

1

D2.3 - Deliverable accompanying
Milestone MS3

Overview of all demonstrated tasks

Johan Philips

Flexible robotic systems for automated adaptive packaging of fresh and processed food products

The research leading to these results has received funding from the
European Union Seventh Framework Programme under grant
agreement n° 311987.

2

Table of Contents

1Introduction .. 3

2Communication mechanisms ... 3

2.1Pick-n-Pack data bus .. 3

2.2JSON message models ... 4

2.3Queries .. 5

3Life-cycle state machine ... 6

3.1Start-up procedure .. 6

3.2Stop light protocol ... 7

3.3Reconfiguration ... 7

4Flexible GUI ... 8

5Mediator ... 10

5.1Decoupling ... 10

5.2Hierarchical design: Plant – Line – Module – Device – Algorithm ... 10

6Data models for traceability ... 11

6.15P - generic production model .. 11

3

1 Introduction

This deliverable captures the set of software design patterns that were developed and applied during Pick-

n-Pack and how they improved the flexibility and traceability in the food packaging context. Each pattern is

brlefly described and applied to one of the (sub)goals of Pick-n-Pack.

2 Communication mechanisms

One important objective of Pick-n-Pack was to allow all partners to connect to each other and share data

efficiently. This also included interfacing to legacy software and hardware in a flexible and easy manner. In

typical distributed systems in the food (packaging) industry, setting up such connections is cumbersome and

requires manual configurations or hardcoded settings. In Pick-n-Pack, we wanted to make a step change by

having the systems auto-discover and auto-configure themselves.

To address these issues a communication mechanism over network sockets was devised as it naturally

decouples (software) systems. Nevertheless, to goal was to adopt the same communication patterns at

network level (e.g. between Pick-n-Pack modules) as well as at system level (e.g. between devices on one

Pick-n-Pack module). Therefore, we introduced state of the art solutions from the IT and networking

community with respect to discovery and connection setup and applied it to the food packaging context of

the Pick-n-Pack line.

This involved a review of open source communication middleware which were able to provide such solutions

at all levels of granularity (e.g. at network line level and at system module level).

2.1 Pick-n-Pack data bus

The Pick-n-Pack data bus defines the communication infrastructure on which messages and events can be

exchanged between Modules, the Line Controller and other software entities such as the Tracing Database,

the World Model and the Flexible GUI. It makes use of ZeroMQ, an open source network socket library, for

messaging and Zyre for local discovery and connection setup protocols. This allows more flexibility and

dynamism since software entities (representing for instance a Pick-n-Pack Module) following the Pick-n-Pack

data bus protocols can dynamically join and leave the Pick-n-Pack data bus and all connections to other

entities are configured automatically.

4

The Pick-n-Pack data bus allows two messages mechanisms: whispering and shouting. The former is used for

sending a particular message to one particular peer on the Pick-n-Pack data bus, while the latter is used for

group messaging, i.e. multicasting messages to a set of peers.

Figure 1 shows a visualisation of the Pick-n-Pack data bus in the Flexible GUI, where all the available Modules

and the Line Controller are connected and exchanging messages.

2.2 JSON message models

In order to standardise communication messages passing the Pick-n-Pack data bus, a message model was

designed. Also for sharing data, similar models had to be developed to allow flexible data storage and tracing.

In this section we will focus on the message models.

The Pick-n-Pack messages are represented in JSON and this format was chosen, since it has a lot of traction

in the world wide web community. This also allowed us to efficiently integrate and interpret the message in

web applications which were used for visualisation.

Each message consists of a header and payload to first identify the type of message, its sender and receiver.

Additionally, a URI of the data model and meta model can be supplied in the message to make it self-

descriptive. However, in the Pick-n-Pack project this feature was not well adopted yet.

Figure 1: Pick-n-Pack data bus visualised in Flexible GUI showing connections and message exchange between
peers.

5

An example of such a message to define a label for a tray of cooked chicken is written below. It is a message

from the world model, which maintains a sliding window of all data gathered on the Pick-n-Pack data bus,

with respect to the trays and products on the Pick-n-Pack Line.

The message payload contains all the quality assessment data on that particular tray and product relevant for

the label to be printed. Noticable here is also the introduction of universally unique identifiers (UUIDs). These

identifers not only facilitate tracing afterwards but are also used to determine the location of each tray on

the line and to perform actions accordingly. This also enhances flexibility with respect to which products are

currently where.

