Identification and qualification of point sources of surface water contamination in fruit growing

Marcel Wenneker, Wim Beltman, Rik de Werd & Jan van de Zande

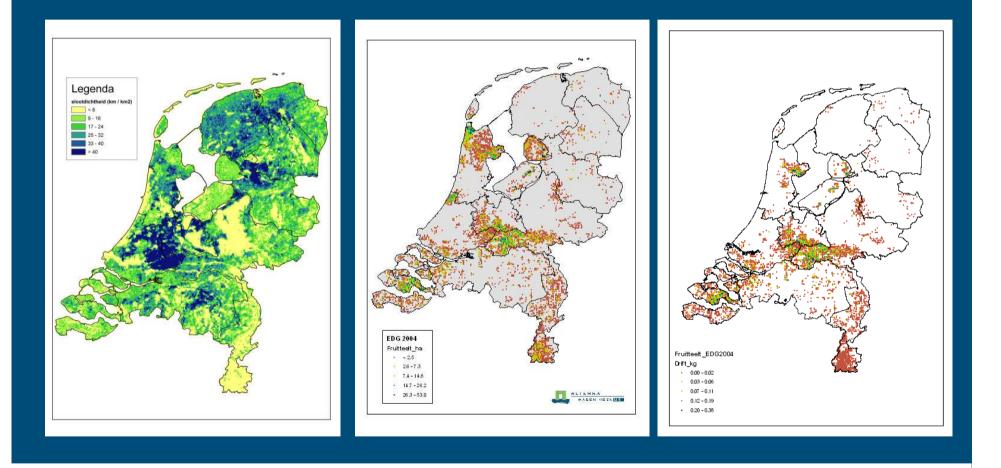
Surface water contamination

Diffuse or non-point sources

- Spray drift
- Subsurface drains
- Runoff

Point sources – on-farm activities

- Spillage of PPP during filling
- Leakages of spray equipment
- Poor control of left over of spray liquid
- Internal and external contamination of sprayers



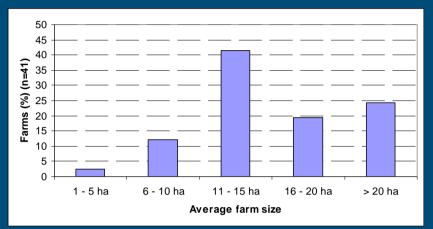
Environment and use of pesticides

- Government => aim
 - 95% reduction environmental pollution by pesticides in 2010 (reference year 1998)
- Legislation
 - Drift mitigation measures => 90% spray drift reduction (reference year 1998)
 - Restrictions for application of pesticides (label) => board for the authorisation of pesticides
- Mandatory sprayer inspections
- Recycling of empty containers
- Licensing of sprayer operators
- Mandatory equipment for filling and washing stations

Ditches, fruit growing and drift in the Netherlands

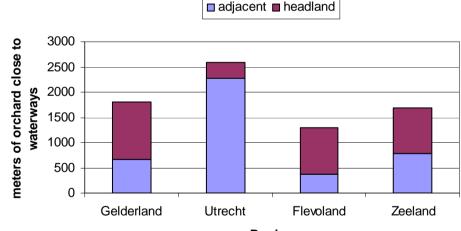
Spray drift - situations

Drift reduction in fruit growing



Point sources in fruit growing

- Measurements show less decrease of pesticide concentrations in surface water than expected from model based calculations
 - Implementation of spray drift reducing techniques is overestimated.
 - Impact of point sources is underestimated (model does not take point sources into account).
- Inquiry amongst 41 fruit growers (apples & pears) in four fruit growing areas
 - Filling and cleaning practices; handling of waste water *et cetera*


Farm sizes in inquiry

98% of fruit growers had at least 1 orchard bordering a watercourse.

