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Abstract 1 

Food oral processing plays a key role in sensory perception, consumer acceptance 2 

and food intake. However, little is known about the influence of physical food 3 

properties on oral processing of different type of food products. The primary objective 4 

of this study was to determine the influence of rheological and mechanical properties 5 

of foods on oral processing behavior of liquid (drinkable), semi-solid (spoonable) and 6 

solid foods (chewable). The secondary objective was to quantify the influence of 7 

product, liking, frequency of consumption and familiarity on oral processing behavior. 8 

Rheological and mechanical properties of 18 commercially available foods were 9 

quantified. Parameters describing oral processing behavior such as sip and bite size, 10 

consumption time, eating rate, number of swallows, number of chews, cycle duration, 11 

and chewing rate were extracted from video recordings of 61 consumers. Subjects 12 

evaluated products’ liking, familiarity, and frequency of consumption using 13 

questionnaires. Consumers strongly adapted oral processing behavior with respect to 14 

bite size, consumption time, and eating rate to the rheological and mechanical 15 

properties of liquid, semi-solid and solid foods. This adaptation was observed within 16 

each food category. Chewing rate and chewing cycle duration of solid foods were not 17 

influenced by mechanical properties and remained relatively constant. Liking, 18 

familiarity, and consumption frequency showed to impact oral processing behavior, 19 

although to a lower degree than the rheological and mechanical properties of food. 20 

We conclude that the oral processing behaviors of liquid, semi-solid and solid foods 21 

are mainly determined by their rheological and mechanical properties. 22 

Key words: Food oral processing, food consistency, bite size, consumption time, 23 

eating rate, liking  24 
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1 Introduction 25 

Oral processing is the manipulation and break down of food inside the mouth up to 26 

the moment of swallowing (Chen, 2009; Foegeding, 2007; Stieger & van de Velde, 27 

2013). This process is dynamic and plays a central role in sensory perception and 28 

food intake. Therefore, oral processing is key for consumer acceptance of foods 29 

(Chen, 2009; Hutchings & Lillford, 1988).  30 

Foods are processed differently in the mouth depending on their physical-chemical, 31 

rheological and mechanical properties (Hiiemae, 2004; Chanasattru, Corradini, & 32 

Peleg, 2002; Abhyankar, Mulvihill, & Auty, 2011; Chen & Stokes, 2012). Liquid foods 33 

are transported from the front of the mouth to the pharynx and then swallowed. Semi-34 

solid foods are also transported from the front of the mouth to the pharynx but require 35 

additional tongue movements before swallowing. Solid foods are fragmented into 36 

particles by mastication during oral processing that are then further reduced in size, 37 

lubricated and mixed with saliva until particles agglomerate and a bolus is formed 38 

that is safe to swallow (van Aken, Vingerhoeds, & de Hoog, 2007; van Vliet, van 39 

Aken, de Jongh, & Hamer, 2009). Oral processing behavior is usually characterized 40 

by parameters such as sip or bite size, number of chews per bite, oro-sensory 41 

exposure time, number of swallows, and eating rate (Hiiemae et al., 1996).  42 

The human diet consists of foods from across liquid, semi-solid and solid foods, 43 

though most of the previous studies to date have investigated oral processing 44 

behaviors associated with solid foods (Ferriday et al., 2016; Forde, Leong, Chia-45 

Ming, & McCrickerd, 2017; Forde, van Kuijk, Thaler, de Graaf, & Martin, 2013; 46 

Hiiemae et al., 1996; Koç et al., 2014). These studies showed that the number of 47 

chews and bite size vary depending on the food item consumed (Hiiemae et al., 48 

1996). Hardness of soft-solid model food gels was positively correlated with number 49 

of chews, muscle activity, and jaw opening amplitude (Koç et al., 2014). Sensory 50 

attributes, such as firmness and chewiness were positively correlated with number of 51 

chews, chewing rate, chews per bite and oral exposure time and negatively 52 

correlated with eating rate (Forde et al., 2013). Eating rate represents the amount of 53 

food eaten per unit of time and has been associated with caloric intake (van den Boer 54 

et al., 2017). Forde et al. (2017) found that the way the food is prepared significantly 55 

influenced eating rate. The mashed version of a food was consumed with higher 56 
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eating rates than when the same food was presented whole. However, it is not fully 57 

understood to what extent eating rate is determined by the mechanical properties of 58 

food.  59 

In contrast to the many studies investigating oral processing behavior of solid foods, 60 

only few studies have examined the influence of rheological properties of liquid and 61 

semi-solid foods on oral processing behavior (Chen & Lolivret, 2011; de Wijk, Zijlstra, 62 

Mars, de Graaf, & Prinz, 2008; Steele & Lieshout, 2004). Chen & Lolivret (2011) 63 

found that apparent shear viscosity was positively correlated with perceived difficulty 64 

to swallow and longer residence time in mouth of liquid foods. de Wijk et al. (2008) 65 

compared bite size of liquid and semi-solid foods and demonstrated that bite size of 66 

semi-solid foods was smaller than bite/sip size of liquids. Steele & Lieshout (2004) 67 

found that when comparing bite size within one food category, liquid foods, bite/sip 68 

size was not affected by product consistency. This study focused on beverages with 69 

low viscosity such as water, milk, and apple juice. That said, the authors indicated 70 

that number of swallows decreased when consistency increased. These studies 71 

indicate that rheological properties of liquid and semi-solid foods may have an 72 

influence on oral processing behavior.  73 

In addition to the effect of rheological and mechanical properties of foods on oral 74 

processing behavior, recent reviews have hypothesized that liking and familiarity 75 

could influence oral processing behavior (Campbell, Wagoner, & Foegeding, n.d.; 76 

Woda, Foster, Mishellany, & Peyron, 2006). However, only a few studies account for 77 

food liking and/or familiarity when assessing oral processing behavior (Bellisle & Le 78 