{

 "metamodel": "pnp_msgs",

 "model": "URI",

 "type": "LABEL",

 "sender": "worldmodel",

 "receiver": "printer",

 "payload": {

 "batch_uuid": "7581fbbd-d05d-4d89-9d1d-054d11f4be58",

 "tray_uuid": "6d2fa5e8-c2cb-4d93-ba58-47ee1f9953f4",

 "product_description": "Chicken breasts",

 "weight": "459",

 "packaging_date": "20160429",

 "packer_name": "Pick-n-Pack",

 "packer_address": "Droevendaalsesteeg 4, 6708 PB Wageningen",

 "origin": "The Netherlands",

 "region": "Wageningen",

 "product": "CHICKEN BREAST",

 "variety": "Val Dieu",

 "specs": {

 "class": "I",

 "calories": "145.8kcal",

 "carbohydrate": "0.1g",

 "protein": "24.8g",

 "fat": "4.6g",

 "fibre": "0.2g",

 "expiry_date": "20160505"

 }

 }

}

2.3 Queries

Another communication mechanism that was introduced in Pick-n-Pack was that of stateful queries. The

rationale behind it is to move away from stateless data exchange which does not contain context and

introduce dialogs. The bidirectionality of a dialog makes a trade-off between scalability and reliability in a

sense that you need to be aware of which peer you are sending messages to or receiving messages from but

it allows handshakes to ensure important data is sent and received. As a technical advantage it also allows

6

controllable throttle, where event sources can limit their speed upon request, which is not possible in

traditional publish – subscribe communication.

In Pick-n-Pack queries were used to communicate with the ontology that was defined in the project around

tomato trusses. For instance, the Flexible GUI would send a query for converting particular units from the

metric system to the Imperial system.

Another link was with the Semantic database that was used to store data from the Pick-n-Pack data bus.

Again the Flexible GUI could query this database to visualise particular events currently being sent around in

the Pick-n-Pack line or, alternatively, query for past data to solve some tracing request.

3 Life-cycle state machine

All Pick-n-Pack Modules and their devices have to work together to accomplish the food packaging task. The

Line Controller was introduced to manage this process. To increase flexibility here with respect to identifying

problems in one or more modules and knowing when the line can proceed, the Life-Cycle State Machine

was designed.

This Life-Cycle State Machine defines a set of states each Pick-n-Pack Module has to go through before it can

safely join the food packaging task. This consists of allocating the right resources, setting up communication,

configuring the correct software for the task at hand (e.g. analysing and packaging tomatos or chicken

breasts) and running its particular task. In Figure 2 a diagram of the Life-Cycle State Machine is depicted.

Figure 2: Life Cycle State Machine

7

3.1 Start-up procedure

One objective of the Life Cycle State Machine is to provide a homogeneous startup procedure for the

wholePick-n-Pack line. This includes software entities at different levels of abstraction, such as the Line

Controller at line level, individual Modules at module level and Devices within a particular Module as this

state machine is applied hierarchically.

At start-up, each module starts in the deploying state which consists of creating the required data structures,

allocating adequate memory for these data structures and configuring its resources. The latter explicitly

defines the hierarchical connection between the levels of abstraction. Resources for a Module would be

Devices (e.g. a camera for the QAS Module), while resources for a Line would be the set of Modules required

for the line to go in to production. It also includes computational resources, such as CPU time and

communication resources such as network sockets or interprocess pipes.

Once this configuring state has completed, the software entity moves into the active state, which again is a

composition of other states. Here the capabilities of this particular software entity are first configured, which

sets policies and configuration parameters of the tasks it is responsible for. For example, the QAS Module

would calibrate its camera specifically for assessing the quality of tomatoes and load all the correct algorithms

for this task.

Finally, after all configuration is finished, the software entity moves into the ready state, where is it able to

execute the computations. For example, in the running state of the Thermoformer module, a new mould of

a particular tray layout is created.

3.2 Stop light protocol

Since all Modules in the Pick-n-Pack line express the same Life Cycle State Machine, this information can be

used by the Line Controller to introspect the Modules and confirm if it is safe to continue operation or not.

The Stop light protocol works bottom up, in such a way that the Modules communicate their state as ready

(green), busy (orange) or not ready (red) and the Line Controller only sends a go signal to all Modules in the

Pick-n-Pack line if it received a green light from all Modules. This go results in the next step in the stop & go

procedure of the line. Each go a new tray is created and the line shifts.

3.3 Reconfiguration

Additionally, adoption of the Life Cycle State Machine facilitates reconfiguration, both in software and

hardware. One of the goals of the Pick-n-Pack project was the flexible and efficient reconfiguration of the Line

from, for example, packaging tomato trusses to packaging cooked chicken breasts.

This can now be done by emiting a reconfiguration signal, either by the Line Controller or directly by an

operator from within the Flexible GUI. This signal is transmitted onto the Pick-n-Pack data bus and each

Module can move from the ready state back into the configuring capabilities state to reconfigure its

parameters and policies to conform to the task request. For some Modules this can be done purely in

software, such as the QAS Module, while others require manual intervention, such as the robot arm which

would require a different gripper. The same stop light protocol and Life Cycle State Machine come into play

here. In its configuring capabilities state, the software entity representing this robot arm would inform the

8

operator that a gripper replacement is required. Only after this manual action has completed, it would move

into the ready state. Since the Line Controller checks the stop lights on all Modules it will be informed that

this particular Module is not ready yet and the Pick-n-Pack line will effectively halt until all manual

intervention is executed.

