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1.1 The challenge of micropollutants: occurrence in aquatic environment, and 

risks 

Fast growing global population and economy result in an increasing water 

consumption worldwide. However, the amounts of usable water resources are limited: 

more than one-third of the accessible renewable fresh water on Earth is being exploited for 

industrial, agricultural, as well as domestic usage [1]. Locally, especially in water scarce 

areas, this is often reaching much higher levels, leading to overdraft of water resources [2]. 

Such facts call for the need to not only exploit new and alternative water resources but also 

to recycle water streams, to cope with the unfortunate increasing limitations in availability 

of fresh water sources. Meanwhile, the fast growing population and economy are leading 

to serious water pollution due to discharge of numerous contaminants into the 

environment, which in turn possess sever threats to the quality of water resources. Thus, 

the increasing worldwide demand for water consumption, the limited amount of water 

resources, and the water pollution make water treatment a vital measure to safeguard the 

water supply with sufficient quantity and quality that meets the demand of the society. 

Conventionally, concerns were given to pathogens, nutrients, heavy metals, suspended 

solids, and bulk organic pollutants (the amount of bulk organic pollutants generally present 

in concentrations at 0.1 – 10 g/l in waste water and often denoted with COD or BOD, 

meaning chemical or biological oxygen demand). Thus in most parts of the world water 

purification measures have been taken to tackle these problems [3, 4]. In recent decades, 

many emerging organic pollutants (generally present at rather low concentrations, i.e. ng/L 

to µg/L level, and therefore also termed as micropollutants). These include pharmaceuticals, 

antibiotics, herbicides, pesticides, chemicals from personal care products, etc., and have 

been detected the last two decades extensively in different water bodies worldwide. For 

instance, many pharmaceuticals were found in various portions of the aquatic system, i.e. 

in ground water, surface water, as well as in many drinking water sources according to a 

broad range of studies [5-11]. In a study conducted by Félix–Cañedo et al. in Mexico City, 

the presence of a group of organic micropollutants (including pharmaceuticals, hormones, 

herbicides) in several drinking water sources was reported, at concentrations ranging from 

ng/L to µg/L level [12]. In recent years, a broad range of micropollutants, including 
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pesticides, pharmaceuticals, industrial compounds, estrogens, chemicals originating from 

life-style compounds and personal care products, have been measured in groundwater in 

Spain, according to a review paper by Jurado et al. [13]. The occurrence of micropollutants 

in aquatic environment has become a worldwide issue that is gaining increasing concerns 

[7, 14-17]. 

 

Figure 1. 1 Typical sources of micropollutants entering the environment and their 

migration routes into drinking water (Figure from [18] with permission).  

Micropollutants enter the environment from various sources and sometimes end 

up in drinking water via various migration pathways, as illustrated in Figure 1. 1 [18]. 

Micropollutants can be introduced into the environment via discharge of industrial effluents 

of pharmaceuticals, personal care products, pesticides and other synthetic compounds 

manufacturing plants. Usage and disposal of pharmaceuticals, antibiotics, personal care 

products, etc., in households and hospitals are another major source of those compounds 

[19]. The conventional municipal wastewater treatment plants (WWTP) were originally 

designed for bulk organics and nutrient removal, and not for the removal of micropollutants. 

The fate of micropollutants in WWTPs can therefore vary greatly. For individual 
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micropollutant, its removal efficiency greatly relies on the operation conditions and 

treatment technology applied in specific WWTP, and can differ drastically among different 

WWTPs [18]. For individual WWTP, its removal efficiency on micropollutants greatly relies 

on the properties of specific compound, e.g. adsorption ability to solids, biodegradability, 

etc., [17]. Moreover, in a review study by Luo et al., it was found that the WWTP removal 

efficiency of 39 most studied micropollutants in 14 countries/regions showed a clear  

variation, which can be ascribed to both micropollutant properties and WWTP operational 

conditions [17]. Although it is hard to draw a firm conclusion of persistency of each 

micropollutant in WWTPs, many compounds are suggested to be poorly removed in WWTPs, 

e.g. carbamazepine, diclofenac, metoprolol, etc., [17]. Nevertheless, the insufficient 

removal of micropollutants in WWTPs makes WWTPs effluent the main cause of 

micropollutants presence in aquatic environment [20]. Additionally, runoff from agriculture, 

livestock, and aquaculture is another major source that brings micropollutants (mainly 

pharmaceuticals, herbicides, and pesticides) into the environment.  

Once entering the environment, micropollutants may undergo different 

transformation/migration pathways and have thereby varied fates, depending on their 

physical/chemical properties. Sorption onto suspended solids and sediments, direct and 

indirect photolysis and aerobic biodegradation are the typical attenuation processes that 

many micropollutants may undergo in the environment [16]. Photodegradation, including 

direct and indirect photolysis, is a major set of transformation pathways of micropollutants 

in water bodies. For instance, carbamazepine can undergo direct photolysis, and its 

photochemical half-life in surface waters ranges from weeks to several months, depending 

on the environmental conditions [21]. Sorption onto suspended solids and sediments is a 

major migration pathway of hydrophobic micropollutants. Diphenhydramine was found to 

sorb onto aquatic sediments and can thus be concentrated to as much as one thousand 

times over its aqueous concentration [22]. More comprehensive studies on the fate and 

transformation of micropollutants in aquatic system are available in literature [13, 16-18, 

23-25]. 

Although the presence of micropollutants in aquatic systems is at trace 

concentrations ranging from ng/L to µg/L [1, 17, 18, 26], undesirable effects on the 
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ecosystems have been reported by many studies. These point out that those contaminants 

present at low concentrations impose potential hazards to aquatic life at different levels 

and species varying from algae to fish [27]. Detrimental effects including toxicity on living 

species, endocrine disrupting effects on organisms, and building up of antibiotic resistance 

in pathogens, are abundantly and frequently reported [28-31]. For instance, it was shown 

that diclofenac is toxic to three Gyps vulture species [32], and the exposure to diclofenac 

residues in the environment was found to be responsible for vulture population decline in 

Pakistan in another study [33]. Significant correlations between antibiotic resistant bacteria 

and corresponding antibiotic concentrations in a municipal wastewater treatment plant 

were reported by Gao et al. [34], which suggested that presence of antibiotics in the 

environment would contribute to the development of antibiotic resistance genes in bacteria. 

Human exposure to micropollutants is also gaining increasing concerns, because many 

micropollutants can accumulate in the food chain. It was reported that micropollutants in 

the agricultural irrigation network could be taken up by  crops and later on by humans via 

consumption of fruits and vegetables [35]. That study found that the hydrophobic 

micropollutants could easily accumulate in crops, and the estimated human exposure to 

micropollutants through fruit and vegetable consumption was about 9.8 µg per person per 

week.  In addition, the presence of micropollutants in drinking water provides a direct 

exposure route to humans [36]. Although acute human toxicity of many micropollutants is 

not expected [37, 38], the human health effects upon long-term exposure to such pollutants 

is not fully understood and the development of an appropriate standard assessment 

methodology is urgently wanted [39, 40], some studies did already indicate that human 

health risks can be caused by exposure to certain micropollutants. For well-known industrial 

and pesticide chemicals, (Like HCB, dieldrin, chlordane, DDTs and PCBs) the cancer risks 

caused by daily exposure due to fish consumption has been reported extensively [41]. Such 

effects are not yet adequately studied for the large groups of pharmaceuticals and personal 

care product related chemicals. Moreover, although some individual compounds might not 

impose acute toxicity at the low concentrations appearing in the environment, 

micropollutants are often present in water bodies as a complex mixture which may cause 

additive and synergetic toxicity effects on living organisms [42]. For instance, studies have 

demonstrated such synergetic detrimental effect of mixtures of estrogenic chemicals on 
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freshwater and seawater fishes [43, 44]. Growing research efforts have been directed into 

this field [45, 46]. Given this context, authorities are taking measures to establish 

regulations on this issue. For instance, a watch list of priority substances including several 

micropollutants has been published by the European Union [47].  

The increasing legislation pressure, risks associated with micropollutants, and the 

insufficient efficacy of conventional WWTPs on micropollutant removal have formed a joint 

driving force that is boosting studies on more efficient treatment technology, removing 

micropollutants from wastewater and water sources used for drinking water.  

Photochemical treatment, the focus of this thesis, forms a class of techniques using light to 

degrade micropollutants.       

1.2 Photochemical treatment techniques for micropollutant removal 

Conventional water treatment processes, e.g. biological processes, sedimentation, 

filtration, coagulation/flocculation, are designed for elimination of solid suspends, 

carbonaceous substances, nutrients, pathogens. Although those contaminants can usually 

be effectively removed within conventional water treatment processes, the removal of 

micropollutants is usually unfortunately insufficient [23]. Therefore, vast efforts have been 

made to develop more advanced treatment processes for this purpose, e.g. activated 

carbon adsorption, ozonation, constructed wetlands, etc., [48-54]. The photochemical 

techniques are, among other (biological, sorptive, and oxydative-chemical) technologies, 

currently strongly under development to remove organic micropollutants from water.  The 

advantage of photochemical techniques is that these generally do not need the addition of 

microorganisms to the water, and therefore are very much appreciated by drinking water 

companies and water boards, the organisations that implement most water treatment 

technologies. Among all the treatment technologies for micropollutant removal, 

photochemical processes have therefore drawn enormous attention in recent decades. So 

far, various photochemical processes have been studied as removal techniques for different 

micropollutants, such as UV/H2O2 [55-59], UV/TiO2 [60-62], Photo-Fenton [63], 

photosensitization [64, 65], etc., which rely greatly on generation of various reactive oxygen 

species (ROS). Most commonly studied processes are: (1) UV/H2O2; (2) Photo-Fenton; (3) 

UV photolysis; (4) Photocatalysis; (5) Photosensitization.  
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1.2.1 UV/H2O2 process 

The UV/H2O2 process relies on photolysis of H2O2 molecules under UV irradiation, 

which leads to hydroxyl radical (·OH) generation, as illustrated in the reaction below:  

𝐇𝟐𝐎𝟐

𝐡𝛎
→ 𝟐 ·𝐎𝐇                                                 (1. 1) 

The produced hydroxyl radicals (·OH) possess high oxidizing power (2.8 V), which 

gives them strong ability to capture electrons from other compounds, and therefore are 

capable to subsequently degrade organic pollutants, including micropollutants. In recent 

decades, UV/H2O2 processes have drawn large amount of research interests in the field of 

micropollutant removal, and examples are ubiquitous [66]. For instance, Wols et al. studied 

degradation of 40 selected pharmaceuticals and reported good removal efficiency for most 

of the pharmaceuticals studied [67]. It is reported that a combination of 122.5 kJ/m2 UV 

radiation and 4 mg/L H2O2 could lead to more than 90 % removal of estriol, 17β-estradiol 

and 17α-ethinylestradiol, in secondary WWTP effluent [68]. In another study conducted by 

Shu et al. [69], good removal efficiency of 2,4-D and carbamazepine was presented in a 

pilot-scale UV/H2O2 reactor. Removal of other micropollutants including estrone, ibuprofen, 

diphenhydramine, phenazone, phenytoin, clarithromycin, diclofenac, metoprolol, 

benzotriazole, mecoprop, metaldehyde, etc., by UV/H2O2 processes have also been 

reported, and the removal efficiency varied among studies due to operation under different 

conditions [59, 70-72]. At present, the UV/H2O2 technique is already commercially available 

as a disinfection tool and micropollutants barrier, pilot to full scale application examples 

can be found elsewhere [73, 74]. 

1.2.2 Photo-Fenton processes 

The principle of Fenton based processes relies on iron (Fe2+) catalysed hydrolysis of 

H2O2, which results in production of ·OH, as illustrated in the equations below [75]: 

𝐇𝟐𝐎𝟐 + 𝐅𝐞𝟐+ → 𝐅𝐞𝟑+ + 𝐎𝐇− + ·OH       (1. 2) 

𝐇𝟐𝐎𝟐 + 𝐅𝐞𝟑+ → 𝐅𝐞𝟐+ + 𝐇+ + ·HO2        (1. 3) 

By applying UV radiation, thus in photo-Fenton processes, the ·OH generation is 

enhanced: (1) regeneration of Fe2+ is accelerated; (2) photolysis of H2O2 would also 
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contribute to ·OH production. Therefore photo-Fenton process is much more efficient in 

the ·OH generation compared with the conventional Fenton process [76, 77]. Viewing this 

fact, many studies have been performed to employ photo-Fenton technique for 

micropollutant removal, and removal efficiency depends greatly on the pH of reaction 

solution, Fe2+ and H2O2 dosages [63, 76, 78-82]. Usually, acidic pH (lower than 3) is required 

in Fenton processes to obtain good solubility of the iron ions [83], which is one of the main 

drawbacks of Fenton based techniques. Although efforts have been taken to extend the 

bearable pH to neutral, additional Fe stabilization reagents, e.g. ethylenediamine-N,N′-

disuccinic acid , are still needed [84]. Additionally, the production of iron sludge is a major 

concern of the Fenton based processes, due to precipitation of Fe(OH)3, which calls for extra  

measures for proper disposal/treatment of the sludge [85].  

1.2.3 UV photolysis 

 Due to the high energy of UV photons, they are able to trigger cleavage of various 

chemical bonds and elevation of molecular energy once absorbed by chemicals, making UV 

radiation capable to decompose various chemical structures. There are two main 

mechanisms, i.e. direct and indirect photolysis, responsible for chemical decomposition 

under UV radiation. The direct photolysis of an organic compound is the consequence of 

that compound`s own light absorption [86], while indirect photolysis of an organic 

compound involves participation of ROS generated by the interaction between photons and 

other co-existing chemicals [87]. Since UV treatment is one of the main disinfection 

techniques used in WWTPs [88] and many micropollutants can undergo direct or indirect 

photolysis upon UV (mainly in or shorter than UV-C range) radiation, it is possible to achieve 

micropollutant removal during UV disinfection processes. Viewing this, direct UV radiation 

has been one of the most widely studied micropollutant removal techniques, examples are 

well documented in literature [89-92]. For instance, in a recent study conducted by a group 

of Spanish researchers, it has been reported that UV treatment would be capable for the 

removal of several micropollutants [93]. It was reported that, among 18 tested 

micropollutants, a lab-scale UV reactor (lamp emitting at 254 nm) enabled effective removal 

of diclofenac, fluoxetine, sulfamethoxazole, bisphenol A, estrone, 17β-estradiol, and 17α-

ethynylestradiol. The removal of erythromycin, roxithromycin, carbamazepine, 
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trimethoprim, and diazepam was more limited and more affected by the operational 

conditions. These authors also found that the low UV dose applied for disinfection in full-

scale WWTPs was insufficient for effective and complete removal of the micropollutants, 

although some compounds were degraded. A good overview of the studies on the removal 

of micropollutants by direct UV radiation is available in literature [94].  

1.2.4 Photocatalytic processes 

 The report of Fujishima and Honda in 1972 on photoelectrochemically conversion 

of photo energy into chemical energy inspired vast research interests in photocatalysis [95]. 

Although many semiconductors (e.g. ZnO [96-99], WO3 [100], etc. ) have photocatalytic 

activity, TiO2 is the most used photocatalyst in environmental applications including air 

pollution control [101] and water treatment [102], because of its low toxicity, low cost, high 

efficiency, and high stability. Principles of TiO2 photocatalytic processes have been 

described elsewhere [62, 103]. TiO2 has three crystalline phases, thus rutile, anatase, and 

brookite. For photocatalytic water treatment purposes, rutile and anatase are the two 

favourable crystalline phases because of their appropriate band gaps (3.2 eV for anatase 

and 3.0 eV for rutile) [104]. As illustrated in Figure 1. 2, the photocatalytic degradation of 

organic pollutants is usually initiated by irradiation of photons containing energy higher 

than the band gap of the catalyst (UV photons in this case). Sequentially, the electrons (e-) 

in the valence band of TiO2 would be excited to the conduction band and leave positively 

charged holes (h+) in the valence band, and in this way e-/h+ pairs are generated. The photo-

generated electrons and holes would then migrate to the TiO2 surface and participate in 

series of redox reactions. Both the electrons and holes are able to directly react with target 

organic contaminants. Besides, these photo-generated electrons and holes can also react 

with oxygen, water, or HO- to generate highly reactive species, e.g hydroxyl radicals (·OH), 

superoxide radical anions (O2·-), etc., and those in-situ generated reactive oxygen species 

(ROS) are able to oxidize a broad range of organic contaminants and inactivate pathogens. 

Meanwhile, part of the e-/h+ pairs would also undergo recombination without participation 

in redox reactions, which causes waste of irradiation energy and is a major problem to 

photocatalysis processes. 
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Figure 1. 2 Schematic representation of principles of photocatalytic processes 

Applicability of TiO2 for elimination of a wide range of organic contaminant has 

been well documented [105-109]. In recent decade, many studies have been done to apply 

TiO2 for photocatalytic removal of various micropollutants [110-114], e.g. 2-methyl-4-

chlorophenoxyacetic acid (MCPA) [115-117], mecoprop [118], clopyralid [118], metoprolol 

[104, 119], 2,4-Dichlorophenoxyacetic Acid (2,4-D) [120], etc. For instance, Calza et al. [61] 

reported efficient diclofenac removal over aqueous TiO2 suspensions. Although 

TiO2 photocatalysis has been shown to be an effective way to remove a variety of 

micropollutants from water by lab-scale studies, there are still two major issues need to be 

addressed. The first one is separating and recycling of the TiO2 prior to the downstream 

treatment processes. One option is the membrane filtration. By combining the TiO2 

photocatalysis processes with membrane filtration technique, good retention of TiO2 can 

be expected. For example, Benotti et al. [121] evaluated the performance of a pilot-scale 

photocatalytic membrane reactor (consisting of a photocatalytic reaction chamber and a 

cross flow ceramic membrane unit where TiO2 nanoparticles were separated and recycled) 

on the removal of 32 pharmaceuticals and endocrine disrupting compounds in river 

water. Their results showed good micropollutant removal performance and TiO2 retention. 

However, the application of membrane separation would raise new concerns like additional 

operation cost and fouling. An alternative is applying immobilized TiO2 instead of TiO2 
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suspensions. For instance, in a study conducted by He et al. [122], good degradation 

performance of propranolol, diclofenac, carbamazepine and ibuprofen over TiO2 

immobilized sand was reported, and additional post treatment for catalyst separation was 

avoided. Another major shortcoming of TiO2 photocatalysis technique is the recombination 

of e-/h+ pairs. As aforementioned, upon generation of e-/h+ pairs, part of them would not 

participate in any redox reactions and would recombine to generate heat. Such process do 

not contribute to degradation of target contaminants, instead, it only leads to loss of 

absorbed photon energy, and therefore lowering the energetic efficiency of the TiO2 

photocatalysis. Thus, suppressing the e-/h+ recombination is a key to improve the 

performance of a TiO2 photocatalysis technique. Up till know, several approaches have been 

investigated for this purpose. For instance, modification of TiO2 by adding electron acceptor 

species (S2O8
2 −) to trap photogenerated electrons is reported to be effective in reducing the 

recombination of e-/h+ pairs and enhancing the degradation of sixteen substituted 

phenylurea herbicides  [123]. Another approach is extraction of photogenerated electrons 

by applying external voltage. By applying an external voltage, the photogenerated electrons 

can be effectively extracted from the catalysts, and thus recombination of e-/h+ can be 

greatly suppressed, so better target pollutants degradation can be expected [124, 125]. 

1.2.5 Photosensitization processes 

The term photosensitization refers to “the process of initiating a reaction through 

the use of a substance capable of absorbing light and transferring the energy to the desired 

reactants.” [126]. Figure 1. 4 shows the principles of photosensitized pollutants removal 

processes. In a typical photosensitization process, the photosensitizer absorbs energy from 

photons to become in excited state. Then the excited state photosensitizer can react with 

oxygen to form singlet oxygen (1O2) via energy transfer or superoxide anion radical (·O2
-) via 

electron transfer, which is defined as Type II photosensitization; alternatively, the excited 

state photosensitizer can also reacts directly with the pollutants via electron transfer, which 

is defined as Type I photosensitization [127, 128]. Many compounds have been recognised 

to be able to act as photosensitizers, including organic dyes, transition metal complexes, 

semiconductors, and porphyrins and their analogues [127]. Singlet oxygen, an energetically 

rich form of molecular oxygen, is considered to be the primary oxidant in various 
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photosensitization processes [64, 129, 130]. Figure 1. 3 illustrates the difference between 

ground state oxygen and singlet oxygen in the π-antibonding orbitals structure. Singlet 

oxygen has different electronic configuration than the ground state oxygen (the π-

antibonding electrons of the singlet oxygen lie in one orbital and have opposite spins) and 

higher energy level (95 kJ/mol) than ground state oxygen. Such properties make singlet 

oxygen significantly more electrophilic and more reactive towards unsaturated bonds than 

the ground state oxygen: it reacts with singlet state electron-rich compounds unsaturated 

bonds, and typical reactions of singlet oxygen are Schenck reactions and Diels-Alder 

reactions. 

 

Figure 1. 3 Representations of the π-antibonding orbitals assignment of ground state 

oxygen and singlet oxygen 

 

Figure 1. 4 Schematic representation of principles of photosensitized pollutants removal 

processes 
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Photosensitization processes are one of the main transformation pathways of 

micropollutants attenuation in natural water bodies, because many micropollutants 

themselves can act as photosensitizers and the commonly present dissolved natural organic 

matter are known to have photosensitizing effects, but such transformation in nature is 

usually slow [8, 10, 21]. In recent years, studies have been carried out to employ 

photosensitization processes for organic chemical removal in various water matrices. For 

instance, Gmurek et al. examined the application of photosensitive chitosan (chitosan with 

immobilized phthalocyanine) for visible light (natural sunlight) photosensitized degradation 

(by 1O2) of benzylparaben and 2, 4-dichlorophenol, the results show  that the studied system 

had good efficacy and could work in wide pH range [131]. Kim et al. reported degradation 

of several pharmaceuticals using tin porphyrin- and C60 aminofullerene-derivatized silica as 

photosensitizers, where 1O2 was identified as the primary oxidant, and the performance in 

real wastewater effluents was still effective [130]. The advantage of 1O2 over other ROS such 

as ·OH is its high electrophilicity and selectivity, thus 1O2 can effectively oxidize 

micropollutants containing electron-rich moieties, such as alkyl sulphides and thiones, 

despite the presence of background organic matter [127, 129]. 

1.2.6 Other processes 

 Other investigated homogeneous photochemical processes include UV/Cl2, UV/O3, 

UV/HOCl, UV/ClO2. Application of these techniques for removal of various micropollutants 

has been studied over last decades. It is reported that UV/Cl2 could achieve relatively good 

removal of carbamazepine from wastewater, but formation of toxic chlorinated by-

products was an issue [132, 133].  Kong et al. reported efficient degradation of atrazine by 

UV/Cl2 [134]. Examples of micropollutant removal by UV/O3, UV/HOCl, UV/ClO2, etc., are 

also abundant in literature [135-138]. 

1.3 Research opportunities 

1.3.1 Research opportunities within existing photochemical techniques 

Although as aforementioned, vast efforts have been directed into photochemical 

processes for micropollutant removal. Various techniques, e.g. UV/Cl2, UV/O3, UV/HOCl, 

UV/ClO2, UV/H2O2, and photo-Fenton, were found to be effective on removal of a broad 
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range of micropollutants [58, 71, 132-134, 137-140]. However, these techniques still have 

some drawbacks. For instance: use of ozone would lead to bromate production from 

bromide, which is a suspected human carcinogen [59]; use of chlorine, ozone, hydrogen 

peroxide requires facilities for dosing and storing these hazardous chemicals; the 

production of iron sludge is a major concern of the Fenton based processes, due to 

precipitation of Fe(OH)3, which calls for proper disposal/treatment of the sludge [85]; etc.  

Therefore, heterogeneous techniques, especially photocatalysis is considered to be a good 

approach for micropollutant removal because of its potential to overcome the 

abovementioned limitations and the ability to produce strong ROS, i.e. ·OH.  

Although many semiconductors have photocatalytic activity, TiO2 is the most used 

photocatalyst in environmental applications including air pollution control [101] and water 

treatment [102], because of its low toxicity, low cost, high efficiency, and high stability. 

Many research works at lab-scale have been carried out to removal micropollutants from 

water using suspension of TiO2 fine particles [61, 107, 141-143]. The use of suspension of 

TiO2 fine particles is beneficial for fundamental research at lab-scale but not favourable in 

real life implication. The use of TiO2 suspension requires solid/liquid separation process like 

ultrafiltration and centrifuge for better retention and reuse of the catalyst, resulting in 

additional costs. In addition, the suspended TiO2 particles result in increasing scattering of 

light, thus decreasing in the overall energetic efficiency. Previous study also shows the 

instability of suspended catalyst particles: the catalyst particles tend to form aggregates in 

water with increasing alkalinity [144]. Therefore, there is a need for immobilized TiO2 

catalyst in real life implementations.  

In recent decades, attempts have been made to employ immobilized TiO2 for 

elimination of organic pollutants from aqueous streams [105, 122, 145-148]. For instance, 

Murgolo et al. applied nanostructured TiO2 film deposited on a stainless steel mesh for 

photocatalytic degradation of a mixture of 10 micropollutants at µg/L range under UV-C 

radiation [149]. Manassero et al. applied TiO2-coated glass rings for photocatalytic 

degradation of clofibric acid in a-fixed bed reactor [150]. Chiou et al. reported the 

application of TiO2 immobilized on glass beads for degradation of di-n-butyl phthalate [105]. 

Several methods for immobilization of TiO2 onto supports have been successfully employed 
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in previous studies, e.g. sol-gel coating, spray coating, chemical vapor deposition, 

hydrothermal methods, and electrophoretic deposition, and a recent review paper on this 

topic is available [151]. A part from the above mentioned ones, the self-organized TiO2 

nanotube array (TNA) produced by electrochemical anodization exhibits great potential. 

The TNA produced with this method has several advantages: (1) strong connection between 

the TNA layer and the support material (titanium) and thus high mechanical stability; (2) 

easily tunable morphology and crystalline phase; (3) easy to make.  

The production of TiO2 nanotube arrays via electrochemical anodization method 

was firstly reported by Zwilling et al., [152, 153]. Their work showed that organized 

nanotube layers were formed after anodic oxidization of titanium substrate in chromic acid 

electrolytes containing hydrofluoric acid, and recognized that addition of fluoride ions to an 

electrolyte are the key to form these TiO2 nanotube structures. Since then, vast research 

efforts have been taken in this field [154-158]. At present, the mechanism of producing TNA 

by anodization has been well documented in literature [159]. Figure 1. 5 illustrates the 

typical configuration of anodization TNA production process. The production of TNA by 

anodization method is usually carried out by applying a constant anodic voltage on the 

titanium in a fluoride containing electrolyte (usually 1-30 V in aqueous electrolytes or              

5-150 V in organic electrolytes [159]). Initially, the titanium surface is oxidized to TiO2 under 

the applied anodic voltage (equation 1.4). Then, with the presence of fluoride ions, etching 

of the formed TiO2 layer and complexation of Ti4+ with fluoride ions will take place, resulting 

in formation of soluble [TiF6]2- (equation 1.5 and 1.6). A balance between these two 

processes leads to formation of the TNA. More detailed mechanistic theories are well 

described in a review by Schmuki et al. [159]. As-formed TNAs are typically present in 

amorphous form and have therefore low photocatalytic performance, so in order to obtain 

desired crystalline phases (usually anatase or rutile), annealing is needed after anodization. 

Typical annealing temperatures applied to obtain anatase are between 280 °C to 450 °C, 

while higher annealing temperatures would lead to formation of rutile [160].  

𝐓𝐢 + 𝟐𝐇𝟐𝐎 → 𝐓𝐢𝐎𝟐 + 𝟒𝐇+ + 𝟒𝐞−    (1. 4) 

𝐓𝐢𝐎𝟐 + 𝟔𝐅− → [𝐓𝐢𝐅𝟔]𝟐−                       (1. 5) 

𝐓𝐢𝟒+ + 𝟔𝐅− → [𝐓𝐢𝐅𝟔]𝟐−                        (1. 6) 
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Figure 1. 5 The electrochemical anodization process for TNA production 

 Several operational parameters were reported to impose impact on the properties 

of the produced TNA. For instance, the applied voltage regulates the pore size of the TNA , 

the anodization time affects the thickness of the TNA layers, while the annealing conditions 

have effect on the crystalline composition [159, 160]. By well regulating the operational 

parameters during anodization, tailored TNA with designated properties can be obtained.  

The use of TNA for photocatalytic removal of organic pollutants has received 

attention, and examples are available in literature [161-164]. Very recently, attempts have 

been made to apply TNA for photocatalytic removal of micropollutants. For instance, 

Arfanis et al. reported application of TNAs for photocatalytic degradation of salicylic acid 

and caffeine, and demonstrated nearly 50 % removal of both contaminants within the 

treatment time span, and good reusability of the TNAs [165].  
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However, studies on the application of TNA for micropollutants are still not 

abundant, and numerous knowledge gaps still exist: 

 As aforementioned, the morphology and crystalline phase of TNA are easily 

tuneable. These properties may impose effects on the photocatalytic 

micropollutant removal processes: for instance, the morphology of TNA layer 

may affects the adsorption/desorption of both the target pollutant and photo-

induced ROS on the TNA surface. However, little is known about the effects of 

TNA properties on photocatalytic micropollutant removal. 

 Regarding the real life application, various background water constituents have 

been reported to impose detrimental effects on the TiO2 slurry based 

photocatalytic systems [106, 166-168]. Due to the morphological differences 

between TiO2 fine particles and TNA, the interaction between background water 

constituents with TNA may differ from that in the case of TiO2 fine particles 

based system. However, little is known about how the water quality parameters 

would affect the performance of TNA based systems. 

 Little is known about the contribution of different reaction sites (e.g. surface 

reaction, reaction in liquid phase) in the TNA based system. 

Another major drawback of TiO2 photocatalytic processes is the fast recombination 

of e-/h+ pairs, where a large amount of energy from absorbed photons is lost as heat, 

resulting in seriously reduced treatment efficiency [124]. Therefore, reducing the 

recombination of e-/h+ pairs is a key to obtain effective photocatalytic process. Efforts have 

been made on this aspect, e.g. integrating TiO2 with other active materials to form in-situ 

hetero-junction for better e-/h+ separation [169, 170], applying voltage bias - generally 

known as photoelectrocatalysis (PEC) - to separate e-/h+ from the catalyst [124, 125]. 

Recently a novel PEC technique, known as photocatalytic fuel cell (PFC) has been introduced 

into the field of water treatment [171, 172]. In PFC systems, the photo-induced electrons 

can migrate from TiO2 to the cathode through an external connection, and driven by the 

photon-induced self-bias between the two electrodes, without external power supply. 

Hereby the photo-induced holes are left at the TiO2 surface triggering degradation of the 

target pollutants [171, 173]. In this way, the recombination of e-/h+ pairs is reduced and 
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consequently enhanced target contaminants removal. Compared to conventional PEC 

processes, the PFC systems do not require electrical power supply for separation of e-/h+, 

therefore the PFC concept is gaining increasing attention in the field of water treatment in 

recent years. For example, enhanced organic pollutant degradation and simultaneous 

electricity generation was reported in a study conducted by Li et al., using a TiO2/Ti–Pt PFC 

treating Reactive Brilliant Red X-3B [173]. However, not many attempts have been made to 

apply PFC for micropollutant removal and numerous knowledge gaps still exist: 

 Little is known about the efficacy of PFC on micropollutant removal from water.  

 Little is known on micropollutant degradation mechanisms in PFC systems. 

 Little is known about the effects of water quality parameters on the 

performance of PFC systems. 

 Little is known about the applicability of PFC systems for micropollutant removal 

in complex water matrices like real wastewater effluents. 

