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Propositions 

 

1. Networks provide a powerful way to organize, present, and analyze 

comparative synteny data of plant genomes that have undergone recurrent 

polyploidy events. 

(this thesis) 

2. Family-specific synteny clusters generated by gene transpositions may reveal 

genes contributing to phenotypic trait evolution. 

(this thesis) 

3. A PhD program without a set research proposal may end up with better results. 

4. Taking a step back and seeing the big picture can break tangled details, and 

help both in daily life and in research. 

5. The moment you feel helpless might also be the opportunity you find your way 

and grow stronger. 

6. Ones biggest contribution to society is to be happy in ones own life. 
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The code of life and genome sequencing 

Life first appeared on earth ~ 4 billion years ago (Dodd et al., 2017) as vast colonies of 

single-celled bacteria that would ultimately gave rise to all other living creatures (Figure 

1). Over the ages, our planet has witnessed explosions of life and massive extinctions. 

DNA (Deoxyribonucleic acid), the molecular blueprint (or recipe) for all known extant 

living organisms, except some viruses which use RNA (Johnston et al., 2001), acts as 

the raw material that has been molded and evolved into the many forms of life we 

observe today (Figure 1).  

 

Figure 1 Phylogeny of the tree of life. Figure adapted and modified from Ciccarelli et al., 2006. 

A genome contains complete set of DNA of an organism, including all its genes. A 

genome sequence is the complete list of the nucleotides (A, C, G, and T for DNA 

genomes) that make up all the chromosomes of an individual or a species. The human 

genome project, took an effort of 13 years, 3 billion dollars, and more than 200 scientists, 

to sequence and assemble the roughly 3 billion base pairs (3 Gb) of human DNA that 
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comprise our genetic material (Consortium, 2001; Venter et al., 2001). Over the past 

four decades, DNA sequencing technology has developed tremendously (Shendure et 

al., 2017). High throughput “Next-Generation” sequencers can now read thousands of 

human genomes and a myriad of other genomes at high speeds with continuously 

improving accuracy and contiguity. DNA sequencing is now having crucial applications 

from molecular biology to metagenomics, from paleontology to clinical medicine and 

comparative evolutionary genomics.  

 

Comparative genomics and synteny 

The wealth of genomic data available nowadays is making comparative genomics an 

accessible focal point for the study of any form of life. Comparative genomics provides 

a powerful tool for studying evolutionary genomic features among organisms. Such 

genomic features may include changes/differences in DNA sequence, genes, gene 

order, regulatory sequences, and other genomic structural landmarks (Xia, 2013). 

These help to identify genes that are conserved or common among species, as well as 

genes that give each organism its unique characteristics.  

Amid the aforementioned applications of comparative genomics, synteny reflects 

important relationships between the genomic context of genes both in terms of function 

and regulation and is often used as a proxy for the constraint and/or conservation of 

gene function (Dandekar et al., 1998; Dewey, 2011; Lv et al., 2011). Synteny was 

originally defined as pairs or sets of genes located on homologous chromosomes in two 

or more species, but not necessarily in the same order (Renwick, 1971; Passarge et al., 

1999). However, the current widespread usage of the term synteny, which we adopt in 

this thesis, implies conserved collinearity and genomic context. 

The analysis of synteny in the gene order sense has several applications in genomics. 

Shared synteny is one of the most reliable criteria for establishing the orthology of 

genomic regions in different species (Dewey, 2011;  Altenhoff et al., 2016). Additionally, 

exceptional conservation of synteny can reflect important functional relationships 

between genes. For example, the order of genes in the "Hox cluster", a conserved 

cluster of homeobox domain transcription factors (Duboule, 2007),  which are key 

determinants of the animal body plan and which interact with each other in critical ways, 

is generally preserved throughout the animal kingdom (Amores et al., 1998). However, 

in Octopus (Octopus bimaculoides) Hox genes are not organized into clusters as in most 

other bilaterian genomes, but are completely scattered (Albertin et al., 2015) (Figure 2). 
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Figure 2. Synteny conservation of Hox clusters across five species (Homo sapiens, 

Branchiostoma floridae, Drosophila melanogaster, Capitella teleta, and Lottia gigantea), and 

its fragmentation in Octupus (O. bimaculoides). Figure adapted from Albertin et al., 2015. 

 

Synteny complements phylogeny 

Phylogeny is the science of estimating evolutionary past, based on the comparisons of 

DNA or protein sequences (Baldauf, 2003). Phylogenetic analyses are important for 

understanding biodiversity, evolution, ecology, and genomes (Yang and Rannala, 2012). 

Phylogeny reconstruction has developed a set of tools and methods based on optimality 

criteria such as parsimony, likelihood and posterior probability in order to find best 

possible trees (Lewis, 2001). However character-based phylogeny could detect 

orthologous relations obscured by amino acid bias or DNA substitution rate variability 

among taxa and genes. In addition, different gene loss from the genome could also 

affect the reconstructed phylogeny (Figure 3). In such cases, additional evidence is then 

needed for poorly supported branches. 
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Figure 3. Different patterns of gene loss affect inferred phylogeny from single-copy genes. On 

the right panel are scenarios when constructed phylogeny will not truly reflect relationship 

among species A, B and C. Figure adapted and modified from Jiao and Paterson, 2014. 

Synteny reveals local genomic gene arrangements, and presents a clearer picture of 

gene and gene family evolution, allowing one to decide which gene locations are 

ancestral. For example, the parallel coordinate synteny plot below depict relationships 

of multiple plant orthologous genes (taking the genes in red for example), deriving from 

different episodes of whole genome duplication (WGD) events (marked as α, β, and γ) 

(Figure 4A), thus the true relationship of these genes should be concluded as the 

phylogenetic tree 1 in Figure 4B. However sequence-based phylogenetic tree building 

without considering synteny information will most likely construct phylogenetic trees 2-

4 (Figure 4B).  

 

Figure 4. An example of synteny depicting six syntenic genes (highlighted red) from Arabidopsis 

and rice (A), and (B) sequence-based phylogenetic trees using Neighboring-joining (tree 2), 

Parsimony (tree 3), and Bayesian (tree 4). Figure adapted from Sampedro et al., 2005.  
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In the past few years, integration with synteny information has greatly facilitated studies 

in tracing gene evolution patterns (Causier et al., 2010; Ruelens et al., 2013; Zhao et 

al., 2017), and also for species delimitation (Magain et al., 2017). 

 

Synteny detection tools and visualization 

Since synteny holds key inference for gene orthology and evolutionary history, 

numerous tools and databases has been developed (Table 1). These tools differ greatly 

in input data format, multi-species support, processing scale, running time, as well as 

the resulting output. For comparative studies see Ghiurcuta and Moret, 2014 and Liu et 

al., 2018. 

Table 1. Programs for detecting synteny  

Program Reference 
#Citations 

(up to 1-5-2018) 

Absynte (Archaeal and Bacterial Synteny) 

Explorer 
Despalins et al., 2011 33 

AutoGRAPH Derrien et al., 2006 61 

Cinteny Sinha and Meller, 2007 126 

ColinearScan Wang et al., 2006 76 

Cyntenator 
Rödelsperger and 

Dieterich, 2010 
41 

DAGchainer Haas et al., 2004 255 

DiagHunter Cannon et al., 2003 68 

DRIMM-Synteny (Duplications and 

Rearrangements In Multiple Mammals-

Synteny) 

Pham and Pevzner, 2010 50 

FISH (Fast Identification of Segmental 

Homology) 
Calabrese et al., 2003 125 

i-ADHoRe (iterative Automatic Detection of 

Homologous Regions) 

Vandepoele et al., 2002 

Simillion et al., 2007 

Proost et al., 2012 

164 

55 

71 

MCMuSeC (Max-gap Clusters by Multiple 

Sequence Comparison) 
Ling et al., 2009 35 

MCScan (Multiple Collinearity Scan) Tang et al., 2008b 329 

MCScanX Wang et al., 2012 373 

MicroSyn Cai et al., 2011 20 

Mugsy 
Angiuoli and Salzberg, 

2010 
265 

MultiSyn Baek et al., 2016 1 

Murasaki Popendorf et al., 2010 24 

OrthoCluster Zeng et al., 2008 36 
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Osfinder (Orthologous Segment finder) Hachiya et al., 2009 37 

PhylDiag Lucas et al., 2014 6 

Proteny 
Gehrmann and Reinders, 

2015 
3 

QUOTA-ALIGN Tang et al., 2011 68 

r2cat (Related Reference Contig Arrangement 

Tool) 

Husemann and Stoye, 

2009 
94 

RAGB (Reference-Anchored Gene Blocks Benshahar et al., 2017 - 

Satsuma) Grabherr et al., 2010 65 

Sibelia (Synteny Block Exploration tool) Minkin et al., 2013 39 

SyMAP (Synteny Mapping and Analysis 

Program) 
Soderlund et al., 2011 130 

SynChro Drillon et al., 2014 26 

SynFind Tang et al., 2015 21 

Synorth (Synteny and Ortholog) Dong et al., 2009 25 

Synteny Portal Lee et al., 2016 4 

SyntenyTracker Donthu et al., 2009 29 

SynteView Lemoine et al., 2008 12 

SyntTax Oberto, 2013 52 

SynMap Lyons et al., 2008 121 

 

Despite this amount of tools, comparing synteny of large eukaryotic genomes for 

multiple species still presents major challenges. First, the number of whole genome 

comparison is growing exponentially with the genomes to be compared, even for three 

genomes, nine times (i.e. all inter- and intra- genomes) whole genome comparison is 

required. Secondly, sequenced genomes are published at various qualities. Many are 

neither perfectly assembled nor annotated, with some poorly assembled genomes that 

have 10 to 100 times as many scaffolds as they have chromosomes. So synteny 

detection based on genome annotations are subject to many possible confounding 

factors. Last but not least, organizing and presenting syntenic regions of multiple genes 

across many species is probably the most burning question, which is especially true for 

flowering plant genomes due to recurrent whole genome duplications (WGDs) (see a 

recent review: Cheng et al., 2018a).  

Pairwise dot plots and reference-based synteny comparisons are most widely adopted 

at the moment. Synteny analysis across related species has almost become a routine 

for genome sequencing papers (depending on the question, a careful selection of 

genomes to be compared is required). There are several search-based platforms such 

as PGDD (Lee et al., 2013), CoGe (Lyons and Freeling, 2008), Phytozome (Goodstein 

et al., 2012), Plaza (Proost et al., 2015), and Genomicus (Louis et al., 2012), providing 

an overview of homologous synteny blocks across multiple species (Figure 5). However 

it is difficult to automatically check and integrate synteny for, say an entire gene family, 

that may contains many members from various synteny block families, using these tools. 
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Considering the increasing number of available genomes, a systematic approach that 

is able to use as many genomes as possible, that organizes massive pieces of syntenic 

regions (synteny blocks), and also display/visualize synteny relations of any length of 

inquiry gene list, should be a target and new fashion for phylogenomic synteny studies.  

 

 

Figure 5. Genomicus (Louis et al., 2012) phylogenomic synteny viewer of grape PI MADS-box 

gene (Vv18s0001g01760), the figure shows similar genomic contexts across rosid species, 

except for Brassicaceae species (no flanking genes, boxed).  

 

Research scope: to grasp it as a whole 

Synteny detection tools as listed in Table 1 usually start with pairwise all-vs-all 

sequence comparison for homologous relations before evaluating synteny. This step 

usually takes extensive computation time to complete, especially when analyzing many 

genomes (times of comparisons equals the square of the number of genomes used). In 

order to realize the aforementioned goal, new aligners developed these years has made 

large-scale eukaryotic genome comparisons possible with a previously unimaginable 

speed, such as RAPSearch2 (Zhao et al., 2012), DIAMOND (Buchfink et al., 2015), and 

MMseqs2 (Steinegger and Söding, 2017).  
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Networks organize rich data, and provide a wide range of mathematical tools for 

identifying and explaining the patterns they contain. Network science is nowadays a 

thriving interdisciplinary domain that focuses on the representation, analysis and 

modeling of complex social, biological and technological systems as networks or graphs 

(Barabási and Pósfai, 2016, Figure 6). In life science, protein interaction networks, co-

expression networks, and ecological networks, present an overview of all pairwise 

relations from certain data resources, and provide ways of seeing, organizing, and 

guiding scientific thinking (Goh et al., 2007; Arabidopsis Interactome Mapping, 2011). 

 

Figure 6. Human disease network. Nodes are diseases, two diseases are connected if the same 

genes are associated with them. Figure adapted from Goh et al., 2007. 

In this thesis, I focus on the construction of synteny-based networks and its 

applications for the inference of gene evolutionary history. First in Chapter 2, we put 

forward the idea of using networks for phylogenomic synteny data. I present more 

background about current limitations of large-scale organization and curation of plant 

synteny connections, then propose an outline performing synteny network analysis, 

followed by a brief example of floral B-class genes (AP3 and PI). The synteny network 

supports the previous reported B-gene synteny across species (Causier et al., 2010; 

Cheng et al., 2013), but now with 101 broadly distributed species grouped in the network 

graph, results are more clear, direct, robust, and systematic.  

In Chapter 3, I analyzed synteny networks of the MADS-box transcription factor gene 

family from 51 complete plant genomes. Through this analysis, the relationships, 

approximate timing, gains and losses, and specific movements of these genes within 

the genome could be traced. Specifically, several novel evolutionary patterns were 

inferred and visualized from synteny network clusters. I found lineage-specific clusters 

that derive from transposition events for the regulators of floral development and 

flowering-time in the Brassicales and for the regulators of root-development in Poales. 

We also identified two large gene clusters that jointly support the idea that these genes 

are derived from an ancient tandem gene duplication that likely predates the radiation 

of the seed plants and then expanded by subsequent polyploidy events.  
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Besides regulative transcription factors such as MADS-box genes, in Chapter 4 we 

applied our synteny network approach for an important abiotic stress-induced protective 

proteins, the LEAs (Late Embryogenesis Abundant proteins). This gene family include 

eight multi-gene families expressed in response to water loss during seed maturation 

and in vegetative tissues of desiccation tolerant species. The synteny network indicated 

that plant LEA families have distinct origins, and that most of them show synteny 

conservation across angiosperms. Recurrent tandem-duplications, and transpositions 

contributed to sequence diversification and functional innovations. For example, the 

dehydrin sub-family of LEAs has diversified ancestral synteny, which resulted in distinct 

evolution of amino acid sequences, biochemical properties, and gene expression 

patterns. 

In Chapter 5, I scaled up the analysis to involve the genomes of 107 flowering plants 

and 87 mammals, covering major lineages that have evolved and radiated over the last 

~170 million years. We built synteny networks for genomes within each kingdom and 

compare overall genomic architecture conservation and variation, with comparison to 

other genome metrics such as N50, BUSCO, and genome sizes. We characterized all 

synteny clusters with phylogenomic profiling, which illustrated all genomic innovations 

(i.e. duplications, gene transpositions, gene loss) in one graph. We also investigate 

synteny properties for BUSCO genes, which has been widely-used as conserved single 

copy genes for benchmarking genome qualities.  

Finally in Chapter 6, I discuss future perspective of phylogenomic synteny network 

approach, and proposed future efforts to remedy existing problems.  
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Abstract  

Network analysis approaches have been widely applied across disciplines. In biology, 

network analysis is now frequently adopted to organize protein-protein interactions, 

organize pathways and/or to interpret gene co-expression patterns. However, 

comparative genomic analyses still largely rely on pairwise comparisons and linear 

visualizations between genomes. In this article, we discuss the challenges and 

prospects for establishing a generalized plant phylogenomic synteny network approach 

needed to interpret the wealth of new and emerging genomic data. We illustrate our 

approach with an example synteny network of B-class floral MADS-box genes. A broad 

synteny network approach holds great promise for understanding the evolutionary 

history of genes and genomes across broad phylogenetic groups and divergence times.   
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Introduction 

Gene and genome duplication plays a fundamental role in evolution by providing the 

genetic material by which new traits can arise (Conant et al., 2014; Panchy et al., 2016). 

Thus, comparative analysis of synteny is a powerful approach to understand the 

evolutionary trajectory of genes and genomes and ultimately of traits and organisms 

(Lee et al., 2013; Jiao et al., 2014). However, in the plant kingdom recurrent whole 

genome duplication events, genomic rearrangements, and gene translocations 

complicate such analyses. Although several online tools now exist for analyzing synteny 

comparisons between species (Lyons et al., 2008; Proost et al., 2015; Veltri et al., 2016) , 

they represent syntenic blocks as either parallel coordinate plots or pairwise dot-plots. 

Such approaches to data organization and presentation restricts us from inferring global 

syntenic relationship patterns of entire multi-gene families or across multiple genomes 

simultaneously.  

In this chapter, we discuss the prospects for a network-based approach for comparative 

synteny analysis. Genome syntenic blocks derived from intra- and inter-species 

comparisons can then be abstracted into vertices (nodes or points) and edges (lines 

between points). Sets of widely-available tools for characterizing networks can then be 

applied to such a synteny network to allow for visualization and clustering 

(Jarukasemratana and Murata, 2013; Domenico et al., 2015). We illustrate our concept 

of plant synteny network analysis for organizing, visualizing and finding patterns in the 

vast wealth of emerging plant genomic data by comparing such an approach with a 

previous published traditional parallel synteny coordinate plot example for the floral B-

class MADS-box genes, AP3 and PI. The new approach can provide new insights into 

the dynamics of gene and genome evolution such as the detection of gene 

transpositions and ancient gene tandem-duplications (Zhao et al., 2017). 

Current limitations for visualizing global synteny relations across plants 

Conserved synteny across species is an essential foundation for genomic research. 

Several existing computational programs and online tools have been developed to 

assess synteny for comparative genomic studies of two or more genomes, e.g. 

MCScanX (Wang et al., 2012), DAGchainer (Haas et al., 2004), i-ADHoRe (Proost et 

al., 2012), DRIMM (Pham and Pevzner, 2010), SynFind (Tang et al., 2015), and PGDD 

(Lee et al., 2013) among many others. To compare each of them is beyond the scope 

of this article, but for an overview please see (Ghiurcuta and Moret, 2014; Gehrmann 

and Reinders, 2015). As an output mummer-plots or parallel coordinate plots are widely 

adopted to display syntenic genomic regions (Cheng et al., 2013; Ruelens et al., 2013). 

Such visualization approaches can be quite helpful to trace the positional history of a 

particular gene of interest. However, the complexity increases dramatically when 

analyzing many species across broad phylogenetic groups (such as monocots vs. 

eudicots). This is particularly true because of the numerous independent polyploidy 

events (Li et al., 2015). For example, A. thaliana has undergone at least three polyploidy 
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events (Vanneste et al., 2014) since its common ancestor with the entire angiosperm 

clade, and as a consequence ohnologs (paralogs derived from a polyploidy event) 

occupy multiple tracks using these tools. Furthermore, most tools display the 

information about flanking neighbor genes used to establish collinearity. However, when 

trying to understand the overall evolutionary pattern of large multi-gene families across 

multiple species it is nearly impossible to visualize. 

Recent progress in pan-genomics has witnessed the application of network approaches 

for understanding multiple bacterial genomes and within species variation of large plant 

genomes (Marschall et al., 2016), such as Arabidopsis (Consortium, 2016), maize (Jiao 

et al., 2012b; Hirsch et al., 2014), and soybean (Li et al., 2014). New methods and tools 

are rapidly being developed for better visualization and improved data exploration (Baier 

et al., 2015; Sheikhizadeh et al., 2016). However, pan-genome approaches currently 

are more applicable to within species comparisons and not across broad phylogenetic 

scales of large genome species with shared and independent polyploidy events like 

plants.  

Recently, evolutionary inferences for certain groups of genes has been made in several 

studies using networks to organize syntenic relationships based on PGDD-derived data 

across species (Li and Zhang, 2013; van Veen et al., 2014; Hammoudi et al., 2016). 

Networks focused just on the target loci can more easily display the relationships by 

visualizing syntenic connections into points (nodes/vertices) and lines (edges). In this 

chapter, a systematic methodology for large-scale synteny network construction and 

analysis will be outlined.  

Sharpening the tools: outline of synteny network analysis 

A network is comprised of all interconnected pairs of nodes. The data source for synteny 

networks is derived from all pair-wise computed syntenic blocks. Thus, synteny network 

construction consists of three primary steps: (1) pairwise whole-genome comparisons, 

(2) syntenic block detection and data fusion, and (3) network manipulation (Figure 1). 

Pairwise whole genome comparisons  

For a comparison of five plant genomes you would need to perform P (5, 2) + 5 = 25 

whole genome all-against-all comparisons. For each pair of syntenic blocks, reciprocal 

comparisons are needed as well as all intra-species comparisons are needed to identify 

paralogs or “syntenic ohnolog pairs”. Currently, whole genome sequences are available 

for over 100 plant genomes (Goodstein et al., 2012; Jin et al., 2016). Accordingly, to 

build a synteny network for all these plant genomes over tens of thousand times of 

whole-genome protein comparisons are then needed. For such a task, standard tools 

like BLAST, or BLAST+ are too computationally demanding for most researchers 

(Altschul et al., 1990; Camacho et al., 2009). New algorithms like LAST or RAPSearch2 

(>1000 times speedup over BLAST in the accelerating mode) are more capable for this 

type of analysis (Kiełbasa et al., 2011; Zhao et al., 2012).  
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Figure 1. Synteny network construction and analysis consists of several steps: (A) Pairwise 

genome comparisons, followed by (B) syntenic block detection and data integration, in order to 

construct (C) a synteny network database that allows for (D) network data clustering and (E) 

phylogenetic profiling. The steps allow for (F) enhanced evolutionary inferences. 

