


# D4.1 – List of key product properties to be provided to the robotic handler

## Version 2.3

#### Gert Kootstra (WUR);Idoia Olabarrieta (AZTI);Zhipeng Wu (UM);Mathijs Vermeulen (Lacquey);Van Dael, Matthias (KU Leuven);van Roy, Jeroen (KU Leuven);Saeys, Wouter (KU Leuven) 3/28/2013



Flexible robotic systems for automated adaptive packaging of fresh and processed food products



The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement n° 311987.

| Dissen | Dissemination level                                                           |   |  |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------|---|--|--|--|--|--|--|--|
| PU     | Public                                                                        | Х |  |  |  |  |  |  |  |
| PR     | Restricted to other programme participants (including the EC Services)        |   |  |  |  |  |  |  |  |
| RE     | Restricted to a group specified by the consortium (including the EC Services) |   |  |  |  |  |  |  |  |
| со     | Confidential, only for members of the consortium (including the EC Services)  |   |  |  |  |  |  |  |  |





#### **Table of Contents**

| 1 | Intro | oduct   | tion                                                                     | 3  |
|---|-------|---------|--------------------------------------------------------------------------|----|
| 2 | Res   | ults    |                                                                          | 5  |
|   | 2.1   | Imp     | ortant general properties                                                | 5  |
|   | 2.2   | Qua     | lity properties and properties for packaging and marking of the products | 9  |
|   | 2.2.  | 1       | Quality properties of vine tomatoes                                      | 9  |
|   | 2.2.  | 2       | Marking and packaging properties of vine tomatoes                        | 19 |
|   | 2.2.  | 3       | Quality properties of table grapes                                       | 20 |
|   | 2.2.  | 4       | Marking and packaging properties of table grapes                         | 26 |
|   | 2.2.  | 5       | Quality properties of pizzas                                             | 29 |
|   | 2.2.  | 6       | Marking and packaging properties of pizzas                               | 30 |
|   | 2.2.  | 7       | Quality parameters of Shepherd's pie                                     | 31 |
|   | 2.2.  | 8       | Marking and packaging properties of Shepherd's pie                       | 32 |
| 3 | Refe  | erenc   | es                                                                       | 33 |
| 4 | Qua   | ality S | tandards                                                                 | 34 |



#### Introduction 1

The goal of this deliverable is to provide a list with the important product properties to be provided to the robotic handler. This is as well to allow robotic handling as to do the adaptive packaging. In this report the deliverable is defined somewhat broader and also includes the quality aspects to be measured as no separate deliverable is dedicated to the properties to be measured by the QASmodule.

To gather input for this deliverable the questionnaire presented below (Figure 1) was sent to all partners of the PicknPack consortium asking three questions, namely:

- 1) Which product properties do you need to carry out your tasks?
- 2) What are, in your point of view, the generic properties that have to be addressed to describe products of good quality? In other words, when will you say that the product is a product of good quality?
- 3) Which properties, other than properties regarding the product, are also important to fulfil your tasks?

| Group     | n° | Keyword | Description of keyword |  |
|-----------|----|---------|------------------------|--|
| Essential | 1  |         |                        |  |
|           | 2  |         |                        |  |
|           | 3  |         |                        |  |
| Desirable | 1  |         |                        |  |
|           | 2  |         |                        |  |
|           | 3  |         |                        |  |
| Optional  | 1  |         |                        |  |
|           | 2  |         |                        |  |

.... 1 2 21

*Figure 1: Illustration of question 1 in the questionnaire (question 2 and question 3 are comparable)* 

The answers were processed and divided into different categories. For each category, the properties were ranked from the most important to the least important based on the input from the partners. The results of this questionnaire were presented and discussed during a meeting in Leuven on January 18, 2013 attended by representatives of DLO, DTI, MU, Tecnalia, Marel, Spectroscan and KU Leuven.

Each category was presented and discussed separately. When there were some reservations these were discussed. In this way, a list of product properties to be addressed was defined. As a next step, it was agreed to search for clear definitions and appropriate reference methods for the





different product properties. Prof. Herman Bruyninckx from KU Leuven was assigned as the responsible for providing the definitions for the robotic-handling properties with the aid of Tecnalia and Lacquey. For the definition of the quality parameters and the reference methods for the fresh products Dr. Gert Kootstra from DLO was assigned as the responsible with support from KU Leuven and AZTI. Prof. John Gray from UM was given the responsibility to provide the definitions and reference methods for the quality properties of the ready-meals. The responsibility for providing the indicative specifications/dimensions of the whole system was assigned to Dr. Ard Nieuwenhuizen from DLO, who is leading the system integration in WP7.

This report is the final result from the whole process of discussion at the kick-off meeting, questionnaire, meeting in Leuven and further research after the meeting. The result is a list with key product properties with a clear definition and a reference method (if available) for each property. It is also indicated whether the property is known/available or has to be measured for each product, and which technique(s) will be used to measure this property.





#### 2 Results

In the following sections, the results (keywords) of the questionnaire and the meeting are presented per category.

#### 2.1 Important general properties

These are the important general properties divided into different categories, namely: robotic handling, system requirements, traceability, product information, contaminations, used resources, packaging properties and product quality. The properties summarized in Table 1 are the results of questions 1 and 3 in the questionnaire. Table 1 has 6 different columns: The rank-column is to give an indication of the importance of the property (Green is very important, orange is important and red is less important). The second column contains the name of the property and the third column indicates which partner is responsible for providing or measuring this property. The fourth column indicates which partners have asked for this property. The fifth column is reserved for the definition of the property, while the reference method is cited in the sixth column.

| Rank | Property            | Measured or<br>known   | Partner                       | Definition                                                           |
|------|---------------------|------------------------|-------------------------------|----------------------------------------------------------------------|
| 1    | Robotic handling    |                        |                               |                                                                      |
| 1.1  | Product location    | Measured by<br>DLO     | Tecnalia, DLO, Lacquey, Marel | Where is the product? [x,y, z in mm]                                 |
| 1.2  | Product orientation | Measured by<br>DLO     | Tecnalia, DLO, Lacquey, Marel | Which is the direction of its major axis? [Euler angle?]             |
| 1.3  | Nesting indicator   | Measured by<br>DLO (?) | DLO, Marel                    | How well fits the product in the package?                            |
| 1.4  | Pick sequence       | Calculated             | Tecnalia                      | Sequence of picking of products dependent on quality aspects         |
| 1.5  | Grasping points     | Calculated by<br>DLO   | DLO, Lacquey                  | Which are the parts of the fruit that can be touched by the gripper? |

#### *Table 1 – List of general key product properties*





| 1.6   | Grasp success                          | Gripper<br>feedback | DLO, Lacquey           | Feedback of grasping success [OK or not OK]                                                                                        |
|-------|----------------------------------------|---------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 1.7   | Grip speed                             | Known               | Lacquey                | Required time for opening and closing the gripper [s].<br>Depends on gripper actuation, gripper opening and<br>product dimensions. |
| 2     | System requirements                    |                     |                        |                                                                                                                                    |
| 2.1   | Conveyor speed                         | Known               | DLO, Tecnalia          | Speed of the conveyor belt [m/s?]                                                                                                  |
| 2.2.1 | Needed accuracy for robotic handling   | Predefined          | Tecnalia, DLO, Lacquey | The required accuracy of the product position [mm]                                                                                 |
| 2.2.2 | Needed accuracy for quality assessment | Predefined          | DLO, KUL, UM           | What is the size of the defects that have to be detected [mm]?                                                                     |
| 2.3   | Free space/Clearance                   | Measured by<br>DLO  | Tecnalia, DLO, Lacquey | Available free area around the product at the grasping point locations [cm <sup>2</sup> ]                                          |
| 3     | Traceability                           |                     |                        |                                                                                                                                    |
| 3.1   | Sample ID                              | Inherited           | Tecnalia, UM           | Information concerning the product                                                                                                 |
| 3.2   | Production traceability                | Loggings            | UM                     | How the product is produced originally and where it is to be delivered or sold? What is the used-by date?                          |
| 4     | Product information                    |                     |                        |                                                                                                                                    |
| 4.1   | Kind of food                           | Entered in GUI      | All                    | Which food will be handled, has to be specified in GUI?                                                                            |
| 4.2   | Clustering                             | Measured by<br>DLO  | DLO, Lacquey           | Is the product clustered, or is it a single product? How well is the clustering?                                                   |
| 5     | Contaminations                         |                     |                        |                                                                                                                                    |
| 5.1   | Physical contamination                 | Predefined          | Fraunhofer             | Absence of physical contaminations like water, sticky fluids, soil, dirt, pests,                                                   |
| 5.2   | Microbial contamination                | Predefined          | Fraunhofer             | Is the amount of undesirable microorganisms on the product too high for further processing?                                        |
| 5.3   | Chemical contamination                 | Predefined          | Fraunhofer             | Absence of pesticides                                                                                                              |
| 6     | Used resources                         |                     |                        |                                                                                                                                    |
| 6.1   | Cool or frozen<br>conditions           | Loggings            | ITENE                  | Are there specific conditions needed for the product handling?                                                                     |