Therefore, research aims at the above described knowledge gaps would contribute 

to both the further development and a better understanding of TiO2 photocatalytic 

techniques for micropollutant removal, and provide new perspectives in the research field 

on photochemical micropollutant removal techniques. 

1.3.2 Call for alternative photochemical technique  

 The primary ROS in most photochemical micropollutant removal techniques, e.g. 

UV/Cl2, UV/O3, UV/HOCl, UV/ClO2, UV/H2O2, photo-Fenton, and UV/TiO2 are strong radicals 

like ·OH and ·Cl. The strong oxidizing power of these strong radicals enabled the applications 

of such techniques for various purposes, including organic pollutant removal, disinfection 

etc. However, application of these techniques is usually limited as a polishing process for 

relatively clean water. It is well documented that, in relatively complex water matrixes, the 

water matrices, including inorganic salts (e.g. phosphate, bicarbonate, sulphate) and 

natural organic matters (NOMs), impose large detrimental effect on the performance of 

such techniques [166]. For instance, Autin et al. evaluated the impact of background organic 

matter and alkalinity on the degradation of the pesticide metaldehyde in UV/TiO2 and 

UV/H2O2 processes [174]. Their results show that: (1) both the background organic matter 
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and alkalinity act as ·OH scavengers in the UV/H2O2 process which adversely affect 

micropollutants degradation; (2) the inhibitory effect of alkalinity in UV/TiO2 photocatalysis 

is much more pronounced due to the formation of large TiO2 aggregates; (3) UV/TiO2 and 

UV/H2O2 processes are controlled by the background scavenging rate regardless of the 

concentration of micropollutant.  Same inhibitory effect of background organic matter and 

alkalinity was confirmed and further studied in a subsequent study by the same authors 

[175]. Carra et al. compared performance of different UV AOPs for acetamiprid removal in 

different water matrices, and reported the negative effect of humic acids on the examined 

UV AOPs [176]. In a study applying UV/Cl2 for atrazine degradation, it is found that the 

degradation efficiency was greatly inhibited by NOM [134]. In photocatalytic processes, 

anions like phosphate and bicarbonate remain strongly adsorbed onto catalysts surfaces 

and can therefore deactivate the site where it adsorbed [96, 166]. Furthermore, inorganic 

anions like phosphate and bicarbonate are also able to act as hydroxyl radical scavengers. 

A study conducted by J. Brame et al. [177] reported that the presence of phosphate ions 

even at low concentrations could cause significant decrease in the performance of UV/H2O2 

process, which was attributed to scavenging of hydroxyl radicals by phosphate ions. NOMs 

interfere with photochemical micropollutant removal techniques by two main mechanisms. 

The first one is absorption of UV light, which is well known as “inner filter effect”. NOMs are 

usually able to absorb light in the UV and near-UV range. The presence of NOMs in water 

would decrease the availability of UV light for semiconductors/H2O2 and any other species 

needed to produce hydroxyl radicals, in the cases of all UV related AOPs. The other reason 

that NOM could reduce the performance of most existing AOPs is that NOMs can act as 

hydroxyl radical scavenger.  

In order to be able to remove micropollutants from complex water matrices, 

studies have been carried out to investigate the efficacy of employing photosensitization 

processes for organic chemical removal in various water matrices [64, 129, 130], where 

singlet oxygen (1O2) was considered to be the primary oxidant. As an oxidant which has a 

higher oxidizing potential (about 1 V higher [127]) than ground state oxygen and 

electrophility, it selectively reacts with organics containing electron-rich functional groups, 

as described in section 1.2. Because generally only a very small fraction of NOM contains 

electron-rich moieties [177], the scavenging effect of NOM may be minimal. Its application 
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in organic pollutant elimination has been investigated and the ability to overcome 

detrimental effects of background water constituents has been documented [178-181]. 

Although in most previous studies solid photosensitizers were applied [129, 130], 

involvement of solid photosensitizers still has drawbacks. Because 1O2 has a very short life 

time, the presence of 1O2 is limited to a thin layer close to the solid phase; therefore only 

adsorbed pollutants can be well degraded [182]. Moreover, inorganic ions and NOMs in 

water matrices can still reduce the process efficiency by blocking the active site of solid 

sensitizers. In this manner, homogeneous singlet oxygen mediated processes can be an 

alternative, because the aforementioned problems associated with heterogeneous system 

can be avoided. Methylene blue (MB) has great potential to be utilized as homogeneous 

photosensitizer for such purpose. It has strong light absorption in  visible range (red light) 

which can avoid the inner filter effect of NOMs in complex water matrices, has a relatively 

high quantum yield of singlet oxygen formation [183], and has a long history of safe use in 

human treatment without major side effect. The red light induced MB photosensitization 

process for singlet oxygen formation is reported to have a broad application field including 

disinfection in not only wastewater treatment but also blood products [184-189], where 

singlet oxygen was generated to kill pathogens, as well as medical therapy, where red light 

induced MB photosensitized singlet oxygen was directed to selectively kill tumour cells for 

cancer therapy [187]. Nevertheless, no attempt has yet been made to apply the MB 

photosensitization process for micropollutant removal and numerous research 

opportunities exist: 

 Is it possible to achieve micropollutant removal by MB photosensitization? 

 What are the degradation mechanisms contributing to micropollutant removal 

in the MB photosensitization process? 

 What are the effects of background water constituents? 

 What are the key operational parameters and their effects?  

1.4 Scope and outline of this thesis 

The general objective of this thesis is to contribute to a better understanding and 

further development of photochemical treatment processes for micropollutant removal 

from aqueous streams. Referring to the above described research opportunities and 
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knowledge gaps, emphasis of this thesis is given to two topics: (1) Development of an 

alternative photochemical water treatment technique for micropollutant removal from 

wastewater; (2) Further development of UV/TiO2 technique by application of TNA as 

immobilized catalyst.  

 Chapter 2 contributes to a better understanding on application of TNA for 

photocatalytic micropollutant removal techniques. It investigates fabrication of TNA and 

evaluates its use as immobilized photocatalyst for micropollutant degradation in water.  

 Chapter 3 contributes to a better understanding of applicability of TNA as 

photocatalyst in complex water matrices. Emphasis was given to the potential detrimental 

effect of dissolved natural organic matter (NOMs) on micropollutant removal in TNA based 

photocatalytic system. 

 Chapter 4 contributes to a better understanding on how to further improve the 

TNA based photocatalytic micropollutant removal process. It presents that the membrane-

free TNA based photocatalytic fuel cell system can successfully enhance micropollutant 

removal, compared to conventional TNA based photocatalytic system. Mechanisms of the 

enhancement and effects of pH, electrolyte and water matrices are here being discussed.  

Chapter 5 contributes to development of alternative photochemical water 

treatment technique. It presents the proof of principle of applying red light induced 

methylene blue photosensitization (MB/Red-light) for micropollutant removal. The efficacy 

of MB/Red-light on degradation of four pharmaceutical compounds was investigated. The 

primary ROS in applying this technique was identified. Effects of pH and commonly present 

water constituents were studied. 

 Chapter 6 contributes to a better understanding on how to optimize the proposed 

MB/Red-light technique. It reports the effect of operational parameters on the performance 

of MB/Red-light technique. Effects of MB dosage, initial micropollutant concentration, and 

aeration rate were studied. 

 In Chapter 7 findings and outcomes from previous chapters were integrated and 

reflected. Moreover, new perspectives on future research opportunities are provided.    
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Abstract 

The aim of this study was to evaluate the use of self-organized TiO2 nanotube 

arrays (TNAs) as immobilized catalyst and UV-LED as light source (UV-LED/TNAs) for 

photocatalytic degradation of the β-blocker metoprolol (MTP) from aqueous solution. 

Firstly we employed electrochemical anodization to synthesize self-organized TNAs, and the 

effect of anodization potential and annealing temperature was examined. Characterization 

by SEM demonstrated a linear relation between the diameter of TiO2 nanotubes produced 

and the anodization potential, while Raman measurement revealed the vital role of 

annealing on crystallographic composition of the anodic produced TiO2 nanotubes. 

Regarding their performance in photocatalytic MTP degradation, surface morphology and 

crystallographic composition of the TNAs were found to impose crucial influence: only TNAs 

with diameter not smaller than 53 nm enabled rapid MTP degradation, and highest MTP 

degradation was obtained when a mixture of anatase and rutile were present in the TNAs. 

Secondly, the effect of operational parameters, i.e initial MTP concentration, pH, was 

investigated. Initial MTP concentration at low level had no detrimental effect on the process 

performance. Rapid MTP degradation and high total removal were achieved in a wide pH 

range (3-11). To evaluate the applicability of TNAs for water treatment, experiments were 

first carried out in the presence of three different commonly present water constituents, i.e 

bicarbonate ions, phosphate ions, and natural organic matters (NOMs). The results show 

that bicarbonate and phosphate ions have no inhibitory effect at concentration levels up to 

200 mg/L, and NOMs exhibit detrimental effect when their concentration exceeds 5 mg/L. 

The total removal MTP degradation reduced from 87.09% to 62.05% when tap water 

samples were applied, demonstrating reasonable efficacy for practical applications. 

Regarding the degradation mechanism, formic acid and tert-butanol were added as 

scavenger for photo-generated holes (h+) and hydroxyl radicals (·OH), respectively. The 

obtained results demonstrate that primary degradation process occurred in liquid phase 

with participation of hydroxyl radicals in the liquid phase (·OH liquid), while smaller portion 

of MTP were degraded on the catalysis surface via reaction with h+ and hydroxyl radicals 

adsorbed on the catalyst surface (·OH surface). Other reactive species, e.g photo generated 

electrons and superoxide radical anions, did also play a minor role in MTP degradation. The 
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mechanistic aspect was further confirmed by identification of degradation products by LC-

MS/MS. The TNAs exhibited good stability after repeated use under varied operation 

conditions. 
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2.1 Introduction 

In recent years, a large number of pharmaceuticals have been detected at various 

concentration levels in the aqueous environment [7, 27], from ground and surface water to 

even drinking water resources [5-11, 190]. This issue is gaining concerns because of the 

potential risks for aquatic life and human society. On the other hand, the presence of such 

pollutants in various water bodies together with treatability studies clearly demonstrate the 

poor efficacy of conventional wastewater treatment processes and drinking water 

production processes on removal of wide range of pharmaceutical compounds [64, 102, 

190]. Among the wide range of pharmaceutical compounds frequently detected in the 

environment, a β-blocker, i.e metoprolol (MTP), is considered to be an emerging 

contaminant: (1) it has been classified in the group of pharmaceuticals most commonly 

present in the environment [7]; (2) it is widely used in both hospitals and households, and 

enters surface waters (including drinking water sources) at up to µg/L level [103]; (3) 

environmental risk assessment studies have indicated environmental risks associated with 

its presence[26, 191]. Therefore, removal of such compounds from aqueous streams, 

especially during drinking water production, has become an urgent topic, to guard the 

safety of water supply and improve the quality of life. 

 Advanced oxidation processes (AOPs), where a strong oxidizing species hydroxyl 

radical (·OH) is the primary oxidant, exhibit sufficient efficacy in elimination of a wide range 

of organic contaminants including pharmaceuticals [55, 83, 192], among which 

photocatalysis is considered to be a good approach because of its chemical-free nature. 

Although many semiconductors have photocatalytic activity, TiO2 is the most used 

photocatalyst in environmental applications including air pollution control [101] and water 

treatment [102], because of its low toxicity, low cost, high efficiency, and high stability. 

Principles of TiO2 photocatalytic processes have been described elsewhere [62, 103]. The 

photocatalytic degradation of organic pollutants is usually initiated by excitation of TiO2 by 

photons containing energy higher than the TiO2 band gap. Sequentially, electron/hole (e-

/h+) pairs are generated on the catalyst surface. The photo-generated electrons and holes 

are able to participate in direct redox reactions with target organic contaminants. Besides, 

the photo-generated electrons and holes can also react with oxygen, water, or HO- to 



Chapter 2 

27 
 

generate highly reactive species, e.g hydroxyl radicals (HO·), superoxide radical anions (O2·-), 

etc, and those in-situ generated reactive species are able to oxidize and reduce many 

contaminants. Applicability of TiO2 for elimination of a wide range of organic contaminant 

has been well documented [105-109].  

Recently, regarding real life application, attempts have been made to employ 

immobilized catalyst for elimination of organic pollutants from aqueous streams [105, 122, 

145-148], in order to achieve better retention and reuse of the catalyst. Among all kinds of 

immobilized TiO2, the self-organized TiO2 nanotube arrays (TNAs) exhibit great potential 

because of its relatively large surface area, high stability, and oriented electron transport as 

well as high electron mobility which could reduce electron/holes (e-/h+) recombination in 

the material [193, 194]. Although there are various approaches for TiO2 nanotube arrays 

synthesis, electrochemical anodization has gained the most attention because it is a fast 

and facile method [161], and easy to tune the morphology of TiO2 nanotubes produced. 

Synthesis of TiO2 nanotube arrays via anodization of Ti material has been previously studied 

by other researchers [152, 153, 193, 195]. Among various factors exerting impact on the 

characteristics of anodic produced TiO2 nanotube arrays, anodization potential and 

annealing temperature are two vital parameters which control the diameter and 

crystallographic structure of the TiO2 nanotube arrays, respectively [159, 160]. Furthermore, 

the diameter and crystallographic structure are reported to impose impact on 

photocatalytic performance of the TiO2 nanotube arrays [162, 196]. The use of TiO2 

nanotube arrays for photocatalytic removal of organic pollutants has received attention, 

and examples are available in literature [161-164]. 

Regarding implications of photocatalysis, light source is another vital factor 

because it imposes significant impact on the operational and maintenance costs. Mercury 

lamps have been widely used for photocatalytic pollutants elimination processes, which are 

reported to have major drawbacks: (1) short working life span (500-2000h); (2) hazardous 

materials (mercury) content; (3) fragility [197]. Recent advances in light emitting diode (LED) 

technology provides better alternative, due to their advantages: short warm-up time, no 

hazardous materials content, long working life span, compatibility, narrow light emission 

spectra, etc [197]. Therefore, in recent years the use of UV-LED for photocatalytic treatment 
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of various organic contaminants is gaining research interests [198-200]. Only very few 

attempts have been made to combine the use of TNAs and UV-LED, for dye degradation 

[164].  

To the best of the authors` knowledge, no research has been conducted on the 

photocatalytic treatment of pharmaceutical compounds using self-organized TNAs as 

catalyst and UV-LED as light source. In this context, in the present study we aimed to 

evaluate the performance of the combination of self-organized TNAs as immobilized 

catalyst and UV-LED as light source (UV-LED/TNAs) for photocatalytic degradation of the β-

blocker MTP from aqueous solution. Synthesis and characterization of the self-organized 

TiO2 nanotube arrays was studied, and the effect of two operational parameters, i.e. 

anodization potential and annealing temperature, on the properties of TiO2 nanotube 

arrays was examined. Moreover, the impact of TiO2 nanotube arrays` characteristics on 

their photocatalytic performance was studied. Regarding photocatalytic degradation of 

MTP over TiO2 nanotube arrays, the effect of multiple operational parameters and the 

effect of back ground water constituents were investigated. Additionally, its applicability in 

drinking water was investigated by conducting experiments in tap water samples. 

Furthermore, experiments with addition of specific scavengers were carried out to 

understand the mechanistic aspect, and contributions of the different reactive species and 

reaction mechanism were identified. The stability of TNAs in the UV-LED/TNAs 

photocatalytic system was also evaluated. 

2.2 Materials and methods 

2.2.1 Materials 

Titanium foil (≥99.5%, 0.3 mm thick) was purchased from the Titaniumshop (The 

Netherlands). Ammonium sulphate (≥99.0%), ammonium fluoride (≥98.0%), tert-Butanol 

(≥99.0%), formic acid (≥96%) were obtained from Sigma-Aldrich (Germany). Metoprolol 

tartrate salt (≥98.0%) was purchased from Sigma-Aldrich (Germany) and was used as 

received. Stock solution of metoprolol tartrate salt was prepared at MTP concentration of 

200 mg/L. Acetone (≥99.7), 2-propanol (≥99.9%), sodium carbonate (≥99.9%), hydrochloric 

acid (0.1 mol/L), tri-sodium phosphate dodecahydrate (≥98.0%), and sodium hydroxide 
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aqueous solution (1 mol/L) were purchased from VWR (Belgium) and was used as received. 

An aquatic NOM Suwannee River NOM (2R101N) was obtained from International Humic 

Substances Society (IHSS) and received as dry solid extracts. Stock solution of the Suwannee 

River NOM was prepared at concentration of 100 mg/L. Ultrapure water from a Milli-Q 

Advantage A10 system (Merck Millipore, Darmstadt, Germany) was used for preparation of 

stock solutions and reaction solutions.  

2.2.2 Synthesis of TiO2 nanotube arrays by electrochemical anodization 

As pretreatment, the Ti foils were first degreased by successively ultra-sonication 

for 15 min in 2-propanol, acetone and Milli-Q water, and then were dried in N2 atmosphere. 

The TiO2 nanotube arrays (TNAs) were synthesized by electrochemical anodization in a two-

electrode chemical cell connected to an EST150 DC power supply (Delta Elektronika, The 

Netherlands). A Ti foil with a size of 3 cm × 4. 5 cm was used as anode, and a stainless steel 

foil with a size of 4.5 cm × 5 cm was used as cathode. The distance between the electrodes 

was 2 cm. The Ti foil was anodized in 100 mL aqueous electrolyte (0.15 mol/L NH4F + 1 mol/L 

(NH4)2SO4 ) [125] under designated voltage for 2 hours. Then the obtained foil was first 

rinsed and then further sonication washed with Milli-Q water to remove residue electrolyte 

and impurities on the surface. Subsequently, the treated Ti foil was annealed at designated 

temperatures for 0.5 h in a furnace (Nabertherm, Germany) in air atmosphere and was 

cooled gradually back to ambient temperature after annealing. The designated anodization 

potentials and corresponding annealing temperatures for synthesis of different TNAs are 

summarized herein in Table 2. 1.  
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Table 2. 1 Anodization potentials and annealing temperatures for different TNAs 

samples 

Sample Anodization potential (V) Annealing temperature (℃) 

1 1 450 

2 5 450 

3 10 450 

4 15 450 

5 20 450 

6 25 450 

7 20 No annealing 

8 20 300 

9 20 600 

 

2.2.3 Characterization of TiO2 nanotube arrays 

The surface morphologies of the prepared TNAs were characterized by scanning 

electron microscopy (SEM) and the chemical composition of the prepared TNAs was 

measured by EDX. The SEM/EDX analyses were performed using a JEOL JSM 6480 scanning 

electron microscope (JEOL Europe B.V., Nieuw-Vennep, The Netherlands) equipped with a 

EDX system. Surface area measurements of TNAs samples prepared under different 

anodization potentials were performed using a Tristar 3000 Surface area and Porosity 

Analyzer (Micromeritics, USA), where nitrogen adsorption isotherms were collected at 77 K 

(-196 ℃) and the Brunauer-Emmertt-Teller model was used to determine the specific 

surface area. Raman spectra of the prepared TNAs samples were recorded using a Horiba 

LabRAM spectrometer equipped with a mpc3000 laser (532.2 nm), an 800 mm focal length 

achromatic flat field monochromator (grating of 600 grooves/mm) and a Synapse 

multichannel air cooled (–70∘C) CCD detector. 
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2.2.4 Photocatalytic degradation of metoprolol 

 

Figure 2. 1 Schematic of the experimental set-up 

The photocatalytic experiments were conducted in a Petri dish with a 450 mW UV-

LED light source module placed on the top. The UV-LED light source module consisted of a 

UV-LED (NCSU033B, NICHIA, Japan) and has peak emission wavelength of 365 nm, and an 

aluminum plate served as heat dispenser. A schematic of the set-up is shown in Figure 2. 1. 

The experiments were carried out with a reaction solution volume of 60 mL, with presence 

of desired TNAs (size of 3 cm × 3 cm), at ambient temperature. The distance between the 

UV-LED and the surface of TNAs was 2 cm. Continuous mixing started as soon as the reaction 

solution was added into the Petri dish. Before switching on the UV-LED, the reaction system 

was kept in dark for 1 hour to establish saturation of any possible adsorption of MTP on 

TNAs surface. Then the photocatalytic experiments started, for duration of 120 min. The 

radiant power of the UV-LED reached the surface of TNAs was 18.6 mW/cm2, measured by 

a THORLABS S150C radiant power meter (THORLABS, USA). 1 mL samples were taken at 

designated time intervals, and stored in dark at 4 °C till LC-MS/MS analysis. All experiments 

were carried out in duplicate. Except for experiments conducted in designated acid or 

alkaline conditions, all other experiments were conducted with natural initial pH (circum-

neutral: 6-7) and no pH adjustment was applied. 
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Table 2. 2 Characteristics of the tap water 

Parameters Unit Values 

Cl mg/l 60.1 

NO2
- mg/l <0.05 

NO3
- mg/l 8.84 

PO4
3- mg/l <0.05 

SO4
2- mg/l 1.75 

TC mg/l 53.6 

NPOC mg/l 4.26 

IC mg/l 49.3 

Ca2+ µg/l 38100 

Cu2+ µg/l 108 

K+ µg/l 2360 

Mg2+ µg/l 9360 

Na+ µg/l 66600 

 

 For experiments regarding effect of initial MTP concentration, different initial MTP 

concentrations ranging from 0.1 mg/L to 1.5 mg/L were applied, while the initial MTP 

concentration in all other experiments were set to be 1.0 mg/L. For experiments regarding 

the effect of background water constituents, NOMs, bicarbonate ions, or phosphate ions 

were added separately to the reaction solutions to designated concentration levels, and pH 

was adjusted using HCl standard solution to circum-neutral (6-7). For experiments regarding 

performance in tap water, real tap water (characteristics of the tap water are summarized 

in Table 2. 2) was used to prepare the reaction solution, while all other experiments were 

conducted in Milli-Q water. For experiments regarding the effect of intial pH, HCl or NaOH 

standard solutions were used to adjust the initial pH of the reaction solutions to designated 
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value. For mechanistic study, certain amount of specific scavengers (tert-butanol for ·OH, 

and formic acid for h+) were added separately in accordance with a previous study [104].  

It should be noticed that MTP does not absorb photons with wavelength longer 

than 290 nm (Figure S2. 2), so no direct photolysis of MTP could take place in our system. 

2.2.5 Analytical procedures 

For MTP concentrations and degradation by-products measurement, an Agilent LC-

MS/MS system consisting of Agilent infinity 1260 LC-system (degasser, binary pump, auto 

sampler with cooled tray and column oven) and Agilent 6420 triple Quadrupole Mass 

Spectrometer with Electrospray ion source was used. More detailed information of the 

analytical method used can be found in our previous study [65]. 

2.3 Results and discussion 

2.3.1 Synthesis of TiO2 nanotube arrays 

Synthesis of TiO2 nanotubes (TNT) arrays via anodization of Ti material has been 

previously studied by other researchers [152, 153, 193, 195]. Among various factors 

exerting impact on the characteristics of anodic produced TNAs, anodization potential and 

annealing temperature are two vital parameters which control the diameter of the TNTs 

and crystallographic structure of the TiO2, respectively [159, 160]. It should be noticed that 

those impacts may vary among different systems. Therefore, experiments were performed 

to examine the effect of anodization potential and annealing temperature on the 

characteristics of TiO2 nanotube arrays in our applied system. 

2.3.1.1 Effect of anodization potential 

The results (Figure 2. 2 and Figure 2. 3) show that anodization potential imposes 

effects on two aspects of the anodized Ti foil surface. Firstly, a certain threshold anodization 

potential is needed to achieve total oxidation of the Ti foil surface to TiO2. As demonstrated 

in Figure 2. 3, complete oxidation, revealing the formation of TiO2, was only achieved in 

samples anodized under potential higher than 10 V, while the atomic percentage of Ti was 

still rather high in samples anodized under 1 V and 5 V. In addition, a significant amount of 
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F (approx. 2 atomic %) entered the TNTs structures, which is in line with other work using 

fluoride containing electrolytes [160]. 

As shown in Figure 2. 2, anodization potential exerts vital impact on diameters of 

the produce TNAs. Self-organized TNAs structure were formed when applied anodization 

potential was higher than 10V, while no tubular nanostructure was obtained on samples 

anodized under 1 V and 5 V, revealing that threshold anodization potential exists to trigger 

the growth of TNAs. In those samples with formation of TNAs, anodization potential exerts 

large effect on the average diameters of formed TNTs, and a clear anodization potential 

dependence of the TNAs diameter was observed: the average diameter of TiO2 nanotubes 

increased from 26 nm to 106 nm with increased anodization potential from 10 V to 25 V 

(Figure 2. 4). This is in accordance with previous studies. Yasuda, K. and P. Schmuki studied 

the parameters to control morphology and composition of anodic formed self-organized 

zirconium titanate TNAs, and found a linear correlation between the applied anodization 

potential and the diameter of TNAs in the range between 1 V and 100 V in electrolytes 

containing ammonium sulphate and ammonium fluoride [201]. Another study conducted 

by Macak et al. has reported that TiO2 nanotubes diameter is linearly dependent by the 

anodization potential (from 2 V to 40 V) in glycerol/water/ammonium fluoride electrolytes 

[202]. The slope of the dependencies are different, which could be attributed to the 

different conductivity of electrolytes used in different studies which imposes large impact 

on the effective potential on the electrodes [159]. This linear correlation between TNTs 

diameter and the applied anodization voltage has significant potential for expanding 

application of TNAs, because based on which tailored TNAs with specific diameters could 

be produced. Moreover, specific surface area of TNAs was also affected by anodization 

potential, as shown in Figure 2. 2. The specific surface area of TNAs increased with 

increasing anodization potential from 10 V to 20 V, while further increased anodization 

potential resulted in a decreased specific surface area. 
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Figure 2. 2 SEM top view images of TiO2 nanotube arrays prepared under different 

anodization potentials: a) anodization potential = 10V; b) anodization potential = 15V; c) 

anodization potential = 20V; d) anodization potential = 25V. All samples were annealed 

at 450 ℃ for 30 min. 

 

Figure 2. 3 Effect of anodization potential on the atomic composition of anodized Ti foil 

surface 
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Figure 2. 4  Effect of anodization potential on average TiO2 nanotube diameter and the 

specific surface area of anodized Ti foil 

2.3.1.2 Effect of annealing temperature  

Many researchers have reported that as-prepared TNAs are typically mainly in an 

amorphous form [125, 160, 193], which has low photoactivity. Therefore, annealing is a 

crucial step to convert the amorphous TiO2 into desired crystalline phase to improve 

photoactivity of the TNAs. To examine this aspect, TNAs were annealed under three 

different temperatures. The crystallographic structures were characterized using Raman 

spectroscopy, as described in the previous section regarding measurement methods. 
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Figure 2. 5 Raman patterns of TiO2 nanotube arrays annealed at different temperatures 

for 30 min. Raman pattern of as-prepared TiO2 nanotube arrays without annealing is 

also given, as an inset. Anodization potential = 20V. 

The results (Figure 2. 5) demonstrate that TNAs annealed at 300°C and 450°C are 

present in anatase form, while TNAs annealed at 600°C have converted to a mixture of rutile 

and anatase. This is in accordance with previous studies [160]. Interestingly, a peak at 

around 197 cm-1 was also observed in the as-prepared TNAs, implying the presence of 

anatase in the as-prepared sample.  

2.3.2 Photocatalytic degradation of metoprolol using TiO2 nanotube arrays as 

photocatalyst 

2.3.2.1 Effect of TiO2 nanotube arrays characterizations  

Although the diameter and crystallographic structure of a TNAs are reported to 

impose impact on their photocatalytic performance [162, 196], the interactions between 

catalyst and specific target pollutants can be influenced by the structure of the target 

pollutants [148], and therefore the effect of TNAs properties may differ among different 

target pollutants. Therefore, the effect of TNAs characterizations on UV-LED/TNAs MTP 

degradation was investigated experimentally. 
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2.3.2.1.1 TiO2 nanotubes surface morphology 

The effect of TiO2 nanotube diameters on the efficacy of photocatalytic 

degradation of MTP was evaluated with 4 TNAs produced under anodization potentials 

ranging from 10 to 25 V, which corresponds to 4 TNAs arrays with average diameters 

ranging from 26 to 106 nm.  

Table 2. 3 Effect of TiO2 nanotube diameters on the kinetics of photocatalytic 

degradation of metoprolol 

Nanotube diameter (nm) kapp (min-1) R2 Total removal 

26 0.0086 0.9927 63.66% 

53 0.0144 0.9968 82.88% 

80 0.0129 0.9954 79.19% 

106 0.0126 0.9987 78.02% 

  

The results (Figure 2. 6) show that photocatalytic degradations of MTP follow 

pseudo-first order kinetic model with good correlation (R2 > 0.99). The kinetic data and the 

total removal of MTP after 120 min photocatalytic degradation under different conditions 

are summarized and shown in Table 2. 3, it should be noticed that all pseudo-first order rate 

constant values (kapp) in this study were calculated from experimental data of the whole 

treatment time. From the results shown herein, the 26 nm diameter TNAs have lowest 

photoactivity: the pseudo-first order rate constant is 0.0086 min-1, with a total removal of 

MTP of 63.66% after 120 min. By increasing the diameter to 53 nm, photoactivity of the 

TNAs increases significantly: the pseudo-first order rate constant increased by a factor of 

67% to 0.0144 min-1, and the total removal of MTP increased from 63.66% to 82.88%. 
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However, further increasing diameters to 80 nm and 106 nm does not exert significant 

impact on the MTP degradation. 

 

Figure 2. 6 Effect of TiO2 nanotube diameters on the photocatalytic MTP degradation 

This finding is in accordance with a previous study conducted by Zhuang et al. [196] 

using TNAs for photocatalytic degradation of Methyl Orange dye. Those authors have 

reported that TNAs with diameters of 55 nm, 100 nm, and 125 nm have almost the same 

photoactivity, which was likely resulted from two facts: (1) the specific surface area of the 

TNAs decreases with increasing tube diameter resulting in a negative impact; (2) the 

increasing tube diameter on the other hand increases light penetration and absorption 

inside the tubular structure which affects the photoactivity positively [196]. In the present 

study, the MTP degradation increased with increasing tube diameter from 26 nm to 53 nm, 

while further increased tube diameters from 53 nm to 106 nm impose no significant effect. 

Increasing nanotube diameter would benefit light transmittance inside the nanotubes, 

resulting in a positive impact on the photoactivity of TNAs, according to a previous study 

[196]. Therefore, it is likely that certain nanotube diameter is needed to obtain good 

photoactivity of TNAs. In addition, the difference in specific surface areas of TNAs with 

varied diameter may also play a role. The change in specific surface area would not only 

influence the primary MTP degradation route, which involves reactive species in the liquid 

phase, by affecting diffusion of reactive species from TNAs surface to the liquid phase, but 
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also affect the secondary MTP degradation route taking place on the TNAs surface via 

reaction with h+ and surface adsorbed hydroxyl radicals. The phenomenon observed in the 

present study was a result of the synergetic effect of the abovementioned two facts. To fully 

understand such synergetic effect, more advanced analysis are required, e.g Electron 

Paramagnetic Resonance studies to provide more details on the diffusion behaviour of 

photo-generated reactive species from catalyst surface to the liquid phase.          

2.3.2.1.2 TiO2 nanotube arrays crystallographic phase  

In addition to tube diameter, crystallographic phase also exerts impact on 

photoactivity of TNAs [162]. Considering the satisfactory performance of TNAs with 

diameter ≥ 53 nm, the TNAs prepared under 20 V which have average diameter of 80 nm 

was chosen for further investigations. Performance of TNAs prepared under 20 V 

anodization potential with different crystallographic compositions was studied.  