Magnen, 1980; Ferriday et al., 2016; Forde et al., 2017, 2013). Forde (2017) and 79 

Bellisle (1980) showed that for solids, liking was negatively correlated with chews per 80 

bite and chewing time. However, other studies (Ferriday et al., 2016; Forde et al., 81 

2013) showed no relationship between liking and oral processing behavior. Yet, the 82 

relationship between liking and familiarity for liquid and semi-solid foods and oral 83 

processing behavior remains unclear. 84 

Therefore, the primary objective of this study was to determine the influence of 85 

rheological and mechanical properties of food on oral processing behavior of liquid 86 

(drinkable), semi-solid (spoonable) and solid (chewable) foods. The secondary 87 
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objective was to quantify the influence of product, liking, frequency of consumption 88 

and familiarity on oral processing behavior. 89 

2 Material and Methods 90 

2.1 Test foods 91 

Eighteen commercially available foods were used and classified into three 92 

categories: liquid/drinkable, semi-solid/spoonable, and solid/chewable foods (Table 93 

1). These foods were chosen to represent a wide range of commercially available 94 

products that differ in rheological and mechanical properties. All foods were 95 

purchased in local supermarkets. When cooking was needed for food preparation, 96 

the manufacturer’s instructions provided on the label were followed.  97 

 98 

Table 1. Overview of foods, brands, serving temperature, and presentation form. 99 

 100 

 101 

Category Product Brand Serving 
temperature 

Presentation 
form 

Liquid/Drinkable 

Water Tap water 22 °C 

100 g  
in a cup  
 

Sparkling water Spa Intense 22 °C 

Green tea Lipton vitality classic 55 °C 

Thin soup Knorr Mix tomato soup 60 °C 

Thick soup Unox Creamy tomato soup 60 °C 

Drinking yogurt FrieslandCampina 
Strawberry Vifit 

10 °C 

Semi-solid/ 
Spoonable 

Custard FrieslandCampina Vanilla 
flavor  

10 °C 
100 g  
in a bowl to 
be consumed 
with a spoon 

Skimmed yogurt FrieslandCampina  10 °C 

Skyr  Arla Skyr natural flavor   10 °C 

Mashed potatoes Supermarket private label 55 °C 

Solid/Chewable 

Old Gouda cheese Supermarket private label 22 °C 

50 g  
on a plate to 
be consumed 
with fork and 
knife 

Young Gouda cheese Supermarket private label 22 °C 

Beef (chuck) Supermarket private label 70°C 

Raw carrots Supermarket private label 22 °C 

Chocolate  Lindt excellence 70% cacao 22 °C 

Noodles Conimex wok noodles 22 °C 

Tofu (medium-firm) Supermarket private label 22 °C 

Processed cheese Bel Group Kiri 22 °C 
 



6 
 

2.2 Instrumental analyses 102 

2.2.1 Viscosity measurements of liquid and semi-solid foods 103 

Viscosity measurements were performed with a Modular Compact Rheometer 302 104 

(MCR 302, Anton Paar, Graz, Austria) equipped with a concentric cylinder (CC17/TI-105 

SN3960). Flow curves were recorded by measuring viscosity as a function of shear 106 

rate. Shear rate was increased from 0.1 s-1 to 1000 s-1 and then decreased from 1000 107 

s-1 to 0.1 s-1. All measurements were done in triplicate at the serving temperature of 108 

the foods (Table 1). Though the food temperature may vary during oral processing, it 109 

was assumed that the temperature of liquid and semi-solid foods changed only to a 110 

small extent during consumption. Thus, under this assumption the serving 111 

temperature was chosen as the relevant temperature for the rheological testing. The 112 

Ostwald-de Waele model (η = K γ ̇n-1) was used to fit the flow curves to quantify 113 

consistency K and flow behavior index n. In the Ostwald-de Waele model η 114 

represents viscosity (Pas), γ̇ (s-1) shear rate, K consistency which corresponds to 115 

viscosity at a shear rate of 1 s-1(η1s-1), and n the flow behavior index which indicates 116 

the magnitude of shear thinning behavior (0 < n < 1). Fitting of flow curves was done 117 

for viscosities ranging from 1 s-1 to 100 s-1. All liquid, drinkable and semi-solid, 118 

spoonable foods were characterized following this procedure with the exception of 119 

water, tea, and sparkling water. Viscosity of water at 22 °C and 55 °C were obtained 120 

from the tables of the International association for the properties of water and steam 121 

(Wagner, Wolfgang & Kretzschmar, Hans-Joachim, 2008), and used for water and 122 

tea. Viscosity of sparkling water was assumed to be the same as viscosity of still 123 

water. 124 

2.2.2 Uniaxial compression tests of solid foods 125 

A Texture Analyzer (TA.XT plus) equipped with a load cell of 50 kg and a 126 

compression plate of 75 mm diameter was used to perform uniaxial compression 127 

tests on all chewable foods with the exception of noodles. Samples were cylinders 128 

with 15 mm height and 18 mm diameter. Processed cheese (Kiri) was used in its 129 

original shape, a block of 37 x 37 x 14 mm. To prevent friction between plate and 130 

samples during compression, the plate and the top of the sample surface were 131 

lubricated with paraffin oil. Ten replicates per sample were measured at 22 °C at 132 

constant compression speed of 1 mm/s up to a compression strain of 80 %, except 133 
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for chocolate that was compressed up to 30 % strain. To be able to compare 134 

mechanical properties between solid, chewable foods differing largely in mechanical 135 

properties, Young’s modulus and stress at 15% strain (σ15%) were calculated by 136 

averaging over the replicate measurements. 137 

2.3 Subjects 138 

61 Dutch Caucasian subjects, 36 females and 25 males, with an average age of 44 ± 139 

24 years, participated in this study. All participants underwent a dental screening to 140 

confirm they had complete dentition. Additionally, mastication efficiency was 141 

assessed as described previously (Fontijn-Tekamp, van der Bilt, Abbink, & Bosman, 142 

