, while 49 percent was 

explained for Mathuthu. Other factors that may explain the yield gap, but were not included 

in the model are: tillage methods and soil nutrient limitations. Male host farmers received 

better quality cuttings and planted in better soil moisture conditions, resulting in better 

establishment and vine yields. OFSP productivity can be enhanced through gender-sensitive 

extension, by ensuring male and female farmers can plant clean planting material of a suitable 

variety early in the rainy season. This requires additional efforts in vine multiplication of the 

required variety prior to the onset of the rains. 

 

Keywords: Boundary line analysis, production constraints, sweet potato yield, weevils, 

planting material   
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4.1. Introduction 

The population in sub-Saharan Africa is expected to increase 2.5-fold and the demand for 

cereals to triple by 2050, indicating a pressing need to close yield gaps and increase cropping 

intensity to reduce future dependence on food imports (Van Ittersum et al., 2016). At the 

same time food systems should not only feed the population, but also provide affordable 

nutritious diets (Haddad et al., 2016). Micronutrient deficiencies are a major health concern 

in sub-Saharan Africa caused by a lack of crop diversity, limited access to markets with 

nutritious food and consequently limited dietary diversity (Luckett et al., 2015).  

 

Sweet potato (Ipomoea batatas [L.] Lam) fits well in this context, since it is widely produced 

and rich in carbohydrates, protein, calcium, iron, potassium, carotenoids, dietary fiber, and 

vitamins (especially C, folate, and B6), and very low in fat and sodium (Bovell-Benjamin, 

2007). Sweet potato production in Africa has doubled from 1.0 to 2.0 million tons between 

2002 and 2012 (FAO, 2017). Predominantly white or yellow fleshed varieties are cultivated, 

while orange-fleshed sweet potato (OFSP) is rich in beta-carotene which is converted into 

vitamin A in the human body (Low et al., 2017). Vitamin A is an essential nutrient that 

prevents blindness in children and pregnant women. It is deficient among people in most sub-

Saharan African countries, which results in increased risks of severe infections and even 

death from common diseases such as diarrhea and measles (WHO, 2017). Promotion of 

OFSP has proven to be an effective food based approach to increase vitamin A intake and 

serum retinol concentrations in young children in rural Mozambique (Low et al., 2007). As 

a result of a growing evidence base on the effectiveness of OFSP to improve nutritional status 

(Tanumihardjo et al., 2017), to date 42 OFSP varieties have been bred in Africa (Low et al., 

2017). Sweet potato in Africa is perceived as a drought-tolerant food security crop (Motsa et 

al., 2015). Mass relief distributions of planting material to drought-, flood- or conflict-

affected households are common (Kapinga et al., 2005). There is limited awareness on the 

potential of sweet potato as a viable cash crop. Consumers that were well informed about the 

nutritional benefits were willing to pay 51% more for OFSP than for white-fleshed sweet 

potato in Mozambique (Naico and Lusk, 2010) and 25% more in Uganda (Chowdhury et al., 

2011), while without prior nutritional information this is not the case. This corresponds with 

results of a meta-analysis of 23 studies that shows consumers are willing to pay 21% more 

for biofortified crops (De Steur et al., 2017). 

 

Better OFSP yields will enable smallholder farmers to harvest more beta-carotene per ha for 

home consumption or market sales to the wider rural and urban population. Breeding 

programs continue releasing new OFSP varieties in Africa (Andrade et al., 2016). Besides 

good potential yields, traits of particular importance include storability, sweet and dry taste, 

early maturity, drought tolerance and high beta-carotene content (Laurie et al., 2004). The 

actual yields of sweet potato in southern Africa are estimated to be as low as 3 t fresh root 
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ha-1 in the period 2010-2014 (FAO, 2017) compared with attainable yields of 27 t ha-1 

reported in Mozambique (Andrade et al., 2016) and 35 t ha-1 in Malawi (Chipungu, 2015). 

This shows that despite breeding efforts, smallholder farmers are often unable to benefit from 

yield gains from genetic improvement (Tittonell and Giller, 2013) due to other yield reducing 

factors. 

 

Despite the relative drought tolerance of sweet potato compared to cereal crops (Motsa et al., 

2015), water limitations greatly affect crop development. Root formation on freshly planted 

cuttings is optimal at a soil water content of 80% of field capacity, though even at 40% of 

field capacity considerable root formation still occurs (Belehu, 2003). Crop water use of 

sweet potato under full irrigation in Mozambique was 800 mm with root yields of 33 t ha-1 

compared to 360 mm and 15 t ha-1 in the same site under rain fed production (Gomes and 

Carr, 2001; Gomes and Carr, 2003). Other studies confirmed that irrigation can enhance 

yields (Ghuman and Lal, 1983) and total nitrogen concentration, but can reduce dry matter 

concentration in the roots (Ekanayake and Collins, 2004). Despite common low-input 

cultivation practices, sweet potato shows a large yield response to nutrient input application 

via fertilizer and manure (Agbede, 2010). Potassium enhances root yields and quality by 

increasing the root: top ratio, dry matter concentration and beta-carotene and anthocyanin 

contents (George et al., 2002). Phosphorus and nitrogen application also enhance yields 

(Dumbuya et al., 2016; Ankumah et al., 2003). Tillage benefits root yield by reducing the 

bulk density of the soil (Agbede, 2010), while production on ridges may result in better yields 

than production on mounds (Dumbuya et al., 2016). 

 

The most serious sweet potato disease in Africa is the sweet potato virus disease (SPVD) 

which is caused by combined infection with sweet potato chlorotic stunt virus by whiteflies 

and sweet potato feathery mottle virus by aphids (Gibson et al., 2004; Karyeija et al., 1998). 

Sweet potato weevil (C. formicarius complex) is worldwide considered the biggest pest 

attacking both cultivated and stored sweet potatoes (Allemann et al., 2004; Chalfant et al., 

1990). Severity of weevil infestation depends on variety (Stathers et al., 2003b) and increases 

with delaying the harvest of mature roots (Smit, 1997). Both SPVD and weevils can infect 

new fields via planting material. Timely access by farmers to sufficient quantities of clean 

planting material is a challenge in areas with a long dry season due to limited knowledge of 

technologies to conserve vines (Okello et al., 2015). A final challenge affecting smallholder 

sweet potato producers is poor storability of roots compared to grain crops (Abidin et al., 

2016). 

 

Low crop yields are usually caused by a multitude of interacting biophysical, socio-economic 

and management constraints that determine final production on farmers’ fields (Fermont et 

al., 2009). Production ecology concepts (Van Ittersum and Rabbinge, 1997) are often used 

to quantify the yield gaps between potential, water- or nutrient-limited and actual yields. The 
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extent to which biotic stresses such as pests, diseases and weeds or abiotic stresses such as 

nutrient deficiencies and drought affect the yield gap can vary across regions (Wairegi et al., 

2010). To target interventions that aim to improve OFSP productivity on smallholder 

farmers’ fields we need to identify the main factors contributing to the yield gap. This study 

reports on data collected in on-farm variety demonstration plots in seven districts in central 

and southern Malawi in the 2015/16 rainy season. We aimed to (i) assess the performance of 

six released OFSP varieties on a large number of farmers’ fields in different agro-ecological 

conditions; (ii) identify important varietal, abiotic, biotic and crop management factors 

limiting smallholder OFSP production; (iii) discuss opportunities to enhance OFSP 

productivity for smallholder farmers, and; (v) draw lessons on the conditions under which 

OFSP planting material distributions to smallholder farmers will be most beneficial. 

 

4.2. Materials and methods 

4.2.1 Location and approach of the study 

The study was conducted under the project ‘Feed the Future Malawi Improved Seed Systems 

and Technologies’ which aims to scale out seed and other crop technologies of various crops 

to >280,000 rural households in seven districts (Mchinji, Lilongwe, Dedza, Ntcheu, Balaka, 

Machinga and Mangochi) in central and southern Malawi. This target area represents three 

agro-ecological zones (AEZ) as defined in Malawi (Saka et al., 2006): AEZ 1 represents the 

lake shore, middle and upper Shire at an elevation of 200-760 meters above sea level (masl), 

AEZ 2 the mid-elevation upland plateau at 760-1300 masl, and AEZ 3 the highlands at >1300 

masl (Fig. 4.1).  

 

Malawi has a unimodal rainfall distribution with rains from December to April, followed by 

a long dry season. Long term average total rainfall in the research sites ranges from 801-1000 

mm with 1001-1200 mm in the higher elevation areas of Dedza and Ntcheu (METMALAWI, 

2017). On farm demonstrations were established in 390 sites in the 2015/16 rainy season. 

Eleven project partners including government and NGO’s were responsible for 

implementation of the field activities and data collection. Each demonstration site consisted 

of six plots each planted with a different OFSP variety. Zondeni is a local variety that was 

recommended by the Department of Agricultural Research Services (DARS) in 2008 for 

scaling out, because there were no released OFSP varieties in Malawi yet. It matures late in 

5-6 months and has a yield potential of only 16 t ha-1. Five other varieties were released by 

DARS in 2011 (Chipungu, 2015). These are Anaakwanire with a 5-6 months maturity period 

and yield potential of 25 t ha-1, Chipika and Kadyaubwerere with a medium maturity period 

of 4-5 months and 35 t ha-1, Mathuthu with 4-5 months and 25 t ha-1 and Kaphulira which is 

the earliest maturing variety with a growing period of 3-4 months and a potential yield of 35 

t ha-1. Each demonstration served as a learning site for fifty farmers who also received one 

bundle of planting material to plant in their own fields to apply what they learnt. 
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Fig. 4.1: Location and number of OFSP Mother Baby Trials in seven districts in three agro-ecological 

zones in Central and Southern Malawi. 

 

4.2.2 Trial design and data collection 

The field study was considered as a variety trial with 390 blocks that we refer to as 

‘demonstration sites’. Each site was a replication and contained six plots. The demonstration 

sites were established jointly by research, extension and farmers to ensure uniformity 

amongst treatments allowing for visual comparison and the collection of quantitative data. 

Each of the six varieties was planted in a plot of 5.4 m by 3.75 m (20.25 m2). The plots 

consisted of five ridges of 5.4 m length with a spacing of 0.75 cm between ridges. The plants 

on each ridge were spaced at 32 cm resulting in 17 planting stations per ridge and 85 per plot, 

which equals 41,975 plants per ha. The sites were planted from December 26 to March 3 in 

AEZ 1, December 22 to February 23 in AEZ 2 and December 30 to January 23 in AEZ 3. 

This resulted in the five planting date classes: 16-31 December (n = 41), 1-15 January (n = 

24), 16-31 January (n = 90), 1-15 February (n = 58) and > 16 February (n = 8). The boundaries 

of the planting date classes were set at approximately two-week intervals starting at the 

beginning or the middle of a month to ensure that a representative sample was included in 

each class and planting date recommendations can be derived. No fertilizer, manure or 

chemicals to control pests and diseases were applied at any stage during the season.  
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Within the first month after planting (MAP), composite soil samples (0-20 cm) were 

collected in 70 sites (10 per district) by taking six subsamples in each site.  Subsamples were 

taken at the flank of the ridge in the middle of each plot, mixed, air-dried, crushed and sieved 

through a 2-mm sieve. They were analyzed at SGS in South Africa for soil pH (1 M KCl), 

available P (Bray-1), K, Ca, Mg (Amm Acetate), Cu, Zn, Mn, Fe (0.1M HCl), B (H2O), S 

(Am Ac), texture (hydrometer), soil organic carbon (Walkley-Black) and organic matter. 

Each district is divided in 5 to 6 administrative units called extension planning areas (EPAs). 

Monthly accumulated rainfall data (mm) and the number of rainy days per month were 

provided by government for each EPA following regular district level data collection. These 

data were used to estimate the total rainfall received in the season (November to May) for 

each demonstration site. The last month with rainfall was defined as the last month in the 

growing season with more than 20 mm rainfall (in most cases March or April). The last date 

with effective rainfall was estimated by dividing the total rainfall received in the last month 

with rainfall by a daily evapotranspiration rate of 4 mm. The number of days between 

planting the site and the estimated last available rainfall date was calculated to estimate the 

period over which each site received rainfall, also referred to as rainfall exposure period. 

 

Data collected at planting included gender of the host farmer of the demonstration site, 

planting date, GPS coordinates and elevation. The quality of the cuttings was categorized as 

poor, just fine, or healthy and soil moisture content as dry, moist or wet. In most 

demonstration sites, field facilitators and the 50 satellite farmers counted the number of plants 

that established out of the 85 cuttings in each plot between one and two months after planting. 

Weeding dates were not recorded, but prior to or during participatory vine establishment all 

fields were cleared of weeds. At the time of participatory harvest an area of 4.20 by 2.25 

meter was demarcated as the ‘net plot’ for each variety excluding the two border ridges and 

two planting stations on each end of the three middle ridges. First, the vines and roots from 

these border plants were harvested, labelled and removed from the field. After this, the net 

plot with a maximum on 39 plants was harvested. Data collected included the total number 

of plants harvested, the number of plants that had storage roots, and the fresh weight of the 

vines from the net plot. Roots were harvested and separated into marketable (>100 g) and 

non-marketable (<100 g) sizes. Besides root size, the marketability was determined based on 

farmers’ assessment whether they would be able to sell the roots on the local fresh root market 

or not. The number of roots and total weight of marketable and non-marketable roots was 

recorded separately. The total number of weevil infested roots was recorded in each plot. 

Weevil infestation was identified by dark scarred spots on the root surface where weevils 

penetrated to feed on the roots (Stathers et al., 2003a). 

 

Data on sensory evaluation of the six OFSP varieties were recorded in 94 sites (50 in AEZ 1, 

41 in AEZ 2, and 3 in AEZ 3) with the farmers that participated in the harvest. Groups in 

each site consisted of about 40-60 people including men, women and children in different 
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ratios depending on the site. A group of women boiled the roots harvested from the border 

ridges in six pots up to the point a fork could enter the root without it breaking. The roots 

were cut in pieces and presented on six plates without mention of the name of the variety. 

All participants could see and taste a sample of each variety. Thereafter they were asked to 

stand in a line behind the plate of their most preferred variety and the number of people in 

each line were counted. The varieties were subsequently ranked from 1 (most preferred) to 6 

(least preferred). 

 

4.2.3 Data handling and statistical analysis 

Sites with yield data on less than four out of the six plots were excluded from analysis, 

resulting in a data set of 221 sites with soil data available for 63 of these sites. To explore 

variability in the dependent variables (establishment percentage, vine yield, total root yield, 

percentage of marketable root yield and percentage of weevil infested roots), these were 

presented by variety in cumulative probability curves (Vanlauwe et al., 2016). Linear mixed 

model (REML) analysis in Genstat 18th edition was used to test which categorical factors 

were significantly associated with the dependent variables. Categorical factors included 

AEZ, variety, planting date class, gender, condition of cuttings and soil moisture at planting. 

A linear mixed model was also used to test for significant associations between continuous 

independent variables on the same dependent variables of interest, while adding relevant 

categorical factors as random factors in the model. The continuous variables included 

elevation, planting date, rainfall exposure days, total rainfall, harvest date, growing period 

and all soil parameters. Spearman’s Rank Correlation coefficients were calculated to 

determine the strength and the direction of the association. Correlation analysis was also done 

to assess associations between the dependent variables: percentage establishment, vine yield, 

percentage of plants harvested with roots, total root yield, percentage of root yield that is 

marketable and percentage weevil infested roots. The sum of preference rank scores was 

calculated for each variety. Differences in sensory preference for the varieties were analysed 

using critical values for the differences between rank sums (p< 0.05). The critical values were 

derived from expanded tables for multiple comparison of ranked data (Newell and 

MacFarlane, 1988). This was done for all sites (n = 94) and by AEZ. Due to the small number 

of data points (n=3) in AEZ 3, these were merged with AEZ 2. 

 

4.2.4 Root yield gap analysis 

We assessed correlations between root yield and continuous variables with Spearman’s test 

for non-parametric data and explored functional relationships in scatter graphs. Variables 

with a correlation coefficient > 0.3 (Van Asten et al., 2003), a significant correlation 

(p<0.05), or where the upper points in the scatter plot with yield suggested a functional 

relationship (Wairegi et al., 2010) were included in the boundary line analysis. Plots with 

missing data for one or more variables were removed from the analysis and 1057 plots from 

191 trials were included. Several methods have been reported to fit boundary lines through 
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the upper boundary points of the data clouds. Simple methods include drawing the lines by 

hand (Chambers et al., 1985) or manually selecting upper points and fitting a linear, 

logarithmic or polynomial regression line (Van Asten et al., 2003). In this study we explored 

two more advanced methods. Firstly, we split data sets into 8-10 equidistant groups on the 

X-axis followed by calculating the boundary points as the upper confidence interval (Schmidt 

et al., 2000; Casanova et al., 1999). We selected ‘mean + 3 x STDEV’ as boundary points. 

In the second method, we applied the model 𝑦𝑙 =
𝑦𝑚𝑎𝑥

1+𝐾−𝑅𝑥
  where ymax is the observed 

attainable yield level, x is the independent variable, and K and R are constants (Wairegi et 

al., 2010; Fermont et al., 2009). In both methods the best boundary line model was obtained 

by minimizing the root mean squared error (RMSE) between the fitted boundary line (yl) and 

the boundary points. In case of a negative correlation between the two variables we fitted a 

linear or polynomial boundary line through the boundary points. After visual assessment of 

the boundary lines resulting from both methods, the upper confidence interval method was 

selected for further analysis. We combined the boundary lines for each variable in a 

multivariate model and predicted the yield for each individual plot by identifying the most 

limiting factor following von Liebig’s law of the minimum (Shatar and McBratney, 2004; 

Von Liebig, 1863). We ranked the most limiting constraints for each variety by counting the 

frequency that each variable is responsible for the lowest predicted yield. To evaluate this 

multivariate model we plotted the predicted yields for each plot against actual yields in scatter 

graphs. The difference between the attainable yield (Yatt) and the minimum yield predicted 

by the model (Ymin) was defined as the explainable yield gap. We quantified Yatt for each 

variety as the mean + 3 x STDEV of the total root yield. The difference between Ymin and 

the actual yield (Yact) was defined as the unexplained yield gap. When the unexplained yield 

gap is large this means that not all important variables have been included in the analysis 

(Van Asten et al., 2003). Yield gaps have been quantified in similar way for cereals 

(Casanova et al., 1999), cassava (Fermont et al., 2009) and East African highland bananas 

(Wairegi et al., 2010). 