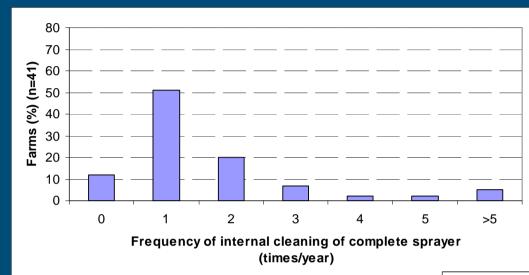
Drift reducing measures:

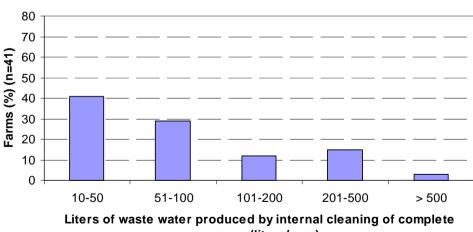
- 100% windbreaks
- 78% drift reducing nozzles
- 2.5% tunnel sprayer

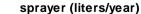
Region

Filling and cleaning stations

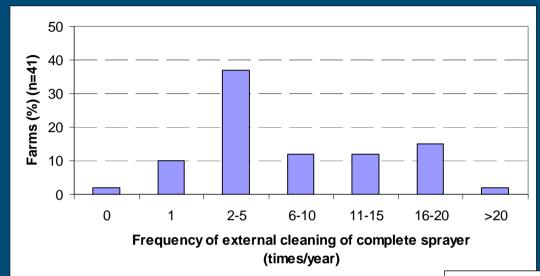
- All fruit growers have their own spraying equipment; no contractors.
- All sprayers are filled at the farmyard
 - 80% of the filling and cleaning location consists of (semi-) impervious material.
 - 66% of the locations did not posses mandatory equipment; impervious floor for filling and cleaning with a collection unit.
 - 20% of the farmyards had surface water within 10 m distance.

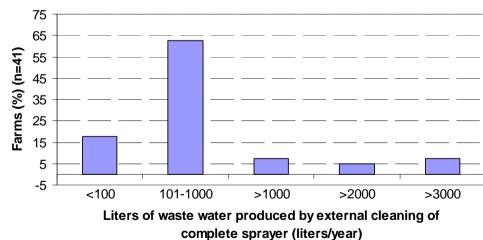

Cleaning of sprayers


Internal cleaning


- Complete internal cleaning: 1-2 times per season.
- Cleaning of pumps, hoses and nozzles is common practice (95% of growers). Performed in the orchard.
- No discharge of spray remnants at the farmyard.
- External cleaning
 - Majority (78%) cleans the outside of the sprayer.
 - Majority (70%) performs cleaning at the farmyard.
 - Minority of farmyards (24%) is equipped with storage facilities for waste water.

Internal cleaning of sprayers



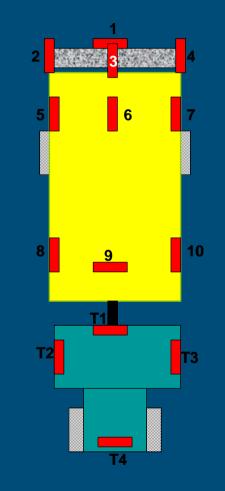


External cleaning of sprayers

Summary inquiry – fruit growing

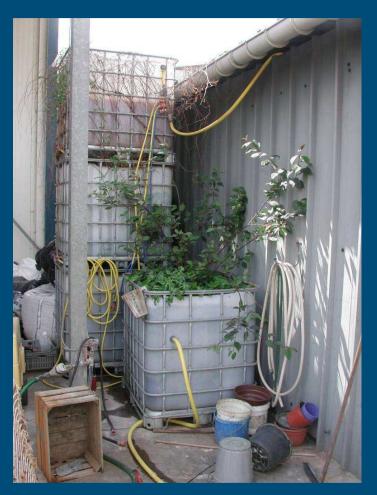
- Filling of sprayers at the farm yard (100%)
 - 20 30 spray applications annually
 - 60 90 filling events annually (= occasions that could create point source pollution)
 - Frequent transportation of filled (and contaminated) sprayer to orchards.
 - Necessity for inspection of sprayers to avoid leaking hoses and nozzles.
- Cleaning of sprayers
 - Internal cleaning including tank 1 or 2 times per year.
 - Cleaning of pumps, hoses and nozzles is common practice at the of spraying day carried out in the orchard.
 - External cleaning 78% of growers cleans more than once a year; mainly at the farm yard.
- Minority of the farm yards is equipped with storage facilities for waste water
- **500** 1000 liters of waste water annually (filling and cleaning)

