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Abstract  11 

The expected increase in the global demand for livestock products calls for insight in 12 

the scope to increase actual production levels across the world. This insight can be 13 

obtained by using theoretical concepts of production ecology. These concepts 14 

distinguish three production levels for livestock: potential (i.e. theoretical maximum) 15 

production, which is defined by genotype and climate only; feed-limited production, 16 

which is limited by feed quantity and quality; and actual production. The difference 17 

between the potential or limited production and the actual production is the yield gap. 18 

The objective of this paper, the first in a series of three, is to present a mechanistic, 19 

dynamic model simulating potential and feed-limited production for beef cattle, which 20 

can be used to assess yield gaps. A novelty of this model, named LiGAPS-Beef 21 

(Livestock simulator for Generic analysis of Animal Production Systems – Beef cattle), 22 

is the identification of the defining factors (genotype and climate) and limiting factors 23 

(feed quality and available feed quantity) for cattle growth by integrating sub-models 24 

on thermoregulation, feed intake and digestion, and energy and protein utilisation. 25 

Growth of beef cattle is simulated at the animal and herd level. The model is designed 26 

to be applicable to different beef production systems across the world. Main model 27 

inputs are breed-specific parameters, daily weather data, information about housing, 28 

and data on feed quality and quantity. Main model outputs are live weight gain, feed 29 

intake, and feed efficiency (FE) at the animal and herd level. Here, the model is 30 

presented, and its use is illustrated for Charolais and Brahman × Shorthorn cattle in 31 

France and Australia. Potential and feed-limited production were assessed 32 

successfully, and we show that FE of herds is highest for breeds most adapted to the 33 

local climate conditions. LiGAPS-Beef also identified the factors that define and limit 34 



 
 

growth and production of cattle. Hence, we argue the model has scope to be used as 35 

a tool for the assessment and analysis of yield gaps in beef production systems.   36 

Keywords: beef cattle, growth, mechanistic modelling, production ecology, yield gap  37 

Implications  38 

The model LiGAPS-Beef presented in this paper simulates potential (i.e. the theoretical 39 

maximum) and feed-limited production of beef cattle. The difference between the 40 

potential or feed-limited production and the actual production is defined as the yield 41 

gap. LiGAPS-Beef is designed to quantify yield gaps for different beef production 42 

systems across the globe, and identifies the biophysical factors that define cattle 43 

growth under potential production and limit growth under feed-limited production. Yield 44 

gap analysis, which includes the identification of these factors, can provide insights in 45 

the options to increase beef production and resource use efficiency in a sustainable 46 

way.       47 

Introduction  48 

Global demand for agricultural products is expected to increase by 60% between 2007 49 

and 2050. In the same period, the estimated increase is even larger for the animal-50 

source foods milk (+62%), eggs (+65%), and meat (+76%), the latter includes +43% 51 

for pork, +66% for beef, and +123% for poultry meat. At the same time, the projected 52 

expansion of global arable land is only 7% (Alexandratos and Bruinsma, 2012). 53 

Meeting the future demand for food, therefore, requires an increase in agricultural 54 

production per unit of land (Van Ittersum et al., 2013), even if food waste is reduced 55 

and more plant-based diets are consumed in developed countries. 56 

The future scope to increase agricultural production per unit of land is determined by 57 

biophysical, socio-economic, cultural, and ethical factors. Biophysical determinants for 58 



 
 

agricultural activities are relatively conservative since they are governed by biological 59 

and physical laws. Improving the biophysical potentials of crops and livestock requires 60 

breeding programs that take multiple years or even decades. Economic or policy 61 

constraints are more variable in time and can be managed to some extent. Hence, the 62 

biophysical determinants of agricultural production provide a relatively stable 63 

benchmark to assess the scope to increase food production towards 2050 under 64 

varying economic and policy conditions. 65 

The biophysical scope to increase agricultural production can be assessed by applying 66 

concepts of production ecology, which distinguish a hierarchy of production levels. The 67 

potential production of crops and livestock is obtained under ideal management, and 68 

is determined by genotype and climate only. The next level is referred to as limited 69 

production, where water or nutrient availability limits crop growth, and where drinking 70 

water, feed quality, or available feed quantity limits livestock growth (Van de Ven et al., 71 

2003, Van Ittersum et al., 2013, Van der Linden et al., 2015). The actual production is 72 

the production level of crops and livestock realised by farmers. In addition to the limiting 73 

factors, actual crop production can be reduced by pests, diseases, and weeds, while 74 

actual livestock production can be reduced by diseases and stress (Van Ittersum and 75 

Rabbinge, 1997, Van de Ven et al., 2003, Van der Linden et al., 2015). The difference 76 

between the potential or limited production and the actual production is defined as the 77 

yield gap. Quantification of yield gaps thus indicates how much agricultural production 78 

can be increased from a biophysical perspective (Lobell et al., 2009, Van Ittersum et 79 

al., 2013).  80 

Mechanistic models simulating crop growth provide a suitable means to estimate 81 

potential and limited crop production under different conditions (Lobell et al., 2009), 82 

and, therefore, are the backbone of yield gap analysis. Such models simulate 83 



 
 

interactions among crop genotype, climate, water, and nutrients, and identify the 84 

biophysical factors contributing most to yield gaps (Bouman et al., 1996). The yield gap 85 

can be attributed to each of the factors: water limitation, nutrient limitation, and the 86 

influence of pests, diseases, and weeds. Given the relative importance of the factors 87 

that define and limit growth, strategies to mitigate yield gaps and increase resource 88 

use efficiency can be evaluated (Van Ittersum and Rabbinge, 1997). Identifying regions 89 

with a large scope for production increase is crucial to increase future food production 90 