Syntenic block detection and data fusion 

Syntenic blocks are found within a certain window size according to different scoring 

schemes (Proost et al., 2012; Wang et al., 2012).  MCScanX for example takes a default 

window size of 50 neighboring genes for inferring significant collinearity. That is, one 

matched gene pair (one anchor) with adjacent potential anchors no further than 25 

upstream and downstream genes respectively on genomic/chromosome/scaffold 

position (which can be inferred from the bed/GFF files). Syntenic blocks with a block-

score over 250 (i.e. involving at least 5 collinear gene pairs) are reported (Wang et al., 

2012a). Homologous collinear gene pairs within the block share the same block-score. 

Outputs can be merged in a tabular format keeping: (1) unique block ids, indicating 

species being compared and numeric index, (2) syntenic gene pairs, and (3) a block-

score (for weighted network edges). 
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Network manipulation 

The synteny network of plant genomes can contain many millions of nodes and edges. 

Such a complex “web” of syntenic connections is of too great complexity to interpret 

directly. Thus, a clustering step is needed to locate communities before further analysis. 

Identifying communities from a network is currently a popular topic, thus there has been 

much effort in the last decade for developing community detection algorithms (Fortunato, 

2010). Considering synteny network characteristics, computation  efficiency, and 

clustering quality, several methods for microsynteny network clustering are most 

appropriate: (1) clique percolation method (Palla et al., 2005) that can find overlapping 

dense groups of nodes in networks, providing insights of interconnected sub gene-

families; (2) k-core decomposition (Alvarez-Hamelin et al., 2005; Khaouid et al., 2015) 

that efficiently partitions a large graph / network into layers from external to more central 

vertices; and (3) Infomap (Rosvall and Bergstrom, 2008; Rosvall et al., 2014) that is fast 

and accurate, providing remarkable performance for handling millions of nodes in short 

time.  

Several factors that are important to consider during synteny network construction 

include: the quality of the genome assemblies and annotations, the synteny block 

detection settings (for example, block scores or number of syntenic genes used) and 

the settings and optimization of the clustering algorithms (for example, k value in k-

cliques percolation). Altering these parameters can impact the robustness of the 

synteny networks (Zhao et al., 2017). 

‘Network Effect’: deciphering phylogenomic evolutionary patterns 

To illustrate our concept, we have built a synteny network for one hundred and one 

plant genomes (including 10 genomes in Fabaceae, 14 in Brassicaceae, 15 in Asterids, 

14 in Poaceae, 4 in Pinaceae, 4 in Chlorophyta, etc.), which contains ~1.8 million nodes 

and 3.2 million edges (Figure 2). Such a network database thus containing a 

tremendous wealth of syntenic information. One application is to extract and visualize 

syntenic relationships for certain genes or gene families across and within species 

(depending on the question at hand). For example, APETALA3 (AP3) and PISTILLATA 

(PI) genes are important MADS-box transcription factors that specify petal and stamen 

identity (known as B-class floral regulatory genes) (Dodsworth, 2016; Theissen et al., 

2016). A previous comparative study of floral MADS-box genes between the sister 

families Cleomaceae (Tarenaya hassleriana) and Brassicaceae (e.g. Arabidopsis and 

Brassica) found that T. hassleriana AP3 genes are non-syntenic to Brassicaceae 

species, instead they are syntenic to other eudicot species (Figure 2a) and that is 

because Brassicaceae AP3 genes were transposed probably due to the At-alpha whole 

genome duplication (Figure 2b). Interestingly in T. hassleriana one PI gene is syntenic 

to other eudicot species (Figure 2c) and the other one syntenic to Brassicaceae PI 

homologs (Figure 2d) (Cheng et al., 2013). Comparatively, for such a result, an updated 

synteny network approach clearly shows four distinct clusters for AP3 and PI genes 
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(Figure 2, right panel) that can be more easily visualized than the four parallel synteny 

coordinate plots from Cheng et al. (Cheng et al., 2013) (Figure 2, left panel) . Each node 

represents an AP3 (Figure 2a and 2b) or PI gene (Figure 2c and 2d) from species 

belonging to various lineages (indicated by different colors), two nodes are connected 

if they are syntenic to each other (unweighted, i.e., edge length not informative).  

 

 

Figure 2. Comparison of traditional parallel synteny coordinate plots (adapted and modified from 

(Cheng et al., 2013) with permission from the authors) and new synteny network approach. (a) 

Angiosperm-wide synteny of AP3 genes, (b) synteny of Brassicaceae AP3 genes, (c) 

Angiosperm-wide synteny of PI genes, and (d) synteny of Brassicaceae and Cleomaceae PI 

genes. A number indicating involving species for synteny comparison is shown in the corner of 

each panel. Genes from (Cheng et al., 2013) at the left panel are highlighted as nodes with a 

thick black border at the right panel. (e) Species in different angiosperm lineages used are listed 

and indicated by different colored nodes. 

In this way, only syntelogs derived from the pre-calculated synteny blocks are depicted 

in the network, from which we can infer the number of syntelogs and relationships 

among the remaining syntelogs after polyploidy events. For example, in the 

Brassicaceae AP3 synteny network (Figure 2b) most crucifers are represented by single 

nodes (i.e. Arabidopsis is node 35). Whereas, the mesopolyploid species Brassica 
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oleracea and B. rapa (nodes 28 and 29) have two copies each. Thus, we can conclude 

that after the genome triplication of the Brassica lineage, two syntelogs have been 

retained and one has been lost. In the allopolyploid species, B. napus (nodes labelled 

30), three AP3 syntelog nodes are detected (rather than the expected four: two from B. 

rapa and two from B. oleracea). Thus, one B. napus AP3 syntelog has either been lost 

since polyploidization or was not detected because it has transposed or was not 

assembled or annotated correctly. The synteny network of AP3 and PI genes support 

previous B-gene synteny across species (Causier et al., 2010; Cheng et al., 2013), but 

now with 101 broadly distributed species grouped in the network graph, results are more 

clear, direct and robust. The additional evidence from the network clusters give greater 

support for the B-gene transpositions and thus unique synteny of Brassicaceae and 

Cleomaceae homologs (Figure 2b and d). Whereas synteny of AP3 and PI homologs 

are highly conserved across most other angiosperms including eudicots, monocots and 

A. trichopoda (the sister lineage of other flowering plants (Albert et al., 2013)). Our 

network approach broadens the inference of the evolutionary history of the important 

MADS-box B-genes in a more comprehensive and systematic way. 

 

Conclusion and future prospects 

Synteny-based analysis is widely recognized as an effective and reliable approach for 

comparative genomics. However, effective large-scale organization and curation of 

microsynteny connections remains limited. With the rapid increase of completed plant 

whole genomes and a wealth of new algorithms and tools for network inference, we 

believe that our outline for building synteny networks from large syntenic connections 

of pairwise syntenic blocks across many species will garner new insights into genome 

and gene family evolutionary history. Furthermore, the network approach is a reliable 

method to identify and organize syntelogs derived from the frequent and independent 

ancient and recent WGDs in plants. Network statistical and mathematic parameters 

provide a framework for testing hypotheses of gene family expansion and contraction 

in a phylogenomic context. For example, node degree, clustering coefficient, 

betweenness centrality, and so on. can all be used to characterize and quantify various 

phylogenomic evolutionary features of specific genes and gene families (e.g. under 

certain cluster sizes, a higher clustering coefficient indicates a more stable genomic 

context). Gene families known to undergo rapid expansion/contractions and/or 

transposition events (such as NB-LRR, p450 and F-box genes) would have average 

low clustering coefficients whereas genes known to be preferentially retained in 

duplicate after whole-genome duplications (such as many transcription factor families) 

would have higher average clustering coefficients. A comprehensive analysis of pan-

angiosperm synteny networks can serve as a novel starting point for understanding 

angiosperm genome organization, biology and evolutionary history. 
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Abstract 

Conserved genomic context provides critical information for comparative evolutionary 

analysis. With the increase in numbers of sequenced plant genomes, synteny analysis 

can provide new insight into gene family evolution. Here, we exploit a network analysis 

approach to organize and interpret massive pairwise syntenic relationships. Specifically, 

we analyzed synteny networks of the MADS-box transcription factor gene family using 

fifty-one completed plant genomes. In combination with phylogenetic profiling, several 

novel evolutionary patterns were inferred and visualized from synteny network clusters. 

We found lineage-specific clusters that derive from transposition events for the 

regulators of floral development (APETALA3 and PI) and flowering-time (FLC) in the 

Brassicales and for the regulators of root-development (AGL17) in Poales. We also 

identified two large gene clusters that jointly encompass many key phenotypic 

regulatory Type II MADS-box gene clades (SEP1, SQUA, TM8, SEP3, FLC, AGL6 and 

TM3). Gene clustering and gene trees support the idea that these genes are derived 

from an ancient tandem gene duplication that likely predates the radiation of the seed 

plants and then expanded by subsequent polyploidy events. We also identified 

angiosperm-wide conservation of synteny of several other less studied clades. 

Combined, these findings provide new hypotheses for the genomic origins, biological 

conservation and divergence of MADS-box gene family members.  
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Introduction 

Conserved gene order can be retained for hundreds of millions of years and provides 

critical information about conserved genomic context and the evolution of genomes and 

genes. For example, the well-known “Hox gene cluster”, which regulates the animal 

body plan, is largely collinear across the animal kingdom (Lewis, 1978; Krumlauf, 1994; 

Ferrier and Holland, 2001). The term synteny was originally defined as a set of genes 

from two species located on the same chromosome, but not necessarily in the same 

order (Dewey, 2011, Passarge et al. 1999). However, the current widespread usage of 

the term synteny, that we adopt, now implies conserved collinearity and genomic 

context. Synteny data are widely used to establish the occurrence of ancient polyploidy 

events, to identify chromosomal rearrangements, to examine the expansion and 

contraction of gene families, and to establish gene orthology (Sampedro et al., 2005; 

Tang et al., 2008a; Dewey, 2011; Jiao and Paterson, 2014). Synteny likely reflects 

important relationships between the genomic context of genes both in terms of function 

and regulation and, thus, is often used as a ‘proxy for the conservation or constraint of 

gene function’ (Dewey, 2011; Lv et al., 2011). Syntenic relationships across a wide 

range of species thus provide crucial information to address fundamental questions on 

the evolution of gene families that regulate important developmental pathways. The 

origin of morphological novelty has been linked for example to the duplication of key 

regulatory transcription factors in the case of the Hox-genes in animals, but also the 

MADS-box genes in plants (Alvarez-Buylla et al., 2000b; Airoldi and Davies, 2012; 

Soshnikova et al., 2013). However, gene clusters are frequently dispersed or “broken-

up” in certain lineages, like the Hox-cluster in the genomes of octopus (Lemons and 

McGinnis, 2006; Duboule, 2007; Albertin et al., 2015) and brachiopods (Schiemann et 

al., 2017), and this dispersion contributes to divergent gene expression and 

morphological novelties. 

In plants, the MADS-box genes are critical transcription factors that regulate the 

developmental pattern of the floral organs, the reproductive organs, and other traits 

(Theissen, 2001; Becker and Theissen, 2003; Smaczniak et al., 2012). For instance, 

floral organ identity is controlled largely by MADS-box genes, as explained by the 

ABC(DE) model (Figure 1a) (Coen and Meyerowitz, 1991; Ditta et al., 2004) with, for 

example, the floral A-, B-, and E-function genes being required for petal identity (Figures 

1a and 1b). Synteny data of the MADS-box genes have been used to infer the ancestral 

genetic composition of the B- and C-function (Causier et al., 2010), and the A- and E-

function genes (Ruelens et al., 2013; Sun et al., 2014). However, these studies 

analyzed only a small number of species (fewer than 10) and the results were displayed 

as parallel coordinate plots (as in Figure 1c). A systematic comparison of the syntenic 

relationships for all the MADS-box genes across many plant species has not been done 

in a single study. That is because this gene family has undergone extensive duplications 

that have given rise to complicated relationships of orthology, paralogy, and functional 

homology (Jaramillo and Kramer, 2007). Hence, a systematic investigation in which all 

https://en.wikipedia.org/wiki/Homeobox


CHAPTER 3: SYNTENY NETWORKS OF PLANT MADS-BOX GENES  35 

 
 

the possible syntenic relationships between the family members are sorted and 

visualized is challenging. With the increase of genomes that are simultaneously 

analyzed, it becomes increasingly more difficult to organize and display such syntenic 

relationships. This is due to the ubiquity of ancient and recent polyploidy events, as well 

as smaller scale events that derive from tandem and transposition duplications (Lynch 

and Conery, 2000; Bowers et al., 2003; Tang et al., 2008a; Schranz et al., 2012).  

Here, we present a novel approach to cluster synteny networks and then analyze gene 

ancestry. Instead of presenting syntenic blocks as either parallel coordinate plots 

(Figure 1c) or pairwise dot-plots, we abstracted genome syntenic blocks (derived from 

intra- and inter-species comparisons) into vertices (nodes or points) and edges (lines 

between points). Syntelogs (syntenic homologous genes) of a target gene or gene 

family of interest can be highlighted in one graph without showing the flanking genes 

(Figure 1d). For example, the syntenic relationships of “Gene 2” across five species 

(Species A, D, E, F, and G) in Figure 1c can be represented as a cluster of five nodes, 

with edges representing their syntenic relationships (Figure 1d, Cluster 1). If one gene 

has undergone an additional duplication event, such as tandem and/or polyploid 

duplication, (for example “Gene 5” that is a tandem-duplicated in Species E (E5a and 

E5b) and ohnologs (syntelogs derived from polyploidy events) retained in Species F 

and G in Figure 1c), these duplicated syntelogs are included as nodes rather than 

adding additional linear panels to a parallel coordinate plot (Figure 1d, Cluster 2).  

Potential ancient tandem-duplications can also be readily represented and detected by 

synteny network analyses. Cluster 3 illustrates an example where both “Gene 4” and 

“Gene 5” genes are found in one cluster (Figure 1d, Cluster 3). Such a result can occur 

when “Gene 4” and “Gene 5” belong to a same gene family and contain the same protein 

domain(s). Unlike the tandem duplication of the example of “Gene E5a” and “Gene E5b” 

(Figure 1d, Cluster 2), they may be derived from an ancient tandem duplication and thus 

evolved a certain degree of differences at the gene sequence level (and thus may even 

belong to different clades/subgroups of one gene family). “Gene 4” and “Gene 5” can 

be calculated as syntenic to each other by synteny detection programs when one of the 

loci was lost. For example, “Gene A4” is found to be syntenic to “Gene B5” because the 

best option “Gene B4” may has been lost in Species B. As a result, we obtain a twin-

cluster layout with more “intra-links” than “inter-links” (Figure 1d, Cluster 3). It is worth 

mentioning that sometimes one specific node connects (radiates) to other unconnected 

nodes. For example, node “Gene E7” in Cluster 4 (Figure 1d, Cluster 4) radiates to 

seven other nodes of syntelogs of “Gene 8”, which belong to another gene family 

different from the one of “Gene 7”. This is because “Gene E7” contains both domains 

of “Gene 7” and “Gene 8”, either because of a potential genome mis-annotation or a 

real protein-domain fusion. 
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Figure 1 Summary of the MADS-box genes and principles of Phylogenomic Synteny Network 

Analysis. (a) Diagram illustrating the ABCDE floral development model. The A- and E-function 

genes are essential for sepal identity; the A-, B-, and E-function genes for petal identity; the B-, 

C-, and E-function genes for stamen identity; the C- and E-function genes for carpel identity, 

and the D-, C-, and E-function genes for ovule identity. (b) The consensus phylogenetic tree 

showing the relationships for the different functional gene clades of the MADS-box gene family. 

The combined clade containing the SQUA-, FLC-, and TM8-like genes is referred to as SFT in 

this study. (c) Hypothetical example of a parallel coordinate plot for synteny comparisons across 

seven species (A-G) for which species F has undergone a Whole Genome Duplication (WGD 

= 2x) and species G a Whole Genome Triplication (WGT = 3x). Examples of tandem duplicates 

and ohnologs/syntelogs of Gene 5 are indicated by the dotted ovals. Genes 2, 4, 5, and 7 are 

each boxed as examples of network view of synteny relationships. (d) Synteny network of Gene 

2 (Cluster 1, less conserved), Gene 5 (Cluster 2, highly conserved and includes tandem 

duplicates and ohnologs), Gene 4 and Gene 5 (Cluster 3, where genes are members of larger 

gene family and thus are interconnected, in this case we suppose Gene 4 and Gene 5 belong 
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to a same gene family (which share similar domain(s)), and synteny is checked for this whole 

gene family), and Gene 7 (Cluster 4, where gene E7 represents an actual gene fusion of protein 

domain from neighboring gene or is an artifact due to gene mis-annotation, only synteny of 

Gene 7 homologs is being checked synteny). Nodes represent syntenic genes and edges (lines) 

represent a syntenic connection between two nodes. Edge-length in this example is non- 

informative. 

With this background for visualizing synteny networks, we can proceed with their 

construction and use for understanding evolutionary patterns. We refer readers to a 

recently published outline of our generalized approach to construct synteny networks 

(Zhao and Schranz, 2017). The construction of synteny networks uses three main steps: 

(i) pairwise whole-genome comparisons, (ii) detection of syntenic blocks and data fusion, 

and (iii) finally network clustering. The first two steps provide a database of syntenic 

relationships between homologous genes for the genomes analyzed using standard 

programs, such as BLAST (Altschul et al., 1990) for genome comparisons and MCScan 

(Tang et al., 2008b) for synteny detection. The final step, the network clustering, can 

make use of a wide range of clustering algorithms and methods (for review see 

(Lancichinetti and Fortunato, 2009; Fortunato, 2010)) and are at the heart of our synteny 

network analysis. The resulting clusters can differ from each other according to the 

methods applied. Here we use CFinder to cluster our pairwise synteny data, which 

allows the detection of overlapping communities in network data by using the k-clique 

percolation method (Palla et al., 2005; Palla et al., 2007). K-clique corresponds to a fully 

connected sub-selection of k nodes (e.g., a k-clique of k = 3 is equivalent to a triangle). 

Two k-cliques are considered adjacent and thus form a k-clique-community if they share 

k-1 nodes (Derenyi et al., 2005; Palla et al., 2005).  

To illustrate this approach, we analyzed the well-characterized MADS-box gene family. 

The relationships between the major clades of the plant MADS-box genes have already 

largely been inferred in various phylogenetic and evolutionary studies (Becker and 

Theissen, 2003; Martinez-Castilla and Alvarez-Buylla, 2003; Nam et al., 2003; Nam et 

al., 2004; Nam et al., 2005; Gramzow et al., 2012; Smaczniak et al., 2012; Kim et al., 

2013; Ruelens et al., 2013; Gramzow et al., 2014; Sun et al., 2014; Yu et al., 2016b) 

(Figure 1b). However, these studies cannot fully resolve some of the deepest nodes of 

the MADS-box gene tree. The genome of the model plant Arabidopsis thaliana contains 

a total of 107 MADS-box genes, which derive from multiple gene duplication events 

(Martinez-Castilla and Alvarez-Buylla, 2003; Parenicova et al., 2003). The MADS-box 

genes can be divided into two major clades, termed Type I and Type II. The Type II 

lineage is further divided into the MIKCC- and MIKC*-types (Henschel et al., 2002). The 

function and evolution of MADS-box genes have been extensively studied, especially 

the MIKCC-types (for review see (Smaczniak et al., 2012)). For convenience, we 

hereafter refer to the hypothesized common ancestral genes of the SQUA-, FLC- and 

TM8-like genes as SFT genes.  
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Here we present and discuss the synteny network of all the detected MADS-box genes 

in 51 plant genomes. This network includes intra- and interspecies syntenic blocks that 

derive from both shared but also independent polyploidy events in these 51 species. In 

combination with phylogenetic analysis and phylogenetic profiling (Pellegrini et al., 

1999), we could elucidate several previously undetected evolutionary patterns of gene 

transposition, gene duplication and shared deep ancestry for different MADS-box gene 

clades. Our approach sheds new light on the evolutionary trajectory of the MADS-box 

genes and thereby of the traits they control in different plant lineages. Our approach 

can be easily applied to other gene families and genomes following the step-by-step 

workflow given on GitHub (https://github.com/zhaotao1987/SynNet-Pipeline). 

 

Results  

Overview of the synteny network pipeline 

In this study, we analyzed 51 plant genomes covering green algae, mosses, 

gymnosperms, and angiosperms (Supplemental Table 1 and Supplemental Figure 1). 

We analyzed all protein models from these genomes for all possible intra- and inter-

species whole genome comparisons (Figure 2a). We then built a database that contains 

all the links between syntenic gene pairs present in syntenic genomic blocks identified 

by the tool MCScanX (Tang et al., 2008b; Wang et al., 2012). This database contains 

in total 921,074 nodes (i.e., genes that were connected by synteny with another gene) 

and 8,045,487 edges (i.e., pairwise syntenic connections); the data can be downloaded 

from GitHub (https://github.com/zhaotao1987/SynNet-Pipeline).  