 

4.3. Results 

4.3.1 Biophysical and climatic conditions of the trial sites 

Among farmers hosting a demonstration, 33% were female. Planting took place between 

December 22, 2015 and March 3, 2016. A mismatch between time of distribution of 

perishable planting materials and distribution of rainfall resulted in planting demonstrations 

under dry soil conditions in 6% of the sites and poor quality planting material was planted in 

2% of the sites (Table 4.1).  
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Table 4.1: Biophysical conditions, crop management components and gender participation in three 

agro-ecological zones (AEZ), mean and standard deviations from mean between brackets. 

 AEZ 1  

(n=92) 

AEZ 2 

(n=110) 

AEZ 3 

(n=19) 

Mean 

(n=221) 

SED1 

Continuous      

 Elevation2              (masl) 585 (107) 1036 (141) 1465 (102) 885 (306) 27*** 

 Planting date3         (days)   35 (13)     26 (17)     15 (8.8)   29 (16) 3.2*** 

 Harvest date4          (days)   38 (16)     31 (13)     28 (11)   34 (14) 1.2*** 

 Growing period      (days) 135 (16)   137 (16)   144 (13) 137 (16) n.s. 

 Total rainfall          (mm) 513 (181)   635 (169)   780 (131) 597 (189) 15*** 

 Rainfall exposure5  (days)   78 (16)      89 (24)   105 (14)   86 (22) 4.4*** 

 Plant population (1000 pl 

ha-1) 

  30 (17)      33 (9)     28 (11)   32 (10) 1.1*** 

Categorical      

 Female host farmers (% 

of farmers) 

  26   36   47   33  

 Soil moisture at planting      

      Dry      (% of sites)     7     6   11     6  

      Moist  (% of sites)   68   25   73   48  

      Wet     (% of sites)   25   69   16   46  

 Condition of cuttings at 

planting 

     

      Poor         (% of sites)     0     2   11     2  

      Just fine   (% of sites)   33   19   21   25  

      Healthy    (% of sites)   67   79   68   73  
1Standard Error of Differences, * p<0.05, ** p<0.01, *** p<0.001, 2meters above sea level, 3expressed 

as the number of days after the first trial was established, 4number of days after the first trial was 

harvested, 5number of days from planting to the last effective rainfall event. 

 

The average plant stand 1-2 months after planting was 32,000 plants ha-1 out of a planting 

density of 41,975 cuttings ha-1. Harvesting took place in the period May 2 to July 22 in AEZ 

1, May 12 to July 10 in AEZ 2 and May 19 to June 27 in AEZ 3. The average growing period 

from planting to harvest was 137 days (Table 4.1). The demonstrations were established in a 

season that was considered poor in rainfall, with especially AEZ 1 and AEZ 2 receiving on 

average only 513 and 635 mm. Due to the wide range in planting dates, demonstration sites 

in these AEZs did not equally benefit from the available rainfall. The average rainfall 

exposure period ranged from 78 days in AEZ 1 to 105 days in AEZ 3 (Table 4.1). After the 

last effective rainfall event the sweet potato roots stayed in the soil for an average of 51 days 

before harvesting. The relatively low soil OM content (Table 4.2) indicates that nitrogen (not 

measured) may be limiting OFSP yields. Available P appears less limiting but the large 

variability shows it may limit yields in several sites, especially in AEZ 1 and 2. The soils do 

not show severe signs of K deficiency, though the large crop requirement for K may result in 
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yield limitations. The average soil pH was in the range of 4.7-4.9 (in KCl) and the smallest 

pH of 4.3 was unlikely to limit yields. Soils in AEZ 1 and 2 contained more sand than in AEZ 

3. 

 

Table 4.2: Soil characteristics in selected trial sites, mean and standard deviations from the mean 

between brackets 

Soil parameter AEZ 1  

(n= 23) 

AEZ 2  

(n= 32) 

AEZ 3  

(n= 8) 

SED1 

pH2  (KCl) 4.9  4.9  4.7  0.22 

Carbon (g kg-1) 12 (4.6) 12 (5.6) 12 (3.5) 0.7 

OM (g kg-1) 21 (7.9) 21 (9.7) 20 (6.0) 1.3 

Available P  (mg kg-1) 27 (18.7) 18 (14.6) 40 (14.8) 2.4*** 

CEC (cmol kg-1) 6.80 (4.20) 5.84 (3.06) 6.35 (3.57) 0.53 

Exch. K+ (cmol kg-1) 0.43 (0.20) 0.33 (0.18) 0.40 (0.16) 0.03*** 

Exch. Ca2+ (cmol kg-1) 4.53 (2.51) 4.29 (2.13) 4.32 (2.47) 0.34 

Exch. Mg2+ (cmol kg-1) 1.55 (0.93) 1.21 (0.88) 1.62 (1.06) 0.14*** 

Exch. Na+ (cmol kg-1) 0.05 (0.02) 0.05 (0.02) 0.05 (0.01) 0.00** 

Cu (mg kg-1) 0.7 (0.22) 1.1 (0.45) 1.4 (0.76) 0.07*** 

Zn (mg kg-1) 2.9 (2.27) 1.8 (1.63) 2.4 (1.90) 0.28*** 

Mn (mg kg-1) 28 (10.2) 26 (16.1) 28 (7.66) 2.0 

B (mg kg-1) 0.35 (0.14) 0.26 (0.16) 0.28 (0.12) 0.02*** 

S (mg kg-1) 12 (7.4) 11 (4.8) 11 (5.6) 0.9 

Clay (g kg-1) 107 (50) 150 (56) 168 (85) 8.6*** 

Silt (g kg-1) 134 (49) 126 (46) 158 (33) 6.7*** 

Sand (g kg-1) 759 (84) 724 (91) 675 (99) 13.1*** 
1Standard Error of Differences, * p<0.05, ** p<0.01, *** p<0.001, 2pH data were back-log transformed 

before calculating the means and therefore standard deviation are not provided; pH values ranged from 

4.3 to 6.4. 

 

4.3.2 Exploring variability in establishment, vine yield, total and marketable root 

yield, and weevil infestation. 

The effects of variety, AEZ and planting date class (Table 4.3) and the cumulative probability 

charts (Fig. 4.2) demonstrate the variability in establishment, vine yield, root yield, 

percentage of root yield that is marketable and the percentage of roots affected by weevils. 

The percentage establishment was associated with total root yield (r=0.18; p<0.001). Vine 

yield correlated with root yield (r=0.41; p<0.001) and percentage marketable yield (r=0.14; 

p<0.001). Root yield correlated with the number of plants with roots harvested per ha (r=0.42; 

p<0.001) and percentage marketable yield (r=0.18; p<0.001). Marketable root yield (%) was 

negatively associated with percentage of roots affected by weevils (r=-0.27; p<0.001).  
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Fig. 4.2: Cumulative probability charts for six OFSP varieties of a) root yield, b) marketable root 

yield (% of root weight) and c) percentage of roots infested with weevils. 
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The REML resulted in additional categorical and continuous variables that are significantly 

associated with the dependent variables of interest (Table 4.4). 

 

On average 31,718 out of the 41,975 cuttings ha-1 (76%) established well. Kadyubwerere 

established better than Anaakwanire. AEZ and planting date class also affected establishment 

with the best establishment observed in AEZ 2, and in sites planted between 16 and 31 

January (Table 4.3). Good establishment of more than 80% was achieved in 50% of the sites 

for Anaakwanire and 61% of the sites for Kadyaubwerere. Poor establishment of less than 

50% ranged from 12% of the sites for Kadyaubwerere to 22% for Anaakwanire. Healthy 

cuttings resulted in better establishment (72% establishment) than cuttings of fine (69%) or 

poor (64%) quality. Soil moisture conditions at planting also affected establishment with 

76% achieved in wet soils compared to 69% in moist and 67% in dry soil conditions. Plants 

in male host farmers’ fields established better (72%) than in female farmers’ fields (67%). 

Gender interacted with both quality of cuttings (p=0.007) and soil moisture condition at 

planting (p<0.001) which suggests female farmers received poorer quality planting material 

at a time with less soil moisture content than male host farmers. 

 

Mathuthu had a slightly smaller vine yield at harvest though overall vine yield did not differ 

much between varieties (Table 4.3). Vine yields were better in AEZ 3 and in sites planted 

before January 16 (Table 4.3). Fresh vine yield of over 10 t ha-1 was achieved in 15% of the 

sites for Mathuthu to 27% for Zondeni. Male farmers had better vine yields of 8.2 t ha-1 than 

female farmers with 7.1 t ha-1. Plots planted with healthy or medium quality cuttings yielded 

more vines (8.3 and 8.0 t ha-1) than with poor quality cuttings (3.3 t ha-1). There was an 

interaction between gender and quality of cuttings (p=0.034). Soil moisture conditions at 

planting also affected vine yields with 9.0 t ha-1 achieved in wet soils compared to 7.6 t ha-1 

in moist and 5.9 t ha-1 in dry soil conditions. Vine yield correlated (r > 0.2 or < -0.2) with the 

continuous variables elevation (r=0.20; p<0.001), root yield (r=0.40; p<0.001), clay content 

(r=0.24; p<0.001) and sand content (r=-0.24; p<0.001). 

 

At harvest on average 30,490 plants ha-1 (96% of established plants) were uprooted. An 

average of 79% of these had storage roots. Root set for Zondeni and Anaakwanire was only 

40% and 67% in AEZ 1 while it was 90% and 94% in AEZ 3. AEZ also affected the root set 

of other varieties but not to the same extent (Table 4.3). Soil texture affected root set (Table 

4.4), as larger clay concentration correlated with more (r=0.23; p<0.01), and larger sand 

concentration with less (r=-0.22; p<0.01) plants with roots. The percentage of plants with 

roots was also associated with total root yield (r=0.33; p<0.001) and the percentage 

marketable yield (r=0.17; p<0.01). 
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Table 4.4: Factors affecting plant establishment, vine yield, root yield, percentage marketable root 

yield and percentage of weevil affected roots. The values are the F-probabilities generated by the REML 

analysis with the direction of the association given in brackets for the continuous variables. 

1Random factors included in the REML model: A = Agro-ecological zone, V = Variety, P = Planting date class.  
2n = the number of trials with data to include in the model. 3Carbon, OM and Cu were not associated with any of the 

dependent variables. 

Explanatory 

variables 

Establish

ment 

Vine 

yield 

Plants 

with 

roots 

harvested 

(%) 

Root 

yield  

Marketa-

ble root 

yield (%) 

Weevil 

infested 

roots (%) 

Random 

Factors1 

Categorical 

factors 

(n2 = 139) (n = 221) (n = 221) (n = 221) (n = 221) (n = 221)  

Agro-ecological 

zone 

<0.001 <0.001 <0.001 <0.001 0.017 <0.001 V,P 

Variety 0.020 <0.001 <0.001 <0.001 <0.001 <0.001 A,P 

Planting date 

class 

<0.001 <0.001 0.042 <0.001 0.002 <0.001 A,V 

Gender <0.001 0.004 0.561 0.177 0.468 0.017 A,V,P 

Condition of 

cutting 

0.047 <0.001 0.229 0.058 0.015 0.027 A,V,P 

Soil moisture at 

planting 

<0.001 <0.001 0.395 <0.001 0.642 0.138 A,V,P 

         

Continuous 

variables 

(n = 139) (n = 221) (n = 221) (n = 221) (n = 221) (n = 221)  

Elevation 0.004 (+) 0.005 (+) 0.003 (+) 0.003 (+) 0.107 (+) 0.007 (-) A,V,P 

Planting date 0.819 (+) <0.001(-) 0.384 (-) 0.009 (-) 0.592 (-) <0.001(-) A,V,P 

Rainfall exposure 

days 

0.165 (-) 0.107 (+) 0.405 (+) <0.001(+) 0.255 (+) <0.001(+) A,V,P 

Total rainfall 0.021 (-) 0.005 (+) 0.054 (+) <0.001(+) <0.001(+) 0.008 (-) A,V,P 

Harvest date X <0.001(-) <0.001(-) 0.059 (-) 0.024 (+) 0.143 (-) A,V,P 

Growing period X <0.001(+) <0.001(-) 0.238 (-+) 0.065 (+) 0.006 (+) A,V,P 

         

Soil parameters3 (n = 55) (n = 61) (n = 61) (n = 61) (n = 61) (n = 61)  

pH  0.015 (-) 0.007 (+) 0.431 (-) 0.134 (-) 0.009 (+) 0.003 (-) A,V,P 

P  0.803 (+) 0.176 (+) 0.129 (+) <0.001(+) 0.954 (-) 0.982 (+) A,V,P 

CEC 0.554 (+) 0.016 (+) 0.037 (+) 0.036 (+) 0.001 (+) 0.175 (-) A,V,P 

K 0.247 (+) <0.001(+) 0.801 (-) 0.361 (-) 0.105 (+) 0.101 (-) A,V,P 

Ca 0.686 (+) 0.140 (+) 0.142 (+) 0.132 (+) 0.014 (+) 0.159 (-) A,V,P 

Mg 0.954 (-) 0.062 (+) 0.113 (+) 0.105 (+) 0.007 (+) 0.093 (-) A,V,P 

Na 0.075 (-) 0.124 (+) 0.471 (-) 0.119 (-) 0.003 (+) 0.011 (-) A,V,P 

Zn 0.452 (+) 0.131 (-) 0.482 (-) 0.104 (-) 0.755 (-) 0.017 (+) A,V,P 

Mn 0.344 (+) 0.590 (-) 0.795 (-) 0.533 (-) 0.026 (+) 0.685 (+) A,V,P 

B 0.942 (+) 0.043 (-) 0.603 (-) 0.889 (-) 0.854 (-) 0.002 (+) A,V,P 

S 0.772 (+) 0.101 (+) 0.067 (+) 0.153 (+) 0.017 (+) 0.221 (-) A,V,P 

Clay 0.289 (-) 0.003 (+) 0.035 (+) 0.300 (+) 0.615 (+) 0.139 (+) A,V,P 

Silt 0.064 (+) 0.009 (+) 0.021 (+) 0.033 (+) 0.862 (+) 0.016 (+) A,V,P 

Sand 0.668 (-) <0.001 (-) 0.011 (-) 0.079 (-) 0.827 (-) 0.028 (-) A,V,P 
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Fresh root yields differed by variety with Zondeni and Anaakwanire achieving much smaller 

root yields than the other varieties (Table 4.3, Fig. 4.2a). Yields over 5 t ha-1 were achieved 

on 30% of sites for Zondeni, 46% for Anaakwanire, and 62-63% of sites for the other 

varieties. Yields over 20 t ha-1 were achieved on less than 2% of sites for Zondeni and 

Anaakwanire, and 6-12% of the sites for the other varieties. Sites in AEZ 3 achieved the best 

average root yields of 14 t ha-1. This was 60% more than in AEZ 2 and even 156% more than 

in AEZ 1 (Table 4.3). Root yield was strongly affected by planting date with sites planted 

between 16-31 January (Class 3) achieving only 58% of the yields of sites planted in the first 

half of January (Class 2) with further yield reductions observed in sites planted in February. 

Root yield was affected by soil moisture conditions at planting with 9.9 t ha-1 achieved when 

planted in wet soils compared to 8.5 t ha-1 in moist and 6.5 t ha-1 in dry soil conditions. Root 

yield was associated with the continuous variables elevation (r=0.38; p<0.001), planting date 

(r=-0.33; p<0.001), rainfall exposure days (r=0.33; p<0.001), total rainfall (r=0.31; p<0.001) 

and vine yield (r=0.40; p<0.001). 

 

The percentage of the total root yield considered as marketable was best in AEZ 3, though 

still only 65% (Table 4.3).  It was smallest for Zondeni and Anaakwanire (Table 4.3) and 

highly variable across sites (Fig. 4.2b). Less than 50% of root yield was marketable in 44% 

of the sites for Zondeni, 30% for Kaphulira, 28% for Anaakwanire and 21-23% of the sites 

for Chipika, Mathuthu and Kadyaubwerere. Plots planted with healthy or medium quality 

cuttings had a larger percentage of marketable root yield (63 and 61%) than plots planted 

with poor quality cuttings (50%). Marketable root yield was also associated with percentage 

weevil infested roots (r=-0.26; p<0.001). 

 

Fields in AEZ 1 had the largest percentage of roots infested with weevils (Table 4.3). It was 

also observed that sites that were planted early were more affected by weevils than those 

planted in February or March. Kaphulira was more affected by weevils than the five other 

varieties at harvest (Fig. 4.2c). The percentage of sites without weevil infestation ranged from 

15% for Mathuthu to 26% for Zondeni. On female farmers’ fields 20% of the roots were 

infested with weevils compared to 17% on male farmers’ fields. There was an interaction 

between the condition of the cuttings at planting and gender (p=0.01) on weevil infestation. 

The percentage of infested roots correlated with planting date (r=-0.27; p<0.001), rainfall 

exposure days (r=0.25; p<0.001), growing period (r=0.20; p<0.001) and % marketable root 

yield (r=-0.27; p<0.001). 