(Van Ittersum et al., 2013).  91 

Mechanistic models simulating livestock growth and production based on animal 92 

genotype, climate, feed quality, or available feed quantity are widely available for 93 

different livestock species and types (Freer et al., 1997, Johnson et al., 2008, Van 94 

Milgen et al., 2008, Rufino et al., 2009). Few models refer explicitly to the (genetic) 95 

potential production of livestock and/or feed-limited production (Wellock et al., 2004, 96 

Rufino et al., 2009). Examples of yield gap analyses using such models include those 97 

at the farm level for smallholder dairy farms in Mexico with the model FarmDESIGN 98 

(Cortez-Arriola et al., 2014), and at the household level for smallholder dairy farms in 99 

Ethiopia and India with the integrated analysis tool (IAT) (Mayberry et al., 2017). 100 

However, to our knowledge, concepts of production ecology (Van de Ven et al., 2003, 101 

Van der Linden et al., 2015) are only included explicitly in the model LIVSIM (LIVestock 102 

SIMulator), a model simulating dairy production in smallholder farming systems in sub-103 

Saharan Africa (Rufino et al., 2009). LIVSIM does not include the effects of the defining 104 

factor climate and has a rather coarse time step of 30 days. Also, the ideal cattle 105 

management is not specified, which hinders the estimation of potential and feed-limited 106 

dairy production according to concepts of production ecology. LIVSIM is thus not 107 

entirely analogous to the mechanistic crop growth models used to analyse yield gaps.  108 



 
 

Our objective is to present a mechanistic, dynamic model that simulates potential and 109 

feed-limited growth and production of livestock, and to identify the factors that define 110 

and limit growth, analogous to mechanistic crop growth models. This livestock model 111 

is named LiGAPS-Beef (Livestock simulator for Generic analysis of Animal Production 112 

Systems – Beef cattle). It integrates thermoregulation, feed intake and digestion, and 113 

energy and protein utilisation of beef cattle, and simulates interactions among cattle 114 

genotype, climate, feed quality, and available feed quantity. The intended users of 115 

LiGAPS-Beef are researchers, who can make its results accessible for practitioners 116 

and policy makers. We illustrate the use of our model for Charolais and ¾ Brahman ×  117 

¼ Shorthorn (B×S) cattle in France and Australia.  118 

Materials and methods 119 

Model description 120 

Approach, inputs and outputs. LiGAPS-Beef is based on concepts of production 121 

ecology for livestock production (Van de Ven et al., 2003, Van der Linden et al., 2015). 122 

The deterministic model integrates three sub-models that jointly simulate growth and 123 

production of a bovine animal: a thermoregulation sub-model, a feed intake and 124 

digestion sub-model, and an energy and protein utilisation sub-model (Fig. 1). The 125 

defining factor genotype affects the thermoregulation sub-model and the energy and 126 

protein utilisation sub-model. The thermoregulation sub-model accounts for the effects 127 

of the defining factor climate. The feed intake and digestion sub-model accounts for 128 

effects of feed quality and quantity, which are both limiting factors. The three sub-129 

models are interconnected by energy and protein flows within an animal (Fig. 1). 130 

Energy flows distinguished are gross energy (GE), digestible energy (DE), 131 

metabolisable energy (ME), net energy (NE), and heat. The inputs for LiGAPS-Beef 132 

are breed-specific parameters (n=22), generic parameters for cattle (n=89), physical 133 



 
 

and chemical parameters (n=24), daily weather data, feed characteristics, diet 134 

composition, and feed availability. These inputs are specified in the Supplementary 135 

Material (Tables S1-S6).  136 

The main outputs of LiGAPS-Beef are feed intake, beef production, total body weight 137 

(TBW), and feed efficiency (FE), while the biophysical factors that define and limit 138 

growth can be derived. Defining factors are the genotype and climate (heat and cold 139 

stress), and limiting factors included in the model are feed quality and available feed 140 

quantity. Feed quality limitation occurs if the maximum capacity for feed digestion is 141 

fully utilized. Feed quantity limitation occurs if the available amount of feed is not 142 

sufficient to meet the energy or protein requirements of an animal given its genotype, 143 

the ambient climate, and the feed quality. This results in either energy or protein 144 

deficiency. The time step of the model is one day. Animals can be simulated over their 145 

whole life span, which is potentially more than ten years for beef cows. LiGAPS-Beef 146 

is written in the programming language R, version 2.15.3 (RCoreTeam, 2013).     147 

Thermoregulation sub-model. The thermoregulation sub-model simulates heat release 148 

from an animal. This sub-model is based on existing thermoregulation models of 149 

McGovern and Bruce (2000) and Turnpenny et al. (2000) that simulate 150 

thermoregulation within a day. These models have been adapted to simulate heat 151 

flows with a time step of one day. Inputs for the thermoregulation sub-model are breed-152 

specific parameters, generic parameters for cattle, daily weather data, and heat 153 

production. Heat production is an output of the energy and protein utilisation sub-model 154 

(Fig. 1). Daily weather data required are average temperature, solar radiation, vapour 155 

pressure, wind speed, cloudiness, and precipitation. Weather data from meteorological 156 

stations are used as input if cattle are kept outdoors. Outdoor weather data are 157 