| 6.2   | Electricity                          | Loggings                                 | ITENE            | How much electricity is used by the PicknPack system?                                                                    |
|-------|--------------------------------------|------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------|
| 6.3   | Antimicrobials                       | Loggings                                 | ITENE            | Is there a use of antimicrobials in the system?                                                                          |
| 6.4   | Steam                                | Loggings                                 | ITENE            | How much steam is there used in the system?                                                                              |
| 6.5   | Modified atmosphere                  |                                          |                  | Is there a need for a modified atmosphere to get a better shelf life and less waste?                                     |
| 6.6   | Use of water                         | Loggings                                 | ITENE            | How much water is needed for the different steps in the system?                                                          |
| 6.7   | Use of cleaning agents               | Loggings                                 | ITENE            | Which cleaning agents are needed?                                                                                        |
| 7     | Packaging properties                 |                                          |                  |                                                                                                                          |
| 7.1   | Method                               | Predefined                               | DTI, Camtech, UM | What is the method of packaging?                                                                                         |
| 7.2   | Containers                           | Predefined                               | DTI, Camtech, UM | What is the physical structure of the containers for packaging?                                                          |
| 7.3   | Packaging material                   | Predefined                               | DTI, Camtech, UM | Which material is used for the packaging of the products?                                                                |
| 7.4   | Formation                            | Predefined                               | DTI, Camtech, UM | How shall the products become packed?                                                                                    |
| 8.1   | Product quality (fresh fruit)        |                                          |                  |                                                                                                                          |
| 8.1.1 | Quality class                        | Calculated<br>from quality<br>parameters | DLO, KUL         | Combination of different quality parameters.                                                                             |
| 8.1.2 | Firmness/ Maximal and minimal forces | Predefined                               | DLO, KUL         | The maximal forces that can be exercised to avoid bruising of the fruit. This is dependent on the maturity of the fruit. |
| 8.1.3 | 3D-properties                        | Measured by<br>DLO                       | DLO, KUL         | The size and shape of the fresh fruit.                                                                                   |
| 8.1.4 | Shelf life                           | Calculated                               | DLO, KUL         | How long stays the food of good quality?                                                                                 |
| 8.1.5 | Weight                               | Measured by<br>Marel                     | DLO, KUL, Marel  | Range of mass of the handled food (maximum and minimum weight)                                                           |
| 8.2   | Product quality<br>(ready-meals)     |                                          |                  |                                                                                                                          |
| 8.2.1 | Quality class                        | Calculated<br>from quality<br>parameters | UM               | Which is the composition?                                                                                                |





| 8.2.2 | Firmness/ Maximal  | Predefined  | UM        | How firm is the product?                            |
|-------|--------------------|-------------|-----------|-----------------------------------------------------|
|       | and minimal forces |             |           |                                                     |
| 8.2.3 | 3D-properties      | Measured by | UM        | The size and shape of the pizza and shepherd's pie. |
|       |                    | DLO         |           |                                                     |
| 8.2.4 | Shelf life         | Calculated  | UM        | How long stays the food of good quality?            |
| 8.2.5 | Weight             | Measured by | UM, Marel | Range of mass of the handled food (maximum and      |
|       |                    | Marel       |           | minimum weight)                                     |





#### 2.2 Quality properties and properties for packaging and marking of the products

In Tables 2, 4, 6 and 8 the most important quality properties are presented for the different food products to be handled in PicknPack: vine tomatoes, table grapes, pizzas and shepherd's pies. In Table 3, 5, 7 and 9 the product properties that are important for packaging and marking of the products are presented. These property lists are a combination of all the answers provided to question 2 in the questionnaire. For each property the standards and reference methods are defined. Similar to Table 1, Table 2 consists of 6 columns: The rank-column is to give an indication of the importance of the property (Green is very important, orange is important and red is less important). The second column is the name of the property and the third column indicates which partner will measure the property. Above each table the partner responsible for providing the definition and reference method (columns 5 and 6) is indicated. In column 6 the measurement technique that will be used for this quality property is indicated.

#### 2.2.1 Quality properties of vine tomatoes

| Rank | Property         | Known or     | Definition                                                | Reference method  | Measurement device        |
|------|------------------|--------------|-----------------------------------------------------------|-------------------|---------------------------|
|      |                  | measured?    |                                                           |                   |                           |
| 1    | Maturation       | Estimated by | Maturation is the stage of the floral development         | Colour gauges     | 2D machine vision and     |
|      | stage            | KUL and DLO  | typically proceeding and signalled by successful          |                   | hyperspectral imaging     |
|      |                  |              | pollination. So that maturation encloses not only the     |                   |                           |
|      |                  |              | ripening of the fruit (known term for process renders     |                   |                           |
|      |                  |              | fruit attractive and palatable [1]), but also the correct |                   |                           |
|      |                  |              | development of the structure of the fruit, meaning        |                   |                           |
|      |                  |              | that the contents of two or more seed cavities have       |                   |                           |
|      |                  |              | developed a jellylike consistency and the seeds are       |                   |                           |
|      |                  |              | well developed [2]. Modifications during maturation       |                   |                           |
|      |                  |              | include development of desirable flavour and colour,      |                   |                           |
|      |                  |              | modification of cell wall ultrastructure and texture      |                   |                           |
|      |                  |              | (firmness) and changes in the nutritional value           |                   |                           |
|      |                  |              | (vitamins and various antioxidants).                      |                   |                           |
| 2    | External defects | Measured by  | A summary of external attributes, which are visually      | Control by human  | The damages (i.e., cuts,  |
|      |                  | KUL and DLO  | noticeable and which can make the product not             | sorters by metric | cracks and scars) will be |
|      |                  |              | attractive for the consumer and even not marketable.      | measurement.      | detected using high-      |
|      |                  |              | These can be produced by several agents: biological,      | There is not a    | resolution RGB            |