2004; Sánchez-Ayala, Vilanova, Costa, & Farias-Neto, 2014) and only subjects 143 

considered with good mastication efficiency, defined as subjects with a median 144 

particle size <3.5mm, were included. Eating Assessment Tool 10 (Belafsky et al., 145 

2008), a self-administered questionnaire originally developed for dysphagia 146 

evaluation, was used to discard subjects with any swallowing problem. Other 147 

inclusion criteria were BMI of 18.5-25 kg/m2, normal taste and smell capabilities and 148 

no food allergies. Written informed consent was obtained from all participants and all 149 

subjects were reimbursed for their participation. The study was approved by the 150 

medical ethical committee of Wageningen University (NL58762.081.16).  151 

2.4 Experimental procedure 152 

During the test sessions participants consumed the test foods while being video 153 

recorded. Each subject was individually video recorded, in a well-lit room, isolated 154 

from external noise or any other distractions. Participants were asked not to eat for 155 

two hours before the sessions. Sessions were held between 13:00 – 17:00 hours and 156 

lasted 30 min. Participants consumed a total of 18 test foods divided over three 157 

sessions. In each session, participants consumed six test foods. Each session lasted 158 

for 30 min. Sessions were spread over 3 weeks, so that typically each subject 159 

participated in one session per week. Foods were presented one at a time in a 160 

completely randomized order. 161 

Before starting video recording, the researcher placed four round stickers on the 162 

participant’s face: two on the forehead spaced horizontally 5 cm, one on the tip of the 163 

nose, and one on the center of the chin. These stickers were used for video analysis. 164 
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Participants were seated in a chair in front of a table with a video camera (Canon 165 

IXUS-500HS), approximately 50 cm from the participant’s face. This distance was 166 

close enough to take a complete picture of the face without distracting or 167 

discomforting the participants. Participants were instructed to hold their head straight 168 

and not to block their mouth or face while eating.  169 

Drinkable products were served in 100 g portions in a plastic cup and subjects were 170 

instructed to drink the liquid products directly from the cup. Spoonable products were 171 

served in 100 g portions in a bowl and subjects had to use a table spoon to consume 172 

them. Finally, chewable foods were served in 50 g portions and presented on a plate 173 

with fork and knife. Subjects were instructed to consume the solid foods as they 174 

would usually do, so subjects were free to use knife and fork or not in order to keep 175 

behavior as natural as possible. They were requested to consume three sips, three 176 

spoons or three bites of the food from the portion offered as they would normally do 177 

and to indicate the swallowing moment by raising their hand. Once the participants 178 

finished the three sips, spoons, or bites and indicated the last swallowing moment, 179 

the recording was stopped. All video recordings were done at 30 frames per second 180 

(fps). After the video recordings, samples were weighed to calculate the amount of 181 

food consumed. The portion size offered to the participants was considerably larger 182 

than the amount they consumed with the three sips, spoons, or bites.  183 

2.5 Video analysis 184 

A coding scheme was developed for the extraction of quantitative data using the 185 

software Kinovea (v0.8.15), a motion analysis software that tracks changes in the 186 

spatial position of specific markers in video recordings. Frequency of two key 187 

moments (bite and swallow) were recorded and the stickers placed on the nose and 188 

chin were labelled accordingly. The movement of those stickers relative to each other 189 

was extracted as X-Y coordinates over time. The stickers on the forehead were used 190 

as a reference to draw a line to calibrate the software with the number of pixels that 191 

represented 5 cm. Coding of the videos was divided between three researchers. To 192 

standardize the coding procedures, the researchers coded a set of 10 videos 193 

together. After analyses were done, approximately 10% of the videos were randomly 194 

selected and codification was validated. 195 
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Average bite size was determined by dividing the total weight of food consumed in 196 

three sips, spoons or bites by three. Consumption time of one sip, one spoon or one 197 

bite was defined as the time period when participants placed the sample in the mouth 198 

until the last swallow before the next bite or end of the video. Total consumption time 199 

was obtained by adding the consumption times of three sips, spoons, or bites. Total 200 

consumption time thus represents the time that foods were orally processed and 201 

excludes the time between sips, spoons and bites. Number of swallows were 202 

recorded by counting the number of times the participant raised the hand. Eating rate 203 

was obtained by dividing the weight of food consumed by the total consumption time. 204 

To obtain the number of chews, the jaws vertical displacement was computed as the 205 

difference between the nose’s position and the chin marker at each time point. The 206 

number of chews was calculated by implementing a first derivative zero-crossing 207 

peak detection method of the jaw’s vertical displacement. Chewing cycle duration 208 

was obtained by dividing the total consumption time by the number of chews, and 209 

chewing rate represents the number of chews per second. These calculations were 210 

processed using a custom-made Excel macro. Table 2 shows the parameters 211 

describing oral processing behavior obtained for each product category. 212 

Table 2. Parameters describing oral processing behavior of 18 foods belonging to three categories. 213 

Variable Drinkable Spoonable Chewable 

Average bite/sip size (g)    

Consumption time in (s)    

Number of swallows    

Eating rate (g/s)    

Number of chews    

Chewing cycle duration (s)    

Chewing rate (chews/s)    