Table 2. 4 Effect of TiO2 nanotube arrays crystalline phase compositions on the kinetics 

of photocatalytic degradation of metoprolol 

Annealing 

temperature 
crystalline phase kapp (min-1) R2 

Total 

removal 

As-prepared Mainly amorphous 0.0023 0.9512 25.67% 

300 ℃ Anatase 0.0118 0.9989 76.26% 

450 ℃ Anatase 0.0129 0.9954 79.19% 

600 ℃ Rutile + Anatase 0.0161 0.9819 87.09% 



Chapter 2 

41 
 

 

 

Figure 2. 7 Effect of TiO2 nanotube arrays crystalline phase composition on the 

photocatalytic MTP degradation 

The results (Figure 2. 7 and Table 2. 4) show that crystallographic phase imposes 

significant impact on the photocatalytic degradation of MTP. Only a small portion (25.67%) 

of MTP was degraded over the as-prepared TNAs. This can be attributed to the fact that the 

as-prepared TNAs are majorly in amorphous phase (although very small amount of anatase 

is present), which has very low photoresponse. This is in line with literature reporting that 

amorphous structured TiO2 has very poor photocatalytic efficacy [163]. As aforementioned, 

by annealing the TNAs at 300 ℃ and 450 ℃, the TiO2 NTs were converted to anatase form 

(Figure 2. 5). Therefore, identical kinetics values and total removal of MTP were obtained, 

when the TNAs annealed at 300 ℃ and 450 ℃ were applied. The highest pseudo-first order 

rate constant and total removal of MTP degradation were obtained when a mixture of 

anatase and rutile were present. The effect of crystalline phases on the photoactivity of TiO2 

remains unclear, and debate still exists because the results of previous studies are not in 

line with each other. A study conducted by Macak et al. [163]compared the photocatalytic 

performance of amorphous, anatase phase, rutile phase, mixture of anatase and rutile 

phases, and the results show that the anatase phase has the highest photocatalytic 

performance. On the contrary, Liang and Li [203] reported that a mixture of anatase and 
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rutile has highest photocatalytic performance on degradation of 2,3-dichlorophenol in 

aqueous solution. Anatase is well known for its better photoactivity. Rutile is known to have 

smaller band gap than anatase (3.2 eV for anatase and 3.0 eV for rutile) [104], and therefore 

better response to photons with longer wavelengths can be expected, which could promise 

an increase in photoactivity of the TNAs with its addition. On the other hand, usually faster 

recombination of e-/h+ pairs happens in rutile [204] could exerts negative impact on its 

photoactivity. Therefore, there should be an optimal rutile: anatase ratio, below or above 

which lower photocatalytic performance is obtained. In depth investigation on this aspect 

is of interest for optimization of TNAs.  Taking into account that the highest pseudo-first 

order rate constant and total removal of MTP degradation were obtained when a mixture 

of anatase and rutile were present in TNAs, the TNAs prepared under 20 V anodization 

potential and annealed at 600 ℃ were used in the following sections.      

2.3.2.2 Effect of initial concentration of metoprolol 

 MTP is reported to be present in various water bodies at very low concentration, 

at ng/L to µg/L level [103]. Considering this fact, to evaluate the applicability of the 

photocatalytic degradation of MTP using TNAs, it is of importance to examine how would 

the initial concentration of MTP affect the efficacy of the UV-LED/TNAs system. 

Photocatalytic experiments were performed with varied initial MTP concentrations, ranging 

from 0.1 mg/L to 1.5 mg/L, to examine this aspect. The efficacy was evaluated in terms of 

both pseudo-first order kinetic values and total removal of MTP after 120 min treatment. 

Table 2. 5 Effect of initial concentration of metoprolol on the kinetics of photocatalytic 

metoprolol degradation 

Initial MTP concentration (mg/L) kapp (min-1) R2 Total removal 

0.1 0.0185 0.9984 89.27% 

0.5 0.0165 0.9968 87.03% 

1.0 0.0161 0.9819 87.09% 

1.5 0.0108 0.9780 74.50% 
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Figure 2. 8 Effect of initial concentration of metoprolol on the photocatalytic MTP 

degradation 

Unsurprisingly, the results (Figure 2. 8 and Table 2. 5) show that both the 

degradation rate constant and total removal of MTP were not negatively affected by 

decreasing initial MTP concentration from 1.0 mg/L, and the MTP degradations followed 

pseudo-first order kinetics model when initial MTP concentration was in the range of           

0.1 – 1.0 mg/L. On the other hand, decreased apparent rate constant and total removal of 

MTP were observed when initial MTP concentration was increased to 1.5 mg/L. This finding 

can be attributed to the following facts: (1) the availability of reactive species was constant 

under the same applied irradiation conditions and catalyst loading [99]; (2) when initial MTP 

concentration was 1.0 mg/L, the amount of reactive species was already at exceed level, 

resulting in pseudo-first order degradation of MTP. When lower initial MTP concentration 

was applied, the reactive species to target pollutant ratio was further increased, therefore 

at lower initial MTP concentration the MTP degradation still followed the same pseudo-first 

order kinetics model. Consequently, lower initial MTP concentration imposed no negative 

impact on MTP degradation. The analysis presented here is an indication that application of 

the UV-LED/TNAs photocatalytic degradation system in real-life may not be negatively 

affected by much more diluted MTP concentration, and it could assist further 
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comprehensive studies assessing the performance of the UV-LED/TNAs system in real life 

implications.  

2.3.2.3 Effect of pH 

 The effect of pH was examined in the range of 3 to 11 to study the applicability of 

the TNAs based photocatalytic pharmaceutical degradation processes, in terms of both 

degradation kinetics and total removal after 120 min treatment. 

Table 2. 6 Effect of initial pH on the kinetics of photocatalytic metoprolol degradation 

Initial pH kapp (min-1) R2 Total removal 

3 0.0151 0.9975 84.29% 

6 0.0161 0.9819 87.09% 

11 0.0104 0.9824 73.83% 

 

 

Figure 2. 9 Effect of initial pH on the photocatalytic MTP degradation 

The results (Table 2. 6 and Figure 2. 9) reveal that the photocatalytic performance 

of TNAs on MTP degradation remains highly effective in a wide pH range, from 3 to 11. As 

demonstrated in Table 2. 6 and Figure 2. 9, the UV-LED/TNAs system can be applied in a 
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wide pH range: (1) even acute acidic conditions (pH0=3) imposes no adverse impact on the 

photocatalytic degradation of MTP; (2) a moderate decrease in MTP degradation was 

observed under acute basic conditions (pH0=11), but the overall performance was still 

comparable to that under neutral and acidic conditions. Plausible explanation of the 

decrease of photocatalytic MTP degradation over TNAs lies in the electrostatic repulsive 

effect between deprotonated MTP and TNAs surface. MTP has a pKa value of 9.68 [205], 

making it deprotonated into negatively charged anion form. Meanwhile, under acute basic 

conditions (pH0=11) the TNAs surface was also negatively charged, according to literature 

[166]. Consequently, the electrostatic effect would make TNAs surface repulsive to the 

deprotonated MTP, which would pose a negative effect on the degradation of MTP. As 

addressed in the mechanistic section, although major MTP degradation occurred in the bulk 

liquid phase, secondary MTP degradation routes occurred on the surface TNAs (TNAs - liquid 

interface), involving either direct oxidation by photo generated holes or hydroxyl radicals 

adsorbed on TNAs surface. The high pH induced repulsive effect of the TNAs surface 

towards deprotonated MTP molecules resulted in inhibition of the secondary MTP 

degradation route. The same effect of alkaline pH has been reported in a study conducted 

by Habibi et al. [106], where the effect of pH on slurry TiO2 photocatalytic degradation of 

Reactive Yellow 2 was examined and increasing pH was reported to cause decreased 

degradation efficiency of the dye. 

2.3.2.4 Effect of inorganic ions 

 Regarding real life application of heterogeneous photocatalytic systems, presence 

of various inorganic ions should be taken into account, because many of them have been 

reported to pose detrimental effect even at low concentration levels [96, 106, 166]. 

Therefore, experiments were carried out to examine the effect of presence of some 

common inorganic ions, i.e. bicarbonate ions, phosphate ions. To best represent the real 

implication, HCl was used to adjust the reaction solutions with phosphate or bicarbonate 

addition to circum-neutral (6-7). 



Chapter 2 

46 
 

Table 2. 7 Effect of inorganic ions on the kinetics of photocatalytic metoprolol 

degradation 

Background water 

constituents 

Concentration 

(mg/L) 
kapp (min-1) R2 

Total 

removal 

No addition 0 0.0161 0.9819 87.09% 

Bicarbonate 

50 0.0194 0.9956 90.78% 

100 0.0154 0.9941 85.19% 

200 0.0149 0.9913 84.57% 

Phosphate 

50 0.0219 0.9970 93.26% 

100 0.0231 0.9947 94.28% 

200 0.0206 0.9965 92.19% 

 

 The obtained results (Figure 2. 10 and Table 2. 7) show that the presence of both 

inorganic ions exerts no detrimental impact on the UV/TNAs photocatalytic degradation of 

MTP. Both the pseudo-first order rate constant and the total removal of MTP degradation 

were not negatively influenced by the presence of phosphate ions or bicarbonate ions at 

various concentration levels. Moreover, slight increase in the MTP degradation was 

obtained with the presence of phosphate ions or 50 mg/L bicarbonate ions. The obtained 

results herein exhibit great advantage of TNAs over conventional TiO2 slurry systems. 

Significant detrimental effect of bicarbonate and phosphate ions on the performance of 

conventional TiO2 slurry systems has been well documented in literature and examples are 

abundant [106, 166-168]. In a study conducted by Rioja et al. [167] investigated the effect 

of water matrix on the photodegradation of clofibric acid, and found that even the presence 

of 50 mg/L NaHCO3 or NaCO3 caused significant decrease in the clofibric acid degradation. 

Another study conducted by Rincon et al. [168] investigated the effect of inorganic on 

photocatalytic inactivation of E. Coli, and reported that addition of bicarbonate and 

phosphate ions resulted in a meaningful decrease in photocatalytic E. Coli inactivation. 
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Figure 2. 10 Effect of inorganic ions on the photocatalytic MTP degradation: (a) 

phosphate ions (b) bicarbonate ions 

  Although there is a generally known detrimental effect of carbonate species 

(HCO3
- or CO3

2-) and phosphate species on AOPs, mainly due to scavenging of hydroxyl 

radicals, the possible positive impact should also be taken into account. For the carbonate 

species, by reacting with hydroxyl radicals, carbonate radicals are generated [206, 207]. The 

carbonate radical has relatively high oxidizing potential (E0 = 1.78 V at pH 7) and tend to 

attack compounds with electron-rich moieties [206]. Besides, carbonate species can also 

act as conduction band electrons quencher [208], which decreases the recombination of 
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the e-/h+ pairs and can in turn impose a positive impact on the photocatalytic degradation 

of MTP. To confirm the electron quenching capability of bicarbonate species, an additional 

experiment was conducted by irradiating a 200 mg/L bicarbonate aqueous solution with UV 

light in the presence of TNA. The obtained results (Table S2. 1) show that after 120 min 

irradiation, the total organic carbon of the solution increased from 0 mg/L to nearly 5 mg/L, 

which soundly support the hypothesis that the bicarbonate ions in the UV/TNAs system are 

able to rigorously quench conduction band electrons. To this end, the detrimental effect of 

bicarbonate induced by scavenging of hydroxyl radicals would be compensated by the 

formation of carbonate radicals and following carbonate radical mediated MTP degradation, 

as well as the quenching of conduction band electrons by bicarbonate ions. Therefore, the 

presence of bicarbonate in this study had no detrimental effect. For the presence of 

phosphate, the effect is also two-sided. On the one hand, it can adsorb on to the catalyst 

surface to decrease the adsorption of target pollutants and therefore hinder the 

degradation of target pollutants on the catalyst surface. However, previous studies have 

also pointed out that the adsorption of phosphate ions on the catalyst surface would lead 

to enhanced photocatalytic degradation of target pollutants by promoting the separation 

of e-/h+ pairs via introducing electrostatic field on the catalyst surface [209]. Considering the 

fact that major MTP degradation takes place in the bulk liquid phase (as described in details 

in section 2.3.4), the adverse effect of phosphate can be neglected. Therefore, a slight 

increase in MTP degradation was obtained with presence of phosphate ions.  

2.3.2.5 Effect of NOMs 

 Natural organic matters (NOMs) are present in broad range of water bodies and 

are known to be able to interfere with AOPs [177]. Given this context, to evaluate the 

applicability of TNAs for photocatalytic degradation of MTP, it is of interest to study the 

effect of NOMs and document the bearable NOMs concentrations range. Experiments were 

carried out in the presence of various NOMs concentrations from 5 mg/L to 15 mg/L 

(corresponding to TOC concentrations from 2 mg/L to 6 mg/L). 
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Table 2. 8 Effect of NOMs on the kinetics of photocatalytic metoprolol degradation 

NOMs concentration (mg/L) kapp (min-1) R2 Total removal 

0 0.0161 0.9819 87.09% 

5 0.0147 0.9967 83.72% 

10 0.0053 0.9730 49.42% 

15 0.0040 0.9889 38.93% 

 

Figure 2. 11 Effect of NOMs on the photocatalytic MTP degradation 

The obtained results (Figure 2. 11 and Table 2. 8) indicate that the presence of 

NOMs at concentration levels ≤ 5 mg/L has no noteworthy detrimental effect. Both the 

pseudo-first-order rate constant and total removal of MTP remained at the same level, 

when 5 mg/L NOMs was added. With increased concentration levels, the NOMs started to 

exhibit a detrimental effect on the photocatalytic MTP degradation. The degradation rate 

constant decreased drastically from 0.0147 min-1 to 0.0053 min-1 when NOMs concentration 

increased from 5 mg/L to 10 mg/L, and the total removal of MTP decreased from 83.72% to 

49.42%. Further decrease in MTP degradation was observed by increasing NOMs 

concentration to 15 mg/L: the degradation rate constant decreased to 0.0040 min-1 and the 

total removal of MTP decreased to 38.93%.  
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This observed phenomenon can be attributed to the characteristics of NOMs. The 

NOMs have light absorption in UV and near UV range (See Figure S2. 3 in supplementary 

materials). Moreover, NOMs can also act as reactive species quencher, which in turn 

decrease the availability of reactive species for MTP degradation. Therefore, they impose a 

detrimental effect on photocatalytic MTP degradation over TNAs.  

Although it is also documented that NOMs can act as photosensitizer which may 

mitigate its detrimental effect on target pollutant degradation, the experimental data 

(Figure S2. 4) suggest that NOMs do not act as photosensitizer in the UV-LED/TNAs system 

under the applied conditions.  

2.3.2.6 Efficacy of the TiO2 nanotube arrays on photocatalytic metoprolol degradation in 

tap water 

 To further evaluate the applicability of the TNAs, an experiment was carried out 

with tap water to examine the efficacy of photocatalytic MTP degradation by using TNAs as 

photocatalyst. The pseudo-first order kinetic constant and total removal of MTP 

degradation demonstrated in Figure 2. 12 and Table 2. 9. The results show that the 

degradation rate constants experienced a decrease from 0.0161 min-1 in Milli-Q water to 

the value of 0.0076 min-1 in tap water. The total removal of MTP after 120 min of 

photocatalytic treatment over TNAs decreased from 87.09% in Milli-Q water to 62.05% in 

tap water. 

Table 2. 9 Comparison of the kinetics of photocatalytic metoprolol degradation in tap 

water and Milli-Q water 

Water matrix kapp (min-1) R2 Total removal 

Milli-Q 0.0161 0.9819 87.09% 

Tap water 0.0076 0.9849 62.05% 
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Figure 2. 12 Effect of water matrices on the photocatalytic MTP degradation 

The characteristics of the tap water were shown in Table 2. 2. Although 

bicarbonate and phosphate ions exhibit no detrimental effect on the photocatalytic 

degradation of MTP over TNAs as shown in previous section, the degradation of MTP would 

still be interfered by the presence of other organic compounds in tap water. Those organic 

compounds would compete with the target pollutant for oxidizing species, screen UV 

irradiation, and may also adsorb onto the photocatalyst surface [119]. On the contrary to 

TNAs based, conventional TiO2 slurry system was much more vulnerable to the mater matrix. 

In a previous study conducted by Rioja et al. [167], it is reported that the target pollutant 

degradation rate constant decreased drastically from 0.3468 min-1 in pure water to 0.0033 

min-1 in tap water.  

2.3.3 Contribution of different photo-induced reactive species  

 Previous studies on TiO2 based photocatalytic systems have pointed out that 

hydroxyl radicals are vital reactive species in degradation of target-pollutants [108]. 

However, some researchers clearly pointed out that other species, including electrons, 

holes, superoxide anion radicals, singlet oxygen, can also contribute to degradation of 

target-pollutants depending on the characteristics of specific catalyst [104]. Viewing this 
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fact, in order to evaluate the mechanistic aspect, experiments with addition of specific 

scavengers were carried out. The results demonstrate that the degradation of MTP was 

greatly hindered: total removal after 120 min treatment was decreased to 2.42% and 

10.48%, with addition formic acid and tert-butanol respectively.   

Knowing the fact that formic acid can rigorously quench photo generated electron 

holes (h+) on the surface of TNAs once they were produced, addition of formic acid in the 

reaction hindered not only the degradation pathway mediated by electron holes but also 

degradation pathways with participation of hydroxyl radicals [104]. Due to extreme low 

affinity to TiO2 surfaces, the tert-butanol only scavenges hydroxyl radicals in bulk liquid 

phase. From the obtained results, the contribution of different degradation routes was 

obtained. As shown in Figure 2. 13, the primary photocatalytic degradation of MTP occurred 

via reaction with hydroxyl radicals in bulk liquid phase, which accounts for 88% of the MTP 

removal. In a recent study conducted by Arlos et al.[148], it is reported that highly mobility 

of hydroxyl radicals allows them diffuse from the surface to liquid phase and therefore 

interact with compounds in the liquid phase, and hence adsorption of target contaminants 

on catalyst surface is not necessarily a pre-requisite for efficient photocatalytic degradation 

of target-pollutants. This is in accordance with the present study: only very small portion of 

MTP degradation occurred on the surface of TNAs (TNAs - liquid interface), degraded by 

either direct oxidation by photo generated holes or hydroxyl radicals adsorbed on TNAs 

surface. Additionally, it should be noticed that other reactive species, likely to be superoxide 

anion radicals according to literature [104], did also play a minor role in MTP degradation 

over TNAs, which accounts for around 3% of the MTP removal. This finding in this study is 

in agreement with previous studies on TiO2 photocatalytic MTP removal processes [104]. A 

schematic of the MTP degradation over TNAs was proposed as shown in Figure 2. 14.  
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Figure 2. 13 Contribution of different reactive species on the MTP degradation 

 

Figure 2. 14 Proposed schematic photocatalytic degradation mechanism of MTP over 

TNAs 

 This finding was further confirmed via by-products analysis by LC-MS/MS. The LC-

MS/MS analysis show that the UV/TNAs photocatalytic degradation of MTP resulted in 

formation of 25 main degradation by-products (DP). The m/z ratios and corresponding 

retention times (RT) of detected DPs are summarized in Table S2. 2, and the evolution of 

those DPs versus time was summarized in Figure S2. 7. The obtained DPs are in agreement 

with previous studies using TiO2 for MTP removal [103, 104, 119], and tentative structures 

of those DPs have been proposed by a previous study  [119]. By inhibiting the participation 

of holes and ·OH, most of the DPs were not formed, and only DP3 (m/z=134, RT=1.22 min), 
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DP4 (m/z=76, RT=1.23 min), DP6 (m/z=120, RT=1.23 min), and DP23 (m/z=284, RT=5.45 min) 

were observed. By inhibiting the participation of ·OH in the bulk liquid phase, DP3, DP4, DP6, 

DP23, and DP24 (m/z=282, RT=5.66 min) were obtained.  

2.3.4 Stability of TiO2 nanotube arrays 

 

Figure 2. 15 Total removal of MTP after 120 min photocatalytic treatment over TNAs for 

repeated use at different pH conditions. ([MTP]0 = 1 mg/L.) 

Stability of the TNAs was evaluated under acidic (pH0 = 3), neutral (pH0 = 6), and 

alkaline conditions (pH0 = 11) in terms of their reuse performance over 6 cycles. For each 

cycle, the treatment time was 120 min. The TNAs were washed by Milli-Q water and dried 

in N2 stream at ambient temperature after each run, and were then reused in subsequent 

run. As demonstrated in Figure 2. 15, photocatalytic MTP degradation by TNAs was not 

negatively affected during the repeated treatment cycles under different operation 

conditions, revealing relatively good stability of the TNAs and its potential in real life 

implications. 
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2.4 Conclusions 

 The synthesis of self-organized TiO2 nanotube arrays (TNAs) and their application 

for photocatalytic degradation of a β-blocker metoprolol (MTP) was studied. Self-organized 

TNAs are found to be a powerful catalyst for photocatalytic removal of MTP from aqueous 

streams. Main conclusions can be drawn from our results are summarized herein: 

 For fabrication of self-organized TNAs, anodization potential and annealing 

temperature are two key parameters which control the diameter and 

crystallographic composition of the anodic produced TiO2 nanotubes 

respectively. 

 The surface morphology and crystallographic composition of the anodic 

produced TiO2 nanotubes impose impact on performance of the TNAs in 

photocatalytic MTP degradation, respectively. For TNAs with given average 

nanotube diameters, photocatalytic MTP degradation was favoured when a 

mixture of anatase and rutile was present in the TNAs structure; for TNAs with 

certain crystallographic composition, rapid MTP degradation was obtained 

when the nanotubes diameter reached 53 nm. 

 The UV-LED/TNAs system can be applied in a wide pH range, and lower initial 

MTP concentration imposed no negative impact on MTP degradation. The 

analysis presented here is an indication that application of the UV-LED/TNAs 

photocatalytic degradation system in real-life may not be negatively affected 

by much more diluted MTP concentration, and it could assist further 

comprehensive studies assessing the performance of the UV-LED/TNAs system 

in real life implications. 

 Regarding real life application, the presence of even high level bicarbonate 

ions and phosphate ions has no detrimental effect, while NOMs concentration 

higher than 5 mg/L does negatively affect the photocatalytic degradation of 

MTP. Operation in real tap water samples only led to a slight decrease in the 

process efficiency. 

 The obtained results demonstrate that primary degradation process occurred 

in liquid phase with participation of hydroxyl radicals in the liquid phase       
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(·OH liquid), while smaller portion of MTP were degraded on the catalysis surface 

via reaction with h+ and hydroxyl radicals adsorbed on the catalyst surface  

(·OH surface). Other reactive species, e.g photo generated electrons and 

superoxide radical anions, did also play a minor role in MTP degradation.  The 

mechanistic aspect was further confirmed by identification of degradation 

products by LC-MS/MS.  

 The TNAs exhibit good stability during repeated treatment cycles, which is an 

indication of its potential in real life implications. To fully understand its 

applicability in real life implications, further research efforts are required, for 

instance the performance of TNAs during long time operation in the presence 

of various inorganics and other pollutants, and also the synergetic effect of co-

existence of inorganics and other organics on the performance of the catalyst 

and cost of operation of the system should be evaluated systematically. 
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Supplementary information 

 

Figure S2. 1 Photo of the set-up: (a) top view of the frame for fixing TNAs and UV-LED; 

(b) UV-LED fixed on the aluminum heat dispenser; (c) side view of the frame for fixing 

TNAs and UV-LED; (d) side view of the set-up 
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Figure S2. 2 Light absorbance spectrum of MTP 

Table S2. 1 Total organic carbon (TOC) level before and after UV/TNAs treatment. 

([MTP]0 = 0 mg/L, [HCO3
-]0 = 200 mg/L, circum-neutral) 

Irradiation time (min) TOC (mg/L) 

0 0 

120 4.95 
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Figure S2. 3 Light absorbance spectrum of NOMs at different concentration levels 

 

Figure S2. 4 MTP concentration profile as a function of time under UV irradiation with 

presence of 5 mg/L NOMs, without TNAs 



Chapter 2 

60 
 

 

Figure S2. 5 Raman patterns of TiO2 nanotube arrays prepared under different 

anodization potential. All samples were annealed at 450℃ for 30 min 

 

Figure S2. 6 MTP concentration profile as a function of time during photocatalytic 

degradation over TNAs with addition of scavengers 
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Table S2. 2 Degradation by-products identified during photocatalytic degradation of 

metoprolol by TiO2 nanotube arrays under irradiation of UV-LED 

Intermediates m/z Retention time (min) No scavenger Formic acid t-BuOH 

DP1 74 1.12 √ - - 

DP2 150 1.14 √ - - 

DP3 134 1.22 √ √ √ 

DP4 76 1.23 √ √ √ 

DP5 102 1.23 √ - - 

DP6 120 1.23 √ √ √ 

DP7 118 1.41 √ - - 

DP8 104 1.43 √ - - 

DP9 220 1.49 √ - - 

DP10 270 2.23 √ - - 

DP11 240 3.99 √ - - 

DP12 254 4.05 √ - - 

DP13 300 4.46 √ - - 

DP14 270 4.55 √ - - 

DP15 284 4.66 √ - - 

DP16 254 4.79 √ - - 

DP17 316 4.87 √ - - 

DP18 238 4.88 √ - - 

DP19 300 4.96 √ - - 

DP20 282 4.97 √ - - 

DP21 316 5.02 √ - - 

DP22 226 5.12 √ - - 
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DP23 284 5.45 √ √ √ 

DP24 282 5.66 √ - √ 

DP25 314 5.84 √ - - 

 

 

Figure S2. 7 MTP degradation products formation as a function of time during UV/TNAs 

treatment in the presence of specific scavenger: (a) t-BuOH; (b) formic acid. 
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Chapter 3  

Effect of dissolved natural organic matter on 

the photocatalytic micropollutant removal 

performance of TiO2 nanotube array 
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Abstract 

The TiO2 nanotube array (TNA) is a promising photocatalyst for removal of 

micropollutants from water, but better understanding on its applicability in complex water 

matrices is still desired. Therefore this study investigates the effect of dissolved natural 

organic matter (NOMs) on MCPA (a typical micropollutant found in many water bodies) 

removal performance of TNA. The present study shows that although in bulk liquid phase 

NOMs would undergo photosensitization that can contribute to MCPA removal, the overall 

effect of NOMs on MCPA removal is detrimental due to the interaction between NOMs and 

the TNA surface. Acidic pH was found to be able to mitigate the detrimental effect of NOMs, 

and the photosensitization effect of NOMs was strengthened; while under alkaline pH 

conditions the detrimental effect of NOMs completely vanished. Two commonly present 

co-existing anions, i.e. phosphate and bicarbonate, also mitigate the detrimental effect of 

NOMs, and the photocurrent measurement support that the presence of such anions 

greatly suppresses the h+ scavenging effect of NOMs; while other anions, i.e. chloride, 

nitrate, sulfate, showed no notable effect. 
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3.1 Introduction 

In recent decades, many micropollutants, including pharmaceuticals, antibiotics, 

herbicides, pesticides, personal care products, etc., have been frequently detected in 

different water bodies worldwide. Although the presence of those contaminants in the 

aquatic environment is usually at trace concentrations ranging from ng/L to µg/L [1, 17, 18, 

26], undesirable effects on the ecosystems are usually associated: many previous studies 

have pointed out that those contaminants imposes potential hazards to aquatic life at 

different levels, from algae to fish, even at low concentrations [27]. Vast efforts have been 

devoted to developing techniques for their removal, among which TiO2 photocatalysis have 

received increasing research interests. 

The principles of TiO2 photocatalytic techniques have been described in literature 

[62, 103], which involve generation of electron/hole (e-/h+) pairs via excitation by photons 

with energy higher than the band gap energy of TiO2, followed by formation of reactive 

oxygen species (ROS) like hydroxyl radicals (·OH) and superoxide radicals (·O2
-). Both the 

produced ROS and valence band holes (h+) contribute to micropollutant removal in TiO2 

photocatalytic processes. Examples of its application in micropollutant removal are 

abundant in literature [107, 141, 148]. 

However, it is also well documented that commonly present dissolved natural 

organic matter (NOM) in water bodies is a major limiting factor that imposes significant 

inhibitory effect on micropollutant removal performance of TiO2 photocatalytic techniques. 

Such inhibitory effect of NOMs can be attributed to three main facts. Firstly, the NOMs 

present in water matrices act as the “inner UV filter”.  NOMs have strong absorption in UV 

and near UV range, so the presence of NOMs in water would decrease the availability of UV 

light for TiO2 to produce ROS, thus decreasing the ROS and h+ production. Secondly, NOM 

can also act as scavenger of ·OH and h+ [177], which are known as the primary oxidants in 

TiO2 photocatalytic systems [109, 210]. Thirdly, NOMs can inhibit the target pollutant 

degradation via competitive adsorption on the TiO2 surface [211]. The inhibitory effect of 

NOM on TiO2 based photocatalytic micropollutant removal processes has been documented 

in previous studies on TiO2 slurry systems. For instance, Brame et al. conducted a 

mechanistic study on the inhibitory effect of NOMs on TiO2 slurry system, and a mechanistic 



Chapter 3 

66 
 

model was developed which suggesting the competitive adsorption by NOMs and ROS 

scavenging were the most influential inhibitory mechanisms [212]. A recent work presented 

by Peng et al. suggested that the reactivity of TiO2 nanoparticles could change significantly 

after long exposure to natural water, because: (1) a NOM layer can be formed on and cap 

the TiO2 particles surface via adsorption; (2) the adsorbed NOM layer can act as ROS 

scavenger and subsequently reduce the concentration of ROS in the bulk liquid phase [143]. 

For TiO2 slurry systems where TiO2 nanoparticles are employed, the presence of NOMs can 

also interfere with the system performance by changing the stability of the TiO2 

nanoparticles [213]. Focus was given to TiO2 slurry systems, where TiO2 nanoparticles are 

used, in previous studies on the effect of NOM [214], but regarding real life applications 

immobilization of TiO2 should be considered to achieve better retention and reuse of the 

catalyst. The electrochemical anodic produced TiO2 nanotube array (TNA) is a promising 

option because of its multiple merits: (1) large surface area; (2) high stability; (3) oriented 

electron transport which can reducing e-/h+ pairs recombination; (4) relatively easy to make 

and (5) tunable morphologies. Examples of using of TNAs for organic pollutants elimination 

are available in literature [161-164, 210]. The change in TiO2 morphology may have an 

impact on the effect of NOM, but very little is known about the effect of NOM on TNA based 

photocatalytic system.  

In practice, the presence of NOM in water bodies is associated with the presence 

of inorganics. For example, phosphate, sulfate, bicarbonate, chloride, etc., are the most 

commonly present inorganic anion species in a broad range of water matrices. The 

photocatalytic removal of micropollutants by TiO2 photocatalytic processes can also be 

affected by those co-existing inorganic anions by competitive adsorption and interaction 

with ROS [168, 174, 215]. In this context, the presence of co-existing inorganic anions may 

impose impact on the effect of NOMs on a photocatalytic system. In a recent study by Long 

et al., the change in the detrimental effect of humic acids on photocatalytic performance of 

TiO2 particles by the presence of phosphate was reported [142]. However, the combined 

effects of NOMs and other commonly present inorganic anions have not been well 

documented in literature.  
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Given this context, the present work aims to study the effect of NOM on the 

photocatalytic micropollutant removal performance of TNA. The model micropollutant 

compound employed in this study is 4-chloro-2-methylphenoxyacetic acid (MCPA), which is 

a frequently encountered pollutant in different water bodies including ground water and 

tap water sources [216, 217], and its toxicity and endocrine disrupting effects on living 

species has been abundantly evidenced in literature [218, 219]. The effect of NOM on MCPA 

removal during photocatalytic degradation by TNA is investigated. The effect of pH and the 

effects of co-existing common inorganic anions are documented. 