*Table 2 – Quality properties for vine tomatoes as defined in Belgium with the corresponding reference methods (DLO, AZTI, KU Leuven)* 





|   |            |             | agronomical, climatological, The deviations can be     | common method of       | cameras. A combination    |
|---|------------|-------------|--------------------------------------------------------|------------------------|---------------------------|
|   |            |             | expressed as deformations, damages or                  | reference for          | of RGB cameras and        |
|   |            |             | discolouration.                                        | determination of       | hyper-spectral imaging    |
|   |            |             |                                                        | external defects.      | will be used to detect    |
|   |            |             |                                                        | However, for some      | discolorations (i.e.      |
|   |            |             |                                                        | of them, there are     | bruises, spots, halos).   |
|   |            |             |                                                        | limits in parameters   | The larger deformations   |
|   |            |             |                                                        | such us length,        | (i.e., protuberances,     |
|   |            |             |                                                        | surface, depth or      | puffiness), will be       |
|   |            |             |                                                        | number. These limits   | inspected using 3D        |
|   |            |             |                                                        | are specified in the   | imaging techniques        |
|   |            |             |                                                        | Standards either for   |                           |
|   |            |             |                                                        | minimal requirement    |                           |
|   |            |             |                                                        | or for each quality    |                           |
|   |            |             |                                                        | grade.                 |                           |
| 3 | Internal N | Measured by | The presence of internal defects. In general these can | Human sorters by       | Some of the internal      |
|   | damages k  | KUL and     | be expressed as bruises (whitish to greenish),         | destructive method.    | damages are visible on    |
|   | 9          | Spectro     | discolorations (usually green or yellow), tissue       |                        | or just below the         |
|   |            |             | softening, shrunken and disorganized gel, water-       | These damages are      | surface of the fruit and  |
|   |            |             | soaking or cracked fruit walls (even with presence of  | not detected until     | can be observed using     |
|   |            |             | pests).                                                | the fruit is cut and   | hyperspectral imaging.    |
|   |            |             |                                                        | the internal tissue is | X-Ray imaging will be     |
|   |            |             |                                                        | examined.              | used to inspect the       |
|   |            |             |                                                        |                        | internal structure of the |
|   |            |             |                                                        |                        | tomatoes                  |





| 4 | Colour: spectral | Measured by | As tomatoes ripen, the colour changes from green in     | The OECD has             | The colour of the           |
|---|------------------|-------------|---------------------------------------------------------|--------------------------|-----------------------------|
|   |                  | DLO and KUL | immature fruit to deep dark red in fully mature fruit.  | elaborated colour        | tomatoes and of the         |
|   |                  |             | Colour is therefore a strong indicator of the level of  | gauge for use by the     | stem, stalk, peduncle       |
|   |                  |             | maturity of the tomato. At harvest, the fruit must      | trade in gauging the     | and sepal will be           |
|   |                  |             | have reached a state of physiological ripeness          | skin colouring of        | observed and                |
|   |                  |             | allowing to continue the ripening process during        | tomatoes. The            | categorized using both      |
|   |                  |             | transport and marketing and to reach the colour         | colour of the fruits     | RGB cameras and hyper-      |
|   |                  |             | typical for the variety.                                | (typically               | spectral imaging            |
|   |                  |             |                                                         | background colour of     | techniques. Apart from      |
|   |                  |             | Colour development in tomato is measured in the         | the individual fruit) is | measuring the overall       |
|   |                  |             | L*a*b*-colour space. It's characterized by lower L*     | compared against         | colour of the fruit, colour |
|   |                  |             | value (lightness) readings, a change from negative to   | the different colour     | measurements will be        |
|   |                  |             | positive a* values, decrease in hue angle, and increase | steps of the colour      | used to detect              |
|   |                  |             | in chroma [3]. Dependent on this colour values, the     | gauge.                   | discolorations on the       |
|   |                  |             | tomato will be divided into colour classes. These will  |                          | surface.                    |
|   |                  |             | go from 1 (unripe) to 12 (very ripe).                   |                          |                             |
|   |                  |             | The general correlation between lycopene and a*/b*      |                          |                             |
|   |                  |             | ratio has been noted previously. [4]                    |                          |                             |
|   |                  |             |                                                         |                          |                             |
|   |                  |             | Apart from the colour of the berry, the colour of the   | Spectrophotometry/       |                             |
|   |                  |             | stem/stalk and that of the peduncle/sepal are of        | colorimetry: i.e., in    |                             |
|   |                  |             | importance. These should be green. A browner,           | numerical terms          |                             |
|   |                  |             | wooden colour is a sign of over-ripeness.               | along the L*, a* and     |                             |
|   |                  |             |                                                         | b* axes (from white      |                             |
|   |                  |             |                                                         | to black, green to       |                             |
|   |                  |             |                                                         | red and blue to          |                             |
|   |                  |             |                                                         | yellow, respectively)    |                             |
|   |                  |             |                                                         | within the CIELAB        |                             |
|   |                  |             |                                                         | colour sphere.           |                             |





| 5 | Size | Measured by | Size is dete | rmined by t   | he maximum dian                                                | neter of the | Automated in-line<br>colour sorters exist<br>for sorting individual<br>tomatoes, such as<br>the Unical 200 [5]<br>Currently, no<br>automated in-line<br>systems exist for<br>colour assessment of<br>tomatoes on the<br>vine<br>Human sorters, with | The size of the tomatoes                                          |
|---|------|-------------|--------------|---------------|----------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|   |      | DLO and KUL | to standar   | ds, provisior | veight or by count<br>ns don't apply to<br>applies, and in cas | trusses of   | normalized gauges<br>(diameters: 102 mm,<br>82 mm, 67 mm, 57                                                                                                                                                                                        | on the vine will be<br>estimated using a<br>combination of 2D and |
|   |      |             |              |               | anges in the follo<br>ODEX and UNECE s                         | •            | mm, 47 mm and 40<br>mm)                                                                                                                                                                                                                             | 3D machine vision.                                                |
|   |      |             |              | Size code     | Diameter (mm)                                                  |              | 83                                                                                                                                                                                                                                                  |                                                                   |
|   |      |             |              | 0             | ≤ 20                                                           |              | 0000                                                                                                                                                                                                                                                |                                                                   |
|   |      |             |              | 1             | > 20 ≤ 25                                                      | 4            |                                                                                                                                                                                                                                                     |                                                                   |
|   |      |             |              | 2             | > 25 ≤ 30<br>> 30 ≤ 35                                         | -            | In-line mechanical                                                                                                                                                                                                                                  |                                                                   |
|   |      |             |              | 4             | > 35 ≤ 40                                                      | 1            | systems (i.e. mobile                                                                                                                                                                                                                                |                                                                   |
|   |      |             |              | 5             | > 40 ≤ 47                                                      | 1            | mails, rolls, sorting                                                                                                                                                                                                                               |                                                                   |
|   |      |             |              | 6             | > 47 ≤ 57                                                      | 1            | machines)                                                                                                                                                                                                                                           |                                                                   |
|   |      |             |              | 7             | > 57 ≤ 67                                                      | 1            | indefines)                                                                                                                                                                                                                                          |                                                                   |
|   |      |             |              | 8             | > 67 ≤ 82                                                      | ]            | 55 M 40 -                                                                                                                                                                                                                                           |                                                                   |
|   |      |             |              | 9             | > 82 ≤ 102                                                     | 1            |                                                                                                                                                                                                                                                     |                                                                   |
|   |      |             |              | 10            | > 102                                                          | ]            |                                                                                                                                                                                                                                                     |                                                                   |
|   |      |             |              |               |                                                                |              |                                                                                                                                                                                                                                                     |                                                                   |





|   |         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Note that there is<br>currently no<br>automated method<br>to determine the size<br>of the tomatoes on<br>the vine let alone to<br>sort them. |                                                                                                                         |
|---|---------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 6 | Shape   | Measured b<br>DLO | y The individual tomatoes should have a nice regular<br>shape. The shape must be characteristic of the variety<br>(round, ribbed, oblong). Small deviations in shape are<br>allowed (according to each quality class) and light<br>defects are usually accepted by consumers. Symmetry<br>is a strong aesthetic feature and symmetrical shapes<br>are therefore preferred.<br>Some internal damages will cause a deformation of<br>the tomatoes                                                                        | Subjective control by human sorters                                                                                                          | Shape will be measured using 3D machine vision.                                                                         |
| 7 | Flavour | Measured b<br>KUL | <ul> <li>y Sugars, organic acids, free amino acids and aromas are the main components contributing to tomato flavour. The characteristic sweet-sour taste of tomato is due to a combination of the sugars and organic acids present.</li> <li>It is the sugar/acid ratio which contributes towards giving many fruits their characteristic taste and is an indicator of commercial and organoleptic ripeness. During the ripening process the fruit acids are degraded, the sugar content increases and the</li> </ul> | Sensorial panel (but<br>this is clearly not<br>objective and region<br>dependent)                                                            | Sugar content and<br>acidity will be measured<br>using hyperspectral<br>imaging (see "Sugar<br>content" and "Acidity"). |