 214 

2.6 Liking, familiarity and consumption frequency 215 

Separately from the video coding session, frequency of consumption, familiarity, and 216 

liking of all foods were rated by all participants. Frequency of consumption and 217 

familiarity were assessed before the test sessions while liking was rated after the last 218 

sip, spoon or bite of product consumption. Frequency of consumption was rated 219 

using a 6-point scale where 1 indicated never consumed, 2 once a year, 3 once 220 

every six months, 4 once a month, 5 once a week, and 6 once a day. Familiarity was 221 

rated on a 5-point scale. 1 indicated not at all familiar, 2 slightly familiar, 3 moderately 222 
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familiar, 4 very familiar, and 5 extremely familiar. Liking was assessed using a 9-point 223 

hedonic scale with 1 corresponding to dislike extremely, 2 dislike very much, 3 dislike 224 

moderately, 4 dislike slightly, 5 neither like nor dislike, 6 like slightly, 7 like 225 

moderately, 8 like very much, and 9 like extremely. 226 

2.7 Statistical data analysis 227 

All data analyses were done with SPSS (IBM SPSS statistics, version 24). Data is 228 

presented as mean ± SE. Normality of continuous variables was checked using 229 

Shapiro-Wilk tests. Non-normally distributed data was log-transformed. A p-value 230 

lower than 0.05 was considered statistically significant.  231 

Analysis of covariance was conducted within each product category to determine the 232 

effect of food product on each oral processing variable considering product as 233 

independent factor. Liking, familiarity, frequency of consumption and participants age 234 

were used as covariates. Partial eta squared (ηp2) was calculated to estimate effect 235 

sizes. Post hoc pairwise comparisons were performed using Bonferroni’s adjustment. 236 

Additionally, an analysis of variance within each product category was conducted to 237 

compare products liking, familiarity and frequency of consumption. 238 

Pearson correlation coefficients were computed to assess the relationships between 239 

oral behavior variables and rheological and mechanical properties. 240 

3 Results 241 

3.1 Rheological and mechanical properties of foods 242 

Consistency K corresponding to viscosity at a shear rate of 1 s-1 and flow behavior 243 

index n indicating the magnitude of shear thinning behavior (0 < n < 1) of drinkable 244 

and spoonable foods are shown in Table 3. Water and warm tea display Newtonian 245 

flow behavior (n = 1), and the difference in consistency K is caused by the 246 

temperature difference. All other drinkable and spoonable foods displayed shear 247 

thinning behavior to various degrees (0.06 < n < 0.45). Of all foods displaying shear 248 

thinning behavior, thin soup had the lowest and mashed potatoes the highest 249 

consistency K. Mashed potatoes displayed the lowest (strongest shear thinning 250 

behavior) and drinking yogurt the highest (weakest shear thinning behavior) flow 251 

behavior index n. 252 



11 
 

Table 3. Consistency K corresponding to viscosity at a shear rate of 1 s-1and flow behavior index n indicating the 253 
magnitude of shear thinning behavior (0 < n < 1) of drinkable and spoonable foods 254 

Category Food Consistency K  
(Pa s) 

Flow behavior index  
n 

Li
qu

id
 

D
rin

ka
bl

e 

Water 0.00095 1.00 

Sparkling water 0.00095 1.00 

Green tea 0.00050 1.00 
Thin soup 0.164 0.42 

Thick soup 3.530 0.25 
Drinking yogurt 1.312 0.45 

S
em

i-s
ol

id
 

S
po

on
ab

le
 Custard 21.34 0.31 

Skimmed yogurt 20.59 0.38 

Skyr  55.20 0.28 

Mashed potatoes 207.61 0.06 
Note: Flow curves were determined at serving temperature. Water and tea viscosities were obtained from Wagner & Kretzschmar, 
2008. 
 255 

The Young’s modulus and stress needed to compress to 15 % strain (σ15%) for solid, 256 

chewable foods are shown in Table 4. Young’s modulus ranged from 0.28 kPa for 257 

tofu to 50.31 kPa for carrot. σ15% ranged from 4.42 kPa for tofu to 661.25 kPa for 258 

chocolate. 259 

Table 4. Mean and standard error of Young’s modulus and stress at 15% strain (σ15%) of solid, chewable foods. 260 

Category Food Young’s modulus 
(kPa) 

Stress at 15% strain σ15% (kPa) 

S
ol

id
 C

he
w

ab
le

 

Old Gouda cheese 14.59 ± 0.82 169.3 ± 8.45 

Young Gouda cheese 2.21 ± 0.26 30.2 ± 3.06 

Beef 1.77 ± 0.31 22.9 ± 3.41 
Raw carrots 50.31 ± 3.18 607.0 ± 33.41 

Chocolate 47.35 ± 8.34 661.3 ± 88.91 

Tofu 0.28 ± 0.02 4.4 ± 0.24 
Processed cheese 1.02 ± 0.63 13.2 ± 0.06 

 261 

3.2 Product differences on oral processing behavior 262 

Means of all parameters describing oral processing behavior of the n=61 subjects for 263 

all drinkable, spoonable, and chewable foods are presented in Table 5. Food 264 

products were significantly different on most parameters describing oral processing 265 

behavior. 266 

Ingestion size significantly differed in drinkable [F (5, 358) = 10.21, p < .001, ηp2 = 267 

.13], spoonable [F (3, 238) = 4.44, p = .005, ηp2 = .05], and chewable [F (7, 478) = 268 

11.94, p < .001, ηp2 = .15] foods. Drinkable foods were eaten with an average sip size 269 
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of 15.0 g, spoonable foods had an average bite size of 10.6 g whereas chewable 270 

foods had an average bite size 4.8 g. 271 

Consumption time significantly differed in drinkable, spoonable, and chewable foods 272 

[F (5, 359) = 19.35, p < .001, ηp2 = .21; F (3, 239) = 32.30, p < .001, ηp2 = .29; F (7, 273 

478) = 30.01, p < .001, ηp2 = .31 respectively]. Consumption time for drinkable foods 274 

was on average 3.7 s, for spoonable foods 5.4 s, and for chewable foods 21.3 s.  275 

Number of swallows significantly differed in drinkable [F (5, 360) = 8.55, p < .001, ηp2 276 