 
 

empirically converted to indoor weather data if cattle are kept in stables that are not 158 

fully closed, which is generally the case for beef cattle.    159 

The thermoregulation sub-model represents an animal as a cylinder consisting of three 160 

layers: body core, skin, and coat (Fig. 2A). Cattle are isothermal animals with a body 161 

temperature of 39°C. Heat produced in the body core is released through respiration, 162 

or passed on to the skin. Heat from the skin is released as latent heat (sweating), or 163 

passed on to the coat. Heat from the coat is released through long wave radiation, 164 

convection, and evaporation of rainwater. Solar radiation is partly reflected (Fig. 2A). 165 

To maintain body temperature, the sum of heat production and heat load via solar 166 

radiation must equal the sum of heat release through respiration, sweating, reflection 167 

of solar radiation, long wave radiation, convection, and evaporation of rainwater 168 

(McGovern and Bruce, 2000, Turnpenny et al., 2000) (Fig. 2A). 169 

Cattle regulate heat release by three mechanisms: adjustment of the respiration rate, 170 

vasoconstriction or vasodilatation, and adjustment of the sweating rate. Minimum heat 171 

release is achieved at a minimum respiration rate, maximum vasoconstriction, and 172 

minimum sweating rate, whereas maximum heat release is achieved at the opposites. 173 

Heat production is the balancing variable in the thermoregulation sub-model to 174 

maintain body temperature. If heat production is lower than the minimum heat release, 175 

additional energy is required to prevent a decrease in body temperature. If the 176 

genotype, feed quality, and feed quantity allow the heat production from metabolic 177 

processes to exceed the maximum heat release, an animal reduces feed intake to 178 

prevent an increase in body temperature (Fig. 1). If heat production is between 179 

minimum and maximum heat release, the animal is in its thermoneutral zone. The 180 

output of this sub-model is a heat balance, which indicates the additional energy 181 



 
 

requirements under cold conditions or the required reduction in heat production, and 182 

hence growth, under warm conditions. 183 

Feed intake and digestion sub-model. Inputs for the feed intake and digestion sub-184 

model are feed types, feed composition, fill units, available feed quantities, and energy 185 

requirements from the energy and protein utilisation sub-model. The feed intake and 186 

digestion sub-model is based on the fill unit system developed by the French National 187 

Institute for Agricultural Research (INRA) (Jarrige et al., 1986, INRA, 2007, Faverdin 188 

et al., 2011) and the rumen model of Chilibroste et al. (1997). Feed intake cannot 189 

exceed the maximum digestion capacity of an animal, which is proportional to its 190 

metabolic body weight. The maximum digestion capacity and feed intake are 191 

expressed in fill units (FU). One kg DM of a reference pasture grass has a FU of one, 192 

whereas other feed types have a FU relative to this reference. Feed intake is the 193 

minimum of feed intake to meet energy requirements, maximum feed intake 194 

determined by climate conditions, feed intake corresponding to the maximum rumen 195 

digestion capacity, and feed availability. 196 

The rumen model of Chilibroste et al. (1997) simulates feed digestion in the rumen. 197 

This model distinguishes seven feed constituents, whose digestion and passage in the 198 

rumen are described by first-order reactions (Fig 2B). Digestion rates differ among feed 199 

constituents, whereas passage rates are similar for all feed constituents (Chilibroste et 200 

al., 1997). Passage rates increase with increasing rumen fill. We added the digestion 201 

and passage of feed constituents in the intestines to assess the total digestibility of 202 

feed in the whole digestive tract. The total feed DM that is digested corresponds to DE, 203 

while undigested feed DM ends up in the faeces (Fig. 2B). We assumed that ME is 204 

0.82 times DE for cattle (NRC, 2000). 205 



 
 

Energy and protein utilisation sub-model. In this paper, NE is defined as energy 206 

available for maintenance, physical activity, growth, gestation, and lactation (NRC, 207 

2000). Hence, NE is not calculated as ME minus total heat production, which equals 208 

retained energy in body tissues and milk. Here, NE is calculated as ME minus heat 209 

increment of feeding (Fig. 2C). Heat increment of feeding includes heat production 210 

from chewing, rumination, digestion, and absorption of feed, as well as heat production 211 

from rumen fermentation. Heat increment of feeding is assumed to be a fraction of ME 212 

(Baldwin et al., 1980), which depends on the digestibility of a feed type (Chandler, 213 

1994). Protein requirements for chewing, rumination, digestion, and absorption of feed 214 

are assumed to be proportional to the heat increment of feeding. Both NE and protein 215 

are partitioned over various metabolic processes. The NE for maintenance and 216 

physical activity is fully converted into heat, while NE for growth, gestation, and 217 

lactation is converted partly into heat and partly into body tissues or milk. The sum of 218 

heat increment of feeding and heat production from metabolic processes equals the 219 

total heat production (Fig. 2C).    220 

The NE for maintenance is equal to heat production during fasting and is a function of 221 

metabolic body weight (kg0.75). The NE for physical activity (i.e. grazing and 222 

locomotion) is assumed to be a function of metabolic body weight under outdoor 223 

conditions, but is assumed to be negligible for cattle in feedlots and stables. Protein 224 

requirement is assumed to be 0.48 g per MJ NE (CSIRO, 2007) for maintenance and 225 

for physical activity. The NE and protein requirements for gestation and lactation are 226 

breed- and sex-specific (Fox et al., 1988, Jenkins and Ferrell, 1992, CSIRO, 2007). 227 