3.2 Experimental methods 

3.2.1 Materials 

Titanium foil (≥99.5%, 0.3 mm thick) was purchased from the Titaniumshop (The 

Netherlands). Ammonium sulphate (≥99.0%), ammonium fluoride (≥98.0%), tert-Butanol 

(≥99.0%), formic acid (≥96%) were obtained from Sigma-Aldrich (Germany). MCPA (≥98.0%) 

was purchased from Dr Ehrenstorfer GmbH (Germany). All chemicals were used without 

further purification. Stock solution of MCPA was prepared at concentration of 200 mg/L. 

Sodium bicarbonate (≥99.9%), Hydrochloric acid (1 mol/L), sodium sulphate (≥99.0 %), 

sodium chloride (100%), sodium nitrate (≥99.0 %), tri-sodium phosphate dodecahydrate 

(≥98.0%) and sodium hydroxide aqueous solution (1 mol/L) were purchased from VWR 

(Belgium) and was used as received. Aquatic NOM Suwannee River NOM (SWR-NOM) 

(2R101N) and Upper Mississippi River NOM (UMR-NOM) (1R110N) were obtained from 

International Humic Substances Society (IHSS) and received as dry solid extracts. Stock 

solutions of the NOMs were prepared at concentration of 100 mg/L. Ultrapure water from 

a Milli-Q Advantage A10 system (Merck Millipore, Darmstadt, Germany) was used for 

preparation of stock solutions and reaction solutions.  

3.2.2 Fabrication and characterization of the TiO2 nanotube array 

The TNA employed in this study was prepared with the electrochemical 

anodization  method we previously reported [210]. The titanium foil was first degreased by 

successively ultra-sonication for 15 min in 2-propanol, acetone and Milli-Q water, and then 

dried in N2 atmosphere, as pretreatment. The electrochemical anodization was performed 
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in a two-electrode chemical cell connected to an EST150 DC power supply (Delta Elektronika, 

The Netherlands). The titanium foil with a size of 3 cm × 4.5 cm was used as anode, and 

another titanium foil with a size of 4.5 cm × 5 cm was used as cathode. The interval between 

the electrodes was 2 cm. The titanium foil was anodized in 100 mL aqueous electrolyte (0.15 

mol/L NH4F + 1 mol/L (NH4)2SO4 ) [125] under 20 V for 2 hours. Then the obtained foil was 

first rinsed and then further sonication washed with Milli-Q water to remove residue 

electrolyte and impurities on the surface. Subsequently, the treated Ti foil was annealed at 

600 °C for 0.5 h in a furnace (Nabertherm, Germany) in air atmosphere and was cooled 

gradually back to ambient temperature after annealing. The surface morphologies of the 

TNAs electrode were characterized by scanning electron microscopy (SEM) and the 

chemical composition of the prepared TNAs was measured by EDX. The SEM/EDX analyses 

were performed using a JEOL JSM 6480 scanning electron microscope (JEOL Europe B.V., 

Nieuw-Vennep, The Netherlands) equipped with a EDX system. Raman spectra of the 

prepared TNA were recorded using a Horiba LabRAM spectrometer equipped with a 

mpc3000 laser (532.2 nm), an 800 mm focal length achromatic flat field monochromator 

(grating of 600 grooves/mm) and a Synapse multichannel air cooled (–70∘C) CCD detector. 

3.2.3 Photocatalytic MCPA degradation experiments 

The photocatalytic experiments were conducted in a crystallizing dish with a 450 

mW UV-LED light source module placed on the top. The UV-LED light source module 

consisted of a UV-LED (NCSU033B, NICHIA, Japan) and has peak emission wavelength of 365 

nm, and an aluminium plate served as heat dispenser. A schematic of the set-up is shown 

in Figure 3. 1.  
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Figure 3. 1 Schematic representation of the experimental set-up 

The photocatalytic MCPA degradation experiments were carried out with a 

reaction solution volume of 60 mL, with the presence of TNA (size of 3 cm ×3 cm), at ambient 

temperature. The distance between the UV-LED and the surface of TNAs was 2 cm, and the 

radiant power of the UV-LED at this distance was 18.6 mW/cm2 measured by a THORLABS 

S150C radiant power meter (THORLABS, USA). Vigorous mixing was applied as soon as the 

reaction solution was added into the reactor. Before switching on the UV-LED, the reaction 

system was kept in dark for 1 hour to establish equilibrium of any possible adsorption of 

MCPA on the TNA surface. Then the photocatalytic experiments started, for the duration of 

120 min. At designated time intervals 1 mL samples were taken, and stored in dark at 4 °C 

till LC-MS/MS analysis. All experiments were carried out in duplicate. Except for 

experiments conducted in designated acidic or alkaline conditions, all other experiments 

were conducted with natural initial pH (circum-neutral: 6-7) and without pH adjustment. 

For experiments conducted in designated acidic or alkaline conditions, hydrochloric acid or 

sodium hydroxide aqueous solution were applied to adjust the pH. 

3.2.4 MCPA concentration measurement procedures 

For MCPA concentration measurement, an Agilent LC-MS/MS system consisting of 

Agilent infinity 1260 LC-system (degasser, binary pump, auto sampler with cooled tray and 

column oven) and Agilent 6420 triple Quadrupole Mass Spectrometer with Electrospray ion 
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source was used. Detailed information of the analytical method used can be found in 

literature [220]. 

3.3 Results and discussion 

3.3.1 Characterization of the TiO2 nanotube array 

 Figure 3. 2a shows the SEM top view image of the TNA, demonstrating the self-

organised tubular structure layer, which has average pore size of around 80 nm. The Raman 

spectrum of the TNA surface shown in Figure 3. 2b demonstrates that the TNA layer has a 

crystallographic phase consisting of both anatase and rutile. Good photocatalytic 

performance of TiO2 contains both anatase and rutile has been documented in literature 

[203, 210]. 

 

Figure 3. 2 Surface morphology (a) and the Raman spectrum (b) of the TiO2 nanotube 

array 

3.3.2 Effect of NOM on photocatalytic MCPA removal performance of TNA 

Experiments were carried out in the presence of two different types NOMs 

originating from two large rivers at varied concentrations ranging from 5 mg/L to 15 mg/L, 

to examine the effect of NOMs on photocatalytic MCPA removal performance of TNA. 
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Figure 3. 3 Effect of NOMs on the photocatalytic MCPA removal performance of TNA. 

Conditions: natural pH (~7), [MCPA]0 = 1 mg/L, 120 min treatment. 

 The results (see Figure 3. 3) show that the presences of both NOMs impose 

significant detrimental effect on the removal of MCPA over TNA. The TNA based 

photocatalytic process enabled rather rapid MCPA degradation with a total removal of 94.3% 

after 120 min treatment in absence of NOMs. The presence of 5 mg/L NOM resulted in a 

drastic decrease in MCPA removal: the total removal of MCPA decreased to only 62.0% and 

61.8%, in the presence of SWR-NOM and UMR-NOM respectively. Increasing NOM 

concentrations led to a further decrease in MCPA removal. With elevated concentration of 

SWR-NOM to 10 mg/L and 15 mg/L, the total removal of MCPA decreased to 58.5% and 

49.1%. For UMR-NOM, when its concentration increased to 10 mg/L and 15 mg/L, the total 

removal of MCPA reduced to 52.0% and 45.2%. It is also found that the two tested NOMs 

exert the same inhibitory effect on MCPA removal performance of the TNA, and no 

significant difference between the two NOMs can be found.  

It should be noticed that, upon absorbing UV photons, NOMs can also initiate 

photosensitized degradation of organic pollutants [178, 180]. Experiments were conducted 

to examine this photosensitization effect of NOMs, and the results (Figure 3. 4) show that 

the presence of SWR-NOM and UMR-NOM can indeed contribute to MCPA removal in the 

bulk liquid phase. However, the negative effect of both NOMs outweighs the 



Chapter 3 

72 
 

photosensitization effect; making the presence of NOMs exhibits detrimental effect on 

MCPA removal in the TNA based photocatalytic system.     

 

Figure 3. 4 Photosensitization effect of NOMs on MCPA removal. Conditions: natural pH 

(~7), [MCPA]0 = 1 mg/L, 120 min treatment, no TNA. 

3.3.3 The pH influences the effect of NOMs 

Previous studies have pointed out that the pH conditions impose impact on the 

adsorption of NOMs on TiO2 surfaces [211, 221]. Considering the adsorption of NOMs on 

the catalysts surface is a crucial factor contributing to its inhibitory effect, it is of importance 

to elucidate the effect of pH on the detrimental effect of NOM on the micropollutant 

removal performance of TNA. Therefore, experiments were conducted to examine the 

effects of NOMs at varied concentrations under different pH conditions on MCPA removal 

over TNA.   
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Figure 3. 5 Effects of NOMs on the photocatalytic MCPA removal performance of TNA, 

under different pH conditions  

 The results (Figure 3. 5) suggest that the change in pH conditions would change the 

effect of NOMs significantly. At neutral pH, the presence of even low level of NOMs led to 

drastic decrease in MCPA removal. Although the alkaline pH itself induced a decrease in the 

removal target pollutant (as documented in our previous study [210]), the inhibitory effects 

of NOMs were not observed under alkaline conditions. On the contrary, a slight increase in 

the MCPA removal with increasing NOM concentration was observed. This finding can be 

attributed to two facts: (1) the alkaline conditions mitigate the competitive adsorption by 

NOMs [211, 221]; and (2) the NOMs still impose photosensitization effect which can 
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contribute to MCPA removal in the liquid phase (Figure 3. 6). More interestingly, although 

many previous studies have documented that the acidic pH would benefit the adsorption 

of NOMs [211, 221], only minor inhibitory effects were observed in the presence of NOMs 

at high concentration level (15 mg/L) under acidic conditions. This can be attributed to 

strengthened adsorption of MCPA [115] on TNA surface and therefore strengthened 

oxidation by valence band holes and surface adsorbed hydroxyl radicals, as well as largely 

strengthened photosensitization effect of NOMs (Figure 3. 6). 

 

Figure 3. 6 Photosensitization effect of NOMs on MCPA removal at different pH 

conditions. Conditions: [MCPA]0 = 1 mg/L, 120 min treatment, no TNA. 
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3.3.4 Role of co-existing inorganic anion species 

To study the impact of co-existing inorganic anions on NOM`s inhibitory effect, 

experiments were performed to examine the photocatalytic MCPA removal performance at 

various NOMs concentrations with the presence of some most common inorganic anion 

species, i.e. phosphate, bicarbonate, sulfate, nitrate, chloride. 

 The results (see Figure 3. 7 and Figure 3. 8) suggest that both phosphate and 

bicarbonate can mitigate the inhibitory effect of NOMs. Without the presence of inorganic 

anions, the MCPA removal lowered from 94.3% to 45.2% and 49.1%, with the presence of 

15 mg/L UMR-NOM and SWR-NOM respectively. In the presence of 50 mg/L phosphate 

anions, even at highest NOMs concentration (15 mg/L), the inhibitory effects of NOMs were 

significantly reduced: 73.1% (in presence of UMR-NOM) and 62.5% (presence of SWR-NOM) 

MCPA removal was achieved within the same treatment time span. For bicarbonate, such 

mitigation on NOMs` inhibitory effects was also observed, but at weaker level (Figure 3. 8). 

With the presence of 100 mg/L bicarbonate, 73.1% and 62.5% MCPA removal was achieved 

with the presence of 15 mg/L SWR-NOM and UMR-NOM, respectively.  

A similar phenomenon has been reported in TiO2 slurry system in a recent study 

conducted by Long et al. [142]. The authors observed that phosphate counteracts the 

inhibitory effect of humic acids (an important constituent of NOM) on TiO2 nanoparticles 

based system, and attributed such phenomenon to reduced humic acid adsorption (and 

therefore direct ROS scavenging upon adsorption) and enhanced electron transfer via 

changing the adsorption site of humic acid, by the presence of phosphate. Moreover, in 

another study conducted by Zhao et al. [209] on phosphate surface modification of TiO2 

nanoparticles, it was found  that the adsorption of phosphate ions on the catalyst surface 

would lead to enhanced photocatalytic degradation of target pollutants by promoting the 

separation of e-/h+ pairs via introducing an electrostatic field on the catalyst surface. 
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Figure 3. 7 Effects of NOMs on the photocatalytic MCPA removal performance of TNA, 

with the presence of phosphate anions. Conditions: natural pH (~7), [MCPA]0 = 1 mg/L, 

120 min treatment. 
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Figure 3. 8 Effects of NOMs on the photocatalytic MCPA removal performance of TNA, 

with the presence of bicarbonate anions. Conditions: natural pH (~7), [MCPA]0 = 1 mg/L, 

120 min treatment. 

  The effect of competitive adsorption between phosphate anions and NOMs was 

investigated using a transient photo-electrolysis technique and described by a double-

exponential model  [222] (details of this method is described in Text S3.1). The time-

dependent photocurrent curves are shown in Figure 3. 9b. Upon UV irradiation, the 

photocurrent increased to a peak value and would then decay gradually to a steady state. 

The decay curves (5s-10s) can fits well with a double-exponential model (R2>0.99), where 

the two exponential decay terms reveal both surface and interfacial photocatalytic 
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reactions (in this case, NOM oxidation). The relevant rate constants were calculated and 

shown in Table 3. 1. The obtained results suggest that the presence of phosphate anions 

can indeed reduce the NOM oxidation on TNA surface. 

For bicarbonate, its role observed in the present work is rather different from a 

previously reported paper on TiO2 slurry systems. It is reported that the alkalinity impose 

significant inhibitory effects on the performance of TiO2 slurry system mainly due to 

formation of larger TiO2 aggregates [174]. However, such mechanism can be neglected in 

the present work because TNA, instead of TiO2 nanoparticles, was employed. In addition, 

quenching of conduction band electrons by bicarbonate can be a major factor that 

contributes to the mitigation effect of their presence on the NOMs` inhibitory effect. 

According to our previous study [210], bicarbonate anions can act as conduction band 

electrons quencher [208] upon adsorption on the TiO2 surface, which decreases the 

recombination of e-/h+ pairs and can in turn enhance the generation of ROS. In addition, 

competitive adsorption of bicarbonate against NOMs was also observed, which can reduce 

the h+ scavenging effect of NOMs (Figure 3. 1b). The photocurrent tests results support that 

the presence of bicarbonate anions can greatly reduce the surface related NOM oxidation: 

the surface oxidation related photocurrent decay rate constants were much lower with the 

presence of bicarbonate (Table 3. 1).   
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Figure 3. 9 Time dependent photocurrent generation by TNA. Conditions: 0.1 M NaClO4 

electrolyte, [NOM] = 15 mg/L, [Anion] = 100 mg/L. 

 

 

 

 

 



Chapter 3 

80 
 

Table 3. 1 Surface processes related photocurrent decay rate constants under different 

conditions 

Conditions ks (s-1) 

SWR-NOM only 0.99 

UMR-NOM only 1.00 

Phosphate + SWR-NOM 0.70 

Phosphate + UMR-NOM 0.31 

Bicarbonate + SWR-NOM 0.65 

Bicarbonate + UMR-NOM 0.26 

 

Unlike phosphate and bicarbonate, the presence of sulfate, nitrate, and chloride 

anions imposes no mitigation effect on NOMs` inhibitory effects (Figure S3. 2, Figure S3. 3 

and Figure S3. 4). This is due to the fact that these anion species can likely enhance the 

adsorption of NOMs (especially the humic acid components) on the catalyst [223]. 

3.4 Conclusions 

 In the present work, we demonstrate the effects of two aquatic NOMs collected 

from large rivers, i.e. SWR-NOM and UMR-NOM, on the photocatalytic micropollutant 

removal performance of TNA. For the micropollutant tested herein, main findings can be 

concluded as below: 

 Both types of tested NOMs impose inhibitory effect on MCPA removal 

performance of TNA, even at low concentration level; 

 Acidic pH counteracts the inhibitory effect of NOM, because of enhanced 

interaction between MCPA and the TNA surface, and strengthened 

photosensitization effect of NOMs; Under alkaline conditions, NOMs impose a 

slightly positive impact on MCPA removal, due to photosensitization effect of 

NOMs and mitigated competitive adsorption of NOMs; 
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 The presence of a certain level of phosphate and bicarbonate anions can 

mitigate the inhibitory effect of NOM, while the presence sulfate, nitrate and 

chloride does not have such mitigation effect.  

 The transient photo-electrolysis measurement results demonstrate that the 

presence of bicarbonate and phosphate anions can reduce the h+ scavenging 

effect of NOMs. 
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Supplementary information 

Text S3.1 

The transient photoelectrolysis measurement method in this study was adopted 

and modified from the transient photoelectrolysis technique previously developed by Jiang 

et al. [222]. The applied photoelectrolysis technique is aimed to study the photocatalytic 

oxidation kinetics of adsorbed organic compounds on TiO2 electrodes surfaces. In the 

present study, such measurement was performed in a two-electrode cell (Figure S3. 1), 

where the TNA electrode (3 cm × 3 cm) was used as photoactive anode and a copper foil 

(Grade M2, 3 cm × 4.5 cm) was used as counter electrode and a rectangular quartz cube 

was used as reaction cell (6 cm × 6 cm × 6 cm). The distance between the two electrodes 

was set to be approx. 2 cm. The radiant power of UV light that reached the surface of TNAs 

was 11.6 mW/cm2. The transient photocurrent was recorded by a Vertex potentiostat 

(Vertex One, Ivium Technologies B.V, The Netherlands).  

 

Figure S3. 1 The transient photoelectrolysis measurement set-up 

Upon UV irradiation, the photocurrent increased to a peak value and would then 

decay gradually to a steady state. The decay curves can fit well with a double-exponential 

model (Equation S 3.1), where Iph refers to the measured photocurrent, I0 is a constant that 
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can be assigned to photocatalytic oxidation of water [142], t refers to the time lapsed from 

the beginning of photocurrent decay.  

𝐈𝐩𝐡 = 𝐈𝟎 + 𝐀𝐞−𝐤𝐬𝐭 + 𝐁𝐞−𝐤𝐢𝐭   (S 3.1) 

The two exponential decay terms reveal both (fast) surface and (slow) interfacial 

photocatalytic organic compounds oxidation on the TNA, whose rates can be revealed by ks 

and ki, respectively. 

 

Figure S3. 2 Effects of NOMs on the photocatalytic MCPA removal performance of TNA, 

with the presence of sulfate anions. Conditions: natural pH (~7), [MCPA]0 = 1 mg/L, 120 

min treatment. 

 

Figure S3. 3 Effects of NOMs on the photocatalytic MCPA removal performance of TNA, 

with the presence of nitrate anions. Conditions: natural pH (~7), [MCPA]0 = 1 mg/L, 120 

min treatment. 
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Figure S3. 4 Effects of NOMs on the photocatalytic MCPA removal performance of TNA, 

with the presence of chloride anions. Conditions: natural pH (~7), [MCPA]0 = 1 mg/L, 120 

min treatment. 
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Abstract 

This study evaluated the application of a membrane-free photocatalytic fuel cell 

composed of a TiO2 nanotube array photoanode and a Cu cathode, i.e. TNA-Cu PFC system, 

for micropollutant removal from water. Significantly enhanced removal of a commonly 

present aqueous micropollutant 4-chloro-2-methylphenoxyacetic acid (MCPA) was 

obtained in this TNA-Cu PFC system: the TNA-Cu PFC system achieved better MCPA 

degradation compared to the conventional photocatalytic method using the same catalyst. 

In the TNA-Cu PFC system, the MCPA degradation was largely promoted under acidic 

conditions, indicating this as an important operational condition. The enhancement of 

MCPA degradation in the TNA-Cu PFC system involved better e-/h+ separation and 

generation of other oxidants: in conventional photocatalytic process, hydroxyl radicals in 

liquid phase contributed to 93.7 % MCPA degradation while only 2.4 % MCPA degradation 

was mediated by other oxidants like ·O2
-, H2O2, ·HO2; for MCPA degradation in the TNA-Cu 

PFC system, the contribution of hydroxyl radicals in the liquid phase decreased to 83.6 %, 

while contribution of other oxidants like ·O2
-, H2O2, ·HO2 increased to 15.3 %. This change in 

MCPA degradation mechanisms was confirmed via degradation intermediates analysis by 

LC-MS/MS. The study on the effect of electrolyte concentration suggests that when 

operated under acidic conditions, addition of electrolyte is not required. The TNA-Cu PFC 

system was shown to work well in the presence of up to 15 mg/L natural organic matter 

(originating from two large rivers), high amounts of common inorganic ions, and even in 

WWTP effluent. The TNA-Cu PFC system also exhibited relatively good stability after several 

cycles of repeated use. The obtained results demonstrated that this is an adequate system 

for micropollutant removal from water at various places in the water cycle, i.e. as polisher 

of WWTP effluents before discharge or for cleaning intake water before producing drinking 

water. 
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4.1 Introduction 

In recent decades, emerging organic pollutants, including pharmaceutical 

compounds, herbicides, pesticides, and personal care products, are gaining increasing 

concerns because they are potentially hazardous to aquatic life and human health [18]. 

Among them, the synthetic carboxylic acid herbicide 4-chloro-2-methylphenoxyacetic acid 

(MCPA) has been detected in different water bodies [216, 217]. Toxicity and endocrine 

disrupting effects of MCPA on living species has been well studied, and abundantly 

evidenced in literature [218, 219]. However, owing to its poor biodegradability, 

conventional water treatment processes are usually insufficient for MCPA removal [224]. In 

addition, once the compound enters natural water bodies and becomes exposed to solar 

irradiation, more toxic compounds are generated from direct photolysis of MCPA [217].  

 Given this context, many water treatment techniques have been tested for 

cleaning MCPA contaminated water, and among them photocatalysis has received 

increasing research interests [115, 116], with a focus on TiO2. TiO2 is commonly used 

because it has relatively high quantum efficiency, easy accessibility, low toxicity, and high 

chemical/physical stability. TiO2 photocatalytic pollutants degradation processes involve 

production of electron/hole pairs (e-/h+) upon illumilation of TiO2 by radiant energy higher 

than its band gap energy (3.2 eV and 3.0 eV for anatase and rutile respectively [104]), 

followed by formation of reactive oxygen species (ROS), e.g. hydroxyl radicals (·OH), 

superoxide radical anions (·O2
-), which has been extensively described in the literature [62, 

103, 110, 111, 113, 114]. A few attempts have been made to apply TiO2 for MCPA removal 

from water [116-118, 120, 225]. Most of the previous studies have been done in slurry 

systems with TiO2 nanoparticles suspensions. Although large surface area of TiO2 

nanoparticles is beneficial for mass transfer, some major drawbacks are preventing the 

scale-up of such slurry systems: (1) costly liquid/solid separation process is required for 

retention and reuse of the catalyst particles; (2) light scattering by the catalyst particles; (3) 

the suspension of catalyst particles are unstable and easy to form aggregates in complex 

water matrices [144]. Therefore, immobilization of TiO2 should be considered. The 

electrochemical anodic produced TiO2 nanotube arrays (TNAs) is a promising alternative to 

conventional TiO2 suspensions. The TNAs exhibit multiple merits: (1) relatively large surface 
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area; (2) high chemical/mechanical stability; (3) oriented direction of electron transport 

which can reducing e-/h+ pairs recombination; (4) relatively easy to make; (5) tunable 

morphologies. Examples of using of TNAs for organic pollutants elimination are available in 

literature [161-164, 210, 226, 227]. Up till now, very limited studies have been conducted 

to use TNAs for MCPA degradation [224]. 

 Another major drawback of TiO2 photocatalytic (PC) processes is the fast 

recombination of e-/h+ pairs, where a large amount of energy from absorbed photons is lost 

as heat, resulting in seriously reduced treatment efficiency [124]. Therefore, reducing the 

recombination of e-/h+ pairs is a key, and efforts have been made on this aspect, e.g. 

integrating TiO2 with other active materials to form in-situ hetero-junction for better e-/h+ 

separation [169, 170], applying voltage bias - generally known as photoelectrocatalysis (PEC) 

- to separate e-/h+ from the catalyst [124, 125]. Recently a novel concept of PEC, known as 

photocatalytic fuel cell (PFC) has been introduced into the field of water treatment [171, 

172, 228-231]. In PFC systems, the photo-induced electrons are able to migrate from TiO2 

to the counter electrode through an external circuit driven by the photon-induced voltage 

between the two electrodes spontaneously. Hereby the photo-induced holes are left at the 

TiO2 surface triggering degradation of the target pollutants [171, 173]. In this way, the 

recombination of e-/h+ pairs is reduced, and consequently enhanced target contaminants 

removal and simultaneous electricity production can be expected. The PFC concept is 

gaining increasing attention in the field of water treatment in recent years. Examples are 

available in literature reporting the use of PFC systems with various photoanodes and 

cathodes for treatment of different target pollutants, and enhanced degradation of organic 

pollutants compared with conventional photocatalysis [171, 173, 232]. However, very 

limited attempts have been made to apply PFC for micropollutant removal from water. In 

addition, little is known on micropollutants degradation mechanisms in PFC systems, effects 

of commonly present background water constituents, and applicability of PFC systems for 

micropollutant removal in real wastewater matrices. 

 In the present study we demonstrate enhanced MCPA degradation in a membrane-

free PFC system consisting of a TNA photoanode and a Cu foil acting as cathode (TNA-Cu 

PFC). Key influencing factors, i.e. initial pH and electrolyte concentration were investigated. 
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In addition, to elucidate the mechanism of enhanced MCPA degradation in the TNA-Cu PFC 

system, contribution of different reactive oxygen species (ROS) were evaluated by adding 

specific scavengers and via analysis of degradation intermediates by LC-MS/MS. To test its 

applicability in a more complex water matrix, effects of natural organic matters (NOMs), 

commonly present inorganic ions, and real wastewater treatment plant (WWTP) effluent 

were studied. Furthermore, the stability of the system was evaluated over several reuse 

cycles. 

4.2 Materials and methods 

4.2.1 Chemicals 

Ammonium sulphate (≥99.0 %), ammonium fluoride (≥98.0 %), formic acid (≥96 %), 

and tert-Butanol (≥99.0 %) were purchased from Sigma-Aldrich (Germany). Sulfuric acid 

(95 %), sodium hydroxide (1 mol/L aqueous solution), acetone (≥99.7 %), sodium sulphate 

(≥99.0 %), and 2-propanol (≥99.9 %) were purchased from VWR (Belgium). MCPA (≥98.0%) 

was purchased from Dr Ehrenstorfer GmbH (Germany). A stock solution of MCPA was 

prepared at concentration of 200 mg/L.  Dry solid extracts of two aquatic NOM Suwannee 

River NOM (2R101N) and Upper Mississippi River NOM (1R110N) were purchased from 

International Humic Substances Society (IHSS). 100 mg/L stock solutions of the two NOMs 

were prepared. Unless otherwise mentioned, all reaction solutions and stock solutions in 

this study were prepared with ultrapure water from a Milli-Q Advantage A10 system (Merck 

Millipore, Darmstadt, Germany). 

4.2.2 Preparation and characterization of TNA photoanode  

TiO2 nanotube arrays photoanode was prepared using a two-electrode 

electrochemical anodization cell connected to an EST150 DC power supply (Delta 

Elektronika, The Netherlands) as reported earlier by our group [210]. The anode was a 3 cm 

× 4.5 cm Titanium foil (≥99.5 %, 0.3 mm thick), and the cathode was a 4.5 cm × 5 cm Titanium 

plate (1 mm thick). The electrochemical anodization was performed in 100 mL aqueous 

electrolyte containing 0.15 M NH4F and 1 M (NH4)2SO4 at 20 V for 2 h, followed by thorough 

wash of the obtained TNAs and annealing at 600 ℃ for 0.5 h. The surface morphologies of 

the TNAs electrode were characterized by scanning electron microscopy (SEM) and the 
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chemical composition of the prepared TNAs was measured by EDX. The SEM/EDX analyses 

were performed using a JEOL JSM 6480 scanning electron microscope (JEOL Europe B.V., 

Nieuw-Vennep, The Netherlands) equipped with a EDX system. Raman spectra of the 

prepared TNA were recorded using a Horiba LabRAM spectrometer equipped with a 

mpc3000 laser (532.2 nm), an 800 mm focal length achromatic flat field monochromator 

(grating of 600 grooves/mm) and a Synapse multichannel air cooled (–70∘C) CDD detector. 

4.2.3 MCPA degradation experiments, apparatus and methods 

 

Figure 4. 1 Schematic of the experimental set-up 

Figure 4. 1 shows the schematic diagram of the experimental set-up of the TNA-Cu 

PFC system used for MCPA degradation. The experimental set-up was a two-electrode 

system, where the TNA electrode (3 cm × 3 cm) was used as photoactive anode and a copper 

foil (Grade M2, 3 cm × 4.5 cm) was used as counter electrode and a rectangular quartz cube 

was used as reaction cell (6 cm × 6 cm × 6 cm). The distance between the two electrodes 

was set to be approx. 2 cm. A UV-LED light source module was placed outside the reaction 

cell (on the side of TNA photoanode), which consisted of a 450 mW UV-LED emitting UV 

light with peak intensity at 365 nm (NCSU033B, NICHIA, Japan). The radiant power of the 

UV-LED that reached the surface of TNAs was 11.6 mW/cm2, measured by a THORLABS 

S150C radiant power meter (THORLABS, USA). A reaction solution of  140 mL with 1.0 mg/L 

MCPA was used, containing, unless otherwise stated, 0.1 M Na2SO4 as supporting 
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electrolyte and with unadjusted natural pH (~ 6), unless specifically noted. For experiments 

using conventional photocatalysis method, only the copper foil cathode was removed from 

the system, while all other components of the set-up were kept unchanged. All MCPA 

degradation experiments were carried out in parallel duplicate, and average values of the 

duplicate were presented. 

4.2.4 Analytical procedures 

The output voltage and circuit current of the PFC system were measured by a 

Vertex potentiostat (Vertex One, Ivium Technologies B.V, The Netherlands) in the two-

electrode system. The open cell voltage (VOC) and short circuit current (ISC) were measured 

according to the method introduced in literature [232]. For MCPA concentrations and 

degradation by-products measurement, an Agilent LC-MS/MS system consisting of Agilent 

infinity 1260 LC-system (degasser, binary pump, auto sampler with cooled tray and column 

oven) and Agilent 6420 triple Quadrupole Mass Spectrometer with Electrospray ion source 

was used. More detailed information of the analytical method used can be found in our 

previous study [65]. 

4.3 Results and discussion 

4.3.1 Characterization of TiO2 nanotube arrays photoanode 

Surface morphology of the TNA photoanode is shown in Figure 4. 2a. It can be seen 

that the TNA anode is covered by a self-organised tubular structure layer, which has an 

average pore size of around 80 nm. It has been reported that such a nanotubular structure 

results in oriented electron transport from TiO2 surface to Ti which can facilitate e-/h+ pairs` 

separation in photoelectrocatalytic processes [233]. The Raman spectrum of the TNA anode 

surface shown in Figure 4. 2b demonstrates that the TNA layer has a crystallographic phase 

consisting of both anatase and rutile. Good photocatalytic performance of TiO2 contains 

both anatase and rutile has been documented in literature [203, 210]. 
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Figure 4. 2 SEM top view image (a) and Raman spectrum (b) of the TNA photoanode 

surface  

4.3.2 MCPA removal in the TNA-Cu PFC system 

4.3.2.1 Enhanced MCPA removal in the TNA-Cu PFC system 

 The efficacy of different methods, i.e. photocatalysis (PC), photocatalytic fuel cell 

(PFC), on MCPA removal was evaluated, and the results are shown in Figure 4. 3. Compared 

with TNA based photocatalysis, the MCPA removal by the PFC method was successfully 

enhanced: after 120 min of treatment, the PC method resulted in 52.2% MCPA removal and 

the PFC method resulted in 62.0% MCPA removal.  The initial apparent rate constant (kapp) 

for MCPA degradation was found 0.0058 min-1 for the PC system, and 0.0072 min-1 for the 

TNA-Cu PFC system. The obtained results suggest that MCPA degradation can be effectively 

enhanced by using the TNA-Cu PFC system. Successful enhancement of various organic 

pollutants degradation over photocatalysts by adding a cathode material has been reported 

in recent years.  Li et al. (2014)[173] applied TiO2 (coated on Ti substrate) as photocatalyst 

and a platinized Ti as cathode to degrade Reactive Brilliant Red X-3B, a dye, from 

wastewater. They found that the colour removal after 80 min of treatment could reach 85% 

by the PFC method, while the conventional PC method without cathode connection could 

achieve only 55% colour removal under the same conditions. Such enhancement was due 

to better e-/h+ separation achieved by electron transfer from catalyst to cathode assisted 

by the self-bias between the two electrodes, according to the authors [173]. The same 

phenomenon was reported by Du et al. (2014): enhanced photocatalytic methyl orange 

degradation was obtained when a Pt/C coated bio-cathode was applied, because better        
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e-/h+ separation was achieved by the bias between the TiO2 catalyst electrode and the bio-

cathode. 