Filling and cleaning stations – fruit growing


Contamination and cleaning of sprayers

External cleaning of sprayers

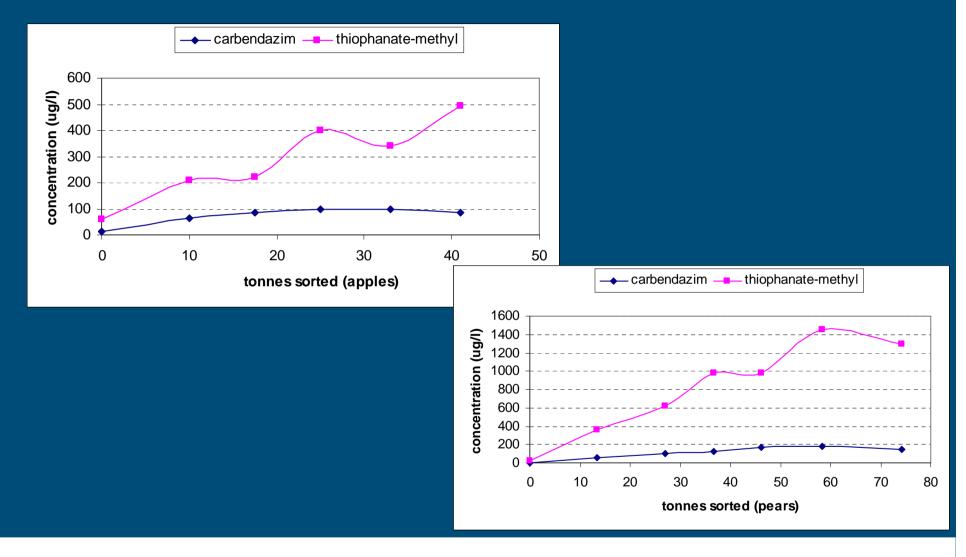
- External cleaning is not carried out frequently.
- The quantity of the external residues on the sprayer is unknown.
- Efficiency of the cleaning is unknown.
- Further research is required to investigate sprayer contamination, the efficiency of cleaning and the environmental impacts of cleaning.



Cheap and simple methods for collecting wastes

Treatment - degradation pesticides in waste water

Bioremediation – Belgian system (Debaer & Jaeken)



Grading and sorting of fruit

Concentrations of pesticides in transporting water

Pesticides from grading and sorting

- 4000 liters discharged weekly
- 1400 µg/I thiophanate-methyl
- 5600000 μg thiophanate-methyl

- Ecotox value thiophanate-methyl: 0.5 μg/l
- Discharging contaminates 11200 m³ up to this ecotox value
- 53333 meters of standard ditch
- Discharge of waste water contaminated with pesticides is forbidden under Dutch law.
- Due to the lack of simple and cheap purification systems, it is common practice.

Purification systems

Conclusions

 Significant numbers of fruit growers do not work according to legislation for filling and washing stations.

- Economical considerations? => cheap and practical solutions.
- Ignorance (bad behavior)?
- Campaigns to increase farmers' awareness should be intensified (e.g. in cooperation with TOPPS).
 - Careless handling of spraying equipment and material leads to point source contamination.
 - Why working on spray drift reduction, whilst ignoring point sources contamination?
- Risk assessments and measurements are necessary (=> worst case scenario's to identify relevance of different point source pathways).

Thank you for your attention

© Wageningen UR