 

4.3.3 Interactions between variety, environment and management affecting total root 

yield 

There was a strong interaction observed between the effects of variety and categorical 

planting date class (p<0.001) and planting date as continuous variable (p<0.001) on root 

yield. Delaying planting from the first to the second half of January resulted in 6.1 – 7.0            
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t ha-1 yield reduction for the better yielding varieties Chipika, Kadyaubwerere, Kaphulira and 

Mathuthu (Fig. 4.3). This reduction was only 0.7 t ha-1 for Anaakwanire and 2.9 t ha-1 for 

Zondeni. Variety also interacted with continuous variables harvest date (p=0.02), rainfall 

exposure days (p<0.001) and total rainfall (p=0.026). Planting date correlated strongly 

(p<0.001) with all these variables and especially with rainfall exposure days (r=-0.86). 

Varieties did not differ in yield response to elevation or soil properties. 

 

 
Fig. 4.3: Average OFSP root yields for six varieties by planting date class. The vertical lines represent 

the standard error of differences between means. 

 

4.3.4 Yield gap analysis 

From the continuous variables that are significantly associated with root yield (Table 4.4), 

the correlations between soil parameters and yield were weak (r=0.12 for soil available P and 

r=0.13 for silt). The variables elevation, planting date, rainfall exposure days and total rainfall 

correlated more strongly with root yield (r =>0.3 or <-0.3) and were therefore included in the 

boundary line analysis. Out of these, only elevation and total rainfall strongly interacted 

(p<0.001) in the association with root yield because the highlands in Dedza and Ntcheu 

received more rainfall than the southern districts. The percentage establishment had a weak 

correlation with yield (r=0.18; p<0.001), but was included in the model because the scatter 

graph showed a clear association. Boundary regression lines were therefore conducted using 

the factors elevation, planting date, rainfall exposure days, total rainfall and percentage 
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establishment (Fig. 4.4). Out of these, total rainfall was the most limiting factor in 30% of all 

plots, followed by elevation (23%), planting date (21%), percentage establishment (18%) and 

rainfall exposure period (8%). There was little difference between varieties in the percentage 

of fields in which each variable is most limiting (Fig. 4.5).  
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Fig. 4.4: Boundary lines for sweet potato yields. ‘r’ represents the correlation coefficient between the 

two variables. 
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Fig. 4.5: The most limiting factors identified using the boundary line approach and the corresponding 

proportion of plots (%) in which these factors were most limiting by variety and for all plots. 

 

The attainable yield ranged from 17.6 t ha-1 for Zondeni to 32.0 t ha-1 for Mathuthu (Table 

4.5), while actual yields of these varieties were only 4.5 and 9.3 t ha-1. Across varieties, 

average root yields were only 29% of the attainable yield and the average yield gap was 18.6 

t ha-1. The factors included in the multivariate boundary line model could explain 31% of the 

yield gap. The explainable yield gap for the low yielding varieties Anaakwanire (2.5 t ha-1) 

and Zondeni (0.8 t ha-1) was small compared to that of the four better yielding varieties (6.1 

– 11.2 t ha-1). Mathuthu had the largest explainable yield gap (Fig. 4.6), but 48% was 

nevertheless unexplainable. It is therefore not surprising that the multivariate model did not 

serve well to predict yields based on the most limiting factor (Fig. 4.7). The predicted root 

yields were much larger than the actual yields and the R2 of the regression line was only 0.16. 

When testing the model with data for individual varieties the graphs looked similar (not 

presented) and R2 ranged from 0.11 for Anaakwanire to 0.22 for Mathuthu.  
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Table 4.5: Explained and unexplained average root yield gap using the multivariate boundary line 

model. 

Variety n Attainable 

yield 

(t ha-1) 

Actual 

yield  

(t ha-1) 

Total  

yield gap 

(t ha-1) 

Explainable 

yield gap 

(t ha-1) 

Unexplainable 

yield gap 

(t ha-1) 

Anaakwanire 175 21.6 5.8 15.7 2.5 13.3 

Chipika 173 28.4 8.5 20.0 7.5 12.5 

Kadyaubwerere 189 29.0 8.7 20.3 7.9 12.5 

Kaphulira 185 27.2 8.4 18.9 6.1 12.8 

Mathuthu 176 32.0 9.3 22.7 11.2 11.4 

Zondeni 159 17.6 4.5 13.0 0.8 12.2 

All data 1057 26.1 7.6 18.6 6.1 12.5 

 

 

 
Fig. 4.6: The percentage of the sweet potato yield gap that could be explained by the model for six 

varieties. Whiskers indicate standard errors. The standard error of differences between means is 2.4 
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Fig. 4.7: Actual and predicted yield from the multivariate boundary line model. The dotted diagonal 

line depicts the relationship y = x and the solid line is the linear regression line. 

 

 

  



Exploring the yield gap of orange-fleshed sweet potato varieties 

77 
 

4.3.5 Sensory evaluations 

Kadyaubwerere and Chipika were the most preferred varieties in terms of consumption of 

boiled roots (Table 4.6). Zondeni was ranked third and was preferred over the varieties 

Anaakwanire, Mathuthu and Kaphulira. Preferences differed slightly between AEZs since 

Zondeni was ranked significantly lower than Chipika in lower areas but not in higher 

elevations. Overall, the top three most preferred varieties were the same in all AEZs. 

 

Table 4.6: Sensory evaluations of six OFSP varieties in three agro-ecological zones (AEZ) in Central 

and Southern Malawi   

Variety Sum of preference rank scores2 

Rank1 All sites 

(n=94) 

AEZ 1 

200-760 masl3 (n=50) 

AEZ 2&3 

>760-1300 masl (n=44) 

Kadyaubwerere 1 220  116  104  

Chipika 2 239  120  119  

Zondeni 3 300  179  121  

Anaakwanire 4 380  209  171  

Mathuthu 5 399  198  201  

Kaphulira 6 423  225  198 

Critical value4  74 54 51 
1 Ranking from 1 = most preferred to 6 = least preferred, 2 Each variety received a rank score (1 = most 

preferred to 6 = least preferred) in each of the 94 sites. The data represent the sum of the rank scores 

given to each variety. 3Meters above sea level, 4 According to expanded tables for comparison of ranked 

data (Newell and MacFarlane, 1988), this critical value is the least significant difference (p<0.05) in 

the sum of preference ranks between varieties. 

 

4.4. Discussion 

4.4.1 Methodological considerations 

The large number of sites allowed for a good quantification of the variability in performance 

of the six OFSP varieties, exploration of yield limiting factors and identification of 

opportunities to enhance productivity. The demonstration sites did not fully reflect farmers’ 

practices since land preparation and plant and row spacing were pre-defined. Planting 

material was sourced from the formal market and diseased plants were removed during and 

after establishment as part of the training of farmers, which probably reduced incidences of 

SPVD and weevils compared to farmers’ practices and using locally sourced planting 

material. On the other hand, local sourcing could have resulted in fresher planting material 

by cutting out transport and distribution time. Since varieties have different maturity periods, 

yield assessment may have been better by harvesting each variety at the optimal harvest time. 

However, in that case the participatory harvest evaluations and sensory evaluations with the 

satellite farmers would not have been possible. The type of information provided before 

tasting could have affected the sensory evaluations (Lagerkvist et al., 2016), for example 
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understanding that darker orange flesh-colour corresponds with higher beta-carotene content 

may lead to preference for Kadyaubwerere. While lining up for the preferred variety, peer 

pressure may have affected independence of the ranking between individual evaluators. The 

taste and sweetness of sweet potato change when stored for a couple of days after harvest, 

though differences in sensory preferences are mainly determined by texture which is not 

much affected by storage (Van Oirschot et al., 2003). 

 

4.4.2 Performance of six OFSP varieties 

Suitability of a variety depends on the characteristics a farmer is looking for and can included 

vine production, total and marketable root yield, resistance to pests, storability and sensory 

characteristics (Ndolo et al., 2001). While vine yield may have been affected by theft and 

roaming livestock, it still largely correlated with total root yields. Anaakwanire and Zondeni 

had better vine to root ratios than the other varieties (Table 4.3). These varieties may not be 

recommended since they consistently underperform in terms of root yield even when planted 

early in the season (Fig. 4.3). The poor attainable yields of 22 t ha-1 (Anaakwanire) and 18 t 

ha-1 (Zondeni) compared to 27 to 32 t ha-1 for the other varieties (Table 4.5) indicate a limited 

genetic potential of these varieties. Probably due to small root size, also the percentage of 

marketable root yield of these two varieties is poor (Table 4.3), limiting options for 

commercialized market-oriented production. Our data did not show any interactive effect on 

root yield between variety and AEZ indicating there is no need to recommend certain 

varieties for specific environmental conditions. Timely planting (which strongly correlates 

with the number of days a site is exposed to rainfall) will mostly benefit the better yielding 

varieties Chipika, Kadyaubwerere, Kaphulira and Mathuthu (Fig. 4.3). While Kaphulira 

achieved good yields, the large percentage of roots infected with weevils (Table 4.3) may 

limit its marketability. Weevils were encountered on 74% - 85% of sites depending on 

variety. The correlation between weevil infestation and planting date (r=-0.27) and growing 

period (r=0.20) suggest farmers can reduce weevil infestation by earlier harvesting. Studies 

in Cameroon (Parr et al., 2014) and Uganda (Smit, 1997) confirm that delayed harvesting 

increases weevil infestation. Since industrial processing of OFSP for human consumption is 

gaining momentum in Malawi and weevils are not tolerated, additional measures are needed 

to control weevils. These can include hilling up twice at 4 and 6 weeks after planting 

(Pardales Jr and Cerna, 1987), filling cracks in the soil with loose soil when roots expand, or 

piece-meal harvesting as soon as cracks form (Ebregt et al., 2007). Besides high weevil 

infestation, Kaphulira also scored low on sensory preferences (Table 4.6). Similar to 

Mathuthu, this may affect willingness to adopt the variety for household consumption. 

Kadyaubwerere and Chipika stand out as promising varieties that receive the best sensory 

preference score (Table 4.5), are preferred by industrial processors (UIL, 2017), achieve good 

root yields (Table 4.3) especially when planted early (Fig. 4.3) and are less susceptible to 

weevil infestation than Kaphulira. 
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4.4.3 Important factors limiting smallholder OFSP production 

Besides variety choice several other factors affected total root yield. The final yield of any 

crop is a product of interacting genetic, environmental, management and socio-economic 

factors (Tittonell and Giller, 2013). Using fresh planting material and planting in wet soil 

positively affected the crop establishment (Table 4.4), while poor establishment was the most 

root yield limiting factor in 18% of the sites (Fig. 4.4). This suggests that timely access to 

fresh planting material will benefit final productivity. Once established, the percentage of 

plants that will form storage roots can be enhanced by choosing the right variety for the AEZ 

(no Zondeni in AEZ 1) and avoiding soils that are too sandy (Table 4.4). The strong effect of 

AEZ on root formation suggests farmers may benefit from larger planting densities in AEZ 

1 to compensate for the reduced root set, which strongly correlates with total root yield 

(r=0.33). Our results show that the importance of timely planting to make optimal use of 

available rainfall cannot be overemphasized to achieve good yields (Table 4.4, Fig. 4.3, Fig. 

4.4) The strong correlations between planting date and rainfall exposure days (r=-0.86, 

p<0.001; most limiting on 8% of sites) and total rainfall (most limiting on 30% of sites) 

indicates that these factors may be confounded in the yield gap analysis. The strong effect of 

AEZ on yield may also partly be explained by the correlation between elevation and rainfall 

exposure days (r = 0.34, p<0.001) and the fact that sites in AEZ 3 were planted earlier and 

AEZ 3 received more rain (Table 4.1).  

 

The large unexplainable yield gap (Table 4.5) and the systematic over-estimation of yields 

(Fig. 4.6) suggest there are several other yield limiting factors unaccounted for by the model. 

The poor yield predictions for Anaakwanire and Zondeni (Table 4.5) may be due to the 

overriding constraint of poor genetic yield potential. Addressing the constraining factors 

included in the boundary line model may result in yield increases of 6.1 to 11.2 t ha-1 for the 

other four varieties, leaving an unexplainable yield gap of 11.4 to 12.8 t ha-1 (Table 4.6). Soil 

fertility constraints were not captured in the model due to the small sample size (n=61) and 

small correlations with root yield. Soil nitrogen content was not measured, but a positive 

association between soil available P, CEC and root yield was found and texture may have 

had some effect (Table 4.4). Soil fertility may become a constraint to achieve attainable 

yields, since for each ton of root yield, an estimated 10 kg N, 2 kg P and 17 kg K is removed 

from the soil (IPNI, 2017). Improved tillage and nutrient input applications (Agbede, 2010) 

could have made a significant contribution to closing the yield gap. Yield reducing factors 

such as weeds, pests and diseases were assumed negligible due to the controlled nature of the 

demonstrations. Weeds, viruses-infested plants and plants with other disease symptoms were 

uprooted and removed from the field during farmer trainings, and weevil infestation only 

affected marketability but not the total root yield. The yield reductions caused by viral disease 

in smallholder sweet potato crops needs more research and more technology transfer efforts. 

Most farmers in our study could not recognize a plant virus, while these can lead to large 

yield reductions or complete crop failure (Adikini et al., 2016). Male host farmers’ fields had 
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better crop establishment, better vine yields and less weevil infestation, but there was no 

effect of gender on root yield (Table 4.4). The interactions between gender and the quality of 

cuttings and soil moisture condition at planting, suggest that when planting material arrived 

in an area to establish several demonstration sites, male farmers could have been prioritized 

by extension agents resulting in fresher planting material and timely planting in male host 

farmers’ fields. 

 

4.4.4 Recommendations to enhance OFSP productivity on smallholder farms 

Sweet potato development objectives in sub-Saharan Africa include emergency relief 

distributions of planting material to vulnerable households, reducing Vitamin A deficiency 

with nutritious OFSP, and product development and commercialization. Enhanced 

productivity will benefit all these objectives and should first include promotion of the better 

yielding varieties Chipika, Kadyaubwerere, Kaphulira and Mathuthu. Emergency 

distributions of sweet potato planting material as a drought tolerant crop in case it is too late 

to plant maize is probably not a good strategy to promote its cultivation and use, because 

delayed planting will result in poor root yields (Fig. 4.3). Transportation time and distances 

result in farmers receiving poor quality cuttings and risks planting in soils without adequate 

moisture content. This will affect establishment and yield (Table 4.4). The nutritional and 

commercialization objectives require awareness efforts to change the farmers’ and 

consumers’ mindset that sweet potato is a ‘poor men’s crop’. The varieties Kadyaubwerere 

and Chipika may be prioritized as they are both highly ranked in sensory evaluations (Table 

4.6) and suitable for processing. Market-oriented producers will benefit from adopting 

measures to control weevils to reduce the percentage of unmarketable yield. Farmers often 

do not have access to sufficient planting material at the onset of the rains and therefore plant 

later in the season by cutting and transplanting material that sprouted in the early weeks of 

the rainy season. More training on the importance of early planting (Table 4.3, 4.4, Fig. 4.3) 

should therefore be combined with initiatives that ensure availability of quality planting 

material of the most preferred varieties at the right time. This can be achieved by promoting 

rapid vine multiplication techniques under irrigation in the dry season either for own use or 

as a business opportunity to sell to others (McEwan et al., 2017), though sustainable vine 

multiplication business can only be achieved where there is sufficient demand (Rao and 

Huggins, 2017). Promotion of OFSP in combination with training on vine conservation has 

proven to enhance conservation practices by farmers (Okello et al., 2015). There should be 

special emphasis on gender in extension programs to ensure both men and women benefit 

equality from timely access to quality planting material. 
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Abstract 

Maize, the main staple food of smallholder farmers in southern Africa, is cultivated on a large 

share of the agricultural land. Limited nutrient input results in soil nutrient depletion over 

time. There is need for productive farming systems that are better adapted to a changing 

climate, and that produce more diverse food to achieve both food and nutrition security. We 

explored options for crop intensification and diversification in central Malawi by combining 

yield responses to inputs in 50 maize, 28 soybean, 24 groundnut and 26 sweet potato on-farm 

trials with economic analysis and focus group discussions. Due to proper crop management 

and the use of good varieties in a season with above-average rainfall, excellent mean trial 

yields of 5.0 t ha-1 for maize, 3.4 t ha-1 for soybean, 2.5 t ha-1 for groundnuts and 13.2 t ha-1 

for sweet potato were achieved. Responses to combinations of inorganic fertilizer and lime 

were highly variable, although yields of all crops were enhanced. Although maize production 

and response to fertilizer were not as profitable as the other crops, fertilizer application to 

maize gave the best returns of food per amount of money invested. Yield responses and value 

cost ratios showed that investments in fertiliser and lime on soybean was more worthwhile 

than on groundnut, although the relative differences were somewhat hidden by high 

groundnut prices. While there is potential to derive better financial returns from 

diversification and intensification with legumes and sweet potato, farmers prioritize maize in 

terms of land area and resource allocation. Policies to enhance crop diversification and 

intensification should address the main constraints of lack of awareness of the agronomic and 

financial benefits of nutrient application to legumes and sweet potato, unstable markets, 

access to credit and access to improved seed.  