The genetic potential for growth is described by the derivative of breed- and sex-228 

specific Gompertz curves, which apply if no other factors than the genotype are 229 

affecting growth (i.e. if sufficient NE and protein are available for growth). Body tissues 230 



 
 

distinguished are non-carcass tissue and carcass tissues. The latter consist of bone 231 

tissue, muscle tissue, and fat tissue (intramuscular fat, intermuscular fat and 232 

subcutaneous fat). Beef is defined as deboned carcass. Each body tissue consists of 233 

protein, lipid, ash, and water, from which only protein (44 kJ g-1) and lipid (54 kJ g-1) 234 

accretion require NE (Emmans, 1994). The daily NE requirement for growth is 235 

calculated subsequently as the amount of protein and lipid accreted in all body tissues 236 

times the NE requirements for protein and lipid accretion. Likewise, the daily protein 237 

requirement for growth is calculated as the amount of protein accreted in body tissues 238 

times the efficiency for protein accretion (54%). Rumen contents are a fixed fraction of 239 

the TBW, and do not require NE and protein for growth. 240 

The NE and protein for growth are balancing variables, whereas the other metabolic 241 

processes are fully sustained. If heat production from metabolic processes and heat 242 

load from solar radiation is below minimum heat release, additional NE and protein is 243 

required (Fig. 1), which can reduce NE and protein availability for growth. Body tissues 244 

are not affected equally by sub-optimal supply of NE (Hornick et al., 2000). Growth 245 

reductions affect the non-carcass tissue least and the fat tissue in the carcass most. 246 

Compensatory growth can occur after a period of growth retardation (Hornick et al., 247 

2000). LiGAPS-Beef simulates compensatory growth if climatic conditions are 248 

favourable and if adequate amounts of NE and protein are available for growth.  249 

Upscaling from the animal to herd level. Meeting the global demand for food requires 250 

an increase in agricultural production per unit of land (Van Ittersum et al., 2013). Beef 251 

production per hectare can be calculated as the FE of a herd (kg beef ton-1 DM feed) 252 

multiplied by the weighted average yield of feed crops (t DM feed ha-1 year-1) (Van der 253 

Linden et al., 2015). LiGAPS-Beef simulates the performance of one animal, so 254 

upscaling to the herd level is required to simulate beef production systems. A beef herd 255 



 
 

can be subdivided in productive animals (calves raised for beef) and reproductive 256 

animals. The reproductive herd generally accounts for approximately 70% of the feed 257 

intake, but its contribution to beef production is much lower (De Vries et al., 2015). 258 

Hence, assessing potential and feed-limited production for beef herds requires the 259 

inclusion of both the productive and the reproductive herd.  260 

The smallest herd possible includes one reproductive cow. This cow must be replaced 261 

by a heifer at the end of her lifetime to maintain the production of calves. Hence, the 262 

smallest possible herd consists of one cow and all its offspring produced during her 263 

lifetime, minus a replacement heifer. This smallest possible herd is defined as a herd 264 

unit. A herd in a beef production system consists of multiple herd units (Van der Linden 265 

et al., 2015). Each animal in the herd unit is simulated over its complete life cycle. 266 

Reproductive bulls are assumed to be negligible in a herd unit, as the ratio of cows to 267 

bulls is generally high. The FE of a herd unit can be used to assess the potential and 268 

feed-limited beef production per unit agricultural area used for production of feed crops. 269 

Potential and feed-limited production. Potential production of livestock is achieved if 270 

only the genotype and climate affect growth (Van de Ven et al., 2003, Van der Linden 271 

et al., 2015). Feed is provided ad libitum under potential production, since the feed 272 

quantity available is, by definition, not limiting for growth. Feed quality is sufficient to 273 

meet NE and protein requirements under potential production. In addition, the diet 274 

should contain sufficient fibrous material to sustain rumen functioning. The diet under 275 

feed-limited production corresponds to the diet fed in practice (Van de Ven et al., 2003, 276 

Van der Linden et al., 2015). Potential and feed-limited production are achieved under 277 

ideal management (Van de Ven et al., 2003).  Management decisions, such as culling 278 

rates and slaughter weights, determine the FE of a herd unit (Van der Linden et al., 279 

2015). With adequate diets and ideal management, cows generally calve for the first 280 



 
 

time in their third year. Assuming a maximum conception age of ten years and a 281 

minimum calving interval of one year, cows can produce up to eight calves during their 282 

lifetime. For beef cattle, the FE of a herd unit is theoretically at its maximum if the 283 

culling rate of cows is 50% per year after birth of the first calf (Van der Linden et al., 284 

2015). This high culling rate is explained first by the higher FE of primiparous cows, 285 

which produce calves and increase their TBW simultaneously. The fraction of 286 

primiparous cows in a herd increases with an increasing culling rate. In addition, 287 

primiparous cows have lower TBWs than multiparous cows, which reduces their 288 

maintenance requirements and subsequently increases their FE.     289 

A culling rate of 50% per year after birth of the first calf implies that cows give birth to 290 

one calf in their third year, on average 0.5 (0.51) calves in their fourth year, 0.25 (0.52) 291 

calves in their fifth year, and so on, up to 0.008 (0.57) calves in their tenth year (Fig. 292 