We used this database to investigate the syntenic relationships between the MADS-box 

genes. To this end we used HMMER (Finn et al., 2011) to screen the predicted protein 

sequences of the 51 genomes to identify all the MADS-box genes in these genomes 

(Supplemental Data Set 1, sheet 1). The resulting list with candidate MADS-box genes 

was subsequently used to extract the synteny sub-network for these MADS-box genes 

from the entire network database. This sub-network contained in total 3,458 nodes 

(MADS-box genes) that were linked by 25,500 syntenic edges (Supplemental Data Set 

1, sheet 2). We visualized this sub-network using Gephi (Bastian et al., 2009) and color-

coded the clusters using the k-clique percolation clustering method with k = 3 (Figure 

2b). This network and its identified clusters give a first impression on how the MADS-

box genes are positionally related to each other across all angiosperms lineages (Figure 

2b). The network did not contain synteny information that linked to the non-angiosperm 

species, which is likely due to the extreme phylogenetic distance and the limited 

sampling of non-angiosperms species. The node size shown indicates the number-of-

connections for each node (Figure 2b). To reveal syntenic relationships between distant 

gene clades, we then displayed pairwise syntenic relationships between the MADS-box 

genes in a gene tree that we constructed for the entire gene family (Figure 2c). The 

colors of the connecting lines indicate again the network communities defined at k = 3 

https://github.com/zhaotao1987/SynNet-Pipeline)
https://github.com/zhaotao1987/SynNet-Pipeline
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from Figure 2b. Interestingly, we found genes from distal gene clades (shown in Figure 

1b) that are syntenically connected, such as SEP1-like (floral E genes) with SQUA-like 

(floral A genes) genes, AGL6- with TM3 (SOC1-like) genes, and StMADS11 (SVP-like) 

with AGL17-like genes (Figures 2b and 2c). 

Using CFinder, we detected all cliques of size k = 3 to k = 24 for the MADS-box gene 

synteny network and the number of k-clique-communities under each k-clique 

(Supplemental Figure 2a). Each of the community (cluster) sizes under a certain k is 

shown (Supplemental Figure 2a), which quantifies the strength of the syntenic 

connections across species. For example, the AP3-like genes of monocot species 

(green nodes) are only part of a community at relatively low k values (k < 8) 

(Supplemental Figure 2b). This could be due to several factors, including the larger 

genome sizes of monocots (making it more difficult to detect synteny), the limited 

number of monocot genomes included and/or the lack of phylogenetic sampling across 

the monocots (i.e. there are many Poales genomes included (7/11), but few other 

monocot lineages (4/11)).  

A clique size of k = 3 to 6 was identified to best approximate the true number of 

communities (Derenyi et al., 2005; Palla et al., 2005; Porter et al., 2009; Xie et al., 2013). 

We obtained ninety-five clusters using k = 3 (Supplemental Data Set 2), and we used 

these clusters for phylogenetic profiling (Supplemental Figure 3). Each column depicts 

a syntenic occurrence for a certain MADS-box gene cluster in each plant species. 

Thereby the presence/absence of syntenic gene clusters across the 51 analyzed taxa 

are represented by their respective phylogenetic profiles to determine and infer 

evolutionary patterns (Supplemental Figure 3). We have highlighted twenty-six relevant 

(i.e. either broad conservation or lineage-specific) clusters in the phylogenetic profile 

(Figure 3a). For two monocot species, Triticum urartu (wheat) and Hordeum vulgare 

(barley), we did not find any syntenic regions for any of their MADS-box genes with 

other plant genomes. This is likely due to the fragmented early-version genome 

assemblies (partially due to their large genome sizes and transposon expansions) in 

these two grasses. Using the organic layout function in Cytoscape (Shannon et al., 

2003), we further depicted an undirected and unweighted (e.g. edge-length of no 

meaning) network with related gene clade names (Figure 3b). From this, we can then 

infer the number of syntelogs and relationships among syntelogs generated via 

polyploidy and tandem-duplication events. Below, we highlight three novel insights into 

the evolution of the MADS-box gene family based on our synteny network cluster 

analysis: (I) lineage-specific transpositions; (II) ancient tandem gene arrangements and; 

(III) deep conservation of specific clades across angiosperms.  

 

 



40 SYNTENY-BASED PHYLOGENOMIC NETWORKS FOR COMPARATIVE GENOMICS 

 

 

Figure 2 Workflow to create the Phylogenomic synteny network and example outputs for the 

global MADS-box gene family. (a) Workflow to create the phylogenomic synteny network. 

Annotated whole-genome sequences enter the pipeline and are used in two parallel modules. 

The left panel represents the analysis pipeline for pairwise genome comparisons and synteny 

calculations (synteny block detection), which creates the global syntenic network database. The 

right panel depicts the pipeline for a phylogenetic analysis including gene family identification 

and gene-tree construction. (b) Synteny network of the MADS-box gene family using all the 

detected syntenic relations in the synteny network database. Communities were rendered 

based on the clique percolation method at k = 3. The size of each node corresponds to the 

number of edges it has (node degree). Communities were labeled by the subfamilies/subfamily 

involved. (c) Maximum-likelihood gene tree for the MADS-box gene family and syntenic 

relationships between the genes. The subclades are indicated for the Type I, Type II, and MIKC- 

and MIKC*-Type II MADS-box genes on the tree. Terminal branch colors represent genes 

belonging to rosids (light pink), asterids (purple) and monocots (green). Genes belonging to 
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angiosperms in highly informative phylogenetic positions such as Amborella trichopoda, Vitis 

vinifera, Beta vulgaris, and Nelumbo nucifera are in red and genes of non-angiosperms 

belonging to Chlamydomonas reinhardtii, Physcomitrella patens, Selaginella moellendorffii and 

Picea abies are in black. Each connecting line located inside the inverted circular gene tree 

indicates a syntenic relationship between two MADS-box genes. The connecting lines are 

colored according to the discovered communities in panel b. 

Section I: Lineage-specific synteny relationships 

Important angiosperm families (such as Poaceae, Asteraceae, Fabaceae, 

Brassicaceae and Solanaceae) are readily identified by unique traits and floral 

characteristics. These major plant families are also characterized by having 

independent ancient polyploidy events at their origins (Soltis et al., 2009; Schranz et al., 

2012; Tank et al., 2015). Morphological changes could thus be tied to these ancient 

polyploidy events or specific gene transposition events that place key-regulatory factors 

into new genomic contexts (Soltis et al., 2009; Freeling et al., 2012). Our synteny 

network approach can identify such lineage-specific transposition events for genes by 

clustering and phylogenetic profiling.  

I.1 B-function (AP3 and PI) genes in the Brassicaceae and Cleomaceae families 

The AP3 and PI genes are important for petal and stamen specification (Jack et al., 

1992; Goto and Meyerowitz, 1994; Jack et al., 1994; Zhang et al., 2013). In this study, 

we found that most AP3 genes reside in a single cluster comprising homologs of both 

eudicot and monocot species, the basal angiosperm A. trichopoda and the basal eudicot 

N. nucifera (Figure 3, Cluster 9). However, the cluster lacks AP3 homologs from the 

Brassicaceae family (Figure 3, Cluster 9). Instead, the AP3 genes from the 

Brassicaceae form a separate cluster (Figure 3, Cluster 26) (except for Aethionema 

arabicum, where the Aethionema AP3 gene was annotated on a scaffold lacking other 

genes (Gene ID: AA1026G00001, highlighted in Supplemental Data Set 1, sheet 1)).  

A very similar picture emerges for the PI genes: the PI homologs from the analyzed six 

Brassicaceae species group together with a PI gene from Tarenaya hassleriana (a 

closely-related Cleomaceae species), while the PI homologs from most other species 

group with a second PI gene from Tarenaya hassleriana in another cluster (Figure 3, 

Cluster 24). To verify this pattern, we investigated the synteny relationships of the PI 

genes from grapevine (Vv18s0001g01760) and A. thaliana (AT5G20240) using the 

Genomicus parallel coordinate plot (Louis et al., 2012). Synteny was not detected with 

any Brassicaceae species when using the grape homolog of PI (Vv18s0001g01760) 

(Supplemental Figure 4a), while a unique synteny pattern is shared between the A. 

thaliana gene AT5G20240 and the Brassicaceae PI genes (Supplemental Figure 4b). 

These two divergent synteny patterns suggest that in either cases (PI and AP3), a gene 

transposition, or genomic rearrangement event led to the unique genomic context seen 

for both genes in the Brassicaceae. Since one Cleomaceae PI gene belongs to the 

Brassicaceae PI cluster (Figure 3, Cluster 24) but the Brassicaceae AP3 cluster does 
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not contain any Cleomaceae AP3 gene (Figure 3, Cluster 26), it is clear that PI 

transposed first and only later, and independently, did AP3 transpose.  

 

I.2 FLC-Like genes cluster in Brassicaceae  

In A. thaliana, the FLC gene and its closely related MAF genes are floral repressors and 

major regulators of flowering time (Michaels and Amasino, 1999; Sheldon et al., 2000). 

We found a cluster comprising 21 syntelogs of FLC and the MAF genes across the six 

examined Brassicaceae species and one Cleomaceae species (Tarenaya) (Figure 3, 

Cluster 23). 

This synteny cluster also contains one FLC-like gene from sugar beet. This sugar beet 

FLC homolog also shares synteny with a cluster comprising StMADS11 (SVP-like) 

genes, which are found in an array of eudicot species (Figure 3b, Cluster 3; 

Supplemental Data Set 3). This sugar beet FLC gene thus connects the FLC/MAF 

genes of the Brassicales-lineage with the StMADS11 genes of other eudicots. This 

highlights that likely a gene transposition or massive genome fractionation process has 

acted on the ancestral FLC gene in the Brassicales lineage after the split of the early 

branching Papaya, potentially near the time of the At-β WGD (Edger et al., 2015). 

 

I.3 AGL17-Like genes cluster in Monocots 

Also, the AGL17-like genes from six monocots specie (Brachypodium distachyon, 

Oryza sativa, Zea mays, Sorghum bicolor, Setaria italica, and Elaeis guineensis) form 

a distinct synteny cluster (Figure 3, Cluster 14, size 17). This may be to a specific 

transposition event and/or due to the ancient  WGD shared by all monocot species 

(Jiao et al., 2014).  

Section II: Inference of ancient tandem gene arrangements 

Besides the distinctive lineage-specific clusters described above, larger clusters that 

comprise interconnected sub-clusters (with a force-directed or organic layout) can also 

be obtained when using the appropriate clustering methods (such as the k-clique 

percolation method that allows for community overlapping). As shown in Cluster 3 

(Figure 1d), such clusters indicate long-conserved close genomic proximity of the genes 

involved (representing respective sub-clusters) and thus are of help to establish the 

trajectory of gene evolution. 

II.1 Angiosperm-wide conserved SEP1-SQUA and SEP3-SFT tandems 

The largest cluster (475 nodes) we identified comprises both the AGL2 (SEP)-like and 

the SFT-like genes (Figure 3b, Cluster 1; Figure 4a). This cluster can be divided into  
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Figure 3 Phylogenetic profiling and detailed network representations for a set of selected 

important MADS-box synteny network clusters. (a) Phylogenetic profiling of twenty-six example 

clusters from all the ninety-five clusters at k = 3 (see Supplemental Figure 3). Red-colored cells 

depict the presence of at least one syntelog in the different species. The phylogenetic profiling 

approach identified large clusters containing genes from various subfamilies, such as 

“AGL2+SQUA” (Cluster 1) and “AGL6+TM3” (Cluster 2), or lineage-specific clusters such as of 

PI (Cluster 24) and AP3 (Cluster 26) in the Brassicaceae, and “AGL17” (Cluster 14) and “SQUA” 

(Cluster 15) in monocots. Species names are shown on the right side. The basal rosid Vitis 

vinifera, the basal eudicots Beta vulgaris and Nelumbo nucifera, and the basal angiosperm 

Amborella trichopoda are highlighted in red. Red and blue stars on the tree indicate known 

WGD and WGT events, respectively, on the phylogenetic tree on the left side. The cluster ID 

and size are indicated at the top and bottom, respectively. The red color scale of the cell 

indicates the number of nodes (genes grouping in that cluster) found in a single species. (b) 

Clusters from (a), which can be divided into large-conserved clusters (Clusters 1-13) and 

lineage-specific clusters (Monocots (Cluster 14-22) and Brassicales (Cluster 23-26)). The node 

colors represent rosids (light pink), asterids (blue), monocots (green); the nodes belonging to 

Amborella trichopoda, Vitis vinifera, Beta vulgaris, and Nelumbo nucifera are shown in red. 

two sub-groups: on the left are the SEP1-, and SQUA-like genes, while on the right are 

the SEP3-, FLC-, and TM8-like genes (Figure 4a). The SEP1-, and SQUA-like genes 

are highly interconnected between and within genomes (Figure 4a) with syntenic 

orthologs being present for both genes in a wide-range of angiosperm species including 

A. trichopoda, monocots and eudicots. As exemplified by Cluster 3 in the introduction 

(Figure 1d), SEP1- and SQUA-like genes are predominantly found in a tandem gene 

arrangement in most angiosperm species (Figures 4a and 4c, Supplemental Data Set 

3) suggesting that this duplication occurred prior to or at the origin of the angiosperms. 
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For example, there is one SEP1-SQUA tandem gene arrangement in the A. trichopoda 

and three such tandem gene arrangements in the basal eudicot V. vinifera (Figures 4a 

and 4c, Supplemental Data Set 3), as a result of the Gamma hexaploidization (referred 

to as γ triplication) in eudicots.  

On the right side of the network in Figure 4a, most eudicot and monocot SEP3-like 

genes group as a distinct cluster, which is relatively loosely connected to the nodes that 

represent the FLC-like genes and TM8-like genes (Figure 4a). Similar to the discovery 

of a SEP1-SQUA tandem, we also identified a SEP3-FLC tandem gene arrangement in 

12 eudicots species (Figure 4c, Supplemental Data Set 3). This tandem arrangement 

was also found twice in monocots, namely O. sativa and S. bicolor (Figure 4c, 

Supplemental Data Set 3). However, the SEP3-FLC tandem gene arrangement is found 

less often than the SEP1-SQUA tandem gene arrangement. Besides this, we found that 

in A. trichopoda the SEP3 and TM8 homologs are also arranged in tandem (SEP3-TM8) 

(Figure 4c, Supplemental Data Set 3). None of the FLC homologs from Brassicaceae 

and Cleomaceae species are present in the angiosperm-FLC cluster in Figure 4a. As 

described in Section I, the Brassicales FLC syntelogs form an independent cluster 

(Figure 3b, Cluster 23).  

 

II.2 Angiosperm-wide conserved AGL6-TM3 tandem 

The second largest cluster identified in this study (k = 3, community size: 305) contains 

the AGL6- and TM3 (SOC1)- like genes (Figure 3b Cluster 2, Figure 4b). Like the SEP1-

SQUA and SEP3-SFT tandems in Figure 4a, we found that the AGL6-TM3 tandem gene 

arrangement is widespread across angiosperms (Figures 4b and 4c, Supplemental 

Data Set 3). For example, there is one AGL6-TM3 tandem gene pair in A. trichopoda, 

and two such tandems in N. nucifera likely due to the most recent WGD this species 

experienced (Ming et al., 2013; Wang et al., 2013) (Figure 4c, Supplemental Data Set 

3). In V. vinifera we also found two AGL6-TM3 tandems (Figure 4c, Supplemental Data 

Set 3) that likely originated from the  triplication after which one tandem lost its AGL6 

locus. Like V. vinifera, T. cacao has not undergone any additional WGD after the  

triplication and in this genome two AGL6-TM3 tandems also remain (Figure 4c, 

Supplemental Data Set 3).  

Besides the prevalent AGL6-TM3 tandem gene arrangement found in Figure 4b, we 

also found the tandem type of TM3-TM3 in 10 species (seven eudicot species and three 

monocot species) (Figure 4c, Supplemental Data Set 3). Hence, the network has overall 

more TM3-like genes than AGL6-like genes (Figure 4b). 
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Figure 4 Evolutionary history of a major MIKCc-type MADS-box gene super-clade is derived 

from Inferred Tandem Gene Arrangements (ITGAs). (a, b) Close-up of the networks for Cluster 

1 (AGL2+SFT) and Cluster 2 (AGL6+TM3) from Figure 3, respectively. Node shapes represent 

different subfamilies. Node colors represent rosids (light pink), asterids (blue), monocots (green), 

and the nodes belonging to Amborella trichopoda, Vitis vinifera, Beta vulgaris, and Nelumbo 

nucifera are in red. The arrows below the clusters point to the Inferred Tandem Gene 

Arrangements (ITGAs) for the respective three clusters. (c) Summary of the occurrence of four 

ITGAs detected in the species analyzed. The two top rows give the number of SEP1-SQUA and 

SEP3-FLC tandems detected in Cluster 1 (panel a). While rows three and four give the number 

of AGL6-TM3 and TM3-TM3 tandems detected in Cluster 2 (panel b). The species tree is a 
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simplified version (without species names) of the tree used in Figure 3a and Supplemental 

Figure 1. (d) Mapping of the tandem duplication event onto the inferred consensus gene tree 

according to the three ITGAs in panel c. (e) Proposed evolutionary scenario for the origin of the 

MADS-box gene family clade in panel d. One single MIKCc-type MADS-box gene initially got 

tandem duplicated, then this tandem arrangement underwent multiple rounds of polyploidy 

events, and eventually evolved to the superclade depicted in panel d. 

Section III: Synteny relations across angiosperms for overlooked MADS-box 

gene clades  

In addition to the many functionally characterized MADS-box genes, a large portion of 

the gene family members are poorly or not functionally characterized, such as MIKC*-

type and Type I genes of the MADS-box gene family. However, the synteny network 

can provide evidence of synteny conservation for these genes over evolutionary time 

and thus suggest important conserved gene functions. 

III.1 MIKC*-Type genes 

The MIKC*-type genes form a monophyletic clade within the MADS-box genes (Alvarez-

Buylla et al., 2000a; Henschel et al., 2002) (Figure 1b), with several of them being 

reported to play a major role in pollen development (Verelst et al., 2007a; Verelst et al., 

2007b; Adamczyk and Fernandez, 2009). Using our synteny network analysis, we found 

two networks that are highly connected and contain (i) the angiosperm AGL30-, AGL65-, 

and AGL94-like genes (MIKC*-P clade) (Figure 3, Cluster 5) and (ii) the AGL66-, 

AGL67-, and AGL104-like genes (MIKC*-S clade) (Figure 3, Cluster 10), respectively.  

Both clusters encompass eudicots and monocot species, as well as A. trichopoda. 

However, the MIKC*-S cluster appears to have expanded in monocots, while homologs 

of N. nucifera are absent in this cluster (Figure 3, Cluster 10). This means that both two 

MIKC* clades are broadly conserved across angiosperms.  

Interestingly, MIKC* protein complexes play an essential role in late pollen development 

in A. thaliana and the formation of this protein complex requires MIKC* proteins from 

both clades. For example, the AGL30 and/or AGL65 proteins from the P clade form 

heterodimers with AGL104 or AGL66, which both group with the S clade (Verelst et al., 

2007a; Verelst et al., 2007b). This suggests that these two clades (gene clusters) have 

been functionally retained during angiosperm evolution.  

III.2 Type I MADS-box genes 

Type I MADS-box genes show a higher rate of gene birth-and-death, often due to gene 

duplication-transposition, than Type II genes (Nam et al., 2004) (Freeling et al., 2008; 

Wang et al., 2016b). Also, the function of the different Type I genes are generally poorly 

characterized. However, several Type I genes have been reported to play a role in 

female gametogenesis, embryogenesis, and seed development (Portereiko et al., 2006; 

Bemer et al., 2010; Masiero et al., 2011). 
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With our approach, we found two distinct clusters that contain Type I MADS-box genes 

(Figure 3, Clusters 8 and 11). For example, the PHERES1 (PHE1/AGL37) genes, which 

are regulated by genomic imprinting (Kohler et al., 2003), are in the same synteny 

network as PHERES2 (PHE2/AGL38), AGL35- and AGL36-like genes, which all belong 

to the M clade of the Type I MADS-box genes (Figure 3, Cluster 8). Likewise, we found 

one cluster that contains genes from the M clade (Figure 3, Cluster 11).  

III.3 StMADS11 (SVP-Like) genes  

In A. thaliana, the StMADS11 gene clade is composed of two genes called SVP (AGL22) 

and AGL24. These two genes regulate the transition to flowering in A. thaliana 

(Hartmann et al., 2000; Michaels et al., 2003).  

We found that the SVP- and AGL24-like genes are contained in one cluster for many of 

the angiosperms analyzed, which indicates that synteny has been retained for 

SVP/AFL24 since the last common ancestor of angiosperms (Figure 3b, Cluster 3). It is 

worth noting that the AGL17-like genes from A. trichopoda, N. nucifera and most eudicot 

species form a cluster that is moderately connected to the cluster of StMADS11-like 

genes (Figure 3b, Cluster 3).  
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Discussion 

Our phylogenomic synteny network analysis provides a novel approach to identify and 

visualize the relationships of genes of a targeted gene family across a broad range of 

species (Zhao and Schranz, 2017), which can be used to address fundamental 

questions on the origin of novel gene functions leading to morphological changes and 

adaptations. We have provided several new insights into the evolution of the MADS-

box gene family from our synteny-based network analyses. These insights, in turn, 

generate new testable hypotheses on how the genomic context of a gene may (or may 

not) effect changes in its expression pattern, co-expression with other genes, epigenetic 

regulation and ultimately the evolution of plant phenotypes. Some possible hypotheses 

are discussed below. But, first we make a few comments regarding our methodology. 