|   |               |                                         | frui<br>lack<br>com                                  | ts have very<br>c characteri<br>nponents give<br>Acidity<br>High<br>High<br>Low<br>Low                              | o achieves a high<br>low levels of fruit<br>stic flavour. Com<br>es the following tas<br>Sugar Content<br>High<br>Low<br>High<br>Low                                                              | acid and therefore<br>bination of both<br>the results: [6]<br>Taste<br>Good<br>Tart<br>Bland<br>Tasteless                                     | re<br>th        |                                                                                                                                                                             |                                                                                                                                                                                |
|---|---------------|-----------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 | Sugar content | Measured by<br>KUL                      | Con<br>solu<br>incl<br>As s<br>suga<br>Stro<br>train | itent (SSC)ex<br>uble solids in<br>ude organica<br>soluble solids<br>ars, °Brix is a<br>ong positive<br>ned panel r | is an indicator for<br>pressed in ° Brix. S<br>n fruit juice. Othe<br>and amino acids an<br>s are in main part<br>n indicator for the<br>correlation is<br>e correlation is<br>uble solids conten | ugars are the major<br>r soluble materia<br>d soluble pectins<br>constituted by free<br>sugar content.<br>observed betwee<br>ness and reducir | or<br>Ils<br>ee | Destructive method,<br>where the °Brix of<br>the tomato pulp is<br>measured using a<br>refractometer. A few<br>samples are taken to<br>determine the °Brix<br>of the batch. | The sugar content will be<br>estimated using hyper-<br>spectral imaging<br>techniques.                                                                                         |
| 9 | Firmness      | May not be<br>measurable by<br>QAS unit | muo<br>thei<br>The<br>the                            | ch softer tha<br>refore an ind<br>re is no Euro<br>USA, a scale<br>pression ne                                      | en, firmness decre<br>in mature-green fr<br>licator for the toma<br>opean standard for<br>e of six grades is i<br>eded to deform fru                                                              | uit. The firmness<br>to's ripeness.<br>this parameter.<br>used, based on th                                                                   | is<br>In<br>ne  | Universal testing<br>machine<br>Subjective control by<br>human sorters<br>through palpation.<br>Penetrometer<br>(destructive),<br>more or less                              | X-ray<br>Gripper feedback<br>The firmness can be non-<br>destructively measured<br>using the acoustic<br>impulse response<br>(AFS/AWETA) or low-<br>mass impact (Sinclair iQ). |

| Pick | nPack                      | SEVENTIA HAMPWORK  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------|----------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                            |                    | Grade       Newton for 5 mm<br>compression       sophisticated         Very firm       30-50       Image: Compression         Firm       20-30       Image: Compression         Moderately firm       15-20       Image: Compression         Moderately soft       10-15       Image: Compression         Very soft       5       Image: Compression         Very soft       5       Image: Compression         Durometer (nondestructive)       Image: Compression       Image: Compression |
| 10   | Uniformity of<br>the truss | Measured by<br>DLO | Consumers appreciate uniformity, in terms of shape<br>and size, in the same packaging. The different<br>tomatoes on the truss should therefore be as uniform<br>as possible (shape, colour of berries, symmetry of<br>truss).Subjective control by<br>human sortersThe size and colour of<br>the tomatoes on the vine<br>will be determined as<br>discussed earlier<br>("colour", "size"). The<br>                                                                                           |





|    |                      |                                         | <ul> <li>15 mm, if the diameter of the smallest fruit (as indicated on the package) is 50 mm and over but under 70 mm;</li> <li>20 mm, if the diameter of the smallest fruit (as indicated on the package) is 70 mm and over but under 100 mm;</li> <li>There is no limitation of difference in diameter for fruit equal or over 100 mm.</li> </ul>                                                                                                                                                            |                                                                                                                                                                                      |                                                                                                                  |
|----|----------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 11 | Number of<br>berries | Measured by<br>DLO                      | •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subjective control by human sorters                                                                                                                                                  | The number of tomatoes<br>in the truss will be<br>counted using a<br>combination of 2D and<br>3D machine vision. |
| 12 | Contaminations       | Not measured                            | According to the international standards for tomato,<br>tomatoes must be practically free of soil, dust,<br>chemical residue or other visible foreign matter.<br>Levels of pesticides should be within the margins<br>defined by the EU [10]. Tomatoes must also be<br>practically free of insects and other pests. The<br>presence of pests can detract from the commercial<br>presentation and acceptance [11]. Also abnormal<br>presence of external moisture is not allowed.                               | Subjective control by<br>human sorters<br>Sieves (to remove<br>stones)<br>Optical systems                                                                                            | It is assumed that the<br>products are delivered<br>free from<br>contaminations.                                 |
| 13 | Acidity              | Optionally<br>measured by<br>KUL and UM | Organic acids comprise about 15% of the dry content<br>of fresh tomatoes. Citric acid is the major organic acid<br>in tomatoes, about 60% of the total organic acids,<br>being the largest contributor to the total acidity and<br>the titratable acidity of the fruit. Two other acids to<br>mention, that contribute to the acidity are malic and<br>glutamic acid. The rise in pH and decrease in titratable<br>acidity indicate that acid concentrations in the fruit<br>are declining with maturity [12]. | Destructive methods<br>are used to test the<br>acidity of a few<br>samples of the<br>product:<br>Titration:<br>for titratable acidity<br>(acid-base titration<br>by using a standard | Hyperspectral imaging<br>and microwave probing                                                                   |





| 14 | Glutamic acid    | Will not be<br>measured         | <ul> <li>'Sourness' closely correlates with titratable acidity and pH [13].</li> <li>There are no labelling/standard requirements for acidity in tomato and it is in practice seldom measured.</li> <li>Glutamic acid is a free amino acid. Glutamic acid comprises up to 45% of the total weight of free amino acids in fresh tomato juice and free amino acids form about 2-2.5% of the total dry matter of tomatoes [14]. Glutamic acid is also an important contributor to tomato "umami" flavour [15].</li> <li>There are no labelling/standard requirements for glutamic acid in tomato.</li> </ul> | counter-active alkali<br>reagent (0.1M<br>NaOH))<br>pH meter: for pH<br>measurement<br>spectrometry/<br>chromatography<br>(HPLC)/enzymatic<br>test : for total acids<br>and/or individual<br>acids.<br>Chromatography<br>(HPLC) | Will not be measured in<br>this project. Not possible<br>to measure with<br>spectroscopy due to too<br>small concentrations. |
|----|------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 15 | Stalk properties | Measured by<br>KUL and DLO      | The stalks must be fresh, healthy, clean and free of all leaves and any visible foreign matter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Subjective control by looking at product                                                                                                                                                                                        | 2D machine vision,<br>hyperspectral imaging                                                                                  |
| 16 | Shatter          | Measured by<br>DLO              | The berries should not detach from the truss. When<br>they fall of spontaneously, it is a sign of overripeness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Subjective control by looking at product                                                                                                                                                                                        | Camera vision                                                                                                                |
| 17 | Water content    | Optionally<br>measured by<br>UM | The tomato fruit is mostly water with about 5-7% of<br>the fruit being solids. Total solids are not so important<br>for fresh tomato but for the processing tomato<br>industry, since even a small increase can significantly                                                                                                                                                                                                                                                                                                                                                                             | Dry-wet weight comparison                                                                                                                                                                                                       | Microwave probing                                                                                                            |





