
D2.2 — Report on adaptive GUI

Herman Bruyninckx, Nico Hübel, Johan Philips

11 October 2015

Flexible robotic systems for automated adaptive packaging of fresh and
processed food products

The research leading to these results has received
funding from the European Union Seventh Framework
Programme under grant agreement no 311987.

Dissemination level
PU Public X
PR Restricted to other programme participants (including the EC Services)
RE Restricted to a group specified by the consortium (including the EC

Services)
CO Confidential, only for members of the consortium (including the EC

Services)

2

Table of Contents

1 Introduction & Overview . 4

2 Concepts . 5
2.1 Explanation of Used Terminology . 5
2.2 GUI Architecture . 6

2.2.1 Deployment . 6
2.2.2 Event Based Interaction within the GUI . 6
2.2.3 Mediator: Information Flow across the System Boundary 7

2.3 Unique Identifiers . 8

3 Models . 9
3.1 JSON as the default modelling language . 9
3.2 Topology Models . 11

3.2.1 Plant . 11
3.2.2 Line . 12
3.2.3 Module . 14
3.2.4 Device . 16
3.2.5 Tray . 17
3.2.6 Punnet . 19

3.3 Data Models . 20
3.3.1 Batch . 21
3.3.2 Feature . 22

3.4 5P model of production . 22
3.5 Finite State Machines . 23
3.6 Geometry Models . 25

3.6.1 Existing Standards for Geometry Models . 25
3.6.2 TopoJSON for Location and Layout Widgets . 27

4 Implementations . 28
4.1 Communication . 28
4.2 GUI . 29

5 Discussion and conclusion . 29
5.1 Advantages and Trade-Offs . 29
5.2 Conclusions . 31

Appendices . 32

A JSON Models . 32
A.1 Topology Models . 32

A.1.1 Factory Model . 32
A.1.2 Line Model . 33
A.1.3 Moduel Model . 34
A.1.4 Device Model . 37
A.1.5 Tray Model . 38
A.1.6 Punnet Model . 40

A.2 Data Model . 41
A.2.1 Batch Model . 41
A.2.2 Feature Model . 44

A.3 Finite State Machine Model . 46
A.4 TopoJSON Model . 49

B Communication . 54

C Hierarchical Hypergraphs . 66

3

1 Introduction & Overview

This deliverable introduces a new approach for developing an adaptive GUI for complex, flexible systems.
These days modern systems like the PicknPack line consist of multiple sub-systems that often come from
different vendors, run different operating systems, and are programmed in different programming languages.
Traditionally, each of the vendors would deliver the sub-system with its own GUI, but usually the interface
provided for introspection from outside the sub-system, at the system level, is limited. This hampers flexible
solutions that can easily be integrated and adapted to changing and increasingly complex requirements. In
Picknpack these information boundaries are opened up to enable easier and more flexible integration at the
system level. This is achieved by introducing a common communication model and message or data models
that all sub-systems conform to. The details about the used communication infrastructure and protocols are
described in 4.1 and the message or data models are described in 3. As long as each sub-systems conforms to
this communication model, their implementation details, like the used programming language, are decoupled
and the overall integration can be done by defining and using the message/data models. The same is true
for the GUIs. Since the information boundary is removed, one GUI at system level can be used to introspect
and re-configure any sub-system. While this is sufficient for fully automated factories with centralized control
centres, many factories have still workers that need to interact with sub-systems directly. Instead of falling
back to sub-system specific GUI implementations, we propose a flexible, configurable GUI that can run on
any sub-system as well as at the system level. Such a GUI would need to be

cross-plattform: Each sub-systems can run a different operating systems. The GUI will need to run on all
of them.

expandable: Each sub-system can add different data and information that needs to be rendered.

customizable: Each sub-system can require different visualizations of data and information.

We solve these issues by leveraging the following technologies:

Browser based technologies: Modern web browsers are available for practically all operating systems and
offer all infrastructure necessary for all kinds of visualizations. Therefore, they satisfy the requirement
for cross-platform implementation.

Data models: Data models allow to decouple the visualization infrastructure from the data that can be
visualized. This allows for flexibility in the GUI. Extensibility can be achieved by writing a so called
widgets for each new data type. This data type comes with a data model and extends the capabilities
of the GUI to display data conforming to this data model. At the same time these widgets solve the
requirement of customizability by enabling sub-system developers to create their sub-system GUI by
loading the required widgets.

In addition, the web community is very active in developing and improving libraries and sometimes even
(quasi-)standards that can be leveraged. Most noteworthy are GeoJSON1 and TopoJSON2 that come with
data specifications (or models) and visualization implementations that can be leveraged to write plugins for
the GUI.

It is also important to note that this architecture is designed to support hierarchy, which is important
to handle complexity. However, all levels in the hierarchy are treated with the same methodology. In the
Picknpack case there are two relevant levels of hierarchy:

1http://geojson.org/geojson-spec.html
2https://github.com/mbostock/topojson/wiki

4

http://geojson.org/geojson-spec.html
https://github.com/mbostock/topojson/wiki

1. The module level deals with the functionality of an individual module and handles the integration of
the devices (sub-systems). At this level the main use case for a GUI is to show information and data of
the module and its devices and to allow interactions with the devices. Such interactions could be the
mere visualization of collected data, or the displaying of camera images, but can also entail altering
device settings.

2. The line level deals with the integration of the modules to realise the functionality of the production
line. At this level the main use case for the GUI is to aggregate and visualize information about the
whole line. However, since the information of the modules (sub-systems at this level) is accessible, the
GUI can be used to display the same information as the module level GUI.

This report is structured as follows. In section 2 we will explain the mentioned concepts in more details,
discuss the underlying architecture, and outline what can be done with these new concepts. Afterwards, we
show and explain the used models in section 3 before we discuss the implementation in section 4. Finally,
we summarize the results in section 5.2.

2 Concepts

2.1 Explanation of Used Terminology

Some terms used to describe the GUI are explained in the following and the visible elements are shown in
Fig. 1:

• GUI : The Graphical User Interface presented in this report. It makes use of a browser as cross-platform
infrastructure and uses widgets for visualizing data conforming to defined data models.

• Browser : The browser is like any web browser commonly used, that is, mainly Firefox and Chrome.
They run their own, embedded, javascript interpretor, which provides the ability to define widgets from
which cross platform GUIs can be composed.

• Composer : The composer is a software module of the GUI that is in charge of deploying plugins,
widgets, and mediators and configuring all of them properly.

• Widget: A widget is a piece of javascript code that enables the GUI to visualize a certain type of
data. The widget registers these visualization capabilities with the mediator by informing it of the
data models its data has to conform to.

• Mediator : The mediator is responsible for the communication between all entities inside the GUI
and outside the GUI. To be able to mediate between these two systems, it has to know about the
capabilities and requirements of both sides of the system boundary. It is thus the key place for
system integration and one of the key elements in the proposed architecture. The mediator
can be composed of several mediators that have different responsibilities (e.g. handling the event
stream or setting up a dedicated peer-to-peer session; see communication in section 4.1).

• Plugin: A plugin corresponds to an event loop in the browser. Multiple widgets are usually combined
into one plugin. The browser supports already built-in plugins in conformance to the HTML53 standard.

3http://www.w3.org/TR/html5/

5

http://www.w3.org/TR/html5/

• Data model : A data model is a formal description that a certain data type conforms to. These
models can be used to communicate interfaces or capabilities, verify the structure of incoming data,
and are easier to change than their corresponding entities in the source code (if tools are available for
interpreting the models instead of hard coding corresponding data structures). Thus, they are a key
element for flexible, reusable software that is easy to reconfigure. The models used in PicknPack are
discussed in section 3.

2.2 GUI Architecture

Time series

Geometry

Images

Browser Composer Mediator

Visualization
Capabilities

Sub-system

Sub-system

Sub-system

Data
+

Models

Figure 1: This shows an example for a system (or line) level GUI. The GUI runs in a browser and the
composer has deployed three widgets, one showing the geometry of the line, one showing the time series of
a value, and one showing an image taken in one of the modules. The mediator knows about the visualization
capabilities of the GUI and is responsible for the communication with other entities outside the GUI and
makes new data and information available to the responsible widget.

2.2.1 Deployment

When the GUI is loaded in the browser,the composer is launched and receives information about the com-
position of the GUI, that is, which plugins and widgets to load and how the layout of the window looks like.
The plugins register themselves in the browser and run then within its infrastructure. The widgets run within
their plugins. In addition, each widget enables the GUI to visualize one or more types of data and it informs
the mediator about the data model(s) it can visualize. The mediator registers these visualization capabili-
ties and which widget is responsible for which data model and also sets up the communication with other
systems outside of the GUI. How this communication is setup depends on the application. The PicknPack
specific communication is briefly explained in section 4.1 and useful communication patterns can be found
in appendix B.

2.2.2 Event Based Interaction within the GUI

In principle the whole GUI is based on event streams. This helps decoupling the sub-systems like widgets,
plugins, and the mediator. So whenever something happens that needs to be processed or visualized by

6

Figure 2: This shows a widget displaying an example geometry of a line with four modules and several
devices. It also allows to select what is visualized by using the checkboxes at the top.

another sub-system, an event is raised that then can be processed by that sub-system. For example, if a user
clicks on the a module in the geometry widget shown in Fig. 2, this widget can raise an event that is then
processed by a widget for displaying data (like configurations of modules or devices). Then this widget can
then request the necessary data and visualize the module’s configuration.

This is increasing the flexibility in the sense that both widgets can still be used independently, but when
used together exhibit additional behaviour. If only the geometry widget is available, it will still raise the
event, but since there is no other widget to process the event, it can be dropped. And on the other hand, if
only the data widget is available, it will never receive an event to display a module’s configuration data from
the geometry widget, but can still be triggered from other widgets or the mediator.

Neither of these two cases is creating a problem for the functionality of the system. On the contrary,
the architecture supports these kinds of flexibility. However, if one wants to optimize performance, there
are existing libraries that help preventing such cases and they can be prevented by explicitly modelling the
dependency in the widget’s model and checking for them at deploy time.

2.2.3 Mediator: Information Flow across the System Boundary

All data flow that crosses the system boundary is going through the mediator. The mediator knows about
the inside of the GUI (visualization capabilities) but also about the outside of the GUI (communication
infrastructure and protocols, data and message models, authentication processes, and query end points).
The information flow can be unidirectional or bidirectional and it can be initiated from within the GUI or
from another system outside the GUI. These four cases are discussed in the following:

• Unidirectional, GUI initiated : One of the widgets wants to push information to a connected system.
E.g. a data widget showing a module’s configuration wants to push changed configuration parameters
to that module. For doing so, the widget raises an event that is processed by the mediator. This event
contains information on the addressee (e.g. the module) and the data (either directly or a link to where
the data can be fetched). The mediator packages this information into a message that conforms to an
appropriate message model and puts this message on the communication channel.

7

• Unidirectional, externally initiated : An external system wants the GUI to visualize some data, e.g.
a sensor sends new measurements that need to be displayed in a time series widget. This data
(directly or in form of a link from which this data can be fetched) is sent to the mediator. It also
contains metainformation like to which data model(s) the data conforms to. The mediator uses this
metainformation to check if this data can be visualized and by which widget(s). It then makes the
data available to these widgets and creates appropriate events that trigger the visualization. If the GUI
cannot display data conforming to the data model provided in the metainformation, the mediator can
be configured to notifies the sender or simply ignore the data.

• Bidirectional, GUI initiated : One of the widgets is triggered by an event but requires data for visualizing,
e.g. in the example above, when someone clicks on a module in the geometry widget, triggering the
data widget to display the module’s configuration. In this case, the widget raises an event that is
processed by the mediator. This event contains the addressee (the module) and the requested data
model (configuration data). The mediator then takes care of providing this information to the module
by either checking its local cache or querying an external system (e.g. the module itself or a world
model providing a querying interface). Once the data is available it raises an event for the requesting
widget that then can visualize the data.

• Bidirectional, externally initiated : An external system requests the GUI to visualize information and
requires feedback, e.g. and error messages that needs to be acknowledged or requires action by a user.
This information is sent to the mediator. It also contains metainformation like to which data model(s)
the data conforms to. The mediator uses this metainformation to check if this data can be visualized
and by which widget(s). It then makes the data available to these widgets and creates appropriate
events that trigger the visualization. These widgets have to be designed to give a feedback event to
the mediator containing the information that it needs to feedback to the external system. E.g. an
error could be visualized by a pop-up window that needs acknowledgement or provides a selection of
actions. The acknowledgement or selected action is then passed to the mediator, which relays it to
the external system. If the GUI cannot display data conforming to the data model provided in the
metainformation, the mediator notifies the sender that then has to handle this.

2.3 Unique Identifiers

Unique identifiers (“UIDs”) are essential for traceability, but also for keeping track of all entities within the
scope of PicknPack. Entities here mean not just physical entities described in the first part of section 2.1
but also every piece of data and information in the PicknPack system. So PicknPack has to come up with
a methodological way of assigning and interpreting such UIDs. Instead of reinventing the wheel badly, the
suggestion is to use existing standards like

• GTIN:4 the Global Trade Item Number, which covers all industries and economical activities, and

• UUID:5 the Universally Unique IDentifier, which is widely adopted in distributed software systems.

The GTINs are used within the tracing database to keep track of the food before and after the line. The
UUIDs will be used to identify all entities (hardware, software, data, information) within the line. In practice,
this poses no problem since all information is linked using these unique IDs, so theoretically any number of
UID standards could be used.

4http://www.gs1.org/barcodes/technical/idkeys/gtin
5http://tools.ietf.org/html/rfc4122

8

http://www.gs1.org/barcodes/technical/idkeys/gtin
http://tools.ietf.org/html/rfc4122

However, to increase the flexibility further in the direction of Plug-n-Play hardware and software, a USB
like standard would be required. In order to create a USB like standardised device descriptor, a standardization
committee would be necessary that enumerates the different types of food production lines, modules and
devices, and assigns a unique name and ID to them. Each “vendor” than adds its own IDs to identify the
specific instance of the generic type that has been used for a specific instance of food production. The latter
ID is nothing else than the commonly known “serial number” that is already in common use.

3 Models

A PicknPack system requires more than a standardized way to design its system architecture, since it produces,
consumes and exchanges a lot of data, internally and with other systems in the world. The only way then to
realise flexibility and traceability is to define standards that different vendors can interpret unambiguously,
and for which “conformance tests” can be designed. The design of such standards is a continuous process,
and as a process, can also profit from some “standardization” itself.

In most engineering systems, standards are only being used by the human developers who implement a
system or subsystems. But because of the high demands for flexibility and traceability in the PicknPack
project, it will also be necessary that software components understand (some of) the standards and can
turn them into activities that respect the standards. In software related and other engineering systems, such
standards are also called models.

For the GUI the use of such models was already mentioned in the previous section. In order for the
widgets to register their visualization capabilities with the mediator, they need to communicate models. And
for the mediator such models are important to filter incoming data and map it to the responsible widgets.
Mere data types are not sufficient since they can be ambiguous. It starts with the fact that “basic” data
types like strings and floating point numbers have different representations and becomes even more confusing
for complex data types. Therefore, we explicitly let every piece of data contain a link to its model, which
makes the data interpretable for humans and software systems alike.

A well-designed standard does more than formally represent a set of agreements and relationships, but
it can also be used to generate visualizations from these formal descriptions. Current activities in WP2 are
on creating widgets for visualizing the models that are introduced in the sections following the introduction
of the chosen modelling language JSON.

3.1 JSON as the default modelling language

The first realisation in this context is the thorough search for already existing standards that could be adopted,
especially if they come with an active and rich ecosystem of software implementations and tools. After an
intensive evaluation process, JSON6 has been chosen as the default modelling language, and more precisely,
the semantically richer “linked data” version JSON-LD7 is the eventual objective of this work in the project.
The motivations for this suggestion are:

• ecosystem: since JSON has been adopted as the data model for all web applications, a very strong
development activity has been set up, resulting in many (open source) tools and reference implemen-
tations that PicknPack can profit from.

• UIDs: it is common practice in JSON modelling to foresee UID tags for all fields in a model, which
conforms nicely with the PicknPack policy in this respect, more in particular the need to introduce

6https://tools.ietf.org/html/rfc7159, and json-schema.org
7http://en.wikipedia.org/wiki/JSON-LD, and http://www.w3.org/TR/json-ld/

9

https://tools.ietf.org/html/rfc7159
json-schema.org
http://en.wikipedia.org/wiki/JSON-LD
http://www.w3.org/TR/json-ld/

such UIDs to support tracing in a methodological way.

• composition: JSON in itself supports composition natively, which means that a composition of several
JSON models is again a valid JSON model. Every element (or so called object) in a JSON model
can either be defined in that model itself or can be a reference to another JSON model. This brings
multiple advantages:

– Reusability : Composability allows for models of small granularity that can be easily reused by
composing them together using this referencing mechanism.

– incremental updates: while some JSON models can be quite long and complex in their entirety,
one often only has to send over small “diffs” between an old and new version of the model;
for example, each time the ThermoFormer creates a new trays, it suffices to send over only the
models of the newly created packages, and not the whole Web model. Since JSON is designed as
a composable language, we will make appropriate use of this opportunity to reduce the amount
of communication.

• existing data models: for some data models there are already suggested standards. And many of these
data models come with software for their interpretation, verification, and even visualization, from which
the PicknPack developers and specifically the GUI can directly benefit. Some useful data models that
can directly be reused are:

– time stamps: time stamps conforming to ISO 86018 will be used in the PicknPack project. This
is supported by most JSON interpreters natively.

– time series: There are several definitions of time series in JSON9, most of them directly conforming
to a data base.

– geometry models: There are standards like GeoJSON and TopoJSON that model geometry and
are widely used (e.g. in Open Street Map). They come with full support for GUI tooling (see
section 3.6.1).

• ontology : JSON-LD has been designed with lots of the “lessons learned” from previous efforts to make
semantic modelling languages, e.g., OWL, or RDF. Not coincidentally, that means that it has the same
focus on composition over inheritance as the PicknPack software methodology, and that it has native
support to model the complex graph-based interactions between knowledge primitives, relationships
and constraints that are needed to model, query, and integrate several ontologies. This will hopefully
be demonstrated in the Skill that automatically adapts the configuration of the Production Policies in
all Modules every time a new type of food is being processed on a Line.

• queries: Instead of using a REST interface with fixed APIs, the trend is going towards using queries.
Query based interface have multiple advantages, which are discussed in section 5. In short some of the
advantages are support of hierarchy and sending models instead of data, moving computation to where
the data is, typed but flexible content, and the support to send code. Of course these advantages come
with the disadvantages that the software needs to be able to handle flexible queries and to interpret
models. For the PicknPack GUI we use queries floowing the GraphQL specification10 because this
allows for flexible, JSON-style queries, which follows the rest of the design choices.

8https://en.wikipedia.org/wiki/ISO_8601
9To name just a few: http://eagleio.readthedocs.org/en/latest/reference/historic/jts.html, http://square.

github.io/cube/, https://www.rethinkdb.com/docs/dates-and-times/python/
10https://facebook.github.io/graphql/

10

https://en.wikipedia.org/wiki/ISO_8601
http://eagleio.readthedocs.org/en/latest/reference/historic/jts.html
http://square.github.io/cube/
http://square.github.io/cube/
https://www.rethinkdb.com/docs/dates-and-times/python/
https://facebook.github.io/graphql/

Module

Device

Line

Plant

device

...

Figure 3: Sketch of the PicknPack production hierarchy of Device, Module, Line and Plant.

3.2 Topology Models

The naming of the various complementary types of machinery in the PicknPack food processing factory is
standardised in the following hierarchy, Fig. 3:

• Plant: a whole factory, located at a particular place in the world, and containing one or more lines.

• Line: a (semi) automated processing infrastructure that takes in boxes of (possibly already processed)
food and turns them into trays. For example, boxes of green, red, and yellow peppers are input, and
the output consists of a packaged trays that contain one pepper of each type. This transformation
from the input to the output is done by modules.

• Module: the top-level processing component in a line, that is provided by one single vendor, and whose
production logs must be visible for the tracing. For example, quality inspection, or thermoformer.

• Device: a component in a module; its production and quality might be kept proprietary to the module
vendor. For example, a hyperspectral camera, or a computer-controlled gripper for peppers.

• Tray : an output of the line; a tray is formed by the thermoformer module and can have multiple
punnets for different food.

• Punnet: a punnet contains food and is the smallest topological unit. A tray has at least one punnet.

These physical entities in the factory are describing its topology. The individual entities are modelled in
separate models and its instances are linked by UUIDs. From the collection of this hierarchical factory
model, the containment tree (example shown in figure 4) can be build. Each of these entities contains a
geometric model as described in subsection 3.6.2, which is used in the Geometry Widget of the GUI (example
shown in figure 2).

3.2.1 Plant

The plant of factory is the highest level of hierarchy in the PicknPack modelling. The model specified in
the listing 12 is essentially a container for PicknPack lines (holding their UUIDs) but can be extended with
additional information as shown in the example in listing 1 by adding information.

11

Plant

Line2

.........

Line1

321

Figure 4: This shows an example for a PicknPack containment tree describing the physical topology of a
PicknPack plant. Each node in that tree is an instance conforming to a model and each edge is a link to the
UID of that instance. This also conforms to the model described in appendix C
.

1 {
2 "uuid": "e8dc7d1f-5b27-414c-8a1e-3a825a7a7a04",

3 "name": "Example PnP factory",

4 "lines": [

5 {
6 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -line/

raw/json_models/json_models/line_schema.json",

7 "line_uuid": "c2c8604d-384e-4308-b869-2e2477b4a1b1"

8 },
9 {

10 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -line/

raw/json_models/json_models/line_schema.json",

11 "line_uuid": "f43491b2-4c10-4d18-85dd-b66d03790e01"

12 }
13],

14 "owner": "EXAMPLE INC",

15 "additional_information": {
16 "more": "info",

17 "even": "more info",

18 "money_gained": 200000000

19 }
20 }

Listing 1: Example conforming to the PnP Plant Schema specified in listing 12.

3.2.2 Line

Each instance conforming to a line model (listing 13) links to the UUID of the factory it is contained within
and holds the UUIDs of the modules and trays that are contained within itself. The examples shown in
listing 2 contains three modules and no trays yet. It also has a description of its own shape and position in
the topology object.

1 {
2 "uuid": "44f2b7c0-cc9b-49f5-83f7-932b545be5f2",

3 "description": "This is a line example",

12

4 "name": "Line1",

5 "belongs_to": {
6 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -line/

raw/json_models/json_models/factory_schema.json",

7 "uuid": "98000470-c574-47fd-b3d0-d41f0256270d"

8 },
9 "modules": [

10 {
11 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -

line/raw/json_models/json_models/module_schema.json",

12 "module_uuid": "9384b059-7fb0-44e7-a4df-cc432edde5ac"

13 },
14 {
15 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -

line/raw/json_models/json_models/module_schema.json",

16 "module_uuid": "2a8c6dc0-0f59-4746-bcdd -53909fb96516"

17 },
18 {
19 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -

line/raw/json_models/json_models/module_schema.json",

20 "module_uuid": "c7c0c774-a513-4d05-b3da-c2b9c352c926"

21 }
22],

23 "web_of_trays": [],

24 "topology": {
25 "type": "Topology",

26 "description":"topology of a line (and position of the line within

the factory ?); all lengths in m (using the scale parameter in

the transform)",

27 "transform": {
28 "description": "The transform describes the offset of this punnet

within the tray coordinate frame",

29 "scale": [1000.0, 1000.0],

30 "translate": [0.0, 0.0]

31 },
32 "objects": {
33 "shape": {
34 "type": "GeometryCollection",

35 "description": "The line is approximated with a box here.

Multiple ways of description possible, arbitrarily chosen:

Geometry collection with a Polygon for each of the six sides

. It is possible to approximate a CAD model using TopoJSON

and then show the line in 3d if required .",

36 "geometries":[

37 {"type": "Polygon", "arcs":[[0,1,2,3]],"properties": {"color"
: "red", "other_property": "random_prop" }}

13

38]

39 }
40 },
41 "arcs": [

42 [[0,0],[50,0]],

43 [[50,0],[0,50]],

44 [[50,50],[-50,0]],

45 [[0,50],[0,-50]]

46],

47 "bbox": [[0,0,0],[50,50,1]]

48 }
49 }

Listing 2: Example conforming to a PnP Line Schema specified in listing 13.

3.2.3 Module

Each instance conforming to a module model (listing 14) must belong to a fixed set of module types that
contain their type specific parameters. This set of module types and their type specific parameters is what
would need to be standardized by industry. Each instance also keeps track of the UUID of the line it is
contained in as well as of the UUIDs of the devices itself contains and its configurations. It also has a
description of its own shape and position in the topology object.

An examples of a thermoformer type module with two devices and one configuration is shown in listing
3.

1 {
2 "uuid": "f38a84f6-0d6b-4979-bf41-bf1c982ceb44",

3 "description": "This is a module example",

4 "name": "Module1",

5 "module_type": {
6 "type": "thermoformer",

7 "specific_propoerties": {
8 "batch_type": 1,

9 "production_speed": 1.75

10 }
11 },
12 "belongs_to": {
13 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -line/

raw/json_models/json_models/line_schema.json",

14 "uuid": "31327959-4880-45ca-8340-dba6c6c1ccbe"

15 },
16 "devices": [

17 {
18 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -

line/raw/json_models/json_models/device_schema.json",

19 "device_uuid": "99a8890c-5bb5-4ff4-975c-592243001781"

20 },

14

21 {
22 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -

line/raw/json_models/json_models/device_schema.json",

23 "device_uuid": "4b894810-01bc-4b55-b9b5-706a0e355137"

24 }
25],

26 "configuration": [

27 {
28 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -

line/raw/json_models/json_models/configuration_schema.json

",

29 "config_uuid": "cca58211-956a-4a69-a6e8-833092893186"

30 }
31],

32 "topology": {
33 "type": "Topology",

34 "description":"topology of a module; all lengths in m (using the

scale parameter in the transform)",

35 "transform": {
36 "description": "The transform describes the offset of this punnet

within the tray coordinate frame",

37 "scale": [0.1, 0.1],

38 "translate": [0.0, 0.0]

39 },
40 "objects": {
41 "shape": {
42 "type": "GeometryCollection",

43 "description": "The module is approximated with a box here.

Multiple ways of description possible, arbitrarily chosen:

Geometry collection with a Polygon for each of the six sides

.",

44 "geometries":[

45 {"type": "Polygon", "arcs":[[0,1,2,3]],"properties": {"color"
: "green" }}

46]

47 }
48 },
49 "arcs": [

50 [[0,0],[75,0]],

51 [[75,0],[0,50]],

52 [[75,50],[-75,0]],

53 [[0,50],[0,-50]]

54],

55 "bbox": [[0,0,0],[75,50,50]]

56 }
57 }

15

Listing 3: Example conforming to a PnP Module Schema specified in listing 14.

3.2.4 Device

Each instance conforming to a device model (listing 15) must belong to a fixed set of device types that
contain their type specific parameters. This set of device types and their type specific parameters is another
part of the standardization to be carried out by industry. Each instance also keeps track of the UUID of the
module it is contained in as well as of the UUIDs of its configurations. It also has a description of its own
shape and position in the topology object.

An examples of a camera type device with two configurations (meaning that the configuration parameters
have changed once) is shown in listing 4.

1 {
2 "uuid": "e6ede9d6-edb4-468d-8e01-b7f6a140668e",

3 "description": "This is a device example",

4 "name": "Device1",

5 "device_type": {
6 "type": "camera",

7 "specific_propoerty": {
8 "intrinsic_parameters": {
9 .

10 .

11 .

12 },
13 "extrinsic_parameters": {
14 .

15 .

16 .

17 }
18 }
19 },
20 "belongs_to": {
21 "uuid": "5dbe2474-620b-4f33-89f8-1ef4ec959a24"

22 },
23 "configuration": [

24 {
25 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -

line/raw/json_models/json_models/configuration_schema.json

",

26 "config_uuid": "1db83368-cb8c-440a-97cc-62f33a952b97"

27 },
28 {
29 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -

line/raw/json_models/json_models/configuration_schema.json

",

30 "config_uuid": "6e99a7a1-d63a-45ff-9edf -f2939c145ffa"

16

31 }
32],

33 "topology": {
34 "type": "Topology",

35 "description":"topology of a device and position of the device

within the module; all lengths in m (using the scale parameter

in the transform)",

36 "transform": {
37 "description": "The transform describes the offset of this punnet

within the tray coordinate frame",

38 "scale": [0.01, 0.01],

39 "translate": [0.0, 0.0]

40 },
41 "objects": {
42 "shape": {
43 "type": "GeometryCollection",

44 "description": "The device is approximated with a box here.