Factors affecting synteny network analysis 

We have presented a methodological roadmap to construct synteny networks and an 

analysis pipeline, which can now be applied to any gene family across any set of 

genomes. The power of network analysis is the ability to organize large datasets and 

provide extrapolation and visualization beyond pairwise contrasts. As more plant 

species genomes are completed, particularly from under-represented lineages (such as 

non-angiosperm species), more robust network inferences can be made. Our network 

approach depends, however, on the quality of genome assemblies and their gene 

annotations. Genome collinearity is de facto more disrupted and difficult to detect in 

highly fragmented assemblies. Advances in genome sequencing and assembly means 

that chromosome level assemblies will be standard in the near future. With these 

advances, our network approach for synteny comparison will greatly benefit and 

improve.  

The clustering methods used are pivotal for the interpretation of complex synteny 

networks, as it determines the size and structure of identified clusters. For example, 

when instead of our k-clique percolation method (at k = 3), other methods are used like 

k-core decomposition (Alvarez-Hamelin et al., 2006), MCL (Enright et al., 2002), 

infomap (Rosvall and Bergstrom, 2008), or CNM (Clauset et al., 2004), we would likely 

have obtained slightly different cluster topologies. Depending on the goals and 

objectives of a study, the appropriate clustering method should be established.  

Lineage-specific genomic context of MADS-box genes: potential significant 

biological implications 

In the model plant A. thaliana, the B-class AP3 and PI proteins form heterodimers and 

bind to the CArG-box cis-regulatory elements in promoters (Riechmann et al., 1996; 

Yang et al., 2003). Heterodimerization and/or homodimerization have contributed to the 

evolution of the highly diverse flower morphologies in angiosperms (Lee and Irish, 2011; 

Melzer et al., 2014; Bartlett et al., 2016). Brassicaceae species have rather uniform, or 

canalized, flowers (typical cross arrangement of the four petals). However, in its closest 
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sister family Cleomaceae, which diverged from each other ~ 38 million years ago (MYA) 

(Schranz and Mitchell-Olds, 2006; Couvreur et al., 2010), more diverse floral 

morphologies are observed (Patchell et al., 2011). In this study, we found unique 

synteny patterns for the T. hassleriana B genes, which is consistent with previous 

findings (Cheng et al., 2013). One T. hassleriana PI gene resides in the cluster shared 

with most other eudicots and monocot species, while the other T. hassleriana PI gene 

sits in a cluster mostly composed of Brassicaceae species (Figure 3, Cluster 24). In 

Brassicaceae, we find the PI genes only in the new derived syntenic position. 

Furthermore, only in Brassicaceae we also find a unique syntenic position for the AP3 

genes (Figure 3, Cluster 26). SEP- and SQUA-like genes are also involved in petal 

formation according to the ABC(DE) flowering model (Figure 1a). Moreover, 

Brassicaceae (and Cleomaceae) species are absent from these AGL2-SFT type of 

tandems in comparison to other lineages (Figure 4c, Supplemental Data Set 3). It is 

unclear why the PI, AP3 and SEP3 genes are transposed in the Brassicaceae in 

comparison to other angiosperms. Potentially higher level inter- and intra-chromosomal 

chromatin interactions between loci, or new cis-regulatory elements, are required for 

crucifer B-specific gene expression patterns. It will be important to test such hypotheses 

and if potentially the derived genomic contexts of these genes have contributed to the 

canalization of the crucifer floral form. 

FLC-like genes in the Brassicaceae and Cleomaceae are also in a derived genomic 

context compared to other angiosperms (Figure 3, Cluster 23). The vernalization 

process (prolonged cold exposure) is essential for many plants to initiate flowering. In 

A. thaliana and other crucifers, this process is mediated by cold-induced epigenetic 

repression of FLC genes, namely histone methylation (Bastow et al., 2004), chromatin 

structure modification with chromatin remodeling protein complexes (Kim and Sung, 

2013), and the expression of long non-coding RNAs (Csorba et al., 2014). Genes 

flanking FLC are epigenetically coordinately regulated (Finnegan et al., 2004). 

Potentially the evolution of cold-specific epigenetic regulation was facilitated by the new 

genomic context of FLC-like genes in the Brassicales. It will be important to establish 

the patterns of epigenetic regulation of FLC-like genes outside of the Brassicales and 

which aspects are ancestral and which are derived.  

A gene transposition event, likely after the split of monocot and eudicot species, has 

given rise to the specific synteny of the monocot AGL17-like genes found in this study 

(Figure 3, Cluster 14). In rice, the AGL17/ ANR1-like genes are preferentially expressed 

in root and responsive to various hormone treatments (Puig et al., 2013), and nutrient 

supply (Yu et al., 2014). Moreover, in rice the AGL17 clade genes are specific targets 

of the miR444 miRNA family, and this miRNA family is specific to monocots (Sunkar et 

al., 2005; Wu et al., 2009; Li et al., 2010). MiR444 regulates nutrition signaling and root 

architecture in a monocot specific way (Yan et al., 2014), and together with its AGL17 

targets, they also play direct control in the rice antiviral pathway (Wang et al., 2016a). 

The synteny disruption of monocot AGL17-like genes, compared to eudicot species 
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observed in this study, may be correlated with the origin of the miRNA-dependent 

regulation. Understanding this could be important for understanding the evolution of root 

architecture and responses to nutrient supplies, such as nitrogen.  

Ancient tandems of MADS-box genes 

The ancient SEP1-SQUA tandem gene arrangement, as revealed by our angiosperm-

wide synteny network analysis (Figure 4a), is in agreement with other studies where the 

SEP1-SQUA tandem gene arrangement was found in eudicots (Ruelens et al., 2013). 

Another study also noted that most AP1-like genes (a subclade of the SQUA-like genes) 

and SEP1-like genes were tightly linked as genomic neighbors since the split of the 

basal eudicots (Sun et al., 2014). Another example is the ancient tandem arrangement 

of SEP3-TM8. TM8 was first identified from S. lycopersicum (Pnueli et al., 1991), and 

this clade of genes has been reported to have undergone independent gene loss in 

different lineages based on phylogenic analyses (Becker and Theissen, 2003; 

Gramzow and Theissen, 2013). According to the consensus phylogeny based on 

studies by others (Figure 1b), the TM8-like genes are closely related to TM3-like genes 

and they both appear to share a common origin with the AGL6-, AGL2-, SQUA-, and 

FLC-like genes.  

Based on synteny analyses, it was previously suggested that these SEP3- and FLC-

like genes originated from an ancient tandem gene duplication (Ruelens et al., 2013). 

Our synteny analysis reveals a more broadly conserved, and thus potentially more 

ancient, tandem gene duplication that involves the last common ancestor of all SEP3- 

and TM8-like genes. Considering that TM8-like genes were already present in the last 

common ancestor of extant seed plants (Gramzow et al., 2014), it is likely that the SEP3-

TM8 tandem is more ancestral than the SEP3-FLC tandem (e.g. as defined by 

functions). Hence, the FLC-like genes could be derived from a TM8 homolog in an 

ancestral plant species. According to the network structure and gene copy number of 

the SEP3-, FLC- and TM8-like gene clusters, we find that after the split of A. trichopoda 

from other angiosperms the SEP3- and TM8-like genes generally do not appear as a 

tandem gene pair within one species and TM8-like homologs tend to be lost from the 

tandem. This means that the SEP3-TM8/FLC tandem gene pair is more variable than 

the SEP1-SQUA tandem gene pair. In this study, both the SEP1-SQUA and SEP3-TM8 

tandem gene pair were found in A. trichopoda (Figure 4c, Supplemental Data Set 3). 

Hence, the duplication that led to these two tandems may be the ε WGD event, derived 

from one ancestral tandem gene pair of AGL2-SFT (Figures 4d and 4e) in a common 

ancestor of the angiosperms (Jiao et al., 2011; Li et al., 2015).  

It is generally thought that the AGL6- and AGL2 (SEP)-like genes are closely related 

sub-families (Figure 1b). It has been hypothesized that the combined ancestral gene of 

the AGL6- and AGL2-like genes was duplicated in a common ancestor of the seed 

plants (Spermatophytes) (Zahn et al., 2005; Kim et al., 2013), probably as a result of 

the  WGD (Jiao et al., 2011; Li et al., 2015). By interpreting our synteny networks, we 
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found strong evidence of SEP1-SQUA, SEP3-SFT, and AGL6-TM3 tandems (Figures 

4a, 4b, and 4c), and evidence of monocot TM3-like genes connected to SEP3-, SQUA-, 

and TM8-like genes (Figure 4a). This enabled us to deduce the deep genealogy and to 

propose an evolutionary diagram that depicts how one ancestral locus that predates the 

last common ancestor of all seed plants has given rise to a large MADS-box gene clade 

with many subfamilies in angiosperms, which includes the AGL2-, AGL6-, SQUA-, TM3-, 

TM8-, and FLC-like gene clades (Figures 4c-4e). It can be inferred that in the last 

common ancestor of seed plants a gene tandem was already present that corresponds 

with the current AGL2/AGL6-SFT/TM3 tandem gene arrangement (Figures 4c-4e). The 

 WGD that occurred shortly before the radiation of the extant seed plants (Jiao et al., 

2011) is likely causal to the duplication of this original tandem gene pair, after which the 

AGL2- and AGL6-like genes diverged, as well did the SFT- and TM3-like genes (Figure 

4e). As described above, a subsequent more recent WGD (the  event), which occurred 

prior to the diversification of the extant angiosperms (Jiao et al., 2011; Li et al., 2015), 

allowed then the emergence of the SEP1- and SEP3-like genes from the ancestral 

AGL2 locus, as well as the SQUA-, TM8-, and FLC-like genes from the ancestral SFT 

gene. During that same period only one copy of the AGL6-TM3 tandem was retained 

from the  WGD (Figure 4e). Altogether, this model hypothesized how one single MIKCc-

type MADS-box gene gives birth to a whole super-clade of genes composed of AGL2 

(SEP)-, AGL6-, SFT- (i.e., SQUA-, FLC-, and TM8-), and TM3 (SOC1-like) 

genes/subfamilies due to a tandem duplication and subsequent WGDs.  

Plant regulatory genes, such as MADS-box transcription factors, are generally not 

thought to be organized in co-expressed gene clusters like animal Hox or Para-Hox 

genes that do show coordinated gene expression (Lewis, 1978; Krumlauf, 1994; Ferrier 

and Holland, 2001). This could be due to the analysis techniques of plants employed to 

date, namely phylogenetic analyses and pair-wise synteny analyses, where ancient 

WGDs can dramatically complicate analyses. More recently, it has become apparent 

that many plant biosynthetic genes are organized into physical clusters that are co-

regulated and co-expressed (Boutanaev et al., 2015; Nützmann et al., 2016; Yu et al., 

2016a). Often, these biosynthetic clusters are lineage-specific and are not just due to 

tandem-duplication of a single ancestral gene.  

With our approach, we have found several examples of highly conserved MADS-box 

collinearity and of lineage-specific transpositions. MADS protein-protein interactions or 

gene co-expression data are not obviously consistent with the parallel co-regulation 

model like for animal Hox-genes or plant biosynthetic gene clusters. However, 

potentially high-level chromatin-interacting domains within and between clusters that 

dictate their relative positions within the nucleus need to be tested for potential co-

regulatory interactions. Although we describe several interesting patterns of evolution 

of the MADS-box genes, this is just an example of one gene family across fifty-one plant 

species. Thus, we are providing just a proof of concept and a view on the tip of a new 

genomic iceberg. Our approach is suited for analyzing the positional context of all genes 
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across all completed genomes to examine patterns of genomic conservation and 

divergence.  

 

Methods 

Plant genomes analyzed 

In total, fifty-one plant genomes were included in our analysis (Supplemental Figure 1, 

Supplemental Table 1 for detailed information), including thirty rosids, five asterids, Beta 

vulgaris (non-rosid non-asterid), eleven monocots, the early diverging angiosperm 

(Amborella trichopoda), and a single genome for gymnosperms (Picea abies), club 

moss (Selaginella moellendorffii), moss (Physcomitrella patens), and green alga 

(Chlamydomonas reinhardtii). For each genome, all annotated protein sequences 

(primary transcript only) in a FASTA file and a BED/GFF file indicating gene positions 

are needed. 

Pairwise whole genome comparisons  

Reciprocal all-against-all comparisons between pairwise genomes as well as intra-

species comparisons are needed for synteny block detections. Thus for fifty-one 

species in this study, we need P (51, 2) + 51 = 2, 601 times whole-genome protein 

comparisons. RAPSearch2 (BLAST-like program, but much more efficient) was used 

for this task (Zhao et al., 2012).  

Syntenic block calculation 

MCScanX (Tang et al., 2008b; Wang et al., 2012) was used to compute genomic 

collinearity between all pairwise genome combinations using default parameters 

(minimum match size for a collinear block = 5 genes, max gaps allowed = 25 genes). 

The output files from all the intra- and inter- species comparisons were integrated into 

a single file named “Total_Synteny_Blocks”, including the headers “Block_Index”, 

“Locus_1”, “Locus_2”, and “Block_Score”, which served as the database file. 

Synteny network for the MADS-box gene family 

Candidate MADS-box genes were initially identified using HMMER3.0 with default 

settings (domain signature PF00319) (Finn et al., 2011) for each of the 51 genomes 

(Supplemental Data Set 1, sheet 1). Then this gene list containing all candidate MADS-

box genes was queried against the “Total_Synteny_Blocks” file. Rows containing at 

least one MADS-box gene were retrieved into a new file termed 

“Syntenic_Blocks_MADS-box genes” (Supplemental Data Set 1, sheet 2). This file was 

then the final synteny network for the MADS-box genes, the network was imported and 

visualized in Cytoscape version 3.3.0 (Shannon et al., 2003) and Gephi 0.9.1 (Bastian 

et al., 2009).  
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Sequences were labeled based on the A. thaliana MADS-box genes plus three 

representative MADS-box genes that are not represented in A. thaliana (TM8-gene 

(GenBank Accession No. NP_001234105) from Solanum lycopersicum, OsMADS32 

gene (GenBank Accession No. XP_015642650) from rice, and TM6 (GenBank 

Accession No. AAS46017) from Petunia hybrida) (Lee et al., 2003; Blanc and Wolfe, 

2004; Daminato et al., 2014), using BLASTP (Altschul et al., 1990). 

Network clustering  

Clique percolation as implemented in CFinder (Derenyi et al., 2005; Palla et al., 2005; 

Fortunato, 2010) was used to locate all possible k-clique-communities for the MADS-

box gene synteny network to identify communities (clusters of gene nodes). Increasing 

k values make the communities smaller and more disintegrated but also at the same 

time more connected.  

Phylogenetic profiling of clustered communities 

Communities (synteny clusters) derived from a certain k value were extracted and the 

node (i.e. gene) composition of each community was then mapped to the phylogenetic 

tree with 51 species (Smith et al., 2011). Presence (red) or absence (white) of homologs 

in a cluster was depicted for the different species in the phylogenetic tree, thus creating 

a phylogenetic profile of a synteny cluster (Supplemental Figure 3). Each column in the 

illustration represents one community (one synteny cluster), which is labeled at top of 

the x-axis based on its MADS-box name/annotation. Through such clustering and 

phylogenetic profiling steps, representative communities for the Type II (MIKCC- and 

MIKC*- type) and Type I MADS box clades were found and then further analyzed.  

Phylogenetic distance and tree construction 

Amino acid sequences for the candidate MADS-box genes, both the genes represented 

in the synteny networks and the genes missing from the networks, were aligned using 

HmmerAlign (Kristensen et al., 2011). The alignment was then transferred into codon 

alignment using Pal2nal (Suyama et al., 2006). A phylogenetic tree was computed using 

RAxML (Stamatakis, 2014) with the GTRCAT (bootstrap = 100). The phylogenetic tree 

was annotated and depicted using iTOL v3 (Letunic and Bork, 2016). 

A script performing the above “Pairwise Whole Genome Comparisons” and “Syntenic 

Block Calculation” steps, and additional information about the method used in this work 

can be found at GitHub (https://github.com/zhaotao1987/SynNet-Pipeline).  

 

Accession Numbers 

Sequence data from this article can be found in the Arabidopsis Genome Initiative or 

GenBank/EMBL databases under the following accession numbers: 

Plant genomes used in this analysis are provide in Supplemental Table 1. 

https://github.com/zhaotao1987/SynNet-Pipeline
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Supplemental Data  

 

Supplemental Figure 1 Species used in this study. Known Whole Genome Duplications (WGD) 

and Whole Genome Triplications (WGT) events are indicated on the phylogenetic tree of the 51 

analyzed genomes as red and blue stars, respectively. Clades of the species belong to 

“Brassicaceae”, “Poaceae”, “Rosids”, “Asterids”, “Eudicots”, and “Monocots” are indicated on 
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the right side. The basal rosid Vitis vinifera, the basal eudicots Beta vulgaris and Nelumbo 

nucifera, and the basal angiosperm Amborella trichopoda are highlighted red. 

 

Supplemental Figure 2 k-clique percolation of the synteny network for MADS-box genes. (a) 

Ternary contour plot of k (x-axis), the number of k-clique communities detected (y-axis, 

indicated by the number of black dots), and the community sizes detected (color range). At 

lower values of k (less connectivity required between nodes) there many more communities 

detected than at higher values of k (more connectivity between nodes). At low k values, synteny 

between just a few species can be found, however, at higher k values only highly-interconnected 
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networks with many nodes (for example across angiosperms) are identified. (b) An example of 

how the community size of the cluster declines for the AP3 MADS-box gene cluster as the k-

cliques value increases. At lower values of k the number of inter-links can be lower, thus some 

less connected nodes are included in the network (such as the green labeled monocots). There 

are only six Brassicaceae genes included in our analysis, thus the network disappears at k=7. 

At the higher values of k represent more stringent communities of densely connected nodes 

with a high density of inter-links, for example eudicot AP3 genes, still form a community at k=21. 

 

 

 

 

Supplemental Figure 3 Phylogenetic profiling for all the communities for k-clique = 3. Species 

names are shown on the right side. The basal rosid Vitis vinifera, the basal eudicots Beta 

vulgaris and Nelumbo nucifera, and the basal angiosperm Amborella trichopoda are highlighted 

in red. The red and blue stars on the species tree depict known WGD and WGT events, 

respectively. The number of nodes in a cell is reflected by the color scale. The columns are 

hierarchically clustered by the “Spearman Rank Correlation” method. 
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Supplemental Figure 4 Parallel coordinate synteny plots of PI derived from Genomicus (a) 

Synteny relationship of the grape homolog of PI (Vv18s0001g01760) across multiple lineages. 

(b) Synteny relationship of the A. thaliana PI gene (AT5G20240) across multiple lineages. Both 

images are derived from Genomicus: http://www.genomicus.biologie.ens.fr (Louis et al. 2012). 

 

The following supplemental data can be accessed online: 

http://www.plantcell.org/content/early/2017/06/05/tpc.17.00312/tab-figures-data 

Supplemental Table 1. Plant Genomes Used in this Analysis  

Supplemental Data Set 1. Candidate MADS-box Genes (sheet1) and Synteny Network 

for MADS-box Genes (sheet2) 

Supplemental Data Set 2. Node List and Edge List of the Communities at k = 3 

Supplemental Data Set 3. Detail Information for the Inferred Tandem Gene 

Arrangements (ITGAs) 
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Abstract 

Late Embryogenesis Abundant proteins (LEAs) include eight multi-gene families 

expressed in response to water loss during seed maturation and in vegetative tissues 

of desiccation tolerant species. Despite their importance for water stress adaptation, a 

comprehensive understanding of LEAs evolution in plants is still elusive. We performed 

a phylogenomic synteny network analysis of the eight LEA gene families across 60 

complete plant genomes, and investigated their distribution and diversification. Our 

results indicated that plant LEA families have distinct origins, and most of them show 

synteny conservation in angiosperms. Independent evolutionary patterns, such as 

ancestral diversification, recurrent tandem-duplications, and dynamic synteny evolution, 

contributed to sequence diversification and functional innovations. For example, 

ancestral synteny diversification in the Dehydrin family resulted in distinct evolution of 

amino acid sequences, biochemical properties, and gene expression patterns. We also 

identified the origin of a novel Dehydrin motif that may be specifically involved with 

abiotic stress tolerance. Together, our results show that distinct evolutionary patterns 

led to the independent synteny diversification between plant LEA families. The 

consequent structural and functional plasticity of LEA proteins may have contributed to 

plant adaptation to water-limiting environments. 

 

  



62 SYNTENY-BASED PHYLOGENOMIC NETWORKS FOR COMPARATIVE GENOMICS 

Introduction 

When plants colonized land 450Ma ago, they developed a wide range of adaptations 

including physiological, structural and regulatory mechanisms to cope with variable 

environments. Land plants (embryophytes) evolved from streptophyte algae, a 

paraphyletic group of green algae believed to be physiologically pre-adapted to 

terrestrial environments due their fresh water origin (Kenrick and Crane, 1997; Becker 

and Marin, 2009; Wodniok et al., 2011). 

Plants also developed responses of desiccation tolerance (DT) as they colonized the 

land. DT is the ability to survive the removal of almost all cellular water without 

irreparable damage, and it is recurrent in reproductive structures of most vascular plants 

(e.g. during embryogenesis), in the vegetative body of non-vascular plants and in a few 

angiosperms species commonly known as ‘resurrection plants’ (Oliver et al., 2000; Illing 

et al., 2005; Leprince and Buitink, 2010; Farrant and Moore, 2011; Gaff and Oliver, 

2013). Several genes that are thought to be important for DT are common amongst 

non-vascular and vascular plants, and are also present in their ancestral streptophyte 

algae (Rensing et al., 2008; Wodniok et al., 2011). 