= .11] and spoonable foods [F (3, 240) = 6.24, p < .001, ηp2 = .07]. However, 277 

chewable products did not differ on number of swallows. The number of swallows 278 

taken for drinkable foods was on average 1.2, for spoonable foods 1.4, and for 279 

chewable foods 1.8. 280 

Eating rate significantly differed in drinkable, spoonable, and chewable foods [F (5, 281 

359) = 24.59, p < .001, ηp2 = .26; F (3, 238) = 29.09, p < .001, ηp2 = .27; F (7, 478) = 282 

36.76, p < .001, ηp2 = .35 respectively]. The average eating rate was 4.4 g/s for 283 

drinkable products, 2.2 g/s for spoonable, and 0.2 g/s for chewable foods. 284 

Number of chews significantly differed between products [F (7, 444) = 42.58, p < 285 

.001, ηp2 = .39] for chewable foods, and ranged from 16.7 chews for processed 286 

cheese to 47.2 chews for meat. Moreover, significant effects on chewing rate and 287 

cycle duration were observed [F (7, 479) = 9.44, p < .001, ηp2 = .12]. 288 

These results show an interrelationship between oral processing parameters. 289 

Chewable foods that were eaten at the slowest rate also had the smallest bite size, 290 

greatest chews per bite and longest consumption time (i.e. Gouda, carrots, beef). By 291 

contrast drinkable and spoonable foods that were eaten the fastest, had the largest 292 

bite size, required no chewing and had the shortest consumption time (i.e. water, 293 

skimmed yogurt). 294 



 

13 
 

 295 

Table 5. Means of parameters describing oral processing behavior, liking, familiarity and frequency of consumption for all drinkable, spoonable, and chewable foods. Values are 296 
reported as mean ± SE. Superscripts indicate significant differences between means within each column within a product category (p<0.05).  297 

  
Bite size 
(g) 

Consumption 
time (s) 

Number of 
swallows 

Eating 
rate (g/s) 

Number of 
chews 

Chewing 
rate 
(chews/s) 

Cycle 
duration 
(s) 

Liking Familiarity Frequency of 
consumption 

D
rin

ka
bl

e 

Water 18.0 ± 1.1c 2.8 ± 1.1a 1.1 ± 1.0a 6.3 ± 1.1c  - -  -  5.9 ± 0.2b 4.9 ± 0.1b 6.0 ± 0.1b 
Sparkling water 16.8 ± 1.1c 3.1 ± 1.1ab 1.2 ± 1.0ab 5.3 ± 1.1bc  - -  -  5.4 ± 0.2ab 4.1 ± 0.1a 3.8 ± 0.1a 
Green tea 15.5 ± 1.1bc 2.9 ± 1.1a 1.1 ± 1.0a 5.0 ± 1.1bc  - -  -  5.0 ± 0.2a 4.7 ± 0.1b 5.7 ± 0.1b 

Thin soup 12.7 ± 1.1ab 3.3 ± 1.1ab 1.2 ± 1.0ab 4.0 ± 1.1b  - -  -  7.0 ± 0.2c 4.2 ± 0.1a 3.9 ± 0.1a 
Thick soup 11.2 ± 1.1a 6.0 ± 1.1c 1.5 ± 1.0c 2.0 ± 1.1a  - -  -  7.2 ± 0.2c 4.2 ± 0.1a 3.9 ± 0.1a 
Drinking yogurt 15.6 ± 1.1bc 3.9 ± 1.1b 1.3 ± 1.0bc 4.1 ± 1.1b  - -  -  7.1 ± 0.2c 3.9 ± 0.1a 3.6 ± 0.1a 

 
Mean within category 15.0 3.7 1.2 4.4 

   
6.3 4.3 4.5 

S
po

on
ab

le
 Custard 11.0 ± 1.1ab 3.6 ± 1.1a 1.3 ± 1.0a 3.0 ± 1.1b  - -  -   7.1 ± 0.2b 3.8 ± 0.1b 3.8 ± 0.1b 

Skimmed yogurt 12.6 ± 1.1b 3.8 ± 1.1a 1.3 ± 1.0ab 3.0 ± 1.1b  - -  -  6.4 ± 0.2a 4.6 ± 0.1c 5.5 ± 0.1c 
Skyr 8.9 ± 1.1a 6.8 ± 1.1b 1.6 ± 1.0c 1.5 ± 1.1a  - -  -  5.9 ± 0.2a 2.2 ± 0.1a 2.1 ± 0.1a 
Mashed potatoes 9.7 ± 1.1a 7.2 ± 1.1b 1.6 ± 1.0bc 1.4 ± 1.1a  - -  -  5.7 ± 0.2a 4.0 ± 0.1b 3.7 ± 0.1b 