 

Keywords: Sustainable intensification, soil fertility, yield variability, crop diversification, 

fertilizer 
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5.1 Introduction 

Food security remains a major concern in southern Africa where eight percent of the 

population is undernourished, while in Malawi this is even 26 percent of the population (FAO 

et al., 2017). The agricultural sector in Malawi is constrained by low productivity, poor 

management of water and soils and susceptibility to climatic shocks (MAIWD, 2016a). There 

is little mechanization or irrigation and almost no use of credit to procure agricultural inputs 

(Sheahan and Barrett, 2017). The population has grown rapidly over the past two decades, 

increasing pressure on farming systems, while new market opportunities emerge following 

urbanisation and economic growth (Binswanger-Mkhize and Savastano, 2017).  Farming 

systems need to intensify in a sustainable manner by maintaining healthy soils and increasing 

resilience to climatic and other shocks (Vanlauwe et al., 2014). Maize is the main staple crop 

in Malawi, produced on over 70% of the fields (NSO, 2012). Average maize yields of 

smallholder farmers in Malawi are only about 2 t ha-1 whilst currently cultivated varieties can 

yield 6 to 10 t ha-1 (Mutegi et al., 2015). Fallow areas have largely disappeared but cropping 

intensities remain low and the process of intensification has been weak in terms of organic 

fertilizer and agro-chemical use (Binswanger-Mkhize and Savastano, 2017). Although it is 

estimated that 408 000 ha, out of a total arable land area of 3.8 M ha, is potentially suitable 

for irrigation, only a quarter of this area is currently irrigated (MAIWD, 2016b). Inorganic 

fertilizer is applied on 61 percent and organic fertilizer on 12 percent of fields in Malawi 

(NSO, 2012). While insufficient to prevent soil nutrient depletion, an increase in inorganic 

fertilizer use was observed from 31 kg per arable hectare in 2003 to 43 kg ha-1 in 2015 

(Nalivata et al., 2017) alongside adoption of improved seeds (Binswanger-Mkhize and 

Savastano, 2017). Inorganic fertilizer is mainly applied to maize and tobacco and not to 

legumes by the majority of farmers in central Malawi, while only 20 to 40 percent of farmers 

apply organic manure or compost to any field (Mungai et al., 2016). Continued maize 

cultivation without adequate nutrient and organic matter inputs may in the long term lead to 

extensive soil degradation (Tittonell and Giller, 2013). 

 

Crop diversification can benefit the farming system productivity, food and nutrition security, 

and resilience to climate change (Bezner Kerr et al., 2007; Kankwamba et al., 2012) and 

features prominently in the National Agricultural Policy (2016-2020) of Malawi (MAIWD, 

2016a). A key benefit of including or expanding the contribution of legumes in the farming 

systems is their ability to fix freely-available atmospheric nitrogen (Giller, 2001). Legumes 

positively affect the following cereal crops with average yield increases of 42 percent, 

relative to continuous cereal cultivation, in the savannas of southern Africa (Franke et al., 

2018). Especially soybean and maize fields that receive adequate nutrient inputs and good 

management benefit from N2 fixation by the legume and increased yield of the following 

maize crop (Chapter 3). Incorporating grain legumes in the cropping system can be especially 

promising in areas with good soils and rainfall (Ojiem et al., 2014), while resource poor 
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farmers that cannot invest in inputs such as P-fertilizer and inoculant may not be able to 

achieve food self-sufficiency through legume adoption (Franke et al., 2014). Intercropping 

maize with pigeon pea strongly increased the likelihood to produce sufficient calories for 

smallholder households in northern Malawi compared to sole maize cropping (Snapp et al., 

2014). Legumes can also supplement cereal-based diets with essential amino-acids (Jones 

and Divine, 1944). Current diets are lacking important vitamins and minerals and there is an 

urgent need for more nutritious food systems (Haddad et al., 2016). Sweet potato is 

commonly perceived as a crop that can enhance food security in the face of challenges such 

as drought or climate change (Motsa et al., 2015). There is scope for its expansion, especially 

since production and consumption of orange-fleshed varieties are a promising approach to 

reduce Vitamin A deficiency in breastfeeding mothers and children under the age of five 

(Low et al., 2017; Tanumihardjo et al., 2017). There is large potential to enhance sweet potato 

productivity as yields in unfertilized fields in Malawi are only 29% of the attainable yields 

leaving a yield gap of 18.6 tons per ha (Chapter 4). 

 

The Ministry of Agriculture Irrigation and Water Development in Malawi has long 

recommended application of NPS 23:9:4  basal fertilizer and top dressing with urea at a 

recommended rate of 92 kg ha-1 N,  18 kg ha-1 P  and 8 kg ha-1 S as the standard for maize 

(MAFS, 2012). One 50-kg bag of each of these fertilizers is included in the governments 

targeted agricultural input subsidy program since 2005 (Dorward and Chirwa, 2011) to 

benefit resource-constrained smallholder farmers. Over time many fertilizer 

recommendations have been developed for different crops in the country of which some 

specifically target K and Zn deficiencies and soil acidity (Nalivata et al., 2017). More 

recently, based on previous work in the country, soil fertility maps for Malawi have been 

developed and fertilizer recommendations have been derived for maize by Extension 

Planning Area (a subdivision of District). Depending on the soil status of N, P, K, S, Zn and 

the soil acidity, different combinations of the available fertilizers NPKSZn 23:4:4:6:1, NPKS 

10:11:17:7, NPS 23:9:4, urea, sulphate of ammonia and calcium ammonium nitrate (CAN) 

are recommended (Mutegi et al., 2015). For new fertilizer blends to be used effectively there 

is need to understand the responses of different crops to fertilizer, farmers’ land allocation to 

crops, fertilizer costs and the expected value of the commodities (Nalivata et al., 2017). It is 

also of crucial importance to look beyond average responses and consider the wide range of 

responses that occur due to the heterogeneity of smallholder farmers practices (Vanlauwe et 

al., 2016). Finally, the farmers’ needs, perceptions and evaluations of the new technologies 

should be in the forefront to assess the potential for adoption (Snapp and Silim, 2002; Van 

Vugt et al., 2017). 

 

In the research reported here, we (i) evaluate the effectiveness and profitability of fertilizer 

and lime application to maize, soybean, groundnut and sweet potato; (ii) identify factors 

affecting the yield and yield responses; (iii) explore farmer perceptions on intensification 
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with fertilizers, and (iv) discuss the implications for intensification and crop diversification 

with soybean, groundnuts and sweet potato in central Malawi. 

 

5.2 Materials and methods 

5.2.1 Study sites and approach 

On farm trials with maize, soybean, groundnut and sweet potato were established by Farmers 

World Ltd in the 2016/17 growing season in eight districts in central Malawi (Fig. 5.1). Most 

trials were established on the mid-elevation upland plateau at 760–1300 m above sea level 

(masl) and in the highlands above 1300 masl. Central Malawi has a single rainy season from 

December to April with a long term annual rainfall between 801 and 1000 mm on the plateau 

and 1001 to 1200 mm in the highlands (METMALAWI, 2017). Farmers World Ltd imports 

and distributes a range of products including agricultural inputs such as fertilizer, seed and 

chemicals through their network of retail stores. The company aims to enhance farmers’ 

productivity by providing access to tailor-made fertilizer and extension services. A dedicated 

extension officer (agronaut) in each store provides advice, conducts farmer trainings, 

establishes trial plots, collects data and organizes field days. Based on soil properties in the 

catchment areas around 30 stores, the company produces crop-specific fertilizer blends for 

maize (NPKSZnB 15:23:16:6:0.5:3 basal; NK 30:16 top dressing), soybean and groundnut 

(NPK 6:20:24) and sweet potato (NPKS 10:20:20:6), and developed liming 

recommendations (FW, 2016). Two farmers’ fields were identified around each of the 30 

stores to test the effectiveness of the application of lime and the fertilizer blends. Each host 

farmer managed two or three crops, with only one legume planted per trial site: soybean or 

groundnut. Maize trials were established on 50, soybean on 28, groundnuts on 24, and sweet 

potato on 26 sites.  
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Fig 5.1: Location of Farmers World Ltd demo sites in eight districts of central Malawi. 

 

5.2.2 Trial design and data collection 

The maize trials consisted of four plots of 7.5 m by 8.0 m each. Ridge spacing was 0.75 m 

and each plot had 10 rows of 8 m length with 0.25 m spacing between plants. One seed was 

sown per planting station. Maize variety MH26, a hybrid, drought tolerant, medium duration 

(about 110 days) variety was planted in all sites. The soybean and groundnut trials both 

consisted of four plots of 8.0 m by 8.1 m. Each plot had 16 ridges spaced 0.5 m apart. On 

each ridge two rows were sown with one seed per planting station every 0.25 m. Soybean 
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variety Tikolore was selected because it is an early maturing self-nodulating variety that is 

resistant to leaf rust. Soybean seeds were not inoculated before sowing. Groundnut variety 

CG7 was chosen because it is a popular high yielding variety with high oil content. The sweet 

potato trials consisted of twelve plots of 5.4 m by 3.75 m. Each plot had five ridges spaced 

0.75 m apart with 32 cm between planting stations on each ridge. In each site a block of six 

sweet potato plots received fertilizer, while the other six control plots did not receive inputs. 

Six varieties were planted: the five orange-fleshed varieties Anaakwanire, Mathuthu, 

Kaphulira, Kadyaubwerere and Chipika (Chapter 4) and a local white- or yellow-fleshed 

variety. Each variety featured two times in each trial: once in the fertilized block, and once 

in the control block. Table 5.1 presents the fertilizer and lime treatments in the maize, 

soybean, groundnut and sweet potato trials. Basal fertilizer was applied after germination for 

all crops. Top dressing was applied only to maize on average 28 days after planting. The lime 

(chemical composition 96% CaCO3, 1.5% MgCO3, 0.7% SiO2 and 0.6% MnO2) was 

incorporated in the ridges two weeks before planting. In case of poor emergence, gaps in the 

maize and groundnut trials were filled with new seed. This was not needed in the soybean 

trials where germination was excellent in all sites. Host farmers kept the fields weed-free by 

manual weeding throughout the season. Where pests were observed, cypermethrin was 

applied as a biocide. 

 

To avoid border effects, net plots were harvested in each plot, leaving the outer row on each 

side of the plot, and the last two plants on both sides of each row. Maize plants in the net 

harvest area of 6 m by 7 m (42 m2) were cut from the base. Cobs were removed, counted and 

placed on drying bags for three to five weeks. The stover was removed from the cobs, the 

cobs were shelled and the grain weight recorded. The net harvest area of each soybean and 

groundnut plot was 6.0 m by 6.9 m (41.4 m2). The soybean plants were harvested when the 

first plants started shattering. The plants were uprooted and left indoors to dry for three to 

four weeks. After this the soybean was threshed and grain weight recorded. At maturity, 

groundnuts were uprooted and left in the field for three to four weeks to dry. Then the pods 

were removed and shelled and grain weight was recorded. Sweet potato roots were harvested 

from a net area of 4.2 m by 2.25 m that contained a maximum of 39 plants. The fresh weight 

of the storage roots and the vines were recorded separately at the day of harvest. 

 

 
  



Chapter 5 

90 

 

Table 5.1: Input treatments in the maize, soybean, groundnut and sweet potato plots. 

Plot Fertilizer type Fertilizer 

applied 

(kg ha-1) 

Nutrients applied in 

fertilizer  

(kg ha-1) 

Lime 

application  

(kg ha-1) 

Maize1    

 T1 No 0 0 0 

 T22 NPS           23:9:4 

N Urea      46 

150 

100 

81N, 14P, 6S 0 

 T3 NPKSZnB 15:10:13:6:0.5:3 

NK             30:13 

175 

150 

71N, 18P, 42K, 11S, 

1Zn, 5B 

1000 

 T4 NPKSZnB 15:10:13:6:0.5:3 

NK             30:13 

350 

300 

143N, 35P, 85K, 21S, 

2Zn, 11B 

1000 

Soybean    

 T1 No 0 0 0 

 T2 NPK 6:9:20 150 9N, 14P, 30K 0 

 T3 NPK 6:9:20 150 9N, 14P, 30K 1000 

 T4 NPK 6:9:20 250 15N, 23P, 50K 1000 

Groundnut    

 T1 No 0 0 0 

 T2 NPK 6:9:20 200 12N, 18P, 40K 0 

 T3 NPK 6:9:20 200 12N, 18P, 40K 1000 

 T4 NPK 6:9:20 300 18N, 27P, 60K 1000 

Sweet potato3    

 T1 No 0 0 0 

 T2 NPKS 10:9:17:6 250 25N, 23P, 43K, 15S 1000 

1In maize T2-4, the first fertilizer type is applied as basal and the second type as top dressing. 2National 

fertilizer recommendation using commonly available fertilizers. 3Observations in sweet potato 

treatments represent the average of the 6 varieties planted. 

 

Soil texture was determined in each site by obtaining a soil sample of 0-15 cm depth, 

moistening a handful of soil and shaping the soil into a ball and forming a ribbon with the 

soil with the thumb (Weil, 2015). Four texture classes were defined as 1) Coarse; very gritty, 

the ball falls apart when poked, no ribbon (loamy sand, fine sand), 2) Moderately coarse; 

gritty, forms soft ball, weak ribbon < 2.5 cm (fine sandy loam, loam), 3) Medium; grittiness 

slight to none, ribbons dull and 2.5 to 5 cm (loam, silt loam, sandy clay loam) and 4) Fine; 

grittiness none, ribbons shiny, > 5 cm (clay, clay loam, silty clay loam). The terrain slope 

was classified as steep slope, gentle slope or flat. Other data collected for each site included 

the elevation of the site and the GPS coordinates, the previous crop planted on the site, and 
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the gender of the host farmer and the agronaut. Rainfall data were not collected in the trial 

sites but total rainfall for the growing season in each site was estimated from data collected 

by government in each extension planning area (EPA; the eight districts are divided in 4-20 

administrative units) where a trial was established.  

 

5.2.3 Returns on investment in input application 

Returns to investment in fertilizer and lime were calculated for each treatment and crop. The 

average farm-gate prices for maize, soybean and groundnut were collected by the department 

of Planning in the Ministry of Agriculture. An average farm-gate price for the period May to 

August 2017 was used for maize, soybean and groundnuts. To estimate the farm gate price 

for sweet potato, the average market price in the same period in 22 markets in the eight 

districts was reduced by a 66.5 percent marketing margin for local traders (CIP, 2016). 

Applying an exchange rate of 726 MWK USD-1 resulted in farm gate prices of 0.09 USD kg-

1 for maize, 0.41 USD kg-1 for groundnuts, 0.20 USD kg-1 for soybean and 0.12 USD kg-1 for 

sweet potato. The costs of fertilizer and lime inputs were calculated per hectare using Farmers 

World Ltd retail prices or price estimates (in case of new fertilizer blends not yet on the 

market) at the time of planting (December 2016). Partial gross margins were calculated per 

hectare as the farm-gate value of produce minus the costs of fertilizer and lime. The value-

cost ratio (VCR) for each treatment and crop was calculated as the value of additional 

produce per dollar invested in inputs. A VCR>2 is often considered to be a minimum for 

technology adoption by smallholder farmers (Kelly, 2006) and therefore we calculated the 

percentage of fields with VCR>2 for each treatment. A sensitivity analysis was done to 

compare the effect of other farm gate price scenarios on the VCRs. In the first scenario we 

accounted for price fluctuations between years by comparing the 2017 May-August prices 

with the 10-year average of 2005-2105 for the same months. In the second scenario we 

accounted for price fluctuations within years by estimating the price increase farmers would 

get when postponing sales to the month with the best market price. In absence of long-term 

farm gate prices, we used national monthly retail market prices for maize, soybean and 

groundnut collected in 75 markets in the period 2005 – 2014 (MAIWD, 2017). To estimate 

the farm gate prices for the two scenarios, we applied the proportional difference in retail 

prices to the 2017 farm gate prices.  

 

5.2.4 Focus group discussions 

A focus group discussion with eight female and seven male lead farmers supported by 

Farmers World Ltd was organized in Lumbadzi, Lilongwe District. The objective was to 

understand farmer perceptions on crop diversification and intensification. Pairwise ranking 

was used to identify eight priority crops and collect qualitative data about the importance of 

each crop. Men and women separately indicated on a scale of 1-5 whether each crop was 

produced (1) for home consumption only, (2) mainly for consumption but some for sales, (3) 

equally for consumption and sales, (4) some for consumption but mostly for sales, or (5) for 
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market sales only. The group was then asked to describe current common nutrient input 

practices and quantities applied for each crop. Reasons that underlie decisions to allocate 

land to certain crops, and willingness to make changes in land allocation were explored in 

the group discussion. The group was provided with a scenario of a 1.6-hectare (four acres) 

field with 0.4 hectare (one acre) each allocated to maize, groundnut, soybean and sweet 

potato. To identify priority crops for fertilizer application, the group was asked to discuss 

and agree how to allocate six bags of 50 kg fertilizer to this field. After presenting the basic 

yield results of the fertilizer trials to the group, this exercise was repeated. 

 

5.2.5 Data analysis 

Descriptive statistics were used to present the main environmental and socio-economic 

characteristics of the trial sites that were used in inferential statistics. The mean yield of the 

six sweet potato varieties was calculated to arrive at one value for no-input and one for the 

fertilized treatment in each site. Linear mixed model (MERL) analysis was used to analyse 

differences in yields between the input treatments in the four crops. Yield variability was 

presented in boxplots that show the minimum, first quartile, medium, third quartile and 

maximum yields for each treatment. A mean site yield was calculated for each crop as the 

average yield of all nutrient treatments in each site. MERL analysis was used to test which 

continuous variables (elevation, planting date and rainfall) and categorical factors (agro-

ecological zone, district, soil texture class, terrain slope, previous crop, gender of the farmer 

and gender of the agronaut) were significantly associated with the dependent variables ‘no-

input yield (T1)’ and ‘mean site yield’. The absolute yield response (t ha-1) was calculated as 

the difference between each treatment yield and the no-input treatment (T1). Variability in 

yield responses across sites was presented in cumulative probability charts for each crop. For 

each crop and treatment, MERL analysis was used to test which continuous variables and 

categorical factors were significantly associated with the yield responses. District and agro-

ecological zone were added as random factors in the MERL model. After MERL analysis, 

Spearman’s Rank Correlation coefficients were calculated to determine the strength and the 

direction of the association between the continuous and the dependent variables. All 

statistical analyses were conducted in Genstat 18th edition. 

 

5.3 Results 

5.3.1 Environmental conditions and management of the trial sites 

Most (>80%) trial sites were located on the plateau between 760 and 1300 masl. Maize trials 

were planted from 7 December to 23 January, groundnuts from 7 December to 10 January 

and soybean from 7 December to 30 January and sweet potato between December 25 and 

January 31. The season had an exceptionally high total amount of rainfall (Table 5.2) and a 

uniform rainfall distribution (no data). There was an equal gender balance in the agronauts 

supporting the trials, while about 28% of the trials was hosted by female farmers. Relatively 
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more men were selected to host sweet potato trials. The number of sites planted on flat land 

was similar to the number of sites with a gentle slope, while trials were rarely planted on 

steep slopes. Most sites had a moderately coarse (fine sandy loam, loam), or medium (loam, 

silt loam, sandy clay loam) soil texture with few exceptions of either coarse sandy, or fine 

clay soils (Table 5.2). Seventy percent of trials were preceded by a maize crop in the previous 

season, 16 percent by a legume and 12 percent by tobacco. 