3A). In total, approximately two calves are obtained per cow and per herd unit on 293 

average (1 + 0.51 + 0.52 + … + 0.57 ≈ 2). One of these calves is a male calf, and one a 294 

female calf for replacement, assuming a male to female ratio of one (Van der Linden 295 

et al., 2015). The replacement calf gives rise to the next herd unit. One herd unit thus 296 

consists of one reproductive cow, and one male calf (Van der Linden et al., 2015). 297 

Hence, all female calves are used as replacement calves, and male calves are raised 298 

for beef production (Fig. 3B). In addition, the slaughter weight of the male calf in a herd 299 

unit must be optimised to maximize FE of the herd unit.                        300 

Model illustration at the animal and herd level   301 

LiGAPS-Beef was illustrated at the animal and herd level for ten hypothetical cases. 302 

Charolais and B×S cattle were simulated under potential and feed quality limited 303 

production in France and Australia, which resulted in eight cases (Table 1). For 304 

potential production, finding the ideal daily composition of feed for each animal in a 305 



 
 

herd unit is complicated. We propose, therefore, that the diet under potential 306 

production is fixed for all animals in a herd unit, contains sufficient fibre, and consists 307 

of high-quality feeds. An ad libitum diet consisting of 65% wheat and 35% high quality 308 

hay is assumed to closely meet these requirements (Van der Linden et al., 2015). The 309 

ME content of this diet (11.6 MJ ME kg-1 DM) is relatively high, the FU value (0.76 kg-310 

1 DM) is relatively low, and it is available in many countries worldwide. This fixed diet 311 

facilitates comparison of FE in different beef production systems under potential 312 

production.  313 

Under feed quality limitation, 95% of the diet was grass-based, and 5% consisted of 314 

barley in both countries. The ninth case included a diet with 1 kg DM barley per head 315 

per day, and the remainder was grass-based. The tenth case included the grass-based 316 

diet with 5% barley, but the amount of feed available was at most 2% of the TBW 317 

(Table 1). Weather data for France were from Charolles (46.4°N, 4.3°E), and for 318 

Australia from Kununurra (15.7°S, 128.7°E). Cattle in France were kept indoors from 319 

December to March, and outdoors from April to November. Cattle were grazing on 320 

pasture when kept outdoors (8.8 MJ ME kg-1 DM), and were fed hay when kept indoors 321 

(9.6 MJ ME kg-1 DM). Cattle in Australia were kept outdoors year-round on pasture 322 

(8.8 MJ ME kg-1 DM). For simplicity, the quality of wheat, barley, grass, and hay was 323 

fixed over time. The age at weaning was set at 210 days in both countries. Energy 324 

requirements for physical activity were calculated from metabolic body weights (70 kJ 325 

kg-0.75) (CSIRO, 2007).  326 

The ten cases were illustrated first at the animal level, where a single bull calf was 327 

simulated. Charolais and B×S bull calves were slaughtered at a weight of 500 kg TBW 328 

in the hypothetical cases. Next, the ten cases were illustrated at the herd level. As 329 

described before, a herd unit consists of one reproductive cow and one bull calf. The 330 



 
 

culling rate was 50% after birth of the first calf, and the slaughter weight of the bull 331 

(calf) was optimised to maximize the FE of the herd unit. The slaughter weight was 332 

optimised by simulating the FE at  the herd level for a range of TBWs at slaughter 333 

(step-wise procedure). Subsequently, a quadratic function was fitted to the FE at the 334 

herd level and the slaughter weights, where the maximum FE obtained from this 335 

function corresponds with the optimum slaughter weight.     336 

Results 337 

Model illustration at the animal level 338 

Individual Charolais bulls had a higher FE in France than in Australia, both under 339 

potential and feed-limited production (Table 2). Charolais bulls had higher FEs than 340 

B×S bulls in France, and B×S bulls had higher FEs than Charolais bulls in Australia 341 

(Table 2). Charolais bulls fed with a grass-based diet up to 2% of the TBW had a 9% 342 

lower FE compared to ad libitum supply of the same diet (111 and 122 g beef kg-1 DM), 343 

which is fully attributed to feed quantity limitation. Differences in FE among the cases 344 

were mainly attributed to differences in feed intake, as bulls were slaughtered at 500 345 

kg TBW, which resulted in a similar beef production levels (kg per animal) and similar 346 

percentages of beef in the TBW. An increased feed intake was associated with an 347 

increasing age at slaughter (Table 2). LiGAPS-Beef simulated the factors that define 348 

and limit growth for each of the ten cases (Fig. 4). For the cases in France, cold stress 349 

occurred during winter and heat stress during summer. For the cases in Australia, heat 350 

stress was a major defining factor. Under potential production, growth of both cattle 351 

breeds was influenced by minor protein deficiencies and limitation in digestion capacity 352 

before weaning, except for Charolais bulls in Australia (Fig. 4). Limitation in digestion 353 

capacity influenced growth when ad libitum grass-based diet were fed to bulls. Protein 354 



 
 

deficiency was did not limiting growth in any of the cases after weaning, whereas 355 

energy deficiency occurred also after weaning when the feed quantity available was at 356 

most 2% of the TBW (Fig. 4).                     357 

Model illustration at the herd level  358 

Beef production at the herd level was assessed by using the concept of the herd unit. 359 

LiGAPS-Beef did not yield results for Charolais cattle in Australia, because heat stress 360 

in Australia resulted in mortality of reproductive Charolais cows (Table 3). The FE at 361 

the herd level was based on the FE of the reproductive cow and the FE of one bull calf 362 