Multiple ways of description possible, arbitrarily chosen:

Geometry collection with a Polygon for each of the six sides

.",

45 "geometries":[

46 {"type": "Polygon", "arcs":[[0,1,2,3]],"properties": {"color"
: "green" }}

47]

48 }
49 },
50 "arcs": [

51 [[0,0],[75,0]],

52 [[75,0],[0,50]],

53 [[75,50],[-75,0]],

54 [[0,50],[0,-50]]

55],

56 "bbox": [[0,0,0],[75,50,10]]

57 }
58 }

Listing 4: Example conforming to a PnP Device Schema specified in listing 15.

3.2.5 Tray

Each instance conforming to a tray model (listing 13) links to the UUID of the batch in which it was produced
and the UUIDs of the punnets it contains. Furthermore, it keeps a list of features that are attached by the
individual modules (see subsection 3.3.2). It also has a description of its own shape and position in the
topology object. In addition, it can contain a tray type object, which comes from a fixed set of tray types
that have to be defined by the manufacturer depending on the manufactured products. The tray type is an
optional key to a list of static tray parameters, like its own shape or number, shape, and location of punnets,
that can be stored in a look up table at every entity requiring this information. Thus, the tray type can

17

be used to reduce the amount data to be communicated. However, no flexibility is lost, since all required
information is still present in the model itself as well.

An examples of a tray with two punnets an no features yet is shown in listing 5.

1 {
2 "uuid": "2f75dd8c-f514-431c-966d-750adce7c813",

3 "description": "This is an example of a tray with two punnets",

4 "name": "Tray1",

5 "belongs_to": {
6 "uuid": "2a3f575a-d7f3-410e-ae4c-66d5d449844a"

7 },
8 "punnets": [

9 {
10 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -

line/raw/json_models/json_models/punnet_schema.json",

11 "punnet_uuid": "bfa9047b-94c2-4cfd -bbc9-215397f0af36"

12 },
13 {
14 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -

line/raw/json_models/json_models/punnet_schema.json",

15 "punnet_uuid": "bdae0c97-1e1e-4f2e-8aea -b8aec934dd02"

16 }
17],

18 "features": [],

19 "tray_type": "default",

20 "topology": {
21 "type": "Topology",

22 "description":"topology of the tray and position of the

tray within the batch coordinate frame; all lengths

in mm",

23 "transform": {
24 "description": "The translate in the transform should

be used to describe the offset of that tray

within the batch.",

25 "scale": [1.0, 1.0],

26 "translate": [0.0, 0.0]

27 },
28 "objects": {
29 "shape": {
30 "type": "GeometryCollection",

31 "description": "For now it will be approximated

with a 2d box for visualization and a 3d

bounding box for coordinate calculations",

32 "geometries":[

33 {"type": "Polygon", "arcs":[[1,2,3,4]],"

properties": {"color": "green" }}
34]

18

35 }
36 },
37 "arcs": [

38 [[0,0],[250,0]],

39 [[250,0],[0,250]],

40 [[250,250],[-250,0]],

41 [[0,250],[0,-250]]

42],

43 "bbox": [[0,0,0],[250,250,100]]

44 }
45 }

Listing 5: Example conforming to a PnP Tray Schema specified in listing 16.

3.2.6 Punnet

Each instance conforming to a punnet model (listing 17) links to the UUID of the tray in which it is contained
and has a description of its own shape and position in the topology object. It also links to the UUIDs of
attached features and can have a punnet type, similar to the tray type above, from a fixed list that can be
used to reduce the amount of information that needs to be communicated.

An examples of a punnet of type “punnet left” and with no features yet is shown in listing 6.

1 {
2 "uuid": "89b43197-24d3-43a8-995c-f3772e1908d3",

3 "belongs_to": {
4 "uuid": "401b1e72-92ba-4d00-b986-03ffa09e288c"

5 },
6 "name": "Example punnet",

7 "punnet_type": "punnet_left",

8 "features": [],

9 "topology": {
10 "type": "Topology",

11 "description":"topology of a punnet and position of the punnet

within the tray; all lengths in m (using the scale parameter in

the transform)",

12 "transform": {
13 "description": "The transform describes the offset of this punnet

within the tray coordinate frame",

14 "scale": [0.01, 0.01],

15 "translate": [0.0, 0.0]

16 },
17 "objects": {
18 "shape": {
19 "type": "GeometryCollection",

20 "description": "The punnet is approximated with a box here.

Multiple ways of description possible, arbitrarily chosen:

Geometry collection with a Polygon for each of the six sides

.",

19

21 "geometries":[

22 {"type": "Polygon", "arcs":[[0,1,2,3]],"properties": {"color"
: "green" }}

23]

24 }
25 },
26 "arcs": [

27 [[0,0],[75,0]],

28 [[75,0],[0,50]],

29 [[75,50],[-75,0]],

30 [[0,50],[0,-50]]

31],

32 "bbox": [[0,0,0],[75,50,10]]

33 }
34 }

Listing 6: Example conforming to a PnP Punnet Schema specified in listing 17.

3.3 Data Models

Data Models are used to attach additional information to one of the topology models and to cross-cut the
hierarchy and link multiple entities together. A brief explanation of the models is given here before describing
their models in the following subsections:

• Batch: a number of trays produced by the thermoformer in one production cycle. This information is
kept to be able to identify problems in the production process of the trays and punnets.

• Configuration: a set of parameters and policies influencing the behaviour of modules and devices.
Whenever the configuration changes, a new one is added.

• Feature: a feature is a generic entity that could greatly benefit from standardization across industry.
Every module attaches a specific feature type, like quality information or what food was placed, to a
tray or punnet.

• 5P model : the 5P model (Sec. 3.4) serves the need to make production traceable by linking multiple
entities (instances of topology and data models) together in every production step.

• Data Types: basic data types like numerical values, strings, lists, tables, etc. that are used to express
the data in the data models. They are directly supported by all computer systems and therefore not
explicitly modelled.

• Time Series: a composed data type that contains a data type recorded and time-stamped over a
certain period of time.

In general, data is kept immutable, meaning that instances of data models are never changed but new
instances are added (modules might locally discard old ones). That way traceability can be ensured.

20

3.3.1 Batch

Each instance conforming to a batch model (listing 18) links to the line its trays belong to and to the trays
produced in the batch. Also features can be linked from a batch and the geometry of a batch is stored in a
topology object. Also a batch type can be assigned that contains the topology and types of the trays within
the batch.

An examples of a batch containing four trays and with no features yet is shown in listing 6.

1 {
2 "uuid": "6b426916-f8c9-4bcc -ad9c-41b1a4ce6a56",

3 "description": "This is an example of a batch with 5 trays",

4 "name": "Batch1",

5 "belongs_to": {
6 "uuid": "77b9b2d7-62df-43d1-ad0e-7bea8d5bfbf0"

7 },
8 "trays": [

9 {
10 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -

line/raw/json_models/json_models/tray_schema.json",

11 "tray_uuid": "643d7967-3c45-41c8-ab7f-97a348794959"

12 },
13 {
14 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -

line/raw/json_models/json_models/tray_schema.json",

15 "tray_uuid": "4469c112-7778-4a5b-85ae-cbaff7adbac2"

16 },
17 {
18 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -

line/raw/json_models/json_models/tray_schema.json",

19 "tray_uuid": "3fce4640-4f91-42b0-8d12-8631d5ad17c1"

20 },
21 {
22 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -

line/raw/json_models/json_models/tray_schema.json",

23 "tray_uuid": "956d0ddc -7304-4000-9109-c2b965454c25"

24 }
25],

26 "features": [],

27 "batch_type":{
28 "type": "4tray_config_A",

29 "traytypes": [["default","default"],["default","default"]]

30 }
31 }

Listing 7: Example conforming to a PnP Batch Schema specified in listing 18.

21

3.3.2 Feature

Each instance conforming to a feature model (listing 19) links to the entity it belongs to. It has a time stamp
assigned by the entity by the entity adding the feature and contains metainformation about who assigned
that feature using what kind of process and in what configuration. The feature type contains the actual
information and is module specific.

An examples of a feature containing of type “quality grade” is shown in listing 8.

1 {
2 "uuid": "8062ef8a-378a-4d6d-b99f-422bb988039d",

3 "name": "Example feature",

4 "belongs_to": {
5 "uuid": "ba87066f-f4b1-45d8-8978-d1fd2854c893"

6 },
7 "time_stamp": "2015-06-16T18:25:43.511Z",

8 "production":{
9 "model": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -line/

raw/json_models/json_models/production_schema.json",

10 "production_uuid": "11e9b92f-dd5e-4590-977d-9c21759516a9"

11 },
12 "feature_type": {
13 "type": "quality_grade",

14 "grade": "A"

15 }
16 }

Listing 8: Example conforming to a PnP Feature Schema specified in listing 19.

Processor

Process

Policy

Product The objects that are
processed

The actors that do
the processing

The time/space varying
relation between products
and processors

Configuration choices
made in the productionP

ro
d

u
ct

io
n

co
m

p
o
si

ti
o
n

Figure 5: The generic “5P” model of “Production”.

3.4 5P model of production

The “5P meta model” depicted in Fig. 5 is, again, a structure that serves several complementary design
activities:

22

• first of all, it fills a hole that was still missing in a Picknpack’s design “search space”, namely the generic
model of any activity, at any of a system’s “levels of abstraction” (Plant, Line, Module, Device).

With its five constituent components, the 5P meta model is semantically richer than other “Actor
models” from the literature (which typically have three), while still being simple enough to be used
as a design guideline for all developers, in all applications. “Simple enough” means concretely that
the 5P model will help developers identifying whether their software designs are complete, that is, the
design has explicit software representations for all relevant bits and pieces.

• it provides the “provenance” data model11 of every manufacturing activity. In the PicknPack context,
the Production is a batch of produced food packages, where the Products are the batches of incoming
food and packaging material, the Producers are Plants, Lines, Modules or Devices, each having their
own production Process and production Policy.

It is the project’s shared responsibility to provide modelling standards for each of the five constituents
of a Production, so the UIDs12 suffice to serve as keys in a tracing database.

• the two most important consequences of the 5P structure of a Production being the composition of
the four other parts in the model are:

– the 5P structure adds extra Production knowledge (i.e., relationships, constraints and tolerances)
to the models of the four other parts, which implies that any Production must be represented in
a system by its own software “agent”. The appropriate place to put that software agent is at the
highest “level of abstraction” that is involved in the Production.

– every Production consists of mostly “facts” (i.e., the factual information about the Products,
Processors and Process involved in the Production), but its Policy is another source of (not
necessarily factual) knowledge in the overal system: the rules that determine the configuration of
Processors and Process with which the outputs are produced. Again, because it adds knowledge,
it must be represented by a software agent, at the appropriate level of abstraction.

3.5 Finite State Machines

Finite State Machines (FSMs) are mainly used for coordination and are crucial for integration. The Life
Cycle State Machine (LCSM) and the Stop Light protocol are two examples of “finite state machines” that
occur in the PicknPack context. But since Coordination is, in general, present in each and every software
module in a PicknPack system, and FSMs are one of the appropriate ways to implement coordination, it
makes sense to introduce a standard model for state machines.

A model for so-called “restricted Finite State Machine”13 is shown in listing 20. The added value of such
(huge) modelling efforts is that the code to implement FSMs, as well as to communicate about them in a
system, can be automatically generated, validated and visualised. A method to to generate code from these
models as well as a widget for visualizing them in the GUI have been developed.

1 {
2 "type":"rfsm_model",

11See e.g., http://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/ for description of the term “provenance” and
standardisation activities around it.

12Unique IDentifiers, that is, a code that serves as a unique key to find back all information of the objects involved in a
Production.

13M. Klotzbücher and H. Bruyninckx, Coordinating Robotic Tasks and Systems with rFSM Statecharts. Journal of Software
Engineering in Robotics, 3(1):28–56, 2012.

23

http://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/

3 "version":2,

4 "rfsm": {
5 "type" : "state",

6 "transitions" : [

7 { "tgt": "inactive", "src": "initial", "events": [] },
8 { "tgt": "inactive", "src": "active", "events": ["e_deactivate"]

},
9 { "tgt": "active", "src": "inactive", "events": ["e_activate"] }

10],

11 "containers" : [

12 { "id": "inactive",

13 "type": "state",

14 "transitions": [

15 { "tgt": "creating", "src": "initial", "events": [] },
16 { "tgt": "configuring_resources", "src":"creating", "events":

["e_done"] },
17 { "tgt": "deleting", "src":"initial", "events": ["

e_deactivate"] }
18],

19 "containers": [

20 { "id": "creating", "type": "state" , "entry": "creating"},
21 { "id": "configuring_resources", "type": "state", "entry": "

configuring_resources" },
22 { "id": "deleting", "type": "state", "entry": "deleting" }
23]

24 },
25 { "id": "active",

26 "type": "state",

27 "transitions" : [

28 { "tgt": "configuring_capabilities", "src": "initial", "

events": [] },
29 { "tgt": "pausing", "src":"configuring_capabilities", "events

": ["e_done"] },
30 { "tgt": "running", "src":"pausing", "events": ["e_run"] },
31 { "tgt": "pausing", "src":"running", "events": ["e_pause"] },
32 { "tgt": "configuring_capabilities", "src":"pausing", "events

": ["e_configure"] }
33],

34 "containers" : [

35 { "id": "configuring_capabilities", "type": "state", "entry"

: "configuring_capabilities" },
36 { "id": "running", "type": "state", "entry": "running" },
37 { "id": "pausing", "type": "state", "entry": "pausing" }
38]

39 }
40]

24

41 }
42 }

Listing 9: Life Cycle State Machine model as an example conforming to schema in listing 20

3.6 Geometry Models

3.6.1 Existing Standards for Geometry Models

At each of levels of abstraction in PicknPack production units, the need arises to model where a particular
unit is located, and what its layout is. This need has been solved since quite some time in the domain
of Geographical Information Systems (“GIS”), which has resulted in the GeoJSON14 and TopoJSON15

standards. Figure 6 gives an example of a 2D polygonal layout modelled by the TopoJSON code listed
below.

Origine_Point
 "coordinates": [0,0]

Under_Point
 "coordinates": [0,-1]

Under_LineString
 "arcs": [3]

Left_Polygon
 "arcs": [[0,1]]

Right_Polygon
 "arcs": [[2,-1]]

"arcs":[
 [[1,2],[0,-2]],
 [[1,0],[-1,0],[0,2][1,0]],
 [[1,2],[1,0],[0,-2],[-1,0]],
 [[0,-1],[2,0]]
]

0,0 1,0 2,0

0,-1 2,-1

0,2 1,2 2,2

Figure 6: This figure from Wikipedia illustrates the layout modelling primitives of TopoJSON.

1 {
2 "type":"Topology",

3 "transform":{
4 "scale": [1,1],

5 "translate": [0,0]

6 },
7 "objects":{
8 "two -squares":{
9 "type": "GeometryCollection",

10 "geometries":[

11 {"type": "Polygon", "arcs":[[0,1]],"properties": {"name": "

Left_Polygon" }},
14http://en.wikipedia.org/wiki/GeoJSON, and http://geojson.org/ and http://ld-geojson.org/
15http://en.wikipedia.org/wiki/GeoJSON#TopoJSON, and https://github.com/mbostock/topojson/wiki

25

http://en.wikipedia.org/wiki/GeoJSON
http://geojson.org/
http://ld-geojson.org/
http://en.wikipedia.org/wiki/GeoJSON#TopoJSON
https://github.com/mbostock/topojson/wiki

12 {"type": "Polygon", "arcs":[[2,-1]],"properties": {"name": "

Right_Polygon" }}
13]

14 },
15 "one -line": {
16 "type":"GeometryCollection",

17 "geometries":[

18 {"type": "LineString", "arcs": [3],"properties":{"name":"
Under_LineString"}}

19]

20 },
21 "two -places":{
22 "type":"GeometryCollection",

23 "geometries":[

24 {"type":"Point","coordinates":[0,0],"properties":{"name":"
Origine_Point"}},

25 {"type":"Point","coordinates":[0,-1],"properties":{"name":"
Under_Point"}}

26]

27 }
28 },
29 "arcs": [

30 [[1,2],[0,-2]],

31 [[1,0],[-1,0],[0,2],[1,0]],

32 [[1,2],[1,0],[0,-2],[-1,0]],

33 [[0,-1],[2,0]]

34]

35 }
Listing 10: This is a basic TopoJSON example taken from Wikipedia.

Adoption of TopoJSON as a PicknPack standards makes sense for several reasons:

• coordinate reference system: the TopoJSON standard follows a nice “composition” methodology, in
that it allows to refer to any choice of standardized coordinate reference system (“CRS”) to interpret
its coordinates in. Those CRSs can be world coordinate systems, in which the TopoJSON coordinates
are then interpreted as longitude, latitude and elevation; or they can be “projected”, local coordinate
systems, in which the TopoJSON coordinates are then interpreted as Cartesian X, Y andZ values. At
all levels of abstraction (e.g., the PicknPack production units Plant, Line, etc.) a different CRS can be
chosen, and several “lower level” layouts can be composed together in the same “higher level” layout
model.

• scale: TopoJSON allows to set the scale of the coordinates, which allows to model the layout as a grid
with only integer numbers, and with a constant non-integer conversion to real-world coordinates. This
helps readability and also reduces the size of the models.

• integration with GUI tooling, e.g. Leaflet16 and other OpenStreetMap17 compatible “world viewers”.

16http://leafletjs.com/
17http://openstreetmap.org/

26

http://leafletjs.com/
http://openstreetmap.org/

An example is given in Fig. 2, which shows the layout of an (imaginary) Line with four Modules and
several Devices.

3.6.2 TopoJSON for Location and Layout Widgets

For the above reasons, TopoJSON has been adopted for visualizing location and layout of PicknPack entities.
The TopoJSON standard18 is only human readable and, therefore, a machine readable model (in the form
of a JSON Schema) has been created which is publicly available19 and can be found in appendix A.4. An
example for a module layout taken from a PicknPck Module can be found in the following listing 11.

The location of static entities like the production units can be directly encoded in the translate object,
while for the moving entities (trays) a time series is introduced that receives new elements (time stamp and
location) with each encoder tic.

1 {
2 "type": "Topology",

3 "description":"topology of a module; all arc lengths in mm (using

the scale parameter in the transform)",

4 "transform": {
5 "description": "The transform describes the offset of this module

within the line coordinate frame",

6 "scale": [10.0, 10.0],

7 "translate": [0.0, 0.0]

8 },
9 "objects": {

10 "shape": {
11 "type": "GeometryCollection",

12 "geometries":[

13 {"type": "Polygon", "arcs":[[0,1,2,3]],"properties":

{"color": "green" }}
14]

15 }
16 },
17 "arcs": [

18 [[0,0],[75,0]],

19 [[75,0],[0,50]],

20 [[75,50],[-75,0]],

21 [[0,50],[0,-50]]

22],

23 "bbox": [[0,0,0],[75,50,10]]

24 }
Listing 11: TopoJSON example of a topology object taken from a module model. Scale is used to keep the
arcs integers, while translate is used to express the position within the coordinate frame of the entity one
level above in the containment tree. The module shape is expressed as a polygon using four arcs. It was
agreed among the PicknPack partners that the Line visualisation is 2D for now. Therefore, the arcs are only
2D. However, the bounding box is 3D because the height is relevant for grasping objects.

18https://github.com/mbostock/topojson/wiki
19https://github.com/nhuebel/TopoJSON_schema

27

https://github.com/mbostock/topojson/wiki
https://github.com/nhuebel/TopoJSON_schema

4 Implementations

4.1 Communication

To boost flexibility, the Pick-n-Pack GUI is implemented as a separate process, communicating to the Pick-
n-Pack line through sockets, the same way Modules and the Line controller communicate with each other.
Three communication types can be identified: a (virtual) data bus, peer-to-peer connections and transactions.

Data bus

The virtual data bus makes use of the Zyre communication library, built on top of ZeroMQ, an open-source
socket library. All Module developers also use this library to communicate data and events between each
other and the GUI acts as a virtual module, observing these data. The advantage of using Zyre and ZeroMQ
over other communication middleware is the fact it takes care of connection bootstrapping, offers local
discovery, provides a fast asynchronous message queuing framework and is very lightweight.

Peer-to-peer

The data bus is mainly used to emit events and small data messages, while large data such as 3D camera
images is transmitted over individual peer-to-peer sessions. This type of data is on demand, for instance if the
user wants to zoom into a particular module and retrieve large data sets. The peer-to-peer connection can
be established with the same networking library, ZeroMQ, and the reason for this separate socket connection
is mainly its transient nature and the ability to both on the software level as the hardware level send this
large data sets only the a select set of peers. On the hardware level a swith applying a spanning tree protocol
can be used to ensure the data is not sent to all peers.

Transactions

In order to maintain data consistency all write operations to the Pick-n-Pack database are performed using
transactions. By definition, a transaction is an atomic, consistent, isolated and durable unit of work. More-
over, the policy in Pick-n-Pack is to work with immutable data, meaning that all data stored in the database
will never be overridden but only appended with updates.

Transactions are well-suited to provide such increments and since they operated in an all-or-nothing
fashion, it is guaranteed that the database remains consistent even if a network failure occurs during one of
such transactions.

Two distinct databases are used in Pick-n-Pack, both accessible by transactions. The traceability
database, of which more details can be found in the Work Package 3 deliverables, takes care of data about
the products before they enter the line, what processes have been applied during the line and what happens
to the resulting products after they leave the line.

All data about the line configuration, its modules, their operations and states are stored in the world
model database on the line itself. For this world model database RethinkDB is used as it offers a rich query
language, supports many programming languages by its different client drivers and allows to execute small
aggregation and computation blocks on the database itself.

The communication activity in each process should be able to open different physical communication
channels for each of these types of communication, since the synchronisation needs and protocols for all three
are quite different, mostly because they require different “blocked while waiting for an answer” behaviours.

The reference implementation that is available at the time of writing this document only considers event
broadcasting as communication requirement, but that is enough to illustrate how to make complex systems

28

out of lots of different subsystems with different and interacting functionalities, resource requirements, and
task objectives. More in particular, the communications involve the events required for the Life Cycle State
Machine (Sec. 3.5) and the Stop Light synchronisation.

4.2 GUI

The Gui is a self contained software that works on Firefox, Safari and Chrome desktop size displays. The
GUI has three plugins: the state machine, the map of the line down to the device level, and the dynamic
view of batch items coursing through the line. The map and the batch view also have additional click, and
drag interactions in order to zoom in or out of a detail in the map. The GUI uses a popular graphing library,
D3, and some utility libraries, queue.js, jquery, and bootstrap to manage data aquisition, fixtures, and page
layout.

The GUI will soon be connected to the Pick and Pack line database, by which it will be able to both
receive live messages and send event messages to the line.

The following steps are foreseen for the following months:

• Making a configuration DSL to automatically visualise line, module and device configuration options.
This includes, which configuration parameter is read-only or changeable, given the state of the line.

• Making a configuration plugin that can display and change line, module and device configuration.

• Allowing the plugins to talk to the mediator. Integrating the mediator with reactjs in order to auto-
matically update the plugins with the new data.

• Making a GUI DSL to extend the plugins.

When the GUI starts it expects to communicate with the line immediately. The mediator registers the
line’s semantic data, including the data models the line, modules and devices will send back to the GUI. The
Composer retrieves an initial Visualization configuration file on the local file system and maps the plugins,
their layouts and the data queries through the Mediator. The Mediator gets the data from the line and
pushes it straight to the visualizations: the GUI is rendered. When an event is triggered in a plugin, the
plugin sends the message to the mediator who is in charge of passing this message to the right sub-system
in the line. When data changes on the line, the mediator is in charge of pushing the changes back to the
plugin that will then render the changes.

5 Discussion and conclusion

5.1 Advantages and Trade-Offs

The PicknPack project balances between two rather antipodal goals: flexibility and performance. The
approach described in this Deliverable has the potential to reconcile both, in the following way:

• the flexibility comes from the consequent focus on the modelling of the stable semantic aspects of a
food production context, in such a way that the same few concepts come back over and over again.
More in particular, (i) composition as the key to extending functionalities and adding features, (ii) the
mediator pattern to connect a variable number of line and software components together, and (iii) the
choice for query based interaction between modules.

29

• the performance will have to come from the implementations of these models. And when the ar-
chitecture or requirements of a particular food processing context will change, it is expected that
re-implementations will be necessary to achieve a specified performance, but without having to change
the models.

Here is a non-exhaustive list of cases that can require such re-implementations:

• communication speed : when more modules are placed into a line, or the line can produce faster, the
amount of communication will increase. The current draft implementations send around (changes in)
models in non-binary formats, or in non-aligned messages, which requires parsing all the time. This
parsing can be avoided by introducing aligned, binary message formats. The reduction in flexibility is
rather limited, as long as one does not expect the layout and operation of a line to change often.

An increase in the number of modules in a line might require to split up a line into several sub-
modules, in such a way that the communication inside each cluster is an order of magnitude higher
than in between clusters. This situation is easy to handle with changes in the communication hardware
layout, e.g., by introducing a tree-based layout of the communication hubs, or via the more modern
approach of software-defined networking.20

• embedded hardware for the GUIs: the current draft implementation has chosen to use the browser
as the infrastructure for the GUI, because one can build upon an extremely active community, which
has the same objectives towards flexibility, vendor neutrality and model-based declarative descriptions
of a system’s activities. However, some module vendors might choose not to foresee the hardware
support required to work with browser-based technology. In this case, the communication mechanism
and architecture based on the Mediator pattern can remain, but the JavaScript implementation will
have to be replaced by non-interpreted alternatives, such as Qt.

Of course, also the models will have to be changed, each time a new type of production module is introduced,
or a new type of food.

The use of data models everywhere is not a black-and-white choice, but rather a continuum. On the one
end of this continuum, it is most flexible to communicate models all the time, but then software needs ability
to interpret them. The other end of the continuum is to make the models completely implicit and to send
pure data only. Many solutions exist in between, by letting all modules interpret their communication model
once at connection time, and then, during runtime, only to send/receive conforming data in an efficient
binary format.

The design represented in this Deliverable tries to be as forward-looking as possible, and one of the major
parts in this context is the choice for query based interfaces between modules. This is only a very recent
trend in the world of “the Web”, started by large players such as Facebook21 and Twitter. The major reason
to abandon the more traditional REST approach22 is that clients have more influence on what information
they can get in one single interaction, which results in a smaller amount of data sent, and fewer interactions
needed. The graphical models underlying the modern query approach fit also very well with the JSON
models that are introduced in the project: each JSON model is a graph, and the graph query languages
all use JSON as their host language. Nevertheless, while rationally being a more flexible and future-proof
solution (because of its modelling quality), the maturity of implementations supporting graph queries and
graph data bases is less than that of REST or SQL alternatives.

20https://en.wikipedia.org/wiki/Software-defined_networking
21https://facebook.github.io/react/blog/2015/05/01/graphql-introduction.html
22https://en.wikipedia.org/wiki/Representational_state_transfer

30

https://en.wikipedia.org/wiki/Software-defined_networking
https://facebook.github.io/react/blog/2015/05/01/graphql-introduction.html
https://en.wikipedia.org/wiki/Representational_state_transfer

5.2 Conclusions

The key advantages of the designs and technologies described in this Deliverable are:

• browser-based technology is the most flexible, cross-plattform and vendor neutral approach (at the
time of writing) to make GUIs.

• the consistent use of the Mediator pattern helps developers to couple the “insides” and “outsides” of
modules, lines, devices, GUIs,. . . in a systematic way, and to allow the maximum efficiency for each
deployment of a particular sub-system on concrete hardware and a concrete operating system.

• the consistent focus on data models is key for realising flexibility. Not in the least in a context
where knowledge-based module configuration, and traceability are important design requirements.
Modelling is not an easy development effort, but once realised it makes implementations more easy,
more refactorable, or less programming language-dependent.

• the consistent focus on event streams as the lowest level of communication is key for realising the
decoupling between the communication proper, and the policies that each module has to access and
process the data it needs from other modules.

• the consistent focus on given UIDs to everything (data, models, software, events, etc.) is key to realise
traceability.

These advantages are possibly compromised by the following challenges:

• only a minority of programmers are already fully aware of, and trained in, the technical approaches
mentioned above.

• the trade-off between flexibility and performance is a very difficult one to get right, and, moreover, it
might have to change during the life-time of a production plant.

• there is not yet much software tooling available to help developers with both just-mentioned challenges.

31

Appendices

A JSON Models

A.1 Topology Models

This section contains the models describing the PicknPack topology as described in section 3.2.