|    |                       |                           | enhance yield and decrease the cost of dehydration of<br>puree into sauce and paste.<br>There are no labelling/standard requirements for<br>water content in tomato                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                                                  |
|----|-----------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 18 | Smoothness of<br>skin | Measured by<br>KUL (+DLO) | The skin should be smooth. Consumers don't appreciate tomatoes notably ridged or rough. Toughness/shrinking compromising the fresh appearance of tomato is not allowed according to international standards (OECD). Also shininess is important in this case. It's an aesthetic feature that indicates a healthy fruit. It's defined as the ratio of luminous flux reflected from an object in the specular direction for a specified source and receptor angle (mostly 60°) to the luminous flux reflected from glass with a refractive index of 1,567 in the specular direction [16] | Subjective control by human sorters                                                                                   | The smoothness of the<br>skin will be measured<br>using RGB and hyper-<br>spectral cameras.      |
| 19 | Lycopene              | Measured by<br>KUL (+DLO) | Lycopene is a bright red carotene and carotenoid<br>pigment so that it is highly related to colour<br>development on tomato. Lycopene is the major<br>carotenoid (83%) in ripened fruit. Lycopene content in<br>fresh tomato can vary from 30 to 300ppm [17].<br>Not important as lycopene is only absorbed by people<br>when tomatoes are prepared.<br>There are no labelling/standard requirements for<br>glutamic lycopene in tomato.                                                                                                                                               | HPLC<br>Colorimetric: some<br>studies show close<br>correlation of<br>lycopene with and<br>the ratio of a*/b*<br>[18] | The lycopene content<br>can be estimated based<br>on colour and hyper-<br>spectral measurements. |





#### 2.2.2 Marking and packaging properties of vine tomatoes

In this paragraph, the product properties that are important for packaging and marking of the vine tomatoes are mentioned.

| Table 3: Properties regarding packaging | and marking of the packages for tomatoes with the corre. | sponding reference methods (DLO, AZTI, KUL) |
|-----------------------------------------|----------------------------------------------------------|---------------------------------------------|
|                                         |                                                          |                                             |

| Rank | Property   | Known<br>measured?       | or      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reference method | Measurement device |
|------|------------|--------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 1    | Shelf life | Estimated<br>KUL and DLC | by<br>) | The Codex Alimentarius defines shelf-life as the period during which the product maintains its microbiological safety and suitability at a specified storage temperature and, where appropriate, under specified storage and handling conditions. In European legislation, shelf-life is defined as the "date of minimum durability". The date of minimum durability of a foodstuff shall be the date until which the foodstuff retains its specific properties when properly stored (Council Directive 2000/13/EC). It's highly dependent on storage conditions. Subject to Community provisions imposing other types of date indication, an indication of the durability date shall not be required for fresh fruit and vegetables, including potatoes, which have not been peeled, cut or similarly treated. This derogation shall not apply to sprouting seeds and similar products, such as legume sprouts [19]. | Not applied      | Not applied        |





| 2 | Weight                   | Measured by<br>DLO and Marel | It's related to an accurate packaging. According to OECD<br>provisions, to adjust the net weight indicated, individual<br>fruit are allowed in pre-packages of trusses of tomatoes<br>provided the tolerances specified for each quality grade<br>are met in the relevant lot.<br>For producers and retailers, weight is important, as is<br>one of the key features to set the price.                                                                                                                                                           | Gravimetric (Scale) | Weight of the<br>complete truss can be<br>determined in-line<br>using electronic scales.<br>The weight of<br>individual tomatoes<br>on the vine will be<br>estimated using 2D<br>and 3D machine<br>vision. |
|---|--------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Marking,<br>Traceability | Origin<br>Price              | <ul> <li>identification of packer and/or dispatcher</li> <li>"tomatoes" or "trusses of tomatoes" and the commercial type, if the contents are not visible from outside. These details must always be provided for "cherry" (or "cocktail") tomatoes whether in trusses or not.</li> <li>variety (optional)</li> <li>country of origin (region optional)</li> <li>quality class</li> <li>size expressed as minimum and maximum diameters (if sized), or the word "unsized" where appropriate</li> <li>official control mark (optional)</li> </ul> |                     |                                                                                                                                                                                                            |

#### 2.2.3 Quality properties of table grapes

#### Table 4 – Quality properties for table grapes with the corresponding reference methods (DLO, AZTI, KUL)

| Rank | Property   | Known or                     | Definition                                                                                                                                                                                                                               | Reference method | Measurement device                                 |
|------|------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------|
|      |            | measured?                    |                                                                                                                                                                                                                                          |                  |                                                    |
| 1    | Shelf life | Calculated by<br>KUL and DLO | Shelf life is a guide for the consumer of the period of<br>time that food can be kept before it starts to<br>deteriorate, provided any stated storage conditions<br>have been followed. It's not defined in Belgium for table<br>grapes. |                  | Calculated from<br>different quality<br>parameters |





| 2       External defects       Measured by<br>KUL and DLO       The most serious defects to be inspected on table<br>grapes are decay and split berries. Other common<br>visible defects are: scarred berries, "wet and stick?"<br>berries (whenever juice is on a leaking berry or on a<br>sound berry it is a serious damage defect) and<br>shattering (is a defect as the grapes must be firmly<br>attached to the capstems).       Subjective control by<br>human sorters       The defects will be<br>detected using colour<br>and hyper-spectral<br>imaging. Some<br>defects concerning<br>the shape of the<br>berries could be<br>detected using high-<br>resolution         30       Several factors can cause damage (i.e. diseases (notably<br>Botrytis), insects, herbicides, birds, cultural practices<br>and weather) and some of the symptoms are: spots,<br>scorch, rot, wilting, browning, powdery appearance,<br>mottled appearance, edibility or market value. In particular, this<br>excludes table grapes affected by rotting, even if the<br>signs are very slight but liable to make the table grapes<br>unfit for consumption upon arrival at their destination.<br>Table grapes showing the following defects are<br>therefore excluded:<br>a) shrivelied berries and wilted rachis (stalk) and<br>pedices (cap stems)<br>b) damaged or burned berries due to chemical<br>treatment<br>c) split berries<br>d) deterioration or alteration of the skin or pulp caused<br>by fungal diseases:<br>blick tort (Guignardia bidwellii)<br>- powdery mildew (Uncinula necator)<br>- enthrance (Elsione amelina) |   |                  | T |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 | External defects |   | grapes are decay and split berries. Other common<br>visible defects are: scarred berries, "wet and sticky"<br>berries (whenever juice is on a leaking berry or on a<br>sound berry it is a serious damage defect) and<br>shattering (is a defect as the grapes must be firmly<br>attached to the capstems).<br>Several factors can cause damage (i.e. diseases (notably<br>Botrytis), insects, herbicides, birds, cultural practices<br>and weather) and some of the symptoms are: spots,<br>scorch, rot, wilting, browning, powdery appearance,<br>mottled appearance, shrivelling.<br>OECD: Table grapes must be free from disease or<br>serious deterioration which appreciably affects their<br>appearance, edibility or market value. In particular, this<br>excludes table grapes affected by rotting, even if the<br>signs are very slight but liable to make the table grapes<br>unfit for consumption upon arrival at their destination.<br>Table grapes showing the following defects are<br>therefore excluded:<br>a) shrivelled berries and wilted rachis (stalk) and<br>pedicels (cap stems)<br>b) damaged or burned berries due to chemical<br>treatment<br>c) split berries<br>d) deterioration or alteration of the skin or pulp caused<br>by fungal diseases:<br>- black rot (Guignardia bidwellii) | <br>detected using colour<br>and hyper-spectral<br>imaging. Some<br>defects concerning<br>the shape of the<br>berries could be<br>detected using high-<br>resolution 3D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                  |   | - anthracnose (Elsinoe ampelina)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                         |