(Table 3). The FE at the herd level was higher for Charolais than for B×S cattle under 363 

potential production in France, whereas the FE was similar under feed quality limited 364 

production in France (Table 3). In most cases, the percentage feed consumed by the 365 

reproductive cow in a herd was approximately 70% of the total feed for the herd unit. 366 

Reproductive cows accounted, however, for 84% of feed intake of the herd unit when 367 

barley was fed at 1 kg per head per day (Table 3). 368 

Discussion 369 

Model description and upscaling to the herd level 370 

We integrated sub-models on thermoregulation, feed intake and digestion, and energy 371 

and protein utilisation to account for the interactions among the genotype, climate, feed 372 

quality and quantity on beef production (Fig. 1). Such four-way interactions cannot be 373 

simulated with the individual sub-models that were based on existing models. For 374 

example, the mechanistic thermoregulation models used in LiGAPS-Beef simulate 375 

heat flows, but no ME and NE flows for processes such as growth (McGovern and 376 

Bruce, 2000, Turnpenny et al., 2000). The existing livestock models and frameworks 377 

used to simulate energy and protein utilisation include ME and NE flows, but do not 378 



 
 

consider heat flows, or thermoregulation is included empirically (NRC, 2000, CSIRO, 379 

2007). In addition, our feed intake and digestion sub-model was largely based on an 380 

existing feed digestion model, which does not account for energy demands or effects 381 

of the climate (Chilibroste et al., 1997). Input from the energy and protein utilisation 382 

sub-model and the thermoregulation model was required, therefore, to simulate feed 383 

intake (Fig. 1). Hence, the quantification of potential and feed-limited beef production 384 

and the identification of the factors that define and limit growth are novel features (i.e. 385 

emergent properties) of LiGAPS-Beef that result from the integration of sub-models. 386 

Next, we discuss some of the methodological choices during the development of 387 

LiGAPS-Beef and the corresponding limitations of the model. First, the 388 

thermoregulation models used as a basis for the thermoregulation sub-model simulate 389 

heat release throughout the day, but the thermoregulation sub-model itself has a time 390 

step of one day, just like to other two sub-models. Despite the larger time step, and 391 

consequently a loss of detail, the thermoregulation sub-model simulated heat release 392 

fairly well, and live weight gain was simulated fairly well for cattle in different climates 393 

(Van der Linden et al., 2018a and 2018b). Second, our model is deterministic, which 394 

implies that all animals belonging to a breed have exactly the same genotype. In reality, 395 

genetic variance within breeds can result in differences in performance among 396 

animals. Third, our model does not account for interactions between animals or herd 397 

units, whereas such interactions can occur under conditions where animals compete 398 

for feed. Fourth, we assumed single calves to be born. Although the probability of 399 

having twins and triplets is relatively low in cattle, the FE at the herd level may be 400 

slightly underestimated by not accounting for twins and triplets. Fifth, we assumed that 401 

cow parity does not significantly affect birth weight, milk production, and calf 402 

performance. In practice, firstborn calves may have lower birth weights and 403 



 
 

performance, which could reduce FE of herds, especially if culling rates are high. Sixth, 404 

the limiting factor drinking water was not taken into account in LiGAPS-Beef, since we 405 

assumed that cattle are seldom deprived from water. Deficiencies of minerals and 406 

vitamins were not accounted for either. Feed-limited production may thus be 407 

overestimated in case drinking water, minerals, or vitamins are limiting cattle growth 408 

and production. Finally, LiGAPS-Beef focusses on beef cattle at the animal and herd 409 

level, and does not include the crop or grassland component of farming systems. 410 

Connecting the livestock and crop or grassland component of a farming system is 411 

relevant for feed budgeting, especially in grazing systems where strong interactions 412 

between animals and the sward exist. For this reason, LiGAPS-Beef was connected 413 

elsewhere to a grass growth model to simulate grass-based beef production in the 414 

Charolais region of France (Van der Linden et al., 2018c).     415 

Model illustration at the animal level 416 

Simulation results show that Charolais bulls had the highest FE in France, and B×S 417 

bulls had the highest FE in Australia (Table 2). Hence, the breed adapted to a region 418 

and its prevailing climate conditions has a higher FE than the less-adapted breed, 419 

which is in line with literature (Burrow, 2012). The FE of Charolais bulls under potential 420 

production in France (216 g beef kg-1 DM) resembled the FE of Charolais bulls (171 g 421 

beef kg-1 DM) fed a similar diet in Germany, although these bulls were slaughtered at 422 

a later age (Pfuhl et al., 2007). LiGAPS-Beef identified the factors that define and limit 423 

growth under potential and feed-limited production (Fig. 4). Occurrence of cold stress 424 

in winter and heat stress in summer in France and occurrence of heat stress in 425 

Australia is in line with the expectations. As expected, limiting feed intake to 2% of the 426 

TBW resulted in energy deficiency and a reduced growth (Table 2, Fig. 4). All in all, 427 



 
 

the production levels and the corresponding biophysical factors identified were 428 

corresponding reasonably to expectations and literature.   429 

It should be noted that digestion capacity limitation and protein deficiency influenced 430 

growth under potential production before weaning (Fig. 4). This implies that the diet 431 

consisting of 65% wheat and 35% hay (Van der Linden et al., 2015) was not entirely 432 

adequate to achieve potential production. Feeding other diets, however, did not result 433 

in complete elimination of these factors either. Digestion capacity limitation and protein 434 

deficiency occurred before weaning, when the rumen shifts from a milk-based diet to 435 

a diet consisting of solid feed. This shift is affected by the animals genotype, so it might 436 

be justified to assume that potential production is achieved with the diet consisting of 437 