A.1.1 Factory Model

1 {
2 "id": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -line/blob/

json_models/json_models/factory_schema.json",

3 "$schema": "http://json -schema.org/draft -04/schema #",

4 "title": "PnP factory",

5 "description": "PnP factory model",

6 "type": "object",

7 "properties": {
8 "uuid": {
9 "description": "Factory UUID",

10 "type": "string",

11 "pattern": "^[a-fA -F0-9]{8}-[a-fA -F0-9]{4}-[a-fA -F0-9]{4}-[
a-fA-F0-9]{4}-[a-fA -F0-9]{12}$"

12 },
13 "name": {
14 "description": "optional factory name",

15 "type": "string"

16 },
17 "lines": {
18 "description": "lines in the factory",

19 "type": "array",

20 "items": {
21 "type": "object",

22 "required": ["model","line_uuid"],

23 "description": "require linked element to conform to

this model and to be a UUID",

24 "properties": {
25 "model": {"enum": ["https:// gitlab.mech.kuleuven.be

/rob -picknpack/pnp -line/raw/json_models/

json_models/line_schema.json"] },
26 "line_uuid": {"type": ["string"], "pattern": "^[a-

fA -F0-9]{8}-[a-fA-F0-9]{4}-[a-fA -F0-9]{4}-[a-fA -
F0-9]{4}-[a-fA -F0-9]{12}$"}

27 }
28 },
29 "minItems": 1,

32

30 "uniqueItems": true,

31 "description": "require at least one line in the factory

and that all lines are unique"

32 }
33 },
34 "required": ["uuid","lines"]

35 }
Listing 12: PnP Plant Schema as described in section 3.2.1.

A.1.2 Line Model

1 {
2 "id": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -line/blob/

json_models/json_models/line_schema.json",

3 "$schema": "http://json -schema.org/draft -04/schema #",

4 "description": "PnP model of a line",

5 "type": "object",

6 "properties": {
7 "uuid": {
8 "description": "Line UUID",

9 "type": "string",

10 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F
0-9]{4}-[a-fA -F0-9]{12}$"

11 },
12 "name": {
13 "description": "optional line name",

14 "type": "string"

15 },
16 "belongs_to": {
17 "type": "object",

18 "required": ["uuid"],

19 "properties": {
20 "uuid": {"type": ["string"],"pattern": "^[a-fA-F0-9]{8}-[a-

fA -F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F0-9]{12
}$"}

21 }
22 },
23 "modules": {
24 "description": "links to the modules on this line",

25 "type": "array",

26 "items": {
27 "type": "object",

28 "required": ["model","module_uuid"],

29 "properties": {
30 "model": {"enum": ["https:// gitlab.mech.kuleuven.be/rob -

picknpack/pnp -line/raw/json_models/json_models/

33

module_schema.json"] },
31 "module_uuid": {"type": ["string"],"pattern": "^[a-fA-F0-

9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-
fA-F0-9]{12}$"}

32 }
33 },
34 "minItems": 1,

35 "uniqueItems": false

36 },
37 "web_of_trays": {
38 "description": "links to the trays in this line",

39 "type": "array",

40 "items": {
41 "type": "object",

42 "required": ["model","tray_uuid"],

43 "properties": {
44 "model": {"enum": ["https:// gitlab.mech.kuleuven.be/rob -

picknpack/pnp -line/raw/json_models/json_models/

tray_schema.json"] },
45 "tray_uuid": {"type": ["string"],"pattern": "^[a-fA-F0-9]

{8}-[a-fA -F0-9]{4}-[a-fA -F0-9]{4}-[a-fA -F0-9]{4}-[a-fA
-F0-9]{12}$"}

46 }
47 },
48 "minItems": 0,

49 "uniqueItems": false

50 },
51 "topology": {
52 "description": "topology of the line (and position within the

factory); must be valid TopoJSON",

53 "$ref": "https://raw.githubusercontent.com/nhuebel/

TopoJSON_schema/master/topojson.json"

54 }
55 },
56 "required": ["uuid","belongs_to","modules","web_of_trays","topology"]

57 }
Listing 13: PnP Line Schema as described in section 3.2.2.

A.1.3 Moduel Model

1 {
2 "id": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -line/blob/

json_models/json_models/module_schema.json",

3 "$schema": "http://json -schema.org/draft -04/schema #",

4 "description": "PnP model of a module",

34

5 "type": "object",

6 "properties": {
7 "uuid": {
8 "description": "Module UUID",

9 "type": "string",

10 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F
0-9]{4}-[a-fA -F0-9]{12}$"

11 },
12 "name": {
13 "description": "optional module name",

14 "type": "string"

15 },
16 "module_type": {
17 "description": "description of the module class (used for

constraining the configurations; TODO: later to be replaced

by link to ontology); IMPORTANT: We need input from the

domain experts here!",

18 "type": "object",

19 "oneOf": [

20 {
21 "type": "object",

22 "description": "model of a thermoformer",

23 "required": ["type","specific_propoerties"],

24 "properties": {
25 "type": {"type": "string", "enum":["thermoformer"]},
26 "specific_propoerties": {"type": "object"},
27 "optional_propoerties": {"type": "object"}
28 }
29 },
30 {
31 "type": "object",

32 "description": "model of a label printer",

33 "required": ["type","specific_propoerties"],

34 "properties": {
35 "type": {"type": "string", "enum":["label_printer"]},
36 "specific_propoerties": {
37 "label_queue": {
38 "type": "array",

39 "items": {
40 "type": "object"

41 },
42 "minItems": 0,

43 "uniqueItems": true

44 }
45 }
46 }

35

47 }
48]

49 },
50 "belongs_to": {
51 "type": "object",

52 "required": ["uuid"],

53 "properties": {
54 "uuid": {"type": ["string"],"pattern": "^[a-fA-F0-9]{8}-[a-

fA -F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F0-9]{12
}$"}

55 }
56 },
57 "devices": {
58 "description": "devices within a module",

59 "type": "array",

60 "items": {
61 "type": "object",

62 "required": ["model","device_uuid"],

63 "properties": {
64 "model": {"enum": ["https:// gitlab.mech.kuleuven.be/rob

-picknpack/pnp -line/raw/json_models/json_models/

device_schema.json"] },
65 "device_uuid": {"type": ["string"],"pattern": "^[a-fA-F

0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F0-9]{4}
-[a-fA-F0-9]{12}$"}

66 }
67 },
68 "minItems": 0,

69 "uniqueItems": true

70 },
71 "configuration": {
72 "description": "settings of the module",

73 "type": "array",

74 "items": {
75 "type": "object",

76 "required": ["model","config_uuid"],

77 "properties": {
78 "model": {"enum": ["https:// gitlab.mech.kuleuven.be/rob

-picknpack/pnp -line/raw/json_models/json_models/

configuration_schema.json"] },
79 "config_uuid": {"type": ["string"],"pattern": "^[a-fA-F

0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F0-9]{4}
-[a-fA-F0-9]{12}$"}

80 }
81 },
82 "minItems": 0,

36

83 "uniqueItems": true

84 },
85 "topology": {
86 "description": "topology of the module and position of the

module within the line; must be valid TopoJSON",

87 "$ref": "https://raw.githubusercontent.com/nhuebel/

TopoJSON_schema/master/topojson.json"

88 }
89 },
90 "required": ["uuid","module_type","belongs_to","devices","

configuration","topology"]

91 }
Listing 14: PnP Module Schema as described in section 3.2.3.

A.1.4 Device Model

1 {
2 "id": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -line/blob/

json_models/json_models/device_schema.json",

3 "$schema": "http://json -schema.org/draft -04/schema #",

4 "description": "PnP model of a device",

5 "type": "object",

6 "properties": {
7 "uuid": {
8 "description": "Device UUID",

9 "type": "string",

10 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F
0-9]{4}-[a-fA -F0-9]{12}$"

11 },
12 "name": {
13 "description": "optional device name",

14 "type": "string"

15 },
16 "device_type": {
17 "description": "description of the device class (used for

constraining the configurations; TODO: later to be replaced

by link to ontology) IMPORTANT: We need input from the

domain experts here!",

18 "type": "object"

19 },
20 "belongs_to": {
21 "type": "object",

22 "required": ["uuid"],

23 "properties": {
24 "uuid": {"type": ["string"],"pattern": "^[a-fA-F0-9]{8}-[a-

fA -F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F0-9]{12

37

}$"}
25 }
26 },
27 "configuration": {
28 "description": "settings of the device",

29 "type": "array",

30 "items": {
31 "type": "object",

32 "required": ["model","config_uuid"],

33 "properties": {
34 "model": {"enum": ["https:// gitlab.mech.kuleuven.be/rob

-picknpack/pnp -line/raw/json_models/json_models/

configuration_schema.json"] },
35 "config_uuid": {"type": ["string"],"pattern": "^[a-fA-F

0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F0-9]{4}
-[a-fA-F0-9]{12}$"}

36 }
37 },
38 "minItems": 0,

39 "uniqueItems": true

40 },
41 "topology": {
42 "description": "topology of the device and position of the

device within the module; must be valid TopoJSON",

43 "$ref": "https://raw.githubusercontent.com/nhuebel/

TopoJSON_schema/master/topojson.json"

44 }
45 },
46 "required": ["uuid","device_type","belongs_to","configuration","

topology"]

47 }
Listing 15: PnP Device Schema as described in section 3.2.4.

A.1.5 Tray Model

1 {
2 "id": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -line/blob/

json_models/json_models/tray_schema.json",

3 "$schema": "http://json -schema.org/draft -04/schema #",

4 "description": "PnP model of a tray",

5 "type": "object",

6 "properties": {
7 "uuid": {
8 "description": "Tray UUID",

9 "type": "string",

38

10 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F
0-9]{4}-[a-fA -F0-9]{12}$"

11 },
12 "name": {
13 "description": "optional tray name",

14 "type": "string"

15 },
16 "belongs_to": {
17 "type": "object",

18 "required": ["uuid"],

19 "properties": {
20 "uuid": {"type": ["string"],"pattern": "^[a-fA-F0-9]{8}-[a-

fA -F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F0-9]{12
}$"}

21 }
22 },
23 "punnets": {
24 "description": "links to the punnets within this tray (using some

form of UID)",

25 "type": "array",

26 "items": {
27 "type": "object",

28 "required": ["model","punnet_uuid"],

29 "properties": {
30 "model": {"enum": ["https:// gitlab.mech.kuleuven.be/rob -

picknpack/pnp -line/raw/json_models/json_models/

punnet_schema.json"] },
31 "punnet_uuid": {"type": ["string"],"pattern": "^[a-fA-F0-

9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-
fA-F0-9]{12}$"}

32 }
33 },
34 "minItems": 1,

35 "uniqueItems": false

36 },
37 "features": {
38 "description": "features of a tray that are added by the modules/

devices",

39 "type": "array",

40 "items": {
41 "type": "object",

42 "required": ["model","feature_uuid"],

43 "properties": {
44 "model": {"enum": ["https:// gitlab.mech.kuleuven.be/rob -

picknpack/pnp -line/raw/json_models/json_models/

feature_schema.json"] },

39

45 "feature_uuid": {"type": ["string"],"pattern": "^[a-fA-F0

-9]{8}-[a-fA-F0-9]{4}-[a-fA -F0-9]{4}-[a-fA -F0-9]{4}-[a
-fA-F0-9]{12}$"}

46 }
47 },
48 "minItems": 0,

49 "uniqueItems": true

50 },
51 "tray_type": {
52 "description": "tray type defines which program is run by modules

; contains all static information",

53 "enum": ["default", "big_landscape", "big_portrait","small","

tomato"]

54

55 },
56 "topology": {
57 "description": "topology of the module and position of the

module within the line; must be valid TopoJSON",

58 "$ref": "https://raw.githubusercontent.com/nhuebel/

TopoJSON_schema/master/topojson.json"

59 }
60 },
61 "required": ["uuid","belongs_to","punnets","features","tray_type","

topology"]

62 }
Listing 16: PnP Tray Schema as described in section 3.2.5.

A.1.6 Punnet Model

1 {
2 "id": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -line/blob/

json_models/json_models/punnet_schema.json",

3 "$schema": "http://json -schema.org/draft -04/schema #",

4 "description": "PnP model of a punnet within a tray",

5 "type": "object",

6 "properties": {
7 "uuid": {
8 "description": "Punnet ID",

9 "type": "string",

10 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F
0-9]{4}-[a-fA -F0-9]{12}$"

11 },
12 "belongs_to": {
13 "type": "object",

14 "required": ["uuid"],

40

15 "properties": {
16 "uuid": {"type": ["string"],"pattern": "^[a-fA-F0-9]{8}-[a-

fA -F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F0-9]{12
}$"}

17 }
18 },
19 "name": {
20 "description": "optional name/description of punnet",

21 "type": "string"

22 },
23 "punnet_type": {"type": "string", "enum":["punnet_left","

punnet_right"]},
24 "features": {
25 "description": "features of a batch that are added by the modules

/devices",

26 "type": "array",

27 "items": {
28 "type": "object",

29 "required": ["model","feature_uuid"],

30 "properties": {
31 "model": {"enum": ["https:// gitlab.mech.kuleuven.be/rob -

picknpack/pnp -line/raw/json_models/json_models/

feature_schema.json"] },
32 "feature_uuid": {"type": ["string","number"]}
33 }
34 },
35 "minItems": 0,

36 "uniqueItems": true

37 },
38 "topology": {
39 "description": "topology of the punnet and position of the pocket

relative to the tray; must be valid TopoJSON",

40 "$ref": "https://raw.githubusercontent.com/nhuebel/

TopoJSON_schema/master/topojson.json"

41 }
42 },
43 "required": ["uuid","belongs_to","topology","features"]

44 }
Listing 17: PnP Punnet Schema as described in section 3.2.6.

A.2 Data Model

A.2.1 Batch Model

1 {

41

2 "id": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -line/blob/

json_models/json_models/batch_schema.json",

3 "$schema": "http://json -schema.org/draft -04/schema #",

4 "description": "PnP model of a batch",

5 "type": "object",

6 "properties": {
7 "uuid": {
8 "description": "Batch ID",

9 "type": "string",

10 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F
0-9]{4}-[a-fA -F0-9]{12}$"

11 },
12 "name": {
13 "description": "optional batch name",

14 "type": "string"

15 },
16 "belongs_to": {
17 "type": "object",

18 "required": ["uuid"],

19 "properties": {
20 "uuid": {"type": ["string"],"pattern": "^[a-fA-F0-9]{8}-[a-

fA -F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F0-9]{12
}$"}

21 }
22 },
23 "trays": {
24 "description": "links to the trays within this batch",

25 "type": "array",

26 "items": {
27 "type": "object",

28 "required": ["model","tray_uuid"],

29 "properties": {
30 "model": {"enum": ["https:// gitlab.mech.kuleuven.be/rob -

picknpack/pnp -line/raw/json_models/json_models/

tray_schema.json"] },
31 "tray_uuid": {"type": ["string"],"pattern": "^[a-fA-F0-9]

{8}-[a-fA -F0-9]{4}-[a-fA -F0-9]{4}-[a-fA -F0-9]{4}-[a-fA
-F0-9]{12}$"}

32 }
33 },
34 "minItems": 1,

35 "uniqueItems": false

36 },
37 "features": {
38 "description": "features of a batch that are added by the modules

/devices",

42

39 "type": "array",

40 "items": {
41 "type": "object",

42 "required": ["model","feature_uuid"],

43 "properties": {
44 "model": {"enum": ["https:// gitlab.mech.kuleuven.be/rob -

picknpack/pnp -line/raw/json_models/json_models/

feature_schema.json"] },
45 "feature_uuid": {"type": ["string"],"pattern": "^[a-fA-F0

-9]{8}-[a-fA-F0-9]{4}-[a-fA -F0-9]{4}-[a-fA -F0-9]{4}-[a
-fA-F0-9]{12}$"}

46 }
47 },
48 "minItems": 0,

49 "uniqueItems": true

50 },
51 "batch_type": {
52 "description": "description of the type of batch; maybe redundant

because of #number and size of trays?",

53 "oneOf": [

54 {
55 "type": "object",

56 "description": "example1: 4 trays in confiburation A (2-2)",

57 "required": ["type","traytypes"],

58 "properties": {
59 "type": {"type": "string", "enum":["4tray_config_A"]},
60 "traytypes": {
61 "type": "array",

62 "items": {
63 "type": "array",

64 "items": {"type": "string", "enum":["default"]},
65 "minItems": 2,

66 "maxItems": 2

67 },
68 "minItems": 2,

69 "maxItems": 2

70 }
71 }
72 },
73 {
74 "type": "object",

75 "description": "example1: 8 trays in confiburation D (3-3-2)"

,

76 "required": ["type","traytypes"],

77 "properties": {
78 "type": {"type": "string", "enum":["8tray_config_D"]},

43

79 "traytypes": {
80 "type": "array",

81 "items": [

82 {
83 "type": "array",

84 "items": {"type": "string", "enum":["default"]},
85 "minItems": 3,

86 "maxItems": 3

87 },
88 {
89 "type": "array",

90 "items": {"type": "string", "enum":["default"]},
91 "minItems": 3,

92 "maxItems": 3

93 },
94 {
95 "type": "array",

96 "items": {"type": "string", "enum":["

large_landscape"]},
97 "minItems": 2,

98 "maxItems": 2

99 }
100],

101 "minItems": 2,

102 "maxItems": 2

103 }
104 }
105 }
106]

107 }
108 },
109 "required": ["uuid","belongs_to","trays","features","batch_type"]

110 }
Listing 18: PnP Batch Schema as described in section 3.3.1.

A.2.2 Feature Model

1 {
2 "id": "https:// gitlab.mech.kuleuven.be/rob -picknpack/pnp -line/blob/

json_models/json_models/feature_schema.json",

3 "$schema": "http://json -schema.org/draft -04/schema #",

4 "description": "PnP description of features; IMPORTANT: We need input

from the domain experts here!",

5 "type": "object",

6 "properties": {

44

7 "uuid": {
8 "description": "Feature ID added by module/device",

9 "type": "string",

10 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F
0-9]{4}-[a-fA -F0-9]{12}$"

11 },
12 "name": {
13 "description": "optional name/description of feature",

14 "type": "string"

15 },
16 "belongs_to": {
17 "type": "object",

18 "required": ["uuid"],

19 "properties": {
20 "uuid": {"type": ["string"],"pattern": "^[a-fA-F0-9]{8}-[a-

fA -F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA -F0-9]{12
}$"}

21 }
22 },
23 "time_stamp": {
24 "description": "UTC time when feature was created/added",

25 "type": "string", "format": "date -time"

26 },
27 "production": {
28 "type": "object",

29 "required": ["model","production_uuid"],

30 "description": "require linked element to conform to this model

and to be a UUID",

31 "properties": {
32 "model": {"enum": ["https:// gitlab.mech.kuleuven.be/rob -

picknpack/pnp -line/raw/json_models/json_models/

production_schema.json"] },
33 "production_uuid": {"type": ["string"], "pattern": "^[a-fA-

F0-9]{8}-[a-fA-F0-9]{4}-[a-fA -F0-9]{4}-[a-fA -F0-9]{4}-[a
-fA -F0-9]{12}$"}

34 }
35 },
36 "feature_type": {
37 "description": "description of the feature type; IMPORTANT: This

needs input from the domain experts",

38 "type": "object",

39 "oneOf": [

40 {
41 "description": "feature attached by thermoformer",

42 "properties": {
43 "creation_encoder_tick": {"type": "integer"}

45

44 },
45 "required" : ["creation_encoder_tick"],

46 "additionalProperties":true

47 },
48 {
49 "description": "quality_grade: gives grades from A-F",

50 "properties": {
51 "type": {"type": "string", "enum":["quality_grade"]},
52 "grade": {"type": "string", "enum":["A","B","C","D","E","F"]}
53 },
54 "required" : ["type", "grade"],

55 "additionalProperties":true

56 },
57 {
58 "description": "quality_number: ranks quality on a scale from 1

-10",

59 "properties": {
60 "type": {"type": "string", "enum":["quality_number"]},
61 "grade": {"type": "number", "minimum":0,"maximum":10}
62 },
63 "required" : ["type", "grade"],

64 "additionalProperties":true

65 }
66]

67 }
68 },
69 "required": ["uuid","belongs_to","time_stamp","production","

feature_type"]

70 }
Listing 19: PnP Feature Schema as described in section 3.3.2.

A.3 Finite State Machine Model

This section contains the developed rFSM schema (section 3.5) used for the visualization in a GUI widget,
for code generation, and for coordination at the line level.

1 {
2 "id": "http:// people.mech.kuleuven.be/~u0072295/rFSM/rfsm -schema",

3 "$schema": "http://json -schema.org/draft -04/schema #",

4 "type": "object",

5 "properties": {
6 "type": { "enum": ["rfsm_model"] },
7 "version": {
8 "type": "number"

9 },
10 "active_leaf_state" : {

46

11 "type": "boolean"

12 },
13 "active_leaf": {
14 "type": "boolean"

15 },
16 "rfsmgraph": {
17 "$ref" : "#/ definitions/rfsmgraph"

18 }
19 },
20 "required" : ["type","version", "active_leaf", "active_leaf_state", "

rfsmgraph"],

21 "definitions": {
22 "rfsmgraph": {
23 "type": "object",

24 "properties": {
25 "id" : {
26 "type": "string"

27 },
28 "type" : {
29 "enum" : ["state","transition"]

30 },
31 "transitions": { "$ref" : "#/ definitions/transitions" },
32 "subnodes": { "$ref" : "#/ definitions/subnodes" }
33 }
34 },
35 "transitions" : {
36 "type": "array",

37 "items": { "$ref": "#/ definitions/transition" }
38 },
39 "subnodes" : {
40 "type": "array",

41 "items": { "$ref" : "#/ definitions/subnode" }
42 },
43 "subnode" : {
44 "type": "object",

45 "properties": {
46 "id": { "type" : "string" },
47 "type": { "enum": ["state", "connector"] }
48 }
49 },
50 "transition": {
51 "type": "object",

52 "properties": {
53 "type" : { "enum": ["transition"] },
54 "tgt": { "type": "string" },
55 "src": { "type": "string" },

47

56 "events": {
57 "type": "array",

58 "items": { "$ref": "#/ definitions/event" }
59 }
60 }
61 },
62 "event" : {
63 "type": "string"

64 }
65 }
66 }

Listing 20: rFSM Schema

1 {
2 "type":"rfsm_model",

3 "version":2,

4 "rfsm": {
5 "type" : "state",

6 "transitions" : [

7 { "tgt": "inactive", "src": "initial", "events": [] },
8 { "tgt": "inactive", "src": "active", "events": ["e_deactivate"]

},
9 { "tgt": "active", "src": "inactive", "events": ["e_activate"] }

10],

11 "containers" : [

12 { "id": "inactive",

13 "type": "state",

14 "transitions": [

15 { "tgt": "creating", "src": "initial", "events": [] },
16 { "tgt": "configuring_resources", "src":"creating", "events":

["e_done"] },
17 { "tgt": "deleting", "src":"initial", "events": ["

e_deactivate"] }
18],

19 "containers": [

20 { "id": "creating", "type": "state" , "entry": "creating"},
21 { "id": "configuring_resources", "type": "state", "entry": "

configuring_resources" },
22 { "id": "deleting", "type": "state", "entry": "deleting" }
23]

24 },
25 { "id": "active",

26 "type": "state",

27 "transitions" : [

28 { "tgt": "configuring_capabilities", "src": "initial", "

events": [] },

48

29 { "tgt": "pausing", "src":"configuring_capabilities", "events

": ["e_done"] },
30 { "tgt": "running", "src":"pausing", "events": ["e_run"] },
31 { "tgt": "pausing", "src":"running", "events": ["e_pause"] },
32 { "tgt": "configuring_capabilities", "src":"pausing", "events

": ["e_configure"] }
33],

34 "containers" : [

35 { "id": "configuring_capabilities", "type": "state", "entry"

: "configuring_capabilities" },
36 { "id": "running", "type": "state", "entry": "running" },
37 { "id": "pausing", "type": "state", "entry": "pausing" }
38]

39 }
40]

41 }
42 }

Listing 21: LCSM model as an example of the schema in listing 20

A.4 TopoJSON Model

This section contains the developed TopoJSON Schema (section 3.6.1) split in multiple files referencing each
other (Listing 22, 23, 24, 25). An example taken from a PicknPck Module can be found in Listing 11.

1 {
2 "$schema": "http://json -schema.org/draft -04/schema #",

3 "id": "https://raw.githubusercontent.com/nhuebel/TopoJSON_schema/

master/topojson.json#",

4 "title": "TopoJSON object",

5 "description": "Schema for a TopoJSON object",

6 "type": "object",

7 "required": ["type"],

8 "properties": {
9 "bbox": { "$ref": "https://raw.githubusercontent.com/nhuebel/

TopoJSON_schema/master/bbox.json" }
10 },
11 "oneOf": [

12 { "$ref": "https://raw.githubusercontent.com/nhuebel/

TopoJSON_schema/master/topology.json" },
13 { "$ref": "https://raw.githubusercontent.com/nhuebel/

TopoJSON_schema/master/geometry.json" }
14]

15 }
Listing 22: TopoJSON Object Schema

1 {

49

2 "$schema": "http://json -schema.org/draft -04/schema #",

3 "id": "https://raw.githubusercontent.com/nhuebel/TopoJSON_schema/

master/topology.json",

4 "title": "Topology",

5 "description": "A Topology object as defined by TopoJSON",

6 "type": "object",

7 "required": ["objects", "arcs"],

8 "properties": {
9 "type": { "enum": ["Topology"] },

10 "objects": {
11 "type": "object",

12 "additionalProperties": {"$ref": "https://raw.

githubusercontent.com/nhuebel/TopoJSON_schema/master/

geometry.json"}
13 },
14 "arcs": {"$ref": "#/ definitions/arcs"},
15 "transform": {"$ref": "#/ definitions/transform"},
16 "bbox": { "$ref": "https://raw.githubusercontent.com/nhuebel/

TopoJSON_schema/master/bbox.json" }
17 },
18 "definitions": {
19 "transform": {
20 "type": "object",

21 "required": ["scale", "translate"],

22 "properties": {
23 "scale": {
24 "type": "array",

25 "items": { "type": "number"},
26 "minItems": 2

27 },
28 "translate": {
29 "type": "array",

30 "items": { "type": "number"},
31 "minItems": 2

32 }
33 }
34 },
35 "arcs": {
36 "type": "array",

37 "items": {
38 "type": "array",

39 "items": {
40 "oneOf": [

41 { "$ref": "#/ definitions/position"},
42 { "type": "null" }
43]

50

44 },
45 "minItems": 2

46 }
47 },
48 "position": {
49 "type": "array",

50 "items": { "type": "number"},
51 "minItems": 2

52 }
53 }
54 }

Listing 23: TopoJSON Topology Schema

1 {
2 "$schema": "http://json -schema.org/draft -04/schema #",

3 "id": "https://raw.githubusercontent.com/nhuebel/TopoJSON_schema/

master/geometry.json",

4 "title": "Geometry objects",

5 "description": "A Geometry object as defined by TopoJSON",

6 "type": "object",

7 "required": ["type"],

8 "properties": {
9 "id": { "type": ["string", "integer"]},

10 "properties": { "type": "object" }
11 },
12 "oneOf": [

13 {
14 "title": "Point",

15 "description": "A Point Geometry object as defined by

TopoJSON",

16 "required": ["type","coordinates"],

17 "properties": {
18 "type": { "enum": ["Point"] },
19 "coordinates": { "$ref": "#/ definitions/position" }
20 }
21 },
22 {
23 "title": "MultiPoint",

24 "description": "A MultiPoint Geometry object as defined by

TopoJSON",

25 "required": ["type","coordinates"],

26 "properties": {
27 "type": { "enum": ["MultiPoint"] },
28 "coordinates": {
29 "type": "array",

30 "items": { "$ref": "#/ definitions/position" }

51

31 }
32 }
33 },
34 {
35 "title": "LineString",

36 "description": "A LineString Geometry object as defined by

TopoJSON",

37 "required": ["type","arcs"],

38 "properties": {
39 "type": { "enum": ["LineString"] },
40 "arcs": {
41 "type": "array",

42 "items": { "type": "integer" }
43 }
44 }
45 },
46 {
47 "title": "MultiLineString",

48 "description": "A MultiLineString Geometry object as

defined by TopoJSON",

49 "required": ["type","arcs"],

50 "properties": {
51 "type": { "enum": ["MultiLineString"] },
52 "arcs": {
53 "type": "array",

54 "items": {
55 "type": "array",

56 "items": {"type": "integer"}
57 }
58 }
59 }
60 },
61 {
62 "title": "Polygon",

63 "description": "A Polygon Geometry object as defined by

TopoJSON",

64 "required": ["type","arcs"],

65 "properties": {
66 "type": { "enum": ["Polygon"] },
67 "arcs": {
68 "TODO": "Check if arcs refer to valid LinearRings",

69 "type": "array",

70 "items": {
71 "type": "array",

72 "items": {"type": "integer"}
73 }

52

74 }
75 }
76 },
77 {
78 "title": "MultiPolygon",

79 "description": "A MultiPolygon Geometry object as defined

by TopoJSON",

80 "required": ["type","arcs"],

81 "properties": {
82 "type": { "enum": ["MultiPolygon"] },
83 "arcs": {
84 "type": "array",

85 "items": {
86 "type": "array",

87 "items": {
88 "type": "array",

89 "items": {"type": "integer"}
90 }
91 }
92 }
93 }
94 },
95 {
96 "title": "GeometryCollection",

97 "description": "A MultiPolygon Geometry object as defined

by TopoJSON",

98 "required": ["type","geometries"],

99 "properties": {
100 "type": { "enum": ["GeometryCollection"] },
101 "geometries": {
102 "type": "array",

103 "items": { "$ref": "https://raw.githubusercontent.

com/nhuebel/TopoJSON_schema/master/geometry.json

" }
104 }
105 }
106 }
107],

108 "definitions": {
109 "position": {
110 "type": "array",

111 "items": { "type": "number"},
112 "minItems": 2

113 }
114 }
115 }

53

Listing 24: TopoJSON Geometry Schema

1 {
2 "$schema": "http://json -schema.org/draft -04/schema #",

3 "id": "https://raw.githubusercontent.com/nhuebel/TopoJSON_schema/

master/bbox.json",

4 "title": "TopoJSON bounding box",

5 "description": "A bounding box as defined by TopoJSON",

6 "type": "array",

7 "items": { "$ref": "#/ definitions/dimension" },
8 "minItems": 2,

9 "maxItems": 2,

10 "definitions": {
11 "dimension": {
12 "type": "array",

13 "description": "This array should have an entry per dimension

in the geometries",

14 "items": {"type": "number"}
15 }
16 },
17 "TODO": "check number of dimensions (2*n), n being the number of

dimensions represented in the contained geometries), with the

lowest values for all axes followed by the highest values "

18 }
Listing 25: TopoJSON Bounding Box Schema

B Communication

This section contains a paper submitted to the Journal of Software Engineering for Robotics. It contains
a discussion of communication middlewares and mechanisms. Then it introduces communication patterns
together with example use cases, some of which were developed for PicknPack.