Within the conserved mechanisms of cellular protection involved in DT, a common 

group named Late Embryogenesis Abundant (LEA) proteins, has received considerable 

attention. LEAs were originally associated with the acquisition of DT in plant embryos 

due to the high gene expression and protein accumulation in the later stages of seed 

maturation (Galau et al., 1986; Dure et al., 1989; Espelund et al., 1992; Manfre et al., 

2006; Delahaie et al., 2013). In vegetative tissues, LEAs were found to accumulate upon 

abiotic stresses such as drought, salinity, heat and freezing, and under desiccation in 

resurrection plants (Hoekstra et al., 2001; Cuming et al., 2007; Amara, 2014; Stevenson 

et al., 2016). Interestingly, LEA genes are also found outside the plant kingdom, 

suggesting a common mechanism of DT across distinct life forms (Browne et al., 2002; 

Tunnacliffe et al., 2005; Kikawada et al., 2006; Gusev et al., 2014). 

LEA proteins exhibit peculiar biochemical properties such as high composition of polar 

amino acids, high hydrophilicity, and presence of intrinsically disordered regions (IDRs) 

(Dure et al., 1989; Garay-Arroyo et al., 2000; Goyal et al., 2005; Battaglia et al., 2008). 

Intrinsically disordered proteins (IDPs), have been proposed as critical for plant 

adaptation in new environments because of their ability to perform more than one 

function, the so called ‘moonlighting’ activity (Covarrubias et al., 2017). This property 

allow LEAs to perform anti-aggregation, protein stabilization, as well as molecular 

chaperone-like activities (Chakrabortee et al., 2007; Battaglia et al., 2008; Kovacs et al., 

2008; Chakrabortee et al., 2012; Hincha and Thalhammer, 2012; Cuevas-Velazquez et 

al., 2017). 

Several studies have attempted to identify, classify, and access LEAs function in plants 

(Battaglia et al., 2008; Hundertmark and Hincha, 2008; Shih et al., 2008; Amara, 2014), 
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however, a comprehensive understanding of the evolutionary history and its relationship 

with the high diversification of protein sequence and function of LEAs in plants is still 

elusive. 

With the increasing number of plant genomes available, a comprehensive analysis of 

the evolution and functional diversification of LEA gene families is now possible. The 

reconstruction of the evolutionary history of a protein family in an entire lineage involves 

homology identification by genome comparative analysis between different taxa, to 

provide a deeper understanding of the evolution of genomic complexity and lineage-

specific adaptations (Koonin, 2005). Phylogenomic analysis (i.e. phylogenetic analysis 

at the genome scale) has often been employed in order to identify cross-species 

homologs and predict gene function by reconstructing the evolutionary history (Eisen, 

1998).  

In this study, we performed a large-scale phylogenomic analysis across 60 complete 

genomes, combining synteny network and phylogenetic analysis, in order to identify 

LEAs and investigate their origin and evolution in plants. Our synteny analysis reveals 

independent evolutionary patterns that shaped synteny diversification of LEAs in plants, 

and illustrates consequent functional novelties related to water-stress adaptation. Our 

work provides exciting opportunities for further classification and discovery of new LEA 

functions in plants. 

Results 

Global identification of LEAs across 60 genomes 

We performed a genome-wide sequence homology search to identify the complete 

repertoires of LEAs across 60 genomes of diverse plant species (Figure 1). For that we 

used the most widely employed classification of LEAs that defines eight multi-gene 

protein families (Pfam): Dehydrin (DHN), LEA_1, LEA_2, LEA_3, LEA_4, LEA_5, 

LEA_6 and Seed Maturation Protein (SMP) (Hundertmark and Hincha, 2008). Based 

on the conservation of Hidden Markov Model (HMM) profiles of the eight LEA protein 

families we identified a total of 4,836 genes, with considerable copy number variation 

among the LEA families and the genomes investigated (Figure 1, Supplemental Table 

1).  
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Figure 1 Species phylogeny and number of LEA genes identified in plant genomes. The species 

tree was inferred using NCBI Taxonomy Browser (https://www.ncbi.nlm.nih.gov/taxonomy). 

Each LEA family is represented by a specific colour. The red branches in the phylogenetic tree 

indicate the basal rosid Vitis vinifera, the basal eudicots Beta vulgaris and Nelumbo nucifera, 

and the basal angiosperm Amborella trichopoda. The red and blue stars on the phylogenetic 

tree indicate whole-genome duplication (WGD), and whole-genome triplication (WGT), 

respectively. 

 

Single genes belonging to SMP and LEA_5 were found in algal genomes, suggesting 

an ancestral origin of these families. The Dehydrin, LEA_2 and LEA_4 families were 

identified in the bryophyte clade (Physcomitrella patens) and LEA_1 and LEA_3 families 

appeared in the lycophyte lineage (Selaginella moelendorffii). The LEA_6 family only 

https://www.ncbi.nlm.nih.gov/taxonomy
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emerged in early angiosperms (Amborella trichopoda), likely representing the most 

recent LEA family in plants. Overall, LEA_2 family was more abundant with 3,126 genes, 

being multi-copy in genomes of both angiosperms and lower plants. LEA_6, on the other 

hand, represents the smallest family with a total of 89 genes identified, with copy-

number varying from 0 to 3, with the exception of Xerophyta viscosa containing six 

genes. The variable copy-number between different taxa suggests independent losses 

or duplication of genes in individual genomes. The under-representation of LEA genes 

in Zostera marina and Spirodela polyrhiza (Olsen et al., 2016), and the over-

representation in X. viscosa (Costa et al., 2017) have already been reported and 

correlated with the respective desiccation sensitive and tolerant lifestyle of these 

species, suggesting that the evolution of LEAs contributed to water stress adaptation in 

plants. 

 

Differential synteny conservation suggests independent evolution of LEA families in 

angiosperms 

We used a synteny-based method to identify homology between the proteins and to 

explore the evolutionary history of LEAs in plants. Homologous genes comprise 

orthologs and paralogs, which are corresponding genes in different species that evolved 

from the same ancestral gene, and to genes duplicated within the same genome, 

respectively (Koonin, 2005; Gabaldon and Koonin, 2013). Generally, orthologs have 

equivalent functions in different taxa, while paralogs are prone to perform biologically 

distinct functions (Koonin, 2005; Gabaldon and Koonin, 2013). Synteny homologs 

(syntelogs) have similar genomic context and likely evolved from a common ancestor 

gene (Zhao et al., 2017; Zhao and Schranz, 2017). Syntelogs were inferred with the 

Synteny Network (Synets) method (Zhao et al., 2017; Zhao and Schranz, 2017) which 

enables detection of homologs in corresponding chromosomes in different species, as 

well as paralogs within a species. The output is a network in which the nodes represent 

anchor genes in a syntenic block and the edges indicate synteny similarity (Figure S1). 

Synteny communities can be detected in synteny networks using community detection 

methods (Zhao et al., 2017). Table 1 summarizes the percentage of syntelogs identified 

per LEA family as well as the number of synteny communities detected in each network 

(detailed information in Supplemental Table 2). 

The variable percentage of syntenic genes and number of synteny communities suggest 

independent evolution between and within the LEA protein families. Genes not 

incorporated in synteny communities by our clustering method are likely to be species-

specific singletons. No syntelogs were identified between angiosperm and non-

angiosperm species, only a few ‘in-paralogs’ (paralogs from the same species) were 

detected in the basal species Sellaginela moellendorffii and Physcomitrella patens 

(Supplemental Table 2). Considering the long evolutionary distance between the 
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species analyzed, we hypothesized that ancient and independent synteny 

diversification between LEA families may have functional implications. 

Pfam 
Total 

genes 

Syntelogs 

(%) 

Synteny 

communities  

DHN 365 62.2 12 

LEA_1 251 63.3 10 

LEA_2 3126 76.0 130 

LEA_3 274 79.9 16 

LEA_4 298 77.2 18 

LEA_5 153 67.3 4 

LEA_6 89 76.4 8 

SMP 280 59.3 11 

Total 4836   209 

Table 1 Summary of syntenic genes and synteny communities identified per LEA protein family. 

 

Phylogenetic profile reveals angiosperm-wide and lineage-specific conservation of 

LEAs 

We further analyzed the origin of the synteny communities detected with Synets in order 

to obtain information on the evolutionary conservation and diversification of LEAs in 

angiosperms. Presence or absence of a species syntelog in a community of the synteny 

network can be visualized as a phylogenetic profile, enabling inference of the origin, 

expansions, and contractions of the gene family in each clade of the phylogenetic tree 

(Figure 2a).  

We subdivided the synteny communities into four main evolutionary categories: 

angiosperm-wide (AW), monocot-specific (MS), eudicot-specific (ES), and species-

specific (SS) (Figure 2b, Supplemental Table 3). Angiosperm-wide are synteny 

communities that contain genes of at least one monocot and one eudicot species. 

Monocot-specific includes synteny communities containing only monocot genes, and 

eudicot-specific includes communities comprising eudicot genes only. Species-specific 

correspond to paralogs duplicated in an individual genome, also named ohnologs. 

AW communities were found in all LEA families and encompasses the largest number 

of the syntelogs identified (Figure 2b), indicating that the majority of LEA genes have a 

common origin in angiosperms and are likely located in a more ancestral genomic 

context. The angiosperm-wide conservation of LEAs is specially observed in the 

families DHN, LEA_5 and SMP, where more than 80% of the syntelogs identified are 

shared amongst angiosperm species. Lineage-specific duplications (MS and ES) have 

also significantly contributed to the repertoire of LEAs in plants, especially in LEA_3 and 

LEA_6 families, were than 40% of the syntelogs are distributed over these two 
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categories. SS paralogs were overall underrepresented or absent in the genomes 

investigated, likely due to low frequency of local gene duplications, or the duplicated 

copies were more likely to be lost in individual genomes. The finding of lineage-specific 

and species-specific synteny suggest that duplication events other than whole genome 

duplications (WGD) has significantly contributed to the expansion of LEA families in 

plant genomes. 

 

Figure 2 Phylogenetic profile and evolutionary categorization of syntenic LEAs in the genomes 

analyzed. (a) Phylogenetic profile showing the number and distribution of syntenic LEA genes 

in plants. Rows represent synteny communities and columns indicate species. The colours on 

top of the profile indicate rosids (pink), asterids (blue), monocots (green), basal angiosperm 

species (red) and Physcomitrella patens and Selaginella moelendorffii (dark grey). The species 

were ordered from the most recent to the most ancient, from the left to the right. (b) Distribution 

of syntenic genes in each evolutionary category. AW – angiosperm-wide, MS – monocot-

specific, ES – eudicot-specific, SS – species-specific.  

The fact that LEA_5 has the smallest number of synteny communities and that the 

majority of the genes belong to AW conserved genomic context indicate that this is the 

most conserved LEA family in plants. On the other hand, the large number of LEA_2 

syntelogs in AW communities indicates that this is the most diverse LEA family in the 

plant lineage. 
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Synteny network analysis provides new insights into functional diversification of 

LEAs in plants 

Duplication events can introduce a gene copy into a new regulatory context, leading to 

differential evolutionary and regulatory constraints, which is one of the main sources 

driving functional innovation within a gene family (Conant and Wolfe, 2008; Flagel and 

Wendel, 2009). Therefore, in the next sections we provide a few examples revealed by 

our synteny analysis of remarkable structural and functional innovations within LEA 

families resulted from differential evolution of the genomic context. 

Dehydrin: Functional diversification via biochemical, structural, and regulatory 

innovations 

Dehydrin (DHN) is classified as a LEA family due to the gene expression during late 

seed embryogenesis and ability to perform ‘classical’ chaperone activity, preventing 

heat-induced protein aggregation and inactivation in vitro (Kovacs et al., 2008; Liu et al., 

2017). In our dataset, we found that DHN genes are distributed in two main angiosperm-

wide synteny communities and a maximum likelihood tree supports the phylogenetic 

separation of these communities in angiosperms (Figure 3a). 

A set of the DHNs are called hydrophylins because of their specific response to osmotic 

stress (Garay-Arroyo et al., 2000; Jaspard and Hunault, 2014). Hydrophylins play 

important role in protecting cell components from the adverse effects caused by low 

water availability due to biochemical properties such as high Glycine (Gly) content (> 

6%) and low grand average hydropathy (GRAVY) (< -1) (Garay-Arroyo et al., 2000; 

Battaglia et al., 2008; Reyes et al., 2008). In order to investigate the distribution of 

hydrophylins in angiosperms, we analyzed the Gly content and GRAVY index of each 

protein within the two largest angiosperm-wide DHN communities (Figure 3b). Although 

both communities contain proteins with hydrophylin properties, community 1 contains 

proteins with more variable Gly/GRAVY composition, while community 2 proteins have 

a more homogeneous Gly/GRAVY distribution. These findings indicate that, even 

though hydrophylin-type proteins do not form an isolated synteny community, there is a 

clear biochemical divergence between proteins that evolved in distinct genomic 

contexts. 
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Figure 3 Characteristics of Dehydrin synteny communities. (a) Maximum likelihood tree of all 

DHN genes found in the genome of 60 species. The inner circle indicates species belonging to 

monocots (green), rosids (pink), asterids (blue), basal species (red), the gymnosperm Picea 

abies (brown), and the bryophyte Physcomitrella patens (light green). The connections between 

the branches indicate synteny between the gene pairs. Synteny communities 1 and 2 are 

indicated (blue and pink connections, respectively), dots on the branches represent bootstrap 

support values (>85). The larger the dots the higher the bootstrap values. (b) Glycine (Gly) 

content and GRAVY index plot (Gly/GRAVY plot) showing the distribution of hydrophylins 

between community 1 and 2. The arrows indicate a schematic representation of the consensus 

sequence of proteins of community 1 and 2, respectively. The F-, Y-, S-, and K- protein 

segments are indicated according to their position in the protein sequences. (c) Absolute 

expression values of DHN genes in Arabidopsis thaliana. The expression data was retrieved 

from the Bio-Array Resource for Arabidopsis Functional Genomics (http://bar.utoronto.ca/) and 

from Hundertmark and Hincha (2008). The dots on the branches of the phylogenetic tree 

indicate bootstrap support values (>75). Connections between the rows represent synteny 

relationships. 

 

DHN proteins have also been functionally subdivided into four to five main architectures 

based on the presence and organization of specific motifs called Y-, S- or K- segments 

(Close, 1996; Hunault and Jaspard, 2010; Banerjee and Roychoudhury, 2016; Malik et 

al., 2017). We performed multiple sequence alignments of proteins from the DHN 

synteny communities 1 and 2 in order to investigate the diversification of the different 

functional motifs (Figure S2a, b). Our data indicate that the majority of proteins of 

community 1 comprises Y(n)SK(n) types (Figure 3b indicated with an arrow, Figure S2a), 

while community 2 contains mainly SK(n)-type proteins, lacking the Y-segment at the 

N-terminus (Figure S2b). Despite lacking the Y-segment, we found that proteins from 

community 2 possess a new conserved segment at the N-terminus (DRGLFDFLGKK). 
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This motif is named F-segment, and it was recently characterized as an overlooked 

motif in angiosperms and gymnosperms, with potential functional roles in membrane 

and protein binding (Strimbeck, 2017). Interestingly, genes encoding proteins belonging 

to community 1 express mainly during seed development in A. thaliana, and some of 

the genes can be induced by abiotic stress (Figure 3c). On the other hand, genes 

encoding the F-type DHN proteins of community 2 seem to be specifically induced by 

abiotic stresses such as drought, heat and salinity. These results combined indicate 

that the ancient synteny diversification DHN in angiosperms resulted in protein 

biochemical and sequence innovations, as well as changes in expression patterns that 

may be related to functional specificity within this protein family. To date, this is the first 

documentation of the evolution and diversification of the F-segment in angiosperms, 

and its association with abiotic stress in A. thaliana. 

LEA_1: Ancient diversification of Intrinsically Disordered Proteins (IDPs) in angiosperms 

LEA_1 proteins, also known as Group 4, also accumulates in the plant cell in response 

to water stress and has been proposed as model to study intrinsically disorder proteins 

(IDPs) in plants (Olvera-Carrillo et al., 2010; Cuevas-Velazquez et al., 2017). This family 

has also been subdivided into two main subclasses based on protein sequence features 

(Battaglia et al., 2008). One of the subgroups, named group 4A, comprises smaller 

proteins (80-124 residues) and the second group, 4B, has longer representatives (108-

180 residues). Both subclasses possess a conserved portion at the N-terminal region, 

and a disordered C-terminal region predicted to form alpha-helices under water limiting 

conditions (Cuevas-Velazquez et al., 2017). 

Our data indicates that LEA_1 members are distributed in 10 synteny communities, and 

70% of the homologs identified with Synets belong to two angiosperm-wide (AW) 

communities (Figure 2b, Figure 4a). The absence of clear synteny and phylogenetic 

separation observed in the phylogenetic tree suggests that some of the ES and MS 

communities have originated by duplication or transposition of genes from AW 

communities (Figure 4b). We found differences between the consensus sizes of the 

multiple sequence alignments of protein from the two AW communities (Figure 4c, 

Figure S3a, b), what indicates that AW community 1 represents the subclass 4B of 

longer protein sequence, whereas community 2 contains members of subclass 4A of 

smaller proteins. It seems that the diversification of intrinsically disordered regions 

(IDRs) in LEA_1 occurred before the origin of monocots and eudicots, and that these 

protein types has been conserved in angiosperm genomes during evolution. 
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Figure 4. Phylogenetic ad synteny characteristics of LEA_1. (a) Phylogenetic profile of LEA_1 

indicating the distribution of the synteny communities detected in the species phylogenetic tree. 

The red and blue stars indicate whole-genome duplication (WGD) and whole-genome 

triplication (WGT), respectively. (b) Maximum likelihood tree of the LEA_1 family. The circle 

inside the tree indicates species belonging to monocots (green), rosids (pink), asterids (blue), 

basal species (red), the gymnosperm Picea abies (brown), the bryophyte Physcomitrella patens 

(light green), and the lycophyte Selaginella moellendorffii (olive green). The connections 

between the branches indicate synteny between the gene pairs, and dots on the branches 

represent bootstrap support values (>85).The larger the dots the higher the bootstrap values. 

(c) Partial representation of the multiple sequence alignments of amino acid sequences of the 

communities 1 and 2 (top 10 sequences). 

 

LEA_2: Expansion and diversification through recurrent tandem duplications 

LEA_2 is the largest LEA family, and has been considered atypical because it contains 

proteins with more hydrophobic amino acids and more defined secondary structure in 

solution (Singh et al., 2005; Hundertmark and Hincha, 2008). Members of this family 

have been associated with hypersensitive response (HR) after microbial and parasitic 

nematode infection, which also differs from the other LEA families (VanderEycken et al., 

1996; Escobar et al., 1999; Ciccarelli and Bork, 2005). However, functions associated 

with salinity, freezing, heat, UV radiation, osmotic, and oxidative stress in vitro have 

also been documented for LEA_2 proteins (He et al., 2012; Jia et al., 2014; Jiang et al., 

2017). 

Despite the large number of members, in general, synteny and phylogeny of the LEA_2 

are in agreement, with highly supported branches in the phylogenetic tree connecting 

genes that belong to the same synteny community (Figure 5a). Interestingly, there is an 
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evident interconnection between two of the largest LEA_2 synteny communities (Figure 

5a, b). We found that these communities contain several tandem duplicates widespread 

in monocots and eudicots (Figure 5b, c). In fact, we also found several other tandem 

duplicates across other LEA_2 communities containing monocots and eudicots genes 

(Supplemental Table 4). These results indicate that tandem duplications have 

significantly contributed to the expansion and diversification of the large LEA_2 family 

in angiosperms, and may be one of the causes of the diversified functionality of this 

atypical LEA family. 

 

Figure 5 Tandem duplications of the LEA_2 family. (a) Maximum likelihood tree containing all 

LEA_2 genes identified. The colours displayed in the inner circle indicate genes belonging to 

monocots (green), rosids (pink), asterids (blue), basal species (red), the gymnosperm Picea 

abies (brown), the bryophyte Physcomitrella patens (light green), and the lycophyte Selaginella 

moellendorffii (olive green). The connections between the branches indicate synteny between 

the gene pairs, and all the communities with at least 100 syntenic genes are displayed in 

different colours. Synteny communities 1 and 2 are indicated. The dots on the branches indicate 

bootstrap support values (>85). The larger the dots the higher the bootstrap values. (b) Synteny 

network of genes belonging to community 1 (circles) and community 2 (triangles). The colours 

displayed in the nodes represent the clades as indicated in (a). Tandem genes are indicated by 

a thicker black border. (c) Summary of the number of tandem duplicates in the synteny 

communities 1 and 2. The tree is a simplified version of the species tree presented in figure 1. 

Red stairs indicate WGD and blue stars indicate WGT. 