 

Table 5.2: Environmental and socio-economic characteristics of the trial sites. Characteristics of 

continuous variables are indicated as the average followed by the standard deviation between brackets.  

  Maize 

(n=50) 

Soybean 

(n=28) 

Groundnuts 

(n=24) 

Sweet potato 

(n=26) 

Continuous     

Elevation (masl) 1183 (114) 1201 (136) 1137 (86) 1182 (133) 

Planting date1 8.0 (9.2) 13.3 (14.7) 9.2 (9.6) 18-552 

Total rainfall (mm) 1034 (227) 1034 (220) 982 (235) 1052 (217) 

      

Categorical     

Female host farmers (% of 

farmers) 

32 36 25 15 

Female agronauts (% of agronauts) 50 46 54 46 

Agro-ecological zone (% of sites)     

 <760 masl 2 0 8 0 

 760-1300 masl 82 79 84 85 

 >1300 masl 16 21 8 15 

Terrain Slope (% of sites)     

 Flat 42 39 42 35 

 Gentle slope 56 50 54 57 

 Steep slope 2 4 0 0 

 No data 0 7 4 8 

Soil texture (% of sites)     

 Coarse 8 7 0 11 

 Moderately Coarse 50 39 58 50 

 Medium 34 39 30 31 

 Fine 8 7 8 0 

 No data 0 7 4 8 

Previous crop (% of sites)     

 Maize 72 68 83 58 

 Soybean or groundnut 14 18 17 15 

 Tobacco 10 14 0 23 

 Sunflower or fallow 4 0 0 4 
1The number of days from 7th December 2016. 2No planting dates were collected; the trials were 

established in this period.  
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5.3.2 Trial performance and yield variability of maize, soybean, groundnuts and sweet 

potato 

The average no-input (T1) and mean site yields were 2.5 and 5.0 t ha-1 for maize, 2.3 and 3.4 

t ha-1 for soybean, 2.0 and 2.5 t ha-1 for groundnuts and 11.8 and 13.2 t ha-1 for sweet potato 

respectively. Yield responses to fertilizer and lime were evident in each crop, while there was 

a large variability in yield between sites within each treatment (Fig. 5.2). Elevation, planting 

date, rainfall, AEZ, district, terrain slope, soil texture, previous crop, gender of farmer and 

gender of agronaut could not explain variability in maize yields (Table 5.3). Groundnut yields 

(mean site yield and the no input yield) were strongly negatively associated with elevation 

(p < 0.001 and p = 0.003). Groundnut yields were thus generally higher at lower elevation. 

Mean site yields of sweet potato were positively associated with elevation (r = 0.40; p = 

0.048) with average yields of 18.4 t ha-1 in the highlands (AEZ 3) and 12.2 t ha-1 on the 

plateau (AEZ 2). Soybean trials were established later than maize (Table 5.2) and planting 

date was negatively associated with mean site soybean yields (r = -0.62; p < 0.001). Total 

rainfall positively affected soybean T1 yields (r = 0.45; p = 0.017) and mean site yields (r = 

0.50; p = 0.007). Farmers in Lilongwe, Mchinji and Ntcheu Districts achieved exceptionally 

good mean site soybean yields of 4.0 – 4.4 t ha-1 compared to 2.6 – 2.9 t ha-1 in Dedza, Dowa 

and Kasungu. 
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Fig. 5.2: Variability in yield of maize (n=50), soybean (n=28), groundnuts (n=24) and sweet potato 

(n=26) under different input treatments (treatment details are presented in Table 5.1). Boxplots present 

the minimum, 1st quartile, medium, 3rd quartile and maximum yields for each treatment. 
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Table 5.3: Factors affecting yields in no-input treatments and mean site yields in maize, soybean, 

groundnuts and sweet potato in the central region of Malawi. The values are the F-probabilities 

generated by the REML analysis with the direction of the association given in brackets for the 

continuous variables in case Fpr < 0.1.  

 Maize  

(n=50) 

Soybean  

(n=28) 

Groundnuts 

(n=24) 

Sweetpotato 

(n=26) 

 No 

input 

yield 

Mean 

site 

yield 

No 

input 

yield 

Mean 

site 

yield 

No 

input 

yield 

Mean 

site 

yield 

No 

input 

yield 

Mean 

site 

yield 

Continuous variables        

 Elevation 0.201 0.342 0.712 0.621 <0.001    

(-) 

0.003 

(-) 

0.079 

(+) 

0.048 

(+) 

 Planting date 0.277 0.500 0.248 0.006 

(-) 

0.341 0.480 n.a. n.a. 

 Rainfall 0.064   

(+) 

0.150 0.015 

(+) 

0.003 

(+) 

0.379 0.265 0.585 0.674 

Categorical factors1        

 AEZ 

 

0.525 0.108 0.629 0.525 0.579 0.533 0.109 0.027 

 District 0.427 0.607 0.076 0.003 0.468 0.203 0.002 0.034 
1Gender of the farmer, gender of the agronaut, terrain slope, soil texture and previous crop were not 

associated with any of the dependent variables. 

 

 

5.3.3 Yield responses to inputs 

Significant yield responses to inputs were observed in all four crops (Table 5.5). The 

commonly recommended fertilizer rate in maize in Malawi (T2: 81N, 14P, 6S) almost 

doubled yields from 2.5 to 4.8 t ha-1 compared to the no-input (T1) treatment. The combined 

application of the special blended fertilizer and lime (T3: 71N, 18P, 42K, 11S, 1Zn, 5B, lime) 

also more than doubled the yield compared with the control (T1), but it was not significantly 

better than T2. Increasing the quantity of special blended fertilizers combined with lime (T4: 

143N, 35P, 85K, 21S, 2Zn, 11B, lime) resulted in very good maize yields of 7.2 t ha -1; an 

increase of 1.6 t ha-1 compared to T3. Soybean also responded well to the special fertilizer 

blends and lime. Treatment 2 (9N, 14P and 30K) increased soybean yields to 3.1 t ha-1 (135% 

of T1 yields). The lime added in T3 significantly enhanced yields further by 0.6 t ha-1. 

Increasing the fertilizer dose further (T4: 15N, 23P, 50K, lime) also proved to benefit soybean 

productivity up to exceptional yields of 4.5 t ha-1. The effect of fertilizer and lime application 

on groundnut was only significant in the highest input treatment (T4: 18N, 27P, 60K, lime) 

which resulted in yields of 3.1 t ha-1 (155% of T1 yields). Unlike for soybean, there was no 

significant increase of groundnut yield after adding lime in T3 to the low-fertilizer input 

treatment (T2). Sweet potato yields increased from 11.8 to 14.5 t ha-1 in response to 

application of inputs (T2: 25N, 22.5P, 42.5K, 15S, lime). 
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5.3.4 Variability in yield responses 

There was considerable variability in yield responses to the input treatments in each crop 

(Fig. 5.3). Almost all maize and soybean plots showed a positive response to inputs. This 

was not the case for groundnut and sweet potato where no response or even a negative yield 

response was observed on 15% and 23% of the plots respectively. The percentage of maize 

plots with a yield response of more than 3 t ha-1 relative to T1 increased with higher input 

levels from 28% of the sites in T2 (81N, 14P, 6S) to 52% in T3 (71N, 18P, 42K, 11S, 1Zn, 

5B, lime) and even 84% of fields in T4 (143N, 35P, 85K, 21S, 2Zn, 11B, lime). Soybean 

gave more frequently yield responses of more than 1 t ha-1 than groundnut. For example, in 

the low input treatments (T2: 9N, 14P, 30K for soybean and 12N, 18P, 40K for groundnut) 

such a response was observed on 21% of the soybean sites, compared to none of the 

groundnut sites. At the highest input rates (T4: 15N, 23P, 50K and lime for soybean and 18N, 

27P, 60K and lime for groundnut) a response of more than 1 t ha-1 was observed on 93% and 

54% of the sites for soybean and groundnut respectively. A positive sweet potato yield 

response of more than 5 t ha-1 was achieved on 23% of the sites. 

 

Several continuous variables were associated with the yield responses in the different crops 

(Table 5.4). Higher elevation was associated with smaller yield responses in groundnuts (rT2 

= -0.42; p = 0.025, rT4 = -0.45; p = 0.036). In the soybean trials, a later planting date was 

negatively associated with the yield response in T3 (rT3 = -0.39; p = 0.044). Better control 

plot (T1) yields were associated with smaller yield responses in some of the soybean (rT3 =   

-0.328; p = 0.088, rT4 = -0.43; p = 0.024), groundnut (rT2 = -0.401; p = 0.052) and sweet 

potato (rT2 = -0.40; p < 0.041) treatments. With maize on the other hand, the mean site yields 

were strongly positively associated with yield responses (rT3 = 0.47; p < 0.001, rT4 = 0.57;     

p < 0.001). Categorical factors that affected some of the yield responses included AEZ, 

district, soil texture and the gender of the agronaut (Table 5.4). At higher elevations (AEZ 3) 

the maize yield responses were slightly better in T2 (81N, 14P, 6S) and T3 (71N, 18P, 42K, 

11S, 1Zn, 5B, lime). Sweet potato yield responses were affected by district with high 

responses of 16 t ha-1 in Ntcheu. Soil texture did not affect the yield responses except in the 

low input treatment (T2) of the soybean trials where yield responses averaged 1.2 t ha-1 in 

fine, 0.9 t ha-1 in medium, 0.5 t ha-1 in moderately coarse, and 0.7 t ha-1 in coarse textured 

soils. In fields supported by female agronauts the yield response of groundnut was 0.3 t ha-1 

in T3 (12N, 18P, 40K, lime) and 0.7 t ha-1 in T4 (18N, 27P, 60K, lime), compared to 1.1 and 

1.7 t ha-1 in fields supported by male agronauts. 
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Fig. 5.3: Cumulative probability charts for the absolute yield responses to the input treatments, relative 

to T1, in maize, soybean, groundnut and sweet potato trials. 
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Table 5.4: Factors1 affecting the absolute yield responses, relative to T1, to the input treatments in 

maize, soybean, groundnut and sweet potato. The values are the F-probabilities generated by the REML 

analysis with the direction of the association given in brackets for the continuous variables in case        

Fpr < 0.1.  

  Maize  

(n=50) 

Soybean 

(n=28) 

Groundnuts 

(n=24) 

Sweet potato 

(n=26) 

   

Elevation    

 T2 0.080 (+) 0.610 0.017 (-) 0.740 

 T3 0.913 0.838 0.180  

 T4 0.104 0.625 0.039 (-)  

Planting date    

 T2 0.103 0.057 (-) 0.513 No data 

 T3 0.641 0.021 (-) 0.337  

 T4 0.963 0.096 (-) 0.444  

No input yield    

 T2 0.321 0.398 0.043 (-) 0.027 (-) 

 T3 0.824 0.020 (-) 0.484  

 T4 0.879 <0.001(-) 0.549  

Mean site yield    

 T2 0.053 (+) 0.132 0.791 0.184 

 T3 0.001 (+) 0.432 0.150  

 T4 <0.001(+) 0.592 0.137  

AEZ    

 T2 0.046 0.224 0.409 0.906 

 T3 0.042 0.889 0.324  

 T4 0.214 0.644 0.033  

District    

 T2 0.455 0.671 0.804 0.028 

 T3 0.196 0.643 0.722  

 T4 0.323 0.872 0.140  

Soil texture    

 T2 0.638 0.003 0.313 0.115 

 T3 0.607 0.124 0.225  

 T4 0.460 0.533 0.600  

Gender Agronaut    

 T2 0.509 0.299 0.395 0.600 

 T3 0.203 0.325 0.012  

 T4 0.598 0.620 0.007  
1The continuous variable ‘rainfall’ and the categorical factors ‘terrain slope’, ‘previous crop’ and 

‘gender farmer’ were not associated with any of the dependent variables. 
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5.3.5 Costs and benefits of investing in inputs  

The partial gross margins ranged from 230 to 315 USD ha-1 for maize, 475 to 735 USD ha-1 

for soybean, 821 to 1092 USD ha-1 for groundnut and 1380 to 1478 USD ha-1 for sweet potato 

(Table 5.5). Considering average returns on investment in inputs, all treatments were 

profitable for all crops with average VCR >1, while average VCR>2 was only achieved in 

T3 and T4 of soybean and in T4 of groundnuts. The quantity of farm produce in kg per USD 

invested in inputs was highest for maize followed by sweet potato, soybean and groundnuts, 

while the VCR for maize was below 2 in most fields. This indicates that investments in 

fertiliser application to maize gives high returns in terms of additional produce, but low 

monetary returns due to low maize outputs prices. On the contrary, fertiliser investments in 

groundnut provided relatively small returns in terms of additional produce, but the associated 

VCR values were at par with other crops due to high groundnut prices. VCR values 

associated with soybean were generally largest, indicating the good potential for investments 

in inputs for this crop as a source of income. 

 

Farm gate prices from May to August 2017 were 0.09 USD kg-1 for maize, 0.20 USD kg-1 

for soybean and 0.41 USD kg-1 for groundnuts. Retail prices from May to August 2017 as a 

percentage of the 10-year average (2005-2014) for the same months were 135% for maize, 

74% for soybean and 93% for groundnuts. Adjustments of the 2017 farm gate prices with 

these percentages gave estimated long-term average farm gate prices of 0.067 USD kg-1 for 

maize, 0.276 USD kg-1 for soybean and 0.444 USD kg-1 for groundnut. In this price scenario, 

the VCR for input application in maize is even smaller than for the 2017 prices and less than 

eight percent of fields have a VCR>2 (Table 5.6). The VCR for input application to soybean 

increases, as the farm gate prices in 2017 were less than the long-term average. With an 

average price, depending on input level, 64 to 82 percent of fields would have a VCR>2. The 

2017 groundnut prices were quite representative of the long-term average. The second price 

scenario considered prices in the best month. Depending on the year, retail prices in the 

period 2005-2014 were best in the period January to March for maize, December to March 

for soybean and February to April for groundnuts. Prices in the best month were on average 

175%, 136%, and 138% of average retail prices in May to August for maize, soybean and 

groundnuts respectively. Proportional adjustments of the farm gate prices resulted in 

estimated farm gate prices in the best month of 0.159 USD kg-1 for maize, 0.277 USD kg-1 

for soybean and 0.570 USD kg-1 for groundnut. This enhanced especially the returns to 

investment in inputs for maize with VCR>2 on 52 to 66 percent of fields (Table 5.6). The 

proportion of groundnut fields with VRC>2 increased, but relatively less than maize and 

soybean.  
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Table 5.5: Mean grain and fresh root yields, costs and value of production for different input treatments 

in maize, soybean, groundnut and sweet potato in central Malawi. Standard deviations from the means 

are presented in brackets. 

 Yield  

(t ha-1) 

Farm-gate 

value of 

produce  

(USD ha-1) 

Partial 

gross 

margin1 

(USD ha-1)  

Additional 

produce per 

USD invested 

in inputs2  

(kg USD-1) 

VCR3  

(-) 

VCR>2 

(% of 

fields) 

Maize (n=50)      

 T1 2.5 (1.6) 230 (146) 230    

 T2 4.8 (2.0) 437 (178) 292 15.7 (9.0) 1.4 (0.8) 24 

 T3 5.6 (2.2) 510 (196) 315 15.9 (7.8) 1.4 (0.7) 20 

 T4 7.2 (2.7) 655 (243) 300 13.2 (5.8) 1.2 (0.5) 6 

SED4 0.43*** 38.8***  1.53 n.s. 0.14 n.s.  

Soybean (n=28)      

 T1 2.3 (0.9) 475 (191) 475    

 T2 3.1 (1.0) 623 (194) 539 8.6 (4.7) 1.8 (0.6) 36 

 T3 3.7 (1.0) 750 (198) 631 11.3 (5.9) 2.3 (0.8) 57 

 T4 4.5 (1.1) 910 (220) 735 12.2 (6.1) 2.5 (0.8) 64 

SED 0.26*** 53.8***  1.50* 0.31*  

Groundnut (n=24)      

 T1 2.0 (1.1) 821 (450) 821    

 T2 2.2 (1.0) 905 (414) 792 1.8 (4.7) 0.7 (2.0) 25 

 T3 2.6 (1.2) 1080 (499) 933 4.3 (5.0) 1.8 (2.1) 46 

 T4 3.1 (1.4) 1295 (565) 1092 5.6 (4.7) 2.3 (2.0) 54 

SED 0.34** 140**  1.39* 0.57*  

Sweet potato (n=26)      

 T1 11.8 (7.1) 1380 (834) 1380    

 T2 14.5 (7.5) 1701 (877) 1478 12.5 (24.8) 1.5 (2.9) 39 

SED 0.84** 97.9**     
1The farm gate value of the produce minus the costs of the fertilizer and lime inputs. 2 Relative to T1.  

3Value Cost Ratio. The value of the additional produce per USD invested in the input treatment. 4SED 

= Standard error of the difference between means, with *** = p<0.001, ** = p<0.01, * = p<0.05 and 

n.s. = not significant.  
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Table 5.6: Returns on investments in inputs in maize, soybean and groundnut under three farm gate 

price scenarios. 