54

Journal of Software Engineering for Robotics 1(1), September 2009, 123-126
ISSN: 2035-3928

Communication Patterns in Robotics
Johan Philips1 Nico Huebel1 Herman Bruyninckx1,2

1 Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
2 Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands

Abstract—In almost all robotics applications nowadays, communication plays a prominent role, especially when multiple robot systems
are involved. Nevertheless, it receives little attention during development. The notion of a communication stack has been abstracted
away by robotics middlewares, trying to solve all use cases by a one-size-fits-all implementation. Although the intention of middleware
developers is to simplify application building, it usually also takes away flexibility. Therefore, an application dependent trade-off needs to
be found that allows customizing communication to specific applications. We argue that communication should be modelled first using
communication patterns that are independent of a specific communication middleware. Afterwards, the communication model can be
implemented using an existing middleware that supports the used communication mechanisms required by the chosen patterns. In
this paper, we introduce a set of communication mechanisms and patterns, built on top of them, which have emerged in our recent
multi-robot projects. Among other things, they solve typical communication issues like failure detection, discovery, communication
bootstrapping, and task coordination. In addition, we give use cases for the presented patterns and refer to their formalizations done
by domain experts. Another, often overlooked, fact is that communication happens at different abstraction levels within one application.
Communication can refer to information exchange between robots, between (local or networked) software components or devices, and
even between computations within the same algorithm. However, similar patterns re-occur on multiple levels of abstraction, e.g., for
multi-robot oordination and task coordination or (distributed) algorithm execution. Communication patterns which haven been modelled
and formalised in a DSL and/or protocol potentially result in re-usable implementations by mature communication libraries. Separating
communication mechanisms from communication middleware and from patterns built from these mechanisms, is an important step
towards a model-driven engineering approach that includes flexible communication.

Index Terms—Communication Patterns; Networked Robots; Multi-Robot Systems; System architectures, integration and modeling;
Network Architecture and Design

1 INTRODUCTION

In almost all robotics applications nowadays, communication
plays a prominent role, especially when multiple robot systems
are involved. Nevertheless, it receives little attention during
development and, typically, is taken for granted: unlimited
bandwidth is assumed, perfect uptime is expected and little
thought goes into customising communication to the specific
application at hand.

Regular paper – Manuscript received September 1, 2015; revise, 2015.

• This work was supported by the University of Leuven Geconcerteerde
Onderzoeks-Acties Model based intelligent robot systems and Global
real-time optimal control of autonomous robots and mechatronic systems,
the University of Leuven IOF Kennisplatform Transition, and from the
European Union’s 7th Framework Programme (FP7/2007–2013) projects
BRICS (FP7-231940, Best Practice in Robotics), SHERPA (FP7-600958,
Smart collaboration between Humans and ground-aErial Robots for
imProving rescuing activities in Alpine environments), and PicknPack
(FP7-311987, Flexible robotic systems for automated adaptive packaging
of fresh and processed food products.

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

On the contrary, since the introduction of ROS [1] into
robotics, the majority of robotics application developers typi-
cally use only one type of communication anymore: pub-sub
over a ROS Master. The notion of a communication stack has
been abstracted away, too much so, trying to solve all use cases
by a one-size-fits-all solution. Also the upcoming ROS 2.0
seems to follow the same path by choosing only one type
of middleware, DDS [2], and preconfiguring it as much as
possible beforehand, with the intention to ease the design of
communication needs for the robotics application developer.
However, such a focus on “ease of use” is also taking away
flexibility, which can lead to unexpected limitations, or require
clumsy workarounds. An application dependent trade-off be-
tween the “Freedom from Choice vs. Freedom of Choice” [3]
has to be found.

Moreover, many people in robotics suffer from the “Not In-
vented Here Syndrome” and instead of making use of existing
communication middlewares, they keep reinventing the wheel
without getting close to the mature, existing communication
middlewares.

We argue that communication should be modelled first using
communication mechanisms that are independent of a specific

www.joser.org - c© 2009 by Johan Philips, Nico Huebel, Herman Bruyninckx

124 Journal of Software Engineering for Robotics 1(1), September 2009

communication middleware. Afterwards, the communication
model can be implemented using an existing middleware that
supports the used communication mechanisms and fits the use
case. In addition, certain communication patterns, which make
use of the communication mechanisms, have been useful in our
recent projects. Therefore, this paper focuses on introducing
communication mechanisms as well as communication pat-
terns which proved useful in multi-robot systems and have
been formalised in a DSL and/or protocol in some way.

The separation of the communication mechanisms from the
communication middleware as well as the patterns built from
these mechanisms are important steps towards an model-driven
engineering approach that includes flexible communication.

Section 2 will review existing communication libraries and
middlewares both within and outside the robotics field. In Sec-
tion 3 communication mechanisms are introduced, followed,
in Section 4, by useful communication patterns which build
upon the introduced mechanisms, and are explained together
with potential robotics use cases. In the discussion section
(5) trade-offs and guidelines are presented to help application
developers. Finally, section 6 concludes the paper.

2 STATE OF THE ART

This section reviews several mature communication libraries
and middlewares, data representation and serialisation li-
braries, developed outside robotics and compares them to
specific robotics middlewares.

2.1 Communication Middlewares
All introduced libraries and middlewares here are considered
mature, which means they are well documented, are formalised
in a DSL and/or protocol, are adopted by industry and/or
a large user community, and are accompanied with detailed
examples and recommended use cases.

Enterprise messaging systems, such as [4], [5], [6], focus
on offering a rich set of pre-defined policies, based on a set
of enterprise-wide standards.

The Apache Software Foundation provides numerous
projects that are useful with respect to communication. Apache
Kafka [7] processes messages at scale. Kafka is a distributed
pub-sub real-time messaging system that provides strong dura-
bility and fault tolerance guarantees. Apache Camel [8] is
an integration framework providing routing and mediation
rules based on enterprise integration patterns [9]. Apache
Qpid [6] is a set of messaging tools based on the Advanced
Message Queuing Protocol (AMQP) [10]. Apache Avro [11]
is Apache’s data serialisation system, offering a compact,
fast, binary data format, container files to store persistent
data, remote procedure calls and integration with dynamic
languages. Moreover, is relies on schemas when reading or
writing data and during RPCs.

Data Distribution Service (DDS) [2] for real-time systems,
is a communication standard from the Object Management

Group (OMG) aiming at distributing data in real-time be-
tween applications, using the publish-subscribe paradigm.
OpenDDS [12] is a C++ implementation of this OMG stan-
dard, sponsored by Object Computing, Inc. (OCI), who have
also been involved in the development of the ADAPTIVE
Communication Environment (ACE) [13]. OpenDDS makes
use of ACE to provide a cross platform environment. Data
Distribution and Storage Service (DDSS) [14] makes use of
DDS’s asynchronous interaction and its dynamic discovery to
support mobile and pervasive systems.

The Extensible Messaging and Presence Protocol (XMPP)
is an XML-based communication protocol that enables the
near-real-time exchange of structured yet extensible data [15].
The core protocol contains methods to open and close XML
streams over TCP connections including channel encryption,
authentication, and error handling as well as communication
primitives for messaging and request-response interactions.
Among other things, experimental extensions for sensors,
control, and discovery are developed within the Internet of
Things community [16].

ZeroMQ [17], [18] is a lightweight socket library, offering
several socket types for different deployment levels and various
communication patterns on top of TCP sockets, as well as
discovery over UDP. It is known for its high performant
asynchronous communication and provides bindings to many
programming languages. The ZeroMQ Guide [18] helped in
the search for better communication patterns for robotics.

Common Object Request Broker Architecture (CORBA)
[19] is a standard that was created with interoperability
of operating systems and programming languages in mind.
CORBA specifies a mapping from a so called interface de-
scription language to operating system and language specific
implementations. While the basic idea of CORBA is good, it
suffers from its extensive, monolithic structure that is hard to
implement as a whole.

2.2 Data Representation and Serialization

There are multiple ways to represent data structures and
to serialise them for communication. Here, commonly used
methods to represent and serialise data are presented.

Comma Separated Values (CSV) [20] are mainly storing
tabular data in plain text and are mainly used to exchange
such data between databases and programs that share no other
exchange format. Despite its structure and the fact that data is
in plain text, large data sets are not easily human-readable, and
this format usually lacks metadata to interpret data. Therefore,
it is not very useful in robotic applications.

The Extensible Markup Language (XML) [21] is a stan-
dardised, widely-adopted, human and machine-readable format
designed for use across the Internet. Many data formats like
SVG, URDF, OWL, or formats of common office software
have been derived from XML. XML documents can be val-
idated by defining schemas and multiple schema definition

Johan Philips et al./ Communication Patterns in Robotics 125

languages are available. Even though XML was designed to
be human readable, complex XML documents are generally
more difficult to interpret than JSON or YAML documents.

JavaScript Object Notation (JSON) [22], [23] is a stan-
dardised human and machine-readable format to transmit data
objects. Contrary to its name, it is language independent.
JSON Schemas [24], [25] can be used for validation and
documentation. JSON’s big advantage is its wide adoption and,
therefore, existence of many tools and composable domain
specific extensions like GeoJSON [26]. It is also a native
format of modern browsers, which enables easy integration
with browser based GUIs.

YAML (YAML Ain’t Markup Language) [27] is a human
and machine-readable data format, which is relying on inden-
tation to structure data instead of delimiters such as brackets or
tags. This makes it especially easy to read and write. However,
it can also be error prone due to mixing white spaces and tabs
and the fact that a single additional white space in a line is hard
to spot but still results in a valid YAML document but with
a different meaning. YAML can be validated using YAML’s
type declarations in the document itself or using externally
defined schema description languages.

The Open Data Description Language (OpenDDL) [28] is
a human-readable format that requires each unit of data to be
explicitly typed. It is composable but there is no validation for
the core format available.

Other widely used serialisation libraries, known for their
speed and compactness, are Protocol Buffers [29], Thrift [30]
and MessagePack [31].

2.3 Robotic Middlewares
Some popular robotic middlewares are reviewed here with
respect to their flexibility in choosing and configuring the
communication.

ROS [1] offers essentially a message based publish sub-
scriber system and a request reply system called services. In
both cases connections are setup by a central broker, ROS
Master, that negotiates and appropriate transport protocol and
sets up a TCP or UDP connection using XMLRPC. This
central master is a single point of failure and also makes
it difficult to distribute the system. Choosing other modes
of communication requires implementing specialised nodes
providing such functionalities. In [32], the message system of
ROS is compared to ZeroMQ’s message queues with respect
to space and time scalability and results were very much in
favour of ZeroMQ. Latency tests showed more than a tenfold
difference between both implementations at a high number of
subscribers.

For the upcoming ROS 2.0 a switch to DDS was an-
nounced. While DDS provides a flexible but complex system,
it is planned to hide most of this complexity, and thus
also flexibility, from its users [33]. Developers are, however,
foreseeing access to DDS’s API for specialised users, who
require full flexibility, DDS offers.

Mechanism Immediacy Cardinality Direction
Request-reply Sync 1-to-1 2-way
Publish-subscribe Async 1-to-many 1-way
Push-Pull Sync many-to-1 1-way
Dealer-Router Async many-to-many 2-way

TABLE 1
Communication mechanisms and their characteristics

(policies).

Orocos [34], [35], [36], [37] offers lock-free data ports im-
plemented using Posix MQueue or a communication transport
conforming to CORBA. Orocos was designed to be indepen-
dent of underlying communication mechanisms, however in
practice, only few bindings to additional transport mechanisms
have been developed.

To the best of our knowledge the SmartSoft framework is
the only robotic middleware that explicitly defines a set of
communication patterns. While they aim for a set of minimal
but usable patterns [38], we explicitly decouple mechanisms
and provide patterns for a set of more specific robotics use
cases. Therefore, both approaches are complementary.

[39] contains a good overview of robotic frameworks and
how they share information between different software mod-
ules. However, the proposed OpenRDK framework only intro-
duces blackboards and data-ports as means of communication.
It makes communication between threads, processes, and over
the network transparent for users by automatically estab-
lishing communication via shared memory or a configurable
TCP/UDP connection.

Microsoft Robotics Studio uses the Decentralized Software
Services Protocol (DSSP). It distinguishes communication
between processes on the same processing unit, different
processing units, and over the network and minimises overhead
accordingly [40]. It uses the SOAP protocol over TCP/IP,
if network communication is required. Since it is limited
to the .NET environment, it does not satisfy interoperability
requirements and, in addition, its development is suspended.

3 MECHANISMS
This section describes a set of mechanisms, listed in TABLE 1,
which are used to formulate the communication patterns in
Section 4.

Firstly, a distinction between synchronous and asynchronous
communication is made. The former implies blocking calls
and ordering of data flow, the latter implies immediately
returning from a receive or send call, which implies polling is
required. Secondly, cardinality changes between mechanisms,
from 1-to-1 communication, over 1-to-many or many-to-1, to
many-to-many. Thirdly, data flow direction is defined as either
unidirectional (1-way) or bidirectional (2-way).

Each of these mechanisms and policies have their merit in
particular use cases, and application developers should take
this into account to design their application accordingly.

126 Journal of Software Engineering for Robotics 1(1), September 2009

3.1 Request-reply
Request-reply, depicted in Figure 1, is a communication mech-
anism that is commonly well-understood and characterised by
bidirectional, synchronous communication. A client connects
to a server, which is offering a set of services, sends a
particular request and waits until it receives a reply. The server,
on the other hand, listens for incoming connections, accepts
the client connection, receives the request and sends a reply
to the client. The reply can, for instance, be the result of some
computation that runs in the background.

Client Server

Request

Reply

peer communication
channel

Fig. 1. Conceptual drawing of Request-reply. In this bidi-
rectional synchronised communication mechanism, the
client sends a request first and blocks until it receives a
reply, while the server waits for a client connection and
then receives a request and responds with a reply.

In a typical request-reply (or client-server) architecture,
communication is 1-to-1 and synchronous. The client blocks
until it receives a reply, i.e. it cannot send multiple re-
quests without having received any replies. Also the server
is blocking until it receives a request. A server can only
send a reply when it is offered a request. It cannot, for
example, broadcast messages to all its connected clients at
a preconfigured frequency.

Some communicaiton libraries, such as ZeroMQ,
transparantly add a many-to-1 request-reply mechanism
between clients and a server. Opening one reply socket at
the server-side is sufficient to accommodate as many request
sockets at client-side as needed.

Robotics use case
An example use case for request-reply would be to decouple
components running with a different time horizon, e.g. a real-
time robot controller and a non-real-time motion generator.
Whenever the robot controller requires new input, a request
is sent to the motion generator to receive a new set point.
The motion generator guarantees a reply within a deterministic
time and this new set point is fed back to the robot controller.
If a non-real-time client requests an update of the whole
trajectory, this can be handled in background by only replacing
the trajectory once the new one is computed.

Synchronous request-reply is also useful to imitate remote
procedure calls (RPC) over a message-oriented technology.

3.2 Publish-subscribe

This mechanism, depicted in Figure 2, is dominating the
robotics community since the introduction of ROS, overshad-
owing other useful mechanisms and patterns.

Publisher

Subscriber Subscriber

peer communication
channel

Fig. 2. Conceptual drawing of the unidirectional asyn-
chronous communication mechanism Publish-Subscribe.
This example shows one publisher sending data to all its
subscribers, either periodically or whenever new data is
available.

It is characterised by unidirectional, asynchronous commu-
nication. A publisher publishes data on a particular channel,
whereas a subscriber, subscribes to this channel and receives
all data put on that channel after its subscription.

Publishers typically don’t need to know about their sub-
scribers, which is both the strength and weakness of this
pattern. It offers scalability, since the publisher’s tasks is to just
publish data, but it also causes slow joiners to miss (possibly
important) data transmitted before they subscribed.

Moreover, publish-subscribe is not suited for reliable mul-
ticast, since by design it kills back-chatter (subscribers are
not allowed to send data to the publisher). This improves
scalability but does not allow coordination between publishers
and subscribers, because publishers are not aware when sub-
scribers have connected, disconnected, disappeared or crashed
and subscribers cannot ask publishers to limit their publishing
rate.

Robotics use case
Many robotics software applications use publish-subscribe
to distribute data between software components. Typical ex-
amples are sensor measurements which are published at a
particular frequency or a localisation component broadcasting
the estimated robot pose to all subscribers.

3.3 Push-pull

This mechanism, depicted in Figure 3, is characterised by
unidirectional, synchronous communication and is used to
synchronise work flow of different computations in different
processes. Typically, a ventilator process divides work (i.e.
computations) in an evenly fashion among a set of worker
processes. After a worker finishes its computations it pushes

Johan Philips et al./ Communication Patterns in Robotics 127

Ventilator
Push

Pull
Worker

Push

Pull
Worker

Push

Pull
Worker

Push

Pull
Sink

peer communication
channel

Fig. 3. Conceptual drawing of a pipeline using push-pull
with a ventilator, a set of workers and a sink process.
In this unidirectional synchronous communication mech-
anism, pushed data is distributed evenly to pull sockets.

the result to a sink process, which pulls all results from all
workers using fair queueing.

This mechanism also suffers from slow joiners, meaning
that fast connecting pull sockets receive more tasks and the
distribution of tasks might not be evenly, which can result in
longer execution time. This issue can be solved by introducing
load balancing algorithms, which require additional commu-
nication.

The main difference between push-pull and request-reply
mechanism is that communication is unidirectional, meaning
replies do not necessarily go the requesting process (Ventilator
and Sink do not have to be the same process).

Compared to publish-subscribe, push sockets have a one of
many policy, while publish sockets have a all of many policy,
i.e. a push socket sends a message to only one connected
pull sockets while a publish socket sends it to all connected
subscribers.

Robotics use case

The pipeline depicted in Figure 3 is useful in multi-robot appli-
cations in which homogeneous robots have equal capabilities
and have to perform a set of tasks in a synchronised way. A
coordinator (ventilator in the figure) can push a new task to one
robot (worker in the figure). Whenever a robot has finished, it
pushes the result to a component responsible for aggregation
(sink in the figure). Another example could be the analysis
of a large point cloud that is split into separate pieces, each
analysed by a different component and the results are merged
afterwards.

3.4 Dealer-Router

This mechanism, depicted in Figure 4, is characterised by bidi-
rectional, asynchronous communication. While request-reply
is considered one to one and publish-subscribe or push-pull
are one to many, some use cases also require a many to many
connection where back-chatter is possible. This bidirectional
support allows to build more reliable communication between
peers with faster failure detection.

A Router is basically an asynchronous version of the Reply
socket used in the request-reply pattern, while a Dealer socket
is an asynchronous version of the Request socket. Because of
the asynchronicity, different combinations are possible: Reply-
Router, Dealer-Reply, Router-Dealer, Dealer-Dealer, Router-
Router. The last three offer full asynchronous many to many
communication and differ in how much bookkeeping is done
behind the scenes. A Router socket keeps track of which
clients sent which requests and automatically adds correct
message envelopes, while a Dealer socket does not.

More concretely, routers are extremely useful in network
configurations with many intermediate points. A message
header will be added by each Router socket in between
source and destination, identifying the sender. This results in a
complete trace of where a message has been and how a reply
could eventually be routed back to the source. All routing
information is added to the response such that each router on
the way back knows how to propagate the message by popping
off one piece of routing information.

In Figure 4, a broker example is shown. The Router socket
ensures replies are forwarded back to the right clients and
the Dealer socket distributes requests to workers offering a
particular service. Using a broker improves scalability, since
clients are not aware of workers and vice versa.

Robotics use case

Router and Dealer sockets are most useful in multi-robot
systems with multi-hop networks to abstract away message
routing or in setups with reliable asynchronous communication
requirements. In a search-and-rescue mission, for example,
each robot could maintain a Router socket for incoming
communication and a Dealer socket for each peer robot, which
connects to that peer robot’s Router socket. The Router socket
ensures replies are propagated back correctly over the Dealer
socket and if communication coverage is limited, one of the
robots can act as relay between two robot teams.

3.5 Communication DSL

All the above-described mechanisms have been formalised
in a set of RFCs and the wire protocol referencing these
mechanisms, ZeroMQ Message Transfer Protocol (ZMTP), is
formalised in [41]. This is already a DSL, mature and time
proven, and hence ready to be exploited in a robotics context,
to a much larger extent than what is currently the case.

128 Journal of Software Engineering for Robotics 1(1), September 2009

Client
Request

Client
Request

Client
Request

Router
Broker
Dealer

Reply

Worker

Reply

Worker

Reply

Worker

peer communication
channel

Fig. 4. Conceptual drawing of a broker using Dealer
and Router sockets. In this bidirectional asynchronised
communication mechanism, the Router socket ensures
replies are forwarded back to the right clients and the
Dealer socket distributes requests to workers offering a
particular service.

4 COMMUNICATION PATTERNS
In this section we will highlight a set of communication
patterns, which are relevant for robot software design, espe-
cially in multi-robot systems. The purpose is not to provide
an exhaustive list, but to clearly indicate that the typical
Publish-Subscribe pattern, which is adopted by many robot
system developers nowadays, can impede your possibilities
with respect to communication while better alternatives exist.

The presented patterns have been useful in our recent
projects and can be implemented using the ZeroMQ socket
library and/or the Zyre library, built on top of ZeroMQ. But
as mentioned already, the validity of the presented patterns
depends nowhere on this particular implementation.

4.1 Heartbeating
A basic prerequisite in reliable communication is to be able
to detect connection issues, disconnects, or peer failures. This
can be easily achieved by heartbeating between peers in the
network. Peers will send, at a particular frequency a small
alive message to each other, indicating the connection is still
up and running. Important to note is that, typically, every
data received from one of the peers, is also considered as a
heartbeat message and heartbeats are sent on the same socket
as data, to act as a keep-alive for the connection.

Figure 5 depicts a conceptual drawing of a heartbeating
scenario between three peers connected to each other with
dealer sockets.

Peer A
Heartbeating

Dealer

Peer B
Heartbeating

Dealer

Peer C
Heartbeating

Dealer

peer communication
channel

Fig. 5. Conceptual drawing of heartbeating scenario
between three peers connected to each other with dealer
sockets. If no data is exchanged between two peers for
a configurable time period, a heartbeat signal is sent to
notify others the peer is still alive. If no heartbeats (or
data) is received after a expiry time, the peer will be
assumed dead and a particular recovery policy can be
applied.

A more advanced way of heartbeating is a two-way ping,
where each peer sends a ping on inactive channels and checks
if it receives a ping ok back from the peers on these channels.

Robotics use case
In a multi-robot application with uncertain network quality,
e.g. in search and rescue missions, heartbeating is essential to
detect poor communication channel quality or peer failures.

4.2 Shared state
In many multi-robot applications it is required to maintain a
single, consistent state which is shared among different robots.
There are different scenarios that require a various amount of
communication. We will discuss some examples in the use
case section below. The most complex shared state example
with respect to communication is shown in Figure 6.

Robotics use case
The simplest use case for a shared state can be applied if
robots or processes can join at any time but require a common
configuration. After joining the network, they request their
configuration from a central server. This simple case would
only require a request-reply mechanism.

The next use case is a so-called blackboard which multiple
entities can use to share data [42]. The ROS parameter server
is an example of a blackboard. A blackboard requires data
management to prevent different entities from reading and
writing to the same data at the same time. This use case
corresponds to having the state update and state request arrows
in Figure 6.

If multiple robots require the same, consistent state, the
previous use case is not sufficient since all robots require
an update of this state whenever it is changed. An example

Johan Philips et al./ Communication Patterns in Robotics 129

World model

publish router pull

state update

state request

updates

subscribe dealer push

Robot 1

subscribe dealer push

Robot 2

peer communication
channel

Fig. 6. Conceptual drawing of shared state pattern be-
tween a world model peer and two connected robot peers.
The goal of this pattern is to maintain a consistent state
between several peers in a network. The world model
publishes new updates to its peers, while each robot peer
can push their update to the world model. Whenever a
new robot peer joins the network it is able to request the
full state through a dealer-router connection.

for this use case is a shared world model, which aggregates
information from multiple robots. To achieve a consistent
shared state between robots, a combination of communication
mechanisms can be used, as depicted in Figure 6:

• Publish-Subscribe to publish updates from the world
model to its peers whenever the world model (or a
relevant part of it) has changed.

• Push-Pull to allow peers to push their update to the world
model.

• Dealer-Router to allow peers to send state requests to the
world model, whenever they join the network or when an
inconsistency due to package loss was detected.

A further example is a collaborate task that requires multiple
robots to execute sub-tasks in a coordinated way. The state
of the task execution is shared among all robots. Each robot
pushes changes related to its own execution to the peer
managing the overall task state, which notifies the relevant
other robots. This allows them to react accordingly (e.g. by
stopping or starting their execution). If a new robot connects,
it can request the execution state to check if it can start with
the execution of its own subtask.

4.3 True peer connectivity & local discovery
In some use cases, where communication quality is uncertain
and dropouts might occur frequently, a centralised solution is
not an option. For example, search-and-rescue missions cannot
rely on communication to be flawless and if one node in the
network acts as a central connection point, all communication
is lost if this node fails or drops out. Moreover, in situations
where a lot of nodes are present, a centralised solution would
introduce a bottleneck since it has to process data from all
peers.

Typically, setting up such a peer-to-peer network requires
configuration files which are synchronised among all peers,

which is cumbersome and becomes unsustainable in large
networks, especially if in a heterogeneous group of robots with
many different development teams involved.

True peer connectivity exemplifies brokerless messaging in
a many-to-many network where all peers can act as clients
or servers and connections are setup properly whenever new
peers arrive. It is, in fact, solving a bootstrapping problem
caused by the asymmetry of TCP (one side binds, while the
other connects): peer A can talk to peer B after peer B has
talked to peer A, but peer B can’t talk to peer A until peer A
talked to peer B.

This problem is solved by broadcasting UDP beacons
containing connection information. Next an asynchronous
request socket (dealer) is setup by each peer receiving the
beacon, which connects to that peer’s asynchrouns reply
socket (router), found in the beacon. To ensure discovery is
synchronised, each peer sends a hello message to every newly
connected other peer. It could happen that the first beacon
from a peer is received after you receive messages from that
peers.

Robot 1

Robot 2 Robot 3UDP beacons

peer communication
channel

Fig. 7. Conceptual drawing of discovery using UDP bea-
cons. Each robots broadcasts UDP packets containing
its inbox endpoint, which is a TCP socket, the other
can connect to. These beacons bootstrap connections
between all robot peers, which could be very dynamic
(coming and going) and creates a full mesh between
peers.

Robot 1

Robot 2 Robot 3

TCP connections

peer communication
channel

Fig. 8. Conceptual drawing of true peers connectivity. Af-
ter each robot has received TCP endpoints from its peers,
it opens a dealer-router connection to them, effectively
creating a mesh.

Figures 7 and 8 demonstrate the UDP beacons and mesh
creation to reach true peer to peer connectivity.

130 Journal of Software Engineering for Robotics 1(1), September 2009

Robotics use case
Bootstrapping a multi-robot application is a common problem
especially if multiple development teams are involved and
need to sync configuration information. Local discovery and
the true peer pattern alleviate application developers from this
issue.