|   |                      |                                   | - grey mould (Botrytis cinerea)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                            |                                                                                                                        |
|---|----------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 3 | Internal<br>damages  | Measured by<br>KUL and<br>Spectro | Low temperatures and freezing can cause tissue<br>browning, weakening and softening of the pulp.<br>Larvae of grape moth can also cause serious damage to<br>commercial grapes by feeding on the blossoms and<br>berries. Infested berries may appear shrivelled with fine<br>webbing. Also possible to look at bad grapes in the<br>centre of the truss.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Subjective control by<br>human sorters by<br>destructive method.<br>These damages are<br>not detected until<br>the fruit is cut and<br>the internal tissue is<br>examined. | X-ray imaging can be<br>used to inspect for<br>internal defects, or<br>bad grapes in the<br>centre of the truss        |
| 4 | Colour –<br>spectral | Measured by<br>DLO and KUL        | Colour scale is characteristic of the variety (tonality<br>around yellow, green, red or black) and according to<br>their state of ripeness.<br>Uniformity/discoloration (colour within each berry and<br>of the berry within the vine, to have uniform colouring<br>in the packaging).<br>Defects in colouring are allowed (according to each<br>class)<br>Pigmentation due to sun is not a defect if only affects<br>the skin of the berries.<br>Consumer packages of a net weight not exceeding 1 kg<br>may contain mixtures of table grapes of different<br>varieties.<br>The green colour of the epidermis of the berries is due<br>to chlorophyll, which breaks down during maturation. In<br>white cultivars, greenish to golden colour is due to the<br>almost complete loss of chlorophyll. In red/black<br>cultivars berries, colours range from pink to blue-violet,<br>due to the increase in antociane level, most of them in<br>the berry skin. There are 5 types of antocianines in<br>grapes; the tonality of the berries depends on the<br>antocianines type and concentration. | Human sorting based<br>on colour charts.<br>Spectrophotometry/<br>colorimetry: i.e., in<br>numerical terms<br>along the L*, a* and<br>b* axes                              | The colour of the<br>grapes will be<br>measured using both<br>RGB cameras and<br>hyper-spectral<br>imaging techniques. |





|   |               | 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                               |
|---|---------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Size          | Measured by<br>DLO and KUL | Size is determined by the weight of the bunch,<br>according to European regulations.<br>See point 7.<br>In USA specifications:<br>For all varieties, other than seedless varieties, the<br>berries must meet a minimum diameter of 10/16 inch<br>(+- 16 mm). For all seedless varieties (Flame Seedless,<br>Thompson Seedless, Perlette, Black Seedless, etc.) they<br>must meet a minimum diameter of 9/16 inch (+-14<br>mm).                                                                                                                   | grape sizer used by<br>USDA inspection                                                                                                                                                                                                                     | The size of the<br>berries in the bunch,<br>as well as the<br>complete bunch will<br>be measured using<br>2D and 3D machine<br>vision. It should be<br>noted that not all<br>berries will be visible,<br>and the assessment<br>will be done based<br>on the non-occluded,<br>visible, berries |
| 6 | Shape         | Measured by<br>DLO         | The shape is characteristic of the variety. Slight defects are allowed depending on the quality grade.                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                            | The shape of the<br>individual berries, as<br>well as the complete<br>bunch will be<br>measured using 3D<br>machine vision.                                                                                                                                                                   |
| 7 | Sugar content | Measured by<br>KUL         | The degree Brix (°Brix) is and indicative of soluble solids<br>%. As soluble solids are in main part constituted by free<br>sugars °Brix is also an indicative of sugars content.<br>OECD: The juice of the berries must have a<br>refractometric index of at least:<br>$\geq$ 12° Brix for the Alphonse Lavallée, Cardinal and<br>Victoria varieties<br>$\geq$ 13° Brix for all other seeded varieties<br>$\geq$ 14° Brix for all seedless varieties.<br>According to CODEX the fruit must have a<br>refractometric index of at least 16° Brix. | Refractometer<br>Objective methods to<br>determine the<br>refractometric index<br>and the sugar/acid<br>ratio<br>are described in the<br>Guidance on<br>Objective Tests to<br>Determine Quality of<br>Fruit and<br>Vegetables and Dry<br>and Dried Produce | The sugar content<br>will be estimated<br>using hyper-spectral<br>imaging techniques                                                                                                                                                                                                          |





|   |                                     |                                                |                              | In addition all varieties must have satisfactory sugar/acid ratio levels. See point 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (http://www.oecd.or<br>g/agr/fv).                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                          |
|---|-------------------------------------|------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 | Firmness                            | measured<br>none of t<br>sensing<br>techniques | be<br>as<br>the<br>is<br>for | According to OECD: Berries must be firm, firmly<br>attached, evenly spaced along the stalk and have their<br>bloom virtually intact.<br>Although there are studies about the firmness of<br>berries, this issue is rarely analysed, subjective and<br>without any comparative and objective scales, This is<br>probably due to the existence of more representative<br>features of the maturity of grapes, such as sugar<br>content. Anyway the measurement of the firmness may<br>exploit the potential of a variety and reach the market<br>with a fruit in good conditions. | Berry firmness<br>(g / mm) has been<br>assessed using<br>Firmtech2® (all<br>berries in the<br>cluster),<br>Flesh firmness (N-cm)<br>has been measured<br>with Torque Load<br>Sensor® (using a<br>representative<br>sample from the<br>upper, middle and<br>distal parts of the<br>cluster).<br>Additionally, high<br>correlation has been<br>found between<br>Firmtech 2 ® and<br>Durofel ®. | The firmness can<br>approximately be<br>measured non-<br>destructively using<br>the acoustic impulse<br>response<br>(AFS/AWETA) or low-<br>mass impact (Sinclair<br>iQ). |
| 9 | Layout a<br>uniformity<br>the truss | Measured<br>DLO                                | by                           | For aesthetic appeal, the truss should have a good<br>layout. Main points are that the berries should be<br>evenly spaced along the stalk, with no bare spots, and<br>that the berries in the truss are of more or less uniform<br>colour and size.                                                                                                                                                                                                                                                                                                                            | Subjective control by human sorters                                                                                                                                                                                                                                                                                                                                                          | The layout of the<br>truss will be<br>inspected using 2D<br>and 3D machine<br>vision.                                                                                    |





|    |                |                                                                                      | According to OECD: Berries must be evenly spaced along the stalk.                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                             |                                                                                                                                                                   |
|----|----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | Contaminations | The products<br>are assumed<br>to be<br>delivered free<br>from<br>contamination<br>s | Table grapes must be practically free of visible soil, dust,<br>chemical residue or other foreign matter. However, as it<br>is not possible to clean the berries of table grapes<br>before eating, chemical residue, soil, dust, sooty mould<br>or pollution by mealy bug secretion is not allowed. | Subjective control by<br>human sorters<br>Mails (to remove<br>stones)<br>Optical systems                                                                                                                                                                    | Will not be measured                                                                                                                                              |
| 11 | Acidity        | Measured by<br>KUL and UM                                                            | <pre>Sugar/acid ratio (CODEX): If °Brix &lt; 16, fruit are accepted provided the sugar/acid ratio is at least equal to:     20:1 if the 12.5≤°Brix&lt; 14     18:1 if the 14≤°Brix&lt; 16</pre>                                                                                                     | Titration: for<br>titratable acidity<br>(acid-base titration<br>by using a standard<br>counter-active alkali<br>reagent)<br>pH meter: for pH<br>Spectrometry/<br>chromatography<br>(HPLC)/enzymatic<br>test: for total acids<br>and/or individual<br>acids. | Hyperspectral<br>imaging and<br>microwave sensing                                                                                                                 |
| 12 | Shatter        | Measured by<br>DLO                                                                   | The berries should not detach from the truss. When<br>they fall of spontaneously, it is a sign of overripeness.<br>According to OECD: Berries must be firmly attached to<br>the stalk.                                                                                                              | Subjective control by human sorters                                                                                                                                                                                                                         | Shatter will be<br>measured by<br>observing the<br>conveyer belt or<br>harvest bin using 2D<br>machine vision after<br>the grape truss is<br>lifted by the robot. |





| 13 | Smoothness of skin | Measured<br>(+DLO) | by | KUL | don't appreciate grapes notably ridged,<br>rough or shrunken. Also shininess is<br>important in this case. It's an aesthetic<br>feature that indicates a healthy fruit. It's<br>defined as the ratio of luminous flux<br>reflected from an object in the specular<br>direction for a specified source and receptor<br>angle (mostly 60°) to the luminous flux<br>reflected from glass with a refractive index<br>of 1,567 in the specular direction [16] For<br>Belgian table grapes this is a very important<br>quality parameter. Grapes that doesn't<br>shine, is unique for these grapes. Their | Subjective control by human sorters | The smoothness of<br>the skin will be<br>measured using RGB<br>and hyper-spectral<br>cameras. |
|----|--------------------|--------------------|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------|
|    |                    |                    |    |     | downy layer has to be intact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                                                               |