4 Flexible GUI

At the Wageningen workshop in May 2016, we demonstrated Version 1 of the flexible GUI, which collected

data from the different Modules in the Pick-n-Pack Line (by listening on the Pick-n-Pack databus). During the

Summer of 2016, this flexible GUI was further improved and new functionality was added, which resulted in

the demonstration of Version 2 at the Holbeach workshop in September 2016.

Demonstrations of both Version 1 and Version 2 with recorded data from the Pick-n-Pack Line have been

deployed on Heroku and are available at and respectively.

The architecture of the web application is depicted in Figure 3. This shows how the flexible GUI, running

partly on the Web-app server and partly in the browser, receives data from the Pick-n-Pack databus, which

uses the “Zyre network”. This is done using the Mediator pattern, which listens to the databus, converts this

data to useable data for the web visualisation and adds this data to the semantic realtime database.

The user interface itself is built in a modular way, meaning that it will visualise active Modules on the Pick-n-

Pack databus and dynamically update events it receives from them through the Mediator.

For demonstration purposes, the Flexible GUI also includes an interface to reconfigure the line. This is shown

in Figure 4. The visualisation indicates the states of the modules that need to reconfigured, in this case the

QAS, and displays the underlying Life-Cycle State Machine that each Module implements to achieve this

behaviour.

In addition, a Query interface was made availabe, to query the semantic database and visualise statistics on

the quality assessment or generate labels for the Printer Module. An example is given in Figure 5.

9

Figure 4: Reconfiguration

Figure 5: Quality assessment overview

10

In Version 2, the design of the web application was further modularised by adding a hierarchy and creating a

generic visualisation framework which can be reused independent of Pick-n-Pack. The same functionality

was provided as demonstrated in Version 1, but visualisations where improved and regrouped in an intuitive

way. Also an additional 3D view of analysed tomato trusses by the QAS Module was developed. Figure 6

demonstrates the modularity of the Flexible GUI Version 2.

5 Mediator

5.1 Decoupling

The Mediator pattern was developed to decouple software entities which share data but not necessarily need

to be aware of each others knowledge domain. An example is the visualisation of data collected on the Pick-

n-Pack databus and visualised in the Flexible GUI. The Mediator has knowledge about both the agreed data

format on the Pick-n-Pack databus and data format used by the visualisation framework.

Another way of mediation was done at the Module level, where internal specific knowledge of the Module

developer needed to be converted to comply with the agreed Pick-n-Pack language.

Complementary to the Mediator pattern, the Zyre wrapper, developed by KUL, offers the technological

solution to Module developers to share data and send events on the Pick-n-Pack databus.

Figure 6: Version 2 of Flexible GUI

11

The adoption by all partners of both the Mediator pattern and the Zyre wrapper, or connection to the Pick-n-

Pack databus directly, allowed for faster integration and easier data sharing and contributed to a succesfull

demonstration of the Pick-n-Pack Line at Wageningen and Holbeach workshops.

5.2 Hierarchical design: Plant – Line – Module – Device – Algorithm

As was mentioned in previous sections, the same design patterns that were applied on the Pick-n-Pack Line,

could be applied at a higher level of abstraction such as a Plant with several Lines, or a finer grained level

such as individual Modules, Devices or even Algorithms. This is not only what makes these patterns flexible

as required by the Pick-n-Pack objectives, but also generic such that they can be used outside the context of

this project.

Within the Pick-n-Pack project, the QAS Module clearly showed the benefits of applying these patterns also

to its local Devices and algorithms. They reused the same communication mechanisms between systems and

within systems and applied to Life Cycle State Machine at both levels of abstraction.

6 Data models for traceability

Another important objective of the Pick-n-Pack project was the design of a generic data model that

contributed to flexible and efficient traceability. One design choices that facilitates tracing was the

introduction of Universally Unique Identifiers or UUIDs for all different aspects of a productions. This allows

to store only a small footprint in the form of meta-data in the tracing database and keeping all other raw data

locally at the Module that created this data. Via the UUIDs, it is possible to trace back to which Module

performed which tasks on which tray of tomatoes at what moment in time and configured with which policies.

This led to the generic model for production, the 5P model.

6.1 5P - generic production model

This model describes what (meta) data we need to store to effectively trace back to a particular production.

Any product, e.g. a package of tomato trusses, involves processors, e.g. a particular Module, that executed a

set of processes, e.g. assessing quality in several ways, with a set of policies, e.g. configuration parameters of

calibrations of the cameras. Within the Pick-n-Pack project the adoption of this 5P model was not complete,

but initial steps were made in this direction. Figure 7 depicts the relation and function of each of the 5 P's.

12

 Figure 7: 5P model