An important robotic use case are search-and-rescue mis-
sions. Due to unreliable communication, robots can lose
connection and re-connect or new robots arrive and need to
be integrated into the existing group of peers.

(Mobile) Sensor Networks are another application for this
pattern. Sensors run out of energy and switch themselves off
or new sensors arrive. Or in some scenarios sensors switch
themselves on and off to conserve energy. All this an be
handled with this pattern.

4.4 Census
This pattern is used whenever one node in a network is
monitoring or querying a set of other nodes to determine how
to proceed. It is a group request-reply pattern, where replies are
dealt with according to the use case. In multi-robot systems,
a coordinator or mission planner, typically needs to query a
set of robots for their capabilities and availability to establish
how a mission can be executed.

Such a coordinator might know in advance how many robots
are in the network, but these robots can come and go, and the
goal of Census is to determine a sensible answer based on the
replies from those robots that are able to contribute.

The pattern is achieved by a router socket at the coordinator
side, i.e. the node sending the query, and dealer socket at the
target nodes. It exploits the two-way many-to-one dialog of
the router-dealer mechanism. Figure 9 depicts an example with
one coordinator and three participants.

Coordinator
Router

queryreply

Dealer
Participant

Dealer
Participant

Dealer
Participant

peer communication
channel

Fig. 9. Conceptual drawing of Census pattern. The co-
ordinator node in the network queries a set of participant
nodes to determine their availability, for instance, in a mis-
sion planning scenario. Each participant can answer with
a reply, and a particular census policy in the coordinator
will determine how many replies are required to proceed.

Robotics use case
This pattern fits perfectly in a multi-robot mission planning
application. The planner queries a set of robots for their

availability and capability and as soon as enough robots have
replied, the mission can start.

4.5 Coordinated publish-subscribe
This pattern addresses the slow joiner problem, publish-
subscribe suffers from. In a typical pub-sub setup, a publisher
dumps data on its output channel without having to care about
how many subscribers are listening. As a result, subscribers
arriving late or requiring some time to setup their subscription,
will not receive the first messages the publisher sends. This
makes coordination difficult with this mechanism.

As a work-around, a separate request-reply channel can be
setup between the publisher and each subscriber to which
subscribers can send a ready signal, when they successfully
setup their subscription. The publisher, on the other hand, will
wait with outputting data until all subscribers have sent this
signal. As a compromise, the publisher needs to know how
many subscribers require its data.

Robotics use case
Whenever critical information is sent over a publish-subscribe
network, this pattern should be considered.

4.6 Distributed logging
A final pattern is common in applications that need extensive
logging of several nodes in a network. One use case is
traceability, for example. It tackles the problem of combin-
ing information from many sources and reduces thereby the
workload on the other nodes.

A passive solution would involve the definition of an
observer and a shared communication channel, which picks up
all chatter and creates a huge file based on that information.
This creates two issues:

• How does the observer distinguish between valuable data
to log and other data flow?

• How do we avoid that all nodes in the network receive
all information that needs logging.

The solution is an active approach, where one node introduces
itself as a logger when it joins the network and supplies and
endpoint to which all other nodes that want to delegate their
logging can connect. This endpoint could be added as a key-
value pair in a header in a hello message when the logger
enters.

The only thing other nodes need to do is check this header
for a shared key defined loggers and connect to that endpoint.
Again the router-dealer mechanism is well-suited for this type
of connection.

Robotics use case
In a multi-robot application with limited communication band-
width or robots with limited processing power, this pattern can
be used to offload data to a more powerful logger node which

Johan Philips et al./ Communication Patterns in Robotics 131

can do data postprocessing. Setting up a separate connection
to the logger limits interference to other peer robots on the
network.

5 DISCUSSION

In this discussion section, we provide some guidelines on how
proposed patterns could be used, which trade-offs developers
should make and we address composability and deployment.

Addressed issues
The patterns and mechanism, introduced in this paper, serve
as examples how to solve various issues encountered in multi-
robot systems deployed in the field. More concretely, following
functionality is addressed:

• dealing with uncertain communication networks (Heart-
beating (4.1), True Peers (4.3))

• dynamically (re)configuring multiple robots (Discovery
& True Peers (4.3))

• synchronising multi-robot mission execution (Cen-
sus (4.4))

• bootstrapping initialisation of coooperative robot appli-
cations (Discovery (4.3))

• tracing of data and intermediate (mission) states (Shared
State (4.2, Distributed Logging (4.6))

• detecting failures or connection drop-outs (Heartbeat-
ing (4.1), Coordinated Pub-Sub (4.5))

• (re)configuring communication protocols and infrastruc-
ture on the fly (Discovery & True Peers (4.3))

Trade-offs
For many communication scenarios in robotic applications,
there are many decisions and trade-offs during system design.
Often there is not just one solution but the scenario can be
solved in different ways and the best choice depends on the
available communication infrastructure. Although, the pattern
should not change, implementations might depend on avail-
able infrastructure: what network connections are available,
is broadcasting enabled, which transports are possible (TCP,
UDP, . . .), is it a multi-hop network?

Some questions that help selecting patterns, mechanisms,
and libraries to implement are:

• How much bandwidth is available?
• How reliable does communication have to be?
• Which communication patterns are most useful for my

use case?
• Does data pose additional requirements for the commu-

nication?
The first two questions are at opposite ends of the design

spectrum. TCP guarantees delivery but uses more bandwidth,
while UDP is more suited for low bandwidth scenarios, but
is unreliable. So if losing few data packages is affordable,
and no delivery guarantee is necessary, UDP is preferable. If

bandwidth varies, as it does in many search and rescue sce-
narios, patterns for discovery and re-establishing connections
might be required. And if large data, such as point clouds
or video streams, have to be communicated, reconfigurable
communication is desirable, e.g. to lower publishing/pushing
frequency or filter data based on the available bandwidth.

Composability
Similar to how the presented communication patterns are built
upon the presented mechanisms, patterns themselves can be
building blocks to solve more complex scenarios. For example,
the collaborative robot task execution use case of the shared
state pattern (4.2) could require a redistribution of sub-tasks if
robots disconnect. In that case, this pattern would be composed
with the heartbeating pattern from section 4.1, meaning that
robots send heartbeats to the entity that manages the common
state. If heartbeats of a robot fail to arrive for some time, this
entity can redistribute its sub-task to another one.

Deployment
The described communication mechanisms and patterns occur
on multiple levels of abstraction. Altough, in this paper,
emphasis was on multi-robot communication over a network,
the presented communication patterns are independent of how
the robot system (of systems) is deployed, i.e. communication
can occur

• between threads within one process,
• between processes on the same machine,
• between processes on different machines in the same

network,
• between processes on different machines in different

networks.
If communication is within a machine and does not go over
the network, data should be shared and not sent to avoid over-
head of serialisation and wire protocols. Discussing methods
for efficient communication on the same machine [43] are
beyond the scope of this paper. Some frameworks [40], [39]
configure communication automatically with respect to how
communicating entities are deployed.

6 CONCLUSION

This paper presented a list of communication mechanisms and
patterns to solve typical communication issues encountered in
multi-robot systems. It is argued that communication should
deserve more attention in robot software design and should be
modelled first and separated from the choice of communication
middleware. In multiple robotics research projects, in which
our lab is involved, these patterns have proved useful.

In the discussion section, a motivated list of the trade-
offs, developers have to think about, has been provided, and
these trade offs have been linked to the mechanisms and
patterns presented before. Also, the “deployment context” of

132 Journal of Software Engineering for Robotics 1(1), September 2009

the software components has been addressed and reusability
examples by composing patterns were presented.

In summary, the emphasis of this paper is to provide a
larger but still manageable toolbox to robotics developers to
cover many use cases for communication support in complex
robotics systems.

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, no. 3.2, 2009, p. 5.
1, 2.3

[2] Object Management Group, “Data Distribution Service (DDS),”
http://www.omgwiki.org/dds/, http://www.omg.org/technology/
documents/formal/data distribution.htm, [Online; accessed 31-August-
2015]. 1, 2.1

[3] M. Lutz, D. Stampfer, A. Lotz, and C. Schlegel, “Service robot control
architectures for flexible and robust real-world task execution: Best prac-
tices and patterns,” in Workshop Roboter-Kontrollarchitekturen, 2014. 1

[4] “Tibco enterprise message service,” http://www.tibco.be/products/
automation/enterprise-messaging/enterprise-message-service, [Online;
accessed 1-September-2015]. 2.1

[5] “Rabbitmq,” http://www.rabbitmq.com/features.html, [Online; accessed
1-September-2015]. 2.1

[6] Apache Software Foundation, “Apache Qpid, messaging built on
AMQP,” http://qpid.apache.org/, [Online; accessed 1-September-2015].
2.1

[7] ——, “Apache Kafka, a high-throughput distributed messaging system,”
http://kafka.apache.org, [Online; accessed 31-August-2015]. 2.1

[8] ——, “Apache Camel, a versatile open-source integration framework,”
http://camel.apache.org/, [Online; accessed 1-September-2015]. 2.1

[9] G. Hohpe and B. Woolf, Enterprise Integration Patterns : Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley, 2004.
2.1

[10] “Advanced message queuing protocol (AMQP),” http://www.amqp.org,
[Online; accessed 1-September-2015]. 2.1

[11] Apache Software Foundation, “Apache Avro, a data serialization sys-
tem,” http://avro.apache.org, [Online; accessed 31-August-2015]. 2.1

[12] Object Computing, Inc (OCI), “Opendds,” http://www.opendds.org/
Article-Intro.html, [Online; accessed 31-August-2015]. 2.1

[13] ——, “ADAPTIVE Communication Environment (ACE),” http://www.
theaceorb.com/product/aboutace.html, [Online; accessed 31-August-
2015]. 2.1

[14] K.-J. Kwon, C.-B. Park, and H. Choi, “Ddss: A communication middle-
ware based on the dds for mobile and pervasive systems,” in Advanced
Communication Technology, 2008. ICACT 2008. 10th International
Conference on, vol. 2, Feb 2008, pp. 1364–1369. 2.1

[15] “Extensible messaging and presence protocol (XMPP): Core,” https://
tools.ietf.org/html/rfc6120, [Online; accessed 13-July-2015]. 2.1

[16] “Tech pages/IoT systems,” http://wiki.xmpp.org/web/Tech pages/IoT
systems, [Online; accessed 13-July-2015]. 2.1

[17] iMatix Corporation, “Zeromq,” http://zeromq.org/, 2007-2014, [Online;
accessed 1-September-2015]. 2.1

[18] ——, “Zeromq, the guide,” http://zguide.zeromq.org/page:all, 2007-
2014, [Online; accessed 31-August-2015]. 2.1

[19] “Documents associated with CORBA,” http://www.omg.org/spec/
CORBA/3.3/, [Online; accessed 13-July-2015]. 2.1

[20] “Common format and mime type for comma-separated values (CSV)
files,” https://www.ietf.org/rfc/rfc4180.txt, [Online; accessed 13-July-
2015]. 2.2

[21] “Extensible markup language (XML) 1.0 (fifth edition),” http://www.
w3.org/TR/REC-xml/, [Online; accessed 13-July-2015]. 2.2

[22] “The javascript object notation (JSON) data interchange format,” https:
//tools.ietf.org/html/rfc7159, [Online; accessed 13-July-2015]. 2.2

[23] “Introducing JSON,” http://json.org/, [Online; accessed 13-July-2015].
2.2

[24] “JSON schema: core definitions and terminology,” https://tools.ietf.org/
html/draft-zyp-json-schema-04, [Online; accessed 13-July-2015]. 2.2

[25] “json-schema.org - the home of JSON schema,” http://json-schema.org/,
[Online; accessed 13-July-2015]. 2.2

[26] “The GeoJSON format specification,” http://geojson.org/geojson-spec.
html, [Online; accessed 13-July-2015]. 2.2

[27] “YAML: YAML Ain’t Markup Language,” http://yaml.org/, [Online;
accessed 13-July-2015]. 2.2

[28] “Open data description language (OpenDDL),” http://openddl.org/, [On-
line; accessed 13-July-2015]. 2.2

[29] “Google protocol buffers,” https://developers.google.com/
protocol-buffers/docs/overview/, [Online; accessed 31-August-2015].
2.2

[30] Apache Software Foundation, “Apache Thrift, scalable cross-language
services implementation,” http://thrift.apache.org/, [Online; accessed 31-
August-2015]. 2.2

[31] “Messagepack),” http://msgpack.org/, [Online; accessed 31-August-
2015]. 2.2

[32] A. Shakhimardanov, N. Hochgeschwender, M. Reckhaus, and G. K.
Kraetzschmar, “Analysis of software connectors in robotics,” in In-
telligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, Sept 2011, pp. 1030–1035. 2.3

[33] “ROS on DDS,” http://design.ros2.org/articles/ros on dds.html, [Online;
accessed 13-July-2015]. 2.3

[34] P. Soetens, “RTT: Real-Time Toolkit,” http://www.orocos.org/rtt, [On-
line; accessed 13-July-2015]. 2.3

[35] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion
control core of the Orocos project,” in IEEE International Conference
on Robotics and Automation, 2003, pp. 2766–2771. 2.3

[36] P. Soetens and H. Bruyninckx, “Realtime hybrid task-based control
for robots and machine tools,” in IEEE International Conference on
Robotics and Automation, 2005, pp. 260–265. 2.3

[37] P. Soetens, “A software framework for real-time and distributed robot
and machine control,” Ph.D. dissertation, Department of Mechanical
Engineering, Katholieke Universiteit Leuven, Belgium, May 2006, http:
//www.mech.kuleuven.be/dept/resources/docs/soetens.pdf. 2.3

[38] C. Schlegel, “Communication patterns as key towards component-based
robotics,” International Journal of Advanced Robotic Systems, vol. 3,
no. 1, pp. 49–54, 2006. 2.3

[39] D. Calisi, A. Censi, L. Iocchi, and D. Nardi, “Design choices for modular
and flexible robotic software development: the openrdk viewpoint,”
Journal of Software Engineering for Robotics, vol. 3, no. 1, pp. 13–
27, 2012. 2.3, 5

[40] J. Jackson, “Microsoft robotics studio: A technical introduction,”
Robotics & Automation Magazine, IEEE, vol. 14, no. 4, pp. 82–87,
2007. 2.3, 5

[41] iMatix Corporation, “Zmtp: Zeromq message transport protocol,” http:
//rfc.zeromq.org/spec:37/ZMTP, 2015, [Online; accessed 31-August-
2015]. 3.5

[42] B. Hayes-Roth, “A blackboard architecture for control,” Artificial Intel-
ligence, vol. 26, no. 3, pp. 251–0–321, 1985. 4.2

[43] K. Robbins and S. Robbins, UNIX Systems Programming: Communica-
tion, Concurrency, and Threads. Prentice Hall PTR, 2003. 5

Johan Philips received his Licentiaat in de In-
formatica (M. Sc. in Computer Science) in 2005,
his Master of Artificial Intelligence in 2006, and
the Ph. D. degree in Robotics in 2012, all from
the University of Leuven. Currently, he is a post-
doctoral research associate in the Department
of Mechanical Engineering at the University of
Leuven, conducting research on communication
and coordination in multi-robot systems in half a
dozen European research projects. His research
interest covers robot software design, distributed

systems and multi-agent coordination and control.

Johan Philips et al./ Communication Patterns in Robotics 133

Nico Hübel received his Dipl.-Ing. (M.Sc.) in
Engineering Cybernetics from the University of
Stuttgart, Germany, in 2010. From 2010 to 2014
he was research assistant at the Institute for
Dynamics and Control, ETH Zurich, Switzerland.
Since 2014 he is a Research Scientist in the
Robotics Research Group of KU Leuven. He
was a research scholar at Tokyo Institute of
Technology and a member of R&D at KUKA
Robotics. His research interests are in the area
of autonomous robotics, learning, control sys-

tems theory, and software engineering for these areas.

Herman Bruyninckx obtained the Masters de-
grees in Mathematics (Licentiate, 1984), Com-
puter Science (Burgerlijk Ingenieur, 1987) and
Mechatronics (1988), all from the KU Leuven,
Belgium. In 1995 he obtained his Doctoral De-
gree in Engineering from the same university,
with a thesis entitled “Kinematic Models for
Robot Compliant Motion with Identification of
Uncertainties.”

He is full-time Professor at the KU Leuven,
and held visiting research positions at the Grasp

Lab of the University of Pennsylvania, Philadelphia (1996), the Robotics
Lab of Stanford University (1999), and the Kungl Tekniska Hogskolan,
Stockholm (2002). Since 2014, he has a partime affiliation with the
Eindhoven University of Technology.

His current research interests are on-line Bayesian estimation of
model uncertainties in sensor-based robot tasks, kinematics and dy-
namics of robots and humans, and the software engineering of large-
scale robot control systems. In 2001, he started the Free Software
(”open source”) project Orocos (http://www.orocos.org), to support his
research interests, and to facilitate their industrial exploitation.

He participated in about a dozen European research projects on
robotics, with a focus in the recent years on the software engineering
aspects. In October 2014, he received an honorary doctorate from
the University of Southern Denmark, for his leading role in software
development and research in robotics.

C Hierarchical Hypergraphs

This section contains a paper submitted to the special issue on Domain-Specific Languages and Models for
Robotic Systems of the Journal of Software Engineering for Robotics. While the presented domain specific
language was not used to explicitly model the PicknPack use case, the models presented in section 3 do
confirm to the meta model introduced in the paper.

66

Journal of Software Engineering for Robotics X(X), XX 2015, 1-100
ISSN: 2035-3928

Hierarchical Hypergraphs for
Knowledge-centric Robot Systems: a

Composable Structural Meta Model and its
Domain Specific Language NPC4

Enea Scioni,1,2 Azamat Shakhimardanov,1 Nico Hübel,1 Markus Klotzbücher,1
Hugo Garcia,1 Sebastian Blumenthal,1,4 Herman Bruyninckx1,3

1KU Leuven, Belgium
2Università di Ferrara, Italy

3Eindhoven University of Technology, the Netherlands
4Locomotec, Augsburg, Germany

Abstract—Many robotics applications rely on graph models in one form or another: perception via probabilistic graphical models
such as Bayesian Networks or Factor Graphs; control diagrams and other computational “function block” models; software component
architectures; Finite State Machines; kinematics and dynamics of actuated mechanical structures; world models and maps; knowledge
relationships as “RDF triples”; etc. In traditional graphs, each edge connects just two nodes, and graphs are “flat”, that is, a node does
not contain other nodes.
This paper advocates the research hypothesis that hierarchical hypergraphs are a better structural meta model : (i) an edge can
connect more than two nodes, (ii) the attachment between nodes and edges is made explicit in the form of “ports” to provide a uniquely
identifiable view on a node’s internal behaviour, and (iii) every node can in itself be another hierarchical hypergraph. These properties
are encoded formally in a Domain Specific Language (or “meta meta model”), called “NPC4”, built with node, port, connector, and
container as primitives, and contains and connects as relationships. The formal model of NPC4 is designed to maximally support its
composability as a meta modelling language, for both the structural and behavioural parts of more concrete DSLs that can be built on
top of it, each in a specific domain context.
NPC4 introduces a particular primitive, the container, to support overlapping contexts. It targets the following major targets in
knowledge-centric robotics systems: (i) various levels of abstraction in domain models, (ii) “multiple inheritance” from (or rather
“conformance to”) different knowledge domains, and (iii) connecting one or more domain DSLs to the same software infrastructure
in which they all have to be “activated”.

Index Terms—Domain Specific Language, meta meta model, composability, structural modelling, knowledge representation

• This work was supported by the University of Leuven Geconcerteerde
Onderzoeks-Acties Model based intelligent robot systems and Global
real-time optimal control of autonomous robots and mechatronic systems,
the University of Leuven IOF Kennisplatform Transition, and from the
European Union’s 7th Framework Programme (FP7/2007–2013) projects
BRICS (FP7-231940, Best Practice in Robotics), ROSETTA (FP7-
230902, Robot control for skilled execution of tasks in natural interaction
with humans; based on autonomy, cumulative knowledge and learning),
RoboHow.Cog (FP7-288533, Web-enabled and experience-based cognitive
robots that learn complex everyday manipulation tasks), SHERPA (FP7-
600958, Smart collaboration between Humans and ground-aErial Robots
for imProving rescuing activities in Alpine environments), and PicknPack
(FP7-311987, Flexible robotic systems for automated adaptive packaging
of fresh and processed food products.

1 INTRODUCTION

Everywhere in robotics, graph-based structures show up as
(sometimes formal) model of concepts, knowledge, software,
systems, and so on. Graph models are good at separating the
structural and behavioural parts of a design, that is, the graph
only represents which nodes interact with which other nodes,
without describing the dynamical behaviour inside the nodes,
or of the interaction dynamics between nodes. Below is a non-

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

www.joser.org - c© 2015 by E. Scioni, A. Shakhimardanov, N. Hübel, M. Klotzbücher, H. Garcia, S. Blumenthal, H. Bruyninckx

2

exhaustive list of examples in robotics, where nodes, edges and
(sometimes) ports are the building blocks of the graph-based
structural models. The Appendix provides more details about
how the structure in each of the specific domains supports
the domains’ behaviour; the insight that the reader should get
from this list of Figures and examples is that a quite limited
number of modelling primitives suffice to support all of these
robotics sub-domains. And the objective of the paper is to
formalize this insight into a pragmatically reusable Domain
Specific Model for the structural properties of all aspects of
robotics systems. The concrete examples are:

• software architectures, as in Figs. 1–2.

functional
Computation

constraint
flow

monitor Computation

Coordinator

constraint
flow

Configurator

events

functional
Computation

constraint
flow

monitor Computation

Coordinator

constraint
flow

Configurator

events

d
a
ta

tra
n

sa
ctio

n
s

monitor Computation

Coordinator
events

composite Component

Configurator

Composer Composer

Scheduler
Scheduler

Scheduler

Composer

Figure 1. Structural model of a composite component
software architecture [1]. Nodes represent software re-
ponsabilities; edges represent data flow.

• kinematics and dynamics of actuated mechanical struc-
tures, as in Fig. 3.

• Finite State Machines, as in Fig. 4.
• probabilistic graphical models such as Bayesian Net-

works or Factor Graphs, Figs 5–6.
• control diagrams and other “data flow” computational

models, such as the Cartesian position control scheme
of Fig. 8.

• knowledge representation networks, such as the “semantic
web”.

• web applications, in which HTML5 [2] brings a signifi-
cant change in the way that structure and behaviour are
being separated in a clean but composable way.

All graph models above represent the structure of the inter-
actions that are represented by their edges, and their nodes
are the containers for the different kinds of behaviour that
the model represents. Some models support hierarchy (i.e.,
a node can contain a full graph in itself), and some support
hyperedges (i.e., one edge can link more than two nodes).
Some models introduce the concept of a port (such as software
models, Bond Graphs, or HTML5) as a “view” on a part of

sensors actuators

software
hardware

actuator
control

joint
control

Cartesian
control

"current"
setpoint

actuator
constraint

joint
constraint

Cartesian
constraint

m
o
ti

o
n

 c
o
n

tr
o
l
s
ta

c
k

actuator
value

joint
motion

Cartesian
motion

a
ct

io
n

 d
a
ta

 b
u

s

p
e
rc

e
p

ti
o
n

 d
a
ta

 b
u

s

motion
constraints

actual
motion

joint &
actuator

constraints

actuator
constraints

Figure 2. “Reference architecture” for a motion control
stack of software components. The nodes represent con-
trol or input/output activities; the edges are lines connect-
ing the ports, which give access to variables inside nodes.

Cartesian
point

trajectory

joint
limits

Cartesian link
trajectory

rigid connection
to environment

contact with
environment

centre of
gravity
trajectory

soft Cartesian
point trajectory

sensor
space

joint stiffness
and damping

soft interlink
interaction

Figure 3. A generic tree-structured kinematic chain
with possible task requirements on the chain’s joints and
links. Nodes represent actuated joints, rigid-body links, or
a task’s interaction dynamics (hard motion constraints ,
or soft “impedances”); edges represent (dynamics-less)
connections between nodes.

the internal state of the node it is connected to, and (hence)
serving as an explicit “attachment point” for interactions via
edge connectors.

The central research hypothesis in this paper is that
the concept of the hierarchical hypergraph is a good for-
mal representation to cover all the compositional structures
discussed above, more particulary, via the property (“has-
a”), containment and connection (“interacts-with”) primitives.
(This formalized structure is a special case of a mereotopology,
see [3] and references therein.)

3

State
2.1

State
2.2

State1

E_1 E_2

State2
E_21

State
2.1

E_24
E_23

E_22

Figure 4. An hierarchical Finite State Machine. Nodes
represent states, and edges represent state transitions.

X(k)

Y(k)

U(k)

X(k+1)

Y(k+1)

U(k+1)

X(k-1)

Y(k-1)

U(k-1)

Figure 5. A simple dynamic Bayesian network, repre-
senting for example a Kalman Filter. The nodes contain
the random variables in the network, and the edges rep-
resent probabilistic relationships between random vari-
ables.

Obviously, each application domain needs more than only
a structural model; the approach in this paper makes sure that
structure and behaviour are strictly separated, but at the same
time composability is a first-class design driver, and a system-
atic method is explained to attach an application domain’s own
behavioural model(s) (its “is-a” relationships) to the structural
model represented by hierarchical hypergraphs.

Support for hierarchical hypergraphs, including ports, as
first-class citizens in the model is a rare exception, e.g., in
the examples above, only FSMs, Factor Graphs and HTML5
have them in their models, at least implicitly. Nevertheless,
hierarchical, port-based, multi-node interactions are common
in all engineering disciplines, as major modelling instruments
to deal with complexity. Most practitioners in the field of
(robotics) system design are often not aware of the extent
to which their modelling languages and tools restrict their
flexibility in modelling the designs of their systems.

Even robotics projects with a high software engineering
focus1 do not have explicit structural models, since they

1. Including popular open source projects such as ROS, Orocos, OpenCV,
PointCloudLibrary, MoveIt, and so on.

x y z

u

x y z

uBayes network

Factor graph

Probabilistic relationship:

Figure 6. A probabilistic relationship and its correspond-
ing Bayesian Network and Factor Graph representations.
The Factor Graph is one of the few examples where
hyperedges are first-class citizens of the graphical model;
the advantage is visible in the figure: the Factor Graph
can be linked one-to-one to the semantics it represents
(i.e., the probabilistic relationship), while the mainstream
Bayesian Network representation can not.

X

sat

n

Figure 7. The so-called plate notation is one of the
few examples where hierarchy is a first-class citizen of
probabilistic graphical models. The plate is the rounded
rectangle, and it represents n copies of the graph it
contains, in this case, just one single random variable sat
in the round node.

provide only source code. At best, “models” are only used as
non-formalized means of documentation, to be understood by
the human developers, but not by the robots themselves during
their runtime activities, nor by software tooling to support
(semi) automatic code generation. There are a few exceptions
that (i) provide explicit formal models (for example, Proteus
[4], or OpenRTM [5], [6]), and (ii) support hierarchical hy-
pergraph models implicitly (for example, Matlab/Simulink or
20Sim, the ROCK toolchain for Orocos [7], [8], [9], [10], or
the “plate notation” in probabilistic graphical models, Fig. 7).

4

IDaq = J�1�ax � _J _q�IAK

FPK
FVK

KvKp
++ ++

+ -
-td(t)

tdd(t) teed
tee

_q(t)
q(t)aqax_td(t) FD� dist

+

� =cM(q)aq+ bc(_q; q)+ bg(q) + +� act M(q)�q + c(_q; q)+ g(q) = �SYSTEM

Figure 8. A generic Cartesian control diagram for po-
sition controlled robots. The nodes contain computations
on variables in the diagram, and the edges represent (di-
rected) transfer of such variables between nodes; Hierar-
chy is typically not represented explicitly, but is present in
many control schemes, via the implicit structural primitive
of cascaded control loops, that is, an “outer” control loop
around an “inner” loop.

None of those, however, support the full flexibilty that the
hierarchical hypergraph DSL of this paper provides, to model
the structural aspects of complex systems. This restriction
becomes a more and more important design bottleneck in
robotics, since modern robotic systems are increasingly de-
pending on runtime use of knowledge, and the “flat triple
spaces” that are standard in common RDF or OWL based [11]
semantic web approaches to knowledge representations [12]
have proven to be extremely difficult to maintain, adapt, reason
with, and compose. The latter problem, more particularly,
is caused by the lack of support for hierarchy as a first-
class primitive in OWL or RDF, which, amongst other things,
makes it hard to formalize knowledge about relationships or
constraints.