 

Figure 4. 3 Total removal (after 120 min treatment) and initial apparent degradation rate 

constant of MCPA by PC method and TNA-Cu PFC method.  Conditions: [MCPA]0 = 1.0 

mg/L, natural pH (~6), 0.1 M Na2SO4 as electrolyte. 

 

Figure 4. 4 Open cell voltage (VOC) (a) and short circuit current (ISC) (b) of the TNA-Cu PFC 

system. Conditions: [MCPA]0 = 1.0 mg/L, natural pH (~6), 0.1 M Na2SO4 as electrolyte. 

 Figure 4. 4a shows that a Voc value of 0.24 V was generated in the TNA-Cu PFC 

system upon UV illumination. The Voc is a measure of accumulation of photo-generated 

electrons in the TNA anode upon illumination, as previously explained by Chen et al.,   [234]. 
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As shown in Figure 4. 4b, upon UV irradiation, the TNA-Cu PFC system generated rapid 

photocurrent response, with a steady state value of about 0.37 mA, which represent the 

photo-generated electrons migration from the TNA anode to the Cu cathode.      

 Experiments in tap water samples were conducted to evaluate the effect of natural 

water constituents (Table S4. 1 shows the characteristics of the tap water samples). In tap 

water samples, although MCPA degradation performances of both the conventional PC 

system and the TNA-Cu PFC system were reduced, the TNA-Cu PFC system still resulted in 

much more rapid MCPA degradation compared with that in the conventional PC system, as 

shown in Figure 4. 5. The open cell voltage of the TNA-Cu PFC system operated in tap water 

was measured to be nearly 0.35 V, and the short circuit current was nearly 0.3 mA (Figure 

S4. 1). 

 

Figure 4. 5 Total removal (after 120 min treatment) and initial apparent degradation rate 

constant of MCPA in tap water samples by PC method and PFC method.  Conditions: 

[MCPA]0 = 1.0 mg/L, natural pH (~6), no electrolyte addition.  

The results presented herein demonstrate that, compared with the PC system, 

applying the TNA-Cu PFC system is a facile and effective way to enhance the removal of 

MCPA (and potentially also other micropollutants), and can simultaneously produce 

electricity for other low-power requiring applications. 
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4.3.2.2 Crucial role of acidic pH to promote MCPA degradation efficiency 

 It has been documented that the pH of the reaction solution can affect the 

performance of various photochemical systems on degradation of organic pollutants [106, 

235]. Therefore, degradation of MCPA was studied at different initial pH (pH0) levels 

(ranging from 3 to 11) to examine the effect of pH on the performance of the TNA-Cu PFC 

system. Control experiments were performed under the same conditions in the PC system. 

The solution pH was nearly constant during treatment, so the effect of pH fluctuation can 

be neglected. 

 

Figure 4. 6 Effect of pH on the initial apparent MCPA degradation rate constant (kapp) by 

PC method and PFC method. Conditions: [MCPA]0 = 1.0 mg/L, pH0 adjusted by H2SO4 or 

NaOH solutions, 0.1 M Na2SO4 as electrolyte.  

As shown in Figure 4. 6, better performance was achieved with lower pH level in 

both the PC system and the TNA-Cu PFC system.  The obtained results (Figure 4. 6) show 

that acidic pH (pH0 = 3) plays a significant role in enabling effective degradation: (1) the 

fastest MCPA degradation in the PC system and the TNA-Cu PFC system were both achieved 

at acidic pH (pH0 = 3); (2) under same conditions at acidic pH, MCPA degradation in the TNA-

Cu PFC system (with initial kapp of 0.0351 min-1) was almost three times faster than that in 

the PC system (with initial kapp of 0.0123 min-1 ). This demonstrates that acidic conditions 

are strongly favourable for the pollutant degradation by the TNA-Cu PFC system. This 
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finding is in line with previous studies with other pollutants.  In a study on a dual photo-

electrodes ferrous ions PFC system conducted by Zhao et al. [236], it was reported that 

lower pH would be beneficial for the PFC (Fe2+) system pollutant degradation performance, 

the same effect of low pH on a conventional PFC system was also reported. In another study 

conducted by the same authors Zhao et al. [232] on a Fenton-PFC system, the same findings 

were presented, and this phenomenon was attributed to two facts: (1) other oxidants, 

e.g. ·O2
-, H2O2, ·HO2, can be more easily generated at the cathode under acidic conditions; 

(2)a positively charged TNA anode surface would be beneficial to degradation of organic  

pollutants on the catalyst surface. Liu et al. [237] studied diclofenac photoelectrocatalytic 

degradation in a persulfate assisted PEC (external voltage was supplied to drive electron 

transmission) system, and reported that diclofenac degradation decreased with an increase 

of pH0. This finding was explained by higher redox potential ·SO4
- (derived from the Na2SO4 

electrolyte) at acidic pH in their studied system. These explanations are also reasonable to 

our findings that acidic pH is favourable to MCPA degradation in both the PC system and 

the TNA-Cu PFC system. Moreover, in the present study, beneficial effect of acidic pH was 

even more profound in the TNA-Cu PFC system. Considering that the same Na2SO4 

concentration and the same TNA was applied as photocatalyst in the PC system and the PFC 

system, the promotion of pollutant degradation on the TNA surface, and redox potential 

of ·SO4
- at same acidic conditions should be the same for both systems. Therefore, in the 

TNA-Cu PFC system, the increased generation of other oxidants is likely the crucial factor 

that contributes to the enhanced MCPA degradation performance under acidic conditions. 

Since the best MCPA degradation performance was achieved under acidic condition, the 

remaining experiments were performed with a pH0 value of 3.        

4.3.3 Degradation mechanisms 

 The working principle of PFC systems has been introduced in literature [173, 232]. 

Figure 4. 7 is a schematic illustration of the TNA-Cu PFC working principle. Upon excitation 

by photons with energy larger than TiO2 band gap, electrons (e-) will migrate from the 

valence band to conduction band and leave positively charged holes (h+) in the valence band 

of the TiO2 material. The h+ is a very powerful oxidant able to degrade organic pollutants 

adsorbed on the TiO2 surface. The h+ can also react with water molecules or OH- to generate 
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hydroxyl radical (·OH), which is a well-known strong oxidant that rapidly degrade broad 

range of organics in various advanced oxidation processes. Part of the ·OH is adsorbed on 

the TNA surface (·OH surface) and can readily degrade organic pollutants that diffused towards 

and adsorbed onto the TNA surface. The rest of the ·OH radicals can diffuse into the liquid 

phase (·OH free) and react with organic pollutants there. Usually organic pollutants are 

degraded predominantly by h+ and ·OH in photocatalytic processes [148, 210]. The 

conduction band electrons can be quenched rigorously by various electron accepters in the 

reaction solution to generate water and/or other oxidant like ·O2
-, H2O2, ·HO2. In 

conventional photocatalytic systems, the conduction electrons can easily migrate back to 

valence band and recombine with the holes. This recombination of h+/e- pairs is a limiting 

factor of photocatalytic processes, because such recombination leads to energy loses as 

heat and less availability of h+ for subsequent ·OH production and organic pollutant 

degradation. In a PFC system, by applying an external circuit and a cathode, the photo 

generated electrons will be more separated from the valence band holes via transferring to 

the cathode material through the external circuit. In this way, recombination of h+/e- pairs 

can be largely suppressed and more valence band holes are available for ·OH production 

and organic pollutant degradation, and more electrons are available for generation of other 

oxidant like ·O2
-, H2O2, ·HO2. Thus, enhanced organic pollutant degradation and electricity 

generation are achieved in the PFC system simultaneously. 

 

Figure 4. 7 Schematic of proposed degradation mechanism of MCPA in the PFC system 



Chapter 4 

98 
 

To elucidate contribution of the above mentioned degradation routes, 

experiments with addition of specific oxidant scavengers, i.e. formic acid (FA) and tert-

butanol (TBA), were carried out in both the PC system and the TNA-Cu PFC system. Because 

formic acid can rigorously quench photo generated electron holes (h+) on the surface of TNA 

once they were produced, addition of formic acid in the reaction hindered not only the 

degradation pathway mediated by electron holes but also degradation pathways with 

participation of hydroxyl radicals [104]. Due to extreme low affinity to TiO2 surfaces, the 

tert-butanol only scavenges hydroxyl radicals in bulk liquid phase. The results (Figure 4. 8) 

show that the MCPA degradation in the PC system was decreased from 81.5 % to 5.1 % and 

1.9 % by adding tert-butanol and formic acid, respectively; while the MCPA degradation in 

the TNA-Cu system was decreased from 99.4 % to 16.3 % and 15.2 % by adding tert-butanol 

and formic acid, respectively. 
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Figure 4. 8 Effect of different scavengers on the total removal of MCPA after 120 min 

treatment by PFC method (a) and PC method (b). Conditions: [MCPA]0 = 1.0 mg/L, pH0=3, 

[Na2SO4]=0.1 M. 

 From the obtained results, the contribution of different reaction routes was 

understood. Figure 4. 9 illustrates the contribution of different oxidants to MCPA 

degradation in the PC system and the TNA-Cu PFC system. In the conventional PC system, 

reactions with ·OH free was the predominant MCPA degradation route (accounts for 93.7 % 

MCPA degradation), while a very small portion of MCPA was degraded by h+ and ·OH surface 

(accounts for 3.9 % MCPA degradation), and other oxidant species, e.g. ·O2
-, H2O2, ·HO2 

(accounts for 2.4 % MCPA degradation). However, in the TNA-Cu PFC system, although 



Chapter 4 

100 
 

primary MCPA degradation oxidant was still ·OH free (accounts for 83.6 % MCPA degradation), 

the contribution of other oxidants (e.g. ·O2
-, H2O2, ·HO2) became a significant part (accounts 

for 15.3 % MCPA degradation). The same findings were also found under neutral pH (shown 

in Figure S4. 3). The increased contribution of other oxidants, e.g. ·O2
-, H2O2, ·HO2, in the 

TNA-Cu PFC system can be ascribed to reduced e-/h+ recombination. In the TNA-Cu system, 

photo-generated electrons were transferred to the Cu cathode via external circuit by the 

system self-bias and therefore better separation of h+/e- pairs were achieved. Consequently, 

on the one hand more h+ were available to trigger h+ and ·OH mediated MCPA degradation, 

on the other hand, more e- were available to produce other oxidants like ·O2
-, H2O2, ·HO2 

(shown in equations 1-3 below) and subsequent MCPA degradation. Such enhancement of 

micropollutant removal by better h+/e- separation and generation of oxidants like ·O2
-, 

H2O2, ·HO2 is in accordance with literature [232]. In a study performed by Zhao et al. (2017) 

on enhanced organic pollutant removal in a Fenton-PFC system, the involvement of ·O2
-, 

H2O2, ·HO2 was also proposed.   

𝐎𝟐 +  𝐞− →  ·O2
-                           (4. 1)                                   

𝐎𝟐 + 𝟐𝐇+ +  𝟐𝐞− →  𝐇𝟐𝐎𝟐     (4. 2)   

·O2
-  +  𝐞− →  ·HO2                     (4. 3) 

 

Figure 4. 9 Contribution of different oxidants on MCPA degradation by PC method and 

PFC method. Conditions: [MCPA]0 = 1.0 mg/L, pH0=3, [Na2SO4]=0.1 M. 
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Figure 4. 10 MCPA degradation transformation products formation during PC treatment 

and PFC treatment. Conditions: [MCPA]0 = 1.0 mg/L, pH0=3, [Na2SO4]=0.1 M. 

The difference in MCPA degradation in PC and PFC systems was further confirmed 

via transformation products analysis by LC-MS/MS. Two main transformation products (TP) 

were identified and their tentative structures were proposed based on literature: one with 

a molecular weight of 214 and retention time of 2.4 min (TP1) which is likely to be resulted 

from addition of hydroxyl group to the MCPA molecule by hydroxyl radical attack [120], and 

the other with a molecular weight of 144 and retention time of 0.84 min (TP2) [120]. The 

results show that evolution of two main transformation products during different treatment 

varied (Figure 4. 10): TP1 formation and degradation in the PFC system were much more 

rapid than that in the PC system, and much more TP2 was formed in the PFC system than in 

the PC system.   
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4.3.4 Effect of operational parameters and water constituents on MCPA removal 

4.3.4.1 Effect of electrolyte concentration 

 Electrolyte concentration is known as an important operational parameter in 

photocatalytic systems and photoelectrocatalytic systems (including photocatalytic fuel cell 

systems) [232, 238]. MCPA experiments were conducted in both conventional PC system 

and the TNA-Cu system with different Na2SO4 concentrations, namely 0 M, 0.01 M, 0.1 M, 

and 0.5 M (resulted in conductivity ranging from 0.48 to 59.48 mS/cm), at acidic conditions 

(pH0 = 3). 

 

Figure 4. 11 Effect of electrolyte concentration on the MCPA removal by PC method 

(dashed line) and PFC method (solid line). Conditions: [MCPA]0 = 1.0 mg/L, pH0 = 3. 

 The results (Figure 4. 11) show that electrolyte concentration in the tested range 

imposes no significant impact on the MCPA degradation performance of both systems. Even 

without addition of Na2SO4, MCPA degradation in the TNA-Cu PFC system was still greatly 

enhanced compared with that in the PC system: degradation of MCPA in the TNA-Cu PFC 

system (kapp = 0.0389 min-1) was nearly 3.6 times faster than that in the PC system (kapp = 

0.0109 min-1). This reveals that, under acidic conditions, the reaction solution conductivity 

is not a limiting factor on the separation of h+/e- pairs, and consequently oxidants 

production and MCPA degradation were not affected by varied electrolyte concentration. 

Therefore, unless otherwise stated, remaining experiments were conducted without 

Na2SO4 addition. 
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4.3.4.2 Effect of background organic matters 

 Various types of natural organic matter (NOMs) are commonly present in various 

water bodies and are known to be able to interfere with many AOPs [177]. Given this 

context, to evaluate the applicability of the TNA-Cu PFC system in real life application, it is 

of interest to study the effect of NOMs and document the allowable NOMs concentrations 

range. Therefore, experiments were carried out in the presence of different reference 

NOMs at varied concentrations (i.e. 5 mg/L, 15 mg/L). 

 

Figure 4. 12 Effect of different natural organic matters on the MCPA removal in the TNA-

Cu PFC system: (a) Suwannee River NOM; (b) Upper Mississippi River NOM. Conditions: 

[MCPA]0 = 1.0 mg/L, pH0 = 3, no addition of electrolyte. 

 The results (Figure 4. 12) indicate that the presence of NOMs has no significant 

detrimental effect on MCPA degradation performance of the TNA-Cu PFC system: the 
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presence of up to 15 mg/L Suwannee River NOM (SR-NOM) had no noteworthy effect on 

MCPA degradation (Figure 4. 12a); while the presence of up to 15 mg/L Upper Mississippi 

River NOM (UMR-NOM) only caused a slight decrease in the MCPA degradation rate (Figure 

4. 12b). NOMs usually interfere with photocatalytic system by blocking the active site of the 

catalyst surface, and competing for reactive oxidant species against target pollutants [142, 

143]. Therefore, the null effect of NOMs on the TNA-Cu system could be attributed to two 

facts: (1) under acidic condition, adsorption of NOMs onto the TNA surface and the 

subsequent blocking of the active site is greatly suppressed; (2) in the TNA-Cu system, 

contribution of more selective oxidants like ·O2
- can compensate the ·OH scavenging effect 

of NOMs. 

4.3.4.3 Effect of inorganic ions 

 Besides organic matter, many commonly present inorganic species, e.g. nitrate 

ions, chloride ions, calcium ions, are also known to be able to interfere with TiO2 based 

photocatalytic processes [106, 166, 239]. Therefore, experiments were conducted in 

presence of various concentration levels of these inorganic ions to evaluate their impact on 

MCPA degradation performance of the TNA-Cu PFC system.  

The results (Figure 4. 13) suggest that both nitrate ions and calcium ions had no 

detrimental effect on the MCPA degradation performance of the TNA-Cu PFC system. As 

reported in previous studies, chloride ions can strongly adsorb onto TiO2 surface and block 

the active site under acidic conditions [239]. Interestingly, in contrast to conventional 

photocatalytic systems (example can be seen in Figure S4. 4) the presence of chloride ions 

could even significantly promote MCPA degradation in the TNA-Cu PFC system. This finding 

could be attributed to the fact that chlorine based strong oxidants (e.g. ClO-) could be 

produced in the TNA-Cu PFC system, and stimulates MCPA degradation.  
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Figure 4. 13 Effect of common inorganic ions on the MCPA removal in the TNA-Cu PFC 

system: (a) Chloride ions; (b) Nitrate ions; (c) Calcium ions. Conditions: [MCPA]0 = 1.0 

mg/L, pH0 = 3. 

In a study conducted by Lee, et al. employing a ZnO/Zn based PFC system for 

removal of an azo dye Reactive Green 19 (RG 19), it is reported that the presence of chloride 



Chapter 4 

106 
 

ions could promote the oxidation of RG 19. The same finding was very recently reported by 

another research group employing graphite–PVC composite based electrochemical 

oxidation system for diclofenac degradation [240]. The formation of hypochlorite ions was 

described in the following equations: 

𝟐𝐂𝐥− −  𝐞− →  𝐂𝐥𝟐                                 (4. 4)                              

𝐂𝐥𝟐 + 𝐇𝟐𝐎 →  𝐇𝐎𝐂𝐥 + 𝐇+ +  𝐂𝐥−    (4. 5) 

𝐇𝐎𝐂𝐥 →  𝐇+ + 𝐎𝐂𝐥−                          (4. 6) 

The results presented herein indicate that the TNA-Cu PFC system has the potential 

to overcome interference of common inorganic ions in complex water matrices. 

4.3.5 MCPA removal and simultaneous electricity generation in real wastewater 

treatment plant effluent 

In order to better evaluate applicability of TNA-Cu PFC system in real wastewater 

treatment implications, MCPA removal experiments were also done in wastewater 

treatment plant effluent (WWTPE) sample. The WWTPE was collected from the secondary 

biological treatment facility (activated sludge method) of a municipal wastewater treatment 

plant located in Sneek (Friesland, The Netherlands), characteristics of the WWTPE sample 

were shown in Table 4. 1. MCPA was spiked into the WWTPE sample to an initial 

concentration of 1.0 mg/L and the initial pH of reaction solution was adjusted to 3 by adding 

H2SO4. 

Table 4. 1 Characteristics of the WWTP effluent 

Parameters Concentration (mg/L) Parameters Concentration (mg/L) 

COD 39.1 IC 55 

PO4
3--P 0.68 Ca2+ >20 

SO4
2- >40 K+ 13.4 

TC 75 Mg2+ 13.82 

TOC 20 NH4
+ 0.36 
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As demonstrated in Figure 4. 14, MCPA degradation in WWTPE by conventional PC 

method resulted in an initial kapp value of 0.0108 min-1 and a total removal of 75.2 % after 

120 min treatment. When the TNA-Cu PFC system was applied, MCPA underwent more 

rapid degradation (1.5 times faster) with an increased initial kapp value of 0.0157 min-1 and 

a total removal of 87.6 % after 120 min treatment. Meanwhile, an open cell voltage of 

around 0.12 V and a photocurrent of around 0.25 mA were obtained in the TNA-Cu PFC 

system when operated in WWTPE (Figure 4. 15). The obtained results suggest that applying 

the TNA-Cu PFC system is a facile and effective way to enhance MCPA removal from 

complex water matrix, and it is possible to produce electricity which can be used for other 

processes. 

 

Figure 4. 14 Total removal (after 120 min treatment) and initial apparent degradation 

rate constant of MCPA in WWTP effluent by PC method and PFC method.  Conditions: 

[MCPA]0 = 1.0 mg/L, pH0 adjusted to 3 by H2SO4.    
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Figure 4. 15 Open cell voltage (a) and short circuit current (b) of the TNA-Cu PFC system. 

Conditions: [MCPA]0 = 1.0 mg/L, in WWTP effluent, pH0 adjusted to 3 by H2SO4. 

4.3.6 Stability of the TNA-Cu PFC system on MCPA removal 

 The stability of the TNA-Cu system was examined, in terms of its MCPA degradation 

performance over 6 operation cycles. For each cycle, the treatment conditions were kept 

identical: with initial MCPA concentration of around 1 mg/L, with initial pH of 3, without 

addition of electrolyte. Before each subsequent run, the system was washed by Milli-Q 

water and dried in N2 stream at ambient temperature. The results (Figure 4. 16) indicate 

that MCPA degradation in the TNA-Cu PFC system did not change significantly after 

repeated treatment cycles. The total removal of each run was nearly constant. The obtained 

results reveal relatively good stability and reusability of the TNA-Cu PFC system.  

 

Figure 4. 16 MCPA degradation in the TNA-Cu PFC system during repeated runs. 

Conditions: [MCPA]0 = 1.0 mg/L, pH0 = 3, no addition of electrolyte.   
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4.4 Conclusions 

 In this study, we demonstrate that TNA-Cu PFC system is a simple and effective 

method to enhance MCPA photocatalytic degradation from aqueous streams compared to 

TNA based photocatalysis system under the same operation conditions. The main outcomes 

of the present work are summarized as below: 

 Under the same operation conditions, enhanced MCPA removal can be 

obtained by simply connecting the TNA to a Cu cathode to form a PFC system, 

even in tap water samples and wastewater treatment plant effluent. 

 Acidic pH is a crucial operational parameter of the TNA-Cu PFC system: the 

enhancement of MCPA degradation in the TNA-Cu PFC system was largely 

promoted under acidic conditions. 

 The enhancement of MCPA degradation in the TNA-Cu PFC system involved 

better e-/h+ separation and generation of other oxidants: in the TNA-Cu PFC 

system, contribution of other oxidants like ·O2
-, H2O2, ·HO2 increased. 

 For the acidic TNA-Cu PFC system studied in the present work, conductivity of 

the reaction solution was not a limiting factor. Even without addition of extra 

supporting electrolyte, enhanced MCPA removal can be obtained in the acidic 

TNA-Cu PFC system. 

 Commonly present background water constituents like NOMs, nitrate ions, 

chloride ions, and calcium ions impose no detrimental effect on the MCPA 

degradation in the acidic TNA-Cu PFC system. 

 The acidic TNA-Cu PFC system shows good stability over repeated treatment 

cycles. 
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Supplementary information 

Table S4. 1 Characteristics of the tap water 

Parameters Unit Values 

Cl- mg/l 35.6 

NO2
- mg/l <0.05 

NO3
- mg/l 11.2 

PO4
3- mg/l <0.05 

SO4
2- mg/l 0.18 

TC mg/l 57.7 

NPOC mg/l 4 

IC mg/l 53.7 

Ca2+ µg/l 27700 

Cu2+ µg/l 273 

K+ µg/l 2030 

Mg2+ µg/l 9650 

Na+ µg/l 76900 

 

 

Figure S4. 1 Open cell voltage (a) and short circuit current (b) of the TNA-Cu PFC system 
operated in tap water. Conditions: [MCPA]0 = 1.0 mg/L, in tap water. 
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Figure S4. 2 MCPA concentration profiles during degradation by PC method (dashed line) 
and PFC method (solid line) at different pH levels. Conditions: [MCPA]0 = 1.0 mg/L, pH 

adjusted by H2SO4 or NaOH solutions, 0.1 M Na2SO4 as electrolyte. 

 

Figure S4. 3 Contribution of different reactive species on MCPA degradation by PC 
method and PFC method. Natural pH (~6), [Na2SO4]=0.1 M. 
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Figure S4. 4 Effect of chloride ions on the MCPA removal in the PC system. Conditions: 
[MCPA]0 = 1.0 mg/L, pH0 = 3. 
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Chapter 5  

Homogeneous photosensitized degradation 

of pharmaceuticals by using red light LED as 

light source and methylene blue as 

photosensitizer 
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Abstract 

Research on employing advanced oxidation processes (AOPs) for pharmaceuticals 

removal is gaining interests. However, detrimental effects of background water 

constituents in complex water matrices are limiting their implementation. In this study, we 

report red light induced methylene blue photosensitization (MB/Red-light) as a promising 

alternative for pharmaceuticals removal from wastewater, because of its potential to 

overcome detrimental effect of background water constituents as experienced in other AOP 

technologies. In this study, the efficacy of MB/Red-light on degradation of four 

pharmaceutical compounds, i.e. diclofenac (DFN), metoprolol (MTP), propranolol (PRP) and 

sulfamethoxazole (SFZ), was investigated. The MB/Red-light photosensitization enabled 

degradation of three model compounds, i.e. DFN, PRP and SFZ. Degradation rates followed 

the order of DFN＞PRP＞SFZ. Singlet oxygen was found to be crucial in pharmaceuticals 

degradation, and another additional mechanism, i.e. a direct reaction with triplet MB, also 

contributed to DFN degradation. The presence of two DFN degradation mechanisms were 

confirmed by UV-vis light absorbance spectra measurement as well as the identification of 

degradation products by LC-MS/MS. Effects of three common back ground water 

constituents were examined to assess the applicability of MB/red-light system in complex 

water matrices, which suggests that the MB/red-light system has great potential to be used 

in real wastewater. Higher pH was found to impose positive impact on the efficacy of the 

proposed system. Last but not least, red light LED is an optimum light source for the 

proposed MB/Red-light system, because the light emission spectrum of the LED used in this 

study fits well with the light absorption spectrum of the photosensitizer-methylene blue.    
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5.1 Introduction 

 Various micropollutants including pharmaceuticals have been found to be present 

at various concentration levels in the aqueous environment [7, 14, 27]. As reported by 

Klavarioti, M et al. [190], they were not only detected in ground and surface water but also 

drinking water resources according to a broad range of studies [5-11]. Studies have 

indicated that the presence of pharmaceuticals in the environment imposes hazards to 

aquatic life at different levels, from algae to fish, even at low concentrations [27]. The 

problem is extending from individual compounds to mixtures of a wide range of compounds 

that appear nowadays in water resources at very low concentrations, and their possible 

synergist toxicity effects on ecological and human biological systems is not fully understood 

[241]. However, the presence of these chemicals in surface, ground, and drinking water 

resources reveals the fact that conventional wastewater treatment processes and drinking 

water production processes, e.g. biological processes, sedimentation, filtration, 

coagulation/flocculation, have insufficient  efficacy in removing these wide range of 

compounds [64, 190]. Therefore, more advanced treatment processes are required.  

 In recent years, vast efforts have been directed to develop efficient removal 

techniques for such purpose, such as advanced oxidation processes (AOPs) as UV/H2O2[55-

59], UV/TiO2[60-62], Fenton and Photo-Fenton[63, 83], where a strong oxidizing species 

hydroxyl radical is the primary oxidant. The strong oxidizing power of the hydroxyl radical 

exhibits great potential in various applications, including organic pollutant removal, 

disinfection etc. However, it is also well documented that, in relatively complex water 

matrixes, the background water constituents, including inorganic salts (e.g. phosphate, 

bicarbonate, sulphate, etc.) and natural organic matters (NOMs), impose large detrimental 

effect on the performance of such hydroxyl radical mediated processes [166]. For instance, 

in AOPs involving the use of solid phase catalysts, anions like phosphate and bicarbonate 

remain strongly adsorbed onto catalysts surfaces and can therefore deactivate the site 

where it adsorbed [96, 166]. Furthermore, inorganic anions like phosphate and bicarbonate 

are also able to act as hydroxyl radical scavengers. A study conducted by J. Brame et al. [177] 

reported that the presence of phosphate ions even at low concentrations could cause 

significant decrease in the performance of UV/H2O2 process, which was attributed to 
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scavenging of hydroxyl radicals by phosphate ions. NOMs interfere with performance of 

various existing AOPs by two main mechanisms. The first one is absorption of UV light, 

which is well known as “inner filter effect”. NOMs are usually able to absorb light in the UV 

and near-UV range. The presence of NOMs in water would decrease the availability of UV 

light for semiconductors/H2O2 and any other species needed to produce hydroxyl radicals, 

in the cases of all UV related AOPs. The other reason that NOM could reduce the 

performance of most existing AOPs is that NOMs can act as hydroxyl radical scavenger. In 

the same study conducted by J. Brame et al. [177], significant inhibitory effect of NOM on 

the degradation of pharmaceuticals in UV/H2O2 process was reported. Viewing the 

aforementioned facts, recently studies have been carried out to investigate the efficacy of 

employing photosensitization induced by visible light and solid photosensitizers for organic 

chemical removal in various water matrices [64, 129, 130], where singlet oxygen (1O2) was 

considered to be the primary oxidant. 1O2 is an energetically rich form of molecular oxygen, 

which has about 1 eV higher energy and is more reactive than ground state oxygen[127]. As 

an oxidant which has a higher oxidizing potential (about 1 V higher [127]) than ground state 

oxygen, its application in organic pollutant elimination has been investigated [178-181]. 

However, involvement of solid photosensitizers is still a drawback. Because 1O2 has a very 

short life time, the presence of 1O2 is limited to a thin layer close to the solid phase; only 

adsorbed pollutants can be well degraded [182]. Moreover, inorganic ions and NOMs in 

water matrices can still reduce the process efficiency by blocking the active site of solid 

sensitizers. In this manner, homogeneous singlet oxygen mediated processes can be an 

alternative, because the aforementioned problems associated with heterogeneous system 

can be avoided. Methylene blue (MB) has great potential to be utilized as homogeneous 

photosensitizer for such purpose. It has strong light absorption in  visible range which can 

avoid the inner filter effect of NOMs in complex water matrices, has a relatively high 

quantum yield of singlet oxygen formation [183], and has a long history of safe use in human 

treatment without major side effect. The red light induced MB photosensitization process 

for singlet oxygen formation is reported to have a broad application field including 

disinfection in not only wastewater treatment but also blood products [184-189], where 

singlet oxygen was generated to kill pathogens, as well as medical therapy, where red light 

induced MB photosensitized singlet oxygen was directed to selectively kill tumour cells for 
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cancer therapy [187]. Nevertheless, no attempt has been made to employ MB as 

homogeneous photosensitizer for pharmaceuticals removal. 

   Light source is another important factor for photon-involved processes, because 

it imposes great influence on the operational and maintenance costs. Conventional light 

sources include mercury lamps (for UV involved systems), fluorescent lamps and Xe-arc 

lamps (for visible light involved systems), etc. Recently, light emitting diodes (LED) are 

gaining increasing interests in view of their advantages: short warm-up time, no hazardous 

materials disposal, long life time, compatibility, narrow light emission spectra, etc [62, 242]. 

Attempt has been made to utilize LED as light sources in photo-oxidation processes very 

recently [79, 242, 243]. However, to the best of the authors` knowledge, no studies have 

been conducted to investigate the use of red light LED for photodegradation of 

pharmaceuticals. 

  In the present study, the overall objective is to investigate the feasibility of 

applying red light LED as light source and MB as photosensitizer for photodegradation of 

pharmaceuticals. The model compounds in this study include diclofenac (DFN), 

sulfamethoxazole (SFZ), metoprolol (MTP), and propranolol (PRP). They are classified in the 

group of pharmaceuticals most commonly present in the environment [7], and have diverse 

chemical structures. The degradation kinetics of the model compounds was presented. The 

degradation mechanisms were discussed. Effects of different background water 

constituents, i.e. phosphate ions, bicarbonate ions and NOM, were studied to assess the 

applicability of the proposed method in real life application. Effect of pH on the efficacy of 

MB/Red-light system was also studied. 