Price 

scenario: 

Farm gate prices 2017 

(May-August)1 

Mean farm gate price  

2005-2014  

(May-August)2 

Farm gate price in best 

month  

(December-April)3 

  VCR  

(-) 

VCR>2  

(% of fields) 

VCR  

(-) 

VCR>2  

(% of fields) 

VCR 

(-) 

VCR>2  

(% of fields) 

Maize (n=50)      

 T2 1.4 24 1.1 6 2.5 66 

 T3 1.4 20 1.1 8 2.5 64 

 T4 1.2 6 0.9 0 2.1 52 

Soybean (n=28)      

 T2 1.8 36 2.4 64 2.4 64 

 T3 2.3 57 3.1 79 3.1 79 

 T4 2.5 64 3.4 82 3.4 82 

Groundnut (n=24)      

 T2 0.7 25 0.8 29 1.0 33 

 T3 1.8 46 1.9 46 2.4 50 

 T4 2.3 54 2.5 54 3.2 63 
1Actual data collected in the eight districts. 2Estimated farm gate price adjusted based on proportional 

differences in retail prices between 2017 and the mean of 2005-2014 in the period May to August.           
3Estimated farm gate prices in the month when retail prices are best. 

 

5.3.6 Farmers perceptions on crop diversification and input allocation to different 

crops. 

The top eight priority crops produced by farmers who participated in the focus group 

discussion from most to least important were maize, groundnuts, soybean, common bean, 

sweet potato, potato, tomato and tobacco (Table 5.7). Maize is crucial for food security and 

all farmers agreed that an absolute minimum area of 0.4 hectare should be planted with maize. 

If funds for fertilizer are available and market prices are good, the area under maize could be 

expanded. After maize, farmers prioritized legumes because they believe they do not need 

fertilizer, can be stored relatively well, and have multiple uses for household utilization and 

income generation. Access to seed, land and labour costs were some of the reasons limiting 

the expansion of legumes, and marketing was considered more difficult for soybeans than for 

groundnuts. The farmers acknowledged the benefits of sweet potato and were interested in 

expanding its production, but experience problems accessing quality planting material and 

storing the roots after harvest. Potato was considered a more interesting cash crop than 

tobacco, because it can also be consumed in case there is a maize shortage. The advantage of 

root and tuber crops over tomato was that they are staple crops, whereas tomato is a cash 

crop or consumed as a side dish. The limitations of potato compared to legumes are the need 

to invest in fertilizer, poor storability, and the risk of pests and diseases. Farmers were 

generally happy with their current crop and fertilizer allocations to their available land. They 
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did not show interest in reducing the area of land under maize, unless they were already 

producing beyond their household food requirements and maize market prices are low. An 

important reason for farmers to allocate land to legumes such as groundnut, soybean and 

common bean is their strong belief that these crops do not need fertilizer, coupled with their 

financial constraints to buy enough fertilizer for their whole arable land area. During the 

exercise to allocate six bags of 50 kg fertilizer to a 1.6-hectare field that was equally divided 

in maize, groundnut, soybean and sweet potato, all farmers strongly objected to the idea of 

applying any fertilizer to groundnut, soybean and sweet potato. They considered it a waste 

of money since extension workers had explained to them that legumes fix their own nitrogen 

and sweet potato is traditionally produced without inorganic fertilizer. They came up with 

alternatives such as finding more land to grow maize, keeping the fertilizer for next year, or 

giving the additional fertilizer away to friends. After seeing the fertilizer trial results, farmers 

reluctantly distributed two of the six bags of fertilizer to maize, one to soybean, one to 

groundnuts and two to the sweet potato field.  

 

Table 5.7: Crop priorities, production objectives and farmer perceptions (n = 15; 8F, 7M) on input 

application in the cropping system. 

Priority crop Production 

objective1 

Current fertilizer 

application per 

hectare2 

Farmers perception on use of 

inputs 

M F 

1 Maize 2 2 123 kg NPS 23:21:4; 

123 kg urea N 48 

This is the recommended 

application rate for maize that most 

farmers follow. 

2 Groundnut 

 

3 2 No inputs Extension workers explained that 

legumes do not need fertilizer 

because they fix nitrogen. Fertilizer 

application to legumes would be 

wasting money. 

3 Soybean 

 

4 4 No inputs 

4 Common bean 

 

3 3 No inputs 

5 Sweet potato 4 4 No Inputs Traditional practice is to produce 

sweet potato without fertilizer. 

6 Potato 4 4 246 kg NPS 23:21:43 

123 kg CAN4 

 

Farmers believe these are the 

recommended fertilizer application 

rates for potato, tomato and tobacco. 

 

7 Tomato 4 4 246 kg NPS 23:21:4 

123 kg CAN 

8 Tobacco 5 5 492 kg CAN 
11) for home consumption only, 2) primarily for home consumption and some for sale, 3) half for home 

consumption and half for sale, 4) some for home consumption but primarily for sale and 5) for sale 

only. 2Farmers expressed this in number of 50-kg bags per acre. 3Or another compound fertilizer. 4CAN 

= Calcium Ammonium Nitrate. 
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5.4 Discussion 

5.4.1 Study design, implementation and analysis 

We analysed results of a private sector intervention to compare the effects of different 

intensity of input application to different crops in the farming system. The maize trial would 

have been more informative if a direct comparison between the currently recommended 

fertilizer blends (T2) and the special blended fertilizer (T3) would have been possible without 

confounding of nutrient application treatments with lime treatments (Table 5.1). The effect 

of lime alone could only be tested for soybean and groundnuts. The MERL analysis is used 

in different studies to explore variability in yields and yield responses to technologies (Franke 

et al., 2016; Ronner et al., 2016) since it can include balanced and unbalanced continuous 

and categorical data to compensate for confounding factors. A risk of testing the associations 

of many variables and factors on multiple dependent variables is that some of the associations 

could be significant by chance. For example, we cannot think of an explanation for better 

yield responses to high input treatments in groundnuts on fields supported by male agronauts 

(Table 5.5). A limited number of associations between biophysical and socio-economic 

characteristics and yields of the four crops were found. This suggests that we did not measure 

key variables that explain a large part of the variability in yield across farmers’ fields. The 

collection of data on soil characteristics, on-site rainfall, weed pressure and pests and diseases 

may have resulted in better explanations of the variability in yields and yield responses across 

sites. However, even studies that include such variables also report a large unexplained 

variability in yields on smallholder farms (Ronner et al., 2016; Fermont et al., 2009). 

Nevertheless, the trial results provided an excellent opportunity to quantify variability in 

yields and responses to fertiliser and lime application, to evaluate the effectiveness and 

profitability of these applications to maize, soybean, groundnut and sweet potato at many 

sites, to identify factors affecting the yield and yield responses, and to explore farmer 

perceptions on intensification and diversification. 

 

5.4.2 Yield and economic performance across crops  

The average mean site yields of 5.0 t ha-1 for maize, 3.4 t ha-1 for soybean, 2.5 t ha-1 for 

groundnuts and 13.2 t ha-1 for sweet potato were exceptionally good for smallholder farmers’ 

fields. The national average yields between 2000 and 2016 were only 2.0 t ha-1 for maize, 1.0 

t ha-1 for soybean and 1.0 t ha-1 for groundnuts (FAO, 2018), while mean sweet potato yields 

in farmer managed demonstration sites in 2017 ranged from 4.2 to 9.6 t ha-1 depending on 

variety (Chapter 4). The good yields even in the control plots (T1) are due to the use of 

improved varieties, high amounts of well-distributed rainfall in the season, and the timely 

establishment of the trials (Table 5.2). The close supervision of only two trial sites per 

agronaut and biocide application further contributed to good crop management. All four 

crops strongly responded to the application of inputs (Table 5.5). All input treatments in the 

four crops were on average more profitable than the control (VCR>1) but the variations in 
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percentage of fields with VCR>2 between treatments and crops indicate that profit margins 

may be too variable to encourage all farmers to adopt (Table 5.5). Price fluctuations within 

and between years also affect the financial returns to investment in inputs (Table 5.6). The 

average VCR would rise to over 2 in almost all treatments if farmers could wait with sales 

until the month with the best price, indicating farmers derive more benefits from investing in 

input application if they can store produce for later sales. The good yield responses in all 

crops raises the question if this would also be the case in years of poor rainfall. Other studies 

have shown that fertilizer application can still be profitable in sites with soybean control 

yields of only 0.9 t ha-1 (Chapter 2) or maize control yields of only 0.5 – 0.8 t ha-1 (Kamanga 

et al., 2013). Gender of the farmer did not affect yields or yield responses to inputs in our 

trials, although it has been reported that fields managed by women are on average 25% less 

productive than plots managed by men in Malawi (Kilic et al., 2015). This lack of gender 

effects could be due to host farmer selection criteria, equal access to all required inputs, and 

close supervision of the demos. 

 

Yield response to inputs in maize was positively associated with mean site yields which is in 

line with other findings that more productive maize fields respond better to nutrient inputs 

(Chapter 3). While investments in nutrient inputs in maize gave the greatest return of 

additional grain, the VCR of input application in maize was lower than for investments in 

inputs in the other crops (Table 5.5). Using long-term average farm-gate prices in the analysis 

improved VCRs in soybean, while it reduced the benefits in maize even further (Table 5.6). 

This implies it is risky to base investment recommendations on a single season. Although a 

comparison of the results of the partial budgeting between crops should be done with caution 

as input costs not accounted for in the analyses may differ between crops, the large 

differences in partial budgets between crops suggest that soybean, groundnuts and sweet 

potato are more profitable per cultivated land area than maize (Table 5.5). Detailed farm 

characterizations in central Malawi also indicated that legume cultivation is more profitable 

than continuous maize, even though labour requirements are higher for groundnuts than for 

maize and soybean (Franke et al., 2014). 

 

The importance of good agronomic management and rainfall was emphasized by the 

associations of planting date and rainfall with soybean yields (Table 5.3) and yield responses 

(Table 5.4). Better control plot yields for soybean and groundnut were associated with 

smaller responses to inputs in some treatments (Table 5.4). While no soil analysis was 

conducted, the smaller response in more productive sites was probably caused by better soil 

nutrient availability leading to higher yields in the control plot and smaller responses to 

nutrient applications. Nutrient application rates in soybean were generally lower than in 

groundnut (Table 5.1), but soybean nevertheless showed higher responses to nutrient inputs 

than groundnut. The effect of liming on yield was significant in soybeans but not in 

groundnuts, which suggests that lime application in soybean is more worthwhile. Despite the 
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higher yield responses to inputs in soybean, the partial margins for groundnut were better 

than for soybean because of the greater farm gate price of groundnut. However, the higher 

VCR values associated with the input treatments in soybean suggest that fertiliser and lime 

application is more worthwhile in soybean than in groundnut. Some 15% of groundnut plots 

gave no or a negative yield response to inputs (Fig. 5.3) implying that investment in inputs 

in groundnuts is riskier than in soybean. Intensification of legumes with fertilizer and lime 

can be financially attractive since the higher input treatments of soybean and groundnut 

resulted in better profit margins and VCR than the lower input treatments (Table 5.5). In 

addition, this will provide residual benefits to the following maize crop in the rotation (Franke 

et al., 2018; Van Vugt et al., 2018). High-input legume production may be more suitable for 

commercially oriented farmers who have the financial resources to invest in fertilizer, since 

resource-poor farmers are reluctant to apply inorganic fertilizers to legumes (Chapter 2).  

 

While input application to sweet potato increased yields and had a VCR of 1.5 (Table 5.5), 

23% of sweet potato plots gave no or a negative response to inputs (Fig. 5.3). This implies 

there is more risk in input application in sweet potato compared to maize and soybean. Sweet 

potato is often considered a poor man’s or food security crop and had a market price of 0.12 

USD kg-1; far below the 0.41 USD kg-1 for groundnuts and 0.20 USD kg-1 for soybean. This 

could be attributed to the relatively high average moisture content of sweet potato of 69% 

compared to 10% for soybean and 7% for groundnut (Leung et al., 1969). Yet, the good 

yields of sweet potato without inputs resulted in better values of produce per hectare than any 

of the treatments in the maize, soybean or groundnut trials (Table 5.5). The fresh and dry 

yield potential of sweet potato (35 t fresh tuber ha-1 equal to approximately 10.8 t dry tuber 

ha-1) (Chipungu, 2015) is much larger than that of legumes.  

 

5.4.3 Farmers perceptions on intensification and diversification 

Soybean and sweet potato are produced more for the market than groundnuts and maize 

(Table 5.6). Allocation of fertilizer to either soybean or groundnut may depend on whether 

the household prioritizes food production or income generation. Farmers prioritize input 

application to maize, which has a large return in terms of grain yield per USD invested in 

inputs (Table 5.5). The food security aspect of maize appears to be more important than the 

potential profits that can be derived from the other crops. Farmers want to allocate at least 

0.4 ha of land to maize to be self-sufficient with their staple food. Since maize cultivation 

depletes most of their financial resources available for investment in fertilizer, they primarily 

want to grow additional crops such as legumes and sweet potato that do not need fertilizer in 

their perception. As a result, the Farm Input Subsidy Program in Malawi has stimulated 

farmers to plant more land with maize and tobacco and allocate less land to other crops such 

as groundnuts, soybeans, and dry beans (Chibwana and Fisher, 2012), which goes against the 

aim of developing more sustainable, diversified, climate resilient and nutrient-rich 

production systems. Farmers’ reluctance to reduce the area under maize and to apply inputs 
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in soybean, groundnut or sweet potato may be due to lack of knowledge, lack of credit or an 

aversion to the risks associated with investments beyond household food security needs. Risk 

aversion and adoption of technologies in Malawi are mainly influenced by credit constraints, 

farm size, labour availability and access to output markets (Simtowe, 2006). Farmers show 

interest in expanding the area under sweet potato and this may reduce some of the risks of 

food shortages due to maize crop failure. However, it is likely that the increase in area under 

sweet potato will be at the expense of legumes instead of maize resulting in reduced nitrogen 

fixation and soil fertility benefits. 

 

5.4.4 Enhancing crop diversification and intensification 

Farmers mentioned challenges to crop diversification and intensification such as the need for 

a minimum area under maize cultivation, poor markets for soybean, limited access to 

improved seed or quality planting material, insufficient land and labour, and storage 

challenges for sweet potato. Risk mitigation and access to quality extension services will be 

important for farmers to invest in sustainable intensification practices as they need to trade-

off benefits of enhanced production, profits and soil fertility (Snapp et al., 2018). Investments 

in inputs in soybean cultivation are profitable (Table 5.5 & 5.6), enhance nitrogen fixation 

(Chapter 3) and soybean has better profit margins than maize (Table 5.5). Its expansion and 

intensification is constrained by uncertain markets, limited household utilization and the 

perception that legumes do not need fertilizer. Stimulating private sector investment in 

processing legumes and favourable policies to enhance export may result in increased 

demand and more stable markets for legumes. Improved extension messages concerning the 

benefits of fertilizer application to soybean may persuade farmers to invest in this in future. 

Inoculants can also enhance soybean yields and the profitability of P fertilizer (Van 

Heerwaarden et al., 2018; Ronner et al., 2016). Farmers have limited resources to invest in 

fertiliser and often sell their produce soon after harvest to vendors at low prices. Unless 

farmers are integrated in value chains and gain access to credit or fertilizer loans, legume 

intensification through fertilizer application is unlikely to occur. Supporting farmers with 

post-harvest credit while waiting with sales for commodity prices to increase (such as 

warehouse receipt systems) could also be of great financial benefit (Table 5.6). Campaigns 

to promote root and tuber crops as part of a more diverse source of calories may in the long 

term reduce the over-dependency on maize as a primary source of calories while contributing 

to more profitable, resilient and diverse cropping systems. A national option to enhance 

intensification and diversification could be the inclusion of planting material and special 

fertilizer blends for a wider range of crops in the Farm Input Subsidy Program. 
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6.1 Outline of discussion 

In this chapter I discuss the key findings (6.2) in relation to sustainable intensification (SI) 

of farming systems in central Malawi (6.3). I then discuss the implications of the large 

variability in yields and yield responses observed on smallholder farmers’ fields (6.4). I will 

derive lessons from the participatory technology evaluations on the potential adoption (6.5) 

and discuss how SI can contribute to the Sustainable Development Goals (6.6). Finally, I will 

make recommendations on how to move from participatory research to ‘partnerships for 

impact at scale’ that can contribute to SI in a manner that acknowledges the realities and 

perceptions of smallholder farmers (6.7). 

 

6.2 Key findings 

The objective of this thesis was to assess whether smallholder farmers in central Malawi can 

increase their productivity and incomes through crop diversification with legumes and sweet 

potato and by application of improved agronomic practices and technologies. A wide range 

of treatments, biophysical conditions, crop management choices, and socio-economic 

variables affected maize, soybean, groundnut and sweet potato yields, N2 fixation and the 

rotational benefits of soybean on maize (Table 6.1).  

 

In Chapter 2 I showed that nutrient management packages combining inoculants, inorganic 

fertilizer and compost manure can almost double smallholder farmers soybean yields, with 

value to cost ratios above 2 for about half of the farmers. Farmers prefer compost manure 

which is more accessible than inoculants and more affordable than fertilizer. Inoculants are 

an affordable option with an average value cost ratio of 3.3. Farmers ranked variety choice 

and early planting better than external inputs such as inoculant, fertilizer and biocides. 

Increasing the plant population was an acceptable and profitable option. Farmer preferences 

for soybean technologies were influenced by the costs and accessibility of the inputs.  

 

Chapter 3 showed that N2-fixation by soybean is affected by a range of genetic, 

environmental, management and socio-economic factors. Yields of maize planted after 

soybean were on average 139% of continuous maize cultivation. Analysis of variability 

demonstrated that more productive and wealthier farmers who applied external nutrient 

inputs benefitted most from soybean-maize rotation.  

 

In Chapter 4 I explored the sweet potato yield gap of 18.5 t ha-1 to explain why farmers 

achieved only about 30% of the attainable yields. Variety choice and timely planting of 

quality planting material enhanced sweet potato yields and weevil control is required to 

enhance the percentage of marketable roots. Elevation, planting date, rainfall and crop 

establishment affected yield but could explain only 28 percent of the yield gap. We 



General discussion 

111 
 

discovered the importance of gender-sensitive extension to ensure timely access to planting 

material by women to avoid a gender-based yield gap.  