 
Mean within category 10.6 5.4 1.4 2.2 

   
6.3 3.6 3.8 

C
he

w
ab

le
 

Old Gouda cheese 4.0 ± 1.1b 23.2 ± 1.0cd 1.9 ± 1.1 0.2 ± 1.1a 30.0 ± 1.0cd 1.3 ± 1.0ab 0.8 ± 1.0cd 7.2 ± 0.2d 4.1 ± 0.1bc 4.5 ± 0.1c 
Young Gouda cheese 5.0 ± 1.1bc 18.8 ± 1.0bc 1.7 ± 1.1 0.3 ± 1.1b 25.9 ± 1.0bc 1.3 ± 1.0bc 0.7 ± 1.0bc 6.8 ± 0.2cd 4.3 ± 0.1bc 4.9 ± 0.1cd 
Beef 5.4 ± 1.1c 33.2 ± 1.0e 2.0 ± 1.1 0.2 ± 1.1a 47.2 ± 1.0e 1.4 ± 1.0cd 0.7 ± 1.0ab 5.8 ± 0.2b 4.3 ± 0.1bc 4.7 ± 0.1cd 
Raw carrots 4.0 ± 1.1b 24.4 ± 1.0d 1.8 ± 1.1 0.2 ± 1.1a 36.6 ± 1.0d 1.5 ± 1.0d 0.7 ± 1.0a 6.9 ± 0.2cd 4.5 ± 0.1c 4.7 ± 0.1cd 
Chocolate 2.9 ± 1.1a 22.0 ± 1.0cd 1.8 ± 1.1 0.1 ± 1.1a 29.7 ± 1.0c 1.3 ± 1.0abc 0.8 ± 1.0bcd 7.5 ± 0.2d 4.6 ± 0.1c 5.1 ± 0.1d 
Noodles 6.0 ± 1.1c 17.3 ± 1.0b 1.7 ± 1.1 0.3 ± 1.1bc 23.8 ± 1.0b 1.4 ± 1.0bcd 0.7 ± 1.0abc 5.6 ± 0.2b 3.9 ± 0.1b 3.9 ± 0.1b 

Tofu 5.3 ± 1.1bc 17.6 ± 1.1bc 1.6 ± 1.1 0.3 ± 1.1bc 23.4 ± 1.1b 1.4 ± 1.0bcd 0.7 ± 1.0abc 3.3 ± 0.2a 2.9 ± 0.1a 2.6 ± 0.1a 
Processed cheese 5.4 ± 1.1c 13.9 ± 1.0a 1.7 ± 1.1 0.4 ± 1.1c 16.7 ± 1.0a 1.2 ± 1.0a 0.8 ± 1.0d 6.3 ± 0.2bc 3.8 ± 0.1b 3.6 ± 0.1b 
Mean within category 4.8 21.3 1.8 0.2 29.1 1.4 0.7 6.2 4.0 4.3 
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3.3 Effect of liking, familiarity and frequency of consumption on oral 298 

processing behavior 299 

There were significant differences in liking, familiarity, and frequency of consumption 300 

within product categories, as shown in Table 5. The univariate analyses of 301 

covariance showed significant effects of liking, frequency of consumption, and 302 

familiarity on some of the parameters describing oral processing behavior.  303 

Liking was significantly related to bite size of drinkable [F (1,358) = 9.24, p = .003, ηp2 304 

= .02], spoonable [F (1,238) = 36.42, p < .001, ηp2 = .13] and chewable foods [F 305 

(1,478) = 23.80, p < .001, ηp2 = .05]. Bite size increased as the liking rating increased. 306 

Regarding the eating rate, liking was significant in spoonable [F (1,238) = 15.02, p < 307 

.001, ηp2 = .06] and chewable foods [F (1,478) = 20.69, p < .001, ηp2 = .04]. 308 

Participants consumed larger amounts per second as liking increased. 309 

Familiarity was also significant for consumption time [F (1,478) = 5.51, p = .019, ηp2 = 310 

.01] and number of chews [F (1,477) = 10.94, p < .001, ηp2 = .02] of solid foods. 311 

Consumption time and number of chews increased as familiarity rating increased. 312 

Finally, frequency of consumption was significant for bite size of spoonable foods [F 313 

(1,238) = 8.35, p = .004, ηp2 = .03] and number of chews of solids products [F (1,477) 314 

= 5.06, p = .025, ηp2 = .01], bite size and number chews decreased with products that 315 

were consumed less frequently.  316 

Summarizing, for those variables that showed significant effects of liking, results 317 

were as expected, liking leads to larger bite sizes and faster eating rates. Regarding 318 

familiarity and frequency of consumption, there were no clear expectations, but the 319 

results suggests that people tend to chew more for products that are less well known 320 

and less frequently consumed. However, the effect sizes of familiarity and frequency 321 

of consumption are much smaller compared to the effect size of liking. 322 

3.4 Relationships between oral processing behavior and rheological and 323 

mechanical properties of foods 324 

Pearson correlation coefficients were calculated to assess the relationships between 325 

parameters describing oral processing behavior and rheological and mechanical 326 

properties of drinkable, spoonable, and chewable foods (Table 6).  327 
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Table 6. Pearson correlation coefficient of rheological and mechanical properties of foods and parameters 328 
describing oral processing behavior. 329 

 Bite size Consumption 
time 

Number of 
swallows 

Eating  
rate 

Number of 
Chews 

Chewing 
rate 

Cycle  
duration 

Liquid and semi-solid foods 
Consistency 
Ka -.880** .750* .853** -.915** - - - 

Flow behavior 
index n .891** -.762* -.848** .921** - - - 

Solid foods 
Stress (σ15%)a -.912** .307 .420 -.774* .334 .234 -.224 
Modulusa -.899** .315 .440 -.771* .341 .226 -.215 
*Correlation is significant at p<0.05 level and **correlation is significant at p<0.01 level. a Variables were 

transformed into logaritmic scale. 

 330 

Bite size of liquid and semi-solid foods was negatively correlated with product 331 

consistency K (r = -.880, n = 10, p < .001) (Figure 1a and Table 6) and positively 332 

correlated with flow behavior index n (r = .891, n = 10, p < .001). Bite size of 333 

chewable foods was negatively correlated with stress (σ15%) (r = -.912, n = 7, p = 334 

.004) and Young’s modulus (r = -.899, n = 7, p = .006) (Figure 2a and Table 6).  335 

Consumption time was positively correlated with consistency (r = .750, n = 10, p = 336 

.012) and negatively with flow behavior index (r = -.762, n = 10, p = .010) (Figure 1b 337 

and Table 6). Figure 2b shows that for chewable foods, with increasing σ15% or 338 

Young’s modulus consumption time tended to increase. However, this correlation 339 

was not significant since beef deviates from the trend line. When beef is removed 340 

from the data analysis, the correlation between consumption time and Young’s 341 

modulus becomes significant (r =.846, n = 6, p = .034) (Figure 2d). Likewise, a trend 342 

was observed with regards to number of chews and σ15%. With increasing σ15%or 343 