5.2 Materials and methods 

5.2.1 Materials 

       Diclofenac (DFN), sulfamethoxazole (SFZ), metoprolol (MTP), and propranolol (PRP) 

were purchased from Sigma-Aldrich (Germany) and were used as received. Stock solutions 

of each pharmaceutical compound were prepared at concentrations of 200 mg/L for each 

of these model compounds. Na2CO3 and NaHCO3 were purchased from VWR (Belgium) and 

were used as received. Na2HPO4 and NaH2PO4 were purchased from Boom BV (The 
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Netherlands) and were used as received. Pony Lake (Antarctica) Fulvic Acid Reference 

natural organic matter (NOM) was obtained from the International Humic Substances 

Society (USA) and a NOM stock solution at 100 mg/L was prepared.  The photosensitizer 

methylene blue was purchased from Boom BV (The Netherlands) and a MB stock solution 

at 200 mg/L was prepared. Ultrapure water from a Milli-Q Advantage A10 system (Merck 

Millipore, Darmstadt, Germany) was used for preparation of all stock solutions and reaction 

solutions. 

5.2.2 Red-light LED and experimental setup 

          The red-light LED (LZ4-00R200) was purchased from LED-ENGIN, Inc. USA. Typical 

light emission of the LED is in the range from around 600 nm to 700 nm, with peak wave 

length in between 655 nm and 670 nm. The red-light LED was mounted onto a cooling plate 

for heat dissipation, and attached a lens to concentrate the light irradiation and avoid direct 

contact of the LED with the reactor to prevent heating up of the reaction solution. The LED 

was powered by an EST150 DC power supply (Delta Elektronika, The Netherlands). The input 

current of the LED was set to be 0.8 A, which gave an input electrical power of 7.7 W. The 

red-light LED was placed under the bottom of the reactor. The radiant power density 

entering the reactor was measured to be 1.77 W, by using a THORLABS S120C photodiode 

power sensor (THORLABS, USA). Under the applied irradiation conditions, the photon flux 

was calculated to be around 9.77 μmol/s. 

         A glass cylinder was used as reactor (270 mm height and 60 mm diameter). The 

reactor was wrapped with aluminium paper to avoid interference of ambient light. (Figure 

S5. 1 in the supplementary information shows the schematic of the set-up.) 

5.2.3 Photodegradation experiments  

          Experiments were divided into different groups. The group name and experimental 

conditions of photochemical experiments can be found in Table 5. 1. Pharmaceutical stock 

solutions were spiked into ultrapure water (MilliQ) to achieve the desired initial 

pharmaceutical concentrations (1.0 mg/L) in reaction solutions (500 mL). Stock MB solution 

was added to the reaction solution to achieve initial MB concentration of 1.5 mg/L, except 

for Group B where no MB was added. Photochemical experiments were carried out at 
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ambient temperature. Except the experiments investigating effect of pH (phosphate buffer 

system was used to achieve and maintain the designated pH), the pH of all other 

experiments was unadjusted and circum-neutral, with pH value in the range of 6-7, and no 

significant change in pH was observed during reaction. N2 or air was continuously supplied 

from the bottom of the reactor, to maintain the desired dissolved oxygen (DO) 

concentration and to facilitate mixing. The DO concentration of the reaction solution was 

monitored using a DO probe (Oxymax COS22/22D, Endress+Hauser). With continuous air 

supply, the reaction solutions were maintained air-equilibrated, while with N2 supply the 

DO was maintained at 0 mg/L.  During the experiments, 5 mL samples were taken at 

designated times and the total irradiation time of each run was 120 minutes. All 

experiments were carried out in duplicates. 

Table 5. 1 Overview of the experimental conditions of photodegradation experiments 

Group name Pharmaceuticals  MB Red-light Gas supply 

A DFN, MTP,PRP, SFZ + ON Air 

B DFN, MTP,PRP, SFZ - ON Air 

C DFN, MTP,PRP, SFZ + OFF Air 

D DFN, MTP,PRP, SFZ + ON N2 

E - + ON N2 

F DFN + ON Air 

G DFN + ON N2 

 

5.2.4 Singlet oxygen quenching experiments 

        Singlet oxygen quenching experiments were conducted to study the role of 1O2 in 

photodegradation of model compounds in the MB/Red-light system. A well-known 1O2 

quencher sodium azide (NaN3) was added to reaction solutions (0.5 g/L). All other 

experimental conditions and procedures were identical with Group A. 
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5.2.5 Effect of background water constituents 

       Three common water constituents, i.e. phosphate ions, bicarbonate/carbonate 

ions, and NOM, were used to study their effect on performance of MB/Red-light system. 

Effects of these chemicals were studied individually. The pH was circum-neutral in the range 

of 6 to 7. All other experimental conditions were kept identical with Group A. 

5.2.6 Effect of pH 

         Experiments were carried out to investigate the influence of solution pH on the 

efficacy of photosensitized degradation of pharmaceuticals, with pH of 4.6 (acidic condition), 

7 (neutral condition), and 9 (alkaline condition). The initial MB concentration of 1.5 mg/L 

was applied, the initial pharmaceutical concentrations were kept at 1.0 mg/L. 50 mM H2PO4
-

/HPO4
2- buffer system was used to achieve and maintain designated pH. The experiments 

were conducted under air equilibrated condition. 

5.2.7 Analytical methods 

        Absorption spectra of samples in the wavelength range from 250 nm to 700 nm 

were measured with a UV/Vis spectrophotometer (Shimadzu UV-1800). Total organic 

carbon (TOC) level was measured for Group A to examine the efficacy of MB/red-light 

system in mineralization of pharmaceuticals, by a TOC-L CPH analyser equipped with an ASI-

L autosampler, as described elsewhere [70]. For pharmaceuticals concentrations, samples 

were analysed using an Agilent LC-MS/MS system consisting of Agilent infinity 1260 LC-

system (degasser, binary pump, auto sampler with cooled tray and column oven) and 

Agilent 6420 triple Quadrupole Mass Spectrometer with Electrospray ion source. The 

compounds were separated using a Phenomenex Gemini Phenyl-Hexyl column (150x3 mm, 

particle size 5 µm) and a gradient of acetonitrile (5 to 90 %) and Ammonium Formate buffer 

in water. The compounds were detected and quantified on the 6420-QQQ-MS using 

compound specific multiple Dynamic MRM transitions. Detailed information of the 

analytical method used can be found in literature [220].  
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5.3 Results and discussion 

5.3.1 Degradation of pharmaceutical compounds by MB/Red-light 

photosensitization  

Two groups of photochemical experiments were conducted: (Group A) 

photosensitized degradation in the presence of MB and red light, under air-equilibrated 

conditions; and (Group B) direct photolysis under red light irradiation. Dark control 

experiments (Group C) were carried out to evaluate the stability of the solutions and to rule 

out the loss of model compounds by physical processes like stripping and adsorption.  

Experiments with each individual model compound were also performed to exclude the 

possible competition among the model compounds, and the results show no significant 

difference (Figure S5. 2). 

Table 5. 2 Time-based pseudo-first-order kinetic constants and total removal of 

pharmaceuticals after 120 min MB/Red-light treatment 

Compound kapp (min-1) R2 Total removal 

Diclofenac 0.0572 0.9958 98.94% 

Propranolol 0.0170 0.9904 79.98% 

Sulfamethoxazole  0.0022 0.9896 15.70% 

Metoprolol 0.0003 0.6661 0.23% 

 

The concentrations (C/C0) of model compounds as a function of irradiation time 

were plotted as shown in Figure 5. 1. The results demonstrate that three of the model 

compounds were degraded via photosensitized degradation. The total removal and kinetics 

rate constants were found to vary among the different compounds (see Figure 5. 1a, and 

Table 5. 2). Degradation of pharmaceuticals in the proposed MB/Red-light system fits the 

pseudo-first-order kinetic model, but to avoid confounding effects of degradation products, 

only initial degradation rate constants were examined in this study. Only initial degradation 

data (0 - 15 min) was used to calculate time-based pseudo-first order rate constants (kapp) 

in this study [177]. The applied conditions enabled rapid degradation of DFN and PRP (with 
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time-based pseudo-first order rate constant kapp of 0.0572 min-1 and 0.0170 min-1, 

respectively), with total removal of 98.94 % and 79.98 % after 120 min treatment, 

respectively. Degradation of SFZ was much slower (kapp = 0.0022 min-1), with a total removal 

of 15.70 %. No detectible degradation of MTP was obtained under the applied conditions.  

Furthermore, the UV-vis spectra of the reaction solution at different times were 

determined as shown in Figure 5. 2. The results show that the UV-vis spectrum of reaction 

solution changed significantly after 120 min irradiation of red light. The spectrum curve at 

0 min shows two major peaks in both the UV range (attributed to the presence of MB and 

pharmaceuticals) and the red light range (attributed to the presence of MB). Both peaks 

decreased dramatically after 120 min, reflecting the degradation of pharmaceuticals and 

MB. Light absorption in the range of 300 nm to 550 nm experienced slight increase, 

revealing formation of some degradation products.  Previous studies on singlet oxygen 

mediated micropollutant removal have pointed out that singlet oxygen mediated processes 

do not lead to total mineralization of the target pollutants [129],  which is in accordance 

with our results of TOC measurement (Figure S5. 3), but it should also be noticed that even 

uncomplete oxidation of target pollutants by singlet oxygen often lead to drastic reduction 

in their biological or estrogenic activities [129].  

Model compounds were exposed to red light irradiation, so direct photolysis might 

also contribute to their degradation. However, the results of Group B (shown in Figure 5. 

1b) clearly rule out the contribution of direct photolysis on degradation of the 

pharmaceuticals: without addition of MB, none of the model compounds were degraded 

under red light irradiation. This can be attributed to the fact that the model compounds in 

this study have no light absorption in the red light range (Figure S5. 4).  Moreover, results 

of dark control experiments (shown in Figure 5. 1c) showed no change in model compounds 

concentrations. Hence, the degradation of model compounds was subjected to red light 

induced MB photosensitization process.  
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Figure 5. 1 Pharmaceutical compounds degradation profile under different conditions as 

a function of time: (a) Group A, (b) Group B, (c) Group C. 

[DFN]0=[MTP]0=[PRP]0=[SFZ]0=1.0 mg/L, [MB]0=1.5 mg/L (except Group B), pH 

unadjusted. 

 

Figure 5. 2 Absorption spectra change observed in Group A. 
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5.3.2 Crucial role of singlet oxygen in degradation of propranolol and 

sulfamethoxazole 

The possible mechanisms of the red-light induced MB photosensitization has been 

proposed elsewhere [186, 244]. MB molecule can be activated to the excited singlet state 

by absorbing light (mainly in red light range as shown in Figure S5. 5), as reported by L.S. 

Peloi et al. [187]. The generated singlet state of MB is unstable and can rapidly either decay 

to its ground state or give the excited triplet state MB (3MB), with comparable probability. 

3MB can react with dissolved oxygen (DO) to form 1O2 (energy transfer, ~109 M-1 sec-1)[186] 

or superoxide anion radical (electron transfer, <107 M-1 sec-1)[186] which is defined as Type 

II photosensitization; alternatively 3MB directly reacts with substrates via electron transfer, 

which is defined as Type I photosensitization.  

Experiments (Group D) were carried out to investigate the involvement of DO in 

degradation of the model compounds, and the experimental conditions were identical with 

that of Group A except that the gas supply was switched to N2. With continuous N2 supply, 

the DO concentration was maintained at 0 mg/L. Therefore the Type II photosensitization 

pathway was completely inhibited because of the absence of oxygen in the liquid phase as 

energy acceptor for 1O2 formation or as electron acceptor for superoxide anion radical 

formation. The results (as shown in Figure 5. 3) indicate that degradations of PRP and SFZ 

are dependent on the presence of DO, suggesting that DO plays a crucial role in their 

degradation.  

As aforementioned, DO in the MB/Red-light can participate the degradation 

processes via two possible routes, thus formation of superoxide radical via electron transfer 

with excited MB molecules or formation of 1O2 via energy transfer with excited MB. In the 

presence of molecular oxygen, the production of 1O2 is approximately 100 times faster [186] 

compared with production of superoxide anion. Studies have reported that in methylene 

blue photosensitization, in the presence of oxygen, the involvement of the superoxide anion 

radical is only a side-reaction, while the 1O2 mediated oxidation is usually the dominant 

pathway [245, 246]. Results of 1O2 quenching experiments (Figure 5. 4) support the 

hypothesis that 1O2 is the dominant oxidizing species for degradation of PRP and SFZ: with 

addition of 0.5 g/L NaN3 (a well-known singlet oxygen quencher), degradation of PRP and 
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SFZ experienced drastic decrease. Therefore, it can be concluded that DO is a crucial factor 

in degradation of PRP and SFZ in the MB/Red-light process, and 1O2 is the dominant reactive 

oxygen species (ROS) responsible for their degradation. 

 

Figure 5. 3 Pharmaceutical compounds degradation profile as a function of time under 

anaerobic conditions (Group D). [DFN]0=[MTP]0=[PRP]0=[SFZ]0=1.0 mg/L, [MB]0=1.5 

mg/L, pH unadjusted. 

 

Figure 5. 4  Effect of addition of singlet oxygen quencher (0.5g/L NaN3) on 

photosensitized degradation of model compounds. [DFN]0=[MTP]0=[PRP]0=[SFZ]0=1.0 

mg/L, [MB]0=1.5 mg/L, pH unadjusted. 
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5.3.3 Degradation mechanisms of diclofenac 

5.3.3.1 Involvement of Type I photosensitization for diclofenac degradation  

Unlike SFZ and PRP, rapid degradation of DFN took place even when DO 

concentration is 0 mg/L (Figure 5. 3). Combining the fact that quenching of 1O2 did not cause 

any noticeable decrease in its degradation (Figure 5. 4), it is clear that Type I 

photosensitization which involves direct reaction between the photosensitizer MB and 

target pollutants can also contribute to degradation of pharmaceuticals, depending on the 

properties of specific pharmaceuticals.  Theoretically, the photochemical properties of MB 

enable non-1O2 reaction route. In addition to Type II photosensitization involves DO, when 

the triplet excited state of MB is formed, it can also undergo Type I photosensitization by 

directly reacting with substrates, DFN in this case, through electron transfer. Therefore 1O2 

is not compulsory for the photosensitized degradation of DFN, thus Type I 

photosensitization is also of importance for DFN degradation.  

Under anaerobic conditions, MB itself is non-degradable under red light irradiation 

(Figure S5. 6), supporting the hypothesis that DFN degradation under anaerobic conditions 

resulted from the reaction between MB and DFN.  Under air-equilibrated conditions, the 

degradation of DFN follow pseudo-first-order reaction with a good correlation factor 

(R2=0.997) (Figure 5. 1a), and the decreased MB concentration (Figure S5. 7) did not cause 

significant change in the specific DFN degradation rate, as reaction proceeded; while under 

anaerobic conditions DFN degradation rate was largely affected (Figure 5. 3) by the 

decreased MB concentration (Figure S5. 7).  

Moreover, the results suggest that when DO is present in the reaction solution, 

under the applied conditions, the 1O2 mediated pathway is the dominant pathway 

responsible for DFN degradation. The 1O2 mediated type II pathway is slower than the type 

I photosensitization which involves direct electron transfer between 3MB and DFN; when 

no molecular oxygen is available as energy acceptor to quench 3MB, Type I 

photosensitization becomes the primary reaction pathway for DFN. One research [246] 

reported the same finding that electron transfer mechanism might be much faster than 1O2 

mediated pathway. The initial reaction rate in the absence of DO was much higher than the 

initial reaction rate in DO saturated condition, but the difference in specific reaction rate 
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decreased during the process because of decreasing specific reaction rate when [DO] = 0 

mg/L. The total removal for DFN after 2h reaction was the same when [DO] = 0 mg/L and 

DO was maintained saturated. With increasing irradiation time, decreased MB 

concentrations were observed in both runs (Figure S5. 7). The decreased difference in 

reaction rate could be attributed to the decreased MB concentration. On the one hand, 

under the applied air-equilibrated conditions, 1O2 mediated pathway was predominant in 

DFN degradation, and its reaction rate was not affected by the decreased MB concentration 

because the 1O2 production remained sufficient even at the decreased MB concentration; 

on the other hand, under the applied conditions when [DO] = 0 mg/L, the Type I 

photosensitization reaction was subjected to not only the DFN concentration but also the 

MB concentration, and its reaction rate decreased when MB concentration decreased. With 

lower MB concentrations, less 3MB could be produced, and thus less 3MB was available for 

oxidative degradation of DFN. 

1O2 mediated pathway and Type I photosensitization are parallel pathways for 

MB/Red-light photosensitized degradation of DFN. DO concentration plays an import role 

determining the involvement of each reaction pathway. The research using pyrylium salt as 

photosensitizer conducted by Miranda et al., (2000)[246] found that the electron transfer 

pathway can be enhanced by oxygen. However, in our research, contradicting results were 

obtained. On the contrary to pyrylium salt photosensitized process, electron transfer 

pathway (Type I photosensitization) appears to be negatively affected by oxygen: under the 

applied conditions, a saturated DO condition made 1O2 mediated pathway the dominant 

pathway in the degradation of DFN, while a DO concentration of 0 mg/L made Type I 

photosensitization to be the dominant. One hypothesis could be that, under aerobic 

conditions, the DO molecules can rapidly quench energy from 3MB to form 1O2, resulting in 

much less available 3MB for direct reaction with DFN. In addition, reaction between DFN 

and 1O2 is slower than the direct reaction between 3MB and DFN, so the overall DFN 

degradation rate was reduced in the presence of DO.  
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5.3.3.2 Difference between diclofenac degradation products formation under aerobic 

conditions and anaerobic conditions  

    To further confirm the presence of two different degradation routes of DFN, 

MB/Red-light photosensitized DFN degradation experiments were conducted under aerobic 

conditions (air-equilibrated, Group F) and anaerobic conditions (Group G) respectively. The 

results show that, after 120 min, light absorption spectrum of the aerobic reaction solution 

(Figure 5. 5b) differed significantly from that of the anaerobic reaction solution (Figure 5. 

5a). In the wavelength range of 300 nm to 500 nm, light absorption of the aerobic reaction 

solution slightly increased after treatment (comparing to Figure 5. 5c and Figure 5. 5d), 

revealing the formation of degradation products which has light absorption in this range, 

whereas light absorption of the anaerobic reaction solution decreased significantly to near 

baseline. This is a clear indication of the presence of two different routes for DFN 

degradation. 

Degradation products (DP) of DFN under aerobic conditions (air-equilibrated, 

Group F) and anaerobic conditions (Group G) were investigated by LC-MS/MS. The results 

show that under aerobic conditions, several degradation products with different m/z ratios 

were observed at different retention times (RT): three DPs with the same m/z ratio of 202 

were observed at RT of 1.40 min, 1.73 min and 1.83 min respectively;   one DP with m/z of 

232 and RT of 6.27 min; one DP with m/z of 234 and RT of 2.09 min; one DP with m/z of 247 

and RT of 7.82; one DP with m/z of 250 and RT of 6.49; two DPs with the same m/z ratio of 

260 were observed at different RT of 5.67 min and 6.70 min respectively; one  DP with m/z 

of 262 and RT of 6.19; five DPs with the same m/z ratio of 266 were observed at RT of 5.02 

min, 5.14 min, 6.92 min, 7.10 min and 9.19 min, respectively. It should be pointed out that 

due to lack of more advanced apparatus, exact structures of the observed DPs could not be 

confirmed herein, but tentative structures of DPs were assigned by comparing our findings 

with literature. Tentative structures of some of those degradation products were assigned 

and shown in Figure 5. 6. These transformation products are in agreement with previous 

studies where singlet oxygen was reported to be predominant oxidant [6, 241], suggesting 

the involvement of singlet oxygen in diclofenac degradation under aerobic conditions.
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Figure 5. 5 Absorption spectra of the reaction solutions: a) absorption spectrum of the 

anaerobic reaction solution after 120 min treatment, b) absorption spectrum of the 

aerobic reaction solution after 120 min treatment, c) absorption spectrum of MB 

concentration after 120 min aerobic treatment, d) absorption spectrum of reaction 

solution before treatment. [DFN]0=1.0 mg/L, [MB]0=1.5 mg/L, pH unadjusted. 

               Under anaerobic conditions, only two of those degradation products were 

observed: the DP with m/z of 202 and RT of 1.40 min, and the DP with m/z of 266 and RT of 

5.14 min. In addition, abundances of those two DP formed under anaerobic conditions were 

significantly lower than their abundances under aerobic conditions. The results confirm that 

diclofenac undergoes different degradation mechanisms when under aerobic conditions 

and anaerobic conditions.  
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Figure 5. 6 Comparison of LC-MS/MS chromatograms of different diclofenac degradation 

products formation after 120 min MB/Red-light treatment under aerobic conditions 

(red) and anaerobic conditions (black): (a)DPs with m/z ratio of 202 ; (b) DPs with m/z 

ratio of 232  ; (c) DPs with m/z ratio of 234; (d) DPs with m/z ratio of 247; (e) DPs with 

m/z ratio of 250; (f) DPs with m/z ratio of 260; (g) DPs with m/z ratio of 262; (h) DPs with 

m/z ratio of 266. X-axis stands for retention time, y-axis stands for signal intensity. 

5.3.4 Effect of background water constituents 

 From the perspective of implementation, it is of importance to understand 

whether or not the background water constituents impose inhibitory effect on the 

efficiency of the proposed MB/Red-light photosensitized degradation processes, because 

vast literatures have reported that efficiency of ROS based degradation processes (e.g. 

UV/H2O2, Fenton, Photo-Fenton, etc.) can be greatly hindered in the presence of 

background water constituents [96, 166, 243]. Therefore the effect of some typical 

background water constituents was studied in the present study, as a preliminary 
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assessment of the potential application of MB/Red-light system in real wastewater. 

Experiments were carried out to examine the performance of MB/Red-light process in the 

presence of background water constituents, which are known to have great inhibitory effect 

on performance of existing AOPs like UV/TiO2, Fenton and Photo-Fenton, UV/H2O2 [96, 166]. 

The experimental conditions were kept identical to that of Group A, three common water 

constituents were added separately to certain concentration level: PO4
3- (200 mg/L), HCO3

- 

(200 mg/L), and NOM (10 mg/L). 

 

Figure 5. 7 Effect of the presence of: a) NOM (10 mg/L), b) bicarbonate ions (200 mg/L), 

and c) phosphate ions (200 mg/L) on the performance of MB/Red-light system. 

[DFN]0=[MTP]0=[PRP]0=[SFZ]0=1.0 mg/L, [MB]0=1.5 mg/L, pH was circum-neutral (6-7). 

Background water constituents added (solid marks) or absent (open marks). 

 The results (Figure 5. 7, Table S5. 1) suggest that our proposed MB/Red-light 

process has potential to overcome inhibitory effect of background water constituents in 

complex water matrices. The results (Figure 5. 7a) show that the presence of up to 10 mg/L 

NOM does not pose significant adverse impact on the removal efficiency of all three 
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degradable model compounds. NOM can interfere with ROS based degradation processes 

by two major mechanisms: 1) scavenging of ROS and 2) competing for light irradiation (so 

called “inner filter effect”). NOM is a mixture of organic matters, so it is reactive towards 

many ROSs (e.g. hydroxyl radicals). NOM has strong light absorption in UV and near-UV 

range [177], so in some UV involved AOPs the presence of NOM usually lead to decrease in 

availability of UV light for ROS generation and therefore decrease in process performance. 

However, the aforementioned two factors are unlikely to take place in MB/Red-light 

processes. As documented in literature [177], only very small fraction of NOM contains 

electron-rich moieties. The dominant ROS in MB/Red-light system is 1O2, which is very 

electrophilic and tend to react with electron-rich sites. Consequently, the scavenging of ROS 

by NOM in MB/Red-light system can be neglected. In addition, the “inner filter effect” 

caused by NOMs can be avoided in MB/Red-light process NOM has nearly no light 

absorption in the red light range (Figure S5. 8). Moreover, the presence of NOMs even 

slightly increased the degradation of DFN, which could be resulted from interaction among 

DFN, NOMs and MB. Further investigation is required to fully understand its mechanism.  

   Bicarbonate ions are most common water constituents and are the main 

constituents responsible for the alkalinity of a water body [243]. The results (Figure 5. 7b) 

show that 200 mg/L bicarbonate ions had no inhibitory effect on the degradation of model 

compounds. On the contrary, such inorganic ions impose severe inhibitory effect towards 

many existing AOPs, for instance S. Verma and M. Sillanpaa [243] that direct UV photolysis 

of anatoxin-a was greatly inhibited in the presence of 50 mg/L carbonate ions, and was 

totally inhibited with carbonate ions concentration higher than 100 mg/L, by scavenging of 

radical species by carbonate ions. More interestingly, slight increase in pharmaceuticals 

degradation was observed with addition of 200 mg/L bicarbonate ions. This is due to the 

formation of carbonate radicals, which could be produced via several reactions including 

quenching of the triplet excited photosensitizer [247, 248]. Such radicals have relatively high 

oxidizing power (E0 = 1.78 V [247]), allowing rapid degradation of various organics in water. 

The generation of such radical species was a result of quenching of the triplet excited MB 

molecules by carbonate/bicarbonate ions, as described as bellow:    
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𝐌𝐁 
𝟑 + 𝐇𝐂𝐎𝟑

−  →  𝐇+ + •MB− + •CO3
-            (5. 1) 

𝐌𝐁 
𝟑 + 𝐂𝐎𝟑

𝟐−  →  •MB− + •CO3
-                         (5. 2) 

           The presence of 200 mg/L PO4
3- imposes positive impact on DFN degradation and 

negative impact on degradation of PRP and SFZ (Figure 5. 7c). A study conducted by Knowles 

et al.[249] documented that phosphate ions can accelerate the protonation of the triplet 

MB and the protonated triplet MB has higher reactivity with electron donors, which leading 

to accelerated redox reactions between MB and electron donors. As aforementioned that 

DFN can undergo Type I photosensitization, i.e. redox reaction via electron transfer, it is 

rationale to attribute the promoted degradation of DFN to the accelerated Type I 

photosensitization pathway by the presence of phosphate ions. Our finding that high level 

phosphate ions has slight inhibitory effect on the degradation of PRP and SFZ is on the 

contrary to J. Brame et al.`s finding  that phosphate ions have negligible adverse impact on 

singlet oxygen mediated degradation processes [177]. Considering the fact that scavenging 

of singlet oxygen by phosphate ions is unlikely to happen due to relatively low oxidizing 

power of singlet oxygen [177], and the fact that Type I photosensitization was promoted by 

the present of phosphate ions, the decrease in PRP and SFZ degradation is likely a result of 

reduced singlet oxygen formation caused by protonation of triplet MB [250].  

5.3.5 Effect of pH 

           Experiments were carried out to investigate the influence of solution pH on the 

total removal efficiency of three degradable pharmaceuticals in the MB/Red-light system 

(i.e. DFN, PRP, and SFZ), with pH of 4.6 (acidic condition), 7 (neutral condition), and 9 

(alkaline condition).  
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Figure 5. 8 Effect of pH on the MB/Red-light photosensitized pharmaceuticals 

degradation: a) kinetic constants of pharmaceuticals degradation, b) total removal of 

pharmaceuticals after 120 min treatment. [DFN]0=[PRP]0=[SFZ]0=1.0 mg/L, [MB]0=1.5 

mg/L, air equilibrated. 

           The results (Figure 5. 8) demonstrate that neutral and alkaline pH could promote 

MB/Red-light photosensitized PRP and SFZ degradation in terms of both initial degradation 
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rate constants and total removal. Due to its high reactivity towards singlet oxygen and 

triplet MB, total removal of DFN reached near 100 % even under acidic conditions. It should 

also be noticed that, neutral and alkaline pH is favourable for DFN degradation, regarding 

degradation rate. DFN experienced more rapid degradation under neutral and alkaline 

conditions. Moreover, the highest DFN degradation rate was obtained under neutral 

conditions, which can be attributed to accelerated direct reaction between MB and DFN 

(Type I photosensitization) under neutral conditions by the presence of phosphate ions as 

aforementioned in section 5.3.4.  The positive effect of increased pH on the degradation of 

pharmaceuticals can be –as a likely explanation- partly attributed to deprotonation of the 

pharmaceutical compounds at higher pH. At higher pH, the model compounds were more 

present in deprotonated forms and therefore were more electron rich. Consequently, the 

attack by electrophilic oxidizing species (i.e. singlet oxygen) was facilitated. Other studies 

on singlet oxygen mediated micro-pollutant elimination processes have also reported the 

same finding [129]. Lee et al. [129] studied the photosensitized degradation of some 

emerging organic pollutants by using C60/silica under visible light irradiation. These authors 

investigated the influence of pH on degradation of some phenolic compounds, and found 

that although alkaline conditions can significantly favour the degradation of acetaminophen, 

bisphenol A, and 4-chlorophenol. Those authors attributed it to the increased 

deprotonation of those compounds and therefore increased reactivity towards electrophilic 

singlet oxygen. Another important factor should be taken into account is that pH exerts 

influence on MB transient states as well. A study conducted by Chen et al. [250] clearly 

pointed out that singlet oxygen production can be significantly promoted in basic MB 

solutions. Those authors found that the triplet MB molecules are more present in 

deprotonated form (3MB+) under alkaline conditions which has higher quantum yield of 

singlet oxygen than that of protonated form triplet MB (3MBH2+). Therefore, the promoted 

degradation of PRP and SFZ under alkaline conditions was resulted from two factors: 1) 

promoted deprotonation of the target pollutants and therefore promoted reactivity 

towards singlet oxygen; and 2) promoted singlet oxygen production under alkaline 

conditions.  
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5.3.6 Red-LED as superior light source for the MB/Red-light system 

The red light LED used in this study has a light emission spectrum in the wavelength 

range of 600 nm to 700 nm, which fit in the major light absorption area of MB (Figure S5. 

5). The maximum light emission of the LED is around 660 nm which is coincident with the 

maximum light absorption of MB molecules, thereby ensuring good energy transfer from 

the electrical phase to the photosensitizer. When other light sources (such as incandescent, 

daylight or fluorescent) are used, much of the emitted spectrum (Figure S5. 9) does not 

coincide with the absorption peak of methylene blue, and will hence be left unused. 

Together with that, light energy increases with decreasing wavelength making this effect 

even stronger. As explained, LEDs transform electrical energy with relatively high efficiency 

into the photon domain at the right wavelength, making them the ideal light source for this 

application.  

5.4 Conclusions 

This study shows the proof of principle of using red light LED as light source and 

MB as photosensitizer for pharmaceuticals removal from water. Three of the four tested 

model compounds were degraded under the applied conditions. The degradation rates 

varied among the compounds. MB/Red-light degradation of DFN and PRP exhibited a rapid 

degradation (0.0572 min-1 and 0.0170 min-1, respectively) with total removal of 98.94 % and 

79.98 % after 120 min treatment, respectively, but the degradation of SFZ was much slower 

(kapp = 0.0022 min-1). Singlet oxygen plays a crucial role for PRP and SFZ degradation. For 

DFN degradation, Type I photosensitization involving direct reaction with MB was also of 

importance, in addition to Type II photosensitization involving DO. Three common 

background water constituents have no significant adverse impact on the process 

performance, suggesting that the proposed MB/Red-light system has great potential to 

overcome inhibitory effects of background water constituents in complex water matrices 

often encountered in waste water and waste water effluents. This is advantageous over 

many other existing AOP technologies. Effect of pH on the efficacy of MB/Red-light system 

has been studied, and the results suggest that higher pH exerts significant positive impact. 