 

Chapter 5 demonstrated that exceptionally good yields of maize, soybean and groundnut can 

be achieved under the right conditions of planting improved varieties, above-average rainfall 

and timely planting. The value of farm produce and financial returns to inputs in sweet potato, 

soybean and groundnuts were better than maize. This demonstrated the potential for crop 

diversification and intensification to enhance farmers’ incomes, even though farmers 

prioritize maize in terms of land area and resource allocation as a risk aversion strategy to 

ensure food security at household level. 

 

6.3 Potential for sustainable intensification 

In this section I discuss whether farmers can sustainably increase their productivity through 

crop diversification and intensification. Sustainable intensification (SI) is broadly defined as 

the investment of inputs and capital to increase crop productivity over the long-term, while 

protecting the underlying resource base (Pretty et al., 2011). Sustainably intensified farming 

systems are often considered a useful future goal that will solve the issue of feeding a growing 

population, but without a clear pathway. Some scientists consider sustainable intensification 

an oxymoron and there is much variation in how intensification and sustainability are defined 

(Struik et al., 2014). The ‘intensification’ often refers to a set of yield enhancing 

technologies, where the ‘sustainability’ aspect focuses more on biological approaches 

(Petersen and Snapp, 2015). These include increased crop diversity with grain legumes, 

agroforestry, green manures, enhance nitrogen fixation, enhance organic nutrient inputs 

through incorporation of crop residues in the soil, minimize soil disturbance and erosion, on-

farm water conservation, integrated pest management and irrigation (Ngwira et al., 2012; 

Bezner Kerr et al., 2007; Njira et al., 2013a; Droppelmann et al., 2017). Since poor soil 

fertility is a major cause of yield gaps in African smallholder agriculture (Tittonell and Giller, 

2013) this section will focus on sustainability in terms of healthy soils that can serve future 

generations with adequate supplies of nutritious food.  
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6.3.1 Sustainability of the technologies 

In this research farmers experimented with different intensification options including 

improved varieties of maize, soybean, groundnuts and sweet potato, soybean-maize crop 

rotation, inoculation, compost manure, inorganic fertiliser, liming, biocide application, 

improved plant populations and optimal weeding. These could all form part of a SI package, 

but do these options contribute to improvement in soil fertility? While grain legumes benefit 

subsequent maize yields (Franke et al., 2018), varieties with high N harvest indices do not 

improve soil fertility (Vanlauwe and Giller, 2006) and inoculation enhances the need for soil 

P (Njira et al., 2013b). Enhancing yield with improved varieties and inorganic fertiliser can 

increase removal of micronutrients from the soil. An integrated soil fertility management 

(ISFM) approach combining both inorganic and organic nutrient inputs can result in better 

maize productivity and profits than relying on inorganic fertiliser only (Sauer and Tchale, 

2009). Compost manure (Chapter 2) can therefore be considered a sustainable input, but 

especially for farmers without livestock, availability and quality of manure are factors 

limiting replenishment of soil organic matter and nutrients (Mafongoya et al., 2006). 

Therefore, while the technologies tested can contribute to intensification, they will only 

contribute to SI when coupled with adequate replenishment of both macro and 

micronutrients. 

 

6.3.2 Agronomic evaluation of the intensification options 

Production ecology concepts can be a helpful framework to evaluate the intensification 

options by looking at the genetic potential of the crop varieties, water and nutrient limitations 

and yield reducing factors such as pests and diseases (Van Ittersum and Rabbinge, 1997). 

Our results did not confirm the importance of selecting improved varieties for soybean and 

sweet potato. The improved soybean variety Nasoko did not outperform grain procured from 

local markets (Chapter 2). Chapter 4 showed a clear difference in yield between the six 

improved sweet potato varieties, but in Chapter 5 these did not outperform locally sourced 

varieties. However, there are other criteria for variety selection besides yield such as ability 

to fix nitrogen for legumes (Pule-Meulenberg et al., 2011) or pro-vitamin A content in the 

case of orange-fleshed sweet potato (Low et al., 2017). Maize producing farmers achieved 

better yields with improved (hybrid or open pollinated) varieties than with local varieties 

(Chapter 3). In average seasons and under full farmer management the benefits of selecting 

an improved variety may be overruled by other yield limiting and reducing factors (Chapter 

2,4 and Tittonell and Giller (2013). However, it seems unlikely that the excellent maize, 

soybean and groundnut yields achieved in a good season (Chapter 5) would have been 

possible with local or unimproved varieties.  

 

In terms of nutrient management, we discovered a range of options to enhance yields 

including compost manure, soybean inoculant, lime, inorganic fertilizer and integrating 

soybean into the crop rotation to benefit the following maize crop (Chapters 2,3,5). The 
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observed yield increases confirm the importance of nutrient management to reduce soil 

fertility decline of Malawian soils (Mutegi et al., 2015). While soil samples were not 

conducted in all trials, clear associations were found between soil properties and N2 fixation 

(Chapter 3) and sweet potato yields (Chapter 4). Chapter 5 also confirms that, despite farmer 

perceptions, inorganic fertiliser application can enhance productivity of sweet potato 

(Mukhtar et al., 2010; Agbede, 2010). The rotational effects of soybean on maize (Chapter 

3) suggests this can, besides non-N effects, also reduce mining of N from the soils resulting 

in better maize yields (Franke et al., 2018). These benefits can be further enhanced by 

optimizing phosphorus and manure application in the cropping system (Zingore and Giller, 

2012; Kihara et al., 2010). Besides N and P, Farmers World Ltd identified S, Zn and B 

limitations in soils and included these in special blended fertilizers (FW, 2016). Addressing 

the soil nutrient limitations is crucial to enhance productivity of all four crops (Chapter 5).  

 

All the trials were established under rain-fed conditions and therefore water limitations 

affected yields. The high yields of maize, soybean and groundnuts in a season of good rainfall 

(Chapter 5) suggests that water was probably a significant yield reduced factor in trials in 

other seasons (Chapter 2,3,4). Erratic distribution of rainfall resulted in annual differences in 

soybean yields in Salima (Chapter 2) which makes planting date recommendations a 

challenge. Timely planting and total rainfall were positively associated with sweet potato 

(Chapter 4) and soybean yields (Chapter 5) and early planting was ranked as the most 

important management option by soybean farmers (Chapter 2). While sweet potato is 

normally considered a drought tolerant crop (Motsa et al., 2015), these findings confirm that 

both on-farm nutrient and water management through timely planting can contribute 

substantially to closing yield gaps (Mueller et al., 2012).  

 

The main pests and diseases encountered in the trials were leaf rust and caterpillars in 

soybean (Chapter 2), and weevils in sweet potato (Chapter 4). Leaf rust was most relevant in 

Mchinji district and can be prevented with fungicides, though biocide application is not 

favoured by smallholder farmers due to availability and cost implications (Chapter 2). Sweet 

potato weevils affected root quality more than root yield and become an important pest for 

market oriented producers. Breeding programs may focus on selecting varieties that show 

more resistance to weevils (Muyinza et al., 2012). While several other incidences of pests 

and diseases may have occurred, insufficient data was collected to make inferences about 

their effect on yields. General observations are that in most trials and fields, pests and 

diseases remained below the threshold to cause economic loss. 
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6.4 Assessment of variability in technology performance  

Our results show that there are indeed several options for smallholder farmers to increase 

their productivity through crop intensification and diversification with legumes and sweet 

potato. While this statement is based on average yields, not all farmers will benefit equally. 

In this section I reflect on the variability encountered, statistical methods used to explain 

variability, and the implications for targeting of technologies. 

 

6.4.1 Variability in yield, environmental, management and socio-economic conditions 

All chapters demonstrated that there is a large variability in yields and yield responses to 

technologies across farms. This is in line with other multi-locational trials on smallholder 

farmers’ fields (Ronner et al., 2016; Franke et al., 2016). The final yield of a crop is a result 

of interactions between the genotype, environment and management (Tittonell and Giller, 

2013; Fermont et al., 2009). Those in turn are a result of the socio-economic conditions and 

priorities of the household (Tittonell et al., 2010). 

 

Region, district or agro-ecological zone affected yields of all crops, N2 fixation by soybean 

and the rotational benefits of soybean on maize (Table 6.1). The regional variability in N2 

fixation is in line with other studies (Schipanski et al., 2010; Nyemba and Dakora, 2010). 

Soil parameters were also highly variable across farms (Table 2.2, Table 3.1, Table 4.2). 

While not measured in this research, a large variability in soil fertility within farms is often 

reported on smallholder farms (Tittonell et al., 2007). This implies that crop allocation to 

certain plots may have also affected nutrient uptake efficiencies and yields in plots with input 

treatments (Chikowo et al., 2010). Agro-ecological zone, elevation and rainfall were strongly 

correlated (Chapter 4) but rainfall conditions in each agro-ecology can vary between years 

(Chapter 2) and across farms. This implies that crop recommendations derived from one year 

on-farm data may not be suitable in other years (Ronner, 2018). 

 

The variability in crop management was demonstrated in the wide range of planting dates 

and plant populations across farms (Table 3.7, Table 4.1). Fully farmer managed maize plots 

also showed diversity in terms of variety choice (improved versus local) and nutrient input 

levels (Table 3.7). Weed pressure varied considerably between soybean sites (Chapters 2 and 

3) but was not measured in the other crops. Crop residue management practices of soybean 

and maize varied between incorporation in the soil, removal from the field for composting 

and burning (Table 3.6). We also encountered a diversity in soybean leaf rust incidence 

across districts and farms (Chapter 2) and sweet potato weevil infestation across varieties and 

farms (Chapter 4). 

 

Households differed in wealth indicators arable land area, labour, assets and housing quality 

(Table 3.1). More assets were associated with better soybean yields and rotational benefits 



General discussion 

116 

 

on maize (Chapter 3), and male farmers achieved better soybean yields and N2 fixation 

(Chapter 3). This confirms that socio-economic characteristics underlie the management 

practices that affect legume productivity (Franke et al., 2016; Chianu et al., 2011). The 

associations between socio-economic variables and yield may be better assessed under fully 

farmer managed conditions following farm characterization (Franke et al., 2016), instead of 

in researcher-designed trials that do not fully represent farmers practices. For example, in our 

trials farmer selection may have been biased towards those with better skills and positions in 

the community (Chapter 5), planting material of improved varieties was provided, and time 

of planting often depends on readiness of extension staff. These factors may also explain why 

the 25% lower productivity on female-managed plots in Malawi (Kilic et al., 2015) was not 

as clear in our on-farm research. Our finding that female host farmers receive poorer quality 

planting material for sweet potato (Chapter 4) is in line with gender research that shows that 

female farmers in central Malawi have less access to training and extension services (Netsayi 

et al., 2016). 

 

6.4.2 Scientific rigour and applicability of explaining variability 

While this variability in variety choice, biophysical conditions, crop management choices, 

wealth and gender can all contribute to the yield gap on smallholder farmers’ fields, 

explanations of yield variability are often only partly successful (Ronner et al., 2016; 

Fermont et al., 2009; Wairegi et al., 2010). We used a multivariate boundary line model to 

explain the sweet potato yield gap (Chapter 4) and mixed model analysis (MERL) to identify 

factors that are associated with yields and yield responses in soybean, groundnut and maize 

(Chapter 3 and 5). We could not fully explain of the sweet potato yield gap, though the 

multivariate boundary line model was a useful tool to identify some of the most limiting 

factors. The method to determine outliers and draw the boundary lines (Casanova et al., 1999; 

Shatar and McBratney, 2004), the disregard for interactions between production constraints, 

and errors in data collection may limit the predictability of such a model. Boundary lines may 

only be useful if there is a wide range of values in the explanatory variable. For example, if 

all sites are highly deficient in soil available P, the boundary line will have less power to 

predict yields compared to a line based on a wide range of observed P concentrations. This 

may also apply to associations between dependent and independent variables using MERL 

analysis. I therefore argue that while explaining variability with these methods provides 

useful insights in factors that affect yield, the scientific rigour to fully explain yield gaps is 

limited. Nevertheless, we identified many significant associations (Table 6.1), which 

provided more in-depth contributions to knowledge than focusing on averages only 

(Vanlauwe et al., 2016).  

 

Explanation of yield variability helps identify yield limiting and reducing factors, but how 

can this understanding be applied? While the diversity in responses allows us to better 

understand the context in which technologies are introduced (Vanlauwe et al., 2016), most 
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farmers will already know that suitable varieties need to be planted in time on good soils with 

adequate water and nutrient inputs following proper crop management. Strong associations 

between gender, wealth and yields will be informative only if we understand the underlying 

social dynamics. Association between late planting and poor soybean yields (Chapters 3 and 

5) does not imply that early planting recommendations will be adopted. There may be other 

priority crops (Chapter 5) competing for scarce labour. Therefore, identifying key limiting 

factors may result in promoting specific interventions, but these will only be adopted if they 

fit in a socio-ecological niche (Ojiem et al., 2006). The large diversity in farmers biophysical 

and socio-economic conditions implies the need to foster innovation and adaptation rather 

than promoting one-size-fits-all solutions (Vanlauwe et al., 2014). This requires even closer 

engagement with farmers to explore the trade-offs behind the sub-optimal management, and 

to determine the adoption potential of yield-enhancing technologies and practices from a 

farming systems agronomy perspective (Giller et al., 2015). 

 

6.5 Potential for crop diversification and technology adoption 

The participatory technology ranking and focus group discussions (Chapters 2 and 5) proved 

useful for discussion on the potential adoption of crop diversification and SI technologies. 

While the Malawi Agricultural Policy aims to increase crop diversification (MAIWD, 

2016a), there is limited strategic thinking about how it will be achieved and promoted among 

different types of farmers (Kankwamba et al., 2012). Two of the main shocks smallholder 

households face are high food prices and low crop yields due to droughts or floods (Chirwa 

et al., 2006). In this context investments in fertiliser and legume integration are more risky 

for resource poor farmers than for wealthier farmers (Kamanga et al., 2010a).  

 

Farmers in our study emphasized on a minimum area under maize cultivation to ensure food 

security at household level, and prioritized maize in terms of input allocation (Chapter 5). 

While some studies link the input subsidy program to increased crop diversification (Snapp 

and Fisher, 2015), others show that subsidy beneficiaries increase their area under maize 

(Chibwana and Fisher, 2012), while achieving higher and more drought resilient yields 

(Arndt et al., 2016). Farmers in our study did not perceive reduction in maize area as an 

important need, and were interested to produce maize beyond household needs when assured 

of a good market price (Chapter 5). In case of depressed maize prices, they prefer investments 

in low-input crop diversification options as they struggled to access expensive fertiliser. 

While legume diversification can enhance environmental and food security (Snapp et al., 

2010), Chapter 3 confirms this mainly applies to better-off households that can invest in 

nutrient inputs (Franke et al., 2014). However, farmers deliberately choose legumes as these 

are perceived to perform well without external inputs (Chapter 5). Despite limited interest in 

adoption of fertiliser in legumes, our results confirm that better crop management such as 

timely planting and optimal spacing (Chapter 2 and 4) are promising options that can 
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contribute to closing the yield gaps even without nutrient inputs (Tittonell and Giller, 2013). 

Legumes and sweet potato are commonly planted later in the season after maize and cash 

crops such as tobacco are planted. Timeliness of planting depends on the availability of 

sufficient labour and planting material (especially for sweet potato) at the onset of the rains. 

 

Farm size, capacity to bear risk, human capital, labour availability, credit constraint, tenure, 

and access to commodity markets are common factors affecting adoption of new agricultural 

technologies (Feder et al., 1985). However, even households with small farms that are not in 

a position to take risks can invest in crops such as tobacco and hybrid maize, as long as they 

have access to markets, extension services and credit (Zeller et al., 1998). While farmers are 

usually well aware of the climate variability in their areas, they often overestimate the risks 

(Coe and Stern, 2011). This provides opportunities for adoption of more drought tolerant root 

ant tuber crops such as sweet potato which, while constrained by limited access to planting 

material, is acceptable by farmers (Chapter 5). 

 

The pairwise ranking exercise coupled with questions on the advantages and disadvantages 

of technologies gave good insights into farmers perceptions on a range of inputs and 

management options in soybean (Chapter 2). Exposure to such a ‘basket of technologies’ 

(Ronner, 2018) revealed that options that require procurement of external inputs were less 

preferred than other crop management options (Table 2.6). Farmer in central Malawi prefer 

maximizing legume production through investment in labour rather than fertilizer (Kamanga 

et al., 2010b). This is different for maize in which inorganic fertilizer is highly valued 

(Chapter 5). Adoption of external inputs targeted to legumes such as inoculant, chemicals 

and fertilizers is constrained by limited financial resources and limited availability near the 

smallholder farmer (Table 2.7). Extension services do not share information about the 

potential benefits of input application in legumes (Chapter 5). Variety choice was ranked 

highly by farmers (Table 2.6) but adoption may be constraint by lack of knowledge about 

suitable varieties, and high costs and access to seed (Table 2.7). Across crops over 68 percent 

of smallholder farmers in Malawi plant seed from informal sources, while 71 percent 

accessed a new variety in a five-year period; in 62 percent of the cases through free 

distributions by government or NGOs (McGuire and Sperling, 2016). Our participatory 

evaluation confirms that access to improved seed and other external inputs are still limiting 

technology adoption in Malawi. Addressing the multiple constraints of limited awareness of 

the agronomic and financial benefits of nutrient application to legumes and sweet potato, 

unstable markets, access to credit and access to improved seed may result in more diversified 

and intensified cropping systems. 
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6.6 Contribution of sustainable intensification to the SDGs 

The economic analysis (Chapters 2 and 5) showed that farmers can substantially increase 

their incomes through intensification and diversification. The Sustainable Development 

Goals (UN, 2018) aim by 2030 to end poverty in all its forms everywhere, and to end hunger, 

achieve food security and improved nutrition and promote sustainable agriculture. How can 

SI can contribute to achieving these goals? Ending poverty means nobody will live below the 

poverty line of USD 1.90 per capita per day by 2030. Intensification of soybean production 

enhanced incomes by an average over 400 USD ha-1 (Table 2.5). Fertilizer and lime input 

treatments increased partial gross margins by 85 USD ha-1 for maize, 260 USD ha-1 for 

soybean, 271 USD ha-1 for groundnuts and 89 USD ha-1 for sweet potato (Table 5.5). The 

substantially higher value of produce per ha of soybean, groundnut and sweet potato (Table 

5.5) suggests crop diversification at the expense of maize can substantially enhance farmers’ 

incomes. An increase in income in the range of 200-400 USD ha-1 would raise per capita 

income by 0.18 – 0.36 USD per capita per day, assuming an average household size of 4.6 

and cultivated land area of 1.5 ha in central Malawi (NSO, 2012).  