LEA_4: Dynamic synteny in plant desiccation tolerance 

LEA_4 genes, also known as group 3, are also found in non-plant organisms that 

display DT such as rotifers, arthropods, nematodes, and tardigrades (Browne et al., 
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2002; Tunnacliffe et al., 2005; Kikawada et al., 2006; Gusev et al., 2014) suggesting an 

association with the evolution of DT. In plants, LEA_4 is strongly associated with DT in 

basal and angiosperm resurrection species via an anciently conserved ABA signalling 

pathway (Cuming et al., 2007; Hundertmark and Hincha, 2008; Shinde et al., 2012; 

Delahaie et al., 2013; Stevenson et al., 2016). Our species set contained two 

desiccation tolerant species, the bryophyte Physcomitrella patens and the monocot 

Xerophyta viscosa, however, synteny cannot be detected between these species due 

to the large evolutionary distance. Nevertheless, we found that LEA_4 genes are 

distributed across several AW, MS, and ES synteny communities that are 

phylogenetically separated, suggesting a dynamic evolutionary history of this gene 

family in angiosperms (Figure 2b, Figure S4). Interestingly, only one of the eight LEA_4 

genes identified in X. viscosa shares synteny with other angiosperm species, all the 

other duplicates are singletons or in-paralogs (Supplemental Table 5). In X. viscosa, 

LEA_4 family has expanded compared with other monocot species (Costa et al., 2017), 

which was correlated with higher desiccation response. Altogether, it seems that LEA_4 

has evolved dynamically in angiosperm, and loss of synteny may result in fixation of 

these genes in the genome, resulting in improved contribution for DT in resurrection 

plants. 

 

Discussion 

How does the plant genome adapt to environmental stress? This question has been 

addressed frequently in recent years. It has been proposed that adaptation to novel or 

stressful environments is correlated with the retention of duplicated genes (Flagel and 

Wendel, 2009; Jiao et al., 2011; Kondrashov, 2012; Panchy et al., 2016). Among the 

many models for duplicated gene evolution (Conant and Wolfe, 2008; Innan and 

Kondrashov, 2010), it is suggested that genes that should be rapidly or constantly 

produced in response to environmental stress might be more prone to selection after 

duplication (Kondrashov, 2012). 

In plants, the group of Late Embryogenesis Abundant (LEA) proteins, composed of eight 

multi-gene families (Dehydrin, LEA_1, LEA_2, LEA_3, LEA_4, LEA_5, LEA_6 and 

SMP), have been shown to play roles in water stress tolerance, and may represent a 

conserved and indispensable component of regulatory networks involved in 

environmental stress adaptation that allowed plants to endure the constraints 

associated with land adaptation (Shih et al., 2008; Hincha and Thalhammer, 2012; 

Amara, 2014). Evidences suggest that there is functional variability between and within 

each of the eight families (Hundertmark and Hincha, 2008), what raises questions such 

as what are the sources of functional variations, what are the precise biological 

functions of each family, if and how LEA families work as one entity, and which LEA 

genes are involved in plant development and stress tolerance. 
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To answer some of these questions we interrogated 60 whole genomes, ranging from 

green algae to angiosperms and analyzed the ancestry, conservation, and 

diversification of LEAs in plants. We found that LEA proteins belonging to LEA_5 and 

SMP families have arisen early in the plant lineage, while the other families appeared 

at later instants during plant evolution (Figure 1). Previous studies have already shown 

the presence and expression of ancient LEAs in algal genomes (Joh et al., 1995; 

Wodniok et al., 2011), corroborating the hypothesis that the ancestral fresh water 

lineages were pre-adapted to terrestrial environments, and the evolution of pre-existing 

and new gene families, including LEAs, may have facilitated the colonization of land 

(Rensing et al., 2008; Becker and Marin, 2009). It seems possible that later LEA families 

expanded and diversified in embryophytes as a result of the evolution of more 

specialized cells, tissues and organs such as spores and seeds, that required a better 

control of water retention and protection against desiccation and other stresses. 

Synteny homology analysis indicated a clear genomic diversification of LEA genes 

during angiosperm evolution (Figure 2). The majority of LEA genes are located in 

angiosperm-wide conserved genomic regions, while the finding of clade-specific as well 

as species-specific gene copies indicates that the continuing expansion and 

diversification of angiosperm genome contributed to LEA gene families evolution. 

Stress-regulated genes retained after duplication events are more likely to 

neofunctionalize instead of inheriting the ancestral function, which might be in part 

related to changes in biochemical function and in cis-regulatory regions (Conant and 

Wolfe, 2008; Zou et al., 2009; Arsovski et al., 2015). As a result of these changes, 

complete or partial diversification of the interaction and regulatory networks in which the 

duplicated genes are involved might also occur. It is likely that the genes belonging to 

the same synteny community (positional homologs) display similar functions, and genes 

in different communities are likely to display functional innovations (Dewey, 2011).  

We identified highly conserved synteny between LEA_5 genes in most genomes 

investigated, suggesting evolutionary constraints on maintaining the stability of their 

genomic context. These constraints may include the correct functioning of the 

maturation-induced desiccation program, where LEA_5 genes of A. thaliana were 

shown to play important roles (Manfre et al., 2006), and may be conserved across all 

orthodox angiosperm species. 

We also found several examples of correlation between synteny diversification and 

functional innovations. Genes from the largely studied Dehydrin (DHN) family are 

localized in two distinct synteny communities across the angiosperm lineage (Figure 

3a). Presumably, new regulatory elements were acquired in the duplicated copies, and 

differential evolutionary forces may have driven protein diversification, resulting in 

distinct biochemical properties (Figure 3b). The consequent differential gene expression 

(developmental or stress induced) may have allowed the preservation of duplicated 

copies in the different genomes, and amplified the stress tolerance response. The 

finding of functionally diverse Dehydrin types in Physcomitrella patens suggests that the 
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colonization of land was one of the forces driving Dehydrin evolution (Ruibal et al., 2012; 

Agarwal et al., 2017). Similarly, LEA_1 have evolved into two angiosperm-wide synteny 

communities composed by two protein types containing distinct intrinsically disordered 

regions IDRs (Figure 4c). Our findings point toward an ancient functional divergence 

between LEA_1 members, what would explain their structural plasticity and 

‘moonlighting’ properties associated with multiple abiotic stresses (Covarrubias et al., 

2017; Cuevas-Velazquez et al., 2017). 

Another source of evolutionary adaptations to environmental stress is gene family 

expansion via recurrent tandem duplications (Cannon et al., 2004; Hanada et al., 2008). 

Tandem duplications offers a pool of targets for evolutionary selection contributing to 

the maintenance of large gene families. These large gene families are enriched with 

genes important for rapid environmental adaptation such as biotic stress-responsive 

genes (Cannon et al., 2004; Hanada et al., 2008). We found several tandem duplicates 

in the synteny network of LEA_2 distributed across all angiosperm lineage (Figure5). 

This finding supports the atypical structured and hydrophobic nature of LEA_2 proteins 

and its broader spectra of gene expression in response to biotic and abiotic stresses 

(Ciccarelli and Bork, 2005; Singh et al., 2005; Hundertmark and Hincha, 2008). 

Most of the LEA gene expression during seed development and environmental stresses 

is regulated via abscisic acid (ABA)-signalling pathways (Galau et al., 1986; Espelund 

et al., 1992; Shinde et al., 2012; Delahaie et al., 2013; Stevenson et al., 2016). The 

desiccation-induced LEA gene expression via ABA-responsive pathways is conserved 

across basal and angiosperm resurrection species (Cuming et al., 2007; Shinde et al., 

2012; Stevenson et al., 2016). It seems that the acquisition of new genomic contexts by 

desiccation-related LEAs of the resurrection monocot Xerophyta viscosa is one 

important footprint of DT, and suggests that other regulatory mechanisms, likely 

independent on ABA, may also work to assure protection against desiccation. 

Resurrection plants are species adapted to live in environments with low water 

availability, displaying specific molecular and genomic adaptations of DT (Oliver et al., 

2000; Mundree, 2002; Illing et al., 2005; Farrant and Moore, 2011; Gaff and Oliver, 

2013). The concept of DT is different from drought tolerance because drought tolerance 

refers to the tolerance to moderate water removal without removal of the bulk of 

cytoplasmic water (Shih et al., 2008), while DT refers to the tolerance to a further 

dehydration with an increased removal of the water shell and the capacity to survive 

long periods in the dry state (Hoekstra et al., 2001). Understanding the mechanisms 

underlying DT can help to improve drought tolerance in crops (Mundree, 2002; Leprince 

and Buitink, 2010; Costa et al., 2017). Several crops from the grass family (Poaceae) 

constitutes major contributors of global food security that have become targets of 

genomic programs aiming at improved drought tolerance. In grasses, overexpression 

of LEAs has already been shown to enhance tolerance to drought and other stresses 

(Babu, 2004; Fu et al., 2007; Xiao et al., 2007; Chen et al., 2015). We believe that 

comprehending the impact of synteny diversification in functional innovations in the LEA 
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families may offer an extra powerful tool to select candidates for engineering drought 

and desiccation tolerant crops. 

This data also opens several opportunities for hypothesis-driven fundamental and 

experimental characterization of the myriad of functions of LEA proteins, and the role of 

the diversification of the genomic context in plant evolution and adaptation to 

environmental stresses. Deciphering the evolution of eight gene families, with variable 

protein structure and diversified expression patterns over billions of years, is a 

challenging task. Despite the general association of LEAs water stress response, our 

work provides strong examples of a clear evolutionary divergence resulting in 

differential protein evolution. The diversity of LEA families in angiosperms is a result of 

extensive and dynamic synteny evolution, which indicates that the complexity of these 

gene families goes beyond the protein sequences. 

 

Methods 

Identification of LEA proteins 

 

We used 60 fully sequenced genomes available in Phytozome (Goodstein et al., 2012) 

(https://phytozome.jgi.doe.gov/), and the recently published genome of Xerophyta 

viscosa (Costa et al., 2017). Our species list includes representative species belonging 

to green algae, mosses, lycophytes, gymnosperms, early angiosperms, monocots, 

early eudicots, asterids and rosids (Figure 1, Supplemental Table 1). 

Several classifications have been proposed for LEA proteins (for a review, see 

(Battaglia et al., 2008). Here we used the Pfam annotation for protein families (Bateman 

et al., 2002) (http://pfam.xfam.org/) based on conserved protein domains (Hundertmark 

and Hincha, 2008). This annotation classifies LEAs into eight Pfams: Dehydrin (DHN) 

(PF00257), LEA_1 (PF03760), LEA_2 (PF03168), LEA_3 (PF03242), LEA_4 

(PF02987), LEA_5 (PF00477), LEA_6 (PF10714), and Seed Maturation Protein (SMP) 

(PF04927). Hidden Markov Models (HMM) retrieved from the Pfam 3.0 database 

(http://Pfam.xfam.org) were queried against the 60 plant genomes to identify LEA 

proteins for each family using the program ‘hmmscan’ of the HMMER3.0 package (Finn 

et al., 2011). All proteins with significant hits (e-value < 0.001) were used in this analysis. 

Synteny network construction and community detection 

We used the Synets method (Zhao et al., 2017; Zhao and Schranz, 2017) for syntenic 

block calculations, network construction and community detection 

(https://github.com/zhaotao1987/SynNet-Pipeline). In summary, pairwise all-against-all 

comparisons were performed using RAPSearch (Zhao et al., 2012). Synteny block 

detection was performed with MCScanX software (Wang et al., 2012) with default 

parameters (minimum collinear block size = 5 genes, maximum gaps = 25 genes). The 

syntenic blocks containing the identified LEA sequences were used to build synteny 

https://phytozome.jgi.doe.gov/
http://pfam.xfam.org/
http://pfam.xfam.org/
https://github.com/zhaotao1987/SynNet-Pipeline
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networks (Synets) that were visualized and edited with Cytoscape 3.3.0 (Shannon et 

al., 2003) and Gephi 0.9.1 (Bastian, 2009) (https://gephi.org/). Infomap (Rosvall and 

Bergstrom, 2008) was used to find communities within the synteny networks, which is 

implemented under “igraph” package in R (http://igraph.org/r/doc/cluster_infomap.html). 

All synteny communities were numbered according to the largest to the smallest number 

of genes, and later renamed per LEA family accordingly (Supplemental Table 2). The 

synteny communities were further analyzed with a phylogenetic profiling. Phylogenetic 

profiling allows the visualization of the synteny communities that are lineage-specific or 

shared amongst different species. All synteny communities were decomposed  into  

numbers  of  involved  syntenic  gene  copies  in  each  genome. Dissimilarity index of 

all clusters was calculated using the “Jaccard” method of the vegan package (Dixon, 

2003), hierarchically clustered by “ward.D”, and visualized by “pheatmap”. 

Multiple sequence alignments (MSAs) were built for each of the eight LEA families using 

MAFFT v.7 (Katoh et al., 2002). We used the automated method for the Pfam LEA_2 

due to the large number of sequences, and the method G-INS-l for all other LEA Pfams. 

Phyutility 2.2.6 (Smith and Dunn, 2008) was used to trim gaps and maintain 75% the 

consensus alignment. The final MSAs were edited and displayed with Jalview 2.10.3 

(Waterhouse et al., 2009). IQ-TREE v.1.5.1 (Nguyen et al., 2015) was used to infer 

Maximum Likelihood (ML) trees with 1000 bootstraps for each alignment. All 

phylogenetic trees were edited and displayed with the online tool iTOL (Letunic and 

Bork, 2016). 

Physicochemical properties and expression data of Dehydrin proteins 

The hydrophilicity index of Dehydrin proteins was calculated with the online GRAVY 

calculator (http://www.gravy-calculator.de/). More hydrophilic proteins have a more 

negative GRAVY score, and more hydrophobic proteins have a more positive GRAVY 

score. In order to reveal hydrophylin-type proteins (GRAVY < -1 and Gly > 6%), 

individual GRAVY scores were plotted against the percentage of Glycine (Gly) per 

protein sequence (Garay-Arroyo et al., 2000; Battaglia et al., 2008). Absolute gene 

expression values were retrieved from the e-Northern tool provided by the Bio-Array 

Resource for Arabidopsis Functional 

Genomics (http://bar.utoronto.ca/) as well as from the datasets of seed and silique 

development, dry seed, drought and heat shock of Hundertmark and Hincha (2008).  
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Figure S1. Synteny networks of LEA genes. Synteny networks were built with the synteny 

information of syntelogs identified with Synets. Node colours indicate species belonging to 

monocots (green), rosids (pink), asterids (blue), the basal rosid Vitis vinifera, the basal eudicots 

Beta vulgaris and Nelumbo nucifera, and the basal angiosperm Amborella trichopoda (red). 
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Physcomitrella patens and Selaginella moelendorffii syntelogs are indicated as black nodes. 

Node size indicates the number of connections: bigger nodes have more connections (stronger 

synteny relationships). 

 

 

 

Figure S2. Multiple Sequence Alignments (MSA) of proteins belonging to DHN. MSA of proteins 

belonging to DHN synteny community 1 (a) and 2 (b). The consensus sequence is shown at the 

top of each alignment. The F-, Y-, S-, and K- protein segments are indicated. 
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Figure S3. Multiple Sequence Alignments (MSA) of proteins belonging to LEA_1. MSA of 

proteins from synteny community 1 (a) and 2 (b).  
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Figure S4. Maximum likelihood trees and synteny relationships of LEA_4. The circle inside the 

tree represents species belonging to monocots (green), rosids (pink), asterids (blue), basal 

species (red), the gymnosperm Picea abies (brown), the bryophyte Physcomitrella patens (light 

green), and the lycophyte Selaginella moellendorffii (olive green). The connection between the 

branches indicates synteny between the gene pairs and the dots on the branches indicates 

bootstrap support values (>85). The larger the dot the higher the bootstrap value. The colour 

scale for the different communities is indicated in the left. 
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Abstract 

Synteny analysis is a valuable approach for understanding eukaryotic gene and 

genome evolution, but still relies largely on pairwise or reference-based comparisons. 

Network approaches can be utilized to expand large-scale phylogenomic local synteny 

studies. Here we have built complete local synteny networks for 87 mammalian and 107 

angiosperm genomes, major lineages that have evolved and radiated over the last ~170 

million years. The networks contain ~1.5 million nodes (genes) and ~49.4 million edges 

(syntenic connections between genes) for mammals, and ~2.2 million nodes and ~47 

million edges for angiosperms. By characterizing the entire networks with network 

parameters, such as clustering, size, average clustering coefficient, and node degree, 

we illustrate and quantify overall synteny conservation and diversification properties of 

all annotated genes for mammals and angiosperms. These provide new metrics for 

assessing genome evolution of mammal and angiosperm genomes. Further, we 

compare the functional characteristics of extremely conserved and diversified gene 

families, and perform phylogenomic profiling to identify lineage-specific clusters. We 

depict several representative clusters of important developmental genes in humans, 

such as CENPJ, p53 and NFE2. Taken together, we illustrate how network approaches 

can enhance comparative genomic analysis.  
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Introduction 

The patterns and differences of gene and genome duplication, gene loss, gene 

transpositions and chromosomal rearrangements can inform how genes and gene 

families have evolved to regulate and generate (and potentially constrain) the amazing 

biological diversity on Earth today. For comparative genomics, synteny reflects 

important relationships between the genomic context of genes both in terms of function 

and regulation and is often used as a proxy for the constraint and/or conservation of 

gene function (Dewey, 2011; Lv et al., 2011). Thus, syntenic relationships across a wide 

range of species provide crucial information to address fundamental questions on the 

evolution of gene families that regulate important traits. Synteny data can also be very 

valuable for assessing and assigning gene orthology relationships, particularly for large 

multigene families where phylogenetic methods maybe non-conclusive (Koonin, 2005; 

Dewey, 2011; Gabaldon and Koonin, 2013). Synteny was originally defined as pairs or 

sets of genes located on homologous chromosomes in two or more species, but not 

necessarily in the same order (Passarge et al., 1999). However, the current widespread 

usage of the term synteny, which we adopt, implies conserved collinearity and genomic 

context. 

While the basic tenants of gene and genome organization and evolution are similar 

across major eukaryote lineages, there are also significant differences that are not fully 

characterized nor understood. For example, the length and complexity of genes and 

promoters, the types of gene families (shared or lineage-specific), transposon density, 

higher-order chromatin domains and the organization of chromosomes can differ 

significantly between plants, animals and other eukaryotes (Gladyshev and Arkhipova, 

2007; Feng et al., 2010; Law and Jacobsen, 2010; Murat et al., 2012). In general, 

genome organization and gene collinearity is substantially less conserved in plants than 

in mammals. One major characteristic of flowering plant genomes is the prevalent 

signature of shared and/or lineage-specific whole genome duplications (WGDs) (Adams 

and Wendel, 2005; Cui et al., 2006; Jiao et al., 2011; Jiao et al., 2012a; Soltis et al., 

2015; Barker et al., 2016). While the genomes of mammalian vertebrates show 

evidence of only two shared and very old rounds of WGD; often referred to as “2R” 

(Hokamp et al., 2003; Panopoulou and Poustka, 2005; Steinke et al., 2006). The 

variation in genomic organization between lineages is partially due to differences in 

fundamental molecular processes such as DNA-repair and recombination, but also 

likely reflect the historical biology of groups (such as mode of reproduction, generation 

times and relative population sizes). Differences in gene family and genome dynamics 

have significant effects on our ability to detect and analyze synteny.  

While the number of quality reference genomes is growing exponentially, a major 

challenge is how to detect, represent, and visualize synteny relations of all members 

from a gene family across many genomes simultaneously. Conventional dot plots 

display macroscale collinear blocks between/within only two genomes in two-

dimensional images. Parallel coordinate plots (like SynFind (Lyons and Freeling, 2008; 
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Tang et al., 2015)) describe collinear blocks surrounding a locus identifier and visualize 

the blocks at the local genomic scale. With the abundance of new genomic data, the 

challenges for multispecies collinearity visualization are only exacerbated. We have 

developed a network-based approach to organize and display local synteny (Zhao et 

al., 2017; Zhao and Schranz, 2017) and have applied it to understand the evolution of 

the entire MADS-box transcription factor family across 51 plant genomes as a proof of 

principle of the method (Zhao et al., 2017). We identified several evolutionary patterns 

including extensive pan-angiosperm retention of certain gene clades, ancient retained 

tandem duplications and lineage-specific transpositions such as the floral patterning 

genes in Brassicaceae (Zhao et al., 2017). Our approach can be scaled to analyze not 

just one gene family, but all gene families across a lineage. 

The aim of this study is to investigate and compare the dynamics and properties of the 

entire synteny networks of all annotated genes for mammals and angiosperms. To this 

end, we analyzed the syntenic properties of 87 mammalian and 107 plant genomes 

(Figure 1) which represent most major phylogenetic clades of both mammalian and 

angiosperm groups across ~170 million years of evolution (Cifelli and Davis, 2003; 

Bininda-Emonds et al., 2007; Jiao et al., 2011; Magallón et al., 2015). For mammals, 

the species used covered the three main clades of Afrotheria, Euarchontoglires, and 

Laurasiatheria, as well as first-branching groups like Ornithorhynchus anatinus 

(platypus). For angiosperms, the species also cover three main groups of Monocots, 

Superasterids, and Rosids, as well as basal groups such as Amborella trichopoda 

(Figure 1). Some clades are more heavily represented than others such as primates 

(human relatives) and crucifers (Arabidopsis relatives) due to research sampling biases. 

Regardless, most major lineages are represented. Also, there are differences in the 

overall quality and completeness of the genome assemblies used, but this was a factor 

we wanted to analyze and assess using synteny analysis. We calculate average 

clustering coefficient for every gene family, and characterize gene functions of highly 

syntenically conserved versus dynamic. We decomposed the whole network into 

clusters, analysis of cluster composition, size distribution of all clusters indicate the 

landscape of specific genomic architecuture rearragements that may related to 

evolutioanry adaptions. 

 

Results and Discussion 

Genome collection, pairwise synteny comparisons 

We used fully-sequenced genomes to investigate all syntenic blocks within and across 

genomes. Initially we searched public databases maintaining mammalian and 

angiosperms genome resources such as NCBI, Ensembl, CoGe and Phytozome. 