Last but not least, the red light LED used in the present study was found to be the optimum 

light source for the proposed MB/Red-light system, because the light emitting spectrum of 
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the LED fits well with the light absorption of MB in the red light range.   For further research, 

more advanced measurement should be performed to confirm structures of the DPs of 

target pollutants. Systematic and comprehensive toxicity tests should be performed to 

examine efficacy of the proposed MB/Red-light process in reducing eco-toxicity risk of 

pharmaceutical containing wastewater. From practical point of view, effect of operational 

parameters should also be studied in future work to provide better understanding for 

process optimization. 
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Supplementary information 

 

Figure S5. 1 Schematic of the set-up; (1) glass cylinder reactor, (2) lens, (3) red light LED, 

(4) cooling plate, (5) dissolved oxygen sensor, (6) dissolved oxygen meter, (7) DC power 

supply. 

 

Figure S5. 2 MB/red-light photosensitized degradation of individual model compound as 

a function of time. [DFN]0=[MTP]0=[PRP]0=[SFZ]0=1.0 mg/L, [MB]0=1.5 mg/L, pH 

unadjusted. 
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Figure S5. 3 TOC level profile as a function of time during MB/red-light photosensitized 

degradation of pharmaceuticals. [DFN]0=[MTP]0=[PRP]0=[SFZ]0=1.0 mg/L, [MB]0=1.5 

mg/L, pH unadjusted. 

 

 

Figure S5. 4 Absorption spectra of model compounds aqueous solutions (250nm - 

700nm) 
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Figure S5. 5 Absorption spectrum of MB aqueous solution (250nm - 700nm) 

 

Figure S5. 6 MB concentration profile as a function of time, without presence of any 

pharmaceutical compound, under red light irradiation and anaerobic conditions  
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Figure S5. 7 MB concentration as a function of time, under aerobic (Group A) and 

anaerobic conditions (Group D)
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Table S5. 1 Time-based pseudo-first-order kinetic constants and removal of 

pharmaceuticals after 120 min MB/Red-light treatment in presence of different 

background water constituents 

Matrix Compound kapp (min-1) R2 Total removal (%) 

10 mg/L NOM Diclofenac 0.089 0.999 98.97 

Propranolol 0.013 0.997 73.40 

Sulfamethoxazole  0.002 0.359 8.72 

Metoprolol 0.001 0.314 0.25 

200 mg/L 

carbonate/bicarbonate 

ions 

Diclofenac 0.148 1.000 98.86 

Propranolol 0.015 0.987 82.93 

Sulfamethoxazole  0.002 0.999 32.97 

Metoprolol -0.001 0.966 0.04 

200 mg/L phosphate ions Diclofenac 0.236 0.960 98.96 

Propranolol 0.008 0.933 52.54 

Sulfamethoxazole  0.001 0.944 10.86 

Metoprolol 0.001 0.748 0.71 



Chapter 5 

145 
 

 

 

Figure S5. 8 Absorption spectrum of NOM aqueous solution (250nm - 700nm) 

 

Figure S5. 9 Light emission spectra of typical light sources (Source: 

http://www.lightingschool.eu/portfolio/understanding-the-light/)

nm.

250,00 300,00 400,00 500,00 600,00 700,00

A
b
s
.

0,323

0,200

0,000

-0,200

-0,400

-0,489

1

http://www.lightingschool.eu/portfolio/understanding-the-light/


 

146 
 



Chapter 6 

147 
 

Chapter 6  

Operational parameters affecting MB/Red-

light photosensitized degradation of 

pharmaceuticals 
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Abstract 

The methylene blue photosensitization under red light irradiation (MB/Red-light) 

is a promising and powerful tool for removal of pharmaceuticals from wastewater. To 

further develop this new technology, the present work aimed at studying the effect of 

operational parameters on the performance of MB/Red-light pharmaceuticals removal 

processes. Three pharmaceuticals, i.e. diclofenac (DFN), propranolol (PRP), and 

sulfamethoxazole (SFZ), were used as model compounds, and degradation rate constants 

and total compound removal were examined. The three operational parameters studied 

were initial MB concentration (0 – 5.0 mg/L), initial pharmaceutical concentration                 

(0.1 – 2.0 mg/L), aeration rate (0 – 5.0 L/min), and for DFN also the pH. The results show  

that degradation of pharmaceuticals was promoted with increasing initial MB concentration 

at values of [MB] below 0.5 mg/l, and leveled off to constant values at [MB] values higher 

than 2.0 mg/l. Initial pharmaceutical concentration and aeration rate were found to have 

no significant impact. Moreover, rapid degradation of pharmaceuticals can take place even 

at low initial dissolved oxygen concentrations (2.0 mg/L, i.e. situations without aeration). In 

order to better understand the effect of pH on the MB/Red-light pharmaceutical 

degradation processes, DFN was chosen for more detailed investigation, with identification 

of the degradation products formed under neutral and alkaline conditions identified by LC-

MS/MS. The pH was found to play an important role on the transformation pathways and 

formation of degradation products. 
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6.1 Introduction 

In recent decades, pharmaceuticals have been found present at various 

concentration levels in the aqueous environment [7, 14, 27]. As reported by Klavarioti et al. 

[190], pharmaceuticals were detected in not only ground and surface water but also 

drinking water according to a broad range of studies [5-11]. Due to lack of effective 

regulation on acceptable emissions of the pharmaceutical compounds to natural water 

systems, as well as growing evidence of the associated potential hazardous impacts on the 

environment and human health, concerns are growing rapidly. Studies have indicated that 

the presence of pharmaceuticals in the environment imposes hazards to aquatic life at 

different levels, from algae to fish, even at low concentrations [27]. The presence of 

pharmaceuticals in surface, ground, and drinking water reveals the low efficacy of 

conventional wastewater treatment processes and drinking water production processes, 

e.g. biological processes, sedimentation, filtration, coagulation/flocculation, in removing 

the micro-pollutants [64, 190]. Therefore, to cope with the problem associated with 

pharmaceuticals in water, more advanced treatment processes are required. 

In our recent work [65], we addressed the feasibility of using red-light induced 

methylene blue photosensitization (MB/Red-light) to degrade diclofenac (DFN), 

sulfamethoxazole (SFZ) and propranolol (PRP) in aqueous solutions, where the primary 

oxidizing species is singlet oxygen (1O2). The MB/Red-light photosensitization resulted in 

rapid elimination of DFN and PRP within 2 hours, with total removal of 99.7% and 83.4% 

respectively; the degradation of SFZ under identical conditions was much slower with lower 

total removal (21.8%). The MB/Red-light photosensitized degradation of pharmaceuticals 

has several advantages: (1) unlike the solid photosensitizers, MB is well dissolved in water, 

therefore the photosensitized produced 1O2 has a better chance to react with 

pharmaceuticals in water phase; (2) the methylene blue is degraded during the process; (3) 

the “inner filter effect”, which means absorption of light by natural organic matters (NOMs), 

is less because light absorbance by NOMs in the red light range is much less than that in the 

UV and near UV range [177]. 

For realizing the implementation of the MB/Red-light process, there is a need to 

optimize the MB/Red-light process to judge the feasibility and facilitate its real life 
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applications. Although in our recent study, the authors reported that neutral and alkaline 

pH could favor the MB/Red-light pharmaceuticals removal processes [65]. However, the 

effect of other operational parameters on the MB/Red-light pharmaceutical compounds 

degradation process has not been studied yet. Therefore, the objective of the present work 

was to investigate the effect of various operational parameters, i.e. initial MB concentration, 

initial pharmaceutical concentration, and aeration rate on the MB/Red-light pharmaceutical 

removal process, in terms of degradation rate constants and total removal. Moreover, in 

order to better understand the effect of pH on the MB/Red-light pharmaceutical 

degradation processes, DFN was chosen for more detailed investigation, with identification 

of the degradation products formed under neutral and alkaline conditions identified by LC-

MS/MS.   

6.2 Materials and Methods  

6.2.1 Materials 

Diclofenac (DFN), sulfamethoxazole (SFZ), metoprolol (MTP), and propranolol (PRP) 

were purchased from Sigma-Aldrich (Germany) and were used as received. Stock solutions 

of each pharmaceutical compound were prepared at concentrations of 200 mg/L for each 

compound. The photosensitizer methylene blue was purchased from Boom BV (The 

Netherlands), and a MB stock solution at 200 mg/L was prepared. Sodium dihydrogen 

phosphate and di-sodium hydrogen phosphate dehydrate (≥99.5%, purchased from Boom 

BV, The Netherlands) were used to prepare the buffer solutions. All stock solutions and 

reaction solutions were prepared using ultrapure water from a Milli-Q Advantage A10 

system (Merck Millipore, Darmstadt, Germany). 

6.2.2 Experimental procedures 

Photosensitized experiments were conducted in a set-up which has been described 

in details elsewhere [65]. In each run, 500 mL reaction solutions were prepared with 

designated initial MB concentration, initial pharmaceutical concentration, and pH. For the 

experiments studying the effect of pH, 50mM phosphate buffer was used to maintain the 

designated pH value, while all other experiments were conducted in natural pH (circum-

neutral) and no buffer was used. Aeration rate was set to designated values. The red-LED 
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(type LZ4-00R200 from LED-ENGIN) was mounted onto a cooling plate under the bottom of 

the reactor. The red light LED has an emission spectral between 600 nm to 700 nm with a 

maximum emission at 660 nm. The red-light LED was placed under the bottom of the reactor. 

The radiant power density entering the reactor was measured to be 1.77 W, by using a 

THORLABS S120C photodiode power sensor (THORLABS, USA). Under the applied irradiation 

conditions, the photon flux was calculated to be around 9.77μmol/s. During the 

experiments, samples were taken at designated times and the total irradiation time of each 

run was 120 minutes. All experiments were carried out in ultrapure water (MilliPore MilliQ), 

and in duplicates.  

6.2.3 Sample analysis 

The MB concentration was measured with a UV/Vis spectrophotometer (Shimadzu 

UV-1800) at 664.5 nm. Pharmaceutical concentrations were analyzed using an Agilent LC-

MS/MS system consisting of Agilent infinity 1260 LC-system (degasser, binary pump, auto 

sampler with cooled tray and column oven) and Agilent 6420 triple Quadrupole Mass 

Spectrometer with Electrospray ion source. The compounds were separated using a 

Phenomenex Gemini Phenyl-Hexyl column (150x3 mm, particle size 5 µm) and a gradient of 

acetonitrile (5 to 90 %) and AmmoniumFormate buffer in water. The compounds were 

detected and quantified on the 6420-QQQ-MS using compound specific multiple Dynamic 

MRM transitions. Detailed information of the analytical method used can be found in 

literature [220].  

6.3 Results and Discussion 

6.3.1 Effect of initial MB concentration  

To investigate the influence of the initial MB concentration on the degradation rate 

and total removal of pharmaceuticals, experiments were carried out with varied initial MB 

concentrations. The initial pharmaceuticals concentrations were kept at around 1.0 mg/L, 

the pH was unadjusted, and the experiments were carried out under air equilibrated 

conditions.  

To avoid the interference of produced transformation products on the kinetics, 

data of the first 15 minutes were used to calculate the pseudo-first-order apparent rate 
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constants (kapp) according to the equation described in literature [90]. Moreover, 

considering the fact that the formation of intermediates may influence the degradation rate, 

total removal values of pharmaceuticals after 120 minutes was calculated as an indication 

of efficacy within the time frame of treatment in the tested systems. The results are shown 

in Figure 6. 1a. In general, a certain initial MB concentration was needed to initiate the 

degradation of pharmaceuticals. With initial MB concentration lower than 0.01 mg/L, none 

of the tested pharmaceuticals had noticeable degradation. With initial MB concentration of 

0.1 mg/L, degradation of DFN and PRP was obtained but at rather low degradation rate, 

while no degradation of SFZ was observed. By increasing initial MB concentration from 0.1 

mg/L to 0.5 mg/L, a significant increase in pharmaceuticals degradation was obtained. SFZ 

experienced slow degradation when initial MB concentration was higher than 0.5 mg/L, and 

the degradation of SFZ did not change significantly, when the initial MB concentration 

changed from 0.5 mg/L to 5.0 mg/L. PRP degradation took place when initial MB 

concentration was higher than 0.1 mg/L. With increased initial MB concentration till 1.0 

mg/L, PRP degradation experienced a significant increase. However, with further increased 

initial MB concentration, from 1.0 mg/L to 5.0 mg/L, no significant increase in PRP 

degradation rate constant was obtained. The DFN degradation was obtained when initial 

MB concentration was higher than 0.1 mg/L. The DFN did not degrade significantly at initial 

MB concentrations lower than 0.1mg/L, and degraded rapidly when initial MB 

concentration was higher than 1 mg/L. DFN degradation rate constant increased 

significantly with increased initial MB concentration till 1.5 mg/L. With further increased 

initial MB concentration from 1.5 mg/L to 5.0 mg/L, the DFN degradation rate constant was 

nearly constant. 

For the pharmaceuticals total removal after 120 minutes treatment, initial MB 

concentration also influenced, as shown in Figure 6. 1b. In general, the total removal of 

pharmaceuticals increased by increasing initial MB concentration at low range. Like the 

degradation kinetics, the influence of initial MB concentration on the total removal is also 

compound-specific. The total removal of SFZ was negligible when initial MB concentration 

was lower than 0.1mg/L. With increased initial MB concentration from 0.1 mg/L to 0.5 mg/L, 

the total removal of SFZ was significantly increased; while further increased initial MB 

concentration higher than 0.5 mg/L did not cause significant change in SFZ total removal. 
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For PRP, no removal was obtained with initial MB concentration lower than 0.1 mg/L. By 

increasing the initial MB concentration from 0.01 mg/L to 1.0 mg/L, the total removal of 

PRP was drastically increased to 78.1%; however, with further increased initial MB 

concentration from 1.0 mg/L to 5.0 mg/L, the change in PRP total removal became negligible. 

DFN had no removal when initial MB concentration was lower than 0.1 mg/L. DFN removal 

efficiency experienced a sharp increase to 81.1%, by increasing the initial MB concentration 

till 0.5 mg/L. With further increased initial MB concentration, from 0.5 mg/L to 1.5 mg/L, 

the DFN removal efficiency still slightly increased (from 81.1 % to 98.3 %), and no significant 

change was obtained when Initial MB concentration was increased from 1.5 mg/L to 5.0 

mg/L. 

To conclude, as demonstrated by the results, degradation of all model compounds, 

in terms of both degradation rate and total removal, were increased by increasing initial MB 

concentration in relatively low initial MB concentration level, and became independent of 

initial MB concentration with further increased initial MB concentration when the optimal 

initial MB concentration of 1.5 mg/L was reached. A similar phenomenon has been well 

documented by A. Achilleos et al. [107], who investigated the addition of H2O2 in UV-A/TiO2 

photo-catalytic degradation of DFN. They found that an optimal H2O2 concentration exists 

above which further increased H2O2 concentration would no longer promote the 

degradation process. Those authors attributed this to the fact that H2O2 act as both radical 

production enhancer and radical scavenger, and the scavenging effect of H2O2 increased 

dramatically with increased H2O2 concentration. Other researchers have reported the 

similar phenomenon when applying MB as photosensitizer for disinfection and solar water 

treatment [187, 188, 251], and they explained it in terms of hindrance in light penetration 

and self-aggregation of MB by elevated MB concentration. In this study, the consumption 

of MB did not increase with further increased initial MB concentration (Figure 6. 1c); 

indicating that scavenging effect of MB had no increase with initial MB concentration higher 

than 1.5 mg/L. Therefore, the hindrance in light penetration and self-aggregation of MB 

may play an important role when MB concentration exceeds the optimal range.  
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Figure 6. 1 Effect of initial MB concentration on the initial degradation rate constants of 

pharmaceuticals (a), total removal after 120 minutes (b), and MB consumption (c). Initial 

pharmaceutical concentration = 1.0 mg/L, pH unadjusted, air equilibrated. 

6.3.2 Effect of initial pharmaceutical concentration 

To investigate the influence of initial pharmaceutical concentration on the 

photosensitized degradation of pharmaceuticals, in terms of degradation rate and total 

removal, experiments were carried out with varied initial pharmaceutical concentrations. 
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The optimal initial MB concentration of 1.5 mg/L (see section 6.3.3.1), was applied, the pH 

was unadjusted, and the experiments were carried out in air equilibrated condition. 

The obtained results are shown in Figure 6. 2. The results indicate, unlike the Initial 

MB concentration, that the varied initial pharmaceutical concentration had no significant 

influence on pharmaceutical degradation. By decreasing the initial pharmaceutical 

concentration by a factor of 20, from 2.0 mg/L to 0.1 mg/L, the degradation rate constant 

Kapp had no significant change (see Figure 6. 2a). Regarding the total removal, initial 

pharmaceutical concentration had no significant effect as well, as shown in Figure 6. 2b. 

With decreased initial pharmaceutical concentrations from 2.0 mg/L to 0.1 mg/L, the total 

removal of model compounds were nearly constant. This finding can be attributed to the 

following facts: (1) the availability of reactive species was constant under the same applied 

irradiation conditions and MB loading; (2) when initial pharmaceuticals concentration was 

2.0 mg/L, reactive species were already at excess level, resulting in pseudo-first order 

degradation kinetics of pharmaceuticals. When lower initial pharmaceuticals 

concentrations were applied, the reactive species to target pollutant ratio was further 

increased, therefore the pharmaceuticals degradation still followed the same pseudo-first 

order kinetics model. Such results suggest that although concentrations of such 

pharmaceuticals are usually at relatively low level in waste streams, the proposed MB/Red-

light photosensitized pharmaceuticals degradation process can still be effective on site.   

Regarding MB consumption (Figure 6. 2c), it showed a significant increase (95% 

confidence interval) with increased initial pharmaceutical concentration. It reveals that, 

besides pharmaceuticals degradation by 1O2, direct reactions among pharmaceuticals and 

MB can also occur simultaneously, which is most likely to be the reaction between DFN and 

excited MB, according to our previous work [65].       



Chapter 6 

156 
 

 

Figure 6. 2 Effect of initial pharmaceutical concentration on the initial degradation rate 

constants of pharmaceuticals (a), total removal after 120 minutes (b), and MB 

consumption (c). Initial MB concentration = 1.5 mg/L, pH unadjusted, air equilibrated. 
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6.3.3 Effect of aeration rate 

Experiments with varied aeration rate were carried out to investigate the influence 

of aeration rate on the photosensitized degradation of pharmaceuticals. The optimized 

initial MB concentration of 1.5 mg/L was applied, the initial pharmaceutical concentration 

was 1.0 mg/L, and pH was unadjusted. Air flow rate was varied from 0.0 to 5.0 L/min. Two 

groups of experiments were carried out, with initial dissolved oxygen concentration of 8.5 

mg/L or 2.0 mg/L respectively. 

The results demonstrate that the varied air flow rate had no significant influence 

on degradation of pharmaceuticals, when the initial dissolved oxygen concentration was 8.5 

mg/L (Figure S6. 1). Degradation of PRP and SFZ was constant with the varied aeration rate 

from 0.0 to 5.0 L/min. Varied air flow rate from 0.5 to 5.0 L/min did not affect DFN 

degradation, while slightly decreased degradation rate constants and total removal were 

obtained when no aeration was applied. Meanwhile, the dissolved oxygen concentration 

did not drop dramatically, so the decrease in degradation of DFN can be attributed to the 

limitation of mixing when no aeration was applied. Figure 6. 3 shows the results with initial 

dissolved oxygen concentration of 2.0 mg/L. With lower initial dissolved oxygen 

concentration (2.0 mg/L), degradation rate constants of PRP and SFZ were still constant 

when aeration rate varied from 0.0 to 5.0 L/min. The DFN degradation rate constants were 

independent on the increased aeration rate from 0.5 to 5.0 L/min, but much higher 

degradation rate constant (0.085 min-1) was obtained when no aeration was applied.  

This could be explained by the two different types of MB photosensitization. It has 

been proposed by previous studies [186] that MB photosensitization involves two possible 

mechanisms. By absorbing energy from photons, MB molecules can be activated to triplet 

excited state (the more stable excited state of MB). Subsequently, the triplet excited state 

MB can directly react with substrates via electron/hydrogen transfer, which is defined as 

Type I photosensitization. Alternatively, Type II photosensitization could take place: when 

ground state oxygen molecules are available, energy transfer between triplet MB and those 

ground state oxygen molecules would take place to generate an energy-rich form of oxygen, 

i.e. singlet oxygen, and then the singlet oxygen can react with substrates. Our previous work 

has demonstrated that MB/Red-light photosensitized degradation of DFN can be a result of 
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both mechanisms. Under identical other conditions, degradation of DFN via Type I 

processes is faster than that via Type II processes. In a previous section of the present work 

(section 6.3.3.2), we found that under aerobic conditions DFN degradation underwent both 

Type I and Type II processes, as can be explained as follows. When low initial dissolved 

oxygen concentration (2.0 mg/L) and no aeration were applied, the dissolved oxygen 

concentration in reaction solution remained at low level, and therefore the availability of 

oxygen molecules for quenching excited state MB decreased. As a consequence, more DFN 

molecules could undergo degradation involving the faster Type I process, so the overall 

degradation of DFN experienced a strong increase.         

 

Figure 6. 3 Effect of air flow rate on the initial degradation rate constants of 

pharmaceuticals (a), total removal after 120 minutes (b). Initial MB concentration = 

1.5mg/L, initial pharmaceutical concentration=1mg/L, pH unadjusted, initial dissolved 

oxygen concentration 2 mg/L. 
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6.3.4 Effect of pH on the transformation pathways of diclofenac  

In a recent study conducted by the authors, we reported that the pH imposes a 

significant impact on the MB/red-light sensitized pharmaceuticals degradation [65]. Higher 

pH greatly favoured the degradation of SFZ and PRP, both the degradation rate constants 

and total removal of those two compounds increased with increasing pH. It is also found 

that, although the degradation of DFN was promoted under both neutral and alkaline 

conditions, highest DFN degradation rate was obtained under neutral conditions. It is of 

interest to have a better understanding of the effect of pH on DFN degradation. Therefore, 

experiments were conducted to examine this aspect via identifying DFN transformation 

products under different pH conditions by LC-MS/MS.     

Several peaks at different retention times (RT) were observed by LC-MS/MS. Based 

on retention times and m/z ratios observed, the results suggest that several smaller and 

more polar compounds were formed as a result of DFN degradation. In this study we 

focused on the main transformation products. The overview of all main transformation 

products detected in this study, together with their retention times and mass to charge 

ratios (m/z) are summarized in Table 6. 1, and the tentative structures are shown in Table 

S6. 2. The tentative transformation products are numbered in the order of their retention 

times.  

The results demonstrate a significant role of pH on the formation of DFN 

transformation products (as shown in Table 6. 1). Five TPs were formed under both neutral 

and alkaline conditions. Under alkaline conditions, formation of TP4 was nearly two times 

higher than its formation under neutral conditions (Figure S6. 3). Under alkaline conditions, 

the hydroxyl ions in the reaction solution were much more abundant than that under 

neutral conditions. After decarboxylation of DFN the hydroxylation, the follow-up step to 

form TP4, i.e. addition of hydroxyl group, was promoted; as a consequence more TP4 was 

formed. TP6, TP8, and TP10, were also formed in more abundant amount under alkaline 

conditions compared with neutral conditions. 
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Table 6. 1 Overview of the main DFN transformation products 

Transformation 

products 

m/z RT (min) Formation under 

neutral conditions 

Formation under 

Alkaline conditions 

TP1 234 1.76 - √ 

TP2 234 2.61 - √ 

TP3 244 3.97 √ - 

TP4 266 4.00 √ √ 

TP5 234 4.44 √ √ 

TP6 266 4.49 √ √ 

TP7 260 4.98 √ - 

TP8 247 5.13 √ √ 

TP9 232 6.14 - √ 

TP10 260 8.00 √ √ 

 

TP1, TP2, and TP9 were only formed under alkaline conditions, while TP3 and TP7 

were only formed under neutral conditions. The transformation from TP4 to TP1 and the 

transformation from DFN to TP2 can only be achieved under alkaline conditions. The routes 

leading to formation of TP9 from TP4 and TP10 are also only active under alkaline conditions. 

The transformation route from DFN to TP7 and the route from TP10 to TP3 are only active 

under neutral conditions.    
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Scheme 6. 1 Proposed transformation pathways of DFN degradation 

From the results obtained herein, we propose the following transformation 

pathways for DFN degradation. Diclofenac can lose one of its chlorine atom and a hydrogen 

atom, followed by structural rearrangement, leading to close of the middle ring and 

resulting the formation of a mono-halogenated carbazole structure (TP10, m/z = 260). This 

structure and the process have been reported in several previous studies [91, 241, 252, 253]. 

The transformation from DFN to TP10 was greatly promoted under alkaline conditions. 

Subsequently, under alkaline conditions, substitution of carboxylic group by hydroxyl group 

took place and led to formation of TP9 (m/z = 232). Some authors proposed the 

transformation route of TP10 to TP9 to be a multi-step process, where the 1-chloro-9-

methyl-9H-carbazole was formed as the intermediate by decarboxylation of TP10 as the 

first step, followed by further transformation of this intermediate to TP9 with the 

participation of oxygen [241]. On the contrary, this intermediate was not observed in our 

study; the possible explanation is that this intermediate is not detectable in the 

measurement methods applied in the present study. Alternatively, under alkaline 

conditions, TP3 (m/z = 244) can also form from TP10, by reduction of the carboxylic group 

to aldehyde group, which has been described elsewhere [253]. 
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Instead of loss of a chlorine atom as the first step, DFN can undergo 

decarboxylation with addition of a hydroxyl group to form TP4 (m/z = 266) as the starting 

point of other consecutive processes. Although this transformation could take place under 

both neutral and alkaline conditions, the alkaline condition is more favourable. 

Subsequently, TP4 can undergo further transformation via three routes. Firstly, under 

alkaline conditions, TP9 were formed from TP4 by loss of one chlorine atom and a hydrogen 

atom. Alternatively, oxidation of the hydroxyl group in TP4 took place and led to formation 

of TP6 (m/z = 266), which has reduced hydrophilic character (longer retention time). Further 

transformation of TP6 led to formation of TP8 (m/z = 247), by further oxidation of the 

aldehyde group to carboxylic group and loss of a chlorine atom under alkaline conditions. 

The second route is in agreement with a previous study conducted by Martinez et al. [6], 

where intermediates of DFN degradation in a heterogeneous photocatalysis system were 

studied. Singlet oxygen was thought to play a vital role according to their study. A study 

conducted by Agüera et al. aiming at the use of TOF-MS analysis on phototransformation 

products of DFN reported the formation of TP6 [253], and another study conducted by 

Bartels and von Tümpling [254] examining the solar radiation influence on the 

decomposition process of DFN in surface waters reported the formation of TP8. In the third 

route, mono-halogenation took place as first step to form TP1 (m/z = 234), followed by 

oxidation of the hydroxyl group to carboxylic group to form TP8. 

Alternatively, TP7 was formed from DFN by loss of a chlorine atom and addition of 

a hydrogen atom to the same spot, under neutral conditions. Loss of one chlorine atom led 

to an increase in hydrophilicity of TP7, which has shorter retention time compared with DFN. 

The tentative structure of TP7 has been described previously by other researchers [252] and 

those authors explained the formation of such compound by electron reduction. In addition, 

two isomers share the same m/z of 234, i.e. TP2 and TP5, were formed from the parent 

compound DFN by mono-dehalogenation and addition of a hydroxyl group.     

                   



Chapter 6 

163 
 

6.4 Conclusions 

The effect of operational parameters on the pharmaceuticals degradation during 

MB/Red-light treatment was studied in the present study. The conclusions can be drawn 

from this study are summarized as follows: 

 The degradation rate constants and total removal of pharmaceuticals were 

greatly affected by MB concentration. Aeration rate and initial pharmaceutical 

concentration had no significant impact on degradation of pharmaceuticals.   

 Degradation rate constants and total removal of pharmaceuticals increased 

with increasing initial MB concentrations from 0.1 mg/L to 1.5 mg/L, but 

further increased initial MB concentration from 1.5 mg/L to 5 mg/L had no 

significant impact. 

 Initial pharmaceutical concentrations had no negative impact, suggesting that 

the proposed MB/Red-light process can still be effective in real waste streams 

where concentration levels of pharmaceuticals are relatively low.   

 Even at low initial dissolved oxygen concentration, aeration is not an essential 

factor to achieve rapid degradation of the model-compounds. This result 

exhibits potential for energy and costs saving in real applications, because 

aeration requires additional costs and in-put energy.     

 The pH conditions impose a significant impact on the transformation pathways 

of DFN.   
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Supplementary information 

Table S6. 1 Chemical structure of the model compounds 

Compound Structure pKa 

Diclofenac 

 

4.7[255] 

Sulfamethoxazole 

 

5.6[256] 

Propranolol 

 

9.5[256] 
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Table S6. 2 Overview of the main transformation products of DFN 

Product Tentative structure Product Tentative structure 

TP1 

 

TP6 

 

TP2 

 

TP7 

 

TP3 

 

TP8 

 

TP4 

 

TP9 

 

TP5 

 

TP10 
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Figure S6. 1 Effect of air flow rate on the initial degradation rate constants of 

pharmaceuticals (a), total removal after 120 minutes (b), and MB consumption (c). Initial 

MB concentration = 1.5mg/L, initial pharmaceutical concentration=1mg/L, pH 

unadjusted, initial DO is 8.5mg/L. 
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Figure S6. 2 Effect of air flow rate on the initial degradation rate constants of 

pharmaceuticals (a), total removal after 120 minutes (b). Initial MB concentration = 

1.5mg/L, initial pharmaceutical concentration=1mg/L, pH unadjusted, initial dissolved 

oxygen concentration 2 mg/L. 
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Figure S6. 3 Formation of TPs under different pH conditions. Peak area is used as the 

indication of abundance of the TPs. 
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7.1 Introduction 

The occurrence of micropollutants in the environment, the risks associated with 

their presence, and the insufficient efficacy of conventional WWTPs on their removal is 

demanding for more efficient treatment techniques to safe-guard the quality of the aquatic 

environment and water supply. Given this context, the general objective of this thesis is to 

contribute to a better understanding and further development of photochemical treatment 

processes for micropollutant removal from aqueous streams. Emphasis of the experimental 

work of this thesis is given to two topics: (1) Further development of UV/TiO2 technique by 

application of TNA as immobilized catalyst; (2) Development of alternative photochemical 

water treatment technique for micropollutant removal from wastewater. The main 

research outcomes of previous chapters are summarized in this chapter. Accordingly, 

challenges and opportunities in future research and application are identified. 

 

Figure 7. 1 Photochemical micropollutant removal techniques studied in this thesis 

7.2 Main outcomes of this thesis 

7.2.1 Use of TiO2 nanotube array as immobilized photocatalyst 

 The application of TiO2 for pollutants elimination has received enormous research 

interests [110-114]. Many research works at lab-scale have been carried out on removal of 

micropollutants from water using suspension of TiO2 nanoparticles [61, 107, 141-143]. The 

use of TiO2 nanoparticles is beneficial for fundamental research at lab-scale due to their 

high surface area which allows for good mass transfer, but not favourable in real life 

implications [151]. Firstly, although TiO2 is considered to be non-toxic to humans, leaked 
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TiO2 nanoparticles in the environment have been considered to impose adverse impacts to 

living species [257, 258]. Thus, the effluent should be treated in solid liquid separation 

device, e.g. membrane filtration, to achieve separation and retention of the TiO2 

nanoparticles. Secondly, the catalyst particles are unstable in complex water matrices. For 

instance, it has been reported that TiO2 nanoparticles tend to form aggregates in water with 

increased levels of alkalinity [144]. Given this context, immobilized TiO2 would be more 

favoured in full scale implementations than suspended TiO2 nanoparticles. The TiO2 

nanotube array (TNA) is a promising form of immobilized TiO2 due to its facile fabrication 

procedures, tuneable properties, and relatively large surface area compared to other form 

of immobilized TiO2. Although a few studies have been conducted to apply TNA for 

micropollutant removal [165], numerous knowledge gaps still exist. For instance, few 

studies documented the effect of TNA tube length on micropollutant removal [165], but 

effects of other TNA properties (e.g. tube diameter, crystallographic composition) on 

micropollutant removal have not been well studied. Moreover, the influence of water 

quality parameters and water matrices still demand investigation. In this thesis, the 

application of TNA for photocatalytic micropollutant removal was evaluated (Chapter 2 and 

Chapter 3).  