Young’s modulus, the number of chews increased. However, this trend was not 344 

significant unless beef is removed from data, then the correlation is r =.815, n = 6, p 345 

= .048.  346 

Eating rate was negatively correlated with product consistency for liquid and semi-347 

solid foods and σ15% for solid foods (r = -.915, n = 10, p < .001; r = - .774, n = 7, p = 348 

.041 respectively). It can be observed that when consistency or stress increased 349 

eating rate decreased (Figure 1c and 2c and Table 6). The number of swallows 350 

positively correlated with consistency (r = .853, n = 10, p = .002), therefore products 351 

that had a higher consistency K needed more swallows than foods with lower 352 

consistency K. Other oral processing parameters such as number of chews, chewing 353 



 

16 
 

rate, and cycle duration did not significantly correlate with the rheological and 354 

mechanical properties of solid, chewable foods. 355 

 356 

Figure 1. Correlations between consistency K and (A) bite size, (B) consumption time, (C) eating rate and (D) 357 
number of swallows of liquid and semi-solid foods. 358 
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 359 

Figure 2. Correlations between Young’s modulus and (A) bite size, (B) consumption time of all products, (C) 360 
Eating rate and (D) consumption time excluding beef meat.  361 

4 Discussion 362 

The primary objective of this study was to determine the influence of rheological and 363 

mechanical properties of food on oral processing behavior of liquid (drinkable), semi-364 

solid (spoonable), and solid (chewable) foods. The secondary objective was to 365 

quantify the influence of product, liking, frequency of consumption, and familiarity on 366 

oral processing. The results demonstrate that there are differences in oral processing 367 

behavior within food product categories. Furthermore, the effect sizes measured 368 

indicate that the parameters describing oral processing are mainly influenced by the 369 

food product consumed and to a lesser degree by liking, familiarity, and frequency of 370 

consumption. Thus, consumers primarily adapt their bite size, consumption time and 371 

eating rate to the rheological and mechanical properties of the foods being eaten.  372 

The present study showed that bite size has an inverse relationship with consistency 373 

K for drinkable and spoonable foods and with stress needed to compress to 15% 374 

strain (σ15%) for chewable foods. In line with our results are the results of de Wijk 375 
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(2008) who investigated the effect of viscosity on bite size of one liquid (milk) and 376 

one semi-solid food (custard). de Wijk (2008) showed that the more viscous semi-377 

solid food was eaten with a significantly smaller bite size than the less viscous liquid 378 

food. Both liquid and semi-solid foods were sipped through a straw while in the 379 

present study liquid foods were drank from a cup and semi-solid foods were 380 

consumed with a spoon. The effect of viscosity on bite size seems to be the same 381 

independent of the ingestion procedure, as foods with a greater consistency were 382 

consumed with a smaller sip/bite size. In addition, we observed that temperature 383 

appears to influence the flow properties and bite size of drinkable foods, where warm 384 

foods were consumed with smaller sips compared to cold foods. This effect may be a 385 

self-protection reflex of the consumers to avoid damage to the soft tissues of the oral 386 

cavity caused by warm foods or could reflect temperature related changes in product 387 

consistency. For instance, we observed that warm thick soup was consumed with 388 

significantly smaller sips than cold drinking yogurt. Likewise, warm tea tended to be 389 

consumed with smaller sips than cold water, although this difference was not 390 

significant. 391 

It is generally accepted that oral processing of liquids is mainly transportation of the 392 

bolus from the front of the mouth to the pharynx. Therefore, it is not surprising that 393 

drinkable foods have a shorter residence time in the oral cavity compared to 394 

spoonable and chewable foods. However, differences in rheological and mechanical 395 

properties can also extend in mouth residence time within a food category. We 396 

observed that within the category of drinkable foods, consumption time increases 397 

with increasing consistency although sip size decreases. In the category of 398 

spoonable foods we observed the same; consumption time increases with increasing 399 

consistency although bite size decreases. In the category of chewable foods, 400 

consumption time increases with increasing Young’s modulus or stress needed to 401 

compress to 15% strain (σ15%) although bite size decreases. Engelen et al. (2005) 402 

investigated oral processing behavior of solid foods. In contrast to our study, Engelen 403 

et al. gave the subjects a predetermined and constant bite size. Their results showed 404 

that tough solid foods needed longer consumption times and a higher number of 405 

chews than softer solid food. To summarize, the rheological and mechanical 406 

properties of liquid, semi-solid and solid foods influence consumption time and 407 

sip/bite size in opposing manners. With increasing consistency of liquid and semi-408 
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solid foods or Young’s modulus and σ15% of solid foods consumption time increases 409 

although bite size decreases. This suggests that consumption time of liquid, semi-410 

solid and solid foods seems to be determined by rheological and mechanical food 411 

properties. 412 

The number of chews per bite were significantly different between solid foods. The 413 

correlation between number of chews and mechanical properties of solid foods was 414 

not significant. We observed that beef is a product that differed from the other foods 415 

tested, probably due to its fibrous, anisotropic structure which strongly influences 416 

mechanical properties. In our study, this effect has been neglected during the 417 

characterization of the mechanical properties of beef. In order to form a bolus 418 

suitable to swallow, the beef meat needs to be well mashed by teeth, and even in the 419 

swallowing point some intact fibers can be observed in the bolus (Mioche, Bourdiol, 420 

Monier, & Martin, 2002). Nevertheless, it is interesting to notice that the number of 421 

chews observed in this study for beef are similar to the values found by Mioche 422 