65% wheat and 35% hay.   438 

Model illustration at the herd level 439 

The FE of Charolais cattle at the herd level was highest in France, but reproductive 440 

cows did not perform in Australia due to heat stress (Table 3). This matches with 441 

literature indicating that B. taurus cattle perform better in temperate climates than in 442 

tropical climates (Burrow, 2012). To our knowledge, no literature is available on 443 

mortality of Charolais or other large-sized B. taurus cattle due to heat stress in northern 444 

Australia, since the breeds used in this region are generally crossbreds between B. 445 

indicus and B. taurus cattle. Simulation results showed that Charolais cattle had the 446 

highest FE in France under potential production, and B×S herds in Australia (Table 3). 447 

Hence, the breed adapted to a region and its prevailing climate conditions has a higher 448 

FE in this region than the less-adapted breed, which is in line with literature (Burrow, 449 

2012). 450 



 
 

The percentage of feed supplied to reproductive cows in a herd was generally between 451 

70-75% of the total feed supply (Table 3). This is in agreement with de Vries et al. 452 

(2015), who stated that reproductive cows account for 70% of the total feed intake at 453 

the herd level. Reproductive cows required 84% of the feed when the quantity of barley 454 

was fixed at 1 kg per head per day (Table 3). This feeding strategy decreases the 455 

proportion of barley in the diet over the lifetime of an animal. Diets of calves are 456 

expected, therefore, to have higher wheat contents than diets of reproductive cows. 457 

Due to the high ME content of barley, bull calves could suffice with lower amounts of 458 

feed than reproductive cows, which results in a higher percentage of feed consumed 459 

by reproductive cows. 460 

In line with its objective, LiGAPS-Beef simulated potential and feed-limited production 461 

in different beef production systems (Tables 2 and 3), and identified the factors that 462 

define and limit growth (Fig. 4). To our knowledge, LiGAPS-Beef is the first livestock 463 

model that explicitly indicates which biophysical factor defines or limits growth and 464 

production during which period. Identification of these factors is a crucial step in yield 465 

gap analysis, and a starting point to list improvement options to mitigate yield gaps 466 

(Van Ittersum et al., 2013). Before using LiGAPS-Beef for yield gap analysis, sensitivity 467 

analyses should be conducted to get insight in the parameters affecting its output most. 468 

In addition, model evaluation with experimental data is required to get insight in the 469 

accuracy of the model when simulating beef production in contrasting systems. Results 470 

of these sensitivity analyses and model evaluations are presented in companion 471 

papers (Van der Linden et al., 2018a and 2018b).        472 

Conclusions 473 

This paper describes LiGAPS-Beef, a mechanistic model simulating beef cattle based 474 

on concepts of production ecology. LiGAPS-Beef aims to simulate potential and feed-475 



 
 

limited production of cattle in different beef production systems, and to identify the 476 

factors that define and limit growth. A major innovation of the model is the simulation 477 

of interactions among cattle genotype, climate, feed quality and available feed quantity, 478 

by integration of sub-models for thermoregulation, feed intake and digestion, and 479 

energy and protein utilisation. LiGAPS-Beef was illustrated with simulations for 480 

different genotypes (Charolais and B×S breeds), climates (France and Australia) and 481 

feeding strategies. Model illustration suggests that the potential and feed-limited 482 

production are generally in line with literature and expectations, as well as the 483 

biophysical factors for growth that were identified. Simulations indicate that breeds 484 

adapted to a region and its climate conditions achieve a higher FE in such a region 485 

than less-adapted breeds. In conclusion, LiGAPS-Beef complied with the aim it was 486 

developed for. The model may be used, therefore, as a tool to assess and analyse 487 

yield gaps in beef production systems after conducting sensitivity analyses and model 488 

evaluation with independent experimental data. 489 
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Table 1. Cases with potential and feed-limited production levels of beef cattle to illustrate LiGAPS-Beef at the animal and herd level.                             602 

  Growth factors 

Abbreviation Production level Genotype Climate Feed composition Feed quantity 

   Country Housing   

Pot Ch Fr Potential Charolais France indoors / outdoors1 Wheat (65%) + Hay (35%) ad libitum 

Pot Ch Au Potential Charolais Australia outdoors Wheat (65%) + Hay (35%) ad libitum 

Pot B×S Fr Potential B×S France indoors / outdoors1 Wheat (65%) + Hay (35%) ad libitum 

Pot B×S Au Potential B×S Australia outdoors Wheat (65%) + Hay (35%) ad libitum 

FQlty Ch Fr Feed quality lim. Charolais France indoors / outdoors1 Barley (5%) + Hay / Grass (95%)2 ad libitum 

FQlty Ch Au Feed quality lim. Charolais Australia outdoors Barley (5%) + Grass (95%) ad libitum 

FQlty B×S Fr Feed quality lim. B×S France indoors / outdoors1 Barley (5%) + Hay / Grass (95%)2 ad libitum 

FQlty B×S Au Feed quality lim. B×S Australia outdoors Barley (5%) + Grass (95%) ad libitum 

FQlty Ch Fr 1 kg Feed quality lim. Charolais France indoors / outdoors1 Barley (1 kg DM day-1) + Hay / Grass3 ad libitum 