In Chapter 2, the surface morphology and crystallographic composition of the TNA 

were found to impose crucial influence on its photocatalytic micropollutant removal 

performance: For TNAs with given tube diameter, the degradation of the model 

micropollutant was favoured when a mixture of anatase and rutile was present in the TNAs 

structure; for TNA with certain crystallographic composition, rapid micropollutant 

degradation was obtained when the nanotubes diameter reached certain threshold value. 

Unlike the TiO2 nanoparticles, TNA is stable in a broad pH range (3 - 11). The primary 

micropollutant degradation route in TNA based system involves hydroxyl radical attack and 

takes place in the liquid phase. The presence of some common inorganic ions, e.g. 

bicarbonate, phosphate, were found to have no notable adverse impact on the TNA based 

system, while the presence of NOMs were found to be inhibitory.  

Such inhibitory effect of NOMs has been well documented in literature for TiO2 

nanoparticle based systems. For instance, Brame et al. reported the presence of NOMs 
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inhibited the performance of TiO2 slurry system, and their mechanistic study suggested that 

the competitive adsorption by NOMs and reactive oxygen species (ROS) scavenging were 

the most influential mechanisms [212]. TNA have different properties (e.g. specific surface 

area, hydrophilicity) compared to TiO2 nanoparticles, which change the interactions 

between TNA and the background water constituents, but little is known about the effect 

of NOMs on TNA based photocatalytic system in literature. In addition, the presence of 

NOM in water bodies is associated with the presence of inorganics. For example, phosphate, 

sulfate, bicarbonate, chloride, etc., are the most commonly present inorganic anion species 

in a broad range of water matrices. The photocatalytic removal of micropollutants by TiO2 

photocatalytic processes can also be affected by those co-existing inorganic anions by 

competitive adsorption and interaction with ROS [168, 174, 215]. In this context, the 

presence of co-existing inorganic anions may impose an impact on the effect of NOMs on 

the photocatalytic system. In a recent study by Long et al., reduced inhibitory effect of 

humic acids on photocatalytic performance of TiO2 particles by the presence of phosphate 

was reported [142]. However, the combined effects of NOMs and other commonly present 

inorganic anions have not been well documented in literature. Therefore, the effect of 

NOMs, and the combined effects of NOMs and co-existing inorganic ions on the 

micropollutant removal over TNA were studied in depth in Chapter 3. The results show that, 

although NOMs in the bulk liquid phase can undergo photosensitization upon absorption of 

UV light, which is beneficial for removal of some micropollutant, the overall effect of NOMs 

on the micropollutant removal over TNA is detrimental. Such overall inhibitory effect could 

be mitigated under acidic or alkaline conditions. The acidic pH strengthened both the 

interaction between TNA and target contaminants and the photosensitization effect of 

NOMs; while alkaline conditions reduced NOMs adsorption on the TNA surface. The 

presences of bicarbonate and phosphate anions also mitigate the inhibitory effect of NOMs, 

by reducing h+ scavenging of NOMs. 

7.2.2 Photocatalytic fuel cell as inspiration to improve micropollutant removal 

performance 

 In TiO2 photocatalysis, upon radiation of proper photon energy, e- and h+ are 

generated, which can induce production of ROS and subsequently the degradation of 
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micropollutants. However, many of the e-/h+ pairs do not participate in such reactions but 

recombine directly, generating only heat (which is a loss of energy). The fast recombination 

of e-/h+ pairs leads to a reduced quantum yield efficiency of TiO2 photocatalysis. In this 

thesis, a strategy that can significantly improve the efficiency of TiO2 photocatalytic 

micropollutant removal was evaluated. The obtained results (Chapter 4) suggest that, by 

simply connecting the TNA to a copper cathode (to form a PFC system), the potential 

difference between the two electrodes can effectively extract the photo generated 

electrons from the TNA to the copper cathode and better micropollutant removal could be 

obtained. Such enhancement was observed in a broad pH range (3 - 11), and the highest 

enhancement was obtained under acidic pH conditions. Application of the PFC system 

under neutral pH conditions in tap water resulted in twice as fast degradation of the model 

micropollutant (MCPA) compared to the conventional photocatalysis system, when the 

same TNA was used as catalyst and all other operational parameters were kept identical. 

Under optimal pH conditions, good micropollutant removal efficiency could be obtained 

even for WWTP effluent: at the optimal pH, MCPA removal kinetics in the PFC system was 

about 1.5 times faster than that in the conventional photocatalysis system. Mechanistic 

studies demonstrated that the enhancement in micropollutant removal performance can 

be attributed to two phenomena: (1) better e-/h+ separation; (2) production and 

participation of more ROS. 

7.2.3 Application of MB/Red-light as alternative micropollutant removal 

technique 

The primary ROS in most existing photochemical micropollutant removal 

techniques, e.g. UV/Cl2, UV/O3, UV/HOCl, UV/ClO2, UV/H2O2, photo-Fenton, and UV/TiO2 

are radicals like ·OH and ·Cl. The strong oxidizing power of these radicals enabled the 

applications of such techniques for various purposes, including organic pollutant removal, 

disinfection etc. However, the high oxidizing power also makes those ROS less selective: it 

is well documented that the presence of background dissolved organic matter can 

significantly hinder the removal of target micropollutants [174] due to quenching of radicals. 

Viewing this, studies have been carried out to employ photosensitization processes, where 

more selective ROS (i.e. 1O2) is produced, for organic pollutants removal in various water 
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matrices [64, 129, 130]. Among various photosensitization processes, the red light induced 

methylene blue photosensitization (MB/Red-light) is a feasible alternative for 

micropollutant removal purpose. MB has strong light absorption in the  visible range (red 

light) which can avoid the “inner filter” effect of NOMs in complex water matrices, has a 

relatively high quantum yield of 1O2 formation [183], and has a long history of safe use in 

human treatment without major side effect. It has been applied for disinfection in not only 

wastewater treatment but also blood products [184-189], where singlet oxygen was 

generated to kill pathogens, as well as medical therapy, where red light induced MB 

photosensitized singlet oxygen was directed to selectively kill tumour cells for cancer 

therapy [187]. Nevertheless, its micropollutant removal efficacy has not been examined 

before. Therefore, the application of red light induced methylene blue photosensitization 

(MB/Red-light) process for micropollutant removal was evaluated (Chapter 5 and Chapter 

6). It is found that the MB/Red-light photosensitization is capable for micropollutant 

removal, but this method also showed selectivity to certain kind of micropollutants: among 

the four tested model micropollutants, diclofenac, propranolol and sulfamethoxazole were 

able to be removed by MB/Red-light, while metoprolol was persist. Singlet oxygen was 

found to be the crucial ROS, while another additional mechanism, i.e. a direct reaction with 

triplet MB, could also contribute to removal of some target pollutants. Common back 

ground water constituents (bicarbonate, phosphate, and dissolved natural organic matter) 

were found to have no noticeable detrimental effect, which suggests that the MB/red-light 

system has great potential to be used in real wastewater. Higher pH was found to impose 

positive impact on the efficacy of the MB/red-light system. MB degradation was observed 

along with the target pollutants during the MB/Red-light treatment process. The MB dosage 

was found to impose an impact on the micropollutant removal performance. 

7.3 Outlook 

7.3.1 Move towards full scale application 

 This thesis contributes to a better understanding of the application of TNA for 

photocatalytic micropollutant removal and development of MB/Red-light as an alternative 

micropollutant removal technique. For full scale applications, efforts are needed. Thus, 

some directions for possible further research work are suggested in this section.  
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7.3.1.1 Stability of TNA after long time exposure to complex water matrices and to 

complex hydraulic conditions 

 The use of TNA enables good separation and reuse of the photocatalyst in real life 

implementations. The obtained results in this thesis (Chapter 2) indicated its stability after 

several times of repeated use. However, in full scale water treatment practices, the 

photocatalyst would be exposed to the water constituents in much longer time. Some back 

ground water constituents are known to be able to interfere with the photocatalysts by 

adsorption. For instance, the commonly present background organic matter in water bodies 

imposes significant inhibitory effect on the micropollutant removal performance of TiO2 

photocatalytic techniques, because they can screen light, scavenge ROS, and block the 

active site of the TiO2 surface [212, 235]. Up till now, most of the studies on the effects of 

background water constituents focused on direct effects, and did not give enough attention 

to long-term effects on the stability of the catalysts. Only a very recent work presented by 

Peng et al. suggested that the reactivity of TiO2 nanoparticles could change significantly 

after long exposure to natural water in ambient environment (without artificial UV light 

radiation), because: (1) a NOM layer can be formed on and cap the TiO2 particles surface via 

adsorption; (2) the adsorbed NOM layer can act as ROS scavenger and subsequently reduce 

the concentration of ROS in the bulk liquid phase [143]. Still, the experimental approach 

applied in that study can hardly represent the situation in full scale implementations: in full 

scale applications, the photocatalysts are continuously exposed to not only NOMs but also 

to light irradiation, and are continuously generating ROS, thus the development of the NOM 

layer might differ from that observed in the work of Peng et al. Therefore, it would be of 

great interest to investigate the stability of TNA in long time exposure to complex water 

matrices under operation. Moreover, the mechanical stability of TNA under different 

hydraulic conditions should also be documented. For instance, the hydraulic retention time 

(HRT) is an important parameter that affects the dimension of the reactor, which is a 

measure of the flow velocity. In real life applications, large catalyst surface area in a limited 

volume would be appreciated, so compact reactor with short HRT would be more 

favourable. However, the higher flow velocity usually results in bigger shear force at the 

catalyst surface. Therefore, it is important to examine the mechanical stability of TNA and 

document the bearable hydraulic conditions. These works would assist the water treatment 
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professionals to better understand the applicability of TNA in full scale applications, and 

assist the process design and cost estimation. 

7.3.1.2 By-products formation and toxicity test 

 This thesis studied the MB/Red-light as an alternative micropollutant removal 

technique, which relies on the selective oxidation ability of 1O2. Although its weaker 

oxidizing power (compared to radicals like ·OH, ·Cl) enabled its selectivity, it is difficult to 

achieve total mineralization of the target pollutants, thus the target pollutants are only 

partly degraded to other organic by-products (Chapter 5). Moreover, although TiO2 

photocatalysis is able to achieve total mineralization of various organic pollutants, it is not 

economically favourable, so in most cases the TiO2 photocatalysis is also only aimed at 

transformation of the target pollutant. Therefore, before full scale application, in order to 

safe guard the environment and water supply, it is necessary to study the by-products 

formation and the change in total toxicity of the treated water with treatment time. Such 

information can help to evaluate and control the risks, and assist the process design for 

delivering of safer effluents.   

7.3.1.3 Exploring the limits of MB/Red-light technique 

 This thesis demonstrated the potential of MB/Red-light technique on 

micropollutant removal. To apply this technique in practice, some crucial knowledge gaps 

still exist. In Chapter 5, only four model micropollutants were tested in the proposed 

MB/Red-light technique, and it was found that only two of them were rapidly removed 

within the applied treatment time span, while one of them was found to be persistent. This 

is due to the selectivity of the primary oxidant (1O2) in the MB/Red-light system. According 

to literature, 1O2 is reactive towards electron-rich moieties including polycyclic aromatic 

rings, benzene rings activated with electro-donating substituents, and conjugated double 

bonds [129]. Thus, more micropollutants with different structures should be studied to gain 

a bigger vision on the applicability of the MB/Red-light technique. Secondly, the effect of 

NOMs on MB/Red-light technique was studied in the presence of 10 mg/L NOM. In some 

wastewater streams, the background organic matter concentration can be even higher. 

Thus it is important to document the highest bearable background organic matter 

concentration level.   
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7.3.1.4 Process optimization and reactor design  

 For full scale applications, there are still some important issues that need to be 

addressed. First of all, the experiments were conducted in batch mode in this thesis, and 

process and reactor optimization have not been explored, so the energetic efficiency was 

not optimal (Table 7. 1). Process optimization is needed to lower the energy consumption 

of the techniques studied in this thesis. More comprehensive studies on the effect of 

operational parameters are wanted to provide adequate information for process 

optimization. For both the application of TNA and the MB/Red-light technique, the effects 

of some operational parameters have been briefly investigated, but the approach in this 

thesis was single factor approach. Thus, the possible synergetic effects of multiple 

operational parameters could not be elucidated from the work reported in this thesis. 

Therefore, considering process optimization for full scale applications, more sophisticated 

experimental designs (e.g. response surface methodology) should be adopted to better 

understand the correlations between the micropollutant removal performance and the 

operational parameters. 

For an effective photochemical process the distribution of light is an essential 

parameter. Thus, another important approach to improve the system performance is the 

optimization of reactor design to obtain good light distribution. One possible design is the 

flat UV/TNA reactor consisting of a UV-LED array and TNA. The flat reactor design can enable 

short radiation pathway that can minimize the “inner filter” effect of back ground organic 

matter. The UV-LED array can be constructed with large amount of low power UV-LEDs to 

gain more homogeneous light distribution within the reactor to maximize the light 

harvesting by TNA. A schematic representation of the flat LED reactor design is shown in 

Figure 7. 2.    
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Table 7. 1 Radiant energy demand of the studied techniques 

Treatment technique Target pollutant Water matrices Lowest RE/O* 

UV/TNA 

MCPA Pure water 10.03 

MCPA Tap water 94.95 

MCPA WWTP effluent 11.43 

MTP Pure water 17.89 

MTP Tap water 37.89 

TNA-Cu PFC 

MCPA Pure water 3.52 

MCPA Tap water 42.56 

MCPA WWTP effluent 7.86 

MB/Red-light 

DFN Pure water 0.34 

PRP Pure water 10.46 

SFZ Pure water 33.98 

*Lowest RE/O: radiant energy required to achieve 90 % removal of the pollutant 

(kWh/m3) under the most optimal conditions applied in this study. 

 

Figure 7. 2 Schematic of the flat LED array reactor 
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 Another possible design is the fluidized UV-LED bed reactor (Figure 7. 3). This 

concept was firstly proposed by Kuipers et al. [242]. In such kind of reactor, the LEDs are 

moving freely inside the reactor and wirelessly powered by induction, which can optimize 

the light distribution and penetration, and energy consumption. The TNA can fit well with 

this concept: TNA can be fixed to the UV-LED to construct the UV-LED/TNA unit that can 

moving freely inside the reactor. To examine the reactor designs proposed herein, firstly 

lab-scale reactor should be constructed and tested to obtain knowledge on the effects of 

important design parameters (e.g. HRT, flow rate etc.). Then a pilot scale reactor should be 

studied to evaluate the performance in real wastewater (for wastewater treatment 

purposes) or raw water (for tap water treatment purposes), to accumulate knowledge for 

better operation in full scale and further optimizing the operational parameters. 

 

Figure 7. 3 Schematic of the fluidized LED bed reactor 

7.3.2 Use of solar light as light source 

  From the economic perspectives, the artificial light sources are not very favourable. 

For instance, although the solid state lighting technology (LED) greatly increased efficiencies 

to convert electrical energy to light, the energetic efficiency is still low. For instance, for the 

red light LED used in this thesis it only converts around 22 % input electrical power to radiant 
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power; and for the UV-LED used in this thesis it only converts around 26 % input electrical 

power to radiant power. For conventional UV light sources like low pressure mercury gas 

discharge lamps and medium pressure mercury gas discharge lamps, their energetic 

efficiencies are around 32 % and 12 %, respectively. Thus, more than half of the input 

electricity does not contribute to the pollutant removal.  To overcome the need of artificial 

light sources, the use of solar light would be highly favourable.  

For the TiO2 photocatalysis techniques, due to the wide band gap (3.0 eV for rutile 

and 3.2 eV for anatase), the TiO2 absorbs light only in UV region (λ ≤ 400 nm). However, UV 

light accounts for only about 5 % of the total solar spectrum, while more than 40 % solar 

radiation are in the visible region [259]. Therefore, modification of TiO2 may be interesting, 

to extend its light absorption from UV region to visible region, in order to improve its 

photoresponse under solar light radiation. In recent years, many attempts have been made 

for this purpose and various strategies have been adopted, including doping of boron [125], 

nitrogen [260], carbon [112], sulphur [261-263], and formation of heterojunction with 

narrow band gap semiconductors [264]. Such modification methods could effectively 

enhance the visible light absorption of TiO2. However, the change in band structures usually 

leads to change in the primary ROS when applied to photocatalytic applications. According 

to Fotiou et al., the primary ROS in visible light photocatalysis changed from hydroxyl 

radicals to less powerful superoxide radical [112]. Thus, further research efforts are needed 

to obtain comprehensive understanding on the use of visible light active TiO2 for 

micropollutant removal. For instance, it is necessary to explore the applicability of visible 

light active TiO2 for different micropollutants. It is also important to investigate the 

performance of visible light photocatalysis in real complex water matrices under real solar 

light radiation. Process and reactor design is another essential topic that needs to be 

explored, to ensure maximized efficiency of solar light utilization and optimized system 

performance. 

For the MB/Red-light photosensitization technique, due to the light absorbance 

property of the photosensitizer (MB has good light absorption in the visible region, 

especially in the red range), it has great potential to employ solar light as light source. 

Further research works can be performed to explorer the performance of MB 
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photosensitized micropollutant removal under sun light. Special focus can be given to 

process and reactor design, to lower the energy input for this technique and improve the 

micropollutant removal performance.  

7.3.3 Better utilization of photogenerated electrons in photocatalytic processes - 

integrating water treatment with resource recovery 

 The use of PFC system can enhance the photocatalytic micropollutant removal 

process by facilitating the e-/h+ separation (Chapter 4). The longer life time of the 

photogenerated electrons result in production of additional ROS which would also 

contribute to the enhancement of micropollutant removal efficiency. Apart from that, it has 

been documented that the redox potential of the electrons produced in TiO2 photocatalysis 

is sufficient to trigger reduction of CO2 to produce organic compounds. The application of 

TiO2 photocatalysis for CO2 reduction has received increasing attention [265, 266]. The CO2 

reduction by TiO2 photocatalysis relies on the photogenerated electrons, some feasible 

reaction pathways are listed below: 

𝐂𝐎𝟐 + 𝟐𝐇+ + 𝟐𝐞− → 𝐇𝐂𝐎𝐎𝐇                 (7. 1) 

𝐂𝐎𝟐 + 𝟔𝐇+ + 𝟔𝐞− → 𝐂𝐇𝟑𝐎𝐇 + 𝐇𝟐𝐎     (7. 2) 

𝐂𝐎𝟐 + 𝟖𝐇+ + 𝟖𝐞− → 𝐂𝐇𝟒 + 𝟐𝐇𝟐𝐎         (7. 3) 

Among them, the formations of methane and methanol are thermodynamically 

more favourable (-0.24 V vs. NHE and -0.38 V vs. NHE for methane and methanol production, 

respectively) than the formation of formic acid (-0.61 V vs. NHE). However, from the kinetics 

point of view, the formations of methane and methanol are more difficult than the 

formation of formic acid, because more electrons are required for the formation of 

methane and methanol [266].  

In TiO2 photocatalytic CO2 reduction processes, h+ and ·OH, which are the primary 

oxidant for organic pollutants removal processes, are detrimental and need avoidance. Thus, 

the pollutants removal processes and the CO2 reduction processes are theoretically 

compatible in the PFC system. It would be highly appreciable to couple such two processes, 

to make the best use of the input photon energy. A schematic representation of this concept 
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is shown in Figure 7. 4. In such concept, the anode and the cathode compartment can be 

spatially separated by a membrane to avoid any possible interference between the two 

processes. In the anode compartment, the photogenerated h+ and ·OH are employed for 

organic micropollutant removal or disinfection; whereas the photogenerated electrons are 

directed to the cathode and be utilized in CO2 reduction. One of the possible application 

scenarios of the cathode CO2 reduction is upgrading of biogas from the anaerobic digestion 

processes. Further research efforts can be taken to investigate the possible synergetic effect 

of integrating such two processes to obtain optimized micropollutant removal performance 

and maximized CO2 conversion. 

 

Figure 7. 4 Schematic representation of the concept of coupling micropollutant removal 

processes with resource in PFC system 

7.4 Concluding remarks 

  To safe guard the aquatic environment and safe water supply, there is an urgent 

need for implementation of effective and economically feasible micropollutant removal 

technologies. This thesis contributes to a better understanding and further development of 

photochemical treatment processes for micropollutant removal from aqueous streams. The 

application of TiO2 nanotube array (TNA) as immobilized photocatalyst for micropollutant 

removal was studied, and the red light induced methylene blue photosensitization 

(MB/Red-light) as an alternative micropollutant removal technique was investigated. The 
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results suggest that TNA is a promising immobilized photocatalyst. By applying it in 

photocatalytic fuel cell system, the removal of micropollutants can be further improved. 

The MB/Red-light technique was found to be an effective alternative technique for 

degrading micropollutants in water. A big advantage of this method is the selectivity of the 

produced ROS. Additionally, the use of red light results in higher penetration depth in water 

with particles and dissolved molecules, generally the status of wastewater (effluents) in 

practice. Thus, effective micropollutant removal can be expected even in complex water 

matrices with high level of background water constituents. Nevertheless, research efforts 

are still needed for scaling up of the studied techniques, so in this Chapter, further research 

topics are suggested, namely: (1) long term stability of TNA; (2) by-products formation and 

toxicity; (3) limits of the MB/Red-light technique; (4) process optimization and reactor 

design. In addition, to improve the sustainability of micropollutant removal techniques, two 

possible directions are recommended: (1) use of solar light; (2) integrating micropollutant 

removal with resource (e.g. methane, methanol) recovery processes.      
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AOP: Advanced oxidation processes 

DDT: Dichorodiphenyltrichloroethane 

DFN: Diclofenac 

DO: Dissolved oxygen 

HCB: Hexachlorobenzene 

LED: Light-emitting diode 

MB: Methylene blue 

MCPA: 4-chloro-2-methylphenoxyacetic acid 

MTP: Metoprolol 

NOM: Natural organic matter 

PC: Photocatalysis 

PCB: Polychlorinated biphenyl 

PEC: Photoelectrocatalysis 

PFC: Photocatalytic fuel cell 

PRP: Propranolol 

ROS: Reactive oxygen species 

SFZ: Sulfamethoxazole 

TNA: TiO2 nanotube array 

TNT: TiO2 nanotube 

TP: Transformation product 

UV: Ultraviolet 

WWTP: Wastewater treatment plant 
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As described in Chapter 1, the increasing legislation pressure, risks associated with 

micropollutants, and the insufficient efficacy of conventional WWTPs on their removal have 

formed a joint driving force that is boosting studies on more efficient treatment technology. 

The general objective of this thesis is to contribute to a better understanding and further 

development of photochemical treatment processes for micropollutant removal from 

aqueous streams. Emphasis of the experimental work of this thesis is given to two topics: 

(1) Further development of UV/TiO2 technique by application of TNA as immobilized catalyst; 

(2) Development of alternative photochemical water treatment technique for 

micropollutant removal from wastewater. 

In Chapter 2, the use of self-organized TiO2 nanotube arrays (TNAs) as immobilized 

catalyst for photocatalytic degradation of micropollutant was evaluated. The β-blocker 

metoprolol (MTP) was chosen as a model micropollutant. Firstly the synthesis of self-

organized TNA was studied, where the effect of anodization potential and annealing 

temperature was examined. Characterization by SEM demonstrated a linear relation 

between the diameter of TiO2 nanotubes produced and the anodization potential, while 

Raman measurement revealed the vital role of annealing on crystallographic composition 

of the anodic produced TiO2 nanotubes. Regarding their performance in photocatalytic MTP 

degradation, surface morphology and crystallographic composition of the TNAs were found 

to impose crucial influence: only TNAs with diameter not smaller than 53 nm enabled rapid 

MTP degradation, and highest MTP degradation was obtained when a mixture of anatase 

and rutile were present in the TNAs. Secondly, the effect of operational parameters, i.e 

initial MTP concentration, pH, was investigated. Rapid MTP degradation and high total 

removal were achieved in a wide pH range (3-11) and even with low initial MTP 

concentration. To evaluate the applicability of TNAs for water treatment, experiments were 

first carried out in the presence of three different commonly present water constituents, i.e 

bicarbonate ions, phosphate ions, and natural organic matters (NOMs). The results show 

that bicarbonate and phosphate ions have no inhibitory effect at concentration levels up to 

200 mg/L, and NOMs exhibit detrimental effect when their concentration exceeds 5 mg/L. 

The total removal MTP degradation reduced from 87.09 % to 62.05 % when tap water 
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samples were applied, demonstrating reasonable efficacy for practical applications. 

Regarding the degradation mechanism, formic acid and tert-butanol were added as 

scavenger for photo-generated holes (h+) and hydroxyl radicals (·OH), respectively. The 

obtained results demonstrate that primary degradation process occurred in liquid phase 

with participation of hydroxyl radicals in the liquid phase (·OH liquid), while smaller portion 

of MTP were degraded on the catalysis surface via reaction with h+ and hydroxyl radicals 

adsorbed on the catalyst surface (·OH surface). Other reactive species, e.g. photo-generated 

electrons and superoxide radical anions, did also play a minor role in MTP degradation. The 

mechanistic aspect was further confirmed by identification of degradation products by LC-

MS/MS. The TNA exhibited good stability after repeated use under varied operation 

conditions. 

Chapter 3 aimed at better understanding on the applicability of TNA in complex 

water matrices. This chapter investigated the effect of dissolved natural organic matter 

(NOMs) on MCPA (a typical micropollutant found in many water bodies) removal 

performance of TNA. The present study shows that although in bulk liquid phase NOMs 

would undergo photosensitization that can contribute to MCPA removal, the overall effect 

of NOMs on MCPA removal is detrimental due to the interaction between NOMs and the 

TNA surface. An acidic pH however, was found to be able to mitigate the detrimental effect 

of NOMs, and the photosensitization effect of NOMs was strengthened; while under 

alkaline pH conditions completely the detrimental effect of NOMs vanished. Two commonly 

present co-existing anions, i.e. phosphate and bicarbonate, could also mitigate the 

detrimental effect of NOMs, and the photocurrent measurement support that the presence 

of such anions could greatly suppress the h+ scavenging effect of NOMs; while other anions, 

i.e. chloride, nitrate, sulfate, showed no notable effect. 

Another major drawback of TiO2 photocatalysis is the fast recombination of e-/h+ 

pairs, where a large amount of energy from absorbed photons is lost as heat, resulting in 

seriously reduced treatment efficiency. Chapter 4 demonstrated enhanced micropollutant 

(MCPA as model pollutant) degradation in a membrane-free PFC system consisting of a TNA 

photoanode and a Cu foil acting as cathode (TNA-Cu PFC). The TNA-Cu PFC system showed 

better MCPA degradation compared to the conventional photocatalytic method using the 
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same catalyst. In the TNA-Cu PFC system, the MCPA degradation was largely promoted 

under acidic conditions, indicating this as an important operational condition. The 

enhancement of MCPA degradation in the TNA-Cu PFC system involved better e-/h+ 

separation and generation of other oxidants: in conventional photocatalytic process, 

hydroxyl radicals in liquid phase contributed to 93.7 % MCPA degradation while only 2.4 % 

MCPA degradation was mediated by other oxidants like ·O2
-, H2O2, ·HO2; for MCPA 

degradation in the TNA-Cu PFC system, the contribution of hydroxyl radicals in the liquid 

phase decreased to 83.6 %, while contribution of other oxidants like ·O2
-, H2O2, ·HO2 

increased to 15.3 %. This change in MCPA degradation mechanisms was further confirmed 

via analysis of degradation intermediates by LC-MS/MS. A study on the effect of electrolyte 

concentration suggests that when operated under acidic conditions, addition of electrolyte 

is not required. The TNA-Cu PFC system was shown to work well in the presence of up to 15 

mg/L natural organic matter (originating from two large rivers), high amounts of common 

inorganic ions, and even in WWTP effluent. The TNA-Cu PFC system also exhibited relatively 

good stability after several cycles of repeated use. The obtained results demonstrated that 

this is an adequate system for micropollutant removal from water at various places in the 

water cycle, i.e. as polisher of WWTP effluents before discharge or for cleaning intake water 

before producing drinking water. 

Chapter 5 reported red light induced methylene blue photosensitization (MB/Red-

light) as a promising alternative for pharmaceuticals removal from wastewater, because of 

its potential to overcome the detrimental effect of background water constituents as 

experienced in other AOP technologies. In this study, the efficacy of MB/Red-light on 

degradation of four pharmaceutical compounds, i.e. diclofenac (DFN), metoprolol (MTP), 

propranolol (PRP) and sulfamethoxazole (SFZ), was investigated. The MB/Red-light 

photosensitization enabled degradation of three model compounds, i.e. DFN, PRP and SFZ. 

Degradation rates followed the order of DFN＞PRP＞SFZ. Singlet oxygen was found to be 

crucial in pharmaceuticals degradation, and another additional mechanism, i.e. a direct 

reaction with triplet MB, also contributed to DFN degradation. The presence of two DFN 

degradation mechanisms were confirmed by UV-vis light absorbance spectra measurement 

as well as the identification of degradation products by LC-MS/MS. Effects of three common 

back ground water constituents were examined to assess the applicability of MB/red-light 
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system in complex water matrices, which suggests that the MB/red-light system has great 

potential to be used in real wastewater. Higher pH was found to impose positive impact on 

the efficacy of the proposed system. Last but not least, red light LED is an optimum light 

source for the proposed MB/Red-light system, because the light emission spectrum of the 

LED used in this study fits well with the light absorption spectrum of the photosensitizer-

methylene blue. 

To further develop the MB/Red-light technique, Chapter 6 aimed at studying the 

effect of operational parameters on the performance of MB/Red-light micropollutant 

removal processes. Three pharmaceuticals, i.e. diclofenac (DFN), propranolol (PRP), and 

sulfamethoxazole (SFZ), were used as model compounds, and degradation rate constants 

and total compound removal were examined. The three operational parameters studied 

were initial MB concentration (0 – 5.0 mg/L), initial pharmaceutical concentration (0.1 – 2.0 

mg/L), aeration rate (0 – 5.0 L/min), and for DFN also the pH. The results of pharmaceuticals 

tested show  that values of both degradation rate constants and the total removal increase 

with increasing initial MB concentration at values of [MB] below 0.5 mg/l, and leveled off 

to constant values at [MB] values higher than 2.0 mg/l. Initial pharmaceutical concentration 

and aeration rate were found to have no significant impact. Moreover, rapid degradation 

of pharmaceuticals can take place even at low initial dissolved oxygen concentrations (2.0 

mg/L, i.e. situations without aeration). In order to better understand the effect of pH on the 

MB/Red-light pharmaceutical degradation processes, DFN was chosen for more detailed 

investigation, with identification of the degradation products formed under neutral and 

alkaline conditions identified by LC-MS/MS. The pH was found to play an important role on 

the transformation pathways and formation of degradation products. 

The main outcomes of the thesis are discussed in Chapter 7 and further research 

opportunities were identified. Considering full-scale application of the studied techniques, 

further research efforts are suggested on: (1) stability of TNA after long time exposure to 

complex water matrices and complex hydraulic conditions; (2) by-products formation and 

toxicity test; (3) exploring the limits of MB/Red-light technique; (4) process optimization 

and reactor design. New research opportunities for improving the sustainability are also 

identified: (1) use of solar light; (2) integrating water treatment with resource recovery. 
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