Core idea and objectives. The aim of this paper is to
provide better modelling flexibility and methodology to robot
system developers, by introducing them to an hierarchical hy-
pergraph meta meta model, The NPC4 meta model represents
the structural properties—hierarchical hypergraphs— of all
the use cases introduced before, in a fully formal, computer-
processable way, and with a clean separation between struc-
ture and behaviour. Structure models which subsystems inter-
act with which other ones, and how their internal structure
looks like; and behaviour models the “dynamics” of each
of interconnected subsystems, and how the interconnections
influence those subsystem dynamics.

A meta model (or, modelling language) is a language with
which to create concrete models of a system in a particular
application domain or context. A meta meta model is a
domain-independent language to support the creation of
domain-dependent meta model languages. See [13], [14],
[15], [16], [17] for more details on DSL in general; some

examples of DSLs in robotics are [18], [19], [20], [21], [22],
[23].

This paper’s refutable research hypothesis is that NPC4
provides:

• the optimal separation between structure and behaviour;
• the optimal methodology of making a new DSL by only

having (i) to specialize the interpretation of NPC4’s prim-
itives (node, port, connector, container) to the domain,
and (ii) to add constraints to the contains and connects
relationships.

• the minimal set of language primitives and relationships
that supports all DSLs.

In addition to the envisaged optimal reuse of modelling con-
cepts, the systematic approach is also expected to create a step
change in reuse of software:

• reuse of syntactical parsing code: the structure of a DSL
is visible through the language’s syntax, and since NPC4
provides a common structural basis to DSL builders, they
should be able to reuse a lot of the parsing software.

• reuse of infrastructure code: every DSL that is being
introduced in a robotics system requires more support
from the system’s infrastructure code than only the re-
alisation of the modelled domain functionalities, e.g.,
logging, messaging, debugging, tracing, and so on. NPC4
provides all the “hooks” to connect these non-functional
software requirements to.

• reuse of “Model-to-X” transformation tooling: models
are declarative specifications of domain functionalities,
and inevitably needs to be transformed into code that
supports turning the declarative specifications into pro-
cedural code, and basing different DSLs onto the same
NPC4 core simplifies reuse of such model transformation
tools.

Overview. Section 2 explains the semantics of what this
paper understands under the term “hierarchical hypergraph”,
since that concept is, surprisingly, not part of the main-
stream literature. It also creates a fully formal language
for hierarchical hypergraphs, in the form of a Domain
Specific Language (“DSL”, or “meta modelling language”).
The language is called NPC4, inspired by the first let-
ters of its core primitives and relationships: node, port,
connector, container, and, respectively, contains
and connects. The contains relationship represents hi-
erarchy, the connects relationship represents hyperedges.
Section 3 presents constraints and properties over the NPC4
language, while Section 4 discusses about composability fea-
tures of the language. Finally, Section 5 revisits some use cases
introduced above in more detail, and explains how NPC4 can
be used as the basis for their structural models.

5

B

A

XC ...

Figure 9. A simple Bayesian network in which the
traditional graph structure mis-represents the probabilistic
relationship between the random variables in the nodes:
the network is a graphical representation of the n-ary
probabilistic relationship p(A|B,C, . . . ,X), while the ar-
rows suggest only binary interactions of the form p(A|B).
In other words, the structural model is not a faithful
representation of the system, and does not support com-
posability. The Factor Graph of Fig. 6 provides a graphical
model that is a better representation of the real n-ary
probabilistic relationship.

2 HIERARCHICAL HYPERGRAPHS

This Section proposes the adoption of hierarchical hyper-
graphs in the robotics domain, instead of traditional graphs,
as its main structural model. The motivation is based on the
list of examples in Sec. 2.1 that illustrate various ways in
which the use of traditional graphs introduces erroneous ways
of representing and reasoning about complex systems. The
situation is critical since many users of graph models are not
aware of these problems, or cannot formulate them by lack of
an appropriate and semantically well-defined language; such
a language, NPC4, is then introduced in Sec. 2.4.

2.1 Motivations and bad practices

Traditional graphs have nodes and edges as model primitives,
and most practitioners feel very comfortable with using them
as graphical primitives for modelling. However, traditional
graphs have a rather limited expressivity with respect to
modelling the structural properties of a system design.
The paragraphs below explain commonly occurring “bad
practices” in using traditional graphs.

An edge can only connect two nodes, while many struc-
tural interactions are so-called n-ary relationships, that is,
more than two (i.c., “n”) entities interact at the same time,
and influence each other’s behaviour.

Obvious examples of n-ary relationships are “knowledge
relationships”, such as the (still extremely simple!) Bayesian
network of Fig. 9. But also motion controllers of robotics
hardware must deal in a coordinated way with all the links,
joints, sensors, actuators, and their interactions via the robot’s
kinematic chain.

The structural model is flat, in that all nodes and edges
in the model live on the same “layer” of the model. However,

hierarchy has, since ever, been a primary approach to deal with
complexity in design problems by allowing to interconnect
various levels of abstraction when modelling a system.

For example, a kinematic model of a robot structure might
be enough for motion planning, but the dynamics of its
actuators might be needed to design the robot’s motion con-
trollers. Since the actuators are mechanically connected to the
kinematic chain of the robot, a hierarchical structural model
would apply perfectly to support the separation between the
kinematic and dynamic models of the same robot.

Also knowledge relationships are prominent examples of
where the problem of flat structural models is very apparent:
here, hierarchy is equivalent to context, that is, the meaning of
a concept depends on the context in which it is used. Context
is an indispensable structure in coping with the information
in, and about, complex systems.

Note that the kinematic chain example above is about mod-
elling behaviour. This paper’s research hypothesis considers
context and behaviour as the two only modelling aspects that
require hierarchy; as the other parts of the paper’s research
hypothesis, this one could be easily refuted by giving an
example of a third necessary structural modelling aspect that
requires hierarchy.

A third prominent “bad practice” example of (too) “flat”
structural models are the popular (open source) robotics
software frameworks, like ROS or Orocos: they do not
support hierarchical composition of software components,
the consequence being that users always see all the dozens,
or even hundreds, of nodes at the same time. This makes
understanding, analysis and debugging of applications
difficult. (This software architecture use case has parts that
fall in the “context” as well as in the “behaviour” categories
of hierarchical structure.)

Edges have no levels of abstraction, and just serve as
topological symbols representing the immutable, logical state
of two (or more) nodes to be “connected” or “not connected”.

However, almost all of the use cases in the introduction
have edges that can exhibit dynamics when opened up to a
deeper level of abstraction; e.g., the communication channels
between software components (time delays, buffering,. . .),
the mechanical dynamics of joints and actuators in robotics
hardware, and so on. The structure introduced in this paper
advocates a clear and systematic rule: behaviour is only
placed in nodes, at any particular level of abstraction of the
model. When going to a more detailed level of abstraction, it
is possible that behavioural nodes “show up” in a part of the
model that was just an edge at a higher level of abstraction.
For example, an ideal kinematic joint is a perfect constraint
between interconnected links, but when going to a more
detailed dynamical model level, behaviour will show up in
the form of friction, or energy transmission dynamics inside
the electrical actuator.

6

Interactions are uni-directional. Most modelling ap-
proaches use directed edges, that is, the graph assumes that
each “partner” in an interaction can influence one or more
other “partners”, without ever being influenced itself by those
partners in any way. Nevertheless, bi-directional interactions
are the obvious physical reality: interactions (including man-
machine interactions) exchange energy in both directions.

Again, the recent ROS (and, to a lesser extent) Orocos
practice (but also earlier practice in robotics such as [24]),
illustrate this problem: software nodes are only exchanging
data with each other via so-called publish-subscribe protocols,
which work only in one direction, namely from the publisher
node to the (possibly multiple) subscriber nodes. In addition,
publish-subscribe introduces a policy (hence, “behaviour”) of
how messages are being delivered from publisher to subscriber.
Few frameworks allow to separate the structure and behaviour
of their communication interactions; one of the better exam-
ples is ØMQ [25].

Another “bad practice” are control diagrams: the directed
edges in, for example, Simulink [26] diagrams, can only rep-
resent input/output interactions between computational nodes,
which prevents a “downstream” computation to influence the
behaviour of the “upstream” nodes; saturation of a “block” or
“channel” being one of the simplest and common examples of
this problem.

Nevertheless, there are other computational tools, like 20Sim
[27], that do not oblige their users to use only uni-directional
interactions, since they are based on the so-called Bond Graph-
based modelling primitives [28], [29], [30], [31], that allow
to represent the physical bi-directional energy interaction of
dynamical nodes.

The opposite of the later problem also occurs: directed
arrows are used in graphical notations while the represented
interaction is really bi-directional, hence resulting in semanti-
cally misleading or too constraining models. For example, the
probabilistic information in Bayesian networks does “flow” in
both directions along an edge. Also in this context, hierarchi-
cal2 models are (very slowly!) starting to be used [32], [33],
[34], [35] because of the complexity of integrating “local”
and “global” features in sensor data, and of combining them
with the knowledge available about the objects whose sensor
features the system can observe.

2.2 Primitives, relationships and their semantics

This Section introduces a minimal and complete set of prim-
itives and relationships to describe a semantically consistent
structural model. The concepts of hyperedges and hierarchy,
as key additions to existing graph modelling traditions, aim to

2. The hierarchy discussed in this paper is that of nodes and/or edges being
compositions of other nodes and edges themselves. This is a semantically
different kind of hierarchy then what is called hierarchical Bayes models in
probabilistic modelling, that indicate models whose topology is a tree with
the same kind of nodes at each layer of the tree.

prevent the implicit, domain-specific assumptions discussed in
the previous Section.

The core of the language are the structural relationships
of has-a, connects and contains between the model
primitives of Node, Port, Connector and Container.
The semantic role of a Node is to host a behaviour, while
a Connector describes the interaction relationship between
the dynamics inside multiple Nodes by “connecting“ them.
Formally, a Connector realises an hyperedge, since the
relationship is not unary but n-ary, and is bi-directional
by default (that is, unless explicitly constrained not to be
so.) In traditional graph modelling, a duality property exists
between Node and Connector: both can be seen as vertex
or hyperedge.

However, this symmetry disappears as soon as the contain-
ment relationship is introduced. In fact, the hierarchy concept
is orthogonal with respect to the hyperedge connection con-
cept. Hierarchy is expressed by the relationship contains
applied to the Node primitive: a Node can contain a full hier-
archical hypergraph in itself. The latter is semantically justified
by observing that the hosted behaviour by the Node can be
structurally represented as composition of internal Nodes and
the interactions between them. (Note that composition is a
primary design driver of the proposed hierarchical hypergraph
approach.)

To achieve full expressiveness of the structural model,
the Port is formally introduced as the third primitive in
the language. A Port offers a specific view of a Node,
exposing a specific part of a Node’s internal behaviour, and
creates structure in the connects relationships across hierarchy
levels. As a consequence, the connects relationship involves
directly the Port primitive, and not Nodes, as it will be
illustrated in the following Section.

Finally, a primitive called Container provides a grouping
feature, allowing to add extra semantic knowledge to a selected
subset of primitives; such “grouping” is known under various
names, such as: “context”, “namespace”, “scope”, etc.

2.3 Design drivers
The major design drivers to ground the hierarchical hyper-
graph concepts as a Domain Specific Language are minimality,
explicitness and composability:

Minimality. The model represents only interconnection and
containment structure. It serves as skeleton to represent the
informations about the structural model, but it does not make
any assumtion on the behaviour of such structure.

Explicitness. Every concept, and every relationship be-
tween concepts, gets its own explicit keyword:
• Node for the concept of behaviour encapsulation.
• Connector for the concept of behaviour interconnec-

tion.
• Port for the concept of access between encapsulated

behaviour and each of its interconnections.