(2003). Another possible factor by which beef might have contribute to the lack of a 423 

relation between the number of chews and mechanical properties is the difference 424 

between the serving temperature (70°C) and the temperature for the rheological 425 

measurements (22°C). With the exception of beef, we observe that for the other solid 426 

foods the number of chews tends to increase with increasing σ15%. A similar trend 427 

has been shown before for model gels (Koç et al., 2014) indicating that people 428 

unconsciously adapt the number of chews to the mechanical properties of food.   429 

Eating rate was also highly correlated with the rheological and mechanical properties 430 

of food. In liquid and semi-solid foods when consistency increases eating rate 431 

decreases. Furthermore, in solid foods, Young’s modulus and σ15% negatively 432 

correlated with eating rate. These results show that more viscous liquid and semi-433 

solid foods and stiffer solid foods were consumed with lower eating rates. Four other 434 

studies (Forde et al., 2017, 2013; van den Boer et al., 2017; Viskaal-van Dongen, 435 

Kok, & de Graaf, 2011) assessed the eating rate of commonly consumed foods and 436 

suggested that eating rate decreases as foods become more solid and harder, 437 

though those studies did not characterize the rheological and mechanical properties 438 

of the foods. Therefore, modifying food texture may be a way to nudge food 439 

ingestion, since it has been shown that decreasing eating rate using food textures, 440 

can lead to lower food intake (Bolhuis et al., 2014; McCrickerd, Lim, Leong, Chia, & 441 



 

20 
 

Forde, 2017). Therefore, these findings could be used to objectively screen foods’ 442 

mechanical properties and identify those foods that are likely to slow down eating 443 

rate and consequently support energy intake reduction.  444 

It should be noted that the Young’s modulus represents a mechanical property 445 

determined under small deformation, typically at strains below 5%. The 15% strain, 446 

which was used in this study, represents also for many foods a deformation that can 447 

be considered relatively small compared to the deformations occurring during oral 448 

processing of solid foods. While the observed negative correlations between Young’s 449 

modulus or σ15% and eating rate are significant, during mastication chewable foods 450 

are fractured repetitively, hence neither Young’s modulus nor σ15% are mechanical 451 

properties which are determined under conditions mimicking oral processing 452 

behavior. It is therefore surprising that these measures yielded such strong 453 

correlations with oral processing behaviors, given they do not accurately reflect the 454 

kind of mechanical stress and deformation food structure undergoes during 455 

mastication. Since mastication of solid foods involves large deformations it would be 456 

interesting to quantify the relationships between parameters describing oral 457 

processing behavior and mechanical properties of solid foods determined under large 458 

deformation or under repetitive compression such as Texture Profile Analysis (TPA). 459 

Cycle duration and chewing rate remained considerably stable across chewable 460 

foods, with an average of 0.7 s and 1.4 chews/s, respectively. These values are in 461 

line with previously reported results (Bellisle, Guy-Grand, & Le Magnen, 2000; 462 

Farooq & Sazonov, 2016). Those studies reported a mean chewing rate of 1.3 and 463 

1.5 chews/s. The stability of chewing rate and cycle duration may be explained by the 464 

fact that mastication is a rhythmic motor action originated in the central pattern 465 

generator in the brainstem that keeps chewing movements constant and fairly 466 

independent of the mechanical properties of the solid foods (Jean, 2001). However, 467 

probably as consequence of the sensory feedback provided by the food bolus 468 

(Agrawal, Lucas, & Bruce, 2000), some minor but significant differences were 469 

observed between products.  470 

Number of swallows per bite ranged from 1.1 to 2.0 across food categories. 471 

Drinkable products required fewer swallows than spoonable foods, and the later 472 

required fewer swallows than chewable foods. These results show that during oral 473 
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processing of a single bite, multiple swallows can take place and that a complete 474 

feeding sequence normally involves one or two swallows as has been indicated in 475 

previous researches (Hiiemae, 2004; Okada, Honma, Nomura, & Yamada, 2007). In 476 

drinkable and spoonable foods, products that had a higher consistency needed more 477 

swallows to finish the food bolus than products with a lower consistency probably 478 

because at higher consistencies perceived difficulty to swallow increases (Chen & 479 

Lolivret, 2011). In the case of chewable foods, multiple swallows occurred since 480 

some parts of the bolus may be ready to swallow earlier than others (Hiiemae, 2004).   481 

Liking, familiarity, and frequency of consumption were significantly related to 482 

parameters describing oral processing behavior such as bite size, consumption time, 483 

number of chews, and eating rate. However, their effect on oral processing is smaller 484 

in comparison to the product effect. In agreement with these results are those of 485 

Ferriday (2016), who showed that liking of solid foods had a small effect on bite size 486 

and eating rate. Both studies show that variations in liking do not impact oral 487 

processing as much as the variations in a product, similar deductions can be 488 

extended to familiarity and frequency of consumption. Nevertheless, it should be 489 

noted that liking was measured after the product was tasted and not before or 490 

between bites. Therefore, from the results of this study we cannot assume that the 491 

effect of liking on the oral processing parameters is strictly causal.  492 

5 Conclusions 493 

Mechanical and rheological properties of food within a product category 494 

(liquid/drinkable, semi-solid/spoonable, solid/chewable) influence oral processing 495 

behavior. The effect of rheological and mechanical properties on parameters 496 

describing oral processing behavior of liquid, semi-solid, and solid foods is 497 

considerably larger than the effects of liking, familiarity, and frequency of 498 

consumption on those parameters. We suggest that oral processing of drinkable, 499 

spoonable, and chewable foods is a process mainly driven by the rheological and 500 

mechanical food properties. We conclude that consumers adapt their oral processing 501 

behavior (i.e. bite size, consumption time, eating rate, and number of chews in solid 502 

foods) to the rheological and mechanical properties of foods even when they belong 503 

to the same food category. Furthermore, oral processing descriptors like chewing 504 
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rate and cycle duration remain constant and independent of the mechanical 505 

properties of solid foods.  506 
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