#### 2.2.4 Marking and packaging properties of table grapes

*Table 5: Properties regarding packaging and marking of the packages for table grapes with the corresponding reference methods (DLO, AZTI, KUL)* 

| Rank | Property   | Known or<br>measured?          | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reference method | Measurement<br>device |
|------|------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
| 1    | Shelf life | Estimated<br>by KUL and<br>DLO | The Codex Alimentarius defines shelf-life as the period during<br>which the product maintains its microbiological safety and<br>suitability at a specified storage temperature and, where<br>appropriate, under specified storage and handling conditions.<br>In European legislation, shelf-life is defined as the "date of<br>minimum durability".<br>The date of minimum durability of a foodstuff shall be the<br>date until which the foodstuff retains its specific properties<br>when properly stored (Council Directive 2000/13/EC). It's<br>highly dependent on storage conditions. Subject to<br>Community provisions imposing other types of date | Not applied      | Not applied           |





|   | Weicht    |                                 | indication, an indication of the durability date shall not be<br>required for fresh fruit and vegetables, including potatoes,<br>which have not been peeled, cut or similarly treated. This<br>derogation shall not apply to sprouting seeds and similar<br>products, such as legume sprouts [19].                                                                                                                                                                    | Viciar For Durant                                                                                                                                                                       | The unitable of the                                                                                                                  |
|---|-----------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Weight    | Measured<br>by DLO and<br>Marel | Minimum bunch weight shall be 75 g (this provision does not<br>apply to packages intended for single serving)<br>Tolerance: 10% by weight of bunches may not satisfy the<br>minimum weight.<br>In packages not exceeding 1 kg net weight for direct sale to<br>the consumer, one bunch weighting <75 g is allowed to adjust<br>the weight, provided the bunch meets all other requirements<br>of the specified class.                                                 | Vizier Easy Punnet<br>[20]<br>The machine weighs<br>half-filled packages<br>and individual grape<br>bunches and makes<br>optimal weight<br>combinations.<br>Also gravimetric<br>(scale) | The weight of the<br>grape bunches will<br>be measured using<br>an in-line weighing<br>system of Marel.                              |
| 3 | Packaging | Measured<br>by DLO              | Uniformity within the package.<br>The contents of each package must be uniform and contain<br>only bunches of the same origin, variety, quality, size and<br>degree of ripeness. For Extra class, uniform size and colouring<br>is needed.<br>The visible part must be representative of the entire contents.<br>A mixture of grapes of different colours may be packed<br>together, provided they are uniform in quality and for each<br>commercial type, in origin. | Human sorters                                                                                                                                                                           | A uniform<br>combination of<br>bunches in the<br>package can be<br>achieved based on<br>the above-<br>mentioned quality<br>features. |





| 4 | Traceability | <b>Identification:</b> The name and address of the packer and/or dispatcher, which <i>packages but not pre-packages</i> by a code mark (officially issued or accepted accompanied by the words "packer and/or dispatcher" (pr equivalent abbrevia <i>pre-packages only</i> by the name and address of a seller in the EU in close com represent the packer and/or distributor (coded information must be available of Packages containing sales packages visible from the outside, marked with the palletised, the pallet should be labelled with the above information no two side | ) of the packer and/or dispatcher. The latter should be<br>ations); or<br>nection with the words "Packed for:" and a code to<br>on request).<br>above markings, must be free of markings. Where |  |
|---|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   |              | Nature of the produce:         -'Table Grapes ', if the content is not visible from the outside,         - name of variety or, where applicable, varieties,         Commercial specifications:         Class, 'Bunches below 75 g intended for single servings', where appropriate                                                                                                                                                                                                                                                                                                  | Origin: Country (comp) and district or local name<br>(opt), countries when applicable (mixture)<br>Official control mark: (opt)                                                                 |  |





#### 2.2.5 Quality properties of pizzas

We consider the properties of the whole product, because we assume that the quality of the different parts of the ready meal is known and that this quality is good.

| Table 6 – Quality properties for pizza with the corresponding re | eference methods |
|------------------------------------------------------------------|------------------|
|------------------------------------------------------------------|------------------|

| Rank | Property          | Known or<br>measured                            | Definition                                                                                                                                                                                             | Reference method                                                                           | Measurement<br>device                             |
|------|-------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|
| 1    | Colour            | Measured by KUL<br>(+DLO)                       | The colour of the upper layer of the pizza will be dependent on the components that are present. The colour of each individual topping has to be uniform.                                              | Spectrophotometry/colorimetry:<br>i.e., in numerical terms along<br>the L*, a* and b* axes | 2D machine vision<br>and hyperspectral<br>imaging |
| 2    | Topping           | Measured by KUL<br>(+DLO)                       | Is the topping of the pizza like<br>expected? Important aspects in this<br>case are: an even distribution of each<br>individual topping and a predefined<br>area percentage of topping objects<br>[21] | Subjective control by humans                                                               | 2D machine vision<br>and hyperspectral<br>imaging |
| 3    | Size              | Measured by DLO                                 | What is the size (diameter) of the pizza? (dependent on the needs of the producer of the pizzas)                                                                                                       | Ruler                                                                                      | 2D and 3D machine vision                          |
| 4    | Composition       | UM + Spectro                                    | What is the amount of each component present on and in the pizza?                                                                                                                                      | Separating and weighing                                                                    | Microwave sensor,<br>X-ray imaging                |
| 5    | Thickness         | UM                                              | How thick is the pizza?                                                                                                                                                                                | Ruler or length measurement device                                                         | Microwave reflection                              |
| 6    | Nutritional value | Calculated<br>approximately<br>from composition | Can be calculated from the nutritional value of each present component                                                                                                                                 |                                                                                            | Approximate calculation                           |





#### 2.2.6 Marking and packaging properties of pizzas

#### Table 7: Properties regarding packaging and marking of the packages for pizza with the corresponding reference methods

| Rank | Property     | Known or measured | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reference method    | Measurement device              |
|------|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------|
| 1    | Traceability | Known properties  | For each component in the pizza the origin,<br>and the manipulations done on these<br>components and the cost of each component<br>should be known. Also, there's a need to<br>make a picture just before the closing of the<br>package as evidence in case of complaints.                                                                                                                                                                                                                                                                                                                            | /                   | 2D machine vision               |
| 2    | Shelf life   | Known             | The Codex Alimentarius defines shelf-life as<br>the period during which the product<br>maintains its microbiological safety and<br>suitability at a specified storage temperature<br>and, where appropriate, under specified<br>storage and handling conditions. In European<br>legislation, shelf-life is defined as the "date of<br>minimum durability".<br>The date of minimum durability of a foodstuff<br>shall be the date until which the foodstuff<br>retains its specific properties when properly<br>stored (Council Directive 2000/13/EC). It's<br>highly dependent on storage conditions. | Not applied         | Not applied                     |
| 3    | Weight       | Measured by Marel | The weight of the complete pizza. This has to be within certain ranges.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gravimetric (scale) | Inline weighing system of Marel |





#### 2.2.7 Quality parameters of Shepherd's pie

We consider the properties of the whole product, because we assume that the quality of the different parts of the ready meal is known and that this quality is good.