Candidate genomes had to contain downloadable complete predicted gene models and 

gene position annotations. Ultimately, we analyzed 87 mammalian genomes, presented 

according to the consensus species tree adopted from NCBI taxonomy (Figure 1, 
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Supplemental Table S1) which included 1 Prototheia (Ornithorhynchus anatinus), 1 

Metatheria (Sarcophilus harrisii), 1 Xenarthra (Dasypus novemcinctus), 6 Afrotheria, 38 

Euarchontoglires and 40 Laurasiatheria species. For angiosperms, we analyzed 107 

genomes including 1 Amborellaceae (Amborella trichopoda), 26 Monocots (including 

14 Poaceae) and 80 eudicots (including 1 Proteales (Nelumbo nucifera), 23 

Superasterids (Asterids and Caryophyllales), and 56 Rosids) (Figure 1, Supplemental 

Table S1).  

 

Figure 1 Phylogenetic relationships of mammal and angiosperm genomes analyzed. (A) 

Mammal genomes used, highlighting the three main placental clades Afrotheria, 

Euarchontoglires and Laurasiatherias. (B) Angiosperm genomes used, highlighting the three 

main clades Monocots, Superasterids and Rosids. 

We modified all peptide sequence files and genome annotation GFF/BED files with 

corresponding species abbreviation identifiers, followed by pairwise all-vs-all genome 

comparisons for synteny block detection (Zhao et al., 2017; Zhao and Schranz, 2017). 
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To assess the overall impact of phylogenetic distance, genome assembly quality and/or 

genome complexity, we summarized the number of syntenic gene pairs for all pairwise 

genome comparisons (3,828 times for mammals and 5,778 times for angiosperms) into 

color-scaled matrixes (Figure 2) organized using the same species phylogenetic order 

as in Figure 1.  

The diagonal of the matrix represents self- vs. self-contrasts and indicates the number 

of retained duplicate genes, which is indicative of recent and/or ancient WGDs. The 

lighter orange and blue rows with fewer syntenic links could reflect key biological or 

genomic differences, but is much more likely to be due to poor quality genome 

assemblies. Such as the mammalian genomes of O. anatinus, Galeopterus variegatus, 

Carlito syrichta, Manis javanica, and Tursiops truncates (Figure 2A) and genomes of 

Humulus lupulus, Triticum urartu, Aegilops tauschii, and Lemna minor in angiosperms 

(Figure 2B).  

 

 

Figure 2 Pairwise synteny comparisons of mammal and angiosperm genomes. (A) Pairwise 

synteny comparison across Mammal genomes. (B) Pairwise synteny comparison across 

Angiosperm genomes. The color-scale indicates the syntenic percentage of each comparison. 

Species are arranged according to the consensus phylogeny (Figure 1). Overall, average 

synteny is much higher across mammals than plants. Also, there is a stronger phylogenetic 

signal seen for plant genomes. The method also allows for easy detection of potentially low-

quality genomes (overall lower syntenic pair scores). The diagonal for both plots represents 

intra-genome comparisons which can detect potential recent and ancient WGDs. Note, that 

almost all plant genomes have higher intra-genome syntenic pair scores than all mammal intra-

genome comparisons. 
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As shown in the matrixes, mammalian genomes overall are in general highly syntenic 

regardless of phylogenetic distance (Figure 2A) with primate vs primate comparisons 

showing marginally higher scores. Whereas plant genomes show more phylogenetic 

signal (e.g. monocots vs monocots and crucifers vs. crucifers), the impact of recent 

WGD (e.g. Brassica napus) and more variability overall (due to assemblies from 

different groups of researchers, different qualities, multiple independent WGDs) (Figure 

2B). Note, that almost all plant genomes have higher intra-genome syntenic pair scores 

than all mammal intra-genome comparisons. We further checked genome characters 

by plotting syntenic gene percentage against Pfam annotation percentage for each 

genome (Supplemental Figure S1). We also compared pairwise synteny coverages to 

genome quality metrics such as N50s and BUSCO (Supplemental Figures S2, S3) 

Based on these results, we removed four poor-quality plant genomes (H. lupulus, T. 

urartu, A. tauschii, and L. minor) before proceeding to the next step of our analyses. 

 

Characterization of synteny networks 

The entire synteny networks are composed of all syntenic genes identified within all the 

syntenic blocks. Specifically, there are 1,453,712 nodes (genes) and 49,035,861edges 

(syntenic connections between genes) for mammals, and 2,214,712 nodes and 

49,035,861edges for angiosperms, respectively. To evaluate genomic conservation of 

gene families (for gene family assignments see Methods) over evolutionary time scales 

from the synteny network data, we introduce two estimators: average clustering 

coefficient (Supplemental Figure S4) and the percentage of genes in the family that are 

syntenic (syntenic percentage) for every gene-family (Figure 3A). A clustering 

coefficient is calculated for all nodes in the synteny network, as a measure of the degree 

to which nodes in a graph tend to cluster together. Genes can be mobilized (e.g. 

transposed) to other genomic contexts (e.g. unique or lineage-specific contexts) and 

thus will no longer be collinear or syntenic to other species or lineages. Thus, we use 

percentage (gene family members in the network/ total gene family members in the 

genomes) to quantify the proportion of the genes retaining synteny.  
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Figure 3 Network properties of gene families from mammal and angiosperm genomes. (A) 

Distributions of gene family dynamics of mammal (11,830 in red) and angiosperm (10,617 in 

blue) gene families plotted using percentage of syntenic genes and average clustering 

coefficients per family. Quartiles of average clustering coefficient and syntenic percentage for 

both mammals and angiosperms are indicated by dashed (25%/75%) and solid (median) lines. 

(B) Conceptual model depicting different patterns of synteny network connectivity, according to 

data distribution, with further analysis based on 25% quartiles. 

 

We then plotted the average clustering coefficient and retention percentage of all the 

gene families for the mammalian (11,830 gene families) and angiosperm (10,617 gene 

families) synteny networks (Figure 3A). Mammalian gene families overall have 

significantly higher clustering coefficients (mean 0.92 for mammals compared to 0.72 

for angiosperms; P < 0.001, Wilcoxon-Mann-Whitney test) and retention percentage 

(mean 0.88 for mammals compared to 0.71 for angiosperm; P < 0.001, Wilcoxon-Mann-

Whitney test) than that of angiosperms (Figure 3A). This confirms that over large 

evolutionary time scales, genomic context is generally more conserved and constrained 

in mammals than for angiosperms.  

Syntenic dynamics of all gene families could be classified and compared to other gene 

families by our C-P (Clustering coefficient vs Percentage) quartile analysis method, as 

conceptually depicted in Figure 3B. We defined values of the top 25% quartile as “high”, 

and the bottom 25% quartile as “low” for both mammals and angiosperms. The resulting 

four categories are highlighted (Figure 3B). The high clustering coefficient plus high 

retention percentage in the synteny network (“high-high” C-P values), indicates the both 

most syntenically conserved and most completely syntenic gene families, and thus the 

most inter-connected networks (Figure 3B, Supplemental Table S2). Genes in the 

category of “high-low” C-P detect gene families where certain gene sub-families and/or 
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phylogenetic clades are highly syntenic, but overall many gene members are absent 

from the clusters (thus a low percentage). Non-syntenically connected gene family 

members may be prone to transposition (Figure 3B, Supplemental Table S2). In 

contrast, the category “low-high” C-P means that a high proportion of the gene family 

members are in the network, but not always well connected, for example due to tandem 

gene cluster expansions (Figure 3B, Supplemental Table S2). Lastly, the category “low-

low” C-P represent gene families that are distributed dispersedly (such as across 

pericentromeric regions) and thus non-syntenic, or represent young transpositions or 

lineage-specific genes shared only between a small number or related species (Figure 

3B, Supplemental Table S2). 

Comparative synteny dynamics of gene families of mammals and angiosperms 

We investigated if gene families with similar C-P synteny dynamics (high-high, high-low, 

low-high, and low-low), might also have similar functional annotations (e.g. GO terms) 

(Jiao and Paterson, 2014; Li et al., 2016). We tested for pathway and gene-function 

enrichment of gene families within each of the four C-P profiles for both mammals and 

angiosperms (Supplemental Table S3, Figures S5 and S6). The results shows that for 

mammals, gene families with “high-high” profiles are functionally enriched in DNA 

metabolic processes ( such as “DNA replication” and “DNA repair”), intracellular 

organelle part, nucleoplasm, and telomere maintenance.  (Supplemental Table S3, 

Supplemental Figure S5). By contrast, “low-low” gene families include functions in 

immune responses and pathways (e.g. “Biological oxidations”, “detection of chemical 

stimulus”, and “epoxygenase P450 pathway”), transmembrane receptor activities (e.g. 

“signaling receptor activity”, “G-protein coupled receptor activity”, and “olfactory 

receptor activity”), enriched protein classes are “antibacterial response protein”, 

“oxygenase”, “cytokine receptor”, and “defense/immunity protein” (Supplemental Table 

S3, Supplemental Figure S5). The mammalian “high-low” group is enriched for genes 

that function in DNA-templated gene transcription and DNA binding, such as KRAB box 

zinc finger transcription factors (Imbeault et al., 2017) (Supplemental Table S3, 

Supplemental Figure S5). Transcription factors bind specific promoters and thus 

regulate a variety of developmental and environmental processes. Moreover, 

transcription factors commonly consist of multiple members. Thus, it can be 

hypothesized that some gene family members are highly conserved and genomically 

constrained, while other members are versatile and transposed into new genomic 

positions. Finally the “low-high” group is enriched for genes involved in translation (e.g. 

“peptide biosynthetic process”, “peptide metabolic process”) and ribosomal component 

(e.g. “ribosomal subunit”, “ribonucleoprotein complex”), most enriched Reactome 

Pathways are closely related to translation processes (e.g. “eukaryotic translation”, 

“Cap-dependent translation initiation”), as well as infectious disease related pathways 

(e.g. “Influenza infection”, “Influenza life cycle”, and “Influenza viral RNA transcription 

and replication”) (Supplemental Table S3, Supplemental Figure S5).  
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The functional enrichment analysis of angiosperms shows a different pattern than for 

mammals (Supplemental Table S3, Supplemental Figure S6). Plant “high-high” gene 

families are enriched for organelle components (e.g. “organelle part”, “intracellular 

organelle”, “chloroplast part”, “organelle organization”, and “plastid part”), as well as 

acetyltransferase, transferase and methyltransferase proteins for the processes such 

as “DNA repair”, “ncRNA metabolic process” and “methylation” (Supplemental Table S3, 

Supplemental Figure S6). Many of these categories are plant-specific related to 

photosynthesis. By contrast, the plant “low-low” group is enriched for genes functions 

in biological oxidation and defense responses such as “secondary metabolic process”, 

“monooxygenase activity”, “UDP-glucosyltransferase activity”, and “Cytochrome P450s” 

(Supplemental Table S3, Supplemental Figure S6).  “Low-high” gene families function 

in nuclear part components (e.g. “intracellular organelle lumen”, “organelle lumen”), 

biosynthetic process (e.g. “organonitrogen compound biosynthetic process”, “cellular 

aromatic compound metabolic process”), and gene expression (e.g. “RNA polymerase 

complex”, “nucleic acid binding”, “RNA polymerase II transcription initiation”) 

(Supplemental Table S3, Supplemental Figure S6). Similar to mammalian “high-low” C-

P families, angiosperms “high-low” genes function in positive regulation of transcription 

(e.g. “RNA polymerase II regulatory region DNA binding”, “transcription factors”), 

interestingly MADS-box transcription factors controlling floral development also 

overrepresented.  (Supplemental Table S3, Supplemental Figure S6).  

Classifying and characterizing gene families according to their “synteny network C-P” 

scores allows for the relative comparisons of any gene family to all others across a 

lineage. The degree of conservation likely reflects functional constraints of the family. 

For example, gene families with a “high-high” C-P are responsible for fundamental 

functions (i.e. DNA repair and photosynthesis.) and “low-low” C-P gene families are 

highly mobile and functionally flexible (such as both animal and plant NLR family 

defense-related receptors (Jones et al., 2016) and plant P450s and F-box genes) 

(Supplemental Table S3).  

Comparative phylogenomic profiling of synteny clusters 

We next performed a clustering analysis for the entire mammalian and angiosperm 

synteny networks. We used Infomap (Rosvall and Bergstrom, 2008; Lancichinetti and 

Fortunato, 2009) as the clustering algorithm due to its efficiency and accuracy in 

handling large graphs with millions of nodes. To visualize and understand genomic 

diversity, we performed phylogenomic profiling of all synteny clusters of mammals and 

angiosperms (Figures 4A and 4B). Blue columns indicate conserved single copy 

syntenic clusters, orange columns indicate retained duplicate copy clusters (i.e. 

conserved ohnologs from WGD), and the red columns signify conserved clusters with 

more than two copies (e.g. conserved tandem clusters) (Figures 4A and 4B). Nearly 

empty rows of the less-syntenic species are consistent with the pairwise matrix in Figure 

2. 
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Figure 4 Phylogenomic profiling of all synteny clusters for mammal and angiosperm genomes. 

(A) Phylogenomic profiling of all mammalian clusters (size > 2). Groups of lineage-specific 

clusters are boxed and labeled. (B) Phylogenomic profiling of all angiosperm clusters (size > 2). 

Groups of lineage-specific clusters are boxed and labeled.  

 

For mammals, a very large proportion of all genes are syntenic and single copy (Figure 

4A) as mentioned above. Smaller proportions of mammalian genomes are conserved 

and syntenic for duplicates or larger conserved multi-gene families. Interestingly, 

lineage-specific clusters were observed for most of the included mammalian clades. For 

example, we found lineage-specific clusters for Primates (such as the CENPJ example 

discussed above), Rodentia, Vespertilionidae, Felidae, Camelidae, and Bovidae (Figure 

4A).  

In contrast, in angiosperms less than 10% of clusters are syntenically conserved 

between eudicot and monocot species (Figure 4B). The remaining clusters are mostly 

lineage-specific clusters that appear as discrete columns (Figure 4B). This indicates 

that angiosperm genomes are highly fractionated and reshuffled, with abundant 

examples of specific clusters for particular phylogenetic lineages/plant families, such as 

Amaranthaceae, Brassicaceae, Poaceae, Fabaceae, Rosaceae, and Solanaceae 

(Figure 4B). Results also highlight species with more gene copies per cluster (e.g. 

orange/red rows), likely due to recent WGD events such as for G. max, B. napus and 

P. trichocarpa (Figure 4B).  

Traditional phylogenomic profiling data typically show only the presence/absence of a 

gene family. In contrast, our synteny-based phylogenomic profiling is based on 

conserved genomic collinearity of gene families across lineages which provides 

potential novel information about changes of genomic context (transpositions and/or 
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expansions) or the origin of “novel genes” of specific gene families. Such changes in 

genomic context provide intriguing candidate gene sets for investigating trait evolution. 

Comparative synteny network clustering 

We further summarized and compared the clustering results for mammals and 

angiosperms in terms of cluster-size distributions (Figures 5A and 5B), corresponding 

clustering coefficients (Figures 5C and 5D), and number of species included per cluster 

(Figures 5E and 5F).  

Mammalian genomes have a prevalent peak of syntenic gene families that are present 

only once per taxa (single copy orthologous gene cluster peak shaded in cyan, Figure 

4A). To the right, there is a second modest peak of duplicated (ohnolog) genes due to 

the ancient 2R WGD events (shaded in bright yellow, Figure 5A). These two peaks 

could be further explained by Figures 5C and 5E that depict the corresponding average 

clustering coefficient and number of species, respectively. We observe that the peak in 

cyan in Figure 5A is accompanied by a steady increasing trend of the clustering 

coefficient and the number of species involved (Figure 5C). A similar trend was 

observed for the clusters forming the peak in yellow due to WGD (Figure 5A). On the 

far left there is the rather modest proportion of lineage specific genes (clusters of 

syntenic genes between only a subset of mammalian species or clade(s) (shaded in 

purple, Figure 5A). On the far right are large multigene clusters usually with multiple 

syntenic gene copies conserved across multiple species due to tandem duplications 

such the well-known Hox-genes (shaded in olive green, Figure 5A). Representative 

examples are labeled on the curve, and further depicted in Figures 5G and 5H. 
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Figure 5 Synteny cluster statistics of mammal and angiosperm genomes and representative 

mammalian synteny clusters. Approximate size ranges for clusters of lineage-specific, 

conserved, WGD replicates, and large tandem genes are shaded in purple, cyan, yellow, and 

olive green, respectively. (A) Sizes distribution of all mammalian gene syntenic clusters. 

Representative examples are pointed and labeled on the curve. (B) Sizes distribution of all 

angiosperms gene syntenic clusters (C) Boxplot of clustering coefficient by mammalian cluster 

sizes. (D) Boxplot of clustering coefficient by angiosperm cluster sizes. (E) Number of involving 

genomes for mammalian clusters by cluster sizes. (F) Number of involving genomes for 

angiosperm clusters by cluster sizes. (G) Six representative and diverse mammalian clusters of 

CENPJ (primate-specific one and the others), p73, p53-p63, ATF2-ATF7-CREB5, and NFE2-

NFE2L1-NFE2L2-NFE2L3. Total number of nodes, edges, average degree, and clustering 
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coefficient are indicated accordingly below. (H) Phylogenomic profiling of the clusters from (G), 

a color gradient of red indicates the number of syntelogs in each species. 

 

In contrast, angiosperm genomes show a very large proportion of lineage-specific 

clusters on the far left (shaded in purple, Figure 5B). The clustering coefficients for these 

clusters is often above the threshold of “high” (top 25%, which was defined earlier for 

the C-P classification) (Figure 5D) and the cluster size for these lineage-specific clusters 

is mostly between 10 to 30 (shaded in cyan, Figure 5F), reflecting the number of species 

and gene copies within particular phylogenetic groups such as Fabaceae, Brassicaceae, 

and Poaceae. Next, a rather broad peak of gene clusters are observed that are 

conserved across many lineages (Figure 5B) of genes that are single-copy in some 

lineages and in two/more copies in other lineages due to WGD. Also, there is a larger 

proportion of large multigene families seen to the far right (shaded in olive green, Figure 

5B). There is a variation for the number of species per cluster for these large multi-gene 

families in angiosperms (Figure 5F). 

The combination of cluster size, corresponding clustering coefficient, and number of 

involved species were used to select representative synteny clusters for mammals. As 

an example of a lineage-specific cluster we show CENPJ (as an example an of a 

primate lineage-specific cluster), p73 as an example of a single copy conserved cluster, 

p53-p63 as an example of 2-ohnologs-retained WGD cluster, ATF2-ATF7-CREB5 as 

an example of 3-ohnolog-retained WGD cluster, and NFE2-NFE2L1-NFE2L2-NFE2L3 

as example of 4-ohnolog-retained WGD cluster (Figures 5A, 5G and 5H). It has been 

reported that CENPJ regulates brain size (Bond et al., 2005; Gul et al., 2006), and 

primates have relatively larger brains (Kudo and Dunbar, 2001; Byrne and Corp, 2004). 

It is interesting that we found primates formed a lineage-specific CENPJ synteny cluster 

(Figures 5G and 5H) compared to other mammals. This indicates that CENPJ 

underwent a gene transposition event at or near the divergence of the primate ancestor 

from other mammals. Thus, the primate gene copy is in a unique genomic context 

facilitating potential new/altered regulatory patterns and gene functions. The p53, p63 

and p73 genes compose a family of transcription factors involved in cell response to 

stress and development (Levrero et al., 2000; Murray-Zmijewski et al., 2006). p63 is 

previously perceived close related to p73 because of the similar protein domain 

compositions, however our result shows p63 and p53 are ohnolog duplicates retained 

after WGD. Other ohnolog clusters with strong support from our analyses include ATF2-

ATF7-CREB5, transcription factors with broad roles such as activating CRE-dependent 

transcription, cancer progression and immunological memory (Gupta et al., 1995; 

Bhoumik et al., 2008; Gozdecka and Breitwieser, 2012; Yoshida et al., 2015)  and 

NFE2-NFE2L1-NFE2L2-NFE2L3, also with broad roles such as regulation of oxidative 

stress, aging and cancer cell proliferation (Kobayashi et al., 1999; Sykiotis and 

Bohmann, 2008; Chowdhury et al., 2017), notably NFE2L1 was recently reported to 

secure cellular protein quality control under cold adaptions by regulating brown adipose 
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tissue (BAT) thermogenic function (Bartelt et al., 2018). As a comparative example of 

an entire gene family for both mammals and plants, we give the complete homeodomain 

(Schena and Davis, 1992; Krumlauf, 1994) gene families for both lineages (Figures S7 

and S8). We clearly show and verify that the mammalian Hox genes appear as inter-

connected synteny super-clusters and also find synteny connections to the ParaHox 

genes, consistent with the numerous previous reports (Brooke et al., 1998; Ferrier and 

Holland, 2001; Lemons and McGinnis, 2006) (Supplemental Figure S7). In contrast, for 

plants we did not find any prominent tandem origin of homeobox clades, but did identify 

several examples of WGD-derived gene expansions and family-specific transpositions 

(Supplemental Figure S8). 

 

Conclusions 

Synteny analysis of multi-species genomics datasets has led to major advances in our 

understanding of evolutionary patterns and processes. However, few studies have 

systematically assessed and compared genomic properties across kingdoms (Murat et 

al., 2012). Synteny network statistical parameters provide new possibilities for 

systematically evaluating gene (syntenic) diversification and/or conservation patterns 

over long evolutionary time scales. In this study, we have presented an analytic 

framework for large-scale synteny comparisons using network analysis of all suitable 

mammalian and angiosperm genomes. Assessment metrics based on synteny 

intuitively illustrate genome contiguity and copy number depth due to (paleo)polyploidy. 