Flim Ch Fr 2% Feed-limited Charolais France indoors / outdoors1 Barley (5%) + Hay / Grass (95%)3 Max. 2% TBW4 

Au = Australia; B×S = ¾ Brahman × ¼ Shorthorn cattle; Ch = Charolais; Flim = feed quantity limited; FQlty = feed quality limited; Fr = France; lim. = limited; Pot 603 

= potential; TBW = total body weight  604 

1 Housed indoors from December to March 605 

2 Hay fed indoors (December-March), grazing outdoors (April-November)  606 
3 Barley is max. 65% of the diet, or 1 kg DM day-1. The remaining part of the diet is from hay (December-March) and grass (April-November) 607 

4 Feed quantity available is 2% of the total body weight of the animal. 608 

  609 



 
 

Table 2. Feed efficiency, feed intake, beef production, and age of slaughter of cattle in the ten cases (see Table 1) used to illustrate LiGAPS-Beef 610 

at the animal level. Bulls are slaughtered at 500 kg total body weight (TBW). 611 

Production characteristics Cases1 

 Potential production FQlty, grass-based diet with 5% barley 

FQlty, 
grass-
based 
diet 

with 1 
kg DM 
barley 

Feed-
limited 

production, 
max. 2% 

TBW 

 Charolais B×S Charolais B×S Charolais 

 France Australia France Australia France Australia France Australia France France 

Feed efficiency (g beef kg-1 DM)  216 104 146 150 122 44 99 68 134 111 

Feed intake (kg DM) 1063 2059 1667 1602 1802 5408 2431 3578 1648 1979 

Beef production (kg) 230 213 243 240 220 237 240 244 221 219 

Beef (% TBW) 46 43 49 48 44 47 48 49 44 44 

Age at slaughter (days) 278 540 402 400 321 970 421 622 305 370 

B×S = ¾ Brahman× ¼ Shorthorn cattle; FQlty = feed quality limited production; TBW = total body weight. 612 
1 See Table 1 for explanation on the cases.   613 
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Table 3. Beef production, feed intake and feed efficiency of cattle in the ten cases (Table 1) used to illustrate LiGAPS-Beef at the herd level. 615 

Production characteristics Cases1 

 Potential production FQlty, grass-based diet with 5% barley 

FQlty, 
grass-
based 
diet 

with 1 
kg DM 
barley 

Feed-
limited 

production, 
max. 2% 

TBW 

 Charolais B×S Charolais B×S Charolais 

 France Australia2 France Australia France Australia2 France Australia France France 

Feed efficiency herd unit (g beef kg-1 DM) 73 - 65 66 48 - 47 36 49 46 

Feed efficiency repr. cow (g beef kg-1 DM) 52 - 44 46 33 - 31 23 34 28 

Feed efficiency bull calf (g beef kg-1 DM) 124 - 125 124 103 - 107 57 127 91 

Feed percentage repr. cow (% total feed) 71 - 72 74 75 - 75 63 84 70 

Beef production herd unit (kg)  998 - 563 573 911 - 569 565 824 919 

Beef production repr. cow (kg) 508 - 271 298 467 - 280 228 476 397 

Beef production bull calf (kg) 490 - 292 275 444 - 289 337 348 523 

Slaughter weight bull calf (kg) 935 - 579 559 878 - 574 638 717 992 

B×S = Brahman × Shorthorn cattle; FQlty = feed quality limited production; TBW = total body weight. 616 
1 See Table 1 for explanation on the cases.  617 

2 No results due to inability of reproductive cows to cope with heat stress.618 



 
 

Figures 619 

 620 

Figure 1 Representation of LiGAPS-Beef (Livestock Simulator for Generic analysis of 621 

Animal Production Systems – Beef cattle) and the connections among the three sub-622 

models. Solid arrows indicate flows of material or energy, dashed arrows indicate a 623 

flow of information. ME = metabolisable energy; NE = net energy.  624 
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 625 

Figure 2 (A) Schematic overview of heat flows in beef cattle simulated with the 626 

thermoregulation sub-model. (B) Digestion of feed constituents in the rumen and 627 

 

 



 
 

intestines simulated with the feed intake and digestion sub-model, adapted from 628 

Chilibroste et al. (1997). (C) Schematic overview of energy flows in beef cattle 629 

simulated with the energy and protein utilisation sub-model. fHIF = fraction heat 630 

increment of feeding. Adapted from NRC (1981).  631 



 
 

 632 

Figure 3 (A) Life spans of a cow and male calves in a herd unit (solid lines). 633 

Replacement calves (dashed lines) are not part of the herd unit. Dotted lines indicate 634 

birth. Male and female calves are in random order, and only four out of the maximum 635 

of eight calves per cow are indicated. (B) Herd dynamics under potential and feed-636 

limited production. Solid lines indicate beef production, the dashed line indicates 637 

replacement, and the dotted line birth. Adapted from Van der Linden et al. (2015).  638 
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 639 

Figure 4. Defining and limiting factors for growth and feed efficiency of bulls in the ten 640 

cases (see Table 1) at the animal level. Digestion capacity limitation of the cattle is 641 

caused by feed quality limitation. Protein deficiency can be caused by feed quality and 642 

quantity limitation. Energy deficiency is caused by feed quantity limitation only. Au = 643 

Australia; B×S = ¾ Brahman × ¼ Shorthorn; Ch = Charolais; FLim = feed-limited 644 

production; FQlty = feed quality limited production; Fr = France; Pot = potential 645 

production.  646 