 

Fifty-two percent of the rural households in Malawi experience food shortages, of which 43 

percent due to lack of inputs and 11 percent due to small land sizes (NSO, 2012). This implies 

that most households living in poverty may not be able to invest in the required inputs that 

can push their incomes above the poverty line. For sub-Saharan Africa to feed a growing 

population will require large increases in yields, cropping intensity and irrigation (Van 

Ittersum et al., 2016). From 2017 to 2030 the population in Malawi is projected to increase 

by 43% from 18.6 to 26.6 million (UN, 2017), enhancing the challenge to achieve the SDG2 

target of doubling the agricultural productivity and incomes of small-scale food producers. 

In our study, doubling of soybean yields only occurred under an input regime that combines 

inoculation with high fertilizer input rates (Chapter 2), a practice that is not favoured by 

farmers (Chapters 2 and 5). Doubling maize yields also required significant investments in 

fertilizer, whereas the fertilizer treatments in groundnut and sweet potato did not double 

yields (Chapter 5).  

 

Targeting of SI interventions needs to consider the trade-offs farmers need to make between 

yields of maize and legumes and investments in soil fertility management (Snapp et al., 

2018), while also considering dietary diversity (Haddad et al., 2016). The fact that the most 

preferred crops in the system are planted for both household consumption and the market 

(Chapter 5) confirms that crop production diversification can increase nutrition sensitivity in 

agriculture (Mazunda et al., 2018). Investments in integrated soil fertility management or 

micro-nutrient fertilisation can also enhance the nutritional quality of the food produced (De 

Valença et al., 2017). As discussed in previous sections, the large variability in yields and 

yield responses to inputs, and farmers perceptions on yield enhancing technologies, imply 
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that not all farmers will benefit equally from SI. Better-off farmers with access to credit are 

less likely to diversify their livelihoods away from agriculture (Simtowe, 2010) and can 

derive  more benefits from intensification (Chapter 3). Investment in wealthier farmers may 

result in enhanced opportunities for other members of the community to engage in casual 

labour, which is an important livelihood strategy for poor female-headed households with 

limited financial means to invest in their own fields (Simtowe, 2010; Takane, 2008). SI can 

therefore contribute to enhancing food and nutrition security but is unlikely to fully eradicate 

hunger and poverty by 2030. To achieve the SDG’s, investments in agriculture may need to 

be targeted to the right farmers, but supplemented with creating opportunities for off-farm 

income generation and social protection interventions. 

 

6.7 From participatory research to ‘partnering for impact at scale’.  

With more than 70 percent of agricultural GDP coming from smallholders (MAIWD, 2016a), 

these farmers have a crucial role to play in enhancing food and nutrition security in Malawi. 

Many stakeholders including policy makers, governmental agriculture research and 

extension departments, donors, international research for development organizations, NGOs 

and private sector are supporting this cause. The move towards sustainable intensification 

should be a process of societal negotiation resulting in agreed values, priorities and trade-

offs across stakeholders and institutional innovation (Struik and Kuyper, 2017). 

 

What lessons can be learnt from the ‘participatory approaches to diversification and 

intensification’ and what are the implications for scaling? First, we have encountered a large 

variability in farmers biophysical and socio-economic conditions limiting the applicability of 

targeting technologies to pre-defined farm types (Ronner, 2018). Secondly, where on-farm 

research often targets a single commodity or practice (e.g. Chapter 2 and 4), farmers consider 

the whole cropping system (Chapter 5). Finally, we learnt that farmers are risk-averse when 

it comes to investments in external inputs in food crops other than maize (Chapter 5).  

 

While participatory experiments can capture farmers preferences for technologies they do 

not necessarily answer why farmers adopt them or not (Pircher et al., 2012). Farmers in 

technology scaling projects are often considered ‘beneficiaries’ of technologies instead of 

development partners that engage in farming practices in response to their specific socio-

economic condition such as land tenure, gender and wealth status (Pircher et al., 2012). It is 

in this context that new participatory research should focus more on joint learning and 

experimentation with farmers on how technology packages or ‘baskets of technologies’ can 

be best adapted to ensure the innovation can work at farm level within a diversity of 

livelihood activities (Ronner, 2018). Technology packages could include combinations of 

crops and SI options, and ideally respond directly to farmers’ expressed needs and 

constraints.  
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Various projects in Africa have shown that sustainable agriculture can result in large 

increases in food production but scaling is a challenge (Pretty, 1999). A multi-sectoral 

approach including the health sector is needed if not only food but also nutrition security is 

to be achieved (Cole et al., 2016). With severe incidences of micro nutrient deficiencies in 

the human body (WHO, 2018) the importance of biofortification of food crops is growing 

(Tanumihardjo et al., 2017). OFSP varieties (Andrade et al., 2016) are an example of a 

successful approach to combat vitamin A deficiency. Similar options for yellow cassava, iron 

beans, protein-rich maize and orange-maize are gaining momentum. Important ingredients 

of food based approaches to improve nutrition are creating consumer awareness on healthy 

food and investment in healthy agriculture and food systems (Haddad et al., 2016), while 

mitigating the effects of climate variability and change (Jarvis et al., 2011). Climate 

variability and change increases the need for farmers to adapt and innovate with crops and 

practices that can reliably produce food under variable rainfall conditions (Snapp et al., 

2014). 

 

Addressing the multiple constraints of access to credit, inputs and markets that limit adoption 

requires innovative multi-stakeholder approaches. Therefore, adaptive on-farm integrated 

research to sustainably enhance food and nutrition security needs to be embedded in a 

‘partnerships for impact at scale’ approach. Seed companies, agro-dealers and credit 

providers need to be engaged to ensure relevant inputs are accessible and affordable to 

farmers. At institutional level, improved coordination between government and private sector 

is needed to address the constraint of thin markets and ensure additional production can be 

absorbed by the market (Poulton et al., 2006). Adoption of soil fertility management 

technologies is market-driven as commodity sales provide opportunities to invest in inputs 

and in community-based savings and credit schemes (Vanlauwe et al., 2010). Governmental 

extension services and NGO’s can facilitate knowledge transfer and scaling of best-bet 

technology packages to enhance nutrition, yields and incomes and facilitate market linkages.  

 

6.9 Concluding remarks and recommendations for further research 

I have shown that smallholder farmers in Malawi have several options to enhance yields and 

incomes from intensification and diversification of crop production. While maize is one of 

the least profitable and most input-intensive crops, farmers do not want to risk food insecurity 

in terms of maize production. This risk aversion may hamper adoption of more profitable and 

nutritious crops and technologies. This has implications for the government priority to 

enhance crop diversification and building of resilience to climate change in Malawi. There 

is a strong role for scientist to find solutions to the key constraints smallholder farmers face 

through integrated research. Table 6.2 proposes a set of research priorities to enhance 

sustainable intensification of smallholder farming systems.  



General discussion 

122 

 

Table 6.2: Recommendation for integrated research to enhance sustainable intensification of farming 

systems in Malawi 

Constraints Research questions 

Access to 

improved 

varieties 

• What variety characteristics is the market looking for and what are the 

implications for breeding programs to develop varieties that can 

enhance both farmer incomes and food and nutrition security? 

• What mechanisms and partnership models are most suitable to 

facilitate access by smallholder farmers to newly released crop 

varieties? 

• What seed system interventions are required to ensure equitable access 

to clean seed and planting material? 

 

Soil 

degradation 

and nutrient 

depletion 

• What are the best-bet farmer-acceptable options to enhance soil fertility 

for different crops in the farming system (e.g. legume integration, 

fertilizer trees, animal and compost manure, liming, inoculants, 

inorganic fertilizer, mulching, minimal soil disturbance)? 

• How can integration of small livestock contribute to soil fertility 

through enhanced application of manure? 

 

Irrigation and 

water 

management 

• What are the best farmer-acceptable options for small-scale irrigation 

on smallholder farmers’ fields? 

• What on-farm water conservation and erosion prevention methods are 

acceptable by farmers (e.g. boxed ridges, contour ridging, strip 

cropping, intercropping, mulching)? 

 

Climate 

variability 

and change 

• What cropping patterns, agronomic practices and varieties can reduce 

the impact of erratic rainfall distribution and climate change on the 

farming system? 

• What is the comparative advantage of root and tuber crops and 

vegetables in the context of climate change? 

 

Pests and 

diseases 
• What are the best-bet integrated pest management strategies to control 

the most pressing yield reducing pests and diseases (e.g. fall army 

worm, cassava brown streak, potato bacterial wilt and late blight, 

groundnut rosette virus, soybean leaf rust, etc.)? 

 

Limited 

diversification 

of crops and 

diets 

• What are the most farmer acceptable options for adoption of nutrient 

dense food commodities in Malawi (e.g. biofortified crops, legumes, 

vegetables, fruits, nuts, small livestock, fish)? 

• What is the best farming system that would combine sustainable 

production practices that assures nutrient adequacy of the family diet 

year-round in different agro-ecologies? 

• What policies, institutional changes and mechanisms are needed to 

ensure equitable access to nutrient dense commodities by rural and 

urban consumers?  
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Access to 

extension 

services 

• What extension model results in the best uptake of yield-enhancing 

varieties, inputs and management practices (e.g. government extension, 

NGOs, private sector extension)? 

 

Access to 

credit 
• What are the best-bet options to provide credit to smallholder farmers 

and how does access to credit contribute to enhanced productivity and 

incomes? 

 

Access to 

inputs 
• What mechanisms and partnerships are most suitable to make seed, 

planting material and other farm inputs accessible by smallholder 

farmers? 

 

Access to 

markets 
• What mechanisms and partnerships are most suitable to integrate 

farmers in value chains and enhance access to markets? 

• What policies or institutional changes are needed to stabilize market 

prices and develop markets for commodities produced by smallholder 

farmers? 

 

 

Results from this research agenda could feed into evidence-based development programs 

implemented through multi-stakeholder ‘partnerships for impact at scale’. Initiatives that 

reduce the risks associated with rainfed agriculture can put farmers in a stronger position to 

invest in SI options. These could include crop insurance, access to credit and input and output 

market development. Inputs should be accessible near the farmers and improved extension 

services are required to create awareness on fertiliser input options for crops such as legumes 

and sweet potato to enhance the financial benefits of these crops. Participatory research that 

addresses the multiple constraints faced by farmers in different agro-ecologies needs to be 

jointly designed, implemented and analysed in an integrated manner through intense 

collaboration between development partners. The design should focus on integrated packages 

that can be tested on-farm with smallholder farmers in multiple locations, recognizing that 

there are no ‘silver bullets’ and farmers may choose to use only parts of the entire package 

over time. Through such multi-stakeholder partnership approaches farmers can be 

empowered to substantially increase their productivity and incomes through crop 

diversification and intensification. 
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 Summary 

 

Crop production by smallholder farmers in southern Africa is characterized by cultivation of 

maize as a staple food on a large share of the agricultural land. Limited nutrient input results 

in soil nutrient depletion over time. To achieve the Sustainable Development Goals (SDGs) 

of zero hunger and poverty here is need for productive farming systems that are better adapted 

to a changing climate, and that produce more diverse food to achieve both food and nutrition 

security. The aim of this thesis was to explore options for sustainable intensification and 

diversification of maize-based farming systems in Central Malawi with legumes and sweet 

potato.  

 

We tested crop and nutrient management practices in soybean through on-farm 

experimentation in 144 fields and participatory technology evaluation. The farmers ranked 

eight technologies in descending order of preference as 1. Early planting 2. Plant population 

3. Variety choice 4. Compost manure 5. Weeding 6. Inoculant 7. Fertilizer and 8. Spraying. 

A combination of inoculation, inorganic fertilizer (10 N, 8 P, 20 K in kg ha-1), and 6 t ha-1 

compost manure increased yields from 0.86 t ha-1 under farmers’ practice to 1.56 t ha-1 and 

resulted in average profits of 222 USD ha-1. Increased plant populations and biocide spraying 

also resulted in substantial yield increases. All technologies except planting the improved 

variety Nasoko and weed management were profitable with a value to cost ratio (VCR) > 1 

but only inoculation and increased plant population resulted in an average VCR > 2. Low 

investment costs make inoculants, compost manure and increased plant populations 

interesting options, whereas adoption of inorganic fertiliser application in soybean may be 

limited due to high costs and low VCR.  

 

We explored the variability and factors behind the benefits of N2-fixation in soybean-maize 

rotations on smallholder farmers’ fields. Locally sourced soybean varieties obtained a larger 

percentage of Nitrogen derived from the atmosphere (%Ndfa; 65%) than the ‘improved’ 

variety Nasoko (53%). The %Ndfa was positively associated with soil sand content, sowing 

date, plant population and biomass accumulation, but it was not affected by inoculation with 

rhizobia or the combination of inoculation and NPK fertiliser application. Quantities of N2 

fixed differed between regions and years, and was enhanced by applying inoculant and 

fertiliser together, leading to more biomass accumulation and larger grain yields. Soil 

available P and exchangeable K contents also increased the total amount of N2 fixed. Average 

yield in continuous maize was 2.5 t ha-1, while maize after soybean produced 3.5 t ha-1 (139% 

of continuous maize). Farmers with higher maize yields, who applied external nutrient inputs, 

and with a larger value of household assets achieved greater yield responses to rotation with 

soybean. We conclude that fields of soybean and maize that receive adequate nutrient inputs 
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and good management to ensure good yields benefit most in terms of quantities of N2 fixed 

by the legume and the yield response of the following maize crop.  

 

We assessed the performance of six orange-fleshed sweet potato (OFSP) varieties on 221 

farmers’ fields, identified factors limiting productivity and explored options to close the gap 

between actual and attainable OFSP yields on fields of smallholder farmers. Results show a 

large variability across farmers’ fields and a wide range of interacting factors affecting the 

variables of interest. Varieties Chipika and Kadyaubwerere attained good yields and were 

preferred by farmers in terms of taste. Varieties Zondeni and Anaakwanire gave a poor root 

yield, but a good vine yield. Timely planting is crucial to attain good root yields by making 

better use of the available rainfall. There was a varietal effect on weevil infestation and 

Kaphulira was most affected. Weevil control is required for market-oriented producers to 

enhance the percentage of marketable roots. The average attainable fresh root yield ranged 

from 18 t ha-1 for variety Zondeni to 32 t ha-1 for Mathuthu, against actual yields of 5 to 9        

t ha-1. Elevation, planting date, rainfall and crop establishment could explain only 28 percent 

of the average yield gap, while 49 percent was explained for Mathuthu. Male host farmers 

received better quality cuttings and planted in better soil moisture conditions, resulting in 

better establishment and vine yields. OFSP productivity can be enhanced through gender-

sensitive extension, by ensuring male and female farmers can plant clean planting material 

of a suitable variety early in the rainy season. This requires additional efforts in vine 

multiplication of the required variety prior to the onset of the rains.  

 

We than combined yield results of 50 maize, 28 soybean, 24 groundnut and 26 sweet potato 

on-farm input trials with economic analysis and focus group discussions to explore input 

options for crop intensification and diversification. Due to proper crop management and the 

use of good varieties in a season with above-average rainfall, excellent mean trial yields of 

5.0 t ha-1 for maize, 3.4 t ha-1 for soybean, 2.5 t ha-1 for groundnuts and 13.2 t ha-1 for sweet 

potato were achieved. Responses to various combinations of inorganic fertilizer and lime 

were highly variable, but applications enhanced yields in all crops. Although maize 

production and investments in maize fertilizer were not as profitable as the other crops, 

fertilizer application to maize gave the best returns of food per amount of money invested. 

Better yield responses and value cost ratios showed that investments in fertiliser and lime in 

soybean was more worthwhile than in groundnut, though the financial benefits were 

somewhat hidden by high groundnut prices. While there is potential to derive better financial 

returns from diversification and intensification with legumes and sweet potato, farmers 

prioritize maize in terms of land area and resource allocation.  

 

Our participatory research approach demonstrated that there is a wide range of technologies 

with different levels of human and financial investment costs that smallholder farmers can 

adopt to enhance their maize, soybean, groundnut and sweet potato yields and profits. A wide 
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range of treatments, biophysical conditions, crop management choices, and socio-economic 

variables affected maize, soybean, groundnut and sweet potato yields, N2 fixation and the 

rotational benefits of soybean on maize. This led to large variability in yields and yield 

responses to technologies across farms. While the diversity in responses allows us to better 

understand the context in which technologies are introduced, associations between gender, 

wealth and yields will only be informative if we understand the underlying social dynamics. 

Considering this diversity, sustainable intensification can contribute to enhancing food and 

nutrition security but is unlikely to fully eradicate hunger and poverty by 2030. Addressing 

the multiple constraints of poor extension services, unstable markets, access to credit and 

access to improved seed may result in more diversified and intensified cropping systems. To 

achieve this, investments in agriculture need to be targeted to better-off farmers in the form 

of technology packages that can be adapted to the local context. This should be 

complemented with investments in off-farm income generation and social protection. 

Adaptive on-farm integrated research to sustainably enhance food and nutrition security 

needs to be embedded in a multi-stakeholder ‘partnerships for impact at scale’ approach. This 

way farmers can be empowered to substantially increase their productivity and incomes 

through crop diversification and intensification. 
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