#### Table 8 – Quality properties for shepherd's pie with the corresponding reference methods

| Rank | Property          | Known or<br>measured            | Definition                                                                                                                                                                                  | Reference method                                                                           | Measurement<br>device                             |
|------|-------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|
| 1    | Colour            | Measured by KUL<br>(+DLO)       | The colour of the upper layer of the Shepherd's pie will be dependent on the components that are present.                                                                                   | Spectrophotometry/colorimetry:<br>i.e., in numerical terms along<br>the L*, a* and b* axes | 2D machine vision<br>and hyperspectral<br>imaging |
| 2    | Topping           | Measured by KUL<br>(+DLO)       | Is the topping of the Shepherd's pie<br>like expected? Important aspects in<br>this case are: an even distribution of<br>the topping and a predefined area<br>percentage of topping objects | Subjective control by humans                                                               | 2D machine vision<br>and hyperspectral<br>imaging |
| 3    | Size              | Measured by DLO                 | What is the size of the pizza?                                                                                                                                                              | Ruler                                                                                      | 2D and 3D machine vision                          |
| 4    | Weight            | Measured by<br>Marel            | What is the mass of the shepherd's pie?                                                                                                                                                     | Gravimetric (scale)                                                                        | Scale                                             |
| 5    | Composition       | Measured by UM +<br>Spectro (?) | What's the composition of the shepherd's pie?                                                                                                                                               | Separating and weighing                                                                    | Microwave sensor                                  |
| 6    | Garnish           | Measured by KUL                 | The good positioning of the possible present decorations.                                                                                                                                   | Subjective control by humans                                                               | Hyperspectral<br>imaging                          |
| 7    | Design            | Measured by KUL +<br>Spectro    | Composition and thickness of each layer                                                                                                                                                     | Separating and weighing                                                                    | X-ray imaging                                     |
| 8    | Thickness         | UM                              | How thick is the shepherd's pie?                                                                                                                                                            | Ruler or length measurement device                                                         | Microwave reflection                              |
| 9    | Nutritional value | Calculated from<br>composition  | Can be calculated from the nutritional value of each present component                                                                                                                      | ?                                                                                          | Calculation                                       |





#### 2.2.8 Marking and packaging properties of Shepherd's pie

#### Table 9: Properties regarding packaging and marking of the packages for shepherd's pie with the corresponding reference

| Rank | Property     | Known or measured | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reference method    | Measurement device                 |
|------|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------|
| 1    | Traceability | Known properties  | From each component in the shepherd's pie<br>there's a need to know the origin, the<br>manipulations done on these component, the<br>cost of each component, Also, there's a<br>need to make a picture just before the<br>closing of the package as evidence in case of<br>complaints.                                                                                                                                                                                                                                                                                                                | /                   | 2D machine vision                  |
| 2    | Shelf life   | Known             | The Codex Alimentarius defines shelf-life as<br>the period during which the product<br>maintains its microbiological safety and<br>suitability at a specified storage temperature<br>and, where appropriate, under specified<br>storage and handling conditions. In European<br>legislation, shelf-life is defined as the "date of<br>minimum durability".<br>The date of minimum durability of a foodstuff<br>shall be the date until which the foodstuff<br>retains its specific properties when properly<br>stored (Council Directive 2000/13/EC). It's<br>highly dependent on storage conditions. | Not applied         | Not applied                        |
| 3    | Weight       | Measured by Marel | The weight of the complete shepherd's pie.<br>This has to be within certain ranges.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gravimetric (scale) | Inline weighing<br>system of Marel |
|      |              |                   | This has to be within teltallitaliges.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | system of Marei                    |





#### 3 References

1. Giovannoni, J., *Molecular Biology of fruit maturation and ripening*. Annual Review of Plant Physiology and Plant Molecular Biology, 2001. **52**: p.725-749

2. USDA, TOV, 2008

3. Shewfelt, R.L., et al., *Prediction of changes in color of tomatoes during ripening at different constant temperatures*. Journal of Food Science 1988. **53**: p.1433-1437.

4. Arias R., et al., *Correlation of lycopene measured by HPLC with the L\*, a\*, b\* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content*. Journal of Agricultural and Food Chemistry 2000. **48**: p1697–1702.

5. www.unitecarg.com/manuales/UNICAL 200%20cherry.pdf

6. http://www.growtomatoes.com/tomato-fruit-characteristics/

7. Malundo, T., et al., *Flavor quality of fresh tomato as affected by sugar and acid levels.* Postharvest Biology and Technology 1995. **6**: p103-110.

8. Bucheli, P., et al., *Definition of nonvolatile markers for flavor of tomato as tools in selection and breeding.* Journal of Agricultural and Food Chemistry 1999. **47**: p659-664

9. Cantwell, 2004

10. <u>http://ec.europa.eu/sanco\_pesticides/public/index.cfm?event=commodity.selection</u>

11. Organization for Economic Co-operation and Development (OECD), International Standardisation of Fruit and Vegetables - Tomatoes, 2002. http://www.oecd.org/tad/standardsforseedstractorsforestfruitandvegetables/46597842.pdf

12. Anthon, G.E., et al. *Changes in pH, acids, sugars and other quality parameters during extended vine holding of ripe processing tomatoes,* Journal of the Science of Food and Agriculture 2011. **91**(7): p1175–1181

13. Stevens, M.A., et al., *Genotypic variation for flavor and composition in fresh tomatoes*. Journal of the American Society for Horticultural Science. 1977. **102**: p880-689.

14. Petro-Turza, M., *Flavor of tomato and tomato products*. Food Reviews International 1987 **2**(3): p309-351

15. <u>http://www.glutamate.org/</u> (site of the International Glutamate Information Service)

16. Citation from ISO 2813:2000

17. Ciruelos-Calvo, A., et al., *Parámetros de calidad en el tomate para industria*. La agricultura y la ganadería extremeñas 2008 p149-169.

http://eia.unex.es/EIIAA/Portals/0/La%20Agricultura%20y%20la%20Ganader%C3%ADa%202007.pd f

18. Arias, R., et al., *Correlation of Lycopene Measured by HPLC with the L \*, a \*, b \* Color Readings of a Hydroponic Tomato and the Relationship of Maturity with Color and Lycopene Content* Journal of Agricultural and Food Chemistry 2000 **48**(5): p1697–1702

19. http://www.fsai.ie/uploadedFiles/Consol\_Dir2000\_13(3).pdf

20. http://www.vizier.co.za/punnet.html

21. Sun D.-W., *Inspecting pizza topping percentage and distribution by a computer vision method*, Journal of Food Engineering 2000 **44**: p245-249





### 4 Quality Standards

| <b>Quality Standards</b> (Source: FRESHFE<br><u>http://www.freshfel.org/asp/index.asp</u> ) | EL European Fresh Produce Association       |  |  |
|---------------------------------------------------------------------------------------------|---------------------------------------------|--|--|
| TOMATOES                                                                                    | TABLE GRAPES                                |  |  |
| Interpretative guide                                                                        | Interpretative guide                        |  |  |
| Update 2011                                                                                 | Update 2011                                 |  |  |
| EU Regulation                                                                               | EU Regulation                               |  |  |
| Commission Regulation (EC) No. 543/2011                                                     | Commission Regulation (EC) No. 543/2011     |  |  |
| UN-ECE marketing standard                                                                   | UN-ECE marketing standard                   |  |  |
| (United Nations Economic Commission for                                                     | (United Nations Economic Commission for     |  |  |
| Europe)                                                                                     | Europe)                                     |  |  |
| UNECE STANDARD FFV-36, 2012 edition                                                         | UNECE STANDARD FFV-19, 2010 edition         |  |  |
| CODEX standard                                                                              | CODEX standard                              |  |  |
| CODEX STANDARD CXS-293, 2008 edition                                                        | CODEX STANDARD CXS-255, 2011 edition        |  |  |
| OECD Interpretative brochure                                                                | OECD Interpretative brochure                |  |  |
| (Organisation for Economic Co-operation and                                                 | (Organization for Economic Co-operation and |  |  |
| Development)                                                                                | Development)                                |  |  |
| Version 2002                                                                                | Version 2006                                |  |  |