7

`````````Primitive
Primitive

Node Port Connector Container

Node contains has-a contains† contains
Port part-of - connects is-contained*
Connector is-connected (port)+ connects - is-contained*
Container contains contains contains contains

Table 1
Overview of the primitives introduced by NPC4 and the relative structural relationship allowed between them. The table reads has

{primitive-row} {relationship} {primitive-column}, e.g. “a Node (can) contains a Node”.
Note: (i) ∗ it is not a relationship in NPC4, passive form; (ii) + it is not a formal relationship in NPC4, but informally a Connector is indirectly

connected to a Node through a port; (iii) † as property of a well-formed Connector, see Sec. 3.1.

A

B

C X

i

j

p

q r

n

s

m

T

u

D

Figure 10. Generic example of a hierarchical hypergraph
model. Node T is at the top of the hierarchy, and allows
to refer to the whole model from within other models.
Nodes A and X are contained by T, as is Container m;
Nodes B, C and D are contained by A. Connectors i
and j link Ports on Nodes. All Ports have Connector
docks internal and external to the Node they belong to.
Container m gives a context to Node A and its internals,
but not to Node X or Connector i.

• Container for the concept of packaging a model in an
entity that can be refered to in its own right.

• contains for the relationship of composition into hi-
erarchies.

• connects for the relationship of composition via inter-
action.

Composability. The DSL is intended to represent only
structure, and is, hence, designed to be extended (or com-
posed) with behavioural models: it allows to connect other
models to any of its own language primitives and relation-
ships, without having to change the definition of the language
(and hence also its parsers or other supporting software and
tooling).

2.4 Formalisation into the NPC4 language
The previous Section provided an overview about the role
and the motivations of the primitives and relations proposed
in this work; this Section turns this into a concrete DSL,
the NPC4 meta meta model for hierarchical hypergraph. It
describes the textual formalization of the language, while

Node: node−A, node−B, node−C, node−A, node−X, node−T
Port: port−q, port−r, port−p, port−n, port−u, port−s
Connector: connector−j, connector−i
Container: container−m

has−a(node−T, port−u)
has−a(node−X, port−s)
has−a(node−B, port−n)
has−a(node−B, port−p)
has−a(node−C, port−q)
has−a(node−D, port−r)

contains(node−A, node−B)
contains(node−A, node−C)
contains(node−A, node−D)
contains(node−T, node−A)
contains(node−T, node−X)
contains(container−m, node−A)
contains(container−m, connector−j)

connects(connector−j, port−q.edock)
connects(connector−j, port−n.edock)
connects(connector−j, port−r.edock)
connects(connector−i, port−p.edock)
connects(connector−i, port−s.edock)
connects(connector−i, port−u.idock)

Table 2
Full NPC4 model of the example shown in Fig. 10.

Fig. 11 shows the corresponding graphical conventions used
in the paper. Table 1 provides an overview on the language
core, and Table 2 illustrates the DSL by means of the concrete
example of Fig. 10.

Identity is given to all primitives by simple declaration:

Node : node-B,node-X, . . . (1)
Port : port-p,port-x, . . . (2)

Connector : connct-i,connct-j, . . . (3)
Container : cntnr-m, . . . (4)

has-a: a relationship between a Node and a Port. A Port



8

A

j

p1

A B
j

Port

Node

Connector

Container
Connection

Node-A Node-B

Graphical ConventionPrimitive

m

p1 p2

Figure 11. Graphical conventions to represent hierar-
chical hypergraphs: (i) Port is a square composed of
two rectangles which represent (with respect to the Node
to which the Port is attached) the internal (black) and
external (white) docks; (ii) a Node is a rounded box;
(iii) the Connector is shaped as a filled circle; (iv) the
Container is represented as a dashed outline. The
bottom row shows an example of two Nodes, namely A
and B, connected by the Connector j attached to the
external docks of Ports p1 and p2.

can exist on itself (e.g., when it is still “floating” during the
construction of a graph model in a development tool), but
the graph model can only be “well-formed” (see Sec. 3) if
every port belongs to exactly one node. Ports are those parts
of a node through which (a selected subset of) the latter’s
behaviour becomes accessible for interaction to other nodes.
So only statements of the following type make sense:

has-a(node-B,port-p), (5)

and statements of the following type do not:

has-a(connct-i,port-p),has-a(cntnr-m,port-p).

The inverse relationship part-of could be added to the
model language, as syntactic sugar:3

part-of(port-p,node-B)

⇔ has-a(node-B,port-p). (6)

has-a: a second relationship of this kind exists between a
Port and a dock. The dock is a structural property of the
Port that holds at most one connection with a Connector.
Each Port has exactly two docks, one internal and one

3. Informally, in this work the following sentences are equivalent of
expressing an has-a relationship: (i) “a port belongs to a node”, (ii) “a
port is attached to a node”.

external with respect to the Node which owns the Port. The
docks are true Port properties by design, therefore they are
not considered as a primitive of the language. To distinguish
with respect to the previous has-a relationship, the dock is
uniquely referred by a dot (.) notation, that is:

∀P ∈ {ports},∃!P.edock,∃!P.idock (7)

with edock and idock being a port’s external and internal
dock, respectively. The dock property will turn out to be
important later on, when well-formedness of connectors will
be discussed in Sec. 3.

Fig. 11 shows the graphical convention of a Port,
visualised as box divided in black and white rectangles; the
former represents the internal dock, the latter is the external
dock. The has-a relationship between Node and Port is
visualised by placing the Port along the Node border.

contains: Nodes and Containers can contain other
primitives, as represented by containment statements of the
following type:

contains(M,X), (8)

with M and X being a Node or a Container. The
contains relationship brings hierarchy in the relations be-
tween Node and Container primitives.
Containment is a transitive relationship, so other containment
relationships can be derived from the statements above; for
example:

contains(container-m, node-A),

contains(node-A, node-B) (9)
⇒ contains(container-m, node-B).

connects: a Connects relationship binds two or more
nodes together, via an hyperedge (i.e. a Connector) attached
to (an internal or external dock on) Ports on these Nodes.
So, statements of the following type are semantically valid:

connects(connct-i,port-s.edock),

connects(connct-i,port-u.idock).
(10)

2.5 Composition
An extra keyword is introduced to indicate that all primitives
in NPC4 can be compositions in themselves:

composite = {node,port,connector,composite}.
The recursion in this definition reflects the hierarchical prop-
erty of containment in a natural way.

Secondly, the composition with other, external DSLs is re-
alised via the following fundamental design choice, motivated
by the proven way that, for example, XML-based meta models
such as XHTML, SVG or JSON use: each primitive in a
model must have the following meta data “property tags”, that
explicitly indicate in which knowledge context (that is, using
which meta models) they have to be interpreted:



9

• instance_UID: a Unique IDentifier of any instantia-
tion of the primitive concept;

• model_UID: a unique pointer to the model that contains
the definition of the semantics of the primitive;

• meta_model_UID: a unique pointer to the meta model
that describes the language in which the primitive’s model
is written;

• name: a string that is only meant to increase human
readability.

Such generic property meta data allows to compose struc-
tural model information with domain knowledge by let-
ting each primitive in a composite domain model refer to
(only!) the structural model that it conforms-to [14]; such
composition-by-referencing is a key property of a language to
allow for composability.

Finally, since NPC4 is a language for structural compo-
sition, it deserves a separate keyword compose to refer to
one or more of its possible composition relationships, namely
contains and connects:

compose = {has-a,contains,connects}.

The motivation for the explicitness design driver is that (i)
each of the language primitives can be given its own properties
and, more importantly, its own extensions, independently of
the others, (ii) it facilitates automatic reasoning4 about a
given model because all information is in the keywords (and,
hence, none is hidden implicitly in the syntax), and (iii)
it facilitates automatic transformation of the same semantic
information between different formal representations. Such
model-to-model transformations become steadily more rele-
vant in robotics because applications become more complex,
and hence lots of different components and knowledge have
to be integrated. Trying to do that with one big modelling
language becomes increasingly inflexible,5 because it will
be impossible to avoid (partial) overlaps of the many DSLs
that robotics applications will eventually have to use in an
integrated way.

3 NPC4 LANGUAGE CONSTRAINTS

The proposed NPC4 language not only introduces primitives
and relationships, but also constraints to guarantee both syn-
tactic and semantic correctness. In this Section these con-
straints will be discussed.

4. This motivation comes from the objective to make the formal models
useful not just to human system delveopers, at design time, but also to robots
themselves, at runtime!

5. “Bad practice” experiences about relying on ever-growing modelling
languages are unfortunately rather common in robotics: CORBA, UML,
URDF,. . . , are just some of the better known examples where the initial
benefits of “standardization” become hindrance to flexibility in composition,
as soon as a couple of dozen “nodes” must be integrated, in ways that were
not realised before.

T(u)

A X(s)

B(n,p) C(q) D(r)

Figure 12. The containment tree of the nodes in Fig. 10.
Each node carries its ports as arguments, since this
information is required to check the well-formedness of
Connectors.

F

B

C

a

b

c

d

e

n

p

E
Figure 13. An example of an hierarchical composition in
which containment does not follow a strict tree hierarchy
for containers: the containers “p” (small blue dashes) and
“n” (long red dashes) have some internal Nodes in com-
mon, with each other and with Node “A”; the containers
“p” and “n” do not have ports themselves, in contrast to
the Node “A”. The nodes and their connectors do satisfy
the node containment tree constraint.

3.1 Constraints for structural well-formedness
Some constraints must be satisfied by composition
relationships in a graph model to make sure that the
model is well-formed.

There must be no “floating” ports:

∀P ∈ {ports},∃!N ∈ {nodes} : has-a(N,P). (11)

The reason is that ports get their semantic meaning only
from giving access to the behaviour that is contained in the
node they belong to, so: without a node, a port has no meaning.

contains relationships on Nodes must result in a con-
tainment tree.6
A Node can contain other Nodes, but it must not contain
itself. Furthermore, each node has one and only one “direct
parent node” in a containment relationship. The reason for this
constraint is as follows: since nodes are meant to represent

6. Strictly speaking, a forest, that is a collection of disjuncted trees.



10

DB C

A

i

j

E

H

k

G

F
l

Hierarchical 
Hypergraph Layout

Node
Containment Tree

1

2 5

n°
connector: j

connector: j

A

H

D E

B C
F G

connector: k

DB C

A

i

j

E

Hk

G

l

F

DB C

A

i
j

E

H

k

G

l

F

A

H

D E

B C
F G

4
A

H

D E

B C
F G

DB C

A

E

H

G

F

A

H

D E

B C
F G

DB C

A

i

j

E

H

k

G

F
l

connector: j

A

H

D E

B C
F G

3 6

Hierarchical 
Hypergraph Layout

DB C

A

i

E

Hj

G

F
l

connector: j

A

H

D E

B C
F G

n°
Node

Containment Tree

Figure 14. Different abstract examples of structural models defined with NPC4. Both graphical layout and relative
containment tree have been reported. All the examples are based on the first model, which defines contains
relationships only. The models differs on the connects relationship, and the containment tree is not affected by
these changes. Examples (2) and (3) show well-formed models. In the associated containment tree, the Connector j
is considered and the Ports involved in the relationship are indicated. In both cases, the resulting sub-tree obtained
by pruning portions discriminated by the Ports is valid. The models (4), (5) and (6) are ill-formed because of the
presence of a wrong Connector. In detail, in Model (4) the relation connects(j,port-d.idock) invalidates
connections with node-d internals, thus the connection is not feasible. In example (5), port-D.edock excludes
possible connections with Nodes A,B and C; since a Port in A is connected, the Connector j is not correct. The
latter case (6) shows an intuitive case of connecting two Nodes through two wrong docks (Connector k).

behaviour, and since the containment hierarchy is meant to
allow levels of abstraction in a system model, it makes no
sense if two nodes that are separated at a higher level of
modelling would contain the same behaviour node at a more
detailed model level. In other words, behaviour cannot be
shared by two nodes with different identity.

As an example, Fig. 12 visualizes the node containment
tree of Fig. 10. The node containment tree is unique for
each hierarchical hypergraph and plays a relevant role on
determining the validity of a connects relationship, as it
will be discussed in the following paragraphs.

contains relationships of containers must result in a
directed acyclic graph.
That means that a container (or a node) can have multiple
“parent containers”, and containers can overlap, but cannot
contain themselves. This constraint is weaker than that for
nodes, since containers are meant to represent knowledge,
and knowledge can be shared indefinitely between nodes with
different identities. An example is shown in Fig. 13, where
Containers n and p overlap.

A Connector connects Ports on a joint containment
tree.
The role of a Port is to provide a specific view on the Node
that belongs to. In other words, the effect of the Port is
to split the containment tree in two sub-trees, considering
the Node as origin. The Port’s internal dock selects the
“downward” subtree from that Node, while the external dock
selects the “upward” subtree. Establishing a connection with a
specific dock means to bound the relationship in the selected
subtree, despite the other. For example, if a connector attaches
to an internal dock of a port on a Node, all its other
attachments must be to external port docks of Nodes that are
contained in the given Node, or to other internal port docks
of the same Node.

For sake of clarity, Fig. 14 shows different model examples.
The procedure to check this constraint is straightforward when
starting from the Node containment tree: each of the ports
involved in a connector prunes the Node containment tree in
an downward and upward subtree depending on whether the
Connector attaches to the Port’s internal or external dock,



11

and the tree that remains after considering all involved Ports
must still be connected.

The semantic meaning of this structural constraint is
explained by observing an ill-formed example reported in
Fig. 14. For instance, the Connector j in model (5) is
semantically not correct, since it relates the node Node E
with the whole Node D, but also with a Node D internal
(Node A). Of course the Node E can have multiple kind
of relationship with the D Node, but these are necessarily
different relationships, as showed in the well-formed model
(3). Different semantic meaning is represented by the
Connectors (j,k) in models (2) and (3). In the former,
Node E is in relationship with D, exposing a specific view
on it (Nodes A and C). That is, the coupling E-A and
E-C is indirect, since it considers explicitly the containment
boundary D. In model 3, Connector j relates directly
Node E with A and C, while Connector k is a completely
unrelated relationship with respect to Connector j.

A well-formed Connector is contained in the Lowest
Common Ancestor (LCA) of the Nodes involved.
Considering the example in Fig. 10, a statement of the
following type is semantically correct:

contains(node-A,connector-j), (12)

since node-A is LCA of Nodes A, B and C. This property
is a consequence of a well-formed Connector, and it is
not necessarily used to explicity define a model. In fact,
a Connector instance is already fully defined by a list
of connects relationship that involves that Connector.
However, adding this extra information in a NPC4 model
can be useful as “checksum” during the validation phase.
Finally, this Connector property helps the rendering of the
hierarchical hypergraph layout.

As corollary, that implies that every graph model must have
at least one root Node

∀C ∈ {connectors},∃N ∈ {nodes} : contains(N,C).

The reason is that everything inside that root Node must
have an identified context.7

When describing the design decisions behind a formal mod-
elling language, it is not only important to identify and
motivate the constraints that compositions in the language
must satisfy, but also why some constraints have not been
introduced in the language. In this paper, the following “non-
constraint” is one of the fundamental design choices: the
contains and connects relationships are maximally de-
coupled, in that one does not depend on the other. For example,
even though Nodes “X” and “B” live at two different levels of

7. This context need not be unique, since others can be added by compo-
sition.

the containment hierarchy, the connector “i” can still connect
both (through a port).

Fig. 13 shows an example in which a connector is crossing
a containment boundary, or, in other words, connectors can
leave a container without the explicit need for a port on that
container.

While the decoupling is maximal, it is not total: connectors
must take the Node containment hierarchy into account to
some extent, that is, as described by the last constraint above.

In summary, NPC4 does not introduce the (most often im-
plicit!) constraint of interpreting a containment boundary also
as a connection boundary, since this should only be decided
(explicitly!) when domain specific semantics is being added
to the domain-independent semantics provided by NPC4.

Another adopted “non constraint” design choice regards the
direction over a connects relationship: no explicit direction
is assumed, thus all the connections are bi-directional. The
direction is a property which belongs to the behavioral model,
and not to the structural one: the constraint will be added in
the specific domain of the metamodel. A typical case is a FSM
metamodel, which will discussed in Sec. 5.

3.2 Constraints formalization
Section 2.3 introduced the primitives of the NPC4 language,
and the contains and connects relationships that can
exist between these primitives. However, not all relationships
that can be formed syntactically also have semantic meaning.
This Section describes some constraints already discussed in
the previous Section, but striving for formal completeness,
by adding some obvious constraint relationships to the core
semantic explained above.

Note that no connects relationships appear anywhere in
the constraints on the contains relationships, and the other
way around, which reflects the above-mentioned orthogonality
of both relationships. Of course, when application developers
add behaviour to a structural model of their system, they may
introduce extra structural constraints, even between has-a,
connects and contains relationships.

Constraints on primitives. The UID of every primitive
must be unique:

∀X,Y ∈ {Node,Port,Connector,
contains,connects},

X.UID = Y.UID⇒ X = Y.

Of course, these constraints hold for all three UIDs in the meta
data of each NPC4 primitive.

Constraints on has-a. As mentioned in Sec. 2.4, a Port
can be floating during construction time, but a model having
a port that is not part-of a Node is an ill-formed model.
Furthermore, a Port must be part-of one and only one
Node, that is:

∀P ∈ {Port},∀N1,N2 ∈ {Node},
has-a(N1,P),has-a(N2,P)⇒ N1 = N2.



12

The previous statements affects other relationships too, as
it will be shown in the next paragraph.

Constraints on connects. The constraints in this Section
realise the well-formedness of the connection relationships,
that is, about which kind of structural interconnections are
possible. Recalling from Section 2.4, the Port has exactly
two docks, one internal, and one external. Each such dock
is constrained to have only one Connector attached, that is:

∀C1,C2 ∈ {connectors},∀P ∈ {ports} :
connects(C1,P.idock),

connects(C2,P.idock)

⇒ C1 = C2

∀C1,C2 ∈ {connectors},∀P ∈ {ports} :
connects(C1,P.edock),

connects(C2,P.edock)

⇒ C1 = C2

Furthermore, the well-formedness of the Connector (dis-
cussed in Sec. 3.1) can be formally expressed as follow:
• given C is the Connector to be validated;
• given the sets of internal and external Ports, pci and

pce, defined as:

pci , {p ∈ {ports} |connects(C,p.idock)}
pce , {p ∈ {ports} |connects(C,p.edock)}

• then, ∀pi ∈ pci, Ni ∈ {nodes} s.t. has-a(Np, pi)
holds, ∀pj ∈ {pci} − pi, C Connector is valid if
contains(Np, pj) holds, and the following condition
holds

• ∀pe ∈ pce, Ni ∈ {nodes} s.t. has-a(Np, pe)
holds, ∀pj ∈ {pce} − pe, C Connector is valid if
contains(Np, pj) does not hold.

Constraints on contains. The constraints in this paragraph
realise the well-formedness of the containment relationships of
Nodes, that is, about which kind of hierarchies, or “compos-
ites” are possible.

First, the fact that every primitive can be a composite in
itself is expressed:

composite = {node,port,connector,composite},
∀C ∈ {composite} :
∃n ∈ {Node} ∨ ∃c ∈ {Connector}
∨ ∃d ∈ {composite} :
contains(C,n) ∨ contains(C,c)
∨ contains(C,d).

Every contains relationship can only be defined on existing
Nodes and containers:

∀c ∈ {contains},
∃X,Y ∈ {node,container} :
c(X,Y).

And finally, there always exists at least one Node at the top
of a contains hierarchy:

∀X ∈ {node,connector,composite},
∃T ∈ {Node} : contains(T,X) ∨ T=X.

This latter constraint is a very strong one, that is imposed for
one and only one reason: every structural model should have
an explicitly identified context. In other words, the meta data
of the top Node must be made rich enough to understand the
semantics of everything it contains, even when the model
is deployed in a running system. There can be more than one
context for each composition, which is in agreement with the
design objective of composability: several context containers
can be put around any existing model, and/or a composite can
conform to more than one meta model. The top Node need
not have any Port attached to it, so that it reduces to just a
container of meta data.

4 MODELLING WITH NPC4
This Section briefly discuss some structural features of the
proposed solution.

4.1 Structure for supporting software
Many domain models use only traditional graphs, with Nodes
and edges, while this paper’s hierarchical hypergraph model
splits the “edge” primitive in two new first-class primitives:
“port” and “connector”. The motivation for this choice is to
allow not only more precise domain semantics if needed, but
also a more flexible infrastructure to support a domain model
with software. For example, by using ports to log and visualise
data exchange between Nodes, or to count the number of
interactions (statically as well as during runtime), or to make
graphical development tools in which selections have to be
made on which internal behaviour of Nodes to connect to,
and so on.

Recall also the other motivation of this paper with respect to
hierarchical composition: at a certain level of abstraction of
a system model, a port might be a completely passive part
of a system model, that is, without behaviour of its own,
while more behaviour appears when going to a deeper level
of abstraction in the system part represented by that port.
A typical example is communication: two Nodes connected
with communication middleware send and receive data through
socket ports, at the application layer, but when going inside
such a socket at the level of the operating system, lots
of activity becomes visible: packet composition, encoding,
timestamping, and so on. Much of that activity is “infras-
tructure” code for the higher level of abstraction, but this
papers approach allows to connect all these things together,
over different levels of abstraction.

The third software-centric motivation for the presented
model pertains to the introduction of the container primitive:
it carries no behaviour, but is used to model information



13

influence of “higher” contexts8 on “lower” Nodes, ports and
connectors. More precisely, the container model primitive
is needed to store meta data, such as: unique identifiers;
references to the modelling languages in which the Nodes,
ports or connectors inside a container are expressed; references
to ontologies that encode the semantic meaning of the model
(hence indicating, among other things, which configuration
values to use for all model parameters); version numbers; etc.
One particularly useful case is to introduce containers to store
the composition model of the sub-system that is embedded
within its internal context.

4.2 Behaviour on deeper levels of abstractions
In the proposed structural meta meta model, the hierarchy
concept is applied to Node and Container primitives
only. Allowing Ports and Connectors being hierarchies on
themselves would violate the design choice that only Nodes
carry behaviour.

However, in practical cases Ports and Connectors may
manifest behaviour, if a deeper level of abstraction is con-
sidered. A concrete example arises in the attempt of model
a software system involving two computers: what was first a
simple shared data structure (i.e., a “Connector”) in the
centralized version now becomes a full set of cooperating
“middleware” software components in itself (i.e., a composi-
tion of Nodes, Connectors and Ports). In short, modelling
the distribution explicitly boils down in introducing a deeper
levels of abstraction.

In such cases, it is possible to apply a systematic model-
to-model transformation to obtain an alternative model, as a
composition of the original NPC4 model and a separate NPC4
model of the Port (or Connector) internals. Fig. 15 illus-
trates two examples which expands Port and Connector
respectively. In both cases Port and Connector have
been modelled as a simple Node, which already enables the
hierarchy feature. Furthermore, a Container may be added
to preserve the knowledge over the original model. As a
remark, this property is offered by the composability feature
of NPC4, considered as one of the primary design drivers of
the language.

In conclusion, modeling a deeper level of abstraction is
always possibile, but the described structural models differs.

5 EXAMPLES
This Section gives some concrete examples about how the
meta meta model language NPC4 can be used to make DSLs
(meta model languages) for the structural parts of systems
in the various robotics sub-domains introduced in Sec. 1. The
examples show the two complementary ways in which such
domain specific extensions are made, in accordance with the
“composability” design driver (Sec. 2.3) behind NPC4:

8. Or scope, namespace, domain, or whatever terminology has been used
to represent this container concept.

A

p1

j1

A p1 Bp2

jN
j2

pj-A pj-BC j

A B

j

p1 p2

C

A

j

pN

p1-i

p1-e

p1I

II

Figure 15. Examples of possible model-to-model trans-
formation to describe a deeper level of abstraction. The
first example (I-right) shows a solution to model behaviour
on a Port primitive (I-left): Port p1 is expanded in a
Node pN contained in A (original owner of p1), while an
internal Connector establishes a view over the same
Node. The containment tree changes only internally to
A, thus the change is compliant with the original model.
Not necessarily but useful, p1 refers to a Container in
the transformated model, such that the original semantic
information is preserved (and it is possible to retrieve the
original model). The second example (II) shows a similar
case, but considering the Connector j as target of the
transformation.

• give new, domain specific names to the NPC4 primitives
and/or relationships.

• add domain specific extra semantics to the NPC4 primi-
tives, relationships and constraints.

For all examples, only the NPC4-related structural part is
explained, but not the concrete DSLs, containing structure and
behaviour. However, some suggestions will be provided about
the directions to take to realise full DSLs.

5.1 Finite State Machines
FSMs are this paper’s primary example, because they have
simple and familiar semantics, with a big part of it reflected
in their structural model. There are many different FSM
“dialects”, because, despite a rather large harmonization in
the structural models, the behavioural parts of the various FSM
DSLs do still differ. From a structural point of view, FSMs are
defined as a set of states linked with transitions, with
the constraint that each transition connects only two states.

This Section discusses how an FSM DSL can be built with
NPC4, and uses a so-called Life Cycle State Machine as a
concrete illustration. Fig. 16 gives a graphical picture, Tables 3
and 5 give textual JSON [36] versions of the domain-centric
model, without and with behaviour respectively, while Table 4
gives the NPC4-centric “full” version of it.

A LCSM are common software components to coordinate
the “life cycle” of other software component instances, from



14

deleting

creating

deleting

configuring
resources

inactive

pausing

running

configuring
capabilities

active

e_delete

e_done

e_activate

LCSM

e_reconfig

e_pausee_run

e_init

LCSM

active

configuring
resources

creating

inactive
c2

c3
c4

c5

c6

c7 c8

p3

p4

p5

p6

p7 p8
p9

p10
p11

p12

p13

p14

p15 p16

c15
c16

pausing

running

c9
c10

c11

c12

c14

p20 p21 p22

p23
p24

p25

configuring

capabilities

c13

p17

p18
p19

p26

p1

p2

e_done

c1

tr1

tr3

tr2

e_done

p22

Figure 16. Life Cycle State Machine model (LCSM) of a generic software entity as an FSM model (UML flavor)
on the left, and its Structural Model as Hierarchical Hypergraph on the right. states are represented as Nodes,
while transitions as Port-Connector-Port patterns formed by two connects NPC4 relationships. cX and pX are
instance uid of Connector and Port, respectively.

when they created from their “platform resources” (memory,
CPU, I/O), till they are ready to provide their “capabilities”
to other components; the configuration of, both, resources
and capabilities is a major “behaviour” of an LCSM. A real-
world example of such an LCSM is the motion control of all
the joint actuators in a robot: only when, both, the platform
resources and the capabilities have been properly configured,
the component is ready to “run”, that is, to actuate the robot’s
motors based on commands from a control component.

The component may be paused from its running state, that
is, it is fully ready to provide its service (immediately, without
any further configuration), but for one or another application-
dependent reason, the service is not actually delivered, yet. In
the above-mentioned example of motion control, the operator
might have pressed a “motion freeze” button.

It is beyond the scope of this paper to model “the” correct
LCSM, but it has just been introduced in this text to serve as
a familiar example of a commonly occuring FSM model.

The whole FSMs structural part of an LCSM can be
modeled straightforwardly by the above-mentioned approach
as follows:
• states are represented by nodes in NPC4;
• states can be hierarchical, with a strict tree structure

constraint in the contains relationship;
• transitions are represented by Connector relation-

ships, with the extra constraints that the transitions are
always (i) directed, and (ii) only connecting exactly two
states. The latter constraint is fully structural, while the
direction constraint belongs to the behavioural part of the
DSL.

• transitions between hierarchical levels are allowed, so
this structural property of FSMs requires no extra NPC4
constraint.

There is no explicitly visible concept of Port in FSM DSLs,
but ports are needed nevertheless, in all “software infrastruc-

{
” s t a t e s ” : [

” lcsm ” , ” a c t i v e ” , ” i n a c t i v e ”
] ,
” c o n t a i n s ” : [
{ ” p a r e n t ” : ” lcsm ” ,

” c h i l d r e n ” : [ ” i n a c t i v e ” , ” a c t i v e ” ] }
]

}

Node : lcsm , a c t i v e , i n a c t i v e

c o n t a i n s ( lcsm , a c t i v e )
c o n t a i n s ( lcsm , i n a c t i v e )

Table 3
A snippet of a possible DSL for FSM, hosted by a JSON

document. Below, the same hierarchical structure described
with NPC4.

ture” with which an FSM model is stored and executed.
Fig. 16 gives, on the left, the traditional “domain-only” view

on a LCSM, while the part on the right gives some examples of
how ports are needed to attach the mentioned “infrastructure”
structure and behaviour:

• Ports model the structural crossing of a transition across
each level of hierarchical depth of states, Fig. 16. Such
Ports are connected only to one connector in the same
hierarchical level. Since the port belongs to a Node (it
represents an internal view of the Node), the port can
be attached to two connections, one internal and one
external. For each hierarchical level crossed, a connector
contained by the crossed hierarchical scope must be de-
fined. The latter is due to the constraint that connects
relationship is applied only between a Connector and



15

{
” s t a t e s ” : [

” a c t i v e ” , ” c r e a t i n g ” , ”
c o n f i g u r i n g r e s o u r c e s ”

] ,
” c o n t a i n s ” : [
{ ” p a r e n t ” : ” a c t i v e ” ,

” c h i l d r e n ” : [ ” c r e a t i n g ” ,
” c o n f i g u r i n g r e s o u r c e s ”

]
}

] ,
” t r a n s i t i o n s ” : [
{ ” t y p e ” : ” t r a n s i t i o n ” , ” i d ” : ” t r 1 ” ,

” s r c ” : ” c r e a t i n g ” ,
” t g t ” : ” c o n f i g u r i n g r e s o u r c e s ” } ,

]
}

Node: active, creating, configuring resources
Port: p7, p8
Connector: c3

contains(active, creating)
contains(active, configuring resources)
has−a(creating, p7)
has−a(configuring resources, p8)
connects(c3, p7.edock)
connects(c3, p8.edock)

Table 4
On top, a snippet of a FSM model taken from the LCSM example (see Fig. 16),

with JSON support. The model which conforms to a FSM metamodel conform to

NPC4 meta-metamodel. On bottom, a NPC4 code snippet which describes the

structure of the FSM model above, with emphasis on the non-interlevel transition

between the two states.

a Port, and not between Ports directly;
• entry and exit functions of states are behavioural

primitives of a state, which are “pointed to” from the
ports where that behaviour is structurally located in the
FSM, that is, there were the corresponding “incoming”
and “outgoing” transitions connect with a state.

• the initial and terminal state primitives of FSM
DSLS are just other cases of states, hence requiring
nothing more than the addition of a new named primitive
in the FSM DSL. The only difference is that the encom-
passing state must hold the function (“behaviour”) that
transitions to and from those states “at the right moment”;
the latter behaviour is often a “semantic deviation point”
between different FSM DSLs.

Since the FSM meta model conforms to [14] to NPC4’s hi-
erarchical hypergraph meta-metamodel, the resulting concrete
structure of the LCSM is reported in Fig. 16 (on the right).
• states and the hierarchical relationship is directly pre-

served into a Node hierarchical structure (tree) (see

{
” s t a t e s ” : [ ” lcsm ” , ” a c t i v e ” , ” i n a c t i v e ” ] ,
” c o n t a i n s ” : [
{ ” p a r e n t ” : ” lcsm ” ,

” c h i l d r e n ” : [ ” i n a c t i v e ” , ” a c t i v e ” ] ,
” e n t r y ” : ” i n a c t i v e ” } ,

]
}

Node: lcsm, active, inactive
Port: p1, p2
Connector: c1
contains(lcsm, active)
contains(lcsm, inactive)
has−a(lcsm, p1)
has−a(inactive, p2)
connects(c1, p1.idock)
connects(c1, p2.edock)

Table 5
An extended version of the FSM model snippet in Table 3.

Below, its relative structure described with NPC4. The
emphasis is on the definition of the entry point of the composite

state and the reflected changes on the graph structure.
Changes has been highlighted. The full visual representation is

shown in Fig. 16.

example Table. 3);
• transition as port-connector-port pattern: a simple

(not inter-level) transition is structurally equivalent of a
composition of two connects relationship (see Tab. 4);

• entry and exit points as connection between one
parent and some of its child nodes, making use of the
same port-connector-port pattern.

• inter-level transitions have a similar structure, but maybe
a different behaviour, in various FSM DSLs,

Note that FSMs have different types of inter-level transitions,
with possibly different behaviour semantics, while being indis-
tinguishable from a structural point of view. For instance, the
transition indicated with tr2 in Fig. 16 (left) connects a state
from an “deeper” level of containment to a state at a “higher”
level, while the transition tr3 does the opposite. Both have
have analogue structures, i.e., chains of the port-connector-
port pattern, defined as {c4, c16, c10} and {c5, c19, c9}, re-
spectively. However, for tr3 the structure is fully defined
by the transition itself, while tr2 only defines {c4, c16}: the
connector {c10} is given by the entry point defined in the
active state. The latter observation confirms a major invariant
design decision of this paper, that the structure of the transition
is decoupled from its behavioural meaning in the particular
domain meta model.

In summary, NPC4 provides the minimal set of elements to
describe the whole structure of a FSM DSL, simply by adding



16

some constraints and domain specific names. The structure
provides all the attachment points required to host all possible
behavioural policies of various FSM dialects.

As illustrated in the following paragraphs, similar reasoning
is possible in other domains, by simply adding extra structural
constraints of the domain to the generic ones in NPC4.

5.2 Petri nets

While Finite State Machines are models to coordinate the
different possible activities of one single “agent”, Petri nets
[37] are used to coordinate the activities of several agents.
This is relevant in areas such as discrete process control and
simulation, concurrent computing, or workflow management.
Fig. 18 shows that the structural model of a Petri net is a
bipartite graph consisting of places p, transitions t, and flows
f. In addition, each place node has a number of so called
tokens, and each flow has a weight (or multiplicity). In terms
of NPC4, these are the structural parts of a Petri net nodel;
• there are two types of the Node primitive, namely places

and transitions.
• the Connector primitive represent flows between

nodes, with as structural constraints that (i) they are
directed, (ii) they only connect exactly two nodes, and
(iii) connected nodes must come from a different class,
i.e., a connector is only allowed to connect places and
transitions or transitions and places.