The C-P method provides a means to characterize gene family dynamics in a 

comparative evolutionary context. We have displayed and compared features of all 

synteny clusters from these two important lineages and performed their clade-wide 

phylogenomic profiling. The results illustrate the dramatic differences in genomic 

dynamics within and between the two groups, exemplified by synteny networks of 

primate-specific gene transpositions (i.e. CENPJ), extant ohnologs surviving 2R of 

mammals, and for all mammal and angiosperm homeobox genes.  

Dissection of the properties of all synteny clusters provides intriguing insights into the 

differing genomic architectures and dynamics of mammal and flowering plants. 

Examples in this study are just the tip of the iceberg. Much remains to be explored, but 

this study provides an intriguing foundation for future investigations to better understand 

genome evolution and elucidate regulatory mechanisms underlying diverse 

evolutionary biological processes. Such approach can further be extended to other 

phylogenetic groups and deeper evolutionary time scales.  
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Methods 

Genome resources 

All reference genomes were downloaded from public repositories (Supplemental Table 

S1). For each genome, we needed a FASTA format file containing peptide sequences 

of all predicted gene models, as well as a genome annotation file (GFF/BED) showing 

the positions of all the genes. Original gene names in the FASTA file have been modified 

into a prefix (unique identifier indicating species) and numeric GenBank gene ID. An in-

house script was used for batch downloading genomes and modifying gene names.  

All mammalian genomes were downloaded from NCBI. Initially we utilized the total list 

of available mammal genomes on NCBI 

(https://www.ncbi.nlm.nih.gov/genome/browse/). Using the list with our script, some 

records did not contain the complete required information for our analysis (i.e. no 

genome annotation files, or no FASTA file of total peptide sequences). In the end, we 

retrieved 87 mammalian genomes suitable for our analysis. Angiosperm genomes were 

collected from various public databases such as Phytozome 

(https://phytozome.jgi.doe.gov/pz/portal.html (Supplemental Table S1).)  

Peptide sequence annotation 

For gene family annotation, we used HMMER (hmmscan) to perform domain 

annotations against the Pfam database (version downloaded: Pfam 30.0, Pfam-A with 

16,306 entries) for all the peptides of the utilized genomes. Domains identified from one 

sequence were combined, and used for gene family annotation. Multiple occurrences 

of the identical domain within one protein were counted only once.  

Pairwise comparison, synteny blocks detection, and network construction 

RAPSearch2 was used to perform all inter- and intra- pairwise all-vs-all protein similarity 

searches. MCScanX was used for synteny block detection with default settings (window 

size: 50, number of match genes: >= 5). All outputting collinear files were integrated 

and curated into one tabular-format file, each row contains information about “Block_ID”, 

“Block_Score”, and syntenic gene pairs. This file creates a database which contains the 

entire syntenic nodes and syntenic connections derived from the input genomes. Detail 

procedures can be referred to a Github tutorial 

(https://github.com/zhaotao1987/SynNet-Pipeline ).  

Network statistics  

Network statistical analysis was carried out in the R environment (http://www.r-

project.org), using the R package “igraph” (Csardi and Nepusz, 2006). We performed 

the analysis of the networks of mammal genomes and angiosperm genomes separately. 

The entire network must first be simplified to reduce duplicated edges (same syntenic 

pair may be derived from multiple detections), followed by the calculation of clustering 

coefficient, and node degree of each node.  

https://www.ncbi.nlm.nih.gov/genome/browse/
https://phytozome.jgi.doe.gov/pz/portal.html
https://github.com/zhaotao1987/SynNet-Pipeline
http://www.r-project.org/
http://www.r-project.org/
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We mapped gene family annotations to all the nodes, and computed the percentage for 

each gene family using its total occurrence in the synteny network against its total 

occurrence from the step “Peptide sequence Annotation“. We filtered gene families with 

at least 50 nodes and plot percentage against average clustering coefficient for all these 

gene families. Quartiles of percentage and average clustering coefficient was estimated 

according to their distributions. We describe values over Q3 (highest 25%) as high, and 

values below Q1 (lowest 25%) as low. 

Gene annotation enrichment analysis 

Gene families of special interest (“high-high”, “high-low”, “low-high”, and “low-low”) were 

extracted from the total analysis. We then mapped gene(s) from the model species H. 

sapiens (for mammals) or A. thaliana (for angiosperms) to each of the gene families. 

We then performed online PANTHER overrepresentation test (http://pantherdb.org/) for 

each of the gene lists, with Bonferroni correction for multiple testing. In addition to the 

annotation of GO enrichment (biological process, molecular function, and celluar 

component), we also included analysis of “Reactome pathways”, “PANTHER pathways”, 

and “PANTHER protein class”. Results containing significant enriched terms was 

downloaded and illustrated as word clouds, by the R package “tagcloud”. Font sizes 

determined by “-log10(p-value)”. We depicted a maximum of the top 40 most significant 

terms. 

Network clustering and phylogenomic profiling  

We used the infomap method to split the entire network, consisting of millions of nodes, 

into clusters (Rosvall and Bergstrom, 2008). Clustering results were determined by 

topological edge connections, edges were unweighted and undirected. All synteny 

clusters were decomposed into numbers of involved syntenic gene copies in each 

genome. Dissimilarity index of all clusters was calculated using the “Jaccard” method 

of the vegan package (Dixon, 2003), then hierarchically clustered by “ward.D”, and 

visualized by “pheatmap”. We illustrate all the clusters of mammals and angiosperm 

respectively with cluster size >2. 
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Supplemental Information 

 

Supplemental Figure S1 Plot of percentage syntenic genes again annotated (by Pfam) 

percentage of all genomes. Species were highlighted with abbreviated names if syntenic genes 

percentage lower than 0.25 or annotated proteins (by Pfam) lower than 0.5. 
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Supplemental Figure S2 Pairwise comparisons of genome metrics of mammal genomes, 

including N50, genome size, scaffolds, BUSCO, and average syntenic percentage. 
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Supplemental Figure S3 Pairwise comparisons of genome metrics of angiosperm genomes, 

including N50, genome size, scaffolds, BUSCO, and average syntenic percentage. 
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Supplemental Figure S4 Schematic diagram for the calculation of the average 

clustering coefficient. 

 

 

 

 

Supplemental Figure S5 Comparative word clouds based on upper and lower quartiles for 

functional enrichment of significant terms with representative C-P profiles for mammals. Font 

sizes are representative of adjusted p-values. 
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Supplemental Figure S6 Comparative word clouds based on upper and lower quartiles for 

functional enrichment of significant terms with representative C-P profiles for angiosperms. Font 

sizes are representative of adjusted p-values. 
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Supplemental Figure S7 Synteny network of all homeodomain proteins for mammals, 

representative H. sapiens are labeled. The well-known Hox clusters, derived from WGD and 

tandem duplications, were visualized as two huge clusters (Hox1-8 and Hox9-13) connected 

by EVX gene cluster (EVX1 and EVX2). ParaHox genes PDX1, GSX1, and GSX2 form one 

highly inter-connected cluster, while the other three ParaHox genes CDX1, CDX2, and CDX3 

form respective independent clusters. Moreover, we have found the synteny cluster of DLX1-

4, and DLX6, cluster of LHX2, 6, and 9, cluster of NKX2-1 and 2-4, and cluster of CERS5 and 

6. 
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Supplemental Figure S8 Synteny network of all homeodomain proteins for angiosperms, 

representative A. thaliana genes are labeled. Some examples include conserved clusters 

(OCP3, RPL, and ATH1); WGD-derived clusters (KNAT3-5, HAT1-3-HB2-HB4, HDG1-HDG7-

ANL2-FWA, and HDG2-HDG3-PDF2-ATML1); eudicot-specific clusters (STM, KNAT7, 

KNAT2-KNAT6, WOX1-PFS2 and HB22-HB51), and monocot-specific clusters (i.e. 

Os01g60270, Os06g04850, Os08g19590).  
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Supplemental Table S1 Mammalian and angiosperm genomes used in this study. 

Supplemental Table S2 Gene families with significant C-P features of mammals and 

angiosperms. 

Supplemental Table S3 Gene function enrichment for gene families with distinguished 

C-P profiles of Mammals and Angiosperms. 
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). This includes the modified FASTA and BED/GFF files of all mammal and angiosperm 

reference genomes. The scripts for network database preparation (pairwise comparison, 
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A lot more genomes are coming… 

Genome sequencing has advanced rapidly in the last decades, and thus the number of 

reference genomes is mushrooming. With richer information, comparative genomics 

may hold the key to clarify mechanisms that generated the great diversity of present-

day life forms, and to answer some of the most fundamental questions. Toward this end, 

global joint efforts are being made, for example the 10KP (10,000 Plants) Genome 

Sequencing Project, as part of the EBP (Earth BioGenome Project, Lewin et al., 2018), 

will sequence and characterize representative genomes from every major clade of 

embryophytes, green algae, and protists (excluding fungi) within the next five years 

(Cheng et al., 2018b).  

Are we ready for the forthcoming enormous volume of genomes? In comparative 

genomics, shared synteny provides important inference of genomic architecture 

variations. However, to compare synteny efficiently across many large eukaryotic 

genomes is a burning question. In this thesis, I discuss and propose an easy-to-follow 

systematic approach to organize phylogenomic synteny data by using networks. As 

shown in Chapters 2-5, synteny networks can nicely reflect and summarize the syntenic 

conservation and diversification status of any genes of interest across many genomes. 

Such a way of data organization frees us from integrating and aligning multiple synteny 

blocks that comes along with the newly added genomes.  

 

Synteny networks: not only a representation 

Gene duplications made large gene families (Ohno et al., 1968; Zhang, 2003). A 

combination of different duplications at different times has shaped the present-day gene 

family members in the genome. Phylogenetic tree reconstruction using the coding 

sequences is usually an entry point for the evolutionary inference of gene relationships. 

Now with the extra layer of synteny information, we are able to sketch the trajectory of 

how subfamilies diversified and are related by genomic context (such as the MADS-box 

genes AGL6 and AGL2 clades described in Chapter 3). A cursory glance over the 

cluster topology and gene IDs could help us to quickly inspect the genomic context 

conservation and diversification patterns. Together with phylogenetic profiling (copy-

number profile of all clusters across phylogeny), we can distinguish from certain gene 

clusters (Chapter 3, Chapter 4) what kind of gene duplications/movements have been 

taken place.  

Besides visualization, network science involves a set of mathematical parameters for 

characterizing networks. These includes measures of size, density, average degree, 

diameter, clustering, robustness, and centrality, as well as concepts such as scale-free, 

preferential attachment, small-world, percolation, link analysis, and associative mixing 

(Barabási and Pósfai, 2016). All these network parameters provide tools and 

opportunities to infer phylogenomic synteny in a new way. We could then use these as 
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a framework to quantify and qualify synteny properties of all genes and gene families 

(Chapter 5). A clearer evolutionary history picture will guide our experimental design to 

explore gene function diversification and mechanisms.  

Although the overall quality of newly published genomes keeps improving with new 

technologies, many available genomes are still of poor quality. N50 and BUSCO is not 

always a good indicator of how well the genome has been assembled (Chapter 5). But, 

one bonus of building synteny networks with many genomes is that, the cumulative 

effect make this network approach “error-tolerant”, which reduces the impact of several 

specific bad genomes. Besides we can use this as a metrics to eliminate these genomes 

from further analysis (Figure 3 Chapter 5).  

 

Which clustering method best fits synteny data?  

The entire synteny network could contains millions of nodes, and dozens of millions of 

edges. To interpret such complex networks, a clustering algorithm is needed to identify 

clusters or communities based on network topologies. In this thesis, we showed the 

application of two clustering methods, infomap (Rosvall and Bergstrom, 2008) and k-

cliques (Derenyi et al., 2005). Next to that, I compared multiple other clustering methods 

for synteny network data, including Louvain (Blondel et al., 2008), MCL (Enright et al., 

2002), spinglass (Reichardt and Bornholdt, 2006), walktrap (Pons and Latapy, 2005), 

fastgreedy (Clauset-Newman-Moore) (Clauset et al., 2004), Girvan-Newman (based on 

edgebetweeness) (Girvan and Newman, 2002), BigClam (Yang and Leskovec, 2013), 

kcores (Batagelj and Zaversnik, 2003), GCE (Lee et al., 2010), and cliquesmain 

(Leskovec and Sosič, 2016). These algorithms vary greatly at speed and quality, and 

were originally designed for community inference for different types of network data. So 

what is the best method for clustering synteny network data? To answer this question 

with a precise benchmarking is hard, because there is no ground-truth synteny data 

across multiple species for benchmarking. This is also an outstanding issue when 

comparing synteny detection programs. However I tested and compared the clustering 

results against each other by empirical evidence, using the same synteny network data. 

I found for example the fastgreedy (CNM) method (Clauset et al., 2004) would more 

likely link several loosely connected clusters as one community, while MCL (Enright et 

al., 2002) is prone to output too many clusters. For phylogenomic synteny data, we need 

some tailor-made criteria for clustering. For example, the clustering method should be 

tolerant for monocot species to have relatively fewer connections to the cluster formed 

by most dicots species in the network, rather than separating them into different clusters, 

due to the large evolutionary distance and extensive genomic rearrangements.  

This thesis uses clique percolation method (CPM) based on k-cliques, and infomap in 

separate chapters. The k-cliques method (Derenyi et al., 2005) provides a good balance 

of presenting the whole picture while discarding noises. The k-cliques community brings 

together the gene clusters of SEP1, SQUA, SEP3, FLC, and TM8, which allows us to 



CHAPTER 6: GENERAL DISCUSSION   113 

 
 

think about the relations and evolution of them as a whole (Figure 4, Chapter 3). The 

CPM algorithm (Derenyi et al., 2005) detects all complete sub graphs and then builds a 

clique-clique overlap matrix, and returns all connected components by a given k. On 

this account, the matrix could be huge and take substantial amounts of memory for very 

large networks. Algorithms such as fastgreedy (Clauset-Newman-Moore, Clauset et al., 

2004), BigClam (Yang and Leskovec, 2013), Louvain (Blondel et al., 2008), and infomap 

(Rosvall and Bergstrom, 2007) would be more capable to efficiently identify 

communities inside large networks. Infomap is recognized as one of the most reliable 

algorithms according to several researches. To correctly evaluate the performance of 

the different clustering methods is still an issue, especially in the case of overlapping 

communities. The only way we can appreciate the quality of an algorithm is to test it on 

a graph with a built-in community structure, or where we know the ground-truth 

communities. Therefore, much could be further explored for synteny network clustering 

algorithms. New methods that are aware of phylogenetic distance between the nodes 

(weighted edges), and have high efficiency and accuracy would be most desirable.  

 

Weakness and future perspective 

Besides the main chapters within this thesis, I have also used this synteny network 

approach to investigate gene family or genome evolution with other collaborators. For 

example the analysis of fish genomes and birds genomes, and diverse gene families, 

such as ARFs, AP2s, NACs, HIPPs, LTPs, and TPS. Overall our synteny network 

approach provides exciting insights, which are consistent with wet-lab evidences. 

Nevertheless, there are several drawbacks with this approach, which I discuss below. 

Firstly, for synteny detection we performed pairwise genome comparisons based on 

whole-genome annotations. Therefore genomes without annotations, represent in only 

raw scaffolds cannot be used directly. Also, only coding sequences are included as 

nodes, and as such intergenic non-coding regions that may contain important regulative 

conserved motifs across species cannot be inferred from the network.  

Secondly, young tandem replicates could be underestimated from the network. This 

problem is derived from synteny detection softwares. We use MCScanX (the successor 

of MCScan) (Tang et al., 2008b; Wang et al., 2012), which is by far the most cited, and 

is stricter in its default settings (Liu et al., 2018). Tandem arrays could contains two to 

twenty genes continuously (e.g. P450s, TPS genes, LRR genes, etc.). In order to avoid 

blocks that consist of purely tandem duplicates, MCScanX by default collapses multiple 

tandem matches into one representative pair. Similar treatments for tandem repeats 

were also found for example in i-ADHoRe and SynFind. As a consequence, conserved 

tandem duplicates within the syntenic blocks across species will be greatly pruned 

(Figure 1). For example, the three important cold-resistance CBF genes in Arabidopsis 

thaliana (CBF1: AT4G25490, CBF2: AT4G25470, CBF3: AT4G25480), are in fact 

syntenic to three A. lyrata CBF genes (AL7G27600, AL7G27610, AL7G27630), but this 
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cannot be directly inferred from standard synteny detection outputs (as exemplified in 

Figure 1B). A comparison of syntenic conserved tandem arrays across species could 

provide important insights of when and how such duplications occurred. Thus further 

complements to current synteny detection tools should be made to remedy such 

situation in the future.  

 

 

 

Figure 1. Two scenarios of synteny blocks containing tandem duplicated syntenic pairs, which 

can be oversimplified by a synteny detection software. (A) The gene was tandem duplicated in 

one species. (B) The gene was tandem duplicated in both species. 

Thirdly, the synteny network approach provides visualization for particular genes of 

interest, without showing the flanking genes from the syntenic blocks. Thus it is not 

straightforward to compare flanking neighbouring genes surrounding the query locus. 

In fact for this need, we could always restore all involved synteny blocks using synteny 

block IDs and then align the blocks separately. However, a better way to organize, 

summarize, and visualize flanking neighbouring genes from all these blocks is the next 

challenge.  

In this thesis, I showed that by using our novel synteny network approach, 

phylogenomic synteny conservation or diversification could be qualified and quantified 

in an easy way. Synteny properties could be used as another character besides 

chromatin data, methylation data, expression data, protein interaction data, etc. for 

machine-learning based computational biology, to confer more discoveries underlying 

trait evolution. Ever-evolving gene-sequencing technology, fast-increasing genomics 

data, fast-developing big-data-based infrastructure and analytics, as well as the 

application of targeted genome editing (CRISPR-Cas9) and synthetic biology, have put 

a spring in the step of understanding how genomes work through evolutionary 

comparative genomic analysis, and clarifying mechanisms that generate the great 

diversity of present-day life forms.
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Summary 

For comparative genomics, relative gene orders or synteny holds key information to 

assess genomic innovations such as gene duplications, gene loss, or transpositions. 

While the number of reference genomes is growing exponentially, a major  challenge  

is  how  to  detect,  represent,  and  visualize  synteny  relations  of any genes of interest 

effectively across a large number of genomes.  

In this thesis, I present six chapters centering on a network approach for large-scale 

phylogenomic synteny analysis, and discuss how such a network approach can 

enhance our understanding of the evolutionary history of genes and genomes across 

broad phylogenetic groups and divergence times.  

In Chapter 1, I stress that synteny information is becoming more important at this 

genomics age with rapidly developing DNA sequencing technologies. It provides us 

another layer of data besides merely sequences, and could potentially be better used 

to improve phylogeny. I also summarized current available tools and gave an example 

of popular websites for synteny detection. 

In Chapter 2, I propose an outline performing synteny network analysis, which is based 

on three primary steps: pairwise whole genome comparisons, syntenic block detection 

and data fusion, and network visualization. Then with comparison to a previous synteny 

comparison result which use traditional parallel coordinate plots, I show that the network 

approach could present us a much clear, strong, and systematic graph, with integrated 

synteny information from 101 broadly distributed species. 

In Chapter 3, we analyzed synteny networks of the entire MADS-box transcription factor 

gene family from fifty-one completed plant genomes. We applied a k-cliques percolation 

method to cluster the synteny network. We found lineage-specific clusters that derive 

from transposition events for the regulators of floral development (APETALA3 and PI) 

and flowering-time (FLC) in the Brassicales and for the regulators of root-development 

(AGL17) in Poales.  We also visualized big difference of synteny properties between 

Type I MADS-box genes and Type II MADS-box genes. We identified two large gene 

clusters that jointly encompass many key phenotypic regulatory Type II MADS-box gene 

clades (SEP1, SQUA, TM8, SEP3, FLC, AGL6 and TM3). This allows for a better 

understanding of how evolution has acted on a key regulatory gene family in the plant 

kingdom. 

In Chapter 4, we performed synteny network analysis of LEA gene families, which 

includes eight different subfamilies (LEA_1 to LEA_6, SMP, and DHN) and has a 

relatively chaotic classification. Synteny clusters provide us better pictures of genomic 

innovations and function diversification. For example recurrent tandem duplications 

contributed to LEA_2 family expansion, whereas synteny and protein sequence were 

highly conserved during the evolution of LEA_5. 
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In Chapter 5, instead of the analysis of a particular gene family, I scale up the analysis 

to all the genes from all available genomes across kingdoms over significant 

evolutionary timescales. We used available genomes of 87 mammals and 107 flowering 

plants. We first compare synteny percentage with popular genome metrics such as 

BUSCO and N50, which reveal genomic architecture conservation and variation across 

kingdoms. We characterized and compare the properties of the whole network, using 

degree distribution and clustering results. Through phylogenomic profiling of size, 

degree and compositions of all clusters, we identified many phylogenomic genomic 

innovations (i.e. duplications, gene transpositions, gene loss), at the individual gene 

level, from tested mammal and angiosperm genomes.  

In Chapter 6, I summarize the merits of taking a network-based approach for synteny 

comparisons, and discuss current clustering methods for synteny data. I also mentioned 

several weakness, which could be further complemented in the future.
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