• that means that the model contains Ports that have a
type, but that are not explicitly visible in mainstream
graphical representations.

Other properties and constraints belong to the behavioural
model of Petri nets:
• the place nodes contain a number of so called tokens.
• connectors have an has-a property that represents their

multiplicity, which is used in representing behaviour.
• a transition can only be activated if all place nodes

connected with incoming flows have at least an amount of
tokens equal to the multiplicity of the connecting flow’s
multiplicity.

• if a transition is activated, all place nodes connected with
outgoing flows receive an amount of tokens according to
the multiplicity of their connecting flow’s multiplicity.

• implementations of the models also require a behavioural
policy for when a transition is activated.

Hierarchy can be added in various ways and even the to-
kens can contain Petri nets [38]; these can be modelled in
NPC4 by specifying these tokens as another class of nodes
and hierarchically composing the Petri net from the states,
transitions, and flows, where the states are a composition from
their basic structure with a number of token nodes. Note that
the tokens always are contained in the overall Petri net, while
their contains property with respect to the place nodes
changes at runtime.

p1

t1

t2

p2

t3

p322

1 1

2 1

t3 12

Figure 18. A basic Petri net with three place nodes
and four transition nodes that are connected to a bipartite
graph using directed connectors.

5.3 Bayesian Networks

The domain of traditional probabistic graph models, i.e.,
Bayesian networks, only uses Node (for “random variables”)
and connect (for “directed edges”), and no contains. The
more recent Factor Graph extension was introduced needed to
represent explicitly the hyperedge connectivity that has been
part of the domain since the beginning. For one reason or
another, hierarchy has never been introduced to the full extent,
such that the domain can still not model complex Bayesian
networks in which various sub-networks can be given other
contexts, for example, for decision making, or for scheduling
of the computational execution.

Fig. 17 does show an example in the domain of probabilistic
graphs where hierarchical contains is introduced explicitly.
The sequence of model transformations, represents changes in
the “level of abstraction” of the same probabilistic model, from
its original Factor Graph representation to the final Junction
Tree representation. The model transformations change only
change the structure of the model, not its behaviour, and
are introduced with the sole purpose to support the software
infrastructure needed to compute the model’s behaviour: the
transformations end up with a tree structure that is better suited
for iterative computations than the original graph. It is clear
that all models at all these levels of abstraction are supported
by the NPC4 meta meta model.

5.4 Control diagrams

This domain applies the hierarchical hypergraphs meta model
as follows:

• Nodes are used to represent function blocks.
• connects are used to represent data flows, also with

hyperedge semantics.

Hierarchy is used to model context (“plant”, “controller”, etc.)
and to cope with complexity of composition, by introducing
Nodes with various “levels of detail”.



17

Junction tree

Factor graph
u

w

x

v y

z

Clique graph
u

w

x

v y

z

u,v,w w,x,y

w

x,y,z

x
y

Maximal clique graph

u

w

x

v y

z

Figure 17. The same probabilistic graphical model represented at the different “levels of abstraction” that are being
used in the traditional junction tree algorithm.

Domain framework

SW framework

Operating System

MoveIt, HDF5, Simulink,...
to hide domain complexity

Containers, OSGi, 0MQ,...
middleware components to
hide OS variability

process, virtual memory,
IPC,... for behaviour
containers for deployment
on hardware resources

A
p

p
lic

a
ti

o
n

Yo
u
r 

co
m

p
o
si

ti
o
n
; 

p
o
ss

ib
ly

a
 f

ra
m

e
w

o
rk

 f
o
r 

o
th

e
rs

..
.

HW framework CPU, bus, storage
HW resource components

Figure 19. The four natural levels of abstraction gen-
erally present in “software stacks”, plus the concept of
an “application” which composes them all together in one
executable software system.

5.5 Software architecture models
The authors’ recent publication [1] provides an extensive
overview of how the hierarchical hypergraph meta model can
be applied to the modelling and composition of software sys-
tems. (Even without a formally specified DSL, but relying on
discipline of the developers.) Roughly speaking, the mapping
from NPC4 to the domain of software engineering is very
similar to that for control diagrams; the major semantic dif-
ference being that the Nodes represent also software activities
(processes, threats, computing nodes,. . . ) and not just compu-
tational function blocks. The resulting data flow between such
Nodes typically involves communication middleware, whose
models (structural and behavioural) are typically “hidden” in
a multi-layer hierarchical structure of the system architecture,
as illustrated in Fig. 19.

A major use case for an NPC4-based DSL in software
architectures will be deployment models, that is, to represent
the dependencies between the software modules that determine
their relative order of creation, configuration, and activation.

5.6 Robot kinematics and dynamics

This Section gives a brief overview of how the meta model
of hierarchical hypergraphs can provide a more composable
DSL than the mainstream URDF format, [39]; a much more
elaborate document on this particular topic is currently under
development, which has also the explicit aim to be able to
serve as a very flexible and composable family of modelling
standards. The core idea behind it is illustrated in Fig. 20:

• the family has five members, each one being a natural
hierarchical contains context of another one.

• each level has creates a DSL of its own, with several new
semantic primitives, relationships and constraints.

• each level composes a specific subset of the possibly
multiple DSLs at the lower levels, not by adding as
properties in its own DSL primitives, but as connects
references to the DSLs below it. (The JSON-LD format
[40] has all primitives on board to represent such inter-
DSL cross-linking.)

• similarly, each level composes its domain DSL, with
has-a relationships, with a DSL that represents physical
units, [41].

• composition into a chain can only work if the four
other levels compose themselves with the same DSL on
geometric frames, [20], as the fundamental connects
primitive of electro-mechanical systems.



18

For example, the approach introduced above allows to make a
DSL for humanoid robots with only electrical actuators acting
at each individual joint, but also for real human musculoskele-
tal models with muscles connected over multiple joints. When
done wisely, both DSLs will share most of their semantic
primitives (which supports the objectives of minimality and
efficiency), but still be able to provide only those semantic
primitives that are really needed (which support the objective
of user-friendliness).

(M
u
lt

i-
) 

ch
a
in

Kinematic joint

Mechanical joint

C
o
m

p
o
si

ti
o
n

LW
R

, 
3

2
1

, 
Ju

st
in

, 
y
o
u
B

o
t,

 P
R

2
,.
.. motion constraints

via revolute or
prismatic joints,...

transmission, limits,
friction, inertia,...

Actuator electric, hydraulic,
pneumatic,...

Power convertor electric-electric,
electric-hydraulic,...

Figure 20. The four natural levels of abstraction needed
to describe the mechanical structure of all kinds of robots,
plus the concept of a “kinematic chain” which composes
them all together in one “robot system”.

6 CONCLUSIONS
What is the minimal set of primitives and relationships, to
cover all use cases of structural composition in robotics
systems-of-systems applications?

This was the big question that kept the authors busy for
almost a decade, motivated by the drive to realise a step
change in the reuse of “infrastucture code”. Indeed, lots of
frameworks has seen the light in robotics the last ten years,
and all of them have quite overlapping needs with respect to
the structural composition of the functional primitives they
offer, yet no common designs or models are shared, let alone
code.

This paper advocates the use of the NPC4 language, as
the meta model to represent port-based composition, for both
interconnection of behaviour and containment of knowledge,
and in a domain-independent way. More in particular, the
language targets all man-made engineering systems based on
lumped parameter models.

Identifying a minimal set of primitives was not so diffi-
cult: nodes, ports and connectors (or semantically equivalent
concepts) were in use everywhere, in one form or another.
What proved really difficult was to identify the minimal set of
constraints that govern all structural compositions: the lesson
learned is that humans tend to be not very aware of such
constraints, and the more expert one is in a certain domain,
the more obvious and implicit such constraints appear.

The objectives behind NPC4 are already covered, partially,
in engineering languages such as Modelica [42], but the
new contributions of this paper are: (i) to separate strictly
the structural and behavioural aspects, and (ii) to make all
structural relationships explicit in a formal language, based on
hierarchical hypergraphs.

The motivation for this paper is that all current practice
relies on many implicit specifications of, especially, their struc-
tural relationships, and more in particular the “contains”
and “connects” relationships. Only an explicit representa-
tion of both will allow an engineering systems to reason about
its own structure, at runtime, and by itself.

This requirement of being able to reason on “contains”
and “connects” relationships becomes mandatory to deal
with knowledge-centric systems: their behaviour always de-
pends on the specific context in which various pieces of the
knowledge integrated in the system are valid or not. Hence, it
is important to have an explicit computer-readable represen-
tation of the structural knowledge contexts in which a system
is contained; most often, there are many overlapping contexts
active at the same time. Hence, the hierarchical hypergraph
meta model is highly relevant to make the step from traditional
engineering systems to knowledge-aware engineering systems,
that is, systems that can use the knowledge themselves at
runtime.

In the above-mentioned context, the aspect of composability
of structural models is an important design focus; NPC4 advo-
cates that extra “features” (such as behaviour or visualisation)
should not be added “by inheritance” (that is, by adding
attributes or properties to already existing primitives), but “by
composition”, that is, a new DSL is made, that imports already
existing DSLs and adds only the new relationships and/or
properties as first-class and explicit language primitives. The
many examples of graphical models taken from the robotics
domain, and especially their high degree of non-composability,
should be sufficient motivation for practitioners in the field to
start adopting NPC4’s composability approach.

Although presented in a robotics context, nothing in NPC4
depends on this specific robotics domain, and NPC4 can
also serve the goals of related research and application do-
mains such as Cyber-Physical Systems or the Internet of
Things. However, the advantages of the NPC4 meta model
pay off most in robotics, because of (i) the large demand
for knowledge-aware systems, (ii) the online efficiency and
(re)configuration flexibility of such robotics systems, and (iii)
their need for the online reasoning about—and eventually the
online adaptation of—their own structural architectures.

Finally, the authors suggest the NPC4 language for adoption
as an application-neutral standard, since standardizing the
structural part of components, knowledge, or systems, is
a long-overdue step towards higher effciency and reuse in
robotics system modelling design, and in the development of
reusable tooling and (meta) algorithms.

The hope is that NPC4 is simple, neutral, versatile, cus-



19

tomizable and semantically clear and complete enough to
stimulate educators, researchers and software developers to
pay more attention to modelling, and—not in the least!—to
standardize their structural modelling approaches.

Unfortunately, even after 50 years of disappointing experi-
ences with respect to standardization in the domain of robotics,
many practitioners are not motivated to help create and accept
standardization efforts. It is beyond the scope of this paper to
explain why and how well-designed and neutral standards are
indispensable for the domain of robotics to transition from
small-scale academic or industrial development groups to a
large-scale, multi-vendor industry. However, the major design
principles behind this paper (minimality, explicitness and com-
posability of the DSL) have been strongly motivated by the
just-mentioned unfortunate situation of lack of standards in
robotics: it is the authors’ believe that the high complexity and
variability of robotics as a scientific and engineering discipline
is exactly due to the pressure of the open world assumption:
no model of the world is ever complete, or has the right level
of detail for the many different use cases that the domain has
to support. So, starting with first separating out the simplest
part of complex systems—namely its structural model—from
their more complex behavioural aspects, provides the path of
least effort to reach the stated long-term goal.

APPENDIX

This Section gives some more domain specific explanations
for each of the graph structures that where listed in the
Introduction.
• software architectures, as in Figs. 1–2. Typically, each
Node represents an input-output relationship that has
dynamic and time-varying behaviour, while the structure
of the interactions (i.e., the edges and the Ports) does
not change over time. Some frameworks offer hierarchical
composition (e.g., Simulink [26] or Modelica [42]), at
least in the modelling part of system design.

• kinematics and dynamics of actuated mechanical struc-
tures, as in Fig. 3. The joint nodes contain actuator
dynamics, and the link nodes contain rigid-body inertia
dynamics; the edges represent structural connectivity,
modelling which actuators and links are exchanging en-
ergy, that is, exhibit behaviour. Hierarchy is possible, e.g.,
a spherical joint can mechanically be realised by a parallel
mechanism.

• Finite State Machines, as in Fig. 4, model the discrete be-
haviour of a robot control system. That is, what activities
must be running in the system in concurrent ways, and
based on which events the system must switch its overall
behaviour to another set of concurrent activities. The
structure of these switches is modelled by the states being
connected via so-called “transitions”. Structural hierarchy
is used to abstract away the details of how the system
reacts to one particular set of events.

• probabilistic graphical models such as Bayesian Net-
works or Factor Graphs, Figs 5–6. Nodes represent time-
varying (“behavioural”) information as captured in “ran-
dom variables”; edges represent (“structural”) probabilis-
tic relationships which govern the interaction between the
random variables in the connected nodes.
Ports are typically not represented, such that the graphical
model does not allow to indicate which of the random
variables in each node are involved in each of the
relationships represented by edges. For example in Fig. 5,
only some of the input variables U(k-1) influence the
output variables Y(k-1).
Hierarchy is used to model the plate notation, Fig. 7, or
the reduction from a full graph network to a tree structure
in the so-called junction tree algorithm, [43].

• control diagrams and other “data flow” computational
models, such as the Cartesian position control scheme
of Fig. 8; popular instances are Simulink [26] diagrams,
or Bond Graph [28], [44], [29], [30], [31] models in
20Sim [27]. The separation of structure and behaviour
is similar to the above-mentioned cases of software and
kinematic models: nodes represent “dynamics”, edges
represent exchange of information or energy.

• knowledge representation networks, such as the “semantic
web” (represented often by the RDF, OWL or TopicMap
languages) or the robotics KnowRob [45] (using also Lisp
and Prolog as representation languages). Nodes represent
facts, data, term, etc., and edges represent relationships.
RDF and OWL can only represent “triples” relation-
ships; Lisp and Prolog statements have the semantics
of S-expressions (or “expression trees”). Topic Maps
represent more general graphs. Surprisingly, none of
the mainstream approaches support hierarchy as a top-
level modelling primitive, although it is needed to give
structure to the concept of various “levels of abstraction”
in a knowledge representation of a system.

• web applications: the design behind HTML5 [2] brings
a significant change compared to older version of the
standard, and most of that change comes from looking
at web-based applications as an hierarchical network of
interacting components. The Nodes are HTML5 primi-
tives, such as Web components [46], or HTML templates;
the edges represent bi-directional data binding supported
by JavaScript as in AngularJS [47]; Ports are the
sockets of all kinds that are commonly used in the Web.
This evolution of the Web towards separation between
structure and behaviour will make it a lot easier to use
HTML5 for building graphical user interfaces that match
well to the architectures of complex, distributed robot
systems.

Life Cycle State Machine Example
For sake of completeness, Tab. 6 reports the full LCSM model
described in the example of Sec. 5.1, which is conform to the



20

Node: lcsm, active, inactive, creating, deleting,
configuring resources, configuring capabilities, pausing,
running

Connector: c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13,
c14, c15, c16

Port: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14,
p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26

has−a(lcsm, p1)
has−a(lcsm, p14)

has−a(inactive, {p2, p3, p4, p5})
has−a(active, {p15, p16})
has−a(creating, {p6, p7})
has−a(deleting, {p12, p3})
has−a(configuring resources, {p8, p9, p10, p11})
has−a(configuring capabilities, {p17, p18, p19})
has−a(running, {p25, p26})
has−a(pausing, {p20, p21, p22, p23})

contains(lcsm, {inactive,active})
contains(inactive, {creating, deleting, configuring resources})
contains(active, {pausing, running, configuring capabilities})

connects(c1, {p1.idock, p2.edock})
connects(c2, {p2.idock, p6.edock})
connects(c3, {p7.edock, p8.edock})
connects(c4, {p3.edock, p9.edock})
connects(c5, {p4.idock, p10.edock})
connects(c6, {p11.edock, p12.edock})
connects(c7, {p13.edock, p5.idock})
connects(c8, {p5.edock, p14.idock})
connects(c9, {p15.idock, p20.edock})
connects(c10, {p16.idock, p17.edock})
connects(c11, {p21.edock, p18.edock})
connects(c12, {p25.edock, p24.edock})
connects(c13, {p19.edock, p22.edock})
connects(c14, {p23.edock, p26.edock})
connects(c15, {p15.idock, p4.idock})
connects(c16, {p3.edock, p16.edock})

Table 8
Full NPC4 model of the Life Cycle State Machine,

described in Sec. 5. It describes the structure obtained
automatically from the proposed FSM model, fully

reported in Table 6. For compactness, only the first two
has-a relationships are regular NPC4 statements. The
other statements has been defined as syntactic sugar

over the regular NPC4 relationships. That is, the
relationship indicated is unrolled considering each

primitive in the second argument list.

meta model FSM proposed in Tab. 7. The proposed FSM meta
model exploit NPC4 language as structural model, and Tab. 8
illustrates the concrete instance of the LCSM example.

REFERENCES
[1] D. Vanthienen, M. Klotzbücher, and H. Bruyninckx, “The 5C-based

architectural Composition Pattern: lessons learned from re-developing
the iTaSC framework for constraint-based robot programming,” J. Softw.
Eng. in Robotics, vol. 5, no. 1, pp. 17–35, 2014. 1, 5.5

[2] World Wide Web Consortium, “HTML5,” http://www.w3.org, last vis-
ited September 2014. 1, A

[3] S. Borgo and C. Masolo, “Full mereogeometries,” The Review of
Symbolic Logic, vol. 3, no. 4, pp. 521–567, 2010. 1

[4] Groupe de Recherche en Robotique, “Proteus: Platform for RObotic
modeling and Transformations for End-Users and Scientific communi-
ties,” http://www.anr-proteus.fr/. 1

[5] N. Ando, T. Suehiro, and T. Kotoku, “A software platform for component
based RT-system development: OpenRTM-Aist,” in Conf. Simulation,
Modeling, and Programming of Autonomous Robots, Venice, Italia,
2008, pp. 87–98. 1

[6] National Institute of Advanced Industrial Science and Technology,
Intelligent Systems Research Institute, “OpenRTM-Aist,” http://www.
openrtm.org, last visited August 2013. 1

[7] H. Bruyninckx, “Open robot control software: the OROCOS project,” in
Int. Conf. Robotics and Automation, Seoul, Korea, 2001, pp. 2523–2528.
1

[8] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion con-
trol core of the Orocos project,” in Int. Conf. Robotics and Automation,
Taipeh, Taiwan, 2003, pp. 2766–2771. 1

[9] H. Bruyninckx and P. Soetens, “Open RObot COntrol Software (ORO-
COS),” http://www.orocos.org/, 2001, last visited March 2013. 1

[10] S. Joyeux, “ROCK: the RObot Construction Kit,” http://www.
rock-robotics.org, 2010, last visited November 2013. 1

[11] W3C, “Owl,” http://www.w3.org/TR/owl-ref/. 1
[12] G. Antoniou and F. van Harmelen, A Semantic Web Primer, 2nd ed.

MIT Press, 2008. 1
[13] C. Atkinson and T. Kühne, “Model-driven development: a metamodeling

foundation,” IEEE software, vol. 20, no. 5, pp. 36–41, 2003. 1
[14] J. Bézivin, “On the unification power of models,” Software and Systems

Modeling, vol. 4, no. 2, pp. 171–188, 2005. 1, 2.5, 5.1
[15] M. Fowler, Domain Specific Languages. Addison-Wesley Professional,

2010. 1
[16] J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories:

Assembling Applications with Patterns, Models, Frameworks, and Tools.
John Wiley and Sons, 2004. 1

[17] Object Management Group, “Meta Object Facility (MOF) core
specification,” http://www.omg.org/technology/documents/formal/data
distribution.htm, 2006. 1

[18] H. Bruyninckx and J. De Schutter, “Specification of force-controlled
actions in the “Task Frame Formalism”: A survey,” IEEE Trans. Rob.
Automation, vol. 12, no. 5, pp. 581–589, 1996. 1

[19] E. Coste-Maniere and N. Turro, “The MAESTRO language and its
environment: specification, validation and control of robotic missions,”
in Proc. IEEE/RSJ Int. Conf. Int. Robots and Systems, Grenoble, France,
1997, pp. 836–841. 1

[20] T. De Laet, S. Bellens, R. Smits, E. Aertbeliën, H. Bruyninckx, and
J. De Schutter, “Geometric relations between rigid bodies (Part 1):
Semantics for standardization,” IEEE Rob. Autom. Mag., vol. 20, no. 1,
pp. 84–93, 2013. 1, 5.6

[21] E. Gat, “ALFA: a language for programming reactive robotic control
systems,” in Int. Conf. Robotics and Automation, Sacramento, CA, 1991,
pp. 1116–1121. 1

[22] M. Klotzbücher and H. Bruyninckx, “Coordinating robotic tasks and
systems with rFSM Statecharts,” J. Softw. Eng. in Robotics, vol. 3, no. 1,
pp. 28–56, 2012. 1

[23] R. Simmons and D. Apfelbaum, “A task description language for
robot control,” in Proc. IEEE/RSJ Int. Conf. Int. Robots and Systems,
Vancouver, British Columbia, Canada, 1998, pp. 1931–1937. 1

[24] D. B. Stewart, R. A. Volpe, and P. K. Khosla, “Design of dynamically
reconfigurable real-time software using port-based objects,” IEEE Trans.
Software Engineering, vol. 23, no. 12, pp. 759–776, 1997. 2.1

[25] P. Hintjens, “ØMQ—The guide,” http://zguide.zeromq.org, 2013, last
visited July 2014. 2.1

[26] The MathWorks, “Simulation and model-based design by The Math-
Works,” http://www.mathworks.com/products/simulink/. 2.1, A



21

{
” metamodel ” : ” h t t p : / / p e o p l e . mech . k u l e u v e n . be / ˜ u0072295 / fsm−d s l ” ,
” s t a t e s ” : [
{ ” t y p e ” : ” s t a t e ” , ” i d ” : ” lcsm ” } ,
{ ” t y p e ” : ” s t a t e ” , ” i d ” : ” i n a c t i v e ” } ,
{ ” t y p e ” : ” s t a t e ” , ” i d ” : ” a c t i v e ” } ,
{ ” t y p e ” : ” s t a t e ” , ” i d ” : ” c r e a t i n g ” } ,
{ ” t y p e ” : ” s t a t e ” , ” i d ” : ” c o n f i g u r i n g r e s o u r c e s ” } ,
{ ” t y p e ” : ” s t a t e ” , ” i d ” : ” d e l e t i n g ” } ,
{ ” t y p e ” : ” s t a t e ” , ” i d ” : ” c o n f i g u r i n g c a p a b i l i t i e s ” } ,
{ ” t y p e ” : ” s t a t e ” , ” i d ” : ” p a u s i n g ” } ,
{ ” t y p e ” : ” s t a t e ” , ” i d ” : ” r u n n i n g ” } ,
{ ” t y p e ” : ” s t a t e ” , ” i d ” : ” e x i t−lcsm ” }

] ,
” c o n t a i n s ” : [
{

” p a r e n t ” : ” lcsm ” ,
” c h i l d r e n ” : [ ” i n a c t i v e ” , ” a c t i v e ” , ” e x i t−lcsm ” ] ,
” e n t r y ” : ” i n a c t i v e ” ,
” e x i t ” : ” e x i t−lcsm ”

} ,
{

” p a r e n t ” : ” i n a c t i v e ” ,
” c h i l d r e n ” : [ ” c r e a t i n g ” , ” d e l e t i n g ” , ” c o n f i g r e s o u r c e s ” ] ,
” e n t r y ” : ” c r e a t i n g ”

} ,
{

” p a r e n t ” : ” a c t i v e ” ,
” c h i l d r e n ” : [ ” c o n f i g c a p a b i l i t i e s ” , ” p a u s i n g ” , ” r u n n i n g ” ] ,
” e n t r y ” : ” c o n f i g c a p a b i l i t i e s ”

}
] ,
” t r a n s i t i o n s ” : [
{ ” t y p e ” : ” t r a n s i t i o n ” , ” i d ” : ” t r 1 ” , ” s r c ” : ” c r e a t i n g ” , ” t g t ” : ” c o n f i g u r i n g r e s o u r c e s ” } ,
{ ” t y p e ” : ” t r a n s i t i o n ” , ” i d ” : ” t r 2 ” , ” s r c ” : ” c o n f i g u r i n g r e s o u r c e s ” , ” t g t ” : ” a c t i v e ” } ,
{ ” t y p e ” : ” t r a n s i t i o n ” , ” i d ” : ” t r 3 ” , ” s r c ” : ” p a u s i n g ” , ” t g t ” : ” c o n f i g u r i n g r e s o u r c e s ” } ,
{ ” t y p e ” : ” t r a n s i t i o n ” , ” i d ” : ” t r 4 ” , ” s r c ” : ” c o n f i g u r i n g r e s o u r c e s ” , ” t g t ” : ” d e l e t i n g ” } ,
{ ” t y p e ” : ” t r a n s i t i o n ” , ” i d ” : ” t r 5 ” , ” s r c ” : ” c o n f i g u r i n g c a p a b i l i t i e s ” , ” t g t ” : ” p a u s i n g ” } ,
{ ” t y p e ” : ” t r a n s i t i o n ” , ” i d ” : ” t r 6 ” , ” s r c ” : ” p a u s i n g ” , ” t g t ” : ” c o n f i g u r i n g c a p a b i l i t i e s ” } ,
{ ” t y p e ” : ” t r a n s i t i o n ” , ” i d ” : ” t r 7 ” , ” s r c ” : ” p a u s i n g ” , ” t g t ” : ” run ” } ,
{ ” t y p e ” : ” t r a n s i t i o n ” , ” i d ” : ” t r 8 ” , ” s r c ” : ” run ” , ” t g t ” : ” p a u s i n g ” } ,
{ ” t y p e ” : ” t r a n s i t i o n ” , ” i d ” : ” t r 9 ” , ” s r c ” : ” d e l e t i n g ” , ” t g t ” : ” e x i t−lcsm ” } ,

] ,
” e v e n t s ” : [
{ ” t y p e ” : ” e v e n t ” , ” i d ” : ” e done ” , ” t r a n s i t i o n ” : [ ” t r 1 ” , ” t r 5 ” , ” t r 9 ” ] } ,
{ ” t y p e ” : ” e v e n t ” , ” i d ” : ” e d e l e t e ” , ” t r a n s i t i o n ” : [ ” t r 4 ” ] } ,
{ ” t y p e ” : ” e v e n t ” , ” i d ” : ” e i n i t ” , ” t r a n s i t i o n ” : [ ” t r 3 ” ] } ,
{ ” t y p e ” : ” e v e n t ” , ” i d ” : ” e a c t i v a t e ” , ” t r a n s i t i o n ” : [ ” t r 2 ” ] } ,
{ ” t y p e ” : ” e v e n t ” , ” i d ” : ” e r e c o n f i g ” , ” t r a n s i t i o n ” : [ ” t r 6 ” ] } ,
{ ” t y p e ” : ” e v e n t ” , ” i d ” : ” e run ” , ” t r a n s i t i o n ” : [ ” t r 7 ” ] } ,
{ ” t y p e ” : ” e v e n t ” , ” i d ” : ” e pause ” , ” t r a n s i t i o n ” : [ ” t r 8 ” ] }

]
}

Table 6
Full model of the Life Cycle State Machine discussed in Sec. 5.1. The model is defined through an external DSL,

defined in JSON-schema and defined in Table 7. For convenience, the model is described as JSON document too.
The keywords “transitions”, “states” and “contains” represents the structural part of the model, while “events”

(partially) define the behaviour. Many behavioural parts are not reported, such as “entry/exit” functionalities from a
state and so on. It is not the aim of this work to discuss the validity of such DSL. However, it is author’s wish to report

a concrete usage of the NPC4 language to develop metamodels.



22

{
” i d ” : ” h t t p : / / p e o p l e . mech . k u l e u v e n . be / ˜ u0072295 / fsm−d s l ” ,
” $schema ” : ” h t t p : / / j son−schema . o rg / d r a f t−04 / schema #” ,
” t y p e ” : ” o b j e c t ” ,
” p r o p e r t i e s ” : {

” metamodel ” : { ”enum” : [ ” h t t p : / / p e o p l e . mech . k u l e u v e n . be / ˜ u0072295 / fsm−d s l ” ] } ,
” s t a t e s ” : {

” t y p e ” : ” a r r a y ” ,
” minI tems ” : 1 ,
” u n i q u e I t e m s ” : t r u e ,

” i t e m s ” : { ” $ r e f ” : ” # / d e f i n i t i o n s / s t a t e ” }
} ,
” c o n t a i n s ” : {

” t y p e ” : ” a r r a y ” ,
” u n i q u e I t e m s ” : t r u e ,
” i t e m s ” : { ” $ r e f ” : ” # / d e f i n i t i o n s / c o n t a i n e r ” }

} ,
” t r a n s i t i o n s ” : { ” $ r e f ” : ” # / d e f i n i t i o n s / t r a n s i t i o n s ” } ,
” e v e n t s ” : {

” t y p e ” : ” a r r a y ” ,
” u n i q u e I t e m s ” : t r u e ,
” i t e m s ” : { ” $ r e f ” : ” # / d e f i n i t i o n s / e v e n t ” }

}
} ,
” r e q u i r e d ” : [ ” metamodel ” , ” s t a t e s ” , ” t r a n s i t i o n s ” ] ,
” a d d i t i o n a l P r o p e r t i e s ” : f a l s e ,
” d e f i n i t i o n s ” : {

” s t a t e ” : {
” t y p e ” : ” o b j e c t ” ,
” p r o p e r t i e s ” : {

” t y p e ” : { ”enum” : [ ” s t a t e ” ] } ,
” i d ” : { ” t y p e ” : ” s t r i n g ” }

} ,
” a d d i t i o n a l P r o p e r t i e s ” : f a l s e ,
” r e q u i r e d ” : [ ” t y p e ” , ” i d ” ]

} ,
” t r a n s i t i o n ” : {

” t y p e ” : ” o b j e c t ” ,
” p r o p e r t i e s ” : {

” t y p e ” : { ”enum” : [ ” t r a n s i t i o n ” ] } ,
” i d ” : { ” t y p e ” : ” s t r i n g ” } ,
” s r c ” : { ” t y p e ” : ” s t r i n g ” } ,
” t g t ” : { ” t y p e ” : ” s t r i n g ” }

} ,
” r e q u i r e d ” : [ ” t y p e ” , ” i d ” , ” t g t ” , ” s r c ” ] ,
” a d d i t i o n a l P r o p e r t i e s ” : f a l s e

} ,
” t r a n s i t i o n s ” : {

” t y p e ” : ” a r r a y ” ,
” u n i q u e I t e m s ” : t r u e ,
” i t e m s ” : { ” $ r e f ” : ” # / d e f i n i t i o n s / t r a n s i t i o n ” }

} ,
” c o n t a i n e r ” : {

” t y p e ” : ” o b j e c t ” ,
” p r o p e r t i e s ” : {

” p a r e n t ” : { ” t y p e ” : ” s t r i n g ” } ,
” c h i l d r e n ” : { ” t y p e ” : ” a r r a y ” , ” i t e m s ” : { ” t y p e ” : ” s t r i n g ”} , ” minI tems ” : 1 , ” u n i q u e I t e m s ” : t r u e } ,
” e n t r y ” : { ” t y p e ” : ” s t r i n g ” } ,
” e x i t ” : { ” t y p e ” : ” s t r i n g ” }

} ,
” a d d i t i o n a l P r o p e r t i e s ” : f a l s e ,
” r e q u i r e d ” : [ ” p a r e n t ” , ” c h i l d r e n ” , ” e n t r y ” ]

} ,
” e v e n t ” : {

” t y p e ” : ” o b j e c t ” ,
” p r o p e r t i e s ” : {

” t y p e ” : { ”enum” : [ ” e v e n t ” ] } ,
” i d ” : { ” t y p e ” : ” s t r i n g ” } ,
” t r a n s i t i o n s ” : { ” t y p e ” : ” a r r a y ” , ” i t e m s ” : { ” t y p e ” : ” s t r i n g ”} , ” u n i q u e I t e m s ” : t r u e , ” minI tems ” : 1 }

} ,
” r e q u i r e d ” : [ ” t y p e ” , ” i d ” , ” t r a n s i t i o n s ” ] ,
” a d d i t i o n a l P r o p e r t i e s ” : f a l s e

}
}

}

Table 7
JSON-schema metamodel of the proposed FSM DSL in Sec. 5.1. The json-schema used to is the draft04. This

metamodel conforms to the NPC4 meta-metamodel.



23

[27] Controllab Products B.V., “20-sim,” http://www.20sim.com/, accessed
online 2 August 2013. 2.1, A

[28] R. R. Allen and S. Dubowsky, “Mechanisms as components of dynamic
systems: A Bond Graph approach,” J. of Elec. Imag., pp. 104–111, 1977.
2.1, A

[29] P. Gawthrop and L. Smith, Metamodelling: Bond Graphs and Dynamic
Systems. Prentice Hall, 1996. 2.1, A

[30] H. M. Paynter, Analysis and design of engineering systems. MIT Press,
1961. 2.1, A

[31] ——, “An epistemic prehistory of Bond Graphs,” in Bond Graphs for
Engineers, P. Breedveld and G. Dauphin-Tanguy, Eds., 1992. 2.1, A

[32] F. Francis Colas, J. Diard, and P. Bessière, “Common Bayesian models
for common cognitive issues,” Acta Biotheoretica, vol. 58, no. 2–3, pp.
191–216, 2010. 2.1

[33] T. De Laet, H. Bruyninckx, and J. De Schutter, “Shape-based online
multitarget tracking and detection algorithm for targets causing multiple
measurements: Variational Bayesian clustering and lossless data associ-
ation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 33, no. 12, pp.
2477–2491, 2011. 2.1

[34] J. F. Ferreira, M. Castelo-Branco, and J. Dias, “A hierarchical Bayesian
framework for multimodal active perception,” Adaptive Behavior,
vol. 20, no. 3, pp. 172–190, 2012. 2.1

[35] L. Ladický, P. Sturgess, K. Alahari, C. Russell, and P. H. S. Torr,
“What, where and how many? Combining object detectors and CRFs,”
in 2010 European Conference on Computer Vision, ser. Lecture Notes
in Computer Science. Springer, 2010, vol. 6314, pp. 424–437. 2.1

[36] D. Crockford, “The application/json Media Type for JavaScript Object
Notation (JSON),” http://tools.ietf.org/html/rfc4627, 2006. 5.1

[37] T. Murata, “Petri nets: properties, analysis and applications,” Proc. of
the IEEE, vol. 77, no. 4, pp. 541–580, 1989. 5.2

[38] R. Valk, “Object petri nets,” in Lectures on Concurrency and Petri
Nets, ser. Lecture Notes in Computer Science, J. Desel, W. Reisig,
and G. Rozenberg, Eds. Springer Berlin Heidelberg, 2004, vol.
3098, pp. 819–848. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-27755-2 23 5.2

[39] Willow Garage, “Universal Robot Description Format (URDF),” http:
//www.ros.org/wiki/urdf, 2009. 5.6

[40] M. Sporny, G. Longley, Dave Kellogg, M. Lanthaler, and N. Lindström,
“A JSON-based serialization for Linked Data,” http://www.w3.org/TR/
json-ld/, 2014. 5.6

[41] H. Rijgersberg, M. F. J. van Assem, and J. L. Top, “Ontology of units
of measure and related concepts,” Semantic Web, vol. 4, no. 1, pp. 3–13,
2013. 5.6

[42] Modelica Association, “Modelica: Language design for multi-domain
modeling,” http://www.modelica.org/, last visited September 2014. 6, A

[43] S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with
probabilities on graphical structures and their application to expert
systems (with discussion),” J. R. Statist. Soc. B, vol. 50, no. 2, pp.
157–224, 1988, reprinted in [48, p. 415]. A

[44] F. T. Brown, Engineering System Dynamics, a Unified Graph-Centered
Approach, 2nd ed. CRC Press, 2006. A

[45] M. Tenorth and M. Beetz, “KnowRob—A knowledge processing infras-
tructure for cognition-enabled robots,” Int. J. Robotics Research, vol. 32,
no. 5, pp. 566–590, 2013. A

[46] NN., “Web components,” http://webcomponents.org, last visited Septem-
ber 2014. A

[47] Google Inc., “Angular JS,” http://angularjs.org, last visited September
2014. A

[48] G. Shafer and J. Pearl, Eds., Readings in Uncertain Reasoning. San
Mateo, CA: Morgan Kaufmann, 1990. 43

Enea Scioni received his B.Sc. and M.Sc de-
grees in Computer Science and Automation
Control from University of Ferrara in 2007 and
2010, respectively. Since 2011, he is a PhD
candidate at both University of Ferrara and Uni-
versity of Leuven. His current research inter-
ests are on formal specification and scheduling
of constraint-based tasks, optimization-based
robot control and coordination of complex robotic
systems. His research also concern on devel-
oping software middleware tools and Domain

Specific Languages to realize advanced robotic applications.

Herman Bruyninckx obtained the Masters de-
grees in Mathematics (Licentiate, 1984), Com-
puter Science (Burgerlijk Ingenieur, 1987) and
Mechatronics (1988), all from the KU Leuven,
Belgium. In 1995 he obtained his Doctoral De-
gree in Engineering from the same university,
with a thesis entitled “Kinematic Models for
Robot Compliant Motion with Identification of
Uncertainties.”

He is full-time Professor at the KU Leuven,
and held visiting research positions at the Grasp

Lab of the University of Pennsylvania, Philadelphia (1996), the Robotics
Lab of Stanford University (1999), and the Kungl Tekniska Hogskolan,
Stockholm (2002). Since 2014, he has a partime affiliation with the
Eindhoven University of Technology.

His current research interests are on-line Bayesian estimation of
model uncertainties in sensor-based robot tasks, kinematics and dy-
namics of robots and humans, and the software engineering of large-
scale robot control systems. In 2001, he started the Free Software
(”open source”) project Orocos (http://www.orocos.org), to support his
research interests, and to facilitate their industrial exploitation.

He participated in about a dozen European research projects on
robotics, with a focus in the recent years on the software engineering
aspects. In October 2014, he received an honorary doctorate from
the University of Southern Denmark, for his leading role in software
development and research in robotics.

Azamat Shakhimardanov received his B. Sc.
degree in control engineering from the Tashkent
State Technical University, in 2004, and his M. Sc
degree in computer science from the Univer-
sity Bonn-Rhein-Sieg in 2007. Since then he
has worked in many EU robotics projects as a
technical engineer. In 2010 he started his Ph. D.
degree in mechanical engineering at the KU
Leuven. His current research interests are robot
motion control, robot dynamics, constraint based
task specification and software engineering of

large-scale robot control systems.



24

Nico Hübel received his Dipl.-Ing. (M.Sc.) in
Engineering Cybernetics from the University of
Stuttgart, Germany, in 2010. From 2010 to 2014
he was research assistant at the Institute for
Dynamics and Control, ETH Zurich, Switzerland.
Since 2014 he is a Research Scientist in the
Robotics Research Group of KU Leuven. He
was a research scholar at Tokyo Institute of
Technology and a member of R&D at KUKA
Robotics. His research interests are in the area
of autonomous robotics, learning, control sys-

tems theory, and software engineering for these areas.

Markus Klotzbücher received his PhD from the
KU Leuven, on Domain Specific Languages for
Hard Real-Time Safe Coordination of Robot and
Machine Tool Systems in 2013, and is now lead
engineer embedded software at Kistler Instru-
mente AG in Winterthur.

Hugo Garcia is research engineer at KU Leu-
ven, and the author of the BRIDE software tool
for component-based robotics software.

Sebastian Blumenthal received his B. Sc. and
M. Sc. degrees in in computer science from the
University Bonn-Rhein-Sieg in 2007 and 2009.
In 2013 he started his Ph. D. degree at the KU
Leuven, focusing on the software engineering
aspects of world modelling in large-scale robot
control systems.


	Introduction & Overview  
	Concepts  
	Explanation of Used Terminology 
	GUI Architecture 
	Deployment
	Event Based Interaction within the GUI
	Mediator: Information Flow across the System Boundary

	Unique Identifiers  

	Models  
	JSON as the default modelling language  
	Topology Models 
	Plant 
	Line 
	Module 
	Device 
	Tray 
	Punnet 

	Data Models 
	Batch 
	Feature 

	5P model of production  
	Finite State Machines 
	Geometry Models
	Existing Standards for Geometry Models  
	TopoJSON for Location and Layout Widgets 


	Implementations  
	Communication 
	GUI 

	Discussion and conclusion  
	Advantages and Trade-Offs  
	Conclusions  

	Appendices
	JSON Models 
	Topology Models 
	Factory Model 
	Line Model 
	Moduel Model 
	Device Model 
	Tray Model 
	Punnet Model 

	Data Model 
	Batch Model 
	Feature Model 

	Finite State Machine Model 
	TopoJSON Model 

	Communication 
	Hierarchical Hypergraphs 

